plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lifeng9472/IBCCF-master
getVarReceptiveFields.m
.m
IBCCF-master/external_libs/matconvnet/matlab/+dagnn/@DagNN/getVarReceptiveFields.m
3,635
utf_8
6d61896e475e64e9f05f10303eee7ade
function rfs = getVarReceptiveFields(obj, var) %GETVARRECEPTIVEFIELDS Get the receptive field of a variable % RFS = GETVARRECEPTIVEFIELDS(OBJ, VAR) gets the receptivie fields RFS of % all the variables of the DagNN OBJ into variable VAR. VAR is a variable % name or index. % % RFS has one entry for each variable in the DagNN following the same % format as has DAGNN.GETRECEPTIVEFIELDS(). For example, RFS(i) is the % receptive field of the i-th variable in the DagNN into variable VAR. If % the i-th variable is not a descendent of VAR in the DAG, then there is % no receptive field, indicated by `rfs(i).size == []`. If the receptive % field cannot be computed (e.g. because it depends on the values of % variables and not just on the network topology, or if it cannot be % expressed as a sliding window), then `rfs(i).size = [NaN NaN]`. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. All rights reserved. % % This file is part of the VLFeat library and is made available under the % terms of the BSD license (see the COPYING file). if ~isnumeric(var) var_n = obj.getVarIndex(var) ; if isnan(var_n) error('Variable %s not found.', var_n); end var = var_n; end nv = numel(obj.vars) ; nw = numel(var) ; rfs = struct('size', cell(nw, nv), 'stride', cell(nw, nv), 'offset', cell(nw,nv)) ; for w = 1:numel(var) rfs(w,var(w)).size = [1 1] ; rfs(w,var(w)).stride = [1 1] ; rfs(w,var(w)).offset = [1 1] ; end for l = obj.executionOrder % visit all blocks and get their receptive fields in = obj.layers(l).inputIndexes ; out = obj.layers(l).outputIndexes ; blockRfs = obj.layers(l).block.getReceptiveFields() ; for w = 1:numel(var) % find the receptive fields in each of the inputs of the block for i = 1:numel(in) for j = 1:numel(out) rf = composeReceptiveFields(rfs(w, in(i)), blockRfs(i,j)) ; rfs(w, out(j)) = resolveReceptiveFields([rfs(w, out(j)), rf]) ; end end end end end % ------------------------------------------------------------------------- function rf = composeReceptiveFields(rf1, rf2) % ------------------------------------------------------------------------- if isempty(rf1.size) || isempty(rf2.size) rf.size = [] ; rf.stride = [] ; rf.offset = [] ; return ; end rf.size = rf1.stride .* (rf2.size - 1) + rf1.size ; rf.stride = rf1.stride .* rf2.stride ; rf.offset = rf1.stride .* (rf2.offset - 1) + rf1.offset ; end % ------------------------------------------------------------------------- function rf = resolveReceptiveFields(rfs) % ------------------------------------------------------------------------- rf.size = [] ; rf.stride = [] ; rf.offset = [] ; for i = 1:numel(rfs) if isempty(rfs(i).size), continue ; end if isnan(rfs(i).size) rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break ; end if isempty(rf.size) rf = rfs(i) ; else if ~isequal(rf.stride,rfs(i).stride) % incompatible geometry; this cannot be represented by a sliding % window RF field and may denotes an error in the network structure rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break; else % the two RFs have the same stride, so they can be recombined % the new RF is just large enough to contain both of them a = rf.offset - (rf.size-1)/2 ; b = rf.offset + (rf.size-1)/2 ; c = rfs(i).offset - (rfs(i).size-1)/2 ; d = rfs(i).offset + (rfs(i).size-1)/2 ; e = min(a,c) ; f = max(b,d) ; rf.offset = (e+f)/2 ; rf.size = f-e+1 ; end end end end
github
lifeng9472/IBCCF-master
rebuild.m
.m
IBCCF-master/external_libs/matconvnet/matlab/+dagnn/@DagNN/rebuild.m
3,243
utf_8
e368536d9e70c805d8424cdd6b593960
function rebuild(obj) %REBUILD Rebuild the internal data structures of a DagNN object % REBUILD(obj) rebuilds the internal data structures % of the DagNN obj. It is an helper function used internally % to update the network when layers are added or removed. varFanIn = zeros(1, numel(obj.vars)) ; varFanOut = zeros(1, numel(obj.vars)) ; parFanOut = zeros(1, numel(obj.params)) ; for l = 1:numel(obj.layers) ii = obj.getVarIndex(obj.layers(l).inputs) ; oi = obj.getVarIndex(obj.layers(l).outputs) ; pi = obj.getParamIndex(obj.layers(l).params) ; obj.layers(l).inputIndexes = ii ; obj.layers(l).outputIndexes = oi ; obj.layers(l).paramIndexes = pi ; varFanOut(ii) = varFanOut(ii) + 1 ; varFanIn(oi) = varFanIn(oi) + 1 ; parFanOut(pi) = parFanOut(pi) + 1 ; end [obj.vars.fanin] = tolist(num2cell(varFanIn)) ; [obj.vars.fanout] = tolist(num2cell(varFanOut)) ; if ~isempty(parFanOut) [obj.params.fanout] = tolist(num2cell(parFanOut)) ; end % dump unused variables keep = (varFanIn + varFanOut) > 0 ; obj.vars = obj.vars(keep) ; varRemap = cumsum(keep) ; % dump unused parameters keep = parFanOut > 0 ; obj.params = obj.params(keep) ; parRemap = cumsum(keep) ; % update the indexes to account for removed layers, variables and parameters for l = 1:numel(obj.layers) obj.layers(l).inputIndexes = varRemap(obj.layers(l).inputIndexes) ; obj.layers(l).outputIndexes = varRemap(obj.layers(l).outputIndexes) ; obj.layers(l).paramIndexes = parRemap(obj.layers(l).paramIndexes) ; obj.layers(l).block.layerIndex = l ; end % update the variable and parameter names hash maps obj.varNames = cell2struct(num2cell(1:numel(obj.vars)), {obj.vars.name}, 2) ; obj.paramNames = cell2struct(num2cell(1:numel(obj.params)), {obj.params.name}, 2) ; obj.layerNames = cell2struct(num2cell(1:numel(obj.layers)), {obj.layers.name}, 2) ; % determine the execution order again (and check for consistency) obj.executionOrder = getOrder(obj) ; % -------------------------------------------------------------------- function order = getOrder(obj) % -------------------------------------------------------------------- hops = cell(1, numel(obj.vars)) ; for l = 1:numel(obj.layers) for v = obj.layers(l).inputIndexes hops{v}(end+1) = l ; end end order = zeros(1, numel(obj.layers)) ; for l = 1:numel(obj.layers) if order(l) == 0 order = dagSort(obj, hops, order, l) ; end end if any(order == -1) warning('The network graph contains a cycle') ; end [~,order] = sort(order, 'descend') ; % -------------------------------------------------------------------- function order = dagSort(obj, hops, order, layer) % -------------------------------------------------------------------- if order(layer) > 0, return ; end order(layer) = -1 ; % mark as open n = 0 ; for o = obj.layers(layer).outputIndexes ; for child = hops{o} if order(child) == -1 return ; end if order(child) == 0 order = dagSort(obj, hops, order, child) ; end n = max(n, order(child)) ; end end order(layer) = n + 1 ; % -------------------------------------------------------------------- function varargout = tolist(x) % -------------------------------------------------------------------- [varargout{1:numel(x)}] = x{:} ;
github
lifeng9472/IBCCF-master
print.m
.m
IBCCF-master/external_libs/matconvnet/matlab/+dagnn/@DagNN/print.m
15,032
utf_8
7da4e68e624f559f815ee3076d9dd966
function str = print(obj, inputSizes, varargin) %PRINT Print information about the DagNN object % PRINT(OBJ) displays a summary of the functions and parameters in the network. % STR = PRINT(OBJ) returns the summary as a string instead of printing it. % % PRINT(OBJ, INPUTSIZES) where INPUTSIZES is a cell array of the type % {'input1nam', input1size, 'input2name', input2size, ...} prints % information using the specified size for each of the listed inputs. % % PRINT(___, 'OPT', VAL, ...) accepts the following options: % % `All`:: false % Display all the information below. % % `Layers`:: '*' % Specify which layers to print. This can be either a list of % indexes, a cell array of array names, or the string '*', meaning % all layers. % % `Parameters`:: '*' % Specify which parameters to print, similar to the option above. % % `Variables`:: [] % Specify which variables to print, similar to the option above. % % `Dependencies`:: false % Whether to display the dependency (geometric transformation) % of each variables from each input. % % `Format`:: 'ascii' % Choose between `ascii`, `latex`, `csv`, 'digraph', and `dot`. % The first three format print tables; `digraph` uses the plot function % for a `digraph` (supported in MATLAB>=R2015b) and the last one % prints a graph in `dot` format. In case of zero outputs, it % attmepts to compile and visualise the dot graph using `dot` command % and `start` (Windows), `display` (Linux) or `open` (Mac OSX) on your system. % In the latter case, all variables and layers are included in the % graph, regardless of the other parameters. % % `FigurePath`:: 'tempname.pdf' % Sets the path where any generated `dot` figure will be saved. Currently, % this is useful only in combination with the format `dot`. % By default, a unique temporary filename is used (`tempname` % is replaced with a `tempname()` call). The extension specifies the % output format (passed to dot as a `-Text` parameter). % If not extension provided, PDF used by default. % Additionally, stores the .dot file used to generate the figure to % the same location. % % `dotArgs`:: '' % Additional dot arguments. E.g. '-Gsize="7"' to generate a smaller % output (for a review of the network structure etc.). % % `MaxNumColumns`:: 18 % Maximum number of columns in each table. % % See also: DAGNN, DAGNN.GETVARSIZES(). if nargin > 1 && ischar(inputSizes) % called directly with options, skipping second argument varargin = {inputSizes, varargin{:}} ; inputSizes = {} ; end opts.all = false ; opts.format = 'ascii' ; opts.figurePath = 'tempname.pdf' ; opts.dotArgs = ''; [opts, varargin] = vl_argparse(opts, varargin) ; opts.layers = '*' ; opts.parameters = [] ; opts.variables = [] ; if opts.all || nargin > 1 opts.variables = '*' ; end if opts.all opts.parameters = '*' ; end opts.memory = true ; opts.dependencies = opts.all ; opts.maxNumColumns = 18 ; opts = vl_argparse(opts, varargin) ; if nargin == 1, inputSizes = {} ; end varSizes = obj.getVarSizes(inputSizes) ; paramSizes = cellfun(@size, {obj.params.value}, 'UniformOutput', false) ; str = {''} ; if strcmpi(opts.format, 'dot') str = printDot(obj, varSizes, paramSizes, opts) ; if nargout == 0 displayDot(str, opts) ; end return ; end if strcmpi(opts.format,'digraph') str = printdigraph(obj, varSizes) ; return ; end if ~isempty(opts.layers) table = {'func', '-', 'type', 'inputs', 'outputs', 'params', 'pad', 'stride'} ; for l = select(obj, 'layers', opts.layers) layer = obj.layers(l) ; table{l+1,1} = layer.name ; table{l+1,2} = '-' ; table{l+1,3} = player(class(layer.block)) ; table{l+1,4} = strtrim(sprintf('%s ', layer.inputs{:})) ; table{l+1,5} = strtrim(sprintf('%s ', layer.outputs{:})) ; table{l+1,6} = strtrim(sprintf('%s ', layer.params{:})) ; if isprop(layer.block, 'pad') table{l+1,7} = pdims(layer.block.pad) ; else table{l+1,7} = 'n/a' ; end if isprop(layer.block, 'stride') table{l+1,8} = pdims(layer.block.stride) ; else table{l+1,8} = 'n/a' ; end end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.parameters) table = {'param', '-', 'dims', 'mem', 'fanout'} ; for v = select(obj, 'params', opts.parameters) table{v+1,1} = obj.params(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(paramSizes{v}) ; table{v+1,4} = pmem(prod(paramSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.params(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.variables) table = {'var', '-', 'dims', 'mem', 'fanin', 'fanout'} ; for v = select(obj, 'vars', opts.variables) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(varSizes{v}) ; table{v+1,4} = pmem(prod(varSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.vars(v).fanin) ; table{v+1,6} = sprintf('%d',obj.vars(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.memory paramMem = sum(cellfun(@getMem, paramSizes)) ; varMem = sum(cellfun(@getMem, varSizes)) ; table = {'params', 'vars', 'total'} ; table{2,1} = pmem(paramMem) ; table{2,2} = pmem(varMem) ; table{2,3} = pmem(paramMem + varMem) ; str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.dependencies % print variable to input dependencies inputs = obj.getInputs() ; rfs = obj.getVarReceptiveFields(inputs) ; for i = 1:size(rfs,1) table = {sprintf('rf in ''%s''', inputs{i}), '-', 'size', 'stride', 'offset'} ; for v = 1:size(rfs,2) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(rfs(i,v).size) ; table{v+1,4} = pdims(rfs(i,v).stride) ; table{v+1,5} = pdims(rfs(i,v).offset) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end end % finish str = horzcat(str{:}) ; if nargout == 0, fprintf('%s',str) ; clear str ; end end % ------------------------------------------------------------------------- function str = printtable(opts, table) % ------------------------------------------------------------------------- str = {''} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = printtablechunk(opts, table(:, [1 sel])) ; str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function str = printtablechunk(opts, table) % ------------------------------------------------------------------------- str = {''} ; switch opts.format case 'ascii' sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end case 'latex' sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1}= sprintf('\\end{tabular}\n') ; case 'csv' sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds,', sizes(j)) ; str{end+1} = sprintf(fmt, ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end otherwise error('Uknown format %s', opts.format) ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; end % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(isnan(x)) s = 'n/a' ; return ; end if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end end % ------------------------------------------------------------------------- function x = player(x) % ------------------------------------------------------------------------- if numel(x) < 7, return ; end if x(1:6) == 'dagnn.', x = x(7:end) ; end end % ------------------------------------------------------------------------- function m = getMem(sz) % ------------------------------------------------------------------------- m = prod(sz) * 4 ; if isnan(m), m = 0 ; end end % ------------------------------------------------------------------------- function sel = select(obj, type, pattern) % ------------------------------------------------------------------------- if isnumeric(pattern) sel = pattern ; else if isstr(pattern) if strcmp(pattern, '*') sel = 1:numel(obj.(type)) ; return ; else pattern = {pattern} ; end end sel = find(cellfun(@(x) any(strcmp(x, pattern)), {obj.(type).name})) ; end end % ------------------------------------------------------------------------- function h = printdigraph(net, varSizes) % ------------------------------------------------------------------------- if exist('digraph') ~= 2 error('MATLAB graph support not present.'); end s = []; t = []; w = []; varsNames = {net.vars.name}; layerNames = {net.layers.name}; numVars = numel(varsNames); spatSize = cellfun(@(vs) vs(1), varSizes); spatSize(isnan(spatSize)) = 1; varChannels = cellfun(@(vs) vs(3), varSizes); varChannels(isnan(varChannels)) = 0; for li = 1:numel(layerNames) l = net.layers(li); lidx = numVars + li; s = [s l.inputIndexes]; t = [t lidx*ones(1, numel(l.inputIndexes))]; w = [w spatSize(l.inputIndexes)]; s = [s lidx*ones(1, numel(l.outputIndexes))]; t = [t l.outputIndexes]; w = [w spatSize(l.outputIndexes)]; end nodeNames = [varsNames, layerNames]; g = digraph(s, t, w); lw = 5*g.Edges.Weight/max([g.Edges.Weight; 5]); h = plot(g, 'NodeLabel', nodeNames, 'LineWidth', lw); highlight(h, numVars+1:numVars+numel(layerNames), 'MarkerSize', 8, 'Marker', 's'); highlight(h, 1:numVars, 'MarkerSize', 5, 'Marker', 's'); cmap = copper; varNvalRel = varChannels./max(varChannels); for vi = 1:numel(varChannels) highlight(h, vi, 'NodeColor', cmap(max(round(varNvalRel(vi)*64), 1),:)); end axis off; layout(h, 'force'); end % ------------------------------------------------------------------------- function str = printDot(net, varSizes, paramSizes, otps) % ------------------------------------------------------------------------- str = {} ; str{end+1} = sprintf('digraph DagNN {\n\tfontsize=12\n') ; font_style = 'fontsize=12 fontname="helvetica"'; for v = 1:numel(net.vars) label=sprintf('{{%s} | {%s | %s }}', net.vars(v).name, pdims(varSizes{v}), pmem(4*prod(varSizes{v}))) ; str{end+1} = sprintf('\tvar_%s [label="%s" shape=record style="solid,rounded,filled" color=cornsilk4 fillcolor=beige %s ]\n', ... net.vars(v).name, label, font_style) ; end for p = 1:numel(net.params) label=sprintf('{{%s} | {%s | %s }}', net.params(p).name, pdims(paramSizes{p}), pmem(4*prod(paramSizes{p}))) ; str{end+1} = sprintf('\tpar_%s [label="%s" shape=record style="solid,rounded,filled" color=lightsteelblue4 fillcolor=lightsteelblue %s ]\n', ... net.params(p).name, label, font_style) ; end for l = 1:numel(net.layers) label = sprintf('{ %s | %s }', net.layers(l).name, class(net.layers(l).block)) ; str{end+1} = sprintf('\t%s [label="%s" shape=record style="bold,filled" color="tomato4" fillcolor="tomato" %s ]\n', ... net.layers(l).name, label, font_style) ; for i = 1:numel(net.layers(l).inputs) str{end+1} = sprintf('\tvar_%s->%s [weight=10]\n', ... net.layers(l).inputs{i}, ... net.layers(l).name) ; end for o = 1:numel(net.layers(l).outputs) str{end+1} = sprintf('\t%s->var_%s [weight=10]\n', ... net.layers(l).name, ... net.layers(l).outputs{o}) ; end for p = 1:numel(net.layers(l).params) str{end+1} = sprintf('\tpar_%s->%s [weight=1]\n', ... net.layers(l).params{p}, ... net.layers(l).name) ; end end str{end+1} = sprintf('}\n') ; str = cat(2,str{:}) ; end % ------------------------------------------------------------------------- function displayDot(str, opts) % ------------------------------------------------------------------------- %mwdot = fullfile(matlabroot, 'bin', computer('arch'), 'mwdot') ; dotPaths = {'/opt/local/bin/dot', 'dot'} ; if ismember(computer, {'PCWIN64', 'PCWIN'}) winPath = 'c:\Program Files (x86)'; dpath = dir(fullfile(winPath, 'Graphviz*')); if ~isempty(dpath) dotPaths = [{fullfile(winPath, dpath.name, 'bin', 'dot.exe')}, dotPaths]; end end dotExe = '' ; for i = 1:numel(dotPaths) [~,~,ext] = fileparts(dotPaths{i}); if exist(dotPaths{i},'file') && ~strcmp(ext, '.m') dotExe = dotPaths{i} ; break; end end if isempty(dotExe) warning('Could not genereate a figure because the `dot` utility could not be found.') ; return ; end [path, figName, ext] = fileparts(opts.figurePath) ; if isempty(ext), ext = '.pdf' ; end if strcmp(figName, 'tempname') figName = tempname(); end in = fullfile(path, [ figName, '.dot' ]) ; out = fullfile(path, [ figName, ext ]) ; f = fopen(in, 'w') ; fwrite(f, str) ; fclose(f) ; cmd = sprintf('"%s" -T%s %s -o "%s" "%s"', dotExe, ext(2:end), ... opts.dotArgs, out, in) ; [status, result] = system(cmd) ; if status ~= 0 error('Unable to run %s\n%s', cmd, result) ; end if ~isempty(strtrim(result)) fprintf('Dot output:\n%s\n', result) ; end %f = fopen(out,'r') ; file=fread(f, 'char=>char')' ; fclose(f) ; switch computer case {'PCWIN64', 'PCWIN'} system(sprintf('start "" "%s"', out)) ; case 'MACI64' system(sprintf('open "%s"', out)) ; case 'GLNXA64' system(sprintf('display "%s"', out)) ; otherwise fprintf('The figure saved at "%s"\n', out) ; end end
github
lifeng9472/IBCCF-master
fromSimpleNN.m
.m
IBCCF-master/external_libs/matconvnet/matlab/+dagnn/@DagNN/fromSimpleNN.m
7,258
utf_8
83f914aec610125592263d74249f54a7
function obj = fromSimpleNN(net, varargin) % FROMSIMPLENN Initialize a DagNN object from a SimpleNN network % FROMSIMPLENN(NET) initializes the DagNN object from the % specified CNN using the SimpleNN format. % % SimpleNN objects are linear chains of computational layers. These % layers exchange information through variables and parameters that % are not explicitly named. Hence, FROMSIMPLENN() uses a number of % rules to assign such names automatically: % % * From the input to the output of the CNN, variables are called % `x0` (input of the first layer), `x1`, `x2`, .... In this % manner `xi` is the output of the i-th layer. % % * Any loss layer requires two inputs, the second being a label. % These are called `label` (for the first such layers), and then % `label2`, `label3`,... for any other similar layer. % % Additionally, given the option `CanonicalNames` the function can % change the names of some variables to make them more convenient to % use. With this option turned on: % % * The network input is called `input` instead of `x0`. % % * The output of each SoftMax layer is called `prob` (or `prob2`, % ...). % % * The output of each Loss layer is called `objective` (or ` % objective2`, ...). % % * The input of each SoftMax or Loss layer of type *softmax log % loss* is called `prediction` (or `prediction2`, ...). If a Loss % layer immediately follows a SoftMax layer, then the rule above % takes precendence and the input name is not changed. % % FROMSIMPLENN(___, 'OPT', VAL, ...) accepts the following options: % % `CanonicalNames`:: false % If `true` use the rules above to assign more meaningful % names to some of the variables. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.canonicalNames = false ; opts = vl_argparse(opts, varargin) ; import dagnn.* obj = DagNN() ; net = vl_simplenn_move(net, 'cpu') ; net = vl_simplenn_tidy(net) ; % copy meta-information as is obj.meta = net.meta ; for l = 1:numel(net.layers) inputs = {sprintf('x%d',l-1)} ; outputs = {sprintf('x%d',l)} ; params = struct(... 'name', {}, ... 'value', {}, ... 'learningRate', [], ... 'weightDecay', []) ; if isfield(net.layers{l}, 'name') name = net.layers{l}.name ; else name = sprintf('layer%d',l) ; end switch net.layers{l}.type case {'conv', 'convt'} sz = size(net.layers{l}.weights{1}) ; hasBias = ~isempty(net.layers{l}.weights{2}) ; params(1).name = sprintf('%sf',name) ; params(1).value = net.layers{l}.weights{1} ; if hasBias params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; end if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; if hasBias params(2).learningRate = net.layers{l}.learningRate(2) ; end end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; if hasBias params(2).weightDecay = net.layers{l}.weightDecay(2) ; end end switch net.layers{l}.type case 'conv' block = Conv() ; block.size = sz ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.dilate = net.layers{l}.dilate ; case 'convt' block = ConvTranspose() ; block.size = sz ; block.upsample = net.layers{l}.upsample ; block.crop = net.layers{l}.crop ; block.numGroups = net.layers{l}.numGroups ; end block.hasBias = hasBias ; block.opts = net.layers{l}.opts ; case 'pool' block = Pooling() ; block.method = net.layers{l}.method ; block.poolSize = net.layers{l}.pool ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.opts = net.layers{l}.opts ; case {'normalize', 'lrn'} block = LRN() ; block.param = net.layers{l}.param ; case {'dropout'} block = DropOut() ; block.rate = net.layers{l}.rate ; case {'relu'} block = ReLU() ; block.leak = net.layers{l}.leak ; case {'sigmoid'} block = Sigmoid() ; case {'softmax'} block = SoftMax() ; case {'softmaxloss'} block = Loss('loss', 'softmaxlog') ; % The loss has two inputs inputs{2} = getNewVarName(obj, 'label') ; case {'bnorm'} block = BatchNorm() ; params(1).name = sprintf('%sm',name) ; params(1).value = net.layers{l}.weights{1} ; params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; params(3).name = sprintf('%sx',name) ; params(3).value = net.layers{l}.weights{3} ; if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; params(2).learningRate = net.layers{l}.learningRate(2) ; params(3).learningRate = net.layers{l}.learningRate(3) ; end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; params(2).weightDecay = net.layers{l}.weightDecay(2) ; params(3).weightDecay = 0 ; end otherwise error([net.layers{l}.type ' is unsupported']) ; end obj.addLayer(... name, ... block, ... inputs, ... outputs, ... {params.name}) ; for p = 1:numel(params) pindex = obj.getParamIndex(params(p).name) ; if ~isempty(params(p).value) obj.params(pindex).value = params(p).value ; end if ~isempty(params(p).learningRate) obj.params(pindex).learningRate = params(p).learningRate ; end if ~isempty(params(p).weightDecay) obj.params(pindex).weightDecay = params(p).weightDecay ; end end end % -------------------------------------------------------------------- % Rename variables to canonical names % -------------------------------------------------------------------- if opts.canonicalNames for l = 1:numel(obj.layers) if l == 1 obj.renameVar(obj.layers(l).inputs{1}, 'input') ; end if isa(obj.layers(l).block, 'dagnn.SoftMax') obj.renameVar(obj.layers(l).outputs{1}, getNewVarName(obj, 'prob')) ; obj.renameVar(obj.layers(l).inputs{1}, getNewVarName(obj, 'prediction')) ; end if isa(obj.layers(l).block, 'dagnn.Loss') obj.renameVar(obj.layers(l).outputs{1}, 'objective') ; if isempty(regexp(obj.layers(l).inputs{1}, '^prob.*')) obj.renameVar(obj.layers(l).inputs{1}, ... getNewVarName(obj, 'prediction')) ; end end end end if isfield(obj.meta, 'inputs') obj.meta.inputs(1).name = obj.layers(1).inputs{1} ; end % -------------------------------------------------------------------- function name = getNewVarName(obj, prefix) % -------------------------------------------------------------------- t = 0 ; name = prefix ; while any(strcmp(name, {obj.vars.name})) t = t + 1 ; name = sprintf('%s%d', prefix, t) ; end
github
lifeng9472/IBCCF-master
vl_simplenn_display.m
.m
IBCCF-master/external_libs/matconvnet/matlab/simplenn/vl_simplenn_display.m
12,455
utf_8
65bb29cd7c27b68c75fdd27acbd63e2b
function [info, str] = vl_simplenn_display(net, varargin) %VL_SIMPLENN_DISPLAY Display the structure of a SimpleNN network. % VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET. % % INFO = VL_SIMPLENN_DISPLAY(NET) returns instead a structure INFO % with several statistics for each layer of the network NET. % % [INFO, STR] = VL_SIMPLENN_DISPLAY(...) returns also a string STR % with the text that would otherwise be printed. % % The function accepts the following options: % % `inputSize`:: auto % Specifies the size of the input tensor X that will be passed to % the network as input. This information is used in order to % estiamte the memory required to process the network. When this % option is not used, VL_SIMPLENN_DISPLAY() tires to use values % in the NET structure to guess the input size: % NET.META.INPUTSIZE and NET.META.NORMALIZATION.IMAGESIZE % (assuming a batch size of one image, unless otherwise specified % by the `batchSize` option). % % `batchSize`:: [] % Specifies the number of data points in a batch in estimating % the memory consumption, overriding the last dimension of % `inputSize`. % % `maxNumColumns`:: 18 % Maximum number of columns in a table. Wider tables are broken % into multiple smaller ones. % % `format`:: `'ascii'` % One of `'ascii'`, `'latex'`, or `'csv'`. % % See also: VL_SIMPLENN(). % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.inputSize = [] ; opts.batchSize = [] ; opts.maxNumColumns = 18 ; opts.format = 'ascii' ; opts = vl_argparse(opts, varargin) ; % determine input size, using first the option, then net.meta.inputSize, % and eventually net.meta.normalization.imageSize, if any if isempty(opts.inputSize) tmp = [] ; opts.inputSize = [NaN;NaN;NaN;1] ; if isfield(net, 'meta') if isfield(net.meta, 'inputSize') tmp = net.meta.inputSize(:) ; elseif isfield(net.meta, 'normalization') && ... isfield(net.meta.normalization, 'imageSize') tmp = net.meta.normalization.imageSize ; end opts.inputSize(1:numel(tmp)) = tmp(:) ; end end if ~isempty(opts.batchSize) opts.inputSize(4) = opts.batchSize ; end fields={'layer', 'type', 'name', '-', ... 'support', 'filtd', 'filtdil', 'nfilt', 'stride', 'pad', '-', ... 'rfsize', 'rfoffset', 'rfstride', '-', ... 'dsize', 'ddepth', 'dnum', '-', ... 'xmem', 'wmem'}; % get the support, stride, and padding of the operators for l = 1:numel(net.layers) ly = net.layers{l} ; switch ly.type case 'conv' ks = max([size(ly.weights{1},1) ; size(ly.weights{1},2)],1) ; ks = (ks - 1) .* ly.dilate + 1 ; info.support(1:2,l) = ks ; case 'pool' info.support(1:2,l) = ly.pool(:) ; otherwise info.support(1:2,l) = [1;1] ; end if isfield(ly, 'stride') info.stride(1:2,l) = ly.stride(:) ; else info.stride(1:2,l) = 1 ; end if isfield(ly, 'pad') info.pad(1:4,l) = ly.pad(:) ; else info.pad(1:4,l) = 0 ; end % operator applied to the input image info.receptiveFieldSize(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... (info.support(1:2,1:l)-1),2) ; info.receptiveFieldOffset(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... ((info.support(1:2,1:l)-1)/2 - info.pad([1 3],1:l)),2) ; info.receptiveFieldStride = cumprod(info.stride,2) ; end % get the dimensions of the data info.dataSize(1:4,1) = opts.inputSize(:) ; for l = 1:numel(net.layers) ly = net.layers{l} ; if strcmp(ly.type, 'custom') && isfield(ly, 'getForwardSize') sz = ly.getForwardSize(ly, info.dataSize(:,l)) ; info.dataSize(:,l+1) = sz(:) ; continue ; end info.dataSize(1, l+1) = floor((info.dataSize(1,l) + ... sum(info.pad(1:2,l)) - ... info.support(1,l)) / info.stride(1,l)) + 1 ; info.dataSize(2, l+1) = floor((info.dataSize(2,l) + ... sum(info.pad(3:4,l)) - ... info.support(2,l)) / info.stride(2,l)) + 1 ; info.dataSize(3, l+1) = info.dataSize(3,l) ; info.dataSize(4, l+1) = info.dataSize(4,l) ; switch ly.type case 'conv' if isfield(ly, 'weights') f = ly.weights{1} ; else f = ly.filters ; end if size(f, 3) ~= 0 info.dataSize(3, l+1) = size(f,4) ; end case {'loss', 'softmaxloss'} info.dataSize(3:4, l+1) = 1 ; case 'custom' info.dataSize(3,l+1) = NaN ; end end if nargout == 1, return ; end % print table table = {} ; wmem = 0 ; xmem = 0 ; for wi=1:numel(fields) w = fields{wi} ; switch w case 'type', s = 'type' ; case 'stride', s = 'stride' ; case 'rfsize', s = 'rf size' ; case 'rfstride', s = 'rf stride' ; case 'rfoffset', s = 'rf offset' ; case 'dsize', s = 'data size' ; case 'ddepth', s = 'data depth' ; case 'dnum', s = 'data num' ; case 'nfilt', s = 'num filts' ; case 'filtd', s = 'filt dim' ; case 'filtdil', s = 'filt dilat' ; case 'wmem', s = 'param mem' ; case 'xmem', s = 'data mem' ; otherwise, s = char(w) ; end table{wi,1} = s ; % do input pseudo-layer for l=0:numel(net.layers) switch char(w) case '-', s='-' ; case 'layer', s=sprintf('%d', l) ; case 'dsize', s=pdims(info.dataSize(1:2,l+1)) ; case 'ddepth', s=sprintf('%d', info.dataSize(3,l+1)) ; case 'dnum', s=sprintf('%d', info.dataSize(4,l+1)) ; case 'xmem' a = prod(info.dataSize(:,l+1)) * 4 ; s = pmem(a) ; xmem = xmem + a ; otherwise if l == 0 if strcmp(char(w),'type'), s = 'input'; else s = 'n/a' ; end else ly=net.layers{l} ; switch char(w) case 'name' if isfield(ly, 'name') s=ly.name ; else s='' ; end case 'type' switch ly.type case 'normalize', s='norm'; case 'pool' if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end case 'softmax', s='softmx' ; case 'softmaxloss', s='softmxl' ; otherwise s=ly.type ; end case 'nfilt' switch ly.type case 'conv' if isfield(ly, 'weights'), a = size(ly.weights{1},4) ; else, a = size(ly.filters,4) ; end s=sprintf('%d',a) ; otherwise s='n/a' ; end case 'filtd' switch ly.type case 'conv' s=sprintf('%d',size(ly.weights{1},3)) ; otherwise s='n/a' ; end case 'filtdil' switch ly.type case 'conv' s=sprintf('%d',ly.dilate) ; otherwise s='n/a' ; end case 'support' s = pdims(info.support(:,l)) ; case 'stride' s = pdims(info.stride(:,l)) ; case 'pad' s = pdims(info.pad(:,l)) ; case 'rfsize' s = pdims(info.receptiveFieldSize(:,l)) ; case 'rfoffset' s = pdims(info.receptiveFieldOffset(:,l)) ; case 'rfstride' s = pdims(info.receptiveFieldStride(:,l)) ; case 'wmem' a = 0 ; if isfield(ly, 'weights') ; for j=1:numel(ly.weights) a = a + numel(ly.weights{j}) * 4 ; end end % Legacy code to be removed if isfield(ly, 'filters') ; a = a + numel(ly.filters) * 4 ; end if isfield(ly, 'biases') ; a = a + numel(ly.biases) * 4 ; end s = pmem(a) ; wmem = wmem + a ; end end end table{wi,l+2} = s ; end end str = {} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = ptable(opts, table(:,[1 sel])) ; end table = {... 'parameter memory', sprintf('%s (%.2g parameters)', pmem(wmem), wmem/4); 'data memory', sprintf('%s (for batch size %d)', pmem(xmem), info.dataSize(4,1))} ; str{end+1} = ptable(opts, table) ; str = horzcat(str{:}) ; if nargout == 0 fprintf('%s', str) ; clear info str ; end % ------------------------------------------------------------------------- function str = ptable(opts, table) % ------------------------------------------------------------------------- switch opts.format case 'ascii', str = pascii(table) ; case 'latex', str = platex(table) ; case 'csv', str = pcsv(table) ; end str = horzcat(str,sprintf('\n')) ; % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end % ------------------------------------------------------------------------- function str = pascii(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = pcsv(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; str{end+1} = sprintf('%s,', ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = platex(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1} = sprintf('\\end{tabular}\n') ; str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; % ------------------------------------------------------------------------- function [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem) % ------------------------------------------------------------------------- if nargin <= 1 cpuMem = 0 ; gpuMem = 0 ; end if isstruct(s) for f=fieldnames(s)' f = char(f) ; for i=1:numel(s) [cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ; end end elseif iscell(s) for i=1:numel(s) [cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ; end elseif isnumeric(s) if isa(s, 'single') mult = 4 ; else mult = 8 ; end if isa(s,'gpuArray') gpuMem = gpuMem + mult * numel(s) ; else cpuMem = cpuMem + mult * numel(s) ; end end
github
lifeng9472/IBCCF-master
vl_test_economic_relu.m
.m
IBCCF-master/external_libs/matconvnet/matlab/xtest/vl_test_economic_relu.m
790
utf_8
35a3dbe98b9a2f080ee5f911630ab6f3
% VL_TEST_ECONOMIC_RELU function vl_test_economic_relu() x = randn(11,12,8,'single'); w = randn(5,6,8,9,'single'); b = randn(1,9,'single') ; net.layers{1} = struct('type', 'conv', ... 'filters', w, ... 'biases', b, ... 'stride', 1, ... 'pad', 0); net.layers{2} = struct('type', 'relu') ; res = vl_simplenn(net, x) ; dzdy = randn(size(res(end).x), 'like', res(end).x) ; clear res ; res_ = vl_simplenn(net, x, dzdy) ; res__ = vl_simplenn(net, x, dzdy, [], 'conserveMemory', true) ; a=whos('res_') ; b=whos('res__') ; assert(a.bytes > b.bytes) ; vl_testsim(res_(1).dzdx,res__(1).dzdx,1e-4) ; vl_testsim(res_(1).dzdw{1},res__(1).dzdw{1},1e-4) ; vl_testsim(res_(1).dzdw{2},res__(1).dzdw{2},1e-4) ;
github
lifeng9472/IBCCF-master
get_subwindow.m
.m
IBCCF-master/utility/get_subwindow.m
858
utf_8
dff8bc269574f16ee9c269250d675e7e
function out = get_subwindow(im, pos, sz) %GET_SUBWINDOW Obtain sub-window from image, with replication-padding. % Returns sub-window of image IM centered at POS ([y, x] coordinates), % with size SZ ([height, width]). If any pixels are outside of the image, % they will replicate the values at the borders. % % Joao F. Henriques, 2014 % http://www.isr.uc.pt/~henriques/ if isscalar(sz), %square sub-window sz = [sz, sz]; end ys = floor(pos(1)) + (1:sz(1)) - floor(sz(1)/2); xs = floor(pos(2)) + (1:sz(2)) - floor(sz(2)/2); % Check for out-of-bounds coordinates, and set them to the values at the borders xs = floor(clamp(xs, 1, size(im,2))); ys = floor(clamp(ys, 1, size(im,1))); %extract image out = im(ys, xs, :); end function y = clamp(x, lb, ub) % Clamp the value using lowerBound and upperBound y = max(x, lb); y = min(y, ub); end
github
fudanxu/CV-CNN-master
calculate_acc.m
.m
CV-CNN-master/Test Demo/calculate_acc.m
15,446
utf_8
b92eeffb33cb272289b888c460b69cb9
%***************************************************************** %Description: classification accuracy and confusion matrix % e.g. accuracy1 refers to the accuracy of the 1st class. % m1_2 refers to the probability of misclassifying the 1st class into the 2nd class. %input: class predict from test_imaging.m; label %output: accuracy; confusion matrix %***************************************************************** function [accuracy, confusion_matrix] = calculate_acc(label,class_img) c = class_img; [row,col] = size(c); num1 = length(find(label(1:row,1:col)==1)); num2 = length(find(label(1:row,1:col)==2)); num3 = length(find(label(1:row,1:col)==3)); num4 = length(find(label(1:row,1:col)==4)); num5 = length(find(label(1:row,1:col)==5)); num6 = length(find(label(1:row,1:col)==6)); num7 = length(find(label(1:row,1:col)==7)); num8 = length(find(label(1:row,1:col)==8)); num9 = length(find(label(1:row,1:col)==9)); num10 = length(find(label(1:row,1:col)==10)); num11 = length(find(label(1:row,1:col)==11)); num12 = length(find(label(1:row,1:col)==12)); num13 = length(find(label(1:row,1:col)==13)); num14 = length(find(label(1:row,1:col)==14)); mask = zeros(row,col); for i = 1:row for j = 1:col if (label(i,j)==1) mask(i,j) = 1; else mask(i,j) = 0; end end end temp1 = mask.*c; m1_1 = length(find(temp1==1)); m1_2 = length(find(temp1==2)); m1_3 = length(find(temp1==3)); m1_4 = length(find(temp1==4)); m1_5 = length(find(temp1==5)); m1_6 = length(find(temp1==6)); m1_7 = length(find(temp1==7)); m1_8 = length(find(temp1==8)); m1_9 = length(find(temp1==9)); m1_10 = length(find(temp1==10)); m1_11 = length(find(temp1==11)); m1_12 = length(find(temp1==12)); m1_13 = length(find(temp1==13)); m1_14 = length(find(temp1==14)); m1= [m1_1/num1, m1_2/num1,m1_3/num1,m1_4/num1, m1_5/num1,m1_6/num1,m1_7/num1,m1_8/num1 , m1_9/num1,m1_10/num1,m1_11/num1 ,m1_12/num1,m1_13/num1,m1_14/num1]; accuracy1 = m1_1/num1; for i = 1:row for j = 1:col if (label(i,j)==2) mask(i,j) = 1; else mask(i,j) = 0; end end end temp2 = mask.*c; m2_1 = length(find(temp2==1)); m2_2 = length(find(temp2==2)); m2_3 = length(find(temp2==3)); m2_4 = length(find(temp2==4)); m2_5 = length(find(temp2==5)); m2_6 = length(find(temp2==6)); m2_7 = length(find(temp2==7)); m2_8 = length(find(temp2==8)); m2_9 = length(find(temp2==9)); m2_10 = length(find(temp2==10)); m2_11 = length(find(temp2==11)); m2_12 = length(find(temp2==12)); m2_13 = length(find(temp2==13)); m2_14 = length(find(temp2==14)); m2= [m2_1/num2, m2_2/num2,m2_3/num2,m2_4/num2, m2_5/num2,m2_6/num2,m2_7/num2,m2_8/num2 , m2_9/num2,m2_10/num2,m2_11/num2 ,m2_12/num2,m2_13/num2,m2_14/num2]; accuracy2 = m2_2/num2; for i = 1:row for j = 1:col if (label(i,j)==3) mask(i,j) = 1; else mask(i,j) = 0; end end end temp3 = mask.*c; m3_1 = length(find(temp3==1)); m3_2 = length(find(temp3==2)); m3_3 = length(find(temp3==3)); m3_4 = length(find(temp3==4)); m3_5 = length(find(temp3==5)); m3_6 = length(find(temp3==6)); m3_7 = length(find(temp3==7)); m3_8 = length(find(temp3==8)); m3_9 = length(find(temp3==9)); m3_10 = length(find(temp3==10)); m3_11 = length(find(temp3==11)); m3_12 = length(find(temp3==12)); m3_13 = length(find(temp3==13)); m3_14 = length(find(temp3==14)); m3= [m3_1/num3, m3_2/num3,m3_3/num3,m3_4/num3, m3_5/num3,m3_6/num3,m3_7/num3,m3_8/num3 , m3_9/num3,m3_10/num3,m3_11/num3 ,m3_12/num3,m3_13/num3,m3_14/num3]; accuracy3 = m3_3/num3; for i = 1:row for j = 1:col if (label(i,j)==4) mask(i,j) = 1; else mask(i,j) = 0; end end end temp4 = mask.*c; m4_1 = length(find(temp4==1)); m4_2 = length(find(temp4==2)); m4_3 = length(find(temp4==3)); m4_4 = length(find(temp4==4)); m4_5 = length(find(temp4==5)); m4_6 = length(find(temp4==6)); m4_7 = length(find(temp4==7)); m4_8 = length(find(temp4==8)); m4_9 = length(find(temp4==9)); m4_10 = length(find(temp4==10)); m4_11 = length(find(temp4==11)); m4_12 = length(find(temp4==12)); m4_13 = length(find(temp4==13)); m4_14 = length(find(temp4==14)); m4= [m4_1/num4, m4_2/num4,m4_3/num4,m4_4/num4, m4_5/num4,m4_6/num4,m4_7/num4,m4_8/num4 , m4_9/num4,m4_10/num4,m4_11/num4 ,m4_12/num4,m4_13/num4,m4_14/num4]; accuracy4 = m4_4/num4; for i = 1:row for j = 1:col if (label(i,j)==5) mask(i,j) = 1; else mask(i,j) = 0; end end end temp5 = mask.*c; m5_1 = length(find(temp5==1)); m5_2 = length(find(temp5==2)); m5_3 = length(find(temp5==3)); m5_4 = length(find(temp5==4)); m5_5 = length(find(temp5==5)); m5_6 = length(find(temp5==6)); m5_7 = length(find(temp5==7)); m5_8 = length(find(temp5==8)); m5_9 = length(find(temp5==9)); m5_10 = length(find(temp5==10)); m5_11 = length(find(temp5==11)); m5_12 = length(find(temp5==12)); m5_13 = length(find(temp5==13)); m5_14 = length(find(temp5==14)); m5= [m5_1/num5, m5_2/num5,m5_3/num5,m5_4/num5, m5_5/num5,m5_6/num5,m5_7/num5,m5_8/num5 , m5_9/num5,m5_10/num5,m5_11/num5 ,m5_12/num5,m5_13/num5,m5_14/num5]; accuracy5 = m5_5/num5; for i = 1:row for j = 1:col if (label(i,j)==6) mask(i,j) = 1; else mask(i,j) = 0; end end end temp6 = mask.*c; m6_1 = length(find(temp6==1)); m6_2 = length(find(temp6==2)); m6_3 = length(find(temp6==3)); m6_4 = length(find(temp6==4)); m6_5 = length(find(temp6==5)); m6_6 = length(find(temp6==6)); m6_7 = length(find(temp6==7)); m6_8 = length(find(temp6==8)); m6_9 = length(find(temp6==9)); m6_10 = length(find(temp6==10)); m6_11 = length(find(temp6==11)); m6_12 = length(find(temp6==12)); m6_13 = length(find(temp6==13)); m6_14 = length(find(temp6==14)); m6= [m6_1/num6, m6_2/num6,m6_3/num6,m6_4/num6, m6_5/num6,m6_6/num6,m6_7/num6,m6_8/num6 , m6_9/num6,m6_10/num6,m6_11/num6 ,m6_12/num6,m6_13/num6,m6_14/num6]; accuracy6 = m6_6/num6; for i = 1:row for j = 1:col if (label(i,j)==7) mask(i,j) = 1; else mask(i,j) = 0; end end end temp7 = mask.*c; m7_1 = length(find(temp7==1)); m7_2 = length(find(temp7==2)); m7_3 = length(find(temp7==3)); m7_4 = length(find(temp7==4)); m7_5 = length(find(temp7==5)); m7_6 = length(find(temp7==6)); m7_7 = length(find(temp7==7)); m7_8 = length(find(temp7==8)); m7_9 = length(find(temp7==9)); m7_10 = length(find(temp7==10)); m7_11 = length(find(temp7==11)); m7_12 = length(find(temp7==12)); m7_13 = length(find(temp7==13)); m7_14 = length(find(temp7==14)); m7= [m7_1/num7, m7_2/num7,m7_3/num7,m7_4/num7, m7_5/num7,m7_6/num7,m7_7/num7,m7_8/num7 , m7_9/num7,m7_10/num7,m7_11/num7 ,m7_12/num7,m7_13/num7,m7_14/num7]; accuracy7 = m7_7/num7; for i = 1:row for j = 1:col if (label(i,j)==8) mask(i,j) = 1; else mask(i,j) = 0; end end end temp8 = mask.*c; m8_1 = length(find(temp8==1)); m8_2 = length(find(temp8==2)); m8_3 = length(find(temp8==3)); m8_4 = length(find(temp8==4)); m8_5 = length(find(temp8==5)); m8_6 = length(find(temp8==6)); m8_7 = length(find(temp8==7)); m8_8 = length(find(temp8==8)); m8_9 = length(find(temp8==9)); m8_10 = length(find(temp8==10)); m8_11 = length(find(temp8==11)); m8_12 = length(find(temp8==12)); m8_13 = length(find(temp8==13)); m8_14 = length(find(temp8==14)); m8= [m8_1/num8, m8_2/num8,m8_3/num8,m8_4/num8, m8_5/num8,m8_6/num8,m8_7/num8,m8_8/num8 , m8_9/num8,m8_10/num8,m8_11/num8 ,m8_12/num8,m8_13/num8,m8_14/num8 ]; accuracy8 = m8_8/num8; for i = 1:row for j = 1:col if (label(i,j)==9) mask(i,j) = 1; else mask(i,j) = 0; end end end temp9 = mask.*c; m9_1 = length(find(temp9==1)); m9_2 = length(find(temp9==2)); m9_3 = length(find(temp9==3)); m9_4 = length(find(temp9==4)); m9_5 = length(find(temp9==5)); m9_6 = length(find(temp9==6)); m9_7 = length(find(temp9==7)); m9_8 = length(find(temp9==8)); m9_9 = length(find(temp9==9)); m9_10 = length(find(temp9==10)); m9_11 = length(find(temp9==11)); m9_12 = length(find(temp9==12)); m9_13 = length(find(temp9==13)); m9_14 = length(find(temp9==14)); m9= [m9_1/num9, m9_2/num9,m9_3/num9,m9_4/num9, m9_5/num9,m9_6/num9,m9_7/num9,m9_8/num9 , m9_9/num9,m9_10/num9,m9_11/num9 ,m9_12/num9,m9_13/num9,m9_14/num9 ]; accuracy9 = m9_9/num9; for i = 1:row for j = 1:col if (label(i,j)==10) mask(i,j) = 1; else mask(i,j) = 0; end end end temp10 = mask.*c; m10_1 = length(find(temp10==1)); m10_2 = length(find(temp10==2)); m10_3 = length(find(temp10==3)); m10_4 = length(find(temp10==4)); m10_5 = length(find(temp10==5)); m10_6 = length(find(temp10==6)); m10_7 = length(find(temp10==7)); m10_8 = length(find(temp10==8)); m10_9 = length(find(temp10==9)); m10_10 = length(find(temp10==10)); m10_11 = length(find(temp10==11)); m10_12 = length(find(temp10==12)); m10_13 = length(find(temp10==13)); m10_14 = length(find(temp10==14)); m10= [m10_1/num10, m10_2/num10,m10_3/num10,m10_4/num10, m10_5/num10,m10_6/num10,m10_7/num10,m10_8/num10 , m10_9/num10,m10_10/num10,m10_11/num10 ,m10_12/num10,m10_13/num10,m10_14/num10]; accuracy10 = m10_10/num10; for i = 1:row for j = 1:col if (label(i,j)==11) mask(i,j) = 1; else mask(i,j) = 0; end end end temp11 = mask.*c; m11_1 = length(find(temp11==1)); m11_2 = length(find(temp11==2)); m11_3 = length(find(temp11==3)); m11_4 = length(find(temp11==4)); m11_5 = length(find(temp11==5)); m11_6 = length(find(temp11==6)); m11_7 = length(find(temp11==7)); m11_8 = length(find(temp11==8)); m11_9 = length(find(temp11==9)); m11_10 = length(find(temp11==10)); m11_11 = length(find(temp11==11)); m11_12 = length(find(temp11==12)); m11_13 = length(find(temp11==13)); m11_14 = length(find(temp11==14)); m11= [m11_1/num11, m11_2/num11,m11_3/num11,m11_4/num11, m11_5/num11,m11_6/num11,m11_7/num11,m11_8/num11 , m11_9/num11,m11_10/num11,m11_11/num11 ,m11_12/num11,m11_13/num11,m11_14/num11]; accuracy11 = m11_11/num11; for i = 1:row for j = 1:col if (label(i,j)==12) mask(i,j) = 1; else mask(i,j) = 0; end end end temp12 = mask.*c; m12_1 = length(find(temp12==1)); m12_2 = length(find(temp12==2)); m12_3 = length(find(temp12==3)); m12_4 = length(find(temp12==4)); m12_5 = length(find(temp12==5)); m12_6 = length(find(temp12==6)); m12_7 = length(find(temp12==7)); m12_8 = length(find(temp12==8)); m12_9 = length(find(temp12==9)); m12_10 = length(find(temp12==10)); m12_11 = length(find(temp12==11)); m12_12 = length(find(temp12==12)); m12_13 = length(find(temp12==13)); m12_14 = length(find(temp12==14)); m12= [m12_1/num12, m12_2/num12,m12_3/num12,m12_4/num12, m12_5/num12,m12_6/num12,m12_7/num12,m12_8/num12 , m12_9/num12,m12_10/num12,m12_11/num12 ,m12_12/num12,m12_13/num12,m12_14/num12 ]; accuracy12 = m12_12/num12; for i = 1:row for j = 1:col if (label(i,j)==13) mask(i,j) = 1; else mask(i,j) = 0; end end end temp13 = mask.*c; m13_1 = length(find(temp13==1)); m13_2 = length(find(temp13==2)); m13_3 = length(find(temp13==3)); m13_4 = length(find(temp13==4)); m13_5 = length(find(temp13==5)); m13_6 = length(find(temp13==6)); m13_7 = length(find(temp13==7)); m13_8 = length(find(temp13==8)); m13_9 = length(find(temp13==9)); m13_10 = length(find(temp13==10)); m13_11 = length(find(temp13==11)); m13_12 = length(find(temp13==12)); m13_13 = length(find(temp13==13)); m13_14 = length(find(temp13==14)); m13= [m13_1/num13, m13_2/num13,m13_3/num13,m13_4/num13, m13_5/num13,m13_6/num13,m13_7/num13,m13_8/num13 , m13_9/num13,m13_10/num13,m13_11/num13 ,m13_12/num13,m13_13/num13,m13_14/num13]; accuracy13 = m13_13/num13; for i = 1:row for j = 1:col if (label(i,j)==14) mask(i,j) = 1; else mask(i,j) = 0; end end end temp14 = mask.*c; m14_1 = length(find(temp14==1)); m14_2 = length(find(temp14==2)); m14_3 = length(find(temp14==3)); m14_4 = length(find(temp14==4)); m14_5 = length(find(temp14==5)); m14_6 = length(find(temp14==6)); m14_7 = length(find(temp14==7)); m14_8 = length(find(temp14==8)); m14_9 = length(find(temp14==9)); m14_10 = length(find(temp14==10)); m14_11 = length(find(temp14==11)); m14_12 = length(find(temp14==12)); m14_13 = length(find(temp14==13)); m14_14 = length(find(temp14==14)); m14= [m14_1/num14, m14_2/num14,m14_3/num14,m14_4/num14, m14_5/num14,m14_6/num14,m14_7/num14,m14_8/num14 , m14_9/num14,m14_10/num14,m14_11/num14 ,m14_12/num14,m14_13/num14,m14_14/num14]; accuracy14 = m14_14/num14; m = m1_1+m2_2+m3_3+m4_4+m5_5+m6_6+m7_7+m8_8+m9_9+m10_10+m11_11+m12_12+m13_13+m14_14; num = num1+num2+num3+num4+num5+num6+num7+num8+num9+num10+num11+num12+num13+num14; accuracy = m/num; confusion_matrix = [m1_1/num1,m1_2/num1,m1_3/num1,m1_4/num1,m1_5/num1,m1_6/num1,m1_7/num1,m1_8/num1,m1_9/num1,m1_10/num1,m1_11/num1,m1_12/num1,m1_3/num1,m1_14/num1; m2_1/num2,m2_2/num2,m2_3/num2,m2_4/num2,m2_5/num2,m2_6/num2,m2_7/num2,m2_8/num2,m2_9/num2,m2_10/num2,m2_11/num2,m2_12/num2,m2_3/num2,m2_14/num2; m3_1/num3,m3_2/num3,m3_3/num3,m3_4/num3,m3_5/num3,m3_6/num3,m3_7/num3,m3_8/num3,m3_9/num3,m3_10/num3,m3_11/num3,m3_12/num3,m3_3/num3,m3_14/num3; m4_1/num4,m4_2/num1,m4_3/num4,m4_4/num4,m4_5/num4,m4_6/num4,m4_7/num4,m4_8/num4,m4_9/num4,m4_10/num4,m4_11/num4,m4_12/num4,m4_3/num4,m4_14/num4; m5_1/num5,m5_2/num5,m5_3/num5,m5_4/num5,m5_5/num5,m5_6/num5,m5_7/num5,m5_8/num5,m5_9/num5,m5_10/num5,m5_11/num5,m5_12/num5,m5_3/num5,m5_14/num5; m6_1/num6,m6_2/num6,m6_3/num6,m6_4/num6,m6_5/num6,m6_6/num6,m6_7/num6,m6_8/num6,m6_9/num6,m6_10/num6,m6_11/num6,m6_12/num6,m6_3/num6,m6_14/num6; m7_1/num7,m7_2/num7,m7_3/num7,m7_4/num7,m7_5/num7,m7_6/num7,m7_7/num7,m7_8/num7,m7_9/num7,m7_10/num7,m7_11/num7,m7_12/num7,m7_3/num7,m7_14/num7; m8_1/num8,m8_2/num8,m8_3/num8,m8_4/num8,m8_5/num8,m8_6/num8,m8_7/num8,m8_8/num8,m8_9/num8,m8_10/num8,m8_11/num8,m8_12/num8,m8_3/num8,m8_14/num8; m9_1/num9,m9_2/num9,m9_3/num9,m9_4/num9,m9_5/num9,m9_6/num9,m9_7/num9,m9_8/num9,m9_9/num9,m9_10/num9,m9_11/num9,m9_12/num9,m9_3/num9,m9_14/num9; m10_1/num10,m10_2/num10,m10_3/num10,m10_4/num10,m10_5/num10,m10_6/num10,m10_7/num10,m10_8/num10,m10_9/num10,m10_10/num10,m10_11/num10,m10_12/num10,m10_3/num10,m10_14/num10; m11_1/num11,m11_2/num11,m11_3/num11,m11_4/num11,m11_5/num11,m11_6/num11,m11_7/num11,m11_8/num11,m11_9/num11,m11_10/num11,m11_11/num11,m11_12/num11,m11_3/num11,m11_14/num11; m12_1/num12,m12_2/num12,m12_3/num12,m12_4/num12,m12_5/num12,m12_6/num12,m12_7/num12,m12_8/num12,m12_9/num12,m12_10/num12,m12_11/num12,m12_12/num12,m12_3/num12,m12_14/num12; m13_1/num13,m13_2/num13,m13_3/num13,m13_4/num13,m13_5/num13,m13_6/num13,m13_7/num13,m13_8/num13,m13_9/num13,m13_10/num13,m13_11/num13,m13_12/num13,m13_13/num13,m13_14/num13; m14_1/num14,m14_2/num14,m14_3/num14,m14_4/num14,m14_5/num14,m14_6/num14,m14_7/num14,m14_8/num14,m14_9/num14,m14_10/num14,m14_11/num14,m14_12/num14,m14_3/num14,m14_14/num14; ];
github
fudanxu/CV-CNN-master
test_imaging.m
.m
CV-CNN-master/Test Demo/test_imaging.m
3,971
utf_8
2439c8a8fc85ed630752b9d26968ea9b
%***************************************************************** %Description: classification result based on CV-CNN %input: test result from CV_CNN--test_img_oo.mat %output: classification result:class_img.mat % classification image: ImageRGB.mat %Note: This code is taking Flevoland dataset as an example. %***************************************************************** function [class_img,ImageRGB] = test_imaging(test_img_oo) test = test_img_oo; [~,col] = size(test); B = zeros(1,col); G = zeros(1,col); R = zeros(1,col); class = zeros(1,col); for i = 1:col m = max(real(test(:,i))+imag(test(:,i))); pos = find( real(test(:,i))+imag(test(:,i)) == m ); % color is corresponding to the legend if pos == 1 % Potato R(:,i) = 255/255; G(:,i) = 128/255; B(:,i) = 0/255; class(1,i) = 1; elseif pos == 2 % Fruit R(:,i) = 138/255; G(:,i) = 42/255; B(:,i) = 116/255; class(1,i) = 2; elseif pos == 3 % Oats R(:,i) = 0/255; G(:,i) = 0/255; B(:,i) = 255/255; class(1,i) = 3; elseif pos == 4 % Beet R(:,i) = 255/255; G(:,i) = 0/255; B(:,i) = 0/255; class(1,i) = 4; elseif pos == 5 % Barley R(:,i) = 120/255; G(:,i) = 178/255; B(:,i) = 215/255; class(1,i) = 5; elseif pos == 6 % Onions R(:,i) = 0/255; G(:,i) = 102/255; B(:,i) = 255/255; class(1,i) = 6; elseif pos == 7 % Wheats R(:,i) = 251/255; G(:,i) = 232/255; B(:,i) = 45/255; class(1,i) = 7; elseif pos == 8 % Beans R(:,i) = 0/255; G(:,i) = 255/255; B(:,i) = 0/255; class(1,i) = 8; elseif pos == 9 % Peas R(:,i) = 204/255; G(:,i) = 102/255; B(:,i) = 255/255; class(1,i) = 9; elseif pos == 10 % Maize R(:,i) = 0/255; G(:,i) = 204/255; B(:,i) = 102/255; class(1,i) = 10; elseif pos == 11 % Flax R(:,i) = 204/255; G(:,i) = 255/255; B(:,i) = 204/255; class(1,i) = 11; elseif pos == 12 % Rapeseed R(:,i) = 204/255; G(:,i) = 1/255; B(:,i) = 102/255; class(1,i) = 12; elseif pos == 13 % Grass R(:,i) = 255/255; G(:,i) = 204/255; B(:,i) = 204/255; class(1,i) = 13; elseif pos == 14 % Luceme R(:,i) = 102/255; G(:,i) = 0/255; B(:,i) = 204/255; class(1,i) = 14; end end row1 = ceil((1024-12)/3); col1 = ceil((1020-12)/3); R = reshape(R,row1,col1); G = reshape(G,row1,col1); B = reshape(B,row1,col1); class = reshape(class,row1,col1); m=1;n=1; for i=1:size(R,1) for j=1:size(R,2) R_ex(m:m+2,n:n+2) = repmat(R(i,j),3,3); % 3:sampling step, 2 = 3-1 G_ex(m:m+2,n:n+2) = repmat(G(i,j),3,3); B_ex(m:m+2,n:n+2) = repmat(B(i,j),3,3); class_img(m:m+2,n:n+2) = repmat(class(i,j),3,3); n = n+3; end n=1; m = m+3; end class_img = class_img'; ImageRGB(:,:,1) = R_ex'; ImageRGB(:,:,2) = G_ex'; ImageRGB(:,:,3) = B_ex'; figure imshow(ImageRGB); title('Classification Image'); %% classification reslut overlaid ground truth area load label.mat; [row2,col2,~] = size(ImageRGB); mask = zeros(row2,col2); for i = 1:row2 for j = 1:col2 if (label(i,j) ~= 0) mask(i,j) = 1; else mask(i,j) = 0; end end end R = mask.*ImageRGB(:,:,1); G = mask.*ImageRGB(:,:,2); B = mask.*ImageRGB(:,:,3); ImageRGB_overlaid(:,:,1) = R; ImageRGB_overlaid(:,:,2) = G; ImageRGB_overlaid(:,:,3) = B; figure imshow(ImageRGB_overlaid); title('Classification Image overlaid Ground Truth'); end
github
devraj89/GCDL---Generalized-Coupled-Dictionary-Learning-Algorithm-master
coupled_DL_recoupled_CCCA_mod.m
.m
GCDL---Generalized-Coupled-Dictionary-Learning-Algorithm-master/coupled_DL_recoupled_CCCA_mod.m
5,504
utf_8
83b762ff0b7da4e2075ebe020121adef
% Main Function of Coupled Dictionary Learning % Input: % Alphap,Alphas: Initial sparse coefficient of two domains % Xh ,Xl : Image Data Pairs of two domains % Dh ,Dl : Initial Dictionaries % Wh ,Wl : Initial Projection Matrix % par : Parameters % % % Output % Alphap,Alphas: Output sparse coefficient of two domains % Dh ,Dl : Output Coupled Dictionaries % Uh ,Ul : Output Projection Matrix for Alpha % function [Alphah, Alphal, XH_t, XL_t, Dh, Dl, Wh, Wl, Uh, Ul, f] = coupled_DL_recoupled_CCCA_mod(Alphah, Alphal, XH_t, XL_t, Dh, Dl, Wh, Wl, par, label_h, label_l,knn,eta,option) % coupled_DL_recoupled(Alphah, Alphal, XH_t, XL_t, Dh, Dl, Wh, Wl, par); %% parameter setting [dimX, numX] = size(XH_t); dimY = size(Alphah, 1); numD = size(Dh, 2); rho = par.rho; lambda1 = par.lambda1; lambda2 = par.lambda2; mu = par.mu; sqrtmu = sqrt(mu); nu = par.nu; nIter = par.nIter; t0 = par.t0; epsilon = par.epsilon; param.lambda = lambda1; % not more than 20 non-zeros coefficients param.lambda2 = lambda2; %param.mode = 1; % penalized formulation param.approx=0; param.K = par.K; param.L = par.L; f = 0; %keyboard; %% Initialize Us, Up as I % initially Wl and Wh are the identity matrices Ul = Wl; Uh = Wh; % Iteratively solve D A U for t = 1 : 10 %% Updating Ws and Wp => Updating Us and Up % Find the transformation matrices using CCA set_kapa_cca; % modifications if option==1 [Wl,Wh,~] = cluster_cca_mod(full(Alphal),full(Alphah),label_l,label_h,kapa_cca,knn,eta); elseif option==2 % GCDL 1 [Wl,Wh,~] = cluster_cca_mod2(full(Alphal),full(Alphah),label_l,label_h,kapa_cca,knn,eta,0); elseif option==3 [Wl,Wh,~] = cluster_cca_mod2(full(Alphal),full(Alphah),label_l,label_h,kapa_cca,knn,eta,1); elseif option==4 % GCDL 2 [Wl,Wh,~] = cluster_cca_mod3(full(Alphal),full(Alphah),label_l,label_h,kapa_cca,knn,eta,0); elseif option==5 [Wl,Wh,~] = cluster_cca_mod3(full(Alphal),full(Alphah),label_l,label_h,kapa_cca,knn,eta,1); end Wl = real(Wl); Wh = real(Wh); Ul = Wl.'; Uh = Wh.'; sub_id = unique(label_h); nSub = length(sub_id); Alphal_full = full(Alphal); Alphah_full = full(Alphah); Alphal_inclass = zeros(size(Alphal_full,1),nSub); Alphah_inclass = Alphal_inclass; Xl_inclass = -0.5*ones(nSub,length(label_l)); Xh_inclass = -0.5*ones(nSub,length(label_h)); % Here I am normalizing the data for i = 1:length(label_h) normVal = norm(Uh*Alphah_full(:,i)); Alphah_full(:,i) = Alphah_full(:,i)/normVal; end; % Here I am normalizing the data for i = 1:length(label_l) normVal = norm(Ul*Alphal_full(:,i)); Alphal_full(:,i) = Alphal_full(:,i)/normVal; end; for subNo = 1:nSub currSubId = sub_id(subNo); indexvect = find(label_l == currSubId); Alphal_inclass(:,subNo) = median(Alphal_full(:,indexvect(1:length(indexvect))),2); Xl_inclass(subNo,indexvect) = 0.8; indexvect = find(label_h == currSubId); Alphah_inclass(:,subNo) = median(Alphah_full(:,indexvect(1:length(indexvect))),2); Xh_inclass(subNo,indexvect) = 0.8; end; Ph = (Uh'*Ul*Alphal_inclass)'; Pl = (Ul'*Uh*Alphah_inclass)'; %% Updating Alphas and Alphap % What Happens If I vary the parameters ? mu = 0.04; sqrtmu = sqrt(mu); % Remember that Xl_inclass is basically Kx and Pl is basically Px % Remember that Xh_inclass is basically Ky and Ph is basically Py % The way that Kx and Px are formed are a little different % instead of Kx being (N1XN2) we make it as Kx(unique labels (N1) X N2) % So accordingly also Px is formed : for that Alphal_inclasss is used. % Instead of using all the aplha's data we basically select the % mean/median of that particular class using the supervised % information. % The code will thus run much faster % From the paper it is given as Px = Ay.'*Ty.'*Tx (Now Tx and Ty are % the Ul and Uh) and instead of using the whole Ay we utilize a subset % of that only for faster computation % Note using the whole matrix works fine but them again it is also time % consuming param.lambda = 0.01; Alphal = mexLasso([XL_t; sqrtmu * Xl_inclass], [Dl; sqrtmu * Pl],param); param.lambda = 0.01; Alphah = mexLasso([XH_t; sqrtmu * Xh_inclass], [Dh; sqrtmu * Ph],param); dictSize = par.K; %% Updating Ds and Dp for i=1:dictSize ai = Alphal(i,:); Y = XL_t-Dl*Alphal+Dl(:,i)*ai; di = Y*ai'; di = di./(norm(di,2) + eps); Dl(:,i) = di; end for i=1:dictSize ai = Alphah(i,:); Y = XH_t-Dh*Alphah+Dh(:,i)*ai; di = Y*ai'; di = di./(norm(di,2) + eps); Dh(:,i) = di; end end return;
github
hsiboy/Talkie-master
lpcQuantise.m
.m
Talkie-master/Talkie/encoder/freemat/lpcQuantise.m
5,008
utf_8
e6e0b41b2161f2a3fbf580c689b7a207
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Quantise model coefficients, and generate bit codings function [pitchq,energyq,kq,fields]=lpcQuantise(pitch,energy,k) fields = zeros(1,13); energyList = [0,2,3,4,5,7,10,15,20,32,41,57,81,114,161] / 255; err = 9999; for b = 1:length(energyList) if err > abs(energyList(b)-energy) err = abs(energyList(b)-energy); energyq = energyList(b); fields(1) = b-1; end end fields(2) = 0; % Repeat field pitchList = [0,500,471,444,421,400,381,364,348,333,320,308,296,286,276,267,258,250,242,235,229,222,216,211,205,200,195,190,186,178,170,163,157,151,148,140,136,131,127,121,116,113,110,104,101,99,94,92,87,84,81,78,75,73,70,67,65,63,60,58,56,54,52,50]; err = 9999; for a = 1:length(pitchList) if err > abs(pitchList(a)-pitch) err = abs(pitchList(a)-pitch); pitchq = pitchList(a); fields(3) = a-1; end end coefficientsq(1) = 1; k1List = [-0.978515625,-0.97265625,-0.970703125,-0.966796875,-0.962890625,-0.958984375,-0.953125,-0.94140625,-0.93359375,-0.92578125,-0.916015625,-0.90625,-0.896484375,-0.8828125,-0.869140625,-0.853515625,-0.8046875,-0.740234375,-0.66015625,-0.560546875,-0.443359375,-0.556640625,-0.158203125,0,0.158203125,0.306640625,0.443359375,0.560546875,0.66015625,0.740234375,0.8046875,0.853515625]; err = 9999; for c = 1:length(k1List) if err > abs(k1List(c)-k(2)) err = abs(k1List(c)-k(2)); kq(2) = k1List(c); fields(4) = c-1; end end k2List = [-0.640625,-0.58984375,-0.53515625,-0.474609375,-0.41015625,-0.341796875,-0.267578125,-0.19140625,-0.11328125,-0.033203125,0.046875,0.126953125,0.205078125,0.28125,0.353515625,0.421875,0.486328125,0.544921875,0.599609375,0.6484375,0.69140625,0.732421875,0.767578125,0.798828125,0.826171875,0.849609375,0.87109375,0.888671875,0.904296875,0.91796875,0.9296875,0.98828125]; err = 9999; for d = 1:length(k2List) if err > abs(k2List(d)-k(3)) err = abs(k2List(d)-k(3)); kq(3) = k2List(d); fields(5) = d-1; end end k3List = [-0.859375,-0.7578125,-0.6484375,-0.546875,-0.4375,-0.3359375,-0.2265625,-0.125,-0.015625,-0.546875,0.1953125,0.296875,0.40625,0.5078125,0.6171875,0.71875]; err = 9999; for e1 = 1:length(k3List) if err > abs(k3List(e1)-k(4)) err = abs(k3List(e1)-k(4)); kq(4) = k3List(e1); fields(6) = e1-1; end end k4List = [-0.640625,-0.53125,-0.421875,-0.3125,-0.203125,-0.09375,0.0078125,0.1171875,0.2265625,0.3359375,0.4453125,0.5546875,0.6640625,0.7734375,0.8828125,0.984375]; err = 9999; for f = 1:length(k4List) if err > abs(k4List(f)-k(5)) err = abs(k4List(f)-k(5)); kq(5) = k4List(f); fields(7) = f-1; end end k5List = [-0.640625,-0.546875,-0.4609375,-0.3671875,-0.2734375,-0.1875,-0.09375,-0.0078125,0.0859375,0.1796875,0.265625,0.359375,0.4453125,0.5390625,0.6328125,0.71875]; err = 9999; for g = 1:length(k5List) if err > abs(k5List(g)-k(6)) err = abs(k5List(g)-k(6)); kq(6) = k5List(g); fields(8) = g-1; end end k6List = [-0.5,-0.4140625,-0.328125,-0.2421875,-0.15625,-0.0703125,0.0234375,0.109375,0.1953125,0.28125,0.3671875,0.453125,0.5390625,0.625,0.7109375,0.796875]; err = 9999; for h = 1:length(k6List) if err > abs(k6List(h)-k(7)) err = abs(k6List(h)-k(7)); kq(7) = k6List(h); fields(9) = h-1; end end k7List = [-0.6015625,-0.5078125,-0.4140625,-0.3203125,-0.2265625,-0.1328125,-0.0390625,0.0546875,0.1484375,0.2421875,0.3359375,0.4296875,0.5234375,0.6171875,0.703125,0.796875]; err = 9999; for w = 1:length(k7List) if err > abs(k7List(w)-k(8)) err = abs(k7List(w)-k(8)); kq(8) = k7List(w); fields(10) = w-1; end end k8List = [-0.5,-0.3125,-0.125,0.0546875,0.2421875,0.4296875,0.6171875,0.796875]; err = 9999; for x = 1:length(k8List) if err > abs(k8List(x)-k(9)) err = abs(k8List(x)-k(9)); kq(9) = k8List(x); fields(11) = x-1; end end k9List = [-0.5,-0.34375,-0.1875,-0.03125,0.125,0.2890625,0.4453125,0.6015625]; err = 9999; for y = 1:length(k9List) if err > abs(k9List(y)-k(10)) err = abs(k9List(y)-k(10)); kq(10) = k9List(y); fields(12) = y-1; end end k10List = [-0.3984375,-0.2578125,-0.1171875,0.03125,0.171875,0.25,0.4375,0.6015625]; err = 9999; for z = 1:length(k10List) if err > abs(k10List(z)-k(11)) err = abs(k10List(z)-k(11)); kq(11) = k10List(z); fields(13) = z-1; end end
github
hsiboy/Talkie-master
autocorrelate.m
.m
Talkie-master/Talkie/encoder/freemat/autocorrelate.m
293
utf_8
9bf054c24809b876c95db0b19919c14c
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Calculate autocorrelation of speech segment function r = autocorrelate(w,len) r = zeros(1,len); wlen = length(w); for n=1:len r(n) = sum( w(1:wlen-n+1) .* w(n:wlen) ); end
github
hsiboy/Talkie-master
levinsonDurbin.m
.m
Talkie-master/Talkie/encoder/freemat/levinsonDurbin.m
703
utf_8
020b390fac9fc7ceee90ca98470f9271
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Calculate LPC reflection coefficients function [k,g] = levinsonDurbin(r,poles) k(1)=1; a=zeros(1,poles+1); at=zeros(1,poles+1); e=r(1); for s=1:poles k(s+1)=-r(s+1); for t=1:s-1 at(t+1) = a(t+1); k(s+1) = k(s+1) - a(t+1) * r(s-t+1); end if abs(e)<eps e=0; break end k(s+1) = k(s+1) / e; a(s+1) = k(s+1); for u = 1:s-1 a(u+1) = at(u+1) + k(s+1) * at(s-u+1); end e = e * (1-k(s+1)*k(s+1)); end if e<eps e=0; end g = sqrt(e);
github
hsiboy/Talkie-master
lpcSynth.m
.m
Talkie-master/Talkie/encoder/freemat/lpcSynth.m
1,081
utf_8
1aecd505bd5ad580fec19b230c563c0b
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Synthesise model parameters function samples=lpcSynth(pitch,energy,coefficients,length,poles,sampleRate) samples = zeros(1,length); u = zeros(1,poles+1); x = zeros(1,poles+1); % Generate excitation if pitch>0 % Voiced excite = zeros(1,length); for a=1:(sampleRate/pitch):length excite(floor(a)) = 1; end %excite = mod((1:length)*pitch/sampleRate,1)-0.5; else % Unvoiced excite = rand(1,length)-0.5; end excite = excite * energy; % Run through filter for s=1:length u(poles+1) = excite(s); for t=poles:-1:1 u(t) = u(t+1) - coefficients(t+1)*x(t); end for v=poles-1:-1:1 x(v+1) = x(v) + coefficients(v+1)*u(v); end if x(1) > 1 x(1) = 1; end if x(1) < -1 x(1) = -1; end x(1) = u(1); samples(s) = u(1); end samples = samples';
github
hsiboy/Talkie-master
bitEmit.m
.m
Talkie-master/Talkie/encoder/freemat/bitEmit.m
327
utf_8
42d645f5918bde340c98110841d7c429
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Emit a parameter as bits function bitEmit(val,bits) bitpos = 2^(bits-1); for b = 1:bits if bitand(val,bitpos) printf('1'); else printf('0'); end val = val*2; end
github
hsiboy/Talkie-master
pitchRefine.m
.m
Talkie-master/Talkie/encoder/freemat/pitchRefine.m
535
utf_8
72503d815958f9c6ad873c1c6ffbefff
% Talkie library % Copyright 2011 Peter Knight % This code is released under GPLv2 license. % % Home in on best fit pitch function [pitch,score] = pitchRefine(w,pitchGuess,pitchRange,sampleRate) score = 0; phase = (1:length(w))*2*pi/sampleRate; for (newGuess = pitchGuess-pitchRange:pitchRange/10:pitchGuess+pitchRange) signal = exp(i*(newGuess*phase))'; pitchScore = abs(mean(w .* signal)); if (pitchScore > score) score = pitchScore; pitch = newGuess; end end
github
OperationSmallKat/SmallKat_V2-master
LegFPK.m
.m
SmallKat_V2-master/Kinematics/LegFPK.m
1,474
utf_8
fa6b8372f1493b284a4333f709837c29
%Function takes in angles and returns the tip of the quadruped leg in XYZ %cordinates in base frame function Tip = LegFPK(p) %Forward Kinematics %DH Table for leg % _________________________________________ % | Link | a | alpha | d | theta | % | Base | 0 | -90 | 0 | 0 | % | 1 | .161 | 90 | 0 | q1-pi/2 | % | 2 | 1.5 | 0 | -.161 | q2 | % | 3 | 1.5 | 0 | 0 | q3 | % _________________________________________ %q1 = deg2rad(p(1)); %q2 = deg2rad(p(2)); %q3 = deg2rad(p(3)); q1 = deg2rad(0); q2 = deg2rad(0); q3 = deg2rad(0); A1 = -deg2rad(90); A2 = deg2rad(90); a1 = .161; a2 = 1.5; a3 = 1.5; %math stuff x = a3*sin(q3)*(sin(q1)*sin(q2) - cos(A2)*cos(q1)*cos(q2)) - a2*cos(q2)*sin(q1) - a3*cos(q3)*(cos(q2)*sin(q1) + cos(A2)*cos(q1)*sin(q2)) - a1*sin(q1) - a2*cos(A2)*cos(q1)*sin(q2) y = a1*cos(A1)*cos(q1) - a2*sin(q2)*(sin(A1)*sin(A2) + cos(A1)*cos(A2)*sin(q1)) - a3*cos(q3)*(sin(q2)*(sin(A1)*sin(A2) + cos(A1)*cos(A2)*sin(q1)) - cos(A1)*cos(q1)*cos(q2)) - a3*sin(q3)*(cos(q2)*(sin(A1)*sin(A2) + cos(A1)*cos(A2)*sin(q1)) + cos(A1)*cos(q1)*sin(q2)) + a2*cos(A1)*cos(q1)*cos(q2) z = a1*sin(A1)*cos(q1) + a2*sin(q2)*(cos(A1)*sin(A2) - cos(A2)*sin(A1)*sin(q1)) + a3*cos(q3)*(sin(q2)*(cos(A1)*sin(A2) - cos(A2)*sin(A1)*sin(q1)) + sin(A1)*cos(q1)*cos(q2)) + a3*sin(q3)*(cos(q2)*(cos(A1)*sin(A2) - cos(A2)*sin(A1)*sin(q1)) - sin(A1)*cos(q1)*sin(q2)) + a2*sin(A1)*cos(q1)*cos(q2) %returns tip Tip = [x,y,z] end
github
kishore3229/Matlab-Code-master
Line.m
.m
Matlab-Code-master/Line.m
20,312
utf_8
b842e2fb9fcb2c8e33d588abb27a18c8
function varargout = Line(varargin) % LINE M-file for Line.fig % LINE, by itself, creates a new LINE or raises the existing % singleton*. % % H = LINE returns the handle to a new LINE or the handle to % the existing singleton*. % % LINE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LINE.M with the given input arguments. % % LINE('Property','Value',...) creates a new LINE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Line_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Line_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help Line % Last Modified by GUIDE v2.5 14-Apr-2011 18:20:46 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @Line_OpeningFcn, ... 'gui_OutputFcn', @Line_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before Line is made visible. function Line_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Line (see VARARGIN) % Choose default command line output for Line handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes Line wait for user response (see UIRESUME) % uiwait(handles.Line); % maximize(handles.Line); % maximize; % Set the figure icon warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); jframe=get(handles.LTrack,'javaframe'); jIcon=javax.swing.ImageIcon('dental-icon.gif'); jframe.setFigureIcon(jIcon); % --- Outputs from this function are returned to the command line. function varargout = Line_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in Home. function Home_Callback(hObject, eventdata, handles) % hObject handle to Home (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); % --- Executes on button press in browse. function browse_Callback(hObject, eventdata, handles) % hObject handle to browse (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); [basefilename,path]= uigetfile({'*.tif'},'Open Tif Image File'); filename= fullfile(path, basefilename); I = imread (filename); % if I = [MxNx4] if(size(I,3)==4) I(:,:,4)=[]; % convert to I = [MxNx3] end % if I = [MxN] if(size(I,3)==1) [I]=gray2rgb(I); % convert to I = [MxNx3] % figure;imshow(I); end size(I) CitraAsli = I; set(LTproject.LTrack,'CurrentAxes',LTproject.CitraAsli); set (imshow(CitraAsli)); set(LTproject.LTrack,'Userdata',filename); set(LTproject.CitraAsli,'Userdata',I); set(LTproject.filebrowse,'String',strcat('File Location : ',path,basefilename)); % --- Executes on button press in proses. function proses_Callback(hObject, eventdata, handles) % hObject handle to proses (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); ImageInput = get(LTproject.CitraAsli,'Userdata'); disp(size(ImageInput)); [GC,ATW,ATG,Vs,ATW2,VsM,dilateEdge] = FnTrackInit8(ImageInput,1); GreenChan=GC; %axes (handles.GreenChan); %imshow(GreenChan); % imshow (GreenChan); axes (handles.HistGreenChan); imhist(GreenChan); %axes (handles.TrackingAreaWhite); %imshow (ATW); %axes (handles.TrackingAreaGray); %imshow (ATW2); LT = FnTrack21(GC,VsM,dilateEdge); axes (handles.MapQuantization); imshow (LT); % figure; imshow(LT); title('Hasil Map Quantization'); % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles) % hObject handle to pushbutton8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton10. function pushbutton10_Callback(hObject, eventdata, handles) % hObject handle to pushbutton10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton11. function pushbutton11_Callback(hObject, eventdata, handles) % hObject handle to pushbutton11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton12. function pushbutton12_Callback(hObject, eventdata, handles) % hObject handle to pushbutton12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in gapi. function gapi_Callback(hObject, eventdata, handles) % hObject handle to gapi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton14. function pushbutton14_Callback(hObject, eventdata, handles) % hObject handle to pushbutton14 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in linestrength. function linestrength_Callback(hObject, eventdata, handles) % hObject handle to linestrength (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in linetracking. function linetracking_Callback(hObject, eventdata, handles) % hObject handle to linetracking (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton17. function pushbutton17_Callback(hObject, eventdata, handles) % hObject handle to pushbutton17 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in about. function about_Callback(hObject, eventdata, handles) % hObject handle to about (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in reset. function reset_Callback(hObject, eventdata, handles) % hObject handle to reset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); %set(project.CitraAsli, 'String', ''); ; set(gcf,'WindowStyle','Normal') frames = java.awt.Frame.getFrames(); frames(end).setAlwaysOnTop(0); ReBut = questdlg('Are you really want to reset this application?','Reset','Yes','No','default'); % frames(end).setAlwaysOnTop(1); switch ReBut case {'No'} % set(gcf,'WindowStyle','Modal') % frames = java.awt.Frame.getFrames(); % frames(end).setAlwaysOnTop(1); % take no action case 'Yes' closeGUI = LTproject.LTrack; %handles.LTproject is the GUI figure guiPosition = get(LTproject.LTrack,'Position'); %get the position of the GUI guiName = get(LTproject.LTrack,'Name'); %get the name of the GUI close(closeGUI); %close the old GUI eval(guiName) %call the GUI again end % --- Executes on button press in close. function close_Callback(hObject, eventdata, handles) % hObject handle to close (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); set(gcf,'WindowStyle','Normal') frames = java.awt.Frame.getFrames(); frames(end).setAlwaysOnTop(0); pos_size = get(LTproject.LTrack,'Position'); % Call modaldlg with the argument 'Position'. button = questdlg('Are you really want to close this application?','Close','Yes','No','default'); % Set the figure icon warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); jframe=get(handles.LTrack,'javaframe'); jIcon=javax.swing.ImageIcon('dental-icon.gif'); jframe.setFigureIcon(jIcon); switch button case {'No'} case 'Yes' close; end % --- Executes on button press in login. function login_Callback(hObject, eventdata, handles) % hObject handle to login (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in logout. function logout_Callback(hObject, eventdata, handles) % hObject handle to logout (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LTproject = guidata(gcbo); set(gcf,'WindowStyle','Normal') frames = java.awt.Frame.getFrames(); frames(end).setAlwaysOnTop(0); pos_size = get(LTproject.LTrack,'Position'); % Call modaldlg with the argument 'Position'. button = questdlg('Are you really want to close this application?','close','Yes','No','default'); switch button case {'No'} case 'Yes' close; end % --- Executes on button press in save. function save_Callback(hObject, eventdata, handles) % hObject handle to save (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton28. function pushbutton28_Callback(hObject, eventdata, handles) % hObject handle to pushbutton28 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton29. function pushbutton29_Callback(hObject, eventdata, handles) % hObject handle to pushbutton29 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton30. function pushbutton30_Callback(hObject, eventdata, handles) % hObject handle to pushbutton30 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton31. function pushbutton31_Callback(hObject, eventdata, handles) % hObject handle to pushbutton31 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton32. function pushbutton32_Callback(hObject, eventdata, handles) % hObject handle to pushbutton32 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton33. function pushbutton33_Callback(hObject, eventdata, handles) % hObject handle to pushbutton33 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton34. function pushbutton34_Callback(hObject, eventdata, handles) % hObject handle to pushbutton34 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton35. function pushbutton35_Callback(hObject, eventdata, handles) % hObject handle to pushbutton35 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton36. function pushbutton36_Callback(hObject, eventdata, handles) % hObject handle to pushbutton36 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton37. function pushbutton37_Callback(hObject, eventdata, handles) % hObject handle to pushbutton37 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton38. function pushbutton38_Callback(hObject, eventdata, handles) % hObject handle to pushbutton38 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton39. function pushbutton39_Callback(hObject, eventdata, handles) % hObject handle to pushbutton39 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton40. function pushbutton40_Callback(hObject, eventdata, handles) % hObject handle to pushbutton40 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton42. function pushbutton42_Callback(hObject, eventdata, handles) % hObject handle to pushbutton42 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton43. function pushbutton43_Callback(hObject, eventdata, handles) % hObject handle to pushbutton43 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) function LTrack_DeleteFcn(hObject, eventdata, handles) % --- Executes on button press in filebrowse. function filebrowse_Callback(hObject, eventdata, handles) % hObject handle to filebrowse (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on selection change in pushbutton45. function pushbutton45_Callback(hObject, eventdata, handles) % hObject handle to pushbutton45 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns pushbutton45 contents as cell array % contents{get(hObject,'Value')} returns selected item from pushbutton45 % --- Executes on button press in listbox1. function listbox1_Callback(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes on button press in pushbutton46. function pushbutton46_Callback(hObject, eventdata, handles) % hObject handle to pushbutton46 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton47. function pushbutton47_Callback(hObject, eventdata, handles) % hObject handle to pushbutton47 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton48. function pushbutton48_Callback(hObject, eventdata, handles) % hObject handle to pushbutton48 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton49. function pushbutton49_Callback(hObject, eventdata, handles) % hObject handle to pushbutton49 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton50. function pushbutton50_Callback(hObject, eventdata, handles) % hObject handle to pushbutton50 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton51. function pushbutton51_Callback(hObject, eventdata, handles) % hObject handle to pushbutton51 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton52. function pushbutton52_Callback(hObject, eventdata, handles) % hObject handle to pushbutton52 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes during object deletion, before destroying properties. function reset_DeleteFcn(hObject, eventdata, handles) % hObject handle to reset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton55. function pushbutton55_Callback(hObject, eventdata, handles) % hObject handle to pushbutton55 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
EnstaBretagneClubRobo/Cordeliere-master
variogramfit.m
.m
Cordeliere-master/Codes_groupe_Krigeage/Kriging_3D/variogramfit.m
18,298
utf_8
ecb3f120bcbef7510fc82ec9051f75d6
function [a,c,n,S] = variogramfit(h,gammaexp,a0,c0,numobs,varargin) % fit a theoretical variogram to an experimental variogram % % Syntax: % % [a,c,n] = variogramfit(h,gammaexp,a0,c0) % [a,c,n] = variogramfit(h,gammaexp,a0,c0,numobs) % [a,c,n] = variogramfit(h,gammaexp,a0,c0,numobs,'pn','pv',...) % [a,c,n,S] = variogramfit(...) % % Description: % % variogramfit performs a least squares fit of various theoretical % variograms to an experimental, isotropic variogram. The user can % choose between various bounded (e.g. spherical) and unbounded (e.g. % exponential) models. A nugget variance can be modelled as well, but % higher nested models are not supported. % % The function works best with the function fminsearchbnd available on % the FEX. You should download it from the File Exchange (File ID: % #8277). If you don't have fminsearchbnd, variogramfit uses % fminsearch. The problem with fminsearch is, that it might return % negative variances or ranges. % % The variogram fitting algorithm is in particular sensitive to initial % values below the optimal solution. In case you have no idea of % initial values variogramfit calculates initial values for you % (c0 = max(gammaexp); a0 = max(h)*2/3;). If this is a reasonable % guess remains to be answered. Hence, visually inspecting your data % and estimating a theoretical variogram by hand should always be % your first choice. % % Note that for unbounded models, the supplied parameter a0 (range) is % the distance where gamma equals 95% of the sill variance. The % returned parameter a0, however, is the parameter r in the model. The % range at 95% of the sill variance is then approximately 3*r. % % Input arguments: % % h lag distance of the experimental variogram % gammaexp experimental variogram values (gamma) % a0 initial value (scalar) for range % c0 initial value (scalar) for sill variance % numobs number of observations per lag distance (used for weight % function) % % Output arguments: % % a range % c sill % n nugget (empty if nugget variance is not applied) % S structure array with additional information % .range % .sill % .nugget % .model - theoretical variogram % .func - anonymous function of variogram model (only the % function within range for bounded models) % .h - distance % .gamma - experimental variogram values % .gammahat - estimated variogram values % .residuals - residuals % .Rs - R-square of goodness of fit % .weights - weights % .exitflag - see fminsearch % .algorithm - see fminsearch % .funcCount - see fminsearch % .iterations - see fminsearch % .message - see fminsearch % % Property name/property values: % % 'model' a string that defines the function that can be fitted % to the experimental variogram. % % Supported bounded functions are: % 'blinear' (bounded linear) % 'circular' (circular model) % 'spherical' (spherical model, =default) % 'pentaspherical' (pentaspherical model) % % Supported unbounded functions are: % 'exponential' (exponential model) % 'gaussian' (gaussian variogram) % 'whittle' Whittle's elementary correlation (involves a % modified Bessel function of the second kind. % 'stable' (stable models sensu Wackernagel 1995). Same as % gaussian, but with different exponents. Supply % the exponent alpha (<2) in an additional pn,pv % pair: % 'stablealpha',alpha (default = 1.5). % 'matern' Matern model. Requires an additional pn,pv pair. % 'nu',nu (shape parameter > 0, default = 1) % Note that for particular values of nu the matern % model reduces to other authorized variogram models. % nu = 0.5 : exponential model % nu = 1 : Whittles model % nu -> inf : Gaussian model % % See Webster and Oliver (2001) for an overview on variogram % models. See Minasny & McBratney (2005) for an introduction % to the Matern variogram. % % 'nugget' initial value (scalar) for nugget variance. The default % value is []. In this case variogramfit doesn't fit a nugget % variance. % % 'plotit' true (default), false: plot experimental and theoretical % variogram together. % % 'solver' 'fminsearchbnd' (default) same as fminsearch , but with % bound constraints by transformation (function by John % D'Errico, File ID: #8277 on the FEX). The advantage in % applying fminsearchbnd is that upper and lower bound % constraints can be applied. That prevents that nugget % variance or range may become negative. % 'fminsearch' % % 'weightfun' 'none' (default). 'cressie85' and 'mcbratney86' require % you to include the number of observations per experimental % gamma value (as returned by VARIOGRAM). % 'cressie85' uses m(hi)/gammahat(hi)^2 as weights % 'mcbratney86' uses m(hi)*gammaexp(hi)/gammahat(hi)^3 % % % Example: fit a variogram to experimental data % % load variogramexample % a0 = 15; % initial value: range % c0 = 0.1; % initial value: sill % [a,c,n] = variogramfit(h,gammaexp,a0,c0,[],... % 'solver','fminsearchbnd',... % 'nugget',0,... % 'plotit',true); % % % See also: VARIOGRAM, FMINSEARCH, FMINSEARCHBND % % % References: Wackernagel, H. (1995): Multivariate Geostatistics, Springer. % Webster, R., Oliver, M. (2001): Geostatistics for % Environmental Scientists. Wiley & Sons. % Minsasny, B., McBratney, A. B. (2005): The Matrn function as % general model for soil variograms. Geoderma, 3-4, 192-207. % % Date: 7. October, 2010 % Author: Wolfgang Schwanghart (w.schwanghart[at]unibas.ch) % check input arguments if nargin == 0 help variogramfit return elseif nargin>0 && nargin < 2; error('Variogramfit:inputargs',... 'wrong number of input arguments'); end if ~exist('a0','var') || isempty(a0) a0 = max(h)*2/3; end if ~exist('c0','var') || isempty(c0) c0 = max(gammaexp); end if ~exist('numobs','var') || isempty(a0) numobs = []; end % check input parameters params.model = 'spherical'; params.nugget = []; params.plotit = true; params.solver = {'fminsearchbnd','fminsearch'}; params.stablealpha = 1.5; params.weightfun = {'none','cressie85','mcbratney86'}; params.nu = 1; params = parseargs(params,varargin{:}); % check if fminsearchbnd is in the search path switch lower(params.solver) case 'fminsearchbnd' if ~exist('fminsearchbnd.m','file')==2 params.solver = 'fminsearch'; warning('Variogramfit:fminsearchbnd',... 'fminsearchbnd was not found. fminsearch is used instead') end end % check if h and gammaexp are vectors and have the same size if ~isvector(h) || ~isvector(gammaexp) error('Variogramfit:inputargs',... 'h and gammaexp must be vectors'); end % force column vectors h = h(:); gammaexp = gammaexp(:); % check size of supplied vectors if numel(h) ~= numel(gammaexp) error('Variogramfit:inputargs',... 'h and gammaexp must have same size'); end % remove nans; nans = isnan(h) | isnan(gammaexp); if any(nans); h(nans) = []; gammaexp(nans) = []; if ~isempty(numobs) numobs(nans) = []; end end % check weight inputs if isempty(numobs); params.weightfun = 'none'; end % create options for fminsearch options = optimset('MaxFunEvals',1000000); % create vector with initial values % b(1) range % b(2) sill % b(3) nugget if supplied b0 = [a0 c0 params.nugget]; % variogram function definitions switch lower(params.model) case 'spherical' type = 'bounded'; func = @(b,h)b(2)*((3*h./(2*b(1)))-1/2*(h./b(1)).^3); case 'pentaspherical' type = 'bounded'; func = @(b,h)b(2)*(15*h./(8*b(1))-5/4*(h./b(1)).^3+3/8*(h./b(1)).^5); case 'blinear' type = 'bounded'; func = @(b,h)b(2)*(h./b(1)); case 'circular' type = 'bounded'; func = @(b,h)b(2)*(1-(2./pi)*acos(h./b(1))+2*h/(pi*b(1)).*sqrt(1-(h.^2)/(b(1)^2))); case 'exponential' type = 'unbounded'; func = @(b,h)b(2)*(1-exp(-h./b(1))); case 'gaussian' type = 'unbounded'; func = @(b,h)b(2)*(1-exp(-(h.^2)/(b(1)^2))); case 'stable' type = 'unbounded'; stablealpha = params.stablealpha; func = @(b,h)b(2)*(1-exp(-(h.^stablealpha)/(b(1)^stablealpha))); case 'whittle' type = 'unbounded'; func = @(b,h)b(2)*(1-h/b(1).*besselk(1,h/b(1))); case 'matern' type = 'unbounded'; func = @(b,h)b(2)*(1-(1/((2^(params.nu-1))*gamma(params.nu))) * (h/b(1)).^params.nu .* besselk(params.nu,h/b(1))); otherwise error('unknown model') end % check if there are zero distances % if yes, remove them, since the besselk function returns nan for % zero switch lower(params.model) case {'whittle','matern'} izero = h==0; if any(izero) flagzerodistances = true; else flagzerodistances = false; end otherwise flagzerodistances = false; end % if model type is unbounded, then the parameter b(1) is r, which is % approximately range/3. switch type case 'unbounded' b0(1) = b0(1)/3; end % nugget variance if isempty(params.nugget) nugget = false; funnugget = @(b) 0; else nugget = true; funnugget = @(b) b(3); end % generate upper and lower bounds when fminsearchbnd is used switch lower(params.solver) case {'fminsearchbnd'}; % lower bounds lb = zeros(size(b0)); % upper bounds if nugget; ub = [inf max(gammaexp) max(gammaexp)]; % else ub = [inf max(gammaexp)]; end end % create weights (see Webster and Oliver) switch params.weightfun case 'cressie85' weights = @(b,h) (numobs./variofun(b,h).^2)./sum(numobs./variofun(b,h).^2); case 'mcbratney86' weights = @(b,h) (numobs.*gammaexp./variofun(b,h).^3)/sum(numobs.*gammaexp./variofun(b,h).^3); otherwise weights = @(b,h) 1; end % create objective function: weighted least square objectfun = @(b)sum(((variofun(b,h)-gammaexp).^2).*weights(b,h)); % call solver switch lower(params.solver) case 'fminsearch' % call fminsearch [b,fval,exitflag,output] = fminsearch(objectfun,b0,options); case 'fminsearchbnd' % call fminsearchbnd [b,fval,exitflag,output] = fminsearchbnd(objectfun,b0,lb,ub,options); otherwise error('Variogramfit:Solver','unknown or unsupported solver') end % prepare output a = b(1); %range c = b(2); %sill if nugget; n = b(3);%nugget else n = []; end % Create structure array with results if nargout == 4; S.model = lower(params.model); % model S.func = func; S.type = type; switch S.model case 'matern'; S.nu = params.nu; case 'stable'; S.stablealpha = params.stablealpha; end S.range = a; S.sill = c; S.nugget = n; S.h = h; % distance S.gamma = gammaexp; % experimental values S.gammahat = variofun(b,h); % estimated values S.residuals = gammaexp-S.gammahat; % residuals COVyhaty = cov(S.gammahat,gammaexp); S.Rs = (COVyhaty(2).^2) ./... (var(S.gammahat).*var(gammaexp)); % Rsquare S.weights = weights(b,h); %weights S.weightfun = params.weightfun; S.exitflag = exitflag; % exitflag (see doc fminsearch) S.algorithm = output.algorithm; S.funcCount = output.funcCount; S.iterations= output.iterations; S.message = output.message; end % if you want to plot the results... if params.plotit switch lower(type) case 'bounded' plot(h,gammaexp,'rs','MarkerSize',10); hold on fplot(@(h) funnugget(b) + func(b,h),[0 b(1)]) fplot(@(h) funnugget(b) + b(2),[b(1) max(h)]) case 'unbounded' plot(h,gammaexp,'rs','MarkerSize',10); hold on fplot(@(h) funnugget(b) + func(b,h),[0 max(h)]) end axis([0 max(h) 0 max(gammaexp)]) xlabel('lag distance h') ylabel('\gamma(h)') hold off end % fitting functions for fminsearch/bnd function gammahat = variofun(b,h) switch type % bounded model case 'bounded' I = h<=b(1); gammahat = zeros(size(I)); gammahat(I) = funnugget(b) + func(b,h(I)); gammahat(~I) = funnugget(b) + b(2); % unbounded model case 'unbounded' gammahat = funnugget(b) + func(b,h); if flagzerodistances gammahat(izero) = funnugget(b); end end end end % and that's it... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction parseargs function X = parseargs(X,varargin) %PARSEARGS - Parses name-value pairs % % Behaves like setfield, but accepts multiple name-value pairs and provides % some additional features: % 1) If any field of X is an cell-array of strings, it can only be set to % one of those strings. If no value is specified for that field, the % first string is selected. % 2) Where the field is not empty, its data type cannot be changed % 3) Where the field contains a scalar, its size cannot be changed. % % X = parseargs(X,name1,value1,name2,value2,...) % % Intended for use as an argument parser for functions which multiple options. % Example usage: % % function my_function(varargin) % X.StartValue = 0; % X.StopOnError = false; % X.SolverType = {'fixedstep','variablestep'}; % X.OutputFile = 'out.txt'; % X = parseargs(X,varargin{:}); % % Then call (e.g.): % % my_function('OutputFile','out2.txt','SolverType','variablestep'); % The various #ok comments below are to stop MLint complaining about % inefficient usage. In all cases, the inefficient usage (of error, getfield, % setfield and find) is used to ensure compatibility with earlier versions % of MATLAB. remaining = nargin-1; % number of arguments other than X count = 1; fields = fieldnames(X); modified = zeros(size(fields)); % Take input arguments two at a time until we run out. while remaining>=2 fieldname = varargin{count}; fieldind = find(strcmp(fieldname,fields)); if ~isempty(fieldind) oldvalue = getfield(X,fieldname); %#ok newvalue = varargin{count+1}; if iscell(oldvalue) % Cell arrays must contain strings, and the new value must be % a string which appears in the list. if ~iscellstr(oldvalue) error(sprintf('All allowed values for "%s" must be strings',fieldname)); %#ok end if ~ischar(newvalue) error(sprintf('New value for "%s" must be a string',fieldname)); %#ok end if isempty(find(strcmp(oldvalue,newvalue))) %#ok error(sprintf('"%s" is not allowed for field "%s"',newvalue,fieldname)); %#ok end elseif ~isempty(oldvalue) % The caller isn't allowed to change the data type of a non-empty property, % and scalars must remain as scalars. if ~strcmp(class(oldvalue),class(newvalue)) error(sprintf('Cannot change class of field "%s" from "%s" to "%s"',... fieldname,class(oldvalue),class(newvalue))); %#ok elseif numel(oldvalue)==1 & numel(newvalue)~=1 %#ok error(sprintf('New value for "%s" must be a scalar',fieldname)); %#ok end end X = setfield(X,fieldname,newvalue); %#ok modified(fieldind) = 1; else error(['Not a valid field name: ' fieldname]); end remaining = remaining - 2; count = count + 2; end % Check that we had a value for every name. if remaining~=0 error('Odd number of arguments supplied. Name-value pairs required'); end % Now find cell arrays which were not modified by the above process, and select % the first string. notmodified = find(~modified); for i=1:length(notmodified) fieldname = fields{notmodified(i)}; oldvalue = getfield(X,fieldname); %#ok if iscell(oldvalue) if ~iscellstr(oldvalue) error(sprintf('All allowed values for "%s" must be strings',fieldname)); %#ok elseif isempty(oldvalue) error(sprintf('Empty cell array not allowed for field "%s"',fieldname)); %#ok end X = setfield(X,fieldname,oldvalue{1}); %#ok end end end
github
EnstaBretagneClubRobo/Cordeliere-master
fminsearchbnd.m
.m
Cordeliere-master/Codes_groupe_Krigeage/Kriging_3D/fminsearchbnd.m
8,444
utf_8
91711f07f16ddb2b2ecad857de119996
function [x,fval,exitflag,output] = fminsearchbnd(fun,x0,LB,UB,options,varargin) % FMINSEARCHBND: FMINSEARCH, but with bound constraints by transformation % usage: x=FMINSEARCHBND(fun,x0) % usage: x=FMINSEARCHBND(fun,x0,LB) % usage: x=FMINSEARCHBND(fun,x0,LB,UB) % usage: x=FMINSEARCHBND(fun,x0,LB,UB,options) % usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...) % usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...) % % arguments: % fun, x0, options - see the help for FMINSEARCH % % LB - lower bound vector or array, must be the same size as x0 % % If no lower bounds exist for one of the variables, then % supply -inf for that variable. % % If no lower bounds at all, then LB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % UB - upper bound vector or array, must be the same size as x0 % % If no upper bounds exist for one of the variables, then % supply +inf for that variable. % % If no upper bounds at all, then UB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % Notes: % % If options is supplied, then TolX will apply to the transformed % variables. All other FMINSEARCH parameters should be unaffected. % % Variables which are constrained by both a lower and an upper % bound will use a sin transformation. Those constrained by % only a lower or an upper bound will use a quadratic % transformation, and unconstrained variables will be left alone. % % Variables may be fixed by setting their respective bounds equal. % In this case, the problem will be reduced in size for FMINSEARCH. % % The bounds are inclusive inequalities, which admit the % boundary values themselves, but will not permit ANY function % evaluations outside the bounds. These constraints are strictly % followed. % % If your problem has an EXCLUSIVE (strict) constraint which will % not admit evaluation at the bound itself, then you must provide % a slightly offset bound. An example of this is a function which % contains the log of one of its parameters. If you constrain the % variable to have a lower bound of zero, then FMINSEARCHBND may % try to evaluate the function exactly at zero. % % % Example usage: % rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2; % % fminsearch(rosen,[3 3]) % unconstrained % ans = % 1.0000 1.0000 % % fminsearchbnd(rosen,[3 3],[2 2],[]) % constrained % ans = % 2.0000 4.0000 % % See test_main.m for other examples of use. % % % See also: fminsearch, fminspleas % % % Author: John D'Errico % E-mail: [email protected] % Release: 4 % Release date: 7/23/06 % size checks xsize = size(x0); x0 = x0(:); n=length(x0); if (nargin<3) || isempty(LB) LB = repmat(-inf,n,1); else LB = LB(:); end if (nargin<4) || isempty(UB) UB = repmat(inf,n,1); else UB = UB(:); end if (n~=length(LB)) || (n~=length(UB)) error 'x0 is incompatible in size with either LB or UB.' end % set default options if necessary if (nargin<5) || isempty(options) options = optimset('fminsearch'); end % stuff into a struct to pass around params.args = varargin; params.LB = LB; params.UB = UB; params.fun = fun; params.n = n; % note that the number of parameters may actually vary if % a user has chosen to fix one or more parameters params.xsize = xsize; params.OutputFcn = []; % 0 --> unconstrained variable % 1 --> lower bound only % 2 --> upper bound only % 3 --> dual finite bounds % 4 --> fixed variable params.BoundClass = zeros(n,1); for i=1:n k = isfinite(LB(i)) + 2*isfinite(UB(i)); params.BoundClass(i) = k; if (k==3) && (LB(i)==UB(i)) params.BoundClass(i) = 4; end end % transform starting values into their unconstrained % surrogates. Check for infeasible starting guesses. x0u = x0; k=1; for i = 1:n switch params.BoundClass(i) case 1 % lower bound only if x0(i)<=LB(i) % infeasible starting value. Use bound. x0u(k) = 0; else x0u(k) = sqrt(x0(i) - LB(i)); end % increment k k=k+1; case 2 % upper bound only if x0(i)>=UB(i) % infeasible starting value. use bound. x0u(k) = 0; else x0u(k) = sqrt(UB(i) - x0(i)); end % increment k k=k+1; case 3 % lower and upper bounds if x0(i)<=LB(i) % infeasible starting value x0u(k) = -pi/2; elseif x0(i)>=UB(i) % infeasible starting value x0u(k) = pi/2; else x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; % shift by 2*pi to avoid problems at zero in fminsearch % otherwise, the initial simplex is vanishingly small x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); end % increment k k=k+1; case 0 % unconstrained variable. x0u(i) is set. x0u(k) = x0(i); % increment k k=k+1; case 4 % fixed variable. drop it before fminsearch sees it. % k is not incremented for this variable. end end % if any of the unknowns were fixed, then we need to shorten % x0u now. if k<=n x0u(k:n) = []; end % were all the variables fixed? if isempty(x0u) % All variables were fixed. quit immediately, setting the % appropriate parameters, then return. % undo the variable transformations into the original space x = xtransform(x0u,params); % final reshape x = reshape(x,xsize); % stuff fval with the final value fval = feval(params.fun,x,params.args{:}); % fminsearchbnd was not called exitflag = 0; output.iterations = 0; output.funcCount = 1; output.algorithm = 'fminsearch'; output.message = 'All variables were held fixed by the applied bounds'; % return with no call at all to fminsearch return end % Check for an outputfcn. If there is any, then substitute my % own wrapper function. if ~isempty(options.OutputFcn) params.OutputFcn = options.OutputFcn; options.OutputFcn = @outfun_wrapper; end % now we can call fminsearch, but with our own % intra-objective function. [xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params); % undo the variable transformations into the original space x = xtransform(xu,params); % final reshape to make sure the result has the proper shape x = reshape(x,xsize); % Use a nested function as the OutputFcn wrapper function stop = outfun_wrapper(x,varargin); % we need to transform x first xtrans = xtransform(x,params); % then call the user supplied OutputFcn stop = params.OutputFcn(xtrans,varargin{1:(end-1)}); end end % mainline end % ====================================== % ========= begin subfunctions ========= % ====================================== function fval = intrafun(x,params) % transform variables, then call original function % transform xtrans = xtransform(x,params); % and call fun fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:}); end % sub function intrafun end % ====================================== function xtrans = xtransform(x,params) % converts unconstrained variables into their original domains xtrans = zeros(params.xsize); % k allows some variables to be fixed, thus dropped from the % optimization. k=1; for i = 1:params.n switch params.BoundClass(i) case 1 % lower bound only xtrans(i) = params.LB(i) + x(k).^2; k=k+1; case 2 % upper bound only xtrans(i) = params.UB(i) - x(k).^2; k=k+1; case 3 % lower and upper bounds xtrans(i) = (sin(x(k))+1)/2; xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i); % just in case of any floating point problems xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i))); k=k+1; case 4 % fixed variable, bounds are equal, set it at either bound xtrans(i) = params.LB(i); case 0 % unconstrained variable. xtrans(i) = x(k); k=k+1; end end end % sub function xtransform end
github
linwh8/Machine-Learning-master
submit.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
linwh8/Machine-Learning-master
submitWithConfiguration.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
linwh8/Machine-Learning-master
savejson.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
linwh8/Machine-Learning-master
loadjson.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
loadubjson.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
saveubjson.m
.m
Machine-Learning-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
linwh8/Machine-Learning-master
submit.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
linwh8/Machine-Learning-master
submitWithConfiguration.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
linwh8/Machine-Learning-master
savejson.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
linwh8/Machine-Learning-master
loadjson.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
loadubjson.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
saveubjson.m
.m
Machine-Learning-master/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
linwh8/Machine-Learning-master
submit.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
linwh8/Machine-Learning-master
submitWithConfiguration.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
linwh8/Machine-Learning-master
savejson.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
linwh8/Machine-Learning-master
loadjson.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
loadubjson.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
linwh8/Machine-Learning-master
saveubjson.m
.m
Machine-Learning-master/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
danfortunato/fast-poisson-solvers-master
test_poisson_solid_sphere.m
.m
fast-poisson-solvers-master/code/tests/test_poisson_solid_sphere.m
1,126
utf_8
6ed07b270536537bf30ee650b8657fa6
function pass = test_poisson_solid_sphere( ) % Test the fast Poisson solver for the solid sphere. tol = 1e-13; pass = []; % Test the Fourier modes from -3 to 3 n1 = 21; n2 = 22; n3 = 24; r = chebpts( n1 ); th = pi*trigpts( n2 ); lam = pi*trigpts( n3 ); [rr, tt, ll] = ndgrid( r, th, lam ); for k = -3:3 exact = @(r, th, lam) (1-r.^2).*r.^abs(k).*sin(lam).^abs(k).*exp(1i*k*th); rhs = @(r, th, lam) -2*(2*abs(k)+3).*r.^abs(k).*sin(lam).^abs(k).*exp(1i*k*th); EXACT = exact(rr, tt, ll); EXACT = vals2coeffs( EXACT ); F = rhs(rr, tt, ll); F = vals2coeffs( F ); X = poisson_solid_sphere( F, tol ); pass(end+1) = norm( X(:) - EXACT(:) ) < 5*tol; end if ( all(pass) ) pass = 1; end end function CFS = vals2coeffs( VALS ) % Convert to Chebyshev--Fourier--Fourier coefficients [n1, n2, n3] = size( VALS ); CFS = VALS; for k = 1:n3 CFS(:,:,k) = chebtech2.vals2coeffs( CFS(:,:,k) ); CFS(:,:,k) = trigtech.vals2coeffs( CFS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( CFS(:,j,:), n1, n3 ); vj = trigtech.vals2coeffs( vj.' ).'; CFS(:,j,:) = reshape( vj, n1, 1, n3 ); end end
github
danfortunato/fast-poisson-solvers-master
test_poisson_cylinder.m
.m
fast-poisson-solvers-master/code/tests/test_poisson_cylinder.m
1,519
utf_8
f9543dd46c7b1087eb78685bd60ccdbd
function pass = test_poisson_cylinder( ) % Test the fast Poisson solver for the solid cylinder. tol = 1e-13; pass = []; % Test the Fourier modes from -3 to 3 n1 = 21; n2 = 22; n3 = 24; r = chebpts( n1 ); th = pi*trigpts( n2 ); z = chebpts( n3 ); [rr, tt, zz] = ndgrid( r, th, z ); for k = -3:3 exact = @(r, th, z) (1-r.^2).*(1-z.^2).*r.^abs(k).*exp(1i*k*th); rhs = @(r, th, z) 2*(r.^2+2*(abs(k)+1)*z.^2-2*abs(k)-3).*r.^abs(k).*exp(1i*k*th); EXACT = exact(rr, tt, zz); EXACT = vals2coeffs( EXACT ); F = rhs(rr, tt, zz); F = vals2coeffs( F ); X = poisson_cylinder( F, tol ); pass(end+1) = norm( X(:) - EXACT(:) ) < tol; end % Cartesian test case n1 = 55; n2 = 84; n3 = 42; r = chebpts( n1 ); th = pi*trigpts( n2 ); z = chebpts( n3 ); [rr, tt, zz] = ndgrid( r, th, z ); xx = rr.*cos(tt); yy = rr.*sin(tt); v = @(x,y,z) (1-x.^2-y.^2).*(1-z.^2).*(z.*cos(4*pi*(x.^2))+cos(4*pi*y.*z)); f = lap(chebfun3(v)); V = vals2coeffs(v(xx,yy,zz)); F = vals2coeffs(f(xx,yy,zz)); X = poisson_cylinder( F, tol ); pass(end+1) = norm( X(:) - V(:) ) < tol; if ( all(pass) ) pass = 1; end end function CFS = vals2coeffs( VALS ) % Convert to Chebyshev--Fourier--Chebyshev coefficients [n1, n2, n3] = size( VALS ); CFS = VALS; for k = 1:n3 CFS(:,:,k) = chebtech2.vals2coeffs( CFS(:,:,k) ); CFS(:,:,k) = trigtech.vals2coeffs( CFS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( CFS(:,j,:), n1, n3 ); vj = chebtech2.vals2coeffs( vj.' ).'; CFS(:,j,:) = reshape( vj, n1, 1, n3 ); end end
github
danfortunato/fast-poisson-solvers-master
cylinderplot.m
.m
fast-poisson-solvers-master/code/vis/cylinderplot.m
1,544
utf_8
2d67bc792ceef9447aed1ca8ea5fc8c8
function cylinderplot( X, type ) if ( nargin == 1 ) type = 'coeffs'; end switch type case 'coeffs' ff = coeffs2vals( X ); case 'vals' ff = X; otherwise error('Unknown input type.'); end if ( ~isreal(ff) ) ff = real( ff ); end [n1, n2, n3] = size( X ); r = chebpts( n1 ); th = [pi*trigpts( n2 ); pi]; z = chebpts( n3 ); % Remove doubled-up data r = r(floor(n1/2)+1:end); ff = ff(floor(n1/2)+1:end,:,:); ff(:,end+1,:) = ff(:,1,:); [tt, rr, zz] = meshgrid(th, r, z); % Slices in the cylinder to plot rslice = 0; tslice = tt(1,[1 floor(n2/4)+1 floor(n2/2)+1 floor(3*n2/4)+1],1); zslice = squeeze(zz(1,1,[floor(n3/4)+1 floor(n3/2)+1 floor(3*n3/4)+1])); hslicer = slice(tt,rr,zz,ff,tslice,rslice,zslice); hold on for j = 1:numel(hslicer) h = hslicer(j); [xs,ys,zs] = pol2cart(h.XData,h.YData,h.ZData); surf(xs,ys,zs,h.CData,'EdgeColor','none','FaceColor','Interp'); end delete(hslicer) axis([-1 1 -1 1 -1 1]) daspect([1 1 1]) hold off set(gca, 'Position', [0 0 1 1], 'CameraViewAngleMode', 'Manual') colorbar('FontSize', 16, 'Position', [0.84 0.09 0.04 0.8]) axis off end function VALS = coeffs2vals( CFS ) % Convert to Chebyshev--Fourier--Chebyshev values [n1, n2, n3] = size( CFS ); VALS = CFS; for k = 1:n3 VALS(:,:,k) = chebtech2.coeffs2vals( VALS(:,:,k) ); VALS(:,:,k) = trigtech.coeffs2vals( VALS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( VALS(:,j,:), n1, n3 ); vj = chebtech2.coeffs2vals( vj.' ).'; VALS(:,j,:) = reshape( vj, n1, 1, n3 ); end end
github
danfortunato/fast-poisson-solvers-master
sphereplot.m
.m
fast-poisson-solvers-master/code/vis/sphereplot.m
1,582
utf_8
3a5c2ce9a787a82b96537ab3ad728363
function sphereplot( X, type ) if ( nargin == 1 ) type = 'coeffs'; end switch type case 'coeffs' ff = coeffs2vals( X ); case 'vals' ff = X; otherwise error('Unknown input type.'); end if ( ~isreal(ff) ) ff = real( ff ); end [n1, n2, n3] = size( X ); r = chebpts( n1 ); th = [pi*trigpts( n2 ); pi]; lam = [pi*trigpts( n3 ); pi] - pi/2; % Remove doubled-up data r = r(floor(n1/2)+1:end); lam = lam(floor(n3/2)+1:end); ff = ff(floor(n1/2)+1:end,:,floor(n3/2)+1:end); ff(:,end+1,:) = ff(:,1,:); ff(:,:,end+1) = ff(:,:,1); [tt, rr, ll] = meshgrid(th, r, lam); % Slices in the sphere to plot rslice = 0; tslice = squeeze(tt(1,[1 floor(n2/4)+1 floor(n2/2)+1 floor(3*n2/4)+1],1)); lslice = 0; hslicer = slice(tt,rr,ll,ff,tslice,rslice,lslice); hold on for j = 1:numel(hslicer) h = hslicer(j); [xs,ys,zs] = sph2cart(h.XData,h.ZData,h.YData); surf(xs,ys,zs,h.CData,'EdgeColor','none','FaceColor','Interp'); end delete(hslicer) axis([-1 1 -1 1 -1 1]) daspect([1 1 1]) hold off set(gca, 'Position', [0 0 1 1], 'CameraViewAngleMode', 'Manual') colorbar('FontSize', 16, 'Position', [0.84 0.18 0.04 0.64]) axis off end function VALS = coeffs2vals( CFS ) % Convert to Chebyshev--Fourier--Fourier values [n1, n2, n3] = size( CFS ); VALS = CFS; for k = 1:n3 VALS(:,:,k) = chebtech2.coeffs2vals( VALS(:,:,k) ); VALS(:,:,k) = trigtech.coeffs2vals( VALS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( VALS(:,j,:), n1, n3 ); vj = trigtech.coeffs2vals( vj.' ).'; VALS(:,j,:) = reshape( vj, n1, 1, n3 ); end end
github
danfortunato/fast-poisson-solvers-master
makeFigures.m
.m
fast-poisson-solvers-master/code/vis/makeFigures.m
8,407
utf_8
17263bf3508fea3a8bab732b39db2f3a
function makeFigures( name, writeToDisk ) %MAKEFIGURES Make figures for the paper. % % name: The name of the figure to generate. % Options are 'all' (default) or one of the following: % - 'FiniteDifferenceTimings' % - 'SquareSolution' % - 'SquareTimings' % - 'CylinderSolution' % - 'CylinderTimings' % - 'SphereSolution' % - 'CubeSolution' % - 'CubeTimings' % % writeToDisk: Logical flag indicating whether to write the figure to % disk (1, default) or just display the figure (0). close all if ( nargin < 1 ), name = 'all'; end if ( nargin < 2 ), writeToDisk = 1; end figs = { 'FiniteDifferenceTimings' @FiniteDifferenceTimings 'vector' ; 'SquareSolution' @SquareSolutionFigure 'raster' ; 'SquareTimings' @SquareTimingsFigure 'vector' ; 'CylinderSolution' @CylinderSolutionFigure 'raster' ; 'CylinderTimings' @CylinderTimingsFigure 'vector' ; 'SphereSolution' @SphereSolutionFigure 'raster' ; 'CubeSolution' @CubeSolutionFigure 'raster' ; 'CubeTimings' @CubeTimingsFigure 'vector' }; for i = 1:length(figs) [figname, figfun, figformat] = figs{i,:}; if ( strcmp(name, figname) || strcmp(name, 'all') ) feval( figfun ); writefig( figname, writeToDisk, figformat ); end end end function c = colorpalette() %COLORPALETTE Define the colors to be used for all figures. c = magma(); end function writefig( filename, writeToDisk, format ) %WRITEFIG Write a figure to disk. shg if ( writeToDisk ) savefig(strcat(filename, '.fig')); if ( strcmp(format, 'vector') ) print('-depsc', strcat(filename, '.eps')); elseif ( strcmp(format, 'raster') ) print('-dpng', '-r500', strcat(filename, '.png')); end end end function FiniteDifferenceTimings() nn = floor(logspace(1,3.7,50)); t_adi3 = zeros(size(nn)); t_adi6 = zeros(size(nn)); t_adi13 = zeros(size(nn)); t_fft = zeros(size(nn)); j = 1; for n = nn % ADI F = ones(n,n); s = tic; X_ADI3 = FiniteDifference_ADI(F, 1e-3); t_adi3(j) = toc(s); s = tic; X_ADI6 = FiniteDifference_ADI(F, 1e-6); t_adi6(j) = toc(s); s = tic; X_ADI13 = FiniteDifference_ADI(F, 1e-13); t_adi13(j) = toc(s); % FFT f = @(x,y) 1+0*x; s = tic; X_FFT = FiniteDifference_FFT(f, n); t_fft(j) = toc(s); fprintf('n = %g\n', n) j = j + 1; end loglog(nn, t_fft, 'LineWidth', 2), hold on loglog(nn, t_adi3, 'LineWidth', 2) loglog(nn, t_adi6, 'LineWidth', 2) loglog(nn, t_adi13, 'LineWidth', 2) loglog(nn, 2e-7*nn.^2.*log(nn), 'k--', 'LineWidth', 2), hold off legend('FFT', ... ['ADI, ' char(1013) ' = 10^{ -3}' ], ... ['ADI, ' char(1013) ' = 10^{ -6}' ], ... ['ADI, ' char(1013) ' = 10^{ -13}'], ... 'Location', 'NorthWest'); set(gca, 'FontSize', 16) xlim([min(nn) max(nn)]) ylim([1e-4 10]) end function SquareSolutionFigure() m = 200; n = 200; f = chebfun2( @(x,y) -100*x.*sin(20*pi*x.^2.*y).*cos(4*pi*(x+y)) ); F = coeffs2( f, m, n ); X = poisson_rectangle( F ); u = chebfun2( X, 'coeffs' ); plot(u) view(2) colormap(colorpalette()) colorbar('FontSize', 16) axis square axis off end function SquareTimingsFigure() nn_lyap = floor(logspace(1,3.7,40)); t_lyap = zeros(size(nn_lyap)); j = 1; for n = nn_lyap fprintf('n = %g\n', n); F = ones(n, n); fprintf(' lyap: '); s = tic; X_LYAP = fastPoisson2D_lyap( F, n ); t_lyap(j) = toc(s); fprintf('%g s\n', t_lyap(j)); j = j + 1; end nn_adi = floor(logspace(1,4,40)); t_adi3 = zeros(size(nn_adi)); t_adi6 = zeros(size(nn_adi)); t_adi13 = zeros(size(nn_adi)); j = 1; for n = nn_adi fprintf('n = %g\n', n); F = ones(n, n); s = tic; X_ADI3 = poisson_rectangle( F, 1e-3 ); t_adi3(j) = toc(s); fprintf(' ADI 1e-3: %g s\n', t_adi3(j)); s = tic; X_ADI6 = poisson_rectangle( F, 1e-6 ); t_adi6(j) = toc(s); fprintf(' ADI 1e-6: %g s\n', t_adi6(j)); s = tic; X_ADI13 = poisson_rectangle( F, 1e-13 ); t_adi13(j) = toc(s); fprintf(' ADI 1e-13: %g s\n', t_adi13(j)); j = j + 1; end loglog(nn_adi, t_adi3, 'LineWidth', 2), hold on, loglog(nn_adi, t_adi6, 'LineWidth', 2) loglog(nn_adi, t_adi13, 'LineWidth', 2) loglog(nn_lyap, t_lyap, 'LineWidth', 2) nn = nn_adi(nn_adi > 500); loglog(nn, 2.2e-8*nn.^2.*log(nn).^2, 'k--', 'LineWidth', 2) loglog(nn, 6.1e-9*nn.^3, 'k--', 'LineWidth', 2), hold off legend(['ADI, ' char(1013) ' = 10^{ -3}' ], ... ['ADI, ' char(1013) ' = 10^{ -6}' ], ... ['ADI, ' char(1013) ' = 10^{ -13}'], ... 'Bartels-Stewart', 'Location', 'NorthWest') set(gca, 'FontSize', 16) xlim([min(nn_adi) max(nn_adi)]) ylim([2e-4 400]) end function CylinderSolutionFigure() function CFS = vals2coeffs( VALS ) % Convert to Chebyshev--Fourier--Chebyshev coefficients [n1, n2, n3] = size( VALS ); CFS = VALS; for k = 1:n3 CFS(:,:,k) = chebtech2.vals2coeffs( CFS(:,:,k) ); CFS(:,:,k) = trigtech.vals2coeffs( CFS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( CFS(:,j,:), n1, n3 ); vj = chebtech2.vals2coeffs( vj.' ).'; CFS(:,j,:) = reshape( vj, n1, 1, n3 ); end end n1 = 55; n2 = 84; n3 = 42; r = chebpts( n1 ); th = pi*trigpts( n2 ); z = chebpts( n3 ); [rr, tt, zz] = ndgrid( r, th, z ); xx = rr.*cos(tt); yy = rr.*sin(tt); v = @(x,y,z) (1-x.^2-y.^2).*(1-z.^2).*(z.*cos(4*pi*(x.^2))+cos(4*pi*y.*z)); f = lap(chebfun3(v)); F = vals2coeffs(f(xx,yy,zz)); X = poisson_cylinder( F ); colormap(colorpalette()) cylinderplot(X, 'coeffs') end function CylinderTimingsFigure() nn = floor(logspace(1,2.6,50)); t = zeros(size(nn)); j = 1; for n = nn fprintf('n = %g\n', n); F = ones(n, n, n); s = tic; X = poisson_cylinder( F ); t(j) = toc(s); fprintf('%g s\n', t(j)); j = j + 1; end loglog(nn, t, 'LineWidth', 2), hold on nn2 = nn(nn > 110); loglog(nn2, 1e-7*nn2.^3.*log(nn2).^2, 'k--', 'LineWidth', 2), hold off set(gca, 'FontSize', 16) xlim([min(nn) max(nn)]) ylim([7e-3 500]) end function SphereSolutionFigure() function CFS = vals2coeffs( VALS ) % Convert to Chebyshev--Fourier--Fourier coefficients [n1, n2, n3] = size( VALS ); CFS = VALS; for k = 1:n3 CFS(:,:,k) = chebtech2.vals2coeffs( CFS(:,:,k) ); CFS(:,:,k) = trigtech.vals2coeffs( CFS(:,:,k).' ).'; end for j = 1:n2 vj = reshape( CFS(:,j,:), n1, n3 ); vj = trigtech.vals2coeffs( vj.' ).'; CFS(:,j,:) = reshape( vj, n1, 1, n3 ); end end n1 = 31; n2 = 32; n3 = 32; r = chebpts( n1 ); lam = pi*trigpts( n2 ); th = pi*trigpts( n3 ); [rr, tt, ll] = ndgrid( r, th, lam ); k = 2; rhs = @(r, th, lam) -2*(2*abs(k)+3).*r.^abs(k).*sin(lam).^abs(k).*exp(1i*k*th); F = rhs(rr, tt, ll); F = vals2coeffs( F ); X = poisson_solid_sphere( F ); colormap(colorpalette()) sphereplot( X ) end function CubeSolutionFigure() m = 10; n = 10; p = 10; u = chebfun3( @(x,y,z) (1-x.^2).*(1-y.^2).*(1-z.^2).*cos(x.*y.*z.^2) ); f = lap( u ); F = coeffs3( f, m, n, p ); X = poisson_cube( F ); colormap(colorpalette()) cubeplot( X ) end function CubeTimingsFigure() nn = floor(logspace(1,1.7,17)); t = zeros(size(nn)); j = 1; for n = nn fprintf('n = %g\n', n); F = ones(n, n, n); s = tic; X = poisson_cube( F ); t(j) = toc(s); fprintf('%g s\n', t(j)); j = j + 1; end loglog(nn, t, 'LineWidth', 2), hold on nn2 = nn(nn > 25); loglog(nn2, 7.6e-4*nn2.^3.*log(nn2).^3, 'k--', 'LineWidth', 2), hold off set(gca, 'FontSize', 16) xlim([min(nn) max(nn)]) ylim([10 10000]) end
github
danfortunato/fast-poisson-solvers-master
poisson_cube.m
.m
fast-poisson-solvers-master/code/cube/poisson_cube.m
7,599
utf_8
248560894cdfa152de45a95b4f04d275
function X = poisson_cube( F, tol ) %POISSON_CUBE Fast Poisson solver for the cube. % POISSON_CUBE( F ) solves laplacian(U) = F on [-1,1]x[-1,1]x[-1,1] with % zero Dirichlet boundary conditions. That is, U satisfies % % U_{x,x} + U_{y,y} + U_{z,z} = F, on [-1,1]^3 U = 0 on boundary % % F is input as an M x N x P matrix of Chebyshev coefficients. The % equation is solved using an M x N x P discretization. % % POISSON_CUBE( F, TOL ) solves to the specified error tolerance. % DEVELOPER'S NOTE: % % METHOD: Spectral method (in coefficient space). We use a C^{(3/2)} basis % to discretize the equation, resulting in a discretization of the form % (kron(A,A,I) + kron(A,I,A) + kron(I,A,A)) X(:) = F(:), where A is a % symmetric tridiagonal matrix. % % LINEAR ALGEBRA: Matrix equations. The matrix equation is solved by a % three-level nested alternating direction implicit (ADI) method. % % SOLVE COMPLEXITY: O(M*N*P*log(MAX(M,N,P))^3*log(1/eps)) with M*N*P = % total degrees of freedom. This is not theoretically justified. % % AUTHORS: Dan Fortunato ([email protected]) % Alex Townsend ([email protected]) % % The fast Poisson solver is based on: % % D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, % in preparation, 2017. if ( nargin < 2 ) tol = 1e-13; end [m, n, p] = size( F ); % Convert the RHS to C^{(3/2)} coefficients F = cheb2ultra_tensor( F ); % Construct Tm, Tn, Tp jjm = (0:m-1)'; dsub = -1./(2*(jjm+3/2)).*(jjm+1).*(jjm+2)*1/2./(1/2+jjm+2); dsup = -1./(2*(jjm+3/2)).*(jjm+1).*(jjm+2)*1/2./(1/2+jjm); d = -dsub - dsup; Mm = spdiags([dsub d dsup], [-2 0 2], m, m); invDm = spdiags(-1./(jjm.*(jjm+3)+2), 0, m, m); Tm = invDm * Mm; jjn = (0:n-1)'; dsub = -1./(2*(jjn+3/2)).*(jjn+1).*(jjn+2)*1/2./(1/2+jjn+2); dsup = -1./(2*(jjn+3/2)).*(jjn+1).*(jjn+2)*1/2./(1/2+jjn); d = -dsub - dsup; Mn = spdiags([dsub d dsup], [-2 0 2], n, n); invDn = spdiags(-1./(jjn.*(jjn+3)+2), 0, n, n); Tn = invDn * Mn; jjp = (0:p-1)'; dsub = -1./(2*(jjp+3/2)).*(jjp+1).*(jjp+2)*1/2./(1/2+jjp+2); dsup = -1./(2*(jjp+3/2)).*(jjp+1).*(jjp+2)*1/2./(1/2+jjp); d = -dsub - dsup; Mp = spdiags([dsub d dsup], [-2 0 2], p, p); invDp = spdiags(-1./(jjp.*(jjp+3)+2), 0, p, p); Tp = invDp * Mp; % Diagonally scale the RHS, as in the 2D Poisson solver [ii, jj, kk] = ndgrid( jjm, jjn, jjp ); F = -F ./ (ii.*(ii+3)+2) ./ (jj.*(jj+3)+2) ./ (kk.*(kk+3)+2); Im = eye( m ); In = eye( n ); Ip = eye( p ); % Let U = kron(Tp,Tn,Im), V = kron(Ip,Tn,Tm), W = kron(Tp,In,Tm). % Then Poisson can be written as (U + V + W) x = f with x = X(:), f = F(:). % We will solve this using a three-level nested ADI iteration. X = zeros( m, n, p ); % Calculate ADI shifts based on bounds on the eigenvalues of Tm, Tn, Tp innertol = 1e-16; a = @(n) -39*n^-4; b = @(n) -4/pi^2; % TODO: Calculate shifts based on m, n, and p [p1, ~] = ADIshifts(b(n)^2, a(n)^2, -a(n)^2, -b(n)^2, tol); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% ADI LEVEL 1: Solve ((U+V) + W) x = f %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i = 1:numel(p1) fprintf('Outer iteration: %g / %g\n', i, numel(p1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% ADI LEVEL 2: Solve ((U+p1(i)I/2) + (V+p1(i)I/2)) x = f - (W-p1(i)I) x_i %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RHSi = F + p1(i)*X; for j = 1:n RHSi(:,j,:) = squeeze(RHSi(:,j,:)) - Tm*squeeze(X(:,j,:))*Tp'; end [p2, ~] = ADIshifts(b(n)^2+p1(i)/2, a(n)^2+p1(i)/2, -a(n)^2+p1(i)/2, -b(n)^2+p1(i)/2, innertol); for j = 1:numel(p2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% ADI LEVEL 3: Solve ((U+p1(i)I/2) + p2(j)I) x = f - (W-p1(i)I) x_i - ((V+p1(i)I/2) - p2(j)I) x_j %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This decouples in one dimension, yielding: T*X_k*T' + s*X_k = F_k % We can rewrite this as: s*T\X_k + X_k*T' = T\F_k % and solve it fast using ADI. RHSj = RHSi - p1(i)/2*X + p2(j)*X; for k = 1:p RHSj(:,:,k) = squeeze(RHSj(:,:,k)) - Tm*squeeze(X(:,:,k))*Tn'; end s = p1(i)/2 + p2(j); [p3, q3] = ADIshifts(-5/a(n)*s, -1/b(n)*s, a(n), b(n), innertol); for k = 1:m RHSk = squeeze(RHSj(k,:,:)); Xk = zeros(n, p); FF = Tn \ RHSk; for l = 1:numel(p3) Xk = ( FF - (s*(Tn\Xk) + p3(l)*Xk) ) / (p3(l)*Ip - Tp'); Xk = (s*In+q3(l)*Tn) \ ( RHSk - Tn*Xk*(q3(l)*Ip-Tp') ); end X(k,:,:) = Xk; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% ADI LEVEL 3: Solve ((V+p1(i)I/2) + p2(j)I) x = f - (W-p1(i)I) x_i - ((U+p1(i)I/2) - p2(j)I) x_j %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This decouples in one dimension, yielding: T*X_k*T' + s*X_k = F_k % We can rewrite this as: s*T\X_k + X_k*T' = T\F_k % and solve it fast using ADI. RHSj = RHSi - p1(i)/2*X + p2(j)*X; for k = 1:m RHSj(k,:,:) = squeeze(RHSj(k,:,:)) - Tn*squeeze(X(k,:,:))*Tp'; end s = p1(i)/2 + p2(j); [p3, q3] = ADIshifts(-5/a(n)*s, -1/b(n)*s, a(n), b(n), innertol); for k = 1:p RHSk = squeeze(RHSj(:,:,k)); Xk = zeros(m, n); FF = Tm \ RHSk; for l = 1:numel(p3) Xk = ( FF - (s*(Tm\Xk)+p3(l)*Xk) ) / (p3(l)*In-Tn'); Xk = (s*Im+q3(l)*Tm) \ ( RHSk - Tm*Xk*(q3(l)*In-Tn') ); end X(:,:,k) = Xk; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% ADI LEVEL 2: Solve (W + p1(i)I) x = f - ((U+V)-p1(i)I) x_i %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This decouples in one dimension, yielding: T*X_k*T' + s*X_k = F_k % We can rewrite this as: s*T\X_k + X_k*T' = T\F_k % and solve it fast using ADI. RHSi = F + p1(i)*X; for j = 1:p RHSi(:,:,j) = RHSi(:,:,j) - Tm*X(:,:,j)*Tn'; end for j = 1:m RHSi(j,:,:) = squeeze(RHSi(j,:,:)) - Tn*squeeze(X(j,:,:))*Tp'; end s = p1(i); [p3, q3] = ADIshifts(-5/a(n)*s, -1/b(n)*s, a(n), b(n), innertol); for j = 1:n RHSj = squeeze(RHSi(:,j,:)); Xk = zeros(m, p); FF = Tm \ RHSj; for l = 1:numel(p3) Xk = ( FF - (s*(Tm\Xk)+p3(l)*Xk) ) / (p3(l)*Ip-Tp'); Xk = (s*Im+q3(l)*Tm) \ ( RHSj - Tm*Xk*(q3(l)*Ip-Tp') ); end X(:,j,:) = Xk; end end % Convert back to Chebyshev X = ultra1mx2cheb_tensor( X ); end function X = cheb2ultra_tensor( X ) %CHEB2ULTRA_TENSOR Convert tensor Chebyshev coefficients to C^{(3/2)} [m, n, p] = size( X ); for k = 1:p X(:,:,k) = cheb2ultra( cheb2ultra( X(:,:,k) ).' ).'; end S = leg2ultra_mat( p ); for i = 1:m for j = 1:n X(i,j,:) = S * cheb2leg( cheb2leg( permute(X(i,j,:),[3 2 1]) ).' ).'; end end end function X = ultra1mx2cheb_tensor( X ) %ULTRA1MX2CHEB_TENSOR Convert tensor (1-x.^2)T_k coefficients to T_k [m, n, p] = size( X ); for k = 1:p X(:,:,k) = ultra1mx2cheb( ultra1mx2cheb( X(:,:,k) ).' ).'; end S = ultra1mx2leg_mat( p ); for i = 1:m for j = 1:n X(i,j,:) = leg2cheb( leg2cheb( S * permute(X(i,j,:),[3 2 1]) ).' ).'; end end end
github
danfortunato/fast-poisson-solvers-master
poisson_rectangle.m
.m
fast-poisson-solvers-master/code/rectangle/poisson_rectangle.m
6,949
utf_8
a25dca19c5ab567ed3de01eb824d80fd
function X = poisson_rectangle( F, varargin ) %POISSON_RECTANGLE Fast Poisson solver for the rectangle. % POISSON_RECTANGLE( F ) solves laplacian(U) = F on [-1,1]x[-1,1] with % zero Dirichlet boundary conditions. That is, U satisfies % % U_{x,x} + U_{y,y} = F, on [-1,1]x[-1,1] U = 0 on boundary % % F is input as an M x N matrix of Chebyshev coefficients. The equation % is solved using an M x N discretization. G can be a scalar, a function % handle, or any chebfun2 object satisfying the Dirichlet data. % % POISSON_RECTANGLE( F, TOL ) solves to the specified error tolerance. % % POISSON_RECTANGLE( F, [A B C D] ) solves on the domain [A,B]x[C,D]. % % POISSON_RECTANGLE( F, [A B C D], TOL ) solves on the domain [A,B]x[C,D] % to the specified error tolerance. % % POISSON_RECTANGLE( F, LBC, RBC, DBC, UBC ) solves using the given % Dirichlet data. The data are given as function handles. % % POISSON_RECTANGLE( F, LBC, RBC, DBC, UBC, [A B C D] ) solves using the % given Dirichlet data on the domain [A,B]x[C,D]. % % POISSON_RECTANGLE( F, LBC, RBC, DBC, UBC, TOL ) solves using the % given Dirichlet data to the specified error tolerance. % % POISSON_RECTANGLE( F, LBC, RBC, DBC, UBC, [A B C D], TOL ) solves using % given Dirichlet data on the domain [A,B]x[C,D] to the specified error % tolerance. % DEVELOPER'S NOTE: % % METHOD: Spectral method (in coefficient space). We use a C^{(3/2)} basis % to discretize the equation, resulting in a discretization of the form % AX + XA = F, where A is a symmetric tridiagonal matrix. % % LINEAR ALGEBRA: Matrix equations. The matrix equation is solved by the % alternating direction implicit (ADI) method. % % SOLVE COMPLEXITY: O(M*N*log(MAX(M,N))*log(1/eps)) with M*N = total % degrees of freedom. % % AUTHORS: Dan Fortunato ([email protected]) % Alex Townsend ([email protected]) % % The fast Poisson solver is based on: % % D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, % in preparation, 2017. [m, n] = size( F ); % Default arguments dom = [-1, 1, -1, 1]; tol = 1e-13; BC = zeros(m, n); nonzeroBC = false; % Parse the inputs if ( nargin == 2 ) if ( numel(varargin{1}) == 1 ) % Call is POISSON_RECTANGLE( F, tol ) tol = varargin{1}; else % Call is POISSON_RECTANGLE( F, dom ) dom = varargin{1}; end elseif ( nargin == 3 ) % Call is POISSON_RECTANGLE( F, dom, tol ) [dom, tol] = varargin{:}; elseif ( nargin == 5 ) % Call is POISSON_RECTANGLE( F, lbc, rbc, dbc, ubc ) [lbc, rbc, dbc, ubc] = varargin{:}; nonzeroBC = true; elseif ( nargin == 6 ) [lbc, rbc, dbc, ubc] = varargin{1:4}; nonzeroBC = true; if ( numel(varargin{5}) == 1 ) % Call is POISSON_RECTANGLE( F, lbc, rbc, dbc, ubc, tol ) tol = varargin{5}; else % Call is POISSON_RECTANGLE( F, lbc, rbc, dbc, ubc, dom ) dom = varargin{5}; end elseif ( nargin == 7 ) % Call is POISSON_RECTANGLE( F, lbc, rbc, dbc, ubc, dom, tol ) [lbc, rbc, dbc, ubc, dom, tol] = varargin{:}; nonzeroBC = true; elseif ( nargin ~= 1 ) error('POISSON_RECTANGLE:ARG', 'Invalid number of arguments.'); end % Check that the domain is valid if ( numel(dom) ~= 4 ) error('POISSON_RECTANGLE:DOMAIN', 'Invalid domain specification.'); end % Solve for u on the given domain, adjust diffmat to including scaling: scl_x = (2/(dom(2)-dom(1)))^2; scl_y = (2/(dom(4)-dom(3)))^2; % Solver only deals with zero homogeneous Dirichlet conditions. Therefore, % if nonzero Dirichlet conditions are given, we solve lap(u) = f with % u|bc = g as u = v + w, where v|bc = g, and lap(w) = f - lap(v), w|bc = 0: if ( nonzeroBC ) % Check that the boundary conditions are valid if ~( isa(lbc, 'function_handle') && ... isa(rbc, 'function_handle') && ... isa(dbc, 'function_handle') && ... isa(ubc, 'function_handle') ) error('POISSON_RECTANGLE:BC', ... 'Dirichlet data needs to be given as a function handle.'); end % Make sure the Dirichlet data match at the corners if ~( lbc(dom(3)) == dbc(dom(1)) && ... lbc(dom(4)) == ubc(dom(1)) && ... rbc(dom(3)) == dbc(dom(2)) && ... rbc(dom(4)) == ubc(dom(2)) ) error('POISSON_RECTANGLE:BC', 'Corners must match.'); end % First convert the boundary data from function handles to coefficients lbc_cfs = fun2coeffs( lbc, m, dom(3:4) ); rbc_cfs = fun2coeffs( rbc, m, dom(3:4) ); dbc_cfs = fun2coeffs( dbc, n, dom(1:2) ); ubc_cfs = fun2coeffs( ubc, n, dom(1:2) ); % Now compute an interpolant of the boundary data BC(1,:) = (ubc_cfs + dbc_cfs)/2; BC(2,:) = (ubc_cfs - dbc_cfs)/2; BC(1:2,1) = (rbc_cfs(1:2) + lbc_cfs(1:2))/2 - sum(BC(1:2,3:2:end),2); BC(1:2,2) = (rbc_cfs(1:2) - lbc_cfs(1:2))/2 - sum(BC(1:2,4:2:end),2); BC(3:end,1) = (rbc_cfs(3:end) + lbc_cfs(3:end))/2; BC(3:end,2) = (rbc_cfs(3:end) - lbc_cfs(3:end))/2; % Adjust the rhs % TODO: Remove this call to chebfun2 u_lap = lap( chebfun2(BC, dom, 'coeffs') ); u_lap = coeffs2( u_lap, m, n ); F = F - u_lap; end % Convert rhs to C^{(3/2)} coefficients: F = cheb2ultra( cheb2ultra( F ).' ).'; % Construct M, the multiplication matrix for (1-x^2) in the C^(3/2) basis jj = (0:n-1)'; dsub = -1./(2*(jj+3/2)).*(jj+1).*(jj+2)*1/2./(1/2+jj+2); dsup = -1./(2*(jj+3/2)).*(jj+1).*(jj+2)*1/2./(1/2+jj); d = -dsub - dsup; Mn = spdiags([dsub d dsup], [-2 0 2], n, n); % Construct D^{-1}, which undoes the scaling from the Laplacian identity invDn = spdiags(-1./(jj.*(jj+3)+2), 0, n, n); Tn = scl_y * invDn * Mn; jj = (0:m-1)'; dsub = -1./(2*(jj+3/2)).*(jj+1).*(jj+2)*1/2./(1/2+jj+2); dsup = -1./(2*(jj+3/2)).*(jj+1).*(jj+2)*1/2./(1/2+jj); d = -dsub - dsup; Mm = spdiags([dsub d dsup], [-2 0 2], m, m); invDm = spdiags(-1./(jj.*(jj+3)+2), 0, m, m); % Construct T = D^{-1} * M: Tm = scl_x * invDm * Mm; F = invDm * F * invDn; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Alternating Direction Implicit method %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Solve TmX + XTn' = F using ADI, which requires O(n^2log(n)log(1/eps)) % operations: % Calculate ADI shifts based on bounds on the eigenvalues of Tn and Tm: a = -4/pi^2 * scl_y; b = -39*n^-4 * scl_y; c = 39*m^-4 * scl_x; d = 4/pi^2 * scl_x; [p, q] = ADIshifts(a, b, c, d, tol); % Run the ADI method: A = Tm; B = -Tn; % Extract diagonals from A and B and call ADI C code da = diag(A); db = diag(B); ua = diag(A,2); ub = diag(B,2); la = diag(A,-2); lb = diag(B,-2); X = adi( da, ua, la, db, ub, lb, p, q, F ); % Convert back to Chebyshev X = ultra1mx2cheb( ultra1mx2cheb( X ).' ).'; X = X + BC; end function cfs = fun2coeffs( fun, n, dom ) % Convert from a function handle to Chebyshev coefficients vals = fun( chebpts(n, dom) ); cfs = chebtech2.vals2coeffs( vals ); end
github
andregouws/mrMeshPy-master
meshBuild_mrMeshPy.m
.m
mrMeshPy-master/matlabRoutines/meshBuild_mrMeshPy.m
7,428
utf_8
cd89bff29e221fafb60854fb3e73728c
function [vw,newMeshNum] = meshBuild_mrMeshPy(vw,hemisphere) % COPY OF ORIGINAL meshBuild adapted for mrMeshPy - AG 2017 % Build a 3D mesh for visualization and analysis % % [vw,newMeshNum,meshBuildPath] = meshBuild(vw,[hemisphere],meshBuildPath); % % Using mrVista data, build a mesh, save it in a file in the anatomy % directory, and add the mesh to the 3D Control Window pull down % options. % % vw: A VISTASOFT view structure % hemisphere: left, right or both. Default: left % % A mrMeshPy window is opened as well, showing the computed mesh. % % Example: % [VOLUME{1},newMeshNum,meshBuildPath] = meshBuild(VOLUME{1},'left','/home/user/mrMeshPy/matlabRoutines'); % VOLUME{1} = viewSet(VOLUME{1},'currentmeshn',newMeshNum); % % See also: meshBuildFromClass, meshBuildFromNiftiClass, meshSmooth, % meshColor % % 11/05 ras: also saves mesh path. % % (c) Stanford VISTA Team 2008 % % % Programming TODO. Check this! % We have (or had?) trouble for building 'both' meshes. We need a new % procedure. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % COPY OF ORIGINAL meshBuild adapted for mrMeshPy - AG 2017 - in trying to % keep as many things consistent with the previous mrMesh, I have stripped % out this part of the stream and changed the bits we need for mrMeshPy % This cascade calls adapted versions of mrmBuild and meshBuildFromClass % Andre Gouws 2017 disp 'meshBuild called' % Be sure anatomy is loaded (we need it for the mmPerVox field) if isempty(vw.anat), vw = loadAnat(vw); end if ieNotDefined('hemisphere'), hemisphere = 'left'; end newMeshNum = viewGet(vw,'nmesh') + 1; % Parameters we establish in this routine [meshName,numGrayLayers,hemiNum] = readParams(newMeshNum,hemisphere); if isempty(meshName), newMeshNum = newMeshNum - 1; return; end % User pressed cancel. % mmPerVox = viewGet(vw,'mmPerVoxel'); wbar = mrvWaitbar(0.1, ... sprintf('meshBuild: Combining white and gray matter...')); % Load left, right, or both hemispheres. if (hemiNum==1) [voxels,vw] = meshGetWhite(vw, 'left', numGrayLayers); elseif (hemiNum==2) [voxels,vw] = meshGetWhite(vw, 'right', numGrayLayers); elseif (hemiNum == 0) [voxels,vw] = meshGetWhite(vw, 'left', numGrayLayers); [voxels,vw] = meshGetWhite(vw, 'right', numGrayLayers,voxels); end % host = 'localhost'; % windowID = -1; % We build a smoothed (mesh) and an unsmoothed mesh (tenseMesh) with these calls mrvWaitbar(0.35,wbar,sprintf('Building mesh')); [newMesh, tenseMesh] = mrmBuild_mrMeshPy(voxels,viewGet(vw,'mmPerVox'),1); % Must have a name newMesh = meshSet(newMesh,'name',meshName); tenseMesh = meshSet(tenseMesh,'name',sprintf('%s-tense',meshName)); % mrvWaitbar(0.65,wbar,sprintf('meshBuild: Unsmoothed mesh vertex to gray mapping')); initVertices = meshGet(tenseMesh,'vertices'); newMesh = meshSet(newMesh,'initialvertices',initVertices); vertexGrayMap = mrmMapVerticesToGray(... initVertices, ... viewGet(vw,'nodes'), ... viewGet(vw,'mmPerVox'),... viewGet(vw,'edges')); newMesh = meshSet(newMesh,'vertexGrayMap',vertexGrayMap); newMesh = meshSet(newMesh,'name',meshName); newMesh = meshSet(newMesh,'nGrayLayers',numGrayLayers); mrvWaitbar(0.9,wbar,sprintf('meshBuild: Saving mesh file %s',meshGet(newMesh,'name'))); % Save mesh file [newMesh newMesh.path] = mrmWriteMeshFile(newMesh); mrvWaitbar(1,wbar,sprintf('meshBuild: Done')); pause(0.5); close(wbar); % Now refresh the UI vw = viewSet(vw,'add and select mesh',newMesh); return; %--------------------------------------- function classFile = verifyClassFile(vw,hemisphere) classFile = viewGet(vw,'classFileName',hemisphere); str = sprintf('Class %s',classFile); r=questdlg(str); if ~strcmp(r,'Yes') switch hemisphere case 'left' vw = viewSet(vw,'leftClassFileName',[]); case 'right' vw = viewSet(vw,'rightClassFileName',[]); end classFile = viewGet(vw,'classFileName',hemisphere); end return; %--------------------------------------- function voxels = classExtractWhite(voxels,data,voi,whiteValue) % % ras 05/07: the indexing of data seems off to me -- is this correct? voxels(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) = ... voxels(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) ... | (data(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) == whiteValue); return; %---------------------------------------- function [meshName,numGrayLayers,hemiNum,alpha,restrictVOI,relaxIterations] = ... readParams(newMeshNum,hemisphere) % % readParams % % Internal routine to read the parameters for meshBuild % meshName = sprintf('%sSmooth',hemisphere); numGrayLayers = 0; switch hemisphere case 'left' hemiNum = 1; case 'right' hemiNum = 2; case 'both' hemiNum = 0; end % transparency level (transparency is off by default, but if it gets turned % on, this alpha parameter will have an effect). alpha = 200; restrictVOI = 1; relaxIterations = 0.2; prompt = {'Mesh Name:',... 'Number of Gray Layers (0-4):',... 'Hemisphere (0=both, 1=left, 2=right):',... % 'Default alpha (0-255):',... % 'Inflation (0=none, 1=lots):',... % 'Restrict to class VOI (0|1):'}; }; defAns = {meshName,... num2str(numGrayLayers),... num2str(hemiNum),... % num2str(alpha),... % num2str(relaxIterations),... % num2str(restrictVOI)}; }; resp = inputdlg(prompt, 'meshBuild Parameters', 1, defAns); if(~isempty(resp)) meshName = resp{1}; numGrayLayers = str2num(resp{2}); hemiNum = str2num(resp{3}); % alpha = str2num(resp{4}); % relaxIterations = round(str2num(resp{5})*160); % Arbitrary choice, scales iters [0,160] % restrictVOI = str2num(resp{6}); else meshName = []; numGrayLayers = []; hemiNum = []; % alpha = []; % relaxIterations = []; % Arbitrary choice, scales iters [0,160] % restrictVOI = []; end return; %--------------------------------- function [voxels,vw] = meshGetWhite(vw, hemiName, numGrayLayers, voxels) % % % if ieNotDefined('vw'), error('You must send in a volume vw'); end if ieNotDefined('hemiName'), error('You must define right,left or both'); end if ieNotDefined('numGrayLayers'), numGrayLayers = 0; end classFile = verifyClassFile(vw,hemiName); if isempty(classFile), close(wbar); newMeshNum = -1; voxels = []; return; end classFileParam = [hemiName,'ClassFile']; vw = viewSet(vw,classFileParam,classFile); classData = viewGet(vw,'classdata',hemiName); if ieNotDefined('voxels'), voxelsOld = uint8(zeros(classData.header.xsize, ... classData.header.ysize, ... classData.header.zsize)); else voxelsOld = voxels; end voxels = zeros(classData.header.xsize, ... classData.header.ysize, ... classData.header.zsize); % Restrict the white matter volume to a size equal to the ROI in which it % was selected voxels = classExtractWhite(voxels,... classData.data,classData.header.voi,classData.type.white); % msh = meshColor(meshSmooth(meshBuildFromClass(voxels,[1 1 1]))); % meshVisualize(msh); % Add the gray matter if(numGrayLayers>0) [nodes,edges,classData] = mrgGrowGray(classData,numGrayLayers); voxels = ... uint8( (classData.data == classData.type.white) | ... (classData.data == classData.type.gray)); end voxels = uint8(voxels | voxelsOld); return;
github
andregouws/mrMeshPy-master
gui_3dWindow_MeshPy.m
.m
mrMeshPy-master/matlabRoutines/gui_3dWindow_MeshPy.m
13,690
utf_8
76cdbce38b30bf8891fc8e73e619c3e5
function varargout = gui_3dWindow_MeshPy(varargin) % GUI_3DWINDOW_MESHPY MATLAB code for gui_3dWindow_MeshPy.fig % GUI_3DWINDOW_MESHPY, by itself, creates a new GUI_3DWINDOW_MESHPY or raises the existing % singleton*. % % H = GUI_3DWINDOW_MESHPY returns the handle to a new GUI_3DWINDOW_MESHPY or the handle to % the existing singleton*. % % GUI_3DWINDOW_MESHPY('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI_3DWINDOW_MESHPY.M with the given input arguments. % % GUI_3DWINDOW_MESHPY('Property','Value',...) creates a new GUI_3DWINDOW_MESHPY or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_3dWindow_MeshPy_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_3dWindow_MeshPy_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui_3dWindow_MeshPy % Last Modified by GUIDE v2.5 26-Sep-2017 13:56:57 % Andre' Gouws 2017 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_3dWindow_MeshPy_OpeningFcn, ... 'gui_OutputFcn', @gui_3dWindow_MeshPy_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % Hack - TODO fix - this puts the VOLUME in the scope of this gui VOLUME = evalin('base','VOLUME','VOLUME'); %% HACK TODO fix % --- Executes just before gui_3dWindow_MeshPy is made visible. function gui_3dWindow_MeshPy_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui_3dWindow_MeshPy (see VARARGIN) % Choose default command line output for gui_3dWindow_MeshPy handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui_3dWindow_MeshPy wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_3dWindow_MeshPy_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %% disabled for now - TODO % --- Executes on button press in launch_button. function launch_button_Callback(hObject, eventdata, handles) [myfile,mydir]= uigetfile({'*.mat','MAT-files (*.mat)'}); meshFilePath = [mydir,myfile]; myPid = num2str(feature('getpid')); if ~isfield(VOLUME{1},'meshNum3d') %% TODO - this willneed to reflect the current volume and x-ref the correct mesh meshInstance = '1'; else meshInstance = num2str(VOLUME{1}.meshNum3d + 1); end evalstr = ['/home/andre/mrMeshPy/launchMeshPy.sh /home/andre/mrMeshPy/meshPy_v03.py ',meshFilePath,' ',myPid,' ',meshInstance,' &']; disp(['ran command: ', evalstr]); system(evalstr); %% % --- Executes on button press in pushbutton_update. function pushbutton_update_Callback(hObject, eventdata, handles) mrGlobals; set( findall(handles.uipanel1, '-property', 'Enable'), 'Enable', 'off') try currMesh = VOLUME{1}.meshNum3d; [VOLUME{1},~,~,~,VOLUME{1}.mesh{currMesh}] = meshColorOverlay(VOLUME{1},0); mrMeshPySend('updateMeshData',VOLUME{1}); catch disp 'error in update mesh routine'; end set( findall(handles.uipanel1, '-property', 'Enable'), 'Enable', 'On') % --- Executes on button press in pushbutton_LoadMesh. function pushbutton_LoadMesh_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_LoadMesh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mrGlobals; % keep tack of whether the VOLUME actually changes - i.e. make sure a new % mesh has been loaded and the user hasn't hit cancel try currMeshCount = length(VOLUME{1}.mesh); catch currMeshCount = 0; end % load the mesh to the VOLUME struct VOLUME{1} = meshLoad(VOLUME{1},'./'); %start in the current directory for now %TODO later give options? try length(VOLUME{1}.mesh) if length(VOLUME{1}.mesh) > currMeshCount %a new mesh has been added % create a unique ID for the mesh based on a timestamp (clock) VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID = makeUniqueID; % send the newly loaded mesh to the viewer via the VOLUME mrMeshPySend('sendNewMeshData',VOLUME{1}); handles = guidata(hObject); % Update! currString = get(handles.popupmenu_Meshes,'string') if strcmp(currString,'None') newstring = char(['mesh-',VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID]); else newstring = char(currString,['mesh-',VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID]); end %disp 'here1' %VOLUME{1}.meshNum3d set(handles.popupmenu_Meshes,'value',VOLUME{1}.meshNum3d) ; set(handles.popupmenu_Meshes,'string',newstring); %disp 'here2' else % no new mesh added disp('User cancelled mesh load or there was an error loading ...'); end catch % no new mesh added disp('User cancelled mesh load or there was an error loading ...'); end % --- Executes on selection change in popupmenu_Meshes. function popupmenu_Meshes_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_Meshes (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_Meshes contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_Meshes mrGlobals; % % %assignin('base','hObj',hObject) % % %contents = cellstr(get(hObject,'String')) % % %meshNum = contents{get(hObject,'Value')} meshNum = hObject.Value; %should be the index %%%meshNum = meshNum(5:end); %TODO improve VOLUME{1}.meshNum3d = meshNum; % --- Executes during object creation, after setting all properties. function popupmenu_Meshes_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu_Meshes (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton_getROI. function pushbutton_getROI_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_getROI (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mrGlobals; mrMeshPySend('checkMeshROI',VOLUME{1}); % --- Executes on button press in pushbutton_smooth. function pushbutton_smooth_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_smooth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mrGlobals; handles = guidata(hObject); % Update! relax = get(handles.edit_relaxationFactor,'String') iterations = get(handles.edit_iterations,'String') relax = str2num(relax); iterations = str2num(iterations); %assignin('base','iterations',iterations); %assignin('base','relax',relax); currMeshID = VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID; %disp('here1') % send (with VOLUME also) mrMeshPySend('smoothMesh',{currMeshID,iterations,relax,VOLUME{1}}); function edit_relaxationFactor_Callback(hObject, eventdata, handles) % hObject handle to edit_relaxationFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_relaxationFactor as text % str2double(get(hObject,'String')) returns contents of edit_relaxationFactor as a double % --- Executes during object creation, after setting all properties. function edit_relaxationFactor_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_relaxationFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit4_Callback(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit4 as text % str2double(get(hObject,'String')) returns contents of edit4 as a double % --- Executes during object creation, after setting all properties. function edit4_CreateFcn(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_iterations_Callback(hObject, eventdata, handles) % hObject handle to edit_iterations (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_iterations as text % str2double(get(hObject,'String')) returns contents of edit_iterations as a double % --- Executes during object creation, after setting all properties. function edit_iterations_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_iterations (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton_buildMesh. function pushbutton_buildMesh_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_buildMesh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mrGlobals; handles = guidata(hObject) set( findall(handles.uipanel1, '-property', 'Enable'), 'Enable', 'off') %try % get user option or left or right [s,v] = listdlg('PromptString','Select hemisphere:',... 'SelectionMode','single',... 'ListString',{'left','right'}); if s == 1 hemi = 'left'; elseif s == 2 hemi = 'right'; else disp('error selecting mesh'); return end % build the mesh VOLUME{1} = meshBuild_mrMeshPy(VOLUME{1}, hemi); % ask if we would like to load to mrMeshPy? % Include the desired Default answer options.Interpreter = 'tex'; options.Default = 'Yes'; % Use the TeX interpreter in the question qstring = 'Would you like to load the mesh to mrMeshPy?'; loadNow = questdlg(qstring,'Mesh ready .. load?',... 'Yes','No',options) if strcmp(loadNow,'No') return else %assume yes % create a unique ID for the mesh based on a timestamp (clock) VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID = makeUniqueID; % send the newly loaded mesh to the viewer mrMeshPySend('sendNewMeshData',VOLUME{1}); handles = guidata(hObject); % Update! currString = get(handles.popupmenu_Meshes,'string') if strcmp(currString,'None') newstring = char(['mesh-',VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID]); else newstring = char(currString,['mesh-',VOLUME{1}.mesh{VOLUME{1}.meshNum3d}.mrMeshPyID]); end set(handles.popupmenu_Meshes,'value',VOLUME{1}.meshNum3d) ; set(handles.popupmenu_Meshes,'string',newstring); end %catch % disp 'error in build mesh routine'; %end set( findall(handles.uipanel1, '-property', 'Enable'), 'Enable', 'On')
github
andregouws/mrMeshPy-master
meshAmplitudeMaps.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshAmplitudeMaps.m
13,889
utf_8
97f639d9be02689fcb8ab234637239b1
function [images, mapVals] = meshAmplitudeMaps(V, dialogFlag, varargin); % Produce images of response amplitudes (estimated one of a number of % different ways) for different event-related conditions on a mesh. % % NOTE: this will modify the 'map' field of the view. % % USAGE: % [images mapVals] = meshAmplitudeMaps(grayView, [dialogFlag], [options]); % % INPUTS: % grayView: mrVista gray view, with a mesh open. Will show maps on the % currently-selected mesh, if there are more than one. The gray view % should have a 'GLMs' data type, and be pointed at the appropriate GLM % from which to load amplitude information. % % useDialog: 1 to put up a dialog to set the parameters, 0 otherwise. % % options: options can be specified as 'optionName', [value], ... % pairs. Options are below: % % ampType: one of 'z-score', 'subtracted-betas', or 'raw-betas'; a ampType % for determining the amplitude of each voxel to each stimulus. The % methods are as follows: % 'raw-betas': raw beta coefficients from the GLM. Each value % represents the estimated response of that voxel to the stimulus % compared to the baseline condition. % % 'subtracted-betas': beta coefficients minus the "cocktail blank," % which is the mean beta value for that voxel, across all conditions. % % 'z-score': the subtracted-beta value, divided by the estimated % standard devation for the model fitting. The standard deviation is % defined as % sqrt( residual ^2 / [degrees of freedom] ) % and reflects the goodness-of-fit of the GLM as a whole. This causes % voxels with a poor GLM fit to have amplitudes closer to zero. % % plotFlag: flag to show the set of images returned in a montage. If 0, % will not plot; if 1 will plot. You can also specify a size for the % montage, as in plotFlag = [nRows, nCols]; otherwise the rows and % columns will be approximately square. % % nRows, nCols: alternate method for specifying the montage size % (rather than using the 'plotFlag' option described above). % % cropX, cropY: specify zoom ranges in the X and Y dimensions for each % mesh image. If omitted, will show the entire mesh. % % whichConds: select only a subset of conditions to analyze. [By % default, will present all conditions]. For the normalization % amplitude types (subtracted-betas and z-scores), the choice of which % conditions to include affects how the normalization is carried out. % % preserveCoords: flag to return mapVals with exactly the same number % of columns as the ROI coordinates. If this is set to 1, and certain % ROI coordinates don't have data, mapVals will have NaN for that % column. If 0 [default], these columns are automatically removed % from the matrix. % % OUTPUTS: % images: nRows x nCols cell array containing mesh images for each % condition in the GLM. % % mapVals: conditions x voxels matrix containing the amplitude values % used in the map images for the selected ROI. % % ras, 03/2008. if notDefined('V'), V = getSelectedGray; end if notDefined('dialogFlag'), dialogFlag = (length(varargin)<=1); end %% checks % check that a mesh is loaded msh = viewGet(V, 'CurMesh'); if isempty(msh) error('Need to load a mesh.') end % check that a GLM has been run if ~isequal(viewGet(V, 'DTName'), 'GLMs') error('Need to be in the GLMs data type.') end % get scan num, # of non-null conditions scan = viewGet(V, 'CurScan'); stim = er_concatParfiles(V); N = length(stim.condNames) - 1; % omit baseline condition %% params % default params preserveCoords = 0; ampType = 'z-score'; whichMeshes = V.meshNum3d; cropX = [1:512]; cropY = [1:512]; cmap = mrvColorMaps('coolhot', 128); clim = [-2 2]; saveAmps = 0; plotFlag = 1; titleFlag = 1; % figure out # of rows, cols for the image montage if length(plotFlag) > 1 nRows = plotFlag(1); nCols = plotFlag(2); else nRows = ceil( sqrt(N) ); nCols = ceil( N/nRows ); end % grab the current map mode (which contains the color map and % color limits) -- we'll assume these settings are the ones you want to % apply to each map (loadParameterMap below may over-ride these in the view, % so we restore them later): mapMode = V.ui.mapMode; mapWin = getMapWindow(V); % get params from dialog if needed if dialogFlag==1 [params ok] = meshAmplitudeMapGUI(V); if ~ok, disp('User aborted'); return; end ampType = params.ampType; plotFlag = params.plotFlag; titleFlag = params.titleFlag; cropX = params.cropX; if isempty(cropX), cropX = [1:512]; end cropY = params.cropY; if isempty(cropY), cropY = [1:512]; end preserveCoords = params.preserveCoords; whichConds = params.whichConds; whichMeshes = params.whichMeshes; cmap = params.cmap; clim = params.clim; nRows = params.montageSize(1); nCols = params.montageSize(2); saveAmps = params.saveAmps; if length(V.ROIs) >= 1 & ~isequal(params.maskRoi, 'none') % we modify the view's ROIs here, but don't return the modified % view: oldROIs = V.ROIs; oldSelROI = V.selectedROI; roiNum = findROI(V, params.maskRoi); V.ROIs = V.ROIs(roiNum); V.ROIs.name = 'mask'; V.selectedROI = 1; end end % set the map mode settings to reflect the request color map and limits if ischar(cmap) mapMode.cmap = [gray(128); mrvColorMaps(cmap, 128)]; else mapMode.cmap = [gray(128); cmap]; end mapMode.clipMode = clim; % parse options (these will override the dialog values) for ii = 1:2:length(varargin) val = varargin{ii+1}; eval( sprintf('%s = val;', varargin{ii}) ); end %% if the beta maps haven't been xformed from inplanes, do it now testFile = fullfile( dataDir(V), sprintf('betas-predictor%i.mat', N) ); if ~exist(testFile, 'file') hI = initHiddenInplane('GLMs', 1); for i = 1:N % loop across conditions mapPath = fullfile(dataDir(hI), 'RawMaps', ... sprintf('betas_predictor%i.mat', i)); hI = loadParameterMap(hI, mapPath); V = ip2volParMap(hI, V, 0, 1, 'linear'); % trilinear interpolation mapPath = fullfile(dataDir(hI), 'RawMaps', ... sprintf('stdDev_predictor%i.mat', i)); hI = loadParameterMap(hI, mapPath); V = ip2volParMap(hI, V, 0, 1, 'linear'); end hI = loadParameterMap(hI, 'Residual Variance.mat'); V = ip2volParMap(hI, V, 0, 1, 'linear'); end if notDefined('whichConds'), whichConds=1:1:N; else N=length(whichConds); end %% get the amplitude estimate for each voxel switch lower(ampType) case 'subtracted-betas' for i = 1:N n=whichConds(i); mapName = sprintf('betas-predictor%i', n); V = loadParameterMap(V, mapName); mapVals(i,:) = V.map{scan}; end % remove the "cocktail blank" or mean of all conditions for each voxel mapVals = mapVals - repmat( nanmean(mapVals), [N 1] ); case {'raw-betas' 'rawbetas' 'raw betas'} for i = 1:N n=whichConds(i); mapName = sprintf('betas-predictor%i', n); V = loadParameterMap(V, mapName); mapVals(i,:) = V.map{scan}; end case {'z-score' 'z score' 'zscore'} % load the betas for i = 1:N n=whichConds(i); mapName = sprintf('betas-predictor%i', n); V = loadParameterMap(V, mapName); mapVals(i,:) = V.map{scan}; end % load the residual variance map V = loadParameterMap(V, 'Residual Variance'); sigmaVals = V.map{scan}; % convert from res. var -> std. dev % (we need some info from the GLM model: degrees of freedom) modelFile = sprintf('Inplane/GLMs/Scan%i/glmSlice1.mat', scan); load(modelFile, 'dof'); sigmaVals = sqrt( sigmaVals .^ 2 ./ dof ); % remove the "cocktail blank" or DC component for each voxel mapVals = mapVals - repmat( nanmean(mapVals), [N 1] ); % now, normalize by dividing by the estimated residual variance at % each voxel mapVals = mapVals ./ repmat( sigmaVals, [N 1] ); otherwise error('Invalid amplitude type.') end %% main loop -- get the images for n = 1:N % for convenient storage, know what category/position this is: % (we fill the conditions in row-major order: march across columns) row = ceil(n / nCols); col = mod(n-1, nCols) + 1; % set the map values V.map = cell(1, numScans(V)); V.map{scan} = mapVals(n,:); % set the color map and color limits % (the saved param map may have over-set this): V.ui.mapMode = mapMode; V = setMapWindow(V, mrvMinmax(V.map{scan})); for h = 1:length(whichMeshes) % update the mesh V.meshNum3d = whichMeshes(h); meshColorOverlay(V); % grab the image img{h} = mrmGet(V.mesh{whichMeshes(h)}, 'screenshot') ./ 255; % crop the image if requested if ~isempty(cropX) & ~isempty(cropY) img{h} = img{h}(cropY,cropX,:); end end % add image to list of images % (make montage if taking a shot of multiple meshes) if length(whichMeshes)==1 images{row, col} = img{1}; else images{row, col} = imageMontage(img, 1, length(whichMeshes)); end end %% restore the ROIs if we were masking if exist('oldROIs', 'var') V.ROIs = oldROIs; V.selectedROI = oldSelROI; updateGlobal(V); if checkfields(V, 'ui', 'windowHandle') refreshScreen(V); end end %% display the images if selected if ~isequal(plotFlag, 0) % we'll want the event-related info for the condition names trials = er_concatParfiles(V); % we'll manually specify subplot sizes -- large: if titleFlag==1 % we'll want to space out the axes to allow space for the condition % labels width = (1 / nCols) * 0.8; height = (1 / nRows) * 0.8; else % the images will be flush against one another width = 1 / nCols; height = 1 / nRows; end % open the figure figure('Units', 'norm', 'Position', [0.2 0 .7 .35], 'Name', 'Mesh Images'); % plot each mesh image in a subplot: % allow for some images to be omitted if the user specified % a montage size that is smaller than the # of images % (e.g., an extra 'scrambled' condition) for n = 1:nRows*nCols row = ceil(n / nCols); col = mod(n-1, nCols) + 1; subplot('Position', [(col-1)*width, 1 - row*height, width, height]); imagesc(images{row,col}); axis image; axis off; if titleFlag==1 cond = whichConds(n) + 1; % +1 for baseline condition name title(trials.condNames{cond}); end end % add a colorbar cmap = viewGet(V, 'OverlayColormap'); clim = viewGet(V, 'MapClim'); cbar = cbarCreate(cmap, ampType, 'Clim', clim); hPanel = mrvPanel('below', .2); hAxes = axes('Parent', hPanel, 'Units', 'norm', 'Position', [.3 .5 .4 .2]); cbarDraw(cbar, hAxes); end %% export the amplitudes to a series of parameter maps if requested if saveAmps==1 for n = 1:N map = cell(1, numScans(V)); map{scan} = mapVals(n,:); mapUnits = ampType; mapUnits(1) = upper(mapUnits(1)); mapName = sprintf('%s Condition %i', mapUnits, whichConds(n)); mapPath = fullfile(dataDir(V), [mapName '.mat']); save(mapPath, 'map', 'mapName', 'mapUnits'); if prefsVerboseCheck >= 1 fprintf('Exported amplitudes to map %s.\n', mapPath); end end end %% return map values for the ROI if requested if nargout > 1 if isempty(V.ROIs) I = 1:size(mapVals, 2); else I = roiIndices(V, V.ROIs(end).coords, preserveCoords); end mapVals = mapVals(:,I); end return % /----------------------------------------------------------------------/ % % /----------------------------------------------------------------------/ % function [params ok] = meshAmplitudeMapGUI(V); % dialog to get parameters for meshAmplitudeMaps. stim = er_concatParfiles(V); dlg(1).fieldName = 'ampType'; dlg(end).style = 'popup'; dlg(end).list = {'z-score' 'subtracted-betas' 'raw-betas'}; dlg(end).value = 1; dlg(end).string = 'Plot what type of amplitude metric?'; dlg(end+1).fieldName = 'whichConds'; dlg(end).style = 'number'; dlg(end).value = 1:length(stim.condNums)-1; dlg(end).string = 'Plot which conditions?'; dlg(end+1).fieldName = 'whichMeshes'; dlg(end).style = 'listbox'; for n = 1:length(V.mesh) meshList{n} = sprintf('%i: %s', V.mesh{n}.id, V.mesh{n}.name); end dlg(end).list = meshList; dlg(end).value = V.meshNum3d; dlg(end).string = 'Project data onto which meshes?'; dlg(end+1).fieldName = 'cropX'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Mesh X-axis image crop (empty for no crop)?'; dlg(end+1).fieldName = 'cropY'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Mesh Y-axis image crop (empty for no crop)?'; nConds = length(stim.condNums) - 1; nRows = ceil( sqrt(nConds) ); nCols = ceil( nConds/nRows ); dlg(end+1).fieldName = 'montageSize'; dlg(end).style = 'number'; dlg(end).value = [nRows nCols]; dlg(end).string = 'Montage layout ([nrows ncolumns])?'; dlg(end+1).fieldName = 'cmap'; dlg(end).style = 'popup'; dlg(end).list = mrvColorMaps; % list of available cmaps dlg(end).value = 'coolhot'; dlg(end).string = 'Color map for amplitudes?'; if length(V.ROIs) >= 1 dlg(end+1).fieldName = 'maskRoi'; dlg(end).style = 'popup'; dlg(end).list = [{'none'} {V.ROIs.name}]; dlg(end).value = 'none'; dlg(end).string = 'Mask activations within which ROI?'; end dlg(end+1).fieldName = 'clim'; dlg(end).style = 'number'; dlg(end).value = [-2 2]; dlg(end).string = 'Color limits for amplitudes?'; dlg(end+1).fieldName = 'preserveCoords'; dlg(end).style = 'checkbox'; dlg(end).value = 0; dlg(end).string = 'Preserve ROI coordinates in returned values?'; dlg(end+1).fieldName = 'saveAmps'; dlg(end).style = 'checkbox'; dlg(end).value = 0; dlg(end).string = 'Save amplitudes as a set of parameter maps?'; dlg(end+1).fieldName = 'plotFlag'; dlg(end).style = 'checkbox'; dlg(end).value = 1; dlg(end).string = 'Plot Results?'; dlg(end+1).fieldName = 'titleFlag'; dlg(end).style = 'checkbox'; dlg(end).value = 1; dlg(end).string = 'If plotting results, show condition names?'; [params ok] = generalDialog(dlg, 'Mesh Amplitude Maps'); [ignore, params.whichMeshes] = intersect(meshList, params.whichMeshes); return
github
andregouws/mrMeshPy-master
meshMovie.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshMovie.m
6,594
utf_8
e3b919c3ceea47b03a0b613e1ad149cc
function M = meshMovie(V, roiFlag, movieFileName, timeSteps, plotFlag) % % M = meshMovie([gray view], [roiFlag=-1], [movieFileName], [timeSteps=12], [plotFlag=1]) % %Author: Wandell %Purpose: % Create a movie of the fundamental component of the time series based on % % the coherence and phase measurement. % This is not the real time series, but just a signal-approximation. % At some point, we should read in the time series and show it frame by % frame. I am not quite sure how to do this. We don't normally get a % time-slice over space. But I am guessing we could do it. % % roiFlag: flag indicating whether to illustrate a disc ROI during the % movie. If this flag is set to zero, no ROI will be shown. If it is % greater than 0, the value is taken to be the radius of the ROI disc % around the mesh cursor (those 3-axes things you get when % double-clicking on the mesh). If it is set to -1, all ROIs currently % defined in the view will be shown. % % Example: To make a movie with 10 steps, write out an AVI file called scratch, % and to return a Matlab movie structure, M, within the constraints of the % cothresh and ROI parameters, use: % % M = meshMovie([], [], 'scratch', 10, 0); % % To get the last 3 arguments from a dialog, use: % M = meshMovie('dialog'); % or % M = meshMovie(gray, [], 'dialog'); % % ras 04/2008: modularized this more. Added view as an inputtable argument, % instead of that VOUME{selectedVOLUME} stuff, added the roiFlag so you % don't always need an ROI, and had the code only throw up a dialog if you % didn't already give it the parameters it needs. % ras 07/2008: added plot flag, updated calling of parameters dialog. if notDefined('V'), V = getSelectedGray; end if notDefined('roiFlag'), roiFlag = -1; end if notDefined('plotFlag'), plotFlag = 1; end if notDefined('timeSteps'), timeSteps = 12; end if isequal(timeSteps, 'dialog') | isequal(movieFileName, 'dialog') | ... isequal(V, 'dialog') [timeSteps, movieFileName, plotFlag] = readParameters(12, 'Movies/Scratch', 1); end % Make sure the cor anal data are loaded if isempty(viewGet(V, 'co')), V=loadCorAnal(V); end msh = viewGet(V, 'currentmesh'); if roiFlag==0 % hide ROIs V.ui.showROIs = 0; elseif roiFlag > 0 % mask in ROI pos = meshCursor2Volume(V, msh); if isempty(pos) | max(pos(:)) > 255, myWarnDlg('Problem reading cursor position. Click and try again.'); return end % Build an ROI of the right size. roiName = sprintf('mrm-%.0f-%.0f-%.0f', pos(1), pos(2), pos(3)); [V discROI] = makeROIdiskGray(V, roiFlag, roiName, [], [], pos, 0); V.ROIs = discROI; V.ui.showROIs = -1; % show only this, selected ROI end if roiFlag > 0 % Create a view with the ROI defined. It will sit in the window for a % moment. [V, roiMask, junk, roiAnatColors] = meshColorOverlay(V, 0); if sum(roiMask) == 0, error('Bad roiMask'); end msh = mrmSet(msh, 'colors', roiAnatColors'); end % Set up the co or amp values for the movie. We replace the colors within % the dataMask with the new colors generated here. curScan = viewGet(V, 'currentscan'); realCO = viewGet(V, 'scanco', curScan); ph = viewGet(V, 'scanph', curScan); t = ([0:(timeSteps-1)]/timeSteps) * 2 * pi; nFrame = length(t); mrmSet(msh, 'hidecursor'); verbose = prefsVerboseCheck; if verbose str = sprintf('Creating %.0f frame movie', nFrame); wbar = mrvWaitbar(0, str); end % change the view to display the coherence field, since we're actually % displaying phase-projected coherence for each time point: % I specificially make this change without calling setDisplayMode, because % that accessor function will try to do concurrent GUI things like setting % a colorbar and loading/clearing data fields. We don't want to do this, % because we're treating the view V as a local variable; changes we make to % V are not intended to propagate back to the GUI. So, if the user was e.g. % looking at a coherence map before this, we don't want him/her to suddenly % see the phase-projected data from the movie. V.ui.displayMode = 'co'; for ii=1:nFrame if verbose % udpate mrvWaitbar str = sprintf('Creating frame %.0f of %.0f', ii, nFrame); fname{ii} = sprintf('Movie%0.4d.tiff', ii); mrvWaitbar(ii/nFrame, wbar, str); end % compute the projected coherence relative to this time point data = realCO.*(1 + sin(t(ii) - ph))/2; V = viewSet(V, 'scancoherence', data, curScan); % update the mesh view with the colors for this time step if roiFlag > 0 [V, roiMask, foo, newColors] = meshColorOverlay(V, 0); msh = mrmSet(msh, 'colors', newColors'); roiAnatColors(1:3, logical(roiMask)) = newColors(1:3, logical(roiMask)); msh = mrmSet(msh, 'colors', roiAnatColors'); else meshColorOverlay(V, 1); end M(:,:,:,ii) = mrmGet(msh, 'screenshot') / 255; end if verbose, mrvWaitbar(1, wbar); close(wbar); end %% show the movie in a separate figure if plotFlag==1 % show in MPLAY utility mov = mplay(M, 3); mov.loop; mov.play; elseif plotFlag==2 % show in figure (old way) for ii = 1:size(M, 4) mov(ii) = im2frame(M(:,:,:,ii)); end h = figure('Color', 'w', 'UserData', M); imagesc(img); axis image; axis off; movie(mov, 5, 4) end if ~isempty(movieFileName) % allow the movie path to specify directories that don't yet exist % (like 'Movies/') ensureDirExists( fileparts(fullpath(movieFileName)) ); fprintf('Saving movie as avi file: %s\n', [pwd, filesep, movieFileName]); if(isunix) aviSave(M, movieFileName, 3, 'compression', 'none'); else aviSave(M, movieFileName, 3, 'QUALITY', 100, 'compression', 'Indeo5'); end end return; %------------------------------------ function [timeSteps, movieFileName, plotFlag] = readParameters(timeSteps, movieFileName, plotFlag); % % read parameters for meshMovie % dlg(1).fieldName = 'timeSteps'; dlg(1).style = 'number'; dlg(1).string = 'Number of time frames for movie?'; dlg(1).value = num2str(timeSteps); dlg(2).fieldName = 'movieFileName'; dlg(2).style = 'filenamew'; dlg(2).string = 'Name of AVI movie file? (Empty for no movie file)'; dlg(2).value = movieFileName; dlg(3).fieldName = 'plotFlag'; dlg(3).style = 'popup'; dlg(3).list = {'Don''t plot' 'Use MPLAY movie player' 'Movie in figure'}; dlg(3).string = 'Show movie in a MATLAB figure?'; dlg(3).value = plotFlag+1; [resp ok] = generalDialog(dlg, 'Mesh movie options'); if ~ok error(sprintf('%s aborted.', mfilename)); end timeSteps = resp.timeSteps; movieFileName = resp.movieFileName; plotFlag = cellfind(dlg(3).list, resp.plotFlag) - 1; return;
github
andregouws/mrMeshPy-master
meshMultiAngle2.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshMultiAngle2.m
7,661
utf_8
271092ab39b79bd252b57cbb985160e0
function img = meshMultiAngle2(msh, settings, savePath, cbarFlag, msz); % Takes a picture of a mesh at multiple camera settings, and saves as a % .png in a directory or pastes in a PowerPoint file. % % img = meshMultiAngle2([mesh], [settings], [save directory or .ppt file], % [cbarFlag], [montageSize]); % % mesh: mesh structure of which to take pictures. [Defaults to current % mesh of selected mrVista gray view] % settings: struct array specifying the camera settings for each picture. % Each entry should have a 'cRot' field which specifies % the camera settings (see meshAngle). % Can also specify a vector of integers, with the indices into % the saved settings struct (using meshAngle). E.g. [1 3 2 4] % will display the 1st, 3rd, 2nd, and 4th settings, in that order. % [If omitted, opens a dialog to select settings from the saved settings % -- again, see meshAngle.] % savePath: directory in which to save a .png file of the image, or % else path to a powerpoint file to paste the image. (PowerPoint % is Windows only). [If omitted, doesn't save the image.] % cbarFlag: if 1, will display image in a separate figure and add % a subplot with the colorbar leged at the bottom. [default 0] % montageSize: specify the size of the image montage in [# rows # cols]. % [Defaults to being as close to square as possible, leaning % towards having more rows] % % Returns a montage image of the mesh from all the specified settings. % % % ras, 10/2005. % ras, 05/2006: now uses mesh settings files instead of settings file. % ras, 08/2006: mrVista2 version. if notDefined('msh'), msh = viewGet(getSelectedGray,'mesh'); end if notDefined('cbarFlag'), cbarFlag = 0; end if notDefined('settings') | isequal(settings, 'dialog') % put up a dialog settingsFile = fullfile(fileparts(msh.path), 'MeshSettings.mat'); [settings savePath cbarFlag msz] = meshMultiAngleGUI(settingsFile); if isempty(settings) % user aborted, exit quietly return end end if notDefined('msz') ncols = ceil(sqrt(length(settings))); nrows = ceil(length(settings)/ncols); msz = [nrows ncols]; end if ischar(settings), settings = {settings}; end % use cell parsing code below % allow settings to be cell of names of settings if iscell(settings) selectedNames = settings; % will load over the 'settings' variable below settingsFile = fullfile(fileparts(msh.path), 'MeshSettings.mat') load(settingsFile, 'settings'); names = {settings.name}; for i = 1:length(selectedNames) ind(i) = cellfind(lower(names), lower(selectedNames{i})); end settings = settings(ind); end % allow settings to be index vector into saved settings if isnumeric(settings) ind = settings; % will load over the 'settings' variable below... settingsFile = fullfile(fileparts(msh.path), 'MeshSettings.mat'); load(settingsFile, 'settings'); settings = settings(ind); end %get the screenshots for i = 1:length(settings) msh = meshApplySettings(msh, settings(i)); images{i} = mrmGet(msh, 'screenshot') ./ 255; pause(1); %empirically-needed wait, or screenshots get corrupted end % make the montage image img = imageMontage(images, msz(1), msz(2)); % if specified, display img in a figure and add View's cbar if cbarFlag hfig = figure('Color', 'w'); image(img); axis image; axis off; % get the cbar(s) from the current mrViewer ui = mrViewGet; isHidden = [ui.overlays.hide]; nColorBars = sum(~isHidden); overlayList = find(~isHidden); w = max( .25, 1/(nColorBars+2) ); % cbar width h = .15; % cbar height panel = mrVPanel('below', 100, hfig, 'pixels'); for ii = 1:nColorBars o = overlayList(ii); pos = [((ii-1) * 1.2*w + .1) .4 w h]; hax = axes('Parent', panel, 'Units', 'norm', 'Position', pos); cbarDraw(ui.overlays(o).cbar, hax); m = ui.overlays(o).mapNum; title(ui.maps(m).name, 'FontSize', 12); if ~isempty(ui.maps(m).dataUnits) xlabel(ui.maps(m).dataUnits, 'FontSize', 10); end end % let's go ahead and add an ROI legend if ui.settings.roiViewMode > 1 & ~isempty(ui.rois) legendPanel({ui.rois.name}, {ui.rois.color}); end end % save / export if a path is specified if ~notDefined('savePath') savePath = fullpath(savePath); [p f ext] = fileparts(savePath); if isequal(lower(ext),'.ppt') % export to a powerpoint file fig = figure; imshow(img); [ppt, op] = pptOpen(savePath); pptPaste(op,fig,'meta'); pptClose(op,ppt,savePath); close(fig); fprintf('Pasted image in %s.\n', fname); else % export to a .png or .tiff image in a directory if isempty(f), f=sprintf('mrMesh-%s',datestr(clock)); end if isempty(ext), ext = '.tiff'; end fname = fullfile(p,[f ext]); if cbarFlag % export the figure w/ the cbar included saveas(hfig, fname, ext(2:end)); % exportfig(hfig, fname, 'Format',ext(2:end), 'Color','cmyk', ... % 'width',3.5, 'Resolution',450); else % write directly to the image imwrite(img, fname, 'png'); end fprintf('Saved montage as %s.\n', fname); end else % save to pwd % % export to a pwd-mrMesh-date.png image in current directory % pwdname=pwd;ll=length(pwdname) % f=sprintf('%s-mrMesh-%s',pwdname(ll-4:ll),datestr(now,1));ext = '.png'; % fname = [f ext] % udata.rgb = img; % imwrite(udata.rgb, fname); % fprintf('Saved montage as %s.\n', fname); end return % /---------------------------------------------------------------------/ % % /---------------------------------------------------------------------/ % function [settings, savePath, cbarFlag, msz] = meshMultiAngleGUI(settingsFile); % [settings, savePath, cbarFlag, msz] = meshMultiAngleGUI(settingsFile); % put up a dialog to get the parameters for meshMultiAngle2. settings = []; savePath = []; cbarFlag = []; msz = []; if ~exist(settingsFile,'file') myErrorDlg('Sorry, you need to save some mesh settings first. '); end load(settingsFile, 'settings'); % set up dialog dlg(1).fieldName = 'whichSettings'; dlg(1).style = 'listbox'; dlg(1).string = 'Take a picture at which camera settings?'; dlg(1).list = {settings.name}; dlg(1).value = 1; dlg(2).fieldName = 'order'; dlg(2).style = 'edit'; dlg(2).string = 'OPTIONAL: Order of settings (e.g. [1 2 3 4] vs. [4 3 2 1])?'; dlg(2).value = ''; dlg(3).fieldName = 'savePath'; dlg(3).style = 'filenamew'; dlg(3).string = 'Path to save image (.tiff, .png, .ppt slide)?'; nSnapshotFiles = length( dir('Images/meshSnapshot_*') ); dlg(3).value = sprintf('Images/Mesh Snapshot %i.png', nSnapshotFiles+1); dlg(4).fieldName = 'cbarFlag'; dlg(4).style = 'checkbox'; dlg(4).string = 'Add Colorbar / ROI Legend?'; dlg(4).value = 1; dlg(5).fieldName = 'montageSize'; dlg(5).style = 'edit'; dlg(5).string = 'OPTIONAL: Size of image montage [rows cols]?'; dlg(5).value = ''; % put up dialog and get response resp = generalDialog(dlg, mfilename); % parse response if isempty(resp), settings = []; return; end % user canceled for j = 1:length(resp.whichSettings) sel(j) = cellfind(dlg(1).list, resp.whichSettings{j}); end if ~isempty(resp.order), order = str2num(resp.order); else, order = 1:length(sel); end settings = settings(sel(order)); savePath = resp.savePath; cbarFlag = resp.cbarFlag; msz = str2num(resp.montageSize); return
github
andregouws/mrMeshPy-master
meshDrawROIs2.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshDrawROIs2.m
7,206
utf_8
bf2f73591282aa2e2af042d3e8b98fa6
function [colors, msh, roiMask] = meshDrawROIs2(msh, rois, nodes, colors, update, edges); % 'Draw' ROIs on a mesh as colors over different nodes, % returning the updated mesh colors. Version for mrVista2. % % colors = meshDrawROIs2(msh, rois, <oldColors=mesh curvature>, ... % <perim=1>, <update=0>); % % INPUTS: % msh: mesh structure on which to display ROIs. % % rois: struct array of ROI objects. NOTE: the .coords field of each ROI % should be relative to the gray nodes (e.g., I|P|R space or % VOLUME{1}.coords). % % If you provide an ROI with the name 'mask', rather than rendering the % ROI, it will be used as a mask to show only part of the data on the mesh. % % nodes: gray nodes matrix (as in VOLUME{1}.nodes). These can be obtained % from mrGray .gray graphs (and readGrayGraph) or using mrgGrowGray. % Apparently the latter fixes an old bug in mapping nodes. % % colors: existing mesh colors over which to superimpose the ROIs. If % omitted, gets from mesh. % % % update: flag to update the mesh colors with the new colors. Default is % 0, don't update, just return colors. % % OUTPUTS: % colors: 4 x nVertices set of colors for the mesh, w/ ROI colors added. % % msh: updated mesh structure, including any vertexGrayMaps and % connection matrices needed for the computation. % % roiMask: logical mask of size 1 x nVertices indicating where ROIs are. % % ras, 07/06. if isempty(rois), return; end if ~exist('colors','var') | isempty(colors), colors = meshGet(msh, 'colors'); end if ~exist('update','var') | isempty(update), update = 0; end % get the ROI mapping mode: may want to make this % part of mrmPreferences, but maybe this is enough: prefs = mrmPreferences; if isequal(prefs.layerMapMode, 'layer1') roiMapMode = 'layer1'; else roiMapMode = 'any'; end %%%%%params nNodes = size(nodes, 2); nVertices = size(msh.initVertices, 2); v2g = msh.vertexGrayMap; if isempty(v2g) myErrorDlg('Need Vertex/Gray Map.'); elseif isequal(unique(v2g(:)), 0) myErrorDlg('Mesh doesn''t map to any data.'); elseif isequal(roiMapMode, 'any') & size(v2g, 1)==1 % we only have the mapping to layer 1 -- we need the other layers try, vs = msh.mmPerVox; end % voxel size if length(vs) < 3, vs = [1 1 1]; end % back-compatibility msh.vertexGrayMap = mrmMapVerticesToGray(msh.initVertices, nodes, vs, edges); end % We need the connection matrix to compute clustering and smoothing, below. conMat = meshGet(msh,'connectionmatrix'); if isempty(conMat) msh = meshSet(msh,'connectionmatrix',1); conMat = meshGet(msh,'connectionmatrix'); end % initialize ROI mask if it's requested as an output: if nargout>=3 roiMask = logical(zeros(1, nVertices)); end %%%%%%Main part: % Substitute the ROI color for appropriate nearest neighbor vertices for ii = 1:length(rois) %% find indices of those mesh vertices belonging to this ROI: roiVertInds = findROIVertices(rois(ii), nodes, v2g, roiMapMode); %% adjust the set of ROI vertices to show perimeter / full ROI roiVertInds = adjustPerimeter(roiVertInds, msh, prefs, rois(ii).fillMode); % update the colors to reflect the ROIs if(strcmp(rois(ii).name,'mask')) % Don't show the ROI- just use it to mask the data. oldColors = mrmGet(msh, 'colors'); tmp = logical(ones(size(dataMask))); tmp(roiVertInds) = 0; colors(1:3,tmp) = oldColors(1:3,tmp); clear tmp; else if (ischar(rois(ii).color)) [stdColorValues, stdColorLabels] = meshStandardColors; jj = findstr(stdColorLabels, rois(ii).color); colVal = stdColorValues(:,jj); else % Check to see if we have a 3x1 vector. colVal = rois(ii).color(:); if (length(colVal)~=3) error('Bad ROI color'); end end colors(roiVertInds,1:3) = repmat(colVal'*255, [length(roiVertInds) 1]); % build ROI mask if requested if nargout>=3 roiMask(roiVertInds) = true; end end end % round and clip colors(colors>255) = 255; colors(colors<0) = 0; colors = round(colors); return % /--------------------------------------------------------------------/ % % /--------------------------------------------------------------------/ % function roiVertInds = findROIVertices(roi, nodes, v2g, roiMapMode); % Returns a list of indices to each vertex belonging to the current ROI. % find the nodes in the segmentation mapping to this ROI [x nodeInds] = ismember(round(roi.coords'), nodes([2 1 3],:)', 'rows'); nodeInds = nodeInds(nodeInds>0); switch lower(roiMapMode) case 'layer1' % The following will give us *a* vertex index for each gray node. % However, the same gray node may map to multiple vertices, and we % want them all. (Otherwise, the color overlay will have holes.) % So, we loop until we've got them all. [nodesToMap roiVertInds] = ismember(nodeInds, v2g(1,:)); roiVertInds = roiVertInds(roiVertInds>0); while(any(nodesToMap)) v2g(1,roiVertInds) = 0; [nodesToMap I] = ismember(nodeInds, v2g(1,:)); roiVertInds = [roiVertInds; I(I>0)]; end case 'any' % if any of the nodes mapping to a given vertex are in the % ROI, include that vertex for drawing the ROI [I vertInds] = ismember(v2g, nodeInds); roiVertInds = find(sum(I)>0); % find columns w/ at least 1 member case 'data' % take ROI value from the same nodes as the data mapping, % rounding up (e.g., for 'mean' data mapping, will behave % like 'any' otherwise error('Invalid ROI Draw Mode preference.') end return % /--------------------------------------------------------------------/ % % /--------------------------------------------------------------------/ % function roiVertInds = adjustPerimeter(roiVertInds, msh, prefs, fillMode); % Sometimes we want to dilate the ROIs a bit. The following does this % by finding all the neighboring vertices for all the ROI vertices (now % stored in roiVertInds). The sparse connection matrix comes in handy % once again, making this a very fast operation. % We need the connection matrix conMat = meshGet(msh,'connectionmatrix'); if isempty(conMat) msh = meshSet(msh,'connectionmatrix',1); conMat = meshGet(msh,'connectionmatrix'); end %% draw perimeter or fill in the ROI? if isequal(fillMode, 'perimeter') % Draw a perimeter only origROI = roiVertInds; perimThickness = max(0, prefs.roiDilateIterations); if perimThickness > 0 for t = 1:perimThickness neighbors = conMat(:,roiVertInds); [roiVertInds cols] = find([neighbors]); roiVertInds = unique(roiVertInds); end % Subtract the original from the dilated version. roiVertInds = setdiff(roiVertInds, origROI); else % any way to make the perimeter thinner? neighbors = conMat(:,roiVertInds); [roiVertInds cols] = find([neighbors]); roiVertInds = setdiff(unique(roiVertInds), origROI); end else % We can dilate the area if we are not also rendering the perimeter... for t = 1:prefs.roiDilateIterations neighbors = conMat(:,roiVertInds); [roiVertInds cols] = find([neighbors]); roiVertInds = unique(roiVertInds); end end return
github
andregouws/mrMeshPy-master
meshBuild.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshBuild.m
6,910
utf_8
98300007e74e9e1d8dcfc43a7ea8dc09
function [vw,newMeshNum] = meshBuild(vw,hemisphere) % Build a 3D mesh for visualization and analysis % % [vw,newMeshNum] = meshBuild(vw,[hemisphere]); % % Using mrVista data, build a mesh, save it in a file in the anatomy % directory, and add the mesh to the 3D Control Window pull down % options. % % vw: A VISTASOFT view structure % hemisphere: left, right or both. Default: left % % A mrMesh window is opened as well, showing the computed mesh. % % Example: % [VOLUME{1},newMeshNum] = meshBuild(VOLUME{1},'left'); % VOLUME{1} = viewSet(VOLUME{1},'currentmeshn',newMeshNum); % % See also: meshBuildFromClass, meshBuildFromNiftiClass, meshSmooth, % meshColor % % 11/05 ras: also saves mesh path. % % (c) Stanford VISTA Team 2008 % Programming TODO. Check this! % We have (or had?) trouble for building 'both' meshes. We need a new % procedure. disp 'meshBuild called' % Be sure anatomy is loaded (we need it for the mmPerVox field) if isempty(vw.anat), vw = loadAnat(vw); end if ieNotDefined('hemisphere'), hemisphere = 'left'; end newMeshNum = viewGet(vw,'nmesh') + 1; % Parameters we establish in this routine [meshName,numGrayLayers,hemiNum] = readParams(newMeshNum,hemisphere); if isempty(meshName), newMeshNum = newMeshNum - 1; return; end % User pressed cancel. % mmPerVox = viewGet(vw,'mmPerVoxel'); wbar = mrvWaitbar(0.1, ... sprintf('meshBuild: Combining white and gray matter...')); % Load left, right, or both hemispheres. if (hemiNum==1) [voxels,vw] = meshGetWhite(vw, 'left', numGrayLayers); elseif (hemiNum==2) [voxels,vw] = meshGetWhite(vw, 'right', numGrayLayers); elseif (hemiNum == 0) [voxels,vw] = meshGetWhite(vw, 'left', numGrayLayers); [voxels,vw] = meshGetWhite(vw, 'right', numGrayLayers,voxels); end % host = 'localhost'; % windowID = -1; % We build a smoothed (mesh) and an unsmoothed mesh (tenseMesh) with these calls mrvWaitbar(0.35,wbar,sprintf('Building mesh')); [newMesh, tenseMesh] = mrmBuild(voxels,viewGet(vw,'mmPerVox'),1); % Must have a name newMesh = meshSet(newMesh,'name',meshName); tenseMesh = meshSet(tenseMesh,'name',sprintf('%s-tense',meshName)); % mrvWaitbar(0.65,wbar,sprintf('meshBuild: Unsmoothed mesh vertex to gray mapping')); initVertices = meshGet(tenseMesh,'vertices'); newMesh = meshSet(newMesh,'initialvertices',initVertices); vertexGrayMap = mrmMapVerticesToGray(... initVertices, ... viewGet(vw,'nodes'), ... viewGet(vw,'mmPerVox'),... viewGet(vw,'edges')); newMesh = meshSet(newMesh,'vertexGrayMap',vertexGrayMap); newMesh = meshSet(newMesh,'name',meshName); newMesh = meshSet(newMesh,'nGrayLayers',numGrayLayers); mrvWaitbar(0.9,wbar,sprintf('meshBuild: Saving mesh file %s',meshGet(newMesh,'name'))); % Save mesh file [newMesh newMesh.path] = mrmWriteMeshFile(newMesh); mrvWaitbar(1,wbar,sprintf('meshBuild: Done')); pause(0.5); close(wbar); % Now refresh the UI vw = viewSet(vw,'add and select mesh',newMesh); return; %--------------------------------------- function classFile = verifyClassFile(vw,hemisphere) classFile = viewGet(vw,'classFileName',hemisphere); str = sprintf('Class %s',classFile); r=questdlg(str); if ~strcmp(r,'Yes') switch hemisphere case 'left' vw = viewSet(vw,'leftClassFileName',[]); case 'right' vw = viewSet(vw,'rightClassFileName',[]); end classFile = viewGet(vw,'classFileName',hemisphere); end return; %--------------------------------------- function voxels = classExtractWhite(voxels,data,voi,whiteValue) % % ras 05/07: the indexing of data seems off to me -- is this correct? voxels(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) = ... voxels(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) ... | (data(voi(1):voi(2), voi(3):voi(4), voi(5):voi(6)) == whiteValue); return; %---------------------------------------- function [meshName,numGrayLayers,hemiNum,alpha,restrictVOI,relaxIterations] = ... readParams(newMeshNum,hemisphere) % % readParams % % Internal routine to read the parameters for meshBuild % meshName = sprintf('%sSmooth',hemisphere); numGrayLayers = 0; switch hemisphere case 'left' hemiNum = 1; case 'right' hemiNum = 2; case 'both' hemiNum = 0; end % transparency level (transparency is off by default, but if it gets turned % on, this alpha parameter will have an effect). alpha = 200; restrictVOI = 1; relaxIterations = 0.2; prompt = {'Mesh Name:',... 'Number of Gray Layers (0-4):',... 'Hemisphere (0=both, 1=left, 2=right):',... % 'Default alpha (0-255):',... % 'Inflation (0=none, 1=lots):',... % 'Restrict to class VOI (0|1):'}; }; defAns = {meshName,... num2str(numGrayLayers),... num2str(hemiNum),... % num2str(alpha),... % num2str(relaxIterations),... % num2str(restrictVOI)}; }; resp = inputdlg(prompt, 'meshBuild Parameters', 1, defAns); if(~isempty(resp)) meshName = resp{1}; numGrayLayers = str2num(resp{2}); hemiNum = str2num(resp{3}); % alpha = str2num(resp{4}); % relaxIterations = round(str2num(resp{5})*160); % Arbitrary choice, scales iters [0,160] % restrictVOI = str2num(resp{6}); else meshName = []; numGrayLayers = []; hemiNum = []; % alpha = []; % relaxIterations = []; % Arbitrary choice, scales iters [0,160] % restrictVOI = []; end return; %--------------------------------- function [voxels,vw] = meshGetWhite(vw, hemiName, numGrayLayers, voxels) % % % if ieNotDefined('vw'), error('You must send in a volume vw'); end if ieNotDefined('hemiName'), error('You must define right,left or both'); end if ieNotDefined('numGrayLayers'), numGrayLayers = 0; end classFile = verifyClassFile(vw,hemiName); if isempty(classFile), close(wbar); newMeshNum = -1; voxels = []; return; end classFileParam = [hemiName,'ClassFile']; vw = viewSet(vw,classFileParam,classFile); classData = viewGet(vw,'classdata',hemiName); if ieNotDefined('voxels'), voxelsOld = uint8(zeros(classData.header.xsize, ... classData.header.ysize, ... classData.header.zsize)); else voxelsOld = voxels; end voxels = zeros(classData.header.xsize, ... classData.header.ysize, ... classData.header.zsize); % Restrict the white matter volume to a size equal to the ROI in which it % was selected voxels = classExtractWhite(voxels,... classData.data,classData.header.voi,classData.type.white); % msh = meshColor(meshSmooth(meshBuildFromClass(voxels,[1 1 1]))); % meshVisualize(msh); % Add the gray matter if(numGrayLayers>0) [nodes,edges,classData] = mrgGrowGray(classData,numGrayLayers); voxels = ... uint8( (classData.data == classData.type.white) | ... (classData.data == classData.type.gray)); end voxels = uint8(voxels | voxelsOld); return;
github
andregouws/mrMeshPy-master
meshGrowROI.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshGrowROI.m
5,510
utf_8
0ac103a1d2853114720625acaa6a451e
function view = meshGrowROI(view, name, startCoord, mask); % Grow an ROI along the cortical surface, starting at the mesh cursor % position and extending along a contiguous patch defined by the data in % mask. % % view = meshGrowROI([view], [name], [startCoord=cursor position], [mask=data overlay mask]); % % INPUTS: % view: mrVista gray view. [Defaults to selected gray.] % % name: name of the new ROI. [Default is to call it 'Mesh ROI' with the % start coord appended.] % % startCoord: coordinate of starting gray matter node. [Defaults to % position of cursor in currently-selected mesh.] % % mask: binary data mask, size 1 x nNodes, indicating whether a given % node is acceptable to be included in the ROI. nNodes is the size of % view.coords and view.nodes. If the start node is not 1, will warn the % user and exit without making an ROI. Will grow the ROI along the % view.edges field until there are no neighboring nodes for which mask is % 1. [default: makes this mask based on the current mesh overlay and view % settings: if there is data shown on the overlay, the mask is 1; if not, % it's 0.] % % OUTPUTS: % view with a new ROI added (if one could be created). % % NOTE: This function uses iteration, and so if the data mask is mostly % ones (the ROI has to grow a lot), the function can be memory % intensive / may fail to finish due to the MATLAB iteration limit. Also, % growing along the cortical surface is different from growing in the % volume space. It is sensitive to the alignment/segmentation, so those % should be in good order before this can be trusted. % % Finally, if you move the mesh (Ctrl + moving the mouse), this can mess up % the correspondence between the mesh cursor position and the volume nodes. % So, you can''t do that and have this keep working. (If you do this by % accident, but you've saved some view settings, you can restore those % settings and things should work again.) % % ras, 10/17/2008. if notDefined('view'), view = getSelectedGray; end %% data / mesh checks if ~ismember(view.viewType, {'Gray' 'Volume'}) error('Only works on Gray / Volume views.'); end if ~isfield(view, 'mesh') | isempty(view.mesh) error('Need a mesh loaded.') end m = view.meshNum3d; if m==0 error('Need a selected mesh.') end if notDefined('startCoord'), startCoord = meshCursor2Volume(view, view.mesh{m}); end if notDefined('name'), name = ['Mesh ROI ' num2str(startCoord)]; end if notDefined('mask') % [view mask] = meshColorOverlay(view, 0); mask = logical( ones(1, size(view.coords, 2)) ); if length(view.co) >= view.curScan & ~isempty(view.co{view.curScan}) co = view.co{view.curScan}; mask = mask & (co > getCothresh(view)); end if length(view.ph) >= view.curScan & ~isempty(view.ph{view.curScan}) ph = view.ph{view.curScan}; phWin = getPhWindow(view); mask = mask & (ph >= phWin(1)) & (ph <= phWin(2)); end if length(view.map) >= view.curScan & ~isempty(view.map{view.curScan}) map = view.map{view.curScan}; mapWin = getMapWindow(view); mask = mask & (map >= mapWin(1)) & (map <= mapWin(2)); end end % get gray matter node corresponding to the start coord startNode = roiIndices(view, startCoord(:)); % does the start node pass the criterion? If not, we shouldn't make an ROI % with it: if mask(startNode)==0 myWarnDlg('The selected start point doesn''t pass the threshold.'); return end %% initialize an empty ROI ROI = roiCreate1; ROI.name = name; ROI.comments = sprintf(['Created by %s grown from seed %s'], mfilename, ... num2str(startCoord)); %% main part: "grow" coords in ROI (recursive) h = msgbox('Growing Mesh ROI', mfilename); nodes = growMeshROICoords(startNode, view, mask); close(h); ROI.coords = view.coords(:,nodes); %% add ROI to view view = addROI(view, ROI); return % /-----------------------------------------------------------------/ % % /-----------------------------------------------------------------/ % function nodes = growMeshROICoords(nodes, view, mask); % recursive function designed to grow mesh ROI coordinates. % The logic here is: the nodes passed in are all voxels that will % definitely be included in the mesh ROI. The code looks at neighboring % voxels (according to the gray matter nodes/edges), evalautes them for % inclusion (mask==1), and selects those which pass the test. % If there are any of these neighbors, the function is called again, now % looking at the neighbors of these neighbors. %% find neighbors of the input nodes neighbors = []; for n = nodes nEdges = view.nodes(4,n); startEdge = view.nodes(5,n); neighbors = [neighbors view.edges(startEdge:startEdge+nEdges-1)]; end %% which neighbors are contained in the mask? neighbors = neighbors(mask(neighbors)==1); % prevent the recursion from bouncing back and forth: % some of these neighbors may already be included in nodes. Remove them; % they're obviously okay. % (If I didn't do this, then if A points to B, and B points to A, and both % satisfy the criteria, the function would keep getting called, first with % A as the neigbor, then B, then A, etc...) neighbors = setdiff(neighbors, nodes); %% do any neighbors pass the test? % if no, we're done. If yes, we recurse: call this function on the existing % nodes plus the neighbors: if ~isempty(neighbors) nodes = growMeshROICoords([nodes neighbors], view, mask); end return
github
andregouws/mrMeshPy-master
meshMontageMovie.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshMontageMovie.m
6,503
utf_8
5bd24d78c37a9d01aee79e87c3a06f69
function M = meshMontageMovie(V, whichMeshes, movieFileName, timeSteps, plotFlag, stimImages) % % M = meshMontageMovie([gray view], [whichMeshes], [movieFileName], [timeSteps=12], [plotFlag=1], [stimImages]) % %Author: Wandell %Purpose: % Create a movie consisting of a montage of mesh images, each showing % the fundamental component of the time series based on the coherence % and phase measurement ('corAnal'). % % This is not the real time series, but just a signal-approximation. % At some point, we should read in the time series and show it frame by % frame. I am not quite sure how to do this. We don't normally get a % time-slice over space. But I am guessing we could do it. % % roiFlag: flag indicating whether to illustrate a disc ROI during the % movie. If this flag is set to zero, no ROI will be shown. If it is % greater than 0, the value is taken to be the radius of the ROI disc % around the mesh cursor (those 3-axes things you get when % double-clicking on the mesh). If it is set to -1, all ROIs currently % defined in the view will be shown. % % Example: To make a movie with 10 steps, write out an AVI file called scratch, % and to return a Matlab movie structure, M, within the constraints of the % cothresh and ROI parameters, use: % % M = meshMovie([], [], 'scratch', 10, 0); % % To get the last 3 arguments from a dialog, use: % M = meshMovie('dialog'); % or % M = meshMovie(gray, [], 'dialog'); % % ras 04/2008: modularized this more. Added view as an inputtable argument, % instead of that VOUME{selectedVOLUME} stuff, added the roiFlag so you % don't always need an ROI, and had the code only throw up a dialog if you % didn't already give it the parameters it needs. % ras 07/2008: added plot flag, updated calling of parameters dialog. if notDefined('V'), V = getSelectedGray; end if notDefined('plotFlag'), plotFlag = 1; end if notDefined('timeSteps'), timeSteps = 12; end if notDefined('movieFileName'), movieFileName = ''; end if notDefined('stimImages'), stimImages = []; end % check that meshes are loaded if ~checkfields(V, 'mesh') error('View must have a mesh loaded.') end if isequal(timeSteps, 'dialog') | isequal(movieFileName, 'dialog') | ... isequal(V, 'dialog') | notDefined('whichMeshes') whichMeshes = 1; [whichMeshes, timeSteps, movieFileName, plotFlag] = ... readParameters(V, whichMeshes, timeSteps, movieFileName, plotFlag); end % Make sure the cor anal data are loaded if isempty(viewGet(V, 'co')), V=loadCorAnal(V); end msh = viewGet(V, 'currentmesh'); %% params roiFlag = -1; if roiFlag==0 % hide ROIs V.ui.showROIs = 0; end % Set up the co or amp values for the movie. We replace the colors within % the dataMask with the new colors generated here. curScan = viewGet(V, 'currentscan'); realCO = viewGet(V, 'scanco', curScan); ph = viewGet(V, 'scanph', curScan); t = ([0:(timeSteps-1)]/timeSteps) * 2 * pi; nFrame = length(t); clear M; mrmSet(msh, 'hidecursor'); verbose = prefsVerboseCheck; if verbose str = sprintf('Creating %.0f frame movie', nFrame); wbar = mrvWaitbar(0, str); end % change the view to display the coherence field, since we're actually % displaying phase-projected coherence for each time point: % I specificially make this change without calling setDisplayMode, because % that accessor function will try to do concurrent GUI things like setting % a colorbar and loading/clearing data fields. We don't want to do this, % because we're treating the view V as a local variable; changes we make to % V are not intended to propagate back to the GUI. So, if the user was e.g. % looking at a coherence map before this, we don't want him/her to suddenly % see the phase-projected data from the movie. V.ui.displayMode = 'co'; %% loop across frames for ii=1:nFrame if verbose % udpate mrvWaitbar str = sprintf('Creating frame %.0f of %.0f', ii, nFrame); fname{ii} = sprintf('Movie%0.4d.tiff', ii); mrvWaitbar(ii/nFrame, wbar, str); end % compute the projected coherence relative to this time point data = realCO.*(1 + sin(t(ii) - ph))/2; V = viewSet(V, 'scancoherence', data, curScan); %% loop across meshes for n = 1:length(whichMeshes) % select the current mesh V.meshNum3d = whichMeshes(n); % update the mesh view with the colors for this time step meshColorOverlay(V, 1); meshImg{n} = mrmGet(V.mesh{whichMeshes(n)}, 'screenshot') / 255; end % add a stimulus image if it's provided if ~isempty(stimImages) meshImg{length(whichMeshes)+1} = stimImages(:,:,:,ii); end % grab the montage image (across meshes) for this frame M(:,:,:,ii) = imageMontage(meshImg, 1, 3); end if verbose, mrvWaitbar(1, wbar); close(wbar); end %% show the movie in a separate figure if plotFlag==1 mov = mplay(M, 4); mov.loop mov.play end if ~isempty(movieFileName) % allow the movie path to specify directories that don't yet exist % (like 'Movies/') ensureDirExists( fileparts(fullpath(movieFileName)) ); try if(isunix) aviSave(M, movieFileName, 'FPS', 3, 'compression', 'none'); else aviSave(M, movieFileName, 'FPS', 3, 'QUALITY', 100, ... 'compression', 'Indeo5'); end fprintf('Saved movie as avi file: %s\n', [pwd, filesep, movieFileName]); catch disp('Couldn''t save AVI file: last error: ') disp(lasterr); end end return; %------------------------------------ function [whichMeshes, timeSteps, movieFileName, plotFlag] = ... readParameters(V, whichMeshes, timeSteps, movieFileName, plotFlag); % % read parameters for meshMontageMovie % for n = 1:length(V.mesh) meshList{n} = V.mesh{n}.name; end dlg(1).fieldName = 'whichMeshes'; dlg(1).style = 'listbox'; dlg(1).list = meshList; dlg(1).string = 'Use which meshes for movie?'; dlg(1).value = whichMeshes; dlg(2).fieldName = 'timeSteps'; dlg(2).style = 'number'; dlg(2).string = 'Number of time frames for movie?'; dlg(2).value = num2str(timeSteps); dlg(3).fieldName = 'movieFileName'; dlg(3).style = 'filenamew'; dlg(3).string = 'Name of AVI movie file? (Empty for no movie file)'; dlg(3).value = movieFileName; dlg(4).fieldName = 'plotFlag'; dlg(4).style = 'checkbox'; dlg(4).string = 'Show movie in a MATLAB figure?'; dlg(4).value = plotFlag; [resp ok] = generalDialog(dlg, 'Mesh movie options'); if ~ok error(sprintf('%s aborted.', mfilename)); end timeSteps = resp.timeSteps; movieFileName = resp.movieFileName; plotFlag = resp.plotFlag; [meshNames whichMeshes] = intersectCols(meshList, resp.whichMeshes); return;
github
andregouws/mrMeshPy-master
meshParameterMaps.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshParameterMaps.m
10,149
utf_8
a013f41388613da4c5349a825895ff4c
function [images mapVals] = meshParameterMaps(V, dialogFlag, varargin); % Produce images of parameter maps on a mesh. % % NOTE: this will modify the 'map' field of the view. % % USAGE: % [images mapVals] = meshAmplitudeMaps(grayView, [dialogFlag], [options]); % % INPUTS: % grayView: mrVista gray view, with a mesh open. Will show maps on the % currently-selected mesh, if there are more than one. % % useDialog: 1 to put up a dialog to set the parameters, 0 otherwise. % % options: options can be specified as 'optionName', [value], ... % pairs. Options are below: % % mapFiles: name or path to parameter map file. [Default: use file % loaded for the map's current parameter map.] % % plotFlag: flag to show the set of images returned in a montage. If 0, % will not plot; if 1 will plot. You can also specify a size for the % montage, as in plotFlag = [nRows, nCols]; otherwise the rows and % columns will be approximately square. % % nRows, nCols: alternate method for specifying the montage size % (rather than using the 'plotFlag' option described above). % % cropX, cropY: specify zoom ranges in the X and Y dimensions for each % mesh image. If omitted, will show the entire mesh. % % whichScans: select the scans in the current data type for which to show % the map. [Default: view's current scan]. % % preserveCoords: flag to return mapVals with exactly the same number % of columns as the ROI coordinates. If this is set to 1, and certain % ROI coordinates don't have data, mapVals will have NaN for that % column. If 0 [default], these columns are automatically removed % from the matrix. % % OUTPUTS: % images: nRows x nCols cell array containing mesh images for each % condition in the GLM. % % mapVals: conditions x voxels matrix containing the amplitude values % used in the map images for the selected ROI. % % ras, 03/2008. if notDefined('V'), V = getSelectedGray; end if notDefined('dialogFlag'), dialogFlag = (length(varargin)<=1); end %% checks % check that a mesh is loaded if isempty( viewGet(V, 'curMesh') ) error('Need to load a mesh.') end images = {}; mapVals = []; %% params % default params preserveCoords = 0; mapFiles = { fullfile(dataDir(V), [V.mapName '.mat']) }; mapOrder = []; cmap = 'coolhot'; clim = [-2 2]; cropX = []; cropY = []; cmap = mrvColorMaps('coolhot', 128); clim = [-2 2]; plotFlag = 1; whichScans = V.curScan; whichMeshes = 1:length(V.mesh); maskRoi = ''; nRows = []; nCols = []; % grab the current map mode (which contains the color map and % color limits) -- we'll assume these settings are the ones you want to % apply to each map (loadParameterMap below may over-ride these in the view, % so we restore them later): mapMode = V.ui.mapMode; mapWin = getMapWindow(V); % get params from dialog if needed if dialogFlag==1 [params ok] = meshParameterMapGUI(V); if ~ok, disp('User Aborted.'); return; end mapFiles = params.mapFiles; mapOrder = params.mapOrder; whichMeshes = params.whichMeshes; plotFlag = params.plotFlag; cropX = params.cropX; cropY = params.cropY; cmap = params.cmap; clim = params.clim; preserveCoords = params.preserveCoords; whichScans = params.whichScans; if length(params.montageSize) >= 2 nRows = params.montageSize(1); nCols = params.montageSize(2); else nRows = []; nCols = []; end maskRoi = params.maskRoi; if isequal(maskRoi, 'none') maskRoi = ''; end if checkfields(V, 'ui', 'mapMode') V.ui.mapMode = mapMode; end end % set the map mode settings to reflect the request color map and limits if ischar(cmap) mapMode.cmap = [gray(128); mrvColorMaps(cmap, 128)]; else mapMode.cmap = [gray(128); cmap]; end mapMode.clipMode = clim; % parse options (these will override the dialog values) for ii = 1:2:length(varargin) val = varargin{ii+1}; eval( sprintf('%s = val;', varargin{ii}) ); end if ischar(mapFiles), mapFiles = {mapFiles}; end if ischar(cmap) mapMode.cmap = [gray(128); mrvColorMaps(cmap, 128)]; else mapMode.cmap = [gray(128); cmap]; end mapMode.clipMode = clim; %% set the ROI mask, if requested if length(V.ROIs) >= 1 & ~isempty(maskRoi); % we modify the view's ROIs here, but don't return the modified % view: oldROIs = V.ROIs; oldSelROI = V.selectedROI; roiNum = findROI(V, params.maskRoi); V.ROIs = V.ROIs(roiNum); V.ROIs.name = 'mask'; V.selectedROI = 1; end nScans = length(whichScans); %% if requesting the map values, mark which data nodes to take if nargout > 1 % I is the indices from which to extract values if isempty(maskRoi) % take all nodes I = 1:size(V.coords, 2); else I = roiIndices(V, V.ROIs(1).coords, preserveCoords); end end % compute the default # of rows/columns if it's left empty if isempty(nRows) | isempty(nCols) nRows = ceil( sqrt(length(mapFiles)) ); nCols = ceil( length(mapFiles) / nRows ); end %% main loop: get pictures of each set of maps % first, re-order the map files to the user's specification if isempty(mapOrder), mapOrder = 1:length(mapFiles); end mapFiles = mapFiles(mapOrder); % now, get the values for m = 1:length(mapFiles) % load the parameter map V = loadParameterMap(V, mapFiles{m}); % get images for each scan for n = 1:length(whichScans) % set the scan V.curScan = whichScans(n); % set the color map and color limits % (the saved param map may have over-set this): V.ui.mapMode = mapMode; for h = 1:length(whichMeshes) % update the mesh V.meshNum3d = whichMeshes(h); meshColorOverlay(V); % grab the image img{h} = mrmGet(V.mesh{whichMeshes(h)}, 'screenshot') ./ 255; % crop the image if requested if ~isempty(cropX) & ~isempty(cropY) img{h} = img{h}(cropY,cropX,:); end end % add image to list of images % (make montage if taking a shot of multiple meshes) if length(whichMeshes)==1 img = img{1}; else img = imageMontage(img, 1, length(whichMeshes)); end images{(m-1)*nScans + n} = img; clear img %% grab map values for the ROI if requested if nargout > 1 % extract the values for the selected ROI mapVals((m-1)*nScans + n,:) = V.map{V.curScan}(I); end end end %% restore the ROIs if we were masking if exist('oldROIs', 'var') V.ROIs = oldROIs; V.selectedROI = oldSelROI; updateGlobal(V); if checkfields(V, 'ui', 'windowHandle') refreshScreen(V); end end %% display the images if selected if ~isequal(plotFlag, 0) % we'll manually specify subplot sizes -- large: width = 1 / nCols; height = 1 / nRows; % open the figure figure('Units', 'norm', 'Position', [0.2 0 .7 .35], 'Name', 'Mesh Images'); % plot each mesh image in a subplot: % allow for some images to be omitted if the user specified % a montage size that is smaller than the # of images % (e.g., an extra 'scrambled' condition) for n = 1:min(length(images), nRows*nCols); row = ceil(n / nCols); col = mod(n-1, nCols) + 1; subplot('Position', [(col-1)*width, 1 - row*height, width, height]); imagesc(images{n}); axis image; axis off; end % add a colorbar if check4File(mapFiles{1}) tmp = load(mapFiles{1}); if isfield(tmp, 'mapUnits') & ~isempty(tmp.mapUnits) cbarTitle = sprintf('%s (%s)', tmp.mapName, tmp.mapUnits) else cbarTitle = tmp.mapName; end else [par cbarTitle] = fileparts(mapFiles{1}); end cmap = viewGet(V, 'OverlayColormap'); clim = viewGet(V, 'MapClim'); cbar = cbarCreate(cmap, cbarTitle, 'Clim', clim); hPanel = mrvPanel('below', .2); hAxes = axes('Parent', hPanel, 'Units', 'norm', 'Position', [.3 .5 .4 .2]); cbarDraw(cbar, hAxes); end return % /----------------------------------------------------------------------/ % % /----------------------------------------------------------------------/ % function [params ok] = meshParameterMapGUI(V); % dialog to get parameters for meshAmplitudeMaps. dlg(1).fieldName = 'mapFiles'; dlg(end).style = 'listbox'; w = what(dataDir(V)); if isempty(w.mat) warning('No maps found in current data type: %s', getDataTypeName(V)); ok = 0; params = []; return end dlg(end).list = w.mat; if ~isempty( cellfind(V.map) ) & ~isempty(V.mapName) dlg(end).value = V.mapName; else dlg(end).value = ''; end dlg(end).string = 'Parameter map file(s)?'; dlg(end+1).fieldName = 'mapOrder'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Order of maps?'; dlg(end+1).fieldName = 'whichMeshes'; dlg(end).style = 'listbox'; for n = 1:length(V.mesh) meshList{n} = sprintf('%i: %s', V.mesh{n}.id, V.mesh{n}.name); end dlg(end).list = meshList; dlg(end).value = V.meshNum3d; dlg(end).string = 'Project data onto which meshes?'; dlg(end+1).fieldName = 'whichScans'; dlg(end).style = 'number'; dlg(end).value = V.curScan; dlg(end).string = 'Plot data from which scans?'; dlg(end+1).fieldName = 'cropX'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Mesh X-axis image crop (empty for no crop)?'; dlg(end+1).fieldName = 'cropY'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Mesh Y-axis image crop (empty for no crop)?'; dlg(end+1).fieldName = 'montageSize'; dlg(end).style = 'number'; dlg(end).value = []; dlg(end).string = 'Montage layout ([nrows ncolumns])?'; dlg(end+1).fieldName = 'cmap'; dlg(end).style = 'popup'; dlg(end).list = mrvColorMaps; % list of available cmaps dlg(end).value = 'coolhot'; dlg(end).string = 'Color map for amplitudes?'; if length(V.ROIs) >= 1 dlg(end+1).fieldName = 'maskRoi'; dlg(end).style = 'popup'; dlg(end).list = [{'none'} {V.ROIs.name}]; dlg(end).value = 'none'; dlg(end).string = 'Mask activations within which ROI?'; end dlg(end+1).fieldName = 'clim'; dlg(end).style = 'number'; dlg(end).value = [-2 2]; dlg(end).string = 'Color limits for amplitudes?'; dlg(end+1).fieldName = 'preserveCoords'; dlg(end).style = 'checkbox'; dlg(end).value = 0; dlg(end).string = 'Preserve ROI coordinates in returned values?'; dlg(end+1).fieldName = 'plotFlag'; dlg(end).style = 'checkbox'; dlg(end).value = 1; dlg(end).string = 'Plot Results?'; [params ok] = generalDialog(dlg, 'Mesh Parameter Maps'); [ignore, params.whichMeshes] = intersect(meshList, params.whichMeshes); return
github
andregouws/mrMeshPy-master
meshCreate.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshCreate.m
2,381
utf_8
3347f53de70bc2acf5d665b899d4a65c
function msh = meshCreate(mshType) % mrMesh creation routine % % msh = meshCreate(mshType); % % We only create a vistaMesh type. In the future we may design additional % mesh structures. See notes below about the properties of the msh fields. % % See also: meshSet/Get and mrmSet/Get % % Example: % msh = meshCreate; % msh = meshCreate('vista mesh'); % % Stanford VISTA team if ieNotDefined('mshType'), mshType = 'vistaMesh'; end mshType = mrvParamFormat(mshType); switch lower(mshType) case 'vistamesh' msh = vistaMeshCreate; otherwise error('Unknown mesh type %s\n',mshType); end return; %------------------------------ function msh = vistaMeshCreate %Default settings for a mrVista mesh % % msh = vistaMeshCreate; % % * The triangles are triplets of vertices. % * The vertices are numbered from [0,n-1], consistent with C numbering, % but not Matlab numbering. This is necessary to work with mrMeshSrv. % % % fields = {'name', 'host', 'id', 'actor', 'mmPerVox', 'lights', 'origin', ... % 'initialvertices', 'vertices', 'triangles', 'colors', 'normals', 'curvature',... % 'ngraylayers', 'vertexGrayMap', 'fibers',... % 'smooth_sinc_method', 'smooth_relaxation', 'smooth_iterations', 'mod_depth'}; % % (c) Stanford VISTA Team msh.name = ''; msh.type = 'vistaMesh'; msh.host = 'localhost'; msh.id = -1; % Figure this out as soon as possible. msh.filename = []; msh.path = []; msh.actor = 33; % This is default. But we should be able to change. msh.mmPerVox = [1 1 1]; msh.lights = {}; msh.origin = []; msh.initVertices = []; % Initial vertices, without smoothing. msh.vertices = []; msh.triangles = []; % Surface shading typically for pseudo-color or for showing curvature msh.colors = []; msh.mod_depth = 0.25; msh.normals = []; % Normals to the patches. Can be computed using Matlab msh.curvature = []; % Not sure how we compute this. Uh oh. % Not sure why these are here. They relate the vertices to gray map. % Probably essential for VISTASOFT/mrBOLD msh.grayLayers = []; msh.vertexGrayMap =[]; % Not sure why these are here too, but probably related to mrDiffusion msh.fibers = []; % Mesh smoothing related msh.smooth_sinc_method = 0; msh.smooth_relaxation = 0.5; msh.smooth_iterations = 32; return;
github
andregouws/mrMeshPy-master
meshCompareScans.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshCompareScans.m
9,112
utf_8
51777b74f032d5d0b3596a22d29f830e
function [images pics] = meshCompareScans(V, scans, dts, settings, savePath, leg); % % Create mosaic images showing data from different scans / data % types superimposed on the same mesh and view angles. % % [images pics] = meshCompareScans(<view, scans, dts, settings, savePath, leg>); % % This code requires that you have saved some view angles using the % function meshAngles. The code will set the input view (which should % have an open mesh attached) to each of the specified input scans, % display the current data (which depends on the display mode: co, amp, % ph, map) on the mesh, set the mesh to the specified angles, and % take a snapshot. For each angle provided, the code will produce an % output image which is a mosaic of the maps across all the scans and data % types. % % INPUT ARGUMENTS: % view: gray view w/ open mesh attached. <Default: selected gray.> % % scans: vector of scan numbers from which to take the data. % <default: all scans in cur data type> % % dts: cell array of data type names / vector of data type numbers. % if only one provided, and multiple scans, will assume all the % scans come from the current data type. <default: cur dt> % % angles: struct array of angles. See meshAngles. Can also be a numeric % vector specifying which of the saved angles to show, or a cell of % names of angles. <default: all saved mesh angles> % % savePath: if provided, will either save the *.png files to this % directory (if dir) or append images to a power point file (if % using Windows and savePath ends in *.ppt). % % leg: flag: if set to 1, will put the image in a figure, and add % a copy of the color bar for the view. <default: no legend> % % % % OUTPUT ARGUMENT: % images: cell of images, one for each input angle specified. Each image % is a montage of the same view angle across scans % % pics: nested cell of images containing the source screenshots for the % 'images' output. pics{i}{j} contains the screenshot for view angle i, % scan j. % % ras, 02/02/06. I've been writing this code for 50 years, but it's still % always the same day! % ras, 11/08/06. Converted to use settings rather than angles. if notDefined('V'), V = getSelectedGray; end if notDefined('scans'), scans = 1:numScans(V); end if notDefined('dts'), dts = V.curDataType; end if notDefined('savePath'), savePath = 'Images'; end if notDefined('leg'), leg = 0; end if notDefined('settings') | notDefined('scans') params = meshCompareScansParams(V, dts(1), savePath, leg); settings = params.settings; scans = params.scans; savePath = params.savePath; leg = params.leg; end % get the current mesh msh = viewGet(V, 'currentMesh'); % make sure the dts list is a numeric array if iscell(dts) for i = 1:length(dts), tmp(i) = existDataType(dts{i}); end dts = tmp; elseif ischar(dts), dts = existDataType(dts); end for i = length(dts)+1:length(scans), dts(i) = dts(i-1); end % allow settings to be cell of names of settings if iscell(settings) selectedNames = settings; % will load over the 'settings' variable below settingsFile = fullfile(fileparts(msh.path), 'MeshSettings.mat'); load(settingsFile, 'settings'); names = {settings.name}; for i = 1:length(selectedNames) ind(i) = cellfind(names, selectedNames{i}); end settings = settings(ind); elseif isnumeric(settings) ind = settings; settingsFile = fullfile(fileparts(msh.path), 'MeshSettings.mat'); load(settingsFile, 'settings'); settings = settings(ind); end %%%%%initialize cell arrays for each image (corresponding to each %%%%%angle) for the main loop for i = 1:length(settings), pics{i} = {}; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Main loop: go through each scan, put up the map, grab the image % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i = 1:length(scans) if dts(i)~=V.curDataType, V = selectDataType(V, dts(i)); end V = viewSet(V, 'curScan', scans(i)); meshColorOverlay(V); % take a picture of the mesh, with this map, at each angle for j = 1:length(settings) msh = meshApplySettings(msh, settings(j)); pics{j}{i} = mrmGet(msh, 'screenshot') ./ 255; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Process the screenshot pics into montage images % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i = 1:length(pics) images{i} = imageMontage(pics{i}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if legend requested, put the image up in a figure w/ the % % view's color bar % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if leg==1 for i = 1:length(images) h(i) = figure('Name', mfilename, 'Color', 'w', ... 'Units', 'normalized', 'Position', [.1 .2 .7 .7]); nRows = ceil( sqrt( length(scans) ) ); nCols = ceil( length(scans) / nRows ); for j = 1:length(scans) hAx(j) = subplot(nRows, nCols, j); image(pics{i}{j}); axis image; axis off; title( annotation(V, scans(j)) ); set(gca, 'Position', get(gca, 'OuterPosition') - [0 0 0 .08]); end % add a color bar hPanel = addCbarLegend(V, h(i), .15); end end %%%%%%%%%%%%%%%%%%%%% % save if specified % %%%%%%%%%%%%%%%%%%%%% if ~isempty(savePath) ensureDirExists( fileparts(savePath) ); for i = 1:length(images) [p f ext] = fileparts(savePath); if isequal(lower(ext), '.ppt') & ispc % paste into powerpoint presentation fig = figure; imshow(img); [ppt, op] = pptOpen(savePath); pptPaste(op,fig,'meta'); pptClose(op,ppt,savePath); close(fig); fprintf('Pasted image in %s.\n', fname); else if isequal(lower(ext), '.ppt'), q = ['Sorry, can only export to PowerPoint files on ' ... 'Windows machines right now. Save images as ' ... '*.png files instead?']; resp = questdlg(q, mfilename); if ~isequal(resp, 'Yes'), return; end end mapName = V.mapName; if checkfields(V, 'ui', 'displayMode') switch V.ui.displayMode case 'ph', mapName = 'Phase'; case 'amp', mapName = 'Amplitude'; case 'co', mapName = 'Coherence'; case 'map', mapName = V.mapName; end end fname = sprintf('%s_%s.png', mapName, settings(i).name); imgPath = fullfile(savePath, fname); if leg==1 % save the figure w/ the image + colorbar % export the figure w/ the cbar included % (try to use exportfig, which is not always available) if exist('exportfig', 'file') exportfig(h(1), imgPath, 'Format', 'png', 'Color', 'cmyk', ... 'width', 3.5, 'Resolution', 450); else saveas(h(1), imgPath, 'png'); end else % just write out the image imwrite(images{i}, imgPath, 'png'); end fprintf('Saved image %s.\n', imgPath); end end end return % /---------------------------------------------------------------------/ % % /---------------------------------------------------------------------/ % function params = meshCompareScansParams(V, dt, savePath, leg); % put up a dialog to get the scans and settings for meshCompareScans. mrGlobals; msh = viewGet(V, 'currentMesh'); % first check that there are saved settings: settingsFile = fullfile(fileparts(msh.path),'MeshSettings.mat'); if ~exist(settingsFile,'file') myErrorDlg(['Sorry, you need to save some mesh settings first. ' ... 'Use the menu Edit | Save Camer Angles | Save in ' ... 'the 3D Window, or the meshAngle function.']); end load(settingsFile, 'settings'); % build dialog scanList = {dataTYPES(dt).scanParams.annotation}; for i = 1:length(scanList) scanList{i} = sprintf('(%i) %s', i, scanList{i}); end dlg(1).fieldName = 'scans'; dlg(1).style = 'listbox'; dlg(1).string = 'Take images of which scans?'; dlg(1).list = scanList; dlg(1).value = 1; dlg(2).fieldName = 'settings'; dlg(2).style = 'listbox'; dlg(2).string = 'Take a picture at which camera settings?'; dlg(2).list = {settings.name}; dlg(2).value = 1; dlg(3).fieldName = 'savePath'; dlg(3).style = 'filenamew'; dlg(3).string = 'Save Image as? (Empty=no save)'; dlg(3).value = savePath; dlg(4).fieldName = 'leg'; dlg(4).style = 'checkbox'; dlg(4).string = 'Include Colorbar'; dlg(4).value = leg; % put up dialog params = generalDialog(dlg, 'Mesh Multi-Angle'); if isempty(params) error('User aborted.') end % parse params for s = 1:length(params.scans) tmp(s) = cellfind(dlg(1).list, params.scans{s}); end params.scans = tmp; return
github
andregouws/mrMeshPy-master
meshMatchSettings.m
.m
mrMeshPy-master/legacy/mrMesh/meshviewer/meshMatchSettings.m
4,335
utf_8
009f6a9398b567be79bc3cb4d8f6c0b9
function settings = meshMatchSettings(src, tgt, varargin); % Adjust the view settings on one or more target meshes to match that on % the source mesh. % % settings = meshMatchSettings([sourceMesh=current mesh], [targetMeshes], [gray/volume view]); % % INPUTS: % sourceMesh: mesh whose view settings you want to replicate on other % meshes. You can provide a mesh structure, the number of a mesh in the % current gray view, or the number of the mesh window as a character (e.g., % use '1' for a mesh window named 'mrMesh 1', but use 1 for the % first mesh in the view). [Default: selected mesh in gray view]. % % targetMeshes: specification of one or more meshes whose view settings % will match that of the source mesh. Can be specified in the same way as % sourceMesh. If you want to specify multiple target meshes, you can % specify them as a cell array (or, in the case of numeric mesh indexes, % a numeric array, or a struct array in the case of full mesh strucures). % [Default: prompt user to select meshes]. % % [gray/volume view]: a gray or volume view structure which has the % relevant meshes loaded. This isn't needed if you're providing the full % mesh structures as inputs. [Default: use selected gray view] % % RETURNS: % settings: settings structure from the source mesh. % % SEE ALSO: meshSettings, meshStoreSettings, meshRetrieveSettings. % % ras, 08/2009. % I allow several target meshes to be input as varargin (allowing me to type the % IDs as strings): the view G is always the last of these, if it's specified. if ~isempty(varargin) if isstruct(varargin{end}) G = varargin{end}; else G = []; end tgt = [{tgt} varargin]; end if notDefined('G') % don't call getSelectedGray if both src and target are provided as % structures -- we don't want to force this code to depend on the % mrVista data structure if we don't need to. if ( isstruct(src) | (iscell(src) & isstruct(src{1})) ) & ... ( isstruct(tgt) | (iscell(tgt) & isstruct(tgt{1})) ) G = []; else G = getSelectedGray; end end if notDefined('src'), src = G.mesh{G.meshNum3d}; end % parse the source mesh structure if ~isstruct(src) src = parseMeshStructure(src, G); end % get the source mesh settings settings = meshSettings(src); if notDefined('tgt'), % user dialog dlg.fieldName = 'whichMeshes'; dlg.style = 'listbox'; dlg.string = sprintf(['Apply Mesh Settings from Mesh %i to which ' ... 'other meshes?'], src.id); for n = 1:length(G.mesh) dlg.list{n} = [num2str(G.mesh{n}.id) '. ' G.mesh{n}.name]; end dlg.value = 1; [resp ok] = generalDialog(dlg, mfilename); if ~ok, fprintf('[%s]: User aborted.\n', mfilename); return; end for n = 1:length(resp.whichMeshes) tgt(n) = cellfind(dlg.list, resp.whichMeshes{n}); end end % parse the target mesh specification if ~ischar(tgt) & length(tgt) > 1 % iteratively apply to several meshes for n = 1:length(tgt) if iscell(tgt) currTarget = parseMeshStructure(tgt{n}, G); else currTarget = parseMeshStructure(tgt(n), G); end meshApplySettings(currTarget, settings); end else tgt = parseMeshStructure(tgt, G); meshApplySettings(tgt, settings); end return % /--------------------------------------------------------------------/ % % /--------------------------------------------------------------------/ % function msh = parseMeshStructure(msh, G); % given a mesh specification (which could be one of many things) and a view % with meshes, return a mesh structure. if isstruct(msh), % we're good... return; end if iscell(msh) for n = 1:length(msh) msh(n) = parseMeshStructure(msh{n}, G); end return end if ischar(msh) % id of mesh window ... find it in this view: targetID = str2num(msh); for n = 1:length(G.mesh) ids(n) = G.mesh{n}.id; end msh = find(ids==targetID); if isempty(msh) error('Couldn''t find mesh id %i in view.', targetID); end % now it's numeric, so it should go through the indexing code below... end if isnumeric(msh) % numeric index into G's meshes whichMeshes = msh; clear msh for n = 1:length(whichMeshes) msh(n) = G.mesh{whichMeshes(n)}; end end if isempty(msh) error('Empty mesh specification.') end return
github
andregouws/mrMeshPy-master
mrmSet.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmSet.m
21,644
utf_8
cc937f4caa7c19408dfdea0353f9ab69
function [msh, ret] = mrmSet(msh,param,varargin) % General interface for communicating with mrMesh parameters. % % [msh, ret] = mrmSet(msh,param,varargin) % % This routine keeps track of what we need to do to adjust different types % of visual properties of the image. % % The routine tries to update the msh structure to keep it in synch with % the display. There may be bugs therein. % % The mesh structure contains parameters that include various important % parameters. These include the % * identity of the host computer running the mrMesh server (usually 'localhost') % * the number of the mrMesh window (id) % * the Actor (i.e., object) within the window % % Actor values [0,31] are reserved with camera (0), cursor (1). % Meshes are assigned an actor value of 32 and above. % % The values in the mesh structure are accessed through the meshGet % routine. The same mesh structure is used by mrMesh, mrGray and % mrFlatMesh. % % Some parameters require additional specification. These can be passed % as additional arguments that are parsed by the varargin mechanism in % Matlab. % % See also: mrmSet, mrMesh, meshGet, meshSet % % Examples: % mrmSet(msh,'background',[.3,.3,.3,1]); % mrmSet(msh,'addlight',ambient,diffuse,origin); % % Programming Notes: (TODO List) % * Query for the names and number of open mrMesh windows. % * Get the vertex number from a click (not just the XYZ position of the surface. % * Remove an actor from the window. Add a new actor at a distinct position. % * Get various types of build_mesh working, not just smooth and decimate. % * Hide the lights % % HISTORY: % % 2004.06.11 RFD: fixed hideCursor. We also now need to use 'showcursor' to % turn it back on, as it no longer comes on when you click the mesh. I've % added a 'toggleCursor' command to make the GUI changes minimal (still % uses just one button). % % Started by Wandell many years ago % % Default parameters if ieNotDefined('msh'), error('You must specify a mesh.'); end % Sometimes we pass in the whole array of meshes. Mostly, just one, % though. if iscell(msh) host = meshGet(msh{1},'host'); windowID = meshGet(msh{1},'windowid'); else host = meshGet(msh, 'host'); windowID = meshGet(msh, 'windowid'); end % Confirm that we have a host and windowID ready to go if isempty(host), host = 'localhost'; end if isempty(windowID), error('Mesh must specify a window'); end % Lower case and remove spaces param = mrvParamFormat(param); switch param case {'close','closeone','closecurrent'} mrMesh(host,windowID,'close'); msh = meshSet(msh,'id',-1); case {'closeall','allclose'} % mrmSet(msh(),'closeall'); for ii=1:length(msh), msh{ii} = mrmSet(msh{ii},'close'); end ret = msh; case {'actor','addactor','meshactor'} % msh = mrmSet(msh,'addactor'); % Add an actor to an existing window, or if no window is open % open one, set open an actor, and set its windowID. p.class = 'mesh'; [~, ~, val] = mrMesh(host, windowID, 'add_actor', p); if checkfields(val,'actor'), msh = meshSet(msh,'actor',val.actor); msh = meshSet(msh,'windowid',windowID); else error('Problem adding mesh actor to window.'); end case {'lightorigin'} % mrmSet(msh,'lightorigin',lightActor,origin); light.class = 'light'; if length(varargin) < 2 || isempty(varargin{2}), error('Require lightActor and origin'); else light.actor = varargin{1}; light.origin = varargin{2}; end mrMesh(host, windowID, 'set', light); case {'showlight'} % Sets up a light defined by the three parameters in window of the % msh. % mrmSet(msh,'addlight',ambient,diffuse,origin); l.class = 'light'; [~,stat,res] = mrMesh(host, windowID, 'add_actor', l); if stat < 0, error('Error adding light actor.'); end light.actor = res.actor; if length(varargin) < 1 || isempty(varargin{1}), ambient = [0 0 0]; %[.3,.3,.3]; else ambient = varargin{1}; end if length(varargin) < 2 || isempty(varargin{2}), diffuse = [1 1 1]; % [0.5, 0.5, 0.6]; else diffuse = varargin{2}; end if length(varargin) < 3 || isempty(varargin{3}), origin = [500,0,300]; else origin = varargin{3}; end light.ambient = ambient; light.diffuse = diffuse; light.origin = origin; mrMesh(host, windowID, 'set', light); % Should we add this light to the mesh structure? Probably. For % now, we return light if requested. if nargout > 1, ret = light; end case {'addlight'} if length(varargin) < 1 || isempty(varargin{1}), ambient = [.3,.3,.3]; else ambient = varargin{1}; end if length(varargin) < 2 || isempty(varargin{2}), diffuse = [0.5, 0.5, 0.6]; else diffuse = varargin{2}; end if length(varargin) < 3 || isempty(varargin{3}), origin = [500,0,300]; else origin = varargin{3}; end [msh,ret] = mrmSet(msh,'showlight',ambient,diffuse,origin); msh = meshSet(msh,'addlight',ret); case {'addimage','addimageactor'} % imgParameters.img = ieScale(rand(64,64),0,1); % imgParameters.actor = 38; % imgParameters.origin = [50,0,50]; % % mrmSet(msh,'addimage',imgParameters) % imgParameters should contain % .img ( values between 0,1; image size is a power of 2 though we will pad if needed) % .origin (default = [0,0,0]) % .rotation % This code is an initial draft. It needs more work and better % understanding. But, it does put up an image in the window. % % The image must be a power of 2 in size because of openGL % considerations. % The image appears as a texture in a plane specified within the % parameters im.class = 'image'; % Set up the parameters imgParameters = varargin{1}; if checkfields(imgParameters,'rotation'), im.rotation = imgParameters.rotation; else im.rotation = [0 0 1; 0 1 0; 1 0 0]; end if checkfields(imgParameters,'origin'), im.origin = imgParameters.origin; else im.origin = [0 0 0]; end if checkfields(imgParameters,'actor'), im.actor = imgParameters.actor; else [~,~,r] = mrMesh(imageMesh.host, imageMesh.id, 'add_actor', im); im.actor = r.actor; end imgData = imgParameters.img; % Check the parameters if max(imgData(:)) > 1 || min(imgData(:)) < 0, error('Image data must be between 0 and 1'); end if size(imgData,3) ~= 1, error('We are expecting a gray scale image.'); end % Set up size parameters, making sure the array is a power of 2. % padarray(img,1,padsize(1)); % padarray(img,2,padsize(2)); imSize = 2.^ceil(log2(size(imgData))); im.width = imSize(1); im.height = imSize(2); im.tex_width = imSize(2); im.tex_height = imSize(1); % Copy the data into the center of the image that has the proper % size. Presumably, there is a way to do this with padarray(). sz = size(imgData'); pos = floor((imSize-sz)./2)+1; newData = zeros(imSize); newData(pos(1):pos(1)+sz(1)-1, pos(2):pos(2)+sz(2)-1) = imgData'; im.texture = repmat(newData(:)', 3,1); % Set alpha to 0 if transparency is enabled (erode/dilate to smooth) % mask = imdilate(imerode(imData>0.1,strel('disk',4)),strel('disk',4)); % im.texture(4,:) = double(mask(:)); % No transparency im.texture(4,:) = ones(size(im.texture(1,:))); % Add the image data to the actor [~,~,~] = mrMesh(host, windowID, 'set', im); case {'removeactor','deleteactor','removeactors','deleteactors','removelistofactors','deletelistofactors'} % mrmSet(msh,'deleteActor',33) % Do we need to specify the class, such as light/mesh/image? if ~isempty(varargin{1}), deleteList = varargin{1}; else warning('mrmSet: No actors to delete.'); return; end deleteList = deleteList(deleteList); for ii=1:length(deleteList) p.actor = deleteList(ii); mrMesh(host, windowID, 'remove_actor', p); end case {'builddecimatesmooth','buildmeshanddecimateandsmooth'} % mrmSet(msh,'buildMeshAndDecimateAndSmooth',voxels); if length(varargin) < 1; error('Must pass in voxels.'); end p.voxels = varargin{1}; % It is possible that scale should be scale = scale([2,1,3]) -- BW p.scale = meshGet(msh,'mmPerVox'); p = setSmooth(p,msh,1); p = setDecimate(p,msh,1); p.actor = meshGet(msh,'actor'); mrMesh(host, windowID, 'build_mesh', p); case {'buildnosmooth'} % mrmSet(msh,'buildMeshAndDecimateAndSmooth',voxels); if length(varargin) < 1; error('Must pass in voxels.'); end p.voxels = varargin{1}; % It is possible that scale should be scale = scale([2,1,3]) -- BW p.scale = meshGet(msh,'mmPerVox'); p = setSmooth(p,msh,0); p = setDecimate(p,msh,1); p.actor = meshGet(msh,'actor'); mrMesh(host, windowID, 'build_mesh', p); case {'setmesh','setdata','data'} % mrmSet(msh,'setdata') p = meshGet(msh,'data'); p.actor = actorCheck(msh); mrMesh(host, windowID, 'set_mesh', p); case {'meshvertices','vertices'} % mrmSet(msh,'vertices'); p.actor = actorCheck(msh); p.vertices = meshGet(msh,'vertices'); mrMesh(host, windowID, 'modify_mesh', p); case 'camerarotation' if isempty(varargin); error('Must pass in rotation matrix.'); end p.actor = 0; if ~isequal(size(varargin{1}),[3,3]), error('Rotation matrix is not 3x3'); else p.rotation = varargin{1}; end mrMesh(host,windowID,'set',p); case 'cameraorigin' if isempty(varargin); error('Must pass in origin.'); end if length(varargin{1}) ~= 3, error('Origin must be 3d vector'); else p.origin = varargin{1}; end p.actor = 0; mrMesh(host,windowID,'set',p); case 'cameraspace' p.actor = 0; p.camera_space = varargin{1}; % ?? val; mrMesh(host,windowID,'set',p); case 'background' % Set the RGB color of the background. c = varargin{1}; if length(c) == 3, c(4) = 1; elseif length(c) == 4 else error('color must be RGB or RGBalpha'); end p.color = c; mrMesh(host,windowID,'background',p); case 'transparency' % mrmSet(mesh,'transparency',1/0); if ~isempty(varargin), p.enable = double(varargin{1}); else p.enable = 1; end mrMesh(host, windowID, 'transparency', p); case {'windowsize','meshwindowsize','displaysize'} % mrmSet(msh,'windowSize',256,256); if length(varargin) < 2, error('Window size requires width and height'); end p.height = varargin{1}; p.width = varargin{2}; mrMesh(host,windowID,'set_size',p); case {'refresh','windowrefresh'} [~,ret] = mrMesh(host,windowID,'refresh'); case 'actorrotation' % mrmSet(msh,'actorrotation',rMatrix); % Not debugged thoroughly! if isempty(varargin), error('Rotation matrix required.'); end p.rotation = varargin{1}; p.actor = meshGet(msh,'Actor'); mrMesh(host, windowID, 'set', p); msh = meshSet(msh,'rotation',p.rotation); case {'actororigin','origin'} % mrmSet(msh,'origin',origin); if isempty(varargin), error('Origin argument.'); end p.origin = varargin{1}; p.actor = meshGet(msh,'Actor'); mrMesh(host, windowID, 'set', p); msh = meshSet(msh,'origin',p.origin); case {'applysmooth','applysmoothing'} % mrmSet(msh,'applysmooth'); warning('Use meshSmooth, not mrmSet(msh,''applysmooth'') to smooth meshes') return; % p.smooth_iterations = msh.smooth_iterations; % p.smooth_relaxation = msh.smooth_relaxation; % p.smooth_sinc_method = msh.smooth_sinc_method; % p.actor = meshGet(msh,'actor'); % [id,stat] = mrMesh(host, windowID, 'smooth', p); case {'smooth','smoothmesh','meshsmooth'} % mrmSet(msh,'smooth'); warning('Use meshSmooth, not mrmSet(msh,''smoothlarge'') to smooth meshes') return; % p.smooth_iterations = meshGet(msh,'relaxIter'); % p.smooth_relaxation = meshGet(msh,'relaxFactor'); % p.smooth_sinc_method = meshGet(msh,'smoothMethod'); % p.actor = meshGet(msh,'actor'); % [id,stat] = mrMesh(host, windowID, 'smooth', p); case {'smoothlarge','smoothmeshlarge','meshsmoothlarge'} % mrmSet(msh,'smoothlarge',[smoothFactor = 3]); % RFD- we now fix the smoothing relaxation value and let the user % specify the number of iterations. warning('Use smoothpatch, not mrmSet(msh,''smoothlarge'') to smooth meshes') return; % if isempty(varargin), sFactor = 3; else sFactor = varargin{1}; end % p.smooth_iterations = sFactor; % p.smooth_sinc_method = meshGet(msh,'smoothMethod'); % if(p.smooth_sinc_method) % p.smooth_relaxation = 0.0001; % else % p.smooth_relaxation = 1.0; % end % p.actor = meshGet(msh,'actor'); % [id,stat] = mrMesh(host, windowID, 'smooth', p); % case {'decimate','decimatemesh'} % mrmSet(msh,'decimate_mesh'); warning('Use reducepatch, not mrmSet(msh,''smoothlarge'') to smooth meshes') return; % p.decimate_reduction = meshGet(msh,'decimate_reduction'); % p.actor = meshGet(msh,'actor'); % [id,stat,res] = mrMesh(host, windowID, 'decimate', p); % case {'curvature','curvatures'} % mrmSet(mesh,'curvature') % Shows the curvature shading and also attaches the values to the % mesh data structure % Hunh? This routine looks like it gets the curvature values from % the window and puts them into msh rather than setting them. % warning('Use meshColor, to color the mesh with its curvature') % return; p.actor = meshGet(msh,'actor'); p.modulate_color = meshGet(msh,'curvaturecolor'); p.mod_depth = meshGet(msh,'curvaturemodulationdepth'); p.get_values = 1; [~, ~, v] = mrMesh(host, windowID, 'curvatures', p); msh = meshSet(msh,'curvature',v.values); case {'originlines'} %mrmSet(mesh,'originlines',0) (Turn off) %mrmSet(mesh,'originlines',1) (Turn on) if ~isempty(varargin), p.enable = varargin{1}; else p.enable=0; end p.actor = meshGet(msh,'Actor'); mrMesh(host, windowID, 'enable_origin_arrows', p); case {'cursorposition','cursor'} % msh = viewGet(VOLUME{1},'currentmesh'); % mrmSet(msh,'cursorPosition',meshGet(msh,'origin')); % mrmSet(msh,'cursorPosition',[-100,-100,-100]); if ~isempty(varargin), val = varargin{1}; else error('Must provide a coordinate.'); end val = val(:)'; if length(val) ~= 3, error('Cursor coordinates must be 3D'); end mmPerVox = meshGet(msh,'mmpervox'); origin = meshGet(msh,'origin'); p.actor = 1; %p.origin = val([2,1,3]) .* mmPerVox + origin; %[id,stat,res] = mrMesh(msh.host,msh.id, 'set', p); p.position = (val([2,1,3]) .* mmPerVox + origin)'; [~,~,res] = mrMesh(host,windowID, 'set_selection', p); if(isfield(res,'error')) disp([mfilename ': mrMesh error "' res.error '"']); end mrmSet(msh,'refresh'); case {'cursorvertex'} if ~isempty(varargin), val = varargin{1}; else error('Must provide a vertex.'); end vert = meshGet(msh,'vertices'); origin = meshGet(msh,'origin'); p.position = vert(:,val) + origin'; p.actor = 1; [~,~,~] = mrMesh(host, windowID, 'set_selection', p); case {'cursorraw'} if(length(varargin)==1 && numel(varargin{1})==3), val = varargin{1}; else error('Must provide a 1x3 coordinate.'); end p.position = val(:); p.actor = 1; mrMesh(host, windowID, 'set_selection', p); %if(stat~=0) disp(res); end case {'hidecursor','cursoroff'} % mrmSet(msh,'hidecursor'); p.enable = 0; mrMesh(host,windowID, 'enable_3d_cursor', p); case {'showcursor','cursoron'} % mrmSet(msh,'showcursor'); p.enable = 1; mrMesh(host,windowID, 'enable_3d_cursor', p); case {'colors','overlaycolors','overlay'} % mrmSet(mesh,'colors',rgbAlpha); if isempty(varargin), error('rgbAlpha data required.'); end c = varargin{1}; % If it is a 1D variable, make it a gray scale color map. if min(size(c)) == 1, c = c(:); c = repmat(c,1,3); end % If the data are 3D, add the alpha channel now if size(c,2) == 3, c(:,4) = 255*ones(size(c,1),1); end if size(c,2) ~= 4, error('Bad color data.'); end p.actor = meshGet(msh,'actor'); p.colors = uint8(c'); mrMesh(host, windowID, 'modify_mesh', p); msh = meshSet(msh,'colors',p.colors); case {'alpha','alphachannel'} % mrmSet(mesh,'alpha',alpha); if isempty(varargin), error('alpha data required.'); end c = varargin{1}; c = c(:); if(length(c)>1 && length(c)~=length(msh.data.colors(4,:))) error('Bad alpha data.'); end p.actor = meshGet(msh,'actor'); p.colors = uint8(msh.data.colors); if isa(c, 'uint8') p.colors(4,:) = c; else p.colors(4,:) = uint8(round(c*255)); end mrMesh(host, windowID, 'modify_mesh', p); msh = meshSet(msh,'colors',p.colors); case {'windowtitle','title'} % mrmSet(msh,'windowtitle','title goes here'); if isempty(varargin), error('Title required.'); end p.title = varargin{1}; mrMesh(host, windowID, 'set_window_title',p); otherwise error('Unknown mrmMesh parameter'); end return; %---------------------- function actor = actorCheck(msh) % % We need this a lot, so I wrote this routine rather than repeating it % throughout. % actor = meshGet(msh,'actor'); if isempty(actor) error('This meshGet call requires an actor in the mesh structure.'); end return; %--------------------------------------- function p = setSmooth(p,msh,val) if val && meshGet(msh,'smoothiterations')>0 p.do_smooth = 1; p.smooth_iterations = meshGet(msh,'smoothiterations'); p.smooth_relaxation = meshGet(msh,'smoothrelaxation'); p.smooth_sinc_method = meshGet(msh,'smoothmethod'); p.do_smooth_pre = meshGet(msh,'smooth_pre'); else p.do_smooth = 0; p.do_smooth_pre = 0; end return; %---------------------------- function p = setDecimate(p,msh,val) if val && meshGet(msh,'decimateiterations')>0 p.do_decimate = 1; p.decimate_reduction = meshGet(msh,'decimatereduction'); p.decimate_iterations = meshGet(msh,'decimateiterations'); else p.do_decimate = 0; end return; % These don't seem to be much needed and could be eliminated. They % are left around just in case we go on a building spree and decide % we need these % case {'builddecimate','buildmeshanddecimate','buildanddecimate'} % % mrmSet(mesh,'buildMeshAndDecimate',voxels); % if length(varargin) < 1; error('Must pass in voxels.'); end % p.voxels = varargin{1}; % p.scale = meshGet(mesh,'mmPerVox'); % p = setSmooth(p,mesh,0); % p = setDecimate(p,mesh,1); % p.actor = actorCheck(mesh); % [id, stat, res] = mrMesh(host, windowID, 'build_mesh', p); % case {'buildsmooth','buildandsmooth'} % % mrmSet(mesh,'buildSmooth',voxels); % if length(varargin) < 1; error('Must pass in voxels.'); end % p.voxels = varargin{1}; % p.scale = meshGet(mesh,'mmPerVox'); % p = setSmooth(p,mesh,1); % p = setDecimate(p,mesh,0); % p.actor = actorCheck(mesh); % [id, stat, res] = mrMesh(host, windowID, 'build_mesh', p); % case {'build','buildonly','buildmesh','buildmeshonly'} % % mrmSet(mesh,'buildMesh',voxels); % if length(varargin) < 1; error('Must pass in voxels.'); end % p.voxels = varargin{1}; % p.scale = meshGet(mesh,'mmPerVox'); % p = setDecimate(p,mesh,0); % p = setSmooth(p,mesh,0); % p.actor = actorCheck(mesh); % [id, stat, res] = mrMesh(host, windowID, 'build_mesh', p);
github
andregouws/mrMeshPy-master
mrmLoadOffFile.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmLoadOffFile.m
2,197
utf_8
8921617d9bfdc2f7e17d3aef4bf2fae0
function msh = mrmLoadOffFile(offFile, origin) % Buils a basic mrm structure given an OFF format mesh file. % mrm = mrmLoadOffFile(offFile, origin) % % 2007.06.08 RFD wrote it. if(~exist('offFile','var')||isempty(offFile)) [f,p] = uigetfile({'*.off';'*.*'},'Select the OFF file...'); if(isnumeric(f)); disp('user canceled.'); return; end offFile = fullfile(p,f); end if(~exist('origin','var')||isempty(origin)) msh.origin = [0 0 0]; else msh.origin = origin; end % Read new vertex locations fid = fopen(offFile, 'r', 'ieee-be'); if fid == -1, delete(inFile); delete(outFile); error('Could not open file'); end %--- read .off output file % Header hdr = fgetl(fid); % First see if we have a SurfRelax patch header if(strcmp(hdr,'#PATCH')) % header information from SURFRelax. Becuase this file has a subset of % vertices from a parent mesh msh.parentInds = getSRHeader(fid); hdr = fgetl(fid); end % Now we can read the mesh data if(strcmp(hdr,'OFF BINARY')) % binary format n = fread(fid, 3, 'int32'); % Read the vertices msh.vertices = fread(fid, [3 n(1)], 'float32'); msh.triangles = fread(fid, [5 n(2)], 'int32'); elseif(strcmp(hdr,'OFF')) % text format, probably from FSL's bet n = fscanf(fid, '%d', 3); % Read the vertices msh.vertices = fscanf(fid, '%f', [3 n(1)]); msh.triangles = fscanf(fid, '%d', [4 n(2)]); end fclose(fid); if(any(msh.origin~=0)) for ii=1:3 msh.vertices(ii,:) = msh.vertices(ii,:) - msh.origin(ii); end end msh.triangles = msh.triangles(2:4,:); msh.lights = []; msh.id = -1; return; function [parentInds] = getSRHeader(fid) % This header contains the map from a patch mesh to the parent mesh foundInds=0; while ~foundInds line = fgetl(fid); delI = strfind(line,'='); if strcmp(line(1:delI-1),'#patch_dimensions') foundInds=1; patchInds = sscanf(line(delI+1:end),'%d'); patchInds = patchInds(1); end end % Skip a text line fgetl(fid); % Get the parent indices for each patch vertex parentInds = zeros(1,patchInds); for ii=1:patchInds line = fgetl(fid); n = sscanf(line,'#%d %d'); parentInds(ii) = n(2); end return;
github
andregouws/mrMeshPy-master
mrmConvertEMSEMesh.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmConvertEMSEMesh.m
7,409
utf_8
b1b775d767cc4e8aed9c6e10bf5ac683
function [msh,lights,tenseMsh] = mrmConvertEMSEMesh(fileName,mmPerVox, host, id, varargin); % % [msh,lights,tenseMsh] = mrmConvertEMSEMesh(fileName,mmPerVox, host, id, varargin); % % % Author: ARW (based on RFD's mrmBuildMesh) % Purpose: % Take a mesh in EMSE's .wfr format and convert it into a mrLoadRet / % mrMesh-type mesh. Allows you to do the usual mrMesh type things like % relaxation... % Additional processing options can be set as well. These % options include: % * 'RelaxIterations'- the next value specifies how many extra smoothing iterations. % * 'SavetenseMsh'- if you specify any RelaxIterations and add this option, then % you will get two meshes- the relaxed mesh and the unrelaxed (tense) mesh. % % Returns: % The mesh structure and a lights structure. % You can also get the unrelaxed mesh out (tenseMsh). % % See Also % mrmMapVerticesToGray % % Examples: % mrmConvertEMSEMesh('x:\anatomy\norcia\EMSE\test.wfr', view.mmPerVox, 'Background', [0.3,0.4,0.5]); % mrmBuildMesh('x:\anatomy\norcia\EMSE\test.wfr', view.mmPerVox, 'localhost', -1); % mrmBuildMesh('x:\anatomy\norcia\EMSE\test.wfr', view.mmPerVox, 'localhost', -1, ... % 'RelaxIterations', relaxIterations, 'SavetenseMsh'); % % Notes: % 2003.09.17 RFD: vertex-to-volume mapping is now done in a separate % function (mrmMapVerticesToGray), and we don't call it. So, the calling % function will need to compute that mapping and add the appropriate % fields to the mesh struct. % transparency is off by default because it is slow. mrGlobals; summaryParams = 1; meshName = ''; QueryFlag = 1; relaxIter = 1; saveTense = 0; backColor = [0.2 0 0]; % CHanged from Gray - partly just to keep track of EMSE meshes... if ieNotDefined('fileName'), error('EMSE format file is required.'); end if ieNotDefined('mmPerVox'), error('mmPerVox is required.'); end if ieNotDefined('host'), host = 'localhost'; end if ieNotDefined('id'), id = 1; end if(nargout>2), saveTense = 1; end % Parse the varargin values for(ii=1:length(varargin)) if (strcmpi(varargin{ii}, 'RelaxIterations')), relaxIter = varargin{ii+1}; elseif(strcmpi(varargin{ii}, 'QueryFlag')), QueryFlag = varargin{ii+1}; elseif(strcmpi(varargin{ii}, 'MeshName')), meshName = varargin{ii+1}; elseif (strcmpi(varargin{ii},'Background')), backColor = varargin{ii+1}; end end % Set initial parameters for the mesh. msh = meshDefault(host,id,mmPerVox,relaxIter,meshName); if QueryFlag, msh = meshQuery(msh,summaryParams); end % If the window is already open, no harm is done. msh = mrmInitHostWindow(msh) [msh, lights] = mrmInitMesh(msh,backColor); disp('Importing mesh data from EMSE') % % *************************************************************** % We need to construct a basic msh structure from the file data. [vertex,face,edge,mesh]=mesh_emse2matlab2(fileName); % Vertices come back rotated in an odd way. The entire cortex is rotated 90 % degrees about the L/R axis (i.e. the sag view is rotated 90degrees % anticlockwise). v=vertex(1:2,:); v=v-128; rotMat=[0 -1;1 0]; v=v'*rotMat; vertex(1:2,:)=v'+128; LR=vertex(3,:); LR=(256-LR); vertex(3,:)=LR; face=face([3 2 1],:); nVerts=length(vertex); %vertex=vertex*10000; p.vertices=(vertex); p.triangles=face; p.triangles = p.triangles - 1 p.class='mesh'; % Sometimes we pass in the whole array of meshes. Mostly, just one, % though. host = meshGet(msh,'host'); windowID = meshGet(msh,'windowid'); if isempty(host), host = 'localhost'; end if isempty(windowID), error('Mesh must specify a window'); end %[id, status, result] = mrMesh ('localhost', windowID, 'add_actor', p) p.scale = meshGet(msh,'mmPerVox'); p = setSmooth(p,msh,1); p = setDecimate(p,msh,1); p.actor = meshGet(msh,'actor'); p.colors=ones(4,length(p.vertices))*255; [a,b,c]=mrmesh('localhost',id,'set_mesh',p) p.scale = meshGet(msh,'mmPerVox'); p = setSmooth(p,msh,1); p = setDecimate(p,msh,1); %p.actor = meshGet(msh,'actor'); p.normals=mrmGet(msh,'normals'); p.actor = meshGet(msh,'actor'); %disp('Building smoothed and decimated mesh for display...'); %mrmSet(msh,'buildMeshAndDecimateAndSmooth',voxels); %[msh] = mrmSet(msh,'smooth') % This is a little 'center object' routine. We could put this into mrmSet, % really. vertices = mrmGet(msh,'vertices'); mrmSet(msh,'origin',-mean(vertices')); % Save these unsmoothed data. unSmoothedData = mrmGet(msh,'data'); msh.initVertices=vertices; msh.grayLayers=3; view=getSelectedVolume; disp('Finding vertex to gray map'); % You have to do this before smoothing... v2gMap = mrmMapVerticesToGray(vertices,view.nodes,[1 1 1]); msh.vertexGrayMap=v2gMap; msh.grayToVertexMap = mrmMapGrayToVertices(view.nodes,vertices, [1 1 1]); % Now also try to find the other mapping: the mapping from the mesh to all % the gray nodes: So that we can ask: for any arbitray gray node, which % mesh point is it closest to? % If we smooth, the mesh, it is done here. if(relaxIter>0) mrmSet(msh,'smooth'); % We get the curvature colors from the uninflated mesh % We should figure out the correct value to use as our threshold. The mean % isn't ideal, since it is moved around by the large areas with arbitrary % curvature (eg. corpus callosum). What we really want is the value that % corresponds to zero curvature. % maybe make the specific curvature map colors adjustable? % We now use the actual curvature values, so we know that zero is zeros % curvature. disp('Setting up the curvature colors'); % Attach curvature data to the mesh. We turn on the color later, I think. msh=mrmSet(msh,'curvature'); p.colors=[repmat(msh.curvature,3,1); ones(1,length(msh.curvature))]*255; %[a,b,c]=mrmesh('localhost',id,'set_mesh',p) curvColorIntensity = 128*meshGet(msh,'curvatureModDepth'); % mesh.curvature_mod_depth; monochrome = uint8(round((double(msh.curvature>0)*2-1)*curvColorIntensity+127.5)); msh = mrmSet(msh,'colors',monochrome); disp('Storing the smoothed mesh data computed by mrMesh...'); data = mrmGet(msh,'data'); msh = meshSet(msh,'data',data); msh = meshSet(msh,'connectionMatrix',1); else % We don't smooth the data with mrMesh. We just assign it. msh = meshSet(msh,'data',unSmoothedData); msh = meshSet(msh,'connectionMatrix',1); end % In either case, we return a version of the data without smoothing. This % mesh is used to register with the gray coordinates. This is a little % disorganized. If we don't smooth, tenseMesh is identically msh. tenseMsh = msh; tenseMsh = meshSet(tenseMsh,'data',unSmoothedData); return; %--------------------------------------- function p = setSmooth(p,mesh,val) if val p.do_smooth = 1; p.smooth_iterations = meshGet(mesh,'smoothiterations'); p.smooth_relaxation = meshGet(mesh,'smoothrelaxation'); p.smooth_sinc_method = meshGet(mesh,'smoothmethod'); p.do_smooth_pre = meshGet(mesh,'smooth_pre'); else p.do_smooth = 0; p.do_smooth_pre = 0; end return; %---------------------------- function p = setDecimate(p,mesh,val) if val p.do_decimate = 1; p.decimate_reduction = meshGet(mesh,'decimatereduction'); p.decimate_iterations = meshGet(mesh,'decimateiterations'); else p.do_decimate = 0; end return;
github
andregouws/mrMeshPy-master
mrmViewer.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmViewer.m
9,185
utf_8
d0d0d67ec4da80e3dea9f568c4cdae55
function varargout = mrmViewer(varargin) % MRMVIEWER M-file for mrmViewer.fig % MRMVIEWER, by itself, creates a new MRMVIEWER or raises the existing % singleton*. % % H = MRMVIEWER returns the handle to a new MRMVIEWER or the handle to % the existing singleton*. % % MRMVIEWER('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MRMVIEWER.M with the given input arguments. % % MRMVIEWER('Property','Value',...) creates a new MRMVIEWER or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mrmViewer_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mrmViewer_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help mrmViewer % Last Modified by GUIDE v2.5 13-Jul-2011 13:55:22 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mrmViewer_OpeningFcn, ... 'gui_OutputFcn', @mrmViewer_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin & isstr(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT return; % --- Executes just before mrmViewer is made visible. function mrmViewer_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to mrmViewer (see VARARGIN) % Choose default command line output for mrmViewer handles.output = hObject; % Update handles structure guidata(hObject, handles); set(hObject,'Position',[0.8706 0.8308 0.1263 0.1250]); % UIWAIT makes mrmViewer wait for user response (see UIRESUME) % uiwait(handles.figure1); return; % --- Outputs from this function are returned to the command line. function varargout = mrmViewer_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; return; % -------------------------------------------------------------------- function menuFile_Callback(hObject, eventdata, handles) return; % -------------------------------------------------------------------- function menuLoad_Callback(hObject, eventdata, handles) % % Load a mesh file saved by mrVista/mrTools % uData = get(hObject,'userdata'); % It would be best to be able to read the list of currently open windows % and assign a number based on that. if ~checkfields(uData,'windowID'), nextWindow = 500; uData.windowID = nextWindow; else nextWindow = max(uData.windowID(:))+1; uData.windowID(end+1) = nextWindow; end % Read a mesh starting in the Matlab working directory. msh = mrmReadMeshFile(pwd); if isempty(msh), return; end msh = meshSet(msh,'windowid',nextWindow); % Display the mesh. Turn off the origin lines. msh = mrmInitMesh(msh); mrmSet(msh,'hidecursor'); name = meshGet(msh,'name'); if isempty(name), [p,name] = fileparts(filename); end mrmSet(msh,'title',name); % Save the file information in the window object's user data. We should be % doing this for mrDiffusion, too. And we should use this saved % information when we ask about Editing windows. set(hObject,'userdata',uData); % Added in ability to open associated movie maker - RFB 06/2010 if (get(handles.OpenMovieMakerCheckbox, 'Value')) mrmMakeMovieGUI(nextWindow); end return; % -------------------------------------------------------------------- function menuFileLoadMRD_Callback(hObject, eventdata, handles) % Read a Matlab file containing a mrDiffusion mrMesh data set. Then % display the data. % This should contain information about previously loaded data. Here we % store the new file information in uData. --- Or we should ... not yet % implemented. uData = get(hObject,'userdata'); % Locate the file persistent mrdPath; persistent lastMshID; curPath = pwd; if(isempty(mrdPath) || isequal(mrdPath,0)), mrdPath = curPath; end chdir(mrdPath); [f, mrdPath] = uigetfile({'*.mat'}, 'Load MRD mesh...'); chdir(curPath); if(isnumeric(f)), disp('Load Mesh (MRD) cancelled.'); return; end fname = fullfile(mrdPath, f); % Load the Mesh File. d = load(fname); msh = d.handles.mrMesh; if isempty(lastMshID), lastMshID = msh.id; else if msh.id == lastMshID lastMshID = lastMshID + 1; msh.id = lastMshID+1; end end % Make sure the mrMesh server is running if ~mrmCheckServer('localhost'), mrmStart(msh.id,msh.host); end mrmSet(msh,'refresh'); % Create the window and insert the data msh = dtiInitMrMeshWindow(msh); dtiMrMeshAddROIs(d.handles,msh); dtiMrMeshAddFGs(d.handles,msh); dtiMrMeshAddImages(d.handles,msh,d.origin,d.xIm,d.yIm,d.zIm); % Make sure the window number is part of the title. This way we can change the % title later if we by an Edt | Set Window Title pull down. Probably we % should keep track of all the loaded meshes and the window numbers. [p,fname,e] = fileparts(f); str = mrmSet(msh,'windowtitle',sprintf('%.0f %s',meshGet(msh,'id'),fname)); % Added in ability to open associated movie maker - RFB 06/2010 if (get(handles.OpenMovieMakerCheckbox, 'Value')) mrmMakeMovieGUI(msh.id); end return; % -------------------------------------------------------------------- function menuClose_Callback(hObject, eventdata, handles) closereq; return; % -------------------------------------------------------------------- function menuQuit_Callback(hObject, eventdata, handles) closereq; return; % -------------------------------------------------------------------- function menuEdit_Callback(hObject, eventdata, handles) return; % -------------------------------------------------------------------- function menuDelete_Callback(hObject, eventdata, handles) return; % -------------------------------------------------------------------- function menuHelp_Callback(hObject, eventdata, handles) return; % -------------------------------------------------------------------- function menuHelpGeneral_Callback(hObject, eventdata, handles) % hObject handle to menuHelpGeneral (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) helpMessage = 'Use mrmViewer to view Mesh Files. Ordinarily these have been saved by mrVista''s 3D window viewer or mrDiffusion.'; hdl = mrMessage(helpMessage,'left',[0.7,0.85,0.15, 0.1]); return % -------------------------------------------------------------------- function menuHelpMovie_Callback(hObject, eventdata, handles) % hObject handle to menuHelpMovie (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) doc('mrmMakeMovieGUI'); return % --- Executes on button press in btnLoad. function btnLoad_Callback(hObject, eventdata, handles) menuLoad_Callback(hObject, eventdata, handles) return; % --- Executes on button press in btnLoadMRD. function btnLoadMRD_Callback(hObject, eventdata, handles) menuFileLoadMRD_Callback(hObject, eventdata, handles) return; % -------------------------------------------------------------------- function menuOriginOff_Callback(hObject, eventdata, handles) msh.host = 'localhost'; msh.id = whichMeshWindow; msh.actor = 32; mrmSet(msh,'hidecursor') return; % -------------------------------------------------------------------- function id = whichMeshWindow % % This should be a check on uData values or something. prompt={'Enter mesh window'}; def={'1'}; dlgTitle='Select mesh window'; lineNo=1; answer=inputdlg(prompt,dlgTitle,lineNo,def); if isempty(answer), id = []; else id = str2num(answer{1}); end return; % -------------------------------------------------------------------- function menuEditWindowTitle_Callback(hObject, eventdata, handles) % hObject handle to menuEditWindowTitle (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) msh.host = 'localhost'; msh.id = whichMeshWindow; dlgTitle='mrmViewer Edit|Title'; prompt={'Enter window title'}; lineNo=1; def = {'Title'}; answer=inputdlg(prompt,dlgTitle,lineNo,def); if isempty(answer), disp('User canceled.'); return; else mrmSet(msh,'title',answer{1}); end return;
github
andregouws/mrMeshPy-master
mrmGet.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmGet.m
9,887
utf_8
e8dd0d99fd2d7c23b47d0386a3f73bb4
function val = mrmGet(msh,param,varargin) % Communicate parameter values with a mrMesh window. % % val = mrmGet(msh,param,varargin) % % The general object mesh, typically a brain surface, contains various % important parameters. These include the identity of the host computer % running the mrMesh server (usually 'localhost') the number of the mrMesh % window the Actor (i.e., object) within the window % % Actor values [0,31] are reserved with camera (0), cursor (1). New meshes % and lights are assigned an actor value of 32 and above. % % The values in the mesh structure are accessed through the meshGet routine. % The same mesh structure is used by mrMesh, mrGray and mrFlatMesh. Hence, % the mesh interface routines are kept in mrLoadRet-3.0\mrMesh\. % % Some parameters require additional specification. These can be passed as % additional arguments that are parsed by the varargin mechanism. % % See also: mrmSet, mrMesh, meshGet, meshSet % % Examples: % l = mrmGet(msh,'listOfActors'); % cRot = mrmGet(msh,'camerarotation'); % bColor = mrmGet(msh,'background'); % d = mrmGet(msh,'data'); % % BW (c) Copyright Stanford VISTASOFT Team % Programming Notes % * See mrmSet TODO List. % * Because mesh is a Matlab command, use the variable % name msh for the mesh parameter. % %% Default parameters if ieNotDefined('msh'), error('You must specify a mesh.'); end val = []; host = meshGet(msh,'host'); if isempty(host), host = 'localhost'; end windowID = meshGet(msh,'window id'); if isempty(windowID)|| windowID == -1, error('Mesh must specify a window'); end %% param = mrvParamFormat(param); switch lower(param) case 'help' % Help command doesn't seem to return anything into val % [tmp,foo,val] = mrMesh(host,windowID,'help'); help mrMesh case {'actordata','data','meshdata','alldata'} % If actorID is specified we only need msh.host and msh.windowID specified. % val = mrmGet(msh,'meshdata',actorID) % val = mrmGet(msh,'meshdata') if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_all = 1; % p.actor = actorCheck(msh); [tmp,status,val] = mrMesh(host,windowID,'get',p); %#ok<*ASGLU> if status < 0, val = []; end case {'meshvertices','vertices'} % val = mrmGet(msh,'meshvertices',actorID) % val = mrmGet(msh,'meshvertices') if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_vertices = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); if isempty(v) warning('No vertices returned'); else val = v.vertices; end case {'meshtriangles','triangles'} % val = mrmGet(msh,'meshtriangles',actorID) % val = mrmGet(msh,'meshtriangles') if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_triangles = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); val = v.triangles; case {'normals','meshnormals'} % val = mrmGet(msh,'mesh normals',actorID) % val = mrmGet(msh,'mesh normals'); if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_normals = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); val = v.normals; case {'actorrotation','rotation'} % val = mrmGet(msh,'actorrotation',actorID) % val = mrmGet(msh,'actorrotation') if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_rotation = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); val = v.rotation; case {'actororigin','origin'} % val = mrmGet(msh,'actororigin',actorID) % val = mrmGet(msh,'actororigin') if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_origin = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); val = v.origin; case {'actorcolors','colors','coloroverlay'} % val = mrmGet(msh,'actorcolors',actorID) % coloroverlay = mrmGet(msh,'actorcolors'); if isempty(varargin), p.actor = actorCheck(msh); else p.actor = varargin{1}; end p.get_colors = 1; [tmp,foo,v] = mrMesh(host,windowID,'get',p); % Should we return RGBalpha, or RGB? val = v.colors; case {'getactorproperties','getall'} % val = mrmGet(msh,param,actorNumber) if length(varargin) < 1, error('Actor number required.'); end p.actor = varargin{1}; p.get_all = 1; [tmp,foo,val] = mrMesh(host,windowID,'get',p); case {'allactors','actorlist','listofactors'} % val = mrmGet(msh,'actor list'); % % The camera is always actor 0. We don't returning that in this % list. The cursor appears to be 2-4? % We assume lights and objects are in the actors range 32-64 % We should probably have a different range for images, say 16-31? % Or 65-96? We can also decode which is which by the returned % values. So, mesh parameters have % % We test using the origin because lights and objects have an origin % and it is a small transfer. % p.get_origin = 1; for ii=1:10; p.actor = ii; [s,s(ii)] = mrMesh('localhost',windowID,'get',p); end systemList = find(s == 1); for ii=1:32; p.actor = ii+31; [s,o(ii)] = mrMesh('localhost',windowID,'get',p); end objectList = find(o == 1); objectList = objectList + 31; val.objectList = objectList; % Lights and Meshes are here val.systemList = systemList; % Camera and origin lines are here (I think). case {'camera','camera_all','cameraall'} p.actor = 0; p.get_all = 1; [tmp,foo,res] = mrMesh(host,windowID,'get',p); val = res; case 'camerarotation' p.get_rotation = 1; p.actor = 0; [tmp,foo,res] = mrMesh(host,windowID,'get',p); val = res.rotation; case 'cameraorigin' % val = mrmGet(msh,'cameraorigin'); p.actor = 0; p.get_origin = 1; [tmp,foo,res] = mrMesh(host,windowID,'get',p); val = res.origin; case 'cameraspace' % val = mrmGet(msh,'cameraspace'); p.actor = 0; p.get_camera_space = 1; [tmp,foo,res] = mrMesh(host,windowID,'get',p); val = res.camera_space; case 'background' % doesn't seem to work? [tmp,foo,val] = mrMesh(host,windowID,'get_background'); case 'screenshot' % ras 05/2007: somehow, I get the back-buffer which is not % updated (a previous mesh image, not the current screenshot). % I'm trying to insert a dummy command to update this buffer; hope % it doesn't make this unwieldy. I will try to resolve the issue % then come back and simplify this again. mrMesh(host,windowID,'refresh'); p.filename = 'nosave'; [tmp,foo,v] = mrMesh(host,windowID,'screenshot',p); val = permute(v.rgb, [2,1,3]); case {'cursorposition','cursor'} % val = mrmGet(msh,'cursor') p.actor = 1; % 2004.05.12 RFD: we now use new 'get_selection' command. This % returns the vertex number and the actor number rather than 3d % coords. In the end, this is the more appropriate thing to do. %tmp.get_origin = 1; %[id,stat,res] = mrMesh(host, windowID, 'get', tmp); %val = res.origin - meshGet(msh,'origin'); %val = val([2,1,3]) ./ meshGet(msh,'mmPerVox'); %val = val([2,1,3]); [id,stat,res] = mrMesh(host, windowID, 'get_selection', p); % This is more 0,1 differences between C and Matlab res.vertex = res.vertex+1; if(res.actor == meshGet(msh,'actor')) vert = meshGet(msh,'unsmoothedVertices'); val = vert(:,res.vertex)'; val = val([2,1,3]); val = val ./ meshGet(msh,'mmPerVox'); else val = res.position - meshGet(msh,'origin'); val = val([2,1,3]); val = val ./ meshGet(msh,'mmPerVox'); end case {'cursorvertex'} p.actor = 1; [id,stat,res] = mrMesh(host, windowID, 'get_selection', p); if(res.actor == meshGet(msh,'actor')) % The vertex numbering in mrMesh runs from [0,N-1]. In Matlab % the vertices run from [1,N]. val = res.vertex + 1; else % not assigned to a vector, return -1 val = -1; end case {'cursorraw','cursorinvolume'} % Warning: Remember that the vertex number returned by Dima is not % the same vertex number (it is one less) than the one we use to % list our vertices. We start from 1. He starts from 0. p.actor = 1; [id,stat,res] = mrMesh(host, windowID, 'get_selection', p); val = res; case {'curroi','roi'} [id,stat,val] = mrMesh(host, windowID, 'get_cur_roi'); if(isfield(val,'vertices')) val.vertices = val.vertices+1; end case {'meshsettings','settings','viewsettings','viewprefs'} val = meshSettings(msh); % ras 03/06 otherwise error('Unknown mrmMesh parameter'); end return; %---------------------- function actor = actorCheck(msh) % We need to know which actor corresponds to this mesh. I wrote this % routine rather than repeating the test throughout the code. % actor = meshGet(msh,'actor'); if isempty(actor) error('meshGet(msh,''get'') requires an actor in the mesh structure.'); end return;
github
andregouws/mrMeshPy-master
mrmMakeMovie.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmMakeMovie.m
2,415
utf_8
6a016c342fcc99acc4d928e88c9c3074
function mrmMakeMovie(id,rotBegin,rotEnd) % % % Function to make a movie of brain rotating left to ventral view. This % should really be a more general function, but this is a start. % % written by amr Jun 2010 % if ~exist('id','var'), id = 500; end if ~exist('rotBegin','var') mrmRotateCamera(id,'left') [rotBegin,zoom1] = mrmGetRotation(id); end if ~exist('rotEnd','var') mrmRotateCamera(id,'bottom') [rotEnd,zoom2] = mrmGetRotation(id); end %keyboard % Set the background color p.color=[0,0,0,1]; %p.color=[.3,.3,.3,1]; host = 'localhost'; %id = 174; mrMesh(host, id, 'background', p); % % rotate left to bottom rotY = [rotBegin(2):-pi/128:rotEnd(2)]; rotZ = [rotBegin(3):pi/128:rotEnd(3)]; rotX = ones(1,length(rotY))*pi; % rotate bottom to left % rotY = [rotEnd(2):pi/64:rotBegin(2)]; % rotZ = [rotEnd(3):-pi/64:rotBegin(3)]; % rotX = ones(1,length(rotY))*pi; n = length(rotX); %pitch = linspace(.5*pi, 1.5*pi, n); %pitch = -pi/2.5; %zoom = 1; movDir = '/biac3/wandell7/data/Words/Meshes/'; movFile = 'mrmRotateVentralToLeft.avi'; %mkdir('/tmp', 'mrmMovie'); clear M; %for(ii=1:length(pitch)) f.filename = 'nosave'; for(ii=1:length(rotX)) mrmRotateCamera(id, [rotX(ii) rotY(ii) rotZ(ii)], zoom1); [id,stat,res] = mrMesh(host, id, 'screenshot', f); M((1-1)*length(rotX)+ii) = im2frame(permute(res.rgb, [2,1,3])./255); %fname = sprintf('%c%0.2d.png', ltr(ii), jj); %fname = fullfile(movDir, fname); %imwrite(permute(res.rgb,[2,1,3])./255, fname); end %end %figure; movie(M,-3) movie2avi(M,fullfile(movDir,movFile)); %'/tmp/mrmMovieAllFrames.avi'); return function [rot,zoom] = mrmGetRotation(id) % Get rotation and zoom p.actor=0; p.get_all=1; [id,stat,r] = mrMesh('localhost', id, 'get', p); zoom = diag(chol(r.rotation'*r.rotation))'; rotMat = r.rotation/diag(zoom); % Note- there may be slight rounding errors allowing the inputs to % asin/atan go outside of the range (-1,1). May want to clip those. rot(2) = asin(rotMat(1,3)); if (abs(rot(2))-pi/2).^2 < 1e-9, rot(1) = 0; rot(3) = atan2(-rotMat(2,1), -rotMat(3,1)/rotMat(1,3)); else c = cos(rot(2)); rot(1) = atan2(rotMat(2,3)/c, rotMat(3,3)/c); rot(3) = atan2(rotMat(1,2)/c, rotMat(1,1)/c); end rot(1) = -rot(1); % flipped OpenGL Y-axis. rot(3) = -rot(3); fprintf('rot=[%0.6f %0.6f %0.6f];\nzoom=[%0.3f %0.3f %0.3f];\nfrustum=[%0.6f %0.6f %0.6f %0.6f];\n',rot,zoom,r.frustum); return
github
andregouws/mrMeshPy-master
mrmMakeMovieGUI_Waypoint.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmMakeMovieGUI/mrmMakeMovieGUI_Waypoint.m
4,744
utf_8
29d4ffefd0edeea9b598da7c883a409a
function varargout = mrmMakeMovieGUI_Waypoint(varargin) % MRMMAKEMOVIEGUI_WAYPOINT M-file for mrmMakeMovieGUI_Waypoint.fig % MRMMAKEMOVIEGUI_WAYPOINT, by itself, creates a new MRMMAKEMOVIEGUI_WAYPOINT or raises the existing % singleton*. % % H = MRMMAKEMOVIEGUI_WAYPOINT returns the handle to a new MRMMAKEMOVIEGUI_WAYPOINT or the handle to % the existing singleton*. % % MRMMAKEMOVIEGUI_WAYPOINT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MRMMAKEMOVIEGUI_WAYPOINT.M with the given input arguments. % % MRMMAKEMOVIEGUI_WAYPOINT('Property','Value',...) creates a new MRMMAKEMOVIEGUI_WAYPOINT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mrmMakeMovieGUI_Waypoint_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mrmMakeMovieGUI_Waypoint_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help mrmMakeMovieGUI_Waypoint % Last Modified by GUIDE v2.5 29-Jun-2010 23:05:44 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mrmMakeMovieGUI_Waypoint_OpeningFcn, ... 'gui_OutputFcn', @mrmMakeMovieGUI_Waypoint_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT end function mrmMakeMovieGUI_Waypoint_OpeningFcn(hObject, eventdata, handles, parentFigure, meshID, editData) % Choose default command line output for mrmMakeMovieGUI_Waypoint if (~exist('editData', 'var')), editData = []; end handles.output = hObject; handles.parent = parentFigure; handles.meshID = meshID; handles.editData = editData; % Update handles structure guidata(hObject, handles); Waypoint_InitFcn(hObject, handles); end function Waypoint_InitFcn(hObject, handles) set(handles.ViewJumpMenu, 'String', {'Front','Back','Left','Right','Bottom','Top'}); if (~isempty(handles.editData)) editData = handles.editData; set(handles.WaypointAddButton, 'String', 'Update'); set(handles.WaypointLabelTextField, 'String', editData.label); end guidata(hObject, handles); end function varargout = mrmMakeMovieGUI_Waypoint_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; end function WaypointAddButton_Callback(hObject, eventdata, handles) [rotation frustum origin] = mrmGetRotation(handles.meshID); waypoint.eventType = 'waypoint'; waypoint.rotation = rotation; waypoint.frustum = frustum; waypoint.origin = origin; waypoint.label = get(handles.WaypointLabelTextField, 'String'); set(handles.parent, 'UserData', waypoint); close(handles.figure1); end function ViewJumpMenu_Callback(hObject, eventdata, handles) strings = get(handles.ViewJumpMenu, 'String'); index = get(handles.ViewJumpMenu, 'Value'); mrmRotateCamera(handles.meshID,strings{index}) end function mrmMakeMovieGUI_Waypoint_DeleteFcn(hObject, eventdata, handles) set(handles.parent, 'UserData', []); end function [rot, frustum, origin] = mrmGetRotation(id) % Written by RFD? Copied from original mrmMakeMovieGUI % Get rotation and zoom p.actor=0; p.get_all=1; [id,stat,r] = mrMesh('localhost', id, 'get', p); zoom = diag(chol(r.rotation'*r.rotation))'; rotMat = r.rotation/diag(zoom); % Note- there may be slight rounding errors allowing the inputs to % asin/atan go outside of the range (-1,1). May want to clip those. rot(2) = asin(rotMat(1,3)); if (abs(rot(2))-pi/2).^2 < 1e-9, rot(1) = 0; rot(3) = atan2(-rotMat(2,1), -rotMat(3,1)/rotMat(1,3)); else c = cos(rot(2)); rot(1) = atan2(rotMat(2,3)/c, rotMat(3,3)/c); rot(3) = atan2(rotMat(1,2)/c, rotMat(1,1)/c); end rot(1) = -rot(1); % flipped OpenGL Y-axis. rot(3) = -rot(3); % ??? don't know why it's necessary frustum = r.frustum; origin = r.origin; end
github
andregouws/mrMeshPy-master
mrmMakeMovieGUI_Transition.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmMakeMovieGUI/mrmMakeMovieGUI_Transition.m
4,452
utf_8
40a785eea9283100dd17a89bc98eac89
function varargout = mrmMakeMovieGUI_Transition(varargin) % MRMMAKEMOVIEGUI_TRANSITION M-file for mrmMakeMovieGUI_Transition.fig % MRMMAKEMOVIEGUI_TRANSITION, by itself, creates a new MRMMAKEMOVIEGUI_TRANSITION or raises the existing % singleton*. % % H = MRMMAKEMOVIEGUI_TRANSITION returns the handle to a new MRMMAKEMOVIEGUI_TRANSITION or the handle to % the existing singleton*. % % MRMMAKEMOVIEGUI_TRANSITION('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MRMMAKEMOVIEGUI_TRANSITION.M with the given input arguments. % % MRMMAKEMOVIEGUI_TRANSITION('Property','Value',...) creates a new MRMMAKEMOVIEGUI_TRANSITION or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mrmMakeMovieGUI_Transition_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mrmMakeMovieGUI_Transition_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help mrmMakeMovieGUI_Transition % Last Modified by GUIDE v2.5 29-Jun-2010 23:04:34 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mrmMakeMovieGUI_Transition_OpeningFcn, ... 'gui_OutputFcn', @mrmMakeMovieGUI_Transition_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT end function mrmMakeMovieGUI_Transition_OpeningFcn(hObject, eventdata, handles, parentFigure, editData) % Choose default command line output for mrmMakeMovieGUI_Transition if (~exist('editData', 'var')), editData = []; end handles.output = hObject; handles.parent = parentFigure; handles.editData = editData; % Update handles structure guidata(hObject, handles); Transition_InitFcn(hObject, handles); end function Transition_InitFcn(hObject, handles) strings = {'+', 'FIX', '-'}; set(handles.RotateXMenu, 'String', strings); set(handles.RotateYMenu, 'String', strings); set(handles.RotateZMenu, 'String', strings); if (~isempty(handles.editData)) editData = handles.editData; set(handles.TransitionAddButton, 'String', 'Update'); ind = cellfind(strings, editData.rotate{1}); set(handles.RotateXMenu, 'Value', ind); ind = cellfind(strings, editData.rotate{2}); set(handles.RotateYMenu, 'Value', ind); ind = cellfind(strings, editData.rotate{3}); set(handles.RotateZMenu, 'Value', ind); set(handles.FrameCountTextField, 'String', num2str(editData.frames)); set(handles.TransitionLabelTextField, 'String', editData.label); end guidata(hObject, handles); end function varargout = mrmMakeMovieGUI_Transition_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; end function TransitionAddButton_Callback(hObject, eventdata, handles) frames = get(handles.FrameCountTextField, 'String'); if (isempty(frames)) errordlg('Please specify a frame count.'); return; end strings = {'+', 'FIX', '-'}; transition.eventType = 'transition'; transition.rotate = cell(1,3); transition.rotate{1} = strings{get(handles.RotateXMenu, 'Value')}; transition.rotate{2} = strings{get(handles.RotateYMenu, 'Value')}; transition.rotate{3} = strings{get(handles.RotateZMenu, 'Value')}; transition.frames = str2num(frames); transition.label = get(handles.TransitionLabelTextField, 'String'); set(handles.parent, 'UserData', transition); close(handles.figure1); end function mrmMakeMovieGUI_Transition_DeleteFcn(hObject, eventdata, handles) set(handles.parent, 'UserData', []); end
github
andregouws/mrMeshPy-master
mrmMakeMovieGUI.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmMakeMovieGUI/mrmMakeMovieGUI.m
22,903
utf_8
fc4be7c7cb86bd358de9c6648a54e8e7
function varargout = mrmMakeMovieGUI(varargin) % mrmMakeMovieGUI(meshID) % Given a mesh ID #, opens a GUI allowing you to set up a series of % events to be displayed in a .avi file. % % Events consist of waypoints, transitions, and pauses. All pauses must % follow waypoints. Transitions must appear with waypoints on either % side. Move the mesh manually to find the desired waypoint location, or % use the presets. % % Usage: % mrmMakeMovieGUI(meshID); % % Known issues: % Jump to view isn't accurate with diffusion meshes for whatever reason. % Probably need to edit mrmRotateCamera and add a conditional for when % we're rotating such meshes, providing different coordinates (should % they be consistent across diffusion meshes). % % [[email protected] 2010] % % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mrmMakeMovieGUI_OpeningFcn, ... 'gui_OutputFcn', @mrmMakeMovieGUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT end function mrmMakeMovieGUI_OpeningFcn(hObject, eventdata, handles, meshID) if (~exist('meshID', 'var')), meshID = []; end % Choose default command line output for mrmMakeMovieGUI handles.output = hObject; handles.meshID = meshID; handles.events = {}; handles.isSaved = true; handles.filename = []; handles.filedir = []; handles.clipboard = []; handles.index = 0; set(handles.EventTypeMenu, 'String', {'Waypoint', 'Transition', 'Pause'}); % Update handles structure handles = UpdateFileStatus(handles, true); guidata(hObject, handles); end function varargout = mrmMakeMovieGUI_OutputFcn(hObject, eventdata, handles) if (isempty(handles.meshID)) fprintf(1, 'No mesh ID # specified - closing GUI.\n'); close(handles.MakeMovieGUI); end end function handles = TurnOffInvalidButtons(handles) if (isempty(handles.clipboard)) enablePaste = 'off'; else enablePaste = 'on'; end if (length(handles.events) < 1) enableEventDependent = 'off'; else enableEventDependent = 'on'; end % Paste buttons set(handles.EventMenu_Paste, 'Enable', enablePaste); set(handles.EventContextMenu_Paste, 'Enable', enablePaste); % Buttons dependent on existence of events set(handles.ExportButton, 'Enable', enableEventDependent); set(handles.EditEventButton, 'Enable', enableEventDependent); set(handles.PreviewButton, 'Enable', enableEventDependent); set(handles.DeleteEventButton, 'Enable', enableEventDependent); set(handles.MoveDownButton, 'Enable', enableEventDependent); set(handles.MoveUpButton, 'Enable', enableEventDependent); set(handles.MovieMenu_Export, 'Enable', enableEventDependent); set(handles.MovieMenu_Preview, 'Enable', enableEventDependent); set(handles.EventMenu_Delete, 'Enable', enableEventDependent); set(handles.EventMenu_Edit, 'Enable', enableEventDependent); set(handles.EventMenu_Copy, 'Enable', enableEventDependent); set(handles.EventMenu_Cut, 'Enable', enableEventDependent); set(handles.EventContextMenu_Delete, 'Enable', enableEventDependent); set(handles.EventContextMenu_Edit, 'Enable', enableEventDependent); set(handles.EventContextMenu_Copy, 'Enable', enableEventDependent); set(handles.EventContextMenu_Cut, 'Enable', enableEventDependent); set(handles.FileMenu_SaveAs, 'Enable', enableEventDependent); set(handles.FileMenu_Save, 'Enable', enableEventDependent); end function handles = UpdateFileStatus(handles, saving) if (~isempty(handles.filename)) if (saving) handles.isSaved = true; set(handles.FilenameText, 'String', handles.filename); else handles.isSaved = false; set(handles.FilenameText, 'String', [handles.filename '*']); end else if (saving) handles.isSaved = true; else handles.isSaved = false; end set(handles.FilenameText, 'String', 'No save file.'); end handles = TurnOffInvalidButtons(handles); end function EventList_Callback(hObject, eventdata, handles) if (length(handles.events) < 1), return; end index = get(handles.EventList, 'Value'); event = handles.events{index}; if (strcmp(event.eventType,'waypoint')) mrmRotateCamera(handles.meshID, event.rotation, [], event.frustum, [], event.origin); end end function MoveUpButton_Callback(hObject, eventdata, handles) index = get(handles.EventList, 'Value'); ExchangeEvents(hObject, handles, index, index - 1); end function MoveDownButton_Callback(hObject, eventdata, handles) index = get(handles.EventList, 'Value'); ExchangeEvents(hObject, handles, index, index + 1); end function ExchangeEvents(hObject, handles, selected, exchanged) strings = get(handles.EventList, 'String'); if ((exchanged > length(strings)) || exchanged < 1), return; end tmpString = strings{exchanged}; strings{exchanged} = strings{selected}; strings{selected} = tmpString; tmpEvent = handles.events{exchanged}; handles.events{exchanged} = handles.events{selected}; handles.events{selected} = tmpEvent; selected = exchanged; set(handles.EventList, 'String', strings); set(handles.EventList, 'Value', selected); handles = UpdateFileStatus(handles, false); guidata(hObject, handles); end function AddEvent_Callback(hObject, eventdata, handles, eventType, doInsert) % Navigating around a godawful bug with single selection GUIs if (length(handles.events) < 1), set(handles.EventList, 'Value', 1); end % Get event type from drop down if it's not specified if (~exist('eventType', 'var') || isempty(eventType)) eventTypes = get(handles.EventTypeMenu, 'String'); eventType = eventTypes{get(handles.EventTypeMenu, 'Value')}; end % Ship off task of getting parameters about event to smaller GUIs switch lower(eventType) case 'waypoint' waitfor(mrmMakeMovieGUI_Waypoint(handles.MakeMovieGUI, handles.meshID)); case 'transition' waitfor(mrmMakeMovieGUI_Transition(handles.MakeMovieGUI)); case 'pause' waitfor(mrmMakeMovieGUI_Pause(handles.MakeMovieGUI)); otherwise fprintf(1, 'Unrecognized radio button selected.\n'); end % Get data back from the GUIs, if any data = get(handles.MakeMovieGUI, 'UserData'); % Get the data back from the pop up if (isempty(data)), return; end % We're done if there are no params % If we're not inserting, tack it after current selection numEvents = length(handles.events); if (~exist('doInsert', 'var') || isempty(doInsert) || (numEvents < 1)) index = numEvents + 1; else index = get(handles.EventList, 'Value') + 1; end handles = InsertEvent(hObject, handles, data, index); set(handles.MakeMovieGUI, 'UserData', []); % Done with the GUI data, clear it guidata(hObject, handles); end function handles = InsertEvent(hObject, handles, event, position) % Insert event into visible list and storage array at specified position handles.events = CellInsert(handles.events, event, position); strings = get(handles.EventList, 'String'); strings = CellInsert(strings, GetListString(event), position); set(handles.EventList, 'Value', position); set(handles.EventList, 'String', strings); handles = UpdateFileStatus(handles, false); end function cells = CellInsert(cells, value, index) % Insert a value into a cell, shifting over the values in its place if % necessary numCells = length(cells); if (numCells >= index) for i = numCells:-1:index cells{i+1} = cells{i}; end end cells{index} = value; end function listString = GetListString(data) switch (data.eventType) case 'waypoint' string = '[WAYPOINT]'; case 'transition' string = '[TRANSITION]'; case 'pause' string = '[PAUSE]'; otherwise fprintf(1, 'Unrecognized event type ''%s''', data.eventType); listString = []; return; end listString = sprintf('%s %s', string, data.label); end function DeleteEvent_Callback(hObject, eventdata, handles) index = get(handles.EventList, 'Value'); strings = get(handles.EventList, 'String'); strings{index} = []; handles.events{index} = []; strings = cellRemoveEmpty(strings); handles.events = cellRemoveEmpty(handles.events); set(handles.EventList, 'String', strings); numEvents = length(handles.events); if (numEvents == 0) index = 1; else if (index > numEvents) index = numEvents; end end set(handles.EventList, 'Value', index); handles = UpdateFileStatus(handles, false); guidata(hObject, handles); end function frames = CountFrames(events) frames = 0; numEvents = length(events); for i = 1:numEvents event = events{i}; if (isfield(event, 'frames')) frames = frames + event.frames; end end end function RenderMovie_Callback(hObject, eventdata, handles, preview) if (AreEventsWellFormed(handles)) frames = CountFrames(handles.events); framesPerSec = str2num(get(handles.FPSTextField, 'String')); events = handles.events; nEvents = length(events); lastWaypoint = []; if (~preview) % Set up for saving out movie [movFile, movDir] = uiputfile('brainMovie.avi'); if (movFile == 0), return; end host = 'localhost'; f.filename = 'nosave'; frame = 1; ShowProgress(handles, movFile, 0); % Skipping preallocation of M, will do so if it's too slow end for i = 1:nEvents event = handles.events{i}; switch (event.eventType) case 'transition' [rotation frustum origin] = BuildTransition(event, lastWaypoint, GetNextWaypoint(events, i)); for j = 1:event.frames mrmRotateCamera(handles.meshID, rotation(j, :), [], frustum(j, :), [], origin(j, :)); if (~preview) [id,stat,res] = mrMesh(host, handles.meshID, 'screenshot', f); ShowProgress(handles, movFile, frame/frames * 100); M(frame) = im2frame(permute(res.rgb, [2,1,3])./255); frame = frame + 1; end end case 'waypoint' lastWaypoint = event; mrmRotateCamera(handles.meshID, event.rotation, [], event.frustum, [], event.origin); case 'pause' if (preview) pause(event.frames/framesPerSec); else [id,stat,res] = mrMesh(host, handles.meshID, 'screenshot', f); for j = 1:event.frames ShowProgress(handles, movFile, frame/frames * 100); M(frame) = im2frame(permute(res.rgb, [2,1,3])./255); frame = frame + 1; end end otherwise fprintf(1, 'Unrecognized event type ''%s''', data.eventType); return; end end if (~preview) if ispc % Compressors for Windows are annoying. None works. Not % sure if the others in doc movie2avi work. movie2avi(M, fullfile(movDir,movFile), ... 'FPS', framesPerSec, ... 'Compression','RLE'); else % Unix/Mac movie2avi(M, fullfile(movDir,movFile), ... 'FPS', framesPerSec, ... 'Compression','None'); end set(handles.ProgressText, 'String', []); end else errordlg('Invalid events list. See wiki for guidelines.'); end end function ShowProgress(handles, filename, percent) set(handles.ProgressText, 'String', sprintf('Exporting %s... %2.0f%%', filename, percent)); end function [rotation frustum origin] = BuildTransition(transition, waypointStart, waypointEnd) nFrames = transition.frames; rotation = zeros(nFrames, 3); rotStart = waypointStart.rotation; rotEnd = waypointEnd.rotation; for i = 1:3 if (rotEnd(i) == rotStart(i)) rotation(:, i) = rotStart(i); continue; end switch (transition.rotate{i}) case '+' if (rotEnd(i) < rotStart(i)) rotEnd(i) = pi + (pi + rotEnd(i)); end case '-' if (rotEnd(i) > rotStart(i)) rotEnd(i) = -pi - (pi - rotEnd(i)); end case 'FIX' rotation(:,i) = rotStart(i); continue; otherwise fprintf(1, 'Unrecognized rotation direction ''%s''', transition.rotate{i}); end if (rotEnd(i) == rotStart(i)) rotation(:, i) = rotStart(i); continue; end delta = rotEnd(i) - rotStart(i); rotation(:, i) = rotStart(i):(delta/(nFrames - 1)):rotEnd(i); end frustum = InterpolateFrames(waypointStart.frustum, waypointEnd.frustum, nFrames); origin = InterpolateFrames(waypointStart.origin, waypointEnd.origin, nFrames); end function vector = InterpolateFrames(start, finish, nFrames) nEntries = length(start); vector = zeros(nFrames, nEntries); for i = 1:nEntries if (start(i) == finish(i)) vector(:,i) = start(i); continue; end delta = finish(i) - start(i); vector(:,i) = start(i):(delta/(nFrames - 1)):finish(i); end end function waypoint = GetNextWaypoint(events, startInd) waypoint = []; for i = startInd:length(events) if (strcmp(events{i}.eventType, 'waypoint')) waypoint = events{i}; return; end end end function bool = AreEventsWellFormed(handles) events = handles.events; nEvents = length(events); if (nEvents < 2) % Need at least 2 events (waypoint + pause) to proceed bool = false; return; end event = events{1}; if (~(strcmp(event.eventType, 'waypoint'))) % First event needs to be a waypoint bool = false; return; end balanceCounter = 0; hasFrames = 0; for i = 2:nEvents event = events{i}; if (~hasFrames && (strcmp(event.eventType, 'pause') || strcmp(event.eventType, 'transition'))) hasFrames = 1; end if (strcmp(event.eventType, 'transition')) if (balanceCounter), bool = false; return; end balanceCounter = balanceCounter + 1; elseif (strcmp(event.eventType, 'waypoint')) if (~balanceCounter), continue; end balanceCounter = balanceCounter - 1; elseif (strcmp(event.eventType, 'pause')) if (balanceCounter), bool = false; return; end end end if (~hasFrames || balanceCounter), bool = false; return; end bool = true; end function EditEvent_Callback(hObject, eventdata, handles) events = handles.events; nEvents = length(events); if (nEvents < 1), return; end selected = get(handles.EventList, 'Value'); editData = events{selected}; switch (editData.eventType) case 'waypoint' waitfor(mrmMakeMovieGUI_Waypoint(handles.MakeMovieGUI, handles.meshID, editData)); case 'transition' waitfor(mrmMakeMovieGUI_Transition(handles.MakeMovieGUI, editData)); case 'pause' waitfor(mrmMakeMovieGUI_Pause(handles.MakeMovieGUI, editData)); otherwise fprintf(1, 'Unrecognized radio button selected.\n'); end editData = get(handles.MakeMovieGUI, 'UserData'); if (isempty(editData)), return; end handles.events{selected} = editData; strings = get(handles.EventList, 'String'); strings{selected} = GetListString(editData); set(handles.EventList, 'String', strings); handles = UpdateFileStatus(handles, false); set(handles.MakeMovieGUI, 'UserData', []); % Clear it out to not muck up future use of this var guidata(hObject, handles); end function SaveData(handles) if (~isempty(handles.filename)) fileID = 'EventsList'; version = 1; events = handles.events; save(fullfile(handles.filedir,handles.filename), 'fileID', 'version', 'events'); end end function SaveCheck(hObject, eventdata, handles) if (~handles.isSaved) buttonChosen = questdlg('Save changes?', 'MakeMovieGUI', 'Yes', 'No', 'Yes'); if (strcmp(buttonChosen,'Yes')) Save_Callback(hObject, eventdata, handles); end end end function New_Callback(hObject, eventdata, handles) SaveCheck(hObject, eventdata, handles); handles.events = []; set(handles.EventList, 'String', []); set(handles.EventList, 'Value', 1); handles.filename = []; handles.filedir = []; handles = UpdateFileStatus(handles, true); guidata(hObject, handles); end function Open_Callback(hObject, eventdata, handles) [filename filedir] = uigetfile('*.mat'); if (filename == 0), return; end file = load(fullfile(filedir,filename)); if (strcmp(file.fileID, 'EventsList')) if (file.version <= 1) handles.filename = filename; handles.filedir = filedir; handles.events = {}; set(handles.EventList, 'String', []); set(handles.EventList, 'Value', 1); for i = 1:length(file.events) handles = InsertEvent(hObject, handles, file.events{i}, i); end handles = UpdateFileStatus(handles, true); guidata(hObject, handles); else errordlg('Incompatible eventsList file.'); end else errordlg('Corrupt/invalid eventsList file.'); end end function Save_Callback(hObject, eventdata, handles) if (isempty(handles.filename)) SaveAs_Callback(hObject, eventdata, handles); else handles = UpdateFileStatus(handles, true); SaveData(handles); guidata(hObject, handles); end end function SaveAs_Callback(hObject, eventdata, handles) [filename, filedir] = uiputfile('brainMovie.mat'); if (filename == 0), return; end handles.filename = filename; handles.filedir = filedir; handles = UpdateFileStatus(handles, true); SaveData(handles); guidata(hObject, handles); end function Quit_Callback(hObject, eventdata, handles) SaveCheck(hObject, eventdata, handles); close(handles.MakeMovieGUI); end function EventList_KeyPressFcn(hObject, eventdata, handles) if (~isempty(cellfind(eventdata.Modifier, 'control')) || ... ~isempty(cellfind(eventdata.Modifier, 'command'))) % done to support mac as well as linux switch (eventdata.Key) case 'x' CutEvent_Callback(hObject, eventdata, handles); case 'c' CopyEvent_Callback(hObject, eventdata, handles); case 'v' PasteEvent_Callback(hObject, eventdata, handles); case 'm' EditEvent_Callback(hObject, eventdata, handles); case 'd' DeleteEvent_Callback(hObject, eventdata, handles); case 'n' New_Callback(hObject, eventdata, handles); case 'o' Open_Callback(hObject, eventdata, handles); case 's' Save_Callback(hObject, eventdata, handles); case 'q' Quit_Callback(hObject, eventdata, handles); case 'p' RenderMovie_Callback(hObject, eventdata, handles, 1); case 'e' RenderMovie_Callback(hObject, eventdata, handles, 0); otherwise end else switch (eventdata.Key) case 'a' MoveUpButton_Callback(hObject, eventdata, handles); case 'z' MoveDownButton_Callback(hObject, eventdata, handles); case 'delete' DeleteEvent_Callback(hObject, eventdata, handles); otherwise end end end function CutEvent_Callback(hObject, eventdata, handles) if (length(handles.events) < 1), return; end selected = get(handles.EventList, 'Value'); handles.clipboard = handles.events{selected}; DeleteEvent_Callback(hObject, eventdata, handles); end function CopyEvent_Callback(hObject, eventdata, handles) if (length(handles.events) < 1), return; end selected = get(handles.EventList, 'Value'); handles.clipboard = handles.events{selected}; handles = TurnOffInvalidButtons(handles); guidata(hObject, handles); end function PasteEvent_Callback(hObject, eventdata, handles) if (~isempty(handles.clipboard)) if (length(handles.events) < 1) handles = InsertEvent(hObject, handles, handles.clipboard, 1); else selected = get(handles.EventList, 'Value'); handles = InsertEvent(hObject, handles, handles.clipboard, selected + 1); end guidata(hObject, handles); end end
github
andregouws/mrMeshPy-master
mrmMakeMovieGUI_Pause.m
.m
mrMeshPy-master/legacy/mrMesh/mrm/mrmMakeMovieGUI/mrmMakeMovieGUI_Pause.m
3,455
utf_8
2bb67f063f553fbaefb2021090109889
function varargout = mrmMakeMovieGUI_Pause(varargin) % MRMMAKEMOVIEGUI_PAUSE M-file for mrmMakeMovieGUI_Pause.fig % MRMMAKEMOVIEGUI_PAUSE, by itself, creates a new MRMMAKEMOVIEGUI_PAUSE or raises the existing % singleton*. % % H = MRMMAKEMOVIEGUI_PAUSE returns the handle to a new MRMMAKEMOVIEGUI_PAUSE or the handle to % the existing singleton*. % % MRMMAKEMOVIEGUI_PAUSE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MRMMAKEMOVIEGUI_PAUSE.M with the given input arguments. % % MRMMAKEMOVIEGUI_PAUSE('Property','Value',...) creates a new MRMMAKEMOVIEGUI_PAUSE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mrmMakeMovieGUI_Pause_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mrmMakeMovieGUI_Pause_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help mrmMakeMovieGUI_Pause % Last Modified by GUIDE v2.5 18-Jun-2010 20:12:09 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mrmMakeMovieGUI_Pause_OpeningFcn, ... 'gui_OutputFcn', @mrmMakeMovieGUI_Pause_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT end function mrmMakeMovieGUI_Pause_OpeningFcn(hObject, eventdata, handles, parentFigure, editData) % Choose default command line output for mrmMakeMovieGUI_Pause if (~exist('editData', 'var')), editData = []; end handles.output = hObject; handles.parent = parentFigure; handles.editData = editData; % Update handles structure guidata(hObject, handles); Pause_InitFcn(hObject, handles); end function Pause_InitFcn(hObject, handles) if (~isempty(handles.editData)) editData = handles.editData; set(handles.PauseAddButton, 'String', 'Update'); set(handles.FrameCountTextField, 'String', num2str(editData.frames)); set(handles.PauseLabelTextField, 'String', editData.label); end end function varargout = mrmMakeMovieGUI_Pause_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; end function PauseAddButton_Callback(hObject, eventdata, handles) frames = get(handles.FrameCountTextField, 'String'); if (isempty(frames)) errordlg('Please specify a frame count.'); return; end pause.eventType = 'pause'; pause.frames = str2num(frames); pause.label = get(handles.PauseLabelTextField, 'String'); set(handles.parent, 'UserData', pause); close(handles.figure1); end function mrmMakeMovieGUI_Pause_DeleteFcn(hObject, eventdata, handles) set(handles.parent, 'UserData', []); end
github
andregouws/mrMeshPy-master
dtiSplitFourImages.m
.m
mrMeshPy-master/legacy/mrMesh/mrDiffusion/dtiSplitFourImages.m
4,601
utf_8
aa0b90778b09e27998fda42d59bfe848
function [images,imOrigin] = dtiSplitFourImages(handles,xIm,yIm,zIm) % % [images,imOrigin1,imOrigin2,imOrigin3,imOrigin4] = ... % dtiSplitFourImages(handles,xIm,yIm,zIm,imOrigin) % % Splits each of the images xIm, yIm, and zIm into four images stored in % the images structure. This is done so that transparency could be % correctly computed in mrMesh. The center point where the images are cut % is the current position in dtiFiberUI. % % Inputs: % - handles : current handles % - xIm : image on the x plane % - yIm : image on the y plane % - zIm : image on the z plane % % Output: % - images : structure containing the 12 images(xIm1,xIm2...) % - imOrigin1,2,3,4 : origins of the new images. It is in a format that % facilitates the call of dtiAddImages % % Written by : gb 10/24/2005 (Guillaume B.?) % % Stanford VISTA Team % xform = dtiGet(handles,'curacpc2imgxform'); images = struct('xIm',[],'yIm',[],'zIm',[]); imOrigin = cell(1,4); imOrigin{1} = struct('x',[],'y',[],'z',[]); imOrigin{2} = struct('x',[],'y',[],'z',[]); imOrigin{3} = struct('x',[],'y',[],'z',[]); imOrigin{4} = struct('x',[],'y',[],'z',[]); sz = [size(zIm'); size(yIm); size(xIm')]; imSize = 2^ceil(log2(max(sz(:)))); imDims = dtiGet(1, 'defaultBoundingBox'); realCenter = dtiGet(handles, 'acpcpos'); center = floor(realCenter - imDims(1,:)) + 1; center(center<1) = 1; %center(center> if ~isempty(xIm) images.xIm{1} = dtiImagePad(xIm(1:floor(center(2)),1:floor(center(3))),0,imSize); images.xIm{2} = dtiImagePad(xIm(1:floor(center(2)),floor(center(3)):end),1,imSize); images.xIm{3} = dtiImagePad(xIm(floor(center(2)):end,floor(center(3)):end),2,imSize); images.xIm{4} = dtiImagePad(xIm(floor(center(2)):end,1:floor(center(3))),3,imSize); xOffset = [0 size(images.xIm{1})]/2; imOrigin{1}.x = realCenter + [0 -xOffset(2) -xOffset(3)]; imOrigin{2}.x = realCenter + [0 -xOffset(2) +xOffset(3)]; imOrigin{3}.x = realCenter + [0 +xOffset(2) +xOffset(3)]; imOrigin{4}.x = realCenter + [0 +xOffset(2) -xOffset(3)]; end if ~isempty(yIm) images.yIm{1} = dtiImagePad(yIm(1:floor(center(1)),1:floor(center(3))),0,imSize); images.yIm{2} = dtiImagePad(yIm(1:floor(center(1)),floor(center(3)):end),1,imSize); images.yIm{3} = dtiImagePad(yIm(floor(center(1)):end,floor(center(3)):end),2,imSize); images.yIm{4} = dtiImagePad(yIm(floor(center(1)):end,1:floor(center(3))),3,imSize); yOffset = [size(images.yIm{1},1) 0 size(images.yIm{1},2)]/2; imOrigin{1}.y = realCenter + [-yOffset(1) 0 -yOffset(3)]; imOrigin{2}.y = realCenter + [-yOffset(1) 0 +yOffset(3)]; imOrigin{3}.y = realCenter + [+yOffset(1) 0 +yOffset(3)]; imOrigin{4}.y = realCenter + [+yOffset(1) 0 -yOffset(3)]; end if ~isempty(zIm) images.zIm{1} = dtiImagePad(zIm(1:floor(center(2)),1:floor(center(1))),0,imSize); images.zIm{2} = dtiImagePad(zIm(1:floor(center(2)),floor(center(1)):end),1,imSize); images.zIm{3} = dtiImagePad(zIm(floor(center(2)):end,floor(center(1)):end),2,imSize); images.zIm{4} = dtiImagePad(zIm(floor(center(2)):end,1:floor(center(1))),3,imSize); zOffset = [size(images.zIm{1}) 0]/2; imOrigin{1}.z = realCenter + [-zOffset(1) -zOffset(2) 0]; imOrigin{2}.z = realCenter - [-zOffset(1) +zOffset(2) 0]; imOrigin{3}.z = realCenter + [+zOffset(1) +zOffset(2) 0]; imOrigin{4}.z = realCenter - [+zOffset(1) -zOffset(2) 0]; end if(0)% isunix for(ii=1:4) if(~isempty(images.xIm)) images.xIm{ii}(1,:)=0; images.xIm{ii}(end,:)=0; images.xIm{ii}(:,1)=0; images.xIm{ii}(:,end)=0; end if(~isempty(images.yIm)) images.yIm{ii}(1,:)=0; images.yIm{ii}(end,:)=0; images.yIm{ii}(:,1)=0; images.yIm{ii}(:,end)=0; end if(~isempty(images.zIm)) images.zIm{ii}(1,:)=0; images.zIm{ii}(end,:)=0; images.zIm{ii}(:,1)=0; images.zIm{ii}(:,end)=0; end end end return % ---------------------------------------------------------------------- % function [newImage] = dtiImagePad(image,nbCorner,imSize) % % function used to add a pad to the splitted images % sz = size(image); newImage = zeros(imSize,imSize); switch(nbCorner) case 0 newImage(end - sz(1) + 1:end, end - sz(2) + 1:end) = image; case 1 newImage(end - sz(1) + 1:end, 1:sz(2)) = image; case 2 newImage(1:sz(1), 1:sz(2)) = image; case 3 newImage(1:sz(1), end - sz(2) + 1:end) = image; end return
github
andregouws/mrMeshPy-master
dtiMrMeshOrigin.m
.m
mrMeshPy-master/legacy/mrMesh/mrDiffusion/dtiMrMeshOrigin.m
2,730
utf_8
f21f253f859590893778a3ad4ea15e07
function origin = dtiMrMeshOrigin(handles) % Computes the (x,y,z) origin of the image plane data % % origin = dtiMrMeshOrigin(handles) % % NOTE: This routine was extracted from dtiMrMesh3AxisImage so we could % build independent mrMesh outputs. I think it may be computing the origin % of the quarter images from dtiSplit... routine. % % Authors: Wandell, Dougherty % % Stanford VISTA Team curPosition = dtiGet(handles,'curpos'); [xImX,xImY,xImZ] = dtiMrMeshImageCoords(handles,1,curPosition(1)); [yImX,yImY,yImZ] = dtiMrMeshImageCoords(handles,2,curPosition(2)); [zImX,zImY,zImZ] = dtiMrMeshImageCoords(handles,3,curPosition(3)); % For x,y,z you place the current position into the relevant location and % then for the other two you find the value that is zero (which is the % mid-point of the coordinates and substract off half of the number % coordinates. I don't understand why (BW). origin.x = -[-curPosition(1), ... find(xImY(:,1)==0) - length(xImY(:,1))/2, ... find(xImZ(1,:)==0) - length(xImZ(1,:))/2]; origin.y = -[find(yImX(:,1)==0) - length(yImX(:,1))/2, ... -curPosition(2), ... find(yImZ(1,:)==0) - length(yImZ(1,:))/2]; origin.z = -[find(zImX(1,:)==0) - length(zImX(1,:))/2, ... find(zImY(:,1)==0) - length(zImY(:,1))/2, ... -curPosition(3)]; return; %------------------------------------ function [x,y,z] = dtiMrMeshImageCoords(handles,sliceThisDim,sliceNum) % % [x,y,z] = dtiMrMeshImageCoords(handles,sliceThisDim,sliceNum); % % Produces an array of grid points that can be transformed in dtiGetSlice % to image coords. They are used for interpolating values in dtGetSlice. % % This routine should be extracted and then called from dtGetSlice instead % of the code that is there. % % Stanford VISTA Team imDims = dtiGet(1, 'defaultBoundingBox'); nvals = max(imDims) - min(imDims) + 1; % Computes a single integer for the desired slice, and two vectors showing % the support of the other two. So, if you are in the x-slice, you get % that number of the x-slide and two vectors showing the y and z % coordinates. if(sliceThisDim == 1), x = sliceNum; else x = linspace(imDims(1,1),imDims(2,1),nvals(1)); end; if(sliceThisDim == 2), y = sliceNum; else y = linspace(imDims(1,2),imDims(2,2),nvals(2)); end; if(sliceThisDim == 3), z = sliceNum; else z = linspace(imDims(1,3),imDims(2,3),nvals(3)); end; % Convert the single number and the two linear dimensions into 3 3D % matrices that define the x,y,z coordinates at each anatomical point. % The singleton dimension is all one value, and the other two 3D % matrices combine [x,y,z] = meshgrid(x,y,z); % Squeeze out the singleton dimension. x = squeeze(x); y = squeeze(y); z = squeeze(z); return
github
winswang/comp_holo_video-master
TwIST.m
.m
comp_holo_video-master/3D/TwIST.m
22,842
utf_8
64ee75349f89f520998ec0d7afd15ac0
function [x,x_debias,objective,times,debias_start,mses,max_svd] = ... TwIST(y,A,tau,varargin) % % Usage: % [x,x_debias,objective,times,debias_start,mses] = TwIST(y,A,tau,varargin) % % This function solves the regularization problem % % arg min_x = 0.5*|| y - A x ||_2^2 + tau phi( x ), % % where A is a generic matrix and phi(.) is a regularizarion % function such that the solution of the denoising problem % % Psi_tau(y) = arg min_x = 0.5*|| y - x ||_2^2 + tau \phi( x ), % % is known. % % For further details about the TwIST algorithm, see the paper: % % J. Bioucas-Dias and M. Figueiredo, "A New TwIST: Two-Step % Iterative Shrinkage/Thresholding Algorithms for Image % Restoration", IEEE Transactions on Image processing, 2007. % % and % % J. Bioucas-Dias and M. Figueiredo, "A Monotonic Two-Step % Algorithm for Compressive Sensing and Other Ill-Posed % Inverse Problems", submitted, 2007. % % Authors: Jose Bioucas-Dias and Mario Figueiredo, October, 2007. % % Please check for the latest version of the code and papers at % www.lx.it.pt/~bioucas/TwIST % % ----------------------------------------------------------------------- % Copyright (2007): Jose Bioucas-Dias and Mario Figueiredo % % TwIST is distributed under the terms of % the GNU General Public License 2.0. % % Permission to use, copy, modify, and distribute this software for % any purpose without fee is hereby granted, provided that this entire % notice is included in all copies of any software which is or includes % a copy or modification of this software and in all copies of the % supporting documentation for such software. % This software is being provided "as is", without any express or % implied warranty. In particular, the authors do not make any % representation or warranty of any kind concerning the merchantability % of this software or its fitness for any particular purpose." % ---------------------------------------------------------------------- % % ===== Required inputs ============= % % y: 1D vector or 2D array (image) of observations % % A: if y and x are both 1D vectors, A can be a % k*n (where k is the size of y and n the size of x) % matrix or a handle to a function that computes % products of the form A*v, for some vector v. % In any other case (if y and/or x are 2D arrays), % A has to be passed as a handle to a function which computes % products of the form A*x; another handle to a function % AT which computes products of the form A'*x is also required % in this case. The size of x is determined as the size % of the result of applying AT. % % tau: regularization parameter, usually a non-negative real % parameter of the objective function (see above). % % % ===== Optional inputs ============= % % 'Psi' = denoising function handle; handle to denoising function % Default = soft threshold. % % 'Phi' = function handle to regularizer needed to compute the objective % function. % Default = ||x||_1 % % 'lambda' = lam1 parameters of the TwIST algorithm: % Optimal choice: lam1 = min eigenvalue of A'*A. % If min eigenvalue of A'*A == 0, or unknwon, % set lam1 to a value much smaller than 1. % % Rule of Thumb: % lam1=1e-4 for severyly ill-conditioned problems % lam1=1e-2 for mildly ill-conditioned problems % lam1=1 for A unitary direct operators % % Default: lam1 = 0.04. % % Important Note: If (max eigenvalue of A'*A) > 1, % the algorithm may diverge. This is be avoided % by taking one of the follwoing measures: % % 1) Set 'Monontone' = 1 (default) % % 2) Solve the equivalenve minimization problem % % min_x = 0.5*|| (y/c) - (A/c) x ||_2^2 + (tau/c^2) \phi( x ), % % where c > 0 ensures that max eigenvalue of (A'A/c^2) <= 1. % % 'alpha' = parameter alpha of TwIST (see ex. (22) of the paper) % Default alpha = alpha(lamN=1, lam1) % % 'beta' = parameter beta of twist (see ex. (23) of the paper) % Default beta = beta(lamN=1, lam1) % % 'AT' = function handle for the function that implements % the multiplication by the conjugate of A, when A % is a function handle. % If A is an array, AT is ignored. % % 'StopCriterion' = type of stopping criterion to use % 0 = algorithm stops when the relative % change in the number of non-zero % components of the estimate falls % below 'ToleranceA' % 1 = stop when the relative % change in the objective function % falls below 'ToleranceA' % 2 = stop when the relative norm of the difference between % two consecutive estimates falls below toleranceA % 3 = stop when the objective function % becomes equal or less than toleranceA. % Default = 1. % % 'ToleranceA' = stopping threshold; Default = 0.01 % % 'Debias' = debiasing option: 1 = yes, 0 = no. % Default = 0. % % Note: Debiasing is an operation aimed at the % computing the solution of the LS problem % % arg min_x = 0.5*|| y - A' x' ||_2^2 % % where A' is the submatrix of A obatained by % deleting the columns of A corresponding of components % of x set to zero by the TwIST algorithm % % % 'ToleranceD' = stopping threshold for the debiasing phase: % Default = 0.0001. % If no debiasing takes place, this parameter, % if present, is ignored. % % 'MaxiterA' = maximum number of iterations allowed in the % main phase of the algorithm. % Default = 1000 % % 'MiniterA' = minimum number of iterations performed in the % main phase of the algorithm. % Default = 5 % % 'MaxiterD' = maximum number of iterations allowed in the % debising phase of the algorithm. % Default = 200 % % 'MiniterD' = minimum number of iterations to perform in the % debiasing phase of the algorithm. % Default = 5 % % 'Initialization' must be one of {0,1,2,array} % 0 -> Initialization at zero. % 1 -> Random initialization. % 2 -> initialization with A'*y. % array -> initialization provided by the user. % Default = 0; % % 'Monotone' = enforce monotonic decrease in f. % any nonzero -> enforce monotonicity % 0 -> don't enforce monotonicity. % Default = 1; % % 'Sparse' = {0,1} accelarates the convergence rate when the regularizer % Phi(x) is sparse inducing, such as ||x||_1. % Default = 1 % % % 'True_x' = if the true underlying x is passed in % this argument, MSE evolution is computed % % % 'Verbose' = work silently (0) or verbosely (1) % % =================================================== % ============ Outputs ============================== % x = solution of the main algorithm % % x_debias = solution after the debiasing phase; % if no debiasing phase took place, this % variable is empty, x_debias = []. % % objective = sequence of values of the objective function % % times = CPU time after each iteration % % debias_start = iteration number at which the debiasing % phase started. If no debiasing took place, % this variable is returned as zero. % % mses = sequence of MSE values, with respect to True_x, % if it was given; if it was not given, mses is empty, % mses = []. % % max_svd = inverse of the scaling factor, determined by TwIST, % applied to the direct operator (A/max_svd) such that % every IST step is increasing. % ======================================================== %-------------------------------------------------------------- % test for number of required parametres %-------------------------------------------------------------- if (nargin-length(varargin)) ~= 3 error('Wrong number of required parameters'); end %-------------------------------------------------------------- % Set the defaults for the optional parameters %-------------------------------------------------------------- stopCriterion = 1; tolA = 0.01; debias = 0; maxiter = 1000; maxiter_debias = 200; miniter = 5; miniter_debias = 5; init = 0; enforceMonotone = 1; compute_mse = 0; plot_ISNR = 0; AT = 0; verbose = 1; alpha = 0; beta = 0; sparse = 1; tolD = 0.001; phi_l1 = 0; psi_ok = 0; % default eigenvalues lam1=1e-4; lamN=1; % % constants ans internal variables for_ever = 1; % maj_max_sv: majorizer for the maximum singular value of operator A max_svd = 1; % Set the defaults for outputs that may not be computed debias_start = 0; x_debias = []; mses = []; %-------------------------------------------------------------- % Read the optional parameters %-------------------------------------------------------------- if (rem(length(varargin),2)==1) error('Optional parameters should always go by pairs'); else for i=1:2:(length(varargin)-1) switch upper(varargin{i}) case 'LAMBDA' lam1 = varargin{i+1}; case 'ALPHA' alpha = varargin{i+1}; case 'BETA' beta = varargin{i+1}; case 'PSI' psi_function = varargin{i+1}; case 'PHI' phi_function = varargin{i+1}; case 'STOPCRITERION' stopCriterion = varargin{i+1}; case 'TOLERANCEA' tolA = varargin{i+1}; case 'TOLERANCED' tolD = varargin{i+1}; case 'DEBIAS' debias = varargin{i+1}; case 'MAXITERA' maxiter = varargin{i+1}; case 'MAXIRERD' maxiter_debias = varargin{i+1}; case 'MINITERA' miniter = varargin{i+1}; case 'MINITERD' miniter_debias = varargin{i+1}; case 'INITIALIZATION' if prod(size(varargin{i+1})) > 1 % we have an initial x init = 33333; % some flag to be used below x = varargin{i+1}; else init = varargin{i+1}; end case 'MONOTONE' enforceMonotone = varargin{i+1}; case 'SPARSE' sparse = varargin{i+1}; case 'TRUE_X' compute_mse = 1; true = varargin{i+1}; size(true) size(y) if prod(double((size(true) == size(y)))) plot_ISNR = 1; end case 'AT' AT = varargin{i+1}; case 'VERBOSE' verbose = varargin{i+1}; otherwise % Hmmm, something wrong with the parameter string error(['Unrecognized option: ''' varargin{i} '''']); end; end; end %%%%%%%%%%%%%% % twist parameters rho0 = (1-lam1/lamN)/(1+lam1/lamN); if alpha == 0 alpha = 2/(1+sqrt(1-rho0^2)); end if beta == 0 beta = alpha*2/(lam1+lamN); end if (sum(stopCriterion == [0 1 2 3])==0) error(['Unknwon stopping criterion']); end % if A is a function handle, we have to check presence of AT, if isa(A, 'function_handle') & ~isa(AT,'function_handle') error(['The function handle for transpose of A is missing']); end % if A is a matrix, we find out dimensions of y and x, % and create function handles for multiplication by A and A', % so that the code below doesn't have to distinguish between % the handle/not-handle cases if ~isa(A, 'function_handle') AT = @(x) reshape(A'*x(:),[64 64]); A = @(x) reshape(A*x(:),[size(y,1) size(y,2)]); end % from this point down, A and AT are always function handles. % Precompute A'*y since it'll be used a lot Aty = AT(y); % psi_function(Aty,tau) % if phi was given, check to see if it is a handle and that it % accepts two arguments if exist('psi_function','var') if isa(psi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = psi_function(Aty,tau); psi_ok = 1; catch error(['Something is wrong with function handle for psi']) end else error(['Psi does not seem to be a valid function handle']); end else %if nothing was given, use soft thresholding psi_function = @(x,tau) soft(x,tau); end % if psi exists, phi must also exist if (psi_ok == 1) if exist('phi_function','var') if isa(phi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = phi_function(Aty); catch error(['Something is wrong with function handle for phi']) end else error(['Phi does not seem to be a valid function handle']); end else error(['If you give Psi you must also give Phi']); end else % if no psi and phi were given, simply use the l1 norm. phi_function = @(x) sum(abs(x(:))); phi_l1 = 1; end %-------------------------------------------------------------- % Initialization %-------------------------------------------------------------- switch init case 0 % initialize at zero, using AT to find the size of x x = AT(zeros(size(y))); case 1 % initialize randomly, using AT to find the size of x x = randn(size(AT(zeros(size(y))))); case 2 % initialize x0 = A'*y x = Aty; case 33333 % initial x was given as a function argument; just check size if size(A(x)) ~= size(y) error(['Size of initial x is not compatible with A']); end otherwise error(['Unknown ''Initialization'' option']); end % now check if tau is an array; if it is, it has to % have the same size as x if prod(size(tau)) > 1 try, dummy = x.*tau; catch, error(['Parameter tau has wrong dimensions; it should be scalar or size(x)']), end end % if the true x was given, check its size if compute_mse & (size(true) ~= size(x)) error(['Initial x has incompatible size']); end % if tau is large enough, in the case of phi = l1, thus psi = soft, % the optimal solution is the zero vector if phi_l1 max_tau = max(abs(Aty(:))); if (tau >= max_tau)&(psi_ok==0) x = zeros(size(Aty)); objective(1) = 0.5*(y(:)'*y(:)); times(1) = 0; if compute_mse mses(1) = sum(true(:).^2); end return end end % define the indicator vector or matrix of nonzeros in x nz_x = (x ~= 0.0); num_nz_x = sum(nz_x(:)); % Compute and store initial value of the objective function resid = y-A(x); prev_f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); % start the clock t0 = cputime; times(1) = cputime - t0; objective(1) = prev_f; if compute_mse mses(1) = sum(sum((x-true).^2)); end cont_outer = 1; iter = 1; if verbose fprintf(1,'\nInitial objective = %10.6e, nonzeros=%7d\n',... prev_f,num_nz_x); end % variables controling first and second order iterations IST_iters = 0; TwIST_iters = 0; % initialize xm2=x; xm1=x; %-------------------------------------------------------------- % TwIST iterations %-------------------------------------------------------------- while cont_outer % gradient grad = AT(resid); while for_ever % IST estimate x = psi_function(xm1 + grad/max_svd,tau/max_svd); if (IST_iters >= 2) | ( TwIST_iters ~= 0) % set to zero the past when the present is zero % suitable for sparse inducing priors if sparse mask = (x ~= 0); xm1 = xm1.* mask; xm2 = xm2.* mask; end % two-step iteration xm2 = (alpha-beta)*xm1 + (1-alpha)*xm2 + beta*x; % compute residual resid = y-A(xm2); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(xm2); if (f > prev_f) & (enforceMonotone) TwIST_iters = 0; % do a IST iteration if monotonocity fails else TwIST_iters = TwIST_iters+1; % TwIST iterations IST_iters = 0; x = xm2; if mod(TwIST_iters,10000) == 0 max_svd = 0.9*max_svd; end break; % break loop while end else resid = y-A(x); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); if f > prev_f % if monotonicity fails here is because % max eig (A'A) > 1. Thus, we increase our guess % of max_svs max_svd = 2*max_svd; if verbose fprintf('Incrementing S=%2.2e\n',max_svd) end IST_iters = 0; TwIST_iters = 0; else TwIST_iters = TwIST_iters + 1; break; % break loop while end end end xm2 = xm1; xm1 = x; %update the number of nonzero components and its variation nz_x_prev = nz_x; nz_x = (x~=0.0); num_nz_x = sum(nz_x(:)); num_changes_active = (sum(nz_x(:)~=nz_x_prev(:))); % take no less than miniter and no more than maxiter iterations switch stopCriterion case 0, % compute the stopping criterion based on the change % of the number of non-zero components of the estimate criterion = num_changes_active; case 1, % compute the stopping criterion based on the relative % variation of the objective function. criterion = abs(f-prev_f)/prev_f; case 2, % compute the stopping criterion based on the relative % variation of the estimate. criterion = (norm(x(:)-xm1(:))/norm(x(:))); case 3, % continue if not yet reached target value tolA criterion = f; otherwise, error(['Unknwon stopping criterion']); end cont_outer = ((iter <= maxiter) & (criterion > tolA)); if iter <= miniter cont_outer = 1; end iter = iter + 1; prev_f = f; objective(iter) = f; times(iter) = cputime-t0; if compute_mse err = true - x; mses(iter) = (err(:)'*err(:)); end % print out the various stopping criteria if verbose if plot_ISNR fprintf(1,'Iteration=%4d, ISNR=%4.5e objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, 10*log10(sum((y(:)-true(:)).^2)/sum((x(:)-true(:)).^2) ), ... f, num_nz_x, criterion/tolA); else fprintf(1,'Iteration=%4d, objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, f, num_nz_x, criterion/tolA); end end % figure(999);imagesc(plotdatacube(x));colormap gray;axis image;colorbar;drawnow; end %-------------------------------------------------------------- % end of the main loop %-------------------------------------------------------------- % Printout results if verbose fprintf(1,'\nFinished the main algorithm!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); fprintf(1,'Number of non-zero components = %d\n',num_nz_x); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end %-------------------------------------------------------------- % If the 'Debias' option is set to 1, we try to % remove the bias from the l1 penalty, by applying CG to the % least-squares problem obtained by omitting the l1 term % and fixing the zero coefficients at zero. %-------------------------------------------------------------- if debias if verbose fprintf(1,'\n') fprintf(1,'Starting the debiasing phase...\n\n') end x_debias = x; zeroind = (x_debias~=0); cont_debias_cg = 1; debias_start = iter; % calculate initial residual resid = A(x_debias); resid = resid-y; resid_prev = eps*ones(size(resid)); rvec = AT(resid); % mask out the zeros rvec = rvec .* zeroind; rTr_cg = rvec(:)'*rvec(:); % set convergence threshold for the residual || RW x_debias - y ||_2 tol_debias = tolD * (rvec(:)'*rvec(:)); % initialize pvec pvec = -rvec; % main loop while cont_debias_cg % calculate A*p = Wt * Rt * R * W * pvec RWpvec = A(pvec); Apvec = AT(RWpvec); % mask out the zero terms Apvec = Apvec .* zeroind; % calculate alpha for CG alpha_cg = rTr_cg / (pvec(:)'* Apvec(:)); % take the step x_debias = x_debias + alpha_cg * pvec; resid = resid + alpha_cg * RWpvec; rvec = rvec + alpha_cg * Apvec; rTr_cg_plus = rvec(:)'*rvec(:); beta_cg = rTr_cg_plus / rTr_cg; pvec = -rvec + beta_cg * pvec; rTr_cg = rTr_cg_plus; iter = iter+1; objective(iter) = 0.5*(resid(:)'*resid(:)) + ... tau*phi_function(x_debias(:)); times(iter) = cputime - t0; if compute_mse err = true - x_debias; mses(iter) = (err(:)'*err(:)); end % in the debiasing CG phase, always use convergence criterion % based on the residual (this is standard for CG) if verbose fprintf(1,' Iter = %5d, debias resid = %13.8e, convergence = %8.3e\n', ... iter, resid(:)'*resid(:), rTr_cg / tol_debias); end cont_debias_cg = ... (iter-debias_start <= miniter_debias )| ... ((rTr_cg > tol_debias) & ... (iter-debias_start <= maxiter_debias)); end if verbose fprintf(1,'\nFinished the debiasing phase!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); nz = (x_debias~=0.0); fprintf(1,'Number of non-zero components = %d\n',sum(nz(:))); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end end if compute_mse mses = mses/length(true(:)); end %-------------------------------------------------------------- % soft for both real and complex numbers %-------------------------------------------------------------- function y = soft(x,T) %y = sign(x).*max(abs(x)-tau,0); y = max(abs(x) - T, 0); y = y./(y+T) .* x;
github
winswang/comp_holo_video-master
MyTVphi.m
.m
comp_holo_video-master/3D/MyTVphi.m
281
utf_8
9b938a61469a38963950ef4d40953c71
function y=MyTVphi(x,Nvx,Nvy,Nvz) % x = x(1:length(x)/2) + 1i*x(length(x)/2+1:end); X=reshape(x,Nvx,Nvy,Nvz); [y,dif]=MyTVnorm(X); % re = real(y); im = imag(y); % y = [re;im]; function [y,dif]=MyTVnorm(x) TV=MyTV3D_conv(x); dif=sqrt(sum(TV.*conj(TV),4)); y=sum(dif(:)); end end
github
winswang/comp_holo_video-master
TwIST.m
.m
comp_holo_video-master/Resolution/TwIST.m
22,842
utf_8
64ee75349f89f520998ec0d7afd15ac0
function [x,x_debias,objective,times,debias_start,mses,max_svd] = ... TwIST(y,A,tau,varargin) % % Usage: % [x,x_debias,objective,times,debias_start,mses] = TwIST(y,A,tau,varargin) % % This function solves the regularization problem % % arg min_x = 0.5*|| y - A x ||_2^2 + tau phi( x ), % % where A is a generic matrix and phi(.) is a regularizarion % function such that the solution of the denoising problem % % Psi_tau(y) = arg min_x = 0.5*|| y - x ||_2^2 + tau \phi( x ), % % is known. % % For further details about the TwIST algorithm, see the paper: % % J. Bioucas-Dias and M. Figueiredo, "A New TwIST: Two-Step % Iterative Shrinkage/Thresholding Algorithms for Image % Restoration", IEEE Transactions on Image processing, 2007. % % and % % J. Bioucas-Dias and M. Figueiredo, "A Monotonic Two-Step % Algorithm for Compressive Sensing and Other Ill-Posed % Inverse Problems", submitted, 2007. % % Authors: Jose Bioucas-Dias and Mario Figueiredo, October, 2007. % % Please check for the latest version of the code and papers at % www.lx.it.pt/~bioucas/TwIST % % ----------------------------------------------------------------------- % Copyright (2007): Jose Bioucas-Dias and Mario Figueiredo % % TwIST is distributed under the terms of % the GNU General Public License 2.0. % % Permission to use, copy, modify, and distribute this software for % any purpose without fee is hereby granted, provided that this entire % notice is included in all copies of any software which is or includes % a copy or modification of this software and in all copies of the % supporting documentation for such software. % This software is being provided "as is", without any express or % implied warranty. In particular, the authors do not make any % representation or warranty of any kind concerning the merchantability % of this software or its fitness for any particular purpose." % ---------------------------------------------------------------------- % % ===== Required inputs ============= % % y: 1D vector or 2D array (image) of observations % % A: if y and x are both 1D vectors, A can be a % k*n (where k is the size of y and n the size of x) % matrix or a handle to a function that computes % products of the form A*v, for some vector v. % In any other case (if y and/or x are 2D arrays), % A has to be passed as a handle to a function which computes % products of the form A*x; another handle to a function % AT which computes products of the form A'*x is also required % in this case. The size of x is determined as the size % of the result of applying AT. % % tau: regularization parameter, usually a non-negative real % parameter of the objective function (see above). % % % ===== Optional inputs ============= % % 'Psi' = denoising function handle; handle to denoising function % Default = soft threshold. % % 'Phi' = function handle to regularizer needed to compute the objective % function. % Default = ||x||_1 % % 'lambda' = lam1 parameters of the TwIST algorithm: % Optimal choice: lam1 = min eigenvalue of A'*A. % If min eigenvalue of A'*A == 0, or unknwon, % set lam1 to a value much smaller than 1. % % Rule of Thumb: % lam1=1e-4 for severyly ill-conditioned problems % lam1=1e-2 for mildly ill-conditioned problems % lam1=1 for A unitary direct operators % % Default: lam1 = 0.04. % % Important Note: If (max eigenvalue of A'*A) > 1, % the algorithm may diverge. This is be avoided % by taking one of the follwoing measures: % % 1) Set 'Monontone' = 1 (default) % % 2) Solve the equivalenve minimization problem % % min_x = 0.5*|| (y/c) - (A/c) x ||_2^2 + (tau/c^2) \phi( x ), % % where c > 0 ensures that max eigenvalue of (A'A/c^2) <= 1. % % 'alpha' = parameter alpha of TwIST (see ex. (22) of the paper) % Default alpha = alpha(lamN=1, lam1) % % 'beta' = parameter beta of twist (see ex. (23) of the paper) % Default beta = beta(lamN=1, lam1) % % 'AT' = function handle for the function that implements % the multiplication by the conjugate of A, when A % is a function handle. % If A is an array, AT is ignored. % % 'StopCriterion' = type of stopping criterion to use % 0 = algorithm stops when the relative % change in the number of non-zero % components of the estimate falls % below 'ToleranceA' % 1 = stop when the relative % change in the objective function % falls below 'ToleranceA' % 2 = stop when the relative norm of the difference between % two consecutive estimates falls below toleranceA % 3 = stop when the objective function % becomes equal or less than toleranceA. % Default = 1. % % 'ToleranceA' = stopping threshold; Default = 0.01 % % 'Debias' = debiasing option: 1 = yes, 0 = no. % Default = 0. % % Note: Debiasing is an operation aimed at the % computing the solution of the LS problem % % arg min_x = 0.5*|| y - A' x' ||_2^2 % % where A' is the submatrix of A obatained by % deleting the columns of A corresponding of components % of x set to zero by the TwIST algorithm % % % 'ToleranceD' = stopping threshold for the debiasing phase: % Default = 0.0001. % If no debiasing takes place, this parameter, % if present, is ignored. % % 'MaxiterA' = maximum number of iterations allowed in the % main phase of the algorithm. % Default = 1000 % % 'MiniterA' = minimum number of iterations performed in the % main phase of the algorithm. % Default = 5 % % 'MaxiterD' = maximum number of iterations allowed in the % debising phase of the algorithm. % Default = 200 % % 'MiniterD' = minimum number of iterations to perform in the % debiasing phase of the algorithm. % Default = 5 % % 'Initialization' must be one of {0,1,2,array} % 0 -> Initialization at zero. % 1 -> Random initialization. % 2 -> initialization with A'*y. % array -> initialization provided by the user. % Default = 0; % % 'Monotone' = enforce monotonic decrease in f. % any nonzero -> enforce monotonicity % 0 -> don't enforce monotonicity. % Default = 1; % % 'Sparse' = {0,1} accelarates the convergence rate when the regularizer % Phi(x) is sparse inducing, such as ||x||_1. % Default = 1 % % % 'True_x' = if the true underlying x is passed in % this argument, MSE evolution is computed % % % 'Verbose' = work silently (0) or verbosely (1) % % =================================================== % ============ Outputs ============================== % x = solution of the main algorithm % % x_debias = solution after the debiasing phase; % if no debiasing phase took place, this % variable is empty, x_debias = []. % % objective = sequence of values of the objective function % % times = CPU time after each iteration % % debias_start = iteration number at which the debiasing % phase started. If no debiasing took place, % this variable is returned as zero. % % mses = sequence of MSE values, with respect to True_x, % if it was given; if it was not given, mses is empty, % mses = []. % % max_svd = inverse of the scaling factor, determined by TwIST, % applied to the direct operator (A/max_svd) such that % every IST step is increasing. % ======================================================== %-------------------------------------------------------------- % test for number of required parametres %-------------------------------------------------------------- if (nargin-length(varargin)) ~= 3 error('Wrong number of required parameters'); end %-------------------------------------------------------------- % Set the defaults for the optional parameters %-------------------------------------------------------------- stopCriterion = 1; tolA = 0.01; debias = 0; maxiter = 1000; maxiter_debias = 200; miniter = 5; miniter_debias = 5; init = 0; enforceMonotone = 1; compute_mse = 0; plot_ISNR = 0; AT = 0; verbose = 1; alpha = 0; beta = 0; sparse = 1; tolD = 0.001; phi_l1 = 0; psi_ok = 0; % default eigenvalues lam1=1e-4; lamN=1; % % constants ans internal variables for_ever = 1; % maj_max_sv: majorizer for the maximum singular value of operator A max_svd = 1; % Set the defaults for outputs that may not be computed debias_start = 0; x_debias = []; mses = []; %-------------------------------------------------------------- % Read the optional parameters %-------------------------------------------------------------- if (rem(length(varargin),2)==1) error('Optional parameters should always go by pairs'); else for i=1:2:(length(varargin)-1) switch upper(varargin{i}) case 'LAMBDA' lam1 = varargin{i+1}; case 'ALPHA' alpha = varargin{i+1}; case 'BETA' beta = varargin{i+1}; case 'PSI' psi_function = varargin{i+1}; case 'PHI' phi_function = varargin{i+1}; case 'STOPCRITERION' stopCriterion = varargin{i+1}; case 'TOLERANCEA' tolA = varargin{i+1}; case 'TOLERANCED' tolD = varargin{i+1}; case 'DEBIAS' debias = varargin{i+1}; case 'MAXITERA' maxiter = varargin{i+1}; case 'MAXIRERD' maxiter_debias = varargin{i+1}; case 'MINITERA' miniter = varargin{i+1}; case 'MINITERD' miniter_debias = varargin{i+1}; case 'INITIALIZATION' if prod(size(varargin{i+1})) > 1 % we have an initial x init = 33333; % some flag to be used below x = varargin{i+1}; else init = varargin{i+1}; end case 'MONOTONE' enforceMonotone = varargin{i+1}; case 'SPARSE' sparse = varargin{i+1}; case 'TRUE_X' compute_mse = 1; true = varargin{i+1}; size(true) size(y) if prod(double((size(true) == size(y)))) plot_ISNR = 1; end case 'AT' AT = varargin{i+1}; case 'VERBOSE' verbose = varargin{i+1}; otherwise % Hmmm, something wrong with the parameter string error(['Unrecognized option: ''' varargin{i} '''']); end; end; end %%%%%%%%%%%%%% % twist parameters rho0 = (1-lam1/lamN)/(1+lam1/lamN); if alpha == 0 alpha = 2/(1+sqrt(1-rho0^2)); end if beta == 0 beta = alpha*2/(lam1+lamN); end if (sum(stopCriterion == [0 1 2 3])==0) error(['Unknwon stopping criterion']); end % if A is a function handle, we have to check presence of AT, if isa(A, 'function_handle') & ~isa(AT,'function_handle') error(['The function handle for transpose of A is missing']); end % if A is a matrix, we find out dimensions of y and x, % and create function handles for multiplication by A and A', % so that the code below doesn't have to distinguish between % the handle/not-handle cases if ~isa(A, 'function_handle') AT = @(x) reshape(A'*x(:),[64 64]); A = @(x) reshape(A*x(:),[size(y,1) size(y,2)]); end % from this point down, A and AT are always function handles. % Precompute A'*y since it'll be used a lot Aty = AT(y); % psi_function(Aty,tau) % if phi was given, check to see if it is a handle and that it % accepts two arguments if exist('psi_function','var') if isa(psi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = psi_function(Aty,tau); psi_ok = 1; catch error(['Something is wrong with function handle for psi']) end else error(['Psi does not seem to be a valid function handle']); end else %if nothing was given, use soft thresholding psi_function = @(x,tau) soft(x,tau); end % if psi exists, phi must also exist if (psi_ok == 1) if exist('phi_function','var') if isa(phi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = phi_function(Aty); catch error(['Something is wrong with function handle for phi']) end else error(['Phi does not seem to be a valid function handle']); end else error(['If you give Psi you must also give Phi']); end else % if no psi and phi were given, simply use the l1 norm. phi_function = @(x) sum(abs(x(:))); phi_l1 = 1; end %-------------------------------------------------------------- % Initialization %-------------------------------------------------------------- switch init case 0 % initialize at zero, using AT to find the size of x x = AT(zeros(size(y))); case 1 % initialize randomly, using AT to find the size of x x = randn(size(AT(zeros(size(y))))); case 2 % initialize x0 = A'*y x = Aty; case 33333 % initial x was given as a function argument; just check size if size(A(x)) ~= size(y) error(['Size of initial x is not compatible with A']); end otherwise error(['Unknown ''Initialization'' option']); end % now check if tau is an array; if it is, it has to % have the same size as x if prod(size(tau)) > 1 try, dummy = x.*tau; catch, error(['Parameter tau has wrong dimensions; it should be scalar or size(x)']), end end % if the true x was given, check its size if compute_mse & (size(true) ~= size(x)) error(['Initial x has incompatible size']); end % if tau is large enough, in the case of phi = l1, thus psi = soft, % the optimal solution is the zero vector if phi_l1 max_tau = max(abs(Aty(:))); if (tau >= max_tau)&(psi_ok==0) x = zeros(size(Aty)); objective(1) = 0.5*(y(:)'*y(:)); times(1) = 0; if compute_mse mses(1) = sum(true(:).^2); end return end end % define the indicator vector or matrix of nonzeros in x nz_x = (x ~= 0.0); num_nz_x = sum(nz_x(:)); % Compute and store initial value of the objective function resid = y-A(x); prev_f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); % start the clock t0 = cputime; times(1) = cputime - t0; objective(1) = prev_f; if compute_mse mses(1) = sum(sum((x-true).^2)); end cont_outer = 1; iter = 1; if verbose fprintf(1,'\nInitial objective = %10.6e, nonzeros=%7d\n',... prev_f,num_nz_x); end % variables controling first and second order iterations IST_iters = 0; TwIST_iters = 0; % initialize xm2=x; xm1=x; %-------------------------------------------------------------- % TwIST iterations %-------------------------------------------------------------- while cont_outer % gradient grad = AT(resid); while for_ever % IST estimate x = psi_function(xm1 + grad/max_svd,tau/max_svd); if (IST_iters >= 2) | ( TwIST_iters ~= 0) % set to zero the past when the present is zero % suitable for sparse inducing priors if sparse mask = (x ~= 0); xm1 = xm1.* mask; xm2 = xm2.* mask; end % two-step iteration xm2 = (alpha-beta)*xm1 + (1-alpha)*xm2 + beta*x; % compute residual resid = y-A(xm2); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(xm2); if (f > prev_f) & (enforceMonotone) TwIST_iters = 0; % do a IST iteration if monotonocity fails else TwIST_iters = TwIST_iters+1; % TwIST iterations IST_iters = 0; x = xm2; if mod(TwIST_iters,10000) == 0 max_svd = 0.9*max_svd; end break; % break loop while end else resid = y-A(x); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); if f > prev_f % if monotonicity fails here is because % max eig (A'A) > 1. Thus, we increase our guess % of max_svs max_svd = 2*max_svd; if verbose fprintf('Incrementing S=%2.2e\n',max_svd) end IST_iters = 0; TwIST_iters = 0; else TwIST_iters = TwIST_iters + 1; break; % break loop while end end end xm2 = xm1; xm1 = x; %update the number of nonzero components and its variation nz_x_prev = nz_x; nz_x = (x~=0.0); num_nz_x = sum(nz_x(:)); num_changes_active = (sum(nz_x(:)~=nz_x_prev(:))); % take no less than miniter and no more than maxiter iterations switch stopCriterion case 0, % compute the stopping criterion based on the change % of the number of non-zero components of the estimate criterion = num_changes_active; case 1, % compute the stopping criterion based on the relative % variation of the objective function. criterion = abs(f-prev_f)/prev_f; case 2, % compute the stopping criterion based on the relative % variation of the estimate. criterion = (norm(x(:)-xm1(:))/norm(x(:))); case 3, % continue if not yet reached target value tolA criterion = f; otherwise, error(['Unknwon stopping criterion']); end cont_outer = ((iter <= maxiter) & (criterion > tolA)); if iter <= miniter cont_outer = 1; end iter = iter + 1; prev_f = f; objective(iter) = f; times(iter) = cputime-t0; if compute_mse err = true - x; mses(iter) = (err(:)'*err(:)); end % print out the various stopping criteria if verbose if plot_ISNR fprintf(1,'Iteration=%4d, ISNR=%4.5e objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, 10*log10(sum((y(:)-true(:)).^2)/sum((x(:)-true(:)).^2) ), ... f, num_nz_x, criterion/tolA); else fprintf(1,'Iteration=%4d, objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, f, num_nz_x, criterion/tolA); end end % figure(999);imagesc(plotdatacube(x));colormap gray;axis image;colorbar;drawnow; end %-------------------------------------------------------------- % end of the main loop %-------------------------------------------------------------- % Printout results if verbose fprintf(1,'\nFinished the main algorithm!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); fprintf(1,'Number of non-zero components = %d\n',num_nz_x); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end %-------------------------------------------------------------- % If the 'Debias' option is set to 1, we try to % remove the bias from the l1 penalty, by applying CG to the % least-squares problem obtained by omitting the l1 term % and fixing the zero coefficients at zero. %-------------------------------------------------------------- if debias if verbose fprintf(1,'\n') fprintf(1,'Starting the debiasing phase...\n\n') end x_debias = x; zeroind = (x_debias~=0); cont_debias_cg = 1; debias_start = iter; % calculate initial residual resid = A(x_debias); resid = resid-y; resid_prev = eps*ones(size(resid)); rvec = AT(resid); % mask out the zeros rvec = rvec .* zeroind; rTr_cg = rvec(:)'*rvec(:); % set convergence threshold for the residual || RW x_debias - y ||_2 tol_debias = tolD * (rvec(:)'*rvec(:)); % initialize pvec pvec = -rvec; % main loop while cont_debias_cg % calculate A*p = Wt * Rt * R * W * pvec RWpvec = A(pvec); Apvec = AT(RWpvec); % mask out the zero terms Apvec = Apvec .* zeroind; % calculate alpha for CG alpha_cg = rTr_cg / (pvec(:)'* Apvec(:)); % take the step x_debias = x_debias + alpha_cg * pvec; resid = resid + alpha_cg * RWpvec; rvec = rvec + alpha_cg * Apvec; rTr_cg_plus = rvec(:)'*rvec(:); beta_cg = rTr_cg_plus / rTr_cg; pvec = -rvec + beta_cg * pvec; rTr_cg = rTr_cg_plus; iter = iter+1; objective(iter) = 0.5*(resid(:)'*resid(:)) + ... tau*phi_function(x_debias(:)); times(iter) = cputime - t0; if compute_mse err = true - x_debias; mses(iter) = (err(:)'*err(:)); end % in the debiasing CG phase, always use convergence criterion % based on the residual (this is standard for CG) if verbose fprintf(1,' Iter = %5d, debias resid = %13.8e, convergence = %8.3e\n', ... iter, resid(:)'*resid(:), rTr_cg / tol_debias); end cont_debias_cg = ... (iter-debias_start <= miniter_debias )| ... ((rTr_cg > tol_debias) & ... (iter-debias_start <= maxiter_debias)); end if verbose fprintf(1,'\nFinished the debiasing phase!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); nz = (x_debias~=0.0); fprintf(1,'Number of non-zero components = %d\n',sum(nz(:))); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end end if compute_mse mses = mses/length(true(:)); end %-------------------------------------------------------------- % soft for both real and complex numbers %-------------------------------------------------------------- function y = soft(x,T) %y = sign(x).*max(abs(x)-tau,0); y = max(abs(x) - T, 0); y = y./(y+T) .* x;
github
winswang/comp_holo_video-master
MyTVphi.m
.m
comp_holo_video-master/Resolution/MyTVphi.m
281
utf_8
9b938a61469a38963950ef4d40953c71
function y=MyTVphi(x,Nvx,Nvy,Nvz) % x = x(1:length(x)/2) + 1i*x(length(x)/2+1:end); X=reshape(x,Nvx,Nvy,Nvz); [y,dif]=MyTVnorm(X); % re = real(y); im = imag(y); % y = [re;im]; function [y,dif]=MyTVnorm(x) TV=MyTV3D_conv(x); dif=sqrt(sum(TV.*conj(TV),4)); y=sum(dif(:)); end end
github
winswang/comp_holo_video-master
TwIST.m
.m
comp_holo_video-master/4D/TwIST.m
22,842
utf_8
64ee75349f89f520998ec0d7afd15ac0
function [x,x_debias,objective,times,debias_start,mses,max_svd] = ... TwIST(y,A,tau,varargin) % % Usage: % [x,x_debias,objective,times,debias_start,mses] = TwIST(y,A,tau,varargin) % % This function solves the regularization problem % % arg min_x = 0.5*|| y - A x ||_2^2 + tau phi( x ), % % where A is a generic matrix and phi(.) is a regularizarion % function such that the solution of the denoising problem % % Psi_tau(y) = arg min_x = 0.5*|| y - x ||_2^2 + tau \phi( x ), % % is known. % % For further details about the TwIST algorithm, see the paper: % % J. Bioucas-Dias and M. Figueiredo, "A New TwIST: Two-Step % Iterative Shrinkage/Thresholding Algorithms for Image % Restoration", IEEE Transactions on Image processing, 2007. % % and % % J. Bioucas-Dias and M. Figueiredo, "A Monotonic Two-Step % Algorithm for Compressive Sensing and Other Ill-Posed % Inverse Problems", submitted, 2007. % % Authors: Jose Bioucas-Dias and Mario Figueiredo, October, 2007. % % Please check for the latest version of the code and papers at % www.lx.it.pt/~bioucas/TwIST % % ----------------------------------------------------------------------- % Copyright (2007): Jose Bioucas-Dias and Mario Figueiredo % % TwIST is distributed under the terms of % the GNU General Public License 2.0. % % Permission to use, copy, modify, and distribute this software for % any purpose without fee is hereby granted, provided that this entire % notice is included in all copies of any software which is or includes % a copy or modification of this software and in all copies of the % supporting documentation for such software. % This software is being provided "as is", without any express or % implied warranty. In particular, the authors do not make any % representation or warranty of any kind concerning the merchantability % of this software or its fitness for any particular purpose." % ---------------------------------------------------------------------- % % ===== Required inputs ============= % % y: 1D vector or 2D array (image) of observations % % A: if y and x are both 1D vectors, A can be a % k*n (where k is the size of y and n the size of x) % matrix or a handle to a function that computes % products of the form A*v, for some vector v. % In any other case (if y and/or x are 2D arrays), % A has to be passed as a handle to a function which computes % products of the form A*x; another handle to a function % AT which computes products of the form A'*x is also required % in this case. The size of x is determined as the size % of the result of applying AT. % % tau: regularization parameter, usually a non-negative real % parameter of the objective function (see above). % % % ===== Optional inputs ============= % % 'Psi' = denoising function handle; handle to denoising function % Default = soft threshold. % % 'Phi' = function handle to regularizer needed to compute the objective % function. % Default = ||x||_1 % % 'lambda' = lam1 parameters of the TwIST algorithm: % Optimal choice: lam1 = min eigenvalue of A'*A. % If min eigenvalue of A'*A == 0, or unknwon, % set lam1 to a value much smaller than 1. % % Rule of Thumb: % lam1=1e-4 for severyly ill-conditioned problems % lam1=1e-2 for mildly ill-conditioned problems % lam1=1 for A unitary direct operators % % Default: lam1 = 0.04. % % Important Note: If (max eigenvalue of A'*A) > 1, % the algorithm may diverge. This is be avoided % by taking one of the follwoing measures: % % 1) Set 'Monontone' = 1 (default) % % 2) Solve the equivalenve minimization problem % % min_x = 0.5*|| (y/c) - (A/c) x ||_2^2 + (tau/c^2) \phi( x ), % % where c > 0 ensures that max eigenvalue of (A'A/c^2) <= 1. % % 'alpha' = parameter alpha of TwIST (see ex. (22) of the paper) % Default alpha = alpha(lamN=1, lam1) % % 'beta' = parameter beta of twist (see ex. (23) of the paper) % Default beta = beta(lamN=1, lam1) % % 'AT' = function handle for the function that implements % the multiplication by the conjugate of A, when A % is a function handle. % If A is an array, AT is ignored. % % 'StopCriterion' = type of stopping criterion to use % 0 = algorithm stops when the relative % change in the number of non-zero % components of the estimate falls % below 'ToleranceA' % 1 = stop when the relative % change in the objective function % falls below 'ToleranceA' % 2 = stop when the relative norm of the difference between % two consecutive estimates falls below toleranceA % 3 = stop when the objective function % becomes equal or less than toleranceA. % Default = 1. % % 'ToleranceA' = stopping threshold; Default = 0.01 % % 'Debias' = debiasing option: 1 = yes, 0 = no. % Default = 0. % % Note: Debiasing is an operation aimed at the % computing the solution of the LS problem % % arg min_x = 0.5*|| y - A' x' ||_2^2 % % where A' is the submatrix of A obatained by % deleting the columns of A corresponding of components % of x set to zero by the TwIST algorithm % % % 'ToleranceD' = stopping threshold for the debiasing phase: % Default = 0.0001. % If no debiasing takes place, this parameter, % if present, is ignored. % % 'MaxiterA' = maximum number of iterations allowed in the % main phase of the algorithm. % Default = 1000 % % 'MiniterA' = minimum number of iterations performed in the % main phase of the algorithm. % Default = 5 % % 'MaxiterD' = maximum number of iterations allowed in the % debising phase of the algorithm. % Default = 200 % % 'MiniterD' = minimum number of iterations to perform in the % debiasing phase of the algorithm. % Default = 5 % % 'Initialization' must be one of {0,1,2,array} % 0 -> Initialization at zero. % 1 -> Random initialization. % 2 -> initialization with A'*y. % array -> initialization provided by the user. % Default = 0; % % 'Monotone' = enforce monotonic decrease in f. % any nonzero -> enforce monotonicity % 0 -> don't enforce monotonicity. % Default = 1; % % 'Sparse' = {0,1} accelarates the convergence rate when the regularizer % Phi(x) is sparse inducing, such as ||x||_1. % Default = 1 % % % 'True_x' = if the true underlying x is passed in % this argument, MSE evolution is computed % % % 'Verbose' = work silently (0) or verbosely (1) % % =================================================== % ============ Outputs ============================== % x = solution of the main algorithm % % x_debias = solution after the debiasing phase; % if no debiasing phase took place, this % variable is empty, x_debias = []. % % objective = sequence of values of the objective function % % times = CPU time after each iteration % % debias_start = iteration number at which the debiasing % phase started. If no debiasing took place, % this variable is returned as zero. % % mses = sequence of MSE values, with respect to True_x, % if it was given; if it was not given, mses is empty, % mses = []. % % max_svd = inverse of the scaling factor, determined by TwIST, % applied to the direct operator (A/max_svd) such that % every IST step is increasing. % ======================================================== %-------------------------------------------------------------- % test for number of required parametres %-------------------------------------------------------------- if (nargin-length(varargin)) ~= 3 error('Wrong number of required parameters'); end %-------------------------------------------------------------- % Set the defaults for the optional parameters %-------------------------------------------------------------- stopCriterion = 1; tolA = 0.01; debias = 0; maxiter = 1000; maxiter_debias = 200; miniter = 5; miniter_debias = 5; init = 0; enforceMonotone = 1; compute_mse = 0; plot_ISNR = 0; AT = 0; verbose = 1; alpha = 0; beta = 0; sparse = 1; tolD = 0.001; phi_l1 = 0; psi_ok = 0; % default eigenvalues lam1=1e-4; lamN=1; % % constants ans internal variables for_ever = 1; % maj_max_sv: majorizer for the maximum singular value of operator A max_svd = 1; % Set the defaults for outputs that may not be computed debias_start = 0; x_debias = []; mses = []; %-------------------------------------------------------------- % Read the optional parameters %-------------------------------------------------------------- if (rem(length(varargin),2)==1) error('Optional parameters should always go by pairs'); else for i=1:2:(length(varargin)-1) switch upper(varargin{i}) case 'LAMBDA' lam1 = varargin{i+1}; case 'ALPHA' alpha = varargin{i+1}; case 'BETA' beta = varargin{i+1}; case 'PSI' psi_function = varargin{i+1}; case 'PHI' phi_function = varargin{i+1}; case 'STOPCRITERION' stopCriterion = varargin{i+1}; case 'TOLERANCEA' tolA = varargin{i+1}; case 'TOLERANCED' tolD = varargin{i+1}; case 'DEBIAS' debias = varargin{i+1}; case 'MAXITERA' maxiter = varargin{i+1}; case 'MAXIRERD' maxiter_debias = varargin{i+1}; case 'MINITERA' miniter = varargin{i+1}; case 'MINITERD' miniter_debias = varargin{i+1}; case 'INITIALIZATION' if prod(size(varargin{i+1})) > 1 % we have an initial x init = 33333; % some flag to be used below x = varargin{i+1}; else init = varargin{i+1}; end case 'MONOTONE' enforceMonotone = varargin{i+1}; case 'SPARSE' sparse = varargin{i+1}; case 'TRUE_X' compute_mse = 1; true = varargin{i+1}; size(true) size(y) if prod(double((size(true) == size(y)))) plot_ISNR = 1; end case 'AT' AT = varargin{i+1}; case 'VERBOSE' verbose = varargin{i+1}; otherwise % Hmmm, something wrong with the parameter string error(['Unrecognized option: ''' varargin{i} '''']); end; end; end %%%%%%%%%%%%%% % twist parameters rho0 = (1-lam1/lamN)/(1+lam1/lamN); if alpha == 0 alpha = 2/(1+sqrt(1-rho0^2)); end if beta == 0 beta = alpha*2/(lam1+lamN); end if (sum(stopCriterion == [0 1 2 3])==0) error(['Unknwon stopping criterion']); end % if A is a function handle, we have to check presence of AT, if isa(A, 'function_handle') & ~isa(AT,'function_handle') error(['The function handle for transpose of A is missing']); end % if A is a matrix, we find out dimensions of y and x, % and create function handles for multiplication by A and A', % so that the code below doesn't have to distinguish between % the handle/not-handle cases if ~isa(A, 'function_handle') AT = @(x) reshape(A'*x(:),[64 64]); A = @(x) reshape(A*x(:),[size(y,1) size(y,2)]); end % from this point down, A and AT are always function handles. % Precompute A'*y since it'll be used a lot Aty = AT(y); % psi_function(Aty,tau) % if phi was given, check to see if it is a handle and that it % accepts two arguments if exist('psi_function','var') if isa(psi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = psi_function(Aty,tau); psi_ok = 1; catch error(['Something is wrong with function handle for psi']) end else error(['Psi does not seem to be a valid function handle']); end else %if nothing was given, use soft thresholding psi_function = @(x,tau) soft(x,tau); end % if psi exists, phi must also exist if (psi_ok == 1) if exist('phi_function','var') if isa(phi_function,'function_handle') try % check if phi can be used, using Aty, which we know has % same size as x dummy = phi_function(Aty); catch error(['Something is wrong with function handle for phi']) end else error(['Phi does not seem to be a valid function handle']); end else error(['If you give Psi you must also give Phi']); end else % if no psi and phi were given, simply use the l1 norm. phi_function = @(x) sum(abs(x(:))); phi_l1 = 1; end %-------------------------------------------------------------- % Initialization %-------------------------------------------------------------- switch init case 0 % initialize at zero, using AT to find the size of x x = AT(zeros(size(y))); case 1 % initialize randomly, using AT to find the size of x x = randn(size(AT(zeros(size(y))))); case 2 % initialize x0 = A'*y x = Aty; case 33333 % initial x was given as a function argument; just check size if size(A(x)) ~= size(y) error(['Size of initial x is not compatible with A']); end otherwise error(['Unknown ''Initialization'' option']); end % now check if tau is an array; if it is, it has to % have the same size as x if prod(size(tau)) > 1 try, dummy = x.*tau; catch, error(['Parameter tau has wrong dimensions; it should be scalar or size(x)']), end end % if the true x was given, check its size if compute_mse & (size(true) ~= size(x)) error(['Initial x has incompatible size']); end % if tau is large enough, in the case of phi = l1, thus psi = soft, % the optimal solution is the zero vector if phi_l1 max_tau = max(abs(Aty(:))); if (tau >= max_tau)&(psi_ok==0) x = zeros(size(Aty)); objective(1) = 0.5*(y(:)'*y(:)); times(1) = 0; if compute_mse mses(1) = sum(true(:).^2); end return end end % define the indicator vector or matrix of nonzeros in x nz_x = (x ~= 0.0); num_nz_x = sum(nz_x(:)); % Compute and store initial value of the objective function resid = y-A(x); prev_f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); % start the clock t0 = cputime; times(1) = cputime - t0; objective(1) = prev_f; if compute_mse mses(1) = sum(sum((x-true).^2)); end cont_outer = 1; iter = 1; if verbose fprintf(1,'\nInitial objective = %10.6e, nonzeros=%7d\n',... prev_f,num_nz_x); end % variables controling first and second order iterations IST_iters = 0; TwIST_iters = 0; % initialize xm2=x; xm1=x; %-------------------------------------------------------------- % TwIST iterations %-------------------------------------------------------------- while cont_outer % gradient grad = AT(resid); while for_ever % IST estimate x = psi_function(xm1 + grad/max_svd,tau/max_svd); if (IST_iters >= 2) | ( TwIST_iters ~= 0) % set to zero the past when the present is zero % suitable for sparse inducing priors if sparse mask = (x ~= 0); xm1 = xm1.* mask; xm2 = xm2.* mask; end % two-step iteration xm2 = (alpha-beta)*xm1 + (1-alpha)*xm2 + beta*x; % compute residual resid = y-A(xm2); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(xm2); if (f > prev_f) & (enforceMonotone) TwIST_iters = 0; % do a IST iteration if monotonocity fails else TwIST_iters = TwIST_iters+1; % TwIST iterations IST_iters = 0; x = xm2; if mod(TwIST_iters,10000) == 0 max_svd = 0.9*max_svd; end break; % break loop while end else resid = y-A(x); f = 0.5*(resid(:)'*resid(:)) + tau*phi_function(x); if f > prev_f % if monotonicity fails here is because % max eig (A'A) > 1. Thus, we increase our guess % of max_svs max_svd = 2*max_svd; if verbose fprintf('Incrementing S=%2.2e\n',max_svd) end IST_iters = 0; TwIST_iters = 0; else TwIST_iters = TwIST_iters + 1; break; % break loop while end end end xm2 = xm1; xm1 = x; %update the number of nonzero components and its variation nz_x_prev = nz_x; nz_x = (x~=0.0); num_nz_x = sum(nz_x(:)); num_changes_active = (sum(nz_x(:)~=nz_x_prev(:))); % take no less than miniter and no more than maxiter iterations switch stopCriterion case 0, % compute the stopping criterion based on the change % of the number of non-zero components of the estimate criterion = num_changes_active; case 1, % compute the stopping criterion based on the relative % variation of the objective function. criterion = abs(f-prev_f)/prev_f; case 2, % compute the stopping criterion based on the relative % variation of the estimate. criterion = (norm(x(:)-xm1(:))/norm(x(:))); case 3, % continue if not yet reached target value tolA criterion = f; otherwise, error(['Unknwon stopping criterion']); end cont_outer = ((iter <= maxiter) & (criterion > tolA)); if iter <= miniter cont_outer = 1; end iter = iter + 1; prev_f = f; objective(iter) = f; times(iter) = cputime-t0; if compute_mse err = true - x; mses(iter) = (err(:)'*err(:)); end % print out the various stopping criteria if verbose if plot_ISNR fprintf(1,'Iteration=%4d, ISNR=%4.5e objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, 10*log10(sum((y(:)-true(:)).^2)/sum((x(:)-true(:)).^2) ), ... f, num_nz_x, criterion/tolA); else fprintf(1,'Iteration=%4d, objective=%9.5e, nz=%7d, criterion=%7.3e\n',... iter, f, num_nz_x, criterion/tolA); end end % figure(999);imagesc(plotdatacube(x));colormap gray;axis image;colorbar;drawnow; end %-------------------------------------------------------------- % end of the main loop %-------------------------------------------------------------- % Printout results if verbose fprintf(1,'\nFinished the main algorithm!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); fprintf(1,'Number of non-zero components = %d\n',num_nz_x); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end %-------------------------------------------------------------- % If the 'Debias' option is set to 1, we try to % remove the bias from the l1 penalty, by applying CG to the % least-squares problem obtained by omitting the l1 term % and fixing the zero coefficients at zero. %-------------------------------------------------------------- if debias if verbose fprintf(1,'\n') fprintf(1,'Starting the debiasing phase...\n\n') end x_debias = x; zeroind = (x_debias~=0); cont_debias_cg = 1; debias_start = iter; % calculate initial residual resid = A(x_debias); resid = resid-y; resid_prev = eps*ones(size(resid)); rvec = AT(resid); % mask out the zeros rvec = rvec .* zeroind; rTr_cg = rvec(:)'*rvec(:); % set convergence threshold for the residual || RW x_debias - y ||_2 tol_debias = tolD * (rvec(:)'*rvec(:)); % initialize pvec pvec = -rvec; % main loop while cont_debias_cg % calculate A*p = Wt * Rt * R * W * pvec RWpvec = A(pvec); Apvec = AT(RWpvec); % mask out the zero terms Apvec = Apvec .* zeroind; % calculate alpha for CG alpha_cg = rTr_cg / (pvec(:)'* Apvec(:)); % take the step x_debias = x_debias + alpha_cg * pvec; resid = resid + alpha_cg * RWpvec; rvec = rvec + alpha_cg * Apvec; rTr_cg_plus = rvec(:)'*rvec(:); beta_cg = rTr_cg_plus / rTr_cg; pvec = -rvec + beta_cg * pvec; rTr_cg = rTr_cg_plus; iter = iter+1; objective(iter) = 0.5*(resid(:)'*resid(:)) + ... tau*phi_function(x_debias(:)); times(iter) = cputime - t0; if compute_mse err = true - x_debias; mses(iter) = (err(:)'*err(:)); end % in the debiasing CG phase, always use convergence criterion % based on the residual (this is standard for CG) if verbose fprintf(1,' Iter = %5d, debias resid = %13.8e, convergence = %8.3e\n', ... iter, resid(:)'*resid(:), rTr_cg / tol_debias); end cont_debias_cg = ... (iter-debias_start <= miniter_debias )| ... ((rTr_cg > tol_debias) & ... (iter-debias_start <= maxiter_debias)); end if verbose fprintf(1,'\nFinished the debiasing phase!\nResults:\n') fprintf(1,'||A x - y ||_2 = %10.3e\n',resid(:)'*resid(:)) fprintf(1,'||x||_1 = %10.3e\n',sum(abs(x(:)))) fprintf(1,'Objective function = %10.3e\n',f); nz = (x_debias~=0.0); fprintf(1,'Number of non-zero components = %d\n',sum(nz(:))); fprintf(1,'CPU time so far = %10.3e\n', times(iter)); fprintf(1,'\n'); end end if compute_mse mses = mses/length(true(:)); end %-------------------------------------------------------------- % soft for both real and complex numbers %-------------------------------------------------------------- function y = soft(x,T) %y = sign(x).*max(abs(x)-tau,0); y = max(abs(x) - T, 0); y = y./(y+T) .* x;
github
winswang/comp_holo_video-master
MyTVphi.m
.m
comp_holo_video-master/4D/MyTVphi.m
281
utf_8
9b938a61469a38963950ef4d40953c71
function y=MyTVphi(x,Nvx,Nvy,Nvz) % x = x(1:length(x)/2) + 1i*x(length(x)/2+1:end); X=reshape(x,Nvx,Nvy,Nvz); [y,dif]=MyTVnorm(X); % re = real(y); im = imag(y); % y = [re;im]; function [y,dif]=MyTVnorm(x) TV=MyTV3D_conv(x); dif=sqrt(sum(TV.*conj(TV),4)); y=sum(dif(:)); end end
github
chinmaydas96/Neural-Networks-for-Machine-Learning-master
learn_perceptron.m
.m
Neural-Networks-for-Machine-Learning-master/week-3/Assignment1/Octave/learn_perceptron.m
6,030
utf_8
71f226b260465cb3ec3b5c82e3519382
%% Learns the weights of a perceptron and displays the results. function [w] = learn_perceptron(neg_examples_nobias,pos_examples_nobias,w_init,w_gen_feas) %% % Learns the weights of a perceptron for a 2-dimensional dataset and plots % the perceptron at each iteration where an iteration is defined as one % full pass through the data. If a generously feasible weight vector % is provided then the visualization will also show the distance % of the learned weight vectors to the generously feasible weight vector. % Required Inputs: % neg_examples_nobias - The num_neg_examples x 2 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples_nobias - The num_pos_examples x 2 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w_init - A 3-dimensional initial weight vector. The last element is the bias. % w_gen_feas - A generously feasible weight vector. % Returns: % w - The learned weight vector. %% %Bookkeeping num_neg_examples = size(neg_examples_nobias,1); num_pos_examples = size(pos_examples_nobias,1); num_err_history = []; w_dist_history = []; %Here we add a column of ones to the examples in order to allow us to learn %bias parameters. neg_examples = [neg_examples_nobias,ones(num_neg_examples,1)]; pos_examples = [pos_examples_nobias,ones(num_pos_examples,1)]; %If weight vectors have not been provided, initialize them appropriately. if (~exist('w_init','var') || isempty(w_init)) w = randn(3,1); else w = w_init; end if (~exist('w_gen_feas','var')) w_gen_feas = []; end %Find the data points that the perceptron has incorrectly classified %and record the number of errors it makes. iter = 0; [mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w); num_errs = size(mistakes0,1) + size(mistakes1,1); num_err_history(end+1) = num_errs; fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs); fprintf(['weights:\t', mat2str(w), '\n']); plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history); key = input('<Press enter to continue, q to quit.>', 's'); if (key == 'q') return; end %If a generously feasible weight vector exists, record the distance %to it from the initial weight vector. if (length(w_gen_feas) ~= 0) w_dist_history(end+1) = norm(w - w_gen_feas); end %Iterate until the perceptron has correctly classified all points. while (num_errs > 0) iter = iter + 1; %Update the weights of the perceptron. w = update_weights(neg_examples,pos_examples,w); %If a generously feasible weight vector exists, record the distance %to it from the current weight vector. if (length(w_gen_feas) ~= 0) w_dist_history(end+1) = norm(w - w_gen_feas); end %Find the data points that the perceptron has incorrectly classified. %and record the number of errors it makes. [mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w); num_errs = size(mistakes0,1) + size(mistakes1,1); num_err_history(end+1) = num_errs; fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs); fprintf(['weights:\t', mat2str(w), '\n']); plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history); key = input('<Press enter to continue, q to quit.>', 's'); if (key == 'q') break; end end %WRITE THE CODE TO COMPLETE THIS FUNCTION function [w] = update_weights(neg_examples, pos_examples, w_current) %% % Updates the weights of the perceptron for incorrectly classified points % using the perceptron update algorithm. This function makes one sweep % over the dataset. % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w_current - A 3-dimensional weight vector, the last element is the bias. % Returns: % w - The weight vector after one pass through the dataset using the perceptron % learning rule. %% w = w_current; num_neg_examples = size(neg_examples,1); num_pos_examples = size(pos_examples,1); for i=1:num_neg_examples this_case = neg_examples(i,:); x = this_case'; %Hint activation = this_case*w; if (activation >= 0) %YOUR CODE HERE end end for i=1:num_pos_examples this_case = pos_examples(i,:); x = this_case'; activation = this_case*w; if (activation < 0) %YOUR CODE HERE end end function [mistakes0, mistakes1] = eval_perceptron(neg_examples, pos_examples, w) %% % Evaluates the perceptron using a given weight vector. Here, evaluation % refers to finding the data points that the perceptron incorrectly classifies. % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w - A 3-dimensional weight vector, the last element is the bias. % Returns: % mistakes0 - A vector containing the indices of the negative examples that have been % incorrectly classified as positive. % mistakes0 - A vector containing the indices of the positive examples that have been % incorrectly classified as negative. %% num_neg_examples = size(neg_examples,1); num_pos_examples = size(pos_examples,1); mistakes0 = []; mistakes1 = []; for i=1:num_neg_examples x = neg_examples(i,:)'; activation = x'*w; if (activation >= 0) mistakes0 = [mistakes0;i]; end end for i=1:num_pos_examples x = pos_examples(i,:)'; activation = x'*w; if (activation < 0) mistakes1 = [mistakes1;i]; end end
github
chinmaydas96/Neural-Networks-for-Machine-Learning-master
plot_perceptron.m
.m
Neural-Networks-for-Machine-Learning-master/week-3/Assignment1/Octave/plot_perceptron.m
3,409
utf_8
808099ac46c6f636fa74de07abbcc8bb
%% Plots information about a perceptron classifier on a 2-dimensional dataset. function plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history) %% % The top-left plot shows the dataset and the classification boundary given by % the weights of the perceptron. The negative examples are shown as circles % while the positive examples are shown as squares. If an example is colored % green then it means that the example has been correctly classified by the % provided weights. If it is colored red then it has been incorrectly classified. % The top-right plot shows the number of mistakes the perceptron algorithm has % made in each iteration so far. % The bottom-left plot shows the distance to some generously feasible weight % vector if one has been provided (note, there can be an infinite number of these). % Points that the classifier has made a mistake on are shown in red, % while points that are correctly classified are shown in green. % The goal is for all of the points to be green (if it is possible to do so). % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % mistakes0 - A vector containing the indices of the datapoints from class 0 incorrectly % classified by the perceptron. This is a subset of neg_examples. % mistakes1 - A vector containing the indices of the datapoints from class 1 incorrectly % classified by the perceptron. This is a subset of pos_examples. % num_err_history - A vector containing the number of mistakes for each % iteration of learning so far. % w - A 3-dimensional vector corresponding to the current weights of the % perceptron. The last element is the bias. % w_dist_history - A vector containing the L2-distance to a generously % feasible weight vector for each iteration of learning so far. % Empty if one has not been provided. %% f = figure(1); clf(f); neg_correct_ind = setdiff(1:size(neg_examples,1),mistakes0); pos_correct_ind = setdiff(1:size(pos_examples,1),mistakes1); subplot(2,2,1); hold on; if (~isempty(neg_examples)) plot(neg_examples(neg_correct_ind,1),neg_examples(neg_correct_ind,2),'og','markersize',20); end if (~isempty(pos_examples)) plot(pos_examples(pos_correct_ind,1),pos_examples(pos_correct_ind,2),'sg','markersize',20); end if (size(mistakes0,1) > 0) plot(neg_examples(mistakes0,1),neg_examples(mistakes0,2),'or','markersize',20); end if (size(mistakes1,1) > 0) plot(pos_examples(mistakes1,1),pos_examples(mistakes1,2),'sr','markersize',20); end title('Classifier'); %In order to plot the decision line, we just need to get two points. plot([-5,5],[(-w(end)+5*w(1))/w(2),(-w(end)-5*w(1))/w(2)],'k') xlim([-1,1]); ylim([-1,1]); hold off; subplot(2,2,2); plot(0:length(num_err_history)-1,num_err_history); xlim([-1,max(15,length(num_err_history))]); ylim([0,size(neg_examples,1)+size(pos_examples,1)+1]); title('Number of errors'); xlabel('Iteration'); ylabel('Number of errors'); subplot(2,2,3); plot(0:length(w_dist_history)-1,w_dist_history); xlim([-1,max(15,length(num_err_history))]); ylim([0,15]); title('Distance') xlabel('Iteration'); ylabel('Distance');
github
chinmaydas96/Neural-Networks-for-Machine-Learning-master
train.m
.m
Neural-Networks-for-Machine-Learning-master/week-5/assignment2/train.m
8,675
utf_8
eb006271f1479b68936e2aeb9c7222f8
% This function trains a neural network language model. function [model] = train(epochs) % Inputs: % epochs: Number of epochs to run. % Output: % model: A struct containing the learned weights and biases and vocabulary. if size(ver('Octave'),1) OctaveMode = 1; warning('error', 'Octave:broadcast'); start_time = time; else OctaveMode = 0; start_time = clock; end % SET HYPERPARAMETERS HERE. batchsize = 100; % Mini-batch size. learning_rate = 0.1; % Learning rate; default = 0.1. momentum = 0.9; % Momentum; default = 0.9. numhid1 = 50; % Dimensionality of embedding space; default = 50. numhid2 = 200; % Number of units in hidden layer; default = 200. init_wt = 0.01; % Standard deviation of the normal distribution % which is sampled to get the initial weights; default = 0.01 % VARIABLES FOR TRACKING TRAINING PROGRESS. show_training_CE_after = 100; show_validation_CE_after = 1000; % LOAD DATA. [train_input, train_target, valid_input, valid_target, ... test_input, test_target, vocab] = load_data(batchsize); [numwords, batchsize, numbatches] = size(train_input); vocab_size = size(vocab, 2); % INITIALIZE WEIGHTS AND BIASES. word_embedding_weights = init_wt * randn(vocab_size, numhid1); embed_to_hid_weights = init_wt * randn(numwords * numhid1, numhid2); hid_to_output_weights = init_wt * randn(numhid2, vocab_size); hid_bias = zeros(numhid2, 1); output_bias = zeros(vocab_size, 1); word_embedding_weights_delta = zeros(vocab_size, numhid1); word_embedding_weights_gradient = zeros(vocab_size, numhid1); embed_to_hid_weights_delta = zeros(numwords * numhid1, numhid2); hid_to_output_weights_delta = zeros(numhid2, vocab_size); hid_bias_delta = zeros(numhid2, 1); output_bias_delta = zeros(vocab_size, 1); expansion_matrix = eye(vocab_size); count = 0; tiny = exp(-30); % TRAIN. for epoch = 1:epochs fprintf(1, 'Epoch %d\n', epoch); this_chunk_CE = 0; trainset_CE = 0; % LOOP OVER MINI-BATCHES. for m = 1:numbatches input_batch = train_input(:, :, m); target_batch = train_target(:, :, m); % FORWARD PROPAGATE. % Compute the state of each layer in the network given the input batch % and all weights and biases [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(input_batch, ... word_embedding_weights, embed_to_hid_weights, ... hid_to_output_weights, hid_bias, output_bias); % COMPUTE DERIVATIVE. %% Expand the target to a sparse 1-of-K vector. expanded_target_batch = expansion_matrix(:, target_batch); %% Compute derivative of cross-entropy loss function. error_deriv = output_layer_state - expanded_target_batch; % MEASURE LOSS FUNCTION. CE = -sum(sum(... expanded_target_batch .* log(output_layer_state + tiny))) / batchsize; count = count + 1; this_chunk_CE = this_chunk_CE + (CE - this_chunk_CE) / count; trainset_CE = trainset_CE + (CE - trainset_CE) / m; fprintf(1, '\rBatch %d Train CE %.3f', m, this_chunk_CE); if mod(m, show_training_CE_after) == 0 fprintf(1, '\n'); count = 0; this_chunk_CE = 0; end if OctaveMode fflush(1); end % BACK PROPAGATE. %% OUTPUT LAYER. hid_to_output_weights_gradient = hidden_layer_state * error_deriv'; output_bias_gradient = sum(error_deriv, 2); back_propagated_deriv_1 = (hid_to_output_weights * error_deriv) ... .* hidden_layer_state .* (1 - hidden_layer_state); %% HIDDEN LAYER. % FILL IN CODE. Replace the line below by one of the options. embed_to_hid_weights_gradient = zeros(numhid1 * numwords, numhid2); % Options: % (a) embed_to_hid_weights_gradient = back_propagated_deriv_1' * embedding_layer_state; % (b) embed_to_hid_weights_gradient = embedding_layer_state * back_propagated_deriv_1'; % (c) embed_to_hid_weights_gradient = back_propagated_deriv_1; % (d) embed_to_hid_weights_gradient = embedding_layer_state; % FILL IN CODE. Replace the line below by one of the options. hid_bias_gradient = zeros(numhid2, 1); % Options % (a) hid_bias_gradient = sum(back_propagated_deriv_1, 2); % (b) hid_bias_gradient = sum(back_propagated_deriv_1, 1); % (c) hid_bias_gradient = back_propagated_deriv_1; % (d) hid_bias_gradient = back_propagated_deriv_1'; % FILL IN CODE. Replace the line below by one of the options. back_propagated_deriv_2 = zeros(numhid2, batchsize); % Options % (a) back_propagated_deriv_2 = embed_to_hid_weights * back_propagated_deriv_1; % (b) back_propagated_deriv_2 = back_propagated_deriv_1 * embed_to_hid_weights; % (c) back_propagated_deriv_2 = back_propagated_deriv_1' * embed_to_hid_weights; % (d) back_propagated_deriv_2 = back_propagated_deriv_1 * embed_to_hid_weights'; word_embedding_weights_gradient(:) = 0; %% EMBEDDING LAYER. for w = 1:numwords word_embedding_weights_gradient = word_embedding_weights_gradient + ... expansion_matrix(:, input_batch(w, :)) * ... (back_propagated_deriv_2(1 + (w - 1) * numhid1 : w * numhid1, :)'); end % UPDATE WEIGHTS AND BIASES. word_embedding_weights_delta = ... momentum .* word_embedding_weights_delta + ... word_embedding_weights_gradient ./ batchsize; word_embedding_weights = word_embedding_weights... - learning_rate * word_embedding_weights_delta; embed_to_hid_weights_delta = ... momentum .* embed_to_hid_weights_delta + ... embed_to_hid_weights_gradient ./ batchsize; embed_to_hid_weights = embed_to_hid_weights... - learning_rate * embed_to_hid_weights_delta; hid_to_output_weights_delta = ... momentum .* hid_to_output_weights_delta + ... hid_to_output_weights_gradient ./ batchsize; hid_to_output_weights = hid_to_output_weights... - learning_rate * hid_to_output_weights_delta; hid_bias_delta = momentum .* hid_bias_delta + ... hid_bias_gradient ./ batchsize; hid_bias = hid_bias - learning_rate * hid_bias_delta; output_bias_delta = momentum .* output_bias_delta + ... output_bias_gradient ./ batchsize; output_bias = output_bias - learning_rate * output_bias_delta; % VALIDATE. if mod(m, show_validation_CE_after) == 0 fprintf(1, '\rRunning validation ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(valid_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(valid_input, 2); expanded_valid_target = expansion_matrix(:, valid_target); CE = -sum(sum(... expanded_valid_target .* log(output_layer_state + tiny))) /datasetsize; fprintf(1, ' Validation CE %.3f\n', CE); if OctaveMode fflush(1); end end end fprintf(1, '\rAverage Training CE %.3f\n', trainset_CE); end fprintf(1, 'Finished Training.\n'); if OctaveMode fflush(1); end fprintf(1, 'Final Training CE %.3f\n', trainset_CE); % EVALUATE ON VALIDATION SET. fprintf(1, '\rRunning validation ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(valid_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(valid_input, 2); expanded_valid_target = expansion_matrix(:, valid_target); CE = -sum(sum(... expanded_valid_target .* log(output_layer_state + tiny))) / datasetsize; fprintf(1, '\rFinal Validation CE %.3f\n', CE); if OctaveMode fflush(1); end % EVALUATE ON TEST SET. fprintf(1, '\rRunning test ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(test_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(test_input, 2); expanded_test_target = expansion_matrix(:, test_target); CE = -sum(sum(... expanded_test_target .* log(output_layer_state + tiny))) / datasetsize; fprintf(1, '\rFinal Test CE %.3f\n', CE); if OctaveMode fflush(1); end model.word_embedding_weights = word_embedding_weights; model.embed_to_hid_weights = embed_to_hid_weights; model.hid_to_output_weights = hid_to_output_weights; model.hid_bias = hid_bias; model.output_bias = output_bias; model.vocab = vocab; % In MATLAB replace line below with 'end_time = clock;' if OctaveMode end_time = time; diff = end_time - start_time; else end_time = clock; diff = etime(end_time, start_time); end fprintf(1, 'Training took %.2f seconds\n', diff); end
github
andrewganjinrui/CrackInspection_Matlab-master
bilateralFilter.m
.m
CrackInspection_Matlab-master/bilateralFilter.m
7,195
utf_8
820768914dac0bf852cd298cf3112a76
% % original src: http://people.csail.mit.edu/jiawen/software/bilateralFilter.m % original author: Jiawen (Kevin) Chen % <[email protected]> % http://people.csail.mit.edu/jiawen/ % % output = bilateralFilter( data, edge, ... % edgeMin, edgeMax, ... % sigmaSpatial, sigmaRange, ... % samplingSpatial, samplingRange ) % % Bilateral and Cross-Bilateral Filter using the Bilateral Grid. % % Bilaterally filters the image 'data' using the edges in the image 'edge'. % If 'data' == 'edge', then it the standard bilateral filter. % Otherwise, it is the 'cross' or 'joint' bilateral filter. % For convenience, you can also pass in [] for 'edge' for the normal % bilateral filter. % % Note that for the cross bilateral filter, data does not need to be % defined everywhere. Undefined values can be set to 'NaN'. However, edge % *does* need to be defined everywhere. % % data and edge should be of the greyscale, double-precision floating point % matrices of the same size (i.e. they should be [ height x width ]) % % data is the only required argument % % edgeMin and edgeMax specifies the min and max values of 'edge' (or 'data' % for the normal bilateral filter) and is useful when the input is in a % range that's not between 0 and 1. For instance, if you are filtering the % L channel of an image that ranges between 0 and 100, set edgeMin to 0 and % edgeMax to 100. % % edgeMin defaults to min( edge( : ) ) and edgeMax defaults to max( edge( : ) ). % This is probably *not* what you want, since the input may not span the % entire range. % % sigmaSpatial and sigmaRange specifies the standard deviation of the space % and range gaussians, respectively. % sigmaSpatial defaults to min( width, height ) / 16 % sigmaRange defaults to ( edgeMax - edgeMin ) / 10. % % samplingSpatial and samplingRange specifies the amount of downsampling % used for the approximation. Higher values use less memory but are also % less accurate. The default and recommended values are: % % samplingSpatial = sigmaSpatial % samplingRange = sigmaRange % function output = bilateralFilter( data, edge, edgeMin, edgeMax, sigmaSpatial, sigmaRange, samplingSpatial, samplingRange ) if( ndims( data ) > 2 ), error( 'data must be a greyscale image with size [ height, width ]' ); end if( ~isa( data, 'double' ) ), error( 'data must be of class "double"' ); end if ~exist( 'edge', 'var' ), edge = data; elseif isempty( edge ), edge = data; end if( ndims( edge ) > 2 ), error( 'edge must be a greyscale image with size [ height, width ]' ); end if( ~isa( edge, 'double' ) ), error( 'edge must be of class "double"' ); end inputHeight = size( data, 1 ); inputWidth = size( data, 2 ); if ~exist( 'edgeMin', 'var' ), edgeMin = min( edge( : ) ); warning( 'edgeMin not set! Defaulting to: %f\n', edgeMin ); end if ~exist( 'edgeMax', 'var' ), edgeMax = max( edge( : ) ); warning( 'edgeMax not set! Defaulting to: %f\n', edgeMax ); end edgeDelta = edgeMax - edgeMin; if ~exist( 'sigmaSpatial', 'var' ), sigmaSpatial = min( inputWidth, inputHeight ) / 16; fprintf( 'Using default sigmaSpatial of: %f\n', sigmaSpatial ); end if ~exist( 'sigmaRange', 'var' ), sigmaRange = 0.1 * edgeDelta; fprintf( 'Using default sigmaRange of: %f\n', sigmaRange ); end if ~exist( 'samplingSpatial', 'var' ), samplingSpatial = sigmaSpatial; end if ~exist( 'samplingRange', 'var' ), samplingRange = sigmaRange; end if size( data ) ~= size( edge ), error( 'data and edge must be of the same size' ); end % parameters derivedSigmaSpatial = sigmaSpatial / samplingSpatial; derivedSigmaRange = sigmaRange / samplingRange; paddingXY = floor( 2 * derivedSigmaSpatial ) + 1; paddingZ = floor( 2 * derivedSigmaRange ) + 1; % allocate 3D grid downsampledWidth = floor( ( inputWidth - 1 ) / samplingSpatial ) + 1 + 2 * paddingXY; downsampledHeight = floor( ( inputHeight - 1 ) / samplingSpatial ) + 1 + 2 * paddingXY; downsampledDepth = floor( edgeDelta / samplingRange ) + 1 + 2 * paddingZ; gridData = zeros( downsampledHeight, downsampledWidth, downsampledDepth ); gridWeights = zeros( downsampledHeight, downsampledWidth, downsampledDepth ); % compute downsampled indices [ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 ); % ii = % 0 0 0 0 0 % 1 1 1 1 1 % 2 2 2 2 2 % jj = % 0 1 2 3 4 % 0 1 2 3 4 % 0 1 2 3 4 % so when iterating over ii( k ), jj( k ) % get: ( 0, 0 ), ( 1, 0 ), ( 2, 0 ), ... (down columns first) di = round( ii / samplingSpatial ) + paddingXY + 1; dj = round( jj / samplingSpatial ) + paddingXY + 1; dz = round( ( edge - edgeMin ) / samplingRange ) + paddingZ + 1; % perform scatter (there's probably a faster way than this) % normally would do downsampledWeights( di, dj, dk ) = 1, but we have to % perform a summation to do box downsampling for k = 1 : numel( dz ), dataZ = data( k ); % traverses the image column wise, same as di( k ) if ~isnan( dataZ ), dik = di( k ); djk = dj( k ); dzk = dz( k ); gridData( dik, djk, dzk ) = gridData( dik, djk, dzk ) + dataZ; gridWeights( dik, djk, dzk ) = gridWeights( dik, djk, dzk ) + 1; end end % make gaussian kernel kernelWidth = 2 * derivedSigmaSpatial + 1; kernelHeight = kernelWidth; kernelDepth = 2 * derivedSigmaRange + 1; halfKernelWidth = floor( kernelWidth / 2 ); halfKernelHeight = floor( kernelHeight / 2 ); halfKernelDepth = floor( kernelDepth / 2 ); [gridX, gridY, gridZ] = meshgrid( 0 : kernelWidth - 1, 0 : kernelHeight - 1, 0 : kernelDepth - 1 ); gridX = gridX - halfKernelWidth; gridY = gridY - halfKernelHeight; gridZ = gridZ - halfKernelDepth; gridRSquared = ( gridX .* gridX + gridY .* gridY ) / ( derivedSigmaSpatial * derivedSigmaSpatial ) + ( gridZ .* gridZ ) / ( derivedSigmaRange * derivedSigmaRange ); kernel = exp( -0.5 * gridRSquared ); % convolve blurredGridData = convn( gridData, kernel, 'same' ); blurredGridWeights = convn( gridWeights, kernel, 'same' ); % divide blurredGridWeights( blurredGridWeights == 0 ) = -2; % avoid divide by 0, won't read there anyway normalizedBlurredGrid = blurredGridData ./ blurredGridWeights; normalizedBlurredGrid( blurredGridWeights < -1 ) = 0; % put 0s where it's undefined % for debugging % blurredGridWeights( blurredGridWeights < -1 ) = 0; % put zeros back % upsample [ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 ); % meshgrid does x, then y, so output arguments need to be reversed % no rounding di = ( ii / samplingSpatial ) + paddingXY + 1; dj = ( jj / samplingSpatial ) + paddingXY + 1; dz = ( edge - edgeMin ) / samplingRange + paddingZ + 1; % interpn takes rows, then cols, etc % i.e. size(v,1), then size(v,2), ... output = interpn( normalizedBlurredGrid, di, dj, dz ); end
github
wanghan0501/convolutional_sparse_coding-master
colorspace.m
.m
convolutional_sparse_coding-master/Main/Bilateral Filtering/colorspace.m
13,590
utf_8
b1a9eb973fa39950345a1df707b5d2c8
function varargout = colorspace(Conversion,varargin) %COLORSPACE Convert a color image between color representations. % B = COLORSPACE(S,A) converts the color representation of image A % where S is a string specifying the conversion. S tells the % source and destination color spaces, S = 'dest<-src', or % alternatively, S = 'src->dest'. Supported color spaces are % % 'RGB' R'G'B' Red Green Blue (ITU-R BT.709 gamma-corrected) % 'YPbPr' Luma (ITU-R BT.601) + Chroma % 'YCbCr'/'YCC' Luma + Chroma ("digitized" version of Y'PbPr) % 'YUV' NTSC PAL Y'UV Luma + Chroma % 'YIQ' NTSC Y'IQ Luma + Chroma % 'YDbDr' SECAM Y'DbDr Luma + Chroma % 'JPEGYCbCr' JPEG-Y'CbCr Luma + Chroma % 'HSV'/'HSB' Hue Saturation Value/Brightness % 'HSL'/'HLS'/'HSI' Hue Saturation Luminance/Intensity % 'XYZ' CIE XYZ % 'Lab' CIE L*a*b* (CIELAB) % 'Luv' CIE L*u*v* (CIELUV) % 'Lch' CIE L*ch (CIELCH) % % All conversions assume 2 degree observer and D65 illuminant. Color % space names are case insensitive. When R'G'B' is the source or % destination, it can be omitted. For example 'yuv<-' is short for % 'yuv<-rgb'. % % MATLAB uses two standard data formats for R'G'B': double data with % intensities in the range 0 to 1, and uint8 data with integer-valued % intensities from 0 to 255. As MATLAB's native datatype, double data is % the natural choice, and the R'G'B' format used by colorspace. However, % for memory and computational performance, some functions also operate % with uint8 R'G'B'. Given uint8 R'G'B' color data, colorspace will % first cast it to double R'G'B' before processing. % % If A is an Mx3 array, like a colormap, B will also have size Mx3. % % [B1,B2,B3] = COLORSPACE(S,A) specifies separate output channels. % COLORSPACE(S,A1,A2,A3) specifies separate input channels. % Pascal Getreuer 2005-2006 %%% Input parsing %%% if nargin < 2, error('Not enough input arguments.'); end [SrcSpace,DestSpace] = parse(Conversion); if nargin == 2 Image = varargin{1}; elseif nargin >= 3 Image = cat(3,varargin{:}); else error('Invalid number of input arguments.'); end FlipDims = (size(Image,3) == 1); if FlipDims, Image = permute(Image,[1,3,2]); end if ~isa(Image,'double'), Image = double(Image)/255; end if size(Image,3) ~= 3, error('Invalid input size.'); end SrcT = gettransform(SrcSpace); DestT = gettransform(DestSpace); if ~ischar(SrcT) & ~ischar(DestT) % Both source and destination transforms are affine, so they % can be composed into one affine operation T = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)]; Temp = zeros(size(Image)); Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10); Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11); Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12); Image = Temp; elseif ~ischar(DestT) Image = rgb(Image,SrcSpace); Temp = zeros(size(Image)); Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10); Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11); Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12); Image = Temp; else Image = feval(DestT,Image,SrcSpace); end %%% Output format %%% if nargout > 1 varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)}; else if FlipDims, Image = permute(Image,[1,3,2]); end varargout = {Image}; end return; function [SrcSpace,DestSpace] = parse(Str) % Parse conversion argument if isstr(Str) Str = lower(strrep(strrep(Str,'-',''),' ','')); k = find(Str == '>'); if length(k) == 1 % Interpret the form 'src->dest' SrcSpace = Str(1:k-1); DestSpace = Str(k+1:end); else k = find(Str == '<'); if length(k) == 1 % Interpret the form 'dest<-src' DestSpace = Str(1:k-1); SrcSpace = Str(k+1:end); else error(['Invalid conversion, ''',Str,'''.']); end end SrcSpace = alias(SrcSpace); DestSpace = alias(DestSpace); else SrcSpace = 1; % No source pre-transform DestSpace = Conversion; if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end end return; function Space = alias(Space) Space = strrep(Space,'cie',''); if isempty(Space) Space = 'rgb'; end switch Space case {'ycbcr','ycc'} Space = 'ycbcr'; case {'hsv','hsb'} Space = 'hsv'; case {'hsl','hsi','hls'} Space = 'hsl'; case {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'} return; end return; function T = gettransform(Space) % Get a colorspace transform: either a matrix describing an affine transform, % or a string referring to a conversion subroutine switch Space case 'ypbpr' T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0]; case 'yuv' % R'G'B' to NTSC/PAL YUV % Wikipedia: http://en.wikipedia.org/wiki/YUV T = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0]; case 'ydbdr' % R'G'B' to SECAM YDbDr % Wikipedia: http://en.wikipedia.org/wiki/YDbDr T = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0]; case 'yiq' % R'G'B' in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591]; % Wikipedia: http://en.wikipedia.org/wiki/YIQ T = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0]; case 'ycbcr' % R'G'B' (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr % Wikipedia: http://en.wikipedia.org/wiki/YCbCr % Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversion T = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128]; case 'jpegycbcr' % Wikipedia: http://en.wikipedia.org/wiki/YCbCr T = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255; case {'rgb','xyz','hsv','hsl','lab','luv','lch'} T = Space; otherwise error(['Unknown color space, ''',Space,'''.']); end return; function Image = rgb(Image,SrcSpace) % Convert to Rec. 709 R'G'B' from 'SrcSpace' switch SrcSpace case 'rgb' return; case 'hsv' % Convert HSV to R'G'B' Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1)); case 'hsl' % Convert HSL to R'G'B' L = Image(:,:,3); Delta = Image(:,:,2).*min(L,1-L); Image = huetorgb(L-Delta,L+Delta,Image(:,:,1)); case {'xyz','lab','luv','lch'} % Convert to CIE XYZ Image = xyz(Image,SrcSpace); % Convert XYZ to RGB T = [3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311]; R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3); % R G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3); % G B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3); % B % Desaturate and rescale to constrain resulting RGB values to [0,1] AddWhite = -min(min(min(R,G),B),0); Scale = max(max(max(R,G),B)+AddWhite,1); R = (R + AddWhite)./Scale; G = (G + AddWhite)./Scale; B = (B + AddWhite)./Scale; % Apply gamma correction to convert RGB to Rec. 709 R'G'B' Image(:,:,1) = gammacorrection(R); % R' Image(:,:,2) = gammacorrection(G); % G' Image(:,:,3) = gammacorrection(B); % B' otherwise % Conversion is through an affine transform T = gettransform(SrcSpace); temp = inv(T(:,1:3)); T = [temp,-temp*T(:,4)]; R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10); G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11); B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12); AddWhite = -min(min(min(R,G),B),0); Scale = max(max(max(R,G),B)+AddWhite,1); R = (R + AddWhite)./Scale; G = (G + AddWhite)./Scale; B = (B + AddWhite)./Scale; Image(:,:,1) = R; Image(:,:,2) = G; Image(:,:,3) = B; end % Clip to [0,1] Image = min(max(Image,0),1); return; function Image = xyz(Image,SrcSpace) % Convert to CIE XYZ from 'SrcSpace' WhitePoint = [0.950456,1,1.088754]; switch SrcSpace case 'xyz' return; case 'luv' % Convert CIE L*uv to XYZ WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); L = Image(:,:,1); Y = (L + 16)/116; Y = invf(Y)*WhitePoint(2); U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU; V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV; Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V); % X Image(:,:,2) = Y; % Y Image(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V); % Z case {'lab','lch'} Image = lab(Image,SrcSpace); % Convert CIE L*ab to XYZ fY = (Image(:,:,1) + 16)/116; fX = fY + Image(:,:,2)/500; fZ = fY - Image(:,:,3)/200; Image(:,:,1) = WhitePoint(1)*invf(fX); % X Image(:,:,2) = WhitePoint(2)*invf(fY); % Y Image(:,:,3) = WhitePoint(3)*invf(fZ); % Z otherwise % Convert from some gamma-corrected space % Convert to Rec. 701 R'G'B' Image = rgb(Image,SrcSpace); % Undo gamma correction R = invgammacorrection(Image(:,:,1)); G = invgammacorrection(Image(:,:,2)); B = invgammacorrection(Image(:,:,3)); % Convert RGB to XYZ T = inv([3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311]); Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B; % X Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B; % Y Image(:,:,3) = T(3)*R + T(6)*G + T(9)*B; % Z end return; function Image = hsv(Image,SrcSpace) % Convert to HSV Image = rgb(Image,SrcSpace); V = max(Image,[],3); S = (V - min(Image,[],3))./(V + (V == 0)); Image(:,:,1) = rgbtohue(Image); Image(:,:,2) = S; Image(:,:,3) = V; return; function Image = hsl(Image,SrcSpace) % Convert to HSL switch SrcSpace case 'hsv' % Convert HSV to HSL MaxVal = Image(:,:,3); MinVal = (1 - Image(:,:,2)).*MaxVal; L = 0.5*(MaxVal + MinVal); temp = min(L,1-L); Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0)); Image(:,:,3) = L; otherwise Image = rgb(Image,SrcSpace); % Convert to Rec. 701 R'G'B' % Convert R'G'B' to HSL MinVal = min(Image,[],3); MaxVal = max(Image,[],3); L = 0.5*(MaxVal + MinVal); temp = min(L,1-L); S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0)); Image(:,:,1) = rgbtohue(Image); Image(:,:,2) = S; Image(:,:,3) = L; end return; function Image = lab(Image,SrcSpace) % Convert to CIE L*a*b* (CIELAB) WhitePoint = [0.950456,1,1.088754]; switch SrcSpace case 'lab' return; case 'lch' % Convert CIE L*CH to CIE L*ab C = Image(:,:,2); Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C; % a* Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C; % b* otherwise Image = xyz(Image,SrcSpace); % Convert to XYZ % Convert XYZ to CIE L*a*b* X = Image(:,:,1)/WhitePoint(1); Y = Image(:,:,2)/WhitePoint(2); Z = Image(:,:,3)/WhitePoint(3); fX = f(X); fY = f(Y); fZ = f(Z); Image(:,:,1) = 116*fY - 16; % L* Image(:,:,2) = 500*(fX - fY); % a* Image(:,:,3) = 200*(fY - fZ); % b* end return; function Image = luv(Image,SrcSpace) % Convert to CIE L*u*v* (CIELUV) WhitePoint = [0.950456,1,1.088754]; WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); Image = xyz(Image,SrcSpace); % Convert to XYZ U = (4*Image(:,:,1))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3)); V = (9*Image(:,:,2))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3)); Y = Image(:,:,2)/WhitePoint(2); L = 116*f(Y) - 16; Image(:,:,1) = L; % L* Image(:,:,2) = 13*L.*(U - WhitePointU); % u* Image(:,:,3) = 13*L.*(V - WhitePointV); % v* return; function Image = lch(Image,SrcSpace) % Convert to CIE L*ch Image = lab(Image,SrcSpace); % Convert to CIE L*ab H = atan2(Image(:,:,3),Image(:,:,2)); H = H*180/pi + 360*(H < 0); Image(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2); % C Image(:,:,3) = H; % H return; function Image = huetorgb(m0,m2,H) % Convert HSV or HSL hue to RGB N = size(H); H = min(max(H(:),0),360)/60; m0 = m0(:); m2 = m2(:); F = H - round(H/2)*2; M = [m0, m0 + (m2-m0).*abs(F), m2]; Num = length(m0); j = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num; k = floor(H) + 1; Image = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]); return; function H = rgbtohue(Image) % Convert RGB to HSV or HSL hue [M,i] = sort(Image,3); i = i(:,:,3); Delta = M(:,:,3) - M(:,:,1); Delta = Delta + (Delta == 0); R = Image(:,:,1); G = Image(:,:,2); B = Image(:,:,3); H = zeros(size(R)); k = (i == 1); H(k) = (G(k) - B(k))./Delta(k); k = (i == 2); H(k) = 2 + (B(k) - R(k))./Delta(k); k = (i == 3); H(k) = 4 + (R(k) - G(k))./Delta(k); H = 60*H + 360*(H < 0); H(Delta == 0) = nan; return; function Rp = gammacorrection(R) Rp = real(1.099*R.^0.45 - 0.099); i = (R < 0.018); Rp(i) = 4.5138*R(i); return; function R = invgammacorrection(Rp) R = real(((Rp + 0.099)/1.099).^(1/0.45)); i = (R < 0.018); R(i) = Rp(i)/4.5138; return; function fY = f(Y) fY = real(Y.^(1/3)); i = (Y < 0.008856); fY(i) = Y(i)*(841/108) + (4/29); return; function Y = invf(fY) Y = fY.^3; i = (Y < 0.008856); Y(i) = (fY(i) - 4/29)*(108/841); return;
github
wanghan0501/convolutional_sparse_coding-master
bfilter2.m
.m
convolutional_sparse_coding-master/Main/Bilateral Filtering/bfilter2.m
4,694
utf_8
c4212b1b128af24576bc68f8b7f09b2b
% BFILTER2 Two dimensional bilateral filtering. % This function implements 2-D bilateral filtering using % the method outlined in: % % C. Tomasi and R. Manduchi. Bilateral Filtering for % Gray and Color Images. In Proceedings of the IEEE % International Conference on Computer Vision, 1998. % % B = bfilter2(A,W,SIGMA) performs 2-D bilateral filtering % for the grayscale or color image A. A should be a double % precision matrix of size NxMx1 or NxMx3 (i.e., grayscale % or color images, respectively) with normalized values in % the closed interval [0,1]. The half-size of the Gaussian % bilateral filter window is defined by W. The standard % deviations of the bilateral filter are given by SIGMA, % where the spatial-domain standard deviation is given by % SIGMA(1) and the intensity-domain standard deviation is % given by SIGMA(2). % % Douglas R. Lanman, Brown University, September 2006. % [email protected], http://mesh.brown.edu/dlanman %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Pre-process input and select appropriate filter. function B = bfilter2(A,w,sigma) % Verify that the input image exists and is valid. if ~exist('A','var') || isempty(A) error('Input image A is undefined or invalid.'); end if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ... min(A(:)) < 0 || max(A(:)) > 1 error(['Input image A must be a double precision ',... 'matrix of size NxMx1 or NxMx3 on the closed ',... 'interval [0,1].']); end % Verify bilateral filter window size. if ~exist('w','var') || isempty(w) || ... numel(w) ~= 1 || w < 1 w = 5; end w = ceil(w); % Verify bilateral filter standard deviations. if ~exist('sigma','var') || isempty(sigma) || ... numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0 sigma = [3 0.1]; end % Apply either grayscale or color bilateral filtering. if size(A,3) == 1 B = bfltGray(A,w,sigma(1),sigma(2)); else B = bfltColor(A,w,sigma(1),sigma(2)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Implements bilateral filtering for grayscale images. function B = bfltGray(A,w,sigma_d,sigma_r) % Pre-compute Gaussian distance weights. [X,Y] = meshgrid(-w:w,-w:w); G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); % Create waitbar. % h = waitbar(0,'Applying bilateral filter...'); % set(h,'Name','Bilateral Filter Progress'); % Apply bilateral filter. dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) % Extract local region. iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); I = A(iMin:iMax,jMin:jMax); % Compute Gaussian intensity weights. H = exp(-(I-A(i,j)).^2/(2*sigma_r^2)); % Calculate bilateral filter response. F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); B(i,j) = sum(F(:).*I(:))/sum(F(:)); end %waitbar(i/dim(1)); end % Close waitbar. %close(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Implements bilateral filter for color images. function B = bfltColor(A,w,sigma_d,sigma_r) % Convert input sRGB image to CIELab color space. if exist('applycform','file') A = applycform(A,makecform('srgb2lab')); else A = colorspace('Lab<-RGB',A); end % Pre-compute Gaussian domain weights. [X,Y] = meshgrid(-w:w,-w:w); G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); % Rescale range variance (using maximum luminance). sigma_r = 100*sigma_r; % Create waitbar. % h = waitbar(0,'Applying bilateral filter...'); % set(h,'Name','Bilateral Filter Progress'); % Apply bilateral filter. dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) % Extract local region. iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); I = A(iMin:iMax,jMin:jMax,:); % Compute Gaussian range weights. dL = I(:,:,1)-A(i,j,1); da = I(:,:,2)-A(i,j,2); db = I(:,:,3)-A(i,j,3); H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2)); % Calculate bilateral filter response. F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); norm_F = sum(F(:)); B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F; B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F; B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F; end %waitbar(i/dim(1)); end % Convert filtered image back to sRGB color space. if exist('applycform','file') B = applycform(B,makecform('lab2srgb')); else B = colorspace('RGB<-Lab',B); end % Close waitbar. %close(h);
github
wanghan0501/convolutional_sparse_coding-master
deconvtvl2.m
.m
convolutional_sparse_coding-master/Main/deconvtv_v1/private/deconvtvl2.m
6,403
utf_8
217f733df269e458bcfcea143f50d64f
function out = deconvtvl2(g, H, mu, opts) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % out = deconvtv(g, H, mu, opts) % deconvolves image g by solving the following TV minimization problem % % min (mu/2) || Hf - g ||^2 + ||f||_TV % % where ||f||_TV = sqrt( a||Dxf||^2 + b||Dyf||^2 c||Dtf||^2), % Dxf = f(x+1,y, t) - f(x,y,t) % Dyf = f(x,y+1, t) - f(x,y,t) % Dtf = f(x,y, t+1) - f(x,y,t) % % Input: g - the observed image, can be gray scale, or color % H - point spread function % mu - regularization parameter % opts.rho_r - initial penalty parameter for ||u-Df|| {2} % opts.rho_o - initial penalty parameter for ||Hf-g-r|| {50} % opts.beta - regularization parameter [a b c] for weighted TV norm {[1 1 0]} % opts.gamma - update constant for rho_r {2} % opts.max_itr - maximum iteration {20} % opts.alpha - constant that determines constraint violation {0.7} % opts.tol - tolerance level on relative change {1e-3} % opts.print - print screen option {false} % opts.f - initial f {g} % opts.y1 - initial y1 {0} % opts.y2 - initial y2 {0} % opts.y3 - initial y3 {0} % opts.z - initial z {0} % ** default values of opts are given in { }. % % Output: out.f - output video % out.itr - total number of iterations elapsed % out.relchg - final relative change % out.Df1 - Dxf, f is the output video % out.Df2 - Dyf, f is the output video % out.Df3 - Dtf, f is the output video % out.y1 - Lagrange multiplier for Df1 % out.y2 - Lagrange multiplier for Df2 % out.y3 - Lagrange multiplier for Df3 % out.rho_r - final penalty parameter % % Stanley Chan % Copyright 2010-2011 % University of California, San Diego % % Last Modified: % 30 Apr, 2010 (deconvtv) % 4 May, 2010 (deconvtv) % 5 May, 2010 (deconvtv) % 29 Jul, 2010 (deconvtvl2) % 11 Feb, 2011 (add Obj Val in output) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [rows cols frames] = size(g); % Check inputs if nargin<3 error('not enough input, try again \n'); elseif nargin==3 opts = []; end % Check defaults if ~isfield(opts,'rho_r') opts.rho_r = 2; end if ~isfield(opts,'gamma') opts.gamma = 2; end if ~isfield(opts,'max_itr') opts.max_itr = 20; end if ~isfield(opts,'tol') opts.tol = 1e-3; end if ~isfield(opts,'alpha') opts.alpha = 0.7; end if ~isfield(opts,'print') opts.print = false; end if ~isfield(opts,'f') opts.f = g; end if ~isfield(opts,'y1') opts.y1 = zeros(rows, cols, frames); end if ~isfield(opts,'y2') opts.y2 = zeros(rows, cols, frames); end if ~isfield(opts,'y3') opts.y3 = zeros(rows, cols, frames); end if ~isfield(opts,'u1') opts.u1 = zeros(rows, cols, frames); end if ~isfield(opts,'u2') opts.u2 = zeros(rows, cols, frames); end if ~isfield(opts,'u3') opts.u3 = zeros(rows, cols, frames); end if ~isfield(opts,'beta') opts.beta = [1 1 0]; end % initialize max_itr = opts.max_itr; tol = opts.tol; alpha = opts.alpha; beta = opts.beta; gamma = opts.gamma; rho = opts.rho_r; f = opts.f; y1 = opts.y1; y2 = opts.y2; y3 = opts.y3; u1 = opts.u1; u2 = opts.u2; u3 = opts.u3; % define operators eigHtH = abs(fftn(H, [rows cols frames])).^2; eigDtD = abs(beta(1)*fftn([1 -1], [rows cols frames])).^2 + abs(beta(2)*fftn([1 -1]', [rows cols frames])).^2; if frames>1 d_tmp(1,1,1)= 1; d_tmp(1,1,2)= -1; eigEtE = abs(beta(3)*fftn(d_tmp, [rows cols frames])).^2; else eigEtE = 0; end Htg = imfilter(g, H, 'circular'); [D,Dt] = defDDt(beta); [Df1 Df2 Df3] = D(f); out.relchg = []; out.objval = []; if opts.print==true fprintf('Running deconvtv (L2 version) \n'); fprintf('mu = %10.2f \n\n', mu); fprintf('itr relchg ||Hf-g||^2 ||f||_TV Obj Val rho \n'); end rnorm = sqrt(norm(Df1(:))^2 + norm(Df2(:))^2 + norm(Df3(:))^2); for itr=1:max_itr % solve f-subproblem f_old = f; rhs = fftn((mu/rho)*Htg + Dt(u1-(1/rho)*y1, u2-(1/rho)*y2, u3-(1/rho)*y3)); eigA = (mu/rho)*eigHtH + eigDtD + eigEtE; f = real(ifftn(rhs./eigA)); % solve u-subproblem [Df1 Df2 Df3] = D(f); v1 = Df1+(1/rho)*y1; v2 = Df2+(1/rho)*y2; v3 = Df3+(1/rho)*y3; v = sqrt(v1.^2 + v2.^2 + v3.^2); v(v==0) = 1; v = max(v - 1/rho, 0)./v; u1 = v1.*v; u2 = v2.*v; u3 = v3.*v; % update y y1 = y1 - rho*(u1 - Df1); y2 = y2 - rho*(u2 - Df2); y3 = y3 - rho*(u3 - Df3); % update rho if (opts.print==true) r1 = imfilter(f, H, 'circular')-g; r1norm = sum(r1(:).^2); r2norm = sum(sqrt(Df1(:).^2 + Df2(:).^2 + Df3(:).^2)); objval = (mu/2)*r1norm+r2norm; end rnorm_old = rnorm; rnorm = sqrt(norm(Df1(:)-u1(:), 'fro')^2 + norm(Df2(:)-u2(:), 'fro')^2 + norm(Df3(:)-u3(:), 'fro')^2); if rnorm>alpha*rnorm_old rho = rho * gamma; end % relative change relchg = norm(f(:)-f_old(:))/norm(f_old(:)); out.relchg(itr) = relchg; if (opts.print==true) out.objval(itr) = objval; end % print if (opts.print==true) fprintf('%3g \t %6.4e \t %6.4e \t %6.4e \t %6.4e \t %6.4e\n ', itr, relchg, r1norm, r2norm, objval, rho); end % check stopping criteria if relchg < tol break end end out.f = f; out.itr = itr; out.y1 = y1; out.y2 = y2; out.y3 = y3; out.rho = rho; out.Df1 = Df1; out.Df2 = Df2; out.Df3 = Df3; if (opts.print==true) fprintf('\n\n'); end end function [D,Dt] = defDDt(beta) D = @(U) ForwardD(U, beta); Dt = @(X,Y,Z) Dive(X,Y,Z, beta); end function [Dux,Duy,Duz] = ForwardD(U, beta) frames = size(U, 3); Dux = beta(1)*[diff(U,1,2), U(:,1,:) - U(:,end,:)]; Duy = beta(2)*[diff(U,1,1); U(1,:,:) - U(end,:,:)]; Duz(:,:,1:frames-1) = beta(3)*diff(U,1,3); Duz(:,:,frames) = beta(3)*(U(:,:,1) - U(:,:,end)); end function DtXYZ = Dive(X,Y,Z, beta) frames = size(X, 3); DtXYZ = [X(:,end,:) - X(:, 1,:), -diff(X,1,2)]; DtXYZ = beta(1)*DtXYZ + beta(2)*[Y(end,:,:) - Y(1, :,:); -diff(Y,1,1)]; Tmp(:,:,1) = Z(:,:,end) - Z(:,:,1); Tmp(:,:,2:frames) = -diff(Z,1,3); DtXYZ = DtXYZ + beta(3)*Tmp; end
github
wanghan0501/convolutional_sparse_coding-master
deconvtvl1.m
.m
convolutional_sparse_coding-master/Main/deconvtv_v1/private/deconvtvl1.m
6,551
utf_8
4edd96e4d2a766f65612a717b003a24e
function out = deconvtvl1(g, H, mu, opts) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % out = deconvtvl1(g, H, mu, opts) % deconvolves image g by solving the following TV minimization problem % % min (mu/2) || Hf - g ||_1 + ||f||_TV % % where ||f||_TV = sqrt( a||Dxf||^2 + b||Dyf||^2 c||Dtf||^2), % Dxf = f(x+1,y, t) - f(x,y,t) % Dyf = f(x,y+1, t) - f(x,y,t) % Dtf = f(x,y, t+1) - f(x,y,t) % % Input: g - the observed image, can be gray scale, or color % H - point spread function % mu - regularization parameter % opts.rho_r - initial penalty parameter for ||u-Df|| {2} % opts.rho_o - initial penalty parameter for ||Hf-g-r|| {50} % opts.beta - regularization parameter [a b c] for weighted TV norm {[1 1 2.5]} % opts.gamma - update constant for rho_r {2} % opts.max_itr - maximum iteration {20} % opts.alpha - constant that determines constraint violation {0.7} % opts.tol - tolerance level on relative change {1e-3} % opts.print - print screen option {false} % opts.f - initial f {g} % opts.y1 - initial y1 {0} % opts.y2 - initial y2 {0} % opts.y3 - initial y3 {0} % opts.z - initial z {0} % ** default values of opts are given in { }. % % Output: out.f - output video % out.itr - total number of iterations elapsed % out.relchg - final relative change % out.Df1 - Dxf, f is the output video % out.Df2 - Dyf, f is the output video % out.Df3 - Dtf, f is the output video % out.y1 - Lagrange multiplier for Df1 % out.y2 - Lagrange multiplier for Df2 % out.y3 - Lagrange multiplier for Df3 % out.rho_r - final penalty parameter % % Stanley Chan % Copyright 2010 % University of California, San Diego % % Last Modified: % 30 Apr, 2010 (deconvtv) % 4 May, 2010 (deconvtv) % 5 May, 2010 (deconvtv) % 4 Aug, 2010 (deconvtv_L1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [rows cols frames] = size(g); % Check inputs if nargin<3 error('not enough input, try again \n'); elseif nargin==3 opts = []; end if ~isnumeric(mu) error('mu must be a numeric value! \n'); end % Check defaults if ~isfield(opts,'rho_o') opts.rho_o = 50; end if ~isfield(opts,'rho_r') opts.rho_r = 2; end if ~isfield(opts,'gamma') opts.gamma = 2; end if ~isfield(opts,'max_itr') opts.max_itr = 20; end if ~isfield(opts,'tol') opts.tol = 1e-3; end if ~isfield(opts,'alpha') opts.alpha = 0.7; end if ~isfield(opts,'print') opts.print = false; end if ~isfield(opts,'f') opts.f = g; end if ~isfield(opts,'y1') opts.y1 = zeros(rows, cols, frames); end if ~isfield(opts,'y2') opts.y2 = zeros(rows, cols, frames); end if ~isfield(opts,'y3') opts.y3 = zeros(rows, cols, frames); end if ~isfield(opts,'z') opts.z = zeros(rows, cols, frames); end if ~isfield(opts,'beta') opts.beta = [1 1 0]; end % initialize max_itr = opts.max_itr; tol = opts.tol; alpha = opts.alpha; beta = opts.beta; gamma = opts.gamma; rho_r = opts.rho_r; rho_o = opts.rho_o; f = opts.f; y1 = opts.y1; y2 = opts.y2; y3 = opts.y3; z = opts.z; eigHtH = abs(fftn(H, [rows cols frames])).^2; eigDtD = abs(beta(1)*fftn([1 -1], [rows cols frames])).^2 + abs(beta(2)*fftn([1 -1]', [rows cols frames])).^2; if frames>1 d_tmp(1,1,1)= 1; d_tmp(1,1,2)= -1; eigEtE = abs(beta(3)*fftn(d_tmp, [rows cols frames])).^2; else eigEtE = 0; end Htg = imfilter(g, H, 'circular'); [D,Dt] = defDDt(beta); [Df1 Df2 Df3] = D(f); w = imfilter(f, H, 'circular') - g; rnorm = sqrt(norm(Df1(:))^2 + norm(Df2(:))^2 + norm(Df3(:))^2); out.relchg = []; out.objval = []; if opts.print==true fprintf('Running deconvtv (L1 version) \n'); fprintf('mu = %10.2f \n\n', mu); fprintf('itr relchg ||Hf-g||_1 ||f||_TV Obj Val rho_r \n'); end for itr = 1:max_itr % u-subproblem v1 = Df1+(1/rho_r)*y1; v2 = Df2+(1/rho_r)*y2; v3 = Df3+(1/rho_r)*y3; v = sqrt(v1.^2 + v2.^2 + v3.^2); v(v==0) = 1e-6; v = max(v - 1/rho_r, 0)./v; u1 = v1.*v; u2 = v2.*v; u3 = v3.*v; % r-subproblem r = max(abs(w + 1/rho_o*z)-mu/rho_o, 0).*sign(w+1/rho_o*z); % f-subproblem f_old = f; rhs = rho_o*Htg + imfilter(rho_o*r-z, H, 'circular') + Dt(rho_r*u1-y1, rho_r*u2-y2, rho_r*u3-y3); eigA = rho_o*eigHtH + rho_r*eigDtD + rho_r*eigEtE; f = real(ifftn(fftn(rhs)./eigA)); % y and z -update [Df1 Df2 Df3] = D(f); w = imfilter(f, H, 'circular') - g; y1 = y1 - rho_r*(u1 - Df1); y2 = y2 - rho_r*(u2 - Df2); y3 = y3 - rho_r*(u3 - Df3); z = z - rho_o*(r - w); if (opts.print==true) r1norm = sum(abs(w(:))); r2norm = sum(sqrt(Df1(:).^2 + Df2(:).^2 + Df3(:).^2)); objval = mu*r1norm+r2norm; end rnorm_old = rnorm; rnorm = sqrt(norm(Df1(:)-u1(:), 'fro')^2 + norm(Df2(:)-u2(:), 'fro')^2 + norm(Df3(:)-u3(:), 'fro')^2); if rnorm>alpha*rnorm_old rho_r = rho_r * gamma; end % relative change relchg = norm(f(:)-f_old(:))/norm(f_old(:)); out.relchg(itr) = relchg; if (opts.print==true) out.objval(itr) = objval; end % print if (opts.print==true) fprintf('%3g \t %6.4e \t %6.4e \t %6.4e \t %6.4e \t %6.4e\n ', itr, relchg, r1norm, r2norm, objval, rho_r); end % check stopping criteria if relchg < tol break end end out.f = f; out.itr = itr; out.y1 = y1; out.y2 = y2; out.y3 = y3; out.z = z; out.rho_r = rho_r; out.Df1 = Df1; out.Df2 = Df2; out.Df3 = Df3; if (opts.print==true) fprintf('\n'); end end function [D,Dt] = defDDt(beta) D = @(U) ForwardD(U, beta); Dt = @(X,Y,Z) Dive(X,Y,Z, beta); end function [Dux,Duy,Duz] = ForwardD(U, beta) frames = size(U, 3); Dux = beta(1)*[diff(U,1,2), U(:,1,:) - U(:,end,:)]; Duy = beta(2)*[diff(U,1,1); U(1,:,:) - U(end,:,:)]; Duz(:,:,1:frames-1) = beta(3)*diff(U,1,3); Duz(:,:,frames) = beta(3)*(U(:,:,1) - U(:,:,end)); end function DtXYZ = Dive(X,Y,Z, beta) frames = size(X, 3); DtXYZ = [X(:,end,:) - X(:, 1,:), -diff(X,1,2)]; DtXYZ = beta(1)*DtXYZ + beta(2)*[Y(end,:,:) - Y(1, :,:); -diff(Y,1,1)]; Tmp(:,:,1) = Z(:,:,end) - Z(:,:,1); Tmp(:,:,2:frames) = -diff(Z,1,3); DtXYZ = DtXYZ + beta(3)*Tmp; end
github
wanghan0501/convolutional_sparse_coding-master
spectrum.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/spectrum.m
13,263
utf_8
5b5df172751851ed1f1f118f129ea9b0
function [Spec,f] = spectrum(varargin) %SPECTRUM Power spectrum estimate of one or two data sequences. % P=SPECTRUM(X,NFFT,NOVERLAP,WIND) estimates the Power Spectral Density of % signal vector X using Welch's averaged periodogram method. The signal X % is divided into overlapping sections, each of which is detrended and % windowed by the WINDOW parameter, then zero padded to length NFFT. The % magnitude squared of the length NFFT DFTs of the sections are averaged % to form Pxx. P is a two column matrix P = [Pxx Pxxc]; the second column % Pxxc is the 95% confidence interval. The number of rows of P is NFFT/2+1 % for NFFT even, (NFFT+1)/2 for NFFT odd, or NFFT if the signal X is comp- % lex. If you specify a scalar for WINDOW, a Hanning window of that length % is used. % % [P,F] = SPECTRUM(X,NFFT,NOVERLAP,WINDOW,Fs) given a sampling frequency % Fs returns a vector of frequencies the same length as Pxx at which the % PSD is estimated. PLOT(F,P(:,1)) plots the power spectrum estimate % versus true frequency. % % [P, F] = SPECTRUM(X,NFFT,NOVERLAP,WINDOW,Fs,Pr) where Pr is a scalar % between 0 and 1, overrides the default 95% confidence interval and % returns the Pr*100% confidence interval for Pxx instead. % % SPECTRUM(X) with no output arguments plots the PSD in the current % figure window, with confidence intervals. % % The default values for the parameters are NFFT = 256 (or LENGTH(X), % whichever is smaller), NOVERLAP = 0, WINDOW = HANNING(NFFT), Fs = 2, % and Pr = .95. You can obtain a default parameter by leaving it out % or inserting an empty matrix [], e.g. SPECTRUM(X,[],128). % % P = SPECTRUM(X,Y) performs spectral analysis of the two sequences % X and Y using the Welch method. SPECTRUM returns the 8 column array % P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc] % where % Pxx = X-vector power spectral density % Pyy = Y-vector power spectral density % Pxy = Cross spectral density % Txy = Complex transfer function from X to Y = Pxy./Pxx % Cxy = Coherence function between X and Y = (abs(Pxy).^2)./(Pxx.*Pyy) % Pxxc,Pyyc,Pxyc = Confidence range. % All input and output options are otherwise exactly the same as for the % single input case. % % SPECTRUM(X,Y) with no output arguments will plot Pxx, Pyy, abs(Txy), % angle(Txy) and Cxy in sequence, pausing between plots. % % SPECTRUM(X,...,DFLAG), where DFLAG can be 'linear', 'mean' or 'none', % specifies a detrending mode for the prewindowed sections of X (and Y). % DFLAG can take the place of any parameter in the parameter list % (besides X) as long as it is last, e.g. SPECTRUM(X,'none'); % % See also PSD, CSD, TFE, COHERE, SPECGRAM, SPECPLOT, DETREND, PMTM, % PMUSIC. % ETFE, SPA, and ARX in the Identification Toolbox. % Author(s): J.N. Little, 7-9-86 % C. Denham, 4-25-88, revised % L. Shure, 12-20-88, revised % J.N. Little, 8-31-89, revised % L. Shure, 8-11-92, revised % T. Krauss, 4-15-93, revised % Copyright 1988-2000 The MathWorks, Inc. % $Revision: 1.4 $ $Date: 2000/06/09 22:07:37 $ % The units on the power spectra Pxx and Pyy are such that, using % Parseval's theorem: % % SUM(Pxx)/LENGTH(Pxx) = SUM(X.^2)/LENGTH(X) = COV(X) % % The RMS value of the signal is the square root of this. % If the input signal is in Volts as a function of time, then % the units on Pxx are Volts^2*seconds = Volt^2/Hz. % % Here are the covariance, RMS, and spectral amplitude values of % some common functions: % Function Cov=SUM(Pxx)/LENGTH(Pxx) RMS Pxx % a*sin(w*t) a^2/2 a/sqrt(2) a^2*LENGTH(Pxx)/4 %Normal: a*rand(t) a^2 a a^2 %Uniform: a*rand(t) a^2/12 a/sqrt(12) a^2/12 % % For example, a pure sine wave with amplitude A has an RMS value % of A/sqrt(2), so A = SQRT(2*SUM(Pxx)/LENGTH(Pxx)). % % See Page 556, A.V. Oppenheim and R.W. Schafer, Digital Signal % Processing, Prentice-Hall, 1975. error(nargchk(1,8,nargin)) [msg,x,y,nfft,noverlap,window,Fs,p,dflag]=specchk(varargin); error(msg) if isempty(p), p = .95; % default confidence interval even if not asked for end n = length(x); % Number of data points nwind = length(window); if n < nwind % zero-pad x (and y) if length less than the window length x(nwind)=0; n=nwind; if ~isempty(y), y(nwind)=0; end end x = x(:); % Make sure x and y are column vectors y = y(:); k = fix((n-noverlap)/(nwind-noverlap)); % Number of windows % (k = fix(n/nwind) for noverlap=0) index = 1:nwind; KMU = k*norm(window)^2; % Normalizing scale factor ==> asymptotically unbiased % KMU = k*sum(window)^2;% alt. Nrmlzng scale factor ==> peaks are about right if (isempty(y)) % Single sequence case. Pxx = zeros(nfft,1); Pxx2 = zeros(nfft,1); for i=1:k if strcmp(dflag,'linear') xw = window.*detrend(x(index)); elseif strcmp(dflag,'none') xw = window.*(x(index)); else xw = window.*detrend(x(index),0); end index = index + (nwind - noverlap); Xx = abs(fft(xw,nfft)).^2; Pxx = Pxx + Xx; Pxx2 = Pxx2 + abs(Xx).^2; end % Select first half if ~any(any(imag(x)~=0)), % if x and y are not complex if rem(nfft,2), % nfft odd select = [1:(nfft+1)/2]; else select = [1:nfft/2+1]; % include DC AND Nyquist end else select = 1:nfft; end Pxx = Pxx(select); Pxx2 = Pxx2(select); cPxx = zeros(size(Pxx)); if k > 1 c = (k.*Pxx2-abs(Pxx).^2)./(k-1); c = max(c,zeros(size(Pxx))); cPxx = sqrt(c); end ff = sqrt(2)*erfinv(p); % Equal-tails. Pxx = Pxx/KMU; Pxxc = ff.*cPxx/KMU; P = [Pxx Pxxc]; else Pxx = zeros(nfft,1); % Dual sequence case. Pyy = Pxx; Pxy = Pxx; Pxx2 = Pxx; Pyy2 = Pxx; Pxy2 = Pxx; for i=1:k if strcmp(dflag,'linear') xw = window.*detrend(x(index)); yw = window.*detrend(y(index)); elseif strcmp(dflag,'none') xw = window.*(x(index)); yw = window.*(y(index)); else xw = window.*detrend(x(index),0); yw = window.*detrend(y(index),0); end index = index + (nwind - noverlap); Xx = fft(xw,nfft); Yy = fft(yw,nfft); Yy2 = abs(Yy).^2; Xx2 = abs(Xx).^2; Xy = Yy .* conj(Xx); Pxx = Pxx + Xx2; Pyy = Pyy + Yy2; Pxy = Pxy + Xy; Pxx2 = Pxx2 + abs(Xx2).^2; Pyy2 = Pyy2 + abs(Yy2).^2; Pxy2 = Pxy2 + Xy .* conj(Xy); end % Select first half if ~any(any(imag([x y])~=0)), % if x and y are not complex if rem(nfft,2), % nfft odd select = [1:(nfft+1)/2]; else select = [1:nfft/2+1]; % include DC AND Nyquist end else select = 1:nfft; end Pxx = Pxx(select); Pyy = Pyy(select); Pxy = Pxy(select); Pxx2 = Pxx2(select); Pyy2 = Pyy2(select); Pxy2 = Pxy2(select); cPxx = zeros(size(Pxx)); cPyy = cPxx; cPxy = cPxx; if k > 1 c = max((k.*Pxx2-abs(Pxx).^2)./(k-1),zeros(size(Pxx))); cPxx = sqrt(c); c = max((k.*Pyy2-abs(Pyy).^2)./(k-1),zeros(size(Pxx))); cPyy = sqrt(c); c = max((k.*Pxy2-abs(Pxy).^2)./(k-1),zeros(size(Pxx))); cPxy = sqrt(c); end Txy = Pxy./Pxx; Cxy = (abs(Pxy).^2)./(Pxx.*Pyy); ff = sqrt(2)*erfinv(p); % Equal-tails. Pxx = Pxx/KMU; Pyy = Pyy/KMU; Pxy = Pxy/KMU; Pxxc = ff.*cPxx/KMU; Pxyc = ff.*cPxy/KMU; Pyyc = ff.*cPyy/KMU; P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc]; end freq_vector = (select - 1)'*Fs/nfft; if nargout == 0, % do plots newplot; c = [max(Pxx-Pxxc,0) Pxx+Pxxc]; c = c.*(c>0); semilogy(freq_vector,Pxx,freq_vector,c(:,1),'--',... freq_vector,c(:,2),'--'); title('Pxx - X Power Spectral Density') xlabel('Frequency') if (isempty(y)), % single sequence case return end pause newplot; c = [max(Pyy-Pyyc,0) Pyy+Pyyc]; c = c.*(c>0); semilogy(freq_vector,Pyy,freq_vector,c(:,1),'--',... freq_vector,c(:,2),'--'); title('Pyy - Y Power Spectral Density') xlabel('Frequency') pause newplot; semilogy(freq_vector,abs(Txy)); title('Txy - Transfer function magnitude') xlabel('Frequency') pause newplot; plot(freq_vector,180/pi*angle(Txy)), ... title('Txy - Transfer function phase') xlabel('Frequency') pause newplot; plot(freq_vector,Cxy); title('Cxy - Coherence') xlabel('Frequency') elseif nargout ==1, Spec = P; elseif nargout ==2, Spec = P; f = freq_vector; end function [msg,x,y,nfft,noverlap,window,Fs,p,dflag] = specchk(P) %SPECCHK Helper function for SPECTRUM % SPECCHK(P) takes the cell array P and uses each cell as % an input argument. Assumes P has between 1 and 7 elements. % Author(s): T. Krauss, 4-6-93 msg = []; if length(P{1})<=1 msg = 'Input data must be a vector, not a scalar.'; x = []; y = []; elseif (length(P)>1), if (all(size(P{1})==size(P{2})) & (length(P{1})>1) ) | ... length(P{2})>1, % 0ne signal or 2 present? % two signals, x and y, present x = P{1}; y = P{2}; % shift parameters one left P(1) = []; else % only one signal, x, present x = P{1}; y = []; end else % length(P) == 1 % only one signal, x, present x = P{1}; y = []; end % now x and y are defined; let's get the rest if length(P) == 1 nfft = min(length(x),256); window = hanning(nfft); noverlap = 0; Fs = 2; p = []; dflag = 'linear'; elseif length(P) == 2 if isempty(P{2}), dflag = 'linear'; nfft = min(length(x),256); elseif isstr(P{2}), dflag = P{2}; nfft = min(length(x),256); else dflag = 'linear'; nfft = P{2}; end window = hanning(nfft); noverlap = 0; Fs = 2; p = []; elseif length(P) == 3 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end if isempty(P{3}), dflag = 'linear'; noverlap = 0; elseif isstr(P{3}), dflag = P{3}; noverlap = 0; else dflag = 'linear'; noverlap = P{3}; end window = hanning(nfft); Fs = 2; p = []; elseif length(P) == 4 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end if isstr(P{4}) dflag = P{4}; window = hanning(nfft); else dflag = 'linear'; window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end Fs = 2; p = []; elseif length(P) == 5 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if isstr(P{5}) dflag = P{5}; Fs = 2; else dflag = 'linear'; if isempty(P{5}), Fs = 2; else Fs = P{5}; end end p = []; elseif length(P) == 6 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if isempty(P{5}), Fs = 2; else Fs = P{5}; end if isstr(P{6}) dflag = P{6}; p = []; else dflag = 'linear'; if isempty(P{6}), p = .95; else p = P{6}; end end elseif length(P) == 7 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if isempty(P{5}), Fs = 2; else Fs = P{5}; end if isempty(P{6}), p = .95; else p = P{6}; end if isstr(P{7}) dflag = P{7}; else msg = 'DFLAG parameter must be a string.'; return end end % NOW do error checking if (nfft<length(window)), msg = 'Requires window''s length to be no greater than the FFT length.'; end if (noverlap >= length(window)), msg = 'Requires NOVERLAP to be strictly less than the window length.'; end if (nfft ~= abs(round(nfft)))|(noverlap ~= abs(round(noverlap))), msg = 'Requires positive integer values for NFFT and NOVERLAP.'; end if ~isempty(p), if (prod(size(p))>1)|(p(1,1)>1)|(p(1,1)<0), msg = 'Requires confidence parameter to be a scalar between 0 and 1.'; end end if min(size(x))~=1, msg = 'Requires vector (either row or column) input.'; end if (min(size(y))~=1)&(~isempty(y)), msg = 'Requires vector (either row or column) input.'; end if (length(x)~=length(y))&(~isempty(y)), msg = 'Requires X and Y be the same length.'; end % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:38 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
getlength.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Utilities/getlength.m
638
utf_8
320d2a4b6bcb9556c70ea5aefc3ff7d4
% method of class @signal % % INPUT VALUES: % % RETURN VALUE: % % % (c) 2003, University of Cambridge, Medical Research Council % Stefan Bleeck ([email protected]) % http://www.mrc-cbu.cam.ac.uk/cnbh/aimmanual % $Date: 2003/01/17 16:57:43 $ % $Revision: 1.3 $ function res =getlength(sig) % returns the length in seconds nr=size(sig.werte,1); % r1=bin2time(sig,0); % r2=bin2time(sig,nr); % res=r2-r1; sr=getsr(sig); res=nr/sr; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:43 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
spectrum.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Browsers/One-D/spectrum.m
10,815
utf_8
2465d1a507f9362e9c0f5bda718e3f80
function [Spec,f] = spectrum(varargin) %SPECTRUM Power spectrum estimate of one or two data sequences. % SPECTRUM has been replaced by SPECTRUM.WELCH. SPECTRUM still works but % may be removed in the future. Use SPECTRUM.WELCH (or its functional % form PWELCH) instead. Type help SPECTRUM/WELCH for details. % % See also SPECTRUM/PSD, SPECTRUM/MSSPECTRUM, SPECTRUM/PERIODOGRAM. % Author(s): J.N. Little, 7-9-86 % C. Denham, 4-25-88, revised % L. Shure, 12-20-88, revised % J.N. Little, 8-31-89, revised % L. Shure, 8-11-92, revised % T. Krauss, 4-15-93, revised % Copyright 1988-2004 The MathWorks, Inc. % $Revision: 1.6.4.3 $ $Date: 2004/10/18 21:09:32 $ % The units on the power spectra Pxx and Pyy are such that, using % Parseval's theorem: % % SUM(Pxx)/LENGTH(Pxx) = SUM(X.^2)/LENGTH(X) = COV(X) % % The RMS value of the signal is the square root of this. % If the input signal is in Volts as a function of time, then % the units on Pxx are Volts^2*seconds = Volt^2/Hz. % % Here are the covariance, RMS, and spectral amplitude values of % some common functions: % Function Cov=SUM(Pxx)/LENGTH(Pxx) RMS Pxx % a*sin(w*t) a^2/2 a/sqrt(2) a^2*LENGTH(Pxx)/4 %Normal: a*rand(t) a^2 a a^2 %Uniform: a*rand(t) a^2/12 a/sqrt(12) a^2/12 % % For example, a pure sine wave with amplitude A has an RMS value % of A/sqrt(2), so A = SQRT(2*SUM(Pxx)/LENGTH(Pxx)). % % See Page 556, A.V. Oppenheim and R.W. Schafer, Digital Signal % Processing, Prentice-Hall, 1975. error(nargchk(1,8,nargin)) [msg,x,y,nfft,noverlap,window,Fs,p,dflag]=specchk(varargin); error(msg) if isempty(p), p = .95; % default confidence interval even if not asked for end n = length(x); % Number of data points nwind = length(window); if n < nwind % zero-pad x (and y) if length less than the window length x(nwind)=0; n=nwind; if ~isempty(y), y(nwind)=0; end end x = x(:); % Make sure x and y are column vectors y = y(:); k = fix((n-noverlap)/(nwind-noverlap)); % Number of windows % (k = fix(n/nwind) for noverlap=0) index = 1:nwind; KMU = k*norm(window)^2; % Normalizing scale factor ==> asymptotically unbiased % KMU = k*sum(window)^2;% alt. Nrmlzng scale factor ==> peaks are about right if (isempty(y)) % Single sequence case. Pxx = zeros(nfft,1); Pxx2 = zeros(nfft,1); for i=1:k if strcmp(dflag,'linear') xw = window.*detrend(x(index)); elseif strcmp(dflag,'none') xw = window.*(x(index)); else xw = window.*detrend(x(index),0); end index = index + (nwind - noverlap); Xx = abs(fft(xw,nfft)).^2; Pxx = Pxx + Xx; Pxx2 = Pxx2 + abs(Xx).^2; end % Select first half if ~any(any(imag(x)~=0)), % if x and y are not complex if rem(nfft,2), % nfft odd select = 1:(nfft+1)/2; else select = 1:nfft/2+1; % include DC AND Nyquist end else select = 1:nfft; end Pxx = Pxx(select); Pxx2 = Pxx2(select); cPxx = zeros(size(Pxx)); if k > 1 c = (k.*Pxx2-abs(Pxx).^2)./(k-1); c = max(c,zeros(size(Pxx))); cPxx = sqrt(c); end ff = sqrt(2)*erfinv(p); % Equal-tails. Pxx = Pxx/KMU; Pxxc = ff.*cPxx/KMU; P = [Pxx Pxxc]; else Pxx = zeros(nfft,1); % Dual sequence case. Pyy = Pxx; Pxy = Pxx; Pxx2 = Pxx; Pyy2 = Pxx; Pxy2 = Pxx; for i=1:k if strcmp(dflag,'linear') xw = window.*detrend(x(index)); yw = window.*detrend(y(index)); elseif strcmp(dflag,'none') xw = window.*(x(index)); yw = window.*(y(index)); else xw = window.*detrend(x(index),0); yw = window.*detrend(y(index),0); end index = index + (nwind - noverlap); Xx = fft(xw,nfft); Yy = fft(yw,nfft); Yy2 = abs(Yy).^2; Xx2 = abs(Xx).^2; Xy = Yy .* conj(Xx); Pxx = Pxx + Xx2; Pyy = Pyy + Yy2; Pxy = Pxy + Xy; Pxx2 = Pxx2 + abs(Xx2).^2; Pyy2 = Pyy2 + abs(Yy2).^2; Pxy2 = Pxy2 + Xy .* conj(Xy); end % Select first half if ~any(any(imag([x y])~=0)), % if x and y are not complex if rem(nfft,2), % nfft odd select = 1:(nfft+1)/2; else select = 1:nfft/2+1; % include DC AND Nyquist end else select = 1:nfft; end Pxx = Pxx(select); Pyy = Pyy(select); Pxy = Pxy(select); Pxx2 = Pxx2(select); Pyy2 = Pyy2(select); Pxy2 = Pxy2(select); cPxx = zeros(size(Pxx)); cPyy = cPxx; cPxy = cPxx; if k > 1 c = max((k.*Pxx2-abs(Pxx).^2)./(k-1),zeros(size(Pxx))); cPxx = sqrt(c); c = max((k.*Pyy2-abs(Pyy).^2)./(k-1),zeros(size(Pxx))); cPyy = sqrt(c); c = max((k.*Pxy2-abs(Pxy).^2)./(k-1),zeros(size(Pxx))); cPxy = sqrt(c); end Txy = Pxy./Pxx; Cxy = (abs(Pxy).^2)./(Pxx.*Pyy); ff = sqrt(2)*erfinv(p); % Equal-tails. Pxx = Pxx/KMU; Pyy = Pyy/KMU; Pxy = Pxy/KMU; Pxxc = ff.*cPxx/KMU; Pxyc = ff.*cPxy/KMU; Pyyc = ff.*cPyy/KMU; P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc]; end freq_vector = (select - 1)'*Fs/nfft; if nargout == 0, % do plots newplot; c = [max(Pxx-Pxxc,0) Pxx+Pxxc]; c = c.*(c>0); semilogy(freq_vector,Pxx,freq_vector,c(:,1),'--',... freq_vector,c(:,2),'--'); title('Pxx - X Power Spectral Density') xlabel('Frequency') if (isempty(y)), % single sequence case return end pause newplot; c = [max(Pyy-Pyyc,0) Pyy+Pyyc]; c = c.*(c>0); semilogy(freq_vector,Pyy,freq_vector,c(:,1),'--',... freq_vector,c(:,2),'--'); title('Pyy - Y Power Spectral Density') xlabel('Frequency') pause newplot; semilogy(freq_vector,abs(Txy)); title('Txy - Transfer function magnitude') xlabel('Frequency') pause newplot; plot(freq_vector,180/pi*angle(Txy)), ... title('Txy - Transfer function phase') xlabel('Frequency') pause newplot; plot(freq_vector,Cxy); title('Cxy - Coherence') xlabel('Frequency') elseif nargout ==1, Spec = P; elseif nargout ==2, Spec = P; f = freq_vector; end function [msg,x,y,nfft,noverlap,window,Fs,p,dflag] = specchk(P) %SPECCHK Helper function for SPECTRUM % SPECCHK(P) takes the cell array P and uses each cell as % an input argument. Assumes P has between 1 and 7 elements. % Author(s): T. Krauss, 4-6-93 msg = []; if length(P{1})<=1 msg = 'Input data must be a vector, not a scalar.'; x = []; y = []; elseif (length(P)>1), if (all(size(P{1})==size(P{2})) && (length(P{1})>1) ) || ... length(P{2})>1, % 0ne signal or 2 present? % two signals, x and y, present x = P{1}; y = P{2}; % shift parameters one left P(1) = []; else % only one signal, x, present x = P{1}; y = []; end else % length(P) == 1 % only one signal, x, present x = P{1}; y = []; end % now x and y are defined; let's get the rest if length(P) == 1 nfft = min(length(x),256); window = hanning(nfft); noverlap = 0; Fs = 2; p = []; dflag = 'linear'; elseif length(P) == 2 if isempty(P{2}), dflag = 'linear'; nfft = min(length(x),256); elseif ischar(P{2}), dflag = P{2}; nfft = min(length(x),256); else dflag = 'linear'; nfft = P{2}; end window = hanning(nfft); noverlap = 0; Fs = 2; p = []; elseif length(P) == 3 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end if isempty(P{3}), dflag = 'linear'; noverlap = 0; elseif ischar(P{3}), dflag = P{3}; noverlap = 0; else dflag = 'linear'; noverlap = P{3}; end window = hanning(nfft); Fs = 2; p = []; elseif length(P) == 4 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end if ischar(P{4}) dflag = P{4}; window = hanning(nfft); else dflag = 'linear'; window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end Fs = 2; p = []; elseif length(P) == 5 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if ischar(P{5}) dflag = P{5}; Fs = 2; else dflag = 'linear'; if isempty(P{5}), Fs = 2; else Fs = P{5}; end end p = []; elseif length(P) == 6 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if isempty(P{5}), Fs = 2; else Fs = P{5}; end if ischar(P{6}) dflag = P{6}; p = []; else dflag = 'linear'; if isempty(P{6}), p = .95; else p = P{6}; end end elseif length(P) == 7 if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end window = P{4}; window = window(:); % force window to be a column if length(window) == 1, window = hanning(window); end if isempty(window), window = hanning(nfft); end if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end if isempty(P{5}), Fs = 2; else Fs = P{5}; end if isempty(P{6}), p = .95; else p = P{6}; end if ischar(P{7}) dflag = P{7}; else msg = 'DFLAG parameter must be a string.'; return end end % NOW do error checking if (nfft<length(window)), msg = 'Requires window''s length to be no greater than the FFT length.'; end if (noverlap >= length(window)), msg = 'Requires NOVERLAP to be strictly less than the window length.'; end if (nfft ~= abs(round(nfft)))||(noverlap ~= abs(round(noverlap))), msg = 'Requires positive integer values for NFFT and NOVERLAP.'; end if ~isempty(p), if (numel(p)>1)||(p(1,1)>1)||(p(1,1)<0), msg = 'Requires confidence parameter to be a scalar between 0 and 1.'; end end if min(size(x))~=1, msg = 'Requires vector (either row or column) input.'; end if (min(size(y))~=1)&&(~isempty(y)), msg = 'Requires vector (either row or column) input.'; end if (length(x)~=length(y))&&(~isempty(y)), msg = 'Requires X and Y be the same length.'; end % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:39 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
def_signal.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Browsers/One-D/def_signal.m
822
utf_8
3d205982ba291fa4a1490bbc0d3c5032
% def_signal -- Called by WLBrowser % Usage % def_signal % function x = def_signal(i) do_global; global nsig; signal_name = Signals_entries( i,: ); while signal_name( length(signal_name) ) == ' ' signal_name( length(signal_name) ) = []; end if ~exist('nsig') | nsig == [] | nsig == 0 nsig = 2^8; end x = MakeSignal(signal_name, nsig ); [ aa bb ] = size(x); if aa > bb x = x'; end x = ... x(1:2^(fix(log(length(x))/log(2) ))); x_signal = x; if max( abs(x_noise) ) > 0 x_use = x_signal + x_noise; else x_use = x_signal; end n =length(x_use) plot_new_data; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:39 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
def_data.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Browsers/One-D/def_data.m
881
utf_8
dd6c7b1f269745e207c2f0b62b9125e0
% def_data -- Called by WLBrowser % Usage % def_data % % Description % Load WaveLab datasets % function x = def_data(i) do_global data_name = Data____entries( i+1, : ); while data_name( length(data_name) ) == ' ' data_name( length(data_name) ) = []; end if i < 7 x = ReadSignal(data_name); signal_name = data_name; elseif i == 7 if exist('kitload') load('kitload'); else warndlg('Please save your data as "kitload"'); end end [ aa bb ] = size(x); if aa > bb x = x'; end x = ... x(1:2^(fix(log(length(x))/log(2) ))); x_signal = x; noise_type = 0; x_noise = zeros( size( x ) ); n = length(x); x_use = x; plot_new_data; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:39 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
AdaptDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/Adapt/AdaptDemo.m
11,368
utf_8
180001bdfcbd44bcd54b8cf9120dc5f0
%******************************************************** function AdaptDemo(action) %Usage: AdaptDemo %Description: Demo for paper Adapting to Unknown Smoothness via Wavelet %Shrinkage %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 15; PaperName = 'Adapting to Unknown Smoothness via Wavelet Shrinkage'; MakeFigureFilePrefix = 'adfig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global ADAPTFIGNUM ADAPTFIGNUM = 0; clc; help('AdaptIntro') WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,AdaptDemo;end elseif isequal(action,'AddTitle'), IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','AdaptDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','AdaptDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','AdaptDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','AdaptDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','AdaptDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','AdaptDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'AdaptDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','AdaptDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; AdaptFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %s=num2str(edit1); %eval(strcat('AdaptFig(',s,')')); %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures % set(text3,' ', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures % set(text3,' ', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise % set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:41 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
CSpinDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/SpinCycle/CSpinDemo.m
11,707
utf_8
bc47e62d03b6b2a5bf926f80cd1ea94f
%******************************************************** function CSpinDemo(action) %Usage: CSpinDemo %Description: Demo for paper Translation-Invariant DeNoisin %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 21; PaperName = 'Translation-Invariant DeNoisin'; MakeFigureFilePrefix = 'cspinf'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global CSFIGNUM CSFIGNUM = 0; clc; help('CSpinIntro'); if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,CSpinDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','CSpinDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','CSpinDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','CSpinDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','CSpinDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','CSpinDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','CSpinDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'CSpinDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','CSpinDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; SpinFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:42 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
MESDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/MinEntSeg/MESDemo.m
12,121
utf_8
10c38e6038829379a0e22866c7656a78
%******************************************************** function MESDemo(action) %Usage: MESDemo %Description: Demo for paper Minimum Entropy Segmentation %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- PaperName = 'Minimum Entropy Segmentation'; MakeFigureFilePrefix = 'mefig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global MESFIGNUM MESFIGNUM = 0; clc; help('MESIntro'); if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,MESDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); edit_vec=[201:214, 302:306,401:402,601:605]; edit2=edit_vec(edit1); s=num2str(edit2); s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','MESDemo(''NewWindow'')'); % % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','MESDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','MESDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); % uicontrol( 'tag','edit1', 'style','list', ... % 'units','normal', 'position',[.85 .50 .12 .30], ... % 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... % 'fontsize',fs, 'callback','MESDemo(''ploteach'')'); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',... '2.01|2.02|2.03|2.04|2.05|2.06|2.07|2.08|2.09|2.10|2.11|2.12|2.13|2.14|3.02|3.03|3.04|3.05|3.06|4.01|4.02|6.01|6.02|6.03|6.04|6.05',... 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','MESDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','MESDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','MESDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'MESDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','MESDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else edit_vec=[201:214, 302:306,401:402,601:605]; edit2=edit_vec(edit1); MESFig(edit2); %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:41 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
RiskDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/RiskAnalysis/RiskDemo.m
11,626
utf_8
2a233fe2f8463d8c4804916c4bba3f16
%******************************************************** function RiskDemo(action) %Usage: RiskDemo %Description: Demo for paper EXACT RISK ANALYSIS OF WAVELET REGRESSION %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 13; PaperName = 'EXACT RISK ANALYSIS OF WAVELET REGRESSION'; MakeFigureFilePrefix = 'RiskFig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- RiskInit; global RISKFIGNUM RISKFIGNUM = 0; if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,RiskDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); s=num2str(edit1) s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','RiskDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','RiskDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','RiskDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','RiskDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','RiskDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','RiskDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'RiskDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','RiskDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; RiskFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:42 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
SCDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/ShortCourse/SCDemo.m
11,628
utf_8
2cfe2fd8ea91b4f70eb21adfc3f1722c
%******************************************************** function SCDemo(action) %Usage: SCDemo %Description: Demo for Short Course %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 28; PaperName = 'Short Course'; MakeFigureFilePrefix = 'scfig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global SCFIGNUM SCFIGNUM = 0; clc; help('SCIntro'); if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,SCDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','SCDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','SCDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','SCDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','SCDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','SCDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','SCDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'SCDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','SCDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; SCFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:42 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
BlockyDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/Blocky/BlockyDemo.m
11,446
utf_8
eca745f65c369f6596e97b9b376401b3
%******************************************************** function BockyDemo(action) %Usage: BlockyDemo %Description: Demo for paper Smooth Wavelet Decompositions with Blocky %Coefficient Kernels %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 7; PaperName = 'Smooth Wavelet Decompositions with Blocky Coefficient Kernels'; MakeFigureFilePrefix = 'aifig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global BLOCKYFIGNUM BLOCKYFIGNUM = 0; clc; help('BlockyIntro'); WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,BlockyDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, % s=strcat('0', num2str(edit1)); %else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','BlockyDemo(''NewWindow'')'); % % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','BlockyDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','BlockyDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','BlockyDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','BlockyDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','BlockyDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'BlockyDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','BlockyDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; BlockyFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:41 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
VdLDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/VillardDeLans/VdLDemo.m
11,692
utf_8
de5771598e9111e4276abf5d9395a4ce
%******************************************************** function VdLDemo(action) %Usage: VdLDemo %Description: Demo for paper WaveLab and Reproducible Research %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 11; PaperName = 'WaveLab and Reproducible Research'; MakeFigureFilePrefix = 'vdlfig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global VDLFIGNUM VDLFIGNUM = 0; clc; help('VdLIntro'); if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,VdLDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','VdLDemo(''NewWindow'')'); % % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','VdLDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','VdLDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','VdLDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','VdLDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','VdLDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'VdLDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','VdLDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; VdLFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:42 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
TourDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/Tour/TourDemo.m
11,732
utf_8
81919bc6b7d0842b12e02c40a909e027
%******************************************************** function TourDemo(action) %Usage: TourDemo %Description: Demo for paper Wavelet Shrinkage and W.V.D.: A Ten-Minute %Tour %Date: August 1,2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 15; PaperName = 'Wavelet Shrinkage and W.V.D.: A Ten-Minute Tour'; MakeFigureFilePrefix = 'toufig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global TOURFIGNUM TOURFIGNUM = 0; clc; help('TourIntro') if ~(exist('spectrum') & exist('xcorr')) disp('This demo requires the signal processing toolbox to run.'); disp('If you see this message, it means that the signal processing'); disp('toolbox is not installed at your system, or that this matlab'); disp('session is not seeing the toolbox in its search path.'); disp(' '); return end WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,TourDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','TourDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','TourDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','TourDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','TourDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','TourDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','TourDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'TourDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','TourDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; TourFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:42 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
AsympDemo.m
.m
convolutional_sparse_coding-master/Main/MCA/Wavelab850/Papers/Asymp/AsympDemo.m
11,354
utf_8
81c6f0550a19608ea51b03a62b22b423
%******************************************************** function AsympDemo(action) %Usage: AsympDemo %Description: Demo for paper Wavelet Shrinkage: Asymptopia? %Date: August 1, 2005 %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE global NRfigures global CRfigures global UnderConstructionFigures % ------------------------------------------------------- LastFigureNo = 10; PaperName = 'Wavelet Shrinkage: Asymptopia?'; MakeFigureFilePrefix = 'asfig'; % NRfigures = {1}; % CRfigures = {8,10,11}; % UnderConstructionFigures = {20}; %-------------------------------------------------------- global ASFIGNUM ASFIGNUM = 0; clc; help('AsympIntro'); WLVERBOSE='No'; IfNewWindow = 0; IfAddTitle = 0; IfCompute = 0; if nargin == 0, Initialize_GUI; c=get(gcf,'Children'); [m,n]=size(c); plotOffset = m; action = ''; end if isequal(action,'NewWindow'), IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); if IfNewWindow,AsympDemo;end % elseif isequal(action,'AddTitle'), % IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); % elseif isequal(action,'Compute'), % IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); elseif isequal(action,'ploteach'), PlotFigure; elseif isequal(action,'plotall'), StopPlot = 0; PlotAllFigures; elseif isequal(action,'stop'), StopPlot = 1; elseif isequal(action,'seecode'), edit1 = get(findobj(gcf,'tag','edit1'),'value'); if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end s = ['edit', ' ', strcat(MakeFigureFilePrefix, s)]; eval(s); elseif isequal(action,'CloseAllDemo'), CloseDemoFigures; ClearGlobalVariables; end %******************************************************** function Initialize_GUI %******************************************************** % ------------------------------------------------------- fs = 9; %default font size % ------------------------------------------------------- global LastFigureNo global PaperName; %CloseDemoFigures %close all figure; figureNoList = (1:LastFigureNo)'; %clf reset; set(gcf,'pos', [50 55 560*1.45 420*1.45], 'Name', PaperName, 'NumberTitle','off'); set(gcf,'doublebuffer','on','userdata',1); uicontrol('tag','newWindow', 'style','checkbox', ... 'units','normal', 'position',[.85 .92, .12 .05], ... 'string','New Window', 'fontsize',fs, ... 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... 'callback','AsympDemo(''NewWindow'')'); % uicontrol('tag','iftitle', 'style','checkbox', ... % 'units','normal', 'position',[.85 .88, .12 .05], ... % 'string','Title', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','AsympDemo(''AddTitle'')'); % uicontrol( 'tag','IfCompute', 'style','checkbox', ... % 'units','normal', 'position',[.85 .84, .12 .05], ... % 'string','Compute', 'fontsize',fs, ... % 'userdata',0, 'backgroundcolor', [0.8 0.8 0.8],... % 'callback','AsympDemo(''Compute'')'); uicontrol( 'tag','text1', 'style','text', ... 'units','normal', 'position', [.85 .79, .12 .04], ... 'string','Figure','backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol('tag','text2', 'style','text', ... 'units','normal', 'position', [.04 .93, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','text3', 'style','text', ... 'units','normal', 'position', [.04 .01, .7 .04], ... 'string','', 'backgroundcolor', [0.8 0.8 0.8],... 'fontsize',fs); uicontrol( 'tag','edit1', 'style','list', ... 'units','normal', 'position',[.85 .50 .12 .30], ... 'string',{num2str(figureNoList)}, 'backgroundcolor',[0.8 0.8 0.8], ... 'fontsize',fs, 'callback','AsympDemo(''ploteach'')'); uicontrol( 'tag','RunAllFig', 'style','pushbutton', ... 'units','normal', 'position',[.85 .40 .12 .06], ... 'string','Run All Fig' , 'fontsize',fs, ... 'interruptible','on', 'callback','AsympDemo(''plotall'')'); uicontrol( 'tag','stop', 'style','pushbutton', ... 'units','normal', 'position',[.85 .32 .12 .06], ... 'string','Stop', 'fontsize',fs, ... 'userdata',0, 'callback','AsympDemo(''stop'');'); %'callback','set(gcbo,''userdata'',1)'); uicontrol( 'tag','SeeCode', 'style','pushbutton', ... 'units','normal', 'position',[.85 .24 .12 .06], ... 'string','See Code' , 'fontsize',fs, ... 'callback', 'AsympDemo(''seecode'')'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .16 .12 .06], 'string','Close', ... 'fontsize',fs, 'callback','close'); uicontrol( 'style','pushbutton', 'units','normal', ... 'position',[.85 .08 .12 .06], 'string','Close All', ... 'fontsize',fs, 'callback','AsympDemo(''CloseAllDemo'')'); %******************************************************** function PlotFigure %******************************************************** global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfCompute global NRfigures global CRfigures global UnderConstructionFigures ListControl = findobj(gcf,'tag','edit1'); set(ListControl,'Enable','off'); DeleteSubplots; %set(gcf,'Visible', 'off'); edit1 = get(findobj(gcf,'tag','edit1'),'value'); IfAddTitle = get(findobj(gcf,'tag','iftitle'),'value'); IfCompute = get(findobj(gcf,'tag','IfCompute'),'value'); %IfNewWindow = get(findobj(gcf,'tag','newWindow'),'value'); IfNewWindow = 0; AsympFig(edit1); %if edit1 < 10, % s=strcat('0', num2str(edit1)); %else %end %eval(s); % % IfLoadData = ~IfCompute; % switch edit1, % case UnderConstructionFigures % fprintf('\n\nFigure %d is still under construction', edit1); % case NRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ')']; % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % case CRfigures % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),',', num2str(IfLoadData),')']; % if IfLoadData, % fprintf('\n\n\nLoading Data for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nData Loaded. Figure %d generated.\n', edit1); % % toc, % else % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % end % otherwise % s=[strcat(MakeFigureFilePrefix, s), '(', num2str(IfNewWindow), ',', num2str(IfAddTitle),')']; % fprintf('\n\n\nComputing for Figure %d...\n', edit1); % % tic; % eval(s); % fprintf('\nComputations done. Figure %d generated.\n', edit1); % % toc, % end WriteCaptions(edit1); AdjustSubplots; titles= ['Figure ', num2str(edit1)]; text1 = findobj(gcbo,'tag','text1'); set(text1,'string', titles); set(ListControl,'Enable','on'); %set(gcf,'Visible', 'on'); %******************************************************** function PlotAllFigures %******************************************************** global LastFigureNo global StopPlot global IfNewWindow for i=1:LastFigureNo, if StopPlot == 1, break; end h=findobj(gcf,'tag','edit1'); set(h,'Value',i); PlotFigure; pause(3); %DeleteNonDemoFigures end %******************************************************** function WriteCaptions(edit1) %******************************************************** global MakeFigureFilePrefix global NRfigures global CRfigures global UnderConstructionFigures captions=''; if edit1 < 10, s=strcat('0', num2str(edit1)); else s=num2str(edit1); end text3 = findobj(gcf,'tag','text3'); switch edit1, case UnderConstructionFigures set(text3,'string', ['This figure is still under construction']); case NRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(NR)']); case CRfigures set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, num2str(edit1)),'.m',' ','(CR)']); otherwise set(text3,'string', ['This figure is produced by', ' ', strcat(MakeFigureFilePrefix, s),'.m', ' ', '(R)']); end %******************************************************** function AdjustSubplots %******************************************************** global plotOffset % set(gcf,'Visible', 'off'); MagnificationFactor = 0.92; right = 0.78; c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; p = zeros(m, 4); for i=m:-1:1, %get all suplots' positions p(i,:) = get(c(i),'position'); end % contract all subplots p = p * MagnificationFactor; col=sum(unique(p(:,1))<1); LegNo = length(findobj(gcf,'tag','legend')); if ~isempty(LegNo) col = col- LegNo; end diff = length(unique(p(:,1))) - col; if col > 0, row = m/col; end cond1 = isempty(LegNo); hshift = .05; %simpliy do a horizontal shift for children that is not "camera" menu nor legend for i=m:-1:1 if p(i,1)<1, cond2 = and(~cond1, ~strcmp(get(c(i),'tag'), 'legend')); if or(cond1, cond2), width = p(i,3); %hshift = (right - col * width) / (col+1); p(i,1) = p(i,1) - hshift; set(c(i), 'position', p(i,:)); end end end %******************************************************** function DeleteSubplots %******************************************************** global plotOffset c = get(gcf,'Children'); [m1,n1]=size(c); m=m1-plotOffset; for i=1:m, delete(c(i)); end %******************************************************** function DeleteNonDemoFigures %******************************************************** h=findobj(0,'Type','figure'); [m,n]=size(h); for i=1:m, if h(i)~=1 close(h(i)); end end %******************************************************** function CloseDemoFigures %******************************************************** global PaperName; h=findobj(0,'Name', PaperName); [m,n]=size(h); for i=1:m, close(h(i)) end %******************************************************** function ClearGlobalVariables %******************************************************** global plotOffset global LastFigureNo global PaperName global MakeFigureFilePrefix global IfNewWindow global IfAddTitle global IfLoadData global StopPlot global WLVERBOSE; global NRfigures; global CRfigures; global UnderConstructionFigures; clear plotOffset clear LastFigureNo clear PaperName clear MakeFigureFilePrefix clear IfNewWindow clear IfAddTitle clear IfLoadData clear StopPlot clear WLVERBOSE; clear NRfigures; clear CRfigures; clear UnderConstructionFigures; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:41 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
wanghan0501/convolutional_sparse_coding-master
cbpdngr.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdngr.m
11,600
utf_8
2e39147180340593eaaa5c1950090018
function [Y, optinf] = cbpdngr(D, S, lambda, mu, opt) % cbpdngr -- Convolutional Basis Pursuit DeNoising with Gradient Regularization % % argmin_{x_k} (1/2)||\sum_k d_k * x_k - s||_2^2 + % lambda \sum_k ||x_k||_1 + % (mu/2) \sum_k ||G_r x_k||_2^2 + % (mu/2) \sum_k ||G_c x_k||_2^2 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient and % wohlberg-2016-convolutional2). % % Usage: % [Y, optinf] = cbpdngr(D, S, lambda, mu, opt); % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter (l1) % mu Regularization parameter (l2 of gradient) % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, gradient % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % GrdWeight Weighting array for coefficients in l2 norm of % gradient of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2016-07-01 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 5, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 Grd r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) 1]; hrm = 1; end xrm = [1 1 size(D,3)]; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); grv = [-1 1]; Grf = fft2(grv, size(S,1), size(S,2)); gcv = [-1 1]'; Gcf = fft2(gcv, size(S,1), size(S,2)); if isscalar(opt.GrdWeight), opt.GrdWeight = opt.GrdWeight * ones(size(D,3), 1); end wgr = reshape(opt.GrdWeight, [1 1 length(opt.GrdWeight)]); GfW = bsxfun(@times, conj(Grf).*Grf + conj(Gcf).*Gcf, wgr); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, cn = bsxfun(@rdivide, Df, mu*GfW + rho); cd = sum(Df.*bsxfun(@rdivide, conj(Df), mu*GfW + rho), 3) + 1.0; C = bsxfun(@rdivide, cn, cd); clear cn cd; else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz, class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbd_sm(Df, mu*GfW + rho, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,:,:) = 0; Y(:,(end-size(D,2)+2):end,:,:) = 0; end % Update dual variable U = U + Xr - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jgr = sum(vec((bsxfun(@times, GfW, conj(Yf).*Yf))))/(2*xsz(1)*xsz(2)); else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jgr = sum(vec((bsxfun(@times, GfW, conj(Xf).*Xf))))/(2*xsz(1)*xsz(2)); end Jfn = Jdf + lambda*Jl1 + mu*Jgr; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 Jgr r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jgr, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jgr, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, cn = bsxfun(@rdivide, Df, mu*GfW + rho); cd = sum(Df.*bsxfun(@rdivide, conj(Df), mu*GfW + rho), 3) + 1.0; C = bsxfun(@rdivide, cn, cd); clear cn cd; end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.mu = mu; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'GrdWeight'), opt.GrdWeight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
bpdn.m
.m
convolutional_sparse_coding-master/SparseCode/bpdn.m
8,693
utf_8
16adec7a3bdc2618ca15b5a38b5a5e0f
function [Y, optinf] = bpdn(D, S, lambda, opt) % bpdn -- Basis Pursuit DeNoising % % argmin_x (1/2)||D*x - s||_2^2 + lambda*||x||_1 % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [Y, optinf] = bpdn(D, S, lambda, opt) % % Input: % D Dictionary matrix % S Signal vector (or matrix) % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % Y Dictionary coefficient vector (or matrix) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-23 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), lambda = 0.1*max(vec(abs(D'*S))); end % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; [Nr, Nc] = size(D); Nm = size(S,2); Nx = Nc*Nm; DTS = D'*S; [luL, luU] = factorise(D, rho); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(Nc,Nm); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(Nc,Nm); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem X = linsolve(D, rho, luL, luU, DTS + rho*(Y - U)); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end % Update dual variable U = U + Xr - Y; % Objective function and convergence measures if opt.AuxVarObj, Jdf = sum(vec(abs(D*Y - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); else Jdf = sum(vec(abs(D*X - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); end Jfn = Jdf + lambda*Jl1; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if rsf ~= 1, [luL, luU] = factorise(D, rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolve(A, c, L, U, b) [N,M] = size(A); if N >= M, x = U \ (L \ b); else x = (b - A'*(U \ (L \ (A*b))))/c; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = 1; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 1; end return