plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
wanghan0501/convolutional_sparse_coding-master
cbpdn_rank.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdn_rank.m
11,085
utf_8
3c32aee454510bbb1b9f2d1f4d422844
function [Y, optinf] = cbpdn_rank(D, S, lambda, opt) % cbpdn -- Convolutional Basis Pursuit DeNoising % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2014-efficient). % % Usage: % [Y, optinf] = cbpdn(D, S, lambda, opt); % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) size(S,4)]; hrm = 1; end xrm = [1 1 size(D,3)]; % Start timer tstart = tic; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbi_sm(Df, rho, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem %Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); % Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); Y = Do(lambda/rho, Xr+U); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,:,:) = 0; Y(:,(end-size(D,1)+2):end,:,:) = 0; end % Update dual variable U = U + Xr - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl1=trace(sqrt(X*X')); for i=1:size(X,3) cc=X(:,:,i)'*X(:,:,i); cc=sqrt(cc); Jl1=Jl1+trace(cc); end else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jl1=0; for i=1:size(X,3) cc=X(:,:,i)'*X(:,:,i); cc=sqrt(cc); Jl1=Jl1+trace(cc); end end Jfn = Jdf + lambda*Jl1; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function r = Do(tau, X) % shrinkage operator for singular values for i=1:size(X,3) for j=1:size(X,4) [U, S, V] = svd(X(:,:,i,j), 'econ'); r(:,:,i,j)= U*So(tau, S)*V'; end end return function r = So(tau, X) % shrinkage operator r = sign(X) .* max(abs(X) - tau, 0); return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdn_low_sparse.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdn_low_sparse.m
11,314
utf_8
676fce8f71b3f64551bb909163b73533
function [Y, optinf] = cbpdn_low_sparse(D, S, lambda_s, lambda_r,opt) % cbpdn -- Convolutional Basis Pursuit DeNoising % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2014-efficient). % % Usage: % [Y, optinf] = cbpdn(D, S, lambda, opt); % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum 2(D, size(X,1), size(X,2)), fft2(X)),3), ... % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. lambda=lambda_s; if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) size(S,4)]; hrm = 1; end xrm = [1 1 size(D,3)]; % Start timer tstart = tic; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U1 = zeros(xsz); U2 = zeros(xsz); else U1 = (lambda/rho)*sign(Y); U2 = (lambda/rho)*sign(Y); end else U1 = opt.U0; U2 = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf_1 = solvedbi_sm(Df, rho, DSf + rho*fft2(Y - U1), C); X = ifft2(Xf_1, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr_1 = X; else Xr_1 = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem %Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); Xr_2 = Do(lambda_r/rho, Y-U2); if opt.NonNegCoef, Xr_2(Y < 0) = 0; end if opt.NoBndryCross, Xr_2((end-size(D,1)+2):end,:,:,:) = 0; Xr_2(:,(end-size(D,1)+2):end,:,:) = 0; end Y = shrink((Xr_1+Xr_2)/2 + (U1+U2)/2, (2*lambda_s/rho)*opt.L1Weight); % Update dual variable U1 = U1 + Xr_1 - Y; U2 = U2 + Xr_2 - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); for i=1:size(Y,Y) cc=Y(:,:,i)'*Y(:,:,i); cc=sqrt(cc); Jl1=Jl1+trace(cc); end else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf_1),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Js1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl1=0; for i=1:size(Y,3) cc=Y(:,:,i)'*Y(:,:,i); cc=sqrt(cc); Jl1=Jl1+trace(cc); end end Jfn = Jdf + lambda_r*Jl1+lambda_s*Js1; nX = norm(X(:)); nY = norm(Y(:)); nU = norm((U1(:)+U2(:))/2); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = (U1+U2)/2/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf_1; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function r = Do(tau, X) % shrinkage operator for singular values for i=1:size(X,3) for j=1:size(X,4) [U, S, V] = svd(X(:,:,i,j), 'econ'); r(:,:,i,j)= U*So(tau, S)*V'; end end return function r = So(tau, X) % shrinkage operator r = sign(X) .* max(abs(X) - tau, 0); return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
celnet_gpu.m
.m
convolutional_sparse_coding-master/SparseCode/celnet_gpu.m
12,262
utf_8
3bfe8fecce50ec8ea826ac2b286c605d
function [Y, optinf] = celnet_gpu(D, S, lambda, mu, opt) % celnet_gpu -- Convolutional Elastic Net (GPU version) % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 + (mu/2) \sum_m ||x_m||_2^2 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient). % % Usage: % [Y, optinf] = celnet_gpu(D, S, lambda, mu, opt) % % Input: % D Dictionary filter set (3D array) % s Input image % lambda Regularization parameter (l1) % mu Regularization parameter (l2) % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X. % Array should have the same dimensions as X, but the % first two dimensions may be of unit size, corresponding % to a weighting that varies with filter index but is % spatially constant. % L2Weight Weighting array for l2 norm of X. Array should have % dimensions corresponding to the non-spatial dimensions % of X since spatial weighting is no possible (i.e. % weighting varies only with filter and sample index). % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Authors: Brendt Wohlberg <[email protected]> % Ping-Keng Jao <[email protected]> % Modified: 2015-12-18 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. gS = gpuArray(S); gD = gpuArray(D); glambda = gpuArray(lambda); if nargin < 5, opt = []; end if nargin < 4, gmu = gpuArray(0); else gmu = gpuArray(mu); end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) 1]; end % Compute filters in DFT domain gDf = fft2(gD, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose gDop = @(x) sum(bsxfun(@times, gDf, x), 3); gDHop = @(x) bsxfun(@times, conj(gDf), x); % Compute signal in DFT domain gSf = fft2(gS); % S convolved with all filters in DFT domain gDSf = gDHop(gSf); % Set up l2 weight array if isscalar(opt.L2Weight), gwl2 = gpuArray(opt.L2Weight); else gwl2 = gpuArray(reshape(opt.L2Weight, [1 1 size(opt.L2Weight,1) ... size(opt.L2Weight,2)])); end % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(glambda), gb = ifft2(gDHop(gSf), 'symmetric'); glambda = 0.1*max(vec(abs(gb))); end % Set up algorithm parameters and initialise variables grho = gpuArray(opt.rho); if isempty(grho), grho = 50*glambda+1; end; gmwr = gmu*gwl2 + grho; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(glambda) + 1); end end if opt.HighMemSolve, gcn = bsxfun(@rdivide, gDf, gmwr); gcd = sum(gDf.*bsxfun(@rdivide, conj(gDf), gmu*gwl2 + grho), 3) + 1.0; gC = bsxfun(@rdivide, gcn, gcd); clear cn cd; else C = []; end gNx = prod(gpuArray(xsz)); optinf = struct('itstat', [], 'opt', opt); gr = gpuArray(Inf); gs = gpuArray(Inf); gepri = gpuArray(0); gedua = gpuArray(0); % Initialise main working variables % X = []; if isempty(opt.Y0), gY = gpuArray.zeros(xsz); else gY = gpuArray(opt.Y0); end gYprv = gY; if isempty(opt.U0), if isempty(opt.Y0), gU = gpuArray.zeros(xsz); else gU = (glambda/grho)*sign(gY); end else gU = gpuArray(opt.U0); end % Main loop k = 1; while k <= opt.MaxMainIter & (gr > gepri | gs > gedua), % Solve X subproblem gXf = solvedbd_sm(gDf, gmwr, gDSf + grho*fft2(gY - gU), gC); gX = ifft2(gXf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, gXr = gX; else gXr = opt.RelaxParam*gX + (1-opt.RelaxParam)*gY; end % Solve Y subproblem gY = shrink(gXr + gU, (glambda/grho)*opt.L1Weight); if opt.NoBndryCross, gY((end-size(gD,1)+2):end,:,:,:) = 0; gY(:,(end-size(gD,1)+2):end,:,:) = 0; end % Update dual variable gU = gU + gXr - gY; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, gYf = fft2(gY); % This represents unnecessary computational cost gJdf = sum(vec(abs(sum(bsxfun(@times,gDf,gYf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, gY)))); gJl2 = sum(vec(gwl2.*sum(sum(gY.^2, 1),2)))/2; else gJdf = sum(vec(abs(sum(bsxfun(@times,gDf,gXf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, gX)))); gJl2 = sum(vec(gwl2.*sum(sum(gX.^2, 1),2)))/2; end gJfn = gJdf + glambda*gJl1 + gmu*gJl2; gnX = norm(gX(:)); gnY = norm(gY(:)); gnU = norm(gU(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed gr = norm(vec(gX - gY)); gs = norm(vec(grho*(gYprv - gY))); gepri = sqrt(gNx)*opt.AbsStopTol+max(gnX,gnY)*opt.RelStopTol; gedua = sqrt(gNx)*opt.AbsStopTol+grho*gnU*opt.RelStopTol; else % See wohlberg-2015-adaptive gr = norm(vec(gX - gY))/max(gnX,gnY); gs = norm(vec(gYprv - gY))/gnU; gepri = sqrt(gNx)*opt.AbsStopTol/max(gnX,gnY)+opt.RelStopTol; gedua = sqrt(gNx)*opt.AbsStopTol/(grho*gnU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k gather(gJfn) gather(gJdf) gather(gJl1) ... gather(gJl2) gather(gr) gather(gs) gather(gepri) ... gather(gedua) gather(grho) tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, gather(gJfn), gather(gJdf), gather(gJl1), ... gather(gJl2), gather(gr), gather(gs), gather(grho))); else disp(sprintf(sfms, k, gather(gJfn), gather(gJdf), gather(gJl1), ... gather(gJl2), gather(gr), gather(gs))); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, grhomlt = sqrt(gr/(gs*opt.RhoRsdlTarget)); if grhomlt < 1, grhomlt = 1/grhomlt; end if grhomlt > opt.RhoScaling, grhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end grsf = 1; if gr > opt.RhoRsdlTarget*opt.RhoRsdlRatio*gs, grsf = grhomlt; end if gs > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*gr, grsf = 1/grhomlt; end grho = grsf*grho; gU = gU/grsf; if opt.HighMemSolve && grsf ~= 1, gmwr = gmu*gwl2 + grho; gcn = bsxfun(@rdivide, gDf, gmwr); gcd = sum(gDf.*bsxfun(@rdivide, conj(gDf), gmwr), 3) + 1.0; gC = bsxfun(@rdivide, gcn, gcd); clear gcn gcd; end end end gYprv = gY; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = gather(gX); optinf.Xf = gather(gXf); optinf.Y = gather(gY); optinf.U = gather(gU); optinf.lambda = gather(glambda); optinf.mu = gather(mu); optinf.rho = gather(grho); Y = gather(gY); if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'L2Weight'), opt.L2Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdnms.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdnms.m
10,773
utf_8
106a9b0dc6d99d787c98deb2b7f52d58
function [X, optinf] = cbpdnms(D, S, lambda, opt) % cbpdnms -- Convolutional Basis Pursuit DeNoising (Mask Simulation) % % argmin_{x_k} (1/2)||W (\sum_k d_k * x_k - s)||_2^2 + % lambda \sum_k ||x_k||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient and % wohlberg-2016-boundary). % % Usage: % [X, optinf] = cbpdnms(D, S, lambda, opt) % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % X Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % W Synthesis spatial weighting matrix % % % Author: Brendt Wohlberg <[email protected]> Modified: 2016-05-10 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Insert impulse filter into dictionary imp = zeros(size(D,1), size(D,2), 1); imp(1,1,1) = 1.0; Di = cat(3, D, imp); % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if s could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(Di,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); if ~isscalar(opt.W) & ndims(opt.W) > 2, opt.W = reshape(opt.W, [size(opt.W,1) size(opt.W,2) 1 size(opt.W,3)]); end else xsz = [size(S,1) size(S,2) size(Di,3) size(S,4)]; end IYW = 1.0 - opt.W; % Compute filters in DFT domain Df = fft2(Di, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbi_sm(Df, rho, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y(:,:,1:(end-1),:) = shrink(Xr(:,:,1:(end-1),:) + U(:,:,1:(end-1),:), ... (lambda/rho)*opt.L1Weight); Y(:,:,end,:) = bsxfun(@times, IYW, Xr(:,:,end,:) + U(:,:,end,:)); if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,1:(end-1),:) = 0; Y(:,(end-size(D,2)+2):end,1:(end-1),:) = 0; end % Update dual variable U = U + Xr - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y(:,:,1:(end-1),:))))); else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X(:,:,1:(end-1),:))))); end Jfn = Jdf + lambda*Jl1; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end % Remove coefficient map for impulse filter X = X(:,:,1:(end-1), :); return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 1; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end if ~isfield(opt,'W'), opt.W = 1.0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdnmd.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdnmd.m
10,799
utf_8
b23bbc7e352dd855e43948e1868c0ff1
function [X, optinf] = cbpdnmd(D, S, lambda, opt) % cbpdnmd -- Convolutional Basis Pursuit DeNoising (Mask Decoupling) % % argmin_{x_k} (1/2)||W \sum_k d_k * x_k - s||_2^2 + % lambda \sum_k ||x_k||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient and % wohlberg-2016-boundary). % % Usage: % [Y, optinf] = cbpdnmd(D, S, lambda, opt) % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % W Synthesis spatial weighting matrix % % % Author: Brendt Wohlberg <[email protected]> Modified: 2016-06-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); if ~isscalar(opt.W) & ndims(opt.W) > 2, opt.W = reshape(opt.W, [size(opt.W,1) size(opt.W,2) 1 size(opt.W,3)]); end else xsz = [size(S,1) size(S,2) size(D,3) size(S,4)]; end K = size(S,4); W = opt.W; WS = bsxfun(@times, W, S); % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + 1.0); else C = []; end Nx = prod(xsz); Ny = prod(xsz + [0 0 1 0]); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz + [0 0 1 0]); Y(:,:,end,:) = S; else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz + [0 0 1 0]); else U(:,:,1:(end-1),:) = (lambda/rho)*sign(Y(:,:,1:(end-1),:)); U(:,:,end,:) = bsxfun(@times, W, (bsxfun(@times, W, Y(:,:,end,:)) - S))/rho; end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem YUf = fft2(Y - U); YU0f = YUf(:,:,1:(end-1),:); YU1f = YUf(:,:,end,:); Xf = solvedbi_sm(Df, 1.0, DHop(YU1f) + YU0f, C); X = ifft2(Xf, 'symmetric'); DX = ifft2(sum(bsxfun(@times, Df, Xf), 3), 'symmetric'); % See pg. 21 of boyd-2010-distributed AX = cat(3, X, DX); if opt.RelaxParam ~= 1.0, AX = opt.RelaxParam*AX + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y(:,:,1:(end-1),:) = shrink(AX(:,:,1:(end-1),:) + U(:,:,1:(end-1),:), ... (lambda/rho)*opt.L1Weight); if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,1:(end-1),:) = 0; Y(:,(end-size(D,2)+2):end,1:(end-1),:) = 0; end Y(:,:,end,:) = bsxfun(@rdivide,(WS + rho*(DX+U(:,:,end,:))),... ((W.^2) + rho)); % Update dual variable U = U + AX - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Jdf = sum(vec(abs(bsxfun(@times, W, Y(:,:,end,:)) - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y(:,:,1:(end-1),:))))); else Jdf = sum(vec(abs(bsxfun(@times, W, DX) - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); end Jfn = Jdf + lambda*Jl1; % This is computationally expensive for diagnostic information U0 = U(:,:,1:(end-1),:); U1 = U(:,:,end,:); U1f = fft2(U1); ATU0 = U0; ATU1 = ifft2(DHop(U1f), 'symmetric'); nX = norm(X(:)); nY = norm(Y(:)); nU0 = norm(U0(:)); nU1 = norm(U1(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(AX - Y)); s = rho*norm(vec(ATU0 + ATU1)); epri = sqrt(Ny)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*max(nU0,nU1)*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(AX - Y))/max(nX,nY); s = norm(vec(ATU0 + ATU1))/max(nU0,nU1); epri = sqrt(Ny)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*max(nU0,nU1))+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + 1.0); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 1; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end if ~isfield(opt,'W'), opt.W = 1.0; end return
github
wanghan0501/convolutional_sparse_coding-master
bpdnjnt.m
.m
convolutional_sparse_coding-master/SparseCode/bpdnjnt.m
8,880
utf_8
c1bc97667469900f3e6bd14cb3ac45fe
function [Y, optinf] = bpdnjnt(D, S, lambda, mu, opt) % bpdnjnt -- Basis Pursuit DeNoising with l2,1 joint sparsity % % argmin_X (1/2)||D*X - s||_F^2 + lambda*||X||_1 + % mu*||X||_{2,1} % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [Y, optinf] = bpdnjnt(D, S, lambda, mu, opt) % % Input: % D Dictionary matrix % S Signal vector (or matrix) % lambda Regularization parameter % mu l2,1 regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % Y Dictionary coefficient vector (or matrix) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2,1 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-10 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 5, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2,1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; [Nr, Nc] = size(D); Nm = size(S,2); Nx = Nc*Nm; DTS = D'*S; [luL, luU] = factorise(D, rho); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(Nc,Nm); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(Nc,Nm); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem X = linsolve(D, rho, luL, luU, DTS + rho*(Y - U)); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink21(Xr + U, lambda/rho, mu/rho, opt.L1Weight); % Update dual variable U = U + Xr - Y; % Objective function and convergence measures if opt.AuxVarObj, Jdf = sum(vec(abs(D*Y - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl21 = sum(sqrt(sum(Y.^2,2))); else Jdf = sum(vec(abs(D*X - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jl21 = sum(sqrt(sum(X.^2,2))); end Jfn = Jdf + lambda*Jl1 + mu*Jl21; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;[k Jfn Jdf Jl1 Jl21 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if rsf ~= 1, [luL, luU] = factorise(D, rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink1_scalars(v, a) u = sign(v).*max(0, abs(v) - a); return function U = shrink2_row_vectors(V, a) n2v = sqrt(sum(V.^2,2)); n2v(n2v == 0) = 1; U = bsxfun(@times, V, shrink1_scalars(n2v, a)./n2v); return function U = shrink21(V, a, b, W1) if nargin < 4 || isempty(W1), W1 = 1; end % See wohlberg-2012-local and chartrand-2013-nonconvex U = shrink2_row_vectors(shrink1_scalars(V, W1 .* a), b); return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolve(A, c, L, U, b) [N,M] = size(A); if N >= M, x = U \ (L \ b); else x = (b - A'*(U \ (L \ (A*b))))/c; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = 1; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 1; end return
github
wanghan0501/convolutional_sparse_coding-master
celnet.m
.m
convolutional_sparse_coding-master/SparseCode/celnet.m
11,532
utf_8
bc859bf5ebdd67452a48f16c23415b26
function [Y, optinf] = celnet(D, S, lambda, mu, opt) % celnet -- Convolutional Elastic Net % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 + (mu/2) \sum_m ||x_m||_2^2 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2014-efficient). % % Usage: % [Y, optinf] = celnet(D, S, lambda, mu, opt) % % Input: % D Dictionary filter set (3D array) % s Input image % lambda Regularization parameter (l1) % mu Regularization parameter (l2) % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X. % Array should have the same dimensions as X, but the % first two dimensions may be of unit size, corresponding % to a weighting that varies with filter index but is % spatially constant. % L2Weight Weighting array for l2 norm of X. Array should have % dimensions corresponding to the non-spatial dimensions % of X since spatial weighting is not possible (i.e. % weighting varies only with filter and sample index). % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-08-13 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 5, opt = []; end if nargin < 4, mu = 0; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) 1]; hrm = 1; end xrm = [1 1 size(D,3)]; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Set up l2 weight array if isscalar(opt.L2Weight), wl2 = opt.L2Weight; else wl2 = reshape(opt.L2Weight, [1 1 size(opt.L2Weight,1) size(opt.L2Weight,2)]); end % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; mwr = mu*wl2 + rho; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = compute_dbd_sm_C(Df, mwr); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbd_sm(Df, mwr, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,:,:) = 0; Y(:,(end-size(D,1)+2):end,:,:) = 0; end % Update dual variable U = U + Xr - Y; % Compute functional value if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl2 = sum(vec(wl2.*sum(sum(Y.^2, 1),2)))/2; else % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jl2 = sum(vec(wl2.*sum(sum(X.^2, 1),2)))/2; end Jfn = Jdf + lambda*Jl1 + mu*Jl2; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 Jl2 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl2, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl2, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if rsf ~= 1, mwr = mu*wl2 + rho; if opt.HighMemSolve, C = compute_dbd_sm_C(Df, mwr); end end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.mu = mu; optinf.rho = rho; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function C = compute_dbd_sm_C(Df, mwr) cn = bsxfun(@rdivide, Df, mwr); cd = sum(bsxfun(@times, Df, bsxfun(@rdivide, conj(Df), mwr)), 3) + 1.0; C = bsxfun(@rdivide, cn, cd); clear cn cd; return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'L2Weight'), opt.L2Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdn.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdn.m
10,413
utf_8
27738234c72ea3eb346577080e7e8640
function [Y, optinf] = cbpdn(D, S, lambda, opt) % cbpdn -- Convolutional Basis Pursuit DeNoising % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2014-efficient). % % Usage: % [Y, optinf] = cbpdn(D, S, lambda, opt); % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) size(S,4)]; hrm = 1; end xrm = [1 1 size(D,3)]; % Start timer tstart = tic; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), b = ifft2(DHop(Sf), 'symmetric'); lambda = 0.1*max(vec(abs(b))); end % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbi_sm(Df, rho, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,:,:) = 0; Y(:,(end-size(D,1)+2):end,:,:) = 0; end % Update dual variable U = U + Xr - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); end Jfn = Jdf + lambda*Jl1; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Xf = Xf; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
elnet.m
.m
convolutional_sparse_coding-master/SparseCode/elnet.m
8,513
utf_8
ad0ba145ba80323e93f2f1cfabdbfb88
function [Y, optinf] = elnet(D, S, lambda, mu, opt) % elnet -- Elastic Net % % argmin_x (1/2)||D*x - s||_2^2 + lambda*||x||_1 + (mu/2) ||x||_2^2 % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [Y, optinf] = elnet(D, S, lambda, mu, opt) % % Input: % D Dictionary matrix % S Signal vector (or matrix) % lambda Regularization parameter (l1) % mu Regularization parameter (l2) % opt Options/algorithm parameters structure (see below) % % Output: % Y Dictionary coefficient vector (or matrix) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-24 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 5, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; [Nr, Nc] = size(D); Nm = size(S,2); Nx = Nc*Nm; DTS = D'*S; [luL, luU] = factorise(D, mu + rho); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(Nc,Nm); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(Nc,Nm); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem X = linsolve(D, mu + rho, luL, luU, DTS + rho*(Y - U)); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); % Update dual variable U = U + Xr - Y; % Objective function and convergence measures if opt.AuxVarObj, Jdf = sum(vec(abs(D*Y - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl2 = sum(abs(vec(Y)).^2); else Jdf = sum(vec(abs(D*X - S).^2))/2; Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jl2 = sum(abs(vec(X)).^2); end Jfn = Jdf + lambda*Jl1 + (mu/2)*Jl2; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 Jl2 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl2, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl2, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if rsf ~= 1, [luL, luU] = factorise(D, mu + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; optinf.mu = mu; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolve(A, c, L, U, b) [N,M] = size(A); if N >= M, x = U \ (L \ b); else x = (b - A'*(U \ (L \ (A*b))))/c; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = 1; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 1; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdn_gpu.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdn_gpu.m
10,916
utf_8
e6b2b039c00e53be0b0eacdf0428f4ea
function [Y, optinf] = cbpdn_gpu(D, S, lambda, opt) % cbpdn_gpu -- Convolutional Basis Pursuit DeNoising (GPU version) % % argmin_{x_m} (1/2)||\sum_m d_m * x_m - s||_2^2 + % lambda \sum_m ||x_m||_1 % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient). % % Usage: % [Y, optinf] = cbpdn_gpu(D, S, lambda, opt); % % Input: % D Dictionary filter set (3D array) % S Input image % lambda Regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of rho is also % displayed if options request that it is automatically % adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Authors: Brendt Wohlberg <[email protected]> % Ping-Keng Jao <[email protected]> % Modified: 2015-12-28 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. gS = gpuArray(S); gD = gpuArray(D); glambda = gpuArray(lambda); if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 54; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 && size(S,4) == 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume gS = reshape(gS, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) size(S,4)]; end % Start timer tstart = tic; % Compute filters in DFT domain gDf = fft2(gD, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose gDop = @(x) sum(bsxfun(@times, gDf, x), 3); gDHop = @(x) bsxfun(@times, conj(gDf), x); % Compute signal in DFT domain gSf = fft2(gS); % S convolved with all filters in DFT domain gDSf = gDHop(gSf); % Default lambda is 1/10 times the lambda value beyond which the % solution is a zero vector if nargin < 3 | isempty(lambda), gb = ifft2(DHop(gSf), 'symmetric'); glambda = 0.1*max(vec(abs(gb))); end % Set up algorithm parameters and initialise variables grho = gpuArray(opt.rho); if isempty(grho), grho = 50*glambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(gather(glambda)) + 1); end end if opt.HighMemSolve, gC = bsxfun(@rdivide, gDf, sum(gDf.*conj(gDf), 3) + grho); else gC = []; end gNx = prod(gpuArray(xsz)); optinf = struct('itstat', [], 'opt', opt); gr = gpuArray(Inf); gs = gpuArray(Inf); gepri = gpuArray(0); gedua = gpuArray(0); % Initialise main working variables % X = []; if isempty(opt.Y0), % gY = zeros(xsz, 'gpuArray'); gY = gpuArray.zeros(xsz); else gY = gpuArray(opt.Y0); end gYprv = gY; if isempty(opt.U0), if isempty(opt.Y0), % gU = zeros(xsz, 'gpuArray'); gU = gpuArray.zeros(xsz); else gU = (glambda/grho)*sign(gY); end else gU = gpuArray(opt.U0); end % Main loop k = 1; while k <= opt.MaxMainIter & (gr > gepri | gs > gedua), % Solve X subproblem gXf = solvedbi_sm(gDf, grho, gDSf + grho*fft2(gY - gU), gC); gX = ifft2(gXf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, gXr = gX; else gXr = opt.RelaxParam*gX + (1-opt.RelaxParam)*gY; end % Solve Y subproblem gY = shrink(gXr + gU, (glambda/grho)*opt.L1Weight); if opt.NoBndryCross, gY((end-size(gD,1)+2):end,:,:,:) = 0; gY(:,(end-size(gD,2)+2):end,:,:) = 0; end % Update dual variable gU = gU + gXr - gY; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, gYf = fft2(gY); % This represents unnecessary computational cost gJdf = sum(vec(abs(sum(bsxfun(@times,gDf,gYf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, gY)))); else gJdf = sum(vec(abs(sum(bsxfun(@times,gDf,gXf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, gX)))); end gJfn = gJdf + glambda*gJl1; gnX = norm(gX(:)); gnY = norm(gY(:)); gnU = norm(gU(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed gr = norm(vec(gX - gY)); gs = norm(vec(grho*(gYprv - gY))); gepri = sqrt(gNx)*opt.AbsStopTol+max(gnX,gnY)*opt.RelStopTol; gedua = sqrt(gNx)*opt.AbsStopTol+grho*gnU*opt.RelStopTol; else % See wohlberg-2015-adaptive gr = norm(vec(gX - gY))/max(gnX,gnY); gs = norm(vec(gYprv - gY))/gnU; gepri = sqrt(gNx)*opt.AbsStopTol/max(gnX,gnY)+opt.RelStopTol; gedua = sqrt(gNx)*opt.AbsStopTol/(grho*gnU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k gather(gJfn) gather(gJdf) gather(gJl1) ... gather(gr) gather(gs) gather(gepri) gather(gedua) grho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, gather(gJfn), gather(gJdf), gather(gJl1), ... gather(gr), gather(gs), grho)); else disp(sprintf(sfms, k, gather(gJfn), gather(gJdf), gather(gJl1), ... gather(gr), gather(gs))); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, grhomlt = sqrt(gr/(gs*opt.RhoRsdlTarget)); if grhomlt < 1, grhomlt = 1/grhomlt; end if grhomlt > opt.RhoScaling, grhomlt = opt.RhoScaling; end else grhomlt = opt.RhoScaling; end grsf = 1; if gr > opt.RhoRsdlTarget*opt.RhoRsdlRatio*gs, grsf = grhomlt; end if gs > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*gr, grsf = 1/grhomlt; end grho = grsf*grho; gU = gU/grsf; if opt.HighMemSolve && grsf ~= 1, gC = bsxfun(@rdivide, gDf, sum(gDf.*conj(gDf), 3) + grho); end end end gYprv = gY; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = gather(gX); optinf.Xf = gather(gXf); optinf.Y = gather(gY); optinf.U = gather(gU); optinf.lambda = gather(glambda); optinf.rho = gather(grho); Y = gather(gY); % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdnjnt.m
.m
convolutional_sparse_coding-master/SparseCode/cbpdnjnt.m
11,491
utf_8
4159f4569e221507f7cf594135d490d7
function [Y, optinf] = cbpdnjnt(D, S, lambda, mu, opt) % cbpdnjnt -- Convolutional Basis Pursuit DeNoising with Joint Sparsity % % argmin_{x_k} (1/2)||\sum_k d_k * x_k - s||_2^2 + % lambda \sum_k ||x_k||_1 + % mu ||{x_k}||_{2,1} % % The solution is computed using an ADMM approach (see % boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient and % wohlberg-2016-convolutional). % % Note: Multi-channel images are represented by stacking the % channels on the 3rd dimension of input array S. Since this % is also the dimension used for stacking multiple images, % multiple multi-channel images are are not handled properly % with respect to the l2,1 norm. % % Usage: % [Y, optinf] = cbpdnjnt(D, S, lambda, mu, opt) % % Input: % D Dictionary filter set (3D array) % S Input image % lambda l1 regularization parameter % mu l2,1 regularization parameter % opt Algorithm parameters structure % % Output: % Y Dictionary coefficient map set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2,1 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weighting array for coefficients in l1 norm of X % L21Weight Weighting array for coefficients in l2,1 norm of X % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % HighMemSolve Use more memory for a slightly faster solution % % % Author: Brendt Wohlberg <[email protected]> Modified: 2016-07-01 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 5, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2,1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D,3) 1]; hrm = 1; end xrm = [1 1 size(D,3)]; % Compute filters in DFT domain Df = fft2(D, size(S,1), size(S,2)); % Convolve-sum and its Hermitian transpose Dop = @(x) sum(bsxfun(@times, Df, x), 3); DHop = @(x) bsxfun(@times, conj(Df), x); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all filters in DFT domain DSf = DHop(Sf); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if isempty(opt.RhoRsdlTarget), if opt.StdResiduals, opt.RhoRsdlTarget = 1; else opt.RhoRsdlTarget = 1 + (18.3).^(log10(lambda) + 1); end end if opt.HighMemSolve, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); else C = []; end Nx = prod(xsz); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz, class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem Xf = solvedbi_sm(Df, rho, DSf + rho*fft2(Y - U), C); X = ifft2(Xf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink21(Xr + U, lambda/rho, mu/rho, opt.L1Weight, opt.L21Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,:,:) = 0; Y(:,(end-size(D,2)+2):end,:,:) = 0; end % Update dual variable U = U + Xr - Y; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Yf = fft2(Y); % This represents unnecessary computational cost Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); Jl21 = sum(sqrt(vec(sum(bsxfun(@times, opt.L21Weight, Y).^2, 4)))); else Jdf = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, X)))); Jl21 = sum(sqrt(vec(sum(bsxfun(@times, opt.L21Weight, X).^2, 4)))); end Jfn = Jdf + lambda*Jl1 + mu*Jl21; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Jfn Jdf Jl1 Jl21 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if opt.HighMemSolve && rsf ~= 1, C = bsxfun(@rdivide, Df, sum(Df.*conj(Df), 3) + rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink1_scalars(v, a) if isscalar(a), u = sign(v).*max(0, abs(v) - a); else u = sign(v).*max(0, bsxfun(@minus, abs(v), a)); end return function U = shrink2_row_vectors(V, a) n2v = sqrt(sum(V.^2, 4)); n2v(n2v == 0) = 1; if isscalar(a), U = bsxfun(@times, V, max(0, n2v - a)./n2v); else U = bsxfun(@times, V, max(0, bsxfun(@minus, n2v, a))./n2v); end return function U = shrink21(V, a, b, W1, W2) if nargin < 4 || isempty(W1), W1 = 1; end % See wohlberg-2012-local and chartrand-2013-nonconvex U = shrink2_row_vectors(shrink1_scalars(V, W1 .* a), W2 .* b); return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'L21Weight'), opt.L21Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 1; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = []; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end if ~isfield(opt,'HighMemSolve'), opt.HighMemSolve = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
bpdngrp.m
.m
convolutional_sparse_coding-master/SparseCode/bpdngrp.m
9,332
utf_8
7b8f97e92c355ae6a5ab23882c88b226
function [Y, optinf] = bpdngrp(D, S, lambda, mu, g, opt) % bpdngrp -- Basis Pursuit DeNoising with l2,1 group sparsity % % argmin_x (1/2)||D*x - s||_2^2 + lambda*||x||_1 + % mu * \sum_l ||G_l(x)||_2 % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [Y, optinf] = bpdngrp(D, S, lambda, mu, g, opt) % % Input: % D Dictionary matrix % S Signal vector (or matrix) % lambda Regularization parameter % mu l2,1 regularization parameter % g Vector containing index values indicating the % group number for each dictionary element. The % first group index is 1 (0 indicates no group). % Number must be contiguous. Overlapping groups % are not supported. % opt Options/algorithm parameters structure (see below) % % Output: % Y Dictionary coefficient vector (or matrix) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, l2,1 % regularisation term, and primal and dual residuals % (see Sec. 3.3 of boyd-2010-distributed). The value of % rho is also displayed if options request that it is % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % Y0 Initial value for Y % U0 Initial value for U % rho ADMM penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % RhoRsdlTarget Residual ratio targeted by auto rho update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-10 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 6, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Fnc DFid l1 l2,1 r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 64; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; [Nr, Nc] = size(D); Nm = size(S,2); Nx = Nc*Nm; Ng = max(g); DTS = D'*S; [luL, luU] = factorise(D, rho); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(Nc,Nm); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(Nc,Nm); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve X subproblem X = linsolve(D, rho, luL, luU, DTS + rho*(Y - U)); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Xr = X; else Xr = opt.RelaxParam*X + (1-opt.RelaxParam)*Y; end % Solve Y subproblem Y = shrink_groups(Xr + U, g, Ng, lambda/rho, mu/rho); % Update dual variable U = U + Xr - Y; % Objective function and convergence measures if opt.AuxVarObj, Jdf = sum(vec(abs(D*Y - S).^2))/2; Jl1 = sum(abs(vec(Y))); Jl21 = norm21(Y, g, Ng); else Jdf = sum(vec(abs(D*X - S).^2))/2; Jl1 = sum(abs(vec(X))); Jl21 = norm21(X, g, Ng); end Jfn = Jdf + lambda*Jl1 + mu*Jl21; nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(X - Y)); s = norm(vec(rho*(Yprv - Y))); epri = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(X - Y))/max(nX,nY); s = norm(vec(Yprv - Y))/nU; epri = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; edua = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;[k Jfn Jdf Jl1 Jl21 r s epri edua rho tk]]; if opt.Verbose, if opt.AutoRho, disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s, rho)); else disp(sprintf(sfms, k, Jfn, Jdf, Jl1, Jl21, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(r/(s*opt.RhoRsdlTarget)); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if r > opt.RhoRsdlTarget*opt.RhoRsdlRatio*s, rsf = rhomlt; end if s > (opt.RhoRsdlRatio/opt.RhoRsdlTarget)*r, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; if rsf ~= 1, [luL, luU] = factorise(D, rho); end end end Yprv = Y; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.lambda = lambda; optinf.rho = rho; % End status display for verbose operation if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink1(v, a) u = sign(v).*max(0, abs(v) - a); return function U = shrink2_col_vec(V, a) % Additional complexity here allows simultaenous shrinkage of a % set of column vectors n2v = sqrt(sum(V.^2,1)); n2v(n2v == 0) = 1; U = bsxfun(@times, V, max(0, n2v - a)./n2v); return function U = shrink21(V, a, b) % See wohlberg-2012-local and chartrand-2013-nonconvex U = shrink2_col_vec(shrink1(V, a), b); return function U = shrink_groups(V, g, Ng, a, b) U = zeros(size(V)); U(g==0,:) = shrink1(V(g==0,:), a); for l = 1:Ng, U(g==l,:) = shrink21(V(g==l,:), a, b); end return function x = norm21(u, g, Ng) x = 0; for l = 1:Ng, x = x + sqrt(sum(u(g==l,:).^2, 1)); end x = sum(x); % In case u is a matrix (i.e. not a column vector) return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolve(A, c, L, U, b) [N,M] = size(A); if N >= M, x = U \ (L \ b); else x = (b - A'*(U \ (L \ (A*b))))/c; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 0; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 1; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 1.2; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 100; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 1; end if ~isfield(opt,'RhoRsdlTarget'), opt.RhoRsdlTarget = 1; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1.8; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 1; end return
github
wanghan0501/convolutional_sparse_coding-master
bpdndl.m
.m
convolutional_sparse_coding-master/DictLearn/bpdndl.m
12,682
utf_8
3d5b1793a1a5f558609c6b25c38299ec
function [G, Y, optinf] = bpdndl(D0, S, lambda, opt) % bpdndl -- BPDN Dictionary Learning % % argmin_{D,X} (1/2)||D X - S||_2^2 + lambda ||X||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed for details). % % Usage: % [D, X, optinf] = bpdndl(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input image % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary % X Coefficients % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight matrix for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % ZeroMean Force learned dictionary entries to be zero-mean % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); Nx = size(D0,2)*size(S,2); Nd = prod(size(D0)); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(x,1)); Pnrm = @(x) normalise(x); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzmn(x)); else Pcn = @(x) Pnrm(x); end % Start timer tstart = tic; % Project initial dictionary onto constraint set D = Pnrm(D0); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; sigma = opt.sigma; if isempty(sigma), sigma = size(S,2)/200; end; optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(size(D,2), size(S,2)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(size(D,2), size(S,2), class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end if isempty(opt.G0), G = D; else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(size(G), class(S)); else H = G; end else H = opt.H0; end GS = G'*S; % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem, using G as the dictionary for improved stability [luLx, luUx] = factorise(G, rho); X = linsolveX(G, rho, luLx, luUx, GS + rho*(Y - U)); % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, Xr = X; else Xr = opt.XRelaxParam*X + (1-opt.XRelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end SY = S*Y'; % Update dual variable corresponding to X, Y U = U + Xr - Y; % Compute primal and dual residuals and stopping thresholds for X update nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(X - Y)); sx = norm(vec(rho*(Yprv - Y))); eprix = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(X - Y))/max(nX,nY); sx = norm(vec(Yprv - Y))/nU; eprix = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end % Solve D subproblem, using Y as the coefficients for improved stability [luLd, luUd] = factorise(Y, sigma); D = linsolveD(Y, sigma, luLd, luUd, SY + sigma*(G - H)); % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, Dr = D; else Dr = opt.DRelaxParam*D + (1-opt.DRelaxParam)*G; end % Solve G subproblem G = Pcn(Dr + H); GS = G'*S; % Update dual variable corresponding to D, G H = H + Dr - G; % Compute primal and dual residuals and stopping thresholds for D update nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(D - G)); sd = norm(vec(sigma*(Gprv - G))); eprid = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(D - G))/max(nD,nG); sd = norm(vec(Gprv - G))/nH; eprid = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Objective function if opt.AuxVarObj, Jdf = sum(vec(abs(G*Y - S).^2))/2; Jl1 = sum(abs(vec(opt.L1Weight .* Y))); else Jdf = sum(vec(abs(D*X - S).^2))/2; Jl1 = sum(abs(vec(opt.L1Weight .* X))); end Jfn = Jdf + lambda*Jl1; Jcn = norm(vec(Pcn(D) - D)); % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; ... [k Jfn Jdf Jl1 rx sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k Jfn Jdf Jl1 Jcn rx sx rd sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end Yprv = Y; Gprv = G; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.X = X; optinf.Y = Y; optinf.U = U; optinf.D = D; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) u = sign(v).*max(0, abs(v) - lambda); return function u = normalise(v) vn = sqrt(sum(v.^2, 1)); vn(vn == 0) = 1; u = bsxfun(@rdivide, v, vn); return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolveX(A, c, L, U, b) [N,M] = size(A); if N >= M, x = U \ (L \ b); else x = (b - A'*(U \ (L \ (A*b))))/c; end return function x = linsolveD(A, c, L, U, b) [N,M] = size(A); if N >= M, x = (b - (((b*A) / U) / L)*A')/c; else x = (b / U) / L; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 1; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndl_rank.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndl_rank.m
16,753
utf_8
33a940c2af3c9d287304d391f84c4fd1
function [D, Y, optinf] = cbpdndl_rank(D0, S, lambda, opt) % cbpdndl_rank -- Convolutional BPDN Dictionary Learning % % argmin_{x_m,d_m} (1/2) \sum_k ||\sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2014-efficient). % % Usage: % [D, Y, optinf] = cbpdndl_rank(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-08-05 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D0,3) 1]; hrm = 1; end xrm = [1 1 size(D0,3)]; Nx = prod(xsz); Nd = prod(xsz(1:2))*size(D0,3); cgt = opt.CGTol; % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Project initial dictionary onto constraint set D = Pnrm(D0); % Compute signal in DFT domain Sf = fft2(S); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz, class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end Df = []; if isempty(opt.G0), G = Pzp(D); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(size(G), class(S)); else H = G; end else H = opt.H0; end Gf = fft2(G, size(S,1), size(S,2)); GSf = bsxfun(@times, conj(Gf), Sf); % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G Xf = solvedbi_sm(Gf, rho, GSf + rho*fft2(Y - U)); X = ifft2(Xf, 'symmetric'); clear Xf Gf GSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, Xr = X; else Xr = opt.XRelaxParam*X + (1-opt.XRelaxParam)*Y; end % Solve Y subproblem % Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); Y = Do(lambda/rho, Xr+U); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-max(dsz(1,:)) +2):end,:,:,:) = 0; Y(:,(end-max(dsz(2,:))+2):end,:,:) = 0; end Yf = fft2(Y); YSf = sum(bsxfun(@times, conj(Yf), Sf), 4); % Update dual variable corresponding to X, Y U = U + Xr - Y; clear Xr; % Compute primal and dual residuals and stopping thresholds for X update nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(X - Y)); sx = norm(vec(rho*(Yprv - Y))); eprix = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(X - Y))/max(nX,nY); sx = norm(vec(Yprv - Y))/nU; eprix = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end clear X; % Compute l1 norm of Y Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); % Update record of previous step Y Yprv = Y; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Yf, sigma, YSf + sigma*fft2(G - H)); else [Df, cgst] = solvemdbi_cg(Yf, sigma, YSf + sigma*fft2(G - H), ... cgt, opt.MaxCGIter, Df(:)); end clear YSf; D = ifft2(Df, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear Df; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, Dr = D; else Dr = opt.DRelaxParam*D + (1-opt.DRelaxParam)*G; end % Solve G subproblem G = Pcn(Dr + H); Gf = fft2(G); GSf = bsxfun(@times, conj(Gf), Sf); % Update dual variable corresponding to D, G H = H + Dr - G; clear Dr; % Compute primal and dual residuals and stopping thresholds for D update nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(D - G)); sd = norm(vec(sigma*(Gprv - G))); eprid = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(D - G))/max(nD,nG); sd = norm(vec(Gprv - G))/nH; eprid = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (rd/opt.CGTolFactor) < cgt, cgt = rd/opt.CGTolFactor; end % Compute measure of D constraint violation Jcn = norm(vec(Pcn(D) - D)); clear D; % Update record of previous step G Gprv = G; % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Gf,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); clear Yf; Jfn = Jdf + lambda*Jl1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k Jfn Jdf Jl1 rx sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k, Jfn, Jdf, Jl1, Jcn, rx, sx, rd, sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end k = k + 1; end D = PzpT(G); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = Y; optinf.U = U; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function r = Do(tau, X) % shrinkage operator for singular values for i=1:size(X,3) for j=1:size(X,4) [U, S, V] = svd(X(:,:,i,j), 'econ'); r(:,:,i,j)= U*So(tau, S)*V'; end end return function r = So(tau, X) % shrinkage operator r = sign(X) .* max(abs(X) - tau, 0); return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else cs = max(sz,[],2); u = zeros(cs(1), cs(2), size(v,3), class(v)); for k = 1:size(v,3), u(1:sz(1,k), 1:sz(2,k), k) = v(1:sz(1,k), 1:sz(2,k), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndl_rank_gpu.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndl_rank_gpu.m
17,919
utf_8
dc940180f1ad1ba4b8b672ccf6bd04fc
function [D, Y, optinf] = cbpdndl_rank_gpu(D0, S, lambda, opt) % cbpdndl_rank_gpu -- Convolutional BPDN Dictionary Learning % % argmin_{x_m,d_m} (1/2) \sum_k ||\sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2014-efficient). % % Usage: % [D, Y, optinf] = cbpdndl_rank_gpu(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-08-05 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. gS = gpuArray(S); gD = gpuArray(D0); glambda = gpuArray(lambda); if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0 disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1 xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume gS = gpuArray(reshape(gS, [size(S,1) size(S,2) 1 size(S,3)])); else xsz = [size(S,1) size(S,2) size(D0,3) 1]; hrm = 1; end xrm = [1 1 size(D0,3)]; gxrm = gpuArray(xrm); gNx = gpuArray(prod(xsz)); gNd = gpuArray(prod(xsz(1:2))*size(D0,3));cgt = opt.CGTol; gcgt = gpuArray(opt.CGTol); % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Project initial dictionary onto constraint set % D = Pnrm(D0); gD = Pnrm(gD); % Compute signal in DFT domain gSf = fft2(gS); % Set up algorithm parameters and initialise variables grho = gpuArray(opt.rho); if isempty(grho), grho = 50*glambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end gsigma = gpuArray(opt.sigma); if isempty(gsigma), gsigma = gpuArray(size(S,3)); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); grx = gpuArray(Inf); gsx = gpuArray(Inf); grd = gpuArray(Inf); gsd = gpuArray(Inf); geprix = gpuArray(0); geduax = gpuArray(0); geprid = gpuArray(0); geduad = gpuArray(0); % Initialise main working variables if isempty(opt.Y0), gY = gpuArray.zeros(xsz, class(S)); else gY = gpuArray(opt.Y0); end gYprv = gY; if isempty(opt.U0) if isempty(opt.Y0) gU = gpuArray.zeros(xsz, class(S)); else gU = (glambda/grho)*sign(gY); end else gU = gpuArray(opt.U0); end if isempty(opt.G0), gG = Pzp(gD); else gG = gpuArray(opt.G0); end gGprv = gG; if isempty(opt.H0), if isempty(opt.G0), gH = gpuArray.zeros(size(gG), class(S)); else gH = gG; end else gH = gpuArray(opt.H0); end gGf = fft2(gG, size(S,1), size(S,2)); gGSf = bsxfun(@times, conj(gGf), gSf); % Main loop k = 1; while k <= opt.MaxMainIter && (grx > geprix|gsx > geduax|... grd > geprid|gsd >geduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G gXf = solvedbi_sm(gGf, grho, gGSf + grho*fft2(gY - gU)); gX = ifft2(gXf, 'symmetric'); clear gXf gGf gGSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, gXr = gX; else gXr = opt.XRelaxParam*gX + (1-opt.XRelaxParam)*gY; end % Solve Y subproblem gY = Do(glambda/grho, gXr+gU); if opt.NonNegCoef, gY(gY < 0) = 0; end if opt.NoBndryCross, gY((end-max(dsz(1,:)) +2):end,:,:,:) = 0; gY(:,(end-max(dsz(2,:))+2):end,:,:) = 0; end gYf = fft2(gY); gYSf = sum(bsxfun(@times, conj(gYf), gSf), 4); % Update dual variable corresponding to X, Y gU =gU + gXr - gY; clear gXr; % Compute primal and dual residuals and stopping thresholds for X update gnX = norm(gX(:)); gnY = norm(gY(:)); gnU = norm(gU(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed grx = norm(vec(gX - gY)); gsx = norm(vec(grho*(gYprv - gY))); geprix = sqrt(gNx)*opt.AbsStopTol+max(gnX,gnY)*opt.RelStopTol; geduax = sqrt(gNx)*opt.AbsStopTol+grho*gnU*opt.RelStopTol; else % See wohlberg-2015-adaptive grx = norm(vec(gX - gY))/max(gnX,gnY); gsx = norm(vec(gYprv - gY))/gnU; geprix = sqrt(gNx)*opt.AbsStopTol/max(gnX,gnY)+opt.RelStopTol; geduax = sqrt(gNx)*opt.AbsStopTol/(grho*gnU)+opt.RelStopTol; end clear gX; % Compute l1 norm of Y gJl1 = sum(abs(vec(opt.L1Weight .* gY))); % Update record of previous step Y gYprv = gY; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y if strcmp(opt.LinSolve, 'SM'), gDf = solvemdbi_ism_gpu(gYf, gsigma, gYSf + gsigma*fft2(gG - gH)); else [gDf, gcgst] = solvemdbi_cg(gYf, gsigma, gYSf + gsigma*fft2(gG - gH), ... gcgt, opt.MaxCGIter, gDf(:)); end clear YSf; gD = ifft2(gDf, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear gDf; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, gDr = gD; else gDr = opt.DRelaxParam*gD + (1-opt.DRelaxParam)*gG; end % Solve G subproblem gG = Pcn(gDr + gH); gGf = fft2(gG); gGSf = bsxfun(@times, conj(gGf), gSf); % Update dual variable corresponding to D, G gH = gH + gDr - gG; clear gDr; % Compute primal and dual residuals and stopping thresholds for D update gnD = norm(gD(:)); gnG = norm(gG(:)); gnH = norm(gH(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed grd = norm(vec(gD - gG)); gsd = norm(vec(sigma*(gGprv - gG))); geprid = sqrt(gNd)*opt.AbsStopTol+max(gnD,gnG)*opt.RelStopTol; geduad = sqrt(gNd)*opt.AbsStopTol+gsigma*gnH*opt.RelStopTol; else % See wohlberg-2015-adaptive grd = norm(vec(gD - gG))/max(gnD,gnG); gsd = norm(vec(gGprv - gG))/gnH; geprid = sqrt(gNd)*opt.AbsStopTol/max(gnD,gnG)+opt.RelStopTol; geduad = sqrt(gNd)*opt.AbsStopTol/(gsigma*gnH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (grd/opt.CGTolFactor) < gcgt, gcgt = grd/opt.CGTolFactor; end % Compute measure of D constraint violation gJcn = norm(vec(Pcn(gD) - gD)); clear gD; % Update record of previous step G gGprv = gG; % Compute data fidelity term in Fourier domain (note normalisation) gJdf = sum(vec(abs(sum(bsxfun(@times,gGf,gYf),3)-gSf).^2))/(2*xsz(1)*xsz(2)); clear gYf; gJfn = gJdf + glambda*gJl1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k gather(gJfn) gather(gJdf) gather(gJl1) gather(grx) gather(gsx)... gather(grd) gather(gsd) gather(geprix) gather(geduax) gather(geprid)... gather(geduad) gather(grho) gather(gsigma) tk]]; if opt.Verbose dvc = [k, gather(gJfn), gather(gJdf), gather(gJl1) gather(gJcn), ... gather(grx), gather(gsx), gather(grd), gather(gsd)]; if opt.AutoRho, dvc = [dvc gather(grho)]; end if opt.AutoSigma, dvc = [dvc gather(gsigma)]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, grhomlt = sqrt(grx/gsx); if grhomlt < 1, grhomlt = 1/grhomlt; end if grhomlt > opt.RhoScaling, grhomlt = gpuArray(opt.RhoScaling); end else grhomlt = gpuArray(opt.RhoScaling); end grsf = 1; if grx > opt.RhoRsdlRatio*gsx, grsf = grhomlt; end if gsx > opt.RhoRsdlRatio*grx, grsf = 1/grhomlt; end grho = grsf*grho; gU = gU/grsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, gsigmlt = sqrt(grd/gsd); if gsigmlt < 1, gsigmlt = 1/gsigmlt; end if gsigmlt > opt.SigmaScaling, gsigmlt = gpuArray(opt.SigmaScaling); end else gsigmlt = gpuArray(opt.SigmaScaling); end gssf = gpuArray(1); if grd > opt.SigmaRsdlRatio*gsd, gssf = gsigmlt; end if gsd > opt.SigmaRsdlRatio*grd, gssf = 1/gsigmlt; end gsigma = gssf*gsigma; gH = gH/gssf; end end k = k + 1; end gD = PzpT(gG); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = gather(gY); optinf.U = gather(gU); optinf.G = gather(gG); optinf.H = gather(gH); optinf.lambda = gather(glambda); optinf.rho = gather(grho); optinf.sigma = gather(gsigma); optinf.cgt = gather(gcgt); if exist('gcgst'), optinf.cgst = gather(gcgst); end D = gather(gD); Y = optinf.Y; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) u = sign(v).*max(0, abs(v) - lambda); return function u = zpad(v, sz) % u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u = gpuArray.zeros(sz(1), sz(2), size(v,3), size(v,4)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else if size(sz,1) < size(sz,2), sz = sz'; end cs = max(sz); % u = zeros(cs(1), cs(2), size(v,3), class(v)); u = gpuArray.zeros(cs(1), cs(2), size(v,3)); for k = 1:size(v,3), u(1:sz(k,1), 1:sz(k,2), k) = v(1:sz(k,1), 1:sz(k,2), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose') opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndl.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndl.m
16,388
utf_8
960792294ced2b7a9f82104bc944bdeb
function [D, Y, optinf] = cbpdndl(D0, S, lambda, opt) % cbpdndl -- Convolutional BPDN Dictionary Learning % % argmin_{x_m,d_m} (1/2) \sum_k ||\sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2014-efficient). % % Usage: % [D, Y, optinf] = cbpdndl(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-08-05 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D0,3) 1]; hrm = 1; end xrm = [1 1 size(D0,3)]; Nx = prod(xsz); Nd = prod(xsz(1:2))*size(D0,3); cgt = opt.CGTol; % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Project initial dictionary onto constraint set D = Pnrm(D0); % Compute signal in DFT domain Sf = fft2(S); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz, class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end Df = []; if isempty(opt.G0), G = Pzp(D); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(size(G), class(S)); else H = G; end else H = opt.H0; end Gf = fft2(G, size(S,1), size(S,2)); GSf = bsxfun(@times, conj(Gf), Sf); % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G Xf = solvedbi_sm(Gf, rho, GSf + rho*fft2(Y - U)); X = ifft2(Xf, 'symmetric'); clear Xf Gf GSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, Xr = X; else Xr = opt.XRelaxParam*X + (1-opt.XRelaxParam)*Y; end % Solve Y subproblem Y = shrink(Xr + U, (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-max(dsz(1,:)) +2):end,:,:,:) = 0; Y(:,(end-max(dsz(2,:))+2):end,:,:) = 0; end Yf = fft2(Y); YSf = sum(bsxfun(@times, conj(Yf), Sf), 4); % Update dual variable corresponding to X, Y U = U + Xr - Y; clear Xr; % Compute primal and dual residuals and stopping thresholds for X update nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(X - Y)); sx = norm(vec(rho*(Yprv - Y))); eprix = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(X - Y))/max(nX,nY); sx = norm(vec(Yprv - Y))/nU; eprix = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end clear X; % Compute l1 norm of Y Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); % Update record of previous step Y Yprv = Y; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Yf, sigma, YSf + sigma*fft2(G - H)); else [Df, cgst] = solvemdbi_cg(Yf, sigma, YSf + sigma*fft2(G - H), ... cgt, opt.MaxCGIter, Df(:)); end clear YSf; D = ifft2(Df, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear Df; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, Dr = D; else Dr = opt.DRelaxParam*D + (1-opt.DRelaxParam)*G; end % Solve G subproblem G = Pcn(Dr + H); Gf = fft2(G); GSf = bsxfun(@times, conj(Gf), Sf); % Update dual variable corresponding to D, G H = H + Dr - G; clear Dr; % Compute primal and dual residuals and stopping thresholds for D update nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(D - G)); sd = norm(vec(sigma*(Gprv - G))); eprid = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(D - G))/max(nD,nG); sd = norm(vec(Gprv - G))/nH; eprid = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (rd/opt.CGTolFactor) < cgt, cgt = rd/opt.CGTolFactor; end % Compute measure of D constraint violation Jcn = norm(vec(Pcn(D) - D)); clear D; % Update record of previous step G Gprv = G; % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Gf,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); clear Yf; Jfn = Jdf + lambda*Jl1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k Jfn Jdf Jl1 rx sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k, Jfn, Jdf, Jl1, Jcn, rx, sx, rd, sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end k = k + 1; end D = PzpT(G); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = Y; optinf.U = U; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else cs = max(sz,[],2); u = zeros(cs(1), cs(2), size(v,3), class(v)); for k = 1:size(v,3), u(1:sz(1,k), 1:sz(2,k), k) = v(1:sz(1,k), 1:sz(2,k), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndl_low_sparse.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndl_low_sparse.m
17,151
utf_8
faf23526a0c9e3f8ce9c36ebb102696a
function [D, Y, optinf] = cbpdndl_low_sparse(D0, S, lambda_r,lambda_s, opt) % cbpdndl -- Convolutional BPDN Dictionary Learning % % argmin_{x_m,d_m} (1/2) \sum_k ||\sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2014-efficient). % % Usage: % [D, Y, optinf] = cbpdndl(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-08-05 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. lambda=lambda_s; if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 low1 '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(S,1) size(S,2) size(D0,3) 1]; hrm = 1; end xrm = [1 1 size(D0,3)]; Nx = prod(xsz); Nd = prod(xsz(1:2))*size(D0,3); cgt = opt.CGTol; % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Project initial dictionary onto constraint set D = Pnrm(D0); % Compute signal in DFT domain Sf = fft2(S); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X_1 = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U_1 = zeros(xsz, class(S)); U_2 = zeros(xsz, class(S)); else U_1 = (lambda/rho)*sign(Y); U_2 = (lambda/rho)*sign(Y); end else U_1 = opt.U0; U_2 = opt.U0; end Df = []; if isempty(opt.G0), G = Pzp(D); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(size(G), class(S)); else H = G; end else H = opt.H0; end Gf = fft2(G, size(S,1), size(S,2)); GSf = bsxfun(@times, conj(Gf), Sf); % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G Xf_1 = solvedbi_sm(Gf, rho, GSf + rho*fft2(Y - U_1)); X_1 = ifft2(Xf_1, 'symmetric'); clear Xf Gf GSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, Xr_1 = X_1; else Xr_1 = opt.XRelaxParam*X_1 + (1-opt.XRelaxParam)*Y; end %Update low_rank coefficient Xr_2 = Do(lambda_r/rho, Y-U_2); % Solve Y subproblem Y = shrink((Xr_1+Xr_2)/2 + (U_1+U_2)/2, (2*lambda_s/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-max(dsz(1,:)) +2):end,:,:,:) = 0; Y(:,(end-max(dsz(2,:))+2):end,:,:) = 0; end Yf = fft2(Y); YSf = sum(bsxfun(@times, conj(Yf), Sf), 4); % Update dual variable corresponding to X, Y U_1 = U_1 + Xr_1 - Y; U_2 = U_2 + Xr_2 - Y; clear Xr; % Compute primal and dual residuals and stopping thresholds for X update nX = norm(X_1(:)); nY = norm(Y(:)); nU = norm((U_1(:)+U_2(:)/2)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(X_1 - Y)); sx = norm(vec(rho*(Yprv - Y))); eprix = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(X_1 - Y))/max(nX,nY); sx = norm(vec(Yprv - Y))/nU; eprix = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end clear X; % Compute l1 norm of Y Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y)))); low1=0; for i=1:size(Y,3) cc=Y(:,:,i)'*Y(:,:,i); cc=sqrt(cc); low1=low1+trace(cc); end % Update record of previous step Y Yprv = Y; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Yf, sigma, YSf + sigma*fft2(G - H)); else [Df, cgst] = solvemdbi_cg(Yf, sigma, YSf + sigma*fft2(G - H), ... cgt, opt.MaxCGIter, Df(:)); end clear YSf; D = ifft2(Df, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear Df; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, Dr = D; else Dr = opt.DRelaxParam*D + (1-opt.DRelaxParam)*G; end % Solve G subproblem G = Pcn(Dr + H); Gf = fft2(G); GSf = bsxfun(@times, conj(Gf), Sf); % Update dual variable corresponding to D, G H = H + Dr - G; clear Dr; % Compute primal and dual residuals and stopping thresholds for D update nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(D - G)); sd = norm(vec(sigma*(Gprv - G))); eprid = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(D - G))/max(nD,nG); sd = norm(vec(Gprv - G))/nH; eprid = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (rd/opt.CGTolFactor) < cgt, cgt = rd/opt.CGTolFactor; end % Compute measure of D constraint violation Jcn = norm(vec(Pcn(D) - D)); clear D; % Update record of previous step G Gprv = G; % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Gf,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); clear Yf; Jfn = Jdf + lambda_s*Jl1+lambda_r*low1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k Jfn Jdf Jl1 low1 sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k, Jfn, Jdf, Jl1, low1, rx, sx, rd, sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = (U_1+U_2)/2/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end k = k + 1; end D = PzpT(G); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = Y; optinf.U = U; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function r = Do(tau, X) % shrinkage operator for singular values for i=1:size(X,3) for j=1:size(X,4) [U, S, V] = svd(X(:,:,i,j), 'econ'); r(:,:,i,j)= U*So(tau, S)*V'; end end return function r = So(tau, X) % shrinkage operator r = sign(X) .* max(abs(X) - tau, 0); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else cs = max(sz,[],2); u = zeros(cs(1), cs(2), size(v,3), class(v)); for k = 1:size(v,3), u(1:sz(1,k), 1:sz(2,k), k) = v(1:sz(1,k), 1:sz(2,k), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndlms.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndlms.m
17,080
utf_8
e4996dd9887a46268c0d4abd8b6077b5
function [D, Y, optinf] = cbpdndlms(D0, S, lambda, opt) % cbpdndlms -- Convolutional BPDN Dictionary Learning (Mask Simulation) % % argmin_{x_m,d_m} (1/2) \sum_k ||W \sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the main % linear systems (see wohlberg-2016-efficient and % wohlberg-2016-boundary). % % Usage: % [D, Y, optinf] = cbpdndlms(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % W Synthesis spatial weighting matrix % % % Author: Brendt Wohlberg <[email protected]> Modified: 2016-05-10 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3)+1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); if ~isscalar(opt.W) & ndims(opt.W) > 2, opt.W = reshape(opt.W, [size(opt.W,1) size(opt.W,2) 1 size(opt.W,3)]); end else xsz = [size(S,1) size(S,2) size(D0,3)+1 size(S,4)]; end Nx = prod(xsz); Nd = prod(xsz(1:2))*size(D0,3); cgt = opt.CGTol; % Impulse filter to extend dictionary imp = zeros(size(S,1), size(S,2), 1); imp(1,1,1) = 1.0; IYW = 1.0 - opt.W; % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Compute signal in DFT domain Sf = fft2(S); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz, class(S)); else Y = opt.Y0; end Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz, class(S)); else U = (lambda/rho)*sign(Y); end else U = opt.U0; end Df = []; if isempty(opt.G0), G = Pzp(Pnrm(D0)); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(size(G), class(S)); else H = G; end else H = opt.H0; end %Gf = fft2(G, size(S,1), size(S,2)); Gf = fft2(cat(3, G, imp)); GSf = bsxfun(@times, conj(Gf), Sf); % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G b = GSf + rho*fft2(Y - U); Xf = solvedbi_sm(Gf, rho, b); X = ifft2(Xf, 'symmetric'); clear b Xf Gf GSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, Xr = X; else Xr = opt.XRelaxParam*X + (1-opt.XRelaxParam)*Y; end % Solve Y subproblem Y(:,:,1:(end-1),:) = shrink(Xr(:,:,1:(end-1),:) + U(:,:,1:(end-1),:), ... (lambda/rho)*opt.L1Weight); Y(:,:,end,:) = bsxfun(@times, IYW, Xr(:,:,end,:) + U(:,:,end,:)); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-size(D,1)+2):end,:,1:(end-1),:) = 0; Y(:,(end-size(D,2)+2):end,1:(end-1),:) = 0; end Yf = fft2(Y); YGif = Yf(:,:,end,:); YSf = sum(bsxfun(@times, conj(Yf), Sf - YGif), 4); YSf0 = YSf(:,:,1:(end-1),:); YSf1 = YSf(:,:,end,:); % Update dual variable corresponding to X, Y U = U + Xr - Y; clear Xr; % Compute primal and dual residuals and stopping thresholds for X update nX = norm(X(:)); nY = norm(Y(:)); nU = norm(U(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(X - Y)); sx = norm(vec(rho*(Yprv - Y))); eprix = sqrt(Nx)*opt.AbsStopTol+max(nX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*nU*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(X - Y))/max(nX,nY); sx = norm(vec(Yprv - Y))/nU; eprix = sqrt(Nx)*opt.AbsStopTol/max(nX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*nU)+opt.RelStopTol; end clear X; % Compute l1 norm of Y Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y(:,:,1:(end-1),:))))); % Update record of previous step Y Yprv = Y; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y b = YSf0 + sigma*fft2(G - H); if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Yf(:,:,1:(end-1),:), sigma, b); else [Df, cgst] = solvemdbi_cg(Yf(:,:,1:(end-1),:), sigma, b, ... cgt, opt.MaxCGIter, Df(:)); end clear b YSf; %D = cat(3, ifft2(Df, 'symmetric'), imp); D = ifft2(Df, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear Df; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, Dr = D; else Dr = opt.DRelaxParam*D + (1-opt.DRelaxParam)*G; end % Solve G subproblem G = Pcn(Dr + H); Gf = fft2(cat(3, G, imp)); GSf = bsxfun(@times, conj(Gf), Sf); % Update dual variable corresponding to D, G H = H + Dr - G; clear Dr; % Compute primal and dual residuals and stopping thresholds for D update nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(D - G)); sd = norm(vec(sigma*(Gprv - G))); eprid = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(D - G))/max(nD,nG); sd = norm(vec(Gprv - G))/nH; eprid = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (rd/opt.CGTolFactor) < cgt, cgt = rd/opt.CGTolFactor; end % Compute measure of D constraint violation Jcn = norm(vec(Pcn(D) - D)); clear D; % Update record of previous step G Gprv = G; % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(sum(bsxfun(@times,Gf,Yf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jfn = Jdf + lambda*Jl1; clear Yf; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k Jfn Jdf Jl1 rx sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k, Jfn, Jdf, Jl1, Jcn, rx, sx, rd, sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = Y; optinf.U = U; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end D = PzpT(G); Y = Y(:,:,1:(end-1),:); return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else cs = max(sz,[],2); u = zeros(cs(1), cs(2), size(v,3), class(v)); for k = 1:size(v,3), u(1:sz(1,k), 1:sz(2,k), k) = v(1:sz(1,k), 1:sz(2,k), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end if ~isfield(opt,'W'), opt.W = 1.0; end return
github
wanghan0501/convolutional_sparse_coding-master
ccmod.m
.m
convolutional_sparse_coding-master/DictLearn/ccmod.m
10,515
utf_8
5b4a7f8d3e714708070d3067dcb900e0
function [D, optinf] = ccmod(X, S, dsz, opt) % ccmod -- Convolutional Constrained Method of Optimal Directions (MOD) % % argmin_{d_m} (1/2) \sum_k ||\sum_m x_k,m * d_m - s_k||_2^2 % such that ||d_m||_2 = 1 % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [D, optinf] = ccmod(X, S, dsz, opt) % % Input: % X Coefficient maps (3D array) % S Input images % dsz Dictionary size % opt Algorithm parameters structure % % Output: % D Dictionary filter set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % G0 Initial value for G % H0 Initial value for H % sigma ADMM penalty parameter % AutoSigma Flag determining whether sigma is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % ZeroMean Force learned dictionary entries to be zero-mean % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-30 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Obj Cnst r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e'; nsep = 44; if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = size(X); hrm = [1 1 1 size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(X) 1]; hrm = 1; end xrm = [1 1 size(X,3)]; % Set dsz to correct form if numel(dsz) == 3, dsz = dsz(1:2); end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Compute coefficients in DFT domain Xf = fft2(X, size(S,1), size(S,2)); % Compute signal in DFT domain Sf = fft2(S); % S convolved with all coefficients in DFT domain XSf = sum(bsxfun(@times, conj(Xf), Sf), 4); % Set up algorithm parameters and initialise variables sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; Nd = prod(xsz(1:3)); cgt = opt.CGTol; optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables D = []; Df = []; if isempty(opt.G0), G = zeros([xsz(1) xsz(2) xsz(3)]); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros([xsz(1) xsz(2) xsz(3)]); else H = G; end else H = opt.H0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), % Solve subproblems and update dual variable if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Xf, sigma, XSf + sigma*fft2(G - H)); else [Df, cgst] = solvemdbi_cg(Xf, sigma, XSf + sigma*fft2(G - H), ... cgt, opt.MaxCGIter, Df(:)); end D = ifft2(Df, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Dr = D; else Dr = opt.RelaxParam*D + (1-opt.RelaxParam)*G; end G = Pcn(Dr + H); H = H + Dr - G; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, Gf = fft2(G); % This represents unnecessary computational cost Job = sum(vec(abs(sum(bsxfun(@times,Gf,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jcn = 0; else Job = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2)); Jcn = norm(vec(Pcn(D) - D)); end nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(D - G)); s = norm(vec(sigma*(Gprv - G))); epri = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; edua = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(D - G))/max(nD,nG); s = norm(vec(Gprv - G))/nH; epri = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; edua = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end if opt.CGTolAuto && (r/opt.CGTolFactor) < cgt, cgt = r/opt.CGTolFactor; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Job Jcn r s epri edua sigma tk]]; if opt.Verbose, if opt.AutoSigma, disp(sprintf(sfms, k, Job, Jcn, r, s, sigma)); else disp(sprintf(sfms, k, Job, Jcn, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(r/s); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if r > opt.SigmaRsdlRatio*s, ssf = sigmlt; end if s > opt.SigmaRsdlRatio*r, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end Gprv = G; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.D = D; optinf.G = G; optinf.H = H; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end D = PzpT(G); if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else if size(sz,1) < size(sz,2), sz = sz'; end cs = max(sz); u = zeros(cs(1), cs(2), size(v,3)); for k = 1:size(v,3), u(1:sz(k,1), 1:sz(k,2), k) = v(1:sz(k,1), 1:sz(k,2), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 200; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndl_gpu.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndl_gpu.m
17,223
utf_8
f503b15857b3a6c14895f23722dd20bf
function [D, Y, optinf] = cbpdndl_gpu(D0, S, lambda, opt) % cbpdndl_gpu -- Convolutional BPDN Dictionary Learning (GPU version) % % argmin_{x_m,d_m} (1/2) \sum_k ||\sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2016-efficient). % % Usage: % [D, X, optinf] = cbpdndl_gpu(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % ZeroMean Force learned dictionary entries to be zero-mean % % % Authors: Brendt Wohlberg <[email protected]> % Ping-Keng Jao <[email protected]> % Modified: 2015-12-18 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. gS = gpuArray(S); gD = gpuArray(D0); glambda = gpuArray(lambda); if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume gS = gpuArray(reshape(gS, [size(S,1) size(S,2) 1 size(S,3)])); else xsz = [size(S,1) size(S,2) size(D0,3) 1]; end gNx = gpuArray(prod(xsz)); gNd = gpuArray(prod(xsz(1:2))*size(D0,3)); gcgt = gpuArray(opt.CGTol); % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Project initial dictionary onto constraint set % D = Pnrm(D0); gD = Pnrm(gD); % Compute signal in DFT domain gSf = fft2(gS); % Set up algorithm parameters and initialise variables grho = gpuArray(opt.rho); if isempty(grho), grho = 50*glambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end gsigma = gpuArray(opt.sigma); if isempty(gsigma), gsigma = gpuArray(size(S,3)); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); grx = gpuArray(Inf); gsx = gpuArray(Inf); grd = gpuArray(Inf); gsd = gpuArray(Inf); geprix = gpuArray(0); geduax = gpuArray(0); geprid = gpuArray(0); geduad = gpuArray(0); % Initialise main working variables % X = []; if isempty(opt.Y0), gY = gpuArray.zeros(xsz, class(S)); else gY = gpuArray(opt.Y0); end gYprv = gY; if isempty(opt.U0), if isempty(opt.Y0), gU = gpuArray.zeros(xsz, class(S)); else gU = (glambda/grho)*sign(gY); end else gU = gpuArray(opt.U0); end % Df = []; if isempty(opt.G0), gG = Pzp(gD); else gG = gpuArray(opt.G0); end gGprv = gG; if isempty(opt.H0), if isempty(opt.G0), gH = gpuArray.zeros(size(gG), class(S)); else gH = gG; end else gH = gpuArray(opt.H0); end gGf = fft2(gG, size(S,1), size(S,2)); gGSf = bsxfun(@times, conj(gGf), gSf); % Main loop k = 1; while k <= opt.MaxMainIter & (grx > geprix | gsx > geduax | ... grd > geprid | gsd >geduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G gXf = solvedbi_sm(gGf, grho, gGSf + grho*fft2(gY - gU)); gX = ifft2(gXf, 'symmetric'); clear gXf gGf gGSf; % See pg. 21 of boyd-2010-distributed if opt.XRelaxParam == 1, gXr = gX; else gXr = opt.XRelaxParam*gX + (1-opt.XRelaxParam)*gY; end % Solve Y subproblem gY = shrink(gXr + gU, (glambda/grho)*opt.L1Weight); if opt.NoBndryCross, gY((end-size(gD,1)+2):end,:,:,:) = 0; gY(:,(end-size(gD,1)+2):end,:,:) = 0; end gYf = fft2(gY); gYSf = sum(bsxfun(@times, conj(gYf), gSf), 4); % Update dual variable corresponding to X, Y gU = gU + gXr - gY; clear gXr; % Compute primal and dual residuals and stopping thresholds for X update gnX = norm(gX(:)); gnY = norm(gY(:)); gnU = norm(gU(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed grx = norm(vec(gX - gY)); gsx = norm(vec(grho*(gYprv - gY))); geprix = sqrt(gNx)*opt.AbsStopTol+max(gnX,gnY)*opt.RelStopTol; geduax = sqrt(gNx)*opt.AbsStopTol+grho*gnU*opt.RelStopTol; else % See wohlberg-2015-adaptive grx = norm(vec(gX - gY))/max(gnX,gnY); gsx = norm(vec(gYprv - gY))/gnU; geprix = sqrt(gNx)*opt.AbsStopTol/max(gnX,gnY)+opt.RelStopTol; geduax = sqrt(gNx)*opt.AbsStopTol/(grho*gnU)+opt.RelStopTol; end clear gX; % Compute l1 norm of Y gJl1 = sum(abs(vec(opt.L1Weight .* gY))); % Update record of previous step Y gYprv = gY; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y if strcmp(opt.LinSolve, 'SM'), gDf = solvemdbi_ism_gpu(gYf, gsigma, gYSf + gsigma*fft2(gG - gH)); else [gDf, gcgst] = solvemdbi_cg(gYf, gsigma, gYSf + gsigma*fft2(gG - gH), ... gcgt, opt.MaxCGIter, gDf(:)); end clear YSf; gD = ifft2(gDf, 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear gDf; end % See pg. 21 of boyd-2010-distributed if opt.DRelaxParam == 1, gDr = gD; else gDr = opt.DRelaxParam*gD + (1-opt.DRelaxParam)*gG; end % Solve G subproblem gG = Pcn(gDr + gH); gGf = fft2(gG); gGSf = bsxfun(@times, conj(gGf), gSf); % Update dual variable corresponding to D, G gH = gH + gDr - gG; clear gDr; % Compute primal and dual residuals and stopping thresholds for D update gnD = norm(gD(:)); gnG = norm(gG(:)); gnH = norm(gH(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed grd = norm(vec(gD - gG)); gsd = norm(vec(sigma*(gGprv - gG))); geprid = sqrt(gNd)*opt.AbsStopTol+max(gnD,gnG)*opt.RelStopTol; geduad = sqrt(gNd)*opt.AbsStopTol+gsigma*gnH*opt.RelStopTol; else % See wohlberg-2015-adaptive grd = norm(vec(gD - gG))/max(gnD,gnG); gsd = norm(vec(gGprv - gG))/gnH; geprid = sqrt(gNd)*opt.AbsStopTol/max(gnD,gnG)+opt.RelStopTol; geduad = sqrt(gNd)*opt.AbsStopTol/(gsigma*gnH)+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (grd/opt.CGTolFactor) < gcgt, gcgt = grd/opt.CGTolFactor; end % Compute measure of D constraint violation gJcn = norm(vec(Pcn(gD) - gD)); clear gD; % Update record of previous step G gGprv = gG; % Compute data fidelity term in Fourier domain (note normalisation) gJdf = sum(vec(abs(sum(bsxfun(@times,gGf,gYf),3)-gSf).^2))/(2*xsz(1)*xsz(2)); clear gYf; gJfn = gJdf + glambda*gJl1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k gather(gJfn) gather(gJdf) gather(gJl1) gather(grx) gather(gsx)... gather(grd) gather(gsd) gather(geprix) gather(geduax) gather(geprid)... gather(geduad) gather(grho) gather(gsigma) tk]]; if opt.Verbose, dvc = [k, gather(gJfn), gather(gJdf), gather(gJl1) gather(gJcn), ... gather(grx), gather(gsx), gather(grd), gather(gsd)]; if opt.AutoRho, dvc = [dvc gather(grho)]; end if opt.AutoSigma, dvc = [dvc gather(gsigma)]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, grhomlt = sqrt(grx/gsx); if grhomlt < 1, grhomlt = 1/grhomlt; end if grhomlt > opt.RhoScaling, grhomlt = gpuArray(opt.RhoScaling); end else grhomlt = gpuArray(opt.RhoScaling); end grsf = 1; if grx > opt.RhoRsdlRatio*gsx, grsf = grhomlt; end if gsx > opt.RhoRsdlRatio*grx, grsf = 1/grhomlt; end grho = grsf*grho; gU = gU/grsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, gsigmlt = sqrt(grd/gsd); if gsigmlt < 1, gsigmlt = 1/gsigmlt; end if gsigmlt > opt.SigmaScaling, gsigmlt = gpuArray(opt.SigmaScaling); end else gsigmlt = gpuArray(opt.SigmaScaling); end gssf = gpuArray(1); if grd > opt.SigmaRsdlRatio*gsd, gssf = gsigmlt; end if gsd > opt.SigmaRsdlRatio*grd, gssf = 1/gsigmlt; end gsigma = gssf*gsigma; gH = gH/gssf; end end k = k + 1; end gD = PzpT(gG); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = gather(gY); optinf.U = gather(gU); optinf.G = gather(gG); optinf.H = gather(gH); optinf.lambda = gather(glambda); optinf.rho = gather(grho); optinf.sigma = gather(gsigma); optinf.cgt = gather(gcgt); if exist('gcgst'), optinf.cgst = gather(gcgst); end D = gather(gD); Y = optinf.Y; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) u = sign(v).*max(0, abs(v) - lambda); return function u = zpad(v, sz) % u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u = gpuArray.zeros(sz(1), sz(2), size(v,3), size(v,4)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else if size(sz,1) < size(sz,2), sz = sz'; end cs = max(sz); % u = zeros(cs(1), cs(2), size(v,3), class(v)); u = gpuArray.zeros(cs(1), cs(2), size(v,3)); for k = 1:size(v,3), u(1:sz(k,1), 1:sz(k,2), k) = v(1:sz(k,1), 1:sz(k,2), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
ccmod_gpu.m
.m
convolutional_sparse_coding-master/DictLearn/ccmod_gpu.m
11,211
utf_8
017b0a0411e32bb7ab1bde89c394348c
function [D, optinf] = ccmod_gpu(X, S, dsz, opt) % ccmod_gpu -- Convolutional Constrained Method of Optimal Directions % (MOD) (GPU version) % % argmin_{d_m} (1/2) \sum_k ||\sum_m x_k,m * d_m - s_k||_2^2 % such that ||d_m||_2 = 1 % % The solution of the Convolutional Constrained MOD problem % (see wohlberg-2016-efficient) is computed using the ADMM % approach (see boyd-2010-distributed). % % Usage: % [D, optinf] = ccmod_gpu(X, S, dsz, opt) % % Input: % X Coefficient maps (3D array) % S Input images % dsz Dictionary size % opt Algorithm parameters structure % % Output: % D Dictionary filter set (3D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % G0 Initial value for G % H0 Initial value for H % sigma ADMM penalty parameter % AutoSigma Flag determining whether sigma is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % ZeroMean Force learned dictionary entries to be zero-mean % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Authors: Brendt Wohlberg <[email protected]> % Ping-Keng Jao <[email protected]> % Modified: 2015-12-18 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. gS = gpuArray(S); gX = gpuArray(X); if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Obj Cnst r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e'; nsep = 44; if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = size(X); % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume gS = reshape(gS, [size(S,1) size(S,2) 1 size(S,3)]); else xsz = [size(X) 1]; end % Set dsz to correct form if numel(dsz) == 3, dsz = dsz(1:2); end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); Pnrm = @(x) bsxfun(@rdivide, x, sqrt(sum(sum(x.^2, 1), 2))); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Start timer tstart = tic; % Compute coefficients in DFT domain gXf = fft2(gX, size(gS,1), size(gS,2)); % Compute signal in DFT domain gSf = fft2(gS); % S convolved with all coefficients in DFT domain gXSf = sum(bsxfun(@times, conj(gXf), gSf), 4); % Set up algorithm parameters and initialise variables gsigma = gpuArray(opt.sigma); if isempty(gsigma), gsigma = size(gS,3); end; gNd = gpuArray(prod(xsz(1:3))); gcgt = gpuArray(opt.CGTol); optinf = struct('itstat', [], 'opt', opt); gr = gpuArray(Inf); gs = gpuArray(Inf); gepri = gpuArray(0); gedua = gpuArray(0); % Initialise main working variables D = []; Df = []; if isempty(opt.G0), gG = gpuArray.zeros([xsz(1) xsz(2) xsz(3)]); else gG = gpuArray(opt.G0); end gGprv = gG; if isempty(opt.H0), if isempty(opt.G0), gH = gpuArray.zeros([xsz(1) xsz(2) xsz(3)]); else gH = gG; end else gH = gpuArray(opt.H0); end % Main loop k = 1; while k <= opt.MaxMainIter & (gr > gepri | gs > gedua), % Solve subproblems and update dual variable if strcmp(opt.LinSolve, 'SM'), gDf = solvemdbi_ism_gpu(gXf, gsigma, gXSf + gsigma*fft2(gG - gH)); else [gDf, gcgst] = solvemdbi_cg(gXf, gsigma, gXSf + gsigma*fft2(gG - gH), ... gcgt, opt.MaxCGIter, gDf(:)); end gD = ifft2(gDf, 'symmetric'); % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, gDr = gD; else gDr = opt.RelaxParam*gD + (1-opt.RelaxParam)*gG; end gG = Pcn(gDr + gH); gH = gH + gDr - gG; % Compute data fidelity term in Fourier domain (note normalisation) if opt.AuxVarObj, gGf = fft2(gG); % This represents unnecessary computational cost gJob = sum(vec(abs(sum(bsxfun(@times,gGf,gXf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJcn = 0; else gJob = sum(vec(abs(sum(bsxfun(@times,gDf,gXf),3)-gSf).^2)) / ... (2*xsz(1)*xsz(2)); gJcn = norm(vec(Pcn(gD) - gD)); end gnD = norm(gD(:)); gnG = norm(gG(:)); gnH = norm(gH(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed gr = norm(vec(gD - gG)); gs = norm(vec(gsigma*(gGprv - gG))); gepri = sqrt(gNd)*opt.AbsStopTol+max(gnD,gnG)*opt.RelStopTol; gedua = sqrt(gNd)*opt.AbsStopTol+gsigma*gnH*opt.RelStopTol; else % See wohlberg-2015-adaptive gr = norm(vec(gD - gG))/max(gnD,gnG); gs = norm(vec(gGprv - gG))/gnH; gepri = sqrt(gNd)*opt.AbsStopTol/max(gnD,gnG)+opt.RelStopTol; gedua = sqrt(gNd)*opt.AbsStopTol/(gsigma*gnH)+opt.RelStopTol; end if opt.CGTolAuto && (gr/opt.CGTolFactor) < gcgt, gcgt = gr/opt.CGTolFactor; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k gather(gJob) gather(gJcn) gather(gr) ... gather(gs) gather(gepri) gather(gedua) gather(gsigma) tk]]; if opt.Verbose, if opt.AutoSigma, disp(sprintf(sfms, k, gather(gJob), gather(gJcn), gather(gr), ... gather(gs), gather(gsigma))); else disp(sprintf(sfms, k, gather(gJob), gather(gJcn), gather(gr), ... gather(gs))); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, gsigmlt = sqrt(gr/gs); if gsigmlt < 1, gsigmlt = 1/gsigmlt; end if gsigmlt > opt.SigmaScaling, gsigmlt = gpuArray(opt.SigmaScaling); end else gsigmlt = gpuArray(opt.SigmaScaling); end gssf = 1; if gr > opt.SigmaRsdlRatio*gs, gssf = gsigmlt; end if gs > opt.SigmaRsdlRatio*gr, gssf = 1/gsigmlt; end gsigma = gssf*gsigma; gH = gH/gssf; end end gGprv = gG; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.D = gather(gD); optinf.G = gather(gG); optinf.H = gather(gH); optinf.sigma = gather(gsigma); optinf.cgt = gather(gcgt); if exist('gcgst'), optinf.cgst = gather(gcgst); end D = gather(PzpT(gG)); if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = zpad(v, sz) u = gpuArray.zeros(sz(1), sz(2), size(v,3), size(v,4)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else if size(sz,1) < size(sz,2), sz = sz'; end cs = max(sz); u = gpuArray.zeros(cs(1), cs(2), size(v,3)); for k = 1:size(v,3), u(1:sz(k,1), 1:sz(k,2), k) = v(1:sz(k,1), 1:sz(k,2), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 200; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cmod.m
.m
convolutional_sparse_coding-master/DictLearn/cmod.m
8,290
utf_8
24954ffeb844d1dccd2b8cbea196190f
function [G, optinf] = cmod(X, S, opt) % cmod -- Constrained Method of Optimal Directions (MOD) % % argmin_D (1/2)||D X - S||_2^2 such that ||d_k||_2 = 1 % where d_k are columns of D % % The solution is computed using the ADMM approach (see % boyd-2010-distributed for details). % % Usage: % [G, optinf] = cmod(X, S, opt) % % Input: % X Coefficients % S Input images % opt Algorithm parameters structure % % Output: % G Dictionary % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The value of sigma % is also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % G0 Initial value for G % H0 Initial value for H % sigma ADMM penalty parameter % AutoSigma Flag determining whether sigma is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % SigmaRsdlTarget Residual ratio targeted by auto sigma update policy. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % RelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) % ZeroMean Force learned dictionary entries to be zero-mean % AuxVarObj Flag determining whether objective function is computed % using the auxiliary (split) variable % % % Author: Brendt Wohlberg <[email protected]> Modified: 2015-07-10 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'Copyright' and 'License' files % distributed with the library. if nargin < 3, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = 'Itn Obj Cnst r s '; sfms = '%4d %9.2e %9.2e %9.2e %9.2e'; nsep = 44; if opt.AutoSigma, hstr = [hstr ' sigma']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(x,1)); Pnrm = @(x) normalise(x); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzmn(x)); else Pcn = @(x) Pnrm(x); end % Start timer tstart = tic; % Set up algorithm parameters and initialise variables sigma = opt.sigma; if isempty(sigma), sigma = size(S,2)/200; end; Nc = size(S,1); Nm = size(X,1); Nd = Nc*Nm; SX = S*X'; [luL, luU] = factorise(X, sigma); optinf = struct('itstat', [], 'opt', opt); r = Inf; s = Inf; epri = 0; edua = 0; % Initialise main working variables D = []; if isempty(opt.G0), G = zeros(Nc,Nm); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(Nc,Nm); else H = G; end else H = opt.H0; end % Main loop k = 1; while k <= opt.MaxMainIter && (r > epri | s > edua), D = linsolve(X, sigma, luL, luU, SX + sigma*(G - H)); %rrs( D*(X*X' + sigma*eye(size(X,1))), SX + sigma*(G - H)) % See pg. 21 of boyd-2010-distributed if opt.RelaxParam == 1, Dr = D; else Dr = opt.RelaxParam*D + (1-opt.RelaxParam)*G; end G = Pcn(Dr + H); H = H + Dr - G; % Objective function and convergence measures if opt.AuxVarObj Job = sum(vec(abs(G*X - S).^2))/2; Jcn = 0; else Job = sum(vec(abs(D*X - S).^2))/2; Jcn = norm(vec(Pcn(D) - D)); end nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed r = norm(vec(D - G)); s = norm(vec(sigma*(Gprv - G))); epri = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol; edua = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol; else % See wohlberg-2015-adaptive r = norm(vec(D - G))/max(nD,nG); s = norm(vec(Gprv - G))/nH; epri = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol; edua = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol; end % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat; [k Job Jcn r s epri edua sigma tk]]; if opt.Verbose, if opt.AutoSigma, disp(sprintf(sfms, k, Job, Jcn, r, s, sigma)); else disp(sprintf(sfms, k, Job, Jcn, r, s)); end end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(r/(s*opt.SigmaRsdlTarget)); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if r > opt.SigmaRsdlTarget*opt.SigmaRsdlRatio*s, ssf = sigmlt; end if s > (opt.SigmaRsdlRatio/opt.SigmaRsdlTarget)*r, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; if ssf ~= 1, [luL, luU] = factorise(X, sigma); end end end Gprv = G; k = k + 1; end % Record run time and working variables optinf.runtime = toc(tstart); optinf.D = D; optinf.G = G; optinf.H = H; optinf.sigma = sigma; if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = normalise(v) vn = sqrt(sum(v.^2, 1)); vn(vn == 0) = 1; u = bsxfun(@rdivide, v, vn); return function [L,U] = factorise(A, c) [N,M] = size(A); % If N < M it is cheaper to factorise A*A' + cI and then use the % matrix inversion lemma to compute the inverse of A'*A + cI if N >= M, [L,U] = lu(A'*A + c*eye(M,M)); else [L,U] = lu(A*A' + c*eye(N,N)); end return function x = linsolve(A, c, L, U, b) [N,M] = size(A); if N >= M, x = (b - (((b*A) / U) / L)*A')/c; else x = (b / U) / L; end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 200; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'SigmaRsdlTarget'), opt.SigmaRsdlTarget = 1; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'RelaxParam'), opt.RelaxParam = 1; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end if ~isfield(opt,'AuxVarObj'), opt.AuxVarObj = 0; end return
github
wanghan0501/convolutional_sparse_coding-master
cbpdndlmd.m
.m
convolutional_sparse_coding-master/DictLearn/cbpdndlmd.m
18,514
utf_8
db3b0d7d52f06931c0a6b9f3b65d57af
function [D, Y, optinf] = cbpdndlmd(D0, S, lambda, opt) % cbpdndlmd -- Convolutional BPDN Dictionary Learning (Mask Decoupling) % % argmin_{x_m,d_m} (1/2) \sum_k ||W \sum_m d_m * x_k,m - s_k||_2^2 + % lambda \sum_k \sum_m ||x_k,m||_1 % % The solution is computed using Augmented Lagrangian methods % (see boyd-2010-distributed) with efficient solution of the % main linear systems (see wohlberg-2016-efficient and % wohlberg-2016-boundary). % % Usage: % [D, Y, optinf] = cbpdndlmd(D0, S, lambda, opt) % % Input: % D0 Initial dictionary % S Input images % lambda Regularization parameter % opt Options/algorithm parameters structure (see below) % % Output: % D Dictionary filter set (3D array) % X Coefficient maps (4D array) % optinf Details of optimisation % % % Options structure fields: % Verbose Flag determining whether iteration status is displayed. % Fields are iteration number, functional value, % data fidelity term, l1 regularisation term, and % primal and dual residuals (see Sec. 3.3 of % boyd-2010-distributed). The values of rho and sigma % are also displayed if options request that they are % automatically adjusted. % MaxMainIter Maximum main iterations % AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of % boyd-2010-distributed) % L1Weight Weight array for L1 norm % Y0 Initial value for Y % U0 Initial value for U % G0 Initial value for G (overrides D0 if specified) % H0 Initial value for H % rho Augmented Lagrangian penalty parameter % AutoRho Flag determining whether rho is automatically updated % (see Sec. 3.4.1 of boyd-2010-distributed) % AutoRhoPeriod Iteration period on which rho is updated % RhoRsdlRatio Primal/dual residual ratio in rho update test % RhoScaling Multiplier applied to rho when updated % AutoRhoScaling Flag determining whether RhoScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, RhoScaling specifies a maximum allowed % multiplier instead of a fixed multiplier % sigma Augmented Lagrangian penalty parameter % AutoSigma Flag determining whether sigma is automatically % updated (see Sec. 3.4.1 of boyd-2010-distributed) % AutoSigmaPeriod Iteration period on which sigma is updated % SigmaRsdlRatio Primal/dual residual ratio in sigma update test % SigmaScaling Multiplier applied to sigma when updated % AutoSigmaScaling Flag determining whether SigmaScaling value is % adaptively determined (see wohlberg-2015-adaptive). If % enabled, SigmaScaling specifies a maximum allowed % multiplier instead of a fixed multiplier. % StdResiduals Flag determining whether standard residual definitions % (see Sec 3.3 of boyd-2010-distributed) are used instead % of normalised residuals (see wohlberg-2015-adaptive) % XRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for X update % DRelaxParam Relaxation parameter (see Sec. 3.4.3 of % boyd-2010-distributed) for D update % LinSolve Linear solver for main problem: 'SM' or 'CG' % MaxCGIter Maximum CG iterations when using CG solver % CGTol CG tolerance when using CG solver % CGTolAuto Flag determining use of automatic CG tolerance % CGTolFactor Factor by which primal residual is divided to obtain CG % tolerance, when automatic tolerance is active % NoBndryCross Flag indicating whether all solution coefficients % corresponding to filters crossing the image boundary % should be forced to zero. % DictFilterSizes Array of size 2 x M where each column specifies the % filter size (rows x columns) of the corresponding % dictionary filter % NonNegCoef Flag indicating whether solution should be forced to % be non-negative % ZeroMean Force learned dictionary entries to be zero-mean % W Synthesis spatial weighting matrix % % % Author: Brendt Wohlberg <[email protected]> Modified: 2017-04-29 % % This file is part of the SPORCO library. Details of the copyright % and user license can be found in the 'License' file distributed with % the library. if nargin < 4, opt = []; end checkopt(opt, defaultopts([])); opt = defaultopts(opt); % Set up status display for verbose operation hstr = ['Itn Fnc DFid l1 Cnstr '... 'r(X) s(X) r(D) s(D) ']; sfms = '%4d %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e %9.2e'; nsep = 84; if opt.AutoRho, hstr = [hstr ' rho ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.AutoSigma, hstr = [hstr ' sigma ']; sfms = [sfms ' %9.2e']; nsep = nsep + 10; end if opt.Verbose && opt.MaxMainIter > 0, disp(hstr); disp(char('-' * ones(1,nsep))); end % Start timer tstart = tic; % Collapsing of trailing singleton dimensions greatly complicates % handling of both SMV and MMV cases. The simplest approach would be % if S could always be reshaped to 4d, with dimensions consisting of % image rows, image cols, a single dimensional placeholder for number % of filters, and number of measurements, but in the single % measurement case the third dimension is collapsed so that the array % is only 3d. if size(S,3) > 1, xsz = [size(S,1) size(S,2) size(D0,3) size(S,3)]; % Insert singleton 3rd dimension (for number of filters) so that % 4th dimension is number of images in input s volume S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]); if ~isscalar(opt.W) & ndims(opt.W) > 2, opt.W = reshape(opt.W, [size(opt.W,1) size(opt.W,2) 1 size(opt.W,3)]); end else xsz = [size(S,1) size(S,2) size(D0,3) 1]; end K = size(S,4); Nx = prod(xsz); Ny = prod(xsz + [0 0 1 0]); Nd = prod(xsz(1:2))*size(D0,3); Ng = prod([xsz(1) xsz(2) xsz(3)+K]); cgt = opt.CGTol; W = opt.W; % Dictionary size may be specified when learning multiscale % dictionary if isempty(opt.DictFilterSizes), dsz = [size(D0,1) size(D0,2)]; else dsz = opt.DictFilterSizes; end % Mean removal and normalisation projections Pzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2)); % Projection of filter to full image size and its transpose % (zero-pad and crop respectively) Pzp = @(x) zpad(x, xsz(1:2)); PzpT = @(x) bcrop(x, dsz); % Projection of dictionary filters onto constraint set if opt.ZeroMean, Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x)))); else Pcn = @(x) Pnrm(Pzp(PzpT(x))); end % Project initial dictionary onto constraint set D = Pnrm(D0); % Compute signal in DFT domain Sf = fft2(S); % Set up algorithm parameters and initialise variables rho = opt.rho; if isempty(rho), rho = 50*lambda+1; end; if opt.AutoRho, asgr = opt.RhoRsdlRatio; asgm = opt.RhoScaling; end sigma = opt.sigma; if isempty(sigma), sigma = size(S,3); end; if opt.AutoSigma, asdr = opt.SigmaRsdlRatio; asdm = opt.SigmaScaling; end optinf = struct('itstat', [], 'opt', opt); rx = Inf; sx = Inf; rd = Inf; sd = Inf; eprix = 0; eduax = 0; eprid = 0; eduad = 0; % Initialise main working variables X = []; if isempty(opt.Y0), Y = zeros(xsz + [0 0 1 0], class(S)); Y(:,:,end,:) = S; else Y = opt.Y0; end Yf = fft2(Y); Yprv = Y; if isempty(opt.U0), if isempty(opt.Y0), U = zeros(xsz + [0 0 1 0], class(S)); else U(:,:,1:(end-1),:) = (lambda/rho)*sign(Y(:,:,1:(end-1),:)); U(:,:,end,:) = bsxfun(@times, W, (bsxfun(@times, W, ... Y(:,:,end,:)) - S))/rho; end else U = opt.U0; end Df = []; if isempty(opt.G0), G = zeros(xsz(1:end-1) + [0 0 K], class(S)); G(:,:,1:end-K) = Pzp(D); G(:,:,end-K+1:end) = squeeze(S); else G = opt.G0; end Gprv = G; if isempty(opt.H0), if isempty(opt.G0), H = zeros(xsz(1:end-1) + [0 0 K], class(S)); else H(:,:,1:(end-K)) = G(:,:,1:(end-K)); H(:,:,end-K+1:end) = bsxfun(@times, W, (bsxfun(@times, W, ... G(:,:,end-K+1:end)) - S))/rho; end else H = opt.H0; end Gf = fft2(G(:,:,1:(end-K),:), size(S,1), size(S,2)); % Main loop k = 1; while k <= opt.MaxMainIter && (rx > eprix|sx > eduax|rd > eprid|sd >eduad), % Solve X subproblem. It would be simpler and more efficient (since the % DFT is already available) to solve for X using the main dictionary % variable D as the dictionary, but this appears to be unstable. Instead, % use the projected dictionary variable G YUf = fft2(Y - U); YU0f = YUf(:,:,1:(end-1),:); YU1f = YUf(:,:,end,:); GHop = @(x) bsxfun(@times, conj(Gf), x); Xf = solvedbi_sm(Gf, 1.0, GHop(YU1f) + YU0f); X = ifft2(Xf, 'symmetric'); GX = ifft2(sum(bsxfun(@times, Gf, Xf), 3), 'symmetric'); clear Xf; % See pg. 21 of boyd-2010-distributed AX = cat(3, X, GX); if opt.XRelaxParam ~= 1.0, AX = opt.XRelaxParam*AX + (1-opt.XRelaxParam)*Y; end % Solve Y subproblem Y(:,:,1:(end-1),:) = shrink(AX(:,:,1:(end-1),:) + U(:,:,1:(end-1),:), ... (lambda/rho)*opt.L1Weight); if opt.NonNegCoef, Y(Y < 0) = 0; end if opt.NoBndryCross, Y((end-max(dsz(1,:))+2):end,:,1:(end-1),:) = 0; Y(:,(end-max(dsz(2,:))+2):end,1:(end-1),:) = 0; end Y(:,:,end,:) = bsxfun(@rdivide, (bsxfun(@times, W, S) + ... rho*(GX + U(:,:,end,:))), ((W.^2) + rho)); Yf = fft2(Y(:,:,1:(end-1),:)); % Update dual variable corresponding to X, Y U = U + AX - Y; % Compute primal and dual residuals and stopping thresholds for X update U0 = U(:,:,1:(end-1),:); U1 = U(:,:,end,:); ATU0 = U0; ATU1 = ifft2(GHop(fft2(U1)), 'symmetric'); nAX = norm(AX(:)); nY = norm(Y(:)); nU0 = norm(U0(:)); nU1 = norm(U1(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rx = norm(vec(AX - Y)); sx = rho*norm(vec(ATU0 + ATU1)); eprix = sqrt(Ny)*opt.AbsStopTol+max(nAX,nY)*opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol+rho*max(nU0,nU1)*opt.RelStopTol; else % See wohlberg-2015-adaptive rx = norm(vec(AX - Y))/max(nAX,nY); sx = norm(vec(ATU0 + ATU1))/max(nU0,nU1); eprix = sqrt(Ny)*opt.AbsStopTol/max(nAX,nY)+opt.RelStopTol; eduax = sqrt(Nx)*opt.AbsStopTol/(rho*max(nU0,nU1))+opt.RelStopTol; end clear X, AX; % Compute l1 norm of Y Jl1 = sum(abs(vec(bsxfun(@times, opt.L1Weight, Y(:,:,1:(end-1),:))))); % Update record of previous step Y Yprv = Y; % Solve D subproblem. Similarly, it would be simpler and more efficient to % solve for D using the main coefficient variable X as the coefficients, % but it appears to be more stable to use the shrunk coefficient variable Y GHf = fft2(G - H); GH0f = GHf(:,:,1:(end-K)); GH1f = reshape(GHf(:,:,end-K+1:end), [xsz(1), xsz(2), 1, K]); YHop = @(x) sum(bsxfun(@times, conj(Yf), x), 4); if strcmp(opt.LinSolve, 'SM'), Df = solvemdbi_ism(Yf, 1.0, YHop(GH1f) + GH0f); else [Df, cgst] = solvemdbi_cg(Yf, sigma, ... YHop(GH1f) + GH0f, cgt, opt.MaxCGIter, Df(:)); end %clear YSf; D = ifft2(Df, 'symmetric'); YD = ifft2(sum(bsxfun(@times, Yf, Df), 3), 'symmetric'); if strcmp(opt.LinSolve, 'SM'), clear Df; end % See pg. 21 of boyd-2010-distributed AD = cat(3, D, squeeze(YD)); if opt.DRelaxParam ~= 1.0, AD = opt.DRelaxParam*AD + (1-opt.DRelaxParam)*G; end % Solve G subproblem G(:,:,1:(end-K)) = Pcn(AD(:,:,1:(end-K)) + H(:,:,1:(end-K))); G(:,:,end-K+1:end) = bsxfun(@rdivide, (squeeze(bsxfun(@times, W, S)) + ... rho*(squeeze(YD) + H(:,:,end-K+1:end))), ... ((squeeze(W).^2) + rho)); Gf = fft2(G(:,:,1:(end-K)), size(S,1), size(S,2)); % Update dual variable corresponding to D, G H = H + AD - G; % Compute primal and dual residuals and stopping thresholds for D update H0 = H(:,:,1:(end-K)); H1 = reshape(H(:,:,end-K+1:end), [xsz(1), xsz(2), 1, K]); ATH0 = H0; ATH1 = ifft2(YHop(fft2(H1)), 'symmetric'); nAD = norm(AD(:)); nG = norm(G(:)); nH0 = norm(H0(:)); nH1 = norm(H1(:)); if opt.StdResiduals, % See pp. 19-20 of boyd-2010-distributed rd = norm(vec(AD - G)); sd = norm(vec(sigma*(ATH0 + ATH1))); eprid = sqrt(Ng)*opt.AbsStopTol+max(nAD,nG)*opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol+sigma*max(nH0,nH1)*opt.RelStopTol; else % See wohlberg-2015-adaptive rd = norm(vec(AD - G))/max(nAD,nG); sd = norm(vec(ATH0 + ATH1))/max(nH0,nH1); eprid = sqrt(Ng)*opt.AbsStopTol/max(nAD,nG)+opt.RelStopTol; eduad = sqrt(Nd)*opt.AbsStopTol/(sigma*max(nH0,nH1))+opt.RelStopTol; end % Apply CG auto tolerance policy if enabled if opt.CGTolAuto && (rd/opt.CGTolFactor) < cgt, cgt = rd/opt.CGTolFactor; end % Compute measure of D constraint violation Jcn = norm(vec(Pcn(D) - D)); clear D, AD; % Update record of previous step G Gprv = G; % Compute data fidelity term in Fourier domain (note normalisation) Jdf = sum(vec(abs(bsxfun(@times, opt.W, GX) - S).^2))/2; Jfn = Jdf + lambda*Jl1; % Record and display iteration details tk = toc(tstart); optinf.itstat = [optinf.itstat;... [k Jfn Jdf Jl1 rx sx rd sd eprix eduax eprid eduad rho sigma tk]]; if opt.Verbose, dvc = [k, Jfn, Jdf, Jl1, Jcn, rx, sx, rd, sd]; if opt.AutoRho, dvc = [dvc rho]; end if opt.AutoSigma, dvc = [dvc sigma]; end disp(sprintf(sfms, dvc)); end % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed if opt.AutoRho, if k ~= 1 && mod(k, opt.AutoRhoPeriod) == 0, if opt.AutoRhoScaling, rhomlt = sqrt(rx/sx); if rhomlt < 1, rhomlt = 1/rhomlt; end if rhomlt > opt.RhoScaling, rhomlt = opt.RhoScaling; end else rhomlt = opt.RhoScaling; end rsf = 1; if rx > opt.RhoRsdlRatio*sx, rsf = rhomlt; end if sx > opt.RhoRsdlRatio*rx, rsf = 1/rhomlt; end rho = rsf*rho; U = U/rsf; end end if opt.AutoSigma, if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0, if opt.AutoSigmaScaling, sigmlt = sqrt(rd/sd); if sigmlt < 1, sigmlt = 1/sigmlt; end if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end else sigmlt = opt.SigmaScaling; end ssf = 1; if rd > opt.SigmaRsdlRatio*sd, ssf = sigmlt; end if sd > opt.SigmaRsdlRatio*rd, ssf = 1/sigmlt; end sigma = ssf*sigma; H = H/ssf; end end k = k + 1; end D = PzpT(G(:,:,1:(end-K))); Y = Y(:,:,1:(end-1),:); % Record run time and working variables optinf.runtime = toc(tstart); optinf.Y = Y; optinf.U = U; optinf.G = G; optinf.H = H; optinf.lambda = lambda; optinf.rho = rho; optinf.sigma = sigma; optinf.cgt = cgt; if exist('cgst'), optinf.cgst = cgst; end if opt.Verbose && opt.MaxMainIter > 0, disp(char('-' * ones(1,nsep))); end return function u = vec(v) u = v(:); return function u = shrink(v, lambda) if isscalar(lambda), u = sign(v).*max(0, abs(v) - lambda); else u = sign(v).*max(0, bsxfun(@minus, abs(v), lambda)); end return function u = Pnrm(v) vn = sqrt(sum(sum(v.^2, 1), 2)); vnm = ones(size(vn)); vnm(vn == 0) = 0; vm = bsxfun(@times, v, vnm); vn(vn == 0) = 1; u = bsxfun(@rdivide, vm, vn); return function u = zpad(v, sz) u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v)); u(1:size(v,1), 1:size(v,2),:,:) = v; return function u = bcrop(v, sz) if numel(sz) <= 2, if numel(sz) == 1 cs = [sz sz]; else cs = sz; end u = v(1:cs(1), 1:cs(2), :); else cs = max(sz,[],2); u = zeros(cs(1), cs(2), size(v,3), class(v)); for k = 1:size(v,3), u(1:sz(1,k), 1:sz(2,k), k) = v(1:sz(1,k), 1:sz(2,k), k); end end return function opt = defaultopts(opt) if ~isfield(opt,'Verbose'), opt.Verbose = 0; end if ~isfield(opt,'MaxMainIter'), opt.MaxMainIter = 1000; end if ~isfield(opt,'AbsStopTol'), opt.AbsStopTol = 1e-6; end if ~isfield(opt,'RelStopTol'), opt.RelStopTol = 1e-4; end if ~isfield(opt,'L1Weight'), opt.L1Weight = 1; end if ~isfield(opt,'Y0'), opt.Y0 = []; end if ~isfield(opt,'U0'), opt.U0 = []; end if ~isfield(opt,'G0'), opt.G0 = []; end if ~isfield(opt,'H0'), opt.H0 = []; end if ~isfield(opt,'rho'), opt.rho = []; end if ~isfield(opt,'AutoRho'), opt.AutoRho = 0; end if ~isfield(opt,'AutoRhoPeriod'), opt.AutoRhoPeriod = 10; end if ~isfield(opt,'RhoRsdlRatio'), opt.RhoRsdlRatio = 10; end if ~isfield(opt,'RhoScaling'), opt.RhoScaling = 2; end if ~isfield(opt,'AutoRhoScaling'), opt.AutoRhoScaling = 0; end if ~isfield(opt,'sigma'), opt.sigma = []; end if ~isfield(opt,'AutoSigma'), opt.AutoSigma = 0; end if ~isfield(opt,'AutoSigmaPeriod'), opt.AutoSigmaPeriod = 10; end if ~isfield(opt,'SigmaRsdlRatio'), opt.SigmaRsdlRatio = 10; end if ~isfield(opt,'SigmaScaling'), opt.SigmaScaling = 2; end if ~isfield(opt,'AutoSigmaScaling'), opt.AutoSigmaScaling = 0; end if ~isfield(opt,'StdResiduals'), opt.StdResiduals = 0; end if ~isfield(opt,'XRelaxParam'), opt.XRelaxParam = 1; end if ~isfield(opt,'DRelaxParam'), opt.DRelaxParam = 1; end if ~isfield(opt,'LinSolve'), opt.LinSolve = 'SM'; end if ~isfield(opt,'MaxCGIter'), opt.MaxCGIter = 1000; end if ~isfield(opt,'CGTol'), opt.CGTol = 1e-3; end if ~isfield(opt,'CGTolAuto'), opt.CGTolAuto = 0; end if ~isfield(opt,'CGTolAutoFactor'), opt.CGTolFactor = 50; end if ~isfield(opt,'NoBndryCross'), opt.NoBndryCross = 0; end if ~isfield(opt,'DictFilterSizes'), opt.DictFilterSizes = []; end if ~isfield(opt,'NonNegCoef'), opt.NonNegCoef = 0; end if ~isfield(opt,'ZeroMean'), opt.ZeroMean = 0; end if ~isfield(opt,'W'), opt.W = 1.0; end return
github
changken1/IDH_Prediction-master
readDICOMdir.m
.m
IDH_Prediction-master/MatlabScripts/readDICOMdir.m
6,680
utf_8
f26b5bc8fcfd0af05c2feb487282707e
function [sData] = readDICOMdir(dicomPath,waitB) % ------------------------------------------------------------------------- % function [sData] = readDICOMdir(dicomPath,waitB) % ------------------------------------------------------------------------- % DESCRIPTION: % This function reads the DICOM content of a single directory. It then % organizes the data it in a cell of structures called 'sData', and % computes the region of interest (ROI) defined by a given RTstruct (if % present in the directory). % ------------------------------------------------------------------------- % INPUTS: % - dicomPath: Full path where the DICOM files to read are located. % - waitB: Logical boolean. If true, a waiting bar will be displayed. % ------------------------------------------------------------------------- % OUTPUTS: % - sData: Cell of structures organizing the content of the volume data, % DICOM headers, DICOM RTstruct* (used to compute the ROI) and % DICOM REGstruct* (used to register a MRI volume to a PET volume) % * If present in the directory % --> sData{1}: Explanation of cell content % --> sData{2}: Imaging data and ROI defintion (if applicable) % --> sData{3}: DICOM headers of imaging data % --> sData{4}: DICOM RTstruct (if applicable) % --> sData{5}: DICOM REGstruct (if applicable) % ------------------------------------------------------------------------- % AUTHOR(S): % - Martin Vallieres <[email protected]> % - Sebastien Laberge <[email protected]> % ------------------------------------------------------------------------- % HISTORY: % - Creation: May 2015 %-------------------------------------------------------------------------- % STATEMENT: % This file is part of <https://github.com/mvallieres/radiomics/>, % a package providing MATLAB programming tools for radiomics analysis. % --> Copyright (C) 2015 Martin Vallieres, Sebastien Laberge % % This package is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This package is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this package. If not, see <http://www.gnu.org/licenses/>. % ------------------------------------------------------------------------- % INITIALIZATION if waitB waitbarHandle = waitbar(0,'Loading DICOM files...','WindowStyle','modal'); end elements = dir(dicomPath); nElements = length(elements); volume = cell(1,1,nElements); dicomHeaders = []; RTstruct = []; REG = []; % READING DIRECTORY CONTENT sliceNumber = 0; for elementNumber = 1:nElements elementName = elements(elementNumber).name; if ~strcmp(elementName,'.') && ~strcmp(elementName,'..') % Good enough for Linux, add conditions for MAC and Windows. elementFullFile = fullfile(dicomPath,elementName); if isdicom(elementFullFile) tmp = dicominfo(elementFullFile); if strcmp(tmp.Modality,'RTSTRUCT') RTstruct = tmp; elseif strcmp(tmp.Modality,'REG') REG = tmp; elseif strcmp(tmp.Modality,'MR') || strcmp(tmp.Modality,'PT') || strcmp(tmp.Modality,'CT') sliceNumber = sliceNumber + 1; volume{sliceNumber} = double(dicomread(elementFullFile)); dicomHeaders = appendStruct(dicomHeaders,tmp); end end end if waitB waitbar(elementNumber/nElements,waitbarHandle); end end nSlices = sliceNumber; % Total number of slices volume = volume(1:nSlices); % Suppress empty cells in images % DETERMINE THE SCAN ORIENTATION dist = [abs(dicomHeaders(2).ImagePositionPatient(1) - dicomHeaders(1).ImagePositionPatient(1)), ... abs(dicomHeaders(2).ImagePositionPatient(2) - dicomHeaders(1).ImagePositionPatient(2)), ... abs(dicomHeaders(2).ImagePositionPatient(3) - dicomHeaders(1).ImagePositionPatient(3))]; [~,index] = max(dist); if index == 1 orientation = 'Sagittal'; elseif index == 2 orientation = 'Coronal'; else orientation = 'Axial'; end % SORT THE IMAGES AND DICOM HEADERS slicePositions = zeros(1,nSlices); for sliceNumber = 1:nSlices slicePositions(sliceNumber) = dicomHeaders(sliceNumber).ImagePositionPatient(index); end [~,indices] = sort(slicePositions); volume = cell2mat(volume(indices)); dicomHeaders = dicomHeaders(indices); % FILL sData sData = cell(1,5); type = dicomHeaders(1).Modality; if strcmp(type,'PT') || strcmp(type,'CT') if strcmp(type,'PT') type = 'PET'; end for i=1:size(volume,3) volume(:,:,i)=volume(:,:,i)*dicomHeaders(i).RescaleSlope + dicomHeaders(i).RescaleIntercept; end end type = [type,'scan']; sData{1} = struct('Cell_1','Explanation of cell content', ... 'Cell_2','Imaging data and ROI defintion (if applicable)', ... 'Cell_3','DICOM headers of imaging data', ... 'Cell_4','DICOM RTstruct (if applicable)', ... 'Cell_5','DICOM REGstruct (if applicable)'); sData{2}.scan.volume = volume; sData{2}.scan.orientation = orientation; try sData{2}.scan.pixelW = dicomHeaders(1).PixelSpacing(1); catch sData{2}.scan.pixelW = []; end % Pixel Width try sData{2}.scan.sliceT = dicomHeaders(1).SliceThickness; catch sData{2}.scan.sliceT = []; end % Slice Thickness s1 = round(0.5*nSlices); s2 = round(0.5*nSlices) + 1; % Slices selected to calculate slice spacing sData{2}.scan.sliceS = sqrt(sum((dicomHeaders(s1).ImagePositionPatient - dicomHeaders(s2).ImagePositionPatient).^2)); % Slice Spacing sData{2}.type = type; sData{3} = dicomHeaders; sData{4} = RTstruct; sData{5} = REG; % COMPUTE TUMOR DELINEATION USING RTstruct if ~isempty(sData{4}) [sData] = computeROI(sData); end if waitB close(waitbarHandle) end end % UTILITY FUNCTION function [structureArray] = appendStruct(structureArray,newStructure) if isempty(structureArray) structureArray = newStructure; return end structLength = length(structureArray); fields = fieldnames(structureArray(1)); nFields = length(fields); for i = 1:nFields try structureArray(structLength + 1).(fields{i}) = newStructure.(fields{i}); catch structureArray(structLength + 1).(fields{i}) = 'FIELD NOT PRESENT'; end end end
github
changken1/IDH_Prediction-master
load_nii_ext.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_nii_ext.m
5,337
utf_8
fa0e831b0a596c3208b21bddc1c6d812
% Load NIFTI header extension after its header is loaded using load_nii_hdr. % % Usage: ext = load_nii_ext(filename) % % filename - NIFTI file name. % % Returned values: % % ext - Structure of NIFTI header extension, which includes num_ext, % and all the extended header sections in the header extension. % Each extended header section will have its esize, ecode, and % edata, where edata can be plain text, xml, or any raw data % that was saved in the extended header section. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function ext = load_nii_ext(filename) if ~exist('filename','var'), error('Usage: ext = load_nii_ext(filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end machine = 'ieee-le'; new_ext = 0; if findstr('.nii',filename) & strcmp(filename(end-3:end), '.nii') new_ext = 1; filename(end-3:end)=''; end if findstr('.hdr',filename) & strcmp(filename(end-3:end), '.hdr') filename(end-3:end)=''; end if findstr('.img',filename) & strcmp(filename(end-3:end), '.img') filename(end-3:end)=''; end if new_ext fn = sprintf('%s.nii',filename); if ~exist(fn) msg = sprintf('Cannot find file "%s.nii".', filename); error(msg); end else fn = sprintf('%s.hdr',filename); if ~exist(fn) msg = sprintf('Cannot find file "%s.hdr".', filename); error(msg); end end fid = fopen(fn,'r',machine); vox_offset = 0; if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); if fread(fid,1,'int32') == 348 if new_ext fseek(fid,108,'bof'); vox_offset = fread(fid,1,'float32'); end ext = read_extension(fid, vox_offset); fclose(fid); else fclose(fid); % first try reading the opposite endian to 'machine' % switch machine, case 'ieee-le', machine = 'ieee-be'; case 'ieee-be', machine = 'ieee-le'; end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); if fread(fid,1,'int32') ~= 348 % Now throw an error % msg = sprintf('File "%s" is corrupted.',fn); error(msg); end if new_ext fseek(fid,108,'bof'); vox_offset = fread(fid,1,'float32'); end ext = read_extension(fid, vox_offset); fclose(fid); end end end % Clean up after gunzip % if exist('gzFileName', 'var') rmdir(tmpDir,'s'); end return % load_nii_ext %--------------------------------------------------------------------- function ext = read_extension(fid, vox_offset) ext = []; if vox_offset end_of_ext = vox_offset; else fseek(fid, 0, 'eof'); end_of_ext = ftell(fid); end if end_of_ext > 352 fseek(fid, 348, 'bof'); ext.extension = fread(fid,4)'; end if isempty(ext) | ext.extension(1) == 0 ext = []; return; end i = 1; while(ftell(fid) < end_of_ext) ext.section(i).esize = fread(fid,1,'int32'); ext.section(i).ecode = fread(fid,1,'int32'); ext.section(i).edata = char(fread(fid,ext.section(i).esize-8)'); i = i + 1; end ext.num_ext = length(ext.section); return % read_extension
github
changken1/IDH_Prediction-master
rri_orient.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_orient.m
2,251
utf_8
4253fb96b9189a8a4bad49661d9ecac3
% Convert image of different orientations to standard Analyze orientation % % Usage: nii = rri_orient(nii); % Jimmy Shen ([email protected]), 26-APR-04 %___________________________________________________________________ function [nii, orient, pattern] = rri_orient(nii, varargin) if nargin > 1 pattern = varargin{1}; else pattern = []; end if(nargin > 2) orient = varargin{2}; if(length(find(orient>6)) || length(find(orient<1))) %value checking orient=[1 2 3]; %set to default if bogus values set end else orient = [1 2 3]; end dim = double(nii.hdr.dime.dim([2:4])); if ~isempty(pattern) & ~isequal(length(pattern), prod(dim)) return; end % get orient of the current image % if isequal(orient, [1 2 3]) orient = rri_orient_ui; pause(.1); end % no need for conversion % if isequal(orient, [1 2 3]) return; end if isempty(pattern) pattern = 1:prod(dim); end pattern = reshape(pattern, dim); img = nii.img; % calculate after flip orient % rot_orient = mod(orient + 2, 3) + 1; % do flip: % flip_orient = orient - rot_orient; for i = 1:3 if flip_orient(i) pattern = flipdim(pattern, i); img = flipdim(img, i); end end % get index of orient (do inverse) % [tmp rot_orient] = sort(rot_orient); % do rotation: % pattern = permute(pattern, rot_orient); img = permute(img, [rot_orient 4 5 6]); % rotate resolution, or 'dim' % new_dim = nii.hdr.dime.dim([2:4]); new_dim = new_dim(rot_orient); nii.hdr.dime.dim([2:4]) = new_dim; % rotate voxel_size, or 'pixdim' % tmp = nii.hdr.dime.pixdim([2:4]); tmp = tmp(rot_orient); nii.hdr.dime.pixdim([2:4]) = tmp; % re-calculate originator % tmp = nii.hdr.hist.originator([1:3]); tmp = tmp(rot_orient); flip_orient = flip_orient(rot_orient); for i = 1:3 if flip_orient(i) & ~isequal(double(tmp(i)), 0) tmp(i) = int16(double(new_dim(i)) - double(tmp(i)) + 1); end end nii.hdr.hist.originator([1:3]) = tmp; nii.img = img; pattern = pattern(:); return; % rri_orient
github
changken1/IDH_Prediction-master
save_untouch0_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_untouch0_nii_hdr.m
8,594
utf_8
7e8b1b327e1924837820f75780d52d01
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); fwrite(fid, hk.hkey_un0(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) %struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % char vox_units[4]; /* 16 + 4 */ % char cal_units[8]; /* 20 + 8 */ % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % ..etc % */ % float vox_offset; /* 68 + 4 */ % float roi_scale; /* 72 + 4 */ % float funused1; /* 76 + 4 */ % float funused2; /* 80 + 4 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % int compressed; /* 92 + 4 */ % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); pad = zeros(1, 4-length(dime.vox_units)); dime.vox_units = [dime.vox_units char(pad)]; fwrite(fid, dime.vox_units(1:4), 'uchar'); pad = zeros(1, 8-length(dime.cal_units)); dime.cal_units = [dime.cal_units char(pad)]; fwrite(fid, dime.cal_units(1:8), 'uchar'); fwrite(fid, dime.unused1(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.dim_un0(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.roi_scale(1), 'float32'); fwrite(fid, dime.funused1(1), 'float32'); fwrite(fid, dime.funused2(1), 'float32'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.compressed(1), 'int32'); fwrite(fid, dime.verified(1), 'int32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures - ANALYZE 7.5 %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % char orient; /* 104 + 1 */ % char originator[10]; /* 105 + 10 */ % char generated[10]; /* 115 + 10 */ % char scannum[10]; /* 125 + 10 */ % char patient_id[10]; /* 135 + 10 */ % char exp_date[10]; /* 145 + 10 */ % char exp_time[10]; /* 155 + 10 */ % char hist_un0[3]; /* 165 + 3 */ % int views /* 168 + 4 */ % int vols_added; /* 172 + 4 */ % int start_field; /* 176 + 4 */ % int field_skip; /* 180 + 4 */ % int omax; /* 184 + 4 */ % int omin; /* 188 + 4 */ % int smax; /* 192 + 4 */ % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.orient(1), 'uchar'); fwrite(fid, hist.originator(1:5), 'int16'); pad = zeros(1, 10-length(hist.generated)); hist.generated = [hist.generated char(pad)]; fwrite(fid, hist.generated(1:10), 'uchar'); pad = zeros(1, 10-length(hist.scannum)); hist.scannum = [hist.scannum char(pad)]; fwrite(fid, hist.scannum(1:10), 'uchar'); pad = zeros(1, 10-length(hist.patient_id)); hist.patient_id = [hist.patient_id char(pad)]; fwrite(fid, hist.patient_id(1:10), 'uchar'); pad = zeros(1, 10-length(hist.exp_date)); hist.exp_date = [hist.exp_date char(pad)]; fwrite(fid, hist.exp_date(1:10), 'uchar'); pad = zeros(1, 10-length(hist.exp_time)); hist.exp_time = [hist.exp_time char(pad)]; fwrite(fid, hist.exp_time(1:10), 'uchar'); pad = zeros(1, 3-length(hist.hist_un0)); hist.hist_un0 = [hist.hist_un0 char(pad)]; fwrite(fid, hist.hist_un0(1:3), 'uchar'); fwrite(fid, hist.views(1), 'int32'); fwrite(fid, hist.vols_added(1), 'int32'); fwrite(fid, hist.start_field(1),'int32'); fwrite(fid, hist.field_skip(1), 'int32'); fwrite(fid, hist.omax(1), 'int32'); fwrite(fid, hist.omin(1), 'int32'); fwrite(fid, hist.smax(1), 'int32'); fwrite(fid, hist.smin(1), 'int32'); return; % data_history
github
changken1/IDH_Prediction-master
rri_zoom_menu.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_zoom_menu.m
737
utf_8
d8151523470b0fba970eb1d98ba56030
% Imbed a zoom menu to any figure. % % Usage: rri_zoom_menu(fig); % % - Jimmy Shen ([email protected]) % %-------------------------------------------------------------------- function menu_hdl = rri_zoom_menu(fig) if isnumeric(fig) menu_hdl = uimenu('Parent',fig, ... 'Label','Zoom on', ... 'Userdata', 1, ... 'Callback','rri_zoom_menu(''zoom'');'); return; end zoom_on_state = get(gcbo,'Userdata'); if (zoom_on_state == 1) zoom on; set(gcbo,'Userdata',0,'Label','Zoom off'); set(gcbf,'pointer','crosshair'); else zoom off; set(gcbo,'Userdata',1,'Label','Zoom on'); set(gcbf,'pointer','arrow'); end return % rri_zoom_menu
github
changken1/IDH_Prediction-master
rri_select_file.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_select_file.m
16,599
utf_8
e349954ca803370f62ceeabdbab5912e
function [selected_file, selected_path] = rri_select_file(varargin) % % USAGE: [selected_file, selected_path] = ... % rri_select_file(dir_name, fig_title) % % Allow user to select a file from a list of Matlab competible % file format % % Example: % % [selected_file, selected_path] = ... % rri_select_file('/usr','Select Data File'); % % See Also RRI_GETFILES % -- Created June 2001 by Wilkin Chau, Rotman Research Institute % % use rri_select_file to open & save Matlab recognized format % -- Modified Dec 2002 by Jimmy Shen, Rotman Research Institute % if nargin == 0 | ischar(varargin{1}) % create rri_select_file figure dir_name = ''; fig_title = 'Select a File'; if nargin > 0 dir_name = varargin{1}; end if nargin > 1 fig_title = varargin{2}; end Init(fig_title,dir_name); uiwait; % wait for user finish selected_path = getappdata(gcf,'SelectedDirectory'); selected_file = getappdata(gcf,'SelectedFile'); cd (getappdata(gcf,'StartDirectory')); close(gcf); return; end; % clear the message line, % h = findobj(gcf,'Tag','MessageLine'); set(h,'String',''); action = varargin{1}{1}; % change 'File format': % update 'Files' & 'File selection' based on file pattern % if strcmp(action,'EditFilter'), EditFilter; % run delete_fig when figure is closing % elseif strcmp(action,'delete_fig'), delete_fig; % select 'Directories': % go into the selected dir % update 'Files' & 'File selection' based on file pattern % elseif strcmp(action,'select_dir'), select_dir; % select 'Files': % update 'File selection' % elseif strcmp(action,'select_file'), select_file; % change 'File selection': % if it is a file, select that, % if it is more than a file (*), select those, % if it is a directory, select based on file pattern % elseif strcmp(action,'EditSelection'), EditSelection; % clicked 'Select' % elseif strcmp(action,'DONE_BUTTON_PRESSED'), h = findobj(gcf,'Tag','SelectionEdit'); [filepath,filename,fileext] = fileparts(get(h,'String')); if isempty(filepath) | isempty(filename) | isempty(fileext) setappdata(gcf,'SelectedDirectory',[]); setappdata(gcf,'SelectedFile',[]); else if ~strcmp(filepath(end),filesep) % not end with filesep filepath = [filepath filesep]; % add a filesep to filepath end setappdata(gcf,'SelectedDirectory',filepath); setappdata(gcf,'SelectedFile',[filename fileext]); end if getappdata(gcf,'ready') % ready to exit uiresume; end % clicked 'cancel' % elseif strcmp(action,'CANCEL_BUTTON_PRESSED'), setappdata(gcf,'SelectedDirectory',[]); setappdata(gcf,'SelectedFile',[]); set(findobj(gcf,'Tag','FileList'),'String',''); uiresume; end; return; % -------------------------------------------------------------------- function Init(fig_title,dir_name), StartDirectory = pwd; if isempty(StartDirectory), StartDirectory = filesep; end; filter_disp = {'JPEG image (*.jpg)', ... 'TIFF image, compressed (*.tif)', ... 'EPS Level 1 (*.eps)', ... 'Adobe Illustrator 88 (*.ai)', ... 'Enhanced metafile (*.emf)', ... 'Matlab Figure (*.fig)', ... 'Matlab M-file (*.m)', ... 'Portable bitmap (*.pbm)', ... 'Paintbrush 24-bit (*.pcx)', ... 'Portable Graymap (*.pgm)', ... 'Portable Network Graphics (*.png)', ... 'Portable Pixmap (*.ppm)', ... }; filter_string = {'*.jpg', ... '*.tif', ... '*.eps', ... '*.ai', ... '*.emf', ... '*.fig', ... '*.m', ... '*.pbm', ... '*.pcx', ... '*.pgm', ... '*.png', ... '*.ppm', ... }; % filter_disp = char(filter_disp); filter_string = char(filter_string); margine = 0.05; line_height = 0.07; char_height = line_height*0.8; save_setting_status = 'on'; rri_select_file_pos = []; try load('pls_profile'); catch end if ~isempty(rri_select_file_pos) & strcmp(save_setting_status,'on') pos = rri_select_file_pos; else w = 0.4; h = 0.6; x = (1-w)/2; y = (1-h)/2; pos = [x y w h]; end h0 = figure('parent',0, 'Color',[0.8 0.8 0.8], ... 'Units','normal', ... 'Name',fig_title, ... 'NumberTitle','off', ... 'MenuBar','none', ... 'Position', pos, ... 'deleteFcn','rri_select_file({''delete_fig''});', ... 'WindowStyle', 'modal', ... 'Tag','GetFilesFigure', ... 'ToolBar','none'); x = margine; y = 1 - 1*line_height - margine; w = 1-2*x; h = char_height; pos = [x y w h]; h1 = uicontrol('Parent',h0, ... % Filter Label 'Style','text', ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'Position', pos, ... 'String','Choose one of the file format:', ... 'Tag','FilterLabel'); y = 1 - 2*line_height - margine + line_height*0.2; w = 1-2*x; pos = [x y w h]; h_filter = uicontrol('Parent',h0, ... % Filter list 'Style','popupmenu', ... 'Units','normal', ... 'BackgroundColor',[1 1 1], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'Position', pos, ... 'String', filter_disp, ... 'user', filter_string, ... 'value', 1, ... 'Callback','rri_select_file({''EditFilter''});', ... 'Tag','FilterEdit'); y = 1 - 3*line_height - margine; w = 0.5 - x - margine/2; pos = [x y w h]; h1 = uicontrol('Parent',h0, ... % Directory Label 'Style','text', ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'ListboxTop',0, ... 'Position', pos, ... 'String','Directories', ... 'Tag','DirectoryLabel'); x = 0.5; y = 1 - 3*line_height - margine; w = 0.5 - margine; pos = [x y w h]; h1 = uicontrol('Parent',h0, ... % File Label 'Style','text', ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'ListboxTop',0, ... 'Position', pos, ... 'String','Files', ... 'Tag','FileLabel'); x = margine; y = 4*line_height + margine; w = 0.5 - x - margine/2; h = 1 - 7*line_height - 2*margine; pos = [x y w h]; h_dir = uicontrol('Parent',h0, ... % Directory Listbox 'Style','listbox', ... 'Units','normal', ... 'fontunit','normal', ... 'FontSize',0.08, ... 'HorizontalAlignment','left', ... 'Interruptible', 'off', ... 'ListboxTop',1, ... 'Position', pos, ... 'String', '', ... 'Callback','rri_select_file({''select_dir''});', ... 'Tag','DirectoryList'); x = 0.5; y = 4*line_height + margine; w = 0.5 - margine; h = 1 - 7*line_height - 2*margine; pos = [x y w h]; h_file = uicontrol('Parent',h0, ... % File Listbox 'Style','listbox', ... 'Units','normal', ... 'fontunit','normal', ... 'FontSize',0.08, ... 'HorizontalAlignment','left', ... 'ListboxTop',1, ... 'Position', pos, ... 'String', '', ... 'Callback','rri_select_file({''select_file''});', ... 'Tag','FileList'); x = margine; y = 3*line_height + margine - line_height*0.2; w = 1-2*x; h = char_height; pos = [x y w h]; h1 = uicontrol('Parent',h0, ... % Selection Label 'Style','text', ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'Position', pos, ... 'String','File you selected:', ... 'Tag','SelectionLabel'); y = 2*line_height + margine; w = 1-2*x; pos = [x y w h]; h_select = uicontrol('Parent',h0, ... % Selection Edit 'Style','edit', ... 'Units','normal', ... 'BackgroundColor',[1 1 1], ... 'fontunit','normal', ... 'FontSize',0.5, ... 'HorizontalAlignment','left', ... 'Position', pos, ... 'String', '', ... 'Callback','rri_select_file({''EditSelection''});', ... 'Tag','SelectionEdit'); x = 2*margine; y = line_height/2 + margine; w = 0.2; h = line_height; pos = [x y w h]; h_done = uicontrol('Parent',h0, ... % DONE 'Units','normal', ... 'fontunit','normal', ... 'FontSize',0.5, ... 'ListboxTop',0, ... 'Position', pos, ... 'HorizontalAlignment','center', ... 'String','Save', ... % 'Select', ... 'Callback','rri_select_file({''DONE_BUTTON_PRESSED''});', ... 'Tag','DONEButton'); x = 1 - x - w; pos = [x y w h]; h_cancel = uicontrol('Parent',h0, ... % CANCEL 'Units','normal', ... 'fontunit','normal', ... 'FontSize',0.5, ... 'ListboxTop',0, ... 'Position', pos, ... 'HorizontalAlignment','center', ... 'String','Cancel', ... 'Callback','rri_select_file({''CANCEL_BUTTON_PRESSED''});', ... 'Tag','CANCELButton'); if isempty(dir_name) dir_name = StartDirectory; end set(h_select,'string',dir_name); filter_select = get(h_filter,'value'); filter_pattern = filter_string(filter_select,:); setappdata(gcf,'FilterPattern',deblank(filter_pattern)); setappdata(gcf,'filter_string',filter_string); setappdata(gcf,'h_filter', h_filter); setappdata(gcf,'h_dir', h_dir); setappdata(gcf,'h_file', h_file); setappdata(gcf,'h_select', h_select); setappdata(gcf,'h_done', h_done); setappdata(gcf,'h_cancel', h_cancel); setappdata(gcf,'StartDirectory',StartDirectory); EditSelection; h_file = getappdata(gcf,'h_file'); if isempty(get(h_file,'string')) setappdata(gcf,'ready',0); else setappdata(gcf,'ready',1); end return; % Init % called by all the actions, to update 'Directories' or 'Files' % based on filter_pattern. Select first file in filelist. % % -------------------------------------------------------------------- function update_dirlist; filter_path = getappdata(gcf,'curr_dir'); filter_pattern = getappdata(gcf,'FilterPattern'); if exist(filter_pattern) == 2 % user input specific filename is_single_file = 1; % need manually take path out later else is_single_file = 0; end % take the file path out from filter_pattern % [fpath fname fext] = fileparts(filter_pattern); filter_pattern = [fname fext]; dir_struct = dir(filter_path); if isempty(dir_struct) msg = 'ERROR: Directory not found!'; uiwait(msgbox(msg,'File Selection Error','modal')); return; end; old_pointer = get(gcf,'Pointer'); set(gcf,'Pointer','watch'); dir_list = dir_struct(find([dir_struct.isdir] == 1)); [sorted_dir_names,sorted_dir_index] = sortrows({dir_list.name}'); dir_struct = dir([filter_path filesep filter_pattern]); if isempty(dir_struct) sorted_file_names = []; else file_list = dir_struct(find([dir_struct.isdir] == 0)); if is_single_file % take out path tmp = file_list.name; [fpath fname fext] = fileparts(tmp); file_list.name = [fname fext]; end [sorted_file_names,sorted_file_index] = sortrows({file_list.name}'); end; disp_dir_names = []; % if need full path, use this % instead of sorted_dir_names for i=1:length(sorted_dir_names) tmp = [filter_path filesep sorted_dir_names{i}]; disp_dir_names = [disp_dir_names {tmp}]; end h = findobj(gcf,'Tag','DirectoryList'); set(h,'String',sorted_dir_names,'Value',1); h = findobj(gcf,'Tag','FileList'); set(h,'String',sorted_file_names,'value',1); h_select = getappdata(gcf,'h_select'); if strcmp(filter_path(end),filesep) % filepath end with filesep filter_path = filter_path(1:end-1); % take filesep out end if isempty(sorted_file_names) set(h_select,'string',[filter_path filesep]); else set(h_select,'string',[filter_path filesep sorted_file_names{1}]); end set(gcf,'Pointer',old_pointer); return; % update_dirlist % change 'File format': % update 'Files' & 'File selection' based on file pattern % % -------------------------------------------------------------------- function EditFilter() filter_select = get(gcbo,'value'); filter_string = getappdata(gcf,'filter_string'); filter_pattern = filter_string(filter_select,:); filter_path = getappdata(gcf,'curr_dir'); % update filter_pattern setappdata(gcf,'FilterPattern',deblank(filter_pattern)); if isempty(filter_path), filter_path = filesep; end; update_dirlist; h_file = getappdata(gcf,'h_file'); if isempty(get(h_file,'string')) setappdata(gcf,'ready',0); else setappdata(gcf,'ready',1); end return; % EditFilter % select 'Directories': % go into the selected dir % update 'Files' & 'File selection' based on file pattern % % -------------------------------------------------------------------- function select_dir() listed_dir = get(gcbo,'String'); selected_dir_idx = get(gcbo,'Value'); selected_dir = listed_dir{selected_dir_idx}; curr_dir = getappdata(gcf,'curr_dir'); % update the selection box % try cd ([curr_dir filesep selected_dir]); catch msg = 'ERROR: Cannot access directory'; uiwait(msgbox(msg,'File Selection Error','modal')); return; end; if isempty(pwd) curr_dir = filesep; else curr_dir = pwd; end; setappdata(gcf,'curr_dir',curr_dir); update_dirlist; h_file = getappdata(gcf,'h_file'); if isempty(get(h_file,'string')) setappdata(gcf,'ready',0); else setappdata(gcf,'ready',1); end return; % select_dir % select 'Files': % update 'File selection' % % -------------------------------------------------------------------- function select_file() setappdata(gcf,'ready',1); listed_file = get(gcbo,'String'); selected_file_idx = get(gcbo,'Value'); selected_file = listed_file{selected_file_idx}; curr_dir = getappdata(gcf,'curr_dir'); if strcmp(curr_dir(end),filesep) % filepath end with filesep curr_dir = curr_dir(1:end-1); % take filesep out end h_select = getappdata(gcf,'h_select'); set(h_select,'string',[curr_dir filesep selected_file]); return; % select_file % change 'File selection': % if it is a file, select that, % if it is more than a file (*), select those, % if it is a directory, select based on file pattern % % -------------------------------------------------------------------- function EditSelection() filter_string = getappdata(gcf,'filter_string'); h_select = getappdata(gcf,'h_select'); selected_file = get(h_select,'string'); if exist(selected_file) == 7 % if user enter a dir setappdata(gcf,'ready',0); setappdata(gcf,'curr_dir',selected_file); % get new dir update_dirlist; else setappdata(gcf,'ready',1); [fpath fname fext]= fileparts(selected_file); if exist(fpath) ~=7 % fpath is not a dir setappdata(gcf,'ready',0); msg = 'ERROR: Cannot access directory'; uiwait(msgbox(msg,'File Selection Error','modal')); end % if the file format user entered is not supported by matlab if isempty(strmatch(['*',fext],filter_string,'exact')) setappdata(gcf,'ready',0); msg = 'ERROR: File format is not supported by Matlab.'; uiwait(msgbox(msg,'File Selection Error','modal')); end end return; % EditSelection % -------------------------------------------------------------------- function delete_fig() try load('pls_profile'); pls_profile = which('pls_profile.mat'); rri_select_file_pos = get(gcbf,'position'); save(pls_profile, '-append', 'rri_select_file_pos'); catch end return;
github
changken1/IDH_Prediction-master
clip_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/clip_nii.m
3,306
utf_8
a70bdbed5a0813312d4c83f94b99a710
% CLIP_NII: Clip the NIfTI volume from any of the 6 sides % % Usage: nii = clip_nii(nii, [option]) % % Inputs: % % nii - NIfTI volume. % % option - struct instructing how many voxel to be cut from which side. % % option.cut_from_L = ( number of voxel ) % option.cut_from_R = ( number of voxel ) % option.cut_from_P = ( number of voxel ) % option.cut_from_A = ( number of voxel ) % option.cut_from_I = ( number of voxel ) % option.cut_from_S = ( number of voxel ) % % Options description in detail: % ============================== % % cut_from_L: Number of voxels from Left side will be clipped. % % cut_from_R: Number of voxels from Right side will be clipped. % % cut_from_P: Number of voxels from Posterior side will be clipped. % % cut_from_A: Number of voxels from Anterior side will be clipped. % % cut_from_I: Number of voxels from Inferior side will be clipped. % % cut_from_S: Number of voxels from Superior side will be clipped. % % NIfTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = clip_nii(nii, opt) dims = abs(nii.hdr.dime.dim(2:4)); origin = abs(nii.hdr.hist.originator(1:3)); if isempty(origin) | all(origin == 0) % according to SPM origin = round((dims+1)/2); end cut_from_L = 0; cut_from_R = 0; cut_from_P = 0; cut_from_A = 0; cut_from_I = 0; cut_from_S = 0; if nargin > 1 & ~isempty(opt) if ~isstruct(opt) error('option argument should be a struct'); end if isfield(opt,'cut_from_L') cut_from_L = round(opt.cut_from_L); if cut_from_L >= origin(1) | cut_from_L < 0 error('cut_from_L cannot be negative or cut beyond originator'); end end if isfield(opt,'cut_from_P') cut_from_P = round(opt.cut_from_P); if cut_from_P >= origin(2) | cut_from_P < 0 error('cut_from_P cannot be negative or cut beyond originator'); end end if isfield(opt,'cut_from_I') cut_from_I = round(opt.cut_from_I); if cut_from_I >= origin(3) | cut_from_I < 0 error('cut_from_I cannot be negative or cut beyond originator'); end end if isfield(opt,'cut_from_R') cut_from_R = round(opt.cut_from_R); if cut_from_R > dims(1)-origin(1) | cut_from_R < 0 error('cut_from_R cannot be negative or cut beyond originator'); end end if isfield(opt,'cut_from_A') cut_from_A = round(opt.cut_from_A); if cut_from_A > dims(2)-origin(2) | cut_from_A < 0 error('cut_from_A cannot be negative or cut beyond originator'); end end if isfield(opt,'cut_from_S') cut_from_S = round(opt.cut_from_S); if cut_from_S > dims(3)-origin(3) | cut_from_S < 0 error('cut_from_S cannot be negative or cut beyond originator'); end end end nii = make_nii(nii.img( (cut_from_L+1) : (dims(1)-cut_from_R), ... (cut_from_P+1) : (dims(2)-cut_from_A), ... (cut_from_I+1) : (dims(3)-cut_from_S), ... :,:,:,:,:), nii.hdr.dime.pixdim(2:4), ... [origin(1)-cut_from_L origin(2)-cut_from_P origin(3)-cut_from_I], ... nii.hdr.dime.datatype, nii.hdr.hist.descrip); return;
github
changken1/IDH_Prediction-master
affine.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/affine.m
16,110
utf_8
768d2303e551a9584685bdb01abf6f8b
% Using 2D or 3D affine matrix to rotate, translate, scale, reflect and % shear a 2D image or 3D volume. 2D image is represented by a 2D matrix, % 3D volume is represented by a 3D matrix, and data type can be real % integer or floating-point. % % You may notice that MATLAB has a function called 'imtransform.m' for % 2D spatial transformation. However, keep in mind that 'imtransform.m' % assumes y for the 1st dimension, and x for the 2nd dimension. They are % equivalent otherwise. % % In addition, if you adjust the 'new_elem_size' parameter, this 'affine.m' % is equivalent to 'interp2.m' for 2D image, and equivalent to 'interp3.m' % for 3D volume. % % Usage: [new_img new_M] = ... % affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]); % % old_img - original 2D image or 3D volume. We assume x for the 1st % dimension, y for the 2nd dimension, and z for the 3rd % dimension. % % old_M - a 3x3 2D affine matrix for 2D image, or a 4x4 3D affine % matrix for 3D volume. We assume x for the 1st dimension, % y for the 2nd dimension, and z for the 3rd dimension. % % new_elem_size (optional) - size of voxel along x y z direction for % a transformed 3D volume, or size of pixel along x y for % a transformed 2D image. We assume x for the 1st dimension % y for the 2nd dimension, and z for the 3rd dimension. % 'new_elem_size' is 1 if it is default or empty. % % You can increase its value to decrease the resampling rate, % and make the 2D image or 3D volume more coarse. It works % just like 'interp3'. % % verbose (optional) - 1, 0 % 1: show transforming progress in percentage % 2: progress will not be displayed % 'verbose' is 1 if it is default or empty. % % bg (optional) - background voxel intensity in any extra corner that % is caused by the interpolation. 0 in most cases. If it is % default or empty, 'bg' will be the average of two corner % voxel intensities in original data. % % method (optional) - 1, 2, or 3 % 1: for Trilinear interpolation % 2: for Nearest Neighbor interpolation % 3: for Fischer's Bresenham interpolation % 'method' is 1 if it is default or empty. % % new_img - transformed 2D image or 3D volume % % new_M - transformed affine matrix % % Example 1 (3D rotation): % load mri.mat; old_img = double(squeeze(D)); % old_M = [0.88 0.5 3 -90; -0.5 0.88 3 -126; 0 0 2 -72; 0 0 0 1]; % new_img = affine(old_img, old_M, 2); % [x y z] = meshgrid(1:128,1:128,1:27); % sz = size(new_img); % [x1 y1 z1] = meshgrid(1:sz(2),1:sz(1),1:sz(3)); % figure; slice(x, y, z, old_img, 64, 64, 13.5); % shading flat; colormap(map); view(-66, 66); % figure; slice(x1, y1, z1, new_img, sz(1)/2, sz(2)/2, sz(3)/2); % shading flat; colormap(map); view(-66, 66); % % Example 2 (2D interpolation): % load mri.mat; old_img=D(:,:,1,13)'; % old_M = [1 0 0; 0 1 0; 0 0 1]; % new_img = affine(old_img, old_M, [.2 .4]); % figure; image(old_img); colormap(map); % figure; image(new_img); colormap(map); % % This program is inspired by: % SPM5 Software from Wellcome Trust Centre for Neuroimaging % http://www.fil.ion.ucl.ac.uk/spm/software % Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid % Transformations to Volume Data, WSCG2004 Conference. % http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf % % - Jimmy Shen ([email protected]) % function [new_img, new_M] = affine(old_img, old_M, new_elem_size, verbose, bg, method) if ~exist('old_img','var') | ~exist('old_M','var') error('Usage: [new_img new_M] = affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]);'); end if ndims(old_img) == 3 if ~isequal(size(old_M),[4 4]) error('old_M should be a 4x4 affine matrix for 3D volume.'); end elseif ndims(old_img) == 2 if ~isequal(size(old_M),[3 3]) error('old_M should be a 3x3 affine matrix for 2D image.'); end else error('old_img should be either 2D image or 3D volume.'); end if ~exist('new_elem_size','var') | isempty(new_elem_size) new_elem_size = [1 1 1]; elseif length(new_elem_size) < 2 new_elem_size = new_elem_size(1)*ones(1,3); elseif length(new_elem_size) < 3 new_elem_size = [new_elem_size(:); 1]'; end if ~exist('method','var') | isempty(method) method = 1; elseif ~exist('bresenham_line3d.m','file') & method == 3 error([char(10) char(10) 'Please download 3D Bresenham''s line generation program from:' char(10) char(10) 'http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=21057' char(10) char(10) 'to test Fischer''s Bresenham interpolation method.' char(10) char(10)]); end % Make compatible to MATLAB earlier than version 7 (R14), which % can only perform arithmetic on double data type % old_img = double(old_img); old_dim = size(old_img); if ~exist('bg','var') | isempty(bg) bg = mean([old_img(1) old_img(end)]); end if ~exist('verbose','var') | isempty(verbose) verbose = 1; end if ndims(old_img) == 2 old_dim(3) = 1; old_M = old_M(:, [1 2 3 3]); old_M = old_M([1 2 3 3], :); old_M(3,:) = [0 0 1 0]; old_M(:,3) = [0 0 1 0]'; end % Vertices of img in voxel % XYZvox = [ 1 1 1 1 1 old_dim(3) 1 old_dim(2) 1 1 old_dim(2) old_dim(3) old_dim(1) 1 1 old_dim(1) 1 old_dim(3) old_dim(1) old_dim(2) 1 old_dim(1) old_dim(2) old_dim(3) ]'; old_R = old_M(1:3,1:3); old_T = old_M(1:3,4); % Vertices of img in millimeter % XYZmm = old_R*(XYZvox-1) + repmat(old_T, [1, 8]); % Make scale of new_M according to new_elem_size % new_M = diag([new_elem_size 1]); % Make translation so minimum vertex is moved to [1,1,1] % new_M(1:3,4) = round( min(XYZmm,[],2) ); % New dimensions will be the maximum vertices in XYZ direction (dim_vox) % i.e. compute dim_vox via dim_mm = R*(dim_vox-1)+T % where, dim_mm = round(max(XYZmm,[],2)); % new_dim = ceil(new_M(1:3,1:3) \ ( round(max(XYZmm,[],2))-new_M(1:3,4) )+1)'; % Initialize new_img with new_dim % new_img = zeros(new_dim(1:3)); % Mask out any changes from Z axis of transformed volume, since we % will traverse it voxel by voxel below. We will only apply unit % increment of mask_Z(3,4) to simulate the cursor movement % % i.e. we will use mask_Z * new_XYZvox to replace new_XYZvox % mask_Z = diag(ones(1,4)); mask_Z(3,3) = 0; % It will be easier to do the interpolation if we invert the process % by not traversing the original volume. Instead, we traverse the % transformed volume, and backproject each voxel in the transformed % volume back into the original volume. If the backprojected voxel % in original volume is within its boundary, the intensity of that % voxel can be used by the cursor location in the transformed volume. % % First, we traverse along Z axis of transformed volume voxel by voxel % for z = 1:new_dim(3) if verbose & ~mod(z,10) fprintf('%.2f percent is done.\n', 100*z/new_dim(3)); end % We need to find out the mapping from voxel in the transformed % volume (new_XYZvox) to voxel in the original volume (old_XYZvox) % % The following equation works, because they all equal to XYZmm: % new_R*(new_XYZvox-1) + new_T == old_R*(old_XYZvox-1) + old_T % % We can use modified new_M1 & old_M1 to substitute new_M & old_M % new_M1 * new_XYZvox == old_M1 * old_XYZvox % % where: M1 = M; M1(:,4) = M(:,4) - sum(M(:,1:3),2); % and: M(:,4) == [T; 1] == sum(M1,2) % % Therefore: old_XYZvox = old_M1 \ new_M1 * new_XYZvox; % % Since we are traverse Z axis, and new_XYZvox is replaced % by mask_Z * new_XYZvox, the above formula can be rewritten % as: old_XYZvox = old_M1 \ new_M1 * mask_Z * new_XYZvox; % % i.e. we find the mapping from new_XYZvox to old_XYZvox: % M = old_M1 \ new_M1 * mask_Z; % % First, compute modified old_M1 & new_M1 % old_M1 = old_M; old_M1(:,4) = old_M(:,4) - sum(old_M(:,1:3),2); new_M1 = new_M; new_M1(:,4) = new_M(:,4) - sum(new_M(:,1:3),2); % Then, apply unit increment of mask_Z(3,4) to simulate the % cursor movement % mask_Z(3,4) = z; % Here is the mapping from new_XYZvox to old_XYZvox % M = old_M1 \ new_M1 * mask_Z; switch method case 1 new_img(:,:,z) = trilinear(old_img, new_dim, old_dim, M, bg); case 2 new_img(:,:,z) = nearest_neighbor(old_img, new_dim, old_dim, M, bg); case 3 new_img(:,:,z) = bresenham(old_img, new_dim, old_dim, M, bg); end end; % for z if ndims(old_img) == 2 new_M(3,:) = []; new_M(:,3) = []; end return; % affine %-------------------------------------------------------------------- function img_slice = trilinear(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); TINY = 5e-2; % tolerance % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); % initialize new_Y accumulation % Y2X = 0; Y2Y = 0; Y2Z = 0; for y = 1:ydim1 % increment of new_Y accumulation % Y2X = Y2X + M(1,2); % new_Y to old_X Y2Y = Y2Y + M(2,2); % new_Y to old_Y Y2Z = Y2Z + M(3,2); % new_Y to old_Z % backproject new_Y accumulation and translation to old_XYZ % old_X = Y2X + M(1,4); old_Y = Y2Y + M(2,4); old_Z = Y2Z + M(3,4); for x = 1:xdim1 % accumulate the increment of new_X, and apply it % to the backprojected old_XYZ % old_X = M(1,1) + old_X ; old_Y = M(2,1) + old_Y ; old_Z = M(3,1) + old_Z ; % within boundary of original image % if ( old_X > 1-TINY & old_X < xdim2+TINY & ... old_Y > 1-TINY & old_Y < ydim2+TINY & ... old_Z > 1-TINY & old_Z < zdim2+TINY ) % Calculate distance of old_XYZ to its neighbors for % weighted intensity average % dx = old_X - floor(old_X); dy = old_Y - floor(old_Y); dz = old_Z - floor(old_Z); x000 = floor(old_X); x100 = x000 + 1; if floor(old_X) < 1 x000 = 1; x100 = x000; elseif floor(old_X) > xdim2-1 x000 = xdim2; x100 = x000; end x010 = x000; x001 = x000; x011 = x000; x110 = x100; x101 = x100; x111 = x100; y000 = floor(old_Y); y010 = y000 + 1; if floor(old_Y) < 1 y000 = 1; y100 = y000; elseif floor(old_Y) > ydim2-1 y000 = ydim2; y010 = y000; end y100 = y000; y001 = y000; y101 = y000; y110 = y010; y011 = y010; y111 = y010; z000 = floor(old_Z); z001 = z000 + 1; if floor(old_Z) < 1 z000 = 1; z001 = z000; elseif floor(old_Z) > zdim2-1 z000 = zdim2; z001 = z000; end z100 = z000; z010 = z000; z110 = z000; z101 = z001; z011 = z001; z111 = z001; x010 = x000; x001 = x000; x011 = x000; x110 = x100; x101 = x100; x111 = x100; v000 = double(img(x000, y000, z000)); v010 = double(img(x010, y010, z010)); v001 = double(img(x001, y001, z001)); v011 = double(img(x011, y011, z011)); v100 = double(img(x100, y100, z100)); v110 = double(img(x110, y110, z110)); v101 = double(img(x101, y101, z101)); v111 = double(img(x111, y111, z111)); img_slice(x,y) = v000*(1-dx)*(1-dy)*(1-dz) + ... v010*(1-dx)*dy*(1-dz) + ... v001*(1-dx)*(1-dy)*dz + ... v011*(1-dx)*dy*dz + ... v100*dx*(1-dy)*(1-dz) + ... v110*dx*dy*(1-dz) + ... v101*dx*(1-dy)*dz + ... v111*dx*dy*dz; else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % trilinear %-------------------------------------------------------------------- function img_slice = nearest_neighbor(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); % initialize new_Y accumulation % Y2X = 0; Y2Y = 0; Y2Z = 0; for y = 1:ydim1 % increment of new_Y accumulation % Y2X = Y2X + M(1,2); % new_Y to old_X Y2Y = Y2Y + M(2,2); % new_Y to old_Y Y2Z = Y2Z + M(3,2); % new_Y to old_Z % backproject new_Y accumulation and translation to old_XYZ % old_X = Y2X + M(1,4); old_Y = Y2Y + M(2,4); old_Z = Y2Z + M(3,4); for x = 1:xdim1 % accumulate the increment of new_X and apply it % to the backprojected old_XYZ % old_X = M(1,1) + old_X ; old_Y = M(2,1) + old_Y ; old_Z = M(3,1) + old_Z ; xi = round(old_X); yi = round(old_Y); zi = round(old_Z); % within boundary of original image % if ( xi >= 1 & xi <= xdim2 & ... yi >= 1 & yi <= ydim2 & ... zi >= 1 & zi <= zdim2 ) img_slice(x,y) = img(xi,yi,zi); else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % nearest_neighbor %-------------------------------------------------------------------- function img_slice = bresenham(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); for y = 1:ydim1 start_old_XYZ = round(M*[0 y 0 1]'); end_old_XYZ = round(M*[xdim1 y 0 1]'); [X Y Z] = bresenham_line3d(start_old_XYZ, end_old_XYZ); % line error correction % % del = end_old_XYZ - start_old_XYZ; % del_dom = max(del); % idx_dom = find(del==del_dom); % idx_dom = idx_dom(1); % idx_other = [1 2 3]; % idx_other(idx_dom) = []; %del_x1 = del(idx_other(1)); % del_x2 = del(idx_other(2)); % line_slope = sqrt((del_x1/del_dom)^2 + (del_x2/del_dom)^2 + 1); % line_error = line_slope - 1; % line error correction removed because it is too slow for x = 1:xdim1 % rescale ratio % i = round(x * length(X) / xdim1); if i < 1 i = 1; elseif i > length(X) i = length(X); end xi = X(i); yi = Y(i); zi = Z(i); % within boundary of the old XYZ space % if ( xi >= 1 & xi <= xdim2 & ... yi >= 1 & yi <= ydim2 & ... zi >= 1 & zi <= zdim2 ) img_slice(x,y) = img(xi,yi,zi); % if line_error > 1 % x = x + 1; % if x <= xdim1 % img_slice(x,y) = img(xi,yi,zi); % line_error = line_slope - 1; % end % end % if line_error % line error correction removed because it is too slow else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % bresenham
github
changken1/IDH_Prediction-master
load_untouch_nii_img.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_untouch_nii_img.m
14,756
utf_8
688b2a42f8071c6402a037c7ca923689
% internal function % - Jimmy Shen ([email protected]) function [img,hdr] = load_untouch_nii_img(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB,slice_idx) if ~exist('hdr','var') | ~exist('filetype','var') | ~exist('fileprefix','var') | ~exist('machine','var') error('Usage: [img,hdr] = load_nii_img(hdr,filetype,fileprefix,machine,[img_idx],[dim5_idx],[dim6_idx],[dim7_idx],[old_RGB],[slice_idx]);'); end if ~exist('img_idx','var') | isempty(img_idx) | hdr.dime.dim(5)<1 img_idx = []; end if ~exist('dim5_idx','var') | isempty(dim5_idx) | hdr.dime.dim(6)<1 dim5_idx = []; end if ~exist('dim6_idx','var') | isempty(dim6_idx) | hdr.dime.dim(7)<1 dim6_idx = []; end if ~exist('dim7_idx','var') | isempty(dim7_idx) | hdr.dime.dim(8)<1 dim7_idx = []; end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end if ~exist('slice_idx','var') | isempty(slice_idx) | hdr.dime.dim(4)<1 slice_idx = []; end % check img_idx % if ~isempty(img_idx) & ~isnumeric(img_idx) error('"img_idx" should be a numerical array.'); end if length(unique(img_idx)) ~= length(img_idx) error('Duplicate image index in "img_idx"'); end if ~isempty(img_idx) & (min(img_idx) < 1 | max(img_idx) > hdr.dime.dim(5)) max_range = hdr.dime.dim(5); if max_range == 1 error(['"img_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"img_idx" should be an integer within the range of [' range '].']); end end % check dim5_idx % if ~isempty(dim5_idx) & ~isnumeric(dim5_idx) error('"dim5_idx" should be a numerical array.'); end if length(unique(dim5_idx)) ~= length(dim5_idx) error('Duplicate index in "dim5_idx"'); end if ~isempty(dim5_idx) & (min(dim5_idx) < 1 | max(dim5_idx) > hdr.dime.dim(6)) max_range = hdr.dime.dim(6); if max_range == 1 error(['"dim5_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim5_idx" should be an integer within the range of [' range '].']); end end % check dim6_idx % if ~isempty(dim6_idx) & ~isnumeric(dim6_idx) error('"dim6_idx" should be a numerical array.'); end if length(unique(dim6_idx)) ~= length(dim6_idx) error('Duplicate index in "dim6_idx"'); end if ~isempty(dim6_idx) & (min(dim6_idx) < 1 | max(dim6_idx) > hdr.dime.dim(7)) max_range = hdr.dime.dim(7); if max_range == 1 error(['"dim6_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim6_idx" should be an integer within the range of [' range '].']); end end % check dim7_idx % if ~isempty(dim7_idx) & ~isnumeric(dim7_idx) error('"dim7_idx" should be a numerical array.'); end if length(unique(dim7_idx)) ~= length(dim7_idx) error('Duplicate index in "dim7_idx"'); end if ~isempty(dim7_idx) & (min(dim7_idx) < 1 | max(dim7_idx) > hdr.dime.dim(8)) max_range = hdr.dime.dim(8); if max_range == 1 error(['"dim7_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim7_idx" should be an integer within the range of [' range '].']); end end % check slice_idx % if ~isempty(slice_idx) & ~isnumeric(slice_idx) error('"slice_idx" should be a numerical array.'); end if length(unique(slice_idx)) ~= length(slice_idx) error('Duplicate index in "slice_idx"'); end if ~isempty(slice_idx) & (min(slice_idx) < 1 | max(slice_idx) > hdr.dime.dim(4)) max_range = hdr.dime.dim(4); if max_range == 1 error(['"slice_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"slice_idx" should be an integer within the range of [' range '].']); end end [img,hdr] = read_image(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB,slice_idx); return % load_nii_img %--------------------------------------------------------------------- function [img,hdr] = read_image(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB,slice_idx) switch filetype case {0, 1} fn = [fileprefix '.img']; case 2 fn = [fileprefix '.nii']; end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 1, hdr.dime.bitpix = 1; precision = 'ubit1'; case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 32, hdr.dime.bitpix = 64; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; case 1792, hdr.dime.bitpix = 128; precision = 'float64'; otherwise error('This datatype is not supported'); end tmp = hdr.dime.dim(2:end); tmp(find(tmp < 1)) = 1; hdr.dime.dim(2:end) = tmp; % move pointer to the start of image block % switch filetype case {0, 1} fseek(fid, 0, 'bof'); case 2 fseek(fid, hdr.dime.vox_offset, 'bof'); end % Load whole image block for old Analyze format or binary image; % otherwise, load images that are specified in img_idx, dim5_idx, % dim6_idx, and dim7_idx % % For binary image, we have to read all because pos can not be % seeked in bit and can not be calculated the way below. % if hdr.dime.datatype == 1 | isequal(hdr.dime.dim(4:8),ones(1,5)) | ... (isempty(img_idx) & isempty(dim5_idx) & isempty(dim6_idx) & isempty(dim7_idx) & isempty(slice_idx)) % For each frame, precision of value will be read % in img_siz times, where img_siz is only the % dimension size of an image, not the byte storage % size of an image. % img_siz = prod(hdr.dime.dim(2:8)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end img = fread(fid, img_siz, sprintf('*%s',precision)); d1 = hdr.dime.dim(2); d2 = hdr.dime.dim(3); d3 = hdr.dime.dim(4); d4 = hdr.dime.dim(5); d5 = hdr.dime.dim(6); d6 = hdr.dime.dim(7); d7 = hdr.dime.dim(8); if isempty(slice_idx) slice_idx = 1:d3; end if isempty(img_idx) img_idx = 1:d4; end if isempty(dim5_idx) dim5_idx = 1:d5; end if isempty(dim6_idx) dim6_idx = 1:d6; end if isempty(dim7_idx) dim7_idx = 1:d7; end else d1 = hdr.dime.dim(2); d2 = hdr.dime.dim(3); d3 = hdr.dime.dim(4); d4 = hdr.dime.dim(5); d5 = hdr.dime.dim(6); d6 = hdr.dime.dim(7); d7 = hdr.dime.dim(8); if isempty(slice_idx) slice_idx = 1:d3; end if isempty(img_idx) img_idx = 1:d4; end if isempty(dim5_idx) dim5_idx = 1:d5; end if isempty(dim6_idx) dim6_idx = 1:d6; end if isempty(dim7_idx) dim7_idx = 1:d7; end %ROMAN: begin roman = 1; if(roman) % compute size of one slice % img_siz = prod(hdr.dime.dim(2:3)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end % preallocate img img = zeros(img_siz, length(slice_idx)*length(img_idx)*length(dim5_idx)*length(dim6_idx)*length(dim7_idx) ); currentIndex = 1; else img = []; end; %if(roman) % ROMAN: end for i7=1:length(dim7_idx) for i6=1:length(dim6_idx) for i5=1:length(dim5_idx) for t=1:length(img_idx) for s=1:length(slice_idx) % Position is seeked in bytes. To convert dimension size % to byte storage size, hdr.dime.bitpix/8 will be % applied. % pos = sub2ind([d1 d2 d3 d4 d5 d6 d7], 1, 1, slice_idx(s), ... img_idx(t), dim5_idx(i5),dim6_idx(i6),dim7_idx(i7)) -1; pos = pos * hdr.dime.bitpix/8; % ROMAN: begin if(roman) % do nothing else img_siz = prod(hdr.dime.dim(2:3)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end end; % if (roman) % ROMAN: end if filetype == 2 fseek(fid, pos + hdr.dime.vox_offset, 'bof'); else fseek(fid, pos, 'bof'); end % For each frame, fread will read precision of value % in img_siz times % % ROMAN: begin if(roman) img(:,currentIndex) = fread(fid, img_siz, sprintf('*%s',precision)); currentIndex = currentIndex +1; else img = [img fread(fid, img_siz, sprintf('*%s',precision))]; end; %if(roman) % ROMAN: end end end end end end end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img = reshape(img, [2, length(img)/2]); img = complex(img(1,:)', img(2,:)'); end fclose(fid); % Update the global min and max values % hdr.dime.glmax = double(max(img(:))); hdr.dime.glmin = double(min(img(:))); % old_RGB treat RGB slice by slice, now it is treated voxel by voxel % if old_RGB & hdr.dime.datatype == 128 & hdr.dime.bitpix == 24 % remove squeeze img = (reshape(img, [hdr.dime.dim(2:3) 3 length(slice_idx) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [1 2 4 3 5 6 7 8]); elseif hdr.dime.datatype == 128 & hdr.dime.bitpix == 24 % remove squeeze img = (reshape(img, [3 hdr.dime.dim(2:3) length(slice_idx) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [2 3 4 1 5 6 7 8]); elseif hdr.dime.datatype == 511 & hdr.dime.bitpix == 96 img = double(img(:)); img = single((img - min(img))/(max(img) - min(img))); % remove squeeze img = (reshape(img, [3 hdr.dime.dim(2:3) length(slice_idx) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [2 3 4 1 5 6 7 8]); else % remove squeeze img = (reshape(img, [hdr.dime.dim(2:3) length(slice_idx) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); end if ~isempty(slice_idx) hdr.dime.dim(4) = length(slice_idx); end if ~isempty(img_idx) hdr.dime.dim(5) = length(img_idx); end if ~isempty(dim5_idx) hdr.dime.dim(6) = length(dim5_idx); end if ~isempty(dim6_idx) hdr.dime.dim(7) = length(dim6_idx); end if ~isempty(dim7_idx) hdr.dime.dim(8) = length(dim7_idx); end return % read_image
github
changken1/IDH_Prediction-master
load_untouch_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_untouch_nii.m
6,182
utf_8
93108a725d2e357d773c8aa0acf71328
% Load NIFTI or ANALYZE dataset, but not applying any appropriate affine % geometric transform or voxel intensity scaling. % % Although according to NIFTI website, all those header information are % supposed to be applied to the loaded NIFTI image, there are some % situations that people do want to leave the original NIFTI header and % data untouched. They will probably just use MATLAB to do certain image % processing regardless of image orientation, and to save data back with % the same NIfTI header. % % Since this program is only served for those situations, please use it % together with "save_untouch_nii.m", and do not use "save_nii.m" or % "view_nii.m" for the data that is loaded by "load_untouch_nii.m". For % normal situation, you should use "load_nii.m" instead. % % Usage: nii = load_untouch_nii(filename, [img_idx], [dim5_idx], [dim6_idx], ... % [dim7_idx], [old_RGB], [slice_idx]) % % filename - NIFTI or ANALYZE file name. % % img_idx (optional) - a numerical array of image volume indices. % Only the specified volumes will be loaded. All available image % volumes will be loaded, if it is default or empty. % % The number of images scans can be obtained from get_nii_frame.m, % or simply: hdr.dime.dim(5). % % dim5_idx (optional) - a numerical array of 5th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % dim6_idx (optional) - a numerical array of 6th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % dim7_idx (optional) - a numerical array of 7th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % old_RGB (optional) - a scale number to tell difference of new RGB24 % from old RGB24. New RGB24 uses RGB triple sequentially for each % voxel, like [R1 G1 B1 R2 G2 B2 ...]. Analyze 6.0 from AnalyzeDirect % uses old RGB24, in a way like [R1 R2 ... G1 G2 ... B1 B2 ...] for % each slices. If the image that you view is garbled, try to set % old_RGB variable to 1 and try again, because it could be in % old RGB24. It will be set to 0, if it is default or empty. % % slice_idx (optional) - a numerical array of image slice indices. % Only the specified slices will be loaded. All available image % slices will be loaded, if it is default or empty. % % Returned values: % % nii structure: % % hdr - struct with NIFTI header fields. % % filetype - Analyze format .hdr/.img (0); % NIFTI .hdr/.img (1); % NIFTI .nii (2) % % fileprefix - NIFTI filename without extension. % % machine - machine string variable. % % img - 3D (or 4D) matrix of NIFTI data. % % - Jimmy Shen ([email protected]) % function nii = load_untouch_nii(filename, img_idx, dim5_idx, dim6_idx, dim7_idx, ... old_RGB, slice_idx) if ~exist('filename','var') error('Usage: nii = load_untouch_nii(filename, [img_idx], [dim5_idx], [dim6_idx], [dim7_idx], [old_RGB], [slice_idx])'); end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; end if ~exist('dim5_idx','var') | isempty(dim5_idx) dim5_idx = []; end if ~exist('dim6_idx','var') | isempty(dim6_idx) dim6_idx = []; end if ~exist('dim7_idx','var') | isempty(dim7_idx) dim7_idx = []; end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end if ~exist('slice_idx','var') | isempty(slice_idx) slice_idx = []; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); if nii.filetype == 0 nii.hdr = load_untouch0_nii_hdr(nii.fileprefix,nii.machine); nii.ext = []; else nii.hdr = load_untouch_nii_hdr(nii.fileprefix,nii.machine,nii.filetype); % Read the header extension % nii.ext = load_nii_ext(filename); end % Read the dataset body % [nii.img,nii.hdr] = load_untouch_nii_img(nii.hdr,nii.filetype,nii.fileprefix, ... nii.machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB,slice_idx); % Perform some of sform/qform transform % % nii = xform_nii(nii, tolerance, preferredForm); nii.untouch = 1; % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); rmdir(tmpDir,'s'); end return % load_untouch_nii
github
changken1/IDH_Prediction-master
collapse_nii_scan.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/collapse_nii_scan.m
6,778
utf_8
64b1cb0f7cd9e095d3c11ca66453df69
% Collapse multiple single-scan NIFTI files into a multiple-scan NIFTI file % % Usage: collapse_nii_scan(scan_file_pattern, [collapsed_fileprefix], [scan_file_folder]) % % Here, scan_file_pattern should look like: 'myscan_0*.img' % If collapsed_fileprefix is omit, 'multi_scan' will be used % If scan_file_folder is omit, current file folder will be used % % The order of volumes in the collapsed file will be the order of % corresponding filenames for those selected scan files. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function collapse_nii_scan(scan_pattern, fileprefix, scan_path) if ~exist('fileprefix','var') fileprefix = 'multi_scan'; else [tmp fileprefix] = fileparts(fileprefix); end if ~exist('scan_path','var'), scan_path = pwd; end pnfn = fullfile(scan_path, scan_pattern); file_lst = dir(pnfn); flist = {file_lst.name}; flist = flist(:); filename = flist{1}; v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; end else if ~strcmp(filename(end-3:end), '.img') & ... ~strcmp(filename(end-3:end), '.hdr') & ... ~strcmp(filename(end-3:end), '.nii') error('Please check filename.'); end end nii = load_untouch_nii(fullfile(scan_path,filename)); nii.hdr.dime.dim(5) = length(flist); if nii.hdr.dime.dim(1) < 4 nii.hdr.dime.dim(1) = 4; end hdr = nii.hdr; filetype = nii.filetype; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end elseif filetype == 1 fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch0_nii_hdr(hdr, fid); fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end glmax = -inf; glmin = inf; for i = 1:length(flist) nii = load_untouch_nii(fullfile(scan_path,flist{i})); if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if nii.hdr.dime.glmax > glmax glmax = nii.hdr.dime.glmax; end if nii.hdr.dime.glmin < glmin glmin = nii.hdr.dime.glmin; end fwrite(fid, nii.img, precision); end hdr.dime.glmax = round(glmax); hdr.dime.glmin = round(glmin); if filetype == 2 fseek(fid, 140, 'bof'); fwrite(fid, hdr.dime.glmax, 'int32'); fwrite(fid, hdr.dime.glmin, 'int32'); elseif filetype == 1 fid2 = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid2 < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch_nii_hdr(hdr, fid2); if ~isempty(ext) save_nii_ext(ext, fid2); end fclose(fid2); else fid2 = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid2 < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch0_nii_hdr(hdr, fid2); fclose(fid2); end fclose(fid); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; return; % collapse_nii_scan
github
changken1/IDH_Prediction-master
rri_orient_ui.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_orient_ui.m
5,384
utf_8
e1196b81940d9f93fbdb43c33799e587
% Return orientation of the current image: % orient is orientation 1x3 matrix, in that: % Three elements represent: [x y z] % Element value: 1 - Left to Right; 2 - Posterior to Anterior; % 3 - Inferior to Superior; 4 - Right to Left; % 5 - Anterior to Posterior; 6 - Superior to Inferior; % e.g.: % Standard RAS Orientation: [1 2 3] % Standard RHOS Orientation: [2 4 3] % Jimmy Shen ([email protected]), 26-APR-04 % function orient = rri_orient_ui(varargin) if nargin == 0 init; orient_ui_fig = gcf; uiwait; % wait for user finish orient = getappdata(gcf, 'orient'); if isempty(orient) orient = [1 2 3]; end if ishandle(orient_ui_fig) close(gcf); end return; end action = varargin{1}; if strcmp(action, 'done') click_done; elseif strcmp(action, 'cancel') uiresume; end return; % rri_orient_ui %---------------------------------------------------------------------- function init save_setting_status = 'on'; rri_orient_pos = []; try load('pls_profile'); catch end try load('rri_pos_profile'); catch end if ~isempty(rri_orient_pos) & strcmp(save_setting_status,'on') pos = rri_orient_pos; else w = 0.35; h = 0.4; x = (1-w)/2; y = (1-h)/2; pos = [x y w h]; end handles.figure = figure('Color',[0.8 0.8 0.8], ... 'Units','normal', ... 'Name', 'Convert to standard RAS orientation', ... 'NumberTitle','off', ... 'MenuBar','none', ... 'Position',pos, ... 'WindowStyle', 'normal', ... 'ToolBar','none'); h0 = handles.figure; Font.FontUnits = 'point'; Font.FontSize = 12; margin = .1; line_num = 6; line_ht = (1 - margin*2) / line_num; x = margin; y = 1 - margin - line_ht; w = 1 - margin * 2; h = line_ht * .7; pos = [x y w h]; handles.Ttit = uicontrol('parent', h0, ... 'style','text', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'background', [0.8 0.8 0.8], ... 'string', 'Please input orientation of the current image:'); y = y - line_ht; w = .2; pos = [x y w h]; handles.Tx_orient = uicontrol('parent', h0, ... 'style','text', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'background', [0.8 0.8 0.8], ... 'string', 'X Axes:'); y = y - line_ht; pos = [x y w h]; handles.Ty_orient = uicontrol('parent', h0, ... 'style','text', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'background', [0.8 0.8 0.8], ... 'string', 'Y Axes:'); y = y - line_ht; pos = [x y w h]; handles.Tz_orient = uicontrol('parent', h0, ... 'style','text', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'background', [0.8 0.8 0.8], ... 'string', 'Z Axes:'); choice = { 'From Left to Right', 'From Posterior to Anterior', ... 'From Inferior to Superior', 'From Right to Left', ... 'From Anterior to Posterior', 'From Superior to Inferior' }; y = 1 - margin - line_ht; y = y - line_ht; w = 1 - margin - x - w; x = 1 - margin - w; pos = [x y w h]; handles.x_orient = uicontrol('parent', h0, ... 'style','popupmenu', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'string', choice, ... 'value', 1, ... 'background', [1 1 1]); y = y - line_ht; pos = [x y w h]; handles.y_orient = uicontrol('parent', h0, ... 'style','popupmenu', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'string', choice, ... 'value', 2, ... 'background', [1 1 1]); y = y - line_ht; pos = [x y w h]; handles.z_orient = uicontrol('parent', h0, ... 'style','popupmenu', ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','left',... 'string', choice, ... 'value', 3, ... 'background', [1 1 1]); x = margin; y = y - line_ht * 1.5; w = .3; pos = [x y w h]; handles.done = uicontrol('parent', h0, ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','center',... 'callback', 'rri_orient_ui(''done'');', ... 'string', 'Done'); x = 1 - margin - w; pos = [x y w h]; handles.cancel = uicontrol('parent', h0, ... 'unit', 'normal', ... Font, ... 'Position',pos, ... 'HorizontalAlignment','center',... 'callback', 'rri_orient_ui(''cancel'');', ... 'string', 'Cancel'); setappdata(h0, 'handles', handles); setappdata(h0, 'orient', [1 2 3]); return; % init %---------------------------------------------------------------------- function click_done handles = getappdata(gcf, 'handles'); x_orient = get(handles.x_orient, 'value'); y_orient = get(handles.y_orient, 'value'); z_orient = get(handles.z_orient, 'value'); orient = [x_orient y_orient z_orient]; test_orient = [orient, orient + 3]; test_orient = mod(test_orient, 3); if length(unique(test_orient)) ~= 3 msgbox('Please don''t choose same or opposite direction','Error','modal'); return; end setappdata(gcf, 'orient', [x_orient y_orient z_orient]); uiresume; return; % click_done
github
changken1/IDH_Prediction-master
load_untouch0_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_untouch0_nii_hdr.m
8,093
utf_8
3de9ff6a1da47b56ae680e7660eaa041
% internal function % - Jimmy Shen ([email protected]) function hdr = load_nii_hdr(fileprefix, machine) fn = sprintf('%s.hdr',fileprefix); fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); hdr = read_header(fid); fclose(fid); end return % load_nii_hdr %--------------------------------------------------------------------- function [ dsr ] = read_header(fid) % Original header structures % struct dsr % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ dsr.hk = header_key(fid); dsr.dime = image_dimension(fid); dsr.hist = data_history(fid); return % read_header %--------------------------------------------------------------------- function [ hk ] = header_key(fid) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ % % int sizeof_header Should be 348. % char regular Must be 'r' to indicate that all images and % volumes are the same size. v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hk.sizeof_hdr = fread(fid, 1,'int32')'; % should be 348! hk.data_type = deblank(fread(fid,10,directchar)'); hk.db_name = deblank(fread(fid,18,directchar)'); hk.extents = fread(fid, 1,'int32')'; hk.session_error = fread(fid, 1,'int16')'; hk.regular = fread(fid, 1,directchar)'; hk.hkey_un0 = fread(fid, 1,directchar)'; return % header_key %--------------------------------------------------------------------- function [ dime ] = image_dimension(fid) %struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % /* % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of *pixels* in an image row. % dim[2] Image Y dimension; number of *pixel rows* in slice. % dim[3] Volume Z dimension; number of *slices* in a volume. % dim[4] Time points; number of volumes in database % */ % char vox_units[4]; /* 16 + 4 */ % char cal_units[8]; /* 20 + 8 */ % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width, mm % pixdim[2] - voxel height, mm % pixdim[3] - slice thickness, mm % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float roi_scale; /* 72 + 4 */ % float funused1; /* 76 + 4 */ % float funused2; /* 80 + 4 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % int compressed; /* 92 + 4 */ % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end dime.dim = fread(fid,8,'int16')'; dime.vox_units = deblank(fread(fid,4,directchar)'); dime.cal_units = deblank(fread(fid,8,directchar)'); dime.unused1 = fread(fid,1,'int16')'; dime.datatype = fread(fid,1,'int16')'; dime.bitpix = fread(fid,1,'int16')'; dime.dim_un0 = fread(fid,1,'int16')'; dime.pixdim = fread(fid,8,'float32')'; dime.vox_offset = fread(fid,1,'float32')'; dime.roi_scale = fread(fid,1,'float32')'; dime.funused1 = fread(fid,1,'float32')'; dime.funused2 = fread(fid,1,'float32')'; dime.cal_max = fread(fid,1,'float32')'; dime.cal_min = fread(fid,1,'float32')'; dime.compressed = fread(fid,1,'int32')'; dime.verified = fread(fid,1,'int32')'; dime.glmax = fread(fid,1,'int32')'; dime.glmin = fread(fid,1,'int32')'; return % image_dimension %--------------------------------------------------------------------- function [ hist ] = data_history(fid) %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % char orient; /* 104 + 1 */ % char originator[10]; /* 105 + 10 */ % char generated[10]; /* 115 + 10 */ % char scannum[10]; /* 125 + 10 */ % char patient_id[10]; /* 135 + 10 */ % char exp_date[10]; /* 145 + 10 */ % char exp_time[10]; /* 155 + 10 */ % char hist_un0[3]; /* 165 + 3 */ % int views /* 168 + 4 */ % int vols_added; /* 172 + 4 */ % int start_field; /* 176 + 4 */ % int field_skip; /* 180 + 4 */ % int omax; /* 184 + 4 */ % int omin; /* 188 + 4 */ % int smax; /* 192 + 4 */ % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hist.descrip = deblank(fread(fid,80,directchar)'); hist.aux_file = deblank(fread(fid,24,directchar)'); hist.orient = fread(fid, 1,'char')'; hist.originator = fread(fid, 5,'int16')'; hist.generated = deblank(fread(fid,10,directchar)'); hist.scannum = deblank(fread(fid,10,directchar)'); hist.patient_id = deblank(fread(fid,10,directchar)'); hist.exp_date = deblank(fread(fid,10,directchar)'); hist.exp_time = deblank(fread(fid,10,directchar)'); hist.hist_un0 = deblank(fread(fid, 3,directchar)'); hist.views = fread(fid, 1,'int32')'; hist.vols_added = fread(fid, 1,'int32')'; hist.start_field = fread(fid, 1,'int32')'; hist.field_skip = fread(fid, 1,'int32')'; hist.omax = fread(fid, 1,'int32')'; hist.omin = fread(fid, 1,'int32')'; hist.smax = fread(fid, 1,'int32')'; hist.smin = fread(fid, 1,'int32')'; return % data_history
github
changken1/IDH_Prediction-master
load_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_nii.m
6,808
utf_8
d098a5dbea3cd4ad76cea624ffbef9db
% Load NIFTI or ANALYZE dataset. Support both *.nii and *.hdr/*.img % file extension. If file extension is not provided, *.hdr/*.img will % be used as default. % % A subset of NIFTI transform is included. For non-orthogonal rotation, % shearing etc., please use 'reslice_nii.m' to reslice the NIFTI file. % It will not cause negative effect, as long as you remember not to do % slice time correction after reslicing the NIFTI file. Output variable % nii will be in RAS orientation, i.e. X axis from Left to Right, % Y axis from Posterior to Anterior, and Z axis from Inferior to % Superior. % % Usage: nii = load_nii(filename, [img_idx], [dim5_idx], [dim6_idx], ... % [dim7_idx], [old_RGB], [tolerance], [preferredForm]) % % filename - NIFTI or ANALYZE file name. % % img_idx (optional) - a numerical array of 4th dimension indices, % which is the indices of image scan volume. The number of images % scan volumes can be obtained from get_nii_frame.m, or simply % hdr.dime.dim(5). Only the specified volumes will be loaded. % All available image volumes will be loaded, if it is default or % empty. % % dim5_idx (optional) - a numerical array of 5th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % dim6_idx (optional) - a numerical array of 6th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % dim7_idx (optional) - a numerical array of 7th dimension indices. % Only the specified range will be loaded. All available range % will be loaded, if it is default or empty. % % old_RGB (optional) - a scale number to tell difference of new RGB24 % from old RGB24. New RGB24 uses RGB triple sequentially for each % voxel, like [R1 G1 B1 R2 G2 B2 ...]. Analyze 6.0 from AnalyzeDirect % uses old RGB24, in a way like [R1 R2 ... G1 G2 ... B1 B2 ...] for % each slices. If the image that you view is garbled, try to set % old_RGB variable to 1 and try again, because it could be in % old RGB24. It will be set to 0, if it is default or empty. % % tolerance (optional) - distortion allowed in the loaded image for any % non-orthogonal rotation or shearing of NIfTI affine matrix. If % you set 'tolerance' to 0, it means that you do not allow any % distortion. If you set 'tolerance' to 1, it means that you do % not care any distortion. The image will fail to be loaded if it % can not be tolerated. The tolerance will be set to 0.1 (10%), if % it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % Returned values: % % nii structure: % % hdr - struct with NIFTI header fields. % % filetype - Analyze format .hdr/.img (0); % NIFTI .hdr/.img (1); % NIFTI .nii (2) % % fileprefix - NIFTI filename without extension. % % machine - machine string variable. % % img - 3D (or 4D) matrix of NIFTI data. % % original - the original header before any affine transform. % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = load_nii(filename, img_idx, dim5_idx, dim6_idx, dim7_idx, ... old_RGB, tolerance, preferredForm) if ~exist('filename','var') error('Usage: nii = load_nii(filename, [img_idx], [dim5_idx], [dim6_idx], [dim7_idx], [old_RGB], [tolerance], [preferredForm])'); end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; end if ~exist('dim5_idx','var') | isempty(dim5_idx) dim5_idx = []; end if ~exist('dim6_idx','var') | isempty(dim6_idx) dim6_idx = []; end if ~exist('dim7_idx','var') | isempty(dim7_idx) dim7_idx = []; end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; % 10 percent end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); % Read the header extension % % nii.ext = load_nii_ext(filename); % Read the dataset body % [nii.img,nii.hdr] = load_nii_img(nii.hdr,nii.filetype,nii.fileprefix, ... nii.machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB); % Perform some of sform/qform transform % nii = xform_nii(nii, tolerance, preferredForm); % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); rmdir(tmpDir,'s'); end return % load_nii
github
changken1/IDH_Prediction-master
unxform_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/unxform_nii.m
1,181
utf_8
a77d113be34b09d588b2eb326a3c65c8
% Undo the flipping and rotations performed by xform_nii; spit back only % the raw img data block. Initial cut will only deal with 3D volumes % strongly assume we have called xform_nii to write down the steps used % in xform_nii. % % Usage: a = load_nii('original_name'); % manipulate a.img to make array b; % % if you use unxform_nii to un-tranform the image (img) data % block, then nii.original.hdr is the corresponding header. % % nii.original.img = unxform_nii(a, b); % save_nii(nii.original,'newname'); % % Where, 'newname' is created with data in the same space as the % original_name data % % - Jeff Gunter, 26-JUN-06 % function outblock = unxform_nii(nii, inblock) if isempty(nii.hdr.hist.rot_orient) outblock=inblock; else [dummy unrotate_orient] = sort(nii.hdr.hist.rot_orient); outblock = permute(inblock, unrotate_orient); end if ~isempty(nii.hdr.hist.flip_orient) flip_orient = nii.hdr.hist.flip_orient(unrotate_orient); for i = 1:3 if flip_orient(i) outblock = flipdim(outblock, i); end end end; return;
github
changken1/IDH_Prediction-master
load_untouch_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_untouch_nii_hdr.m
8,522
utf_8
2d4bc8c8ffb83b37daf1e8dd87c108e6
% internal function % - Jimmy Shen ([email protected]) function hdr = load_nii_hdr(fileprefix, machine, filetype) if filetype == 2 fn = sprintf('%s.nii',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.nii".', fileprefix); error(msg); end else fn = sprintf('%s.hdr',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.hdr".', fileprefix); error(msg); end end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); hdr = read_header(fid); fclose(fid); end return % load_nii_hdr %--------------------------------------------------------------------- function [ dsr ] = read_header(fid) % Original header structures % struct dsr % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ dsr.hk = header_key(fid); dsr.dime = image_dimension(fid); dsr.hist = data_history(fid); % For Analyze data format % if ~strcmp(dsr.hist.magic, 'n+1') & ~strcmp(dsr.hist.magic, 'ni1') dsr.hist.qform_code = 0; dsr.hist.sform_code = 0; end return % read_header %--------------------------------------------------------------------- function [ hk ] = header_key(fid) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ % % int sizeof_header Should be 348. % char regular Must be 'r' to indicate that all images and % volumes are the same size. v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hk.sizeof_hdr = fread(fid, 1,'int32')'; % should be 348! hk.data_type = deblank(fread(fid,10,directchar)'); hk.db_name = deblank(fread(fid,18,directchar)'); hk.extents = fread(fid, 1,'int32')'; hk.session_error = fread(fid, 1,'int16')'; hk.regular = fread(fid, 1,directchar)'; hk.dim_info = fread(fid, 1,'uchar')'; return % header_key %--------------------------------------------------------------------- function [ dime ] = image_dimension(fid) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % /* % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of *pixels* in an image row. % dim[2] Image Y dimension; number of *pixel rows* in slice. % dim[3] Volume Z dimension; number of *slices* in a volume. % dim[4] Time points; number of volumes in database % */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width, mm % pixdim[2] - voxel height, mm % pixdim[3] - slice thickness, mm % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ dime.dim = fread(fid,8,'int16')'; dime.intent_p1 = fread(fid,1,'float32')'; dime.intent_p2 = fread(fid,1,'float32')'; dime.intent_p3 = fread(fid,1,'float32')'; dime.intent_code = fread(fid,1,'int16')'; dime.datatype = fread(fid,1,'int16')'; dime.bitpix = fread(fid,1,'int16')'; dime.slice_start = fread(fid,1,'int16')'; dime.pixdim = fread(fid,8,'float32')'; dime.vox_offset = fread(fid,1,'float32')'; dime.scl_slope = fread(fid,1,'float32')'; dime.scl_inter = fread(fid,1,'float32')'; dime.slice_end = fread(fid,1,'int16')'; dime.slice_code = fread(fid,1,'uchar')'; dime.xyzt_units = fread(fid,1,'uchar')'; dime.cal_max = fread(fid,1,'float32')'; dime.cal_min = fread(fid,1,'float32')'; dime.slice_duration = fread(fid,1,'float32')'; dime.toffset = fread(fid,1,'float32')'; dime.glmax = fread(fid,1,'int32')'; dime.glmin = fread(fid,1,'int32')'; return % image_dimension %--------------------------------------------------------------------- function [ hist ] = data_history(fid) % Original header structures % struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hist.descrip = deblank(fread(fid,80,directchar)'); hist.aux_file = deblank(fread(fid,24,directchar)'); hist.qform_code = fread(fid,1,'int16')'; hist.sform_code = fread(fid,1,'int16')'; hist.quatern_b = fread(fid,1,'float32')'; hist.quatern_c = fread(fid,1,'float32')'; hist.quatern_d = fread(fid,1,'float32')'; hist.qoffset_x = fread(fid,1,'float32')'; hist.qoffset_y = fread(fid,1,'float32')'; hist.qoffset_z = fread(fid,1,'float32')'; hist.srow_x = fread(fid,4,'float32')'; hist.srow_y = fread(fid,4,'float32')'; hist.srow_z = fread(fid,4,'float32')'; hist.intent_name = deblank(fread(fid,16,directchar)'); hist.magic = deblank(fread(fid,4,directchar)'); return % data_history
github
changken1/IDH_Prediction-master
save_nii_ext.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_nii_ext.m
977
utf_8
b60a98ab7537a883dc3ffef3175f19ae
% Save NIFTI header extension. % % Usage: save_nii_ext(ext, fid) % % ext - struct with NIFTI header extension fields. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function save_nii_ext(ext, fid) if ~exist('ext','var') | ~exist('fid','var') error('Usage: save_nii_ext(ext, fid)'); end if ~isfield(ext,'extension') | ~isfield(ext,'section') | ~isfield(ext,'num_ext') error('Wrong header extension'); end write_ext(ext, fid); return; % save_nii_ext %--------------------------------------------------------------------- function write_ext(ext, fid) fwrite(fid, ext.extension, 'uchar'); for i=1:ext.num_ext fwrite(fid, ext.section(i).esize, 'int32'); fwrite(fid, ext.section(i).ecode, 'int32'); fwrite(fid, ext.section(i).edata, 'uchar'); end return; % write_ext
github
changken1/IDH_Prediction-master
view_nii_menu.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/view_nii_menu.m
14,415
utf_8
32dd591fa1070721f0255f47f6e02510
% Imbed Zoom, Interp, and Info menu to view_nii window. % % Usage: view_nii_menu(fig); % % - Jimmy Shen ([email protected]) % %-------------------------------------------------------------------- function menu_hdl = view_nii_menu(fig, varargin) if isnumeric(fig) menu_hdl = init(fig); return; end menu_hdl = []; switch fig case 'interp' if nargin > 1 fig = varargin{1}; else fig = gcbf; end nii_menu = getappdata(fig, 'nii_menu'); interp_on_state = get(nii_menu.Minterp,'Userdata'); if (interp_on_state == 1) opt.useinterp = 1; view_nii(fig,opt); set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); reset_zoom(fig); else opt.useinterp = 0; view_nii(fig,opt); set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); reset_zoom(fig); end case 'reset_zoom' if nargin > 1 fig = varargin{1}; else fig = gcbf; end reset_zoom(fig); case 'orient' orient; case 'editvox' editvox; case 'img_info' img_info; case 'img_hist' img_hist; case 'save_disp' save_disp; end return % view_nii_menu %-------------------------------------------------------------------- function menu_hdl = init(fig) % search for edit, view menu % nii_menu.Mfile = []; nii_menu.Medit = []; nii_menu.Mview = []; menuitems = findobj(fig, 'type', 'uimenu'); for i=1:length(menuitems) filelabel = get(menuitems(i),'label'); if strcmpi(strrep(filelabel, '&', ''), 'file') nii_menu.Mfile = menuitems(i); end editlabel = get(menuitems(i),'label'); if strcmpi(strrep(editlabel, '&', ''), 'edit') nii_menu.Medit = menuitems(i); end viewlabel = get(menuitems(i),'label'); if strcmpi(strrep(viewlabel, '&', ''), 'view') nii_menu.Mview = menuitems(i); end end set(fig, 'menubar', 'none'); if isempty(nii_menu.Mfile) nii_menu.Mfile = uimenu('Parent',fig, ... 'Label','File'); nii_menu.Mfile_save = uimenu('Parent',nii_menu.Mfile, ... 'Label','Save displayed image as ...', ... 'Callback','view_nii_menu(''save_disp'');'); else nii_menu.Mfile_save = uimenu('Parent',nii_menu.Mfile, ... 'Label','Save displayed image as ...', ... 'separator','on', ... 'Callback','view_nii_menu(''save_disp'');'); end if isempty(nii_menu.Medit) nii_menu.Medit = uimenu('Parent',fig, ... 'Label','Edit'); nii_menu.Medit_orient = uimenu('Parent',nii_menu.Medit, ... 'Label','Convert to RAS orientation', ... 'Callback','view_nii_menu(''orient'');'); nii_menu.Medit_editvox = uimenu('Parent',nii_menu.Medit, ... 'Label','Edit voxel value at crosshair', ... 'Callback','view_nii_menu(''editvox'');'); else nii_menu.Medit_orient = uimenu('Parent',nii_menu.Medit, ... 'Label','Convert to RAS orientation', ... 'separator','on', ... 'Callback','view_nii_menu(''orient'');'); nii_menu.Medit_editvox = uimenu('Parent',nii_menu.Medit, ... 'Label','Edit voxel value at crosshair', ... 'Callback','view_nii_menu(''editvox'');'); end if isempty(nii_menu.Mview) nii_menu.Mview = uimenu('Parent',fig, ... 'Label','View'); nii_menu.Mview_info = uimenu('Parent',nii_menu.Mview, ... 'Label','Image Information', ... 'Callback','view_nii_menu(''img_info'');'); nii_menu.Mview_info = uimenu('Parent',nii_menu.Mview, ... 'Label','Volume Histogram', ... 'Callback','view_nii_menu(''img_hist'');'); else nii_menu.Mview_info = uimenu('Parent',nii_menu.Mview, ... 'Label','Image Information', ... 'separator','on', ... 'Callback','view_nii_menu(''img_info'');'); nii_menu.Mview_info = uimenu('Parent',nii_menu.Mview, ... 'Label','Volume Histogram', ... 'Callback','view_nii_menu(''img_hist'');'); end nii_menu.Mzoom = rri_zoom_menu(fig); nii_menu.Minterp = uimenu('Parent',fig, ... 'Label','Interp on', ... 'Userdata', 1, ... 'Callback','view_nii_menu(''interp'');'); setappdata(fig,'nii_menu',nii_menu); menu_hdl = nii_menu.Minterp; return % init %---------------------------------------------------------------- function reset_zoom(fig) old_handle_vis = get(fig, 'HandleVisibility'); set(fig, 'HandleVisibility', 'on'); nii_view = getappdata(fig, 'nii_view'); nii_menu = getappdata(fig, 'nii_menu'); set(nii_menu.Mzoom,'Userdata',1,'Label','Zoom on'); set(fig,'pointer','arrow'); zoom off; axes(nii_view.handles.axial_axes); setappdata(get(gca,'zlabel'), 'ZOOMAxesData', ... [get(gca, 'xlim') get(gca, 'ylim')]) % zoom reset; % zoom getlimits; zoom out; axes(nii_view.handles.coronal_axes); setappdata(get(gca,'zlabel'), 'ZOOMAxesData', ... [get(gca, 'xlim') get(gca, 'ylim')]) % zoom reset; % zoom getlimits; zoom out; axes(nii_view.handles.sagittal_axes); setappdata(get(gca,'zlabel'), 'ZOOMAxesData', ... [get(gca, 'xlim') get(gca, 'ylim')]) % zoom reset; % zoom getlimits; zoom out; set(fig, 'HandleVisibility', old_handle_vis); return; % reset_zoom %---------------------------------------------------------------- function img_info nii_view = getappdata(gcbf, 'nii_view'); hdr = nii_view.nii.hdr; max_value = num2str(double(max(nii_view.nii.img(:)))); min_value = num2str(double(min(nii_view.nii.img(:)))); dim = sprintf('%d %d %d', double(hdr.dime.dim(2:4))); vox = sprintf('%.3f %.3f %.3f', double(hdr.dime.pixdim(2:4))); if double(hdr.dime.datatype) == 1 type = '1-bit binary'; elseif double(hdr.dime.datatype) == 2 type = '8-bit unsigned integer'; elseif double(hdr.dime.datatype) == 4 type = '16-bit signed integer'; elseif double(hdr.dime.datatype) == 8 type = '32-bit signed integer'; elseif double(hdr.dime.datatype) == 16 type = '32-bit single float'; elseif double(hdr.dime.datatype) == 64 type = '64-bit double precision'; elseif double(hdr.dime.datatype) == 128 type = '24-bit RGB true color'; elseif double(hdr.dime.datatype) == 256 type = '8-bit signed integer'; elseif double(hdr.dime.datatype) == 511 type = '96-bit RGB true color'; elseif double(hdr.dime.datatype) == 512 type = '16-bit unsigned integer'; elseif double(hdr.dime.datatype) == 768 type = '32-bit unsigned integer'; elseif double(hdr.dime.datatype) == 1024 type = '64-bit signed integer'; elseif double(hdr.dime.datatype) == 1280 type = '64-bit unsigned integer'; end msg = {}; msg = [msg {''}]; msg = [msg {['Dimension: [', dim, ']']}]; msg = [msg {''}]; msg = [msg {['Voxel Size: [', vox, ']']}]; msg = [msg {''}]; msg = [msg {['Data Type: [', type, ']']}]; msg = [msg {''}]; msg = [msg {['Max Value: [', max_value, ']']}]; msg = [msg {''}]; msg = [msg {['Min Value: [', min_value, ']']}]; msg = [msg {''}]; if isfield(nii_view.nii, 'fileprefix') if isfield(nii_view.nii, 'filetype') & nii_view.nii.filetype == 2 msg = [msg {['File Name: [', nii_view.nii.fileprefix, '.nii]']}]; msg = [msg {''}]; elseif isfield(nii_view.nii, 'filetype') msg = [msg {['File Name: [', nii_view.nii.fileprefix, '.img]']}]; msg = [msg {''}]; else msg = [msg {['File Prefix: [', nii_view.nii.fileprefix, ']']}]; msg = [msg {''}]; end end h = msgbox(msg, 'Image Information', 'modal'); set(h,'color',[1 1 1]); return; % img_info %---------------------------------------------------------------- function orient fig = gcbf; nii_view = getappdata(fig, 'nii_view'); nii = nii_view.nii; if ~isempty(nii_view.bgimg) msg = 'You can not modify an overlay image'; h = msgbox(msg, 'Error', 'modal'); return; end old_pointer = get(fig,'Pointer'); set(fig,'Pointer','watch'); [nii orient] = rri_orient(nii); if isequal(orient, [1 2 3]) % do nothing set(fig,'Pointer',old_pointer); return; end oldopt = view_nii(fig); opt.command = 'updatenii'; opt.usecolorbar = oldopt.usecolorbar; opt.usepanel = oldopt.usepanel; opt.usecrosshair = oldopt.usecrosshair; opt.usestretch = oldopt.usestretch; opt.useimagesc = oldopt.useimagesc; opt.useinterp = oldopt.useinterp; opt.setarea = oldopt.area; opt.setunit = oldopt.unit; opt.setviewpoint = oldopt.viewpoint; opt.setscanid = oldopt.scanid; opt.setcbarminmax = oldopt.cbarminmax; opt.setcolorindex = oldopt.colorindex; opt.setcolormap = oldopt.colormap; opt.setcolorlevel = oldopt.colorlevel; if isfield(oldopt,'highcolor') opt.sethighcolor = oldopt.highcolor; end view_nii(fig, nii, opt); set(fig,'Pointer',old_pointer); reset_zoom(fig); return; % orient %---------------------------------------------------------------- function editvox fig = gcbf; nii_view = getappdata(fig, 'nii_view'); if ~isempty(nii_view.bgimg) msg = 'You can not modify an overlay image'; h = msgbox(msg, 'Error', 'modal'); return; end nii = nii_view.nii; oldopt = view_nii(fig); sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(nii.img(sag,cor,axi,1,nii_view.scanid)) double(nii.img(sag,cor,axi,2,nii_view.scanid)) double(nii.img(sag,cor,axi,3,nii_view.scanid))]; init_val = sprintf('%7.4g %7.4g %7.4g',imgvalue); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(nii.img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(nii.img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(nii.img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [R G B]; init_val = sprintf('%7.4g %7.4g %7.4g',imgvalue); else imgvalue = double(nii.img(sag,cor,axi,nii_view.scanid)); init_val = sprintf('%.6g',imgvalue); end old_pointer = get(fig,'Pointer'); set(fig,'Pointer','watch'); repeat = 1; while repeat if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 init_val = inputdlg({'Replace the current voxel values with 3 new numbers:'}, ... 'Edit voxel value at crosshair', 1, {num2str(init_val)}); else init_val = inputdlg({'Replace the current voxel value with 1 new number:'}, ... 'Edit voxel value at crosshair', 1, {num2str(init_val)}); end if isempty(init_val) set(fig,'Pointer',old_pointer); return end imgvalue = str2num(init_val{1}); if ( (nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511) ... & length(imgvalue) ~= 3 ) | ... ( (nii_view.nii.hdr.dime.datatype ~= 128 & nii_view.nii.hdr.dime.datatype ~= 511) ... & length(imgvalue) ~= 1 ) % do nothing else repeat = 0; end end if nii_view.nii.hdr.dime.datatype == 128 nii.img(sag,cor,axi,1,nii_view.scanid) = imgvalue(1); nii.img(sag,cor,axi,2,nii_view.scanid) = imgvalue(2); nii.img(sag,cor,axi,3,nii_view.scanid) = imgvalue(3); elseif nii_view.nii.hdr.dime.datatype == 511 nii.img(sag,cor,axi,1,nii_view.scanid) = (imgvalue(1) - nii_view.nii.hdr.dime.glmin) ... / (nii_view.nii.hdr.dime.glmax - nii_view.nii.hdr.dime.glmin); nii.img(sag,cor,axi,2,nii_view.scanid) = (imgvalue(2) - nii_view.nii.hdr.dime.glmin) ... / (nii_view.nii.hdr.dime.glmax - nii_view.nii.hdr.dime.glmin); nii.img(sag,cor,axi,3,nii_view.scanid) = (imgvalue(3) - nii_view.nii.hdr.dime.glmin) ... / (nii_view.nii.hdr.dime.glmax - nii_view.nii.hdr.dime.glmin); else nii.img(sag,cor,axi,nii_view.scanid) = imgvalue; end opt.command = 'updatenii'; opt.usecolorbar = oldopt.usecolorbar; opt.usepanel = oldopt.usepanel; opt.usecrosshair = oldopt.usecrosshair; opt.usestretch = oldopt.usestretch; opt.useimagesc = oldopt.useimagesc; opt.useinterp = oldopt.useinterp; opt.setarea = oldopt.area; opt.setunit = oldopt.unit; opt.setviewpoint = oldopt.viewpoint; opt.setscanid = oldopt.scanid; opt.setcbarminmax = oldopt.cbarminmax; opt.setcolorindex = oldopt.colorindex; opt.setcolormap = oldopt.colormap; opt.setcolorlevel = oldopt.colorlevel; if isfield(oldopt,'highcolor') opt.sethighcolor = oldopt.highcolor; end view_nii(fig, nii, opt); set(fig,'Pointer',old_pointer); reset_zoom(fig); return; % editvox %---------------------------------------------------------------- function save_disp [filename pathname] = uiputfile('*.*', 'Save displayed image as (*.nii or *.img)'); if isequal(filename,0) | isequal(pathname,0) return; else out_imgfile = fullfile(pathname, filename); % original image file end old_pointer = get(gcbf,'Pointer'); set(gcbf,'Pointer','watch'); nii_view = getappdata(gcbf, 'nii_view'); nii = nii_view.nii; try save_nii(nii, out_imgfile); catch msg = 'File can not be saved.'; msgbox(msg, 'File write error', 'modal'); end set(gcbf,'Pointer',old_pointer); return; % save_disp %---------------------------------------------------------------- function img_hist nii_view = getappdata(gcbf, 'nii_view'); N = hist(double(nii_view.nii.img(:)),256); x = linspace(double(min(nii_view.nii.img(:))), double(max(nii_view.nii.img(:))), 256); figure;bar(x,N); set(gcf, 'number', 'off', 'name', 'Volume Histogram'); set(gcf, 'windowstyle', 'modal'); % no zoom ... xspan = max(x) - min(x) + 1; yspan = max(N) + 1; set(gca, 'xlim', [min(x)-xspan/20, max(x)+xspan/20]); set(gca, 'ylim', [-yspan/20, max(N)+yspan/20]); return; % img_hist
github
changken1/IDH_Prediction-master
save_untouch_header_only.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_untouch_header_only.m
2,132
utf_8
5f0515ef6a35f171bc8371d0f3fd365d
% This function is only used to save Analyze or NIfTI header that is % ended with .hdr and loaded by load_untouch_header_only.m. If you % have NIfTI file that is ended with .nii and you want to change its % header only, you can use load_untouch_nii / save_untouch_nii pair. % % Usage: save_untouch_header_only(hdr, new_header_file_name) % % hdr - struct with NIfTI / Analyze header fields, which is obtained from: % hdr = load_untouch_header_only(original_header_file_name) % % new_header_file_name - NIfTI / Analyze header name ended with .hdr. % You can either copy original.img(.gz) to new.img(.gz) manually, % or simply input original.hdr(.gz) in save_untouch_header_only.m % to overwrite the original header. % % - Jimmy Shen ([email protected]) % function save_untouch_header_only(hdr, filename) if ~exist('hdr','var') | isempty(hdr) | ~exist('filename','var') | isempty(filename) error('Usage: save_untouch_header_only(hdr, filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.hdr.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; filename = filename(1:end-3); end end [p,f] = fileparts(filename); fileprefix = fullfile(p, f); write_hdr(hdr, fileprefix); % gzip output file if requested % if exist('gzFile', 'var') gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); end; return % save_untouch_header_only %----------------------------------------------------------------------------------- function write_hdr(hdr, fileprefix) fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if isfield(hdr.hist,'magic') save_untouch_nii_hdr(hdr, fid); else save_untouch0_nii_hdr(hdr, fid); end fclose(fid); return % write_hdr
github
changken1/IDH_Prediction-master
pad_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/pad_nii.m
3,712
utf_8
0b9de8feba6840e2d8ea1ab1752747c7
% PAD_NII: Pad the NIfTI volume from any of the 6 sides % % Usage: nii = pad_nii(nii, [option]) % % Inputs: % % nii - NIfTI volume. % % option - struct instructing how many voxel to be padded from which side. % % option.pad_from_L = ( number of voxel ) % option.pad_from_R = ( number of voxel ) % option.pad_from_P = ( number of voxel ) % option.pad_from_A = ( number of voxel ) % option.pad_from_I = ( number of voxel ) % option.pad_from_S = ( number of voxel ) % option.bg = [0] % % Options description in detail: % ============================== % % pad_from_L: Number of voxels from Left side will be padded. % % pad_from_R: Number of voxels from Right side will be padded. % % pad_from_P: Number of voxels from Posterior side will be padded. % % pad_from_A: Number of voxels from Anterior side will be padded. % % pad_from_I: Number of voxels from Inferior side will be padded. % % pad_from_S: Number of voxels from Superior side will be padded. % % bg: Background intensity, which is 0 by default. % % NIfTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = pad_nii(nii, opt) dims = abs(nii.hdr.dime.dim(2:4)); origin = abs(nii.hdr.hist.originator(1:3)); if isempty(origin) | all(origin == 0) % according to SPM origin = round((dims+1)/2); end pad_from_L = 0; pad_from_R = 0; pad_from_P = 0; pad_from_A = 0; pad_from_I = 0; pad_from_S = 0; bg = 0; if nargin > 1 & ~isempty(opt) if ~isstruct(opt) error('option argument should be a struct'); end if isfield(opt,'pad_from_L') pad_from_L = round(opt.pad_from_L); if pad_from_L >= origin(1) | pad_from_L < 0 error('pad_from_L cannot be negative'); end end if isfield(opt,'pad_from_P') pad_from_P = round(opt.pad_from_P); if pad_from_P >= origin(2) | pad_from_P < 0 error('pad_from_P cannot be negative'); end end if isfield(opt,'pad_from_I') pad_from_I = round(opt.pad_from_I); if pad_from_I >= origin(3) | pad_from_I < 0 error('pad_from_I cannot be negative'); end end if isfield(opt,'pad_from_R') pad_from_R = round(opt.pad_from_R); if pad_from_R > dims(1)-origin(1) | pad_from_R < 0 error('pad_from_R cannot be negative'); end end if isfield(opt,'pad_from_A') pad_from_A = round(opt.pad_from_A); if pad_from_A > dims(2)-origin(2) | pad_from_A < 0 error('pad_from_A cannot be negative'); end end if isfield(opt,'pad_from_S') pad_from_S = round(opt.pad_from_S); if pad_from_S > dims(3)-origin(3) | pad_from_S < 0 error('pad_from_S cannot be negative'); end end if isfield(opt,'bg') bg = opt.bg; end end blk = bg * ones( pad_from_L, dims(2), dims(3) ); nii.img = cat(1, blk, nii.img); blk = bg * ones( pad_from_R, dims(2), dims(3) ); nii.img = cat(1, nii.img, blk); dims = size(nii.img); blk = bg * ones( dims(1), pad_from_P, dims(3) ); nii.img = cat(2, blk, nii.img); blk = bg * ones( dims(1), pad_from_A, dims(3) ); nii.img = cat(2, nii.img, blk); dims = size(nii.img); blk = bg * ones( dims(1), dims(2), pad_from_I ); nii.img = cat(3, blk, nii.img); blk = bg * ones( dims(1), dims(2), pad_from_S ); nii.img = cat(3, nii.img, blk); nii = make_nii(nii.img, nii.hdr.dime.pixdim(2:4), ... [origin(1)+pad_from_L origin(2)+pad_from_P origin(3)+pad_from_I], ... nii.hdr.dime.datatype, nii.hdr.hist.descrip); return;
github
changken1/IDH_Prediction-master
load_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_nii_hdr.m
10,031
utf_8
e95839e314863f7ee463cc2626dd447c
% internal function % - Jimmy Shen ([email protected]) function [hdr, filetype, fileprefix, machine] = load_nii_hdr(fileprefix) if ~exist('fileprefix','var'), error('Usage: [hdr, filetype, fileprefix, machine] = load_nii_hdr(filename)'); end machine = 'ieee-le'; new_ext = 0; if findstr('.nii',fileprefix) & strcmp(fileprefix(end-3:end), '.nii') new_ext = 1; fileprefix(end-3:end)=''; end if findstr('.hdr',fileprefix) & strcmp(fileprefix(end-3:end), '.hdr') fileprefix(end-3:end)=''; end if findstr('.img',fileprefix) & strcmp(fileprefix(end-3:end), '.img') fileprefix(end-3:end)=''; end if new_ext fn = sprintf('%s.nii',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.nii".', fileprefix); error(msg); end else fn = sprintf('%s.hdr',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.hdr".', fileprefix); error(msg); end end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); if fread(fid,1,'int32') == 348 hdr = read_header(fid); fclose(fid); else fclose(fid); % first try reading the opposite endian to 'machine' % switch machine, case 'ieee-le', machine = 'ieee-be'; case 'ieee-be', machine = 'ieee-le'; end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else fseek(fid,0,'bof'); if fread(fid,1,'int32') ~= 348 % Now throw an error % msg = sprintf('File "%s" is corrupted.',fn); error(msg); end hdr = read_header(fid); fclose(fid); end end end if strcmp(hdr.hist.magic, 'n+1') filetype = 2; elseif strcmp(hdr.hist.magic, 'ni1') filetype = 1; else filetype = 0; end return % load_nii_hdr %--------------------------------------------------------------------- function [ dsr ] = read_header(fid) % Original header structures % struct dsr % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ dsr.hk = header_key(fid); dsr.dime = image_dimension(fid); dsr.hist = data_history(fid); % For Analyze data format % if ~strcmp(dsr.hist.magic, 'n+1') & ~strcmp(dsr.hist.magic, 'ni1') dsr.hist.qform_code = 0; dsr.hist.sform_code = 0; end return % read_header %--------------------------------------------------------------------- function [ hk ] = header_key(fid) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ % % int sizeof_header Should be 348. % char regular Must be 'r' to indicate that all images and % volumes are the same size. v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hk.sizeof_hdr = fread(fid, 1,'int32')'; % should be 348! hk.data_type = deblank(fread(fid,10,directchar)'); hk.db_name = deblank(fread(fid,18,directchar)'); hk.extents = fread(fid, 1,'int32')'; hk.session_error = fread(fid, 1,'int16')'; hk.regular = fread(fid, 1,directchar)'; hk.dim_info = fread(fid, 1,'uchar')'; return % header_key %--------------------------------------------------------------------- function [ dime ] = image_dimension(fid) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % /* % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of *pixels* in an image row. % dim[2] Image Y dimension; number of *pixel rows* in slice. % dim[3] Volume Z dimension; number of *slices* in a volume. % dim[4] Time points; number of volumes in database % */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width, mm % pixdim[2] - voxel height, mm % pixdim[3] - slice thickness, mm % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ dime.dim = fread(fid,8,'int16')'; dime.intent_p1 = fread(fid,1,'float32')'; dime.intent_p2 = fread(fid,1,'float32')'; dime.intent_p3 = fread(fid,1,'float32')'; dime.intent_code = fread(fid,1,'int16')'; dime.datatype = fread(fid,1,'int16')'; dime.bitpix = fread(fid,1,'int16')'; dime.slice_start = fread(fid,1,'int16')'; dime.pixdim = fread(fid,8,'float32')'; dime.vox_offset = fread(fid,1,'float32')'; dime.scl_slope = fread(fid,1,'float32')'; dime.scl_inter = fread(fid,1,'float32')'; dime.slice_end = fread(fid,1,'int16')'; dime.slice_code = fread(fid,1,'uchar')'; dime.xyzt_units = fread(fid,1,'uchar')'; dime.cal_max = fread(fid,1,'float32')'; dime.cal_min = fread(fid,1,'float32')'; dime.slice_duration = fread(fid,1,'float32')'; dime.toffset = fread(fid,1,'float32')'; dime.glmax = fread(fid,1,'int32')'; dime.glmin = fread(fid,1,'int32')'; return % image_dimension %--------------------------------------------------------------------- function [ hist ] = data_history(fid) % Original header structures % struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ v6 = version; if str2num(v6(1))<6 directchar = '*char'; else directchar = 'uchar=>char'; end hist.descrip = deblank(fread(fid,80,directchar)'); hist.aux_file = deblank(fread(fid,24,directchar)'); hist.qform_code = fread(fid,1,'int16')'; hist.sform_code = fread(fid,1,'int16')'; hist.quatern_b = fread(fid,1,'float32')'; hist.quatern_c = fread(fid,1,'float32')'; hist.quatern_d = fread(fid,1,'float32')'; hist.qoffset_x = fread(fid,1,'float32')'; hist.qoffset_y = fread(fid,1,'float32')'; hist.qoffset_z = fread(fid,1,'float32')'; hist.srow_x = fread(fid,4,'float32')'; hist.srow_y = fread(fid,4,'float32')'; hist.srow_z = fread(fid,4,'float32')'; hist.intent_name = deblank(fread(fid,16,directchar)'); hist.magic = deblank(fread(fid,4,directchar)'); fseek(fid,253,'bof'); hist.originator = fread(fid, 5,'int16')'; return % data_history
github
changken1/IDH_Prediction-master
save_untouch_slice.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_untouch_slice.m
19,683
utf_8
364468e5dbd3790c1aadf9a768534f1f
% Save back to the original image with a portion of slices that was % loaded by "load_untouch_nii". You can process those slices matrix % in any way, as long as their dimension is not altered. % % Usage: save_untouch_slice(slice, filename, ... % slice_idx, [img_idx], [dim5_idx], [dim6_idx], [dim7_idx]) % % slice - a portion of slices that was loaded by "load_untouch_nii". % This should be a numeric matrix (i.e. only the .img field in the % loaded structure) % % filename - NIfTI or ANALYZE file name. % % slice_idx (depending on slice size) - a numerical array of image % slice indices, which should be the same as that you entered % in "load_untouch_nii" command. % % img_idx (depending on slice size) - a numerical array of image % volume indices, which should be the same as that you entered % in "load_untouch_nii" command. % % dim5_idx (depending on slice size) - a numerical array of 5th % dimension indices, which should be the same as that you entered % in "load_untouch_nii" command. % % dim6_idx (depending on slice size) - a numerical array of 6th % dimension indices, which should be the same as that you entered % in "load_untouch_nii" command. % % dim7_idx (depending on slice size) - a numerical array of 7th % dimension indices, which should be the same as that you entered % in "load_untouch_nii" command. % % Example: % nii = load_nii('avg152T1_LR_nifti.nii'); % save_nii(nii, 'test.nii'); % view_nii(nii); % nii = load_untouch_nii('test.nii','','','','','',[40 51:53]); % nii.img = ones(91,109,4)*122; % save_untouch_slice(nii.img, 'test.nii', [40 51:52]); % nii = load_nii('test.nii'); % view_nii(nii); % % - Jimmy Shen ([email protected]) % function save_untouch_slice(slice, filename, slice_idx, img_idx, dim5_idx, dim6_idx, dim7_idx) if ~exist('slice','var') | ~isnumeric(slice) msg = [char(10) '"slice" argument should be a portion of slices that was loaded' char(10)]; msg = [msg 'by "load_untouch_nii.m". This should be a numeric matrix (i.e.' char(10)]; msg = [msg 'only the .img field in the loaded structure).']; error(msg); end if ~exist('filename','var') | ~exist(filename,'file') error('In order to save back, original NIfTI or ANALYZE file must exist.'); end if ~exist('slice_idx','var') | isempty(slice_idx) | ~isequal(size(slice,3),length(slice_idx)) msg = [char(10) '"slice_idx" is a numerical array of image slice indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; if ~isequal(size(slice,4),1) msg = [char(10) '"img_idx" is a numerical array of image volume indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end elseif ~isequal(size(slice,4),length(img_idx)) msg = [char(10) '"img_idx" is a numerical array of image volume indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end if ~exist('dim5_idx','var') | isempty(dim5_idx) dim5_idx = []; if ~isequal(size(slice,5),1) msg = [char(10) '"dim5_idx" is a numerical array of 5th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end elseif ~isequal(size(slice,5),length(img_idx)) msg = [char(10) '"img_idx" is a numerical array of 5th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end if ~exist('dim6_idx','var') | isempty(dim6_idx) dim6_idx = []; if ~isequal(size(slice,6),1) msg = [char(10) '"dim6_idx" is a numerical array of 6th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end elseif ~isequal(size(slice,6),length(img_idx)) msg = [char(10) '"img_idx" is a numerical array of 6th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end if ~exist('dim7_idx','var') | isempty(dim7_idx) dim7_idx = []; if ~isequal(size(slice,7),1) msg = [char(10) '"dim7_idx" is a numerical array of 7th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end elseif ~isequal(size(slice,7),length(img_idx)) msg = [char(10) '"img_idx" is a numerical array of 7th dimension indices, which' char(10)]; msg = [msg 'should be the same as that you entered in "load_untouch_nii.m"' char(10)]; msg = [msg 'command.']; error(msg); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); if nii.filetype == 0 nii.hdr = load_untouch0_nii_hdr(nii.fileprefix,nii.machine); else nii.hdr = load_untouch_nii_hdr(nii.fileprefix,nii.machine,nii.filetype); end % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); % rmdir(tmpDir,'s'); end [p,f] = fileparts(filename); fileprefix = fullfile(p, f); % fileprefix = nii.fileprefix; filetype = nii.filetype; if ~isequal( nii.hdr.dime.dim(2:3), [size(slice,1),size(slice,2)] ) msg = [char(10) 'The first two dimensions of slice matrix should be the same as' char(10)]; msg = [msg 'the first two dimensions of image loaded by "load_untouch_nii".']; error(msg); end % Save the dataset body % save_untouch_slice_img(slice, nii.hdr, filetype, fileprefix, ... nii.machine, slice_idx,img_idx,dim5_idx,dim6_idx,dim7_idx); % gzip output file if requested % if exist('gzFileName', 'var') [p,f] = fileparts(gzFileName); if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); movefile([fileprefix, '.img.gz']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); movefile([fileprefix, '.hdr.gz']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); movefile([fileprefix, '.nii.gz']); end; rmdir(tmpDir,'s'); end; return % save_untouch_slice %-------------------------------------------------------------------------- function save_untouch_slice_img(slice,hdr,filetype,fileprefix,machine,slice_idx,img_idx,dim5_idx,dim6_idx,dim7_idx) if ~exist('hdr','var') | ~exist('filetype','var') | ~exist('fileprefix','var') | ~exist('machine','var') error('Usage: save_untouch_slice_img(slice,hdr,filetype,fileprefix,machine,slice_idx,[img_idx],[dim5_idx],[dim6_idx],[dim7_idx]);'); end if ~exist('slice_idx','var') | isempty(slice_idx) | hdr.dime.dim(4)<1 slice_idx = []; end if ~exist('img_idx','var') | isempty(img_idx) | hdr.dime.dim(5)<1 img_idx = []; end if ~exist('dim5_idx','var') | isempty(dim5_idx) | hdr.dime.dim(6)<1 dim5_idx = []; end if ~exist('dim6_idx','var') | isempty(dim6_idx) | hdr.dime.dim(7)<1 dim6_idx = []; end if ~exist('dim7_idx','var') | isempty(dim7_idx) | hdr.dime.dim(8)<1 dim7_idx = []; end % check img_idx % if ~isempty(img_idx) & ~isnumeric(img_idx) error('"img_idx" should be a numerical array.'); end if length(unique(img_idx)) ~= length(img_idx) error('Duplicate image index in "img_idx"'); end if ~isempty(img_idx) & (min(img_idx) < 1 | max(img_idx) > hdr.dime.dim(5)) max_range = hdr.dime.dim(5); if max_range == 1 error(['"img_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"img_idx" should be an integer within the range of [' range '].']); end end % check dim5_idx % if ~isempty(dim5_idx) & ~isnumeric(dim5_idx) error('"dim5_idx" should be a numerical array.'); end if length(unique(dim5_idx)) ~= length(dim5_idx) error('Duplicate index in "dim5_idx"'); end if ~isempty(dim5_idx) & (min(dim5_idx) < 1 | max(dim5_idx) > hdr.dime.dim(6)) max_range = hdr.dime.dim(6); if max_range == 1 error(['"dim5_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim5_idx" should be an integer within the range of [' range '].']); end end % check dim6_idx % if ~isempty(dim6_idx) & ~isnumeric(dim6_idx) error('"dim6_idx" should be a numerical array.'); end if length(unique(dim6_idx)) ~= length(dim6_idx) error('Duplicate index in "dim6_idx"'); end if ~isempty(dim6_idx) & (min(dim6_idx) < 1 | max(dim6_idx) > hdr.dime.dim(7)) max_range = hdr.dime.dim(7); if max_range == 1 error(['"dim6_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim6_idx" should be an integer within the range of [' range '].']); end end % check dim7_idx % if ~isempty(dim7_idx) & ~isnumeric(dim7_idx) error('"dim7_idx" should be a numerical array.'); end if length(unique(dim7_idx)) ~= length(dim7_idx) error('Duplicate index in "dim7_idx"'); end if ~isempty(dim7_idx) & (min(dim7_idx) < 1 | max(dim7_idx) > hdr.dime.dim(8)) max_range = hdr.dime.dim(8); if max_range == 1 error(['"dim7_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim7_idx" should be an integer within the range of [' range '].']); end end % check slice_idx % if ~isempty(slice_idx) & ~isnumeric(slice_idx) error('"slice_idx" should be a numerical array.'); end if length(unique(slice_idx)) ~= length(slice_idx) error('Duplicate index in "slice_idx"'); end if ~isempty(slice_idx) & (min(slice_idx) < 1 | max(slice_idx) > hdr.dime.dim(4)) max_range = hdr.dime.dim(4); if max_range == 1 error(['"slice_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"slice_idx" should be an integer within the range of [' range '].']); end end write_image(slice,hdr,filetype,fileprefix,machine,slice_idx,img_idx,dim5_idx,dim6_idx,dim7_idx); return % save_untouch_slice_img %--------------------------------------------------------------------- function write_image(slice,hdr,filetype,fileprefix,machine,slice_idx,img_idx,dim5_idx,dim6_idx,dim7_idx) if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'r+'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end else fid = fopen(sprintf('%s.img',fileprefix),'r+'); if fid < 0, msg = sprintf('Cannot open file %s.img.',fileprefix); error(msg); end end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; otherwise error('This datatype is not supported'); end hdr.dime.dim(find(hdr.dime.dim < 1)) = 1; % move pointer to the start of image block % switch filetype case {0, 1} fseek(fid, 0, 'bof'); case 2 fseek(fid, hdr.dime.vox_offset, 'bof'); end if hdr.dime.datatype == 1 | isequal(hdr.dime.dim(4:8),ones(1,5)) | ... (isempty(img_idx) & isempty(dim5_idx) & isempty(dim6_idx) & isempty(dim7_idx) & isempty(slice_idx)) msg = [char(10) char(10) ' "save_untouch_slice" is used to save back to the original image a' char(10)]; msg = [msg ' portion of slices that were loaded by "load_untouch_nii". You can' char(10)]; msg = [msg ' process those slices matrix in any way, as long as their dimension' char(10)]; msg = [msg ' is not changed.']; error(msg); else d1 = hdr.dime.dim(2); d2 = hdr.dime.dim(3); d3 = hdr.dime.dim(4); d4 = hdr.dime.dim(5); d5 = hdr.dime.dim(6); d6 = hdr.dime.dim(7); d7 = hdr.dime.dim(8); if isempty(slice_idx) slice_idx = 1:d3; end if isempty(img_idx) img_idx = 1:d4; end if isempty(dim5_idx) dim5_idx = 1:d5; end if isempty(dim6_idx) dim6_idx = 1:d6; end if isempty(dim7_idx) dim7_idx = 1:d7; end %ROMAN: begin roman = 1; if(roman) % compute size of one slice % img_siz = prod(hdr.dime.dim(2:3)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end end; %if(roman) % ROMAN: end for i7=1:length(dim7_idx) for i6=1:length(dim6_idx) for i5=1:length(dim5_idx) for t=1:length(img_idx) for s=1:length(slice_idx) % Position is seeked in bytes. To convert dimension size % to byte storage size, hdr.dime.bitpix/8 will be % applied. % pos = sub2ind([d1 d2 d3 d4 d5 d6 d7], 1, 1, slice_idx(s), ... img_idx(t), dim5_idx(i5),dim6_idx(i6),dim7_idx(i7)) -1; pos = pos * hdr.dime.bitpix/8; % ROMAN: begin if(roman) % do nothing else img_siz = prod(hdr.dime.dim(2:3)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end end; % if (roman) % ROMAN: end if filetype == 2 fseek(fid, pos + hdr.dime.vox_offset, 'bof'); else fseek(fid, pos, 'bof'); end % For each frame, fwrite will write precision of value % in img_siz times % fwrite(fid, slice(:,:,s,t,i5,i6,i7), sprintf('*%s',precision)); end end end end end end fclose(fid); return % write_image
github
changken1/IDH_Prediction-master
load_nii_img.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_nii_img.m
12,328
utf_8
b1b9dd2838a8f217b10fefdc8a931d5e
% internal function % - Jimmy Shen ([email protected]) function [img,hdr] = load_nii_img(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB) if ~exist('hdr','var') | ~exist('filetype','var') | ~exist('fileprefix','var') | ~exist('machine','var') error('Usage: [img,hdr] = load_nii_img(hdr,filetype,fileprefix,machine,[img_idx],[dim5_idx],[dim6_idx],[dim7_idx],[old_RGB]);'); end if ~exist('img_idx','var') | isempty(img_idx) | hdr.dime.dim(5)<1 img_idx = []; end if ~exist('dim5_idx','var') | isempty(dim5_idx) | hdr.dime.dim(6)<1 dim5_idx = []; end if ~exist('dim6_idx','var') | isempty(dim6_idx) | hdr.dime.dim(7)<1 dim6_idx = []; end if ~exist('dim7_idx','var') | isempty(dim7_idx) | hdr.dime.dim(8)<1 dim7_idx = []; end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end % check img_idx % if ~isempty(img_idx) & ~isnumeric(img_idx) error('"img_idx" should be a numerical array.'); end if length(unique(img_idx)) ~= length(img_idx) error('Duplicate image index in "img_idx"'); end if ~isempty(img_idx) & (min(img_idx) < 1 | max(img_idx) > hdr.dime.dim(5)) max_range = hdr.dime.dim(5); if max_range == 1 error(['"img_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"img_idx" should be an integer within the range of [' range '].']); end end % check dim5_idx % if ~isempty(dim5_idx) & ~isnumeric(dim5_idx) error('"dim5_idx" should be a numerical array.'); end if length(unique(dim5_idx)) ~= length(dim5_idx) error('Duplicate index in "dim5_idx"'); end if ~isempty(dim5_idx) & (min(dim5_idx) < 1 | max(dim5_idx) > hdr.dime.dim(6)) max_range = hdr.dime.dim(6); if max_range == 1 error(['"dim5_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim5_idx" should be an integer within the range of [' range '].']); end end % check dim6_idx % if ~isempty(dim6_idx) & ~isnumeric(dim6_idx) error('"dim6_idx" should be a numerical array.'); end if length(unique(dim6_idx)) ~= length(dim6_idx) error('Duplicate index in "dim6_idx"'); end if ~isempty(dim6_idx) & (min(dim6_idx) < 1 | max(dim6_idx) > hdr.dime.dim(7)) max_range = hdr.dime.dim(7); if max_range == 1 error(['"dim6_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim6_idx" should be an integer within the range of [' range '].']); end end % check dim7_idx % if ~isempty(dim7_idx) & ~isnumeric(dim7_idx) error('"dim7_idx" should be a numerical array.'); end if length(unique(dim7_idx)) ~= length(dim7_idx) error('Duplicate index in "dim7_idx"'); end if ~isempty(dim7_idx) & (min(dim7_idx) < 1 | max(dim7_idx) > hdr.dime.dim(8)) max_range = hdr.dime.dim(8); if max_range == 1 error(['"dim7_idx" should be 1.']); else range = ['1 ' num2str(max_range)]; error(['"dim7_idx" should be an integer within the range of [' range '].']); end end [img,hdr] = read_image(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB); return % load_nii_img %--------------------------------------------------------------------- function [img,hdr] = read_image(hdr,filetype,fileprefix,machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB) switch filetype case {0, 1} fn = [fileprefix '.img']; case 2 fn = [fileprefix '.nii']; end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 1, hdr.dime.bitpix = 1; precision = 'ubit1'; case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 32, hdr.dime.bitpix = 64; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; case 1792, hdr.dime.bitpix = 128; precision = 'float64'; otherwise error('This datatype is not supported'); end hdr.dime.dim(find(hdr.dime.dim < 1)) = 1; % move pointer to the start of image block % switch filetype case {0, 1} fseek(fid, 0, 'bof'); case 2 fseek(fid, hdr.dime.vox_offset, 'bof'); end % Load whole image block for old Analyze format or binary image; % otherwise, load images that are specified in img_idx, dim5_idx, % dim6_idx, and dim7_idx % % For binary image, we have to read all because pos can not be % seeked in bit and can not be calculated the way below. % if hdr.dime.datatype == 1 | isequal(hdr.dime.dim(5:8),ones(1,4)) | ... (isempty(img_idx) & isempty(dim5_idx) & isempty(dim6_idx) & isempty(dim7_idx)) % For each frame, precision of value will be read % in img_siz times, where img_siz is only the % dimension size of an image, not the byte storage % size of an image. % img_siz = prod(hdr.dime.dim(2:8)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end img = fread(fid, img_siz, sprintf('*%s',precision)); d1 = hdr.dime.dim(2); d2 = hdr.dime.dim(3); d3 = hdr.dime.dim(4); d4 = hdr.dime.dim(5); d5 = hdr.dime.dim(6); d6 = hdr.dime.dim(7); d7 = hdr.dime.dim(8); if isempty(img_idx) img_idx = 1:d4; end if isempty(dim5_idx) dim5_idx = 1:d5; end if isempty(dim6_idx) dim6_idx = 1:d6; end if isempty(dim7_idx) dim7_idx = 1:d7; end else d1 = hdr.dime.dim(2); d2 = hdr.dime.dim(3); d3 = hdr.dime.dim(4); d4 = hdr.dime.dim(5); d5 = hdr.dime.dim(6); d6 = hdr.dime.dim(7); d7 = hdr.dime.dim(8); if isempty(img_idx) img_idx = 1:d4; end if isempty(dim5_idx) dim5_idx = 1:d5; end if isempty(dim6_idx) dim6_idx = 1:d6; end if isempty(dim7_idx) dim7_idx = 1:d7; end % compute size of one image % img_siz = prod(hdr.dime.dim(2:4)); % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img_siz = img_siz * 2; end %MPH: For RGB24, voxel values include 3 separate color planes % if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 img_siz = img_siz * 3; end % preallocate img img = zeros(img_siz, length(img_idx)*length(dim5_idx)*length(dim6_idx)*length(dim7_idx) ); currentIndex = 1; for i7=1:length(dim7_idx) for i6=1:length(dim6_idx) for i5=1:length(dim5_idx) for t=1:length(img_idx) % Position is seeked in bytes. To convert dimension size % to byte storage size, hdr.dime.bitpix/8 will be % applied. % pos = sub2ind([d1 d2 d3 d4 d5 d6 d7], 1, 1, 1, ... img_idx(t), dim5_idx(i5),dim6_idx(i6),dim7_idx(i7)) -1; pos = pos * hdr.dime.bitpix/8; if filetype == 2 fseek(fid, pos + hdr.dime.vox_offset, 'bof'); else fseek(fid, pos, 'bof'); end % For each frame, fread will read precision of value % in img_siz times % img(:,currentIndex) = fread(fid, img_siz, sprintf('*%s',precision)); currentIndex = currentIndex +1; end end end end end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 img = reshape(img, [2, length(img)/2]); img = complex(img(1,:)', img(2,:)'); end fclose(fid); % Update the global min and max values % hdr.dime.glmax = double(max(img(:))); hdr.dime.glmin = double(min(img(:))); % old_RGB treat RGB slice by slice, now it is treated voxel by voxel % if old_RGB & hdr.dime.datatype == 128 & hdr.dime.bitpix == 24 % remove squeeze img = (reshape(img, [hdr.dime.dim(2:3) 3 hdr.dime.dim(4) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [1 2 4 3 5 6 7 8]); elseif hdr.dime.datatype == 128 & hdr.dime.bitpix == 24 % remove squeeze img = (reshape(img, [3 hdr.dime.dim(2:4) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [2 3 4 1 5 6 7 8]); elseif hdr.dime.datatype == 511 & hdr.dime.bitpix == 96 img = double(img(:)); img = single((img - min(img))/(max(img) - min(img))); % remove squeeze img = (reshape(img, [3 hdr.dime.dim(2:4) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); img = permute(img, [2 3 4 1 5 6 7 8]); else % remove squeeze img = (reshape(img, [hdr.dime.dim(2:4) length(img_idx) length(dim5_idx) length(dim6_idx) length(dim7_idx)])); end if ~isempty(img_idx) hdr.dime.dim(5) = length(img_idx); end if ~isempty(dim5_idx) hdr.dime.dim(6) = length(dim5_idx); end if ~isempty(dim6_idx) hdr.dime.dim(7) = length(dim6_idx); end if ~isempty(dim7_idx) hdr.dime.dim(8) = length(dim7_idx); end return % read_image
github
changken1/IDH_Prediction-master
bresenham_line3d.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/bresenham_line3d.m
4,493
utf_8
c19f06df423676afeb59762ac55c0c2f
% Generate X Y Z coordinates of a 3D Bresenham's line between % two given points. % % A very useful application of this algorithm can be found in the % implementation of Fischer's Bresenham interpolation method in my % another program that can rotate three dimensional image volume % with an affine matrix: % http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=21080 % % Usage: [X Y Z] = bresenham_line3d(P1, P2, [precision]); % % P1 - vector for Point1, where P1 = [x1 y1 z1] % % P2 - vector for Point2, where P2 = [x2 y2 z2] % % precision (optional) - Although according to Bresenham's line % algorithm, point coordinates x1 y1 z1 and x2 y2 z2 should % be integer numbers, this program extends its limit to all % real numbers. If any of them are floating numbers, you % should specify how many digits of decimal that you would % like to preserve. Be aware that the length of output X Y % Z coordinates will increase in 10 times for each decimal % digit that you want to preserve. By default, the precision % is 0, which means that they will be rounded to the nearest % integer. % % X - a set of x coordinates on Bresenham's line % % Y - a set of y coordinates on Bresenham's line % % Z - a set of z coordinates on Bresenham's line % % Therefore, all points in XYZ set (i.e. P(i) = [X(i) Y(i) Z(i)]) % will constitute the Bresenham's line between P1 and P1. % % Example: % P1 = [12 37 6]; P2 = [46 3 35]; % [X Y Z] = bresenham_line3d(P1, P2); % figure; plot3(X,Y,Z,'s','markerface','b'); % % This program is ported to MATLAB from: % % B.Pendleton. line3d - 3D Bresenham's (a 3D line drawing algorithm) % ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d, 1992 % % Which is also referenced by: % % Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid % Transformations to Volume Data, WSCG2004 Conference. % http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf % % - Jimmy Shen ([email protected]) % function [X,Y,Z] = bresenham_line3d(P1, P2, precision) if ~exist('precision','var') | isempty(precision) | round(precision) == 0 precision = 0; P1 = round(P1); P2 = round(P2); else precision = round(precision); P1 = round(P1*(10^precision)); P2 = round(P2*(10^precision)); end d = max(abs(P2-P1)+1); X = zeros(1, d); Y = zeros(1, d); Z = zeros(1, d); x1 = P1(1); y1 = P1(2); z1 = P1(3); x2 = P2(1); y2 = P2(2); z2 = P2(3); dx = x2 - x1; dy = y2 - y1; dz = z2 - z1; ax = abs(dx)*2; ay = abs(dy)*2; az = abs(dz)*2; sx = sign(dx); sy = sign(dy); sz = sign(dz); x = x1; y = y1; z = z1; idx = 1; if(ax>=max(ay,az)) % x dominant yd = ay - ax/2; zd = az - ax/2; while(1) X(idx) = x; Y(idx) = y; Z(idx) = z; idx = idx + 1; if(x == x2) % end break; end if(yd >= 0) % move along y y = y + sy; yd = yd - ax; end if(zd >= 0) % move along z z = z + sz; zd = zd - ax; end x = x + sx; % move along x yd = yd + ay; zd = zd + az; end elseif(ay>=max(ax,az)) % y dominant xd = ax - ay/2; zd = az - ay/2; while(1) X(idx) = x; Y(idx) = y; Z(idx) = z; idx = idx + 1; if(y == y2) % end break; end if(xd >= 0) % move along x x = x + sx; xd = xd - ay; end if(zd >= 0) % move along z z = z + sz; zd = zd - ay; end y = y + sy; % move along y xd = xd + ax; zd = zd + az; end elseif(az>=max(ax,ay)) % z dominant xd = ax - az/2; yd = ay - az/2; while(1) X(idx) = x; Y(idx) = y; Z(idx) = z; idx = idx + 1; if(z == z2) % end break; end if(xd >= 0) % move along x x = x + sx; xd = xd - az; end if(yd >= 0) % move along y y = y + sy; yd = yd - az; end z = z + sz; % move along z xd = xd + ax; yd = yd + ay; end end if precision ~= 0 X = X/(10^precision); Y = Y/(10^precision); Z = Z/(10^precision); end return; % bresenham_line3d
github
changken1/IDH_Prediction-master
make_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/make_nii.m
6,849
utf_8
3c7c8b81655c111a9ce4b82086bde4f5
% Make NIfTI structure specified by an N-D matrix. Usually, N is 3 for % 3D matrix [x y z], or 4 for 4D matrix with time series [x y z t]. % Optional parameters can also be included, such as: voxel_size, % origin, datatype, and description. % % Once the NIfTI structure is made, it can be saved into NIfTI file % using "save_nii" command (for more detail, type: help save_nii). % % Usage: nii = make_nii(img, [voxel_size], [origin], [datatype], [description]) % % Where: % % img: Usually, img is a 3D matrix [x y z], or a 4D % matrix with time series [x y z t]. However, % NIfTI allows a maximum of 7D matrix. When the % image is in RGB format, make sure that the size % of 4th dimension is always 3 (i.e. [R G B]). In % that case, make sure that you must specify RGB % datatype, which is either 128 or 511. % % voxel_size (optional): Voxel size in millimeter for each % dimension. Default is [1 1 1]. % % origin (optional): The AC origin. Default is [0 0 0]. % % datatype (optional): Storage data type: % 2 - uint8, 4 - int16, 8 - int32, 16 - float32, % 32 - complex64, 64 - float64, 128 - RGB24, % 256 - int8, 511 - RGB96, 512 - uint16, % 768 - uint32, 1792 - complex128 % Default will use the data type of 'img' matrix % For RGB image, you must specify it to either 128 % or 511. % % description (optional): Description of data. Default is ''. % % e.g.: % origin = [33 44 13]; datatype = 64; % nii = make_nii(img, [], origin, datatype); % default voxel_size % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = make_nii(varargin) nii.img = varargin{1}; dims = size(nii.img); dims = [length(dims) dims ones(1,8)]; dims = dims(1:8); voxel_size = [0 ones(1,7)]; origin = zeros(1,5); descrip = ''; switch class(nii.img) case 'uint8' datatype = 2; case 'int16' datatype = 4; case 'int32' datatype = 8; case 'single' if isreal(nii.img) datatype = 16; else datatype = 32; end case 'double' if isreal(nii.img) datatype = 64; else datatype = 1792; end case 'int8' datatype = 256; case 'uint16' datatype = 512; case 'uint32' datatype = 768; otherwise error('Datatype is not supported by make_nii.'); end if nargin > 1 & ~isempty(varargin{2}) voxel_size(2:4) = double(varargin{2}); end if nargin > 2 & ~isempty(varargin{3}) origin(1:3) = double(varargin{3}); end if nargin > 3 & ~isempty(varargin{4}) datatype = double(varargin{4}); if datatype == 128 | datatype == 511 dims(5) = []; dims(1) = dims(1) - 1; dims = [dims 1]; end end if nargin > 4 & ~isempty(varargin{5}) descrip = varargin{5}; end if ndims(nii.img) > 7 error('NIfTI only allows a maximum of 7 Dimension matrix.'); end maxval = round(double(max(nii.img(:)))); minval = round(double(min(nii.img(:)))); nii.hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval); switch nii.hdr.dime.datatype case 2 nii.img = uint8(nii.img); case 4 nii.img = int16(nii.img); case 8 nii.img = int32(nii.img); case 16 nii.img = single(nii.img); case 32 nii.img = single(nii.img); case 64 nii.img = double(nii.img); case 128 nii.img = uint8(nii.img); case 256 nii.img = int8(nii.img); case 511 img = double(nii.img(:)); img = single((img - min(img))/(max(img) - min(img))); nii.img = reshape(img, size(nii.img)); nii.hdr.dime.glmax = double(max(img)); nii.hdr.dime.glmin = double(min(img)); case 512 nii.img = uint16(nii.img); case 768 nii.img = uint32(nii.img); case 1792 nii.img = double(nii.img); otherwise error('Datatype is not supported by make_nii.'); end return; % make_nii %--------------------------------------------------------------------- function hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval) hdr.hk = header_key; hdr.dime = image_dimension(dims, voxel_size, datatype, maxval, minval); hdr.hist = data_history(origin, descrip); return; % make_header %--------------------------------------------------------------------- function hk = header_key hk.sizeof_hdr = 348; % must be 348! hk.data_type = ''; hk.db_name = ''; hk.extents = 0; hk.session_error = 0; hk.regular = 'r'; hk.dim_info = 0; return; % header_key %--------------------------------------------------------------------- function dime = image_dimension(dims, voxel_size, datatype, maxval, minval) dime.dim = dims; dime.intent_p1 = 0; dime.intent_p2 = 0; dime.intent_p3 = 0; dime.intent_code = 0; dime.datatype = datatype; switch dime.datatype case 2, dime.bitpix = 8; precision = 'uint8'; case 4, dime.bitpix = 16; precision = 'int16'; case 8, dime.bitpix = 32; precision = 'int32'; case 16, dime.bitpix = 32; precision = 'float32'; case 32, dime.bitpix = 64; precision = 'float32'; case 64, dime.bitpix = 64; precision = 'float64'; case 128 dime.bitpix = 24; precision = 'uint8'; case 256 dime.bitpix = 8; precision = 'int8'; case 511 dime.bitpix = 96; precision = 'float32'; case 512 dime.bitpix = 16; precision = 'uint16'; case 768 dime.bitpix = 32; precision = 'uint32'; case 1792, dime.bitpix = 128; precision = 'float64'; otherwise error('Datatype is not supported by make_nii.'); end dime.slice_start = 0; dime.pixdim = voxel_size; dime.vox_offset = 0; dime.scl_slope = 0; dime.scl_inter = 0; dime.slice_end = 0; dime.slice_code = 0; dime.xyzt_units = 0; dime.cal_max = 0; dime.cal_min = 0; dime.slice_duration = 0; dime.toffset = 0; dime.glmax = maxval; dime.glmin = minval; return; % image_dimension %--------------------------------------------------------------------- function hist = data_history(origin, descrip) hist.descrip = descrip; hist.aux_file = 'none'; hist.qform_code = 0; hist.sform_code = 0; hist.quatern_b = 0; hist.quatern_c = 0; hist.quatern_d = 0; hist.qoffset_x = 0; hist.qoffset_y = 0; hist.qoffset_z = 0; hist.srow_x = zeros(1,4); hist.srow_y = zeros(1,4); hist.srow_z = zeros(1,4); hist.intent_name = ''; hist.magic = ''; hist.originator = origin; return; % data_history
github
changken1/IDH_Prediction-master
verify_nii_ext.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/verify_nii_ext.m
1,676
utf_8
db3d32ecba688905185f5ed01b409fd1
% Verify NIFTI header extension to make sure that each extension section % must be an integer multiple of 16 byte long that includes the first 8 % bytes of esize and ecode. If the length of extension section is not the % above mentioned case, edata should be padded with all 0. % % Usage: [ext, esize_total] = verify_nii_ext(ext) % % ext - Structure of NIFTI header extension, which includes num_ext, % and all the extended header sections in the header extension. % Each extended header section will have its esize, ecode, and % edata, where edata can be plain text, xml, or any raw data % that was saved in the extended header section. % % esize_total - Sum of all esize variable in all header sections. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function [ext, esize_total] = verify_nii_ext(ext) if ~isfield(ext, 'section') error('Incorrect NIFTI header extension structure.'); elseif ~isfield(ext, 'num_ext') ext.num_ext = length(ext.section); elseif ~isfield(ext, 'extension') ext.extension = [1 0 0 0]; end esize_total = 0; for i=1:ext.num_ext if ~isfield(ext.section(i), 'ecode') | ~isfield(ext.section(i), 'edata') error('Incorrect NIFTI header extension structure.'); end ext.section(i).esize = ceil((length(ext.section(i).edata)+8)/16)*16; ext.section(i).edata = ... [ext.section(i).edata ... zeros(1,ext.section(i).esize-length(ext.section(i).edata)-8)]; esize_total = esize_total + ext.section(i).esize; end return % verify_nii_ext
github
changken1/IDH_Prediction-master
get_nii_frame.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/get_nii_frame.m
4,333
utf_8
8b0cba9d07733a6f82753b0c40b51107
% Return time frame of a NIFTI dataset. Support both *.nii and % *.hdr/*.img file extension. If file extension is not provided, % *.hdr/*.img will be used as default. % % It is a lightweighted "load_nii_hdr", and is equivalent to % hdr.dime.dim(5) % % Usage: [ total_scan ] = get_nii_frame(filename) % % filename - NIFTI file name. % % Returned values: % % total_scan - total number of image scans for the time frame % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function [ total_scan ] = get_nii_frame(filename) if ~exist('filename','var'), error('Usage: [ total_scan ] = get_nii_frame(filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end fileprefix = filename; machine = 'ieee-le'; new_ext = 0; if findstr('.nii',fileprefix) & strcmp(fileprefix(end-3:end), '.nii') new_ext = 1; fileprefix(end-3:end)=''; end if findstr('.hdr',fileprefix) & strcmp(fileprefix(end-3:end), '.hdr') fileprefix(end-3:end)=''; end if findstr('.img',fileprefix) & strcmp(fileprefix(end-3:end), '.img') fileprefix(end-3:end)=''; end if new_ext fn = sprintf('%s.nii',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.nii".', fileprefix); error(msg); end else fn = sprintf('%s.hdr',fileprefix); if ~exist(fn) msg = sprintf('Cannot find file "%s.hdr".', fileprefix); error(msg); end end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else hdr = read_header(fid); fclose(fid); end if hdr.sizeof_hdr ~= 348 % first try reading the opposite endian to 'machine' switch machine, case 'ieee-le', machine = 'ieee-be'; case 'ieee-be', machine = 'ieee-le'; end fid = fopen(fn,'r',machine); if fid < 0, msg = sprintf('Cannot open file %s.',fn); error(msg); else hdr = read_header(fid); fclose(fid); end end if hdr.sizeof_hdr ~= 348 % Now throw an error msg = sprintf('File "%s" is corrupted.',fn); error(msg); end total_scan = hdr.dim(5); % Clean up after gunzip % if exist('gzFileName', 'var') rmdir(tmpDir,'s'); end return; % get_nii_frame %--------------------------------------------------------------------- function [ dsr ] = read_header(fid) fseek(fid,0,'bof'); dsr.sizeof_hdr = fread(fid,1,'int32')'; % should be 348! fseek(fid,40,'bof'); dsr.dim = fread(fid,8,'int16')'; return; % read_header
github
changken1/IDH_Prediction-master
flip_lr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/flip_lr.m
3,484
utf_8
a0b2d0189d90339a841863efeb60681a
% When you load any ANALYZE or NIfTI file with 'load_nii.m', and view % it with 'view_nii.m', you may find that the image is L-R flipped. % This is because of the confusion of radiological and neurological % convention in the medical image before NIfTI format is adopted. You % can find more details from: % % http://www.rotman-baycrest.on.ca/~jimmy/UseANALYZE.htm % % Sometime, people even want to convert RAS (standard orientation) back % to LAS orientation to satisfy the legend programs or processes. This % program is only written for those purpose. So PLEASE BE VERY CAUTIOUS % WHEN USING THIS 'FLIP_LR.M' PROGRAM. % % With 'flip_lr.m', you can convert any ANALYZE or NIfTI (no matter % 3D or 4D) file to a flipped NIfTI file. This is implemented simply % by flipping the affine matrix in the NIfTI header. Since the L-R % orientation is determined there, so the image will be flipped. % % Usage: flip_lr(original_fn, flipped_fn, [old_RGB],[tolerance],[preferredForm]) % % original_fn - filename of the original ANALYZE or NIfTI (3D or 4D) file % % flipped_fn - filename of the L-R flipped NIfTI file % % old_RGB (optional) - a scale number to tell difference of new RGB24 % from old RGB24. New RGB24 uses RGB triple sequentially for each % voxel, like [R1 G1 B1 R2 G2 B2 ...]. Analyze 6.0 from AnalyzeDirect % uses old RGB24, in a way like [R1 R2 ... G1 G2 ... B1 B2 ...] for % each slices. If the image that you view is garbled, try to set % old_RGB variable to 1 and try again, because it could be in % old RGB24. It will be set to 0, if it is default or empty. % % tolerance (optional) - distortion allowed for non-orthogonal rotation % or shearing in NIfTI affine matrix. It will be set to 0.1 (10%), % if it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % Example: flip_lr('avg152T1_LR_nifti.nii', 'flipped_lr.nii'); % flip_lr('avg152T1_RL_nifti.nii', 'flipped_rl.nii'); % % You will find that 'avg152T1_LR_nifti.nii' and 'avg152T1_RL_nifti.nii' % are the same, and 'flipped_lr.nii' and 'flipped_rl.nii' are also the % the same, but they are L-R flipped from 'avg152T1_*'. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function flip_lr(original_fn, flipped_fn, old_RGB, tolerance, preferredForm) if ~exist('original_fn','var') | ~exist('flipped_fn','var') error('Usage: flip_lr(original_fn, flipped_fn, [old_RGB],[tolerance])'); end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end nii = load_nii(original_fn, [], [], [], [], old_RGB, tolerance, preferredForm); M = diag(nii.hdr.dime.pixdim(2:5)); M(1:3,4) = -M(1:3,1:3)*(nii.hdr.hist.originator(1:3)-1)'; M(1,:) = -1*M(1,:); nii.hdr.hist.sform_code = 1; nii.hdr.hist.srow_x = M(1,:); nii.hdr.hist.srow_y = M(2,:); nii.hdr.hist.srow_z = M(3,:); save_nii(nii, flipped_fn); return; % flip_lr
github
changken1/IDH_Prediction-master
save_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_nii.m
9,404
utf_8
88aa93174482539fe993ac335fb01541
% Save NIFTI dataset. Support both *.nii and *.hdr/*.img file extension. % If file extension is not provided, *.hdr/*.img will be used as default. % % Usage: save_nii(nii, filename, [old_RGB]) % % nii.hdr - struct with NIFTI header fields (from load_nii.m or make_nii.m) % % nii.img - 3D (or 4D) matrix of NIFTI data. % % filename - NIFTI file name. % % old_RGB - an optional boolean variable to handle special RGB data % sequence [R1 R2 ... G1 G2 ... B1 B2 ...] that is used only by % AnalyzeDirect (Analyze Software). Since both NIfTI and Analyze % file format use RGB triple [R1 G1 B1 R2 G2 B2 ...] sequentially % for each voxel, this variable is set to FALSE by default. If you % would like the saved image only to be opened by AnalyzeDirect % Software, set old_RGB to TRUE (or 1). It will be set to 0, if it % is default or empty. % % Tip: to change the data type, set nii.hdr.dime.datatype, % and nii.hdr.dime.bitpix to: % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % - "old_RGB" related codes in "save_nii.m" are added by Mike Harms (2006.06.28) % function save_nii(nii, fileprefix, old_RGB) if ~exist('nii','var') | isempty(nii) | ~isfield(nii,'hdr') | ... ~isfield(nii,'img') | ~exist('fileprefix','var') | isempty(fileprefix) error('Usage: save_nii(nii, filename, [old_RGB])'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''save_untouch_nii.m'' for the untouched structure.'); end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(fileprefix) > 2 & strcmp(fileprefix(end-2:end), '.gz') if ~strcmp(fileprefix(end-6:end), '.img.gz') & ... ~strcmp(fileprefix(end-6:end), '.hdr.gz') & ... ~strcmp(fileprefix(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; fileprefix = fileprefix(1:end-3); end end filetype = 1; % Note: fileprefix is actually the filename you want to save % if findstr('.nii',fileprefix) & strcmp(fileprefix(end-3:end), '.nii') filetype = 2; fileprefix(end-3:end)=''; end if findstr('.hdr',fileprefix) & strcmp(fileprefix(end-3:end), '.hdr') fileprefix(end-3:end)=''; end if findstr('.img',fileprefix) & strcmp(fileprefix(end-3:end), '.img') fileprefix(end-3:end)=''; end write_nii(nii, filetype, fileprefix, old_RGB); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; if filetype == 1 % So earlier versions of SPM can also open it with correct originator % M=[[diag(nii.hdr.dime.pixdim(2:4)) -[nii.hdr.hist.originator(1:3).*nii.hdr.dime.pixdim(2:4)]'];[0 0 0 1]]; save([fileprefix '.mat'], 'M'); end return % save_nii %----------------------------------------------------------------------------------- function write_nii(nii, filetype, fileprefix, old_RGB) hdr = nii.hdr; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 511, hdr.dime.bitpix = int16(96); precision = 'float32'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end hdr.dime.glmax = round(double(max(nii.img(:)))); hdr.dime.glmin = round(double(min(nii.img(:)))); if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end ScanDim = double(hdr.dime.dim(5)); % t SliceDim = double(hdr.dime.dim(4)); % z RowDim = double(hdr.dime.dim(3)); % y PixelDim = double(hdr.dime.dim(2)); % x SliceSz = double(hdr.dime.pixdim(4)); RowSz = double(hdr.dime.pixdim(3)); PixelSz = double(hdr.dime.pixdim(2)); x = 1:PixelDim; if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end if old_RGB nii.img = permute(nii.img, [1 2 4 3 5 6 7 8]); else nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end end if double(hdr.dime.datatype) == 511 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end if old_RGB nii.img = permute(nii.img, [1 2 4 3 5 6 7 8]); else nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end fwrite(fid, nii.img, precision); % fwrite(fid, nii.img, precision, skip_bytes); % error using skip fclose(fid); return; % write_nii
github
changken1/IDH_Prediction-master
rri_file_menu.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_file_menu.m
3,974
utf_8
1ec91620ceb4108dde9a63945380028f
% Imbed a file menu to any figure. If file menu exist, it will append % to the existing file menu. This file menu includes: Copy to clipboard, % print, save, close etc. % % Usage: rri_file_menu(fig); % % rri_file_menu(fig,0) means no 'Close' menu. % % - Jimmy Shen ([email protected]) % %-------------------------------------------------------------------- function rri_file_menu(action, varargin) if isnumeric(action) fig = action; action = 'init'; end % clear the message line, % h = findobj(gcf,'Tag','MessageLine'); set(h,'String',''); if ~strcmp(action, 'init') set(gcbf, 'InvertHardcopy','off'); % set(gcbf, 'PaperPositionMode','auto'); end switch action case {'init'} if nargin > 1 init(fig, 1); % no 'close' menu else init(fig, 0); end case {'print_fig'} printdlg(gcbf); case {'copy_fig'} copy_fig; case {'export_fig'} export_fig; end return % rri_file_menu %------------------------------------------------ % % Create (or append) File menu % function init(fig, no_close) % search for file menu % h_file = []; menuitems = findobj(fig, 'type', 'uimenu'); for i=1:length(menuitems) filelabel = get(menuitems(i),'label'); if strcmpi(strrep(filelabel, '&', ''), 'file') h_file = menuitems(i); break; end end set(fig, 'menubar', 'none'); if isempty(h_file) if isempty(menuitems) h_file = uimenu('parent', fig, 'label', 'File'); else h_file = uimenu('parent', fig, 'label', 'Copy Figure'); end h1 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''copy_fig'');', ... 'label','Copy to Clipboard'); else h1 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''copy_fig'');', ... 'separator','on', ... 'label','Copy to Clipboard'); end h2 = uimenu(h_file, ... 'callback','pagesetupdlg(gcbf);', ... 'label','Page Setup...'); h2 = uimenu(h_file, ... 'callback','printpreview(gcbf);', ... 'label','Print Preview...'); h2 = uimenu('parent', h_file, ... 'callback','printdlg(gcbf);', ... 'label','Print Figure ...'); h2 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''export_fig'');', ... 'label','Save Figure ...'); arch = computer; if ~strcmpi(arch(1:2),'PC') set(h1, 'enable', 'off'); end if ~no_close h1 = uimenu('parent', h_file, ... 'callback','close(gcbf);', ... 'separator','on', ... 'label','Close'); end return; % init %------------------------------------------------ % % Copy to clipboard % function copy_fig arch = computer; if(~strcmpi(arch(1:2),'PC')) error('copy to clipboard can only be used under MS Windows'); return; end print -noui -dbitmap; return % copy_fig %------------------------------------------------ % % Save as an image file % function export_fig curr = pwd; if isempty(curr) curr = filesep; end [selected_file, selected_path] = rri_select_file(curr,'Save As'); if isempty(selected_file) | isempty(selected_path) return; end filename = [selected_path selected_file]; if(exist(filename,'file')==2) % file exist dlg_title = 'Confirm File Overwrite'; msg = ['File ',filename,' exist. Are you sure you want to overwrite it?']; response = questdlg(msg,dlg_title,'Yes','No','Yes'); if(strcmp(response,'No')) return; end end old_pointer = get(gcbf,'pointer'); set(gcbf,'pointer','watch'); try saveas(gcbf,filename); catch msg = 'ERROR: Cannot save file'; set(findobj(gcf,'Tag','MessageLine'),'String',msg); end set(gcbf,'pointer',old_pointer); return; % export_fig
github
changken1/IDH_Prediction-master
reslice_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/reslice_nii.m
9,817
utf_8
05783cd4f127a22486db67a9cc89ad2a
% The basic application of the 'reslice_nii.m' program is to perform % any 3D affine transform defined by a NIfTI format image. % % In addition, the 'reslice_nii.m' program can also be applied to % generate an isotropic image from either a NIfTI format image or % an ANALYZE format image. % % The resliced NIfTI file will always be in RAS orientation. % % This program only supports real integer or floating-point data type. % For other data type, the program will exit with an error message % "Transform of this NIFTI data is not supported by the program". % % Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], ... % [method], [img_idx], [preferredForm]); % % old_fn - filename for original NIfTI file % % new_fn - filename for resliced NIfTI file % % voxel_size (optional) - size of a voxel in millimeter along x y z % direction for resliced NIfTI file. 'voxel_size' will use % the minimum voxel_size in original NIfTI header, % if it is default or empty. % % verbose (optional) - 1, 0 % 1: show transforming progress in percentage % 2: progress will not be displayed % 'verbose' is 1 if it is default or empty. % % bg (optional) - background voxel intensity in any extra corner that % is caused by 3D interpolation. 0 in most cases. 'bg' % will be the average of two corner voxel intensities % in original image volume, if it is default or empty. % % method (optional) - 1, 2, or 3 % 1: for Trilinear interpolation % 2: for Nearest Neighbor interpolation % 3: for Fischer's Bresenham interpolation % 'method' is 1 if it is default or empty. % % img_idx (optional) - a numerical array of image volume indices. Only % the specified volumes will be loaded. All available image % volumes will be loaded, if it is default or empty. % % The number of images scans can be obtained from get_nii_frame.m, % or simply: hdr.dime.dim(5). % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function reslice_nii(old_fn, new_fn, voxel_size, verbose, bg, method, img_idx, preferredForm) if ~exist('old_fn','var') | ~exist('new_fn','var') error('Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], [method], [img_idx])'); end if ~exist('method','var') | isempty(method) method = 1; end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; end if ~exist('verbose','var') | isempty(verbose) verbose = 1; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end nii = load_nii_no_xform(old_fn, img_idx, 0, preferredForm); if ~ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) error('Transform of this NIFTI data is not supported by the program.'); end if ~exist('voxel_size','var') | isempty(voxel_size) voxel_size = abs(min(nii.hdr.dime.pixdim(2:4)))*ones(1,3); elseif length(voxel_size) < 3 voxel_size = abs(voxel_size(1))*ones(1,3); end if ~exist('bg','var') | isempty(bg) bg = mean([nii.img(1) nii.img(end)]); end old_M = nii.hdr.hist.old_affine; if nii.hdr.dime.dim(5) > 1 for i = 1:nii.hdr.dime.dim(5) if verbose fprintf('Reslicing %d of %d volumes.\n', i, nii.hdr.dime.dim(5)); end [img(:,:,:,i) M] = ... affine(nii.img(:,:,:,i), old_M, voxel_size, verbose, bg, method); end else [img M] = affine(nii.img, old_M, voxel_size, verbose, bg, method); end new_dim = size(img); nii.img = img; nii.hdr.dime.dim(2:4) = new_dim(1:3); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; nii.hdr.dime.pixdim(2:4) = voxel_size(:)'; nii.hdr.dime.glmax = max(img(:)); nii.hdr.dime.glmin = min(img(:)); nii.hdr.hist.qform_code = 0; nii.hdr.hist.sform_code = 1; nii.hdr.hist.srow_x = M(1,:); nii.hdr.hist.srow_y = M(2,:); nii.hdr.hist.srow_z = M(3,:); nii.hdr.hist.new_affine = M; save_nii(nii, new_fn); return; % reslice_nii %-------------------------------------------------------------------- function [nii] = load_nii_no_xform(filename, img_idx, old_RGB, preferredForm) if ~exist('filename','var'), error('Usage: [nii] = load_nii(filename, [img_idx], [old_RGB])'); end if ~exist('img_idx','var'), img_idx = []; end if ~exist('old_RGB','var'), old_RGB = 0; end if ~exist('preferredForm','var'), preferredForm= 's'; end % Jeff v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); % Read the header extension % % nii.ext = load_nii_ext(filename); % Read the dataset body % [nii.img,nii.hdr] = ... load_nii_img(nii.hdr,nii.filetype,nii.fileprefix,nii.machine,img_idx,'','','',old_RGB); % Perform some of sform/qform transform % % nii = xform_nii(nii, preferredForm); % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); rmdir(tmpDir,'s'); end hdr = nii.hdr; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires sform, sform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; nii.hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; nii.hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; elseif nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.old_affine = M; else M = diag(hdr.dime.pixdim(2:5)); M(1:3,4) = -M(1:3,1:3)*(hdr.hist.originator(1:3)-1)'; M(4,4) = 1; nii.hdr.hist.old_affine = M; end return % load_nii_no_xform
github
changken1/IDH_Prediction-master
save_untouch_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_untouch_nii.m
6,494
utf_8
50fa95cbb847654356241a853328f912
% Save NIFTI or ANALYZE dataset that is loaded by "load_untouch_nii.m". % The output image format and file extension will be the same as the % input one (NIFTI.nii, NIFTI.img or ANALYZE.img). Therefore, any file % extension that you specified will be ignored. % % Usage: save_untouch_nii(nii, filename) % % nii - nii structure that is loaded by "load_untouch_nii.m" % % filename - NIFTI or ANALYZE file name. % % - Jimmy Shen ([email protected]) % function save_untouch_nii(nii, filename) if ~exist('nii','var') | isempty(nii) | ~isfield(nii,'hdr') | ... ~isfield(nii,'img') | ~exist('filename','var') | isempty(filename) error('Usage: save_untouch_nii(nii, filename)'); end if ~isfield(nii,'untouch') | nii.untouch == 0 error('Usage: please use ''save_nii.m'' for the modified structure.'); end if isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'ni1') filetype = 1; elseif isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'n+1') filetype = 2; else filetype = 0; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; filename = filename(1:end-3); end end [p,f] = fileparts(filename); fileprefix = fullfile(p, f); write_nii(nii, filetype, fileprefix); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; % % So earlier versions of SPM can also open it with correct originator % % % if filetype == 0 % M=[[diag(nii.hdr.dime.pixdim(2:4)) -[nii.hdr.hist.originator(1:3).*nii.hdr.dime.pixdim(2:4)]'];[0 0 0 1]]; % save(fileprefix, 'M'); % elseif filetype == 1 % M=[]; % save(fileprefix, 'M'); %end return % save_untouch_nii %----------------------------------------------------------------------------------- function write_nii(nii, filetype, fileprefix) hdr = nii.hdr; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end % hdr.dime.glmax = round(double(max(nii.img(:)))); % hdr.dime.glmin = round(double(min(nii.img(:)))); if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end elseif filetype == 1 fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch0_nii_hdr(hdr, fid); fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end ScanDim = double(hdr.dime.dim(5)); % t SliceDim = double(hdr.dime.dim(4)); % z RowDim = double(hdr.dime.dim(3)); % y PixelDim = double(hdr.dime.dim(2)); % x SliceSz = double(hdr.dime.pixdim(4)); RowSz = double(hdr.dime.pixdim(3)); PixelSz = double(hdr.dime.pixdim(2)); x = 1:PixelDim; if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end fwrite(fid, nii.img, precision); % fwrite(fid, nii.img, precision, skip_bytes); % error using skip fclose(fid); return; % write_nii
github
changken1/IDH_Prediction-master
view_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/view_nii.m
139,608
utf_8
74f9dea7539a45a7993beb22becf2fa2
% VIEW_NII: Create or update a 3-View (Front, Top, Side) of the % brain data that is specified by nii structure % % Usage: status = view_nii([h], nii, [option]) or % status = view_nii(h, [option]) % % Where, h is the figure on which the 3-View will be plotted; % nii is the brain data in NIFTI format; % option is a struct that configures the view plotted, can be: % % option.command = 'init' % option.command = 'update' % option.command = 'clearnii' % option.command = 'updatenii' % option.command = 'updateimg' (nii is nii.img here) % % option.usecolorbar = 0 | [1] % option.usepanel = 0 | [1] % option.usecrosshair = 0 | [1] % option.usestretch = 0 | [1] % option.useimagesc = 0 | [1] % option.useinterp = [0] | 1 % % option.setarea = [x y w h] | [0.05 0.05 0.9 0.9] % option.setunit = ['vox'] | 'mm' % option.setviewpoint = [x y z] | [origin] % option.setscanid = [t] | [1] % option.setcrosshaircolor = [r g b] | [1 0 0] % option.setcolorindex = From 1 to 9 (default is 2 or 3) % option.setcolormap = (Mx3 matrix, 0 <= val <= 1) % option.setcolorlevel = No more than 256 (default 256) % option.sethighcolor = [] % option.setcbarminmax = [] % option.setvalue = [] % option.glblocminmax = [] % option.setbuttondown = '' % option.setcomplex = [0] | 1 | 2 % % Options description in detail: % ============================== % % 1. command: A char string that can control program. % % init: If option.command='init', the program will display % a 3-View plot on the figure specified by figure h % or on a new figure. If there is already a 3-View % plot on the figure, please use option.command = % 'updatenii' (see detail below); otherwise, the % new 3-View plot will superimpose on the old one. % If there is no option provided, the program will % assume that this is an initial plot. If the figure % handle is omitted, the program knows that it is % an initial plot. % % update: If there is no command specified, and a figure % handle of the existing 3-View plot is provided, % the program will choose option.command='update' % to update the 3-View plot with some new option % items. % % clearnii: Clear 3-View plot on specific figure % % updatenii: If a new nii is going to be loaded on a fig % that has already 3-View plot on it, use this % command to clear existing 3-View plot, and then % display with new nii. So, the new nii will not % superimpose on the existing one. All options % for 'init' can be used for 'updatenii'. % % updateimg: If a new 3D matrix with the same dimension % is going to be loaded, option.command='updateimg' % can be used as a light-weighted 'updatenii, since % it only updates the 3 slices with new values. % inputing argument nii should be a 3D matrix % (nii.img) instead of nii struct. No other option % should be used together with 'updateimg' to keep % this command as simple as possible. % % % 2. usecolorbar: If specified and usecolorbar=0, the program % will not include the colorbar in plot area; otherwise, % a colorbar will be included in plot area. % % 3. usepanel: If specified and usepanel=0, the control panel % at lower right cornor will be invisible; otherwise, % it will be visible. % % 4. usecrosshair: If specified and usecrosshair=0, the crosshair % will be invisible; otherwise, it will be visible. % % 5. usestretch: If specified and usestretch=0, the 3 slices will % not be stretched, and will be displayed according to % the actual voxel size; otherwise, the 3 slices will be % stretched to the edge. % % 6. useimagesc: If specified and useimagesc=0, images data will % be used directly to match the colormap (like 'image' % command); otherwise, image data will be scaled to full % colormap with 'imagesc' command in Matlab. % % 7. useinterp: If specified and useinterp=1, the image will be % displayed using interpolation. Otherwise, it will be % displayed like mosaic, and each tile stands for a % pixel. This option does not apply to 'setvalue' option % is set. % % % 8. setarea: 3-View plot will be displayed on this specific % region. If it is not specified, program will set the % plot area to [0.05 0.05 0.9 0.9]. % % 9. setunit: It can be specified to setunit='voxel' or 'mm' % and the view will change the axes unit of [X Y Z] % accordingly. % % 10. setviewpoint: If specified, [X Y Z] values will be used % to set the viewpoint of 3-View plot. % % 11. setscanid: If specified, [t] value will be used to display % the specified image scan in NIFTI data. % % 12. setcrosshaircolor: If specified, [r g b] value will be used % for Crosshair Color. Otherwise, red will be the default. % % 13. setcolorindex: If specified, the 3-View will choose the % following colormap: 2 - Bipolar; 3 - Gray; 4 - Jet; % 5 - Cool; 6 - Bone; 7 - Hot; 8 - Copper; 9 - Pink; % If not specified, it will choose 3 - Gray if all data % values are not less than 0; otherwise, it will choose % 2 - Bipolar if there is value less than 0. (Contrast % control can only apply to 3 - Gray colormap. % % 14. setcolormap: 3-View plot will use it as a customized colormap. % It is a 3-column matrix with value between 0 and 1. If % using MS-Windows version of Matlab, the number of rows % can not be more than 256, because of Matlab limitation. % When colormap is used, setcolorlevel option will be % disabled automatically. % % 15. setcolorlevel: If specified (must be no more than 256, and % cannot be used for customized colormap), row number of % colormap will be squeezed down to this level; otherwise, % it will assume that setcolorlevel=256. % % 16. sethighcolor: If specified, program will squeeze down the % colormap, and allocate sethighcolor (an Mx3 matrix) % to high-end portion of the colormap. The sum of M and % setcolorlevel should be less than 256. If setcolormap % option is used, sethighcolor will be inserted on top % of the setcolormap, and the setcolorlevel option will % be disabled automatically. % % 17. setcbarminmax: if specified, the [min max] will be used to % set the min and max of the colorbar, which does not % include any data for highcolor. % % 18. setvalue: If specified, setvalue.val (with the same size as % the source data on solution points) in the source area % setvalue.idx will be superimposed on the current nii % image. So, the size of setvalue.val should be equal to % the size of setvalue.idx. To use this feature, it needs % single or double nii structure for background image. % % 19. glblocminmax: If specified, pgm will use glblocminmax to % calculate the colormap, instead of minmax of image. % % 20. setbuttondown: If specified, pgm will evaluate the command % after a click or slide action is invoked to the new % view point. % % 21. setcomplex: This option will decide how complex data to be % displayed: 0 - Real part of complex data; 1 - Imaginary % part of complex data; 2 - Modulus (magnitude) of complex % data; If not specified, it will be set to 0 (Real part % of complex data as default option. This option only apply % when option.command is set to 'init or 'updatenii'. % % % Additional Options for 'update' command: % ======================================= % % option.enablecursormove = [1] | 0 % option.enableviewpoint = 0 | [1] % option.enableorigin = 0 | [1] % option.enableunit = 0 | [1] % option.enablecrosshair = 0 | [1] % option.enablehistogram = 0 | [1] % option.enablecolormap = 0 | [1] % option.enablecontrast = 0 | [1] % option.enablebrightness = 0 | [1] % option.enableslider = 0 | [1] % option.enabledirlabel = 0 | [1] % % % e.g.: % nii = load_nii('T1'); % T1.img/hdr % view_nii(nii); % % or % % h = figure('unit','normal','pos', [0.18 0.08 0.64 0.85]); % opt.setarea = [0.05 0.05 0.9 0.9]; % view_nii(h, nii, opt); % % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function status = view_nii(varargin) if nargin < 1 error('Please check inputs using ''help view_nii'''); end; nii = ''; opt = ''; command = ''; usecolorbar = []; usepanel = []; usecrosshair = ''; usestretch = []; useimagesc = []; useinterp = []; setarea = []; setunit = ''; setviewpoint = []; setscanid = []; setcrosshaircolor = []; setcolorindex = ''; setcolormap = 'NA'; setcolorlevel = []; sethighcolor = 'NA'; setcbarminmax = []; setvalue = []; glblocminmax = []; setbuttondown = ''; setcomplex = 0; status = []; if ishandle(varargin{1}) % plot on top of this figure fig = varargin{1}; if nargin < 2 command = 'update'; % just to get 3-View status end if nargin == 2 if ~isstruct(varargin{2}) error('2nd parameter should be either nii struct or option struct'); end opt = varargin{2}; if isfield(opt,'hdr') & isfield(opt,'img') nii = opt; elseif isfield(opt, 'command') & (strcmpi(opt.command,'init') ... | strcmpi(opt.command,'updatenii') ... | strcmpi(opt.command,'updateimg') ) error('Option here cannot contain "init", "updatenii", or "updateimg" comand'); end end if nargin == 3 nii = varargin{2}; opt = varargin{3}; if ~isstruct(opt) error('3rd parameter should be option struct'); end if ~isfield(opt,'command') | ~strcmpi(opt.command,'updateimg') if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end end end set(fig, 'menubar', 'none'); elseif ischar(varargin{1}) % call back by event command = lower(varargin{1}); fig = gcbf; else % start nii with a new figure nii = varargin{1}; if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('1st parameter should be either a figure handle or nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end if nargin > 1 opt = varargin{2}; if isfield(opt, 'command') & ~strcmpi(opt.command,'init') error('Option here must use "init" comand'); end end command = 'init'; fig = figure('unit','normal','position',[0.15 0.08 0.70 0.85]); view_nii_menu(fig); rri_file_menu(fig); end if ~isempty(opt) if isfield(opt,'command') command = lower(opt.command); end if isempty(command) command = 'update'; end if isfield(opt,'usecolorbar') usecolorbar = opt.usecolorbar; end if isfield(opt,'usepanel') usepanel = opt.usepanel; end if isfield(opt,'usecrosshair') usecrosshair = opt.usecrosshair; end if isfield(opt,'usestretch') usestretch = opt.usestretch; end if isfield(opt,'useimagesc') useimagesc = opt.useimagesc; end if isfield(opt,'useinterp') useinterp = opt.useinterp; end if isfield(opt,'setarea') setarea = opt.setarea; end if isfield(opt,'setunit') setunit = opt.setunit; end if isfield(opt,'setviewpoint') setviewpoint = opt.setviewpoint; end if isfield(opt,'setscanid') setscanid = opt.setscanid; end if isfield(opt,'setcrosshaircolor') setcrosshaircolor = opt.setcrosshaircolor; if ~isempty(setcrosshaircolor) & (~isnumeric(setcrosshaircolor) | ~isequal(size(setcrosshaircolor),[1 3]) | min(setcrosshaircolor(:))<0 | max(setcrosshaircolor(:))>1) error('Crosshair Color should be a 1x3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorindex') setcolorindex = round(opt.setcolorindex); if ~isnumeric(setcolorindex) | setcolorindex < 1 | setcolorindex > 9 error('Colorindex should be a number between 1 and 9'); end end if isfield(opt,'setcolormap') setcolormap = opt.setcolormap; if ~isempty(setcolormap) & (~isnumeric(setcolormap) | size(setcolormap,2) ~= 3 | min(setcolormap(:))<0 | max(setcolormap(:))>1) error('Colormap should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorlevel') setcolorlevel = round(opt.setcolorlevel); if ~isnumeric(setcolorlevel) | setcolorlevel > 256 | setcolorlevel < 1 error('Colorlevel should be a number between 1 and 256'); end end if isfield(opt,'sethighcolor') sethighcolor = opt.sethighcolor; if ~isempty(sethighcolor) & (~isnumeric(sethighcolor) | size(sethighcolor,2) ~= 3 | min(sethighcolor(:))<0 | max(sethighcolor(:))>1) error('Highcolor should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcbarminmax') setcbarminmax = opt.setcbarminmax; if isempty(setcbarminmax) | ~isnumeric(setcbarminmax) | length(setcbarminmax) ~= 2 error('Colorbar MinMax should contain 2 values: [min max]'); end end if isfield(opt,'setvalue') setvalue = opt.setvalue; if isempty(setvalue) | ~isstruct(setvalue) | ... ~isfield(opt.setvalue,'idx') | ~isfield(opt.setvalue,'val') error('setvalue should be a struct contains idx and val'); end if length(opt.setvalue.idx(:)) ~= length(opt.setvalue.val(:)) error('length of idx and val fields should be the same'); end if ~strcmpi(class(opt.setvalue.idx),'single') opt.setvalue.idx = single(opt.setvalue.idx); end if ~strcmpi(class(opt.setvalue.val),'single') opt.setvalue.val = single(opt.setvalue.val); end end if isfield(opt,'glblocminmax') glblocminmax = opt.glblocminmax; end if isfield(opt,'setbuttondown') setbuttondown = opt.setbuttondown; end if isfield(opt,'setcomplex') setcomplex = opt.setcomplex; end end switch command case {'init'} set(fig, 'InvertHardcopy','off'); set(fig, 'PaperPositionMode','auto'); fig = init(nii, fig, setarea, setunit, setviewpoint, setscanid, setbuttondown, ... setcolorindex, setcolormap, setcolorlevel, sethighcolor, setcbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, useinterp, ... setvalue, glblocminmax, setcrosshaircolor, setcomplex); % get status % status = get_status(fig); case {'update'} nii_view = getappdata(fig,'nii_view'); h = fig; if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isempty(opt) % Order of the following update matters. % update_shape(h, setarea, usecolorbar, usestretch, useimagesc); update_useinterp(h, useinterp); update_useimagesc(h, useimagesc); update_usepanel(h, usepanel); update_colorindex(h, setcolorindex); update_colormap(h, setcolormap); update_highcolor(h, sethighcolor, setcolorlevel); update_cbarminmax(h, setcbarminmax); update_unit(h, setunit); update_viewpoint(h, setviewpoint); update_scanid(h, setscanid); update_buttondown(h, setbuttondown); update_crosshaircolor(h, setcrosshaircolor); update_usecrosshair(h, usecrosshair); % Enable/Disable object % update_enable(h, opt); end % get status % status = get_status(h); case {'updateimg'} if ~exist('nii','var') msg = sprintf('Please input a 3D matrix brain data'); error(msg); end % Note: nii is not nii, nii should be a 3D matrix here % if ~isnumeric(nii) msg = sprintf('2nd parameter should be a 3D matrix, not nii struct'); error(msg); end nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end img = nii; update_img(img, fig, opt); % get status % status = get_status(fig); case {'updatenii'} nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end opt.command = 'clearnii'; view_nii(fig, opt); opt.command = 'init'; view_nii(fig, nii, opt); % get status % status = get_status(fig); case {'clearnii'} nii_view = getappdata(fig,'nii_view'); handles = struct2cell(nii_view.handles); for i=1:length(handles) if ishandle(handles{i}) % in case already del by parent delete(handles{i}); end end rmappdata(fig,'nii_view'); buttonmotion = get(fig,'windowbuttonmotion'); mymotion = '; view_nii(''move_cursor'');'; buttonmotion = strrep(buttonmotion, mymotion, ''); set(fig, 'windowbuttonmotion', buttonmotion); case {'axial_image','coronal_image','sagittal_image'} switch command case 'axial_image', view = 'axi'; axi = 0; cor = 1; sag = 1; case 'coronal_image', view = 'cor'; axi = 1; cor = 0; sag = 1; case 'sagittal_image', view = 'sag'; axi = 1; cor = 1; sag = 0; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slice_position(nii_view,view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end % CData must be double() for Matlab 6.5 for Windows % if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end; end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end; end; if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end; end; update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'axial_slider','coronal_slider','sagittal_slider'}, switch command case 'axial_slider', view = 'axi'; axi = 1; cor = 0; sag = 0; case 'coronal_slider', view = 'cor'; axi = 0; cor = 1; sag = 0; case 'sagittal_slider', view = 'sag'; axi = 0; cor = 0; sag = 1; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slider_position(nii_view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end end if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end end update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'impos_edit'} nii_view = getappdata(fig,'nii_view'); impos = str2num(get(nii_view.handles.impos,'string')); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if isempty(impos) | ~all(size(impos) == [1 3]) msg = 'Please use 3 numbers to represent X,Y and Z'; msgbox(msg,'Error'); return; end slices.sag = round(impos(1)); slices.cor = round(impos(2)); slices.axi = round(impos(3)); nii_view = convert2voxel(nii_view,slices); nii_view = check_slices(nii_view); impos(1) = nii_view.slices.sag; impos(2) = nii_view.dims(2) - nii_view.slices.cor + 1; impos(3) = nii_view.slices.axi; if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',impos(1)); end if isfield(nii_view.handles,'coronal_slider'), set(nii_view.handles.coronal_slider,'Value',impos(2)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',impos(3)); end nii_view = get_slider_position(nii_view); update_nii_view(nii_view); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end axes(nii_view.handles.axial_axes); axes(nii_view.handles.coronal_axes); axes(nii_view.handles.sagittal_axes); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case 'coordinates', nii_view = getappdata(fig,'nii_view'); set_image_value(nii_view); case 'crosshair', nii_view = getappdata(fig,'nii_view'); if get(nii_view.handles.xhair,'value') == 2 % off set(nii_view.axi_xhair.lx,'visible','off'); set(nii_view.axi_xhair.ly,'visible','off'); set(nii_view.cor_xhair.lx,'visible','off'); set(nii_view.cor_xhair.ly,'visible','off'); set(nii_view.sag_xhair.lx,'visible','off'); set(nii_view.sag_xhair.ly,'visible','off'); else set(nii_view.axi_xhair.lx,'visible','on'); set(nii_view.axi_xhair.ly,'visible','on'); set(nii_view.cor_xhair.lx,'visible','on'); set(nii_view.cor_xhair.ly,'visible','on'); set(nii_view.sag_xhair.lx,'visible','on'); set(nii_view.sag_xhair.ly,'visible','on'); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); end case 'xhair_color', old_color = get(gcbo,'user'); new_color = uisetcolor(old_color); update_crosshaircolor(fig, new_color); case {'color','contrast_def'} nii_view = getappdata(fig,'nii_view'); if nii_view.numscan == 1 if get(nii_view.handles.colorindex,'value') == 2 set(nii_view.handles.contrast,'value',128); elseif get(nii_view.handles.colorindex,'value') == 3 set(nii_view.handles.contrast,'value',1); end end [custom_color_map, custom_colorindex] = change_colormap(fig); if strcmpi(command, 'color') setcolorlevel = nii_view.colorlevel; if ~isempty(custom_color_map) % isfield(nii_view, 'color_map') setcolormap = custom_color_map; % nii_view.color_map; else setcolormap = []; end if isfield(nii_view, 'highcolor') sethighcolor = nii_view.highcolor; else sethighcolor = []; end redraw_cbar(fig, setcolorlevel, setcolormap, sethighcolor); if nii_view.numscan == 1 & ... (custom_colorindex < 2 | custom_colorindex > 3) contrastopt.enablecontrast = 0; else contrastopt.enablecontrast = 1; end update_enable(fig, contrastopt); end case {'neg_color','brightness','contrast'} change_colormap(fig); case {'brightness_def'} nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.brightness,'value',0); change_colormap(fig); case 'hist_plot' hist_plot(fig); case 'hist_eq' hist_eq(fig); case 'move_cursor' move_cursor(fig); case 'edit_change_scan' change_scan('edit_change_scan'); case 'slider_change_scan' change_scan('slider_change_scan'); end return; % view_nii %---------------------------------------------------------------- function fig = init(nii, fig, area, setunit, setviewpoint, setscanid, buttondown, ... colorindex, color_map, colorlevel, highcolor, cbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, ... useinterp, setvalue, glblocminmax, setcrosshaircolor, ... setcomplex) % Support data type COMPLEX64 & COMPLEX128 % if nii.hdr.dime.datatype == 32 | nii.hdr.dime.datatype == 1792 switch setcomplex, case 0, nii.img = real(nii.img); case 1, nii.img = imag(nii.img); case 2, if isa(nii.img, 'double') nii.img = abs(double(nii.img)); else nii.img = single(abs(double(nii.img))); end end end if isempty(area) area = [0.05 0.05 0.9 0.9]; end if isempty(setscanid) setscanid = 1; else setscanid = round(setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii.hdr.dime.dim(5) setscanid = nii.hdr.dime.dim(5); end end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 usecolorbar = 0; elseif isempty(usecolorbar) usecolorbar = 1; end if isempty(usepanel) usepanel = 1; end if isempty(usestretch) usestretch = 1; end if isempty(useimagesc) useimagesc = 1; end if isempty(useinterp) useinterp = 0; end if isempty(colorindex) tmp = min(nii.img(:,:,:,setscanid)); if min(tmp(:)) < 0 colorindex = 2; setcrosshaircolor = [1 1 0]; else colorindex = 3; end end if isempty(color_map) | ischar(color_map) color_map = []; else colorindex = 1; end bgimg = []; if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = nii.img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = nii.img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if ~isempty(setvalue) if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(nii.img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 % 56 level for brain structure % % highcolor = [zeros(1,3);gray(55)]; highcolor = gray(56); cbarminmax = [minvalue maxvalue]; if useinterp % scale signal data to 1~200 % nii.img = repmat(nan, size(nii.img)); nii.img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % nii.img = zeros(size(nii.img)); nii.img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); nii.img = nii.img + bgimg; bgimg = []; nii.img = scale_out(nii.img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(nii.img(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = double(nii.img(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); if ~isempty(glblocminmax) % maxvalue is gray minvalue = glblocminmax(1); end end colorindex = 2; setcrosshaircolor = [1 1 0]; end if isempty(highcolor) | ischar(highcolor) highcolor = []; num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel = 256 - num_highcolor; end if usecolorbar cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes else cbar_area = []; end % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if isempty(cbarminmax) cbarminmax = [minvalue maxvalue]; end xdim = size(nii.img, 1); ydim = size(nii.img, 2); zdim = size(nii.img, 3); dims = [xdim ydim zdim]; voxel_size = abs(nii.hdr.dime.pixdim(2:4)); % vol in mm if any(voxel_size <= 0) voxel_size(find(voxel_size <= 0)) = 1; end origin = abs(nii.hdr.hist.originator(1:3)); if isempty(origin) | all(origin == 0) % according to SPM origin = (dims+1)/2; end; origin = round(origin); if any(origin > dims) % simulate fMRI origin(find(origin > dims)) = dims(find(origin > dims)); end if any(origin <= 0) origin(find(origin <= 0)) = 1; end nii_view.dims = dims; nii_view.voxel_size = voxel_size; nii_view.origin = origin; nii_view.slices.sag = 1; nii_view.slices.cor = 1; nii_view.slices.axi = 1; if xdim > 1, nii_view.slices.sag = origin(1); end if ydim > 1, nii_view.slices.cor = origin(2); end if zdim > 1, nii_view.slices.axi = origin(3); end nii_view.area = area; nii_view.fig = fig; nii_view.nii = nii; % image data nii_view.bgimg = bgimg; % background nii_view.setvalue = setvalue; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.numscan = nii.hdr.dime.dim(5); nii_view.scanid = setscanid; Font.FontUnits = 'point'; Font.FontSize = 12; % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); if isempty(cbar_area) nii_view.cbar_area = []; else nii_view.cbar_area = cbar_area; end % create axes for top/front/side view % vol_size = voxel_size .* dims; [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if xdim > 1, slider_step(1) = 1/(xdim); slider_step(2) = 1.00001/(xdim); handles.sagittal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Sagittal slice navigation',... 'Min',1,'Max',xdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.sag,... 'Callback','view_nii(''sagittal_slider'');'); set(handles.sagittal_slider,'position',pos); % linux66 end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if ydim > 1, slider_step(1) = 1/(ydim); slider_step(2) = 1.00001/(ydim); slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; handles.coronal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Coronal slice navigation',... 'Min',1,'Max',ydim,'SliderStep',slider_step, ... 'Value',slider_val,... 'Callback','view_nii(''coronal_slider'');'); set(handles.coronal_slider,'position',pos); % linux66 end % Axial Slider % % x = front_pos(1) + front_pos(3); % y = front_pos(2); % w = side_pos(1) - x; % h = front_pos(4); x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if zdim > 1, slider_step(1) = 1/(zdim); slider_step(2) = 1.00001/(zdim); handles.axial_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Axial slice navigation',... 'Min',1,'Max',zdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.axi,... 'Callback','view_nii(''axial_slider'');'); set(handles.axial_slider,'position',pos); % linux66 end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % for any info_area change, update_usestretch should also be changed % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Timvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at cursor:'); if usepanel set(handles.Timvalcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imvalcur, 'visible', 'on'); end % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at cursor:'); if usepanel set(handles.Timposcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.imposcur, 'visible', 'on'); end % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at crosshair:'); if usepanel set(handles.Timval, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imval, 'visible', 'on'); end % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timpos = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at crosshair:'); if usepanel set(handles.Timpos, 'visible', 'on'); end x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; handles.impos = uicontrol('Parent',fig,'Style','edit', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'Callback','view_nii(''impos_edit'');', ... 'TooltipString','Viewpoint Location in Axes Unit', ... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.impos, 'visible', 'on'); end % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Torigin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at origin:'); if usepanel set(handles.Torigin, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.origin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.origin, 'visible', 'on'); end if 0 % Voxel Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit:'); if usepanel set(handles.Tcoord, 'visible', 'on'); end x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; Font.FontSize = 8; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... Font.FontSize = 12; if usepanel set(handles.coord, 'visible', 'on'); end end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; handles.Txhair = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Crosshair:'); if usepanel set(handles.Txhair, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.xhair_color = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Crosshair Color',... 'User',[1 0 0],... 'String','Color',... 'visible','off', ... 'Callback','view_nii(''xhair_color'');'); if usepanel set(handles.xhair_color, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; handles.xhair = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Display or Hide Crosshair',... 'String',{'On','Off'},... 'visible','off', ... 'Callback','view_nii(''crosshair'');'); if usepanel set(handles.xhair, 'visible', 'on'); end % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.hist_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel % set(handles.hist_frame, 'visible', 'on'); end handles.coord_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.coord_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.color_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.color_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.hist_eq = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Equalization',... 'String','Hist EQ',... 'visible','off', ... 'Callback','view_nii(''hist_eq'');'); if usepanel % set(handles.hist_eq, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; handles.hist_plot = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Plot',... 'String','Hist Plot',... 'visible','off', ... 'Callback','view_nii(''hist_plot'');'); if usepanel % set(handles.hist_plot, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... if usepanel set(handles.coord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; handles.neg_color = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Negative Colormap',... 'String','Negative',... 'visible','off', ... 'Callback','view_nii(''neg_color'');'); if usepanel set(handles.neg_color, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.neg_color, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; handles.colorindex = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Change Colormap',... 'String',{'Custom','Bipolar','Gray','Jet','Cool','Bone','Hot','Copper','Pink'},... 'value', colorindex, ... 'visible','off', ... 'Callback','view_nii(''color'');'); if usepanel set(handles.colorindex, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.colorindex, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 8; handles.Thist = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Histogram'); handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit'); if usepanel % set(handles.Thist, 'visible', 'on'); set(handles.Tcoord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; handles.Tcolor = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Colormap'); if usepanel set(handles.Tcolor, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tcolor, 'enable', 'off'); end % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; handles.contrast_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.contrast_frame, 'visible', 'on'); end if colorindex < 2 | colorindex > 3 set(handles.contrast_frame, 'visible', 'off'); end % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; handles.brightness_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.brightness_frame, 'visible', 'on'); end % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 5/255; slider_step(2) = 5.00001/255; handles.contrast = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change contrast',... 'Min',1,'Max',256,'SliderStep',slider_step, ... 'Value',1, ... 'visible','off', ... 'Callback','view_nii(''contrast'');'); if usepanel set(handles.contrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast, 'min', 1, 'max', nii_view.numscan, ... 'sliderstep',[1/(nii_view.numscan-1) 1.00001/(nii_view.numscan-1)], ... 'Callback', 'view_nii(''slider_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast, 'visible', 'off'); elseif colorindex == 2 set(handles.contrast,'value',128); end set(handles.contrast,'position',pos); % linux66 % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 1/50; slider_step(2) = 1.00001/50; handles.brightness = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change brightness',... 'Min',-1,'Max',1,'SliderStep',slider_step, ... 'Value',0, ... 'visible','off', ... 'Callback','view_nii(''brightness'');'); if usepanel set(handles.brightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness, 'enable', 'off'); end set(handles.brightness,'position',pos); % linux66 % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; handles.Tcontrast = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Contrast:'); if usepanel set(handles.Tcontrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.Tcontrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.Tcontrast, 'string', 'Scan ID:'); set(handles.contrast, 'TooltipString', 'Change Scan ID'); elseif colorindex < 2 | colorindex > 3 set(handles.Tcontrast, 'visible', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.contrast_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial contrast',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''contrast_def'');'); if usepanel set(handles.contrast_def, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast_def, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast_def, 'style', 'edit', 'background', 'w', ... 'TooltipString','Scan (or volume) index in the time series',... 'string', '1', 'Callback', 'view_nii(''edit_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast_def, 'visible', 'off'); end % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; Font.FontSize = 12; handles.Tbrightness = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Brightness:'); if usepanel set(handles.Tbrightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tbrightness, 'enable', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.brightness_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial brightness',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''brightness_def'');'); if usepanel set(handles.brightness_def, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness_def, 'enable', 'off'); end % init image handles % handles.axial_image = []; handles.coronal_image = []; handles.sagittal_image = []; % plot axial view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,:,nii_view.slices.axi)); h1 = plot_view(fig, xdim, ydim, top_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.axial_bg = h1; else handles.axial_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, ydim, top_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''axial_image'');'); handles.axial_image = h1; handles.axial_axes = top_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(top_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot coronal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,nii_view.slices.cor,:)); h1 = plot_view(fig, xdim, zdim, front_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.coronal_bg = h1; else handles.coronal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, zdim, front_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''coronal_image'');'); handles.coronal_image = h1; handles.coronal_axes = front_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(front_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot sagittal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(nii_view.slices.sag,:,:)); h1 = plot_view(fig, ydim, zdim, side_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.sagittal_bg = h1; else handles.sagittal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, ydim, zdim, side_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''sagittal_image'');'); set(side_ax,'Xdir', 'reverse'); handles.sagittal_image = h1; handles.sagittal_axes = side_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(side_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax); % store label handles % handles.top1_label = top1_label; handles.top2_label = top2_label; handles.side1_label = side1_label; handles.side2_label = side2_label; % plot colorbar % if ~isempty(cbar_axes) & ~isempty(cbarminmax_axes) if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end niiclass = class(nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, nii_view.numscan); handles.cbar_image = h1; handles.cbar_axes = cbar_axes; handles.cbarminmax_axes = cbarminmax_axes; end nii_view.handles = handles; % store handles nii_view.usepanel = usepanel; % whole panel at low right cornor nii_view.usestretch = usestretch; % stretch display of voxel_size nii_view.useinterp = useinterp; % use interpolation nii_view.colorindex = colorindex; % store colorindex variable nii_view.buttondown = buttondown; % command after button down click nii_view.cbarminmax = cbarminmax; % store min max value for colorbar set_coordinates(nii_view,useinterp); % coord unit if ~isfield(nii_view, 'axi_xhair') | ... ~isfield(nii_view, 'cor_xhair') | ... ~isfield(nii_view, 'sag_xhair') nii_view.axi_xhair = []; % top cross hair nii_view.cor_xhair = []; % front cross hair nii_view.sag_xhair = []; % side cross hair end if ~isempty(color_map) nii_view.color_map = color_map; end if ~isempty(colorlevel) nii_view.colorlevel = colorlevel; end if ~isempty(highcolor) nii_view.highcolor = highcolor; end update_nii_view(nii_view); if ~isempty(setunit) update_unit(fig, setunit); end if ~isempty(setviewpoint) update_viewpoint(fig, setviewpoint); end if ~isempty(setcrosshaircolor) update_crosshaircolor(fig, setcrosshaircolor); end if ~isempty(usecrosshair) update_usecrosshair(fig, usecrosshair); end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(nii_menu.Minterp,'Userdata',1,'Label','Interp on','enable','off'); elseif useinterp set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end windowbuttonmotion = get(fig, 'windowbuttonmotion'); windowbuttonmotion = [windowbuttonmotion '; view_nii(''move_cursor'');']; set(fig, 'windowbuttonmotion', windowbuttonmotion); return; % init %---------------------------------------------------------------- function fig = update_img(img, fig, opt) nii_menu = getappdata(fig,'nii_menu'); if ~isempty(nii_menu) set(nii_menu.Mzoom,'Userdata',1,'Label','Zoom on'); set(fig,'pointer','arrow'); zoom off; end nii_view = getappdata(fig,'nii_view'); change_interp = 0; if isfield(opt, 'useinterp') & opt.useinterp ~= nii_view.useinterp nii_view.useinterp = opt.useinterp; change_interp = 1; end setscanid = 1; if isfield(opt, 'setscanid') setscanid = round(opt.setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end end if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if isfield(opt, 'setvalue') setvalue = opt.setvalue; if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 cbarminmax = [minvalue maxvalue]; if nii_view.useinterp % scale signal data to 1~200 % img = repmat(nan, size(img)); img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % img = zeros(size(img)); img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); img = img + bgimg; bgimg = []; img = scale_out(img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(min(img(:))); maxvalue = double(max(img(:))); if isfield(opt,'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); end end nii_view.bgimg = bgimg; nii_view.setvalue = setvalue; else cbarminmax = [minvalue maxvalue]; end update_cbarminmax(fig, cbarminmax); nii_view.cbarminmax = cbarminmax; nii_view.nii.img = img; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.scanid = setscanid; change_colormap(fig); % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(nii_view.bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(nii_view.bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end if ~isempty(nii_view.bgimg) % with interpolation Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) set(nii_view.handles.axial_bg,'CData',double(Saxi)'); else axes(nii_view.handles.axial_axes); if useimagesc nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,:,setscanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,setscanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end set(nii_view.handles.axial_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) set(nii_view.handles.coronal_bg,'CData',double(Scor)'); else axes(nii_view.handles.coronal_axes); if useimagesc nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,:,setscanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,setscanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end set(nii_view.handles.coronal_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); else axes(nii_view.handles.sagittal_axes); if useimagesc nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,:,setscanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,setscanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end set(nii_view.handles.sagittal_axes,'CLim',clim); update_nii_view(nii_view); if isfield(opt, 'setvalue') if ~isfield(nii_view,'highcolor') | ~isequal(size(nii_view.highcolor),[56 3]) % 55 level for brain structure (paded 0 for highcolor level 1, i.e. normal level 201, to make 56 highcolor) % update_highcolor(fig, [zeros(1,3);gray(55)], []); end if nii_view.colorindex ~= 2 update_colorindex(fig, 2); end old_color = get(nii_view.handles.xhair_color,'user'); if isequal(old_color, [1 0 0]) update_crosshaircolor(fig, [1 1 0]); end % if change_interp % update_useinterp(fig, nii_view.useinterp); % end end if change_interp update_useinterp(fig, nii_view.useinterp); end return; % update_img %---------------------------------------------------------------- function [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch) set(fig,'unit','pixel'); fig_pos = get(fig,'position'); gap_x = 15/fig_pos(3); % width of vertical scrollbar gap_y = 15/fig_pos(4); % width of horizontal scrollbar a = (area(3) - gap_x * 1.3) * fig_pos(3) / (vol_size(1) + vol_size(2)); % no crosshair lost in zoom b = (area(4) - gap_y * 3) * fig_pos(4) / (vol_size(2) + vol_size(3)); c = min([a b]); % make sure 'ax' is inside 'area' top_w = vol_size(1) * c / fig_pos(3); side_w = vol_size(2) * c / fig_pos(3); top_h = vol_size(2) * c / fig_pos(4); side_h = vol_size(3) * c / fig_pos(4); side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom side_y = area(2) + top_h + gap_y * 3; if usestretch if a > b % top touched ceiling, use b d = (area(3) - gap_x * 1.3) / (top_w + side_w); % no crosshair lost in zoom top_w = top_w * d; side_w = side_w * d; side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom else d = (area(4) - gap_y * 3) / (top_h + side_h); top_h = top_h * d; side_h = side_h * d; side_y = area(2) + top_h + gap_y * 3; end end top_pos = [area(1) area(2)+gap_y top_w top_h]; front_pos = [area(1) side_y top_w side_h]; side_pos = [side_x side_y side_w side_h]; set(fig,'unit','normal'); return; % axes_pos %---------------------------------------------------------------- function [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch) cur_fig = gcf; % save h_wait fig figure(fig); [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) top_ax = axes('position', top_pos); front_ax = axes('position', front_pos); side_ax = axes('position', side_pos); else top_ax = nii_view.handles.axial_axes; front_ax = nii_view.handles.coronal_axes; side_ax = nii_view.handles.sagittal_axes; set(top_ax, 'position', top_pos); set(front_ax, 'position', front_pos); set(side_ax, 'position', side_pos); end figure(cur_fig); return; % create_ax %---------------------------------------------------------------- function [cbar_axes, cbarminmax_axes] = create_cbar_axes(fig, cbar_area, nii_view) if isempty(cbar_area) % without_cbar cbar_axes = []; cbarminmax_axes = []; return; end cur_fig = gcf; % save h_wait fig figure(fig); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_axes') | isempty(nii_view.handles.cbar_axes) cbarminmax_axes = axes('position', cbar_area); cbar_axes = axes('position', cbar_area); else cbarminmax_axes = nii_view.handles.cbarminmax_axes; cbar_axes = nii_view.handles.cbar_axes; set(cbarminmax_axes, 'position', cbar_area); set(cbar_axes, 'position', cbar_area); end figure(cur_fig); return; % create_cbar_axes %---------------------------------------------------------------- function h1 = plot_view(fig, x, y, img_ax, img_slice, clim, ... cbarminmax, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, numscan) h1 = []; if x > 1 & y > 1, axes(img_ax); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) % set colormap first % nii.handles = handles; nii.handles.axial_axes = img_ax; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); if useinterp if useimagesc h1 = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else h1 = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end set(gca,'clim',clim); else if useimagesc h1 = imagesc(img_slice,clim); else h1 = image(img_slice); end set(gca,'clim',clim); end else h1 = nii_view.handles.axial_image; if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.coronal_image; end if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.sagittal_image; end set(h1, 'cdata', double(img_slice)); set(h1, 'xdata', 1:size(img_slice,2)); set(h1, 'ydata', 1:size(img_slice,1)); end set(img_ax,'YDir','normal','XLimMode','manual','YLimMode','manual',... 'ClimMode','manual','visible','off', ... 'xtick',[],'ytick',[], 'clim', clim); end return; % plot_view %---------------------------------------------------------------- function h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, numscan, nii_view) cbar_image = [1:level]'; % In a uint8 or uint16 indexed image, 0 points to the first row % in the colormap % if 0 % strcmpi(niiclass,'uint8') | strcmpi(niiclass,'uint16') % we use single for display anyway ylim = [0, level-1]; else ylim = [1, level]; end axes(cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylimb = get(cbarminmax_axes,'ylim'); ytickb = get(cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(cbar_axes); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_image') | isempty(nii_view.handles.cbar_image) % set colormap first % nii.handles = handles; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); h1 = image([0,1], [ylim(1),ylim(2)], cbar_image); else h1 = nii_view.handles.cbar_image; set(h1, 'cdata', double(cbar_image)); end set(cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % plot_cbar %---------------------------------------------------------------- function set_coordinates(nii_view,useinterp) imgPlim.vox = nii_view.dims; imgNlim.vox = [1 1 1]; if useinterp xdata_ax = [imgNlim.vox(1) imgPlim.vox(1)]; ydata_ax = [imgNlim.vox(2) imgPlim.vox(2)]; zdata_ax = [imgNlim.vox(3) imgPlim.vox(3)]; else xdata_ax = [imgNlim.vox(1)-0.5 imgPlim.vox(1)+0.5]; ydata_ax = [imgNlim.vox(2)-0.5 imgPlim.vox(2)+0.5]; zdata_ax = [imgNlim.vox(3)-0.5 imgPlim.vox(3)+0.5]; end if isfield(nii_view.handles,'axial_image') & ~isempty(nii_view.handles.axial_image) set(nii_view.handles.axial_axes,'Xlim',xdata_ax); set(nii_view.handles.axial_axes,'Ylim',ydata_ax); end; if isfield(nii_view.handles,'coronal_image') & ~isempty(nii_view.handles.coronal_image) set(nii_view.handles.coronal_axes,'Xlim',xdata_ax); set(nii_view.handles.coronal_axes,'Ylim',zdata_ax); end; if isfield(nii_view.handles,'sagittal_image') & ~isempty(nii_view.handles.sagittal_image) set(nii_view.handles.sagittal_axes,'Xlim',ydata_ax); set(nii_view.handles.sagittal_axes,'Ylim',zdata_ax); end; return % set_coordinates %---------------------------------------------------------------- function set_image_value(nii_view), % get coordinates of selected voxel and the image intensity there % sag = round(nii_view.slices.sag); cor = round(nii_view.slices.cor); axi = round(nii_view.slices.axi); if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); imgvalue = [R G B]; set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); set(nii_view.handles.imval,'Value',imgvalue); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imval,'String',sprintf('%.6g',imgvalue)); end % Now update the coordinates of the selected voxel nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); org = nii_view.origin; elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); org = [0 0 0]; elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); org = [0 0 0]; end set(nii_view.handles.impos,'Value',[sag,cor,axi]); if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); org_str = sprintf('%7.0f %7.0f %7.0f', org(1), org(2), org(3)); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); org_str = sprintf('%7.1f %7.1f %7.1f', org(1), org(2), org(3)); end; set(nii_view.handles.impos,'String',string); set(nii_view.handles.origin, 'string', org_str); return % set_image_value %---------------------------------------------------------------- function nii_view = get_slice_position(nii_view,view), % obtain slices that is in correct unit, then update slices % slices = nii_view.slices; switch view, case 'sag', currentpoint = get(nii_view.handles.sagittal_axes,'CurrentPoint'); slices.cor = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'cor', currentpoint = get(nii_view.handles.coronal_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'axi', currentpoint = get(nii_view.handles.axial_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.cor = currentpoint(1,2); end % update nii_view.slices with the updated slices % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); return % get_slice_position %---------------------------------------------------------------- function nii_view = get_slider_position(nii_view), [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi] = deal(0); if isfield(nii_view.handles,'sagittal_slider'), if ishandle(nii_view.handles.sagittal_slider), nii_view.slices.sag = ... round(get(nii_view.handles.sagittal_slider,'Value')); end end if isfield(nii_view.handles,'coronal_slider'), if ishandle(nii_view.handles.coronal_slider), nii_view.slices.cor = ... round(nii_view.dims(2) - ... get(nii_view.handles.coronal_slider,'Value') + 1); end end if isfield(nii_view.handles,'axial_slider'), if ishandle(nii_view.handles.axial_slider), nii_view.slices.axi = ... round(get(nii_view.handles.axial_slider,'Value')); end end nii_view = check_slices(nii_view); return % get_slider_position %---------------------------------------------------------------- function nii_view = update_imgXYZ(nii_view), nii_view.imgXYZ.vox = ... [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi]; nii_view.imgXYZ.mm = ... (nii_view.imgXYZ.vox - nii_view.origin) .* nii_view.voxel_size; % nii_view.imgXYZ.tal = mni2tal(nii_view.imgXYZ.mni); return % update_imgXYZ %---------------------------------------------------------------- function nii_view = convert2voxel(nii_view,slices), if get(nii_view.handles.coord,'value') == 1, % [slices.axi, slices.cor, slices.sag] are in vox % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); elseif get(nii_view.handles.coord,'value') == 2, % [slices.axi, slices.cor, slices.sag] are in mm % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); nii_view.slices.axi = round(slices.axi / zpix + nii_view.origin(3)); nii_view.slices.cor = round(slices.cor / ypix + nii_view.origin(2)); nii_view.slices.sag = round(slices.sag / xpix + nii_view.origin(1)); elseif get(nii_view.handles.coord,'value') == 3, % [slices.axi, slices.cor, slices.sag] are in talairach % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); xyz_tal = [slices.sag, slices.cor, slices.axi]; xyz_mni = tal2mni(xyz_tal); nii_view.slices.axi = round(xyz_mni(3) / zpix + nii_view.origin(3)); nii_view.slices.cor = round(xyz_mni(2) / ypix + nii_view.origin(2)); nii_view.slices.sag = round(xyz_mni(1) / xpix + nii_view.origin(1)); end return % convert2voxel %---------------------------------------------------------------- function nii_view = check_slices(nii_view), img = nii_view.nii.img; [ SagSize, CorSize, AxiSize, TimeSize ] = size(img); if nii_view.slices.sag > SagSize, nii_view.slices.sag = SagSize; end; if nii_view.slices.sag < 1, nii_view.slices.sag = 1; end; if nii_view.slices.cor > CorSize, nii_view.slices.cor = CorSize; end; if nii_view.slices.cor < 1, nii_view.slices.cor = 1; end; if nii_view.slices.axi > AxiSize, nii_view.slices.axi = AxiSize; end; if nii_view.slices.axi < 1, nii_view.slices.axi = 1; end; if nii_view.scanid > TimeSize, nii_view.scanid = TimeSize; end; if nii_view.scanid < 1, nii_view.scanid = 1; end; return % check_slices %---------------------------------------------------------------- % % keep this function small, since it will be called for every click % function nii_view = update_nii_view(nii_view) % add imgXYZ into nii_view struct % nii_view = check_slices(nii_view); nii_view = update_imgXYZ(nii_view); % update xhair % p_axi = nii_view.imgXYZ.vox([1 2]); p_cor = nii_view.imgXYZ.vox([1 3]); p_sag = nii_view.imgXYZ.vox([2 3]); nii_view.axi_xhair = ... rri_xhair(p_axi, nii_view.axi_xhair, nii_view.handles.axial_axes); nii_view.cor_xhair = ... rri_xhair(p_cor, nii_view.cor_xhair, nii_view.handles.coronal_axes); nii_view.sag_xhair = ... rri_xhair(p_sag, nii_view.sag_xhair, nii_view.handles.sagittal_axes); setappdata(nii_view.fig, 'nii_view', nii_view); set_image_value(nii_view); return; % update_nii_view %---------------------------------------------------------------- function hist_plot(fig) nii_view = getappdata(fig,'nii_view'); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end img = double(img(:)); if length(unique(round(img))) == length(unique(img)) is_integer = 1; range = max(img) - min(img) + 1; figure; hist(img, range); set(gca, 'xlim', [-range/5, max(img)]); else is_integer = 0; figure; hist(img); end xlabel('Voxel Intensity'); ylabel('Voxel Numbers for Each Intensity'); set(gcf, 'NumberTitle','off','Name','Histogram Plot'); return; % hist_plot %---------------------------------------------------------------- function hist_eq(fig) nii_view = getappdata(fig,'nii_view'); old_pointer = get(fig,'Pointer'); set(fig,'Pointer','watch'); if get(nii_view.handles.hist_eq,'value') max_img = double(max(nii_view.nii.img(:))); tmp = double(nii_view.nii.img) / max_img; % normalize for histeq tmp = histeq(tmp(:)); nii_view.disp = reshape(tmp, size(nii_view.nii.img)); min_disp = min(nii_view.disp(:)); nii_view.disp = (nii_view.disp - min_disp); % range having eq hist nii_view.disp = nii_view.disp * max_img / max(nii_view.disp(:)); nii_view.disp = single(nii_view.disp); else if isfield(nii_view, 'disp') nii_view.disp = nii_view.nii.img; else set(fig,'Pointer',old_pointer); return; end end % update axial view % img_slice = squeeze(double(nii_view.disp(:,:,nii_view.slices.axi))); h1 = nii_view.handles.axial_image; set(h1, 'cdata', double(img_slice)'); % update coronal view % img_slice = squeeze(double(nii_view.disp(:,nii_view.slices.cor,:))); h1 = nii_view.handles.coronal_image; set(h1, 'cdata', double(img_slice)'); % update sagittal view % img_slice = squeeze(double(nii_view.disp(nii_view.slices.sag,:,:))); h1 = nii_view.handles.sagittal_image; set(h1, 'cdata', double(img_slice)'); % remove disp field if un-check 'histeq' button % if ~get(nii_view.handles.hist_eq,'value') & isfield(nii_view, 'disp') nii_view = rmfield(nii_view, 'disp'); end update_nii_view(nii_view); set(fig,'Pointer',old_pointer); return; % hist_eq %---------------------------------------------------------------- function [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax) nii_view = getappdata(fig,'nii_view'); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); top_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*top_pos(3)); top_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*top_pos(4)); side_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*side_pos(3)); side_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*side_pos(4)); top1_label_pos = [0, 1]; % rot0 top2_label_pos = [1, 0]; % rot90 side1_label_pos = [1, - side_gap_y]; % rot0 side2_label_pos = [0, 0]; % rot90 if isempty(nii_view) axes(top_ax); top1_label = text(double(top1_label_pos(1)),double(top1_label_pos(2)), ... '== X =>', ... 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); axes(top_ax); top2_label = text(double(top2_label_pos(1)),double(top2_label_pos(2)), ... '== Y =>', ... 'rotation', 90, 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side1_label = text(double(side1_label_pos(1)),double(side1_label_pos(2)), ... '<= Y ==', ... 'horizontal', 'right', 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side2_label = text(double(side2_label_pos(1)),double(side2_label_pos(2)), ... '== Z =>', ... 'rotation', 90, 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); else top1_label = nii_view.handles.top1_label; top2_label = nii_view.handles.top2_label; side1_label = nii_view.handles.side1_label; side2_label = nii_view.handles.side2_label; set(top1_label, 'position', [top1_label_pos 0]); set(top2_label, 'position', [top2_label_pos 0]); set(side1_label, 'position', [side1_label_pos 0]); set(side2_label, 'position', [side2_label_pos 0]); end return; % dir_label %---------------------------------------------------------------- function update_enable(h, opt); nii_view = getappdata(h,'nii_view'); handles = nii_view.handles; if isfield(opt,'enablecursormove') if opt.enablecursormove v = 'on'; else v = 'off'; end set(handles.Timposcur, 'visible', v); set(handles.imposcur, 'visible', v); set(handles.Timvalcur, 'visible', v); set(handles.imvalcur, 'visible', v); end if isfield(opt,'enableviewpoint') if opt.enableviewpoint v = 'on'; else v = 'off'; end set(handles.Timpos, 'visible', v); set(handles.impos, 'visible', v); set(handles.Timval, 'visible', v); set(handles.imval, 'visible', v); end if isfield(opt,'enableorigin') if opt.enableorigin v = 'on'; else v = 'off'; end set(handles.Torigin, 'visible', v); set(handles.origin, 'visible', v); end if isfield(opt,'enableunit') if opt.enableunit v = 'on'; else v = 'off'; end set(handles.Tcoord, 'visible', v); set(handles.coord_frame, 'visible', v); set(handles.coord, 'visible', v); end if isfield(opt,'enablecrosshair') if opt.enablecrosshair v = 'on'; else v = 'off'; end set(handles.Txhair, 'visible', v); set(handles.xhair_color, 'visible', v); set(handles.xhair, 'visible', v); end if isfield(opt,'enablehistogram') if opt.enablehistogram v = 'on'; vv = 'off'; else v = 'off'; vv = 'on'; end set(handles.Tcoord, 'visible', vv); set(handles.coord_frame, 'visible', vv); set(handles.coord, 'visible', vv); set(handles.Thist, 'visible', v); set(handles.hist_frame, 'visible', v); set(handles.hist_eq, 'visible', v); set(handles.hist_plot, 'visible', v); end if isfield(opt,'enablecolormap') if opt.enablecolormap v = 'on'; else v = 'off'; end set(handles.Tcolor, 'visible', v); set(handles.color_frame, 'visible', v); set(handles.neg_color, 'visible', v); set(handles.colorindex, 'visible', v); end if isfield(opt,'enablecontrast') if opt.enablecontrast v = 'on'; else v = 'off'; end set(handles.Tcontrast, 'visible', v); set(handles.contrast_frame, 'visible', v); set(handles.contrast_def, 'visible', v); set(handles.contrast, 'visible', v); end if isfield(opt,'enablebrightness') if opt.enablebrightness v = 'on'; else v = 'off'; end set(handles.Tbrightness, 'visible', v); set(handles.brightness_frame, 'visible', v); set(handles.brightness_def, 'visible', v); set(handles.brightness, 'visible', v); end if isfield(opt,'enabledirlabel') if opt.enabledirlabel v = 'on'; else v = 'off'; end set(handles.top1_label, 'visible', v); set(handles.top2_label, 'visible', v); set(handles.side1_label, 'visible', v); set(handles.side2_label, 'visible', v); end if isfield(opt,'enableslider') if opt.enableslider v = 'on'; else v = 'off'; end if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', v); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', v); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', v); end end return; % update_enable %---------------------------------------------------------------- function update_usepanel(fig, usepanel) if isempty(usepanel) return; end if usepanel opt.enablecursormove = 1; opt.enableviewpoint = 1; opt.enableorigin = 1; opt.enableunit = 1; opt.enablecrosshair = 1; % opt.enablehistogram = 1; opt.enablecolormap = 1; opt.enablecontrast = 1; opt.enablebrightness = 1; else opt.enablecursormove = 0; opt.enableviewpoint = 0; opt.enableorigin = 0; opt.enableunit = 0; opt.enablecrosshair = 0; % opt.enablehistogram = 0; opt.enablecolormap = 0; opt.enablecontrast = 0; opt.enablebrightness = 0; end update_enable(fig, opt); nii_view = getappdata(fig,'nii_view'); nii_view.usepanel = usepanel; setappdata(fig,'nii_view',nii_view); return; % update_usepanel %---------------------------------------------------------------- function update_usecrosshair(fig, usecrosshair) if isempty(usecrosshair) return; end if usecrosshair v=1; else v=2; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.xhair,'value',v); opt.command = 'crosshair'; view_nii(fig, opt); return; % update_usecrosshair %---------------------------------------------------------------- function update_usestretch(fig, usestretch) nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; fig = nii_view.fig; area = nii_view.area; vol_size = nii_view.voxel_size .* nii_view.dims; % Three Axes & label % [top_ax, front_ax, side_ax] = ... create_ax(fig, area, vol_size, usestretch); dir_label(fig, top_ax, front_ax, side_ax); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider,'position',pos); end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider,'position',pos); end % Axial Slider % x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider,'position',pos); end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Timvalcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imvalcur,'position',pos); % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timposcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imposcur,'position',pos); % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timval,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imval,'position',pos); % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timpos,'position',pos); x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; set(handles.impos,'position',pos); % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Torigin,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.origin,'position',pos); if 0 % Axes Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Tcoord,'position',pos); x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; set(handles.coord,'position',pos); end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.Txhair,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.xhair_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; set(handles.xhair,'position',pos); % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.hist_frame,'position',pos); set(handles.coord_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.color_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.hist_eq,'position',pos); x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.hist_plot,'position',pos); x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.coord,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.neg_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; set(handles.colorindex,'position',pos); x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; set(handles.Thist,'position',pos); set(handles.Tcoord,'position',pos); x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; set(handles.Tcolor,'position',pos); % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; set(handles.contrast_frame,'position',pos); % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; set(handles.brightness_frame,'position',pos); % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; set(handles.contrast,'position',pos); % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; set(handles.brightness,'position',pos); % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; set(handles.Tcontrast,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.contrast_def,'position',pos); % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; set(handles.Tbrightness,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.brightness_def,'position',pos); return; % update_usestretch %---------------------------------------------------------------- function update_useinterp(fig, useinterp) if isempty(useinterp) return; end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if get(nii_menu.Minterp,'user') set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end nii_view = getappdata(fig, 'nii_view'); nii_view.useinterp = useinterp; if ~isempty(nii_view.handles.axial_image) if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end elseif ~isempty(nii_view.handles.coronal_image) if strcmpi(get(nii_view.handles.coronal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end else if strcmpi(get(nii_view.handles.sagittal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end end if ~isempty(nii_view.handles.axial_image) img_slice = get(nii_view.handles.axial_image, 'cdata'); delete(nii_view.handles.axial_image); axes(nii_view.handles.axial_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.axial_image = imagesc('cdata',img_slice); else nii_view.handles.axial_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.axial_image)) = []; order = [order; nii_view.handles.axial_image]; if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) delete(nii_view.handles.axial_bg); nii_view.handles.axial_bg = []; end end set(nii_view.handles.axial_image,'buttondown','view_nii(''axial_image'');'); end if ~isempty(nii_view.handles.coronal_image) img_slice = get(nii_view.handles.coronal_image, 'cdata'); delete(nii_view.handles.coronal_image); axes(nii_view.handles.coronal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.coronal_image = imagesc('cdata',img_slice); else nii_view.handles.coronal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.coronal_image)) = []; order = [order; nii_view.handles.coronal_image]; if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) delete(nii_view.handles.coronal_bg); nii_view.handles.coronal_bg = []; end end set(nii_view.handles.coronal_image,'buttondown','view_nii(''coronal_image'');'); end if ~isempty(nii_view.handles.sagittal_image) img_slice = get(nii_view.handles.sagittal_image, 'cdata'); delete(nii_view.handles.sagittal_image); axes(nii_view.handles.sagittal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.sagittal_image = imagesc('cdata',img_slice); else nii_view.handles.sagittal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_image)) = []; order = [order; nii_view.handles.sagittal_image]; if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) delete(nii_view.handles.sagittal_bg); nii_view.handles.sagittal_bg = []; end end set(nii_view.handles.sagittal_image,'buttondown','view_nii(''sagittal_image'');'); end if ~useinterp nii_view.bgimg = []; end set_coordinates(nii_view,useinterp); setappdata(fig, 'nii_view', nii_view); return; % update_useinterp %---------------------------------------------------------------- function update_useimagesc(fig, useimagesc) if isempty(useimagesc) return; end if useimagesc v='scaled'; else v='direct'; end nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; if isfield(handles,'cbar_image') & ishandle(handles.cbar_image) % set(handles.cbar_image,'cdatamapping',v); end set(handles.axial_image,'cdatamapping',v); set(handles.coronal_image,'cdatamapping',v); set(handles.sagittal_image,'cdatamapping',v); return; % update_useimagesc %---------------------------------------------------------------- function update_shape(fig, area, usecolorbar, usestretch, useimagesc) nii_view = getappdata(fig,'nii_view'); if isempty(usestretch) % no change, get usestretch stretchchange = 0; usestretch = nii_view.usestretch; else % change, set usestretch stretchchange = 1; nii_view.usestretch = usestretch; end if isempty(area) % no change, get area areachange = 0; area = nii_view.area; elseif ~isempty(nii_view.cbar_area) % change, set area & cbar_area areachange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; else % change, set area only areachange = 1; nii_view.area = area; end % Add colorbar % if ~isempty(usecolorbar) & usecolorbar & isempty(nii_view.cbar_area) colorbarchange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; % useimagesc follows axial image % if isempty(useimagesc) if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end end if isfield(nii_view, 'highcolor') & ~isempty(highcolor) num_highcolor = size(nii_view.highcolor,1); else num_highcolor = 0; end if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) colorlevel = nii_view.colorlevel; else colorlevel = 256 - num_highcolor; end if isfield(nii_view, 'color_map') color_map = nii_view.color_map; else color_map = []; end if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end % plot colorbar % if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end cbar_image = [1:level]'; niiclass = class(nii_view.nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, nii_view.cbarminmax, ... level, nii_view.handles, useimagesc, nii_view.colorindex, ... color_map, colorlevel, highcolor, niiclass, nii_view.numscan); nii_view.handles.cbar_image = h1; nii_view.handles.cbar_axes = cbar_axes; nii_view.handles.cbarminmax_axes = cbar_axes; % remove colorbar % elseif ~isempty(usecolorbar) & ~usecolorbar & ~isempty(nii_view.cbar_area) colorbarchange = 1; area(3) = area(3) / 0.9; nii_view.area = area; nii_view.cbar_area = []; nii_view.handles = rmfield(nii_view.handles,'cbar_image'); delete(nii_view.handles.cbarminmax_axes); nii_view.handles = rmfield(nii_view.handles,'cbarminmax_axes'); delete(nii_view.handles.cbar_axes); nii_view.handles = rmfield(nii_view.handles,'cbar_axes'); else colorbarchange = 0; end if colorbarchange | stretchchange | areachange setappdata(fig,'nii_view',nii_view); update_usestretch(fig, usestretch); end return; % update_shape %---------------------------------------------------------------- function update_unit(fig, setunit) if isempty(setunit) return; end if strcmpi(setunit,'mm') | strcmpi(setunit,'millimeter') | strcmpi(setunit,'mni') v = 2; % elseif strcmpi(setunit,'tal') | strcmpi(setunit,'talairach') % v = 3; elseif strcmpi(setunit,'vox') | strcmpi(setunit,'voxel') v = 1; else v = 1; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.coord, 'value', v); set_image_value(nii_view); return; % update_unit %---------------------------------------------------------------- function update_viewpoint(fig, setviewpoint) if isempty(setviewpoint) return; end nii_view = getappdata(fig,'nii_view'); if length(setviewpoint) ~= 3 error('Viewpoint position should contain [x y z]'); end set(nii_view.handles.impos,'string',num2str(setviewpoint)); opt.command = 'impos_edit'; view_nii(fig, opt); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); return; % update_viewpoint %---------------------------------------------------------------- function update_scanid(fig, setscanid) if isempty(setscanid) return; end nii_view = getappdata(fig,'nii_view'); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end set(nii_view.handles.contrast_def,'string',num2str(setscanid)); set(nii_view.handles.contrast,'value',setscanid); opt.command = 'updateimg'; opt.setscanid = setscanid; view_nii(fig, nii_view.nii.img, opt); return; % update_scanid %---------------------------------------------------------------- function update_crosshaircolor(fig, new_color) if isempty(new_color) return; end nii_view = getappdata(fig,'nii_view'); xhair_color = nii_view.handles.xhair_color; set(xhair_color,'user',new_color); set(nii_view.axi_xhair.lx,'color',new_color); set(nii_view.axi_xhair.ly,'color',new_color); set(nii_view.cor_xhair.lx,'color',new_color); set(nii_view.cor_xhair.ly,'color',new_color); set(nii_view.sag_xhair.lx,'color',new_color); set(nii_view.sag_xhair.ly,'color',new_color); return; % update_crosshaircolor %---------------------------------------------------------------- function update_colorindex(fig, colorindex) if isempty(colorindex) return; end nii_view = getappdata(fig,'nii_view'); nii_view.colorindex = colorindex; setappdata(fig, 'nii_view', nii_view); set(nii_view.handles.colorindex,'value',colorindex); opt.command = 'color'; view_nii(fig, opt); return; % update_colorindex %---------------------------------------------------------------- function redraw_cbar(fig, colorlevel, color_map, highcolor) nii_view = getappdata(fig,'nii_view'); if isempty(nii_view.cbar_area) return; end colorindex = nii_view.colorindex; if isempty(highcolor) num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel=256; end if colorindex == 1 colorlevel = size(color_map, 1); end % level = colorlevel + num_highcolor; level = colorlevel; cbar_image = [1:level]'; cbar_area = nii_view.cbar_area; % useimagesc follows axial image % if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end niiclass = class(nii_view.nii.img); delete(nii_view.handles.cbar_image); delete(nii_view.handles.cbar_axes); delete(nii_view.handles.cbarminmax_axes); [nii_view.handles.cbar_axes nii_view.handles.cbarminmax_axes] = ... create_cbar_axes(fig, cbar_area, []); nii_view.handles.cbar_image = plot_cbar(fig, ... nii_view.handles.cbar_axes, nii_view.handles.cbarminmax_axes, ... nii_view.cbarminmax, level, nii_view.handles, useimagesc, ... colorindex, color_map, colorlevel, highcolor, niiclass, ... nii_view.numscan, []); setappdata(fig, 'nii_view', nii_view); return; % redraw_cbar %---------------------------------------------------------------- function update_buttondown(fig, setbuttondown) if isempty(setbuttondown) return; end nii_view = getappdata(fig,'nii_view'); nii_view.buttondown = setbuttondown; setappdata(fig, 'nii_view', nii_view); return; % update_buttondown %---------------------------------------------------------------- function update_cbarminmax(fig, cbarminmax) if isempty(cbarminmax) return; end nii_view = getappdata(fig, 'nii_view'); if ~isfield(nii_view.handles, 'cbarminmax_axes') return; end nii_view.cbarminmax = cbarminmax; setappdata(fig, 'nii_view', nii_view); axes(nii_view.handles.cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(nii_view.handles.cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylim = get(nii_view.handles.cbar_axes,'ylim'); ylimb = get(nii_view.handles.cbarminmax_axes,'ylim'); ytickb = get(nii_view.handles.cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(nii_view.handles.cbar_axes); set(nii_view.handles.cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % update_cbarminmax %---------------------------------------------------------------- function update_highcolor(fig, highcolor, colorlevel) nii_view = getappdata(fig,'nii_view'); if ischar(highcolor) & (isempty(colorlevel) | nii_view.colorindex == 1) return; end if ~ischar(highcolor) nii_view.highcolor = highcolor; if isempty(highcolor) nii_view = rmfield(nii_view, 'highcolor'); end else highcolor = []; end if isempty(colorlevel) | nii_view.colorindex == 1 nii_view.colorlevel = nii_view.colorlevel - size(highcolor,1); else nii_view.colorlevel = colorlevel; end setappdata(fig, 'nii_view', nii_view); if isfield(nii_view,'color_map') color_map = nii_view.color_map; else color_map = []; end redraw_cbar(fig, nii_view.colorlevel, color_map, highcolor); change_colormap(fig); return; % update_highcolor %---------------------------------------------------------------- function update_colormap(fig, color_map) if ischar(color_map) return; end nii_view = getappdata(fig,'nii_view'); nii = nii_view.nii; minvalue = nii_view.minvalue; if isempty(color_map) if minvalue < 0 colorindex = 2; else colorindex = 3; end nii_view = rmfield(nii_view, 'color_map'); setappdata(fig,'nii_view',nii_view); update_colorindex(fig, colorindex); return; else colorindex = 1; nii_view.color_map = color_map; nii_view.colorindex = colorindex; setappdata(fig,'nii_view',nii_view); set(nii_view.handles.colorindex,'value',colorindex); end colorlevel = nii_view.colorlevel; if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end redraw_cbar(fig, colorlevel, color_map, highcolor); change_colormap(fig); opt.enablecontrast = 0; update_enable(fig, opt); return; % update_colormap %---------------------------------------------------------------- function status = get_status(h); nii_view = getappdata(h,'nii_view'); status.fig = h; status.area = nii_view.area; if isempty(nii_view.cbar_area) status.usecolorbar = 0; else status.usecolorbar = 1; width = status.area(3) / 0.9; status.area(3) = width; end if strcmpi(get(nii_view.handles.imval,'visible'), 'on') status.usepanel = 1; else status.usepanel = 0; end if get(nii_view.handles.xhair,'value') == 1 status.usecrosshair = 1; else status.usecrosshair = 0; end status.usestretch = nii_view.usestretch; if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') status.useimagesc = 0; else status.useimagesc = 1; end status.useinterp = nii_view.useinterp; if get(nii_view.handles.coord,'value') == 1 status.unit = 'vox'; elseif get(nii_view.handles.coord,'value') == 2 status.unit = 'mm'; elseif get(nii_view.handles.coord,'value') == 3 status.unit = 'tal'; end status.viewpoint = get(nii_view.handles.impos,'value'); status.scanid = nii_view.scanid; status.intensity = get(nii_view.handles.imval,'value'); status.colorindex = get(nii_view.handles.colorindex,'value'); if isfield(nii_view,'color_map') status.colormap = nii_view.color_map; else status.colormap = []; end status.colorlevel = nii_view.colorlevel; if isfield(nii_view,'highcolor') status.highcolor = nii_view.highcolor; else status.highcolor = []; end status.cbarminmax = nii_view.cbarminmax; status.buttondown = nii_view.buttondown; return; % get_status %---------------------------------------------------------------- function [custom_color_map, colorindex] ... = change_colormap(fig, nii, colorindex, cbarminmax) custom_color_map = []; if ~exist('nii', 'var') nii_view = getappdata(fig,'nii_view'); else nii_view = nii; end if ~exist('colorindex', 'var') colorindex = get(nii_view.handles.colorindex,'value'); end if ~exist('cbarminmax', 'var') cbarminmax = nii_view.cbarminmax; end if isfield(nii_view, 'highcolor') & ~isempty(nii_view.highcolor) highcolor = nii_view.highcolor; num_highcolor = size(highcolor,1); else highcolor = []; num_highcolor = 0; end % if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) if nii_view.colorlevel < 256 num_color = nii_view.colorlevel; else num_color = 256 - num_highcolor; end contrast = []; if colorindex == 3 % for gray if nii_view.numscan > 1 contrast = 1; else contrast = (num_color-1)*(get(nii_view.handles.contrast,'value')-1)/255+1; contrast = floor(contrast); end elseif colorindex == 2 % for bipolar if nii_view.numscan > 1 contrast = 128; else contrast = get(nii_view.handles.contrast,'value'); end end if isfield(nii_view,'color_map') & ~isempty(nii_view.color_map) color_map = nii_view.color_map; custom_color_map = color_map; elseif colorindex == 1 [f p] = uigetfile('*.txt', 'Input colormap text file'); if p==0 colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end; try custom_color_map = load(fullfile(p,f)); loadfail = 0; catch loadfail = 1; end if loadfail | isempty(custom_color_map) | size(custom_color_map,2)~=3 ... | min(custom_color_map(:)) < 0 | max(custom_color_map(:)) > 1 msg = 'Colormap should be a Mx3 matrix with value between 0 and 1'; msgbox(msg,'Error in colormap file'); colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end color_map = custom_color_map; nii_view.color_map = color_map; end switch colorindex case {2} color_map = bipolar(num_color, cbarminmax(1), cbarminmax(2), contrast); case {3} color_map = gray(num_color - contrast + 1); case {4} color_map = jet(num_color); case {5} color_map = cool(num_color); case {6} color_map = bone(num_color); case {7} color_map = hot(num_color); case {8} color_map = copper(num_color); case {9} color_map = pink(num_color); end nii_view.colorindex = colorindex; if ~exist('nii', 'var') setappdata(fig,'nii_view',nii_view); end if colorindex == 3 color_map = [zeros(contrast,3); color_map(2:end,:)]; end if get(nii_view.handles.neg_color,'value') & isempty(highcolor) color_map = flipud(color_map); elseif get(nii_view.handles.neg_color,'value') & ~isempty(highcolor) highcolor = flipud(highcolor); end brightness = get(nii_view.handles.brightness,'value'); color_map = brighten(color_map, brightness); color_map = [color_map; highcolor]; set(fig, 'colormap', color_map); return; % change_colormap %---------------------------------------------------------------- function move_cursor(fig) nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) return; end axi = get(nii_view.handles.axial_axes, 'pos'); cor = get(nii_view.handles.coronal_axes, 'pos'); sag = get(nii_view.handles.sagittal_axes, 'pos'); curr = get(fig, 'currentpoint'); if curr(1) >= axi(1) & curr(1) <= axi(1)+axi(3) & ... curr(2) >= axi(2) & curr(2) <= axi(2)+axi(4) curr = get(nii_view.handles.axial_axes, 'current'); sag = curr(1,1); cor = curr(1,2); axi = nii_view.slices.axi; elseif curr(1) >= cor(1) & curr(1) <= cor(1)+cor(3) & ... curr(2) >= cor(2) & curr(2) <= cor(2)+cor(4) curr = get(nii_view.handles.coronal_axes, 'current'); sag = curr(1,1); cor = nii_view.slices.cor; axi = curr(1,2); elseif curr(1) >= sag(1) & curr(1) <= sag(1)+sag(3) & ... curr(2) >= sag(2) & curr(2) <= sag(2)+sag(4) curr = get(nii_view.handles.sagittal_axes, 'current'); sag = nii_view.slices.sag; cor = curr(1,1); axi = curr(1,2); else set(nii_view.handles.imvalcur,'String',' '); set(nii_view.handles.imposcur,'String',' '); return; end sag = round(sag); cor = round(cor); axi = round(axi); if sag < 1 sag = 1; elseif sag > nii_view.dims(1) sag = nii_view.dims(1); end if cor < 1 cor = 1; elseif cor > nii_view.dims(2) cor = nii_view.dims(2); end if axi < 1 axi = 1; elseif axi > nii_view.dims(3) axi = nii_view.dims(3); end if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [R G B]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imvalcur,'String',sprintf('%.6g',imgvalue)); end nii_view.slices.sag = sag; nii_view.slices.cor = cor; nii_view.slices.axi = axi; nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); end if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); end; set(nii_view.handles.imposcur,'String',string); return; % move_cursor %---------------------------------------------------------------- function change_scan(hdl_str) fig = gcbf; nii_view = getappdata(fig,'nii_view'); if strcmpi(hdl_str, 'edit_change_scan') % edit hdl = nii_view.handles.contrast_def; setscanid = round(str2num(get(hdl, 'string'))); else % slider hdl = nii_view.handles.contrast; setscanid = round(get(hdl, 'value')); end update_scanid(fig, setscanid); return; % change_scan %---------------------------------------------------------------- function val = scale_in(val, minval, maxval, range) % scale value into range % val = range*(double(val)-double(minval))/(double(maxval)-double(minval))+1; return; % scale_in %---------------------------------------------------------------- function val = scale_out(val, minval, maxval, range) % according to [minval maxval] and range of color levels (e.g. 199) % scale val back from any thing between 1~256 to a small number that % is corresonding to [minval maxval]. % val = (double(val)-1)*(double(maxval)-double(minval))/range+double(minval); return; % scale_out
github
changken1/IDH_Prediction-master
mat_into_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/mat_into_hdr.m
2,608
utf_8
d53006b93ff90a4a5561d16ff2f4e9a6
%MAT_INTO_HDR The old versions of SPM (any version before SPM5) store % an affine matrix of the SPM Reoriented image into a matlab file % (.mat extension). The file name of this SPM matlab file is the % same as the SPM Reoriented image file (.img/.hdr extension). % % This program will convert the ANALYZE 7.5 SPM Reoriented image % file into NIfTI format, and integrate the affine matrix in the % SPM matlab file into its header file (.hdr extension). % % WARNING: Before you run this program, please save the header % file (.hdr extension) into another file name or into another % folder location, because all header files (.hdr extension) % will be overwritten after they are converted into NIfTI % format. % % Usage: mat_into_hdr(filename); % % filename: file name(s) with .hdr or .mat file extension, like: % '*.hdr', or '*.mat', or a single .hdr or .mat file. % e.g. mat_into_hdr('T1.hdr') % mat_into_hdr('*.mat') % % - Jimmy Shen ([email protected]) % %------------------------------------------------------------------------- function mat_into_hdr(files) pn = fileparts(files); file_lst = dir(files); file_lst = {file_lst.name}; file1 = file_lst{1}; [p n e]= fileparts(file1); for i=1:length(file_lst) [p n e]= fileparts(file_lst{i}); disp(['working on file ', num2str(i) ,' of ', num2str(length(file_lst)), ': ', n,e]); process=1; if isequal(e,'.hdr') mat=fullfile(pn, [n,'.mat']); hdr=fullfile(pn, file_lst{i}); if ~exist(mat,'file') warning(['Cannot find file "',mat , '". File "', n, e, '" will not be processed.']); process=0; end elseif isequal(e,'.mat') hdr=fullfile(pn, [n,'.hdr']); mat=fullfile(pn, file_lst{i}); if ~exist(hdr,'file') warning(['Can not find file "',hdr , '". File "', n, e, '" will not be processed.']); process=0; end else warning(['Input file must have .mat or .hdr extension. File "', n, e, '" will not be processed.']); process=0; end if process load(mat); R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; [h filetype fileprefix machine]=load_nii_hdr(hdr); h.hist.qform_code=0; h.hist.sform_code=1; h.hist.srow_x=M(1,:); h.hist.srow_y=M(2,:); h.hist.srow_z=M(3,:); h.hist.magic='ni1'; fid = fopen(hdr,'w',machine); save_nii_hdr(h,fid); fclose(fid); end end return; % mat_into_hdr
github
changken1/IDH_Prediction-master
xform_nii.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/xform_nii.m
18,107
utf_8
29a1cff91c944d6a93e5101946a5da4d
% internal function % 'xform_nii.m' is an internal function called by "load_nii.m", so % you do not need run this program by yourself. It does simplified % NIfTI sform/qform affine transform, and supports some of the % affine transforms, including translation, reflection, and % orthogonal rotation (N*90 degree). % % For other affine transforms, e.g. any degree rotation, shearing % etc. you will have to use the included 'reslice_nii.m' program % to reslice the image volume. 'reslice_nii.m' is not called by % any other program, and you have to run 'reslice_nii.m' explicitly % for those NIfTI files that you want to reslice them. % % Since 'xform_nii.m' does not involve any interpolation or any % slice change, the original image volume is supposed to be % untouched, although it is translated, reflected, or even % orthogonally rotated, based on the affine matrix in the % NIfTI header. % % However, the affine matrix in the header of a lot NIfTI files % contain slightly non-orthogonal rotation. Therefore, optional % input parameter 'tolerance' is used to allow some distortion % in the loaded image for any non-orthogonal rotation or shearing % of NIfTI affine matrix. If you set 'tolerance' to 0, it means % that you do not allow any distortion. If you set 'tolerance' to % 1, it means that you do not care any distortion. The image will % fail to be loaded if it can not be tolerated. The tolerance will % be set to 0.1 (10%), if it is default or empty. % % Because 'reslice_nii.m' has to perform 3D interpolation, it can % be slow depending on image size and affine matrix in the header. % % After you perform the affine transform, the 'nii' structure % generated from 'xform_nii.m' or new NIfTI file created from % 'reslice_nii.m' will be in RAS orientation, i.e. X axis from % Left to Right, Y axis from Posterior to Anterior, and Z axis % from Inferior to Superior. % % NOTE: This function should be called immediately after load_nii. % % Usage: [ nii ] = xform_nii(nii, [tolerance], [preferredForm]) % % nii - NIFTI structure (returned from load_nii) % % tolerance (optional) - distortion allowed for non-orthogonal rotation % or shearing in NIfTI affine matrix. It will be set to 0.1 (10%), % if it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = xform_nii(nii, tolerance, preferredForm) % save a copy of the header as it was loaded. This is the % header before any sform, qform manipulation is done. % nii.original.hdr = nii.hdr; if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; elseif(tolerance<=0) tolerance = eps; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end % if scl_slope field is nonzero, then each voxel value in the % dataset should be scaled as: y = scl_slope * x + scl_inter % I bring it here because hdr will be modified by change_hdr. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) & ... (nii.hdr.dime.scl_slope ~= 1 | nii.hdr.dime.scl_inter ~= 0) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 64 nii.hdr.dime.datatype = 64; nii.hdr.dime.bitpix = 64; else nii.img = single(nii.img); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % However, the scaling is to be ignored if datatype is DT_RGB24. % If datatype is a complex type, then the scaling is to be applied % to both the real and imaginary parts. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [32,1792]) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 32 nii.img = single(nii.img); end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % There is no need for this program to transform Analyze data % if nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.qform_code=0; nii.hdr.hist.sform_code=1; nii.hdr.hist.srow_x=M(1,:); nii.hdr.hist.srow_y=M(2,:); nii.hdr.hist.srow_z=M(3,:); elseif nii.filetype == 0 nii.hdr.hist.rot_orient = []; nii.hdr.hist.flip_orient = []; return; % no sform/qform for Analyze format end hdr = nii.hdr; [hdr,orient]=change_hdr(hdr,tolerance,preferredForm); % flip and/or rotate image data % if ~isequal(orient, [1 2 3]) old_dim = hdr.dime.dim([2:4]); % More than 1 time frame % if ndims(nii.img) > 3 pattern = 1:prod(old_dim); else pattern = []; end if ~isempty(pattern) pattern = reshape(pattern, old_dim); end % calculate for rotation after flip % rot_orient = mod(orient + 2, 3) + 1; % do flip: % flip_orient = orient - rot_orient; for i = 1:3 if flip_orient(i) if ~isempty(pattern) pattern = flipdim(pattern, i); else nii.img = flipdim(nii.img, i); end end end % get index of orient (rotate inversely) % [tmp rot_orient] = sort(rot_orient); new_dim = old_dim; new_dim = new_dim(rot_orient); hdr.dime.dim([2:4]) = new_dim; new_pixdim = hdr.dime.pixdim([2:4]); new_pixdim = new_pixdim(rot_orient); hdr.dime.pixdim([2:4]) = new_pixdim; % re-calculate originator % tmp = hdr.hist.originator([1:3]); tmp = tmp(rot_orient); flip_orient = flip_orient(rot_orient); for i = 1:3 if flip_orient(i) & ~isequal(tmp(i), 0) tmp(i) = new_dim(i) - tmp(i) + 1; end end hdr.hist.originator([1:3]) = tmp; hdr.hist.rot_orient = rot_orient; hdr.hist.flip_orient = flip_orient; % do rotation: % if ~isempty(pattern) pattern = permute(pattern, rot_orient); pattern = pattern(:); if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,1), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,1) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); tmp = reshape(nii.img(:,:,:,2), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,2) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,3), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,3) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); end else nii.img = reshape(nii.img, [prod(new_dim) hdr.dime.dim(5:8)]); nii.img = nii.img(pattern, :); nii.img = reshape(nii.img, [new_dim hdr.dime.dim(5:8)]); end else if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,1) = permute(nii.img(:,:,:,1), rot_orient); nii.img(:,:,:,2) = permute(nii.img(:,:,:,2), rot_orient); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,3) = permute(nii.img(:,:,:,3), rot_orient); end else nii.img = permute(nii.img, rot_orient); end end else hdr.hist.rot_orient = []; hdr.hist.flip_orient = []; end nii.hdr = hdr; return; % xform_nii %----------------------------------------------------------------------- function [hdr, orient] = change_hdr(hdr, tolerance, preferredForm) orient = [1 2 3]; affine_transform = 1; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires qform, qform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end end elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); if qfac==0, qfac = 1; end i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; % qforms are expected to generate rotation matrices R which are % det(R) = 1; we'll make sure that happens. % % now we make the same checks as were done above for sform data % BUT we do it on a transform that is in terms of voxels not mm; % after we figure out the angles and squash them to closest % rectilinear direction. After that, the voxel sizes are then % added. % % This part is modified by Jeff Gunter. % if det(R) == 0 | ~isequal(R(find(R)), sum(R)') % det(R) == 0 is not a common trigger for this --- % R(find(R)) is a list of non-zero elements in R; if that % is straight (not oblique) then it should be the same as % columnwise summation. Could just as well have checked the % lengths of R(find(R)) and sum(R)' (which should be 3) % hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; R = R * diag([i j k]); hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end else R = R * diag([i j k]); end % 1st det(R) else affine_transform = 0; % no sform or qform transform end if affine_transform == 1 voxel_size = abs(sum(R,1)); inv_R = inv(R); originator = inv_R*(-T)+1; orient = get_orient(inv_R); % modify pixdim and originator % hdr.dime.pixdim(2:4) = voxel_size; hdr.hist.originator(1:3) = originator; % set sform or qform to non-use, because they have been % applied in xform_nii % hdr.hist.qform_code = 0; hdr.hist.sform_code = 0; end % apply space_unit to pixdim if not 1 (mm) % space_unit = get_units(hdr); if space_unit ~= 1 hdr.dime.pixdim(2:4) = hdr.dime.pixdim(2:4) * space_unit; % set space_unit of xyzt_units to millimeter, because % voxel_size has been re-scaled % hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,1,0)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,2,1)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,3,0)); end hdr.dime.pixdim = abs(hdr.dime.pixdim); return; % change_hdr %----------------------------------------------------------------------- function orient = get_orient(R) orient = []; for i = 1:3 switch find(R(i,:)) * sign(sum(R(i,:))) case 1 orient = [orient 1]; % Left to Right case 2 orient = [orient 2]; % Posterior to Anterior case 3 orient = [orient 3]; % Inferior to Superior case -1 orient = [orient 4]; % Right to Left case -2 orient = [orient 5]; % Anterior to Posterior case -3 orient = [orient 6]; % Superior to Inferior end end return; % get_orient %----------------------------------------------------------------------- function [space_unit, time_unit] = get_units(hdr) switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 space_unit = 1e+3; % meter, m case 3 space_unit = 1e-3; % micrometer, um otherwise space_unit = 1; % millimeter, mm end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 16 time_unit = 1e-3; % millisecond, ms case 24 time_unit = 1e-6; % microsecond, us otherwise time_unit = 1; % second, s end return; % get_units
github
changken1/IDH_Prediction-master
make_ana.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/make_ana.m
5,455
utf_8
2f62999cbcad72129c892135ff492a1e
% Make ANALYZE 7.5 data structure specified by a 3D or 4D matrix. % Optional parameters can also be included, such as: voxel_size, % origin, datatype, and description. % % Once the ANALYZE structure is made, it can be saved into ANALYZE 7.5 % format data file using "save_untouch_nii" command (for more detail, % type: help save_untouch_nii). % % Usage: ana = make_ana(img, [voxel_size], [origin], [datatype], [description]) % % Where: % % img: a 3D matrix [x y z], or a 4D matrix with time % series [x y z t]. When image is in RGB format, % make sure that the size of 4th dimension is % always 3 (i.e. [R G B]). In that case, make % sure that you must specify RGB datatype to 128. % % voxel_size (optional): Voxel size in millimeter for each % dimension. Default is [1 1 1]. % % origin (optional): The AC origin. Default is [0 0 0]. % % datatype (optional): Storage data type: % 2 - uint8, 4 - int16, 8 - int32, 16 - float32, % 64 - float64, 128 - RGB24 % Default will use the data type of 'img' matrix % For RGB image, you must specify it to 128. % % description (optional): Description of data. Default is ''. % % e.g.: % origin = [33 44 13]; datatype = 64; % ana = make_ana(img, [], origin, datatype); % default voxel_size % % ANALYZE 7.5 format: http://www.rotman-baycrest.on.ca/~jimmy/ANALYZE75.pdf % % - Jimmy Shen ([email protected]) % function ana = make_ana(varargin) ana.img = varargin{1}; dims = size(ana.img); dims = [4 dims ones(1,8)]; dims = dims(1:8); voxel_size = [0 ones(1,3) zeros(1,4)]; origin = zeros(1,5); descrip = ''; switch class(ana.img) case 'uint8' datatype = 2; case 'int16' datatype = 4; case 'int32' datatype = 8; case 'single' datatype = 16; case 'double' datatype = 64; otherwise error('Datatype is not supported by make_ana.'); end if nargin > 1 & ~isempty(varargin{2}) voxel_size(2:4) = double(varargin{2}); end if nargin > 2 & ~isempty(varargin{3}) origin(1:3) = double(varargin{3}); end if nargin > 3 & ~isempty(varargin{4}) datatype = double(varargin{4}); if datatype == 128 | datatype == 511 dims(5) = []; dims = [dims 1]; end end if nargin > 4 & ~isempty(varargin{5}) descrip = varargin{5}; end if ndims(ana.img) > 4 error('NIfTI only allows a maximum of 4 Dimension matrix.'); end maxval = round(double(max(ana.img(:)))); minval = round(double(min(ana.img(:)))); ana.hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval); ana.filetype = 0; ana.ext = []; ana.untouch = 1; switch ana.hdr.dime.datatype case 2 ana.img = uint8(ana.img); case 4 ana.img = int16(ana.img); case 8 ana.img = int32(ana.img); case 16 ana.img = single(ana.img); case 64 ana.img = double(ana.img); case 128 ana.img = uint8(ana.img); otherwise error('Datatype is not supported by make_ana.'); end return; % make_ana %--------------------------------------------------------------------- function hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval) hdr.hk = header_key; hdr.dime = image_dimension(dims, voxel_size, datatype, maxval, minval); hdr.hist = data_history(origin, descrip); return; % make_header %--------------------------------------------------------------------- function hk = header_key hk.sizeof_hdr = 348; % must be 348! hk.data_type = ''; hk.db_name = ''; hk.extents = 0; hk.session_error = 0; hk.regular = 'r'; hk.hkey_un0 = '0'; return; % header_key %--------------------------------------------------------------------- function dime = image_dimension(dims, voxel_size, datatype, maxval, minval) dime.dim = dims; dime.vox_units = 'mm'; dime.cal_units = ''; dime.unused1 = 0; dime.datatype = datatype; switch dime.datatype case 2, dime.bitpix = 8; precision = 'uint8'; case 4, dime.bitpix = 16; precision = 'int16'; case 8, dime.bitpix = 32; precision = 'int32'; case 16, dime.bitpix = 32; precision = 'float32'; case 64, dime.bitpix = 64; precision = 'float64'; case 128 dime.bitpix = 24; precision = 'uint8'; otherwise error('Datatype is not supported by make_ana.'); end dime.dim_un0 = 0; dime.pixdim = voxel_size; dime.vox_offset = 0; dime.roi_scale = 1; dime.funused1 = 0; dime.funused2 = 0; dime.cal_max = 0; dime.cal_min = 0; dime.compressed = 0; dime.verified = 0; dime.glmax = maxval; dime.glmin = minval; return; % image_dimension %--------------------------------------------------------------------- function hist = data_history(origin, descrip) hist.descrip = descrip; hist.aux_file = 'none'; hist.orient = 0; hist.originator = origin; hist.generated = ''; hist.scannum = ''; hist.patient_id = ''; hist.exp_date = ''; hist.exp_time = ''; hist.hist_un0 = ''; hist.views = 0; hist.vols_added = 0; hist.start_field = 0; hist.field_skip = 0; hist.omax = 0; hist.omin = 0; hist.smax = 0; hist.smin = 0; return; % data_history
github
changken1/IDH_Prediction-master
extra_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/extra_nii_hdr.m
7,830
utf_8
853f39f00cbf133e90d0f2cf08d79488
% Decode extra NIFTI header information into hdr.extra % % Usage: hdr = extra_nii_hdr(hdr) % % hdr can be obtained from load_nii_hdr % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function hdr = extra_nii_hdr(hdr) switch hdr.dime.datatype case 1 extra.NIFTI_DATATYPES = 'DT_BINARY'; case 2 extra.NIFTI_DATATYPES = 'DT_UINT8'; case 4 extra.NIFTI_DATATYPES = 'DT_INT16'; case 8 extra.NIFTI_DATATYPES = 'DT_INT32'; case 16 extra.NIFTI_DATATYPES = 'DT_FLOAT32'; case 32 extra.NIFTI_DATATYPES = 'DT_COMPLEX64'; case 64 extra.NIFTI_DATATYPES = 'DT_FLOAT64'; case 128 extra.NIFTI_DATATYPES = 'DT_RGB24'; case 256 extra.NIFTI_DATATYPES = 'DT_INT8'; case 512 extra.NIFTI_DATATYPES = 'DT_UINT16'; case 768 extra.NIFTI_DATATYPES = 'DT_UINT32'; case 1024 extra.NIFTI_DATATYPES = 'DT_INT64'; case 1280 extra.NIFTI_DATATYPES = 'DT_UINT64'; case 1536 extra.NIFTI_DATATYPES = 'DT_FLOAT128'; case 1792 extra.NIFTI_DATATYPES = 'DT_COMPLEX128'; case 2048 extra.NIFTI_DATATYPES = 'DT_COMPLEX256'; otherwise extra.NIFTI_DATATYPES = 'DT_UNKNOWN'; end switch hdr.dime.intent_code case 2 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CORREL'; case 3 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST'; case 4 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST'; case 5 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ZSCORE'; case 6 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ'; case 7 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BETA'; case 8 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BINOM'; case 9 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GAMMA'; case 10 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POISSON'; case 11 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NORMAL'; case 12 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST_NONC'; case 13 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ_NONC'; case 14 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGISTIC'; case 15 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LAPLACE'; case 16 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_UNIFORM'; case 17 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST_NONC'; case 18 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_WEIBULL'; case 19 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHI'; case 20 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_INVGAUSS'; case 21 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_EXTVAL'; case 22 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_PVAL'; case 23 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGPVAL'; case 24 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOG10PVAL'; case 1001 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ESTIMATE'; case 1002 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LABEL'; case 1003 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NEURONAME'; case 1004 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GENMATRIX'; case 1005 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_SYMMATRIX'; case 1006 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DISPVECT'; case 1007 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_VECTOR'; case 1008 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POINTSET'; case 1009 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TRIANGLE'; case 1010 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_QUATERNION'; case 1011 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DIMLESS'; otherwise extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NONE'; end extra.NIFTI_INTENT_NAMES = hdr.hist.intent_name; if hdr.hist.sform_code > 0 switch hdr.hist.sform_code case 1 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; elseif hdr.hist.qform_code > 0 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; switch hdr.hist.qform_code case 1 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end else extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_METER'; case 2 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MM'; % millimeter case 3 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MICRO'; otherwise extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 8 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_SEC'; case 16 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_MSEC'; case 24 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_USEC'; % microsecond otherwise extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch hdr.dime.xyzt_units case 32 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_HZ'; case 40 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_PPM'; % part per million case 48 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_RADS'; % radians per second otherwise extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_UNKNOWN'; end % MRI-specific spatial and temporal information % dim_info = hdr.hk.dim_info; extra.NIFTI_FREQ_DIM = bitand(dim_info, 3); extra.NIFTI_PHASE_DIM = bitand(bitshift(dim_info, -2), 3); extra.NIFTI_SLICE_DIM = bitand(bitshift(dim_info, -4), 3); % Check slice code % switch hdr.dime.slice_code case 1 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_INC'; % sequential increasing case 2 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_DEC'; % sequential decreasing case 3 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC'; % alternating increasing case 4 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC'; % alternating decreasing case 5 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC2'; % ALT_INC # 2 case 6 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC2'; % ALT_DEC # 2 otherwise extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_UNKNOWN'; end % Check NIFTI version % if ~isempty(hdr.hist.magic) & strcmp(hdr.hist.magic(1),'n') & ... ( strcmp(hdr.hist.magic(2),'i') | strcmp(hdr.hist.magic(2),'+') ) & ... str2num(hdr.hist.magic(3)) >= 1 & str2num(hdr.hist.magic(3)) <= 9 extra.NIFTI_VERSION = str2num(hdr.hist.magic(3)); else extra.NIFTI_VERSION = 0; end % Check if data stored in the same file (*.nii) or separate % files (*.hdr/*.img) % if isempty(hdr.hist.magic) extra.NIFTI_ONEFILE = 0; else extra.NIFTI_ONEFILE = strcmp(hdr.hist.magic(2), '+'); end % Swap has been taken care of by checking whether sizeof_hdr is % 348 (machine is 'ieee-le' or 'ieee-be' etc) % % extra.NIFTI_NEEDS_SWAP = (hdr.dime.dim(1) < 0 | hdr.dime.dim(1) > 7); % Check NIFTI header struct contains a 5th (vector) dimension % if hdr.dime.dim(1) > 4 & hdr.dime.dim(6) > 1 extra.NIFTI_5TH_DIM = hdr.dime.dim(6); else extra.NIFTI_5TH_DIM = 0; end hdr.extra = extra; return; % extra_nii_hdr
github
changken1/IDH_Prediction-master
rri_xhair.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/rri_xhair.m
2,208
utf_8
b3ae9df90d43e5d9538b6b135fa8af20
% rri_xhair: create a pair of full_cross_hair at point [x y] in % axes h_ax, and return xhair struct % % Usage: xhair = rri_xhair([x y], xhair, h_ax); % % If omit xhair, rri_xhair will create a pair of xhair; otherwise, % rri_xhair will update the xhair. If omit h_ax, current axes will % be used. % % 24-nov-2003 jimmy ([email protected]) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xhair = rri_xhair(varargin) if nargin == 0 error('Please enter a point position as first argument'); return; end if nargin > 0 p = varargin{1}; if ~isnumeric(p) | length(p) ~= 2 error('Invalid point position'); return; else xhair = []; end end if nargin > 1 xhair = varargin{2}; if ~isempty(xhair) if ~isstruct(xhair) error('Invalid xhair struct'); return; elseif ~isfield(xhair,'lx') | ~isfield(xhair,'ly') error('Invalid xhair struct'); return; elseif ~ishandle(xhair.lx) | ~ishandle(xhair.ly) error('Invalid xhair struct'); return; end lx = xhair.lx; ly = xhair.ly; else lx = []; ly = []; end end if nargin > 2 h_ax = varargin{3}; if ~ishandle(h_ax) error('Invalid axes handle'); return; elseif ~strcmp(lower(get(h_ax,'type')), 'axes') error('Invalid axes handle'); return; end else h_ax = gca; end x_range = get(h_ax,'xlim'); y_range = get(h_ax,'ylim'); if ~isempty(xhair) set(lx, 'ydata', [p(2) p(2)]); set(ly, 'xdata', [p(1) p(1)]); set(h_ax, 'selected', 'on'); set(h_ax, 'selected', 'off'); else figure(get(h_ax,'parent')); axes(h_ax); xhair.lx = line('xdata', x_range, 'ydata', [p(2) p(2)], ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); xhair.ly = line('xdata', [p(1) p(1)], 'ydata', y_range, ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); end set(h_ax,'xlim',x_range); set(h_ax,'ylim',y_range); return;
github
changken1/IDH_Prediction-master
save_untouch_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_untouch_nii_hdr.m
8,514
utf_8
582f82c471a9a8826eda59354f61dd1a
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
changken1/IDH_Prediction-master
expand_nii_scan.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/expand_nii_scan.m
1,333
utf_8
748da05d09c1a005401c67270c4b94ab
% Expand a multiple-scan NIFTI file into multiple single-scan NIFTI files % % Usage: expand_nii_scan(multi_scan_filename, [img_idx], [path_to_save]) % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function expand_nii_scan(filename, img_idx, newpath) v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; end end if ~exist('newpath','var') | isempty(newpath), newpath = pwd; end if ~exist('img_idx','var') | isempty(img_idx), img_idx = 1:get_nii_frame(filename); end for i=img_idx nii_i = load_untouch_nii(filename, i); fn = [nii_i.fileprefix '_' sprintf('%04d',i)]; pnfn = fullfile(newpath, fn); if exist('gzFile', 'var') pnfn = [pnfn '.nii.gz']; end save_untouch_nii(nii_i, pnfn); end return; % expand_nii_scan
github
changken1/IDH_Prediction-master
load_untouch_header_only.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/load_untouch_header_only.m
7,068
utf_8
8996c72db42b01029c92a4ecd88f4b21
% Load NIfTI / Analyze header without applying any appropriate affine % geometric transform or voxel intensity scaling. It is equivalent to % hdr field when using load_untouch_nii to load dataset. Support both % *.nii and *.hdr file extension. If file extension is not provided, % *.hdr will be used as default. % % Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename) % % filename - NIfTI / Analyze file name. % % Returned values: % % header - struct with NIfTI / Analyze header fields. % % ext - NIfTI extension if it is not empty. % % filetype - 0 for Analyze format (*.hdr/*.img); % 1 for NIFTI format in 2 files (*.hdr/*.img); % 2 for NIFTI format in 1 file (*.nii). % % machine - a string, see below for details. The default here is 'ieee-le'. % % 'native' or 'n' - local machine format - the default % 'ieee-le' or 'l' - IEEE floating point with little-endian % byte ordering % 'ieee-be' or 'b' - IEEE floating point with big-endian % byte ordering % 'vaxd' or 'd' - VAX D floating point and VAX ordering % 'vaxg' or 'g' - VAX G floating point and VAX ordering % 'cray' or 'c' - Cray floating point with big-endian % byte ordering % 'ieee-le.l64' or 'a' - IEEE floating point with little-endian % byte ordering and 64 bit long data type % 'ieee-be.l64' or 's' - IEEE floating point with big-endian byte % ordering and 64 bit long data type. % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function [hdr, ext, filetype, machine] = load_untouch_header_only(filename) if ~exist('filename','var') error('Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [hdr, filetype, fileprefix, machine] = load_nii_hdr(filename); if filetype == 0 hdr = load_untouch0_nii_hdr(fileprefix, machine); ext = []; else hdr = load_untouch_nii_hdr(fileprefix, machine, filetype); % Read the header extension % ext = load_nii_ext(filename); end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 1, hdr.dime.bitpix = 1; precision = 'ubit1'; case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 32, hdr.dime.bitpix = 64; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; case 1792, hdr.dime.bitpix = 128; precision = 'float64'; otherwise error('This datatype is not supported'); end tmp = hdr.dime.dim(2:end); tmp(find(tmp < 1)) = 1; hdr.dime.dim(2:end) = tmp; % Clean up after gunzip % if exist('gzFileName', 'var') rmdir(tmpDir,'s'); end return % load_untouch_header_only
github
changken1/IDH_Prediction-master
bipolar.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/bipolar.m
2,145
utf_8
295f87ece96ca4c5dff8dce4cd912a34
%BIPOLAR returns an M-by-3 matrix containing a blue-red colormap, in % in which red stands for positive, blue stands for negative, % and white stands for 0. % % Usage: cmap = bipolar(M, lo, hi, contrast); or cmap = bipolar; % % cmap: output M-by-3 matrix for BIPOLAR colormap. % M: number of shades in the colormap. By default, it is the % same length as the current colormap. % lo: the lowest value to represent. % hi: the highest value to represent. % % Inspired from the LORETA PASCAL program: % http://www.unizh.ch/keyinst/NewLORETA % % [email protected] % %---------------------------------------------------------------- function cmap = bipolar(M, lo, hi, contrast) if ~exist('contrast','var') contrast = 128; end if ~exist('lo','var') lo = -1; end if ~exist('hi','var') hi = 1; end if ~exist('M','var') cmap = colormap; M = size(cmap,1); end steepness = 10 ^ (1 - (contrast-1)/127); pos_infs = 1e-99; neg_infs = -1e-99; doubleredc = []; doublebluec = []; if lo >= 0 % all positive if lo == 0 lo = pos_infs; end for i=linspace(hi/M, hi, M) t = exp(log(i/hi)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end cmap = doubleredc; elseif hi <= 0 % all negative if hi == 0 hi = neg_infs; end for i=linspace(abs(lo)/M, abs(lo), M) t = exp(log(i/abs(lo))*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = flipud(doublebluec); else if hi > abs(lo) maxc = hi; else maxc = abs(lo); end for i=linspace(maxc/M, hi, round(M*hi/(hi-lo))) t = exp(log(i/maxc)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end for i=linspace(maxc/M, abs(lo), round(M*abs(lo)/(hi-lo))) t = exp(log(i/maxc)*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = [flipud(doublebluec); doubleredc]; end return; % bipolar
github
changken1/IDH_Prediction-master
save_nii_hdr.m
.m
IDH_Prediction-master/MatlabScripts/NIFTI/save_nii_hdr.m
9,270
utf_8
f97c194f5bfc667eb4f96edf12be02a7
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~exist('hdr','var') | ~exist('fid','var') error('Usage: save_nii_hdr(hdr, fid)'); end if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end if hdr.hist.qform_code == 0 & hdr.hist.sform_code == 0 hdr.hist.sform_code = 1; hdr.hist.srow_x(1) = hdr.dime.pixdim(2); hdr.hist.srow_x(2) = 0; hdr.hist.srow_x(3) = 0; hdr.hist.srow_y(1) = 0; hdr.hist.srow_y(2) = hdr.dime.pixdim(3); hdr.hist.srow_y(3) = 0; hdr.hist.srow_z(1) = 0; hdr.hist.srow_z(2) = 0; hdr.hist.srow_z(3) = hdr.dime.pixdim(4); hdr.hist.srow_x(4) = (1-hdr.hist.originator(1))*hdr.dime.pixdim(2); hdr.hist.srow_y(4) = (1-hdr.hist.originator(2))*hdr.dime.pixdim(3); hdr.hist.srow_z(4) = (1-hdr.hist.originator(3))*hdr.dime.pixdim(4); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
andersfp/XFrFT-master
frfft1gpusp.m
.m
XFrFT-master/frfft1gpusp.m
6,380
utf_8
fac15f6a9321b677486717088b80aa5a
function res = frfft1gpusp(fc,a) % Calculate the 1D fractional Fourier transform along the first dimension % of the input (fc). The transform order is given by the second input (a). % The input (fc) must have an even number of rows. % Single precision only. Requires a compatible GPU. % % Example of usage: % res = frfft1gpusp(fc,a) % % The function supports single precision input only. % % This implementation is performs the central algorithm on a GPU, giving % significant speedup over a CPU. The algorithm breaks up the array into a % size that has the highest FFT performance. This function has been % optimized for an Nvidia GTX Titan X (Pascal), for which the optimum % number of elements for FFT is elmax = 2*4.98e7. This number might be % different other GPUs, so for optimal performance this should be tested % and the elmax parameter in this function should be changed. % % The basic algorithm is based on an implementation by M. A. Kutay, based % on the following works: % Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, % Digital computation of the fractional Fourier transform, % IEEE Transactions on Signal Processing, 44:2141--2150, 1996. % Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay, % The Fractional Fourier Transform with Applications in Optics and % Signal Processing, Wiley, 2000, chapter 6, page 298. % % Some suggestions A. Bultheel and H. E. M. Sulbaran have been used: % Bultheel, A.; Martinez Sulbaran, H. E. Computation of the Fractional % Fourier Transform. Applied and Computational Harmonic Analysis 2004, % 16 (3), 182-202. % % Significant speedups and adaptation to 2D array have been made by Anders % F. Pedersen. % % Author: Anders F. Pedersen % % Number of data points in the transform direction N = size(fc,1); % Check that the input length is even if mod(N,2) == 1 error('Length of the input vector should be even.'); end % Change a to the interval [-2:2[ a = mod(a + 2,4) - 2; % Deal with special cases if a == 0 res = fc; return elseif a == 2 || a == -2 res = flip(fc,1); return end % Reshape ND array to 2D s = size(fc); fc = reshape(fc,s(1),prod(s(2:end))); % Number of data points in the non-transform direction M = size(fc,2); % Split the array to optimize FFT computation %elmax = 2*4.98e7; % This is the number of elements that maximize the FFT performance on an Nvidia Titan X (Pascal) GPU with 12 GB VRAM elmax = 49152000; m = floor(elmax/(2^nextpow2(16*N))); k = ceil(M/m); i1 = (0:(k - 1))*m + 1; i2 = (1:k)*m; i2(end) = M; % Pre-allocate memory for the result res = zeros(N,M,'single'); % Make shift array to shift data shft = single([(4*N/2+1):(4*N) 1:(4*N/2)]); for i = 1:k % Send data to GPU fg = gpuArray(fc(:,i1(i):i2(i))); % Make local version of the a-parameter ag = a; % Interpolate the input function fg = bizinter(fg); % Zeropad the array mg = size(fg,2); fg = cat(1,zeros(N,mg,'single','gpuArray'),fg,zeros(N,mg,'single','gpuArray')); % Map a onto the interval 0.5 <= |a| <= 1.5 if ((ag > 0) && (ag < 0.5)) || ((ag > 1.5) && (ag < 2)) ag = ag - 1; fg(shft,:) = fft(fg(shft,:))/sqrt(4*N); elseif ((ag > -0.5) && (ag < 0)) || ((ag > -2) && (ag < -1.5)) ag = ag + 1; fg(shft,:) = ifft(fg(shft,:))*sqrt(4*N); end % Calculate the transform at reduced interval a fg = corefrmod2(fg,ag); % Deinterpolate the result fg = fg(N+1:2:3*N,:); % Return the result to the CPU res(:,i1(i):i2(i)) = gather(fg); end % Transform output from 2D to ND res = reshape(res,s); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = corefrmod2(fc,a) % Core function for computing the fractional Fourier transform. % Valid only when 0.5 <= abs(a) <= 1.5 % Decomposition used: % chirp mutiplication - chirp convolution - chirp mutiplication % Calculate scalar parameters N = size(fc,1); M = size(fc,2); deltax = single(sqrt(N)); phi = a*pi/2; beta = 1/sin(phi); % Calculate chirp vectors x = (-ceil(N/2):fix(N/2)-1).'/deltax; chrp1 = exp(-1i*pi*tan(phi/2)*x.^2); t = (-N+1:N-1).'/deltax; chrp2 = exp(1i*pi*beta*t.^2); % Get lengths of chirp and fft length N2 = 2*N - 1; N3 = 2^nextpow2(N2 + N - 1); % Zeropad chirp for convolution chrp2 = cat(1,chrp2,zeros(N3 - N2,1)); % Fourier transform chirp chrp2 = fft(chrp2); % Send chirps to the GPU chrp1 = gpuArray(single(chrp1)); chrp2 = gpuArray(single(chrp2)); % Calculate amplitude Aphi = single(exp(-1i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi)))); % Multiply by chirp fc = bsxfun(@times,fc,chrp1); % Zeropad array for convolution fc = cat(1,fc,zeros(N3 - N,M,'single','gpuArray')); % Perform chirp convolution fc = fft(fc); fc = bsxfun(@times,fc,chrp2); fc = ifft(fc); fc = fc(N:2*N-1,:); % Apply amplitude and chirp multiplication res = bsxfun(@times,fc,chrp1).*(Aphi./deltax); % Shift array if odd sized array if rem(N,2) == 1 res = circshift(res,-1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint = bizinter(x) % Get the number of data points N = single(size(x,1)); M = single(size(x,2)); % Determine if input is complex, and split real and complex parts im = 0; if ~all(isreal(x(:))) im = 1; imx = imag(x); x = real(x); end; % Process the real part xint = bizintercore(x); % Process the imaginary part if im == 1 xmint = bizintercore(imx); xint = xint + single(1i)*xmint; end % Add core function function xint = bizintercore(x2) % Add zeros at every other element x2 = cat(3,x2,zeros(N,M,'single','gpuArray')); x2 = permute(x2,[3 1 2]); x2 = reshape(x2,2*N,M); % Fourier transform the array xf = fft(x2); % Inverse Fourier transform if rem(N,2) == 1 N1 = fix(N/2+1); N2 = 2*N - fix(N/2) + 1; xf = cat(1,xf(1:N1,:),zeros(N,M,'single','gpuArray'),xf(N2:2*N,:)); xint = ifft(xf); xint = 2*real(xint); else xf(N/2+1:2*N-N/2,:) = 0; xint = ifft(xf); xint = 2*real(xint); end end end
github
andersfp/XFrFT-master
frfft1gpu.m
.m
XFrFT-master/frfft1gpu.m
6,255
utf_8
a4578bd00d2773bfabb86d55717ae285
function res = frfft1gpu(fc,a) % Calculate the 1D fractional Fourier transform along the first dimension % of the input (fc). The transform order is given by the second input (a). % The input (fc) must have an even number of rows. % Requires a compatible GPU. % % Example of usage: % res = frfft1gpu(fc,a) % % The function supports double precision input only. % % This implementation is performs the central algorithm on a GPU, giving % significant speedup over a CPU. The algorithm breaks up the array into a % size that has the highest FFT performance. This function has been % optimized for an Nvidia GTX Titan X (Pascal), for which the optimum % number of elements for FFT is elmax = 4.98e7. This number might be % different other GPUs, so for optimal performance this should be tested % and the elmax parameter in this function should be changed. % % The basic algorithm is based on an implementation by M. A. Kutay, based % on the following works: % Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, % Digital computation of the fractional Fourier transform, % IEEE Transactions on Signal Processing, 44:2141--2150, 1996. % Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay, % The Fractional Fourier Transform with Applications in Optics and % Signal Processing, Wiley, 2000, chapter 6, page 298. % % Some suggestions A. Bultheel and H. E. M. Sulbaran have been used: % Bultheel, A.; Martinez Sulbaran, H. E. Computation of the Fractional % Fourier Transform. Applied and Computational Harmonic Analysis 2004, % 16 (3), 182-202. % % Significant speedups and adaptation to 2D array have been made by Anders % F. Pedersen. % % Author: Anders F. Pedersen % % Number of data points in the transform direction N = size(fc,1); % Check that the input length is even if mod(N,2) == 1 error('Length of the input vector should be even.'); end % Change a to the interval [-2:2[ a = mod(a + 2,4) - 2; % Deal with special cases if a == 0 res = fc; return elseif a == 2 || a == -2 res = flip(fc,1); return end % Reshape ND array to 2D s = size(fc); fc = reshape(fc,s(1),prod(s(2:end))); % Number of data points in the non-transform direction M = size(fc,2); % Split the array to optimize FFT computation elmax = 4.98e7; % This is the number of elements that maximize the FFT performance on an Nvidia Titan X (Pascal) GPU with 12 GB VRAM m = floor(elmax/(2^nextpow2(8*N))); k = ceil(M/m); i1 = (0:(k - 1))*m + 1; i2 = (1:k)*m; i2(end) = M; % Pre-allocate memory for the result res = zeros(N,M); % Make shift array to shift data shft = [(4*N/2+1):(4*N) 1:(4*N/2)]; for i = 1:k % Send data to GPU fg = gpuArray(fc(:,i1(i):i2(i))); % Make local version of the a-parameter ag = a; % Interpolate the input function fg = bizinter(fg); % Zeropad the array mg = size(fg,2); fg = cat(1,zeros(N,mg,'double','gpuArray'),fg,zeros(N,mg,'double','gpuArray')); % Map a onto the interval 0.5 <= |a| <= 1.5 if ((ag > 0) && (ag < 0.5)) || ((ag > 1.5) && (ag < 2)) ag = ag - 1; fg(shft,:) = fft(fg(shft,:))/sqrt(4*N); elseif ((ag > -0.5) && (ag < 0)) || ((ag > -2) && (ag < -1.5)) ag = ag + 1; fg(shft,:) = ifft(fg(shft,:))*sqrt(4*N); end % Calculate the transform at reduced interval a fg = corefrmod2(fg,ag); % Deinterpolate the result fg = fg(N+1:2:3*N,:); % Return the result to the CPU res(:,i1(i):i2(i)) = gather(fg); end % Transform output from 2D to ND res = reshape(res,s); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = corefrmod2(fc,a) % Core function for computing the fractional Fourier transform. % Valid only when 0.5 <= abs(a) <= 1.5 % Decomposition used: % chirp mutiplication - chirp convolution - chirp mutiplication % Calculate scalar parameters N = size(fc,1); M = size(fc,2); deltax = sqrt(N); phi = a*pi/2; beta = 1/sin(phi); % Calculate chirp vectors x = (-ceil(N/2):fix(N/2)-1).'/deltax; chrp1 = exp(-1i*pi*tan(phi/2)*x.^2); t = (-N+1:N-1).'/deltax; chrp2 = exp(1i*pi*beta*t.^2); % Get lengths of chirp and fft length N2 = 2*N - 1; N3 = 2^nextpow2(N2 + N - 1); % Zeropad chirp for convolution chrp2 = cat(1,chrp2,zeros(N3 - N2,1)); % Fourier transform chirp chrp2 = fft(chrp2); % Send chirps to the GPU chrp1 = gpuArray(chrp1); chrp2 = gpuArray(chrp2); % Calculate amplitude Aphi = exp(-1i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi))); % Multiply by chirp fc = bsxfun(@times,fc,chrp1); % Zeropad array for convolution fc = cat(1,fc,zeros(N3 - N,M,'double','gpuArray')); % Perform chirp convolution fc = fft(fc); fc = bsxfun(@times,fc,chrp2); fc = ifft(fc); fc = fc(N:2*N-1,:); % Apply amplitude and chirp multiplication res = bsxfun(@times,fc,chrp1).*(Aphi./deltax); % Shift array if odd sized array if rem(N,2) == 1 res = circshift(res,-1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint = bizinter(x) % Get the number of data points N = size(x,1); M = size(x,2); % Determine if input is complex, and split real and complex parts im = 0; if ~all(isreal(x(:))) im = 1; imx = imag(x); x = real(x); end; % Process the real part xint = bizintercore(x); % Process the imaginary part if im == 1 xmint = bizintercore(imx); xint = xint + 1i*xmint; end % Add core function function xint = bizintercore(x2) % Add zeros at every other element x2 = cat(3,x2,zeros(N,M,'double','gpuArray')); x2 = permute(x2,[3 1 2]); x2 = reshape(x2,2*N,M); % Fourier transform the array xf = fft(x2); % Inverse Fourier transform if rem(N,2) == 1 N1 = fix(N/2+1); N2 = 2*N - fix(N/2) + 1; xf = cat(1,xf(1:N1,:),zeros(N,M,'double','gpuArray'),xf(N2:2*N,:)); xint = ifft(xf); xint = 2*real(xint); else xf(N/2+1:2*N-N/2,:) = 0; xint = ifft(xf); xint = 2*real(xint); end end end
github
andersfp/XFrFT-master
frfft1for.m
.m
XFrFT-master/frfft1for.m
5,202
utf_8
8eb3e984f45dc5b013b411432b393e76
function res = frfft1for(fc,a) % Calculate the 1D fractional Fourier transform along the first dimension % of the input (fc). The transform order is given by the second input (a). % The input (fc) must have an even number of rows. % % Example of usage: % res = frfft1for(fc,a) % % The function supports double and single precision inputs. % % This implementation is based on a for-loop over each column of the input. % % The basic algorithm is based on an implementation by M. A. Kutay, based % on the following works: % Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, % Digital computation of the fractional Fourier transform, % IEEE Transactions on Signal Processing, 44:2141--2150, 1996. % Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay, % The Fractional Fourier Transform with Applications in Optics and % Signal Processing, Wiley, 2000, chapter 6, page 298. % % Some suggestions A. Bultheel and H. E. M. Sulbaran have been used: % Bultheel, A.; Martinez Sulbaran, H. E. Computation of the Fractional % Fourier Transform. Applied and Computational Harmonic Analysis 2004, % 16 (3), 182-202. % % Significant speedups and adaptation to 2D array have been made by Anders % F. Pedersen. % % Author: Anders F. Pedersen % % Number of data points in the transform direction N = size(fc,1); % Check that the input length is even if mod(N,2) == 1 error('Length of the input vector should be even.'); end % Change a to the interval [-2:2[ a = mod(a + 2,4) - 2; % Deal with special cases if a == 0 res = fc; return elseif a == 2 || a == -2 res = flip(fc,1); return end % Reshape ND array to 2D s = size(fc); fc = reshape(fc,s(1),prod(s(2:end))); % Number of data points in the non-transform direction M = size(fc,2); % Interpolate the input function fc = bizinter(fc); fc = cat(1,zeros(N,M,'like',fc),fc,zeros(N,M,'like',fc)); % Map a onto the interval 0.5 <= |a| <= 1.5 if ((a > 0) && (a < 0.5)) || ((a > 1.5) && (a < 2)) a = a - 1; res = ifftshift(fft(fftshift(fc,1)),1)/sqrt(4*N); elseif ((a > -0.5) && (a < 0)) || ((a > -2) && (a < -1.5)) a = a + 1; res = ifftshift(ifft(fftshift(fc,1)),1)*sqrt(4*N); else res = fc; end % Calculate the transform at reduced interval a res = corefrmod2(res,a); % Deinterpolate the result res = res(N+1:2:3*N,:); % Transform output from 2D to ND res = reshape(res,s); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = corefrmod2(fc,a) % Core function for computing the fractional Fourier transform. % Valid only when 0.5 <= abs(a) <= 1.5 % Decomposition used: % chirp mutiplication - chirp convolution - chirp mutiplication % Calculate scalar parameters N = size(fc,1); M = size(fc,2); deltax = sqrt(N); phi = a*pi/2; beta = 1/sin(phi); % Calculate chirp vectors x = (-ceil(N/2):fix(N/2)-1).'/deltax; chrp1 = exp(-1i*pi*tan(phi/2)*x.^2); t = (-N+1:N-1).'/deltax; chrp2 = exp(1i*pi*beta*t.^2); clear x; clear t; chrp1 = cast(chrp1,'like',fc); chrp2 = cast(chrp2,'like',fc); % Get lengths of chirp and fft length N2 = 2*N - 1; N3 = 2^nextpow2(N2 + N - 1); % Zeropad chirp for convolution chrp2 = cat(1,chrp2,zeros(N3 - N2,1,'like',chrp2)); % Fourier transform chirp chrp2 = fft(chrp2); % Calculate amplitude Aphi = exp(-1i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi))); % Run the central multiply-convolute-multiply algorithm res = zeros(N,M,'like',fc); for i = 1:M % Multiply by chirp fci = fc(:,i).*chrp1; % Zeropad array for convolution fci = cat(1,fci,zeros(N3 - N,1,'like',fci)); % Perform chirp convolution fci = ifft(fft(fci).*chrp2); fci = fci(N:2*N-1,:); % Apply amplitude and chirp multiplication res(:,i) = (chrp1.*fci).*(Aphi./deltax); end % Shift array if odd sized array if rem(N,2) == 1 res = circshift(res,-1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint = bizinter(x) % Get the number of data points N = size(x,1); M = size(x,2); % Determine if input is complex, and split real and complex parts im = 0; if ~all(isreal(x(:))) im = 1; imx = imag(x); x = real(x); end; % Process the real part xint = bizintercore(x); % Process the imaginary part if im == 1 xmint = bizintercore(imx); xint = xint + 1i*xmint; end % Add core function function xint = bizintercore(x2) xint = zeros(2*N,M,'like',x2); if rem(N,2) == 1 N1 = fix(N/2+1); N2 = 2*N - fix(N/2) + 1; for i = 1:M xt = cat(1,x2(:,i).',zeros(1,N,'like',x2)); xt = xt(:); xf = fft(xt); xf = cat(1,xf(1:N1,:),zeros(N,1,'like',xf),xf(N2:2*N,:)); xint(:,i) = 2*real(ifft(xf)); end else for i = 1:M xt = cat(1,x2(:,i).',zeros(1,N,'like',x2)); xt = xt(:); xf = fft(xt); xf(N/2+1:2*N-N/2) = 0; xint(:,i) = 2*real(ifft(xf)); end end end end
github
andersfp/XFrFT-master
frfft1par.m
.m
XFrFT-master/frfft1par.m
5,309
utf_8
d55fcfb57c8b274ace60a1b495fe0284
function res = frfft1par(fc,a) % Calculate the 1D fractional Fourier transform along the first dimension % of the input (fc). The transform order is given by the second input (a). % The input (fc) must have an even number of rows. % Requires Parallel Toolbox. % % Example of usage: % res = frfft1par(fc,a) % % The function supports double and single precision inputs. % % This implementation is based on a parallel for-loop over each column of % the input, and therefore require the Parallel Toolbox. % % The basic algorithm is based on an implementation by M. A. Kutay, based % on the following works: % Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, % Digital computation of the fractional Fourier transform, % IEEE Transactions on Signal Processing, 44:2141--2150, 1996. % Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay, % The Fractional Fourier Transform with Applications in Optics and % Signal Processing, Wiley, 2000, chapter 6, page 298. % % Some suggestions A. Bultheel and H. E. M. Sulbaran have been used: % Bultheel, A.; Martinez Sulbaran, H. E. Computation of the Fractional % Fourier Transform. Applied and Computational Harmonic Analysis 2004, % 16 (3), 182-202. % % Significant speedups and adaptation to 2D array have been made by Anders % F. Pedersen. % % Author: Anders F. Pedersen % % Number of data points in the transform direction N = size(fc,1); % Check that the input length is even if mod(N,2) == 1 error('Length of the input vector should be even.'); end % Change a to the interval [-2:2[ a = mod(a + 2,4) - 2; % Deal with special cases if a == 0 res = fc; return elseif a == 2 || a == -2 res = flip(fc,1); return end % Reshape ND array to 2D s = size(fc); fc = reshape(fc,s(1),prod(s(2:end))); % Number of data points in the non-transform direction M = size(fc,2); % Interpolate the input function fc = bizinter(fc); fc = cat(1,zeros(N,M,'like',fc),fc,zeros(N,M,'like',fc)); % Map a onto the interval 0.5 <= |a| <= 1.5 if ((a > 0) && (a < 0.5)) || ((a > 1.5) && (a < 2)) a = a - 1; res = ifftshift(fft(fftshift(fc,1)),1)/sqrt(4*N); elseif ((a > -0.5) && (a < 0)) || ((a > -2) && (a < -1.5)) a = a + 1; res = ifftshift(ifft(fftshift(fc,1)),1)*sqrt(4*N); else res = fc; end % Calculate the transform at reduced interval a res = corefrmod2(res,a); % Deinterpolate the result res = res(N+1:2:3*N,:); % Transform output from 2D to ND res = reshape(res,s); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = corefrmod2(fc,a) % Core function for computing the fractional Fourier transform. % Valid only when 0.5 <= abs(a) <= 1.5 % Decomposition used: % chirp mutiplication - chirp convolution - chirp mutiplication % Calculate scalar parameters N = size(fc,1); M = size(fc,2); deltax = sqrt(N); phi = a*pi/2; beta = 1/sin(phi); % Calculate chirp vectors x = (-ceil(N/2):fix(N/2)-1).'/deltax; chrp1 = exp(-1i*pi*tan(phi/2)*x.^2); t = (-N+1:N-1).'/deltax; chrp2 = exp(1i*pi*beta*t.^2); clear x; clear t; chrp1 = cast(chrp1,'like',fc); chrp2 = cast(chrp2,'like',fc); % Get lengths of chirp and fft length N2 = 2*N - 1; N3 = 2^nextpow2(N2 + N - 1); % Zeropad chirp for convolution chrp2 = cat(1,chrp2,zeros(N3 - N2,1,'like',chrp2)); % Fourier transform chirp chrp2 = fft(chrp2); % Calculate amplitude Aphi = exp(-1i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi))); % Run the central multiply-colnvolute-multiply algorithm res = zeros(N,M,'like',fc); parfor i = 1:M % Multiply by chirp fci = fc(:,i).*chrp1; % Zeropad array for convolution fci = cat(1,fci,zeros(N3 - N,1,'like',fci)); % Perform chirp convolution fci = ifft(fft(fci).*chrp2); fci = fci(N:2*N-1,:); % Apply amplitude and chirp multiplication res(:,i) = (chrp1.*fci).*(Aphi./deltax); end % Shift array if odd sized array if rem(N,2) == 1 res = circshift(res,-1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint = bizinter(x) % Get the number of data points N = size(x,1); M = size(x,2); % Determine if input is complex, and split real and complex parts im = 0; if ~all(isreal(x(:))) im = 1; imx = imag(x); x = real(x); end; % Process the real part xint = bizintercore(x); % Process the imaginary part if im == 1 xmint = bizintercore(imx); xint = xint + 1i*xmint; end % Add core function function xint = bizintercore(x2) xint = zeros(2*N,M,'like',x2); if rem(N,2) == 1 N1 = fix(N/2+1); N2 = 2*N - fix(N/2) + 1; parfor i = 1:M xt = cat(1,x2(:,i).',zeros(1,N,'like',x2(:,i))); xt = xt(:); xf = fft(xt); xf = cat(1,xf(1:N1,:),zeros(N,1,'like',xf),xf(N2:2*N,:)); xint(:,i) = 2*real(ifft(xf)); end else parfor i = 1:M xt = cat(1,x2(:,i).',zeros(1,N,'like',x2(:,i))); xt = xt(:); xf = fft(xt); xf(N/2+1:2*N-N/2) = 0; xint(:,i) = 2*real(ifft(xf)); end end end end
github
andersfp/XFrFT-master
frfft1vec.m
.m
XFrFT-master/frfft1vec.m
4,977
utf_8
5d684293c100ed266a413c558f649f2c
function res = frfft1vec(fc,a) % Calculate the 1D fractional Fourier transform along the first dimension % of the input (fc). The transform order is given by the second input (a). % The input (fc) must have an even number of rows. % % Example of usage: % res = frfft1vec(fc,a) % % The function supports double and single precision inputs. % % This implementation is based on vectorizing the operations. % % The basic algorithm is based on an implementation by M. A. Kutay, based % on the following works: % Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, % Digital computation of the fractional Fourier transform, % IEEE Transactions on Signal Processing, 44:2141--2150, 1996. % Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay, % The Fractional Fourier Transform with Applications in Optics and % Signal Processing, Wiley, 2000, chapter 6, page 298. % % Some suggestions A. Bultheel and H. E. M. Sulbaran have been used: % Bultheel, A.; Martinez Sulbaran, H. E. Computation of the Fractional % Fourier Transform. Applied and Computational Harmonic Analysis 2004, % 16 (3), 182-202. % % Significant speedups and adaptation to ND array have been made by Anders % F. Pedersen. % % Author: Anders F. Pedersen % % Number of data points in the transform direction N = size(fc,1); % Check that the input length is even if mod(N,2) == 1 error('Length of the input vector should be even.'); end % Change a to the interval [-2:2[ a = mod(a + 2,4) - 2; % Deal with special cases if a == 0 res = fc; return elseif a == 2 || a == -2 res = flip(fc,1); return end % Reshape ND array to 2D s = size(fc); fc = reshape(fc,s(1),prod(s(2:end))); % Number of data points in the non-transform direction M = size(fc,2); % Interpolate the input function fc = bizinter(fc); fc = cat(1,zeros(N,M,'like',fc),fc,zeros(N,M,'like',fc)); % Map a onto the interval 0.5 <= |a| <= 1.5 if ((a > 0) && (a < 0.5)) || ((a > 1.5) && (a < 2)) a = a - 1; res = ifftshift(fft(fftshift(fc,1)),1)/sqrt(4*N); elseif ((a > -0.5) && (a < 0)) || ((a > -2) && (a < -1.5)) a = a + 1; res = ifftshift(ifft(fftshift(fc,1)),1)*sqrt(4*N); else res = fc; end clear fc; % Calculate the transform at reduced interval a res = corefrmod2(res,a); % Deinterpolate the result res = res(N+1:2:3*N,:); % Transform output from 2D to ND res = reshape(res,s); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = corefrmod2(fc,a) % Core function for computing the fractional Fourier transform. % Valid only when 0.5 <= abs(a) <= 1.5 % Decomposition used: % chirp mutiplication - chirp convolution - chirp mutiplication % Calculate scalar parameters N = size(fc,1); M = size(fc,2); deltax = sqrt(N); phi = a*pi/2; beta = 1/sin(phi); % Calculate chirp vectors x = (-ceil(N/2):fix(N/2)-1).'/deltax; chrp1 = exp(-1i*pi*tan(phi/2)*x.^2); t = (-N+1:N-1).'/deltax; chrp2 = exp(1i*pi*beta*t.^2); clear x; clear t; chrp1 = cast(chrp1,'like',fc); chrp2 = cast(chrp2,'like',fc); % Get lengths of chirp and fft length N2 = 2*N - 1; N3 = 2^nextpow2(N2 + N - 1); % Zeropad chirp for convolution chrp2 = cat(1,chrp2,zeros(N3 - N2,1,'like',chrp2)); % Fourier transform chirp chrp2 = fft(chrp2); % Calculate amplitude Aphi = exp(-1i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi))); % Multiply by chirp fc = bsxfun(@times,fc,chrp1); % Zeropad array for convolution fc = cat(1,fc,zeros(N3 - N,M,'like',fc)); % Perform chirp convolution fc = fft(fc); fc = bsxfun(@times,fc,chrp2); fc = ifft(fc); fc = fc(N:2*N-1,:); % Apply amplitude and chirp multiplication res = bsxfun(@times,fc,chrp1).*(Aphi./deltax); % Shift array if odd sized array if rem(N,2) == 1 res = circshift(res,-1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint = bizinter(x) % Get the number of data points N = size(x,1); M = size(x,2); % Determine if input is complex, and split real and complex parts im = 0; if ~all(isreal(x(:))) im = 1; imx = imag(x); x = real(x); end; % Process the real part xint = bizintercore(x); % Process the imaginary part if im == 1 xmint = bizintercore(imx); xint = xint + 1i*xmint; end % Add core function function xint = bizintercore(x2) % Add zeros at every other element x2 = cat(3,x2,zeros(N,M,'like',x2)); x2 = permute(x2,[3 1 2]); x2 = reshape(x2,2*N,M); % Fourier transform the array xf = fft(x2); % Inverse Fourier transform if rem(N,2) == 1 N1 = fix(N/2+1); N2 = 2*N - fix(N/2) + 1; xf = cat(1,xf(1:N1,:),zeros(N,M,'like',xf),xf(N2:2*N,:)); xint = 2*real(ifft(xf)); else xf(N/2+1:2*N-N/2,:) = 0; xint = 2*real(ifft(xf)); end end end
github
Hadisalman/stoec-master
SMC_Update.m
.m
stoec-master/code/Fig_1_comparisons/SMC/SMC_Update.m
2,618
utf_8
1474d6577f0d7a61f9d8455eb5b86202
function [pose, Ck] = SMC_Update(pose, Ck, time, opt) %% parameters needed from options(opt) Lx = opt.L(1); Ly = opt.L(2); xmin = opt.DomainBounds.xmin; ymin = opt.DomainBounds.ymin; dt = opt.sim.dt; Nagents = opt.nagents; KX = opt.erg.KX; KY= opt.erg.KY; LK = opt.erg.LK; HK= opt.erg.HK; muk = opt.erg.muk; %% %Calculating the fourier coefficients of time average statistics distribution for iagent = 1:Nagents xrel = pose.x(iagent) - xmin; yrel = pose.y(iagent) - ymin; Ck = Ck + cos(KX * pi * xrel/Lx) .* cos(KY * pi * yrel/Ly) * opt.sim.dt ./ HK'; end for iagent = 1:Nagents xrel = pose.x(iagent) - xmin; yrel = pose.y(iagent) - ymin; Bjx = sum(sum(LK./ HK' .* (Ck - Nagents*time*muk) .* (-KX *pi/Lx .*sin(KX * pi * xrel/Lx) .* cos(KY *pi * yrel/Ly)))); Bjy = sum(sum(LK./ HK' .* (Ck - Nagents*time*muk) .* (-KY *pi/Ly .*cos(KX * pi * xrel/Lx) .* sin(KY *pi * yrel/Ly)))); % Bjnorm = sqrt(Bjx*Bjx + Bjy*Bjy); GammaV = Bjx*cos(pose.theta(iagent)) + Bjy*sin(pose.theta(iagent)); GammaW = -Bjx*sin(pose.theta(iagent)) + Bjy*cos(pose.theta(iagent)); % Updating agent location based on SMC feedback control law if GammaV >= 0 v = opt.vlb(iagent); else v = opt.vub(iagent); end if GammaW >= 0 w = opt.wlb(iagent); else w = opt.wub(iagent); end %velocity motion model if(abs(w) < 1e-10 ) pose.x(iagent) = pose.x(iagent) + v*dt*cos(pose.theta(iagent)); pose.y(iagent) = pose.y(iagent) + v*dt*sin(pose.theta(iagent)); else pose.x(iagent) = pose.x(iagent) + v/w*(sin(pose.theta(iagent) + w*dt) - sin(pose.theta(iagent))); pose.y(iagent) = pose.y(iagent) + v/w*(cos(pose.theta(iagent)) - cos(pose.theta(iagent)+ w*dt)); end pose.theta(iagent) = pose.theta(iagent)+ w*dt; %No Need for this! % reflecting agent in case it goes out of domain bounds % [pose.x(iagent),pose.y(iagent)] = reflect_agent(pose.x(iagent),pose.y(iagent), opt.DomainBounds); end end function [agentx, agenty] = reflect_agent(agentx,agenty, DomainBounds) xmin = DomainBounds.xmin; xmax = DomainBounds.xmax; ymin = DomainBounds.ymin; ymax = DomainBounds.ymax; if agentx < xmin agentx = xmin + (xmin - agentx); end if agentx > xmax agentx = xmax - (agentx - xmax); end if agenty < ymin agenty = ymin + (ymin - agenty); end if agenty > ymax agenty = ymax - (agenty - ymax); end end
github
Hadisalman/stoec-master
freezeColors.m
.m
stoec-master/code/Include/freezeColors.m
9,815
utf_8
2068d7a4f7a74d251e2519c4c5c1c171
function freezeColors(varargin) % freezeColors Lock colors of plot, enabling multiple colormaps per figure. (v2.3) % % Problem: There is only one colormap per figure. This function provides % an easy solution when plots using different colomaps are desired % in the same figure. % % freezeColors freezes the colors of graphics objects in the current axis so % that subsequent changes to the colormap (or caxis) will not change the % colors of these objects. freezeColors works on any graphics object % with CData in indexed-color mode: surfaces, images, scattergroups, % bargroups, patches, etc. It works by converting CData to true-color rgb % based on the colormap active at the time freezeColors is called. % % The original indexed color data is saved, and can be restored using % unfreezeColors, making the plot once again subject to the colormap and % caxis. % % % Usage: % freezeColors applies to all objects in current axis (gca), % freezeColors(axh) same, but works on axis axh. % % Example: % subplot(2,1,1); imagesc(X); colormap hot; freezeColors % subplot(2,1,2); imagesc(Y); colormap hsv; freezeColors etc... % % Note: colorbars must also be frozen. Due to Matlab 'improvements' this can % no longer be done with freezeColors. Instead, please % use the function CBFREEZE by Carlos Adrian Vargas Aguilera % that can be downloaded from the MATLAB File Exchange % (http://www.mathworks.com/matlabcentral/fileexchange/24371) % % h=colorbar; cbfreeze(h), or simply cbfreeze(colorbar) % % For additional examples, see test/test_main.m % % Side effect on render mode: freezeColors does not work with the painters % renderer, because Matlab doesn't support rgb color data in % painters mode. If the current renderer is painters, freezeColors % changes it to zbuffer. This may have unexpected effects on other aspects % of your plots. % % See also unfreezeColors, freezeColors_pub.html, cbfreeze. % % % John Iversen ([email protected]) 3/23/05 % % Changes: % JRI ([email protected]) 4/19/06 Correctly handles scaled integer cdata % JRI 9/1/06 should now handle all objects with cdata: images, surfaces, % scatterplots. (v 2.1) % JRI 11/11/06 Preserves NaN colors. Hidden option (v 2.2, not uploaded) % JRI 3/17/07 Preserve caxis after freezing--maintains colorbar scale (v 2.3) % JRI 4/12/07 Check for painters mode as Matlab doesn't support rgb in it. % JRI 4/9/08 Fix preserving caxis for objects within hggroups (e.g. contourf) % JRI 4/7/10 Change documentation for colorbars % Hidden option for NaN colors: % Missing data are often represented by NaN in the indexed color % data, which renders transparently. This transparency will be preserved % when freezing colors. If instead you wish such gaps to be filled with % a real color, add 'nancolor',[r g b] to the end of the arguments. E.g. % freezeColors('nancolor',[r g b]) or freezeColors(axh,'nancolor',[r g b]), % where [r g b] is a color vector. This works on images & pcolor, but not on % surfaces. % Thanks to Fabiano Busdraghi and Jody Klymak for the suggestions. Bugfixes % attributed in the code. % Free for all uses, but please retain the following: % Original Author: % John Iversen, 2005-10 % [email protected] appdatacode = 'JRI__freezeColorsData'; [h, nancolor] = checkArgs(varargin); %gather all children with scaled or indexed CData cdatah = getCDataHandles(h); %current colormap cmap = colormap; nColors = size(cmap,1); cax = caxis; % convert object color indexes into colormap to true-color data using % current colormap for hh = cdatah', g = get(hh); %preserve parent axis clim parentAx = getParentAxes(hh); originalClim = get(parentAx, 'clim'); % Note: Special handling of patches: For some reason, setting % cdata on patches created by bar() yields an error, % so instead we'll set facevertexcdata instead for patches. if ~strcmp(g.Type,'patch'), cdata = g.CData; else cdata = g.FaceVertexCData; end %get cdata mapping (most objects (except scattergroup) have it) if isfield(g,'CDataMapping'), scalemode = g.CDataMapping; else scalemode = 'scaled'; end %save original indexed data for use with unfreezeColors siz = size(cdata); setappdata(hh, appdatacode, {cdata scalemode}); %convert cdata to indexes into colormap if strcmp(scalemode,'scaled'), %4/19/06 JRI, Accommodate scaled display of integer cdata: % in MATLAB, uint * double = uint, so must coerce cdata to double % Thanks to O Yamashita for pointing this need out idx = ceil( (double(cdata) - cax(1)) / (cax(2)-cax(1)) * nColors); else %direct mapping idx = cdata; %10/8/09 in case direct data is non-int (e.g. image;freezeColors) % (Floor mimics how matlab converts data into colormap index.) % Thanks to D Armyr for the catch idx = floor(idx); end %clamp to [1, nColors] idx(idx<1) = 1; idx(idx>nColors) = nColors; %handle nans in idx nanmask = isnan(idx); idx(nanmask)=1; %temporarily replace w/ a valid colormap index %make true-color data--using current colormap realcolor = zeros(siz); for i = 1:3, c = cmap(idx,i); c = reshape(c,siz); c(nanmask) = nancolor(i); %restore Nan (or nancolor if specified) realcolor(:,:,i) = c; end %apply new true-color color data %true-color is not supported in painters renderer, so switch out of that if strcmp(get(gcf,'renderer'), 'painters'), set(gcf,'renderer','zbuffer'); end %replace original CData with true-color data if ~strcmp(g.Type,'patch'), set(hh,'CData',realcolor); else set(hh,'faceVertexCData',permute(realcolor,[1 3 2])) end %restore clim (so colorbar will show correct limits) if ~isempty(parentAx), set(parentAx,'clim',originalClim) end end %loop on indexed-color objects % ============================================================================ % % Local functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getCDataHandles -- get handles of all descendents with indexed CData %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hout = getCDataHandles(h) % getCDataHandles Find all objects with indexed CData %recursively descend object tree, finding objects with indexed CData % An exception: don't include children of objects that themselves have CData: % for example, scattergroups are non-standard hggroups, with CData. Changing % such a group's CData automatically changes the CData of its children, % (as well as the children's handles), so there's no need to act on them. error(nargchk(1,1,nargin,'struct')) hout = []; if isempty(h),return;end ch = get(h,'children'); for hh = ch' g = get(hh); if isfield(g,'CData'), %does object have CData? %is it indexed/scaled? if ~isempty(g.CData) && isnumeric(g.CData) && size(g.CData,3)==1, hout = [hout; hh]; %#ok<AGROW> %yes, add to list end else %no CData, see if object has any interesting children hout = [hout; getCDataHandles(hh)]; %#ok<AGROW> end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getParentAxes -- return handle of axes object to which a given object belongs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hAx = getParentAxes(h) % getParentAxes Return enclosing axes of a given object (could be self) error(nargchk(1,1,nargin,'struct')) %object itself may be an axis if strcmp(get(h,'type'),'axes'), hAx = h; return end parent = get(h,'parent'); if (strcmp(get(parent,'type'), 'axes')), hAx = parent; else hAx = getParentAxes(parent); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% checkArgs -- Validate input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h, nancolor] = checkArgs(args) % checkArgs Validate input arguments to freezeColors nargs = length(args); error(nargchk(0,3,nargs,'struct')) %grab handle from first argument if we have an odd number of arguments if mod(nargs,2), h = args{1}; if ~ishandle(h), error('JRI:freezeColors:checkArgs:invalidHandle',... 'The first argument must be a valid graphics handle (to an axis)') end % 4/2010 check if object to be frozen is a colorbar if strcmp(get(h,'Tag'),'Colorbar'), if ~exist('cbfreeze.m'), warning('JRI:freezeColors:checkArgs:cannotFreezeColorbar',... ['You seem to be attempting to freeze a colorbar. This no longer'... 'works. Please read the help for freezeColors for the solution.']) else cbfreeze(h); return end end args{1} = []; nargs = nargs-1; else h = gca; end %set nancolor if that option was specified nancolor = [nan nan nan]; if nargs == 2, if strcmpi(args{end-1},'nancolor'), nancolor = args{end}; if ~all(size(nancolor)==[1 3]), error('JRI:freezeColors:checkArgs:badColorArgument',... 'nancolor must be [r g b] vector'); end nancolor(nancolor>1) = 1; nancolor(nancolor<0) = 0; else error('JRI:freezeColors:checkArgs:unrecognizedOption',... 'Unrecognized option (%s). Only ''nancolor'' is valid.',args{end-1}) end end
github
Hadisalman/stoec-master
arrow.m
.m
stoec-master/code/Include/arrow.m
55,176
utf_8
408035a3cb41890dbada1861c1ec78e7
function [h,yy,zz] = arrow(varargin) % ARROW Draw a line with an arrowhead. % % ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points % should be vectors of length 2 or 3, or matrices with 2 or 3 % columns), and returns the graphics handle of the arrow(s). % % ARROW uses the mouse (click-drag) to create an arrow. % % ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW. % % ARROW may be called with a normal argument list or a property-based list. % ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is % the full normal argument list, where all but the Start and Stop % points are optional. If you need to specify a later argument (e.g., % Page) but want default values of earlier ones (e.g., TipAngle), % pass an empty matrix for the earlier ones (e.g., TipAngle=[]). % % ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the % given properties, using default values for any unspecified or given as % 'default' or NaN. Some properties used for line and patch objects are % used in a modified fashion, others are passed directly to LINE, PATCH, % or SET. For a detailed properties explanation, call ARROW PROPERTIES. % % Start The starting points. B % Stop The end points. /|\ ^ % Length Length of the arrowhead in pixels. /|||\ | % BaseAngle Base angle in degrees (ADE). //|||\\ L| % TipAngle Tip angle in degrees (ABC). ///|||\\\ e| % Width Width of the base in pixels. ////|||\\\\ n| % Page Use hardcopy proportions. /////|D|\\\\\ g| % CrossDir Vector || to arrowhead plane. //// ||| \\\\ t| % NormalDir Vector out of arrowhead plane. /// ||| \\\ h| % Ends Which end has an arrowhead. //<----->|| \\ | % ObjectHandles Vector of handles to update. / base ||| \ V % E angle||<-------->C % ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle % vector of handles to previously-created arrows ||| % and/or line objects, will update the previously- ||| % created arrows according to the current view -->|A|<-- width % and any specified properties, and will convert % two-point line objects to corresponding arrows. ARROW(H) will update % the arrows if the current view has changed. Root, figure, or axes % handles included in H are replaced by all descendant Arrow objects. % % A property list can follow any specified normal argument list, e.g., % ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to % the origin, with an arrowhead of length 36 pixels and 60-degree base angle. % % The basic arguments or properties can generally be vectorized to create % multiple arrows with the same call. This is done by passing a property % with one row per arrow, or, if all arrows are to have the same property % value, just one row may be specified. % % You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change % the axes on you; ARROW determines the sizes of arrow components BEFORE the % arrow is plotted, so if ARROW changes axis limits, arrows may be malformed. % % This version of ARROW uses features of MATLAB 6.x and is incompatible with % earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately); % some problems with perspective plots still exist. % Copyright (c)1995-2009, Dr. Erik A. Johnson <[email protected]>, 5/20/2009 % http://www.usc.edu/civil_eng/johnsone/ % Revision history: % 5/20/09 EAJ Fix view direction in (3D) demo. % 6/26/08 EAJ Replace eval('trycmd','catchcmd') with try, trycmd; catch, % catchcmd; end; -- break's MATLAB 5 compatibility. % 8/26/03 EAJ Eliminate OpenGL attempted fix since it didn't fix anyway. % 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals % 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug % if zero 'Width' or not double-ended % 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3. % 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes. % 11/10/99 EAJ Update e-mail address. % 2/10/99 EAJ Some documentation updating. % 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint. % 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug. % 7/21/97 EAJ Fixed a few misc bugs. % 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles) % 6/23/97 EAJ MATLAB 5 compatible version, release. % 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs. % 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows. % 5/19/97 EAJ MATLAB 5 compatible version, beta. % 4/13/97 EAJ MATLAB 5 compatible version, alpha. % 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords. % 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified % 10/24/96 EAJ Fixed bug with log plots and NormalDir specified % 11/13/95 EAJ Corrected handling for 'reverse' axis directions % 10/06/95 EAJ Corrected occasional conflict with SUBPLOT % 4/24/95 EAJ A major rewrite. % Fall 94 EAJ Original code. % Things to be done: % - in the arrow_clicks section, prompt by printing to the screen so that % the user knows what's going on; also make sure the figure is brought % to the front. % - segment parsing, computing, and plotting into separate subfunctions % - change computing from Xform to Camera paradigms % + this will help especially with 3-D perspective plots % + if the WarpToFill section works right, remove warning code % + when perpsective works properly, remove perspective warning code % - add cell property values and struct property name/values (like get/set) % - get rid of NaN as the "default" data label % + perhaps change userdata to a struct and don't include (or leave % empty) the values specified as default; or use a cell containing % an empty matrix for a default value % - add functionality of GET to retrieve current values of ARROW properties % Many thanks to Keith Rogers <[email protected]> for his many excellent % suggestions and beta testing. Check out his shareware package MATDRAW % (at ftp://ftp.mathworks.com/pub/contrib/v5/graphics/matdraw/) -- he has % permission to distribute ARROW with MATDRAW. % Permission is granted to distribute ARROW with the toolboxes for the book % "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al. % (Prentice Hall, 1999). % Permission is granted to Dr. Josef Bigun to distribute ARROW with his % software to reproduce the figures in his image analysis text. % global variable initialization global ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end; if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end; % Handle callbacks if (nargin>0 & isstr(varargin{1}) & strcmp(lower(varargin{1}),'callback')), arrow_callback(varargin{2:end}); return; end; % Are we doing the demo? c = sprintf('\n'); if (nargin==1 & isstr(varargin{1})), arg1 = lower(varargin{1}); if strncmp(arg1,'prop',4), arrow_props; elseif strncmp(arg1,'demo',4) clf reset demo_info = arrow_demo; if ~strncmp(arg1,'demo2',5), hh=arrow_demo3(demo_info); else, hh=arrow_demo2(demo_info); end; if (nargout>=1), h=hh; end; elseif strncmp(arg1,'fixlimits',3), arrow_fixlimits(ARROW_AXLIMITS); ARROW_AXLIMITS=[]; elseif strncmp(arg1,'help',4), disp(help(mfilename)); else, error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']); end; return; end; % Check # of arguments if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end; % find first property number firstprop = nargin+1; for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end; lastnumeric = firstprop-1; % check property list if (firstprop<=nargin), for k=firstprop:2:nargin, curarg = varargin{k}; if ~isstr(curarg) | sum(size(curarg)>1)>1, error([upper(mfilename) ' requires that a property name be a single string.']); end; end; if (rem(nargin-firstprop,2)~=1), error([upper(mfilename) ' requires that the property ''' ... varargin{nargin} ''' be paired with a property value.']); end; end; % default output if (nargout>0), h=[]; end; if (nargout>1), yy=[]; end; if (nargout>2), zz=[]; end; % set values to empty matrices start = []; stop = []; len = []; baseangle = []; tipangle = []; wid = []; page = []; crossdir = []; ends = []; ax = []; oldh = []; ispatch = []; defstart = [NaN NaN NaN]; defstop = [NaN NaN NaN]; deflen = 16; defbaseangle = 90; deftipangle = 16; defwid = 0; defpage = 0; defcrossdir = [NaN NaN NaN]; defends = 1; defoldh = []; defispatch = 1; % The 'Tag' we'll put on our arrows ArrowTag = 'Arrow'; % check for oldstyle arguments if (firstprop==2), % assume arg1 is a set of handles oldh = varargin{1}(:); if isempty(oldh), return; end; elseif (firstprop>9), error([upper(mfilename) ' takes at most 8 non-property arguments.']); elseif (firstprop>2), {start,stop,len,baseangle,tipangle,wid,page,crossdir}; args = [varargin(1:firstprop-1) cell(1,length(ans)-(firstprop-1))]; [start,stop,len,baseangle,tipangle,wid,page,crossdir] = deal(args{:}); end; % parse property pairs extraprops={}; for k=firstprop:2:nargin, prop = varargin{k}; val = varargin{k+1}; prop = [lower(prop(:)') ' ']; if strncmp(prop,'start' ,5), start = val; elseif strncmp(prop,'stop' ,4), stop = val; elseif strncmp(prop,'len' ,3), len = val(:); elseif strncmp(prop,'base' ,4), baseangle = val(:); elseif strncmp(prop,'tip' ,3), tipangle = val(:); elseif strncmp(prop,'wid' ,3), wid = val(:); elseif strncmp(prop,'page' ,4), page = val; elseif strncmp(prop,'cross' ,5), crossdir = val; elseif strncmp(prop,'norm' ,4), if (isstr(val)), crossdir=val; else, crossdir=val*sqrt(-1); end; elseif strncmp(prop,'end' ,3), ends = val; elseif strncmp(prop,'object',6), oldh = val(:); elseif strncmp(prop,'handle',6), oldh = val(:); elseif strncmp(prop,'type' ,4), ispatch = val; elseif strncmp(prop,'userd' ,5), %ignore it else, % make sure it is a valid patch or line property try get(0,['DefaultPatch' varargin{k}]); catch errstr = lasterr; try get(0,['DefaultLine' varargin{k}]); catch errstr(1:max(find(errstr==char(13)|errstr==char(10)))) = ''; error([upper(mfilename) ' got ' errstr]); end end; extraprops={extraprops{:},varargin{k},val}; end; end; % Check if we got 'default' values start = arrow_defcheck(start ,defstart ,'Start' ); stop = arrow_defcheck(stop ,defstop ,'Stop' ); len = arrow_defcheck(len ,deflen ,'Length' ); baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' ); tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' ); wid = arrow_defcheck(wid ,defwid ,'Width' ); crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' ); page = arrow_defcheck(page ,defpage ,'Page' ); ends = arrow_defcheck(ends ,defends ,'' ); oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles'); ispatch = arrow_defcheck(ispatch ,defispatch ,'' ); % check transpose on arguments [m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end; [m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end; [m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end; % convert strings to numbers if ~isempty(ends) & isstr(ends), endsorig = ends; [m,n] = size(ends); col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']); ends = NaN*ones(m,1); oo = ones(1,m); ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end; ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end; ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end; ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end; if any(isnan(ends)), ii = min(find(isnan(ends))); error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']); end; else, ends = ends(:); end; if ~isempty(ispatch) & isstr(ispatch), col = lower(ispatch(:,1)); patchchar='p'; linechar='l'; defchar=' '; mask = col~=patchchar & col~=linechar & col~=defchar; if any(mask), error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']); end; ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch; else, ispatch = ispatch(:); end; oldh = oldh(:); % check object handles if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end; % expand root, figure, and axes handles if ~isempty(oldh), ohtype = get(oldh,'Type'); mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes'); if any(mask), oldh = num2cell(oldh); for ii=find(mask)', oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)}; end; oldh = cat(1,oldh{:}); if isempty(oldh), return; end; % no arrows to modify, so just leave end; end; % largest argument length [mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir); argsizes = [length(oldh) mstart mstop ... length(len) length(baseangle) length(tipangle) ... length(wid) length(page) mcrossdir length(ends) ]; args=['length(ObjectHandle) '; ... '#rows(Start) '; ... '#rows(Stop) '; ... 'length(Length) '; ... 'length(BaseAngle) '; ... 'length(TipAngle) '; ... 'length(Width) '; ... 'length(Page) '; ... '#rows(CrossDir) '; ... '#rows(Ends) ']; if (any(imag(crossdir(:))~=0)), args(9,:) = '#rows(NormalDir) '; end; if isempty(oldh), narrows = max(argsizes); else, narrows = length(oldh); end; if (narrows<=0), narrows=1; end; % Check size of arguments ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows)); if ~isempty(ii), s = args(ii',:); while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))), s = s(:,1:size(s,2)-1); end; s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ... ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]]; s = s'; s = s(:)'; s = s(1:length(s)-1); error(setstr(s)); end; % check element length in Start, Stop, and CrossDir if ~isempty(start), [m,n] = size(start); if (n==2), start = [start NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Start points.']); end; end; if ~isempty(stop), [m,n] = size(stop); if (n==2), stop = [stop NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Stop points.']); end; end; if ~isempty(crossdir), [m,n] = size(crossdir); if (n<3), crossdir = [crossdir NaN*ones(m,3-n)]; elseif (n~=3), if (all(imag(crossdir(:))==0)), error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']); else, error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']); end; end; end; % fill empty arguments if isempty(start ), start = [Inf Inf Inf]; end; if isempty(stop ), stop = [Inf Inf Inf]; end; if isempty(len ), len = Inf; end; if isempty(baseangle ), baseangle = Inf; end; if isempty(tipangle ), tipangle = Inf; end; if isempty(wid ), wid = Inf; end; if isempty(page ), page = Inf; end; if isempty(crossdir ), crossdir = [Inf Inf Inf]; end; if isempty(ends ), ends = Inf; end; if isempty(ispatch ), ispatch = Inf; end; % expand single-column arguments o = ones(narrows,1); if (size(start ,1)==1), start = o * start ; end; if (size(stop ,1)==1), stop = o * stop ; end; if (length(len )==1), len = o * len ; end; if (length(baseangle )==1), baseangle = o * baseangle ; end; if (length(tipangle )==1), tipangle = o * tipangle ; end; if (length(wid )==1), wid = o * wid ; end; if (length(page )==1), page = o * page ; end; if (size(crossdir ,1)==1), crossdir = o * crossdir ; end; if (length(ends )==1), ends = o * ends ; end; if (length(ispatch )==1), ispatch = o * ispatch ; end; ax = repmat(gca,narrows,1); % if we've got handles, get the defaults from the handles if ~isempty(oldh), for k=1:narrows, oh = oldh(k); ud = get(oh,'UserData'); ax(k) = get(oh,'Parent'); ohtype = get(oh,'Type'); if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end; % arrow UserData format: [start' stop' len base tip wid page crossdir' ends] start0 = ud(1:3); stop0 = ud(4:6); if (isinf(len(k))), len(k) = ud( 7); end; if (isinf(baseangle(k))), baseangle(k) = ud( 8); end; if (isinf(tipangle(k))), tipangle(k) = ud( 9); end; if (isinf(wid(k))), wid(k) = ud(10); end; if (isinf(page(k))), page(k) = ud(11); end; if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end; if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end; if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end; if (isinf(ends(k))), ends(k) = ud(15); end; elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch convLineToPatch = 1; %set to make arrow patches when converting from lines. if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end; x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end; y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end; z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end; start0 = [x(1) y(1) z(1) ]; stop0 = [x(end) y(end) z(end)]; else, error([upper(mfilename) ' cannot convert ' ohtype ' objects.']); end; ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end; ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end; end; end; % convert Inf's to NaN's start( isinf(start )) = NaN; stop( isinf(stop )) = NaN; len( isinf(len )) = NaN; baseangle( isinf(baseangle)) = NaN; tipangle( isinf(tipangle )) = NaN; wid( isinf(wid )) = NaN; page( isinf(page )) = NaN; crossdir( isinf(crossdir )) = NaN; ends( isinf(ends )) = NaN; ispatch( isinf(ispatch )) = NaN; % set up the UserData data (here so not corrupted by log10's and such) ud = [start stop len baseangle tipangle wid page crossdir ends]; % Set Page defaults page = ~isnan(page) & trueornan(page); % Get axes limits, range, min; correct for aspect ratio and log scale axm = zeros(3,narrows); axr = zeros(3,narrows); axrev = zeros(3,narrows); ap = zeros(2,narrows); xyzlog = zeros(3,narrows); limmin = zeros(2,narrows); limrange = zeros(2,narrows); oldaxlims = zeros(narrows,7); oneax = all(ax==ax(1)); if (oneax), T = zeros(4,4); invT = zeros(4,4); else, T = zeros(16,narrows); invT = zeros(16,narrows); end; axnotdone = logical(ones(size(ax))); while (any(axnotdone)), ii = min(find(axnotdone)); curax = ax(ii); curpage = page(ii); % get axes limits and aspect ratio axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')]; oldaxlims(min(find(oldaxlims(:,1)==0)),:) = [ii reshape(axl',1,6)]; % get axes size in pixels (points) u = get(curax,'Units'); axposoldunits = get(curax,'Position'); really_curpage = curpage & strcmp(u,'normalized'); if (really_curpage), curfig = get(curax,'Parent'); pu = get(curfig,'PaperUnits'); set(curfig,'PaperUnits','points'); pp = get(curfig,'PaperPosition'); set(curfig,'PaperUnits',pu); set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); set(curax,'Units','normalized'); curap = pp.*get(curax,'Position'); else, set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); curap = curapscreen; end; set(curax,'Units',u); set(curax,'Position',axposoldunits); % handle non-stretched axes position str_stretch = { 'DataAspectRatioMode' ; ... 'PlotBoxAspectRatioMode' ; ... 'CameraViewAngleMode' }; str_camera = { 'CameraPositionMode' ; ... 'CameraTargetMode' ; ... 'CameraViewAngleMode' ; ... 'CameraUpVectorMode' }; notstretched = strcmp(get(curax,str_stretch),'manual'); manualcamera = strcmp(get(curax,str_camera),'manual'); if ~arrow_WarpToFill(notstretched,manualcamera,curax), % give a warning that this has not been thoroughly tested if 0 & ARROW_STRETCH_WARN, ARROW_STRETCH_WARN = 0; strs = {str_stretch{1:2},str_camera{:}}; strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]'; warning([upper(mfilename) ' may not yet work quite right ' ... 'if any of the following are ''manual'':' strs(:).']); end; % find the true pixel size of the actual axes texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ... axl(2,[1 1 2 2 1 1 2 2]), ... axl(3,[1 1 1 1 2 2 2 2]),''); set(texttmp,'Units','points'); textpos = get(texttmp,'Position'); delete(texttmp); textpos = cat(1,textpos{:}); textpos = max(textpos(:,1:2)) - min(textpos(:,1:2)); % adjust the axes position if (really_curpage), % adjust to printed size textpos = textpos * min(curap(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; else, % adjust for pixel roundoff textpos = textpos * min(curapscreen(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; end; end; if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'), ARROW_PERSP_WARN = 0; warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']); end; % adjust limits for log scale on axes curxyzlog = [strcmp(get(curax,'XScale'),'log'); ... strcmp(get(curax,'YScale'),'log'); ... strcmp(get(curax,'ZScale'),'log')]; if (any(curxyzlog)), ii = find([curxyzlog;curxyzlog]); if (any(axl(ii)<=0)), error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']); else, axl(ii) = log10(axl(ii)); end; end; % correct for 'reverse' direction on axes; curreverse = [strcmp(get(curax,'XDir'),'reverse'); ... strcmp(get(curax,'YDir'),'reverse'); ... strcmp(get(curax,'ZDir'),'reverse')]; ii = find(curreverse); if ~isempty(ii), axl(ii,[1 2])=-axl(ii,[2 1]); end; % compute the range of 2-D values [azA,elA] = view(curax); curT = viewmtx(azA,elA); lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1]; lim = lim(1:2,:)./([1;1]*lim(4,:)); curlimmin = min(lim')'; curlimrange = max(lim')' - curlimmin; curinvT = inv(curT); if (~oneax), curT = curT.'; curinvT = curinvT.'; curT = curT(:); curinvT = curinvT(:); end; % check which arrows to which cur corresponds ii = find((ax==curax)&(page==curpage)); oo = ones(1,length(ii)); axr(:,ii) = diff(axl')' * oo; axm(:,ii) = axl(:,1) * oo; axrev(:,ii) = curreverse * oo; ap(:,ii) = curap(3:4)' * oo; xyzlog(:,ii) = curxyzlog * oo; limmin(:,ii) = curlimmin * oo; limrange(:,ii) = curlimrange * oo; if (oneax), T = curT; invT = curinvT; else, T(:,ii) = curT * oo; invT(:,ii) = curinvT * oo; end; axnotdone(ii) = zeros(1,length(ii)); end; oldaxlims(oldaxlims(:,1)==0,:)=[]; % correct for log scales curxyzlog = xyzlog.'; ii = find(curxyzlog(:)); if ~isempty(ii), start( ii) = real(log10(start( ii))); stop( ii) = real(log10(stop( ii))); if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj crossdir(ii) = real(log10(crossdir(ii))); end; end; % correct for reverse directions ii = find(axrev.'); if ~isempty(ii), start( ii) = -start( ii); stop( ii) = -stop( ii); crossdir(ii) = -crossdir(ii); end; % transpose start/stop values start = start.'; stop = stop.'; % take care of defaults, page was done above ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end; ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end; ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end; ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end; ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end; ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end; % transpose rest of values len = len.'; baseangle = baseangle.'; tipangle = tipangle.'; wid = wid.'; page = page.'; crossdir = crossdir.'; ends = ends.'; ax = ax.'; % given x, a 3xN matrix of points in 3-space; % want to convert to X, the corresponding 4xN 2-space matrix % % tmp1=[(x-axm)./axr; ones(1,size(x,1))]; % if (oneax), X=T*tmp1; % else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; % tmp2=zeros(4,4*N); tmp2(:)=tmp1(:); % X=zeros(4,N); X(:)=sum(tmp2)'; end; % X = X ./ (ones(4,1)*X(4,:)); % for all points with start==stop, start=stop-(verysmallvalue)*(up-direction); ii = find(all(start==stop)); if ~isempty(ii), % find an arrowdir vertical on screen and perpendicular to viewer % transform to 2-D tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))]; if (oneax), twoD=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end; twoD=twoD./(ones(4,1)*twoD(4,:)); % move the start point down just slightly tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii)); % transform back to 3-D if (oneax), threeD=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end; start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii); end; % compute along-arrow points % transform Start points tmp1=[(start-axm)./axr;ones(1,narrows)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform Stop points tmp1=[(stop-axm)./axr;ones(1,narrows)]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute pixel distance between points D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2)); D = D + (D==0); %eaj new 2/24/98 % compute and modify along-arrow distances len1 = len; len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi); slen0 = zeros(1,narrows); slen1 = len1 .* ((ends==2)|(ends==3)); slen2 = len2 .* ((ends==2)|(ends==3)); len0 = zeros(1,narrows); len1 = len1 .* ((ends==1)|(ends==3)); len2 = len2 .* ((ends==1)|(ends==3)); % for no start arrowhead ii=find((ends==1)&(D<len2)); if ~isempty(ii), slen0(ii) = D(ii)-len2(ii); end; % for no end arrowhead ii=find((ends==2)&(D<slen2)); if ~isempty(ii), len0(ii) = D(ii)-slen2(ii); end; len1 = len1 + len0; len2 = len2 + len0; slen1 = slen1 + slen0; slen2 = slen2 + slen0; % note: the division by D below will probably not be accurate if both % of the following are true: % 1. the ratio of the line length to the arrowhead % length is large % 2. the view is highly perspective. % compute stoppoints tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute tippoints tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute basepoints tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute startpoints tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute stippoints tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute sbasepoints tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute cross-arrow directions for arrows with NormalDir specified if (any(imag(crossdir(:))~=0)), ii = find(any(imag(crossdir)~=0)); crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ... imag(crossdir(:,ii))).*axr(:,ii); end; % compute cross-arrow directions basecross = crossdir + basepoint; tipcross = crossdir + tippoint; sbasecross = crossdir + sbasepoint; stipcross = crossdir + stippoint; ii = find(all(crossdir==0)|any(isnan(crossdir))); if ~isempty(ii), numii = length(ii); % transform start points tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)]; tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]); tmp1 = [tmp1; ones(1,4*numii)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform stop points tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)]; tmp1 = [tmp1 tmp1 tmp1 tmp1]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute perpendicular directions pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2; pixfact = [pixfact pixfact pixfact pixfact]; pixfact = [pixfact;1./pixfact]; [dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:))); jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj); jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj)); jj3 = jj1(1:2,:); Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98 Xp = X0; Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1); Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3); % inverse transform the cross points if (oneax), Xp=invT*Xp; else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end; Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]); basecross(:,ii) = Xp(:,0*numii+(1:numii)); tipcross(:,ii) = Xp(:,1*numii+(1:numii)); sbasecross(:,ii) = Xp(:,2*numii+(1:numii)); stipcross(:,ii) = Xp(:,3*numii+(1:numii)); end; % compute all points % compute start points axm11 = [axm axm axm axm axm axm axm axm axm axm axm]; axr11 = [axr axr axr axr axr axr axr axr axr axr axr]; st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint]; tmp1 = (st - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % compute stop points tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ... - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute lengths len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi); slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi); le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)]; aprange = ap./limrange; aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange]; D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2)); Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D)); % inverse transform if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end; pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11; % correct for ones where the crossdir was specified ii = find(~(all(crossdir==0)|any(isnan(crossdir)))); if ~isempty(ii), D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ... pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ... pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ... pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ... pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ... pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ... pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ... pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2; ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows; ii = ii(:)'; pts(:,ii) = st(:,ii) + D1; end; % readjust for reverse directions iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).'; tmp1=axrev(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end; % readjust for log scale on axes tmp1=xyzlog(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end; % compute the x,y,z coordinates of the patches; ii = narrows*(0:10)'*ones(1,narrows) + ones(11,1)*(1:narrows); ii = ii(:)'; x = zeros(11,narrows); y = zeros(11,narrows); z = zeros(11,narrows); x(:) = pts(1,ii)'; y(:) = pts(2,ii)'; z(:) = pts(3,ii)'; % do the output if (nargout<=1), % % create or modify the patches newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch')); newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line')); if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end; % % make or modify the arrows for k=1:narrows, if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end; xx=x(:,k); yy=y(:,k); if (0), % this fix didn't work, so let's not use it -- 8/26/03 % try to work around a MATLAB 6.x OpenGL bug -- 7/28/02 mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2); xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end; end; % plot the patch or line xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag}; if newpatch(k)|newline(k), if newpatch(k), H(k) = patch(xyz{:}); else, H(k) = line(xyz{:}); end; if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end; else, if ispatch(k), xyz={xyz{:},'CData',[]}; end; set(H(k),xyz{:}); end; end; if ~isempty(oldh), delete(oldh(oldh~=H)); end; % % additional properties set(H,'Clipping','off'); set(H,{'UserData'},num2cell(ud,2)); if (length(extraprops)>0), set(H,extraprops{:}); end; % handle choosing arrow Start and/or Stop locations if unspecified [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims); if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end; % set the output if (nargout>0), h=H; end; % make sure the axis limits did not change if isempty(oldaxlims), ARROW_AXLIMITS = []; else lims = get(ax(oldaxlims(:,1)),{'XLim','YLim','ZLim'})'; lims = reshape(cat(2,lims{:}),6,size(lims,2)); mask = arrow_is2DXY(ax(oldaxlims(:,1))); oldaxlims(mask,6:7) = lims(5:6,mask)'; ARROW_AXLIMITS = oldaxlims(find(any(oldaxlims(:,2:7)'~=lims)),:); if ~isempty(ARROW_AXLIMITS), warning(arrow_warnlimits(ARROW_AXLIMITS,narrows)); end; end; else % don't create the patch, just return the data h=x; yy=y; zz=z; end; function out = arrow_defcheck(in,def,prop) % check if we got 'default' values out = in; if ~isstr(in), return; end; if size(in,1)==1 & strncmp(lower(in),'def',3), out = def; elseif ~isempty(prop), error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']); end; function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims) % handle choosing arrow Start and/or Stop locations if necessary errstr = ''; if isempty(H)|isempty(ud)|isempty(x), return; end; % determine which (if any) need Start and/or Stop needStart = all(isnan(ud(:,1:3)'))'; needStop = all(isnan(ud(:,4:6)'))'; mask = any(needStart|needStop); if ~any(mask), return; end; ud(~mask,:)=[]; ax(:,~mask)=[]; x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[]; % make them invisible for the time being set(H,'Visible','off'); % save the current axes and limits modes; set to manual for the time being oldAx = gca; limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'}); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'}); % loop over each arrow that requires attention jj = find(mask); for ii=1:length(jj), h = H(jj(ii)); axes(ax(ii)); % figure out correct call if needStart(ii), prop='Start'; else, prop='Stop'; end; [wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii)); % handle errors and control-C if wasInterrupted, delete(H(jj(ii:end))); H(jj(ii:end))=[]; oldaxlims(jj(ii:end),:)=[]; break; end; end; % restore the axes and limit modes axes(oldAx); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes); function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax) % handle the clicks for one arrow fig = get(ax,'Parent'); % save some things oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'}; oldFigValue = get(fig,oldFigProps); global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax; ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); set(fig,'Pointer','crosshair'); % set up the WindowButtonMotion so we can see the arrow while moving around set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ... 'WindowButtonMotionFcn',''); if ~lockStart, set(H,'Visible','on'); set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); end; % wait for the button to be pressed [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig); % if we wanted to click-drag, set the Start point if lockStart & ~wasInterrupted, pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z); feval(mfilename,H,'Start',pt,'Stop',pt); set(H,'Visible','on'); ARROW_CLICK_PROP='Stop'; set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); % wait for the mouse button to be released try waitfor(fig,'WindowButtonUpFcn',''); catch errstr = lasterr; wasInterrupted = 1; end; end; if ~wasInterrupted, feval(mfilename,'callback','motion'); end; % restore some things set(gcf,oldFigProps,oldFigValue); function arrow_callback(varargin) % handle redrawing callbacks if nargin==0, return; end; str = varargin{1}; if ~isstr(str), error([upper(mfilename) ' got an invalid Callback command.']); end; s = lower(str); if strcmp(s,'motion'), % motion callback global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z)); drawnow; else, error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']); end; function out = arrow_point(ax,use_z) % return the point on the given axes if nargin==0, ax=gca; end; if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end; out = get(ax,'CurrentPoint'); out = out(1,:); if ~use_z, out=out(1:2); end; function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig) % wait for button down ignoring object ButtonDownFcn's if nargin==0, fig=gcf; end; errstr = ''; % save ButtonDownFcn values objs = findobj(fig); buttonDownFcns = get(objs,'ButtonDownFcn'); mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask); set(objs,'ButtonDownFcn',''); % save other figure values figProps = {'KeyPressFcn','WindowButtonDownFcn'}; figValue = get(fig,figProps); % do the real work set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ... 'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')'); lasterr(''); try waitfor(fig,'WindowButtonDownFcn',''); wasInterrupted = 0; catch wasInterrupted = 1; end wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),''); if wasInterrupted, errstr=lasterr; end; % restore ButtonDownFcn and other figure values set(objs,'ButtonDownFcn',buttonDownFcns); set(fig,figProps,figValue); function [out,is2D] = arrow_is2DXY(ax) % check if axes are 2-D X-Y plots % may not work for modified camera angles, etc. out = logical(zeros(size(ax))); % 2-D X-Y plots is2D = out; % any 2-D plots views = get(ax(:),{'View'}); views = cat(1,views{:}); out(:) = abs(views(:,2))==90; is2D(:) = out(:) | all(rem(views',90)==0)'; function out = arrow_planarkids(ax) % check if axes descendents all have empty ZData (lines,patches,surfaces) out = logical(ones(size(ax))); allkids = get(ax(:),{'Children'}); for k=1:length(allkids), kids = get([findobj(allkids{k},'flat','Type','line') findobj(allkids{k},'flat','Type','patch') findobj(allkids{k},'flat','Type','surface')],{'ZData'}); for j=1:length(kids), if ~isempty(kids{j}), out(k)=logical(0); break; end; end; end; function arrow_fixlimits(axlimits) % reset the axis limits as necessary if isempty(axlimits), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end; for k=1:size(axlimits,1), if any(get(axlimits(k,1),'XLim')~=axlimits(k,2:3)), set(axlimits(k,1),'XLim',axlimits(k,2:3)); end; if any(get(axlimits(k,1),'YLim')~=axlimits(k,4:5)), set(axlimits(k,1),'YLim',axlimits(k,4:5)); end; if any(get(axlimits(k,1),'ZLim')~=axlimits(k,6:7)), set(axlimits(k,1),'ZLim',axlimits(k,6:7)); end; end; function out = arrow_WarpToFill(notstretched,manualcamera,curax) % check if we are in "WarpToFill" mode. out = strcmp(get(curax,'WarpToFill'),'on'); % 'WarpToFill' is undocumented, so may need to replace this by % out = ~( any(notstretched) & any(manualcamera) ); function out = arrow_warnlimits(axlimits,narrows) % create a warning message if we've changed the axis limits msg = ''; switch (size(axlimits,1)) case 1, msg=''; case 2, msg='on two axes '; otherwise, msg='on several axes '; end; msg = [upper(mfilename) ' changed the axis limits ' msg ... 'when adding the arrow']; if (narrows>1), msg=[msg 's']; end; out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ... ' FIXLIMITS to reset them now.']; function arrow_copyprops(fm,to) % copy line properties to patches props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',... 'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ... 'Clipping','DeleteFcn','BusyAction','HandleVisibility', ... 'Selected','SelectionHighlight','Visible'}; lineprops = {'Color', props{:}}; patchprops = {'EdgeColor',props{:}}; patch2props = {'FaceColor',patchprops{:}}; fmpatch = strcmp(get(fm,'Type'),'patch'); topatch = strcmp(get(to,'Type'),'patch'); set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p function arrow_props % display further help info about ARROW properties c = sprintf('\n'); disp([c ... 'ARROW Properties: Default values are given in [square brackets], and other' c ... ' acceptable equivalent property names are in (parenthesis).' c c ... ' Start The starting points. For N arrows, B' c ... ' this should be a Nx2 or Nx3 matrix. /|\ ^' c ... ' Stop The end points. For N arrows, this /|||\ |' c ... ' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ... ' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ... ' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ... ' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ... ' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ... ' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ... ' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ... ' [16] (Tip) / base ||| \ V' c ... ' Width Width of the base in pixels. Not E angle ||<-------->C' c ... ' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ... ' Page If provided, non-empty, and not NaN, |||' c ... ' this causes ARROW to use hardcopy |||' c ... ' rather than onscreen proportions. A' c ... ' This is important if screen aspect --> <-- width' c ... ' ratio and hardcopy aspect ratio are ----CrossDir---->' c ... ' vastly different. []' c... ' CrossDir A vector giving the direction towards which the fletches' c ... ' on the arrow should go. [computed such that it is perpen-' c ... ' dicular to both the arrow direction and the view direction' c ... ' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ... ' that CrossDir is a vector. Also note that if an axis is' c ... ' plotted on a log scale, then the corresponding component' c ... ' of CrossDir must also be set appropriately, i.e., to 1 for' c ... ' no change in that direction, >1 for a positive change, >0' c ... ' and <1 for negative change.)' c ... ' NormalDir A vector normal to the fletch direction (CrossDir is then' c ... ' computed by the vector cross product [Line]x[NormalDir]). []' c ... ' (Note that NormalDir is a vector. Unlike CrossDir,' c ... ' NormalDir is used as is regardless of log-scaled axes.)' c ... ' Ends Set which end has an arrowhead. Valid values are ''none'',' c ... ' ''stop'', ''start'', and ''both''. [''stop''] (End)' c... ' ObjectHandles Vector of handles to previously-created arrows to be' c ... ' updated or line objects to be converted to arrows.' c ... ' [] (Object,Handle)' c ]); function out = arrow_demo % demo % create the data [x,y,z] = peaks; [ddd,out.iii]=max(z(:)); out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))]; % modify it by inserting some NaN's [m,n] = size(z); m = floor(m/2); n = floor(n/2); z(1:m,1:n) = NaN*ones(m,n); % graph it clf('reset'); out.hs=surf(x,y,z); out.x=x; out.y=y; out.z=z; xlabel('x'); ylabel('y'); function h = arrow_demo3(in) % set the view axlim = in.axlim; axis(axlim); zlabel('z'); %set(in.hs,'FaceColor','interp'); view(3); % view(viewmtx(-37.5,30,20)); title(['Demo of the capabilities of the ARROW function in 3-D']); % Normal blue arrow h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ... 'EdgeColor','b','FaceColor','b'); % Normal white arrow, clipped by the surface h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]); t=text(-2.4,2.7,7.7,'arrow clipped by surf'); % Baseangle<90 h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50); t2=text(3.1,.125,3.5,'local maximum'); % Baseangle<90, fill and edge colors different h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ... 'EdgeColor','b','FaceColor','c'); t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin'); set(t3,'HorizontalAlignment','center'); % Baseangle>90, black fill h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ... 'EdgeColor','r','FaceColor','k','LineWidth',2); % Baseangle>90, no fill h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ... 'EdgeColor','r','FaceColor','none','LineWidth',2); % Stick arrow h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16); t4=text(-1.5,-1.65,-7.25,'global mininum'); set(t4,'HorizontalAlignment','center'); % Normal, black fill h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k'); t5=text(-1.5,0,-7.75,'local minimum'); set(t5,'HorizontalAlignment','center'); % Gray fill, crossdir specified, 'LineStyle' -- h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ... 'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--'); % a series of normal arrows, linearly spaced, crossdir specified h10y=(0:4)'/3; h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ... [-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ... 12,[],[],[],[],[0 -1 0]); % a series of normal arrows, linearly spaced h11x=(1:.33:2.8)'; h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ... [h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]); % series of magenta arrows, radially oriented, crossdir specified h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81; h12t=(0:11)'/6*pi; h12 = feval(mfilename, ... [h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ... h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ... h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ... 10,[],[],[],[], ... [-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],... 'FaceColor','none','EdgeColor','m'); % series of normal arrows, tangentially oriented, crossdir specified or13=.91; h13t=(0:.5:12)'/6*pi; locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13]; h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6); % arrow with no line ==> oriented downwards h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30); t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center'); % arrow with arrowheads at both ends h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ... 'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25); h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15]; function h = arrow_demo2(in) axlim = in.axlim; dolog = 1; if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end; shading('interp'); view(2); title(['Demo of the capabilities of the ARROW function in 2-D']); hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off; for k=H', set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k'); if (dolog), set(k,'YData',10.^get(k,'YData')); end; end; if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log'); else, axis(axlim(1:4)); end; % Normal blue arrow start = [axlim(1) axlim(4) axlim(6)+2]; stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b'); % three arrows with varying fill, width, and baseangle start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10]; stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop')); set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]); set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]); h=[h1;h2]; function out = trueornan(x) if isempty(x), out=x; else, out = isnan(x); out(~out) = x(~out); end;
github
Hadisalman/stoec-master
TruncatedGaussian.m
.m
stoec-master/code/Include/TruncatedGaussian.m
6,804
utf_8
125bc65500771dd6664b2327487ba9dd
function [X meaneffective sigmaeffective] = TruncatedGaussian(sigma, range, varargin) % function X = TruncatedGaussian(sigma, range) % X = TruncatedGaussian(sigma, range, n) % % Purpose: generate a pseudo-random vector X of size n, X are drawn from % the truncated Gaussian distribution in a RANGE braket; and satisfies % std(X)=sigma. % RANGE is of the form [left,right] defining the braket where X belongs. % For a scalar input RANGE, the braket is [-RANGE,RANGE]. % % X = TruncatedGaussian(..., 'double') or % X = TruncatedGaussian(..., 'single') return an array X of of the % specified class. % % If input SIGMA is negative, X will be forced to have the same "shape" of % distribution function than the unbounded Gaussian with standard deviation % -SIGMA: N(0,-SIGMA). It is similar to calling RANDN and throw away values % ouside RANGE. In this case, the standard deviation of the truncated % Gaussian will be different than -SIGMA. The *effective* mean and % the effective standard deviation can be obtained by calling: % [X meaneffective sigmaeffective] = TruncatedGaussian(...) % % Example: % % sigma=2; % range=[-3 5] % % [X meaneff sigmaeff] = TruncatedGaussian(sigma, range, [1 1e6]); % % stdX=std(X); % fprintf('mean(X)=%g, estimated=%g\n',meaneff, mean(X)) % fprintf('sigma=%g, effective=%g, estimated=%g\n', sigma, sigmaeff, stdX) % hist(X,64) % % Author: Bruno Luong <[email protected]> % Last update: 19/April/2009 % 12-Aug-2010, use asymptotic formula for unbalanced % range to avoid round-off error issue % We keep track this variables so as to avoid calling fzero if % TruncatedGaussian is called succesively with the same sigma and range persistent PREVSIGMA PREVRANGE PREVSIGMAC % shape preserving? shapeflag = (sigma<0); % Force inputs to be double class range = double(range); if isscalar(range) % make sure it's positive range=abs(range); range=[-range range]; else range=sort(range); % right order end sigma = abs(double(sigma)); n=varargin; if shapeflag % Prevent the same pdf as with the normal distribution N(0,sigma) sigmac = sigma; else if diff(range)^2<12*sigma^2 % This imposes a limit of sigma wrt range warning('TruncatedGaussian:RangeSigmaIncompatible', ... 'TruncatedGaussian: range and sigma are incompatible\n'); sigmac = Inf; elseif isequal([sigma range], [PREVSIGMA PREVRANGE]) % See line #80 sigmac = PREVSIGMAC; % Do not need to call fzero else % Search for "sigmac" such that the truncated Gaussian having % sigmac in the formula of its pdf gives a standard deviation % equal to sigma [sigmac res flag] = fzero(@scz,sigma,[],... sigma^2,range(1),range(2)); %#ok sigmac = abs(sigmac); % Force it to be positive if flag<0 % Someting is wrong error('TruncatedGaussian:fzerofailled', ... 'Could not estimate sigmac\n'); end % Backup the solution [PREVSIGMA PREVRANGE PREVSIGMAC] = deal(sigma,range,sigmac); end end % Compute effective standard deviation meaneffective=meantrunc(range(1), range(2), sigmac); sigmaeffective=stdtrunc(range(1), range(2), sigmac); % Inverse of the cdf functions if isinf(sigmac) % Uniform distribution to maximize the standard deviation within the % range. It is like a Gaussian with infinity standard deviation if any(strcmpi(n,'single')) range = single(range); end cdfinv = @(y) range(1)+y*diff(range); else c = sqrt(2)*sigmac; rn = range/c; asymthreshold = 4; if any(strcmpi(n,'single')) % cdfinv will be single class c = single(c); %e = single(e); end % Unbalanced range if prod(sign(rn))>0 && all(abs(rn)>=asymthreshold) % Use asymptotic expansion % based on a Sergei Winitzi's paper "A handly approximation for the % error function and its inverse", Feb 6, 2008. c = c*sign(rn(1)); rn = abs(rn); left = min(rn); right = max(rn); a = 0.147; x2 = left*left; ax2 = a*x2; e1 = (4/pi+ax2) ./ (1+ax2); e1 = exp(-x2.*e1); % e1 < 3.0539e-008 for asymthreshold = 4 x2 = right*right; ax2 = a*x2; e2 = (4/pi+ax2) ./ (1+ax2); e2 = exp(-x2.*e2); % e2 < 3.0539e-008 for asymthreshold = 4 % Taylor series of erf(right)-erf(left) ~= sqrt(1-e2)-sqrt(1-e1) de = -0.5*(e2-e1) -0.125*(e2-e1)*(e2+e1); % Taylor series of erf1 := erf(left)-1 ~= sqrt(1-e1)-1 erf1 = (-0.5*e1 - 0.125*e1^2); cdfinv = @(y) c*asymcdfinv(y, erf1, de, a); else e = erf(range/c); cdfinv = @(y) c*erfinv(e(1)+diff(e)*y); end end % Generate random variable X = cdfinv(rand(n{:})); % Clip to prevent some nasty numerical issues with of erfinv function % when argument gets close to +/-1 X = max(min(X,range(2)),range(1)); return end % TruncatedGaussian %% function x = asymcdfinv(y, erf1, de, a) % z = erf(left) + de*y = 1 + erf1 + de*y, input argument of erfinv(.) f = erf1 + de*y; % = z - 1; thus z = 1+f % 1 - z^2 = -2f-f^2 l = log(-f.*(2 + f)); % log(-2f-f^2) = log(1-z.^2); b = 2/(pi*a) + l/2; x = sqrt(-b + sqrt(b.^2-l/a)); end % asymcdfinv function m=meantrunc(lower, upper, s) % Compute the mean of a trunctated gaussian distribution if isinf(s) m = (upper+lower)/2; else a = (lower/sqrt(2))./s; b = (upper/sqrt(2))./s; corr = sqrt(2/pi)*(-exp(-b.^2)+exp(-a.^2))./(erf(b)-erf(a)); m = s.*corr; end end % vartrunc function v=vartrunc(lower, upper, s) % Compute the variance of a trunctated gaussian distribution if isinf(s) v = (upper-lower)^2/12; else a = (lower/sqrt(2))./s; b = (upper/sqrt(2))./s; if isinf(a) ea=0; else ea = a.*exp(-a.^2); end if isinf(b) eb = 0; else eb = b.*exp(-b.^2); end corr = 1 - (2/sqrt(pi))*(eb-ea)./(erf(b)-erf(a)); v = s.^2.*corr; end end % vartrunc function stdt=stdtrunc(lower, upper, s) % Standard deviation of a trunctated gaussian distribution arg = vartrunc(lower, upper, s)-meantrunc(lower, upper, s).^2; %arg = max(arg,0); stdt = sqrt(arg); end % stdtrunc function res=scz(sc, targetsigma2, lower, upper) % Gateway for fzero, aim the standard deviation to a target value res = vartrunc(lower, upper, sc) - targetsigma2 - ... meantrunc(lower, upper, sc).^2; end % scz % End of file TruncatedGaussian.m
github
Hadisalman/stoec-master
gridfit.m
.m
stoec-master/code/Include/gridfit.m
34,995
utf_8
e58c0dba921cb156ee39a27dd18a4d1c
function [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes,varargin) % gridfit: estimates a surface on a 2d grid, based on scattered data % Replicates are allowed. All methods extrapolate to the grid % boundaries. Gridfit uses a modified ridge estimator to % generate the surface, where the bias is toward smoothness. % % Gridfit is not an interpolant. Its goal is a smooth surface % that approximates your data, but allows you to control the % amount of smoothing. % % usage #1: zgrid = gridfit(x,y,z,xnodes,ynodes); % usage #2: [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes); % usage #3: zgrid = gridfit(x,y,z,xnodes,ynodes,prop,val,prop,val,...); % % Arguments: (input) % x,y,z - vectors of equal lengths, containing arbitrary scattered data % The only constraint on x and y is they cannot ALL fall on a % single line in the x-y plane. Replicate points will be treated % in a least squares sense. % % ANY points containing a NaN are ignored in the estimation % % xnodes - vector defining the nodes in the grid in the independent % variable (x). xnodes need not be equally spaced. xnodes % must completely span the data. If they do not, then the % 'extend' property is applied, adjusting the first and last % nodes to be extended as necessary. See below for a complete % description of the 'extend' property. % % If xnodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % ynodes - vector defining the nodes in the grid in the independent % variable (y). ynodes need not be equally spaced. % % If ynodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % Also see the extend property. % % Additional arguments follow in the form of property/value pairs. % Valid properties are: % 'smoothness', 'interp', 'regularizer', 'solver', 'maxiter' % 'extend', 'tilesize', 'overlap' % % Any UNAMBIGUOUS shortening (even down to a single letter) is % valid for property names. All properties have default values, % chosen (I hope) to give a reasonable result out of the box. % % 'smoothness' - scalar or vector of length 2 - determines the % eventual smoothness of the estimated surface. A larger % value here means the surface will be smoother. Smoothness % must be a non-negative real number. % % If this parameter is a vector of length 2, then it defines % the relative smoothing to be associated with the x and y % variables. This allows the user to apply a different amount % of smoothing in the x dimension compared to the y dimension. % % Note: the problem is normalized in advance so that a % smoothness of 1 MAY generate reasonable results. If you % find the result is too smooth, then use a smaller value % for this parameter. Likewise, bumpy surfaces suggest use % of a larger value. (Sometimes, use of an iterative solver % with too small a limit on the maximum number of iterations % will result in non-convergence.) % % DEFAULT: 1 % % % 'interp' - character, denotes the interpolation scheme used % to interpolate the data. % % DEFAULT: 'triangle' % % 'bilinear' - use bilinear interpolation within the grid % (also known as tensor product linear interpolation) % % 'triangle' - split each cell in the grid into a triangle, % then linear interpolation inside each triangle % % 'nearest' - nearest neighbor interpolation. This will % rarely be a good choice, but I included it % as an option for completeness. % % % 'regularizer' - character flag, denotes the regularization % paradignm to be used. There are currently three options. % % DEFAULT: 'gradient' % % 'diffusion' or 'laplacian' - uses a finite difference % approximation to the Laplacian operator (i.e, del^2). % % We can think of the surface as a plate, wherein the % bending rigidity of the plate is specified by the user % as a number relative to the importance of fidelity to % the data. A stiffer plate will result in a smoother % surface overall, but fit the data less well. I've % modeled a simple plate using the Laplacian, del^2. (A % projected enhancement is to do a better job with the % plate equations.) % % We can also view the regularizer as a diffusion problem, % where the relative thermal conductivity is supplied. % Here interpolation is seen as a problem of finding the % steady temperature profile in an object, given a set of % points held at a fixed temperature. Extrapolation will % be linear. Both paradigms are appropriate for a Laplacian % regularizer. % % 'gradient' - attempts to ensure the gradient is as smooth % as possible everywhere. Its subtly different from the % 'diffusion' option, in that here the directional % derivatives are biased to be smooth across cell % boundaries in the grid. % % The gradient option uncouples the terms in the Laplacian. % Think of it as two coupled PDEs instead of one PDE. Why % are they different at all? The terms in the Laplacian % can balance each other. % % 'springs' - uses a spring model connecting nodes to each % other, as well as connecting data points to the nodes % in the grid. This choice will cause any extrapolation % to be as constant as possible. % % Here the smoothing parameter is the relative stiffness % of the springs connecting the nodes to each other compared % to the stiffness of a spting connecting the lattice to % each data point. Since all springs have a rest length % (length at which the spring has zero potential energy) % of zero, any extrapolation will be minimized. % % Note: The 'springs' regularizer tends to drag the surface % towards the mean of all the data, so too large a smoothing % parameter may be a problem. % % % 'solver' - character flag - denotes the solver used for the % resulting linear system. Different solvers will have % different solution times depending upon the specific % problem to be solved. Up to a certain size grid, the % direct \ solver will often be speedy, until memory % swaps causes problems. % % What solver should you use? Problems with a significant % amount of extrapolation should avoid lsqr. \ may be % best numerically for small smoothnesss parameters and % high extents of extrapolation. % % Large numbers of points will slow down the direct % \, but when applied to the normal equations, \ can be % quite fast. Since the equations generated by these % methods will tend to be well conditioned, the normal % equations are not a bad choice of method to use. Beware % when a small smoothing parameter is used, since this will % make the equations less well conditioned. % % DEFAULT: 'normal' % % '\' - uses matlab's backslash operator to solve the sparse % system. 'backslash' is an alternate name. % % 'symmlq' - uses matlab's iterative symmlq solver % % 'lsqr' - uses matlab's iterative lsqr solver % % 'normal' - uses \ to solve the normal equations. % % % 'maxiter' - only applies to iterative solvers - defines the % maximum number of iterations for an iterative solver % % DEFAULT: min(10000,length(xnodes)*length(ynodes)) % % % 'extend' - character flag - controls whether the first and last % nodes in each dimension are allowed to be adjusted to % bound the data, and whether the user will be warned if % this was deemed necessary to happen. % % DEFAULT: 'warning' % % 'warning' - Adjust the first and/or last node in % x or y if the nodes do not FULLY contain % the data. Issue a warning message to this % effect, telling the amount of adjustment % applied. % % 'never' - Issue an error message when the nodes do % not absolutely contain the data. % % 'always' - automatically adjust the first and last % nodes in each dimension if necessary. % No warning is given when this option is set. % % % 'tilesize' - grids which are simply too large to solve for % in one single estimation step can be built as a set % of tiles. For example, a 1000x1000 grid will require % the estimation of 1e6 unknowns. This is likely to % require more memory (and time) than you have available. % But if your data is dense enough, then you can model % it locally using smaller tiles of the grid. % % My recommendation for a reasonable tilesize is % roughly 100 to 200. Tiles of this size take only % a few seconds to solve normally, so the entire grid % can be modeled in a finite amount of time. The minimum % tilesize can never be less than 3, although even this % size tile is so small as to be ridiculous. % % If your data is so sparse than some tiles contain % insufficient data to model, then those tiles will % be left as NaNs. % % DEFAULT: inf % % % 'overlap' - Tiles in a grid have some overlap, so they % can minimize any problems along the edge of a tile. % In this overlapped region, the grid is built using a % bi-linear combination of the overlapping tiles. % % The overlap is specified as a fraction of the tile % size, so an overlap of 0.20 means there will be a 20% % overlap of successive tiles. I do allow a zero overlap, % but it must be no more than 1/2. % % 0 <= overlap <= 0.5 % % Overlap is ignored if the tilesize is greater than the % number of nodes in both directions. % % DEFAULT: 0.20 % % % 'autoscale' - Some data may have widely different scales on % the respective x and y axes. If this happens, then % the regularization may experience difficulties. % % autoscale = 'on' will cause gridfit to scale the x % and y node intervals to a unit length. This should % improve the regularization procedure. The scaling is % purely internal. % % autoscale = 'off' will disable automatic scaling % % DEFAULT: 'on' % % % Arguments: (output) % zgrid - (nx,ny) array containing the fitted surface % % xgrid, ygrid - as returned by meshgrid(xnodes,ynodes) % % % Speed considerations: % Remember that gridfit must solve a LARGE system of linear % equations. There will be as many unknowns as the total % number of nodes in the final lattice. While these equations % may be sparse, solving a system of 10000 equations may take % a second or so. Very large problems may benefit from the % iterative solvers or from tiling. % % % Example usage: % % x = rand(100,1); % y = rand(100,1); % z = exp(x+2*y); % xnodes = 0:.1:1; % ynodes = 0:.1:1; % % g = gridfit(x,y,z,xnodes,ynodes); % % Note: this is equivalent to the following call: % % g = gridfit(x,y,z,xnodes,ynodes, ... % 'smooth',1, ... % 'interp','triangle', ... % 'solver','normal', ... % 'regularizer','gradient', ... % 'extend','warning', ... % 'tilesize',inf); % % % Author: John D'Errico % e-mail address: [email protected] % Release: 2.0 % Release date: 5/23/06 % set defaults params.smoothness = 1; params.interp = 'triangle'; params.regularizer = 'gradient'; params.solver = 'backslash'; params.maxiter = []; params.extend = 'warning'; params.tilesize = inf; params.overlap = 0.20; params.mask = []; params.autoscale = 'on'; params.xscale = 1; params.yscale = 1; % was the params struct supplied? if ~isempty(varargin) if isstruct(varargin{1}) % params is only supplied if its a call from tiled_gridfit params = varargin{1}; if length(varargin)>1 % check for any overrides params = parse_pv_pairs(params,varargin{2:end}); end else % check for any overrides of the defaults params = parse_pv_pairs(params,varargin); end end % check the parameters for acceptability params = check_params(params); % ensure all of x,y,z,xnodes,ynodes are column vectors, % also drop any NaN data x=x(:); y=y(:); z=z(:); k = isnan(x) | isnan(y) | isnan(z); if any(k) x(k)=[]; y(k)=[]; z(k)=[]; end xmin = min(x); xmax = max(x); ymin = min(y); ymax = max(y); % did they supply a scalar for the nodes? if length(xnodes)==1 xnodes = linspace(xmin,xmax,xnodes)'; xnodes(end) = xmax; % make sure it hits the max end if length(ynodes)==1 ynodes = linspace(ymin,ymax,ynodes)'; ynodes(end) = ymax; % make sure it hits the max end xnodes=xnodes(:); ynodes=ynodes(:); dx = diff(xnodes); dy = diff(ynodes); nx = length(xnodes); ny = length(ynodes); ngrid = nx*ny; % set the scaling if autoscale was on if strcmpi(params.autoscale,'on') params.xscale = mean(dx); params.yscale = mean(dy); params.autoscale = 'off'; end % check to see if any tiling is necessary if (params.tilesize < max(nx,ny)) % split it into smaller tiles. compute zgrid and ygrid % at the very end if requested zgrid = tiled_gridfit(x,y,z,xnodes,ynodes,params); else % its a single tile. % mask must be either an empty array, or a boolean % aray of the same size as the final grid. nmask = size(params.mask); if ~isempty(params.mask) && ((nmask(2)~=nx) || (nmask(1)~=ny)) if ((nmask(2)==ny) || (nmask(1)==nx)) error 'Mask array is probably transposed from proper orientation.' else error 'Mask array must be the same size as the final grid.' end end if ~isempty(params.mask) params.maskflag = 1; else params.maskflag = 0; end % default for maxiter? if isempty(params.maxiter) params.maxiter = min(10000,nx*ny); end % check lengths of the data n = length(x); if (length(y)~=n) || (length(z)~=n) error 'Data vectors are incompatible in size.' end if n<3 error 'Insufficient data for surface estimation.' end % verify the nodes are distinct if any(diff(xnodes)<=0) || any(diff(ynodes)<=0) error 'xnodes and ynodes must be monotone increasing' end % do we need to tweak the first or last node in x or y? if xmin<xnodes(1) switch params.extend case 'always' xnodes(1) = xmin; case 'warning' warning('GRIDFIT:extend',['xnodes(1) was decreased by: ',num2str(xnodes(1)-xmin),', new node = ',num2str(xmin)]) xnodes(1) = xmin; case 'never' error(['Some x (',num2str(xmin),') falls below xnodes(1) by: ',num2str(xnodes(1)-xmin)]) end end if xmax>xnodes(end) switch params.extend case 'always' xnodes(end) = xmax; case 'warning' warning('GRIDFIT:extend',['xnodes(end) was increased by: ',num2str(xmax-xnodes(end)),', new node = ',num2str(xmax)]) xnodes(end) = xmax; case 'never' error(['Some x (',num2str(xmax),') falls above xnodes(end) by: ',num2str(xmax-xnodes(end))]) end end if ymin<ynodes(1) switch params.extend case 'always' ynodes(1) = ymin; case 'warning' warning('GRIDFIT:extend',['ynodes(1) was decreased by: ',num2str(ynodes(1)-ymin),', new node = ',num2str(ymin)]) ynodes(1) = ymin; case 'never' error(['Some y (',num2str(ymin),') falls below ynodes(1) by: ',num2str(ynodes(1)-ymin)]) end end if ymax>ynodes(end) switch params.extend case 'always' ynodes(end) = ymax; case 'warning' warning('GRIDFIT:extend',['ynodes(end) was increased by: ',num2str(ymax-ynodes(end)),', new node = ',num2str(ymax)]) ynodes(end) = ymax; case 'never' error(['Some y (',num2str(ymax),') falls above ynodes(end) by: ',num2str(ymax-ynodes(end))]) end end % determine which cell in the array each point lies in [junk,indx] = histc(x,xnodes); %#ok [junk,indy] = histc(y,ynodes); %#ok % any point falling at the last node is taken to be % inside the last cell in x or y. k=(indx==nx); indx(k)=indx(k)-1; k=(indy==ny); indy(k)=indy(k)-1; ind = indy + ny*(indx-1); % Do we have a mask to apply? if params.maskflag % if we do, then we need to ensure that every % cell with at least one data point also has at % least all of its corners unmasked. params.mask(ind) = 1; params.mask(ind+1) = 1; params.mask(ind+ny) = 1; params.mask(ind+ny+1) = 1; end % interpolation equations for each point tx = min(1,max(0,(x - xnodes(indx))./dx(indx))); ty = min(1,max(0,(y - ynodes(indy))./dy(indy))); % Future enhancement: add cubic interpolant switch params.interp case 'triangle' % linear interpolation inside each triangle k = (tx > ty); L = ones(n,1); L(k) = ny; t1 = min(tx,ty); t2 = max(tx,ty); A = sparse(repmat((1:n)',1,3),[ind,ind+ny+1,ind+L], ... [1-t2,t1,t2-t1],n,ngrid); case 'nearest' % nearest neighbor interpolation in a cell k = round(1-ty) + round(1-tx)*ny; A = sparse((1:n)',ind+k,ones(n,1),n,ngrid); case 'bilinear' % bilinear interpolation in a cell A = sparse(repmat((1:n)',1,4),[ind,ind+1,ind+ny,ind+ny+1], ... [(1-tx).*(1-ty), (1-tx).*ty, tx.*(1-ty), tx.*ty], ... n,ngrid); end rhs = z; % do we have relative smoothing parameters? if numel(params.smoothness) == 1 % it was scalar, so treat both dimensions equally smoothparam = params.smoothness; xyRelativeStiffness = [1;1]; else % It was a vector, so anisotropy reigns. % I've already checked that the vector was of length 2 smoothparam = sqrt(prod(params.smoothness)); xyRelativeStiffness = params.smoothness(:)./smoothparam; end % Build regularizer. Add del^4 regularizer one day. switch params.regularizer case 'springs' % zero "rest length" springs [i,j] = meshgrid(1:nx,1:(ny-1)); ind = j(:) + ny*(i(:)-1); m = nx*(ny-1); stiffness = 1./(dy/params.yscale); Areg = sparse(repmat((1:m)',1,2),[ind,ind+1], ... xyRelativeStiffness(2)*stiffness(j(:))*[-1 1], ... m,ngrid); [i,j] = meshgrid(1:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); m = (nx-1)*ny; stiffness = 1./(dx/params.xscale); Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny], ... xyRelativeStiffness(1)*stiffness(i(:))*[-1 1],m,ngrid)]; [i,j] = meshgrid(1:(nx-1),1:(ny-1)); ind = j(:) + ny*(i(:)-1); m = (nx-1)*(ny-1); stiffness = 1./sqrt((dx(i(:))/params.xscale/xyRelativeStiffness(1)).^2 + ... (dy(j(:))/params.yscale/xyRelativeStiffness(2)).^2); Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny+1], ... stiffness*[-1 1],m,ngrid)]; Areg = [Areg;sparse(repmat((1:m)',1,2),[ind+1,ind+ny], ... stiffness*[-1 1],m,ngrid)]; case {'diffusion' 'laplacian'} % thermal diffusion using Laplacian (del^2) [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1)/params.yscale; dy2 = dy(j(:))/params.yscale; Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:)-1)/params.xscale; dx2 = dx(i(:))/params.xscale; Areg = Areg + sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid); case 'gradient' % Subtly different from the Laplacian. A point for future % enhancement is to do it better for the triangle interpolation % case. [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1)/params.yscale; dy2 = dy(j(:))/params.yscale; Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:)-1)/params.xscale; dx2 = dx(i(:))/params.xscale; Areg = [Areg;sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid)]; end nreg = size(Areg,1); % Append the regularizer to the interpolation equations, % scaling the problem first. Use the 1-norm for speed. NA = norm(A,1); NR = norm(Areg,1); A = [A;Areg*(smoothparam*NA/NR)]; rhs = [rhs;zeros(nreg,1)]; % do we have a mask to apply? if params.maskflag unmasked = find(params.mask); end % solve the full system, with regularizer attached switch params.solver case {'\' 'backslash'} if params.maskflag % there is a mask to use zgrid=nan(ny,nx); zgrid(unmasked) = A(:,unmasked)\rhs; else % no mask zgrid = reshape(A\rhs,ny,nx); end case 'normal' % The normal equations, solved with \. Can be faster % for huge numbers of data points, but reasonably % sized grids. The regularizer makes A well conditioned % so the normal equations are not a terribly bad thing % here. if params.maskflag % there is a mask to use Aunmasked = A(:,unmasked); zgrid=nan(ny,nx); zgrid(unmasked) = (Aunmasked'*Aunmasked)\(Aunmasked'*rhs); else zgrid = reshape((A'*A)\(A'*rhs),ny,nx); end case 'symmlq' % iterative solver - symmlq - requires a symmetric matrix, % so use it to solve the normal equations. No preconditioner. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = symmlq(A(:,unmasked)'*A(:,unmasked), ... A(:,unmasked)'*rhs,tol,params.maxiter); else [zgrid,flag] = symmlq(A'*A,A'*rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % SYMMLQ iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Symmlq performed ',num2str(params.maxiter), ... ' iterations but did not converge.']) case 3 % SYMMLQ stagnated, successive iterates were the same warning('GRIDFIT:solver','Symmlq stagnated without apparent convergence.') otherwise warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' symmlq was too small or too large to continue computing.']) end case 'lsqr' % iterative solver - lsqr. No preconditioner here. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = lsqr(A(:,unmasked),rhs,tol,params.maxiter); else [zgrid,flag] = lsqr(A,rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % lsqr iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Lsqr performed ', ... num2str(params.maxiter),' iterations but did not converge.']) case 3 % lsqr stagnated, successive iterates were the same warning('GRIDFIT:solver','Lsqr stagnated without apparent convergence.') case 4 warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' LSQR was too small or too large to continue computing.']) end end % switch params.solver end % if params.tilesize... % only generate xgrid and ygrid if requested. if nargout>1 [xgrid,ygrid]=meshgrid(xnodes,ynodes); end % ============================================ % End of main function - gridfit % ============================================ % ============================================ % subfunction - parse_pv_pairs % ============================================ function params=parse_pv_pairs(params,pv_pairs) % parse_pv_pairs: parses sets of property value pairs, allows defaults % usage: params=parse_pv_pairs(default_params,pv_pairs) % % arguments: (input) % default_params - structure, with one field for every potential % property/value pair. Each field will contain the default % value for that property. If no default is supplied for a % given property, then that field must be empty. % % pv_array - cell array of property/value pairs. % Case is ignored when comparing properties to the list % of field names. Also, any unambiguous shortening of a % field/property name is allowed. % % arguments: (output) % params - parameter struct that reflects any updated property/value % pairs in the pv_array. % % Example usage: % First, set default values for the parameters. Assume we % have four parameters that we wish to use optionally in % the function examplefun. % % - 'viscosity', which will have a default value of 1 % - 'volume', which will default to 1 % - 'pie' - which will have default value 3.141592653589793 % - 'description' - a text field, left empty by default % % The first argument to examplefun is one which will always be % supplied. % % function examplefun(dummyarg1,varargin) % params.Viscosity = 1; % params.Volume = 1; % params.Pie = 3.141592653589793 % % params.Description = ''; % params=parse_pv_pairs(params,varargin); % params % % Use examplefun, overriding the defaults for 'pie', 'viscosity' % and 'description'. The 'volume' parameter is left at its default. % % examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world') % % params = % Viscosity: 10 % Volume: 1 % Pie: 3 % Description: 'Hello world' % % Note that capitalization was ignored, and the property 'viscosity' % was truncated as supplied. Also note that the order the pairs were % supplied was arbitrary. npv = length(pv_pairs); n = npv/2; if n~=floor(n) error 'Property/value pairs must come in PAIRS.' end if n<=0 % just return the defaults return end if ~isstruct(params) error 'No structure for defaults was supplied' end % there was at least one pv pair. process any supplied propnames = fieldnames(params); lpropnames = lower(propnames); for i=1:n p_i = lower(pv_pairs{2*i-1}); v_i = pv_pairs{2*i}; ind = strmatch(p_i,lpropnames,'exact'); if isempty(ind) ind = find(strncmp(p_i,lpropnames,length(p_i))); if isempty(ind) error(['No matching property found for: ',pv_pairs{2*i-1}]) elseif length(ind)>1 error(['Ambiguous property name: ',pv_pairs{2*i-1}]) end end p_i = propnames{ind}; % override the corresponding default in params params = setfield(params,p_i,v_i); %#ok end % ============================================ % subfunction - check_params % ============================================ function params = check_params(params) % check the parameters for acceptability % smoothness == 1 by default if isempty(params.smoothness) params.smoothness = 1; else if (numel(params.smoothness)>2) || any(params.smoothness<=0) error 'Smoothness must be scalar (or length 2 vector), real, finite, and positive.' end end % regularizer - must be one of 4 options - the second and % third are actually synonyms. valid = {'springs', 'diffusion', 'laplacian', 'gradient'}; if isempty(params.regularizer) params.regularizer = 'diffusion'; end ind = find(strncmpi(params.regularizer,valid,length(params.regularizer))); if (length(ind)==1) params.regularizer = valid{ind}; else error(['Invalid regularization method: ',params.regularizer]) end % interp must be one of: % 'bilinear', 'nearest', or 'triangle' % but accept any shortening thereof. valid = {'bilinear', 'nearest', 'triangle'}; if isempty(params.interp) params.interp = 'triangle'; end ind = find(strncmpi(params.interp,valid,length(params.interp))); if (length(ind)==1) params.interp = valid{ind}; else error(['Invalid interpolation method: ',params.interp]) end % solver must be one of: % 'backslash', '\', 'symmlq', 'lsqr', or 'normal' % but accept any shortening thereof. valid = {'backslash', '\', 'symmlq', 'lsqr', 'normal'}; if isempty(params.solver) params.solver = '\'; end ind = find(strncmpi(params.solver,valid,length(params.solver))); if (length(ind)==1) params.solver = valid{ind}; else error(['Invalid solver option: ',params.solver]) end % extend must be one of: % 'never', 'warning', 'always' % but accept any shortening thereof. valid = {'never', 'warning', 'always'}; if isempty(params.extend) params.extend = 'warning'; end ind = find(strncmpi(params.extend,valid,length(params.extend))); if (length(ind)==1) params.extend = valid{ind}; else error(['Invalid extend option: ',params.extend]) end % tilesize == inf by default if isempty(params.tilesize) params.tilesize = inf; elseif (length(params.tilesize)>1) || (params.tilesize<3) error 'Tilesize must be scalar and > 0.' end % overlap == 0.20 by default if isempty(params.overlap) params.overlap = 0.20; elseif (length(params.overlap)>1) || (params.overlap<0) || (params.overlap>0.5) error 'Overlap must be scalar and 0 < overlap < 1.' end % ============================================ % subfunction - tiled_gridfit % ============================================ function zgrid=tiled_gridfit(x,y,z,xnodes,ynodes,params) % tiled_gridfit: a tiled version of gridfit, continuous across tile boundaries % usage: [zgrid,xgrid,ygrid]=tiled_gridfit(x,y,z,xnodes,ynodes,params) % % Tiled_gridfit is used when the total grid is far too large % to model using a single call to gridfit. While gridfit may take % only a second or so to build a 100x100 grid, a 2000x2000 grid % will probably not run at all due to memory problems. % % Tiles in the grid with insufficient data (<4 points) will be % filled with NaNs. Avoid use of too small tiles, especially % if your data has holes in it that may encompass an entire tile. % % A mask may also be applied, in which case tiled_gridfit will % subdivide the mask into tiles. Note that any boolean mask % provided is assumed to be the size of the complete grid. % % Tiled_gridfit may not be fast on huge grids, but it should run % as long as you use a reasonable tilesize. 8-) % Note that we have already verified all parameters in check_params % Matrix elements in a square tile tilesize = params.tilesize; % Size of overlap in terms of matrix elements. Overlaps % of purely zero cause problems, so force at least two % elements to overlap. overlap = max(2,floor(tilesize*params.overlap)); % reset the tilesize for each particular tile to be inf, so % we will never see a recursive call to tiled_gridfit Tparams = params; Tparams.tilesize = inf; nx = length(xnodes); ny = length(ynodes); zgrid = zeros(ny,nx); % linear ramp for the bilinear interpolation rampfun = inline('(t-t(1))/(t(end)-t(1))','t'); % loop over each tile in the grid h = waitbar(0,'Relax and have a cup of JAVA. Its my treat.'); warncount = 0; xtind = 1:min(nx,tilesize); while ~isempty(xtind) && (xtind(1)<=nx) xinterp = ones(1,length(xtind)); if (xtind(1) ~= 1) xinterp(1:overlap) = rampfun(xnodes(xtind(1:overlap))); end if (xtind(end) ~= nx) xinterp((end-overlap+1):end) = 1-rampfun(xnodes(xtind((end-overlap+1):end))); end ytind = 1:min(ny,tilesize); while ~isempty(ytind) && (ytind(1)<=ny) % update the waitbar waitbar((xtind(end)-tilesize)/nx + tilesize*ytind(end)/ny/nx) yinterp = ones(length(ytind),1); if (ytind(1) ~= 1) yinterp(1:overlap) = rampfun(ynodes(ytind(1:overlap))); end if (ytind(end) ~= ny) yinterp((end-overlap+1):end) = 1-rampfun(ynodes(ytind((end-overlap+1):end))); end % was a mask supplied? if ~isempty(params.mask) submask = params.mask(ytind,xtind); Tparams.mask = submask; end % extract data that lies in this grid tile k = (x>=xnodes(xtind(1))) & (x<=xnodes(xtind(end))) & ... (y>=ynodes(ytind(1))) & (y<=ynodes(ytind(end))); k = find(k); if length(k)<4 if warncount == 0 warning('GRIDFIT:tiling','A tile was too underpopulated to model. Filled with NaNs.') end warncount = warncount + 1; % fill this part of the grid with NaNs zgrid(ytind,xtind) = NaN; else % build this tile zgtile = gridfit(x(k),y(k),z(k),xnodes(xtind),ynodes(ytind),Tparams); % bilinear interpolation (using an outer product) interp_coef = yinterp*xinterp; % accumulate the tile into the complete grid zgrid(ytind,xtind) = zgrid(ytind,xtind) + zgtile.*interp_coef; end % step to the next tile in y if ytind(end)<ny ytind = ytind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (ytind(end)+max(3,overlap))>=ny % extend this tile to the edge ytind = ytind(1):ny; end else ytind = ny+1; end end % while loop over y % step to the next tile in x if xtind(end)<nx xtind = xtind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (xtind(end)+max(3,overlap))>=nx % extend this tile to the edge xtind = xtind(1):nx; end else xtind = nx+1; end end % while loop over x % close down the waitbar close(h) if warncount>0 warning('GRIDFIT:tiling',[num2str(warncount),' tiles were underpopulated & filled with NaNs']) end
github
Hadisalman/stoec-master
RegularizeData3D.m
.m
stoec-master/code/Include/RegularizeData3D.m
39,576
utf_8
70e5294ed3d4f8726fe2518bd8b0d6cb
function [zgrid,xgrid,ygrid] = RegularizeData3D(x,y,z,xnodes,ynodes,varargin) % RegularizeData3D: Produces a smooth 3D surface from scattered input data. % % RegularizeData3D is a modified version of GridFit from the Matlab File Exchange. % RegularizeData3D does essentially the same thing, but is an attempt to overcome several % shortcomings inherent in the design of the legacy code in GridFit. % % * GridFit lacks cubic interpolation capabilities. % Interpolation is necessary to map the scattered input data to locations on the output % surface. The output surface is most likely nonlinear, so linear interpolation used in % GridFit is a lousy approximation. Cubic interpolation accounts for surface curvature, % which is especially beneficial when the output grid is coarse in x and y. % % * GridFit's "smoothness" parameter was poorly defined and its methodology may have led to bad output data. % In RegularizeData3D the smoothness parameter is actually the ratio of smoothness (flatness) to % fidelity (goodness of fit) and is not affected by the resolution of the output grid. % Smoothness = 100 gives 100 times as much weight to smoothness (and produces a nearly flat output % surface) % Smoothness = 1 gives equal weight to smoothness and fidelity (and results in noticeable smoothing) % Smoothness = 0.01 gives 100 times as much weight to fitting the surface to the scattered input data (and % results in very little smoothing) % Smoothness = 0.001 is good for data with low noise. The input points nearly coincide with the output % surface. % % * GridFit didn't do a good job explaining what math it was doing; it just gave usage examples. % % For a detailed explanation of "the math behind the magic" on a 3D dataset, see: % http://mathformeremortals.wordpress.com/2013/07/22/introduction-to-regularizing-3d-data-part-1-of-2/ % % and to apply the same principles to a 2D dataset see: % http://mathformeremortals.wordpress.com/2013/01/29/introduction-to-regularizing-with-2d-data-part-1-of-3/ % % Both of these links include Excel spreadsheets that break down the calculations step by step % so that you can see how RegularizeData3D works. There are also very limited (and very slow!) Excel % spreadsheet functions that do the same thing in 2D or 3D. % % % Aside from the above changes, most of the GridFit code is left intact. % The original GridFit page is: % http://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit % usage #1: zgrid = RegularizeData3D(x, y, z, xnodes, ynodes); % usage #2: [zgrid, xgrid, ygrid] = RegularizeData3D(x, y, z, xnodes, ynodes); % usage #3: zgrid = RegularizeData3D(x, y, z, xnodes, ynodes, prop, val, prop, val,...); % % Arguments: (input) % x,y,z - vectors of equal lengths, containing arbitrary scattered data % The only constraint on x and y is they cannot ALL fall on a % single line in the x-y plane. Replicate points will be treated % in a least squares sense. % % ANY points containing a NaN are ignored in the estimation % % xnodes - vector defining the nodes in the grid in the independent % variable (x). xnodes need not be equally spaced. xnodes % must completely span the data. If they do not, then the % 'extend' property is applied, adjusting the first and last % nodes to be extended as necessary. See below for a complete % description of the 'extend' property. % % If xnodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % ynodes - vector defining the nodes in the grid in the independent % variable (y). ynodes need not be equally spaced. % % If ynodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % Also see the extend property. % % Additional arguments follow in the form of property/value pairs. % Valid properties are: % 'smoothness', 'interp', 'solver', 'maxiter' % 'extend', 'tilesize', 'overlap' % % Any UNAMBIGUOUS shortening (even down to a single letter) is % valid for property names. All properties have default values, % chosen (I hope) to give a reasonable result out of the box. % % 'smoothness' - scalar or vector of length 2 - the ratio of % smoothness to fidelity of the output surface. This must be a % positive real number. % % A smoothness of 1 gives equal weight to fidelity (goodness of fit) % and smoothness of the output surface. This results in noticeable % smoothing. If your input data x,y,z have little or no noise, use % 0.01 to give smoothness 1% as much weight as goodness of fit. % 0.1 applies a little bit of smoothing to the output surface. % % If this parameter is a vector of length 2, then it defines % the relative smoothing to be associated with the x and y % variables. This allows the user to apply a different amount % of smoothing in the x dimension compared to the y dimension. % % DEFAULT: 0.01 % % % 'interp' - character, denotes the interpolation scheme used % to interpolate the data. % % DEFAULT: 'triangle' % % 'bicubic' - use bicubic interpolation within the grid % This is the most accurate because it accounts % for the fact that the output surface is not flat. % In some cases it may be slower than the other methods. % % 'bilinear' - use bilinear interpolation within the grid % % 'triangle' - split each cell in the grid into a triangle, % then apply linear interpolation inside each triangle % % 'nearest' - nearest neighbor interpolation. This will % rarely be a good choice, but I included it % as an option for completeness. % % % 'solver' - character flag - denotes the solver used for the % resulting linear system. Different solvers will have % different solution times depending upon the specific % problem to be solved. Up to a certain size grid, the % direct \ solver will often be speedy, until memory % swaps causes problems. % % What solver should you use? Problems with a significant % amount of extrapolation should avoid lsqr. \ may be % best numerically for small smoothnesss parameters and % high extents of extrapolation. % % Large numbers of points will slow down the direct % \, but when applied to the normal equations, \ can be % quite fast. Since the equations generated by these % methods will tend to be well conditioned, the normal % equations are not a bad choice of method to use. Beware % when a small smoothing parameter is used, since this will % make the equations less well conditioned. % % DEFAULT: 'normal' % % '\' - uses matlab's backslash operator to solve the sparse % system. 'backslash' is an alternate name. % % 'symmlq' - uses matlab's iterative symmlq solver % % 'lsqr' - uses matlab's iterative lsqr solver % % 'normal' - uses \ to solve the normal equations. % % % 'maxiter' - only applies to iterative solvers - defines the % maximum number of iterations for an iterative solver % % DEFAULT: min(10000,length(xnodes)*length(ynodes)) % % % 'extend' - character flag - controls whether the first and last % nodes in each dimension are allowed to be adjusted to % bound the data, and whether the user will be warned if % this was deemed necessary to happen. % % DEFAULT: 'warning' % % 'warning' - Adjust the first and/or last node in % x or y if the nodes do not FULLY contain % the data. Issue a warning message to this % effect, telling the amount of adjustment % applied. % % 'never' - Issue an error message when the nodes do % not absolutely contain the data. % % 'always' - automatically adjust the first and last % nodes in each dimension if necessary. % No warning is given when this option is set. % % % 'tilesize' - grids which are simply too large to solve for % in one single estimation step can be built as a set % of tiles. For example, a 1000x1000 grid will require % the estimation of 1e6 unknowns. This is likely to % require more memory (and time) than you have available. % But if your data is dense enough, then you can model % it locally using smaller tiles of the grid. % % My recommendation for a reasonable tilesize is % roughly 100 to 200. Tiles of this size take only % a few seconds to solve normally, so the entire grid % can be modeled in a finite amount of time. The minimum % tilesize can never be less than 3, although even this % size tile is so small as to be ridiculous. % % If your data is so sparse than some tiles contain % insufficient data to model, then those tiles will % be left as NaNs. % % DEFAULT: inf % % % 'overlap' - Tiles in a grid have some overlap, so they % can minimize any problems along the edge of a tile. % In this overlapped region, the grid is built using a % bi-linear combination of the overlapping tiles. % % The overlap is specified as a fraction of the tile % size, so an overlap of 0.20 means there will be a 20% % overlap of successive tiles. I do allow a zero overlap, % but it must be no more than 1/2. % % 0 <= overlap <= 0.5 % % Overlap is ignored if the tilesize is greater than the % number of nodes in both directions. % % DEFAULT: 0.20 % % % Arguments: (output) % zgrid - (nx,ny) array containing the fitted surface % % xgrid, ygrid - as returned by meshgrid(xnodes,ynodes) % % % Speed considerations: % Remember that gridfit must solve a LARGE system of linear % equations. There will be as many unknowns as the total % number of nodes in the final lattice. While these equations % may be sparse, solving a system of 10000 equations may take % a second or so. Very large problems may benefit from the % iterative solvers or from tiling. % % % Example usage: % % x = rand(100,1); % y = rand(100,1); % z = exp(x+2*y); % xnodes = 0:.1:1; % ynodes = 0:.1:1; % % g = RegularizeData3D(x,y,z,xnodes,ynodes); % % Note: this is equivalent to the following call: % % g = RegularizeData3D(x,y,z,xnodes,ynodes, ... % 'smooth',1, ... % 'interp','triangle', ... % 'solver','normal', ... % 'gradient', ... % 'extend','warning', ... % 'tilesize',inf); % % % Rereleased with improvements as RegularizeData3D % 2014 % - Added bicubic interpolation % - Fixed a bug that caused smoothness to depend on grid fidelity % - Removed the "regularizer" setting and documented the calculation process % Original Version: % Author: John D'Errico % e-mail address: [email protected] % Release: 2.0 % Release date: 5/23/06 % set defaults % The default smoothness is 0.01. i.e. assume the input data x,y,z % have little or no noise. This is different from the legacy code, % which used a default of 1. params.smoothness = 0.01; params.interp = 'triangle'; params.solver = 'backslash'; params.maxiter = []; params.extend = 'warning'; params.tilesize = inf; params.overlap = 0.20; params.mask = []; % was the params struct supplied? if ~isempty(varargin) if isstruct(varargin{1}) % params is only supplied if its a call from tiled_gridfit params = varargin{1}; if length(varargin)>1 % check for any overrides params = parse_pv_pairs(params,varargin{2:end}); end else % check for any overrides of the defaults params = parse_pv_pairs(params,varargin); end end % check the parameters for acceptability params = check_params(params); % ensure all of x,y,z,xnodes,ynodes are column vectors, % also drop any NaN data x=x(:); y=y(:); z=z(:); k = isnan(x) | isnan(y) | isnan(z); if any(k) x(k)=[]; y(k)=[]; z(k)=[]; end xmin = min(x); xmax = max(x); ymin = min(y); ymax = max(y); % did they supply a scalar for the nodes? if length(xnodes)==1 xnodes = linspace(xmin,xmax,xnodes)'; xnodes(end) = xmax; % make sure it hits the max end if length(ynodes)==1 ynodes = linspace(ymin,ymax,ynodes)'; ynodes(end) = ymax; % make sure it hits the max end xnodes=xnodes(:); ynodes=ynodes(:); dx = diff(xnodes); dy = diff(ynodes); nx = length(xnodes); ny = length(ynodes); ngrid = nx*ny; % check to see if any tiling is necessary if (params.tilesize < max(nx,ny)) % split it into smaller tiles. compute zgrid and ygrid % at the very end if requested zgrid = tiled_gridfit(x,y,z,xnodes,ynodes,params); else % its a single tile. % mask must be either an empty array, or a boolean % aray of the same size as the final grid. nmask = size(params.mask); if ~isempty(params.mask) && ((nmask(2)~=nx) || (nmask(1)~=ny)) if ((nmask(2)==ny) || (nmask(1)==nx)) error 'Mask array is probably transposed from proper orientation.' else error 'Mask array must be the same size as the final grid.' end end if ~isempty(params.mask) params.maskflag = 1; else params.maskflag = 0; end % default for maxiter? if isempty(params.maxiter) params.maxiter = min(10000,nx*ny); end % check lengths of the data n = length(x); if (length(y)~=n) || (length(z)~=n) error 'Data vectors are incompatible in size.' end if n<3 error 'Insufficient data for surface estimation.' end % verify the nodes are distinct if any(diff(xnodes)<=0) || any(diff(ynodes)<=0) error 'xnodes and ynodes must be monotone increasing' end % Are there enough output points to form a surface? % Bicubic interpolation requires a 4x4 output grid. Other types require a 3x3 output grid. if strcmp(params.interp, 'bicubic') MinAxisLength = 4; else MinAxisLength = 3; end if length(xnodes) < MinAxisLength error(['The output grid''s x axis must have at least ', num2str(MinAxisLength), ' nodes.']); end if length(ynodes) < MinAxisLength error(['The output grid''s y axis must have at least ', num2str(MinAxisLength), ' nodes.']); end clear MinAxisLength; % do we need to tweak the first or last node in x or y? if xmin<xnodes(1) switch params.extend case 'always' xnodes(1) = xmin; case 'warning' warning('GRIDFIT:extend',['xnodes(1) was decreased by: ',num2str(xnodes(1)-xmin),', new node = ',num2str(xmin)]) xnodes(1) = xmin; case 'never' error(['Some x (',num2str(xmin),') falls below xnodes(1) by: ',num2str(xnodes(1)-xmin)]) end end if xmax>xnodes(end) switch params.extend case 'always' xnodes(end) = xmax; case 'warning' warning('GRIDFIT:extend',['xnodes(end) was increased by: ',num2str(xmax-xnodes(end)),', new node = ',num2str(xmax)]) xnodes(end) = xmax; case 'never' error(['Some x (',num2str(xmax),') falls above xnodes(end) by: ',num2str(xmax-xnodes(end))]) end end if ymin<ynodes(1) switch params.extend case 'always' ynodes(1) = ymin; case 'warning' warning('GRIDFIT:extend',['ynodes(1) was decreased by: ',num2str(ynodes(1)-ymin),', new node = ',num2str(ymin)]) ynodes(1) = ymin; case 'never' error(['Some y (',num2str(ymin),') falls below ynodes(1) by: ',num2str(ynodes(1)-ymin)]) end end if ymax>ynodes(end) switch params.extend case 'always' ynodes(end) = ymax; case 'warning' warning('GRIDFIT:extend',['ynodes(end) was increased by: ',num2str(ymax-ynodes(end)),', new node = ',num2str(ymax)]) ynodes(end) = ymax; case 'never' error(['Some y (',num2str(ymax),') falls above ynodes(end) by: ',num2str(ymax-ynodes(end))]) end end % determine which cell in the array each point lies in [~, indx] = histc(x,xnodes); [~, indy] = histc(y,ynodes); % any point falling at the last node is taken to be % inside the last cell in x or y. k=(indx==nx); indx(k)=indx(k)-1; k=(indy==ny); indy(k)=indy(k)-1; ind = indy + ny*(indx-1); % Do we have a mask to apply? if params.maskflag % if we do, then we need to ensure that every % cell with at least one data point also has at % least all of its corners unmasked. params.mask(ind) = 1; params.mask(ind+1) = 1; params.mask(ind+ny) = 1; params.mask(ind+ny+1) = 1; end % interpolation equations for each point tx = min(1,max(0,(x - xnodes(indx))./dx(indx))); ty = min(1,max(0,(y - ynodes(indy))./dy(indy))); % Future enhancement: add cubic interpolant switch params.interp case 'triangle' % linear interpolation inside each triangle k = (tx > ty); L = ones(n,1); L(k) = ny; t1 = min(tx,ty); t2 = max(tx,ty); A = sparse(repmat((1:n)', 1, 3), [ind, ind + ny + 1, ind + L], [1 - t2, t1, t2 - t1], n, ngrid); case 'nearest' % nearest neighbor interpolation in a cell k = round(1-ty) + round(1-tx)*ny; A = sparse((1:n)',ind+k,ones(n,1),n,ngrid); case 'bilinear' % bilinear interpolation in a cell A = sparse(repmat((1:n)',1,4),[ind,ind+1,ind+ny,ind+ny+1], ... [(1-tx).*(1-ty), (1-tx).*ty, tx.*(1-ty), tx.*ty], ... n,ngrid); case 'bicubic' % Legacy code calculated the starting index ind for bilinear interpolation, but for bicubic interpolation we need to be further away by one % row and one column (but not off the grid). Bicubic interpolation involves a 4x4 grid of coefficients, and we want x,y to be right % in the middle of that 4x4 grid if possible. Use min and max to ensure we won't exceed matrix dimensions. % The sparse matrix format has each column of the sparse matrix A assigned to a unique output grid point. We need to determine which column % numbers are assigned to those 16 grid points. % What are the first indexes (in x and y) for the points? XIndexes = min(max(1, indx - 1), nx - 3); YIndexes = min(max(1, indy - 1), ny - 3); % These are the first indexes of that 4x4 grid of nodes where we are doing the interpolation. AllColumns = (YIndexes + (XIndexes - 1) * ny)'; % Add in the next three points. This gives us output nodes in the first row (i.e. along the x direction). AllColumns = [AllColumns; AllColumns + ny; AllColumns + 2 * ny; AllColumns + 3 * ny]; % Add in the next three rows. This gives us 16 total output points for each input point. AllColumns = [AllColumns; AllColumns + 1; AllColumns + 2; AllColumns + 3]; % Coefficients are calculated based on: % http://en.wikipedia.org/wiki/Lagrange_interpolation % Calculate coefficients for this point based on its coordinates as if we were doing cubic interpolation in x. % Calculate the first coefficients for x and y. XCoefficients = (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 2)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 2)) .* (xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 3))); YCoefficients = (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 2)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 2)) .* (ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 3))); % Calculate the second coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 2)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:) + 2)) .* (xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:) + 3)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 2)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:) + 2)) .* (ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:) + 3)))]; % Calculate the third coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:) + 3)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:) + 3)))]; % Calculate the fourth coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 2)) ./ ((xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:) + 2)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 2)) ./ ((ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:) + 2)))]; % Allocate space for all of the data we're about to insert. AllCoefficients = zeros(16, n); % There may be a clever way to vectorize this, but then the code would be unreadable and difficult to debug or upgrade. % The matrix solution process will take far longer than this, so it's not worth the effort to vectorize this. for i = 1 : n % Multiply the coefficients to accommodate bicubic interpolation. The resulting matrix is a 4x4 of the interpolation coefficients. TheseCoefficients = repmat(XCoefficients(i, :)', 1, 4) .* repmat(YCoefficients(i, :), 4, 1); % Add these coefficients to the list. AllCoefficients(1 : 16, i) = TheseCoefficients(:); end % Each input point has 16 interpolation coefficients (because of the 4x4 grid). AllRows = repmat(1 : n, 16, 1); % Now that we have all of the indexes and coefficients, we can create the sparse matrix of equality conditions. A = sparse(AllRows(:), AllColumns(:), AllCoefficients(:), n, ngrid); end rhs = z; % Do we have relative smoothing parameters? if numel(params.smoothness) == 1 % Nothing special; this is just a scalar quantity that needs to be the same for x and y directions. xyRelativeStiffness = [1; 1] * params.smoothness; else % What the user asked for xyRelativeStiffness = params.smoothness(:); end % Build a regularizer using the second derivative. This used to be called "gradient" even though it uses a second % derivative, not a first derivative. This is an important distinction because "gradient" implies a horizontal % surface, which is not correct. The second derivative favors flatness, especially if you use a large smoothness % constant. Flat and horizontal are two different things, and in this script we are taking an irregular surface and % flattening it according to the smoothness constant. % The second-derivative calculation is documented here: % http://mathformeremortals.wordpress.com/2013/01/12/a-numerical-second-derivative-from-three-points/ % Minimizes the sum of the squares of the second derivatives (wrt x and y) across the grid [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1); dy2 = dy(j(:)); Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:) - 1); dx2 = dx(i(:)); Areg = [Areg;sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid)]; nreg = size(Areg, 1); FidelityEquationCount = size(A, 1); % Number of the second derivative equations in the matrix RegularizerEquationCount = nx * (ny - 2) + ny * (nx - 2); % We are minimizing the sum of squared errors, so adjust the magnitude of the squared errors to make second-derivative % squared errors match the fidelity squared errors. Then multiply by smoothparam. NewSmoothnessScale = sqrt(FidelityEquationCount / RegularizerEquationCount); % Second derivatives scale with z exactly because d^2(K*z) / dx^2 = K * d^2(z) / dx^2. % That means we've taken care of the z axis. % The square root of the point/derivative ratio takes care of the grid density. % We also need to take care of the size of the dataset in x and y. % The scaling up to this point applies to local variation. Local means within a domain of [0, 1] or [10, 11], etc. % The smoothing behavior needs to work for datasets that are significantly larger or smaller than that. % For example, if x and y span [0 10,000], smoothing local to [0, 1] is insufficient to influence the behavior of % the whole surface. For the same reason there would be a problem applying smoothing for [0, 1] to a small surface % spanning [0, 0.01]. Multiplying the smoothing constant by SurfaceDomainScale compensates for this, producing the % expected behavior that a smoothing constant of 1 produces noticeable smoothing (when looking at the entire surface % profile) and that 1% does not produce noticeable smoothing. SurfaceDomainScale = (max(max(xnodes)) - min(min(xnodes))) * (max(max(ynodes)) - min(min(ynodes))); NewSmoothnessScale = NewSmoothnessScale * SurfaceDomainScale; A = [A; Areg * NewSmoothnessScale]; rhs = [rhs;zeros(nreg,1)]; % do we have a mask to apply? if params.maskflag unmasked = find(params.mask); end % solve the full system, with regularizer attached switch params.solver case {'\' 'backslash'} if params.maskflag % there is a mask to use zgrid=nan(ny,nx); zgrid(unmasked) = A(:,unmasked)\rhs; else % no mask zgrid = reshape(A\rhs,ny,nx); end case 'normal' % The normal equations, solved with \. Can be faster % for huge numbers of data points, but reasonably % sized grids. The regularizer makes A well conditioned % so the normal equations are not a terribly bad thing % here. if params.maskflag % there is a mask to use Aunmasked = A(:,unmasked); zgrid=nan(ny,nx); zgrid(unmasked) = (Aunmasked'*Aunmasked)\(Aunmasked'*rhs); else zgrid = reshape((A'*A)\(A'*rhs),ny,nx); end case 'symmlq' % iterative solver - symmlq - requires a symmetric matrix, % so use it to solve the normal equations. No preconditioner. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = symmlq(A(:,unmasked)'*A(:,unmasked), ... A(:,unmasked)'*rhs,tol,params.maxiter); else [zgrid,flag] = symmlq(A'*A,A'*rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % SYMMLQ iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Symmlq performed ',num2str(params.maxiter), ... ' iterations but did not converge.']) case 3 % SYMMLQ stagnated, successive iterates were the same warning('GRIDFIT:solver','Symmlq stagnated without apparent convergence.') otherwise warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' symmlq was too small or too large to continue computing.']) end case 'lsqr' % iterative solver - lsqr. No preconditioner here. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = lsqr(A(:,unmasked),rhs,tol,params.maxiter); else [zgrid,flag] = lsqr(A,rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % lsqr iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Lsqr performed ', ... num2str(params.maxiter),' iterations but did not converge.']) case 3 % lsqr stagnated, successive iterates were the same warning('GRIDFIT:solver','Lsqr stagnated without apparent convergence.') case 4 warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' LSQR was too small or too large to continue computing.']) end end % switch params.solver end % if params.tilesize... % only generate xgrid and ygrid if requested. if nargout>1 [xgrid,ygrid]=meshgrid(xnodes,ynodes); end % ============================================ % End of main function - gridfit % ============================================ % ============================================ % subfunction - parse_pv_pairs % ============================================ function params=parse_pv_pairs(params,pv_pairs) % parse_pv_pairs: parses sets of property value pairs, allows defaults % usage: params=parse_pv_pairs(default_params,pv_pairs) % % arguments: (input) % default_params - structure, with one field for every potential % property/value pair. Each field will contain the default % value for that property. If no default is supplied for a % given property, then that field must be empty. % % pv_array - cell array of property/value pairs. % Case is ignored when comparing properties to the list % of field names. Also, any unambiguous shortening of a % field/property name is allowed. % % arguments: (output) % params - parameter struct that reflects any updated property/value % pairs in the pv_array. % % Example usage: % First, set default values for the parameters. Assume we % have four parameters that we wish to use optionally in % the function examplefun. % % - 'viscosity', which will have a default value of 1 % - 'volume', which will default to 1 % - 'pie' - which will have default value 3.141592653589793 % - 'description' - a text field, left empty by default % % The first argument to examplefun is one which will always be % supplied. % % function examplefun(dummyarg1,varargin) % params.Viscosity = 1; % params.Volume = 1; % params.Pie = 3.141592653589793 % % params.Description = ''; % params=parse_pv_pairs(params,varargin); % params % % Use examplefun, overriding the defaults for 'pie', 'viscosity' % and 'description'. The 'volume' parameter is left at its default. % % examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world') % % params = % Viscosity: 10 % Volume: 1 % Pie: 3 % Description: 'Hello world' % % Note that capitalization was ignored, and the property 'viscosity' % was truncated as supplied. Also note that the order the pairs were % supplied was arbitrary. npv = length(pv_pairs); n = npv/2; if n~=floor(n) error 'Property/value pairs must come in PAIRS.' end if n<=0 % just return the defaults return end if ~isstruct(params) error 'No structure for defaults was supplied' end % there was at least one pv pair. process any supplied propnames = fieldnames(params); lpropnames = lower(propnames); for i=1:n p_i = lower(pv_pairs{2*i-1}); v_i = pv_pairs{2*i}; ind = strmatch(p_i,lpropnames,'exact'); if isempty(ind) ind = find(strncmp(p_i,lpropnames,length(p_i))); if isempty(ind) error(['No matching property found for: ',pv_pairs{2*i-1}]) elseif length(ind)>1 error(['Ambiguous property name: ',pv_pairs{2*i-1}]) end end p_i = propnames{ind}; % override the corresponding default in params params = setfield(params,p_i,v_i); %#ok end % ============================================ % subfunction - check_params % ============================================ function params = check_params(params) % check the parameters for acceptability % smoothness == 1 by default if isempty(params.smoothness) params.smoothness = 1; else if (numel(params.smoothness)>2) || any(params.smoothness<=0) error 'Smoothness must be scalar (or length 2 vector), real, finite, and positive.' end end % interp must be one of: % 'bicubic', 'bilinear', 'nearest', or 'triangle' % but accept any shortening thereof. valid = {'bicubic', 'bilinear', 'nearest', 'triangle'}; if isempty(params.interp) params.interp = 'bilinear'; end ind = find(strncmpi(params.interp,valid,length(params.interp))); if (length(ind)==1) params.interp = valid{ind}; else error(['Invalid interpolation method: ',params.interp]) end % solver must be one of: % 'backslash', '\', 'symmlq', 'lsqr', or 'normal' % but accept any shortening thereof. valid = {'backslash', '\', 'symmlq', 'lsqr', 'normal'}; if isempty(params.solver) params.solver = '\'; end ind = find(strncmpi(params.solver,valid,length(params.solver))); if (length(ind)==1) params.solver = valid{ind}; else error(['Invalid solver option: ',params.solver]) end % extend must be one of: % 'never', 'warning', 'always' % but accept any shortening thereof. valid = {'never', 'warning', 'always'}; if isempty(params.extend) params.extend = 'warning'; end ind = find(strncmpi(params.extend,valid,length(params.extend))); if (length(ind)==1) params.extend = valid{ind}; else error(['Invalid extend option: ',params.extend]) end % tilesize == inf by default if isempty(params.tilesize) params.tilesize = inf; elseif (length(params.tilesize)>1) || (params.tilesize<3) error 'Tilesize must be scalar and > 0.' end % overlap == 0.20 by default if isempty(params.overlap) params.overlap = 0.20; elseif (length(params.overlap)>1) || (params.overlap<0) || (params.overlap>0.5) error 'Overlap must be scalar and 0 < overlap < 1.' end % ============================================ % subfunction - tiled_gridfit % ============================================ function zgrid=tiled_gridfit(x,y,z,xnodes,ynodes,params) % tiled_gridfit: a tiled version of gridfit, continuous across tile boundaries % usage: [zgrid,xgrid,ygrid]=tiled_gridfit(x,y,z,xnodes,ynodes,params) % % Tiled_gridfit is used when the total grid is far too large % to model using a single call to gridfit. While gridfit may take % only a second or so to build a 100x100 grid, a 2000x2000 grid % will probably not run at all due to memory problems. % % Tiles in the grid with insufficient data (<4 points) will be % filled with NaNs. Avoid use of too small tiles, especially % if your data has holes in it that may encompass an entire tile. % % A mask may also be applied, in which case tiled_gridfit will % subdivide the mask into tiles. Note that any boolean mask % provided is assumed to be the size of the complete grid. % % Tiled_gridfit may not be fast on huge grids, but it should run % as long as you use a reasonable tilesize. 8-) % Note that we have already verified all parameters in check_params % Matrix elements in a square tile tilesize = params.tilesize; % Size of overlap in terms of matrix elements. Overlaps % of purely zero cause problems, so force at least two % elements to overlap. overlap = max(2,floor(tilesize*params.overlap)); % reset the tilesize for each particular tile to be inf, so % we will never see a recursive call to tiled_gridfit Tparams = params; Tparams.tilesize = inf; nx = length(xnodes); ny = length(ynodes); zgrid = zeros(ny,nx); % linear ramp for the bilinear interpolation rampfun = inline('(t-t(1))/(t(end)-t(1))','t'); % loop over each tile in the grid h = waitbar(0,'Relax and have a cup of JAVA. Its my treat.'); warncount = 0; xtind = 1:min(nx,tilesize); while ~isempty(xtind) && (xtind(1)<=nx) xinterp = ones(1,length(xtind)); if (xtind(1) ~= 1) xinterp(1:overlap) = rampfun(xnodes(xtind(1:overlap))); end if (xtind(end) ~= nx) xinterp((end-overlap+1):end) = 1-rampfun(xnodes(xtind((end-overlap+1):end))); end ytind = 1:min(ny,tilesize); while ~isempty(ytind) && (ytind(1)<=ny) % update the waitbar waitbar((xtind(end)-tilesize)/nx + tilesize*ytind(end)/ny/nx) yinterp = ones(length(ytind),1); if (ytind(1) ~= 1) yinterp(1:overlap) = rampfun(ynodes(ytind(1:overlap))); end if (ytind(end) ~= ny) yinterp((end-overlap+1):end) = 1-rampfun(ynodes(ytind((end-overlap+1):end))); end % was a mask supplied? if ~isempty(params.mask) submask = params.mask(ytind,xtind); Tparams.mask = submask; end % extract data that lies in this grid tile k = (x>=xnodes(xtind(1))) & (x<=xnodes(xtind(end))) & ... (y>=ynodes(ytind(1))) & (y<=ynodes(ytind(end))); k = find(k); if length(k)<4 if warncount == 0 warning('GRIDFIT:tiling','A tile was too underpopulated to model. Filled with NaNs.') end warncount = warncount + 1; % fill this part of the grid with NaNs zgrid(ytind,xtind) = NaN; else % build this tile zgtile = RegularizeData3D(x(k),y(k),z(k),xnodes(xtind),ynodes(ytind),Tparams); % bilinear interpolation (using an outer product) interp_coef = yinterp*xinterp; % accumulate the tile into the complete grid zgrid(ytind,xtind) = zgrid(ytind,xtind) + zgtile.*interp_coef; end % step to the next tile in y if ytind(end)<ny ytind = ytind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (ytind(end)+max(3,overlap))>=ny % extend this tile to the edge ytind = ytind(1):ny; end else ytind = ny+1; end end % while loop over y % step to the next tile in x if xtind(end)<nx xtind = xtind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (xtind(end)+max(3,overlap))>=nx % extend this tile to the edge xtind = xtind(1):nx; end else xtind = nx+1; end end % while loop over x % close down the waitbar close(h) if warncount>0 warning('GRIDFIT:tiling',[num2str(warncount),' tiles were underpopulated & filled with NaNs']) end
github
Hadisalman/stoec-master
cem_Elif.m
.m
stoec-master/code/Include/gpas-master/cem_Elif.m
8,782
utf_8
06bef7b59249a3e3354d8770c6d0e6c5
function [x, c, mu, C] = cem(fun, x0, opts, varargin) % The cross-entropy method % @param fun function to be minimized % @param x0 initial guess % options: % @param opts.N: number of samples % @param opts.rho: quantile (e.g. 0.1) % @param opts.C: initial covariance % @param opts.iter: total iterations % @param opts.v: update coefficients % @param varagin any other arguments that will be passed to fun % % @return x best sample % @return c best cost % @return mu distribution mean % @return C distribution covariance % % Author: Marin Kobilarov, [email protected] d = length(x0); if ~isfield(opts, 'N') opts.N = d*20; end if ~isfield(opts, 'rho') opts.rho = 0.1; end if ~isfield(opts, 'C') opts.C = eye(d); end if ~isfield(opts, 'iter') fun = 20; end if ~isfield(opts, 'v') opts.v = 1; end if ~isfield(opts, 'sigma') opts.sigma = 0; end if opts.sigma opts.N = 2*d+1; end if ~isfield(opts, 'tilt') opts.tilt = 0; end if ~isfield(opts, 'lb') opts.lb = []; end if ~isfield(opts, 'ub') opts.ub = []; end if opts.tilt end N = opts.N; nf = round(opts.rho*N); C = opts.C; v = opts.v; cs = zeros(N, 1); xs = zeros(d, N); x = x0; c = inf; mu = x0; a = 0.001; k = 0; b = 2; l = a*a*(d+k)-d; Ws = [l/(d+l), repmat(1/(2*(d+l)), 1, 2*d)]; Wc = [l/(d+l) + (1-a*a+b), repmat(1/(2*(d+l)), 1, 2*d)]; for j=1:opts.iter if opts.sigma % this is an experimental version of the CE method using sigma-points A = sqrt(d+l)*chol(C)'; xs = [mu, repmat(mu, 1, d) + A, repmat(mu, 1, d) - A]; xm = zeros(d,1); for i=1:size(xs,2), fi = fun(xs(:,i), varargin{:}); if (length(fi) > 1) cs(i) = sum(fi.*fi); else cs(i) = fi; end cs(i) = exp(-cs(i)); xm = xm + Ws(i)*cs(i)*xs(:,i); end Pm = zeros(d,d); for i=1:size(xs,2), dx = xs(:,i) - xm; Pm = Pm + Wc(i)*cs(i)*dx*dx'; end csn = sum(cs); mu = mu/csn; C = Pm/csn; x = mu; c = cs(1); else % this is the standard CE method using random sampling if (~isempty(opts.lb)) n = length(mu); A=[-eye(n); eye(n)]; B=[-opts.lb; opts.ub]; xs = rmvnrnd(mu, C, N, A, B)'; else xs = mvnrnd(mu, C, N)'; end for i=1:N, fi = fun(xs(:,i), varargin{:}); if (length(fi) > 1) cs(i) = sum(fi.*fi)/2; else cs(i) = fi; end end if ~opts.tilt [cs,is] = sort(cs, 1, 'ascend'); xes = xs(:, is(1:nf)); mu = (1 - v).*mu + v.*mean(xes')'; C = (1 - v).*C + v.*cov(xes');% + diag(opts.rf.*rand(opts.n,1)); if (cs(1) < c) x = xes(:,1); c = cs(1); end else if (j==1) S.ps0 = mvnpdf(xs', mu', C); end [cmin, imin] = min(cs); % b = max(1/cmin, .001); % b = max(1/(max(cs)-min(cs)), .001); %good one: b = 1/mean(cs); % b = max(1/min(cs), .001); if 0 b = b*(entropy(mu, C)); S.ps = mvnpdf(xs',mu', C); S.Jh = mean(cs); S.Js = cs; bmin = 0; bmax = 1; S.xs = xs; S.v = v; S.mu = mu; S.C = C; bs = bmin:.001:bmax; gs = zeros(size(bs)); for l=1:length(bs) gs(l) = minb3(bs(l), S); end plot(bs, gs,'g'); drawnow gs [gm,bi]=min(gs); b=bs(bi) [b,FVAL,EXITFLAG,OUTPUT] = fminbnd(@(b) minb3(b, S), bmin, bmax) keyboard global ws end % kl = sum(-log(ws))/N % b = b*kl; % b = 1; ws = exp(-b*cs); ws = ws/sum(ws); mu = (1 - v).*mu + v.*(xs*ws); C = (1 - v).*C + v.*weightedcov(xs', ws); if (cmin < c) x = xs(:,imin); c = cmin; end end end end function f = minb(b, S) b N = length(S.Js); ws = exp(-b*S.Js); eta = sum(ws)/N; delta = .1; g = sqrt(log(1/delta)/(2*N)); ws = ws/sum(ws); mu = (1 - S.v).*S.mu + S.v.*(S.xs*ws); C = (1 - S.v).*S.C + S.v.*weightedcov(S.xs', ws); C vs = 1/eta*ws.*(-log(eta)*ones(N,1) - b*S.Js + log(S.ps) ... - log(mvnpdf(S.xs', mu', C))); R = max(vs)-min(vs) f = sum(vs)/N + R*g; function f = minb2(b, S) N = length(S.Js); ws = exp(-b*S.Js); eta = sum(ws)/N; delta = .1; g = sqrt(log(1/delta)/(2*N)); ws = ws/sum(ws); mu = (1 - S.v).*S.mu + S.v.*(S.xs*ws); C = (1 - S.v).*S.C + S.v.*weightedcov(S.xs', ws); mu C Ws = S.ps0./mvnpdf(S.xs', mu', C); Ws vs = exp(-2*b*S.Js).*Ws; R = max(vs); f = sum(vs)/N + R*g; function f = minb3(b, S) N = length(S.Js); Jmin = min(S.Js) Jmax = max(S.Js) ws = exp(-b*S.Js/Jmax); delta = .5; g = sqrt(log(1/delta)/(2*N)) mean(ws) - exp(-b*Jmin/Jmax)*g b*(mean(S.Js)/Jmax - g) f = log(mean(ws) - exp(-b*Jmin/Jmax)*g) + b*(mean(S.Js)/Jmax - g); f f = -f; function C = weightedcov(Y, w) % Weighted Covariance Matrix % % WEIGHTEDCOV returns a symmetric matrix C of weighted covariances % calculated from an input T-by-N matrix Y whose rows are % observations and whose columns are variables and an input T-by-1 vector % w of weights for the observations. This function may be a valid % alternative to COV if observations are not all equally relevant % and need to be weighted according to some theoretical hypothesis or % knowledge. % % C = WEIGHTEDCOV(Y, w) returns a positive semidefinite matrix C, i.e. all its % eigenvalues are non-negative. % % If w = ones(size(Y, 1), 1), no difference exists between % WEIGHTEDCOV(Y, w) and COV(Y, 1). % % REFERENCE: mathematical formulas in matrix notation are available in % F. Pozzi, T. Di Matteo, T. Aste, % "Exponential smoothing weighted correlations", % The European Physical Journal B, Volume 85, Issue 6, 2012. % DOI:10.1140/epjb/e2012-20697-x. % % % ====================================================================== % % EXAMPLE % % ====================================================================== % % % GENERATE CORRELATED STOCHASTIC PROCESSES % T = 100; % number of observations % N = 500; % number of variables % Y = randn(T, N); % shocks from standardized normal distribution % Y = cumsum(Y); % correlated stochastic processes % % % CHOOSE EXPONENTIAL WEIGHTS % alpha = 2 / T; % w0 = 1 / sum(exp(((1:T) - T) * alpha)); % w = w0 * exp(((1:T) - T) * alpha); % weights: exponential decay % % % COMPUTE WEIGHTED COVARIANCE MATRIX % c = weightedcov(Y, w); % Weighted Covariance Matrix % % % ====================================================================== % % See also CORRCOEF, COV, STD, MEAN. % Check also WEIGHTEDCORRS (FE 20846) and KENDALLTAU (FE 27361) % % % ====================================================================== % % Author: Francesco Pozzi % E-mail: [email protected] % Date: 15 June 2012 % % % ====================================================================== % % Check input ctrl = isvector(w) & isreal(w) & ~any(isnan(w)) & ~any(isinf(w)); if ctrl w = w(:) / sum(w); % w is column vector else error('Check w: it needs be a vector of real positive numbers with no infinite or nan values!') end ctrl = isreal(Y) & ~any(isnan(Y)) & ~any(isinf(Y)) & (size(size(Y), 2) == 2); if ~ctrl error('Check Y: it needs be a 2D matrix of real numbers with no infinite or nan values!') end ctrl = length(w) == size(Y, 1); if ~ctrl error('size(Y, 1) has to be equal to length(w)!') end [T, N] = size(Y); % T: number of observations; N: number of variables C = Y - repmat(w' * Y, T, 1); % Remove mean (which is, also, weighted) C = C' * (C .* repmat(w, 1, N)); % Weighted Covariance Matrix C = 0.5 * (C + C'); % Must be exactly symmetric function f = kl(q,p) f = q.*log(q./p) + (1-q).*log((1-q)./(1-p)); function f = normkl(mu0, S0, mu1, S1) Si = inv(S1); f = (trace(Si*S0) + (mu1 - mu0)'*Si*(mu1 - mu0) - log(det(S0)/det(S1)) ... - length(mu0))/2; function f = entropy(mu, S) k=length(mu); f = k/2*(1+log(2*pi)) + log(det(S))/2;
github
Hadisalman/stoec-master
gp_opt.m
.m
stoec-master/code/Include/gpas-master/gp_opt.m
1,040
utf_8
73bfd9ba07253327064d9f410c151b93
function f = gp_opt(fun, sample, N) if f < gp.fmin gp.fmin = f; gp.xmin = x; end gp = gp_add(gp, x, f); global S % S.N - number of initial samples % initial samples S.xs = feval(sample, S.N0); %S.xs = [-.2 0 .2 .21 .4]; S.fs = feval(fun, S.xs); % test points S.xss = feval(sample, S.Nmax); S.fss = feval(fun, S.xss); gp_train; % optimize hyperparams %[p,FVAL,EXITFLAG,OUTPUT] = fminsearch(@gp_minhp, [S.l, S.s]) %S.l = p(1); %S.s = p(2); if 0 xts = [-2:.01:2]; [S.ms, S.ss] = gp_predict(xts); vs = sqrt(diag(S.ss)); plot(xts, S.ms + vs, '--', xts, S.ms - vs, '--', xts, S.ms, '-'); hold on plot(S.xs, S.fs, 'o') pause(0) end fmin = inf; xmin = []; for i=1:N % [S.ms, S.ss] = gp_predict(S.xss(1)); % return [S.ms, S.ss] = gp_predict(S.xss); J = S.ms - 1.96*sqrt(diag(S.ss)); [y, i] = min(J); x = S.xss(:,i); f = feval(fun, x); if f < fmin fmin = f; xmin = x; end fmin xmin gp_add(x, f); end function f = gp_minhp(p) global S S.l = p(1); S.s = p(2); gp_train; f = -S.lp;
github
Hadisalman/stoec-master
gp_test2.m
.m
stoec-master/code/Include/gpas-master/gp_test2.m
4,172
utf_8
5b42ddc0709d4b8772ea78ee0a05c916
function f = gp_test2 % An example of path planning b/n two given states around an % obstacle and learning the optimal waypoint the system % should pass through clear N0 = 25; opt.figs(1) = figure; opt.figs(2) = figure; opt.figs(3) = figure; opt.figs(4) = figure; opt.dr = .2; opt.xi = [-2.5; -2.5]; opt.xf = [2.5; 2.5]; opt.xr = -2.5:opt.dr:2.5; opt.yr = -2.5:opt.dr:2.5; opt.o = [0;0]; opt.r = .8; opt.xmin = []; opt.fmin = []; opt.J = []; opt.cP = []; opt.fP = []; opt.sel = 'pi'; opt.snf = 20; [X,Y] = meshgrid(opt.xr, opt.yr); xss = [reshape(X, 1, size(X,1)*size(X,2)); reshape(Y, 1, size(Y,1)*size(Y,2))]; p = randperm(size(xss,2)); % initial data cxs = xss(:,p(1:N0)); %xss = xss(sort(p(N0+1:end))); cs = zeros(1,size(cxs,2)); for i=1:size(cxs,2), cs(i) = con(cxs(:,i),opt); end xs = cxs(:,find(cs > 0)); fs = zeros(1,size(xs,2)); for i=1:size(xs,2), fs(i) = fun(xs(:,i),opt); end % cost function gp fopts.l = 1; fopts.s = 1; fopts.sigma = .1; fgp = gp_init(xs, fs, fopts) fgp.fun = @fun; % constraints gp copts.l = 1; copts.s = 1; copts.sigma = .1; cgp = gp_init(cxs, cs, copts) cgp.fun = @con; % test points %Nmax = 500; % init opt [y,ind] = min(fs); opt.xmin = fgp.xs(:,ind); opt.fmin = y; opt.xss = xss; opt.fgp = fgp; opt.cgp = cgp; N = 50; %plot(S.xss, S.fss, '.b') %ofig = figure gp_plot2(opt) xfig = figure plot_env(opt) for i=1:3, [opt, x, y] = gp_select(opt) % if (abs(x-cgp.xs)<.005) % continue; % end if ~isempty(cgp) c = con(x, opt); opt.cgp = gp_add(opt.cgp, x, c); if (c < 0) % figure(ofig) gp_plot2(opt) % plot(x,c,'xb') pause(3) continue end end f = fun(x,opt); if f < opt.fmin opt.fmin = f; opt.xmin = x; end opt.fgp = gp_add(opt.fgp, x, f); % cgp = cgp_add(cgp, x, c); display('opt:') opt.xmin % figure(ofig) gp_plot2(opt) figure(xfig) plot_env(opt) print(gcf,'-dpng', 'figures/env.png') % plot(x,f,'ob') pause(3) % S.xmin % S.fmin end %plot(S.xss, S.ms, '.r') function f = fun(xs, opt) xi = [-2.5; -2.5]; xf = [2.5; 2.5]; xsa = [xi, xs]; xsb = [xs, xf]; dxs = xsb - xsa; f = sum(sqrt(sum(dxs.*dxs, 1))); function xs = sample(N, opt) xs = 2.5 - 5*rand([2, N]); function cmin = con(xs, opt) o = opt.o r = opt.r; kin = 0 if ~kin, xs = [opt.xi, xs, opt.xf]; xs = interp1(linspace(0, 1, size(xs,2)), xs', ... linspace(0, 1, opt.snf), 'cubic')'; xsa = xs(:,1:end-1); xsb = xs(:,2:end); else xsa = [opt.xi, xs]; xsb = [xs, opt.xf]; end dxs = xsb - xsa; cmin = inf; for i=1:size(xsa,2) xa = xsa(:,i); dx = dxs(:,i); a = dx/norm(dx); b = o - xa; d = b'*a; if d > 0 c = norm(d*a - b) - r; else c = norm(xa - o) - r; end if c < cmin cmin = c; end end function f = plot_env(opt) o = opt.o; r = opt.r; a = 0:.1:2*pi; hold off %plot(o(1) + cos(a)*r, o(2) + sin(a)*r, '-k', 'LineWidth',3); [Xs,Ys,Zs] = cylinder2P([r, r], 50, [o;0]', [o;.4]'); %[Xs,Ys,Zs] = sphere; %Zs = .1*Zs; %Xs = r*Xs + o(1)*ones(size(Xs)); %Ys = r*Ys + o(2)*ones(size(Ys)); hs = surf(Xs, Ys, Zs); set(hs,'FaceAlpha',1); %set(hs,'EdgeColor','none', ... % 'FaceColor','r', ... % 'FaceLighting','phong', ... % 'AmbientStrength',0.3, ... % 'DiffuseStrength',0.8, ... % 'SpecularStrength',0.9, ... % 'SpecularExponent',25, ... % 'BackFaceLighting','lit'); hold on if ~isempty(opt.xmin) xs = [opt.xi, opt.xmin, opt.xf]; xs = interp1(linspace(0, 1, size(xs,2)), xs', ... linspace(0, 1, opt.snf), 'cubic')'; plot3(opt.xmin(1), opt.xmin(2), 0, '*','MarkerSize', 6, 'LineWidth',5) plot3(xs(1,:), xs(2,:), zeros(size(xs,2),1), '-g', 'LineWidth',5); end for i=1:size(opt.fgp.xs,2) xs = [opt.xi, opt.fgp.xs(:,i), opt.xf]; xs = interp1(linspace(0, 1, size(xs,2)), xs', ... linspace(0, 1, opt.snf), 'cubic')'; plot3(opt.fgp.xs(1,i), opt.fgp.xs(2,i), zeros(size(xs,2),1), ... 'o','MarkerSize',5, 'LineWidth',2); plot3(xs(1,:), xs(2,:), zeros(size(xs,2),1), '--', 'LineWidth',2); end axis square axis equal view(-20,48) %view(3)
github
Hadisalman/stoec-master
odom_node.m
.m
stoec-master/code/Include/gpas-master/odom_node.m
1,232
utf_8
cff6ebe13248643b3777d386676740a3
function S = odom_node(S) % Simulate odometry data ROS node, by waiting for % commanded path and taking the next pose along the path % % rosshutdown if isfield(S, 'ROS_MASTER_URI') setenv('ROS_MASTER_URI', S.ROS_MASTER_URI) end if isfield(S, 'ROS_IP') setenv('ROS_IP', S.ROS_IP) end rosinit % published odometry every at every vehicle simulation step S.odomPub = rospublisher('/insekf/pose', rostype.nav_msgs_Odometry) S.odomMsg = rosmessage(S.odomPub) pause(1) % subscriber cmdSub = rossubscriber('/adp_path', rostype.nav_msgs_Path, {@cmdCallback, S}) % start startPub = rospublisher('/adp_start', rostype.std_msgs_Bool); startMsg = rosmessage(startPub); startMsg.Data = 1; send(startPub, startMsg); % simulate initial point S.odomMsg.Pose.Pose.Position.X = 25; S.odomMsg.Pose.Pose.Position.Y = 25; S.odomMsg.Pose.Pose.Orientation.Z = 1.1*pi; send(S.odomPub, S.odomMsg) while(1) pause(1) end function f = cmdCallback(src, msg, S) % take the next pose along path S.odomMsg.Pose.Pose = msg.Poses(1).Pose; send(S.odomPub, S.odomMsg) x = [S.odomMsg.Pose.Pose.Position.X; S.odomMsg.Pose.Pose.Position.Y; S.odomMsg.Pose.Pose.Position.Z]; disp(['cmdCallback: sent odom=' num2str(x(1)) ',' num2str(x(2))]);
github
Hadisalman/stoec-master
srec.m
.m
stoec-master/code/Include/gpas-master/srec.m
11,940
utf_8
ec8b6e621cd73fe47ca200a75dc4ce8e
function f = srec %Demonstration of Receding Horizon Adaptive Sampling for %discovering peak concentration in a 2d scalar field clear N0 = 25; if 0 opt.figs(1) = figure; opt.figs(2) = figure; opt.figs(3) = figure; opt.figs(4) = figure; else opt.figs = []; end opt.dr = 5; %opt.xi = [-45; -45; pi/4]; opt.xi = [25; 25; 1.1*pi]; opt.xr = -50:opt.dr:50; opt.yr = -50:opt.dr:50; opt.xlb = min(opt.xr); opt.xub = max(opt.xr); opt.ylb = min(opt.yr); opt.yub = max(opt.yr); opt.xmin = []; opt.fmin = []; opt.J = []; opt.cP = []; opt.fP = []; opt.sel = 'pi'; opt.sn = 5; opt.dt = 3; opt.tf = 30; opt.I=[]; %opt.I = double(imread('conc.ppm'))/255; %opt.I = double(imread('do1.ppm'))/255; opt.I = 1.5*double(imread('do1.ppm'))/255; %opt.I =; %size(I) %I(250,250,:) %return [X,Y] = meshgrid(opt.xr, opt.yr); % list of grid points xss = [reshape(X, 1, size(X,1)*size(X,2)); reshape(Y, 1, size(Y,1)*size(Y,2))]; opt.fs = fun(xss,opt); p = randperm(size(xss,2)); opt.pss = prior(xss, opt); % initial data %xs = xss(:,p(1:N0)); %xs = [.2, .1, .2, .1; % .1, -.3, .3, -.3]; %xs = [.2, .5, .6, .9; % .3, -.4, .3, -.3]; xs=opt.xi(1:2); %xs = [1, 1, -1, -1; % 1, -1, 1, -1]; %xs = repmat(opt.xi(1:2), 1, 5) + .1*randn(2,5); %xss = xss(sort(p(N0+1:end))); fs = zeros(1,size(xs,2)); for i=1:size(xs,2), fs(i) = fun(xs(:,i),opt) end % cost function gp fopts.l = 5; if ~isempty(opt.I) fopts.s = .4; fopts.sigma = .001; else fopts.s = 20; fopts.sigma = .01; end fgp = gp_init(xs, fs, fopts) fgp.fun = @fun; % test points %Nmax = 500; % init opt [y,ind] = min(fs); opt.xmin = fgp.xs(:,ind); opt.fmin = y; opt.xss = xss; opt.fgp = fgp; N = 50; %plot(S.xss, S.fss, '.b') %ofig = figure gp_plot(opt) %xfig = figure %plot_env(opt) % forward velocity lower bound vlb = .1; % forward velocity upper bound vub = 5; % angular velocity lower bound wlb = -.5; % angular velocity upper bound wub = .5; %z = zeros(2*opt.sn, 1); z0 = repmat([3; 0], opt.sn,1); z=z0; zlb = repmat([vlb;wlb], opt.sn,1); zub = repmat([vub;wub], opt.sn,1); xs = traj(z0,opt); f = traj_cost(z0,opt) %[z,fval,exitflag,output] = fmincon(@(z)traj_cost(z,opt), z, [], [],[],[],zlb,zub); xs = traj(z,opt) opts.v = .8; opts.iter = 2; opts.N = 100; opts.sigma = 0; iters = 10; mu = z; if ~isempty(opt.I) C0 = diag(repmat([1;1],opt.sn,1)); else C0 = diag(repmat([1;.4],opt.sn,1)); end cs = zeros(iters,1); opts.C = C0; opts.lb = zlb; opts.ub = zub; % traveled path xps=opt.xi; video =0; mov = 0; if video, mov = VideoWriter('as.avi'); open(mov); % mov = avifile('as.avi'); % mov.Quality = 100; % mov.fps = 2*iters; end j=1; for k=1:500 %% PLANNING opts.C = .5*opts.C + .5*C0; subplot(2,2,1); Gp= draw_path(traj(z,opt), 0, 'r',2,5); z = z0; for i=1:iters [z, c, mu, C] = cem(@traj_cost, z, opts, opt); x = mu; cs(i) = c; opts.C = C; xs = traj(z,opt); set(Gp,'XData', xs(1,:)); set(Gp,'YData', xs(2,:)); drawnow if video, saveas(gcf,['as/as' num2str(j,'%03d') '.jpg']) j=j+1; % saveas(gca,['se2opt/v' num2str(c) '.eps'],'psc2'); % mov = addframe(mov,getframe(gca)); % writeVideo(mov,getframe); % print(gcf,'-dpng', 'figures/env.png') end end % "EXECUTE" START OF PATH x = xs(:,2); opt.xi = x; % GET MEASUREMENT AND ADD TO GP xps = [xps, x]; opt.fgp = gp_add(opt.fgp, x(1:2), fun(x(1:2), opt)); % fun(x(1:2),opt); hold off gp_plot(opt) hold on subplot(2,2,1) draw_path(xs(1:2,2:end), 0, 'b',3, 5); hold on draw_path(xps(1:2,:), 0, 'g',3, 5); xlabel('m') ylabel('m') drawnow subplot(2,2,3) hold off contour(opt.xr, opt.yr, reshape(opt.pss, length(opt.xr), ... length(opt.yr))); %h = contour(opt.xr, opt.yr, reshape(ms, length(opt.xr), ... % length(opt.yr))); hold on draw_path(xs(1:2,2:end), 0, 'b',2, 5); draw_path(xps(1:2,:), 0, 'g',3, 5); axis square axis equal axis([min(opt.xr),max(opt.xr),min(opt.yr),max(opt.yr)] ) title('Executed (green) and Planned (blue) paths; with prior contours') xlabel('m') ylabel('m') end if video, close(mov); end return for i=1:60, [opt, x, y] = gp_select(opt) % if (abs(x-cgp.xs)<.005) % continue; % end f = fun(x, opt); if f < opt.fmin opt.fmin = f; opt.xmin = x; end opt.fgp = gp_add(opt.fgp, x, f); % cgp = cgp_add(cgp, x, c); display('opt:') opt.xmin % figure(ofig) gp_plot2(opt) figure(xfig) plot_env(opt) print(gcf,'-dpng', 'figures/env.png') % plot(x,f,'ob') % pause(3) % S.xmin % S.fmin end %plot(S.xss, S.ms, '.r') function G = draw_path(xs, z, c, lw, ms) G=plot3(xs(1,:), xs(2,:), z*ones(size(xs,2),1), [c '-'], ... 'LineWidth', lw, 'MarkerSize', ms); function f = fun(xs, opt) if ~isempty(opt.I) xr = opt.xub-opt.xlb; yr = opt.yub-opt.ylb; is = floor((opt.yub - xs(2,:))/yr*size(opt.I,2)) + 1; js = floor((xs(1,:)-opt.xlb)/xr*size(opt.I,1)) + 1; is(find(is>size(opt.I,1)))=size(opt.I,2); js(find(js>size(opt.I,2)))=size(opt.I,2); is(find(is<1))=1; js(find(js<1))=1; for i=1:size(xs,2) f(i)= opt.I(is(i),js(i),1); end return end %mvnpdf([0, 0], [0, 0], diag([.05, .1])) f = 100000*mvnpdf(xs', [0, 0], diag([400, 400])); f = f + 20000*mvnpdf(xs', [20, 20], diag([50, 100])); f = f + randn(size(f))*.04; function f = prior(xs, opt) %mvnpdf([0, 0], [0, 0], diag([.05, .1])) if ~isempty(opt.I) f = mvnpdf(xs', [0, 0], diag([1000, 1000])); else f = mvnpdf(xs', [0, 0], diag([1000, 1000])); end f = f/max(f); function xs = sample(N, opt) xs = 2.5 - 5*rand([2, N]); function xs = traj(z, opt) tl = opt.tf/opt.sn; xs = zeros(3, 1); xs = opt.xi; for i=1:opt.sn, v = z(2*(i-1) + 1); w = z(2*(i-1) + 2); th = xs(3,end); t = opt.dt:opt.dt:tl; if (abs(w) < 1e-10) xs = [xs(1,:), xs(1,end) + t*v*cos(th); xs(2,:), xs(2,end) + t*v*sin(th); xs(3,:), xs(3,end) + t*0]; else xs = [xs(1,:), xs(1,end) + v/w*(sin(th + t*w) - sin(th)); xs(2,:), xs(2,end) + v/w*(-cos(th + t*w) + cos(th)); xs(3,:), xs(3,end) + t*w]; end end function xs = traj2(z, opt) dt = opt.tf/opt.sn; xs = zeros(3, opt.sn+1); xs(:,1) = opt.xi; for i=1:opt.sn, v = z(2*(i-1) + 1); w = z(2*(i-1) + 2); th = xs(3,i); if (abs(w) < 1e-10) xs(:,i+1) = xs(:,i) + dt*[v*cos(th); v*sin(th); 0]; else xs(:,i+1) = xs(:,i) + [v/w*(sin(th + dt*w) - sin(th)); v/w*(-cos(th + dt*w) + cos(th)); dt*w]; end end function f = traj_cost(z, opt) %gp = opt.fgp; xs = traj(z, opt); [ms, ss] = gp_predict(opt.fgp, xs(1:2,2:end)); vs = sqrt(diag(ss)); ps = prior(xs(1:2,2:end), opt); %ps = ones(size(ps)); if ~isempty(opt.I) f = -sum(ps.*(ms + 1.96*vs)); f = -sum(ms + 1.96*vs); % f = -sum(ms); else % f = -sum(ps.*(ms + 1.96*vs)); %f = sum(ps.*(1.96*vs)) - sum(ps); f = -sum(vs) - sum(ps); end %f = sum(ps.*(ms)); %f = -sum(ps.*vs); vs = z(1:2:end-1); ws = z(2:2:end); dws = ws(2:end)-ws(1:end-1); %f = f*(1 + .01*ws'*ws);% + .5*dws'*dws); %f = f + .001*vs'*vs; %f = mean(ms); %fs = fun(xs, opt); %for i=1:size(xs,2)% % gp = gp_add(gp, xs(:,i), %end function f = plot_env(opt) return if ~isempty(opt.xmin) xs = [opt.xi, opt.xmin]; xs = interp1(linspace(0, 1, size(xs,2)), xs', ... linspace(0, 1, opt.snf), 'cubic')'; plot3(opt.xmin(1), opt.xmin(2), 0, '*','MarkerSize', 2, 'LineWidth',5) plot3(xs(1,:), xs(2,:), zeros(size(xs,2),1), '-g', 'LineWidth',5); end for i=1:size(opt.fgp.xs,2) % xs = [opt.xi, opt.fgp.xs(:,i), opt.xf]; % xs = interp1(linspace(0, 1, size(xs,2)), xs', ... % linspace(0, 1, opt.snf), 'cubic')'; plot3(opt.fgp.xs(1,i), opt.fgp.xs(2,i), zeros(size(opt.fgp.xs,2),1), ... 'o','MarkerSize',5, 'LineWidth',2); % plot3(xs(1,:), xs(2,:), zeros(size(xs,2),1), '--', 'LineWidth',2); end axis square %axis equal view(-20,48) %view(3) function f = gp_plot(opt) set(0,'DefaultAxesFontName', 'Times New Roman') set(0,'DefaultAxesFontSize', 15) set(0,'DefaultTextFontname', 'Times New Roman') set(0,'DefaultTextFontSize', 15) if (~isempty(opt.figs)) figure(opt.figs(1)); set(opt.figs(1), 'Position', [100, 100, 800, 600]); else sp = subplot(2,2,1); set(gcf, 'Position', [100, 100, 1400, 800]); end [ms, ss] = gp_predict(opt.fgp, opt.xss); vs = sqrt(diag(ss)); h = surf(opt.xr, opt.yr, reshape(ms, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong'); hold on h1 = surf(opt.xr, opt.yr, reshape(ms + 1.96*vs, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); %set(h,'FaceAlpha',0); h2 = surf(opt.xr, opt.yr, reshape(ms - 1.96*vs, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); %set(h,'FaceAlpha',0); xlabel('m') ylabel('m') alpha(h,.8) alpha(h1,.3) alpha(h2,.3) %xlabel('$x_1$','Interpreter','latex') %%ylabel('$x_2$','Interpreter','latex') %zlabel('$\mathbb{E}[J(x)] \pm \beta Var[J(x)]$', 'Interpreter', 'latex') view(-20,48) axis tight %axis equal title('Guassin Process Model (+-95% conf.)') drawnow %print(gcf,'-dpng', 'figures/Jx.png') %savesp(sp, 'figures/Jx'); %plot(xts, ms + 1.96*vs, '--', xts, ms - 1.96*vs, '--', xts, ms, '-'); %hold on %plot3(opt.fgp.xs(1,:), opt.fgp.xs(2,:), opt.fgp.fs, 'or'); %title('Probabilistic Model of Trajectory Cost $J(x)$') if (~isempty(opt.figs)) figure(opt.figs(2)); set(opt.figs(2), 'Position', [100, 100, 800, 600]); else sp = subplot(2,2,2); end cns = 1; hold off if ~isempty(opt.fs) if cns h = contour(opt.xr, opt.yr, reshape(opt.fs, length(opt.xr), ... length(opt.yr))); hold on plot(opt.fgp.xs(1,:), opt.fgp.xs(2,:), '-g','LineWidth',2); else h = surfc(opt.xr, opt.yr, reshape(opt.fs, length(opt.xr), length(opt.yr)),... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); set(h,'FaceAlpha',0.7); view(-20,48) end axis tight % axis equal % plot(gp.xss, gp.J, 'b') hold on end title('True Scalar Field') xlabel('m') ylabel('m') if (~isempty(opt.figs)) figure(opt.figs(3)); set(opt.figs(3), 'Position', [100, 100, 800, 600]); else sp = subplot(2,2,4); end hold off if cns h = contour(opt.xr, opt.yr, reshape(ms, length(opt.xr), ... length(opt.yr))); hold on plot(opt.fgp.xs(1,:), opt.fgp.xs(2,:), 'ok-'); else h = surf(opt.xr, opt.yr, reshape(ms, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong'); %alpha(h,.5) set(h,'FaceAlpha',0.5); % plot(gp.xss, gp.J, 'b') hold on plot3(opt.fgp.xs(1,:), opt.fgp.xs(2,:), opt.fgp.fs(:),'*'); view(-20,48) end axis tight %axis equal xlabel('m') ylabel('m') title('Estimated scalar Field (with marked samples)') %title('States Sampling Distribution') %xlabel('$x_1$','Interpreter','latex') %ylabel('$x_2$','Interpreter','latex') %zlabel('$P(x)$', 'Interpreter', 'latex') %print(gcf,'-dpng', 'figures/Px.png') %savesp(sp, 'figures/Px'); if (~isempty(opt.figs)) figure(opt.figs(4)); set(opt.figs(4), 'Position', [100, 100, 800, 600]); else % sp = subplot(2,2,3); end hold off if ~isempty(opt.cP) h = surfc(opt.xr, opt.yr, reshape(opt.cP, length(opt.xr), length(opt.yr)),... 'FaceColor','interp','FaceLighting','phong'); % set(h,'FaceAlpha',0); view(-20,48) axis tight %axis equal hold on end %title('Constraint Satisfaction Probability') %zlabel('$P(g(x)\geq 0)$', 'Interpreter', 'latex') %xlabel('$x_1$', 'Interpreter', 'latex') %ylabel('$x_2$', 'Interpreter', 'latex') %print(gcf,'-dpng', 'figures/Pg.png') %savesp(sp, 'figures/Pf');
github
Hadisalman/stoec-master
gp_optparams.m
.m
stoec-master/code/Include/gpas-master/gp_optparams.m
251
utf_8
cca5be5e042c465e7871e16bce99a82b
function gp = gp_optparams(gp); p = [gp.l, gp.s]; [p,FVAL,EXITFLAG,OaUTPUT] = fminsearch(@(p) gp_minhp(p, gp), p); gp.l = p(1); gp.s = p(2); gp = gp_train(gp); function f = gp_minhp(p, gp) gp.l = p(1); gp.s = p(2); gp = gp_train(gp); f = -gp.lp;
github
Hadisalman/stoec-master
env_node.m
.m
stoec-master/code/Include/gpas-master/env_node.m
1,439
utf_8
31e37716cd1aa05b64e54bfc13264e42
function S = env_node(S) % Simulate environmental data ROS node % Will send back data after receiving odom % or could just broadcast when new data is available % % @param S.envFile environment image file % scale % xlb, xub bounds % sigma meas noise % rosshutdown if isfield(S, 'ROS_MASTER_URI') setenv('ROS_MASTER_URI', S.ROS_MASTER_URI) end if isfield(S, 'ROS_IP') setenv('ROS_IP', S.ROS_IP) end if ~isfield(S, 'envFile') S.envFile = 'data/do1.ppm'; end if ~isfield(S, 'xlb') S.xlb = [-50;-50]; end if ~isfield(S, 'xub') S.xub = [50;50]; end if ~isfield(S, 'scale') S.scale = 1.5; end if ~isfield(S, 'sigma') S.sigma = 0; end rosinit % scalar field over 2d domain loaded from a file S.I = S.scale*double(imread(S.envFile))/255; % environmental sensor data (use Temperature for now) S.envPub = rospublisher('/env', rostype.sensor_msgs_Temperature) S.envMsg = rosmessage(S.envPub) % subscriber odomSub = rossubscriber('/insekf/pose', rostype.nav_msgs_Odometry, {@odomCallback, S}, 'BufferSize', 100) disp('waiting for odoms...') while(1) pause(1) end function f = odomCallback(src, msg, S) x = [msg.Pose.Pose.Position.X; msg.Pose.Pose.Position.Y]; % get reading and publish it S.envMsg.Temperature_ = env_scalar2d(x, S); send(S.envPub, S.envMsg); disp(['odomCallback: sent data=' num2str(S.envMsg.Temperature_)... ' at p=(' num2str(x(1)) ',' num2str(x(2)) ')']);
github
Hadisalman/stoec-master
gp_init.m
.m
stoec-master/code/Include/gpas-master/gp_init.m
498
utf_8
3db97c58bea8c7ae61ac0dcebc3988cf
function gp = gp_init(xs, fs, opts) % Initialize a GP over f(x) using an initial dataset (xs, fs) % % Required options % opts.l % opts.s gp = []; gp.l = opts.l; gp.s = opts.s; gp.sigma = opts.sigma; gp.xs = xs; gp.fs = fs; gp = gp_train(gp); % optimize hyperparams %p = [gp.l, gp.s]; % %[p,FVAL,EXITFLAG,OaUTPUT] = fminsearch(@(p) gp_minhp(p, gp), p); % %gp.l = p(1); %gp.s = p(2); %gp = gp_train(gp); function f = gp_minhp(p, gp) gp.l = p(1); gp.s = p(2); gp = gp_train(gp); f = -gp.lp;
github
Hadisalman/stoec-master
gpas_node.m
.m
stoec-master/code/Include/gpas-master/gpas_node.m
14,050
utf_8
f85451a29d338c7511a21d52d494c4cd
function f = gpas_node(opt) % Adaptive Sampling for discovering peak concentration in a 2d scalar field % % Author: Marin Kobilarov, marin(at)jhu.edu % Options: % workspace lower bound if ~isfield(opt, 'xlb') opt.xlb = [-50;-50]; end % workspace upper bound if ~isfield(opt, 'xub') opt.xub = [50;50]; end % grid cells along each dimension if ~isfield(opt, 'ng') opt.ng = [30;30]; end % trajectory parameters if ~isfield(opt, 'sn') opt.sn = 5; end % time-step if ~isfield(opt, 'dt') opt.dt = 3; end % time horizon (seconds) if ~isfield(opt, 'tf') opt.tf = 30; end % forward velocity lower bound if ~isfield(opt, 'vlb') opt.vlb = .1; end % forward velocity upper bound if ~isfield(opt, 'vub') opt.vub = 5; end % angular velocity lower bound if ~isfield(opt, 'wlb') opt.wlb = -.5; end % angular velocity upper bound if ~isfield(opt, 'wub') opt.wub = .5; end % Cross-entropy parameters % outer CE iterations (only useful if we want to display/save each CE iteration) if ~isfield(opt, 'iters') opt.iters = 2; end if ~isfield(opt, 'ce') opt.ce = []; end % #of samples if ~isfield(opt.ce, 'N') opt.ce.N = 100; end % smoothing parameter if ~isfield(opt.ce, 'v') opt.ce.v = .8; end % CE iterations per optimization if ~isfield(opt.ce, 'iter') opt.ce.iter = 10; end % use the sigma-point CE if ~isfield(opt.ce, 'sigma') opt.ce.sigma = 0; end % initial covariance if ~isfield(opt.ce, 'C0') opt.ce.C0 = diag(repmat([1;1],opt.sn,1)); end % initial mean (straight line) if ~isfield(opt.ce, 'z0') opt.ce.z0 = repmat([1; 0], opt.sn,1); end % GP parameters if ~isfield(opt, 'gp') opt.gp = []; end % length-scale if ~isfield(opt.gp, 'l') opt.gp.l = 5; end % maximum variance if ~isfield(opt.gp, 's') opt.gp.s = 0.4; end % output noise if ~isfield(opt.gp, 'sigma') opt.gp.sigma = 0.001; end % environment parameters if ~isfield(opt, 'mapFile') opt.map = []; end if isfield(opt, 'envFile') if ~isfield(opt, 'scale') opt.scale = 1.5; end opt.I = opt.scale*double(imread(opt.envFile))/255; else opt.I = []; end % how many time stages to run if ~isfield(opt, 'stages') opt.stages = 500; end % obstacle map if isfield(opt, 'mapFile') opt.map = double(imread(opt.mapFile))/255; else opt.map = []; end % obstacle map if ~isfield(opt, 'devBias') opt.devBias = .001; end % use one or separate figures? if 0 opt.figs(1) = figure; opt.figs(2) = figure; opt.figs(3) = figure; opt.figs(4) = figure; else opt.figs = []; end % meshgrid for display opt.xr = linspace(opt.xlb(1), opt.xub(1), opt.ng(1))'; opt.yr = linspace(opt.xlb(2), opt.xub(2), opt.ng(2))'; opt.xopt = []; opt.fopt = []; opt.J = []; opt.sel = 'pi'; [X,Y] = meshgrid(opt.xr, opt.yr); % list of grid points xss = [reshape(X, 1, size(X,1)*size(X,2)); reshape(Y, 1, size(Y,1)*size(Y,2))]; %opt.xi = [-45; -45; pi/4]; %opt.xi = [25; 25; 1.1*pi]; % for DO % sequence of measured (unprocessed) states and current state global odomData envData startCmd startCmd = []; odomData = []; envData.xs = []; envData.fs = []; % setup ROS node rosshutdown if isfield(opt, 'ROS_MASTER_URI') setenv('ROS_MASTER_URI', opt.ROS_MASTER_URI) end if isfield(opt, 'ROS_IP') setenv('ROS_IP', opt.ROS_IP) end rosinit odomSub = rossubscriber('/insekf/pose', rostype.nav_msgs_Odometry, ... @odomCallback) % wait for valid odom data while isempty(odomData) pause(.01); end envSub = rossubscriber('/env', rostype.sensor_msgs_Temperature, ... @envCallback) % wait for valid env data while isempty(envData.xs) pause(.01); end startSub = rossubscriber('/adp_start', rostype.std_msgs_Bool, ... @startCallback) % wait for start command while isempty(startCmd) pause(1); end cmdPub = rospublisher('/adp_path', rostype.nav_msgs_Path) cmdMsg = rosmessage(cmdPub) cmdPub_rviz = rospublisher('/adp_path_rviz', rostype.geometry_msgs_PoseStamped) cmdMsg_rviz = rosmessage(cmdPub_rviz) % if this is simulated (i.e. from a file) then display the true if ~isempty(opt.I) opt.fs = env_scalar2d(xss,opt); p = randperm(size(xss,2)); opt.pss = prior(xss, opt); end opt.xi = odomData(:,end); xps = opt.xi; % init current trajectory and measurements to start data % init GP fgp = gp_init(envData.xs(1:2,:), envData.fs, opt.gp); %fgp.fun = @fun; % init opt [y,ind] = min(envData.fs); % empty env data envData.xs = []; envData.fs = []; opt.xopt = fgp.xs(:,ind); opt.fopt = y; opt.xss = xss; opt.fgp = fgp; %plot(opt.xss, opt.fss, '.b') %ofig = figure gp_plot(opt) %xfig = figure %plot_env(opt) z=opt.ce.z0; mu = z; zlb = repmat([opt.vlb; opt.wlb], opt.sn,1); zub = repmat([opt.vub; opt.wub], opt.sn,1); xs = traj(z, opt) opt.z = z; c = traj_cost(z, opt) %[z,fval,exitflag,output] = fmincon(@(z)traj_cost(z,opt), z, [], [],[],[],zlb,zub); xs = traj(z, opt); opt.ce.z = z; opt.ce.C = opt.ce.C0; opt.ce.lb = zlb; opt.ce.ub = zub; % traveled path %xps = opt.xi; video =0; mov = 0; if video, mov = VideoWriter('as.avi'); open(mov); % mov = avifile('as.avi'); % mov.Quality = 100; % mov.fps = 2*iters; end j=1; % image index % time-series ts = 0; ys = y; cs = c; for k=1:opt.stages % wait for start command while isempty(startCmd) pause(1); end %% PLANNING opt.ce.C = .5*opt.ce.C + .5*opt.ce.C0; subplot(2,3,1); Gp = draw_path(traj(z, opt), 0, 'r', 2,5); z = opt.ce.z0; for i=1:opt.iters opt.ce.z = z; [z, c, mu, C] = cem(@traj_cost, z, opt.ce, opt); opt.ce.C = C; xs = traj(z,opt); set(Gp,'XData', xs(1,:)); set(Gp,'YData', xs(2,:)); drawnow if video, saveas(gcf,['as/as' num2str(j,'%03d') '.jpg']) j=j+1; % saveas(gca,['se2opt/v' num2str(c) '.eps'],'psc2'); % mov = addframe(mov,getframe(gca)); % writeVideo(mov,getframe); % print(gcf,'-dpng', 'figures/env.png') end end % "EXECUTE" START OF PATH % broadcast all the points in the planned path for i_p=2:size(xs,2) %start from the second point, as first point is current location. xd = xs(:,i_p); m = rosmessage(rostype.geometry_msgs_PoseStamped); m.Pose.Position.X = xd(1); m.Pose.Position.Y = xd(2); m.Pose.Orientation.Z = xd(3); % send command cmdMsg.Poses(i_p-1) = m; end send(cmdPub, cmdMsg); %publish another message for rviz visualization cmdMsg_rviz.Pose.Position.X = xd(1); cmdMsg_rviz.Pose.Position.Y = xd(2); cmdMsg_rviz.Pose.Orientation.Z = xd(3); cmdMsg_rviz.Header.FrameId = 'map'; send(cmdPub_rviz,cmdMsg_rviz); while(1) % wait for env data while isempty(envData.xs) pause(.1) end if norm(opt.xi(1:2)-odomData(1:2)) > 1 break end pause(.1) end ts = [ts, ts(end) + opt.dt]; ys = [ys, envData.fs(end)]; cs = [cs, c]; % the latest measurement opt.xi = odomData; % process accumulated measurements opt.fgp = gp_add(opt.fgp, envData.xs(1:2,:), envData.fs); envData.xs = []; envData.fs = []; xps = [xps, opt.xi]; hold off gp_plot(opt) hold on subplot(2,3,1) draw_path(xs(1:2,2:end), 0, 'b',3, 5); hold on draw_path(xps(1:2,:), 0, 'g',3, 5); xlabel('m') ylabel('m') drawnow subplot(2,3,4) hold off contour(opt.xr, opt.yr, reshape(opt.pss, length(opt.xr), length(opt.yr))); %h = contour(opt.xr, opt.yr, reshape(ms, length(opt.xr), ... % length(opt.yr))); hold on draw_path(xs(1:2,2:end), 0, 'b',2, 5); draw_path(xps(1:2,:), 0, 'g',3, 5); axis square axis equal axis([min(opt.xr),max(opt.xr),min(opt.yr),max(opt.yr)] ) title('Executed (g) and Planned (b) paths') xlabel('m') ylabel('m') subplot(2,3,3) hold off plot(ts, ys) xlabel('s') title('Env Data') subplot(2,3,6) hold off plot(ts, cs) xlabel('s') title('Trajectory Cost') end if video, close(mov); end %plot(opt.xss, opt.ms, '.r') function f = odomCallback(src, msg) global odomData odomData = [msg.Pose.Pose.Position.X; msg.Pose.Pose.Position.Y; msg.Pose.Pose.Orientation.Z]; disp(['odomCallback: p=' num2str(odomData(1)) ',' num2str(odomData(2))]) function f = envCallback(src, msg) global envData odomData fm = msg.Temperature_; disp(['envCallback: envData=' num2str(fm) ]) % use current odom if isempty(odomData) disp('[W] envCallback: empty odomData!') return end envData.xs = [envData.xs, odomData]; envData.fs = [envData.fs, fm]; function f = startCallback(src, msg) global startCmd if msg.Data startCmd = 1; disp('Adaptive Sampling Enabled'); else startCmd = []; disp('Adaptive Sampling Disabled'); end function G = draw_path(xs, z, c, lw, ms) G=plot3(xs(1,:), xs(2,:), z*ones(size(xs,2),1), [c '-'], ... 'LineWidth', lw, 'MarkerSize', ms); function f = prior(xs, opt) %mvnpdf([0, 0], [0, 0], diag([.05, .1])) if ~isempty(opt.I) f = mvnpdf(xs', [0, 0], diag([1000, 1000])); else f = mvnpdf(xs', [0, 0], diag([1000, 1000])); end f = f/max(f); function xs = traj(z, opt) tl = opt.tf/opt.sn; xs = zeros(3, 1); xs = opt.xi; for i=1:opt.sn, v = z(2*(i-1) + 1); w = z(2*(i-1) + 2); th = xs(3,end); t = opt.dt:opt.dt:tl; if (abs(w) < 1e-10) xs = [xs(1,:), xs(1,end) + t*v*cos(th); xs(2,:), xs(2,end) + t*v*sin(th); xs(3,:), xs(3,end) + t*0]; else xs = [xs(1,:), xs(1,end) + v/w*(sin(th + t*w) - sin(th)); xs(2,:), xs(2,end) + v/w*(-cos(th + t*w) + cos(th)); xs(3,:), xs(3,end) + t*w]; end end function f = traj_cost(z, opt) xs = traj(z, opt); % check for bounds for i=1:2 if sum(find(xs(i,:) < opt.xlb(i))) || sum(find(xs(i,:) > opt.xub(i))) f = 1000; return end end % check for obstacles if ~isempty(opt.map) xr = opt.xub(1)-opt.xlb(1); yr = opt.xub(2)-opt.xlb(2); is = floor((opt.xub(2) - xs(2,:))/yr*size(opt.I,2)) + 1; js = floor((xs(1,:)-opt.xlb(1))/xr*size(opt.I,1)) + 1; is(find(is>size(opt.I,1)))=size(opt.I,2); js(find(js>size(opt.I,2)))=size(opt.I,2); is(find(is<1))=1; js(find(js<1))=1; for i=1:size(xs,2) if opt.map(is(i),js(i),1) > .5 f = 1000; return end end end [ms, ss] = gp_predict(opt.fgp, xs(1:2,2:end)); vs = sqrt(diag(ss)); %ps = prior(xs(1:2,2:end), opt); %ps = ones(size(ps)); f = -sum(ms + 1.96*vs); f = f + opt.devBias*norm(opt.z-z); %f = sum(ps.*(ms)); %f = -sum(ps.*vs); vs = z(1:2:end-1); ws = z(2:2:end); dws = ws(2:end)-ws(1:end-1); %f = f*(1 + .01*ws'*ws);% + .5*dws'*dws); %f = f + .001*vs'*vs; %f = mean(ms); %fs = fun(xs, opt); %for i=1:size(xs,2)% % gp = gp_add(gp, xs(:,i), %end function f = gp_plot(opt) set(0,'DefaultAxesFontName', 'Times New Roman') set(0,'DefaultAxesFontSize', 15) set(0,'DefaultTextFontname', 'Times New Roman') set(0,'DefaultTextFontSize', 15) if (~isempty(opt.figs)) figure(opt.figs(1)); set(opt.figs(1), 'Position', [100, 100, 800, 600]); else sp = subplot(2,3,1); set(gcf, 'Position', [100, 100, 1400, 800]); end [ms, ss] = gp_predict(opt.fgp, opt.xss); vs = sqrt(diag(ss)); h = surf(opt.xr, opt.yr, reshape(ms, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong'); hold on h1 = surf(opt.xr, opt.yr, reshape(ms + 1.96*vs, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); %set(h,'FaceAlpha',0); h2 = surf(opt.xr, opt.yr, reshape(ms - 1.96*vs, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); %set(h,'FaceAlpha',0); xlabel('m') ylabel('m') alpha(h,.8) alpha(h1,.3) alpha(h2,.3) %xlabel('$x_1$','Interpreter','latex') %%ylabel('$x_2$','Interpreter','latex') %zlabel('$\mathbb{E}[J(x)] \pm \beta Var[J(x)]$', 'Interpreter', 'latex') view(-20,48) axis tight %axis equal title('Guassin Process Model (+-95% conf.)') drawnow %print(gcf,'-dpng', 'figures/Jx.png') %savesp(sp, 'figures/Jx'); %plot(xts, ms + 1.96*vs, '--', xts, ms - 1.96*vs, '--', xts, ms, '-'); %hold on %plot3(opt.fgp.xs(1,:), opt.fgp.xs(2,:), opt.fgp.fs, 'or'); %title('Probabilistic Model of Trajectory Cost $J(x)$') if (~isempty(opt.figs)) figure(opt.figs(2)); set(opt.figs(2), 'Position', [100, 100, 800, 600]); else sp = subplot(2,3,2); end cns = 1; hold off if ~isempty(opt.fs) if cns h = contour(opt.xr, opt.yr, reshape(opt.fs, length(opt.xr), ... length(opt.yr))); hold on colorbar; plot(opt.fgp.xs(1,:), opt.fgp.xs(2,:), '-g','LineWidth',2); else h = surfc(opt.xr, opt.yr, reshape(opt.fs, length(opt.xr), length(opt.yr)),... 'FaceColor','interp','FaceLighting','phong','EdgeAlpha',.3); set(h,'FaceAlpha',0.7); view(-20,48) end axis tight axis equal % plot(gp.xss, gp.J, 'b') hold on end title('True Scalar Field') xlabel('m') ylabel('m') if (~isempty(opt.figs)) figure(opt.figs(3)); set(opt.figs(3), 'Position', [100, 100, 800, 600]); else sp = subplot(2,3,5); end hold off if cns h = contour(opt.xr, opt.yr, reshape(ms, length(opt.xr), ... length(opt.yr))); hold on colorbar; plot(opt.fgp.xs(1,:), opt.fgp.xs(2,:), 'ok-'); else h = surf(opt.xr, opt.yr, reshape(ms, length(opt.xr), length(opt.yr)), ... 'FaceColor','interp','FaceLighting','phong'); %alpha(h,.5) set(h,'FaceAlpha',0.5); % plot(gp.xss, gp.J, 'b') hold on plot3(opt.fgp.xs(1,:), opt.fgp.xs(2,:), opt.fgp.fs(:),'*'); view(-20,48) end axis tight axis equal xlabel('m') ylabel('m') title('Estimated Field') %title('States Sampling Distribution') %xlabel('$x_1$','Interpreter','latex') %ylabel('$x_2$','Interpreter','latex') %zlabel('$P(x)$', 'Interpreter', 'latex') %print(gcf,'-dpng', 'figures/Px.png') %savesp(sp, 'figures/Px'); if (~isempty(opt.figs)) figure(opt.figs(4)); set(opt.figs(4), 'Position', [100, 100, 800, 600]); else % sp = subplot(2,2,3); end
github
Hadisalman/stoec-master
cem.m
.m
stoec-master/code/Include/gpas-master/cem.m
8,782
utf_8
06bef7b59249a3e3354d8770c6d0e6c5
function [x, c, mu, C] = cem(fun, x0, opts, varargin) % The cross-entropy method % @param fun function to be minimized % @param x0 initial guess % options: % @param opts.N: number of samples % @param opts.rho: quantile (e.g. 0.1) % @param opts.C: initial covariance % @param opts.iter: total iterations % @param opts.v: update coefficients % @param varagin any other arguments that will be passed to fun % % @return x best sample % @return c best cost % @return mu distribution mean % @return C distribution covariance % % Author: Marin Kobilarov, [email protected] d = length(x0); if ~isfield(opts, 'N') opts.N = d*20; end if ~isfield(opts, 'rho') opts.rho = 0.1; end if ~isfield(opts, 'C') opts.C = eye(d); end if ~isfield(opts, 'iter') fun = 20; end if ~isfield(opts, 'v') opts.v = 1; end if ~isfield(opts, 'sigma') opts.sigma = 0; end if opts.sigma opts.N = 2*d+1; end if ~isfield(opts, 'tilt') opts.tilt = 0; end if ~isfield(opts, 'lb') opts.lb = []; end if ~isfield(opts, 'ub') opts.ub = []; end if opts.tilt end N = opts.N; nf = round(opts.rho*N); C = opts.C; v = opts.v; cs = zeros(N, 1); xs = zeros(d, N); x = x0; c = inf; mu = x0; a = 0.001; k = 0; b = 2; l = a*a*(d+k)-d; Ws = [l/(d+l), repmat(1/(2*(d+l)), 1, 2*d)]; Wc = [l/(d+l) + (1-a*a+b), repmat(1/(2*(d+l)), 1, 2*d)]; for j=1:opts.iter if opts.sigma % this is an experimental version of the CE method using sigma-points A = sqrt(d+l)*chol(C)'; xs = [mu, repmat(mu, 1, d) + A, repmat(mu, 1, d) - A]; xm = zeros(d,1); for i=1:size(xs,2), fi = fun(xs(:,i), varargin{:}); if (length(fi) > 1) cs(i) = sum(fi.*fi); else cs(i) = fi; end cs(i) = exp(-cs(i)); xm = xm + Ws(i)*cs(i)*xs(:,i); end Pm = zeros(d,d); for i=1:size(xs,2), dx = xs(:,i) - xm; Pm = Pm + Wc(i)*cs(i)*dx*dx'; end csn = sum(cs); mu = mu/csn; C = Pm/csn; x = mu; c = cs(1); else % this is the standard CE method using random sampling if (~isempty(opts.lb)) n = length(mu); A=[-eye(n); eye(n)]; B=[-opts.lb; opts.ub]; xs = rmvnrnd(mu, C, N, A, B)'; else xs = mvnrnd(mu, C, N)'; end for i=1:N, fi = fun(xs(:,i), varargin{:}); if (length(fi) > 1) cs(i) = sum(fi.*fi)/2; else cs(i) = fi; end end if ~opts.tilt [cs,is] = sort(cs, 1, 'ascend'); xes = xs(:, is(1:nf)); mu = (1 - v).*mu + v.*mean(xes')'; C = (1 - v).*C + v.*cov(xes');% + diag(opts.rf.*rand(opts.n,1)); if (cs(1) < c) x = xes(:,1); c = cs(1); end else if (j==1) S.ps0 = mvnpdf(xs', mu', C); end [cmin, imin] = min(cs); % b = max(1/cmin, .001); % b = max(1/(max(cs)-min(cs)), .001); %good one: b = 1/mean(cs); % b = max(1/min(cs), .001); if 0 b = b*(entropy(mu, C)); S.ps = mvnpdf(xs',mu', C); S.Jh = mean(cs); S.Js = cs; bmin = 0; bmax = 1; S.xs = xs; S.v = v; S.mu = mu; S.C = C; bs = bmin:.001:bmax; gs = zeros(size(bs)); for l=1:length(bs) gs(l) = minb3(bs(l), S); end plot(bs, gs,'g'); drawnow gs [gm,bi]=min(gs); b=bs(bi) [b,FVAL,EXITFLAG,OUTPUT] = fminbnd(@(b) minb3(b, S), bmin, bmax) keyboard global ws end % kl = sum(-log(ws))/N % b = b*kl; % b = 1; ws = exp(-b*cs); ws = ws/sum(ws); mu = (1 - v).*mu + v.*(xs*ws); C = (1 - v).*C + v.*weightedcov(xs', ws); if (cmin < c) x = xs(:,imin); c = cmin; end end end end function f = minb(b, S) b N = length(S.Js); ws = exp(-b*S.Js); eta = sum(ws)/N; delta = .1; g = sqrt(log(1/delta)/(2*N)); ws = ws/sum(ws); mu = (1 - S.v).*S.mu + S.v.*(S.xs*ws); C = (1 - S.v).*S.C + S.v.*weightedcov(S.xs', ws); C vs = 1/eta*ws.*(-log(eta)*ones(N,1) - b*S.Js + log(S.ps) ... - log(mvnpdf(S.xs', mu', C))); R = max(vs)-min(vs) f = sum(vs)/N + R*g; function f = minb2(b, S) N = length(S.Js); ws = exp(-b*S.Js); eta = sum(ws)/N; delta = .1; g = sqrt(log(1/delta)/(2*N)); ws = ws/sum(ws); mu = (1 - S.v).*S.mu + S.v.*(S.xs*ws); C = (1 - S.v).*S.C + S.v.*weightedcov(S.xs', ws); mu C Ws = S.ps0./mvnpdf(S.xs', mu', C); Ws vs = exp(-2*b*S.Js).*Ws; R = max(vs); f = sum(vs)/N + R*g; function f = minb3(b, S) N = length(S.Js); Jmin = min(S.Js) Jmax = max(S.Js) ws = exp(-b*S.Js/Jmax); delta = .5; g = sqrt(log(1/delta)/(2*N)) mean(ws) - exp(-b*Jmin/Jmax)*g b*(mean(S.Js)/Jmax - g) f = log(mean(ws) - exp(-b*Jmin/Jmax)*g) + b*(mean(S.Js)/Jmax - g); f f = -f; function C = weightedcov(Y, w) % Weighted Covariance Matrix % % WEIGHTEDCOV returns a symmetric matrix C of weighted covariances % calculated from an input T-by-N matrix Y whose rows are % observations and whose columns are variables and an input T-by-1 vector % w of weights for the observations. This function may be a valid % alternative to COV if observations are not all equally relevant % and need to be weighted according to some theoretical hypothesis or % knowledge. % % C = WEIGHTEDCOV(Y, w) returns a positive semidefinite matrix C, i.e. all its % eigenvalues are non-negative. % % If w = ones(size(Y, 1), 1), no difference exists between % WEIGHTEDCOV(Y, w) and COV(Y, 1). % % REFERENCE: mathematical formulas in matrix notation are available in % F. Pozzi, T. Di Matteo, T. Aste, % "Exponential smoothing weighted correlations", % The European Physical Journal B, Volume 85, Issue 6, 2012. % DOI:10.1140/epjb/e2012-20697-x. % % % ====================================================================== % % EXAMPLE % % ====================================================================== % % % GENERATE CORRELATED STOCHASTIC PROCESSES % T = 100; % number of observations % N = 500; % number of variables % Y = randn(T, N); % shocks from standardized normal distribution % Y = cumsum(Y); % correlated stochastic processes % % % CHOOSE EXPONENTIAL WEIGHTS % alpha = 2 / T; % w0 = 1 / sum(exp(((1:T) - T) * alpha)); % w = w0 * exp(((1:T) - T) * alpha); % weights: exponential decay % % % COMPUTE WEIGHTED COVARIANCE MATRIX % c = weightedcov(Y, w); % Weighted Covariance Matrix % % % ====================================================================== % % See also CORRCOEF, COV, STD, MEAN. % Check also WEIGHTEDCORRS (FE 20846) and KENDALLTAU (FE 27361) % % % ====================================================================== % % Author: Francesco Pozzi % E-mail: [email protected] % Date: 15 June 2012 % % % ====================================================================== % % Check input ctrl = isvector(w) & isreal(w) & ~any(isnan(w)) & ~any(isinf(w)); if ctrl w = w(:) / sum(w); % w is column vector else error('Check w: it needs be a vector of real positive numbers with no infinite or nan values!') end ctrl = isreal(Y) & ~any(isnan(Y)) & ~any(isinf(Y)) & (size(size(Y), 2) == 2); if ~ctrl error('Check Y: it needs be a 2D matrix of real numbers with no infinite or nan values!') end ctrl = length(w) == size(Y, 1); if ~ctrl error('size(Y, 1) has to be equal to length(w)!') end [T, N] = size(Y); % T: number of observations; N: number of variables C = Y - repmat(w' * Y, T, 1); % Remove mean (which is, also, weighted) C = C' * (C .* repmat(w, 1, N)); % Weighted Covariance Matrix C = 0.5 * (C + C'); % Must be exactly symmetric function f = kl(q,p) f = q.*log(q./p) + (1-q).*log((1-q)./(1-p)); function f = normkl(mu0, S0, mu1, S1) Si = inv(S1); f = (trace(Si*S0) + (mu1 - mu0)'*Si*(mu1 - mu0) - log(det(S0)/det(S1)) ... - length(mu0))/2; function f = entropy(mu, S) k=length(mu); f = k/2*(1+log(2*pi)) + log(det(S))/2;
github
Hadisalman/stoec-master
gp_test3.m
.m
stoec-master/code/Include/gpas-master/gp_test3.m
3,828
utf_8
ed5a82390730af6a1554eb97d60094cf
function f = gp_test3 clear N0 = 500; Ns = 5000; opt.Ns = Ns; opt.xi = [-2.5; -2.5]; opt.xf = [2.5; 2.5]; opt.xr = -2.5:.1:2.5; opt.yr = -2.5:.1:2.5; %%%%%%%%% % 5 g% % % % 12 4 % % 3 % %s % %%%%%%%%% opt.os = [-1.2, -.8, -.25, 1.3, 0.1; 0, -.3, -1, -.6, 1.8]; opt.r = [.4, .5, .4, .9, .9]; opt.xmin = []; opt.fmin = []; opt.J = []; opt.cP = []; opt.fP = []; opt.sel = 'pi'; opt.sn = 2; opt.snf = 10; xs0 = stline(opt.xi, opt.xf, opt.sn); opt.mu = reshape(xs0(:,2:end-1), 2*opt.sn, 1); opt.Sigma = 2*eye(2*opt.sn); [X,Y] = meshgrid(opt.xr, opt.yr); xss = [reshape(X, 1, size(X,1)*size(X,2)); reshape(Y, 1, size(Y,1)*size(Y,2))]; xss = sample(opt, Ns); p = randperm(size(xss,2)); % initial data cxs = xss(:,p(1:N0)); %xss = xss(sort(p(N0+1:end))); cs = zeros(1,size(cxs,2)); for i=1:size(cxs,2), cs(i) = con(cxs(:,i),opt); end xs = cxs(:,find(cs > 0)); fs = zeros(1,size(xs,2)); for i=1:size(xs,2), fs(i) = fun(xs(:,i),opt); end opt.N0f = size(xs,2); % cost function gp fopts.l = 1; fopts.s = 1; fopts.sigma = .1; fgp = gp_init(xs, fs, fopts) fgp.fun = @fun; % constraints gp copts.l = 1; copts.s = 1; copts.sigma = .1; cgp = gp_init(cxs, cs, copts) cgp.fun = @con; % test points %Nmax = 500; % init opt [y,ind] = min(fs); opt.xmin = fgp.xs(:,ind); opt.fmin = y; opt.xss = xss; opt.fgp = fgp; opt.cgp = cgp; N = 50; %plot(S.xss, S.fss, '.b') ofig = figure gp_plot3(opt) xfig = figure plot_env(opt) %return for i=1:10, opt = gp_fit(opt); tic [opt, x, y] = gp_select(opt); disp('select') toc % if (abs(x-cgp.xs)<.005) % continue; % end if ~isempty(cgp) c = con(x, opt); tic opt.cgp = gp_add(opt.cgp, x, c); disp('cgp add') toc if (c < 0) disp('added con') continue end end disp('added fun') f = fun(x,opt); if f < opt.fmin opt.fmin = f; opt.xmin = x; end tic opt.fgp = gp_add(opt.fgp, x, f); disp('fgp add') toc % cgp = cgp_add(cgp, x, c); display('opt:') opt.xmin % figure(ofig) % gp_plot3(opt) figure(xfig) plot_env(opt); % plot(x,f,'ob') % S.xmin % S.fmin end %plot(S.xss, S.ms, '.r') function f = fun(xs, opt) xs = reshape(xs, 2,length(xs)/2); xsa = [opt.xi, xs]; xsb = [xs, opt.xf]; dxs = xsb - xsa; f = sum(sqrt(sum(dxs.*dxs, 1))); function xs = sample(opt,N) xs = mvnrnd(opt.mu, opt.Sigma, N)'; function cmin = con(xs, opt) cmin = inf; xs = reshape(xs, 2,length(xs)/2); xsa = [opt.xi, xs]; xsb = [xs, opt.xf]; dxs = xsb - xsa; for i=1:size(opt.os,2) o = opt.os(:,i); r = opt.r(i); for i=1:size(dxs,2) xa = xsa(:,i); dx = dxs(:,i); a = dx/norm(dx); b = o - xa; d = b'*a; if d > 0 c = norm(d*a - b) - r; else c = norm(xa - o) - r; end if c < cmin cmin = c; end end end function f = plot_env(opt) a = 0:2*pi/20:2*pi; hold off for i=1:size(opt.os,2) o = opt.os(:,i); r = opt.r(i); plot(o(1) + cos(a)*r, o(2) + sin(a)*r, '-k', 'LineWidth',3); hold on if ~isempty(opt.xmin) xs = [opt.xi, reshape(opt.xmin, 2,length(opt.xmin)/2), opt.xf]; plot(xs(1,:), xs(2,:), '-*g', 'LineWidth',4); end end for i=1:size(opt.fgp.xs,2) ps = opt.fgp.xs(:,i); xs = [opt.xi, reshape(ps, 2,length(ps)/2), opt.xf]; if (i<=opt.N0f) plot(xs(1,:), xs(2,:), '--o', 'LineWidth',1); else plot(xs(1,:), xs(2,:), '-xb', 'LineWidth',2); end end axis equal %axis([-2.5 2.5 -2.5 2.5]) drawnow function xs = stline(xi, xf, sn) n = length(xi); xs = zeros(n, sn + 2); for i=1:n xs(i,:) = linspace(xi(i), xf(i), sn+2); end function xs = si_traj(ps, S) xs = [S.xi, reshape(ps, 2, S.sn), S.xf]; xs = interp1(linspace(0, 1, size(xs,2)), xs', ... linspace(0, 1, S.snf), 'cubic')';
github
Hadisalman/stoec-master
likBeta.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likBeta.m
4,830
utf_8
8e503690924874d07a77dc48bc238db1
function [varargout] = likBeta(link, hyp, y, mu, s2, inf, i) % likBeta - Beta likelihood function for interval data y from [0,1]. % The expression for the likelihood is % likBeta(f) = 1/Z * y^(mu*phi-1) * (1-y)^((1-mu)*phi-1) with % mean=mu and variance=mu*(1-mu)/(1+phi) where mu = g(f) is the Beta intensity, % f is a Gaussian process, y is the interval data and % Z = Gamma(phi)/Gamma(phi*mu)/Gamma(phi*(1-mu)). % Hence, we have % llik(f) = log(likBeta(f)) = -lam*(y-mu)^2/(2*mu^2*y) - log(Zy). % % We provide two inverse link functions 'logit' and 'expexp': % g(f) = 1/(1+exp(-f)) and g(f) = exp(-exp(-f))). % The link functions are located at util/glm_invlink_*.m. % % Note that for neither link function the likelihood lik(f) is log concave. % % The hyperparameters are: % % hyp = [ log(phi) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % See also LIKFUNCTIONS.M. % % Copyright (c) by Hannes Nickisch, 2014-03-04. if nargin<4, varargout = {'1'}; return; end % report number of hyperparameters phi = exp(hyp); if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability lg = g(mu,link); elg = exp(lg); v = phi*elg; w = phi-v; a0 = gammaln(w)-gammaln(phi); lp = (v-1).*log(y) + (w-1).*log(1-y) - gammaln(v) - a0; else lp = likBeta(link, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 % compute y moments by quadrature n = max([length(y),length(mu),length(s2)]); on = ones(n,1); N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w'); mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only lg = g(sig*t'+mu*oN,link); ymu = exp(logsumexp2(lg+lw)); % first moment using Gaussian-Hermite quad if nargout>2 elg = exp(lg); yv = elg.*(1-elg)/(1+phi); % second y moment from Beta distribution ys2 = (yv+(elg-ymu*oN).^2)*w; end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' [lg,dlg,d2lg,d3lg] = g(mu,link); elg = exp(lg); v = phi*elg; w = phi-v; if nargin<7 % no derivative mode a0 = gammaln(phi-v)-gammaln(phi); lp = (v-1).*log(y) + (w-1).*log(1-y) - gammaln(v) - a0; dlp = {}; d2lp = {}; d3lp = {}; % return arguments if nargout>1 % dlp, derivative of log likelihood a1 = v.*(log(y)-log(1-y) + psi(0,w)-psi(0,v)); dlp = dlg.*a1; if nargout>2 % d2lp, 2nd derivative of log likelihood a2 = v.^2.*(psi(1,w)+psi(1,v)); z = dlg.^2+d2lg; d2lp = z.*a1 - dlg.^2.*a2; if nargout>3 % d3lp, 3rd derivative of log likelihood a3 = v.^3.*(psi(2,w)-psi(2,v)); d3lp = (dlg.*z+2*dlg.*d2lg+d3lg).*a1 - 3*dlg.*z.*a2 + dlg.^3.*a3; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode % deriv. of log lik w.r.t. phi lp_dhyp = v.*log(y)+w.*log(1-y)-v.*psi(0,v)-w.*psi(0,w)+phi*psi(0,phi); a1 = v.*(log(y)-log(1-y) + psi(0,w)-psi(0,v)); da1 = a1 + v.*(w.*psi(1,w)-v.*psi(1,v)); dlp_dhyp = dlg.*da1; % first derivative a2 = v.^2.*(psi(1,w)+psi(1,v)); z = dlg.^2+d2lg; da2 = v.^2.*(w.*psi(2,w)+v.*psi(2,v)) + 2*a2; d2lp_dhyp = z.*da1 - dlg.^2.*da2; % second derivative varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargin<7 % no derivative mode % Since we are not aware of an analytical expression of the integral, % we use quadrature. varargout = cell(1,nargout); [varargout{:}] = lik_epquad({@likBeta,link},hyp,y,mu,s2); else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' error('infVB not supported') end end % compute the log intensity using the inverse link function function varargout = g(f,link) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(link,'expexp') [varargout{:}] = glm_invlink_expexp(f); else [varargout{:}] = glm_invlink_logit(f); end
github
Hadisalman/stoec-master
likT.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likT.m
4,776
utf_8
6463e0fed8f6484854dd3dd212db5202
function [varargout] = likT(hyp, y, mu, s2, inf, i) % likT - Student's t likelihood function for regression. % The expression for the likelihood is % likT(t) = Z * ( 1 + (t-y)^2/(nu*sn^2) ).^(-(nu+1)/2), % where Z = gamma((nu+1)/2) / (gamma(nu/2)*sqrt(nu*pi)*sn) % and y is the mean (for nu>1) and nu*sn^2/(nu-2) is the variance (for nu>2). % % The hyperparameters are: % % hyp = [ log(nu-1) % log(sn) ] % % Note that the parametrisation guarantees nu>1, thus the mean always exists. % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-09-02. % % See also LIKFUNCTIONS.M. if nargin<3, varargout = {'2'}; return; end % report number of hyperparameters numin = 1; % minimum value of nu nu = exp(hyp(1))+numin; sn2 = exp(2*hyp(2)); % extract hyperparameters lZ = gammaln(nu/2+1/2) - gammaln(nu/2) - log(nu*pi*sn2)/2; if nargin<5 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability evaluation lp = lZ - (nu+1)*log( 1+(y-mu).^2./(nu.*sn2) )/2; s2 = 0; else % prediction lp = likT(hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 ymu = mu; % first y moment; for nu<=1 this is the mode if nargout>2 if nu<=2 ys2 = Inf(size(mu)); % variance does not always exist else ys2 = (s2 + nu*sn2/(nu-2)).*ones(size(mu)); % second y moment end end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' r = y-mu; r2 = r.*r; if nargin<6 % no derivative mode dlp = {}; d2lp = {}; d3lp = {}; lp = lZ - (nu+1)*log( 1+r2./(nu.*sn2) )/2; if nargout>1 a = r2+nu*sn2; dlp = (nu+1)*r./a; % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = (nu+1)*(r2-nu*sn2)./a.^2; if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = (nu+1)*2*r.*(r2-3*nu*sn2)./a.^3; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode a = r2+nu*sn2; a2 = a.*a; a3 = a2.*a; if i==1 % derivative w.r.t. nu lp_dhyp = nu*( psi(nu/2+1/2)-psi(nu/2) )/2 - 1/2 ... -nu*log(1+r2/(nu*sn2))/2 +(nu/2+1/2)*r2./(nu*sn2+r2); lp_dhyp = (1-numin/nu)*lp_dhyp; % correct for lower bound on nu dlp_dhyp = nu*r.*( a - sn2*(nu+1) )./a2; dlp_dhyp = (1-numin/nu)*dlp_dhyp; % correct for lower bound on nu d2lp_dhyp = nu*( r2.*(r2-3*sn2*(1+nu)) + nu*sn2^2 )./a3; d2lp_dhyp = (1-numin/nu)*d2lp_dhyp; % correct for lower bound on nu else % derivative w.r.t. sn lp_dhyp = (nu+1)*r2./a - 1; dlp_dhyp = -(nu+1)*2*nu*sn2*r./a2; d2lp_dhyp = (nu+1)*2*nu*sn2*(a-4*r2)./a3; end varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargout>1 error('infEP not supported since likT is not log-concave') end n = max([length(y),length(mu),length(s2)]); on = ones(n,1); y = y(:).*on; mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only % since we are not aware of an analytical expression of the integral, % we use Gaussian-Hermite quadrature N = 20; [t,w] = gauher(N); oN = ones(1,N); lZ = likT(hyp, y*oN, sig*t'+mu*oN, []); lZ = log_expA_x(lZ,w); % log( exp(lZ)*w ) varargout = {lZ}; case 'infVB' % variational lower site bound % t(s) \propto (1+(s-y)^2/(nu*s2))^(-nu/2+1/2) % the bound has the form: (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 n = numel(s2); b = zeros(n,1); y = y.*ones(n,1); z = y; varargout = {b,z}; end end % computes y = log( exp(A)*x ) in a numerically safe way by subtracting the % maximal value in each row to avoid cancelation after taking the exp function y = log_expA_x(A,x) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns y = log(exp(A-maxA*ones(1,N))*x) + maxA; % exp(A) = exp(A-max(A))*exp(max(A))
github
Hadisalman/stoec-master
likLaplace.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likLaplace.m
6,922
iso_8859_13
9673b9c57508bdbfd0dc917f10944f80
function [varargout] = likLaplace(hyp, y, mu, s2, inf, i) % likLaplace - Laplacian likelihood function for regression. % The expression for the likelihood is % likLaplace(t) = exp(-|t-y|/b)/(2*b) with b = sn/sqrt(2), % where y is the mean and sn^2 is the variance. % % The hyperparameters are: % % hyp = [ log(sn) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-10-16. % % See also LIKFUNCTIONS.M. if nargin<3, varargout = {'1'}; return; end % report number of hyperparameters sn = exp(hyp); b = sn/sqrt(2); if nargin<5 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability evaluation lp = -abs(y-mu)./b -log(2*b); s2 = 0; else % prediction lp = likLaplace(hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 ymu = mu; % first y moment if nargout>2 ys2 = s2 + sn.^2; % second y moment end end varargout = {lp,ymu,ys2}; else % inference mode switch inf case 'infLaplace' if nargin<6 % no derivative mode if numel(y)==0, y=0; end ymmu = y-mu; dlp = {}; d2lp = {}; d3lp = {}; lp = -abs(ymmu)/b -log(2*b); if nargout>1 dlp = sign(ymmu)/b; % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = zeros(size(ymmu)); if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = zeros(size(ymmu)); end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode lp_dhyp = abs(y-mu)/b - 1; % derivative of log likelihood w.r.t. hypers dlp_dhyp = sign(mu-y)/b; % first derivative, d2lp_dhyp = zeros(size(mu)); % and also of the second mu derivative varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' n = max([numel(y),numel(mu),numel(s2),numel(sn)]); on = ones(n,1); y = y(:).*on; mu = mu(:).*on; s2 = s2(:).*on; sn = sn(:).*on; % vectors only fac = 1e3; % factor between the widths of the two distributions ... % ... from when one considered a delta peak, we use 3 orders of magnitude idlik = fac*sn<sqrt(s2); % Likelihood is a delta peak idgau = fac*sqrt(s2)<sn; % Gaussian is a delta peak id = ~idgau & ~idlik; % interesting case in between if nargin<6 % no derivative mode lZ = zeros(n,1); dlZ = lZ; d2lZ = lZ; % allocate memory if any(idlik) [lZ(idlik),dlZ(idlik),d2lZ(idlik)] = ... likGauss(log(s2(idlik))/2, mu(idlik), y(idlik)); end if any(idgau) [lZ(idgau),dlZ(idgau),d2lZ(idgau)] = ... likLaplace(log(sn(idgau)), mu(idgau), y(idgau)); end if any(id) % substitution to obtain unit variance, zero mean Laplacian tmu = (mu(id)-y(id))./sn(id); tvar = s2(id)./sn(id).^2; % an implementation based on logphi(t) = log(normcdf(t)) zp = (tmu+sqrt(2)*tvar)./sqrt(tvar); zm = (tmu-sqrt(2)*tvar)./sqrt(tvar); ap = logphi(-zp)+sqrt(2)*tmu; am = logphi( zm)-sqrt(2)*tmu; lZ(id) = logsumexp2([ap,am]) + tvar - log(sn(id)*sqrt(2)); if nargout>1 lqp = -zp.^2/2 - log(2*pi)/2 - logphi(-zp); % log( N(z)/Phi(z) ) lqm = -zm.^2/2 - log(2*pi)/2 - logphi( zm); dap = -exp(lqp-log(s2(id))/2) + sqrt(2)./sn(id); dam = exp(lqm-log(s2(id))/2) - sqrt(2)./sn(id); % ( exp(ap).*dap + exp(am).*dam )./( exp(ap) + exp(am) ) dlZ(id) = expABz_expAx([ap,am],[1;1],[dap,dam],[1;1]); if nargout>2 a = sqrt(8)./sn(id)./sqrt(s2(id)); bp = 2./sn(id).^2 - (a - zp./s2(id)).*exp(lqp); bm = 2./sn(id).^2 - (a + zm./s2(id)).*exp(lqm); % d2lZ(id) = ( exp(ap).*bp + exp(am).*bm )./( exp(ap) + exp(am) )... % - dlZ(id).^2; d2lZ(id) = expABz_expAx([ap,am],[1;1],[bp,bm],[1;1]) - dlZ(id).^2; end end end varargout = {lZ,dlZ,d2lZ}; else % derivative mode dlZhyp = zeros(n,1); if any(idlik) dlZhyp(idlik) = 0; end if any(idgau) dlZhyp(idgau) = ... likLaplace(log(sn(idgau)), mu(idgau), y(idgau), 'infLaplace', 1); end if any(id) % substitution to obtain unit variance, zero mean Laplacian tmu = (mu(id)-y(id))./sn(id); tvar = s2(id)./sn(id).^2; zp = (tvar+tmu/sqrt(2))./sqrt(tvar); vp = tvar+sqrt(2)*tmu; zm = (tvar-tmu/sqrt(2))./sqrt(tvar); vm = tvar-sqrt(2)*tmu; dzp = (-s2(id)./sn(id)+tmu.*sn(id)/sqrt(2)) ./ sqrt(s2(id)); dvp = -2*tvar - sqrt(2)*tmu; dzm = (-s2(id)./sn(id)-tmu.*sn(id)/sqrt(2)) ./ sqrt(s2(id)); dvm = -2*tvar + sqrt(2)*tmu; lezp = logerfc(zp); % ap = exp(vp).*ezp lezm = logerfc(zm); % am = exp(vm).*ezm vmax = max([vp+lezp,vm+lezm],[],2); % subtract max to avoid numerical pb ep = exp(vp+lezp-vmax); em = exp(vm+lezm-vmax); dap = ep.*(dvp - 2/sqrt(pi)*exp(-zp.^2-lezp).*dzp); dam = em.*(dvm - 2/sqrt(pi)*exp(-zm.^2-lezm).*dzm); dlZhyp(id) = (dap+dam)./(ep+em) - 1; end varargout = {dlZhyp}; % deriv. wrt hypers end case 'infVB' % variational lower site bound % t(s) = exp(-sqrt(2)|y-s|/sn) / sqrt(2*sn²) % the bound has the form: (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 n = numel(s2); b = zeros(n,1); y = y.*ones(n,1); z = y; varargout = {b,z}; end end % logerfc(z) = log(1-erf(z)) function lc = logerfc(z) lc = logphi(-z*sqrt(2)) + log(2); function y = expABz_expAx(A,x,B,z) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns A = A-maxA*ones(1,N); % subtract maximum value y = ( (exp(A).*B)*z ) ./ ( exp(A)*x );
github
Hadisalman/stoec-master
likGaussWarp.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likGaussWarp.m
9,118
utf_8
baca6bc6eb9f081dff2f85d7a4eb8318
function [varargout] = likGaussWarp(warp, hyp, y, mu, varargin) % likGaussWarp - Warped Gaussian likelihood for regression. % The expression for the likelihood is % likGaussWarp( y | t ) = likGauss( g(y) | t ) * g'(y), % where likGauss is the Gaussian likelihood and g is the warping function. % % The hyperparameters are: % % hyp = [ theta_1 % theta_2 % .. % theta_ng % log(sn) ] % % Here, sn is the standard deviation of the underlying Gaussian and theta_i for % i=1..ng are the ng hyperparameters of the warping function g. % % At the moment, likGaussWarp offers 3 different warping functions: % id yields g(y) = y => likGaussWarp = likGauss % poly<m> e.g. 'poly1' yields g(y) = y => likGaussWarp = likGauss % 'poly3' yields g(y) = y + c1*sy*ay^2 + c2*sy*ay^3 % where sy = sign(y), ay = abs(y), cj = exp(theta_j) % tanh<m> e.g. 'tanh0' yields g(y) = y => likGaussWarp = likGauss % 'tanh2' yields g(y) = y + a1*tanh(b1*(y+c1)) + a2*tanh(b2*(y+c2)) % where aj = exp(theta_j), bj = exp(theta_j+m), bj = theta_j+2*m % % The code is based on the exposition in the paper Warped Gaussian Processes, % NIPS, 2003 by Edward Snelson, Carl Rasmussen and Zoubin Ghahramani. % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % Copyright (c) by Hannes Nickisch, 2013-10-24. % % See also LIKFUNCTIONS.M. lik = {@likGauss}; % in principle any likelihood function can be warped but only % for homoscedastic likelihoods, in particular Gaussian has feasible integrals if numel(warp)==0, warp = 'id'; end % set default warping function ng = g(warp); % number of hyperparameters for the warping function nhyp = ['(',num2str(ng),'+',feval(lik{:}),')']; % number of hyperparameters if nargin<4, varargout = {nhyp}; return, end % report number of parameters nhyp = eval(nhyp); if nhyp>length(hyp), error('not enough hyperparameters'), end [gy,lgpy] = g(warp,y,hyp(1:ng)); % evaluate warping function i = 0; if nargin>6, i = varargin{3}; varargin{3} = varargin{3}-ng; end varargout = cell(nargout,1); % allocate memory for output arguments if i==0 || ng<i % only evaluate the required parts [varargout{:}] = feval(lik{:},hyp(ng+1:end),gy,mu,varargin{:}); % eval lik end if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; % s2==0 ? if nargin>4, s2 = varargin{1}; if norm(s2)>0, s2zero = 0; end, end if s2zero % log probability lp = likGaussWarp(warp, hyp, y, mu, [], 'infLaplace'); s2 = 0*mu; else lp = likGaussWarp(warp, hyp, y, mu, s2, 'infEP'); % prediction end if nargout>0, varargout{1} = lp; end % works for any lik % the predictive moments are very hard to compute for lik not being likGauss if nargout>1 ymu = mu; % first g(y) moment sn2 = exp(2*hyp(ng+1)); % Gaussian noise variance ys2 = s2 + sn2; % second g(y) moment % ymuM = ig(warp,ymu,hyp(1:ng)); % median % yupp = ig(warp,ymu+2*sqrt(ys2),hyp(1:ng)); % 95% confidence interval % ylow = ig(warp,ymu-2*sqrt(ys2),hyp(1:ng)); % ys2C = (yupp-ylow).^2/16; N = 20; [t,w] = gauher(N); oN = ones(1,N); % Gaussian-Hermite quadrature Z = sqrt(ys2(:))*t'+ymu(:)*oN; Y = ig(warp,Z,hyp(1:ng)); ymu = Y*w; ys2 = (Y-ymu*oN).^2*w; % first and second y moment varargout{2} = reshape(ymu,size(mu)); if nargout>2 varargout{3} = ys2; end end else inf = varargin{2}; % obtain input variables switch inf case {'infLaplace','infEP'} % they have the same structure if nargin<7 % no derivative mode if nargout>0, varargout{1} = varargout{1} + lgpy; end else % derivative mode if i<=ng % derivatives w.r.t. warping function parameters n = max([numel(y),numel(mu)]); for j=2:nargout, varargout{j} = zeros(n,1); end [dgy,dlgpy] = g(warp,y,hyp(1:ng),i); % warping function derivative out = cell(nargout+1,1); % allocate memory [out{:}] = likGaussWarp(warp, hyp, y, mu, varargin{1:2}); % query lik % works only for homoscedastic likelihoods where y and mu can be swapped if nargout>0, varargout{1} = dlgpy - out{2}.*dgy; end % apply chain rule if nargout>1, varargout{2} = - out{3}.*dgy; end if nargout>2, varargout{3} = - out{4}.*dgy; end end end case 'infVB' % output does not depend on mu and following parameters end end % marshalling of parameters and available warping functions function varargout = g(warp,varargin) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(warp,'id') % indentity warping likGaussWarp = likGauss if nargin<2 if nargout>0, varargout{1} = 0; end elseif nargin<4 if nargout>0, varargout{1} = varargin{1}; end if nargout>1, varargout{2} = 0*varargin{1}; end end elseif numel(strfind(warp,'poly'))>0 m = str2double(warp(5:end)); if nargin<2 && nargout>0, varargout{1} = m-1; return, end [varargout{:}] = g_poly(varargin{:}); elseif numel(strfind(warp,'tanh'))>0 m = str2double(warp(5:end)); if nargin<2 && nargout>0, varargout{1} = 3*m; return, end [varargout{:}] = g_tanh(varargin{:}); end % invert g(y) = z <=> ig(z) = y via bisection search + Newton iterations function [y,n,d] = ig(warp,z,hyp) y = z; gy = g(warp,z,hyp)-z; dz = max(abs(z(:))); % lower bound search ylow while any(0<gy(:)), y(0<gy) = y(0<gy)-dz; gy = g(warp,y,hyp)-z; end, ylow = y; y = z; gy = g(warp,z,hyp)-z; dz = max(abs(z(:))); % upper bound search yupp while any(0>gy(:)), y(0>gy) = y(0>gy)+dz; gy = g(warp,y,hyp)-z; end, yupp = y; for n=1:12 % bisection search ylow<=y<=yupp d = max(abs(gy(:))); if d<sqrt(eps), break, end y = (ylow+yupp)/2; gy = g(warp,y,hyp)-z; ylow(gy<0) = y(gy<0); yupp(gy>0) = y(gy>0); end for n=1:12 % Newton iterations [gy,lgpy] = g(warp,y,hyp); gpy = exp(lgpy); y = y - (gy-z)./gpy; y(y<ylow) = ylow(y<ylow); y(y>yupp) = yupp(y>yupp); % keep brackets d = max( abs(gy(:)-z(:)) ); if d<sqrt(eps), break, end end if n==10 || d>sqrt(eps), fprintf('Not converged: res=%1.4e\n',d), end % poly warping function g(y) and log of the derivative log(g'(y))>0 % or derivatives of the latter w.r.t. ith hyperparameter function [gy,lgpy] = g_poly(y,hyp,i) m = numel(hyp)+1; c = exp(hyp); if nargin==2 % function values gy = y; gpy = 1; ay = abs(y); for j=2:m gy = gy + c(j-1)*ay.^j; gpy = gpy + c(j-1)*j*ay.^(j-1); end gy = sign(y).*gy; lgpy = log(gpy); else % derivatives gpy = 1; ay = abs(y); for j=2:m gpy = gpy + c(j-1)*j*ay.^(j-1); end gy = c(i)*ay.^j; lgpy = c(i)*j*ay.^(j-1)./gpy; end % tanh warping function g(y) and log of the derivative log(g'(y))>0 % or derivatives of the latter w.r.t. ith hyperparameter function [gy,lgpy] = g_tanh(y,hyp,i) m = numel(hyp)/3; a = exp(hyp(1:m)); b = exp(hyp(m+(1:m))); c = hyp(2*m+(1:m)); if nargin==2 % function values gy = y; gpy = 1; for j=1:m ai = a(j); bi = b(j); ci = c(j); ti = tanh(bi*(y+ci)); dti = 1-ti.^2; gy = gy + ai *ti; gpy = gpy + ai*bi*dti; end lgpy = log(gpy); else % derivatives gpy = 1; for j=1:m ai = a(j); bi = b(j); ci = c(j); ti = tanh(bi*(y+ci)); dti = 1-ti.^2; gpy = gpy + ai*bi*dti; end if i<=m j = i; ai = a(j); bi = b(j); ci = c(j); ti = tanh(bi*(y+ci)); dti = 1-ti.^2; gy = ai*ti; lgpy = ai*bi*dti./gpy; elseif i<=2*m j = i-m; ai = a(j); bi = b(j); ci = c(j); ti = tanh(bi*(y+ci)); dti = 1-ti.^2; gy = ai*bi*dti.*(y+ci); d2ti = -2*ti.*dti; lgpy = ai*bi*(dti+bi*d2ti.*(y+ci))./gpy; else j = i-2*m; ai = a(j); bi = b(j); ci = c(j); ti = tanh(bi*(y+ci)); dti = 1-ti.^2; gy = ai*bi*dti; d2ti = -2*ti.*dti; lgpy = ai*bi^2*d2ti./gpy; end end
github
Hadisalman/stoec-master
likWeibull.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likWeibull.m
4,548
utf_8
5134b34b56b016f15d716469fb93c583
function [varargout] = likWeibull(link, hyp, y, mu, s2, inf, i) % likWeibull - Weibull likelihood function for strictly positive data y. The % expression for the likelihood is % likWeibull(f) = g1*ka/mu * (g1*y/mu)^(ka-1) * exp(-(g1*y/mu)^ka) with % gj = gamma(1+j/ka), mean=mu and variance=mu^2*(g2/g1^2-1) where mu = g(f) is % the Weibull intensity, f is a Gaussian process, y is the positive data. % Hence, we have llik(f) = log(likWeibull(f)) = % log(g1*ka/mu) + (ka-1)*log(g1*y/mu) - (g1*y/mu)^ka. % % We provide two inverse link functions 'exp' and 'logistic': % g(f) = exp(f) and g(f) = log(1+exp(f))). % The link functions are located at util/glm_invlink_*.m. % % Note that for neither link function the likelihood lik(f) is log concave. % % The hyperparameters are: % % hyp = [ log(ka) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % See also LIKFUNCTIONS.M. % % Copyright (c) by Hannes Nickisch, 2013-10-30. if nargin<4, varargout = {'1'}; return; end % report number of hyperparameters ka = exp(hyp); lg1 = gammaln(1+1/ka); g1 = exp(lg1); dlg1 = -psi(1+1/ka)/ka; if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability lg = g(mu,link); lp = lg1 + log(ka) + (ka-1)*(lg1+log(y)) - ka*lg - exp(ka*(lg1+log(y)-lg)); else lp = likWeibull(link, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 % compute y moments by quadrature n = max([length(y),length(mu),length(s2)]); on = ones(n,1); N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w'); mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only lg = g(sig*t'+mu*oN,link); ymu = exp(logsumexp2(lg+lw)); % first moment using Gaussian-Hermite quad if nargout>2 elg = exp(lg); g2 = gamma(1+2/ka); yv = elg.^2*(g2/g1^2-1); % second y moment from Weibull distribution ys2 = (yv+(elg-ymu*oN).^2)*w; end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' [lg,dlg,d2lg,d3lg] = g(mu,link); elg = exp(-ka*lg); if nargin<7 % no derivative mode lp = lg1 + log(ka) + (ka-1)*(lg1+log(y)) -ka*lg - exp(ka*(lg1+log(y)-lg)); dlp = {}; d2lp = {}; d3lp = {}; % return arguments if nargout>1 dlp = -ka*dlg + ka*(g1*y).^ka .* elg.*dlg; % dlp, deriv of log lik if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = -ka*d2lg + ka*(g1*y).^ka .* ( -ka*elg.*dlg.^2 + elg.*d2lg ); if nargout>3 % d3lp, 3rd derivative of log likelihood a = ka^2*dlg.^3 -3*ka*dlg.*d2lg + d3lg; d3lp = - ka*d3lg + ka*(g1*y).^ka .* a .*elg; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode v = ka*(lg1+log(y)-lg); ev = exp(v); % derivative of log lik w.r.t. ka w = v+ka*dlg1; dw = -ka*dlg; d2w = -ka*d2lg; lp_dhyp = 1 + w - ev.*w; dlp_dhyp = dw.*(1-ev.*(1+w)); % first derivative d2lp_dhyp = d2w.*(1-ev.*(1+w)) - dw.^2.*(ev.*(2+w)); % and also second varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargin<7 % no derivative mode % Since we are not aware of an analytical expression of the integral, % we use quadrature. varargout = cell(1,nargout); [varargout{:}] = lik_epquad({@likWeibull,link},hyp,y,mu,s2); else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' error('infVB not supported') end end % compute the log intensity using the inverse link function function varargout = g(f,link) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(link,'exp') [varargout{:}] = glm_invlink_exp(f); else [varargout{:}] = glm_invlink_logistic(f); end
github
Hadisalman/stoec-master
likGamma.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likGamma.m
4,573
utf_8
30195b20deb79baed3429087b58977a8
function [varargout] = likGamma(link, hyp, y, mu, s2, inf, i) % likGamma - Gamma likelihood function for strictly positive data y. The % expression for the likelihood is % likGamma(f) = al^al*y^(al-1)/gamma(al) * exp(-y*al/mu) / mu^al with % mean=mu and variance=mu^2/al where mu = g(f) is the Gamma intensity, f is a % Gaussian process, y is the strictly positive data. Hence, we have -- with % log(Zy) = log(gamma(al)) - al*log(al) + (1-al)*log(y) % llik(f) = log(likGamma(f)) = -al*( log(g(f)) + y/g(f) ) - log(Zy). % The larger one chooses al, the stronger the likelihood resembles a Gaussian % since skewness = 2/sqrt(al) and kurtosis = 6/al. % % We provide two inverse link functions 'exp' and 'logistic': % g(f) = exp(f) and g(f) = log(1+exp(f))). % The link functions are located at util/glm_invlink_*.m. % % Note that for neither link function the likelihood lik(f) is log concave. % % The hyperparameters are: % % hyp = [ log(al) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % See also LIKFUNCTIONS.M. % % Copyright (c) by Hannes Nickisch, 2013-10-16. if nargin<4, varargout = {'1'}; return; end % report number of hyperparameters al = exp(hyp); if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability lg = g(mu,link); lZy = gammaln(al) - al*log(al) + (1-al)*log(y); % normalisation constant lp = -al*(lg+y./exp(lg)) - lZy; else lp = likGamma(link, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 % compute y moments by quadrature n = max([length(y),length(mu),length(s2)]); on = ones(n,1); N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w'); mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only lg = g(sig*t'+mu*oN,link); ymu = exp(logsumexp2(lg+lw)); % first moment using Gaussian-Hermite quad if nargout>2 elg = exp(lg); yv = elg.^2/al; % second y moment from Gamma distribution ys2 = (yv+(elg-ymu*oN).^2)*w; end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' [lg,dlg,d2lg,d3lg] = g(mu,link); elg = exp(lg); if nargin<7 % no derivative mode lZy = gammaln(al) - al*log(al) + (1-al)*log(y); % normalisation constant lp = -al*(lg+y./elg) - lZy; dlp = {}; d2lp = {}; d3lp = {}; % return arguments if nargout>1 dlp = -al*dlg.*(1-y./elg); % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = -al*d2lg.*(1-y./elg) - al*dlg.*dlg.*y./elg; if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = -al*d3lg.*(1-y./elg) + al*dlg.*(dlg.*dlg-3*d2lg).*y./elg; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode dlZy = al*psi(0,al) - al*(log(al) + 1 + log(y)); lp_dhyp = -al*(lg+y./elg) - dlZy; % derivative of log likelihood w.r.t. al dlp_dhyp = -al*dlg.*(1-y./elg); % first derivative d2lp_dhyp = -al*d2lg.*(1-y./elg) - al*dlg.*dlg.*y./elg; % and also second varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargin<7 % no derivative mode % Since we are not aware of an analytical expression of the integral, % we use quadrature. varargout = cell(1,nargout); [varargout{:}] = lik_epquad({@likGamma,link},hyp,y,mu,s2); else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' error('infVB not supported') end end % compute the log intensity using the inverse link function function varargout = g(f,link) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(link,'exp') [varargout{:}] = glm_invlink_exp(f); else [varargout{:}] = glm_invlink_logistic(f); end
github
Hadisalman/stoec-master
likInvGauss.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likInvGauss.m
4,679
utf_8
1bffc204bfdee3ee427008906bce81ad
function [varargout] = likInvGauss(link, hyp, y, mu, s2, inf, i) % likInvGauss - Inverse Gaussian likelihood function for strictly positive data % y. The expression for the likelihood is % likInvGauss(f) = sqrt(lam/(2*pi*y^3))*exp(-lam*(mu-y)^2/(2*mu^2*y)) with % mean=mu and variance=mu^3/lam where mu = g(f) is the Inverse Gaussian % intensity, f is a Gaussian process, y is the strictly positive data. % Hence, we have -- with log(Zy) = -(log(lam)-log(2*pi*y^3))/2 % llik(f) = log(likInvGauss(f)) = -lam*(y-mu)^2/(2*mu^2*y) - log(Zy). % The larger one chooses lam, the stronger the likelihood resembles a Gaussian % since skewness = 3*sqrt(mu/lam) and kurtosis = 15*mu/lam. % % We provide two inverse link functions 'exp' and 'logistic': % g(f) = exp(f) and g(f) = log(1+exp(f))). % The link functions are located at util/glm_invlink_*.m. % % Note that for neither link function the likelihood lik(f) is log concave. % % The hyperparameters are: % % hyp = [ log(lam) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % See also LIKFUNCTIONS.M. % % Copyright (c) by Hannes Nickisch, 2013-10-16. if nargin<4, varargout = {'1'}; return; end % report number of hyperparameters lam = exp(hyp); if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability lg = g(mu,link); elg = exp(lg); lZy = -(log(lam)-log(2*pi*y.^3))/2; % normalisation constant lp = -lam*(y./elg-1).^2 ./(2*y) - lZy; else lp = likInvGauss(link, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 % compute y moments by quadrature n = max([length(y),length(mu),length(s2)]); on = ones(n,1); N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w'); mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only lg = g(sig*t'+mu*oN,link); ymu = exp(logsumexp2(lg+lw)); % first moment using Gaussian-Hermite quad if nargout>2 elg = exp(lg); yv = elg.^3/lam; % second y moment from inverse Gaussian distribution ys2 = (yv+(elg-ymu*oN).^2)*w; end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' [lg,dlg,d2lg,d3lg] = g(mu,link); elg = exp(lg); if nargin<7 % no derivative mode lZy = -(log(lam)-log(2*pi*y.^3))/2; % normalisation constant lp = -lam*(y./elg-1).^2 ./(2*y) - lZy; dlp = {}; d2lp = {}; d3lp = {}; % return arguments if nargout>1 dlp = lam*(y./elg-1).*dlg./elg; % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = lam*( (y./elg-1).*(d2lg-dlg.^2) - y.*dlg.^2./elg )./elg; if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = lam*( (y./elg-1) .* (4*dlg.^3-6*dlg.*d2lg+d3lg) ... + (3*dlg.^3 - 3*dlg.*d2lg) )./ elg; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode lp_dhyp = 1/2-lam*(y./elg-1).^2 ./(2*y); % deriv. of log lik w.r.t. lam dlp_dhyp = lam*(y./elg-1).*dlg./elg; % first derivative d2lp_dhyp = lam*( (y./elg-1).*(d2lg-dlg.^2) - y.*dlg.^2./elg )./elg; % 2nd varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargin<7 % no derivative mode % Since we are not aware of an analytical expression of the integral, % we use quadrature. varargout = cell(1,nargout); [varargout{:}] = lik_epquad({@likInvGauss,link},hyp,y,mu,s2); else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' error('infVB not supported') end end % compute the log intensity using the inverse link function function varargout = g(f,link) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(link,'exp') [varargout{:}] = glm_invlink_exp(f); else [varargout{:}] = glm_invlink_logistic(f); end
github
Hadisalman/stoec-master
likPoisson.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likPoisson.m
4,178
utf_8
9bdb4f7a4905445839d4697149efc827
function [varargout] = likPoisson(link, hyp, y, mu, s2, inf, i) % likPoisson - Poisson likelihood function for count data y. The expression for % the likelihood is % likPoisson(f) = mu^y * exp(-mu) / y! with mean=variance=mu % where mu = g(f) is the Poisson intensity, f is a % Gaussian process, y is the non-negative integer count data and % y! = gamma(y+1) its factorial. Hence, we have -- with Zy = gamma(y+1) = y! -- % llik(f) = log(likPoisson(f)) = log(g(f))*y - g(f) - log(Zy). % The larger the intensity mu, the stronger the likelihood resembles a Gaussian % since skewness = 1/sqrt(mu) and kurtosis = 1/mu. % % We provide two inverse link functions 'exp' and 'logistic': % For g(f) = exp(f), we have lik(f) = exp(f*y-exp(f)) / Zy. % For g(f) = log(1+exp(f))), we have lik(f) = log^y(1+exp(f)))(1+exp(f)) / Zy. % The link functions are located at util/glm_invlink_*.m. % % Note that for both intensities g(f) the likelihood lik(f) is log concave. % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % See also LIKFUNCTIONS.M. % % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-10-16. if nargin<4, varargout = {'0'}; return; end % report number of hyperparameters if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability lg = g(mu,link); lp = lg.*y - exp(lg) - gammaln(y+1); else lp = likPoisson(link, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 % compute y moments by quadrature n = max([length(y),length(mu),length(s2)]); on = ones(n,1); N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w'); mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only lg = g(sig*t'+mu*oN,link); ymu = exp(logsumexp2(lg+lw)); % first moment using Gaussian-Hermite quad if nargout>2 elg = exp(lg); yv = elg; % second y moment from Poisson distribution ys2 = (yv+(elg-ymu*oN).^2)*w; end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' if nargin<7 % no derivative mode [lg,dlg,d2lg,d3lg] = g(mu,link); elg = exp(lg); lp = lg.*y - elg - gammaln(y+1); dlp = {}; d2lp = {}; d3lp = {}; % return arguments if nargout>1 dlp = dlg.*(y-elg); % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = d2lg.*(y-elg) - dlg.*dlg.*elg; if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = d3lg.*(y-elg) - dlg.*(dlg.*dlg+3*d2lg).*elg; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode varargout = {[],[],[]}; % derivative w.r.t. hypers end case 'infEP' if nargin<7 % no derivative mode % Since we are not aware of an analytical expression of the integral, % hence we use quadrature. varargout = cell(1,nargout); [varargout{:}] = lik_epquad({@likPoisson,link},hyp,y,mu,s2); else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' error('infVB not supported') end end % compute the log intensity using the inverse link function function varargout = g(f,link) varargout = cell(nargout, 1); % allocate the right number of output arguments if strcmp(link,'exp') [varargout{:}] = glm_invlink_exp(f); else [varargout{:}] = glm_invlink_logistic(f); end
github
Hadisalman/stoec-master
likLogistic.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likLogistic.m
6,137
utf_8
0227c40f8798f8f47d1f32e9dfd6e946
function [varargout] = likLogistic(hyp, y, mu, s2, inf, i) % likLogistic - logistic function for binary classification or logit regression. % The expression for the likelihood is % likLogistic(t) = 1./(1+exp(-t)). % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. The moments % \int f^k likLogistic(y,f) N(f|mu,var) df are calculated via a cumulative % Gaussian scale mixture approximation. % % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-09-02. % % See also LIKFUNCTIONS.M. if nargin<3, varargout = {'0'}; return; end % report number of hyperparameters if nargin>1, y = sign(y); y(y==0) = 1; else y = 1; end % allow only +/- 1 values if numel(y)==0, y = 1; end if nargin<5 % prediction mode if inf is not present y = y.*ones(size(mu)); % make y a vector s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability evaluation yf = y.*mu; % product latents and labels lp = yf; ok = -35<yf; lp(ok) = -log(1+exp(-yf(ok))); % log of likelihood else % prediction lp = likLogistic(hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 p = exp(lp); ymu = 2*p-1; % first y moment if nargout>2 ys2 = 4*p.*(1-p); % second y moment end end varargout = {lp,ymu,ys2}; else % inference mode switch inf case 'infLaplace' if nargin<6 % no derivative mode f = mu; yf = y.*f; s = -yf; % product latents and labels dlp = {}; d2lp = {}; d3lp = {}; % return arguments ps = max(0,s); lp = -(ps+log(exp(-ps)+exp(s-ps))); % lp = -(log(1+exp(s))) if nargout>1 % first derivatives s = min(0,f); p = exp(s)./(exp(s)+exp(s-f)); % p = 1./(1+exp(-f)) dlp = (y+1)/2-p; % derivative of log likelihood if nargout>2 % 2nd derivative of log likelihood d2lp = -exp(2*s-f)./(exp(s)+exp(s-f)).^2; if nargout>3 % 3rd derivative of log likelihood d3lp = 2*d2lp.*(0.5-p); end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode varargout = {[],[],[]}; % derivative w.r.t. hypers end case 'infEP' if nargin<6 % no derivative mode y = y.*ones(size(mu)); % make y a vector % likLogistic(t) \approx 1/2 + \sum_{i=1}^5 (c_i/2) erf(lam_i/sqrt(2)t) lam = sqrt(2)*[0.44 0.41 0.40 0.39 0.36]; % approx coeffs lam_i and c_i c = [1.146480988574439e+02; -1.508871030070582e+03; 2.676085036831241e+03; -1.356294962039222e+03; 7.543285642111850e+01 ]; [lZc,dlZc,d2lZc] = likErf([], y*ones(1,5), mu*lam, s2*(lam.^2), inf); lZ = log_expA_x(lZc,c); % A=lZc, B=dlZc, d=c.*lam', lZ=log(exp(A)*c) dlZ = expABz_expAx(lZc, c, dlZc, c.*lam'); % ((exp(A).*B)*d)./(exp(A)*c) % d2lZ = ((exp(A).*Z)*e)./(exp(A)*c) - dlZ.^2 where e = c.*(lam.^2)' d2lZ = expABz_expAx(lZc, c, dlZc.^2+d2lZc, c.*(lam.^2)') - dlZ.^2; % The scale mixture approximation does not capture the correct asymptotic % behavior; we have linear decay instead of quadratic decay as suggested % by the scale mixture approximation. By observing that for large values % of -f*y ln(p(y|f)) for likLogistic is linear in f with slope y, we are % able to analytically integrate the tail region. val = abs(mu)-196/200*s2-4; % empirically determined bound at val==0 lam = 1./(1+exp(-10*val)); % interpolation weights lZtail = min(s2/2-abs(mu),-0.1); % apply the same to p(y|f) = 1 - p(-y|f) dlZtail = -sign(mu); d2lZtail = zeros(size(mu)); id = y.*mu>0; lZtail(id) = log(1-exp(lZtail(id))); % label and mean agree dlZtail(id) = 0; lZ = (1-lam).* lZ + lam.* lZtail; % interpolate between scale .. dlZ = (1-lam).* dlZ + lam.* dlZtail; % .. mixture and .. d2lZ = (1-lam).*d2lZ + lam.*d2lZtail; % .. tail approximation varargout = {lZ,dlZ,d2lZ}; else % derivative mode varargout = {[]}; % deriv. wrt hyp.lik end case 'infVB' % variational lower site bound % using -log(1+exp(-s)) = s/2 -log( 2*cosh(s/2) ); % the bound has the form: (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 n = numel(s2); b = (y/2).*ones(n,1); z = zeros(size(b)); varargout = {b,z}; end end % computes y = log( exp(A)*x ) in a numerically safe way by subtracting the % maximal value in each row to avoid cancelation after taking the exp function y = log_expA_x(A,x) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns y = log(exp(A-maxA*ones(1,N))*x) + maxA; % exp(A) = exp(A-max(A))*exp(max(A)) % computes y = ( (exp(A).*B)*z ) ./ ( exp(A)*x ) in a numerically safe way % The function is not general in the sense that it yields correct values for % all types of inputs. We assume that the values are close together. function y = expABz_expAx(A,x,B,z) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns A = A-maxA*ones(1,N); % subtract maximum value y = ( (exp(A).*B)*z ) ./ ( exp(A)*x );
github
Hadisalman/stoec-master
likSech2.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likSech2.m
8,514
utf_8
25a639e43b4bcdc60d8fd113ded18611
function [varargout] = likSech2(hyp, y, mu, s2, inf, i) % likSech2 - sech-square likelihood function for regression. Often, the sech- % square distribution is also referred to as the logistic distribution not to be % confused with the logistic function for classification. The expression for the % likelihood is % likSech2(t) = Z / cosh(tau*(y-t))^2 where % tau = pi/(2*sqrt(3)*sn) and Z = tau/2 % and y is the mean and sn^2 is the variance. % % hyp = [ log(sn) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. The moments % \int f^k likSech2(y,f) N(f|mu,var) df are calculated via a Gaussian % scale mixture approximation. % % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-09-02. % % See also LIKFUNCTIONS.M, LIKLOGISTIC.M. if nargin<3, varargout = {'1'}; return; end % report number of hyperparameters sn = exp(hyp); tau = pi/(2*sqrt(3)*sn); lZ = log(pi) - log(sn) - log(4*sqrt(3)); if nargin<5 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability evaluation lp = lZ - 2*logcosh(tau*(y-mu)); s2 = 0; else % prediction lp = likSech2(hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 ymu = mu; % first y moment if nargout>2 ys2 = s2 + sn.^2; % second y moment end end varargout = {lp,ymu,ys2}; else % inference mode switch inf case 'infLaplace' r = y-mu; [g,dg,d2g,d3g] = logcosh(tau.*r); % precompute derivatives if nargin<6 % no derivative mode dlp = {}; d2lp = {}; d3lp = {}; lp = lZ - 2*g; if nargout>1 % first derivatives dlp = 2*tau.*dg; if nargout>2 % 2nd derivative of log likelihood d2lp = -2*tau.^2.*d2g; if nargout>3 % 3rd derivative of log likelihood d3lp = 2*tau.^3.*d3g; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative mode lp_dhyp = 2*tau.*r.*dg - 1; % derivative w.r.t. sn dlp_dhyp = -2*tau.*(dg+tau.*r.*d2g); d2lp_dhyp = 2*tau.^2.*(2*d2g + tau.*r.*d3g); varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' n = max([length(y),length(mu),length(s2),length(sn)]); on = ones(n,1); y = y.*on; mu = mu.*on; s2 = s2.*on; sn = sn.*on; % vectors only fac = 1e3; % factor between the widths of the two distributions ... % ... from when one considered a delta peak, we use 3 orders of magnitude idlik = fac*sn<sqrt(s2); % Likelihood is a delta peak idgau = fac*sqrt(s2)<sn; % Gaussian is a delta peak id = ~idgau & ~idlik; % interesting case in between % likLogistic(t) \approx 1/2 + \sum_{i=1}^5 (c_i/2) erf(lam_i/sqrt(2)t) % likSech2(t|y,sn) \approx \sum_{i=1}^5 c_i likGauss(t|y,sn*rho_i) lam = sqrt(2)*[0.44 0.41 0.40 0.39 0.36]; % approx coeffs lam_i, c_i, rho_i c = [1.146480988574439e+02; -1.508871030070582e+03; 2.676085036831241e+03; -1.356294962039222e+03; 7.543285642111850e+01 ]; rho = sqrt(3)./(pi*lam); o5 = ones(1,5); if nargin<6 % no derivative mode lZ = zeros(n,1); dlZ = lZ; d2lZ = lZ; % allocate memory if any(idlik) [lZ(idlik),dlZ(idlik),d2lZ(idlik)] = ... likGauss(log(s2(idlik))/2, mu(idlik), y(idlik)); end if any(idgau) [lZ(idgau),dlZ(idgau),d2lZ(idgau)] = ... likSech2(log(sn(idgau)), mu(idgau), y(idgau)); end if any(id) [lZc,dlZc,d2lZc] = likGauss(log(sn(id)*rho), ... y(id)*o5, mu(id)*o5, s2(id)*o5, inf); lZ(id) = log_expA_x(lZc,c); % A=lZc, B=dlZc, lZ=log(exp(A)*c) dlZ(id) = expABz_expAx(lZc, c, dlZc, c); % ((exp(A).*B)*c)./(exp(A)*c) % d2lZ(id) = ((exp(A).*Z)*c)./(exp(A)*c) - dlZ.^2 d2lZ(id) = expABz_expAx(lZc, c, dlZc.^2+d2lZc, c) - dlZ(id).^2; % the tail asymptotics of likSech2 is the same as for likLaplace % which is not covered by the scale mixture approximation, so for % extreme values, we approximate likSech2 by a rescaled likLaplace tmu = (mu-y)./sn; tvar = s2./sn.^2; crit = 0.596*(abs(tmu)-5.38)-tvar; idl = -1<crit & id; % if 0<crit, Laplace is better if any(idl) % close to zero, we use a smooth .. lam = 1./(1+exp(-15*crit(idl))); % .. interpolation with weights lam thyp = log(sqrt(6)*sn(idl)/pi); [lZl,dlZl,d2lZl] = likLaplace(thyp, y(idl), mu(idl), s2(idl), inf); lZ(idl) = (1-lam).*lZ(idl) + lam.*lZl; dlZ(idl) = (1-lam).*dlZ(idl) + lam.*dlZl; d2lZ(idl) = (1-lam).*d2lZ(idl) + lam.*d2lZl; end end varargout = {lZ,dlZ,d2lZ}; else % derivative mode dlZhyp = zeros(n,1); if any(idlik) dlZhyp(idlik) = 0; end if any(idgau) dlZhyp(idgau) = ... likSech2(log(sn(idgau)), mu(idgau), y(idgau), 'infLaplace', 1); end if any(id) lZc = likGauss(log(sn(id)*rho),y(id)*o5,mu(id)*o5,s2(id)*o5,inf); dlZhypc = likGauss(log(sn(id)*rho),y(id)*o5,mu(id)*o5,s2(id)*o5,inf,1); % dlZhyp = ((exp(lZc).*dlZhypc)*c)./(exp(lZc)*c) dlZhyp(id) = expABz_expAx(lZc, c, dlZhypc, c); % the tail asymptotics of likSech2 is the same as for likLaplace % which is not covered by the scale mixture approximation, so for % extreme values, we approximate likLogistic by a rescaled likLaplace tmu = (mu-y)./sn; tvar = s2./sn.^2; crit = 0.596*(abs(tmu)-5.38)-tvar; idl = -1<crit & id; % if 0<crit, Laplace is better if any(idl) % close to zero, we use a smooth .. lam = 1./(1+exp(-15*crit(idl))); % .. interpolation with weights lam thyp = log(sqrt(6)*sn(idl)/pi); dlZhypl = likLaplace(thyp, y(idl), mu(idl), s2(idl), inf, i); dlZhyp(idl) = (1-lam).*dlZhyp(idl) + lam.*dlZhypl; end end varargout = {dlZhyp}; % derivative w.r.t. hypers end case 'infVB' % variational lower site bound % using -log( 2*cosh(s/2) ); % the bound has the form: (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 n = numel(s2); b = zeros(n,1); y = y.*ones(n,1); z = y; varargout = {b,z}; end end % numerically safe version of log(cosh(x)) = log(exp(x)+exp(-x))-log(2) function [f,df,d2f,d3f] = logcosh(x) a = exp(-2*abs(x)); % always between 0 and 1 and therefore safe to evaluate f = abs(x) + log(1+a) - log(2); df = sign(x).*( 1 - 2*a./(1+a) ); d2f = 4*a./(1+a).^2; d3f = -8*sign(x).*a.*(1-a)./(1+a).^3; % computes y = log( exp(A)*x ) in a numerically safe way by subtracting the % maximal value in each row to avoid cancelation after taking the exp function y = log_expA_x(A,x) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns y = log(exp(A-maxA*ones(1,N))*x) + maxA; % exp(A) = exp(A-max(A))*exp(max(A)) % computes y = ( (exp(A).*B)*z ) ./ ( exp(A)*x ) in a numerically safe way % The function is not general in the sense that it yields correct values for % all types of inputs. We assume that the values are close together. function y = expABz_expAx(A,x,B,z) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns A = A-maxA*ones(1,N); % subtract maximum value y = ( (exp(A).*B)*z ) ./ ( exp(A)*x );
github
Hadisalman/stoec-master
likGumbel.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/lik/likGumbel.m
3,976
utf_8
e181712e58f8360c4d43c5c354d8431a
function [varargout] = likGumbel(sign, hyp, y, mu, s2, inf, i) % likGumbel - Gumbel likelihood function for extremal value regression. % The expression for the likelihood is % likGumbel(t) = exp(-z-exp(-z))/be, z = ga+s*(y-t)/be, be = sn*sqrt(6)/pi % where s={+1,-1} is a sign switching between left and right skewed, ga is the % Euler-Mascheroni constant, y is the mean, sn^2 is the variance. % The skewness and kurtosis of likGumbel are 1.14*s and 2.4, respectively. % % The hyperparameters are: % % hyp = [ log(sn) ] % % Several modes are provided, for computing likelihoods, derivatives and moments % respectively, see likFunctions.m for the details. In general, care is taken % to avoid numerical issues when the arguments are extreme. % % Copyright (c) by Hannes Nickisch, 2013-11-01. % % See also LIKFUNCTIONS.M. if nargin<4, varargout = {'1'}; return; end % report number of hyperparameters if sign=='-', s = -1; else s = 1; end % extract sign of skewness sn2 = exp(2*hyp); % extract hyperparameters ga = 0.5772156649; % Euler-Mascheroni constant be = sqrt(6*sn2)/pi; lZ = -log(be); if nargin<6 % prediction mode if inf is not present if numel(y)==0, y = zeros(size(mu)); end s2zero = 1; if nargin>4, if norm(s2)>0, s2zero = 0; end, end % s2==0 ? if s2zero % log probability evaluation lp = likGumbel(sign, hyp, y, mu, [], 'infLaplace'); s2 = 0; else % prediction lp = likGumbel(sign, hyp, y, mu, s2, 'infEP'); end ymu = {}; ys2 = {}; if nargout>1 ymu = mu; % first y moment if nargout>2 ys2 = s2 + sn2; % second y moment end end varargout = {lp,ymu,ys2}; else switch inf case 'infLaplace' z = ga+s*(y-mu)/be; emz = exp(-z); if nargin<7 % no derivative mode dlp = {}; d2lp = {}; d3lp = {}; lp = lZ -z -emz; if nargout>1 dz = -s/be; % dz/dmu dlp = dz*(emz-1); % dlp, derivative of log likelihood if nargout>2 % d2lp, 2nd derivative of log likelihood d2lp = -dz^2*emz; if nargout>3 % d3lp, 3rd derivative of log likelihood d3lp = dz^3*emz; end end end varargout = {lp,dlp,d2lp,d3lp}; else % derivative w.r.t. log(sn) dz = -s/be; % dz/dmu dzs = -s*(y-mu)/be; % dz/dlog(sn) lp_dhyp = dzs.*(emz-1) -1; dlp_dhyp = dz*(1-emz.*(1+dzs)); d2lp_dhyp = dz^2*emz.*(2+dzs); varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp}; end case 'infEP' if nargout>1 error('infEP not supported since likT is not log-concave') end n = max([length(y),length(mu),length(s2)]); on = ones(n,1); y = y(:).*on; mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only % since we are not aware of an analytical expression of the integral, % we use Gaussian-Hermite quadrature N = 20; [t,w] = gauher(N); oN = ones(1,N); lZ = likGumbel(sign, hyp, y*oN, sig*t'+mu*oN, []); lZ = log_expA_x(lZ,w); % log( exp(lZ)*w ) varargout = {lZ}; case 'infVB' error('infVB not supported') end end % computes y = log( exp(A)*x ) in a numerically safe way by subtracting the % maximal value in each row to avoid cancelation after taking the exp function y = log_expA_x(A,x) N = size(A,2); maxA = max(A,[],2); % number of columns, max over columns y = log(exp(A-maxA*ones(1,N))*x) + maxA; % exp(A) = exp(A-max(A))*exp(max(A))
github
Hadisalman/stoec-master
priorSmoothBox1.m
.m
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/prior/priorSmoothBox1.m
1,617
utf_8
df60218e999e45adf5f4204501f3c42f
function [lp,dlp] = priorSmoothBox1(a,b,eta,x) % Univariate smoothed box prior distribution with linear decay in the log domain % and infinite support over the whole real axis. % Compute log-likelihood and its derivative or draw a random sample. % The prior distribution is parameterized as: % % p(x) = sigmoid(eta*(x-a))*(1-sigmoid(eta*(x-b))), % where sigmoid(z) = 1/(1+exp(-z)) % % a(1x1) is the lower bound parameter, b(1x1) is the upper bound parameter, % eta(1x1)>0 is the slope parameter and x(1xN) contains query hyperparameters % for prior evaluation. Larger values of eta make the distribution more % box-like. % % /------------\ % / \ % -------- | | --------> x % a b % % For more help on design of priors, try "help priorDistributions". % % Copyright (c) by Jose Vallet and Hannes Nickisch, 2014-09-08. % % See also PRIORDISTRIBUTIONS.M. if nargin<3, error('a, b and eta parameters need to be provided'), end if b<=a, error('b must be greater than a.'), end if ~(isscalar(a)&&isscalar(b)&&isscalar(eta)) error('a, b and eta parameters need to be scalar values') end if nargin<4 % inverse sampling u = exp((b-a)*eta*rand()); lp = log((u-1)/(exp(-eta*a)-u*exp(-eta*b)))/eta; return end [lpa,dlpa] = logr(eta*(x-a)); [lpb,dlpb] = logr(-eta*(x-b)); lp = lpa + lpb - log(b-a) + log(1-exp((a-b)*eta)); dlp = eta*(dlpa - dlpb); % r(z) = 1/(1+exp(-z)), log(r(z)) = -log(1+exp(-z)) function [lr,dlr] = logr(z) lr = z; ok = -35<z; lr(ok) = -log(1+exp(-z(ok))); dlr = 1./(1+exp(z));