plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
CohenBerkeleyLab/WRF_Utils-master
test_wrf_bl_height.m
.m
WRF_Utils-master/One-off Scripts/test_wrf_bl_height.m
3,712
utf_8
371c8d38efec5ce36408596fe62b02c5
function [ fraction_good, fraction_ok, fraction_undefined, indices_good, indices_ok, indices_bad, indices_undefined ] = test_wrf_bl_height( z, no2, is_z_pres, pblh ) %TEST_WRF_BL_HEIGHT Plots tests of ways to find the chemical BL height from WRF profiles % Detailed explanation goes here E = JLLErrors; if ndims(z) ~= 3 || ndims(no2) ~= 3 E.badinput('Both input matrices must be 3D') elseif any(size(z) ~= size(no2)) && size(z,3) ~= size(no2,3)+1 E.badinput('Both input matrices must have the same size, or z must have at most one more element in the third dimension') end if ~exist('is_z_pres','var') is_z_pres = false; end if ~exist('pblh','var') use_wrf_blh = false; else use_wrf_blh = true; end if size(z,3) == size(no2,3)+1 z = z(:,:,1:end-1); end % This function will randomly pick profiles from the matrix provided, % calculate the boundary layer height, and plot both the profile and the % height. It will then ask if the height is accurate and keep track of what % percent (and which ones) are good or bad. This will continue until the % user says to quit. n = 0; n_good = 0; n_ok = 0; n_undefined = 0; indices_good = {}; indices_ok = {}; indices_bad = {}; indices_undefined = {}; while true n = n+1; i = randi(size(z,1)); j = randi(size(z,2)); z_slice = squeeze(z(i,j,:)); no2_slice = squeeze(no2(i,j,:)); f=figure; line(no2_slice, z_slice, 'linewidth', 2, 'color', 'k', 'linestyle', '-'); if is_z_pres set(gca,'ydir','reverse'); end method = 'exp2'; while true if ~use_wrf_blh blh = find_bdy_layer_height(no2_slice, z_slice, method, 'altispres', is_z_pres); l=line([min(no2_slice(:)), max(no2_slice(:))], [blh blh], 'linewidth', 2, 'color', 'b', 'linestyle', '--'); d = (no2_slice(1) - median(no2_slice))/no2_slice(1) * 100; title(sprintf('%.2f',d)); else l = line([min(no2_slice(:)), max(no2_slice(:))], [pblh(i,j)+z_slice(1), pblh(i,j)+z_slice(1)]); end s = ask_question; switch s case 'y' n_good = n_good + 1; indices_good = cat(1,indices_good, {[i,j],method}); break case 'n' indices_bad = cat(1, indices_bad, {[i,j],method}); break case 'o' n_ok = n_ok + 1; indices_ok = cat(1,indices_ok, {[i,j],method}); break case 'e' if ~use_wrf_blh && ~strcmp(method,'exp') delete(l); if strcmp(method, 'exp2') method = 'exp1.5'; elseif strcmp(method, 'exp1.5') method = 'exp'; end else n_undefined = n_undefined + 1; indices_undefined = cat(1, indices_undefined, {[i,j],method}); break end case 'q' n = n-1; % we never categorized this last profile. break end end close(f); if strcmp(s,'q') break end end fraction_good = n_good / n; fraction_ok = n_ok / n; fraction_undefined = n_undefined / n; end function s = ask_question fprintf('Is the BL height for this profile accurate?\n') quest = ' Enter ''y'' for yes, ''n'' for no, ''o'' for okay, ''e'' if no BL height shown, or ''q'', to quit: '; while true s = lower(input(quest, 's')); s = s(1); if ~ismember(s,'ynoeq') fprintf(' * Please enter y, n, o, e, or q! *\n') else break end end end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_autoencoder_with_classerror.m
.m
Encoder-Based-Lifelong-learning-master/Autoencoder/cnn_autoencoder_with_classerror.m
6,861
utf_8
6e6a912f8633c3a7a031dd3fb869d0b2
function [net, opts, imdb, info] = cnn_autoencoder_with_classerror(varargin) %CNN_AUTOENCODER_WITH_CLASSERROR contructs an autoencoder to be trained in order to minimize: % - the reconstruction loss (as is classicly the case for autoencoders) % - the task loss (e.g. classification loss) when the task layers are given the output ofthe autoencoder %For more details, see A. Rannen Triki, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, Encoder Based Lifelong %Learning. ICCV 2017 - Section 3. % % Authors: Rahaf Aljundi & Amal Rannen Triki % % See the COPYING file. % % Adapted from MatConvNet of VLFeat library. Their copyright info: % % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', 'matlab', 'vl_setupnn.m')) ; opts = getAutoencoderOpts; opts = vl_argparse(opts, varargin) ; net = get_onelayer_autoencoder(opts); net = add_task_layers(net,opts); if exist(opts.imdbPath, 'file') imdb=load(opts.imdbPath); if(isfield(imdb,'imdb')) imdb=imdb.imdb; end inds=find(imdb.images.set==2); if ~isempty(inds) opts.val = inds; end; end opts.compute_stats=false; [net, info] = cnn_train_adadelta(net, imdb, getBatchFn(opts), opts); end % ------------------------------------------------------------------------- function weights = init_weight(opts, h, w, in, out, type) % ------------------------------------------------------------------------- % See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into % rectifiers: Surpassing human-level performance on imagenet % classification. CoRR, (arXiv:1502.01852v1), 2015. switch lower(opts.weightInitMethod) case 'gaussian' sc = 0.01/opts.scale ; weights = randn(h, w, in, out, type)*sc; case 'xavier' sc = sqrt(3/(h*w*in)) ; weights = (rand(h, w, in, out, type)*2 - 1)*sc ; case 'xavierimproved' sc = sqrt(2/(h*w*out)) ; weights = randn(h, w, in, out, type)*sc ; otherwise error('Unknown weight initialization method''%s''', opts.weightInitMethod) ; end end % ------------------------------------------------------------------------- function net = get_onelayer_autoencoder(opts) % ------------------------------------------------------------------------- %Constructs an autoencoder with one hidden layer, with sigmoid activation, and a reconstruction loss %multiplied by a parameter alpha that controls the compromise between the reconstruction loss and the %task loss if (~isempty(opts.initial_encoder)) load(opts.initial_encoder); net = vl_simplenn_move(net, 'cpu') ; else net.layers = {} ; % Layer 1 net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', 'code', '1'), ... 'weights', {{init_weight(opts, 1, 1, opts.input_size, opts.code_size, 'single'), ... ones( opts.code_size, 1, 'single')*opts.initBias}}, ... 'stride', [1 1], ... 'pad', [0 0 0 0], ... 'dilate', 1, ... 'learningRate', [1 1], ... 'weightDecay', [1 0] ,'precious',1 ) ; %Sigmoid activation net.layers{end+1} = struct('name', 'encoder_1_sigmoid', ... 'type', 'sigmoid' ); % Layer 2 net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', 'data_hat', '3'), ... 'weights', {{init_weight(opts, 1, 1, opts.code_size, opts.input_size, 'single'), ... ones(opts.input_size, 1, 'single')*opts.initBias}}, ... 'stride', [1 1], ... 'pad', [0 0 0 0], ... 'dilate', 1, ... 'learningRate', [1 1], ... 'weightDecay', [1 0] , 'precious',1 ) ; %Loss net.layers{end+1} = struct('type', 'intermediate_euclideanloss','alpha',opts.alpha); end end % ------------------------------------------------------------------------- function net = add_task_layers(net,opts) % ------------------------------------------------------------------------- %Adds the task layers (e.g. fully connected layers for a classification ConvNet) to the autoencoder %WARNING: orgNet.layers{end}.type should be set to the loss related to your task loss (e.g. softmaxlss). %Make sure that this loss is interpretable by vl_simplenn.m orgNet = load(opts.orgNetPath); if(isfield(orgNet,'net')) orgNet=orgNet.net; end orgNet.layers{end}.type='softmaxloss'; orgNet = vl_simplenn_tidy(orgNet) ; orgNet.layers(1:opts.output_layer_id-1) =[]; for i=1:length(orgNet.layers) if isfield(orgNet.layers{i}, 'learningRate') orgNet.layers{i}.learningRate = zeros(size(orgNet.layers{i}.learningRate)); end end net.layers(end+1:end+length(orgNet.layers)) = orgNet.layers; end % ------------------------------------------------------------------------- function opts=getAutoencoderOpts() % ------------------------------------------------------------------------- %Initializes the options for the autoencoder training %Make sure to change the paths to your data and models if needed opts.nesterovUpdate = false; opts.expDir = fullfile(vl_rootnn, 'data', 'autoencoder_with_classerror') ; opts.dataDir = fullfile(vl_rootnn, 'data', 'dataset') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.orgNetPath= fullfile(opts.expDir, 'model-task-1.mat'); opts.dataLinks = 1; %1 if imdb.images.data contains images paths, 0 otherwise opts.code_size=100; opts.input_size= 9216; opts.batchSize= 128; opts.initial_encoder=[]; opts.errorType = 'euclideanloss'; opts.errorFunction = 'euclideanloss' ; opts.continue = true; opts.learningRate = 1e-2; opts.numEpochs = 100; opts.imagenet_mean='imagenet_mean'; opts.imagenet_std='imagenet_std'; opts.compute_stats=false; opts.alpha=1e-6; opts.output_layer_id= 16; opts.useGpu = true; opts.val = []; opts.weightDecay = 5e-4; opts.scale = 1 ; opts.initBias = 0 ; opts.weightInitMethod = 'xavierimproved' ; opts.batchNormalization = false ; opts.networkType = 'simplenn' ; opts.classNames = {} ; opts.classDescriptions = {} ; opts.numFetchThreads = 12 ; end % ------------------------------------------------------------------------- function fn = getBatchFn(opts) % ------------------------------------------------------------------------- fn = @(x,y) getBatch(x,y,opts) ; end % ------------------------------------------------------------------------- function varargout = getBatch(imdb, batch, opts) % ------------------------------------------------------------------------- if opts.dataLinks im_links=imdb.images.data(batch); input = []; for i=1:length(im_links) im = load(im_links{i}); input = cat(4, input, im.input); end; else input = imdb.images.data(:,:,:,batch); end; labels = imdb.images.labels(batch); varargout = {input, labels} ; end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_train_adadelta.m
.m
Encoder-Based-Lifelong-learning-master/Autoencoder/cnn_train_adadelta.m
22,540
utf_8
02f3c27590616a1beeaa11e720632314
function [net, stats] = cnn_train_adadelta(net, imdb, getBatch, varargin) %CNN_TRAIN_ADADELTA An example of custom implementation of adaptive %gradient for training CNNs, needed with matconvnet_b23 or older. %From the version matconvnet_b24 on, the solver adadelta can be used %instead. %CNN_TRAIN_ADADELTA() is an example learner implementing adaptive stochastic % gradient descent with ADADELTA method to train a CNN. It can be used % with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % % Authors: Rahaf Aljundi (RA) % % Adapted from MatConvNet of VLFeat library. Their copyright info: % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [1] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; %==========legacy code=============== opts.compute_stats=false; opts.imagenet_mean='imagenet_mean'; opts.imagenet_std='imagenet_std'; opts.delta = 1e-8; opts.errorType=''; opts.weightInitMethod = 'gaussian' ; opts.batchNormalization = false ; opts.networkType = 'simplenn' ; opts.scale = 1 ; opts.initBias = 0 ; opts.initial_encoder=''; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'euclideanloss' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts.imdbPath=[]; opts.net_path=''; opts.input_size=''; opts.code_size=''; opts.output_layer_id=''; opts.classNames = {} ; opts.classDescriptions = {} ; opts.numFetchThreads = 12 ; opts.useGpu=1; %================================== opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==3) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end %==========================AdaDelta================================ %Written by RA for l=1:numel(net.layers) if ~strcmp(net.layers{l}.type, 'conv'), continue ; end J = numel(net.layers{l}.weights) ; for j=1:J net.layers{l}.Gf{j} = zeros(size(net.layers{l}.weights{j}), 'single'); net.layers{l}.Df{j} = zeros(size(net.layers{l}.weights{j}), 'single'); end end %==========================AdaDelta================================= % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end case 'euclideanloss' opts.errorFunction = @error_euclidean ; if isempty(opts.errorLabels), opts.errorLabels = {'euc_err'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; %HERE xx_temp= tmp(1,:)'; xx_temp=gather(xx_temp); values(end+1,:) = xx_temp ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; function err = error_euclidean(params, labels, res) predictions = gather(res(end-1).x) ; err = euclideanloss((predictions), labels); % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) for i = 1:numel(net.layers) for j = 1:numel(net.layers{i}.weights) state.momentum{i}{j} = 0 ; end end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move(net, 'gpu') ; for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gpuArray(state.momentum{i}{j}) ; end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels] = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; res = vl_simplenn_LwF_encoder(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats = extractStats(net, params, error / num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; % collect diagnostic statistics if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gather(state.momentum{i}{j}) ; end end end net = vl_simplenn_move(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for l=numel(net.layers):-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else %====================ADADELTA========================== %Written by RA %Implements ADADELTA (see Matthew D. Zeiler, ADADELTA: AN %ADAPTIVE LEARNING RATE METHOD, arXiv:1212.5701. %g_f is the current gradient % net.layers{l}.Gf{j} contains the update rule (Delta in the % paper) %params.momentum and params.delta are the method %hyperparameters (correpond respectively to rho and epsilon in the paper) if ~strcmp(net.layers{l}.type, 'conv'), continue ; end thisDecay = params.weightDecay * net.layers{l}.weightDecay(j) ; g_f = res(l).dzdw{j}; net.layers{l}.Gf{j} =params.momentum.*net.layers{l}.Gf{j}+ (1-params.momentum).*(g_f .^ 2); % Compute update dCurr= -(sqrt( net.layers{l}.Df{j} + params.delta)./sqrt( net.layers{l}.Gf{j} + params.delta)).*g_f; % Update accumulated updates (deltas) net.layers{l}.Df{j} =params.momentum.*net.layers{l}.Df{j}+(1-params.momentum).*( dCurr .^ 2); net.layers{l}.weights{j}= net.layers{l}.weights{j}+ dCurr; %====================ADADELTA========================== end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} variation = thisLR * mean(abs(state.momentum{l}{j}(:))) ; power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power); label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) dt=whos('state'); MB=dt.bytes*9.53674e-7 dt=whos('net'); MB=dt.bytes*9.53674e-7 % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
add_new_task.m
.m
Encoder-Based-Lifelong-learning-master/LwF_with_encoder/Model_preparation/add_new_task.m
6,061
utf_8
aef5b1c13f46b5114cf9430da4776951
function [new_net, aug_imdb] = add_new_task(varargin) %ADD_NEW_TASK modifies a model and to prepare it for training on a new task %and modifies its corresponding data by: % -adding the two first layers of the autoencoder of the model % -augmenting the data if needed % -add the task specific layers to the model and train them for few % epochs for a better initialization. %The last network layer is a custom layer, that contains 2 branches: % - 1 for the autoencoder % - 1 for the task operator (see paper for definition) % The task operator is also divided into a commun part and a task specific % part. The task specific part is the last layer, that is also a custom % layer divided into a branch per task, in the same order the tasks are fed % to the model. % %For more details about the model, see A. Rannen Triki, R. Aljundi, M. B. Blaschko, %and T. Tuytelaars, Encoder Based Lifelong Learning. ICCV 2017 % % Author: Rahaf Aljundi % % See the COPYING file. % % Adapted from MatConvNet of VLFeat library. Their copyright info: % % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts=getDefaultOpts(); [opts, ~] = vl_argparse(opts, varargin) ; org_imdb=load(opts.imdb_path); org_net=load(opts.orgin_net); if(isfield(org_net,'net')) org_net=org_net.net; end %Prepare autoencoder autoencoder_net = load(opts.autoencoder_path); if isfield(autoencoder_net,'net') autoencoder_net=autoencoder_net.net; end; new_net=org_net; new_enc_net.layers=[]; new_enc_net.layers{1}=struct('type','en_reshape'); new_enc_net.layers(end+1:end+2)=autoencoder_net.layers(1:2); new_enc_net.layers{end+1}=struct('type','intermediate_euclideanloss'); new_enc_net.layers{end}.alpha=opts.alpha; new_enc_net.layers{1}.gr_weight=1; autoencoder_net=new_enc_net; for i=1:numel(autoencoder_net.layers) if(isfield(autoencoder_net.layers{i},'Gf')) autoencoder_net.layers{i}=rmfield(autoencoder_net.layers{i},'Gf'); end if(isfield(autoencoder_net.layers{i},'Df')) autoencoder_net.layers{i}=rmfield(autoencoder_net.layers{i},'Df'); end autoencoder_net.layers{i}.learningRate=[0 0]; end %Add autoencoder to the model new_net.layers{end}.tasks{end+1}=new_net.layers{end}.tasks{end}; new_net.layers{end}.tasks{end-1}=autoencoder_net; %Record the initial codes and last task targets for the new data if(~exist(opts.output_imdb_path,'file')) mkdir(opts.aug_output_path) encoder_opts.output_layer_id=opts.split_layer; % if augmentation is needed if(opts.extract_images) org_imdb=load(opts.imdb_path); [aug_imdb]=augment_data(org_imdb,org_net,opts.aug_output_path,autoencoder_net,encoder_opts); [imdb] = record_task_aug(aug_imdb,new_net,opts); save(opts.output_imdb_path,'imdb'); % if the data is already augmented else aug_imdb=load(opts.old_aug_imdb_path); if(isfield(aug_imdb,'imdb')) aug_imdb=aug_imdb.imdb; end [imdb] = record_task_aug(aug_imdb,new_net,opts); save(opts.output_imdb_path,'imdb'); end end %finetune only the new task specific layer while freezing all other fine_tune_opts.expDir=opts.freezeDir; fine_tune_opts.imdbPath=opts.imdb_path; fine_tune_opts.dataDir=''; fine_tune_opts.modelPath=opts.last_task_net_path; fine_tune_opts.train.learningRate=opts.train.learningRate; fine_tune_opts.train.batchSize=opts.train.batchSize; fine_tune_opts.freeze_layer=22; fine_tune_opts.add_dropout=0; cnn_fine_tune_freeze(fine_tune_opts); freezed_net=load(fullfile(opts.freezeDir,strcat('net-epoch-',num2str(findLastCheckpoint(opts.freezeDir)),'.mat'))); if isfield(freezed_net, 'net') freezed_net=freezed_net.net; end; %Add the knowledge distillation (old tasks) and cross entropy(new task) %losses new_net.layers{end}.tasks{end}.layers{end}.tasks{end}.layers{end}=struct('type','softmaxlossdiff'); new_net.layers{end}.tasks{end}.layers{end}.tasks{end+1}.layers{1}=freezed_net.layers{end-1:end}; new_net.layers{end}.tasks{end}.layers{end}.tasks{end}.layers{1}.dilate=1; new_net.layers{end}.tasks{end}.layers{end}.tasks{end}.layers{end+1} = struct('type', 'softmaxloss') ;% net=new_net; save(opts.outputnet_path,'net'); end % ------------------------------------------------------------------------- function opts=getDefaultOpts() % ------------------------------------------------------------------------- %Initializes the options for the autoencoder training %Make sure to change the paths to your data and models if needed opts.split_layer=16; opts.expDir = fullfile(vl_rootnn, 'data', 'LwF_with_encoder') ; opts.orgNetPath= fullfile(opts.expDir, 'model-task-1.mat'); opts.imdb_path=fullfile(opts.expDir, 'imdb.mat'); opts.outputnet_path=fullfile(opts.expDir, 'model-task-2-initial.mat'); opts.output_imdb_path=fullfile(opts.expDir, 'imdb-2.mat'); opts.train.learningRate = [0.0004*ones(1, 54) 0.1*0.0004*ones(1, 18)] ; opts.freezeDir=fullfile(opts.expDir, 'task-2-finetune'); opts.train.batchSize=15; opts.aug_output_path=fullfile(vl_rootnn, 'data', 'aug-dataset-2') ; opts.old_aug_imdb_path=fullfile(opts.expDir, 'aug-imdb-2.mat'); opts.autoencoder_dir = fullfile(vl_rootnn, 'data', 'autoencoder_with_classerror'); opts.autoencoder_path=fullfile(opts.autoencoder_dir, strcat('net-epoch-',num2str(findLastCheckpoint(opts.autoencoder_dir)),'.mat')) ; opts.scale = 1 ; opts.extract_images=true; opts.alpha=1e-1; opts.last_task_net_path='';%the last network after lwf end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- % Finds the network of the last epoch in the directory modelDir list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_fine_tune_freeze.m
.m
Encoder-Based-Lifelong-learning-master/LwF_with_encoder/Model_preparation/cnn_fine_tune_freeze.m
9,697
utf_8
2a13c512208940104d831be1ca2ed4fa
function [net, info] = cnn_fine_tune_freeze(varargin) %CNN_FINE_TUNE_FREEZE finetune the last layers of the network for %the new task before adding it to the global model %See add_new_task for details % % Author: Rahaf Aljundi % % See the COPYING file. % % Adapted from MatConvNet of VLFeat library. Their copyright info: % % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', 'matlab', 'vl_setupnn.m')) ; opts.train.gpus=[1]; opts.train.learningRate=0.01*ones(1,100); opts.train.batchSize=256; opts.dataDir = fullfile(vl_rootnn, 'data','ILSVRC2012') ; opts.modelType = 'alexnet' ; opts.network = [] ; opts.networkType = 'simplenn' ; opts.batchNormalization = true ; opts.weightInitMethod = 'gaussian' ; opts.imdbPath = fullfile(opts.dataDir,'imdb'); opts.batchSize=256; opts.modelPath='data/models/imagenet-caffe-alex.mat'; opts.compute_stats=false; opts.freeze_layer=15; opts.add_dropout=true; opts.useGpu=false; opts.weightInitMethod = 'gaussian'; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.modelType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end sfx = [sfx '-' opts.networkType] ; opts.expDir = fullfile(vl_rootnn, 'data', ['imagenet12-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.useValidation=true; opts.numFetchThreads = 12 ; opts.lite = false ; opts.imdbPath = fullfile(opts.dataDir, opts.imdbPath); opts.numAugments=3; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- imdb = load(opts.imdbPath) ; if(isfield(imdb,'imdb')) imdb=imdb.imdb; end mkdir(opts.expDir); %-------------------------------------------------------------------------- % create a validation set %-------------------------------------------------------------------------- if(opts.useValidation) sets=unique(imdb.images.set); if(numel(sets)==2) test_set=find(imdb.images.set~=1); imdb.images.set(test_set)=3; training_inds=find(imdb.images.set==1); training_size=numel(training_inds); %create validation inds val_inds= randi(training_size,floor(training_size/10),1); imdb.images.set(training_inds(val_inds))=2; end else test_set=find(imdb.images.set~=1); imdb.images.set(test_set)=2; end %========================================================================== if(opts.compute_stats) % Compute image statistics (mean, RGB covariances, etc.) imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; if exist(imageStatsPath) load(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; else train = find(imdb.images.set == 1) ; images = fullfile( imdb.images.data(train(1:100:end))) ; [averageImage, rgbMean, rgbCovariance] = getImageStats(images, ... 'imageSize', [256 256], ... 'numThreads', opts.numFetchThreads, ... 'gpus', opts.train.gpus) ; save(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; end [v,d] = eig(rgbCovariance) ; rgbDeviation = v*sqrt(d) ; clear v d ; end % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- net = load(opts.modelPath ); if(isfield(net,'net')) net=net.net; end % Meta parameters if(opts.compute_stats) net.meta.normalization.averageImage=averageImage; end net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * zeros(3)) ; net.meta.augmentation.jitterAspect = [2/3, 3/2] ; net.meta.trainOpts.learningRate =opts.train.learningRate ; net.meta.trainOpts.numEpochs = numel(opts.train.learningRate) ; net.meta.trainOpts.batchSize = opts.train.batchSize ; net.meta.trainOpts.weightDecay = 0.0005 ; %--------------------------------------------------------------------------- % put drop out layers %--------------------------------------------------------------------------- aux_net=net; opts.scale = 1 ; if (opts.add_dropout) aux_net.layers = net.layers(1:end-4); %add dropout aux_net = add_dropout(aux_net, 'drop_out6'); %get number of classes from the dataset %move fc7 and relu aux_net.layers{end+1}= net.layers{end-3}; aux_net.layers{end+1}= net.layers{end-2}; %add dropout aux_net = add_dropout(aux_net, 'drop_out7'); else aux_net.layers = net.layers(1:end-2); end %add task specific layer aux_net.layers{end+1} = struct('type', 'conv', ... 'weights', {{init_weight(opts,1,1,4096,numel(imdb.meta.classes), 'single'), zeros(1,numel(imdb.meta.classes),'single')}}, ... 'learningRate', [1 1], ... 'stride', [1 1], ... 'pad', [0 0 0 0]) ; aux_net.layers{end+1} = struct('type', 'softmaxloss') ;% %FREEZE OLD LAYERS for i=1:opts.freeze_layer-1 if strcmp(aux_net.layers{1,i}.type,'conv') aux_net.layers{1,i}.learningRate=[0 0]; end end net=aux_net; net = vl_simplenn_tidy(net) ; % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainFn = @cnn_train ; case 'dagnn', trainFn = @cnn_train_dag ; end [net, info] = trainFn(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train) ; % ------------------------------------------------------------------------- % Deploy % ------------------------------------------------------------------------- net = cnn_imagenet_deploy(net) ; modelPath = fullfile(opts.expDir, 'net-deployed.mat'); switch opts.networkType case 'simplenn' save(modelPath, '-struct', 'net') ; case 'dagnn' net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % ------------------------------------------------------------------------- function weights = init_weight(opts, h, w, in, out, type) % ------------------------------------------------------------------------- % See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into % rectifiers: Surpassing human-level performance on imagenet % classification. CoRR, (arXiv:1502.01852v1), 2015. switch lower(opts.weightInitMethod) case 'gaussian' sc = 0.01/opts.scale ; weights = randn(h, w, in, out, type)*sc; case 'xavier' sc = sqrt(3/(h*w*in)) ; weights = (rand(h, w, in, out, type)*2 - 1)*sc ; case 'xavierimproved' sc = sqrt(2/(h*w*out)) ; weights = randn(h, w, in, out, type)*sc ; otherwise error('Unknown weight initialization method''%s''', opts.weightInitMethod) ; end function net = add_dropout(net, id) % -------------------------------------------------------------------- net.layers{end+1} = struct('type', 'dropout', ... 'name', sprintf('dropout%s', id), ... 'rate', 0.5) ; % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', meta.normalization.cropSize, ... 'subtractAverage', mu) ; % Copy the parameters for data augmentation bopts.train = bopts.test ; for f = fieldnames(meta.augmentation)' f = char(f) ; bopts.train.(f) = meta.augmentation.(f) ; end bopts.numAugments=opts.numAugments; fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(batch) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end %handelling the augmentation data=[]; for i=1:opts.numAugments curr_data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if(~isempty(data)) data=cat(4,data,curr_data); else data=curr_data; end end rep_inds=get_aug_inds(opts,batch); data=data(:,:,:,rep_inds); if nargout > 0 labels = imdb.images.labels(batch) ; a=repmat(labels,size(data,4)/size(batch,2), 1); labels=a(:); switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_imagenet_deploy.m
.m
Encoder-Based-Lifelong-learning-master/LwF_with_encoder/Model_training/cnn_imagenet_deploy.m
6,585
utf_8
2f3e6d216fa697ff9adfce33e75d44d8
function net = cnn_imagenet_deploy(net) %CNN_IMAGENET_DEPLOY Deploy a CNN isDag = isa(net, 'dagnn.DagNN') ; if isDag dagRemoveLayersOfType(net, 'dagnn.Loss') ; dagRemoveLayersOfType(net, 'dagnn.DropOut') ; else net = simpleRemoveLayersOfType(net, 'softmaxloss') ; net = simpleRemoveLayersOfType(net, 'dropout') ; end if isDag net.addLayer('prob', dagnn.SoftMax(), 'prediction', 'prob', {}) ; else net.layers{end+1} = struct('name', 'prob', 'type', 'softmax') ; end if isDag dagMergeBatchNorm(net) ; dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ; else net = simpleMergeBatchNorm(net) ; net = simpleRemoveLayersOfType(net, 'bnorm') ; end if ~isDag net = simpleRemoveMomentum(net) ; end % Switch to use MatConvNet default memory limit for CuDNN (512 MB) if ~isDag for l = simpleFindLayersOfType(net, 'conv') net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ; end else for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ; end end % ------------------------------------------------------------------------- function opts = removeCuDNNMemoryLimit(opts) % ------------------------------------------------------------------------- remove = false(1, numel(opts)) ; for i = 1:numel(opts) if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit') remove([i i+1]) = true ; end end opts = opts(~remove) ; % ------------------------------------------------------------------------- function net = simpleRemoveMomentum(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if isfield(net.layers{l}, 'momentum') net.layers{l} = rmfield(net.layers{l}, 'momentum') ; end end % ------------------------------------------------------------------------- function layers = simpleFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ; % ------------------------------------------------------------------------- function net = simpleRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- layers = simpleFindLayersOfType(net, type) ; net.layers(layers) = [] ; % ------------------------------------------------------------------------- function layers = dagFindLayersWithOutput(net, outVarName) % ------------------------------------------------------------------------- layers = {} ; for l = 1:numel(net.layers) if any(strcmp(net.layers(l).outputs, outVarName)) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function dagRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, type) ; for i = 1:numel(names) layer = net.layers(net.getLayerIndex(names{i})) ; net.removeLayer(names{i}) ; net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end % ------------------------------------------------------------------------- function dagMergeBatchNorm(net) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ; for name = names name = char(name) ; layer = net.layers(net.getLayerIndex(name)) ; % merge into previous conv layer playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ; playerName = playerName{1} ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; if ~isa(player.block, 'dagnn.Conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end % if the convolution layer does not have a bias, % recreate it to have one if ~player.block.hasBias block = player.block ; block.hasBias = true ; net.renameLayer(playerName, 'tmp') ; net.addLayer(playerName, ... block, ... player.inputs, ... player.outputs, ... {player.params{1}, sprintf('%s_b',playerName)}) ; net.removeLayer('tmp') ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; biases = net.getParamIndex(player.params{2}) ; net.params(biases).value = zeros(block.size(4), 1, 'single') ; end filters = net.getParamIndex(player.params{1}) ; biases = net.getParamIndex(player.params{2}) ; multipliers = net.getParamIndex(layer.params{1}) ; offsets = net.getParamIndex(layer.params{2}) ; moments = net.getParamIndex(layer.params{3}) ; [filtersValue, biasesValue] = mergeBatchNorm(... net.params(filters).value, ... net.params(biases).value, ... net.params(multipliers).value, ... net.params(offsets).value, ... net.params(moments).value) ; net.params(filters).value = filtersValue ; net.params(biases).value = biasesValue ; end % ------------------------------------------------------------------------- function net = simpleMergeBatchNorm(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if strcmp(net.layers{l}.type, 'bnorm') if ~strcmp(net.layers{l-1}.type, 'conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end [filters, biases] = mergeBatchNorm(... net.layers{l-1}.weights{1}, ... net.layers{l-1}.weights{2}, ... net.layers{l}.weights{1}, ... net.layers{l}.weights{2}, ... net.layers{l}.weights{3}) ; net.layers{l-1}.weights = {filters, biases} ; end end % ------------------------------------------------------------------------- function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments) % ------------------------------------------------------------------------- % wk / sqrt(sigmak^2 + eps) % bk - wk muk / sqrt(sigmak^2 + eps) a = multipliers(:) ./ moments(:,2) ; b = offsets(:) - moments(:,1) .* a ; biases(:) = biases(:) + b(:) ; sz = size(filters) ; numFilters = sz(4) ; filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_train_lwf_with_encoder.m
.m
Encoder-Based-Lifelong-learning-master/LwF_with_encoder/Model_training/cnn_train_lwf_with_encoder.m
27,825
utf_8
7af728d200b656511a5aa7bda59654c3
function [net, stats] = cnn_train_lwf_with_encoder(net, imdb, getBatch, varargin) %CNN_TRAIN_LWF_WITH_ENCODER is an example learner implementing stochastic % gradient descent with momentum to train a CNN with the Encoder Based % Lifelong Learning method after preparing the model(See functions under % Model_prepapration). % It can be used with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % %The last network layer is a custom layer, that contains 2 branches: % - 1 for the autoencoder % - 1 for the task operator (see paper for definition) % The task operator is also divided into a commun part and a task specific % part. The task specific part is the last layer, that is also a custom % layer divided into a branch per task, in the same order the tasks are fed % to the model. % %For more details about the model, see A. Rannen Triki, R. Aljundi, M. B. Blaschko, %and T. Tuytelaars, Encoder Based Lifelong Learning. ICCV 2017 % % Author: Rahaf Aljundi % % See the COPYING file. % % Adapted from MatConvNet of VLFeat library. Their copyright info: % % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.encoder_fork_indx=16; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) if(strcmp(net.layers{i}.type,'custom')) net.layers{i}=initilize_custom(net.layers{i}); else J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end end % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; %legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions=gather(res(end).aux{end}.layers{end}.aux{end}.layers{end-1}.x); [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) for i = 1:numel(net.layers) if(strcmp(net.layers{i}.type,'custom')) state.momentum{i}=initilize_momentum(net.layers{i}); end if isfield(net.layers{i},'weights') for j = 1:numel(net.layers{i}.weights) state.momentum{i}{j} = 0 ; end end end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move_lwf(net, 'gpu') ; for i = 1:numel(state.momentum) if(isstruct(state.momentum{i})) state.momentum{i}=move_momentum(state.momentum{i},@gpuArray); else for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gpuArray(state.momentum{i}{j}) ; end end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels,tasks_recs,tasks_targets] = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; for ts=1:numel(tasks_recs) tasks_recs{ts}=gpuArray(tasks_recs{ts}); end end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; net.layers{end}.tasks_class = tasks_recs ; net.layers{end}.tasks_targets = tasks_targets; net.layers{end}.mode=evalMode; res = vl_simplenn(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats = extractStats(net, params, error / num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; for ts=1:numel(net.layers{end}.tasks)-1 fprintf(' [%f/ task number %d error]', (res(end).aux{end}.layers{end}.aux{ts}.layers{end}.x/ numel(batch)), ts); end fprintf('\n') ; if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else for i = 1:numel(state.momentum) if(isstruct(state.momentum{i})) state.momentum{i}=move_momentum(state.momentum{i},@gather); else for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gather(state.momentum{i}{j}) ; end end end end net = vl_simplenn_move_lwf(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; %===========================LWF-Auto:start============================ %take care of the last fully connected layers fc_for_layer=net.layers{end}.tasks{end}.layers{end}; fc_res=res(end-1).aux{end}.layers{end-1}; this_state=state.momentum{end}.tasks{end}.layers{end}; for t=1:numel(fc_res.aux) %only one fully connected layer for j=numel(fc_res.aux{t}.layers{1}.dzdw):-1:1% has to be dealt with thisDecay = params.weightDecay *fc_for_layer.tasks{t}.layers{1}.weightDecay(j) ; thisLR = params.learningRate *fc_for_layer.tasks{t}.layers{1}.learningRate(j) ; this_state.tasks{t}.layers{1}{j}=params.momentum * this_state.tasks{t}.layers{1}{j} ... - thisDecay * fc_for_layer.tasks{t}.layers{1}.weights{j} ... - (1 / batchSize) * fc_res.aux{t}.layers{1}.dzdw{j} ; fc_for_layer.tasks{t}.layers{1}.weights{j} = fc_for_layer.tasks{t}.layers{1}.weights{j} + thisLR *this_state.tasks{t}.layers{1}{j}; end end state.momentum{end}.tasks{end}.layers{end}=this_state; net.layers{end}.tasks{end}.layers{end}=fc_for_layer; %first accumulate the gradients from the last multi task layer for t=numel(net.layers{end}.tasks):-1:1 %Here I can add the AUtoencoder and the LWF %freeze the autoencoder %just the first layer is convolutional for t_layer=numel(net.layers{end}.tasks{t}.layers):-1:1 if(isfield(res(end-1).aux{t}.layers{t_layer},'dzdw'))%for the soft max layers for j=numel(res(end-1).aux{t}.layers{t_layer}.dzdw):-1:1% has to be dealt with thisDecay = params.weightDecay * net.layers{end}.tasks{t}.layers{t_layer}.weightDecay(j) ; thisLR = params.learningRate * net.layers{end}.tasks{t}.layers{t_layer}.learningRate(j) ; this_batch_size=size(res(end-1).aux{t}.layers{t_layer}.dzdx,4); if(thisLR>0) state.momentum{end}.tasks{t}.layers{t_layer}{j}=params.momentum * state.momentum{end}.tasks{t}.layers{t_layer}{j} ... - thisDecay * net.layers{end}.tasks{t}.layers{t_layer}.weights{j} ... - (1 / this_batch_size) * res(end-1).aux{t}.layers{t_layer}.dzdw{j} ; net.layers{end}.tasks{t}.layers{t_layer}.weights{j} = net.layers{end}.tasks{t}.layers{t_layer}.weights{j} + thisLR *state.momentum{end}.tasks{t}.layers{t_layer}{j} ; end end end end end for l=numel(net.layers)-1:-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else % Standard gradient training. thisDecay = params.weightDecay * net.layers{l}.weightDecay(j) ; thisLR = params.learningRate * net.layers{l}.learningRate(j) ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.layers{l}.weights{j}) ; % Update momentum. state.momentum{l}{j} = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; else delta = state.momentum{l}{j} ; end % Update parameters. net.layers{l}.weights{j} = vl_taccum(... 1, net.layers{l}.weights{j}, ... thisLR, delta) ; end end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} variation = thisLR * mean(abs(state.momentum{l}{j}(:))) ; power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power) ; label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end % ------------------------------------------------------------------------- function layer=initilize_custom(layer) % ------------------------------------------------------------------------- %Initializes custom layer (= branches that contain encoders and task layers %of previous task, and the task layer of current task) for t=1: numel(layer.tasks) %each task has at least two layers: one conv and one %softmaxloss or softmaxlossdiff tasks_layers= layer.tasks{t}.layers; for t_layer=1:numel(tasks_layers) if isfield(tasks_layers{t_layer}, 'weights') J = numel(tasks_layers{t_layer}.weights) ; if ~isfield(tasks_layers{t_layer}, 'learningRate') tasks_layers{t_layer}.learningRate = ones(1, J, 'single') ; end if ~isfield(tasks_layers{t_layer}, 'weightDecay') tasks_layers{t_layer}.weightDecay = ones(1, J, 'single') ; end end if(strcmp(tasks_layers{t_layer}.type,'custom')) tasks_layers{t_layer}=initilize_custom(tasks_layers{t_layer}); end end layer.tasks{t}.layers=tasks_layers; clear tasks_layers; end % ------------------------------------------------------------------------- function state=move_momentum(state,fn) % ------------------------------------------------------------------------- %Reccursive call of move_momentum to deal with all the branches of the %model for t= 1:numel(state.tasks) for i = 1:numel(state.tasks{t}.layers) if(isstruct(state.tasks{t}.layers{i})) state.tasks{t}.layers{i}=move_momentum( state.tasks{t}.layers{i},fn); else for j = 1:numel(state.tasks{t}.layers{i}) state.tasks{t}.layers{i}{j} = fn(state.tasks{t}.layers{i}{j} ) ; end end end end % ------------------------------------------------------------------------- function momentum=initilize_momentum(layer) % ------------------------------------------------------------------------- %Initializes the momentum for the custom layer (= branches that contain %encoders and task layers of previous task, and the task layer of current %task) for t=1: numel(layer.tasks) tasks_layers= layer.tasks{t}.layers; for t_layer=1:numel(tasks_layers) if(strcmp(tasks_layers{t_layer}.type,'custom')) temp.tasks{t}.layers{t_layer}= initilize_momentum(tasks_layers{t_layer}); end if isfield(tasks_layers{t_layer},'weights') J = numel(tasks_layers{t_layer}.weights) ; for j=1:J temp.tasks{t}.layers{t_layer}{j} = 0 ; end end end end momentum=temp;
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_lwf_with_encoder.m
.m
Encoder-Based-Lifelong-learning-master/LwF_with_encoder/Model_training/cnn_lwf_with_encoder.m
5,108
utf_8
6eb118d24d7e1561f820b348dd98a741
function [net, info] = cnn_lwf_with_encoder(varargin) %CNN_LWF_WITH_ENCODER Demonstrates training a CNN with the Encoder Based %Lifelong Learning method after preparing the model(See functions under %Model_prepapration). % %For more details about the model, see A. Rannen Triki, R. Aljundi, M. B. Blaschko, %and T. Tuytelaars, Encoder Based Lifelong Learning. ICCV 2017 % % Author: Rahaf Aljundi % % See the COPYING file. % % Adapted from MatConvNet of VLFeat library. Their copyright info: % % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..','matlab', 'vl_setupnn.m')) ; opts.train.gpus=[1]; opts.train.learningRate=1e-4*ones(1,100); opts.train.batchSize=100; opts.expDir = fullfile(vl_rootnn, 'data', 'LwF_with_encoder') ; opts.dataDir = fullfile(vl_rootnn, 'data', 'dataset-2') ; opts.modelType = 'alexnet' ; opts.network = [] ; opts.networkType = 'simplenn' ; opts.batchNormalization = true ; opts.weightInitMethod = 'gaussian' ; opts.imdbPath = fullfile(opts.expDir, 'aug-imdb-2.mat'); opts.modelPath=fullfile(opts.expDir, 'model-task-2-initial.mat'); opts.temperature=2; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.modelType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end sfx = [sfx '-' opts.networkType] ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.useValidation=false; opts.numFetchThreads = 12 ; opts.lite = false ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- imdb = load(opts.imdbPath) ; if(isfield(imdb,'imdb')) imdb=imdb.imdb; end mkdir(opts.expDir); %-------------------------------------------------------------------------- % create a validation set %-------------------------------------------------------------------------- if(opts.useValidation) sets=unique(imdb.images.set); if(numel(sets)==2) test_set=find(imdb.images.set~=1); imdb.images.set(test_set)=3; training_inds=find(imdb.images.set==1); training_size=numel(training_inds); %create validation inds val_inds= randi(training_size,floor(training_size/10),1); imdb.images.set(training_inds(val_inds))=2; end else test_set=find(imdb.images.set~=1); imdb.images.set(test_set)=2; end %The model already has the previous task information and parameters but %make sure not to use the deployed model as a previous task model % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- net = load(opts.modelPath ); if(isfield(net,'net')) net=net.net; end % Meta parameters net.meta.trainOpts.learningRate =opts.train.learningRate ; net.meta.trainOpts.numEpochs = numel(opts.train.learningRate) ; net.meta.trainOpts.batchSize = opts.train.batchSize ; net.meta.trainOpts.weightDecay = 0.0005 ; % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainFn = @cnn_train_lwf_auto_fc_shared ; case 'dagnn', error('This function does not support DagNN yet. Please use simplenn'); end [net, info] = trainFn(net, imdb, @getBatch, ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train) ; % -------------------------------------------------------------------- function [img, labels,tasks_recs,tlabels] = getBatch(imdb, batch) % -------------------------------------------------------------------- %To extract batches from datasets that contain recorded codes and soft %targets for previous tasks %no augmentation is applied now, data augmented in preparation phase ims = imdb.images.data(1,batch) ; labels = imdb.images.labels(1,batch) ; %here we have to add the codes and soft targets from each task img=[]; %this is to be applied to already augmented data, that we store in an imdb %file with image links for i=1:numel(ims) load(ims{i}); img= cat(4,img,im); clear im; end for t=1:numel(imdb.images.recs) if(~iscell(imdb.images.recs{t})) tasks_recs{t}=imdb.images.recs{t}(:,:,:,batch) ; else rec_links=imdb.images.recs{t}(batch) ; for i=1:numel(rec_links) load(rec_links{i}); tasks_recs{t}= cat(4,tasks_recs{t},rec); clear rec; end end end for t=1:numel(imdb.images.tlabels) tlabels_all=imdb.images.tlabels{t}; tlabels{t}=tlabels_all(batch,:)'; end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_train.m
.m
Encoder-Based-Lifelong-learning-master/Experiments/cnn_train.m
19,907
utf_8
67356030c67680633023886d99dd8251
function [net, new_images stats] = cnn_train(net, imdb, getBatch, varargin) %CNN_TRAIN An example implementation of SGD for training CNNs % CNN_TRAIN() is an example learner implementing stochastic % gradient descent with momentum to train a CNN. It can be used % with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.data.expDir= fullfile(opts.expDir, 'features'); opts.output_layer_id = 16; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error net.layers{opts.output_layer_id-1}.precious = 1;% do not remove pool5 vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end new_images = []; for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 [net, ~, state] = processEpoch(net, state, params, 'train') ; [net, new_images, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net,new_images, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) for i = 1:numel(net.layers) for j = 1:numel(net.layers{i}.weights) state.momentum{i}{j} = 0 ; end end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move(net, 'gpu') ; for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gpuArray(state.momentum{i}{j}) ; end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; aug_num=0; start = tic ; new_images = params.imdb.images; new_images.data =[]; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels] = params.getBatch(params.imdb, batch) ; aug_num=aug_num+numel(labels); if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; res = vl_simplenn_LwF_encoder(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; %saving part %======================================================= input=res(params.output_layer_id); all_input=reshape(input.x,1,1,size(input.x,1)*size(input.x,2)*size(input.x,3),[]); %save for ele=1:numel(batch) input=all_input(:,:,:,ele); cur_index=batch(ele); save(strcat(params.data.expDir,num2str(cur_index),'.mat'),'input'); new_images.data{cur_index}=strcat(params.data.expDir,num2str(cur_index),'.mat'); end % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; %To get the right approximate stats = extractStats(net, params, error / aug_num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; % collect diagnostic statistics if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gather(state.momentum{i}{j}) ; end end end net = vl_simplenn_move(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for l=numel(net.layers):-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else % Standard gradient training. thisDecay =double( params.weightDecay * net.layers{l}.weightDecay(j)) ; thisLR =double( params.learningRate * net.layers{l}.learningRate(j) ); if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.layers{l}.weights{j}) ; % Update momentum. state.momentum{l}{j} = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; else delta = state.momentum{l}{j} ; end % Update parameters. net.layers{l}.weights{j} = vl_taccum(... 1, net.layers{l}.weights{j}, ... thisLR, delta) ; end end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} variation = thisLR * mean(abs(state.momentum{l}{j}(:))) ; power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power) ;%mean(abs(res(l+1).x(:))) ; label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
cnn_imagenet_evaluate.m
.m
Encoder-Based-Lifelong-learning-master/Experiments/cnn_imagenet_evaluate.m
5,272
utf_8
f1b153a158026e131ba92ebe7bd8bc85
function [net,new_images,info] = cnn_imagenet_evaluate(varargin) % CNN_IMAGENET_EVALUATE Evauate MatConvNet models on ImageNet run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile('data', 'ILSVRC2012') ; opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ; opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.networkType = [] ; opts.lite = false ; opts.numFetchThreads = 12 ; opts.train.batchSize = 128 ; opts.train.numEpochs = 1 ; opts.train.gpus = [] ; opts.train.output_layer_id=16; opts.train.expDir = opts.expDir ; opts.train.data.expDir = fullfile(opts.dataDir, 'Features'); opts.train.prefetch = true ; opts = vl_argparse(opts, varargin) ; display(opts); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; save(opts.imdbPath, '-struct', 'imdb') ; end mkdir(opts.expDir) ; % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = load(opts.modelPath) ; if isfield(net, 'net') net = net.net ; end if(~isfield(net,'meta')) error('The model does not contain meta information, may be needed for training'); end % Cannot use isa('dagnn.DagNN') because it is not an object yet isDag = isfield(net, 'params') ; if isDag opts.networkType = 'dagnn' ; net = dagnn.DagNN.loadobj(net) ; trainfn = @cnn_train_dag ; % Drop existing loss layers drop = arrayfun(@(x) isa(x.block,'dagnn.Loss'), net.layers) ; for n = {net.layers(drop).name} net.removeLayer(n) ; end % Extract raw predictions from softmax sftmx = arrayfun(@(x) isa(x.block,'dagnn.SoftMax'), net.layers) ; predVar = 'prediction' ; for n = {net.layers(sftmx).name} % check if output l = net.getLayerIndex(n) ; v = net.getVarIndex(net.layers(l).outputs{1}) ; if net.vars(v).fanout == 0 % remove this layer and update prediction variable predVar = net.layers(l).inputs{1} ; net.removeLayer(n) ; end end % Add custom objective and loss layers on top of raw predictions net.addLayer('objective', dagnn.Loss('loss', 'softmaxlog'), ... {predVar,'label'}, 'objective') ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {predVar,'label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {predVar,'label'}, 'top5err') ; % Make sure that the input is called 'input' v = net.getVarIndex('data') ; if ~isnan(v) net.renameVar('data', 'input') ; end % Swtich to test mode net.mode = 'test' ; else opts.networkType = 'simplenn' ; net = vl_simplenn_tidy(net) ; trainfn = @cnn_train ; net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss end % Synchronize label indexes used in IMDB with the ones used in NET imdb = cnn_imagenet_sync_labels(imdb, net); % Run evaluation [net,new_images, info] = trainfn(net, imdb, getBatchFn(opts, net.meta), ... opts.train, ... 'train', NaN, ... 'val', find(imdb.images.set~=4)) ; % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if isfield(meta.normalization, 'keepAspect') keepAspect = meta.normalization.keepAspect ; else keepAspect = true ; end if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', max(meta.normalization.imageSize(1:2)) / 256, ... 'subtractAverage', mu, ... 'keepAspect', keepAspect) ; fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
rahafaljundi/Encoder-Based-Lifelong-learning-master
findLastCheckpoint.m
.m
Encoder-Based-Lifelong-learning-master/Experiments/findLastCheckpoint.m
463
utf_8
706404565378f9d06708c02acc71764e
% ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- % Finds the network of the last epoch in the directory modelDir list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; end
github
Eden-Kramer-Lab/COMPASS-master
acf.m
.m
COMPASS-master/COMPASS_StateSpaceToolbox/acf.m
2,458
utf_8
236f4d8adcb8a89ee0851080b4ee4309
function ta = acf(y,p) % ACF - Compute Autocorrelations Through p Lags % >> myacf = acf(y,p) % % Inputs: % y - series to compute acf for, nx1 column vector % p - total number of lags, 1x1 integer % % Output: % myacf - px1 vector containing autocorrelations % (First lag computed is lag 1. Lag 0 not computed) % % % A bar graph of the autocorrelations is also produced, with % rejection region bands for testing individual autocorrelations = 0. % % Note that lag 0 autocorelation is not computed, % and is not shown on this graph. % % Example: % >> acf(randn(100,1), 10) % % -------------------------- % USER INPUT CHECKS % -------------------------- [n1, n2] = size(y) ; if n2 ~=1 error('Input series y must be an nx1 column vector') end [a1, a2] = size(p) ; if ~((a1==1 & a2==1) & (p<n1)) error('Input number of lags p must be a 1x1 scalar, and must be less than length of series y') end % ------------- % BEGIN CODE % ------------- ta = zeros(p,1) ; global N N = max(size(y)) ; global ybar ybar = mean(y); % Collect ACFs at each lag i for i = 1:p ta(i) = acf_k(y,i) ; end % Plot ACF % Plot rejection region lines for test of individual autocorrelations % H_0: rho(tau) = 0 at alpha=.05 bar(ta) line([0 p+.5], (1.96)*(1/sqrt(N))*ones(1,2)) line([0 p+.5], (-1.96)*(1/sqrt(N))*ones(1,2)) % Some figure properties line_hi = (1.96)*(1/sqrt(N))+.05; line_lo = -(1.96)*(1/sqrt(N))-.05; bar_hi = max(ta)+.05 ; bar_lo = -max(ta)-.05 ; if (abs(line_hi) > abs(bar_hi)) % if rejection lines might not appear on graph axis([0 p+.60 line_lo line_hi]) else axis([0 p+.60 bar_lo bar_hi]) end title({' ','Sample Autocorrelations',' '}) xlabel('Lag Length') set(gca,'YTick',[-1:.20:1]) % set number of lag labels shown if (p<28 & p>4) set(gca,'XTick',floor(linspace(1,p,4))) elseif (p>=28) set(gca,'XTick',floor(linspace(1,p,8))) end set(gca,'TickLength',[0 0]) % --------------- % SUB FUNCTION % --------------- function ta2 = acf_k(y,k) % ACF_K - Autocorrelation at Lag k % acf(y,k) % % Inputs: % y - series to compute acf for % k - which lag to compute acf % global ybar global N cross_sum = zeros(N-k,1) ; % Numerator, unscaled covariance for i = (k+1):N cross_sum(i) = (y(i)-ybar)*(y(i-k)-ybar) ; end % Denominator, unscaled variance yvar = (y-ybar)'*(y-ybar) ; ta2 = sum(cross_sum) / yvar ;
github
Eden-Kramer-Lab/COMPASS-master
fminsearchbnd.m
.m
COMPASS-master/COMPASS_StateSpaceToolbox/fminsearchbnd.m
8,139
utf_8
1316d7f9d69771e92ecc70425e0f9853
function [x,fval,exitflag,output] = fminsearchbnd(fun,x0,LB,UB,options,varargin) % FMINSEARCHBND: FMINSEARCH, but with bound constraints by transformation % usage: x=FMINSEARCHBND(fun,x0) % usage: x=FMINSEARCHBND(fun,x0,LB) % usage: x=FMINSEARCHBND(fun,x0,LB,UB) % usage: x=FMINSEARCHBND(fun,x0,LB,UB,options) % usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...) % usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...) % % arguments: % fun, x0, options - see the help for FMINSEARCH % % LB - lower bound vector or array, must be the same size as x0 % % If no lower bounds exist for one of the variables, then % supply -inf for that variable. % % If no lower bounds at all, then LB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % UB - upper bound vector or array, must be the same size as x0 % % If no upper bounds exist for one of the variables, then % supply +inf for that variable. % % If no upper bounds at all, then UB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % Notes: % % If options is supplied, then TolX will apply to the transformed % variables. All other FMINSEARCH parameters should be unaffected. % % Variables which are constrained by both a lower and an upper % bound will use a sin transformation. Those constrained by % only a lower or an upper bound will use a quadratic % transformation, and unconstrained variables will be left alone. % % Variables may be fixed by setting their respective bounds equal. % In this case, the problem will be reduced in size for FMINSEARCH. % % The bounds are inclusive inequalities, which admit the % boundary values themselves, but will not permit ANY function % evaluations outside the bounds. These constraints are strictly % followed. % % If your problem has an EXCLUSIVE (strict) constraint which will % not admit evaluation at the bound itself, then you must provide % a slightly offset bound. An example of this is a function which % contains the log of one of its parameters. If you constrain the % variable to have a lower bound of zero, then FMINSEARCHBND may % try to evaluate the function exactly at zero. % % % Example usage: % rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2; % % fminsearch(rosen,[3 3]) % unconstrained % ans = % 1.0000 1.0000 % % fminsearchbnd(rosen,[3 3],[2 2],[]) % constrained % ans = % 2.0000 4.0000 % % See test_main.m for other examples of use. % % % See also: fminsearch, fminspleas % % % Author: John D'Errico % E-mail: [email protected] % Release: 4 % Release date: 7/23/06 % size checks xsize = size(x0); x0 = x0(:); n=length(x0); if (nargin<3) || isempty(LB) LB = repmat(-inf,n,1); else LB = LB(:); end if (nargin<4) || isempty(UB) UB = repmat(inf,n,1); else UB = UB(:); end if (n~=length(LB)) || (n~=length(UB)) error 'x0 is incompatible in size with either LB or UB.' end % set default options if necessary if (nargin<5) || isempty(options) options = optimset('fminsearch'); end % stuff into a struct to pass around params.args = varargin; params.LB = LB; params.UB = UB; params.fun = fun; params.n = n; % note that the number of parameters may actually vary if % a user has chosen to fix one or more parameters params.xsize = xsize; params.OutputFcn = []; % 0 --> unconstrained variable % 1 --> lower bound only % 2 --> upper bound only % 3 --> dual finite bounds % 4 --> fixed variable params.BoundClass = zeros(n,1); for i=1:n k = isfinite(LB(i)) + 2*isfinite(UB(i)); params.BoundClass(i) = k; if (k==3) && (LB(i)==UB(i)) params.BoundClass(i) = 4; end end % transform starting values into their unconstrained % surrogates. Check for infeasible starting guesses. x0u = x0; k=1; for i = 1:n switch params.BoundClass(i) case 1 % lower bound only if x0(i)<=LB(i) % infeasible starting value. Use bound. x0u(k) = 0; else x0u(k) = sqrt(x0(i) - LB(i)); end % increment k k=k+1; case 2 % upper bound only if x0(i)>=UB(i) % infeasible starting value. use bound. x0u(k) = 0; else x0u(k) = sqrt(UB(i) - x0(i)); end % increment k k=k+1; case 3 % lower and upper bounds if x0(i)<=LB(i) % infeasible starting value x0u(k) = -pi/2; elseif x0(i)>=UB(i) % infeasible starting value x0u(k) = pi/2; else x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; % shift by 2*pi to avoid problems at zero in fminsearch % otherwise, the initial simplex is vanishingly small x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); end % increment k k=k+1; case 0 % unconstrained variable. x0u(i) is set. x0u(k) = x0(i); % increment k k=k+1; case 4 % fixed variable. drop it before fminsearch sees it. % k is not incremented for this variable. end end % if any of the unknowns were fixed, then we need to shorten % x0u now. if k<=n x0u(k:n) = []; end % were all the variables fixed? if isempty(x0u) % All variables were fixed. quit immediately, setting the % appropriate parameters, then return. % undo the variable transformations into the original space x = xtransform(x0u,params); % final reshape x = reshape(x,xsize); % stuff fval with the final value fval = feval(params.fun,x,params.args{:}); % fminsearchbnd was not called exitflag = 0; output.iterations = 0; output.funcCount = 1; output.algorithm = 'fminsearch'; output.message = 'All variables were held fixed by the applied bounds'; % return with no call at all to fminsearch return end % Check for an outputfcn. If there is any, then substitute my % own wrapper function. if ~isempty(options.OutputFcn) params.OutputFcn = options.OutputFcn; options.OutputFcn = @outfun_wrapper; end % now we can call fminsearch, but with our own % intra-objective function. [xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params); % undo the variable transformations into the original space x = xtransform(xu,params); % final reshape to make sure the result has the proper shape x = reshape(x,xsize); % Use a nested function as the OutputFcn wrapper function stop = outfun_wrapper(x,varargin); % we need to transform x first xtrans = xtransform(x,params); % then call the user supplied OutputFcn stop = params.OutputFcn(xtrans,varargin{1:(end-1)}); end end % mainline end % ====================================== % ========= begin subfunctions ========= % ====================================== function fval = intrafun(x,params) % transform variables, then call original function % transform xtrans = xtransform(x,params); % and call fun fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:}); end % sub function intrafun end % ====================================== function xtrans = xtransform(x,params) % converts unconstrained variables into their original domains xtrans = zeros(params.xsize); % k allows some variables to be fixed, thus dropped from the % optimization. k=1; for i = 1:params.n switch params.BoundClass(i) case 1 % lower bound only xtrans(i) = params.LB(i) + x(k).^2; k=k+1; case 2 % upper bound only xtrans(i) = params.UB(i) - x(k).^2; k=k+1; case 3 % lower and upper bounds xtrans(i) = (sin(x(k))+1)/2; xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i); % just in case of any floating point problems xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i))); k=k+1; case 4 % fixed variable, bounds are equal, set it at either bound xtrans(i) = params.LB(i); case 0 % unconstrained variable. xtrans(i) = x(k); k=k+1; end end end % sub function xtransform end
github
Eden-Kramer-Lab/COMPASS-master
fminsearchcon.m
.m
COMPASS-master/COMPASS_StateSpaceToolbox/fminsearchcon.m
11,330
utf_8
c52011ee59580c69f3872d1b59630088
function [x,fval,exitflag,output]=fminsearchcon(fun,x0,LB,UB,A,b,nonlcon,options,varargin) % FMINSEARCHCON: Extension of FMINSEARCHBND with general inequality constraints % usage: x=FMINSEARCHCON(fun,x0) % usage: x=FMINSEARCHCON(fun,x0,LB) % usage: x=FMINSEARCHCON(fun,x0,LB,UB) % usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b) % usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon) % usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon,options) % usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon,options,p1,p2,...) % usage: [x,fval,exitflag,output]=FMINSEARCHCON(fun,x0,...) % % arguments: % fun, x0, options - see the help for FMINSEARCH % % x0 MUST be a feasible point for the linear and nonlinear % inequality constraints. If it is not inside the bounds % then it will be moved to the nearest bound. If x0 is % infeasible for the general constraints, then an error will % be returned. % % LB - lower bound vector or array, must be the same size as x0 % % If no lower bounds exist for one of the variables, then % supply -inf for that variable. % % If no lower bounds at all, then LB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % UB - upper bound vector or array, must be the same size as x0 % % If no upper bounds exist for one of the variables, then % supply +inf for that variable. % % If no upper bounds at all, then UB may be left empty. % % Variables may be fixed in value by setting the corresponding % lower and upper bounds to exactly the same value. % % A,b - (OPTIONAL) Linear inequality constraint array and right % hand side vector. (Note: these constraints were chosen to % be consistent with those of fmincon.) % % A*x <= b % % nonlcon - (OPTIONAL) general nonlinear inequality constraints % NONLCON must return a set of general inequality constraints. % These will be enforced such that nonlcon is always <= 0. % % nonlcon(x) <= 0 % % % Notes: % % If options is supplied, then TolX will apply to the transformed % variables. All other FMINSEARCH parameters should be unaffected. % % Variables which are constrained by both a lower and an upper % bound will use a sin transformation. Those constrained by % only a lower or an upper bound will use a quadratic % transformation, and unconstrained variables will be left alone. % % Variables may be fixed by setting their respective bounds equal. % In this case, the problem will be reduced in size for FMINSEARCH. % % The bounds are inclusive inequalities, which admit the % boundary values themselves, but will not permit ANY function % evaluations outside the bounds. These constraints are strictly % followed. % % If your problem has an EXCLUSIVE (strict) constraint which will % not admit evaluation at the bound itself, then you must provide % a slightly offset bound. An example of this is a function which % contains the log of one of its parameters. If you constrain the % variable to have a lower bound of zero, then FMINSEARCHCON may % try to evaluate the function exactly at zero. % % Inequality constraints are enforced with an implicit penalty % function approach. But the constraints are tested before % any function evaluations are ever done, so the actual objective % function is NEVER evaluated outside of the feasible region. % % % Example usage: % rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2; % % Fully unconstrained problem % fminsearchcon(rosen,[3 3]) % ans = % 1.0000 1.0000 % % lower bound constrained % fminsearchcon(rosen,[3 3],[2 2],[]) % ans = % 2.0000 4.0000 % % x(2) fixed at 3 % fminsearchcon(rosen,[3 3],[-inf 3],[inf,3]) % ans = % 1.7314 3.0000 % % simple linear inequality: x(1) + x(2) <= 1 % fminsearchcon(rosen,[0 0],[],[],[1 1],.5) % % ans = % 0.6187 0.3813 % % general nonlinear inequality: sqrt(x(1)^2 + x(2)^2) <= 1 % fminsearchcon(rosen,[0 0],[],[],[],[],@(x) norm(x)-1) % ans = % 0.78633 0.61778 % % Of course, any combination of the above constraints is % also possible. % % See test_main.m for other examples of use. % % % See also: fminsearch, fminspleas, fminsearchbnd % % % Author: John D'Errico % E-mail: [email protected] % Release: 1.0 % Release date: 12/16/06 % size checks xsize = size(x0); x0 = x0(:); n=length(x0); if (nargin<3) || isempty(LB) LB = repmat(-inf,n,1); else LB = LB(:); end if (nargin<4) || isempty(UB) UB = repmat(inf,n,1); else UB = UB(:); end if (n~=length(LB)) || (n~=length(UB)) error 'x0 is incompatible in size with either LB or UB.' end % defaults for A,b if (nargin<5) || isempty(A) A = []; end if (nargin<6) || isempty(b) b = []; end nA = []; nb = []; if (isempty(A)&&~isempty(b)) || (isempty(b)&&~isempty(A)) error 'Sizes of A and b are incompatible' elseif ~isempty(A) nA = size(A); b = b(:); nb = size(b,1); if nA(1)~=nb error 'Sizes of A and b are incompatible' end if nA(2)~=n error 'A is incompatible in size with x0' end end % defaults for nonlcon if (nargin<7) || isempty(nonlcon) nonlcon = []; end % test for feasibility of the initial value % against any general inequality constraints if ~isempty(A) if any(A*x0>b) error 'Infeasible starting values (linear inequalities failed).' end end if ~isempty(nonlcon) if any(feval(nonlcon,(reshape(x0,xsize)),varargin{:})>0) error 'Infeasible starting values (nonlinear inequalities failed).' end end % set default options if necessary if (nargin<8) || isempty(options) options = optimset('fminsearch'); end % stuff into a struct to pass around params.args = varargin; params.LB = LB; params.UB = UB; params.fun = fun; params.n = n; params.xsize = xsize; params.OutputFcn = []; params.A = A; params.b = b; params.nonlcon = nonlcon; % 0 --> unconstrained variable % 1 --> lower bound only % 2 --> upper bound only % 3 --> dual finite bounds % 4 --> fixed variable params.BoundClass = zeros(n,1); for i=1:n k = isfinite(LB(i)) + 2*isfinite(UB(i)); params.BoundClass(i) = k; if (k==3) && (LB(i)==UB(i)) params.BoundClass(i) = 4; end end % transform starting values into their unconstrained % surrogates. Check for infeasible starting guesses. x0u = x0; k=1; for i = 1:n switch params.BoundClass(i) case 1 % lower bound only if x0(i)<=LB(i) % infeasible starting value. Use bound. x0u(k) = 0; else x0u(k) = sqrt(x0(i) - LB(i)); end % increment k k=k+1; case 2 % upper bound only if x0(i)>=UB(i) % infeasible starting value. use bound. x0u(k) = 0; else x0u(k) = sqrt(UB(i) - x0(i)); end % increment k k=k+1; case 3 % lower and upper bounds if x0(i)<=LB(i) % infeasible starting value x0u(k) = -pi/2; elseif x0(i)>=UB(i) % infeasible starting value x0u(k) = pi/2; else x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; % shift by 2*pi to avoid problems at zero in fminsearch % otherwise, the initial simplex is vanishingly small x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); end % increment k k=k+1; case 0 % unconstrained variable. x0u(i) is set. x0u(k) = x0(i); % increment k k=k+1; case 4 % fixed variable. drop it before fminsearch sees it. % k is not incremented for this variable. end end % if any of the unknowns were fixed, then we need to shorten % x0u now. if k<=n x0u(k:n) = []; end % were all the variables fixed? if isempty(x0u) % All variables were fixed. quit immediately, setting the % appropriate parameters, then return. % undo the variable transformations into the original space x = xtransform(x0u,params); % final reshape x = reshape(x,xsize); % stuff fval with the final value fval = feval(params.fun,x,params.args{:}); % fminsearchbnd was not called exitflag = 0; output.iterations = 0; output.funcCount = 1; output.algorithm = 'fminsearch'; output.message = 'All variables were held fixed by the applied bounds'; % return with no call at all to fminsearch return end % Check for an outputfcn. If there is any, then substitute my % own wrapper function. if ~isempty(options.OutputFcn) params.OutputFcn = options.OutputFcn; options.OutputFcn = @outfun_wrapper; end % now we can call fminsearch, but with our own % intra-objective function. [xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params); % undo the variable transformations into the original space x = xtransform(xu,params); % final reshape x = reshape(x,xsize); % Use a nested function as the OutputFcn wrapper function stop = outfun_wrapper(x,varargin); % we need to transform x first xtrans = xtransform(x,params); % then call the user supplied OutputFcn stop = params.OutputFcn(xtrans,varargin{1:(end-1)}); end end % mainline end % ====================================== % ========= begin subfunctions ========= % ====================================== function fval = intrafun(x,params) % transform variables, test constraints, then call original function % transform xtrans = xtransform(x,params); % test constraints before the function call % First, do the linear inequality constraints, if any if ~isempty(params.A) % Required: A*xtrans <= b if any(params.A*xtrans(:) > params.b) % linear inequality constraints failed. Just return inf. fval = inf; return end end % resize xtrans to be the correct size for the nonlcon % and objective function calls xtrans = reshape(xtrans,params.xsize); % Next, do the nonlinear inequality constraints if ~isempty(params.nonlcon) % Required: nonlcon(xtrans) <= 0 cons = feval(params.nonlcon,xtrans,params.args{:}); if any(cons(:) > 0) % nonlinear inequality constraints failed. Just return inf. fval = inf; return end end % we survived the general inequality constraints. Only now % do we evaluate the objective function. % append any additional parameters to the argument list fval = feval(params.fun,xtrans,params.args{:}); end % sub function intrafun end % ====================================== function xtrans = xtransform(x,params) % converts unconstrained variables into their original domains xtrans = zeros(1,params.n); % k allows some variables to be fixed, thus dropped from the % optimization. k=1; for i = 1:params.n switch params.BoundClass(i) case 1 % lower bound only xtrans(i) = params.LB(i) + x(k).^2; k=k+1; case 2 % upper bound only xtrans(i) = params.UB(i) - x(k).^2; k=k+1; case 3 % lower and upper bounds xtrans(i) = (sin(x(k))+1)/2; xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i); % just in case of any floating point problems xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i))); k=k+1; case 4 % fixed variable, bounds are equal, set it at either bound xtrans(i) = params.LB(i); case 0 % unconstrained variable. xtrans(i) = x(k); k=k+1; end end end % sub function xtransform end
github
cs4243-ay1718-group12/lucas-kanade-tracker-master
LK_Track_Pyramid_Iterative.m
.m
lucas-kanade-tracker-master/deprecated/LK_Track_Pyramid_Iterative.m
2,670
utf_8
891f603e5d49bda89930ac20a026c2ba
function [U, V] = LK_Track_Pyramid_Iterative(raw_img1, raw_img2, X, Y) % Constants win_rad = 5; accuracy_threshold = .01; max_iterations = 20; max_levels = Maximum_Pyramid_Level(raw_img1, 128); num_points = size(X,1); % Get images for each pyramid levels img1_pyramidized = generate_pyramid(raw_img1, max_levels); img2_pyramidized = generate_pyramid(raw_img2, max_levels); U = X/2^max_levels; V = Y/2^max_levels; for level = max_levels:-1:1 % Get image for this level img1 = img1_pyramidized{level}; img2 = img2_pyramidized{level}; [num_rows, num_cols] = size(img1); h = fspecial('sobel'); img1x = imfilter(img1,h','replicate'); img1y = imfilter(img1,h,'replicate'); for point = 1 : num_points xt = U(point)*2; yt = V(point)*2; [iX, iY, oX, oY, is_out_of_bound] = generate_window(xt, yt, win_rad, num_rows, num_cols); if is_out_of_bound continue; end Ix = interp2(iX,iY,img1x(iY,iX),oX,oY); Iy = interp2(iX,iY,img1y(iY,iX),oX,oY); I1 = interp2(iX,iY,img1(iY,iX),oX,oY); for i = 1 : max_iterations [iX, iY, oX, oY, is_out_of_bound] = generate_window(xt, yt, win_rad, num_rows, num_cols); if is_out_of_bound, break; end It = interp2(iX,iY,img2(iY,iX),oX,oY) - I1; vel = [Ix(:),Iy(:)]\It(:); xt = xt+vel(1); yt = yt+vel(2); if max(abs(vel)) < accuracy_threshold break; end end U(point) = xt; V(point) = yt; end end end function [cols_range, rows_range, oX, oY, is_out_of_bound] = generate_window(x, y, win_rad, num_rows, num_cols) % Get window size left_bound = x - win_rad; right_bound = x + win_rad; top_bound = y - win_rad; bottom_bound = y + win_rad; % x and y can be non-integers because U=X/2^level AND V=Y/2^level fl = floor(left_bound); cr = ceil(right_bound); ft = floor(top_bound); cb = ceil(bottom_bound); % Get the range of cols and rows in the window cols_range = fl:cr; rows_range = ft:cb; % Get ... considering using our own method for meshgrid [oX,oY] = meshgrid(left_bound:right_bound,top_bound:bottom_bound); % Check if the window is outside the image if (fl < 1 || ft < 1 || cr > num_cols || cb > num_rows) is_out_of_bound = true; else is_out_of_bound = false; end end
github
bentong95923/music_notation_printer-master
acf.m
.m
music_notation_printer-master/code/autocorrelation/sample_code/acf.m
2,353
utf_8
a06fdab5c89736f28e9ce08df507dfa2
function ta = acf(y,p) % ACF - Compute Autocorrelations Through p Lags % >> myacf = acf(y,p) % % Inputs: % y - series to compute acf for, nx1 column vector % p - total number of lags, 1x1 integer % % Output: % myacf - px1 vector containing autocorrelations % (First lag computed is lag 1. Lag 0 not computed) % % % A bar graph of the autocorrelations is also produced, with % rejection region bands for testing individual autocorrelations = 0. % % Note that lag 0 autocorelation is not computed, % and is not shown on this graph. % % Example: % >> acf(randn(100,1), 10) % % -------------------------- % USER INPUT CHECKS % -------------------------- [n1, n2] = size(y) ; if n2 ~=1 error('Input series y must be an nx1 column vector') end [a1, a2] = size(p) ; if ~((a1==1 & a2==1) & (p<n1)) error('Input number of lags p must be a 1x1 scalar, and must be less than length of series y') end % ------------- % BEGIN CODE % ------------- ta = zeros(p,1) ; global N N = max(size(y)) ; disp(N); global ybar ybar = mean(y); % Collect ACFs at each lag i for i = 1:p ta(i) = acf_k(y,i) ; end % Plot ACF % Plot rejection region lines for test of individual autocorrelations % H_0: rho(tau) = 0 at alpha=.05 bar(ta) line([0 p+.5], (1.96)*(1/sqrt(N))*ones(1,2)) line([0 p+.5], (-1.96)*(1/sqrt(N))*ones(1,2)) % Some figure properties line_hi = (1.96)*(1/sqrt(N))+.05; line_lo = -(1.96)*(1/sqrt(N))-.05; bar_hi = max(ta)+.05 ; bar_lo = -max(ta)-.05 ; if (abs(line_hi) > abs(bar_hi)) % if rejection lines might not appear on graph axis([0 p+.60 line_lo line_hi]) else axis([0 p+.60 bar_lo bar_hi]) end title({' ','Sample Autocorrelations',' '}) xlabel('Lag Length') set(gca,'YTick',[-1:.20:1]) % set number of lag labels shown if (p<28 & p>4) set(gca,'XTick',floor(linspace(1,p,4))) elseif (p>=28) set(gca,'XTick',floor(linspace(1,p,8))) end set(gca,'TickLength',[0 0]) % --------------- % SUB FUNCTION % --------------- function ta2 = acf_k(y,k) % ACF_K - Autocorrelation at Lag k % acf(y,k) % % Inputs: % y - series to compute acf for % k - which lag to compute acf % global ybar global N cross_sum = zeros(N-k,1) ; % Numerator, unscaled covariance for i = (k+1):N cross_sum(i) = (y(i)-ybar)*(y(i-k)-ybar) ; end % Denominator, unscaled variance yvar = (y-ybar)'*(y-ybar) ; ta2 = sum(cross_sum) / yvar ;
github
pvarin/DynamicVAE-master
jdqr.m
.m
DynamicVAE-master/drtoolbox/techniques/jdqr.m
73,068
utf_8
b45810ddb5b2767c9289909175d1dc04
function varargout=jdqr(varargin) %JDQR computes a partial Schur decomposition of a square matrix or operator. % Lambda = JDQR(A) returns the absolute largest eigenvalues in a K vector % Lambda. Here K=min(5,N) (unless K has been specified), where N=size(A,1). % JDQR(A) (without output argument) displays the K eigenvalues. % % [X,Lambda] = JDQR(A) returns the eigenvectors in the N by K matrix X and % the eigenvalues in the K by K diagonal matrix Lambda. Lambda contains the % Jordan structure if there are multiple eigenvalues. % % [X,Lambda,HISTORY] = JDQR(A) returns also the convergence history % (that is, norms of the subsequential residuals). % % [X,Lambda,Q,S] = JDQR(A) returns also a partial Schur decomposition: % S is an K by K upper triangular matrix and Q is an N by K orthonormal matrix % such that A*Q = Q*S. The diagonal elements of S are eigenvalues of A. % % [X,Lambda,Q,S,HISTORY] = JDQR(A) returns also the convergence history. % % [X,Lambda,HISTORY] = JDQR('Afun') % [X,Lambda,HISTORY] = JDQR('Afun',N) % The first input argument is either a square matrix (which can be % full or sparse, symmetric or nonsymmetric, real or complex), or a % string containing the name of an M-file which applies a linear % operator to a given column vector. In the latter case, the M-file must % return the the order N of the problem with N = Afun([],'dimension') or % N must be specified in the list of input arguments. % For example, EIGS('fft',...) is much faster than EIGS(F,...) % where F is the explicit FFT matrix. % % The remaining input arguments are optional and can be given in % practically any order: % ... = JDQR(A,K,SIGMA,OPTIONS) % ... = JDQR('Afun',K,SIGMA,OPTIONS) % where % % K An integer, the number of eigenvalues desired. % SIGMA A scalar shift or a two letter string. % OPTIONS A structure containing additional parameters. % % With one output argument, S is a vector containing K eigenvalues. % With two output arguments, S is a K-by-K upper triangular matrix % and Q is a matrix with K columns so that A*Q = Q*S and Q'*Q=I. % With three output arguments, HISTORY contains the convergence history. % % If K is not specified, then K = MIN(N,5) eigenvalues are computed. % % If SIGMA is not specified, then the K-th eigenvalues largest in magnitude % are computed. If SIGMA is zero, then the K-th eigenvalues smallest in % magnitude are computed. If SIGMA is a real or complex scalar then the % K-th eigenvalues nearest SIGMA are computed. If SIGMA is one of the % following strings, then it specifies the desired eigenvalues. % % SIGMA Location wanted eigenvalues % % 'LM' Largest Magnitude (the default) % 'SM' Smallest Magnitude (same as sigma = 0) % 'LR' Largest Real part % 'SR' Smallest Real part % 'BE' Both Ends. Computes k/2 eigenvalues % from each end of the spectrum (one more % from the high end if k is odd.) % % % The OPTIONS structure specifies certain parameters in the algorithm. % % Field name Parameter Default % % OPTIONS.Tol Convergence tolerance: 1e-8 % norm(A*Q-Q*S,1) <= tol * norm(A,1) % OPTIONS.jmin minimum dimension search subspace k+5 % OPTIONS.jmax maximum dimension search subspace jmin+5 % OPTIONS.MaxIt Maximum number of iterations. 100 % OPTIONS.v0 Starting space ones+0.1*rand % OPTIONS.Schur Gives schur decomposition 'no' % also in case of 2 or 3 output % arguments (X=Q, Lambda=R). % % OPTIONS.TestSpace For using harmonic Ritz values 'Standard' % If 'TestSpace'='Harmonic' then % sigma=0 is the default value for SIGMA % % OPTIONS.Disp Shows size of intermediate residuals 1 % and displays the appr. eigenvalues. % % OPTIONS.LSolver Linear solver 'GMRES' % OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,.. % OPTIONS.LS_MaxIt Maximum number it. linear solver 5 % OPTIONS.LS_ell ell for BiCGstab(ell) 4 % % OPTIONS.Precond Preconditioner LU=[[],[]]. % % For instance % % OPTIONS=STRUCT('Tol',1.0e-10,'LSolver','BiCGstab','LS_ell',2,'Precond',M); % % changes the convergence tolerance to 1.0e-10, takes BiCGstab(2) as linear % solver and the preconditioner defined in M.m if M is the string 'M', % or M = L*U if M is an n by 2*n matrix: M = [L,U]. % % The preconditoner can be specified in the OPTIONS structure, % but also in the argument list: % ... = JDQR(A,K,SIGMA,M,OPTIONS) % ... = JDQR(A,K,SIGMA,L,U,OPTIONS) % ... = JDQR('Afun',K,SIGMA,'M',OPTIONS) % ... = JDQR('Afun',K,SIGMA,'L','U',OPTIONS) % as an N by N matrix M (then M is the preconditioner), or an N by 2*N % matrix M (then L*U is the preconditioner, where M = [L,U]), % or as N by N matrices L and U (then L*U is the preconditioner), % or as one or two strings containing the name of M-files ('M', or % 'L' and 'U') which apply a linear operator to a given column vector. % % JDQR (without input arguments) lists the options and the defaults. % Gerard Sleijpen. % Copyright (c) 98 % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology global Qschur Rschur PinvQ Pinv_u Pu nm_operations if nargin==0, possibilities, return, end %%% Read/set parameters [n,nselect,sigma,SCHUR,... jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV0,t_tol,... lsolver,LSpar] = ReadOptions(varargin{1:nargin}); LSpar0=LSpar; JDV=0; tol0=tol; LOCK0=~ischar(sigma); if nargout>3, SCHUR=0; end tau=0; if INTERIOR>=1 & LOCK0, tau=sigma(1); end n_tar=size(sigma,1); nt=1; FIG=gcf; %%% Initiate global variables Qschur = zeros(n,0); Rschur = []; PinvQ = zeros(n,0); Pinv_u = zeros(n,1); Pu = []; nm_operations = 0; history = []; %%% Return if eigenvalueproblem is trivial if n<2 if n==1, Qschur=1; Rschur=MV(1); end if nargout == 0, eigenvalue=Rschur, else [varargout{1:nargout}]=output(history,Qschur,Rschur); end, return, end String = ['\r#it=%i #MV=%i dim(V)=%i |r_%i|=%6.1e ']; StrinP = '--- Checking for conjugate pair ---\n'; time = clock; %%% Initialize V, W: %%% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular [V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol); j=size(V,2); k=size(Rschur,1); nit=0; nlit=0; SOLVED=0; switch INTERIOR case 0 %%% The JD loop (Standard) %%% V orthogonal, V orthogonal to Qschur %%% V*V=eye(j), Qschur'*V=0, %%% W=A*V, M=V'*W %%% W=W*R; if tau ~=0; W=W+tau*V; end, M=M'*R; temptarget=sigma(nt,:); while (k<nselect) & (nit < maxit) %%% Compute approximate eigenpair and residual [UR,S]=SortSchur(M,temptarget,j==jmax,jmin); y=UR(:,1); theta=S(1,1); u=V*y; w=W*y; r=w-theta*u; [r,s]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1; if LOCK0 & nr<t_tol, temptarget=[theta;sigma(nt,:)]; end % defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr); % DispResult('defekt',defekt,3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% history=[history;nr,nit,nm_operations]; %%% if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%% if SHOW == 2, LOCK = LOCK0 & nr<t_tol; %%% if MovieTheta(n,nit,diag(S),jmin,sigma(nt,:),LOCK,j==jmax) %%% break, end, end, end %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check for convergence if nr<tol %%% Expand the partial Schur form Qschur=[Qschur,u]; %% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1; Rschur=[Rschur,s;zeros(1,k),theta]; k=k+1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if SHOW, ShowLambda(theta,k), end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if k>=nselect, break, end, r_KNOWN=0; %%% Expand preconditioned Schur matrix PinvQ SOLVED=UpdateMinv(u,SOLVED); if j==1, [V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol); k=size(Rschur,1); if k>=nselect, break, end W=W*R; if tau ~=0; W=W+tau*V; end; M=M'*R; j=size(V,2); else, J=[2:j]; j=j-1; UR=UR(:,J); M=S(J,J); V=V*UR; W=W*UR; end if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u))); if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end end if EXPAND, temptarget=conj(theta); if SHOW, fprintf(StrinP), end else, nlit=0; nt=min(nt+1,n_tar); temptarget=sigma(nt,:); end end % nr<tol %%% Check for shrinking the search subspace if j>=jmax j=jmin; J=[1:j]; UR=UR(:,J); M=S(J,J); V=V*UR; W=W*UR; end % if j>=jmax if r_KNOWN %%% Solve correction equation v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1; nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; end % if r_KNOWN if EXPAND %%% Expand the subspaces of the interaction matrix v=RepGS([Qschur,V],v); if size(v,2)>0 w=MV(v); M=[M,V'*w;v'*W,v'*w]; V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0; else tol=2*tol; end end % if EXPAND end % while (nit<maxit) case 1 %%% The JD loop (Harmonic Ritz values) %%% Both V and W orthonormal and orthogonal w.r.t. Qschur %%% V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0 %%% (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V %%% temptarget=0; FIXT=1; lsolver0=lsolver; while (k<nselect) & (nit<maxit) %%% Compute approximate eigenpair and residual [UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin); y=UR(:,1); theta=T(1,1)'*S(1,1); u=V*y; w=W*(R*y); r=w-theta*u; nr=norm(r); r_KNOWN=1; if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau; % defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr); % DispResult('defect',defekt,3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% history=[history;nr,nit,nm_operations]; %%% if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%% if SHOW == 2, Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%% if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%% break, end, end, end %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check for convergence if nr<tol %%% Expand the partial Schur form Qschur=[Qschur,u]; %% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1; Rschur=[Rschur,E*y;zeros(1,k),theta]; k=k+1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if SHOW, ShowLambda(theta,k), end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if k>=nselect, break, end, r_KNOWN=0; JDV=0; %%% Expand preconditioned Schur matrix PinvQ SOLVED=UpdateMinv(u,SOLVED); if j==1, [V,W,R,E,M]=... SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol); k=size(Rschur,1); if k>=nselect, break, end, j=size(V,2); else J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J); R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; [r,a]=RepGS(u,r,0); E=[E*UR;(T(1,1)'-a/S(1,1))*S(1,J)]; s=(S(1,J)/S(1,1))/R; W=W+r*s; M=M+s'*(r'*V); if (nr*norm(s))^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end end if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u))); if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end end if EXPAND, if SHOW, fprintf(StrinP), end temptarget=[conj(theta)-tau;0]; else, nlit=0; temptarget=0; if nt<n_tar nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau; [W,R]=qr(W*R+tau0*V,0); M=W'*V; end end end %%% Check for shrinking the search subspace if j>=jmax j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J); R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; E=E*UR; end % if j>=jmax if r_KNOWN %%% Solve correction equation if JDV, disp('Stagnation'), LSpar(end-1)=(LSpar(end-1)+15)*2; % lsolver='bicgstab'; LSpar=[1.e-2,300,4]; else LSpar=LSpar0; JDV=0; lsolver=lsolver0; end if nr>0.001 & FIXT, theta=tau; else, FIXT=0; end v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; SOLVED=1; JDV=0; end if EXPAND %%% Expand the subspaces of the interaction matrix [v,zeta]=RepGS([Qschur,V],v); if JDV0 & abs(zeta(end,1))/norm(zeta)<0.06, JDV=JDV+1; end if size(v,2)>0 w=MV(v); if tau ~=0, w=w-tau*v; end [w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w); R=[[R;zeros(1,j)],y]; M=[M,W'*v;w'*V,w'*v]; E=[E,e]; V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0; else tol=2*tol; end end end % while (nit<maxit) case 1.1 %%% The JD loop (Harmonic Ritz values) %%% V W AV. %%% Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-tau*V %%% V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0, %%% (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV; %%% AV=W*R; temptarget=0; while (k<nselect) & (nit<maxit) %%% Compute approximate eigenpair and residual [UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin); y=UR(:,1); u=V*y; w=AV*y; theta=u'*w; r=w-theta*u; [r,y]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1; if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau; % defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr); % DispResult('defect',defekt,3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% history=[history;nr,nit,nm_operations]; %%% if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%% if SHOW == 2,Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%% if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%% break, end, end, end %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check for convergence if nr<tol %%% Expand the partial Schur form Qschur=[Qschur,u]; %% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1; Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if SHOW, ShowLambda(theta,k), end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if k>=nselect, break, end, r_KNOWN=0; %%% Expand preconditioned Schur matrix PinvQ SOLVED=UpdateMinv(u,SOLVED); if j==1 [V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol); k=size(Rschur,1); if k>=nselect, break, end AV=W*R; j=size(V,2); else J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J); AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; end if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u))); if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end end if EXPAND,if SHOW, fprintf(StrinP), end temptarget=[conj(theta)-tau;0]; else, nlit=0; temptarget=0; if nt<n_tar nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau; AV=AV+tau0*V; [W,R]=qr(W*R+tau0*V,0); M=W'*V; end end end %%% Check for shrinking the search subspace if j>=jmax j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J); AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; end % if j>=jmax if r_KNOWN %%% Solve correction equation v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1; nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; end if EXPAND %%% Expand the subspaces of the interaction matrix v=RepGS([Qschur,V],v); if size(v,2)>0 w=MV(v); if tau ~=0, w=w-tau*v;end AV=[AV,w]; R=[R,W'*w]; w=RepGS([Qschur,W],w); R=[R;w'*AV]; M=[M,W'*v;w'*V,w'*v]; V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0; else tol=2*tol; end end end % while (nit<maxit) case 1.2 %%% The JD loop (Harmonic Ritz values) %%% W orthonormal, V and W orthogonal to Qschur, %%% W'*W=eye(j), Qschur'*V=0, Qschur'*W=0 %%% W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V), %%% M=W'*V V=V/R; M=M/R; temptarget='LM'; E=E/R; while (k<nselect) & (nit<maxit) %%% Compute approximate eigenpair and residual [UR,S]=SortSchur(M,temptarget,j==jmax,jmin); y=UR(:,1); u=V*y; nrm=norm(u); y=y/nrm; u=u/nrm; theta=S(1,1)'/(nrm*nrm); w=W*y; r=w-theta*u; nr=norm(r); r_KNOWN=1; if nr<t_tol, temptarget=[S(1,1);inf]; end, theta=theta+tau; % defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr); % DispResult('defect',defekt,3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% history=[history;nr,nit,nm_operations]; %%% if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%% if SHOW == 2, Lambda=1./diag(S)+tau; Lambda(1)=theta; %%% if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%% break, end, end, end %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check for convergence if nr<tol %%% Expand the partial Schur form Qschur=[Qschur,u]; %% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1; y=E*y; Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if SHOW, ShowLambda(theta,k), end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if k>=nselect, break, end, r_KNOWN=0; %%% Expand preconditioned Schur matrix PinvQ SOLVED=UpdateMinv(u,SOLVED); if j==1 [V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol); k=size(Rschur,1); if k>=nselect, break, end V=V/R; j=size(V,2); M=M/R; E=E/R; else J=[2:j]; j=j-1; UR=UR(:,J); M=S(J,J); V=V*UR; W=W*UR; [r,a]=RepGS(u,r,0); s=u'*V; V=V-u*s; W=W-r*s; M=M-s'*(r'*V)-(W'*u)*s; E=[E*UR-y*s;(tau-theta-a)*s]; if (nr*norm(s))^2>eps, [W,R]=qr(W,0); V=V/R; M=(R'\M)/R; E=E/R; end end if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u))); if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end end if EXPAND, if SHOW, fprintf(StrinP), end temptarget=[1/(conj(theta)-tau);inf]; else, nlit=0; temptarget='LM'; if nt<n_tar nt=nt+1; tau0=tau; tau=sigma(nt,1); [W,R]=qr(W+(tau0-tau)*V,0); V=V/R; M=W'*V; E=E/R; end end end %%% Check for shrinking the search subspace if j>=jmax j=jmin; J=[1:j]; UR=UR(:,J); M=S(J,J); V=V*UR; W=W*UR; E=E*UR; end % if j>=jmax if r_KNOWN %%% Solve correction equation v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1; nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; end if EXPAND %%% Expand the subspaces of the interaction matrix v=RepGS(Qschur,v,0); if size(v,2)>0 w=MV(v); if tau ~=0, w=w-tau*v; end [w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w); nrw=y(j+1,1); y=y(1:j,:); v=v-V*y; v=v/nrw; e=e-E*y; e=e/nrw; M=[M,W'*v;w'*V,w'*v]; V=[V,v]; W=[W,w]; j=j+1; E=[E,e]; if 1/cond(M)<10*tol [V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E); k=size(Rschur,1); if k>=nselect, break, end V=V/R; M=M/R; j=size(V,2);temptarget='LM'; E=E/R; end EXPAND=0; tol=tol0; else tol=2*tol; end end end % while (nit<maxit) end % case time_needed=etime(clock,time); Refine([Qschur,V],1);% 2-SCHUR); CheckSortSchur(sigma); Lambda=[]; X=zeros(n,0); if ~SCHUR & k>0, [z,Lambda]=Jordan(Rschur); X=Qschur*z; end %-------------- display results ---------------------------- if SHOW == 2, MovieTheta, figure(FIG), end if SHOW & size(history,1)>0 switch INTERIOR case 0 testspace='V, V orthonormal'; case 1 testspace='A*V-sigma*V, V and W orthonormal'; case 1.1 testspace='A*V-sigma*V, V and W orthonormal, AV'; case 1.2 testspace='A*V-sigma*V, W orthogonal'; otherwise testspace='Experimental'; end StringT=sprintf('The test subspace W is computed as W = %s.',testspace); StringX=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',... jmin,jmax,tol); StringY=sprintf('Correction equation solved with %s.',lsolver); date=fix(clock); String=sprintf('\n%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6)); StringL='log_{10} || r_{#it} ||_2'; for pl=1:SHOW subplot(SHOW,1,pl), t=history(:,pl+1); plot(t,log10(history(:,1)),'*-',t,log10(tol)+0*t,':') legend(StringL), title(StringT) StringL='log_{10} || r_{#MV} ||_2'; StringT=StringX; end if SHOW==2, xlabel([StringY,String]) else, xlabel([StringX,String]), ylabel(StringY), end drawnow end if SHOW str1=num2str(abs(k-nselect)); str='s'; if k>nselect, if k==nselect+1, str1='one'; str=''; end fprintf('\n\nDetected %s additional eigenpair%s.',str1,str) end if k<nselect, if k==0, str1='any'; str=''; elseif k==nselect-1, str1='one'; str=''; end fprintf('\n\nFailed detection of %s eigenpair%s.',str1,str) end if k>0, ShowLambda(diag(Rschur)); else, fprintf('\n'); end Str='time_needed'; DispResult(Str,eval(Str)) if (k>0) if ~SCHUR Str='norm(MV(X)-X*Lambda)'; DispResult(Str,eval(Str)) end Str='norm(MV(Qschur)-Qschur*Rschur)'; DispResult(Str,eval(Str)) I=eye(k); Str='norm(Qschur''*Qschur-I)'; DispResult(Str,eval(Str)) end fprintf('\n\n') end if nargout == 0, if ~SHOW, eigenvalues=diag(Rschur), end, return, end [varargout{1:nargout}]=output(history,X,Lambda); return %=========================================================================== %======= PREPROCESSING ===================================================== %=========================================================================== %======= INITIALIZE SUBSPACE =============================================== function [V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E); %[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol); % Output: V(:,1:SIZE(VV,2))=ORTH(VV), % V'*V=W'*W=EYE(JMIN), M=W'*V; % such that A*V-tau*V=W*R+Qschur*E, % with R upper triangular, and E=Qschur'*(A*V-tau*V). % %[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol,AV,EE); % Input such that % A*VV-tau*VV=AV+Qschur*EE, EE=Qschur'*(A*VV-tau*VV); % % Output: V(:,1:SIZE(VV,2))=ORTH(VV), % V'*V=W'*W=EYE(JMIN), M=W'*V; % such that A*V-tau*V=W*R+Qschur*E, % with R upper triangular, and E=Qschur'*(A*V-tau*V). global Qschur Rschur [n,j]=size(V); k=size(Qschur,2); if j>1, [V,R]=qr(V,0); if nargin <6, W=MV(V); R=eye(j); if tau~=0, W=W-tau*V; end if k>0, E=Qschur'*W; W=W-Qschur*E; else, E=zeros(0,j); end end [V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,R); l=size(Qschur,2); j=size(V,2); if l>=nselect, if size(V,2)==0; R=1; M=1; return, end, end if l>k, UpdateMinv(Qschur(:,k+1:l),0); end, k=l; end if j==0, nr=0; while nr==0 V = ones(n,1)+0.1*rand(n,1); V=RepGS(Qschur,V); nr=norm(V); end, j=1; end if j==1 [V,H,E]=Arnoldi(V,tau,jmin,nselect,tol); l=size(Qschur,2); j=max(size(H,2),1); if l>=nselect, W=V; R=eye(j); M=R; return, end if l>k, UpdateMinv(Qschur(:,k+1:l),0); end [Q,R]=qr(full(H),0); W=V*Q; V(:,j+1)=[]; M=Q(1:j,:)'; %% W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R; %% W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)'; end return %%%======== ARNOLDI (for initializing spaces) =============================== function [V,H,E]=Arnoldi(v,tau,jmin,nselect,tol) % %[V,AV,H,nMV,tau]=ARNOLDI(A,V0,TAU,JMIN,NSELECT,TOL) % ARNOLDI computes the Arnoldi factorization of dimenison JMIN+1: % (A-tau)*V(:,1:JMIN)=V*H where V is n by JMIN+1 orthonormal with % first column a multiple of V0, and H is JMIN+1 by JMIN Hessenberg. % % If an eigenvalue if H(1:j,1:j) is an eigenvalue of A % within the required tolerance TOL then the Schurform % A*Qschur=Qschur*Rschur is expanded and the Arnoldi factorization % (A-tau)*V(:,1:j)=V(:,1:j+1)*H(1:j+1,1:j) is deflated. % Returns if size(Qschur,2) = NSELECT or size(V,2) = JMIN+1 % (A-tau)*V(:,1:JMIN)=V*H+Qschur*E, Qschur'*V=0 % Coded November 5, 1998, G. Sleijpen global Qschur Rschur k=size(Qschur,2); [n,j]=size(v); if ischar(tau), tau=0; end H=zeros(1,0); V=zeros(n,0); E=[]; j=0; nr=norm(v); while j<jmin & k<nselect & j+k<n if nr>=tol v=v/nr; V=[V,v]; j=j+1; Av=MV(v); end if j==0 H=zeros(1,0); j=1; nr=0; while nr==0, v=RepGS(Qschur,rand(n,1)); nr=norm(v); end v=v/nr; V=v; Av=MV(v); end if tau~=0; Av=Av-tau*v; end, [v,e] = RepGS(Qschur,Av,0); if k==0, E=zeros(0,j); else, E = [E,e(1:k,1)]; end [v,y] = RepGS(V,v,0); H = [H,y(1:j,1)]; nr = norm(v); H = [H;zeros(1,j-1),nr]; [Q,U,H1] = DeflateHess(full(H),tol); j=size(U,2); l=size(Q,2); if l>0 %--- expand Schur form ------ Qschur=[Qschur,V*Q]; Rschur=[Rschur,E*Q; zeros(l,k),H1(1:l,1:l)+tau*eye(l)]; k=k+l; E=[E*U;H1(1:l,l+1:l+j)]; if j>0, V=V*U; H=H1(l+1:l+j+1,l+1:l+j); else, V=zeros(n,0); H=zeros(1,0); end end end % while if nr>=tol v=v/nr; V=[V,v]; end return %---------------------------------------------------------------------- function [Q,U,H]=DeflateHess(H,tol) % H_in*[Q,U]=[Q,U]*H_out such that H_out(K,K) upper triangular % where K=1:SIZE(Q,2) and ABS(Q(end,2)*H_in(j+1,j))<TOL, j=SIZE(H,2), [j1,j]=size(H); if j1==j, [Q,H]=schur(H); U=zeros(j,0); return, end nr=H(j+1,j); U=eye(j); i=1; J=i:j; for l=1:j [X,Lambda]=eig(H(J,J)); I=find(abs(X(size(X,1),:)*nr)<tol); if isempty(I), break, end q=X(:,I(1)); q=q/norm(q); q(1,1)=q(1,1)+sign(q(1,1)); q=q/norm(q); H(:,J)=H(:,J)-(2*H(:,J)*q)*q'; H(J,:)=H(J,:)-2*q*(q'*H(J,:)); U(:,J)=U(:,J)-(2*U(:,J)*q)*q'; i=i+1; J=i:j; end [Q,HH]=RestoreHess(H(i:j+1,J)); H(:,J)=H(:,J)*Q; H(J,:)=Q'*H(J,:); U(:,J)=U(:,J)*Q; Q=U(:,1:i-1); U=U(:,i:j); return %---------------------------------------------------------------------- function [Q,M]=RestoreHess(M) [j1,j2]=size(M); Q=eye(j2); for j=j1:-1:2 J=1:j-1; q=M(j,J)'; q=q/norm(q); q(j-1,1)=q(j-1,1)+sign(q(j-1,1)); q=q/norm(q); M(:,J)=M(:,J)-2*(M(:,J)*q)*q'; M(J,:)=M(J,:)-2*q*q'*M(J,:); Q(:,J)=Q(:,J)-2*Q(:,J)*q*q'; end return %%%=========== END ARNOLDI ============================================ function [V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,Rv); % V,W orthonormal, A*V-tau*V=W*R+Qschur'*E global Qschur Rschur k=size(Rschur,1); j=size(V,2); [W,R]=qr(W,0); E=E/Rv; R=R/Rv; M=W'*V; %%% not accurate enough M=Rw'\(M/Rv); if k>=nselect, return, end CHECK=1; l=k; [S,T,Z,Q]=qz(R,M); Z=Z'; while CHECK I=SortEigPairVar(S,T,2); [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1)); s=abs(S(1,1)); t=min(abs(T(1,1)),1); CHECK=(s*sqrt(1-t*t)<tol); if CHECK V=V*Q; W=W*Z; E=E*Q; u=V(:,1); [r,a]=RepGS(u,(W(:,1)-T(1,1)'*u)*S(1,1),0); Qschur=[Qschur,u]; t=(T(1,1)'-a/S(1,1))*S(1,:); Rschur=[Rschur,E(:,1);zeros(1,k),tau+t(1,1)]; k=k+1; J=[2:j]; j=j-1; V=V(:,J); W=W(:,J); E=[E(:,J);t(1,J)]; s=S(1,J)/S(1,1); R=S(J,J); M=T(J,J); Q=eye(j); Z=eye(j); s=s/R; nrs=norm(r)*norm(s); if nrs>=tol, W=W+r*s; M=M+s'*(r'*V); if nrs^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end end S=R; T=M; CHECK=(k<nselect & j>0); end end return %=========================================================================== %======= POSTPROCESSING ==================================================== %=========================================================================== function Refine(V,gamma); if gamma==0, return, end global Qschur Rschur J=1:size(Rschur,1); if gamma==1, [V,R]=qr(V(:,J),0); W=MV(V); M=V'*W; [U,Rschur]=schur(M); [U,Rschur]=rsf2csf(U,Rschur); Qschur=V*U; return elseif gamma==2 [V,R]=qr(V,0); W=MV(V); M=V'*W; [U,S]=schur(M); [U,S]=rsf2csf(U,S); R=R*U; F=R'*R-S'*S; [X,Lambda]=Jordan(S); % Xinv=inv(X); D=sqrt(diag(Xinv*Xinv')); X=X*diag(D); [d,I]=sort(abs(diag(X'*F*X))); [U,S]=SwapSchur(U,S,I(J)); Qschur=V*U(:,J); Rschur=S(J,J); end return %=========================================================================== function CheckSortSchur(sigma) global Qschur Rschur k=size(Rschur,1); if k==0, return, end I=SortEig(diag(Rschur),sigma); if ~min((1:k)'==I) [U,Rschur]=SwapSchur(eye(k),Rschur,I); Qschur=Qschur*U; end return %%%=========== COMPUTE SORTED JORDAN FORM ================================== function [X,Jordan]=Jordan(S) % [X,J]=JORDAN(S) % For S k by k upper triangular matrix with ordered diagonal elements, % JORDAN computes the Jordan decomposition. % X is a k by k matrix of vectors spanning invariant spaces. % If J(i,i)=J(i+1,i+1) then X(:,i)'*X(:,i+1)=0. % J is a k by k matrix, J is Jordan such that S*X=X*J. % diag(J)=diag(S) are the eigenvalues % coded by Gerard Sleijpen, Januari 14, 1998 k=size(S,1); X=zeros(k); if k==0, Jordan=[]; return, end %%% accepted separation between eigenvalues: delta=2*sqrt(eps)*norm(S,inf); delta=max(delta,10*eps); T=eye(k); s=diag(S); Jordan=diag(s); for i=1:k I=[1:i]; e=zeros(i,1); e(i,1)=1; C=S(I,I)-s(i,1)*T(I,I); C(i,i)=1; j=i-1; q=[]; jj=0; while j>0 if abs(C(j,j))<delta, jj=jj+1; j=j-1; else, j=0; end end q=X(I,i-jj:i-1); C=[C,T(I,I)*q;q',zeros(jj)]; q=C\[e;zeros(jj,1)]; nrm=norm(q(I,1)); Jordan(i-jj:i-1,i)=-q(i+1:i+jj,1)/nrm; X(I,i)=q(I,1)/nrm; end return %========== OUTPUT ========================================================= function varargout=output(history,X,Lambda) global Qschur Rschur if nargout == 1, varargout{1}=diag(Rschur); return, end if nargout > 2, varargout{nargout}=history; end if nargout > 3, varargout{3} = Qschur; varargout{4} = Rschur; end if nargout < 4 & size(X,2)<2 varargout{1}=Qschur; varargout{2}=Rschur; return else varargout{1}=X; varargout{2}=Lambda; end return %=========================================================================== %===== UPDATE PRECONDITIONED SCHUR VECTORS ================================= %=========================================================================== function solved=UpdateMinv(u,solved) global Qschur PinvQ Pinv_u Pu L_precond if ~isempty(L_precond) if ~solved, Pinv_u=SolvePrecond(u); end Pu=[[Pu;u'*PinvQ],Qschur'*Pinv_u]; PinvQ=[PinvQ,Pinv_u]; solved=0; end return %=========================================================================== %===== SOLVE CORRECTION EQUATION =========================================== %=========================================================================== function t=Solve_pce(theta,u,r,lsolver,par,nit) global Qschur PinvQ Pinv_u Pu L_precond switch lsolver case 'exact' t = exact(theta,[Qschur,u],r); case 'iluexact' t = iluexact(theta,[Qschur,u],r); case {'gmres','bicgstab','olsen'} if isempty(L_precond) %%% no preconditioning t = feval(lsolver,theta,... [Qschur,u],[Qschur,u],1,r,spar(par,nit)); else %%% solve left preconditioned system %%% compute vectors and matrices for skew projection Pinv_u=SolvePrecond(u); mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u]; %%% precondion and project r r=SolvePrecond(r); r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r); %%% solve preconditioned system t = feval(lsolver,theta,... [Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit)); end case {'cg','minres','symmlq'} if isempty(L_precond) %%% no preconditioning t = feval(lsolver,theta,... [Qschur,u],[Qschur,u],1,r,spar(par,nit)); else %%% solve two-sided expl. precond. system %%% compute vectors and matrices for skew projection Pinv_u=SolvePrecond(u,'L'); mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u]; %%% precondion and project r r=SolvePrecond(r,'L'); r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r); %%% solve preconditioned system t = feval(lsolver,theta,... [Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit)); %%% "unprecondition" solution t=SkewProj([PinvQ,Pinv_u],[Qschur,u],mu,t); t=SolvePrecond(t,'U'); end end return %======================================================================= %======= LINEAR SOLVERS ================================================ %======================================================================= function x = exact(theta,Q,r) global A_operator [n,k]=size(Q); [n,l]=size(r); if ischar(A_operator) [x,xtol]=bicgstab(theta,Q,Q,1,r,[5.0e-14/norm(r),200,4]); return end x = [A_operator-theta*speye(n,n),Q;Q',zeros(k,k)]\[r;zeros(k,l)]; x = x(1:n,1:l); return %---------------------------------------------------------------------- function x = iluexact(theta,Q,r) global L_precond U_precond [n,k]=size(Q); [n,l]=size(r); y = L_precond\[r,Q]; x = [U_precond,y(:,l+1:k+1);Q',zeros(k,k)]\[y(:,1:l);zeros(k,l)]; x = x(1:n,1:l); return %---------------------------------------------------------------------- function r = olsen(theta,Q,Z,M,r,par) return % %======= Iterative methods ============================================= % function x = bicgstab(theta,Q,Z,M,r,par) % BiCGstab(ell) % [x,rnrm] = bicgstab(theta,Q,Z,M,r,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=r % where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)). % % This function is specialized for use in JDQZ. % integer nmv: number of matrix multiplications % rnrm: relative residual norm % % par=[tol,mxmv,ell] where % integer m: max number of iteration steps % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: ETNA % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization -- % tol=par(1); max_it=par(2); l=par(3); n=size(r,1); rnrm=1; nmv=0; if max_it==0 | tol>=1, x=r; return, end rnrm=norm(r); snrm=rnrm; tol=tol*rnrm; sigma=1; omega=1; x=zeros(n,1); u=zeros(n,1); tr=r; % hist=rnrm; % -- Iteration loop while (rnrm > tol) & (nmv <= max_it) sigma=-omega*sigma; for j = 1:l, rho=tr'*r(:,j); bet=rho/sigma; u=r-bet*u; %%%%%% u(:,j+1)=Atilde*u(:,j) u(:,j+1)=mvp(theta,Q,Z,M,u(:,j)); sigma=tr'*u(:,j+1); alp=rho/sigma; x=x+alp*u(:,1); r=r-alp*u(:,2:j+1); %%%%%% r(:,j+1)=Atilde*r(:,j) r(:,j+1)=mvp(theta,Q,Z,M,r(:,j)); end gamma=r(:,2:l+1)\r(:,1); omega=gamma(l,1); x=x+r*[gamma;0]; u=u*[1;-gamma]; r=r*[1;-gamma]; rnrm = norm(r); nmv = nmv+2*l; % hist=[hist,rnrm]; end % figure(3), % plot([0:length(hist)-1]*2*l,log10(hist/snrm),'-*'), % drawnow, rnrm = rnrm/snrm; return %---------------------------------------------------------------------- function v = gmres(theta,Q,Z,M,v,par) % GMRES % [x,rnrm] = gmres(theta,Q,Z,M,b,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=b % where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)). % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: Saad % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization tol=par(1); n = size(v,1); max_it=min(par(2),n); rnrm = 1; nmv=0; if max_it==0 | tol>=1, return, end H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)]; rnrm = norm(v); v = v/rnrm; V = [v]; tol = tol * rnrm; snrm = rnrm; y = [ rnrm ; zeros(max_it,1) ]; j=0; % hist=rnrm; while (nmv < max_it) & (rnrm > tol), j=j+1; nmv=nmv+1; v=mvp(theta,Q,Z,M,v); % [v, H(1:j+1,j)] = RepGS(V,v); [v,h] = RepGS(V,v); H(1:size(h,1),j)=h; V = [V, v]; for i = 1:j-1, a = Rot(:,i); H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j); end J=[j, j+1]; a=H(J,j); if a(2) ~= 0 cs = norm(a); a = a/cs; Rot(:,j) = a; H(J,j) = [cs; 0]; y(J) = [a'; -a(2) a(1)]*y(J); end rnrm = abs(y(j+1)); % hist=[hist,rnrm]; end % figure(3) % plot([0:length(hist)-1],log10(hist/snrm),'-*') % drawnow, pause J=[1:j]; v = V(:,J)*(H(J,J)\y(J)); rnrm = rnrm/snrm; return %====================================================================== %========== BASIC OPERATIONS ========================================== %====================================================================== function v=MV(v) global A_operator nm_operations if ischar(A_operator) v = feval(A_operator,v); else v = A_operator*v; end nm_operations = nm_operations+1; return %---------------------------------------------------------------------- function v=mvp(theta,Q,Z,M,v) % v=Atilde*v v = MV(v) - theta*v; v = SolvePrecond(v); v = SkewProj(Q,Z,M,v); return %---------------------------------------------------------------------- function u=SolvePrecond(u,flag); global L_precond U_precond if isempty(L_precond), return, end if nargin<2 if ischar(L_precond) if ischar(U_precond) u=feval(L_precond,u,U_precond); elseif isempty(U_precond) u=feval(L_precond,u); else u=feval(L_precond,u,'L'); u=feval(L_precond,u,'U'); end else u=U_precond\(L_precond\u); end else switch flag case 'U' if ischar(L_precond), u=feval(L_precond,u,'U'); else, u=U_precond\u; end case 'L' if ischar(L_precond), u=feval(L_precond,u,'L'); else, u=L_precond\u; end end end return %---------------------------------------------------------------------- function r=SkewProj(Q,Z,M,r); if ~isempty(Q), r=r-Z*(M\(Q'*r)); end return %---------------------------------------------------------------------- function ppar=spar(par,nit) % Changes par=[tol(:),max_it,ell] to % ppap=[TOL,max_it,ell] where % if lenght(tol)==1 % TOL=tol % else % red=tol(end)/told(end-1); tole=tol(end); % tol=[tol,red*tole,red^2*tole,red^3*tole,...] % TOL=tol(nit); % end k=size(par,2)-2; ppar=par(1,k:k+2); if k>1 if nit>k ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k)); else ppar(1,1)=par(1,max(nit,1)); end end ppar(1,1)=max(ppar(1,1),1.0e-8); return % %======= Iterative methods for symmetric systems ======================= % function x = cg(theta,Q,Z,M,r,par) % CG % [x,rnrm] = cg(theta,Q,Z,M,b,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=b % where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)). % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: Hestenes and Stiefel % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization tol=par(1); max_it=par(2); n = size(r,1); rnrm = 1; nmv=0; b=r; if max_it ==0 | tol>=1, x=r; return, end x= zeros(n,1); u=zeros(n,1); rho = norm(r); snrm = rho; rho = rho*rho; tol = tol*tol*rho; sigma=1; while ( rho > tol & nmv < max_it ) beta=rho/sigma; u=r-beta*u; y=smvp(theta,Q,Z,M,u); nmv=nmv+1; sigma=y'*r; alpha=rho/sigma; x=x+alpha*u; r=r-alpha*y; sigma=-rho; rho=r'*r; end % while rnrm=sqrt(rho)/snrm; return %---------------------------------------------------------------------- function x = minres(theta,Q,Z,M,r,par) % MINRES % [x,rnrm] = minres(theta,Q,Z,M,b,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=b % where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)). % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: Paige and Saunders % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization tol=par(1); max_it=par(2); n = size(r,1); rnrm = 1; nmv=0; if max_it ==0 | tol>=1, x=r; return, end x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho; beta = 0; v_old = zeros(n,1); beta_t = 0; c = -1; s = 0; w = zeros(n,1); www = v; tol=tol*rho; while ( nmv < max_it & abs(rho) > tol ) wv =smvp(theta,Q,Z,M,v)-beta*v_old; nmv=nmv+1; alpha = v'*wv; wv = wv-alpha*v; beta = norm(wv); v_old = v; v = wv/beta; l1 = s*alpha - c*beta_t; l2 = s*beta; alpha_t = -s*beta_t - c*alpha; beta_t = c*beta; l0 = sqrt(alpha_t*alpha_t+beta*beta); c = alpha_t/l0; s = beta/l0; ww = www - l1*w; www = v - l2*w; w = ww/l0; x = x + (rho*c)*w; rho = s*rho; end % while rnrm=abs(rho)/snrm; return %---------------------------------------------------------------------- function x = symmlq(theta,Q,Z,M,r,par) % SYMMLQ % [x,rnrm] = symmlq(theta,Q,Z,M,b,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=b % where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)). % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: Paige and Saunders % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization tol=par(1); max_it=par(2); n = size(r,1); rnrm = 1; nmv=0; if max_it ==0 | tol>=1, x=r; return, end x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho; beta = 0; beta_t = 0; c = -1; s = 0; v_old = zeros(n,1); w = v; gtt = rho; g = 0; tol=tol*rho; while ( nmv < max_it & rho > tol ) wv = smvp(theta,Q,Z,M,v) - beta*v_old; nmv=nmv+1; alpha = v'*wv; wv = wv - alpha*v; beta = norm(wv); v_old = v; v = wv/beta; l1 = s*alpha - c*beta_t; l2 = s*beta; alpha_t = -s*beta_t - c*alpha; beta_t = c*beta; l0 = sqrt(alpha_t*alpha_t+beta*beta); c = alpha_t/l0; s = beta/l0; gt = gtt - l1*g; gtt = -l2*g; g = gt/l0; rho = sqrt(gt*gt+gtt*gtt); x = x + (g*c)*w + (g*s)*v; w = s*w - c*v; end % while rnrm=rho/snrm; return %---------------------------------------------------------------------- function v=smvp(theta,Q,Z,M,v) % v=Atilde*v v = SkewProj(Z,Q,M,v); v = SolvePrecond(v,'U'); v = MV(v) - theta*v; v = SolvePrecond(v,'L'); v = SkewProj(Q,Z,M,v); return %======================================================================= %========== Orthogonalisation ========================================== %======================================================================= function [v,y]=RepGS(V,v,gamma) % [v,y]=REP_GS(V,w) % If V orthonormal then [V,v] orthonormal and w=[V,v]*y; % If size(V,2)=size(V,1) then w=V*y; % % The orthonormalisation uses repeated Gram-Schmidt % with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion. % % [v,y]=REP_GS(V,w,GAMMA) % GAMMA=1 (default) same as [v,y]=REP_GS(V,w) % GAMMA=0, V'*v=zeros(size(V,2)) and w = V*y+v (v is not normalized). % coded by Gerard Sleijpen, August 28, 1998 if nargin < 3, gamma=1; end [n,d]=size(V); if size(v,2)==0, y=zeros(d,0); return, end nr_o=norm(v); nr=eps*nr_o; y=zeros(d,1); if d==0 if gamma, v=v/nr_o; y=nr_o; else, y=zeros(0,1); end, return end y=V'*v; v=v-V*y; nr_n=norm(v); ort=0; while (nr_n<0.5*nr_o & nr_n > nr) s=V'*v; v=v-V*s; y=y+s; nr_o=nr_n; nr_n=norm(v); ort=ort+1; end if nr_n <= nr, if ort>2, disp(' dependence! '), end if gamma % and size allows, expand with a random vector if d<n, v=RepGS(V,rand(n,1)); y=[y;0]; else, v=zeros(n,0); end else, v=0*v; end elseif gamma, v=v/nr_n; y=[y;nr_n]; end return %======================================================================= %============== Sorts Schur form ======================================= %======================================================================= function [Q,S]=SortSchur(A,sigma,gamma,kk) %[Q,S]=SortSchur(A,sigma) % A*Q=Q*S with diag(S) in order prescribed by sigma. % If sigma is a scalar then with increasing distance from sigma. % If sigma is string then according to string % ('LM' with decreasing modulus, etc) % %[Q,S]=SortSchur(A,sigma,gamma,kk) % if gamma==0, sorts only for the leading element % else, sorts for the kk leading elements l=size(A,1); if l<2, Q=1;S=A; return, elseif nargin==2, kk=l-1; elseif gamma, kk=min(kk,l-1); else, kk=1; sigma=sigma(1,:); end %%%------ compute schur form ------------- [Q,S]=schur(A); %% A*Q=Q*S, Q'*Q=eye(size(A)); %%% transform real schur form to complex schur form if norm(tril(S,-1),1)>0, [Q,S]=rsf2csf(Q,S); end %%%------ find order eigenvalues --------------- I = SortEig(diag(S),sigma); %%%------ reorder schur form ---------------- [Q,S] = SwapSchur(Q,S,I(1:kk)); return %---------------------------------------------------------------------- function I=SortEig(t,sigma); %I=SortEig(T,SIGMA) sorts the indices of T. % % T is a vector of scalars, % SIGMA is a string or a vector of scalars. % I is a permutation of (1:LENGTH(T))' such that: % if SIGMA is a vector of scalars then % for K=1,2,...,LENGTH(T) with KK = MIN(K,SIZE(SIGMA,1)) % ABS( T(I(K))-SIGMA(KK) ) <= ABS( T(I(J))-SIGMA(KK) ) % SIGMA(kk)=INF: ABS( T(I(K)) ) >= ABS( T(I(J)) ) % for all J >= K if ischar(sigma) switch sigma case 'LM' [s,I]=sort(-abs(t)); case 'SM' [s,I]=sort(abs(t)); case 'LR'; [s,I]=sort(-real(t)); case 'SR'; [s,I]=sort(real(t)); case 'BE'; [s,I]=sort(real(t)); I=twistdim(I,1); end else [s,I]=sort(abs(t-sigma(1,1))); ll=min(size(sigma,1),size(t,1)-1); for j=2:ll if sigma(j,1)==inf [s,J]=sort(abs(t(I(j:end)))); J=flipdim(J,1); else [s,J]=sort(abs(t(I(j:end))-sigma(j,1))); end I=[I(1:j-1);I(J+j-1)]; end end return %---------------------------------------------------------------------- function t=twistdim(t,k) d=size(t,k); J=1:d; J0=zeros(1,2*d); J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J); if k==1, t=t(I,:); else, t=t(:,I); end return %---------------------------------------------------------------------- function [Q,S]=SwapSchur(Q,S,I) % [Q,S]=SwapSchur(QQ,SS,P) % QQ and SS are square matrices of size K by K % P is the first part of a permutation of (1:K)'. % % If M = QQ*SS*QQ' and QQ'*QQ = EYE(K), SS upper triangular % then M*Q = Q*S with Q'*Q = EYE(K), S upper triangular % and D(1:LENGTH(P))=DD(P) where D=diag(S), DD=diag(SS) % % Computations uses Givens rotations. kk=min(length(I),size(S,1)-1); j=1; while (j<=kk & j==I(j)), j=j+1; end; while j<=kk i=I(j); for k=i-1:-1:j q = [S(k,k)-S(k+1,k+1),S(k,k+1)]; if q(1) ~= 0 q = q/norm(q); G = [[q(2);-q(1)],q']; J = [k,k+1]; Q(:,J) = Q(:,J)*G; S(:,J) = S(:,J)*G; S(J,:) = G'*S(J,:); end S(k+1,k) = 0; end I=I+(I<i); j=j+1; while (j<=kk & j==I(j)), j=j+1; end end return %---------------------------------------------------------------------- function [Q,Z,S,T]=SortQZ(A,B,sigma,gamma,kk) % % [Q,Z,S,T]=SORTQZ(A,B,SIGMA) % A and B are K by K matrices, SIGMA is a complex scalar or string. % SORTQZ computes the qz-decomposition of (A,B) with prescribed % ordering: A*Q=Z*S, B*Q=Z*T; % Q and Z are K by K unitary, % S and T are K by K upper triangular. % The ordering is as follows: % (DAIG(S),DAIG(T)) are the eigenpairs of (A,B) ordered % as prescribed by SIGMA. % % coded by Gerard Sleijpen, version Januari 12, 1998 l=size(A,1); if l<2; Q=1; Z=1; S=A; T=B; return elseif nargin==3, kk=l-1; elseif gamma, kk=min(kk,l-1); else, kk=1; sigma=sigma(1,:); end %%%------ compute qz form ---------------- [S,T,Z,Q]=qz(A,B); Z=Z'; S=triu(S); %%%------ sort eigenvalues --------------- I=SortEigPair(diag(S),diag(T),sigma); %%%------ sort qz form ------------------- [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk)); return %---------------------------------------------------------------------- function I=SortEigPair(s,t,sigma) % I=SortEigPair(S,T,SIGMA) % S is a complex K-vectors, T a positive real K-vector % SIGMA is a string or a vector of pairs of complex scalars. % SortEigPair gives the index set I that sorts the pairs (S,T). % % If SIGMA is a pair of scalars then the sorting is % with increasing "chordal distance" w.r.t. SIGMA. % % The chordal distance D between a pair A and a pair B is defined as follows. % Scale A by a scalar F such that NORM(F*A)=1 and F*A(2)>=0, % scale B by a scalar G such that NORM(G*B)=1 and G*B(2)>=0, % then D(A,B)=ABS((F*A)*RROT(G*B)) where RROT(alpha,beta)=(beta,-alpha) % coded by Gerard Sleijpen, version Januari 14, 1998 n=sign(t); n=n+(n==0); t=abs(t./n); s=s./n; if ischar(sigma) switch sigma case {'LM','SM'} case {'LR','SR','BE'} s=real(s); end [s,I]=sort((-t./sqrt(s.*conj(s)+t.*t))); switch sigma case {'LM','LR'} I=flipdim(I,1); case {'SM','SR'} case 'BE' I=twistdim(I,1); end else n=sqrt(sigma.*conj(sigma)+1); ll=size(sigma,1); tau=[ones(ll,1)./n,-sigma./n]; tau=tau.'; n=sqrt(s.*conj(s)+t.*t); s=[s./n,t./n]; [t,I]=sort(abs(s*tau(:,1))); ll = min(ll,size(I,1)-1); for j=2:ll [t,J]=sort(abs(s(I(j:end),:)*tau(:,j))); I=[I(1:j-1);I(J+j-1)]; end end return %---------------------------------------------------------------------- function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I) % [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P) % QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular. % P is the first part of a permutation of (1:K)'. % % Then Q and Z are K by K unitary, S and T are K by K upper triangular, % such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have % A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where % LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT). % % Computation uses Givens rotations. % % coded by Gerard Sleijpen, version October 12, 1998 kk=min(length(I),size(S,1)-1); j=1; while (j<=kk & j==I(j)), j=j+1; end while j<=kk i=I(j); for k = i-1:-1:j, %%% i>j, move ith eigenvalue to position j J = [k,k+1]; q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J); if q(1) ~= 0 q = q/norm(q); G = [[q(2);-q(1)],q']; Q(:,J) = Q(:,J)*G; S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G; end if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end if q(2) ~= 0 q=q/norm(q); G = [q';q(2),-q(1)]; Z(:,J) = Z(:,J)*G'; S(J,:) = G*S(J,:); T(J,:) = G*T(J,:); end T(k+1,k) = 0; S(k+1,k) = 0; end I=I+(I<i); j=j+1; while (j<=kk & j==I(j)), j=j+1; end end return %======================================================================= %======= SET PARAMETERS ================================================ %======================================================================= function [n,nselect,sigma,SCHUR,... jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV,OLD,... lsolver,par] = ReadOptions(varargin) % Read options and set defaults global A_operator L_precond U_precond A_operator = varargin{1}; %%% determine dimension if ischar(A_operator) n=-1; if exist(A_operator) ~=2 msg=sprintf(' Can not find the M-file ''%s.m'' ',A_operator); errordlg(msg,'MATRIX'),n=-2; end if n==-1, eval('n=feval(A_operator,[],''dimension'');','n=-1;'), end else [n,n] = size(A_operator); if any(size(A_operator) ~= n) msg=sprintf(' The operator must be a square matrix or a string. '); errordlg(msg,'MATRIX'),n=-3; end end %%% defaults SCHUR = 0; jmin = -1; jmax = -1; p0 = 5; % jmin=nselect+p0 p1 = 5; % jmax=jmin+p1 tol = 1e-8; maxit = 200; V = zeros(0,0); INTERIOR= 0; SHOW = 0; PAIRS = 0; JDV = 0; OLD = 1e-4; lsolver = 'gmres'; ls_maxit= 200; ls_tol = [1,0.7]; ell = 4; par = [ls_tol,ls_maxit,ell]; options=[]; sigma=[]; varg=[]; L_precond = []; U_precond = []; for j = 2:nargin if isstruct(varargin{j}) options = varargin{j}; elseif ischar(varargin{j}) if length(varargin{j}) == 2 & isempty(sigma) sigma = varargin{j}; elseif isempty(L_precond) L_precond=varargin{j}; elseif isempty(U_precond) U_precond=varargin{j}; end elseif length(varargin{j}) == 1 varg = [varg,varargin{j}]; elseif min(size(varargin{j}))==1 sigma = varargin{j}; if size(sigma,1)==1, sigma=conj(sigma'); end elseif isempty(L_precond) L_precond=varargin{j}; elseif isempty(U_precond) U_precond=varargin{j}; end end if ischar(sigma) sigma0=sigma; sigma=upper(sigma); switch sigma case {'LM','LR','SR','BE','SM'} otherwise if exist(sigma0)==2 & isempty(L_precond) ok=1; eval('v=feval(sigma,zeros(n,1));','ok=0') if ok, L_precond=sigma0; sigma=[]; end end end end [s,I]=sort(varg); I=flipdim(I,2); J=[]; j=0; while j<length(varg) j=j+1; jj=I(j); s=varg(jj); if isreal(s) & (s == fix(s)) & (s > 0) if n==-1 n=s; eval('v=feval(A_operator,zeros(n,0));','n=-1;') if n>-1, J=[J,jj]; end end else if isempty(sigma), sigma=s; elseif ischar(sigma) & isempty(L_precond) ok=1; eval('v=feval(sigma0,zeros(n,1));','ok=0') if ok, L_precond=sigma0; sigma=s; end end, J=[J,jj]; end end varg(J)=[]; if n==-1, msg1=sprintf(' Cannot find the dimension of ''%s''. \n',A_operator); msg2=sprintf(' Put the dimension n in the parameter list: \n like'); msg3=sprintf('\t\n\n\t jdqr(''%s'',n,..), \n\n',A_operator); msg4=sprintf(' or let\n\n\t n = %s(',A_operator); msg5=sprintf('[],''dimension'')\n\n give n.'); msg=[msg1,msg2,msg3,msg4,msg5]; errordlg(msg,'MATRIX') end nselect=[]; if n<2, return, end if length(varg) == 1 nselect=min(n,varg); elseif length(varg)>1 if isempty(sigma), sigma=varg(end); varg(end)=[]; end nselect=min(n,min(varg)); end fopts = []; if ~isempty(options), fopts=fields(options); end if isempty(L_precond) if strmatch('Precond',fopts) L_precond = options.Precond; elseif strmatch('L_Precond',fopts) L_precond = options.L_Precond; end end if isempty(U_precond) & strmatch('U_Precond',fopts) U_precond = options.U_Precond; end if isempty(L_precond), ls_tol = [0.7,0.49]; end if ~isempty(L_precond) & ischar(L_precond) if exist(L_precond) ~=2 msg=sprintf(' Can not find the M-file ''%s.m'' ',L_precond); n=-1; elseif ~isempty(U_precond) & ~ischar(U_precond) & n>0 msg=sprintf(' L and U should both be strings or matrices'); n=-1; elseif strcmp(L_precond,U_precond) eval('v=feval(L_precond,zeros(n,1),''L'');','n=-1;') eval('v=feval(L_precond,zeros(n,1),''U'');','n=-1;') if n<0 msg='L and U use the same M-file'; msg1=sprintf(' %s.m \n',L_precond); msg2='Therefore L and U are called'; msg3=sprintf(' as\n\n\tw=%s(v,''L'')',L_precond); msg4=sprintf(' \n\tw=%s(v,''U'')\n\n',L_precond); msg5=sprintf('Check the dimensions and/or\n'); msg6=sprintf('put this "switch" in %s.m.',L_precond); msg=[msg,msg1,msg2,msg3,msg4,msg5,msg6]; else U_precond=0; end elseif ischar(A_operator) & strcmp(A_operator,L_precond) U_precond='preconditioner'; eval('v=feval(L_precond,zeros(n,1),U_precond);','n=-1;') if n<0 msg='Preconditioner and matrix use the same M-file'; msg1=sprintf(' %s. \n',L_precond); msg2='Therefore the preconditioner is called'; msg3=sprintf(' as\n\n\tw=%s(v,''preconditioner'')\n\n',L_precond); msg4='Put this "switch" in the M-file.'; msg=[msg,msg1,msg2,msg3,msg4]; end else eval('v=feval(L_precond,zeros(n,1));','n=-1') if n<0 msg=sprintf('''%s'' should produce %i-vectors',L_precond,n); end end end Ud=1; if ~isempty(L_precond) & ~ischar(L_precond) & n>0 if ~isempty(U_precond) & ischar(U_precond) msg=sprintf(' L and U should both be strings or matrices'); n=-1; elseif ~isempty(U_precond) if ~min([n,n]==size(L_precond) & [n,n]==size(U_precond)) msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1; end elseif min([n,n]==size(L_precond)) U_precond=speye(n); Ud=0; elseif min([n,2*n]==size(L_precond)) U_precond=L_precond(:,n+1:2*n); L_precond=L_precond(:,1:n); else msg=sprintf('The preconditioning matrix\n'); msg2=sprintf('should be %iX%i or %ix%i ([L,U]).\n',n,n,n,2*n); msg=[msg,msg2]; n=-1; end end if n<0, errordlg(msg,'PRECONDITIONER'), return, end ls_tol0=ls_tol; if strmatch('Tol',fopts), tol = options.Tol; end if isempty(nselect), nselect=min(n,5); end if strmatch('jmin',fopts), jmin=min(n,options.jmin); end if strmatch('jmax',fopts) jmax=min(n,options.jmax); if jmin<0, jmin=max(1,jmax-p1); end else if jmin<0, jmin=min(n,nselect+p0); end jmax=min(n,jmin+p1); end if strmatch('MaxIt',fopts), maxit = abs(options.MaxIt); end if strmatch('v0',fopts); V = options.v0; [m,d]=size(V); if m~=n | d==0 if m>n, V = V(1:n,:); end nrV=norm(V); if nrV>0, V=V/nrV; end d=max(d,1); V = [V; ones(n-m,d) +0.1*rand(n-m,d)]; end else V = ones(n,1) +0.1*rand(n,1); d=1; end if strmatch('TestSpace',fopts), INTERIOR = boolean(options.TestSpace,... [INTERIOR,0,1,1.1,1.2],strvcat('standard','harmonic')); end if isempty(sigma) if INTERIOR, sigma=0; else, sigma = 'LM'; end elseif ischar(sigma) switch sigma case {'LM','LR','SR','BE'} case {'SM'} sigma=0; otherwise if INTERIOR, sigma=0; else, sigma='LM'; end end end if strmatch('Schur',fopts), SCHUR = boolean(options.Schur,SCHUR); end if strmatch('Disp',fopts), SHOW = boolean(options.Disp,[SHOW,2]); end if strmatch('Pairs',fopts), PAIRS = boolean(options.Pairs,PAIRS); end if strmatch('AvoidStag',fopts),JDV = boolean(options.AvoidStag,JDV); end if strmatch('Track',fopts) OLD = boolean(options.Track,[OLD,0,OLD,inf],strvcat('no','yes')); end OLD=max(abs(OLD),10*tol); if strmatch('LSolver',fopts), lsolver = lower(options.LSolver); end switch lsolver case {'exact'} L_precond=[]; if ischar(A_operator) msg=sprintf('The operator must be a matrix for ''exact''.'); msg=[msg,sprintf('\nDo you want to solve the correction equation')]; msg=[msg,sprintf('\naccurately with an iterative solver (BiCGstab)?')]; button=questdlg(msg,'Solving exactly','Yes','No','Yes'); if strcmp(button,'No'), n=-1; return, end end case {'iluexact'} if ischar(L_precond) msg=sprintf('The preconditioner must be matrices for ''iluexact''.'); errordlg(msg,'Solving with ''iluexact''') n=-1; return end case {'olsen'} case {'cg','minres','symmlq'} ls_tol=1.0e-12; case 'gmres' ls_maxit=5; case 'bicgstab' ls_tol=1.0e-10; otherwise error(['Unknown method ''' lsolver '''.']); end if strmatch('LS_MaxIt',fopts), ls_maxit=abs(options.LS_MaxIt); end if strmatch('LS_Tol',fopts), ls_tol=abs(options.LS_Tol); end if strmatch('LS_ell',fopts), ell=round(abs(options.LS_ell)); end par=[ls_tol,ls_maxit,ell]; if SHOW fprintf('\n'),fprintf('PROBLEM\n') if ischar(A_operator) fprintf(' A: ''%s''\n',A_operator); elseif issparse(A_operator) fprintf(' A: [%ix%i sparse]\n',n,n); else fprintf(' A: [%ix%i double]\n',n,n); end fprintf(' dimension: %i\n',n); fprintf(' nselect: %i\n\n',nselect); fprintf('TARGET\n') if ischar(sigma) fprintf(' sigma: ''%s''',sigma) else Str=ShowLambda(sigma); fprintf(' sigma: %s',Str) end fprintf('\n\n') fprintf('OPTIONS\n'); fprintf(' Schur: %i\n',SCHUR); fprintf(' Tol: %g\n',tol); fprintf(' Disp: %i\n',SHOW); fprintf(' jmin: %i\n',jmin); fprintf(' jmax: %i\n',jmax); fprintf(' MaxIt: %i\n',maxit); fprintf(' v0: [%ix%i double]\n',size(V)); fprintf(' TestSpace: %g\n',INTERIOR); fprintf(' Pairs: %i\n',PAIRS); fprintf(' AvoidStag: %i\n',JDV); fprintf(' Track: %g\n',OLD); fprintf(' LSolver: ''%s''\n',lsolver); switch lsolver case {'exact','iluexact','olsen'} case {'cg','minres','symmlq','gmres','bicgstab'} if length(ls_tol)>1 fprintf(' LS_Tol: ['); fprintf(' %g',ls_tol); fprintf(' ]\n'); else fprintf(' LS_Tol: %g\n',ls_tol); end fprintf(' LS_MaxIt: %i\n',ls_maxit); end if strcmp(lsolver,'bicgstab') fprintf(' LS_ell: %i\n',ell); end if isempty(L_precond) fprintf(' Precond: []\n'); else StrL='Precond'; StrU='U precond'; Us='double'; Ls=Us; ok=0; if issparse(L_precond), Ls='sparse'; end if ~isempty(U_precond) & Ud, StrL='L precond'; ok=1; if issparse(U_precond), Us='sparse'; end end if ischar(L_precond) fprintf('%13s: ''%s''\n',StrL,L_precond); if ok if U_precond~=0 & ~strcmp(U_precond,'preconditioner') fprintf('%13s: ''%s''\n',StrU,U_precond); else fprintf('%13s: ''%s''\n',StrU,L_precond); end end else fprintf('%13s: [%ix%i %s]\n',StrL,n,n,Ls); if ok & Ud, fprintf('%13s: [%ix%i %s]\n',StrU,n,n,Us); end end end fprintf('\n') string1='%13s: ''%s'''; string2='\n\t %s'; switch INTERIOR case 0 fprintf(string1,'TestSpace','Standard, W = V ') fprintf(string2,'V W: V orthogonal') fprintf(string2,'W=A*V') case 1 fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V') fprintf(string2,'V W: V and W orthogonal') fprintf(string2,'AV-Q*E=W*R where AV=A*V-sigma*V and E=Q''*AV') case 1.1 fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V') fprintf(string2,'V W AV: V and W orthogonal') fprintf(string2,'AV=A*V-sigma*V, AV-Q*Q''*AV=W*R') case 1.2 fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V') fprintf(string2,'V W: W orthogonal') fprintf(string2,'W=AV-Q*E where AV=A*V-sigma*V and E=Q''*AV') otherwise fprintf(string1,'TestSpace','Experimental') end % switch INTERIOR fprintf('\n\n') end % if SHOW if ischar(sigma) & INTERIOR >=1 msg1=sprintf('\n The choice sigma = ''%s'' does not match',sigma); msg2=sprintf('\n the search for INTERIOR eigenvalues.'); msg3=sprintf('\n Specify a numerical value for sigma'); msg4=sprintf(',\n for instance, a value that is '); switch sigma case {'LM'} % sigma='SM'; msg5=sprintf('absolute large.\n'); msg4=[msg4,msg5]; case {'LR'} % sigma='SP'; % smallest positive real msg5=sprintf('positive large.\n'); msg4=[msg4,msg5]; case {'SR'} % sigma='LN'; % largest negative real msg5=sprintf('negative and absolute large.\n'); msg4=[msg4,msg5]; case {'BE'} % sigma='AS'; % alternating smallest pos., largest neg msg4=sprintf('.\n'); end msg=[msg1,msg2,msg3,msg4]; msg5=sprintf(' Do you want to continue with sigma=0?'); msg=[msg,msg5]; button=questdlg(msg,'Finding Interior Eigenvalues','Yes','No','Yes'); if strcmp(button,'Yes'), sigma=0, else, n=-1; end end return %------------------------------------------------------------------- function x = boolean(x,gamma,string) %Y = BOOLEAN(X,GAMMA,STRING) % GAMMA(1) is the default. % If GAMMA is not specified, GAMMA = 0. % STRING is a matrix of accepted strings. % If STRING is not specified STRING = ['no ';'yes'] % STRING(I,:) and GAMMA(I) are accepted expressions for X % If X=GAMMA(I) then Y=X. If X=STRING(I,:), then Y=GAMMA(I+1). % For other values of X, Y=GAMMA(1); if nargin < 2, gamma=0; end if nargin < 3, string=strvcat('no','yes'); gamma=[gamma,0,1]; end if ischar(x) i=strmatch(lower(x),string,'exact'); if isempty(i),i=1; else, i=i+1; end, x=gamma(i); elseif max((gamma-x)==0) elseif gamma(end) == inf else, x=gamma(1); end return %------------------------------------------------------------------- function possibilities fprintf('\n') fprintf('PROBLEM\n') fprintf(' A: [ square matrix | string ]\n'); fprintf(' nselect: [ positive integer {5} ]\n\n'); fprintf('TARGET\n') fprintf(' sigma: [ scalar | vector of scalars |\n'); fprintf(' ''LM'' | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n'); fprintf('OPTIONS\n'); fprintf(' Schur: [ yes | {no} ]\n'); fprintf(' Tol: [ positive scalar {1e-8} ]\n'); fprintf(' Disp: [ yes | {no} | 2 ]\n'); fprintf(' jmin: [ positive integer {nselect+5} ]\n'); fprintf(' jmax: [ positive integer {jmin+5} ]\n'); fprintf(' MaxIt: [ positive integer {200} ]\n'); fprintf(' v0: [ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n'); fprintf(' TestSpace: [ Standard | {Harmonic} ]\n'); fprintf(' Pairs: [ yes | {no} ]\n'); fprintf(' AvoidStag: [ yes | {no} ]\n'); fprintf(' Track: [ {yes} | no | non-negative scalar {1e-4} ]\n'); fprintf(' LSolver: [ {gmres} | bicgstab ]\n'); fprintf(' LS_Tol: [ row of positive scalars {[1,0.7]} ]\n'); fprintf(' LS_MaxIt: [ positive integer {5} ]\n'); fprintf(' LS_ell: [ positive integer {4} ]\n'); fprintf(' Precond: [ n by 2n matrix | string {identity} ]\n'); fprintf('\n') return %=========================================================================== %============= OUTPUT FUNCTIONS ============================================ %=========================================================================== function varargout=ShowLambda(lambda,kk) for k=1:size(lambda,1); if k>1, Str=[Str,sprintf('\n%15s','')]; else, Str=[]; end rlambda=real(lambda(k,1)); ilambda=imag(lambda(k,1)); Str=[Str,sprintf(' %+11.4e',rlambda)]; if abs(ilambda)>100*eps*abs(rlambda) if ilambda>0 Str=[Str,sprintf(' + %10.4ei',ilambda)]; else Str=[Str,sprintf(' - %10.4ei',-ilambda)]; end end end if nargout == 0 if nargin == 2 Str=[sprintf('\nlambda(%i) =',kk),Str]; else Str=[sprintf('\nDetected eigenvalues:\n\n%15s',''),Str]; end fprintf('%s\n',Str) else varargout{1}=Str; end return %=========================================================================== function DispResult(s,nr,gamma) if nargin<3, gamma=0; end extra=''; if nr > 100*eps & gamma extra=' norm > 100*eps !!! '; end if gamma<2 | nr>100*eps fprintf('\n %35s: %0.5g\t%s',s,nr,extra) end return %=========================================================================== function STATUS0=MovieTheta(n,nit,Lambda,jmin,tau,LOCKED,SHRINK) % MovieTheta(n,nit,Lambda,jmin,tau,nr<t_tol,j==jmax); global A_operator Rschur EigMATLAB CIRCLE MovieAxis M_STATUS f=256; if nargin==0, if ~isempty(CIRCLE) %figure(f), buttons(f,-2); hold off, refresh end return end if nit==0 EigMATLAB=[]; if ~ischar(A_operator) & n<201 EigMATLAB=eig(full(A_operator)); end CIRCLE=0:0.005:1; CIRCLE=exp(CIRCLE*2*pi*sqrt(-1)); if ischar(tau) switch tau case {'LR','SR'} if ~ischar(A_operator) CIRCLE=norm(A_operator,'inf')*[sqrt(-1),-sqrt(-1)]+1; end end end Explanation(~isempty(EigMATLAB),f-1) end %if gcf~=f, figure(f), end jmin=min(jmin,length(Lambda)); %plot(real(Lambda(1:jmin)),imag(Lambda(1:jmin)),'bo'); if nit>0, axis(MovieAxis), end, hold on pls='bo'; if SHRINK, pls='mo'; end %plot(real(Lambda(jmin+1:end)),imag(Lambda(jmin+1:end)),pls) %plot(real(EigMATLAB),imag(EigMATLAB),'cp'); THETA=diag(Rschur); %plot(real(THETA),imag(THETA),'k*'); x=real(Lambda(1)); y=imag(Lambda(1)); %plot(x,y,'kd'), pls='ks'; if LOCKED, plot(x,y,'ks'), pls='ms'; end if ischar(tau), tau=0; end delta=Lambda([1,jmin])-tau; if length(CIRCLE)~=2, delta=abs(delta); % plot(real(tau),imag(tau),pls) else, delta=real(delta); end for i=1:1+SHRINK, zeta=delta(i)*CIRCLE+tau; % plot(real(zeta),imag(zeta),'r:'), end if nit==0 buttons(f,-1); hold off, zoom on end title('legend see figure(255)') if SHRINK, STATUS0=buttons(f,2); if STATUS0, return, end, end STATUS0=buttons(f,1); drawnow, hold off return %============================================================= function Explanation(E,f) %if gcf~=f, figure(f), end HL=plot(0,0,'kh',0,0,'bo'); hold on StrL=str2mat('Detected eigenvalues','Approximate eigenvalues'); if E HL=[HL;plot(0,0,'cp')]; StrL=str2mat(StrL,'Exact eigenvenvalues'); end HL=[HL;plot(0,0,'kd',0,0,'ks',0,0,'r:')]; % StrL=str2mat(StrL,'Tracked app. eig.','target',... % 'inner/outer bounds for restart'); StrL=str2mat(StrL,'Selected approximate eigenvalue','target',... 'inner/outer bounds for restart'); legend(HL,StrL), hold on, drawnow, hold off title('legend for figure(256)') return %============================================================= function STATUS0=buttons(f,push) % push=0: do nothing % push>0: check status buttons, % STATUS0=1 if break else STATUS0=0. % push=-1: make buttons for pause and break % push=-2: remove buttons global M_STATUS MovieAxis if push>0 % check status buttons ud = get(f,'UserData'); if ud.pause ==1, M_STATUS=1; end if ud.break ==1, STATUS0=1; ud.pause=0; ud.break=0; set(f,'UserData',ud); return, else, STATUS0=0; end if push>1 ud.pause=0; set(f,'UserData',ud); while M_STATUS ud = get(f,'UserData'); pause(0.1) if ud.pause, M_STATUS=0; end if ud.break, M_STATUS=0; STATUS0=1; end MovieAxis=axis; end ud.pause=0; ud.break=0; set(f,'UserData',ud); end elseif push==0, STATUS0=0; return elseif push==-1 % make buttons ud = []; h = findobj(f,'Tag','pause'); if isempty(h) ud.pause = 0; pos = get(0,'DefaultUicontrolPosition'); pos(1) = pos(1) - 15; pos(2) = pos(2) - 15; str = 'ud=get(gcf,''UserData''); ud.pause=1; set(gcf,''UserData'',ud);'; uicontrol( ... 'Style','push', ... 'String','Pause', ... 'Position',pos, ... 'Callback',str, ... 'Tag','pause'); else set(h,'Visible','on'); % make sure it's visible if ishold oud = get(f,'UserData'); ud.pause = oud.pause; % don't change old ud.pause status else ud.pause = 0; end end h = findobj(f,'Tag','break'); if isempty(h) ud.break = 0; pos = get(0,'DefaultUicontrolPosition'); pos(1) = pos(1) + 50; pos(2) = pos(2) - 15; str = 'ud=get(gcf,''UserData''); ud.break=1; set(gcf,''UserData'',ud);'; uicontrol( ... 'Style','push', ... 'String','Break', ... 'Position',pos, ... 'Callback',str, ... 'Tag','break'); else set(h,'Visible','on'); % make sure it's visible if ishold oud = get(f,'UserData'); ud.break = oud.break; % don't change old ud.break status else ud.break = 0; end end set(f,'UserData',ud); M_STATUS=0; STATUS0=0; hold off, zoom on MA=axis; nl=MA/10; MovieAxis = MA-max(nl([2,4])-nl([1,3]))*[1,-1,1,-1]; else % remove buttons set(findobj(f,'Tag','pause'),'Visible','off'); set(findobj(f,'Tag','break'),'Visible','off'); STATUS0=0; return, refresh end return
github
pvarin/DynamicVAE-master
lmnn.m
.m
DynamicVAE-master/drtoolbox/techniques/lmnn.m
5,431
utf_8
622ccdd8948f805d0d4552822cca46de
function [M, L, Y, C] = lmnn(X, labels) %LMNN Learns a metric using large-margin nearest neighbor metric learning % % [M, L, Y, C] = lmnn(X, labels) % % The function uses large-margin nearest neighbor (LMNN) metric learning to % learn a metric on the data set specified by the NxD matrix X and the % corresponding Nx1 vector labels. The metric is returned in M. % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology % Initialize some variables [N, D] = size(X); assert(length(labels) == N); [lablist, ~, labels] = unique(labels); K = length(lablist); label_matrix = false(N, K); label_matrix(sub2ind(size(label_matrix), (1:length(labels))', labels)) = true; same_label = logical(double(label_matrix) * double(label_matrix')); M = eye(D); C = Inf; prev_C = Inf; % Set learning parameters min_iter = 50; % minimum number of iterations max_iter = 1000; % maximum number of iterations eta = .1; % learning rate mu = .5; % weighting of pull and push terms tol = 1e-3; % tolerance for convergence best_C = Inf; % best error obtained so far best_M = M; % best metric found so far no_targets = 3; % number of target neighbors % Select target neighbors sum_X = sum(X .^ 2, 2); DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X'))); DD(~same_label) = Inf; DD(1:N + 1:end) = Inf; [~, targets_ind] = sort(DD, 2, 'ascend'); targets_ind = targets_ind(:,1:no_targets); targets = false(N, N); targets(sub2ind([N N], vec(repmat((1:N)', [1 no_targets])), vec(targets_ind))) = true; % Compute pulling term between target neigbhors to initialize gradient slack = zeros(N, N, no_targets); G = zeros(D, D); for i=1:no_targets G = G + (1 - mu) .* (X - X(targets_ind(:,i),:))' * (X - X(targets_ind(:,i),:)); end % Perform main learning iterations iter = 0; while (prev_C - C > tol || iter < min_iter) && iter < max_iter % Compute pairwise distances under current metric XM = X * M; sum_X = sum(XM .* X, 2); DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (XM * X'))); % Compute value of slack variables old_slack = slack; for i=1:no_targets slack(:,:,i) = ~same_label .* max(0, bsxfun(@minus, 1 + DD(sub2ind([N N], (1:N)', targets_ind(:,i))), DD)); end % Compute value of cost function prev_C = C; C = (1 - mu) .* sum(DD(targets)) + ... % push terms between target neighbors mu .* sum(slack(:)); % pull terms between impostors % Maintain best solution found so far (subgradient method) if C < best_C best_C = C; best_M = M; end % Perform gradient update for i=1:no_targets % Add terms for new violations [r, c] = find(slack(:,:,i) > 0 & old_slack(:,:,i) == 0); G = G + mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ... (X(r,:) - X(targets_ind(r, i),:)) - ... (X(r,:) - X(c,:))' * (X(r,:) - X(c,:))); % Remove terms for resolved violations [r, c] = find(slack(:,:,i) == 0 & old_slack(:,:,i) > 0); G = G - mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ... (X(r,:) - X(targets_ind(r, i),:)) - ... (X(r,:) - X(c,:))' * (X(r,:) - X(c,:))); end M = M - (eta ./ N) .* G; % Project metric back onto the PSD cone [V, L] = eig(M); V = real(V); L = real(L); ind = find(diag(L) > 0); if isempty(ind) warning('Projection onto PSD cone failed. All eigenvalues were negative.'); break end M = V(:,ind) * L(ind, ind) * V(:,ind)'; if any(isinf(M(:))) warning('Projection onto PSD cone failed. Metric contains Inf values.'); break end if any(isnan(M(:))) warning('Projection onto PSD cone failed. Metric contains NaN values.'); break end % Update learning rate if prev_C > C eta = eta * 1.01; else eta = eta * .5; end % Print out progress iter = iter + 1; no_slack = sum(slack(:) > 0); if rem(iter, 10) == 0 [~, sort_ind] = sort(DD, 2, 'ascend'); disp(['Iteration ' num2str(iter) ': error is ' num2str(C ./ N) ... ', nearest neighbor error is ' num2str(sum(labels(sort_ind(:,2)) ~= labels) ./ N) ... ', number of constraints: ' num2str(no_slack)]); end end % Return best metric and error M = best_M; C = best_C; % Compute mapped data [L, S, ~] = svd(M); L = bsxfun(@times, sqrt(diag(S)), L); Y = X * L; end function x = vec(x) x = x(:); end
github
pvarin/DynamicVAE-master
d2p.m
.m
DynamicVAE-master/drtoolbox/techniques/d2p.m
3,487
utf_8
0c7024a8039ea16b937d283585883fc3
function [P, beta] = d2p(D, u, tol) %D2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % [P, beta] = d2p(D, kk, tol) % % Identifies the required precision (= 1 / variance^2) to obtain a Gaussian % kernel with a certain uncertainty for every datapoint. The desired % uncertainty can be specified through the perplexity u (default = 15). The % desired perplexity is obtained up to some tolerance that can be specified % by tol (default = 1e-4). % The function returns the final Gaussian kernel in P, as well as the % employed precisions per instance in beta. % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology if ~exist('u', 'var') || isempty(u) u = 15; end if ~exist('tol', 'var') || isempty(tol) tol = 1e-4; end % Initialize some variables n = size(D, 1); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(u); % log of perplexity (= entropy) % Run over all datapoints for i=1:n if ~rem(i, 500) disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); end % Set minimum and maximum values for precision betamin = -Inf; betamax = Inf; % Compute the Gaussian kernel and entropy for the current precision [H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i)); % Evaluate whether the perplexity is within tolerance Hdiff = H - logU; tries = 0; while abs(Hdiff) > tol && tries < 50 % If not, increase or decrease precision if Hdiff > 0 betamin = beta(i); if isinf(betamax) beta(i) = beta(i) * 2; else beta(i) = (beta(i) + betamax) / 2; end else betamax = beta(i); if isinf(betamin) beta(i) = beta(i) / 2; else beta(i) = (beta(i) + betamin) / 2; end end % Recompute the values [H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i)); Hdiff = H - logU; tries = tries + 1; end % Set the final row of P P(i, [1:i - 1, i + 1:end]) = thisP; end disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]); disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]); disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]); end % Function that computes the Gaussian kernel values given a vector of % squared Euclidean distances, and the precision of the Gaussian kernel. % The function also computes the perplexity of the distribution. function [H, P] = Hbeta(D, beta) P = exp(-D * beta); sumP = sum(P); H = log(sumP) + beta * sum(D .* P) / sumP; % why not: H = exp(-sum(P(P > 1e-5) .* log(P(P > 1e-5)))); ??? P = P / sumP; end
github
pvarin/DynamicVAE-master
cg_update.m
.m
DynamicVAE-master/drtoolbox/techniques/cg_update.m
3,715
utf_8
1556078ae7c31950ec738949384cf180
% Version 1.000 % % Code provided by Ruslan Salakhutdinov and Geoff Hinton % % Permission is granted for anyone to copy, use, modify, or distribute this % program and accompanying programs and documents for any purpose, provided % this copyright notice is retained and prominently displayed, along with % a note saying that the original programs are available from our % web page. % The programs and documents are distributed without any warranty, express or % implied. As the programs were written for research purposes only, they have % not been tested to the degree that would be advisable in any important % application. All use of these programs is entirely at the user's own risk. % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology function [f, df] = cg_update(VV, Dim, XX) l1 = Dim(1); l2 = Dim(2); l3 = Dim(3); l4 = Dim(4); l5 = Dim(5); l6 = Dim(6); l7 = Dim(7); l8 = Dim(8); l9 = Dim(9); N = size(XX, 1); % Extract weights back from VV w1 = reshape(VV(1:(l1 + 1) * l2), l1 + 1, l2); xxx = (l1 + 1) * l2; w2 = reshape(VV(xxx + 1:xxx + (l2 + 1) * l3), l2 + 1, l3); xxx = xxx + (l2 + 1) * l3; w3 = reshape(VV(xxx + 1:xxx + (l3 + 1) * l4), l3 + 1, l4); xxx = xxx + (l3 + 1) * l4; w4 = reshape(VV(xxx + 1:xxx + (l4 + 1) * l5), l4 + 1, l5); xxx = xxx + (l4 + 1) * l5; w5 = reshape(VV(xxx + 1:xxx + (l5 + 1) * l6), l5 + 1, l6); xxx = xxx + (l5 + 1) * l6; w6 = reshape(VV(xxx + 1:xxx + (l6 + 1) * l7), l6 + 1, l7); xxx = xxx + (l6 + 1) * l7; w7 = reshape(VV(xxx + 1:xxx + (l7 + 1) * l8), l7 + 1, l8); xxx = xxx + (l7 + 1) * l8; w8 = reshape(VV(xxx + 1:xxx + (l8 + 1) * l9), l8 + 1, l9); % Evaluate points XX = [XX ones(N, 1)]; w1probs = 1 ./ (1 + exp(-XX * w1)); w1probs = [w1probs ones(N,1)]; w2probs = 1 ./ (1 + exp(-w1probs * w2)); w2probs = [w2probs ones(N,1)]; w3probs = 1 ./ (1 + exp(-w2probs * w3)); w3probs = [w3probs ones(N,1)]; w4probs = w3probs * w4; w4probs = [w4probs ones(N,1)]; w5probs = 1 ./ (1 + exp(-w4probs * w5)); w5probs = [w5probs ones(N,1)]; w6probs = 1 ./ (1 + exp(-w5probs * w6)); w6probs = [w6probs ones(N,1)]; w7probs = 1 ./ (1 + exp(-w6probs * w7)); w7probs = [w7probs ones(N,1)]; XXout = 1 ./ (1 + exp(-w7probs * w8)); % Compute gradients f = (-1 / N) * sum(sum(XX(:,1:end - 1) .* log(XXout) + (1 - XX(:,1:end - 1)) .* log(1 - XXout))); IO = (1 / N) * (XXout - XX(:,1:end - 1)); Ix8 = IO; dw8 = w7probs'*Ix8; Ix7 = (Ix8 * w8') .* w7probs .* (1 - w7probs); Ix7 = Ix7(:,1:end - 1); dw7 = w6probs' * Ix7; Ix6 = (Ix7*w7') .* w6probs .* (1 - w6probs); Ix6 = Ix6(:,1:end - 1); dw6 = w5probs' * Ix6; Ix5 = (Ix6 * w6') .* w5probs .* (1 - w5probs); Ix5 = Ix5(:,1:end - 1); dw5 = w4probs' * Ix5; Ix4 = (Ix5 * w5'); Ix4 = Ix4(:,1:end - 1); dw4 = w3probs' * Ix4; Ix3 = (Ix4 * w4') .* w3probs .* (1 - w3probs); Ix3 = Ix3(:,1:end - 1); dw3 = w2probs' * Ix3; Ix2 = (Ix3 * w3') .* w2probs .* (1 - w2probs); Ix2 = Ix2(:,1:end - 1); dw2 = w1probs' * Ix2; Ix1 = (Ix2 * w2') .* w1probs .* (1 - w1probs); Ix1 = Ix1(:,1:end - 1); dw1 = XX' * Ix1; % Return gradients df = [dw1(:)' dw2(:)' dw3(:)' dw4(:)' dw5(:)' dw6(:)' dw7(:)' dw8(:)']';
github
pvarin/DynamicVAE-master
lmvu.m
.m
DynamicVAE-master/drtoolbox/techniques/lmvu.m
8,540
utf_8
c8003ed7ff0fd0e226776c42c72ad385
function [mappedX, mapping] = lmvu(X, no_dims, K, LL) %LMVU Performs Landmark MVU on dataset X % % [mappedX, mapping] = lmvu(X, no_dims, k1, k2) % % The function performs Landmark MVU on the DxN dataset X. The value of k1 % represents the number of nearest neighbors that is employed in the MVU % constraints. The value of k2 represents the number of nearest neighbors % that is employed to compute the reconstruction weights (for embedding the % non-landmark points). % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology if ~exist('K', 'var') K = 3; end if ~exist('LL', 'var') LL = 12; end % Save some data for out-of-sample extension if ischar(K) error('Adaptive neighborhood selection not supported for landmark MVU.'); end mapping.k1 = K; mapping.k2 = LL; mapping.X = X; % Initialize some variables N = size(X, 2); % number of datapoints B = ceil(0.02 * N); % number of landmark points % Set some parameters parameters pars.ep = eps; pars.fastmode = 1; pars.warmup = K * B / N; pars.verify = 1; pars.angles = 1; pars.maxiter = 100; pars.noise = 0; pars.ignore = 0.1; pars.penalty = 1; pars.factor = 0.9999; % Identify nearest neighbors disp('Identifying nearest neighbors...'); KK = max(LL, K); X = L2_distance(X, X); % memory-intensive: O(n^{2}) !!! [foo, neighbors] = find_nn(X, KK); neighbors = neighbors'; % Get inverse of reconstruction weight matrix Pia = getPia(B, LL, X, neighbors); % Generate SDP problem disp('Generating SDP problem...'); neighbors = neighbors(1:K,:); clear temp index sorted nck = nchoosek(1:K + 1, 2); AA = zeros(N * K, 2); pos3 = 1; for i=1:N ne = neighbors(:,i); nne = [ne; i]; pairs = nne(nck); js = pairs(:,1); ks = pairs(:,2); AA(pos3:pos3 + length(js) - 1,:) = sort([js ks], 2); pos3 = pos3 + length(js); if i == B AA = unique(AA, 'rows'); ForceC = size(AA, 1); end if pos3 > size(AA, 1) && i < N AA = unique(AA, 'rows'); pos3 = size(AA, 1) + 1; AA = [AA; zeros(round(N / (N - i) * pos3), 2)]; fprintf('.'); end end AA = unique(AA, 'rows'); AA = AA(2:end,:); clear neighbors ne v2 v3 js ks bb = zeros(1, size(AA, 1)); for i=1:size(AA, 1) bb(i) = sum((X(:,AA(i, 1)) - X(:,AA(i, 2))) .^ 2); end disp(' '); % Reduce the number of forced vectors ii = (1:ForceC)'; jj = zeros(1, size(AA, 1)); jj(ii) = 1; jj = find(jj == 0); jj1 = jj(jj <= ForceC); jj2 = jj(jj > ForceC); jj2 = jj2(randperm(length(jj2))); jj1 = jj1(randperm(length(jj1))); corder = [ii; jj1'; jj2']; AA = AA(corder,:); bb = bb(corder); ForceC = length(ii); clear temp jj1 jj2 jj ii Const = max(round(pars.warmup * size(AA, 1)), ForceC); [A, b, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars); Qt = sum(Pia, 1)' * sum(Pia, 1); A = [Qt(:)'; A]; b = [0; b]; clear K; solved = 0; % Start SDP iterations disp('Perform semi-definite programming...'); disp('CSDP OUTPUT ============================================================================='); while solved == 0 % Initialize some variables c = -vec(Pia' * Pia); flags.s = B; flags.l = size(A, 1) - 1; A = [[zeros(1,flags.l); speye(flags.l)] A]; % Set c (employ penalty) c = [ones(ForceC, 1) .* max(max(c)); zeros(flags.l - ForceC, 1); c]; % Launch the CSDP solver options.maxiter=pars.maxiter; [x, d, z, info] = csdp(A, b, c, flags, options); K = mat(x(flags.l + 1:flags.l + flags.s ^ 2)); % Check whether a solution is reached solved = isempty(AA); A = A(:,flags.l + 1:end); xx = K(:); if size(AA, 1) Aold = size(A,1); total = 0; while size(A, 1) - Aold < Const && ~isempty(AA) [newA, newb, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars); jj = find(newA * xx - newb > pars.ignore * abs(newb)); if info == 2 jj = 1:size(newA, 1); end total = total + length(jj); A(size(A,1) + 1:size(A,1) + length(jj),:) = newA(jj,:); b(length(b) + 1:length(b) + length(jj)) = newb(jj); end if total == 0 solved = 1; end else solved=1; end if solved == 1 && pars.maxiter < 100 pars.maxiter = 100; end end disp('========================================================================================='); % Perform eigendecomposition of kernel matrix to compute Y disp('Perform eigendecomposition to obtain low-dimensional data representation...'); [V, D] = eig(K); V = V * sqrt(D); Y = (V(:,end:-1:1))'; mappedX = Y * Pia'; % Reorder data in original order mappedX = mappedX(1:no_dims,:); % Set some information for the out-of-sample extension mapping.Y = Y; mapping.D = X; mapping.no_landmarks = B; mapping.no_dims = no_dims; % Function that computes LLE weight matrix function Q = getPia(B, LL, X, neighbors) % Initialize some variables N = size(X,2); % Compute reconstruction weights disp('Computing reconstruction weights...'); tol = 1e-7; Pia = sparse([], [], [], B, N); for i=1:N z = X(:,neighbors(:,i)) - repmat(X(:,i), 1, LL); C = z' * z; C = C + tol * trace(C) * eye(LL) / LL; invC = inv(C); Pia(neighbors(:,i),i) = sum(invC)' / sum(sum(invC)); end % Fill sparse LLE weight matrix M = speye(N) + sparse([], [], [], N, N, N * LL .^ 2); for i=1:N j = neighbors(:,i); w = Pia(j, i); M(i, j) = M(i, j) - w'; M(j, i) = M(j, i) - w; M(j, j) = M(j, j) + w * w'; end % Invert LLE weight matrix disp('Invert reconstruction weight matrix...'); Q = -M(B + 1:end, B + 1:end) \ M(B + 1:end, 1:B); Q = [eye(B); Q]; % Functions that constructs the constraints for the SDP function [A, b, AAomit, bbomit] = getConstraints(AA, Pia, bb, B, Const, pars) % Initialize some variables pos2 = 0; perm = 1:size(AA,1); if size(AA, 1) > Const AAomit = AA(perm(Const + 1:end),:); bbomit = bb(perm(Const + 1:end)); AA = AA(perm(1:Const),:); bb = bb(perm(1:Const)); else AAomit = []; bbomit = []; end % Allocate some memory persistent reqmem; if isempty(reqmem) A2 = zeros(size(AA, 1) * B, 3); else A2 = zeros(reqmem, 3); end % Set the constraints pos = 0; for j=1:size(AA, 1) % Evaluate for current row in AA ii = AA(j, 1); jj = AA(j, 2); Q = Pia(ii,:)' * Pia(ii,:) - 2 .* Pia(jj,:)' * Pia(ii,:) + Pia(jj,:)' * Pia(jj,:); Q = (Q + Q') ./ 2; it = find(abs(Q) > pars.ep .^ 2); % Constraint found if ~isempty(it) % Allocate more memory if needed pos = pos + 1; if pos2 + length(it) > size(A2, 1) A2 = [A2; zeros(ceil((size(AA, 1) - j) / j * size(A2, 1)), 3)]; end % Set constraint A2(1 + pos2:pos2 + length(it), 1) = ones(length(it), 1) .* pos; A2(1 + pos2:pos2 + length(it), 2) = it; A2(1 + pos2:pos2 + length(it), 3) = full(Q(it)); pos2 = pos2 + length(it); end end % Construct sparse constraint matrix reqmem = pos2; A2 = A2(1:pos2,:); A = sparse(A2(:,1), A2(:,2), A2(:,3), size(AA,1), B .^ 2); b = bb'; % Function that vectorizes a matrix function v = vec(M) v = M(:); % Function that matrixizes a vector function M = mat(C) r = round(sqrt(size(C, 1))); M = reshape(C, r, r);
github
pvarin/DynamicVAE-master
cca.m
.m
DynamicVAE-master/drtoolbox/techniques/cca.m
14,846
utf_8
935e971ffe825a64e0eb80c535d71ebb
function [Z, ccaEigen, ccaDetails] = cca(X, Y, EDGES, OPTS) % % Function [Z, CCAEIGEN, CCADETAILS] = CCA(X, Y, EDGES, OPTS) computes a low % dimensional embedding Z in R^d that maximally preserves angles among input % data X that lives in R^D, with the algorithm Conformal Component Analysis. % % The embedding Z is constrained to be Z = L*Y where Y is a partial basis that % spans the space of R^d. Such Y can be computed from graph Laplacian (such as % the outputs of Laplacian eigenmap and Locally Linear Embedding, ie, LLE). % The parameterization matrix L is found by this function as to maximally % prserve angles between edges coded in the sparse matrix EDGES. % % A basic usage of this function is given below: % % Inputs: % X: input data stored in matrix (D x N) where D is the dimensionality % % Y: partial basis stored in matrix (d x N) % % EDGES: a sparse matrix of (N x N). In each column i, the row indices j to % nonzero entrices define data points that are in the nearest neighbors of % data point i. % % OPTS: % OPTS.method: 'CCA' % % Outputs: % Z: low dimensional embedding (d X N) % CCAEIGN: eigenspectra of the matrix P = L'*L. If P is low-rank (say d' < d), % then Z can be cutoff at d' dimension as dimensionality reduced further. % % The CCA() function is fairly versatile. For more details, consult the file % README. % % by [email protected] Aug 18, 2006 % Feel free to use it for educational and research purpose. % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology % sanity check if nargin ~= 4 error('Incorrect number of inputs supplied to cca().'); end N = size(X,2); if (N~=size(Y,2)) || (N ~= size(EDGES,1)) || (N~=size(EDGES,2)) disp('Unmatched matrix dimensions in cca().'); fprintf('# of data points: %d\n', N); fprintf('# of data points in Y: %d\n', size(Y,2)); fprintf('Size of the sparse matrix for edges: %d x %d\n', size(EDGES,1), size(EDGES,2)); error('All above 4 numbers should be the same.'); end % check necessary programs if exist('mexCCACollectData') ~= 3 error('Missing mexCCACollectData mex file on the path'); end if exist('csdp') ~= 2 error('You will need CSDP solver to run cca(). Please make sure csdp.m is in your path'); end % check options OPTS = check_opt(OPTS); D = size(X, 1); d = size(Y, 1); %disp('Step I. collect data needed for SDP formulation'); [tnn, vidx] = triangNN(EDGES, OPTS.CCA); [erow, ecol, evalue] = sparse_nn(tnn); irow = int32(erow); icol = int32(ecol); ividx = int32(vidx); ivalue = int32(evalue); [A,B, g] = mexCCACollectData(X,Y, irow, icol, int32(OPTS.relative), ivalue, ividx ); clear erow ecol irow icol tnn ividx ivalue evalue vidx; lst = find(g~=0); g = g(lst); B = B(:, lst); if OPTS.CCA == 1 BG = B*spdiags(1./sqrt(g),0, length(g),length(g)); Q = A - BG*BG'; BIAS = OPTS.regularizer*reshape(eye(d), d^2,1); else Q = A; BIAS = 2*sum(B,2)+OPTS.regularizer*reshape(eye(d), d^2,1); end [V, E] = eig(Q+eye(size(Q))); % adding an identity matrix to Q for numerical E = E-eye(size(Q)); % stability E(E<0) = 0; if ~isreal(diag(E)) warning('\tThe quadratic matrix is not positive definite..forced to be positive definite...\n'); E=real(E); V = real(V); S = sqrt(E)*V'; else S = sqrt(E)*V'; end % Formulate the SDP problem [AA, bb, cc] = formulateSDP(S, d, BIAS, (OPTS.CCA==1)); sizeSDP = d^2+1 + d + 2*(OPTS.CCA==1); csdppars.s = sizeSDP; csdpopts.printlevel = 0; % Solve it using CSDP [xx, yy, zz, info] = csdp(AA, bb, cc, csdppars,csdpopts); ccaDetails.sdpflag = info; % The negate of yy is our solution yy = -yy; idx = 0; P = zeros(d); for col=1:d for row = col:d idx=idx+1; P(row, col) = yy(idx); end end % Convert P to a positive definite matrix P = P + P' - diag(diag(P)); % Transform the original projection to the new projection [V, E] = eig(P); E(E < 0) = 0; L = diag(sqrt(diag(E))) * V'; newY = L * Y; % Eigenvalue of the new projection, doing PCA using covariance matrix [newV, newE] = eig(newY * newY'); newE = diag(newE); [dummy, idx] = sort(newE); newE = newE(idx(end:-1:1)); newY = newV' * newY; Z = newY(idx(end:-1:1),:); ccaEigen = newE; ccaDetails.cost = P(:)'*Q*P(:) - BIAS'*P(:) + sum(g(:))*(OPTS.MVU==1); if OPTS.CCA == 1 ccaDetails.c = spdiags(1./sqrt(g),0, length(g),length(g))*B'*P(:); else ccaDetails.c = []; end ccaDetails.P = P; ccaDetails.opts = OPTS; %%%%%%%%%%%%%%%%%%%% FOLLOWING IS SUPPORTING MATLAB FUNCTIONS function [A, b, c] = formulateSDP(S, D, bb, TRACE) [F0, FI, c] = localformulateSDP(S, D, bb, TRACE); [A, b, c] = sdpToSeDuMi(F0, FI, c); function [F0, FI, c] = localformulateSDP(S, D, b, TRACE) % formulate SDP problem % each FI that corresponds to the LMI for the quadratic cost function has % precisely 2*D^2 nonzero elements. But we need only D^2 storage for % indexing these elements since the FI are symmetric tempFidx = zeros(D^2, 3); dimF = (D^2+1) + D + 2*TRACE; idx= 0; tracearray = ones(TRACE,1); for col=1:D for row=col:D idx = idx+1; lindx1 = sub2ind([D D], row, col); lindx2 = sub2ind([D D], col, row); tempFidx(:,1) = [1:D^2]'; tempFidx(:,2) = D^2+1; if col==row tempFidx(:,3) = S(:, lindx1) ; FI{idx} = sparse([tempFidx(:,1); ... % for cost function tempFidx(:,2); ... % symmetric row+D^2+1; ... % for P being p.s.d tracearray*(D^2+1+D+1); % for trace tracearray*(D^2+1+D+2); % for negate trace ], ... [tempFidx(:,2); ... % for cost function tempFidx(:,1); ... % symmetric row+D^2+1; ... % for P being p.s.d tracearray*(D^2+1+D+1); % for trace tracearray*(D^2+1+D+2); % for negate trace ],... [tempFidx(:,3); ... % for cost function tempFidx(:,3); ... % symmetric 1; % for P being p.s.d tracearray*1; % for trace tracearray*(-1); % for negate trace ], dimF, dimF); else tempFidx(:,3) = S(:, lindx1) + S(:, lindx2); FI{idx} = sparse([tempFidx(:,1); ... % for cost function tempFidx(:,2); ... % symmetric row+D^2+1; ... % for P being p.s.d col+D^2+1; ... % symmetric ], ... [tempFidx(:,2); ... % for cost function tempFidx(:,1); ... % symmetric col+D^2+1; ... % for P being p.s.d row+D^2+1; ... % being symmetric ],... [tempFidx(:,3); ... % for cost function tempFidx(:,3); ... % symmetric 1; % for P being p.s.d 1; % symmetric ], dimF, dimF); end end end idx=idx+1; % for the F matrix corresponding to t FI{idx} = sparse(D^2+1, D^2+1, 1, dimF, dimF); % now for F0 if TRACE==1 F0 = sparse( [[1:D^2] dimF-1 dimF], [[1:D^2] dimF-1 dimF], [ones(1, D^2) -1 1], dimF, dimF); else F0 = sparse( [[1:D^2]], [[1:D^2]], [ones(1, D^2)], dimF, dimF); end % now for c b = reshape(-b, D, D); b = b*2 - diag(diag(b)); c = zeros(idx-1,1); kdx=0; %keyboard; for col=1:D for row=col:D kdx = kdx+1; c(kdx) = b(row, col); end end %keyboard; c = [c; 1]; % remember: we use only half of P return; function [A, b, c] = sdpToSeDuMi(F0, FI, cc) % convert the canonical SDP dual formulation: % (see Vandenberche and Boyd 1996, SIAM Review) % max -Tr(F0 Z) % s.t. Tr(Fi Z) = cci and Z is positive definite % % in which cc = (cc1, cc2, cc3,..) and FI = {F1, F2, F3,...} % % to SeDuMi format (formulated as vector decision variables ): % min c'x % s.t. Ax = b and x is positive definite (x is a vector, so SeDuMi % really means that vec2mat(x) is positive definite) % % by [email protected], June, 10, 2004 if nargin < 3 error('Cannot convert SDP formulation to SeDuMi formulation in sdpToSeDumi!'); end [m, n] = size(F0); if m ~= n error('F0 matrix must be squared matrix in sdpToSeDumi(F0, FI, b)'); end p = length(cc); if p ~= length(FI) error('FI matrix cellarray must have the same length as b in sdpToSeDumi(F0,FI,b)'); end % should check every element in the cell array FI...later.. % x = reshape(Z, n*n, 1); % optimization variables from matrix to vector % converting objective function of the canonical SDP c = reshape(F0', n*n,1); % converting equality constraints of the canonical SDP zz= 0; for idx=1:length(FI) zz= zz + nnz(FI{idx}); end A = spalloc( n*n, p, zz); for idx = 1:p temp = reshape(FI{idx}, n*n,1); lst = find(temp~=0); A(lst, idx) = temp(lst); end % The SeDuMi solver actually expects the transpose of A as in following % dual problem % max b'y % s.t. c - A'y is positive definite % Therefore, we transpose A % A = A'; % b doesn't need to be changed b = cc; return; % Check OPTS that is passed into function OPTS = check_opt(OPTS) if isfield(OPTS,'method') == 0 OPTS.method = 'cca'; disp('Options does''t have method field, so running CCA'); end if strncmpi(OPTS.method, 'MVU',3)==1 OPTS.CCA = 0; OPTS.MVU = 1; else OPTS.CCA = 1; OPTS.MVU = 0; end if isfield(OPTS, 'relative')==0 OPTS.relative = 0; end if OPTS.CCA==1 && OPTS.relative ==1 disp('Running CCA, so the .relative flag set to 0'); OPTS.relative = 0; end if isfield(OPTS, 'regularizer')==0 OPTS.regularizer = 0; end return function [tnn vidx]= triangNN(snn, TRI) % function [TNN VIDX]= triangNN(SNN) triangulates a sparse graph coded by spare matrix % SNN. TNN records the original edges in SNN as well as those that are % triangulated. Each edge is associated with a scaling factor that is specific % to a vertex. And VIDX records the id of the vertex. % % by [email protected] Aug. 15, 2006. N = size(snn,1); %fprintf('The graph has %d vertices\n', N); % figure out maximum degree a vertex has connectivs = sum(snn,1); maxDegree = max(connectivs); tnn = spalloc(N, N, round(maxDegree*N)); % prealloc estimated storage for speedup % triangulation for idx=1:N lst = find(snn(:, idx)>0); for jdx=1:length(lst) col = min (idx, lst(jdx)); row = max(idx, lst(jdx)); tnn(row, col) = tnn(row, col)+1; if TRI == 1 for kdx = jdx+1:length(lst) col = min(lst(jdx), lst(kdx)); row = max(lst(jdx), lst(kdx)); tnn(row, col) = tnn(row, col)+1; end end end end numVertexIdx = full(sum(tnn(:))); %fprintf('%d vertex entries are needed\n', numVertexIdx); rowIdx = zeros(numVertexIdx,1); colIdx = zeros(numVertexIdx,1); vidx = zeros(numVertexIdx,1); whichEdge = 0; for idx=1:N lst = find(snn(:, idx)>0); for jdx=1:length(lst) col = min(lst(jdx), idx); row = max(lst(jdx), idx); whichEdge = whichEdge+1; rowIdx(whichEdge) = row; colIdx(whichEdge) = col; vidx(whichEdge) = idx; if TRI==1 for kdx = jdx+1:length(lst) col = min(lst(jdx), lst(kdx)); row = max(lst(jdx), lst(kdx)); whichEdge = whichEdge+1; rowIdx(whichEdge) = row; colIdx(whichEdge) = col; vidx(whichEdge) = idx; end end end end linearIdx = sub2ind([N N],rowIdx, colIdx); [sa, sIdx] = sort(linearIdx); vidx = vidx(sIdx); return % turn sparse graph snn into row and col indices function [edgesrow, edgescol, value] = sparse_nn(snn) N = size(snn,1); edgescol = zeros(N+1,1); nnzer = nnz(snn); edgesrow = zeros(nnzer,1); value = zeros(nnzer,1); edgescol(1) = 0; for jdx=1:N lst = find(snn(:, jdx)>0); %lst = lst(find(lst>jdx)); edgescol(jdx+1) = edgescol(jdx)+length(lst); edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1; value(edgescol(jdx)+1:edgescol(jdx+1)) = snn(lst, jdx); end return
github
pvarin/DynamicVAE-master
x2p.m
.m
DynamicVAE-master/drtoolbox/techniques/x2p.m
3,597
utf_8
4a102e94922f4af38e36c374dccbc5a2
function [P, beta] = x2p(X, u, tol) %X2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % [P, beta] = x2p(xx, kk, tol) % % Identifies the required precision (= 1 / variance^2) to obtain a Gaussian % kernel with a certain uncertainty for every datapoint. The desired % uncertainty can be specified through the perplexity u (default = 15). The % desired perplexity is obtained up to some tolerance that can be specified % by tol (default = 1e-4). % The function returns the final Gaussian kernel in P, as well as the % employed precisions per instance in beta. % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology if ~exist('u', 'var') || isempty(u) u = 15; end if ~exist('tol', 'var') || isempty(tol) tol = 1e-4; end % Initialize some variables n = size(X, 1); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(u); % log of perplexity (= entropy) % Compute pairwise distances % disp('Computing pairwise distances...'); D = squareform(pdist(X, 'euclidean') .^ 2); % Run over all datapoints % disp('Computing P-values...'); for i=1:n % if ~rem(i, 500) % disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); % end % Set minimum and maximum values for precision betamin = -Inf; betamax = Inf; % Compute the Gaussian kernel and entropy for the current precision Di = D(i, [1:i-1 i+1:end]); [H, thisP] = Hbeta(Di, beta(i)); % Evaluate whether the perplexity is within tolerance Hdiff = H - logU; tries = 0; while abs(Hdiff) > tol && tries < 50 % If not, increase or decrease precision if Hdiff > 0 betamin = beta(i); if isinf(betamax) beta(i) = beta(i) * 2; else beta(i) = (beta(i) + betamax) / 2; end else betamax = beta(i); if isinf(betamin) beta(i) = beta(i) / 2; else beta(i) = (beta(i) + betamin) / 2; end end % Recompute the values [H, thisP] = Hbeta(Di, beta(i)); Hdiff = H - logU; tries = tries + 1; end % Set the final row of P P(i, [1:i - 1, i + 1:end]) = thisP; end % disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]); % disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]); % disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]); end % Function that computes the Gaussian kernel values given a vector of % squared Euclidean distances, and the precision of the Gaussian kernel. % The function also computes the perplexity of the distribution. function [H, P] = Hbeta(D, beta) P = exp(-D * beta); sumP = sum(P); H = log(sumP) + beta * sum(D .* P) / sumP; P = P / sumP; end
github
pvarin/DynamicVAE-master
sammon.m
.m
DynamicVAE-master/drtoolbox/techniques/sammon.m
7,108
utf_8
8a1fccbea9525bbebae4039127005ea6
function [y, E] = sammon(x, n, opts) %SAMMON Performs Sammon's MDS mapping on dataset X % % Y = SAMMON(X) applies Sammon's nonlinear mapping procedure on % multivariate data X, where each row represents a pattern and each column % represents a feature. On completion, Y contains the corresponding % co-ordinates of each point on the map. By default, a two-dimensional % map is created. Note if X contains any duplicated rows, SAMMON will % fail (ungracefully). % % [Y,E] = SAMMON(X) also returns the value of the cost function in E (i.e. % the stress of the mapping). % % An N-dimensional output map is generated by Y = SAMMON(X,N) . % % A set of optimisation options can also be specified using a third % argument, Y = SAMMON(X,N,OPTS) , where OPTS is a structure with fields: % % MaxIter - maximum number of iterations % TolFun - relative tolerance on objective function % MaxHalves - maximum number of step halvings % Input - {'raw','distance'} if set to 'distance', X is % interpreted as a matrix of pairwise distances. % Display - {'off', 'on', 'iter'} % Initialisation - {'pca', 'random'} % % The default options structure can be retrieved by calling SAMMON with % no parameters. % % References : % % [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data Structure % Analysis", IEEE Transactions on Computers, vol. C-18, no. 5, % pp 401-409, May 1969. % % See also : SAMMON_TEST % % File : sammon.m % % Date : Monday 12th November 2007. % % Author : Gavin C. Cawley and Nicola L. C. Talbot % % Description : Simple vectorised MATLAB implementation of Sammon's non-linear % mapping algorithm [1]. % % References : [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data % Structure Analysis", IEEE Transactions on Computers, % vol. C-18, no. 5, pp 401-409, May 1969. % % History : 10/08/2004 - v1.00 % 11/08/2004 - v1.10 Hessian made positive semidefinite % 13/08/2004 - v1.11 minor optimisation % 12/11/2007 - v1.20 initialisation using the first n principal % components. % % Thanks : Dr Nick Hamilton ([email protected]) for supplying the % code for implementing initialisation using the first n % principal components (introduced in v1.20). % % To do : The current version does not take advantage of the symmetry % of the distance matrix in order to allow for easy % vectorisation. This may not be a good choice for very large % datasets, so perhaps one day I'll get around to doing a MEX % version using the BLAS library etc. for very large datasets. % % Copyright : (c) Dr Gavin C. Cawley, November 2007. % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology % use the default options structure if nargin < 3 opts.Display = 'iter'; opts.Input = 'raw'; opts.MaxHalves = 20; opts.MaxIter = 500; opts.TolFun = 1e-9; opts.Initialisation = 'random'; end % the user has requested the default options structure if nargin == 0 y = opts; return; end % Create a two-dimensional map unless dimension is specified if nargin < 2 n = 2; end % Set level of verbosity if strcmp(opts.Display, 'iter') display = 2; elseif strcmp(opts.Display, 'on') display = 1; else display = 0; end % Create distance matrix unless given by parameters if strcmp(opts.Input, 'distance') D = x; else D = euclid(x, x); end % Remaining initialisation N = size(x, 1); scale = 0.5 / sum(D(:)); D = D + eye(N); Dinv = 1 ./ D; if strcmp(opts.Initialisation, 'pca') [UU,DD] = svd(x); y = UU(:,1:n)*DD(1:n,1:n); else y = randn(N, n); end one = ones(N,n); d = euclid(y,y) + eye(N); dinv = 1./d; delta = D - d; E = sum(sum((delta.^2).*Dinv)); % Get on with it for i=1:opts.MaxIter % Compute gradient, Hessian and search direction (note it is actually % 1/4 of the gradient and Hessian, but the step size is just the ratio % of the gradient and the diagonal of the Hessian so it doesn't % matter). delta = dinv - Dinv; deltaone = delta * one; g = delta * y - y .* deltaone; dinv3 = dinv .^ 3; y2 = y .^ 2; H = dinv3 * y2 - deltaone - 2 * y .* (dinv3 * y) + y2 .* (dinv3 * one); s = -g(:) ./ abs(H(:)); y_old = y; % Use step-halving procedure to ensure progress is made for j=1:opts.MaxHalves y(:) = y_old(:) + s; d = euclid(y, y) + eye(N); dinv = 1 ./ d; delta = D - d; E_new = sum(sum((delta .^ 2) .* Dinv)); if E_new < E break; else s = 0.5*s; end end % Bomb out if too many halving steps are required if j == opts.MaxHalves warning('MaxHalves exceeded. Sammon mapping may not converge...'); end % Evaluate termination criterion if abs((E - E_new) / E) < opts.TolFun if display fprintf(1, 'Optimisation terminated - TolFun exceeded.\n'); end break; end % Report progress E = E_new; if display > 1 fprintf(1, 'epoch = %d : E = %12.10f\n', i, E * scale); end end % Fiddle stress to match the original Sammon paper E = E * scale; end function d = euclid(x, y) d = sqrt(sum(x.^2,2)*ones(1,size(y,1))+ones(size(x,1),1)*sum(y.^2,2)'-2*(x*y')); end
github
pvarin/DynamicVAE-master
sdecca2.m
.m
DynamicVAE-master/drtoolbox/techniques/sdecca2.m
7,185
utf_8
e53979561adda6a23883da0e72af5bf6
function [P, newY, L, newV, idx]= sdecca2(Y, snn, regularizer, relative) % doing semidefinitve embedding/MVU with output being parameterized by graph % laplacian's eigenfunctions.. % % the algorithm is same as conformal component analysis except that the scaling % factor there is set as 1 % % % function [P, newY, Y] = CDR2(X, Y, NEIGHBORS) implements the % CONFORMAL DIMENSIONALITY REDUCTION of data X. It finds a linear map % of Y -> L*Y such that X and L*Y is related by a conformal mapping. % % No tehtat The algorithm use the formulation of only distances. % % Input: % Y: matrix of d'xN, with each column is a point in R^d' % NEIGHBORS: matrix of KxN, each column is a list of indices (between 1 % and N) to the nearest-neighbor of the corresponding column in X % Output: % P: square of the linear map L, i.e., P = L'*L % newY: transformed data points, i.e., newY = L*Y; % Y: the linear map L itself, i.e., L = L % % The algorithm finds L by solving a semidefinite programming problem. It % calls csdp() SDP solver by default and assumes that it is on the path. % % written by [email protected] % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology % Collect the data [erow, ecol, edist] = sparse_nn(snn); irow = int32(erow); icol = int32(ecol); [A, B, g] = mexCCACollectData2(Y, irow, icol, edist, int32(relative)); BG = 2 * sum(B, 2); Q = A ; [V, E] = eig(Q + eye(size(Q))); E = E - eye(size(Q)); E(E < 0) = 0; if ~isreal(diag(E)) E = real(E); V = real(V); S = sqrt(E) * V'; else S = sqrt(E) * V'; end % Put the regularizer in there BG = BG + regularizer * reshape(eye(size(Y, 1)), size(Y, 1) ^ 2, 1); % Formulate the SDP problem [AA, bb, cc] = formulateSDP(S, size(Y, 1), BG); sizeSDP = size(Y, 1) ^ 2 + 1 + size(Y, 1); pars.s = sizeSDP; opts.printlevel = 1; % Solve it using CSDP [xx, yy] = csdp(AA, bb, cc, pars, opts); % The negate of yy is our solution yy = -yy; idx = 0; P = zeros(size(Y, 1)); for col=1:size(Y, 1) for row = col:size(Y, 1) idx = idx + 1; P(row, col) = yy(idx); end end % Convert P to a positive definite matrix P = P + P' - diag(diag(P)); % Transform the original projection to the new projection [V, E] = eig(P); E(E < 0) = 0; L = diag(sqrt(diag(E))) * V'; newY = L * Y; % multiply with Laplacian % Eigendecomposition of the new projection: doing PCA because the % dimensionality of newY or Y is definitely less than the number of % points [newV, newE] = eig(newY * newY'); newE = diag(newE); [dummy, idx] = sort(newE); newY = newV' * newY; newY = newY(idx(end:-1:1),:); return % Function that formulates the SDP problem function [A, b, c]=formulateSDP(S, D, bb) [F0, FI, c] = localformulateSDP(S, D, bb); [A, b, c] = sdpToSeDuMi(F0, FI, c); return % Function that formulates the SDP problem function [F0, FI, c] = localformulateSDP(S, D, b) % Each FI that corresponds to the LMI for the quadratic cost function has % precisely 2 * D^2 nonzero elements. But we need only D^2 storage for tempFidx = zeros(D ^ 2, 3); dimF = (D ^ 2 + 1) + D; idx = 0; for col=1:D for row=col:D idx = idx + 1; lindx1 = sub2ind([D D], row, col); lindx2 = sub2ind([D D], col, row); tempFidx(:,1) = [1:D ^ 2]'; tempFidx(:,2) = D ^ 2 + 1; if col == row tempFidx(:,3) = S(:,lindx1) ; FI{idx} = sparse([tempFidx(:,1); ... % for cost function tempFidx(:,2); ... % symmetric row + D^2 + 1 ... % for P being p.s.d ], ... [tempFidx(:,2); ... % for cost function tempFidx(:,1); ... % symmetric row + D^2 + 1; ... % for P being p.s.d ],... [tempFidx(:,3); ... % for cost function tempFidx(:,3); ... % symmetric 1; % for P being p.s.d ], dimF, dimF); else tempFidx(:,3) = S(:, lindx1) + S(:,lindx2); FI{idx} = sparse([tempFidx(:,1); ... % for cost function tempFidx(:,2); ... % symmetric row + D^2 + 1; ... % for P being p.s.d col + D^2 + 1; ... % symmetric ], ... [tempFidx(:,2); ... % for cost function tempFidx(:,1); ... % symmetric col + D^2 + 1; ... % for P being p.s.d row + D^2 + 1; ... % being symmetric ], ... [tempFidx(:,3); ... % for cost function tempFidx(:,3); ... % symmetric 1; % for P being p.s.d 1; % symmetric ], dimF, dimF); end end end idx = idx + 1; % For the F matrix corresponding to t FI{idx} = sparse(D^2 + 1, D^2 + 1, 1, dimF, dimF); % Now for F0 F0 = sparse(1:D^2, 1:D^2, ones(1, D^2), dimF, dimF); % Now for c b = reshape(-b, D, D); b = b * 2 - diag(diag(b)); c = zeros(idx - 1,1); kdx = 0; for col=1:D for row=col:D kdx = kdx + 1; c(kdx) = b(row, col); end end c = [c; 1]; return % Function that convertsthe canonical SDP dual formulation to SeDuMi format function [A, b, c] = sdpToSeDuMi(F0, FI, cc) % Check inputs if nargin < 3 error('Cannot convert SDP formulation to SeDuMi formulation.'); end [m, n] = size(F0); if m ~= n error('F0 matrix must be squared matrix.'); end p = length(cc); if p ~= length(FI) error('FI matrix cellarray must have the same length as b.'); end % Converting objective function of the canonical SDP c = reshape(F0', n * n, 1); % Converting equality constraints of the canonical SDP zz = 0; for idx=1:length(FI) zz= zz + nnz(FI{idx}); end A = spalloc(n * n, p, zz); for idx=1:p temp = reshape(FI{idx}, n * n, 1); lst = find(temp ~= 0); A(lst, idx) = temp(lst); end % We do not need to convert b b = cc; return
github
pvarin/DynamicVAE-master
sparse_nn.m
.m
DynamicVAE-master/drtoolbox/techniques/sparse_nn.m
972
utf_8
df5da172f954ec2f53125a04787cf2d3
%SPARSE_NN % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology function [edgesrow, edgescol,edgesdist] = sparse_nn(snn) % turn into sparse nearest neighbor graph snn into edgesrow and edgescol index N = size(snn,1); edgescol = zeros(N+1,1); nnzer = nnz(snn); edgesrow = zeros(nnzer,1); edgesdist = zeros(nnzer,1); edgescol(1) = 0; for jdx=1:N lst = find(snn(:, jdx)>0); %lst = lst(find(lst>jdx)); edgescol(jdx+1) = edgescol(jdx)+length(lst); edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1; edgesdist(edgescol(jdx)+1:edgescol(jdx+1))=snn(lst,jdx); end
github
pvarin/DynamicVAE-master
jdqz.m
.m
DynamicVAE-master/drtoolbox/techniques/jdqz.m
78,986
utf_8
be67a038982588a6ac9cbc2d36f009e8
function varargout=jdqz(varargin) %JDQZ computes a partial generalized Schur decomposition (or QZ % decomposition) of a pair of square matrices or operators. % % LAMBDA=JDQZ(A,B) and JDQZ(A,B) return K eigenvalues of the matrix pair % (A,B), where K=min(5,N) and N=size(A,1) if K has not been specified. % % [X,JORDAN]=JDQZ(A,B) returns the eigenvectors X and the Jordan % structure JORDAN: A*X=B*X*JORDAN. The diagonal of JORDAN contains the % eigenvalues: LAMBDA=DIAG(JORDAN). JORDAN is an K by K matrix with the % eigenvalues on the diagonal and zero or one on the first upper diagonal % elements. The other entries are zero. % % [X,JORDAN,HISTORY]=JDQZ(A,B) returns also the convergence history. % % [X,JORDAN,Q,Z,S,T,HISTORY]=JDQZ(A,B) % If between four and seven output arguments are required, then Q and Z % are N by K orthonormal, S and T are K by K upper triangular such that % they form a partial generalized Schur decomposition: A*Q=Z*S and % B*Q=Z*T. Then LAMBDA=DIAG(S)./DIAG(T) and X=Q*Y with Y the eigenvectors % of the pair (S,T): S*Y=T*Y*JORDAN (see also OPTIONS.Schur). % % JDQZ(A,B) % JDQZ('Afun','Bfun') % The first input argument is either a square matrix (which can be full % or sparse, symmetric or nonsymmetric, real or complex), or a string % containing the name of an M-file which applies a linear operator to the % columns of a given matrix. In the latter case, the M-file, say Afun.m, % must return the dimension N of the problem with N = Afun([],'dimension'). % For example, JDQZ('fft',...) is much faster than JDQZ(F,...), where F is % the explicit FFT matrix. % If another input argument is a square N by N matrix or the name of an % M-file, then B is this argument (regardless whether A is an M-file or a % matrix). If B has not been specified, then B is assumed to be the % identity unless A is an M-file with two output vectors of dimension N % with [AV,BV]=Afun(V), or with AV=Afun(V,'A') and BV=Afun(V,'B'). % % The remaining input arguments are optional and can be given in % practically any order: % % [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ(A,B,K,SIGMA,OPTIONS) % [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ('Afun','Bfun',K,SIGMA,OPTIONS) % % where % % K an integer, the number of desired eigenvalues. % SIGMA a scalar shift or a two letter string. % OPTIONS a structure containing additional parameters. % % If K is not specified, then K = MIN(N,5) eigenvalues are computed. % % If SIGMA is not specified, then the Kth eigenvalues largest in % magnitude are computed. If SIGMA is a real or complex scalar, then the % Kth eigenvalues nearest SIGMA are computed. If SIGMA is column vector % of size (L,1), then the Jth eigenvalue nearest to SIGMA(MIN(J,L)) % is computed for J=1:K. SIGMA is the "target" for the desired eigenvalues. % If SIGMA is one of the following strings, then it specifies the desired % eigenvalues. % % SIGMA Specified eigenvalues % % 'LM' Largest Magnitude % 'SM' Smallest Magnitude (same as SIGMA = 0) % 'LR' Largest Real part % 'SR' Smallest Real part % 'BE' Both Ends. Computes K/2 eigenvalues % from each end of the spectrum (one more % from the high end if K is odd.) % % If 'TestSpace' is 'Harmonic' (see OPTIONS), then SIGMA = 0 is the % default, otherwise SIGMA = 'LM' is the default. % % % The OPTIONS structure specifies certain parameters in the algorithm. % % Field name Parameter Default % % OPTIONS.Tol Convergence tolerance: 1e-8 % norm(r) <= Tol/SQRT(K) % OPTIONS.jmin Minimum dimension search subspace V K+5 % OPTIONS.jmax Maximum dimension search subspace V jmin+5 % OPTIONS.MaxIt Maximum number of iterations. 100 % OPTIONS.v0 Starting space ones+0.1*rand % OPTIONS.Schur Gives schur decomposition 'no' % If 'yes', then X and JORDAN are % not computed and [Q,Z,S,T,HISTORY] % is the list of output arguments. % OPTIONS.TestSpace Defines the test subspace W 'Harmonic' % 'Standard': W=sigma*A*V+B*V % 'Harmonic': W=A*V-sigma*B*V % 'SearchSpace': W=V % W=V is justified if B is positive % definite. % OPTIONS.Disp Shows size of intermediate residuals 'no' % and the convergence history % OPTIONS.NSigma Take as target for the second and 'no' % following eigenvalues, the best % approximate eigenvalues from the % test subspace. % OPTIONS.Pairs Search for conjugated eigenpairs 'no' % OPTIONS.LSolver Linear solver 'GMRES' % OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,.. % OPTIONS.LS_MaxIt Maximum number it. linear solver 5 % OPTIONS.LS_ell ell for BiCGstab(ell) 4 % OPTIONS.Precond Preconditioner (see below) identity. % OPTIONS.Type_Precond Way of using preconditioner 'left' % % For instance % % options=struct('Tol',1.0e-8,'LSolver','BiCGstab','LS_ell',4,'Precond',M); % % changes the convergence tolerance to 1.0e-8, takes BiCGstab as linear % solver, and takes M as preconditioner (for ways of defining M, see below). % % % PRECONDITIONING. The action M-inverse of the preconditioner M (an % approximation of A-lamda*B) on an N-vector V can be defined in the % OPTIONS % % OPTIONS.Precond % OPTIONS.L_Precond same as OPTIONS.Precond % OPTIONS.U_Precond % OPTIONS.P_Precond % % If no preconditioner has been specified (or is []), then M\V=V (M is % the identity). % If Precond is an N by N matrix, say, K, then % M\V = K\V. % If Precond is an N by 2*N matrix, say, K, then % M\V = U\L\V, where K=[L,U], and L and U are N by N matrices. % If Precond is a string, say, 'Mi', then % if Mi(V,'L') and Mi(V,'U') return N-vectors % M\V = Mi(Mi(V,'L'),'U') % otherwise % M\V = Mi(V) or M\V=Mi(V,'preconditioner'). % Note that Precond and A can be the same string. % If L_Precond and U_Precond are strings, say, 'Li' and 'Ui', % respectively, then % M\V=Ui(Li(V)). % If (P_precond,) L_Precond, and U_precond are N by N matrices, say, % (P,) L, and U, respectively, then % M\V=U\L\(P*V) (P*M=L*U) % % OPTIONS.Type_Precond % The preconditioner can be used as explicit left preconditioner % ('left', default), as explicit right preconditioner ('right') or % implicitly ('impl'). % % % JDQZ without input arguments returns the options and its defaults. % % Gerard Sleijpen. % Copyright (c) 2002 % % % This file is part of the Matlab Toolbox for Dimensionality Reduction. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, Delft University of Technology global Qschur Zschur Sschur Tschur ... Operator_MVs Precond_Solves ... MinvZ QastMinvZ if nargin==0 possibilities, return, end %%% Read/set parameters [n,nselect,Sigma,kappa,SCHUR,... jmin,jmax,tol0,maxit,V,AV,BV,TS,DISP,PAIRS,JDV0,FIX_tol,track,NSIGMA,... lsolver,LSpar] = ReadOptions(varargin{1:nargin}); Qschur = zeros(n,0); Zschur=zeros(n,0);; MinvZ = zeros(n,0); QastMinvZ=zeros(0,0); Sschur = []; Tschur=[]; history = []; %%% Return if eigenvalueproblem is trivial if n<2 if n==1, Qschur=1; Zschur=1; [Sschur,Tschur]=MV(1); end if nargout == 0, Lambda=Sschur/Tschur, else [varargout{1:nargout}]=output(history,SCHUR,1,Sschur/Tschur); end, return, end %---------- SET PARAMETERS & STRINGS FOR OUTPUT ------------------------- if TS==0, testspace='sigma(1)''*Av+sigma(2)''*Bv'; elseif TS==1, testspace='sigma(2)*Av-sigma(1)*Bv'; elseif TS==2, testspace='v'; elseif TS==3, testspace='Bv'; elseif TS==4, testspace='Av'; end String=['\r#it=%i #MV=%3i, dim(V)=%2i, |r_%2i|=%6.1e ']; %------------------- JDQZ ----------------------------------------------- % fprintf('Scaling with kappa=%6.4g.',kappa) k=0; nt=0; j=size(V,2); nSigma=size(Sigma,1); it=0; extra=0; Zero=[]; target=[]; tol=tol0/sqrt(nselect); INITIATE=1; JDV=0; rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; time=clock; if TS ~=2 while (k<nselect & it<maxit) %%% Initialize target, test space and interaction matrices if INITIATE, % set new target nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0; if j<2 [V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol); rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[]; j=min(jmin,n-k); end if DETECTED & NSIGMA [Ur,Ul,St,Tt] = SortQZ(WAV,WBV,sigma,kappa); y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y; [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa); sigma=ScaleEig(theta); USE_OLD=NSIGMA; rKNOWN=1; lit=10; end NEWSHIFT= 1; if DETECTED & TS<2, NEWSHIFT= ~min(target==sigma); end target=sigma; ttarget=sigma; if ischar(ttarget), ttrack=0; else, ttrack=track; end if NEWSHIFT v=V; Av=AV; Bv=BV; W=eval(testspace); %%% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability?? %%% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda if USE_OLD, W(:,1)=V(:,1); end, W=RepGS(Zschur,W); WAV=W'*AV; WBV=W'*BV; end INITIATE=0; DETECTED=0; JDV=0; end % if INITIATE %%% Solve the preconditioned correction equation if rKNOWN, if JDV, z=W; q=V; extra=extra+1; if DISP, fprintf(' %2i-d proj.\n',k+j-1), end end if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit); nlit=nlit+1; lit=lit+1; it=it+1; EXPAND=1; rKNOWN=0; JDV=0; end % if rKNOWN %%% Expand the subspaces and the interaction matrices if EXPAND [v,zeta]=RepGS([Qschur,V],t); V=[V,v]; [Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv]; w=eval(testspace); w=RepGS([Zschur,W],w); WAV=[WAV,W'*Av;w'*AV]; WBV=[WBV,W'*Bv;w'*BV]; W=[W,w]; j=j+1; EXPAND=0; %%% Check for stagnation if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end end % if EXPAND %%% Solve projected eigenproblem if USE_OLD [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,y); else [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin); end %%% Compute approximate eigenpair and residual y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y; [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa); %%%=== an alternative, but less stable way of computing z ===== % beta=Tt(1,1); alpha=St(1,1); theta=[alpha,beta]; % r=RepGS(Zschur,beta*Av-alpha*Bv,0); nr=norm(r); z=W*Ul(:,1); rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end if DISP, %%% display history fprintf(String,it,Operator_MVs,j,nlit,nr), end history=[history;nr,it,Operator_MVs]; %%% save history %%% check convergence if (nr<tol) %%% EXPAND Schur form Qschur=[Qschur,q]; Zschur=[Zschur,z]; Sschur=[[Sschur;zeros(1,k)],Zschur'*Av]; Tschur=[[Tschur;zeros(1,k)],Zschur'*Bv]; Zero=[Zero,0]; k=k+1; if ischar(target), Target(k,:)=[nt,0,0]; else, Target(k,:)=[0,target]; end if DISP, ShowEig(theta,target,k); end if (k>=nselect), break; end; %%% Expand preconditioned Schur matrix MinvZ=M\Zschur UpdateMinvZ; J=[2:j]; j=j-1; Ur=Ur(:,J); Ul=Ul(:,J); V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul; WAV=St(J,J); WBV=Tt(J,J); rKNOWN=0; DETECTED=1; USE_OLD=0; %%% check for conjugate pair if PAIRS & (abs(imag(theta(1)/theta(2)))>tol) t=ImagVector(q); % t=conj(q); t=t-q*(q'*t); if norm(t)>tol, t=RepGS([Qschur,V],t,0); if norm(t)>200*tol target=ScaleEig(conj(theta)); EXPAND=1; DETECTED=0; if DISP, fprintf('--- Checking for conjugate pair ---\n'), end end end end INITIATE = ( j==0 & DETECTED); elseif DETECTED %%% To detect whether another eigenpair is accurate enough INITIATE=1; end % if (nr<tol) %%% restart if dim(V)> jmax if j==jmax j=jmin; J=[1:j]; Ur=Ur(:,J); Ul=Ul(:,J); V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul; WAV=St(J,J); WBV=Tt(J,J); end % if j==jmax end % while k end % if TS~=2 if TS==2 Q0=Qschur; ZastQ=[]; % WAV=V'*AV; WBV=V'*BV; while (k<nselect & it<maxit) %%% Initialize target, test space and interaction matrices if INITIATE & ( nSigma>k | NSIGMA), % set new target nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0; if j<2 [V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol); rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[]; j=min(jmin,n-k);; end if DETECTED & NSIGMA [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,sigma,kappa,1); q=RepGS(Zschur,V*Ur(:,1)); [Av,Bv]=MV(q); [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa); sigma=ScaleEig(theta); USE_OLD=NSIGMA; rKNOWN=1; lit=10; end target=sigma; ttarget=sigma; if ischar(ttarget), ttrack=0; else, ttrack=track; end if ~DETECTED %%% additional stabilisation. May not be needed %%% V=RepGS(Zschur,V); [AV,BV]=MV(V); %%% end add. stab. WAV=V'*AV; WBV=V'*BV; end DETECTED=0; INITIATE=0; JDV=0; end % if INITIATE %%% Solve the preconditioned correction equation if rKNOWN, if JDV, z=V; q=V; extra=extra+1; if DISP, fprintf(' %2i-d proj.\n',k+j-1), end end if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit); nlit=nlit+1; lit=lit+1; it=it+1; EXPAND=1; rKNOWN=0; JDV=0; end % if rKNOWN %%% expand the subspaces and the interaction matrices if EXPAND [v,zeta]=RepGS([Zschur,V],t); [Av,Bv]=MV(v); WAV=[WAV,V'*Av;v'*AV,v'*Av]; WBV=[WBV,V'*Bv;v'*BV,v'*Bv]; V=[V,v]; AV=[AV,Av]; BV=[BV,Bv]; j=j+1; EXPAND=0; %%% Check for stagnation if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end end % if EXPAND %%% compute approximate eigenpair if USE_OLD [Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,Ur(:,1)); else [Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin); end %%% Compute approximate eigenpair and residual q=V*Ur(:,1); Av=AV*Ur(:,1); Bv=BV*Ur(:,1); [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa); rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end if DISP, %%% display history fprintf(String,it,Operator_MVs, j,nlit,nr), end history=[history;nr,it,Operator_MVs]; %%% save history %%% check convergence if (nr<tol) %%% expand Schur form [q,a]=RepGS(Q0,q); a1=a(k+1,1); a=a(1:k,1); %%% ZastQ=Z'*Q0 Q0=[Q0,q]; %%% the final Qschur ZastQ=[ZastQ,Zschur'*q;z'*Q0]; Zschur=[Zschur,z]; Qschur=[Qschur,z]; Sschur=[[Sschur;Zero],a1\(Zschur'*Av-[Sschur*a;0])]; Tschur=[[Tschur;Zero],a1\(Zschur'*Bv-[Tschur*a;0])]; Zero=[Zero,0]; k=k+1; if ischar(target), Target(k,:)=[nt,0,0]; else, Target(k,:)=[0,target]; end if DISP, ShowEig(theta,target,k); end if (k>=nselect), break; end; UpdateMinvZ; J=[2:j]; j=j-1; rKNOWN=0; DETECTED=1; Ul=Ul(:,J); V=V*Ul; AV=AV*Ul; BV=BV*Ul; WAV=Ul'*WAV*Ul; WBV=Ul'*WBV*Ul; Ul=eye(j); Ur=Ul; %%% check for conjugate pair if PAIRS & (abs(imag(theta(2)/theta(1)))>tol) t=ImagVector(q); if norm(t)>tol, %%% t perp Zschur, t in span(Q0,imag(q)) t=t-Q0*(ZastQ\(Zschur'*t)); if norm(t)>100*tol target=ScaleEig(conj(theta)); EXPAND=1; DETECTED=0; USE_OLD=0; if DISP, fprintf('--- Checking for conjugate pair ---\n'), end end end end INITIATE = ( j==0 & DETECTED); elseif DETECTED %%% To detect whether another eigenpair is accurate enough INITIATE=1; end % if (nr<tol) %%% restart if dim(V)> jmax if j==jmax j=jmin; J=[1:j]; Ur=Ur(:,J); V=V*Ur; AV=AV*Ur; BV=BV*Ur; WAV=Ur'*WAV*Ur; WBV=Ur'*WBV*Ur; Ur=eye(j); end % if jmax end % while k Qschur=Q0; end time_needed=etime(clock,time); if JDV0 & extra>0 & DISP fprintf('\n\n# j-dim. proj.: %2i\n\n',extra) end I=CheckSortSchur(Sigma,kappa); Target(1:length(I),:)=Target(I,:); XKNOWN=0; if nargout == 0 if ~DISP eigenvalues=diag(Sschur)./diag(Tschur) % Result(eigenvalues) return, end else Jordan=[]; X=zeros(n,0); if SCHUR ~= 1 if k>0 [Z,D,Jor]=FindJordan(Sschur,Tschur,SCHUR); DT=abs(diag(D)); DS=abs(diag(Jor)); JT=find(DT<=tol & DS>tol); JS=find(DS<=tol & DT<=tol); msg=''; DT=~isempty(JT); DS=~isempty(JS); if DT msg1='The eigenvalues'; msg2=sprintf(', %i',JT); msg=[msg1,msg2,' are numerically ''Inf''']; end, if DS msg1='The pencil is numerically degenerated in the directions'; msg2=sprintf(', %i',JS); if DT, msg=[msg,sprintf('\n\n')]; end, msg=[msg,msg1,msg2,'.']; end, if (DT | DS), warndlg(msg,'Unreliable directions'), end Jordan=Jor/D; X=Qschur*Z; XKNOWN=1; end end [varargout{1:nargout}]=output(history,SCHUR,X,Jordan); end %-------------- display results ----------------------------------------- if DISP & size(history,1)>0 rs=history(:,1); mrs=max(rs); if mrs>0, rs=rs+0.1*eps*mrs; subplot(2,1,1); t=history(:,2); plot(t,log10(rs),'*-',t,log10(tol)+0*t,':') legend('log_{10} || r_{#it} ||_2') String=sprintf('The test subspace is computed as %s.',testspace); title(String) subplot(2,1,2); t=history(:,3); plot(t,log10(rs),'-*',t,log10(tol)+0*t,':') legend('log_{10} || r_{#MV} ||_2') String=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',... jmin,jmax,tol); title(String) String=sprintf('Correction equation solved with %s.',lsolver); xlabel(String), date=fix(clock); String=sprintf('%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6)); ax=axis; text(0.2*ax(1)+0.8*ax(2),1.2*ax(3)-0.2*ax(4),String) drawnow end Result(Sigma,Target,diag(Sschur),diag(Tschur),tol) end %------------------------ TEST ACCURACY --------------------------------- if k>nselect & DISP fprintf('\n%i additional eigenpairs have been detected.\n',k-nselect) end if k<nselect & DISP fprintf('\nFailed to detect %i eigenpairs.\n',nselect-k) end if (k>0) & DISP Str='time_needed'; texttest(Str,eval(Str)) fprintf('\n%39s: %9i','Number of Operator actions',Operator_MVs) if Precond_Solves fprintf('\n%39s: %9i','Number of preconditioner solves',Precond_Solves) end if 1 if SCHUR ~= 1 & XKNOWN % Str='norm(Sschur*Z-Tschur*Z*Jordan)'; texttest(Str,eval(Str),tol0) ok=1; eval('[AX,BX]=MV(X);','ok=0;') if ~ok, for j=1:size(X,2), [AX(:,j),BX(:,j)]=MV(X(:,j)); end, end Str='norm(AX*D-BX*Jor)'; texttest(Str,eval(Str),tol0) end ok=1; eval('[AQ,BQ]=MV(Qschur);','ok=0;') if ~ok, for j=1:size(Qschur,2), [AQ(:,j),BQ(:,j)]=MV(Qschur(:,j)); end, end if kappa == 1 Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str),tol0) else Str='norm(AQ-Zschur*Sschur)/kappa'; texttest(Str,eval(Str),tol0) end Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str),tol0) I=eye(k); Str='norm(Qschur''*Qschur-I)'; texttest(Str,eval(Str)) Str='norm(Zschur''*Zschur-I)'; texttest(Str,eval(Str)) nrmSschur=max(norm(Sschur),1.e-8); nrmTschur=max(norm(Tschur),1.e-8); Str='norm(tril(Sschur,-1))/nrmSschur'; texttest(Str,eval(Str)) Str='norm(tril(Tschur,-1))/nrmTschur'; texttest(Str,eval(Str)) end fprintf('\n==================================================\n') end if k==0 disp('no eigenvalue could be detected with the required precision') end return %%%======== END JDQZ ==================================================== %%%====================================================================== %%%======== PREPROCESSING =============================================== %%%====================================================================== %%%======== ARNOLDI (for initial spaces) ================================ function [V,AV,BV]=Arnoldi(v,Av,Bv,sigma,jmin,nselect,tol) % Apply Arnoldi with M\(A*sigma(1)'+B*sigma(2)'), to construct an % initial search subspace % global Qschur if ischar(sigma), sigma=[0,1]; end [n,j]=size(v); k=size(Qschur,2); jmin=min(jmin,n-k); if j==0 & k>0 v=RepGS(Qschur,rand(n,1)); [Av,Bv]=MV(v); j=1; end V=v; AV=Av; BV=Bv; while j<jmin; v=[Av,Bv]*sigma'; v0=SolvePrecond(v); if sigma(1)==0 & norm(v0-v)<tol, %%%% then precond=I and target = 0: apply Arnoldi with A sigma=[1,0]; v0=Av; end v=RepGS([Qschur,V],v0); V=[V,v]; [Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv]; j=j+1; end % while return %%%======== END ARNOLDI ================================================= %%%====================================================================== %%%======== POSTPROCESSING ============================================== %%%====================================================================== %%%======== SORT QZ DECOMPOSITION INTERACTION MATRICES ================== function I=CheckSortSchur(Sigma,kappa) % I=CheckSortSchur(Sigma) % Scales Qschur, Sschur, and Tschur such that diag(Tschur) in [0,1] % Reorders the Partial Schur decomposition such that the `eigenvalues' % (diag(S),diag(T)) appear in increasing chordal distance w.r.t. to % Sigma. % If diag(T) is non-singular then Lambda=diag(S)./diag(T) are the % eigenvalues. global Qschur Zschur Sschur Tschur k=size(Sschur,1); if k==0, I=[]; return, end % [AQ,BQ]=MV(Qschur); % Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str)) % Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str)) %--- scale such that diag(Tschur) in [0,1] ---- [Tschur,D]=ScaleT(Tschur); Sschur=D\Sschur; % kappa=max(norm(Sschur,inf)/norm(Tschur,inf),1); s=diag(Sschur); t=diag(Tschur); I=(1:k)'; l=size(Sigma,1); for j=1:k J0=(j:k)'; J=SortEig(s(I(J0)),t(I(J0)),Sigma(min(j,l),:),kappa); I(J0)=I(J0(J)); end if ~min((1:k)'==I) [Q,Z,Sschur,Tschur]=SwapQZ(eye(k),eye(k),Sschur,Tschur,I); [Tschur,D2]=ScaleT(Tschur); Sschur=D2\Sschur; Qschur=Qschur*Q; Zschur=Zschur*(D*Z*D2); else Zschur=Zschur*D; end return %======================================================================== function [T,D]=ScaleT(T) % scale such that diag(T) in [0,1] ---- n=sign(diag(T)); n=n+(n==0); D=diag(n); T=D\T; IT=imag(T); RT=real(T); T=RT+IT.*(abs(IT)>eps*abs(RT))*sqrt(-1); return %%%======== COMPUTE SORTED JORDAN FORM ================================== function [X,D,Jor]=FindJordan(S,T,SCHUR) % [X,D,J]=FINDJORDAN(S,T) % For S and T k by k upper triangular matrices % FINDJORDAN computes the Jordan decomposition. % X is a k by k matrix of eigenvectors and principal vectors % D and J are k by matrices, D is diagonal, J is Jordan % such that S*X*D=T*X*J. (diag(D),diag(J)) are the eigenvalues. % If D is non-singular then Lambda=diag(J)./diag(D) % are the eigenvalues. % coded by Gerard Sleijpen, May, 2002 k=size(S,1); s=diag(S); t=diag(T); n=sign(t); n=n+(n==0); D=sqrt(conj(s).*s+conj(t).*t).*n; S=diag(D)\S; T=diag(D)\T; D=diag(diag(T)); if k<1, if k==0, X=[]; D=[]; Jor=[]; end if k==1, X=1; Jor=s; end return end tol=k*(norm(S,1)+norm(T,1))*eps; [X,Jor,I]=PseudoJordan(S,T,tol); if SCHUR == 0 for l=1:length(I)-1 if I(l)<I(l+1)-1, J=[I(l):I(l+1)-1]; [U,JJor]=JordanBlock(Jor(J,J),tol); X(:,J)=X(:,J)*U; Jor(J,J)=JJor; end end end Jor=Jor+diag(diag(S)); Jor=Jor.*(abs(Jor)>tol); return %================================================== function [X,Jor,J]=PseudoJordan(S,T,delta) % Computes a pseudo-Jordan decomposition for the upper triangular % matrices S and T with ordered diagonal elements. % S*X*(diag(diag(T)))=T*X*(diag(diag(S))+Jor) % with X(:,i:j) orthonormal if its % columns span an invariant subspace of (S,T). k=size(S,1); s=diag(S); t=diag(T); Jor=zeros(k); X=eye(k); J=1; for i=2:k I=[1:i]; C=t(i,1)*S(I,I)-s(i,1)*T(I,I); C(i,i)=norm(C,inf); if C(i,i)>0 tol=delta*C(i,i); for j=i:-1:1 if j==1 | abs(C(j-1,j-1))>tol, break; end end e=zeros(i,1); e(i,1)=1; if j==i J=[J,i]; q=C\e; X(I,i)=q/norm(q); else q=X(I,j:i-1); q=[C,T(I,I)*q;q',zeros(i-j)]\[e;zeros(i-j,1)]; q=q/norm(q(I,1)); X(I,i)=q(I,1); Jor(j:i-1,i)=-q(i+1:2*i-j,1); end end end J=[J,k+1]; return %================================================== function [X,Jor,U]=JordanBlock(A,tol) % If A is nilpotent, then A*X=X*Jor with % Jor a Jordan block % k=size(A,1); Id=eye(k); U=Id; aa=A; j=k; jj=[]; J=1:k; while j>0 [u,s,v]=svd(aa); U(:,J)=U(:,J)*v; sigma=diag(s); delta=tol; J=find(sigma<delta); if isempty(J),j=0; else, j=min(J)-1; end jj=[jj,j]; if j==0, break, end aa=v'*u*s; J=1:j; aa=aa(J,J); end Jor=U'*A*U; Jor=Jor.*(abs(Jor)>tol); l=length(jj); jj=[jj(l:-1:1),k]; l2=jj(2)-jj(1); J=jj(1)+(1:l2); JX=Id(:,J); X=Id; for j=2:l l1=l2+1; l2=jj(j+1)-jj(j); J2=l1:l2; J=jj(j)+(1:l2); JX=Jor*JX; D=diag(sqrt(diag(JX'*JX))); JX=JX/D; [Q,S,V]=svd(JX(J,:)); JX=[JX,Id(:,J)*Q(:,J2)]; X(:,J)=JX; end J=[]; for i=1:l2 for k=l:-1:1 j=jj(k)+i; if j<=jj(k+1), J=[J,j]; end end end X=X(:,J); Jor=X\(Jor*X); X=U*X; Jor=Jor.*(abs(Jor)>100*tol); return %%%======== END JORDAN FORM ============================================= %%%======== OUTPUT ====================================================== function varargout=output(history,SCHUR,X,Lambda) global Qschur Zschur Sschur Tschur if nargout == 1, varargout{1}=diag(Sschur)./diag(Tschur); return, end if nargout > 2, varargout{nargout}=history; end if nargout < 6 & SCHUR == 1 if nargout >1, varargout{1}=Qschur; varargout{2}=Zschur; end if nargout >2, varargout{3}=Sschur; end if nargout >3, varargout{4}=Tschur; end end %-------------- compute eigenpairs -------------------------------------- if SCHUR ~= 1 varargout{1}=X; varargout{2}=Lambda; if nargout >3, varargout{3}=Qschur; varargout{4}=Zschur; end if nargout >4, varargout{5}=Sschur; end if nargout >5, varargout{6}=Tschur; end end return %%%====================================================================== %%%======== UPDATE PRECONDITIONED SCHUR VECTORS ========================= %%%====================================================================== function UpdateMinvZ global Qschur Zschur MinvZ QastMinvZ [n,k]=size(Qschur); if k==1, MinvZ=zeros(n,0); QastMinvZ = []; end Minv_z=SolvePrecond(Zschur(:,k)); QastMinvZ=[[QastMinvZ;Qschur(:,k)'*MinvZ],Qschur'*Minv_z]; MinvZ=[MinvZ,Minv_z]; return %%%====================================================================== %%%======== SOLVE CORRECTION EQUATION =================================== %%%====================================================================== function [t,xtol]=SolvePCE(theta,q,z,r,lsolver,par,nit) global Qschur Zschur Q=[Qschur,q]; Z=[Zschur,z]; switch lsolver case 'exact' [t,xtol] = exact(theta,Q,Z,r); case {'gmres','cgstab','olsen'} [MZ,QMZ]=FormPM(q,z); %%% solve preconditioned system [t,xtol] = feval(lsolver,theta,Q,Z,MZ,QMZ,r,spar(par,nit)); end return %------------------------------------------------------------------------ function [MZ,QMZ]=FormPM(q,z) % compute vectors and matrices for skew projection global Qschur MinvZ QastMinvZ Minv_z=SolvePrecond(z); QMZ=[QastMinvZ,Qschur'*Minv_z;q'*MinvZ,q'*Minv_z]; MZ=[MinvZ,Minv_z]; return %%%====================================================================== %%%======== LINEAR SOLVERS ============================================== %%%====================================================================== function [x,xtol] = exact(theta,Q,Z,r) % produces the exact solution if matrices are given % Is only feasible for low dimensional matrices % Only of interest for experimental purposes % global Operator_A Operator_B n=size(r,1); if ischar(Operator_A) [MZ,QMZ]=FormPM(Q(:,end),Z(:,end)); if n>200 [x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'cgstab',[1.0e-10,500,4]); else [x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'gmres',[1.0e-10,100]); end return end k=size(Q,2); Aug=[theta(2)*Operator_A-theta(1)*Operator_B,Z;Q',zeros(k,k)]; x=Aug\[r;zeros(k,1)]; x([n+1:n+k],:)=[]; xtol=1; % L=eig(full(Aug)); plot(real(L),imag(L),'*'), pause %%% [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt; %%% xtol=norm(r-At+Z*(Z'*At))/norm(r); return %%%===== Iterative methods ============================================== function [r,xtol] = olsen(theta,Q,Z,MZ,M,r,par) % returns the preconditioned residual as approximate solution % May be sufficient in case of an excellent preconditioner r=SkewProj(Q,MZ,M,SolvePrecond(r)); xtol=0; return %------------------------------------------------------------------------ function [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par) % BiCGstab(ell) with preconditioning % [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=r % where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q'). % using (I-MZ*(M\Q'))*inv(K) as preconditioner % % This function is specialized for use in JDQZ. % integer nmv: number of matrix multiplications % rnrm: relative residual norm % % par=[tol,mxmv,ell] where % integer m: max number of iteration steps % real tol: residual reduction % % rnrm: obtained residual reduction % % -- References: ETNA % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization -- % global Precond_Type tol=par(1); max_it=par(2); l=par(3); n=size(r,1); rnrm=1; nmv=0; if max_it < 2 | tol>=1, x=r; return, end %%% 0 step of bicgstab eq. 1 step of bicgstab %%% Then x is a multiple of b TP=Precond_Type; if TP==0, r=SkewProj(Q,MZ,M,SolvePrecond(r)); tr=r; else, tr=RepGS(Z,r); end rnrm=norm(r); snrm=rnrm; tol=tol*snrm; sigma=1; omega=1; x=zeros(n,1); u=zeros(n,1); J1=2:l+1; %%% HIST=[0,1]; if TP <2 %% explicit preconditioning % -- Iteration loop while (nmv < max_it) sigma=-omega*sigma; for j = 1:l, rho=tr'*r(:,j); bet=rho/sigma; u=r-bet*u; u(:,j+1)=PreMV(theta,Q,MZ,M,u(:,j)); sigma=tr'*u(:,j+1); alp=rho/sigma; r=r-alp*u(:,2:j+1); r(:,j+1)=PreMV(theta,Q,MZ,M,r(:,j)); x=x+alp*u(:,1); G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1)); if rnrm<tol, l=j; J1=2:l+1; r=r(:,1:l+1); break, end end nmv = nmv+2*l; for i=2:l+1 G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)'; end if TP, g=Z'*r; G=G-g'*g; end d=G(J1,1); gamma=G(J1,J1)\d; rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space %%% HIST=[HIST;[nmv,rnrm/snrm]]; x=x+r(:,1:l)*gamma; if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u omega=gamma(l,1); gamma=[1;-gamma]; u=u*gamma; r=r*gamma; if TP, g=g*gamma; r=r-Z*g; end % rnrm = norm(r); end else %% implicit preconditioning I=eye(2*l); v0=I(:,1:l); s0=I(:,l+1:2*l); y0=zeros(2*l,1); V=zeros(n,2*l); while (nmv < max_it) sigma=-omega*sigma; y=y0; v=v0; s=s0; for j = 1:l, rho=tr'*r(:,j); bet=rho/sigma; u=r-bet*u; if j>1, %%% collect the updates for x in l-space v(:,1:j-1)=s(:,1:j-1)-bet*v(:,1:j-1); end [u(:,j+1),V(:,j)]=PreMV(theta,Q,MZ,M,u(:,j)); sigma=tr'*u(:,j+1); alp=rho/sigma; r=r-alp*u(:,2:j+1); if j>1, s(:,1:j-1)=s(:,1:j-1)-alp*v(:,2:j); end [r(:,j+1),V(:,l+j)]=PreMV(theta,Q,MZ,M,r(:,j)); y=y+alp*v(:,1); G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1)); if rnrm<tol, l=j; J1=2:l+1; s=s(:,1:l); break, end end nmv = nmv+2*l; for i=2:l+1 G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)'; end g=Z'*r; G=G-g'*g; %%% but, do the orth to Z implicitly d=G(J1,1); gamma=G(J1,J1)\d; rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space x=x+V*(y+s*gamma); %%% HIST=[HIST;[nmv,rnrm/snrm]]; if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u omega=gamma(l,1); gamma=[1;-gamma]; u=u*gamma; r=r*gamma; g=g*gamma; r=r-Z*g; %%% Do the orth to Z explicitly %%% In exact arithmetic not needed, but %%% appears to be more stable. end end if TP==1, x=SkewProj(Q,MZ,M,SolvePrecond(x)); end rnrm = rnrm/snrm; %%% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow return %---------------------------------------------------------------------- function [v,rnrm] = gmres0(theta,Q,Z,MZ,M,v,par) % GMRES % [x,rnrm] = gmres(theta,Q,Z,MZ,M,v,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=b % where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q'). % using (I-MZ*(M\Q'))*inv(K) as preconditioner % % If used as implicit preconditioner then FGMRES. % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % rnrm: obtained residual reduction % % -- References: Saad & Schultz SISC 1986 % Gerard Sleijpen ([email protected]) % Copyright (c) 1998, Gerard Sleijpen % -- Initialization global Precond_Type tol=par(1); max_it=par(2); n = size(v,1); rnrm = 1; j=0; if max_it < 2 | tol>=1, return, end %%% 0 step of gmres eq. 1 step of gmres %%% Then x is a multiple of b H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)]; TP=Precond_Type; TP=Precond_Type; if TP==0 v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0; else v=RepGS(Z,v); end V = [v]; tol = tol * rnrm; y = [ rnrm ; zeros(max_it,1) ]; while (j < max_it) & (rnrm > tol), j=j+1; [v,w]=PreMV(theta,Q,MZ,M,v); if TP if TP == 2, W=[W,w]; end v=RepGS(Z,v,0); end [v,h] = RepGS(V,v); H(1:size(h,1),j) = h; V = [V, v]; for i = 1:j-1, a = Rot(:,i); H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j); end J=[j, j+1]; a=H(J,j); if a(2) ~= 0 cs = norm(a); a = a/cs; Rot(:,j) = a; H(J,j) = [cs; 0]; y(J) = [a'; -a(2) a(1)]*y(J); end rnrm = abs(y(j+1)); end J=[1:j]; if TP == 2 v = W(:,J)*(H(J,J)\y(J)); else v = V(:,J)*(H(J,J)\y(J)); end if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end return %%%====================================================================== function [v,rnrm] = gmres(theta,Q,Z,MZ,M,v,par) % GMRES % [x,nmv,rnrm] = gmres(theta,Q,Z,MZ,M,v,par) % Computes iteratively an approximation to the solution % of the linear system Q'*x = 0 and Atilde*x=r % where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q'). % using (I-MZ*(M\Q'))*inv(K) as preconditioner. % % If used as implicit preconditioner, then FGMRES. % % par=[tol,m] where % integer m: degree of the minimal residual polynomial % real tol: residual reduction % % nmv: number of MV with Atilde % rnrm: obtained residual reduction % % -- References: Saad % Same as gmres0. However this variant uses MATLAB built-in functions % slightly more efficient (see Sleijpen and van den Eshof). % % % Gerard Sleijpen ([email protected]) % Copyright (c) 2002, Gerard Sleijpen global Precond_Type % -- Initialization tol=par(1); max_it=par(2); n = size(v,1); j=0; if max_it < 2 | tol>=1, rnrm=1; return, end %%% 0 step of gmres eq. 1 step of gmres %%% Then x is a multiple of b H = zeros(max_it +1,max_it); Gamma=1; rho=1; TP=Precond_Type; if TP==0 v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0; else v=RepGS(Z,v); rho0=1; end V = zeros(n,0); W=zeros(n,0); tol0 = 1/(tol*tol); %% HIST=1; while (j < max_it) & (rho < tol0) V=[V,v]; j=j+1; [v,w]=PreMV(theta,Q,MZ,M,v); if TP if TP == 2, W=[W,w]; end v=RepGS(Z,v,0); end [v,h] = RepGS(V,v); H(1:size(h,1),j)=h; gamma=H(j+1,j); if gamma==0, break %%% Lucky break-down else gamma= -Gamma*h(1:j)/gamma; Gamma=[Gamma,gamma]; rho=rho+gamma'*gamma; end %% HIST=[HIST;(gamma~=0)/sqrt(rho)]; end if gamma==0; %%% Lucky break-down e1=zeros(j,1); e1(1)=rho0; rnrm=0; if TP == 2 v=W*(H(1:j,1:j)\e1); else v=V*(H(1:j,1:j)\e1); end else %%% solve in least square sense e1=zeros(j+1,1); e1(1)=rho0; rnrm=1/sqrt(rho); if TP == 2 v=W*(H(1:j+1,1:j)\e1); else v=V*(H(1:j+1,1:j)\e1); end end if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end %% HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]'; %% plot(J,HIST(:,1),'*'); drawnow return %%%======== END SOLVE CORRECTION EQUATION =============================== %%%====================================================================== %%%======== BASIC OPERATIONS ============================================ %%%====================================================================== function [Av,Bv]=MV(v) % [y,z]=MV(x) % y=A*x, z=B*x % y=MV(x,theta) % y=(A-theta*B)*x % global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params Bv=v; switch Operator_Form case 1 % both Operator_A and B are strings Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); Bv=feval(Operator_B,Operator_Params{:}); case 2 Operator_Params{1}=v; [Av,Bv]=feval(Operator_A,Operator_Params{:}); case 3 Operator_Params{1}=v; Operator_Params{2}='A'; Av=feval(Operator_A,Operator_Params{:}); Operator_Params{2}='B'; Bv=feval(Operator_A,Operator_Params{:}); case 4 Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); Bv=Operator_B*v; case 5 Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); case 6 Av=Operator_A*v; Operator_Params{1}=v; Bv=feval(Operator_B,Operator_Params{:}); case 7 Av=Operator_A*v; Bv=Operator_B*v; case 8 Av=Operator_A*v; end Operator_MVs = Operator_MVs +size(v,2); % [Av(1:5,1),Bv(1:5,1)], pause return %------------------------------------------------------------------------ function y=SolvePrecond(y); global Precond_Form Precond_L Precond_U Precond_P Precond_Params Precond_Solves switch Precond_Form case 0, case 1, Precond_Params{1}=y; y=feval(Precond_L,Precond_Params{:}); case 2, Precond_Params{1}=y; Precond_Params{2}='preconditioner'; y=feval(Precond_L,Precond_Params{:}); case 3, Precond_Params{1}=y; Precond_Params{1}=feval(Precond_L,Precond_Params{:}); y=feval(Precond_U,Precond_Params{:}); case 4, Precond_Params{1}=y; Precond_Params{2}='L'; Precond_Params{1}=feval(Precond_L,Precond_Params{:}); Precond_Params{2}='U'; y=feval(Precond_L,Precond_Params{:}); case 5, y=Precond_L\y; case 6, y=Precond_U\(Precond_L\y); case 7, y=Precond_U\(Precond_L\(Precond_P*y)); end if Precond_Form Precond_Solves = Precond_Solves +size(y,2); end %% y(1:5,1), pause return %------------------------------------------------------------------------ function [v,u]=PreMV(theta,Q,Z,M,v) % v=Atilde*v global Precond_Type if Precond_Type u=SkewProj(Q,Z,M,SolvePrecond(v)); [v,w]=MV(u); v=theta(2)*v-theta(1)*w; else [v,u]=MV(v); u=theta(2)*v-theta(1)*u; v=SkewProj(Q,Z,M,SolvePrecond(u)); end return %------------------------------------------------------------------------ function r=SkewProj(Q,Z,M,r); if ~isempty(Q), r=r-Z*(M\(Q'*r)); end return %------------------------------------------------------------------------ function ppar=spar(par,nit) k=size(par,2)-2; ppar=par(1,k:k+2); if k>1 if nit>k ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k)); else ppar(1,1)=par(1,max(nit,1)); end end ppar(1,1)=max(ppar(1,1),1.0e-8); return %------------------------------------------------------------------------ function u=ImagVector(u) % computes "essential" imaginary part of a vector maxu=max(u); maxu=maxu/abs(maxu); u=imag(u/maxu); return %------------------------------------------------------------------------ function Sigma=ScaleEig(Sigma) % % n=sign(Sigma(:,2)); n=n+(n==0); d=sqrt((Sigma.*conj(Sigma))*[1;1]).*n; Sigma=diag(d)\Sigma; return %%%======== COMPUTE r AND z ============================================= function [r,z,nrm,theta]=Comp_rz(E,kappa) % % [r,z,nrm,theta]=Comp_rz(E) % computes the direction r of the minimal residual, % the left projection vector z, % the approximate eigenvalue theta % % [r,z,nrm,theta]=Comp_rz(E,kappa) % kappa is a scaling factor. % % coded by Gerard Sleijpen, version Januari 7, 1998 if nargin == 1 kappa=norm(E(:,1))/norm(E(:,2)); kappa=2^(round(log2(kappa))); end if kappa ~=1, E(:,1)=E(:,1)/kappa; end [Q,sigma,u]=svd(E,0); %%% E*u=Q*sigma, sigma(1,1)>sigma(2,2) r=Q(:,2); z=Q(:,1); nrm=sigma(2,2); % nrm=nrm/sigma(1,1); nrmz=sigma(1,1) u(1,:)=u(1,:)/kappa; theta=[-u(2,2),u(1,2)]; return %%%======== END computation r and z ===================================== %%%====================================================================== %%%======== Orthogonalisation =========================================== %%%====================================================================== function [V,R]=RepGS(Z,V,gamma) % % Orthonormalisation using repeated Gram-Schmidt % with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion % % Q=RepGS(V) % The n by k matrix V is orthonormalized, that is, % Q is an n by k orthonormal matrix and % the columns of Q span the same space as the columns of V % (in fact the first j columns of Q span the same space % as the first j columns of V for all j <= k). % % Q=RepGS(Z,V) % Assuming Z is n by l orthonormal, V is orthonormalized against Z: % [Z,Q]=RepGS([Z,V]) % % Q=RepGS(Z,V,gamma) % With gamma=0, V is only orthogonalized against Z % Default gamma=1 (the same as Q=RepGS(Z,V)) % % [Q,R]=RepGS(Z,V,gamma) % if gamma == 1, V=[Z,Q]*R; else, V=Z*R+Q; end % coded by Gerard Sleijpen, March, 2002 % if nargin == 1, V=Z; Z=zeros(size(V,1),0); end if nargin <3, gamma=1; end [n,dv]=size(V); [m,dz]=size(Z); if gamma, l0=min(dv+dz,n); else, l0=dz; end R=zeros(l0,dv); if dv==0, return, end if dz==0 & gamma==0, return, end % if m~=n % if m<n, Z=[Z;zeros(n-m,dz)]; end % if m>n, V=[V;zeros(m-n,dv)]; n=m; end % end if (dz==0 & gamma) j=1; l=1; J=1; q=V(:,1); nr=norm(q); R(1,1)=nr; while nr==0, q=rand(n,1); nr=norm(q); end, V(:,1)=q/nr; if dv==1, return, end else j=0; l=0; J=[]; end while j<dv, j=j+1; q=V(:,j); nr_o=norm(q); nr=eps*nr_o; if dz>0, yz=Z'*q; q=q-Z*yz; end if l>0, y=V(:,J)'*q; q=q-V(:,J)*y; end nr_n=norm(q); while (nr_n<0.5*nr_o & nr_n > nr) if dz>0, sz=Z'*q; q=q-Z*sz; yz=yz+sz; end if l>0, s=V(:,J)'*q; q=q-V(:,J)*s; y=y+s; end nr_o=nr_n; nr_n=norm(q); end if dz>0, R(1:dz,j)=yz; end if l>0, R(dz+J,j)=y; end if ~gamma V(:,j)=q; elseif l+dz<n, l=l+1; if nr_n <= nr % expand with a random vector % if nr_n==0 V(:,l)=RepGS([Z,V(:,J)],rand(n,1)); % else % which can be numerical noice % V(:,l)=q/nr_n; % end else V(:,l)=q/nr_n; R(dz+l,j)=nr_n; end J=[1:l]; end end % while j if gamma & l<dv, V=V(:,J); end return %%%======== END Orthogonalisation ====================================== %%%====================================================================== %%%======== Sorts Schur form ============================================ %%%====================================================================== function [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u) % % [Q,Z,S,T]=SortQZ(A,B,tau) % A and B are k by k matrices, tau is a complex pair [alpha,beta]. % SortQZ computes the qz-decomposition of (A,B) with prescribed % ordering: A*Q=Z*S, B*Q=Z*T; % Q and Z are unitary k by k matrices, % S and T are upper triangular k by k matrices. % The ordering is as follows: % (diag(S),diag(T)) are the eigenpairs of (A,B) ordered % with increasing "chordal distance" w.r.t. tau. % % If tau is a scalar then [tau,1] is used. % Default value for tau is tau=0, i.e., tau=[0,1]. % % [Q,Z,S,T]=SortQZ(A,B,tau,kappa) % kappa scales A first: A/kappa. Default kappa=1. % % [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma) % Sorts the first MAX(gamma,1) elements. Default: gamma=k % % [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u) % Now, with ordering such that angle u and Q(:,1) is less than 45o, % and, except for the first pair, (diag(S),diag(T)) are % with increasing "chordal distance" w.r.t. tau. % If such an ordering does not exist, ordering is as without u. % % coded by Gerard Sleijpen, version April, 2002 k=size(A,1); if k==1, Q=1; Z=1; S=A;T=B; return, end kk=k-1; if nargin < 3, tau=[0,1]; end if nargin < 4, kappa=1; end if nargin > 4, kk=max(1,min(gamma,k-1)); end %% kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1); %% kappa=2^(round(log2(kappa))); %%%------ compute the qz factorization ------- [S,T,Z,Q]=qz(A,B); Z=Z'; % kkappa=max(norm(A,inf),norm(B,inf)); % Str='norm(A*Q-Z*S)';texttest(Str,eval(Str)) % Str='norm(B*Q-Z*T)';texttest(Str,eval(Str)) %%%------ scale the eigenvalues -------------- t=diag(T); n=sign(t); n=n+(n==0); D=diag(n); Q=Q/D; S=S/D; T=T/D; %%%------ sort the eigenvalues --------------- I=SortEig(diag(S),real(diag(T)),tau,kappa); %%%------ swap the qz form ------------------- [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk)); % Str='norm(A*Q-Z*S)';texttest(Str,eval(Str)) % Str='norm(B*Q-Z*T)';texttest(Str,eval(Str)) if nargin < 6 | size(u,2) ~= 1 return else %%% repeat SwapQZ if angle is too small kk=min(size(u,1),k); J=1:kk; u=u(J,1)'*Q(J,:); if abs(u(1,1))>0.7, return, end for j=2:kk J=1:j; if norm(u(1,J))>0.7 J0=[j,1:j-1]; [Qq,Zz,Ss,Tt]=SwapQZ(eye(j),eye(j),S(J,J),T(J,J),J0); if abs(u(1,J)*Qq(:,1))>0.71 Q(:,J)=Q(:,J)*Qq; Z(:,J)=Z(:,J)*Zz; S(J,J)=Ss; S(J,j+1:k)=Zz'*S(J,j+1:k); T(J,J)=Tt; T(J,j+1:k)=Zz'*T(J,j+1:k); % Str='norm(A*Q-Z*S)';texttest(Str,eval(Str)) % Str='norm(B*Q-Z*T)';texttest(Str,eval(Str)) fprintf(' Took %2i:%6.4g\n',j,S(1,1)./T(1,1)) return end end end disp([' Selection problem: took ',num2str(1)]) return end %%%====================================================================== function I=SortEig(s,t,sigma,kappa); % % I=SortEig(S,T,SIGMA) sorts the indices of [S,T] as prescribed by SIGMA % S and T are K-vectors. % % If SIGMA=[ALPHA,BETA] is a complex pair then % if CHORDALDISTANCE % sort [S,T] with increasing chordal distance w.r.t. SIGMA. % else % sort S./T with increasing distance w.r.t. SIGMA(1)/SIGMA(2) % % The chordal distance D between a pair A and a pair B is % defined as follows. % Scale A by a scalar F such that NORM(F*A)=1. % Scale B by a scalar G such that NORM(G*B)=1. % Then D(A,B)=SQRT(1-ABS((F*A)*(G*B)')). % % I=SortEig(S,T,SIGMA,KAPPA). Kappa is a caling that effects the % chordal distance: [S,KAPPA*T] w.r.t. [SIGMA(1),KAPPA*SIGMA(2)]. % coded by Gerard Sleijpen, version April 2002 global CHORDALDISTANCE if ischar(sigma) warning off, s=s./t; warning on switch sigma case 'LM' [s,I]=sort(-abs(s)); case 'SM' [s,I]=sort(abs(s)); case 'LR'; [s,I]=sort(-real(s)); case 'SR'; [s,I]=sort(real(s)); case 'BE'; [s,I]=sort(real(s)); I=twistdim(I,1); end elseif CHORDALDISTANCE if kappa~=1, t=kappa*t; sigma(2)=kappa*sigma(2); end n=sqrt(s.*conj(s)+t.*t); [s,I]=sort(-abs([s,t]*sigma')./n); else warning off, s=s./t; warning on if sigma(2)==0; [s,I]=sort(-abs(s)); else, [s,I]=sort(abs(s-sigma(1)/sigma(2))); end end return %------------------------------------------------------------------------ function t=twistdim(t,k) d=size(t,k); J=1:d; J0=zeros(1,2*d); J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J); if k==1, t=t(I,:); else, t=t(:,I); end return %%%====================================================================== function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I) % [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P) % QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular. % P is the first part of a permutation of (1:K)'. % % Then Q and Z are K by K unitary, S and T are K by K upper triangular, % such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have % A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where % LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT). % % Computation uses Givens rotations. % % coded by Gerard Sleijpen, version October 12, 1998 kk=min(length(I),size(S,1)-1); j=1; while (j<=kk & j==I(j)), j=j+1; end while j<=kk i=I(j); for k = i-1:-1:j, %%% i>j, move ith eigenvalue to position j J = [k,k+1]; q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J); if q(1) ~= 0 q = q/norm(q); G = [[q(2);-q(1)],q']; Q(:,J) = Q(:,J)*G; S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G; end if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end if q(2) ~= 0 q=q/norm(q); G = [q';q(2),-q(1)]; Z(:,J) = Z(:,J)*G'; S(J,:) = G*S(J,:); T(J,:) = G*T(J,:); end T(k+1,k) = 0; S(k+1,k) = 0; end I=I+(I<i); j=j+1; while (j<=kk & j==I(j)), j=j+1; end end return %------------------------------------------------------------------------ function [Q,Z,S,T]=SwapQZ0(Q,Z,S,T,I) % % [Q,Z,S,T]=sortqz0(A,B,s,t,k) % A and B are k by k matrices, t and s are k vectors such that % (t(i),s(i)) eigenpair (A,B), i.e. t(i)*A-s(i)*B singular. % Computes the Schur form with a ordering prescribed by (t,s): % A*Q=Z*S, B*Q=Z*T such that diag(S)./diag(T)=s./t. % Computation uses Householder reflections. % % coded by Gerard Sleijpen, version October 12, 1997 k=size(S,1); s=diag(S); t=diag(T); s=s(I,1); t=t(I,1); for i=1:k-1 %%% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0 C=t(i,1)*S(i:k,i:k)-s(i,1)*T(i:k,i:k); [q,r,p]=qr(C); %% C*P=Q*R %% check whether last but one diag. elt r nonzero j=k-i; while abs(r(j,j))<eps*norm(r); j=j-1; end; j=j+1; r(j,j)=1; e=zeros(j,1); e(j,1)=1; q=p*([r(1:j,1:j)\e;zeros(k-i+1-j,1)]); q=q/norm(q);%% C*q %%% end computation q z=conj(s(i,1))*S(i:k,i:k)*q+conj(t(i,1))*T(i:k,i:k)*q; z=z/norm(z); a=q(1,1); if a ~=0, a=abs(a)/a; q=a*q; end a=z(1,1); if a ~=0, a=abs(a)/a; z=a*z; end q(1,1)=q(1,1)+1; q=q/norm(q); q=[zeros(i-1,1);q]; z(1,1)=z(1,1)+1; z=z/norm(z); z=[zeros(i-1,1);z]; S=S-(S*q)*(2*q)'; S=S-(2*z)*(z'*S); T=T-(T*q)*(2*q)'; T=T-(2*z)*(z'*T); Q=Q-(Q*q)*(2*q)'; Z=Z-(Z*z)*(2*z)'; end return %%%======== END sort QZ decomposition interaction matrices ============== %%%====================================================================== %%%======== INITIALIZATION ============================================== %%%====================================================================== function MyClear global Operator_Form Operator_A Operator_B Operator_Params ... Precond_L Precond_U Precond_P Precond_Params ... Precond_Form Precond_Type ... Operator_MVs Precond_Solves ... CHORDALDISTANCE ... Qschur Zschur Sschur Tschur ... MinvZ QastMinvZ return %%%====================================================================== function [n,nselect,Sigma,kappa,SCHUR,... jmin,jmax,tol,maxit,V,AV,BV,TS,DISP,PAIRS,JDV,FIX,track,NSIGMA,... lsolver,par] = ReadOptions(varargin) % Read options and set defaults global Operator_Form Operator_A Operator_B Operator_Params ... Precond_Form Precond_L Precond_U Precond_P Precond_Params ... CHORDALDISTANCE Operator_A = varargin{1}; n=CheckMatrix(Operator_A,1); % defaults %%%% search for 'xx' in fieldnames nselect0= 5; maxit = 200; %%%% 'ma' SCHUR = 0; %%%% 'sch' tol = 1e-8; %%%% 'to' DISP = 0; %%%% 'di' p0 = 5; %%% jmin=nselect+p0 %%%% 'jmi' p1 = 5; %%% jmax=jmin+p1 %%%% 'jma' TS = 1; %%%% 'te' PAIRS = 0; %%%% 'pai' JDV = 0; %%%% 'av' track = 1e-4; %%%% 'tr' FIX = 1000; %%%% 'fix' NSIGMA = 0; %%%% 'ns' CHORD = 1; %%%% 'ch' lsolver = 'gmres'; %%%% 'lso' ls_maxit= 200; %%%% 'ls_m' ls_tol = [0.7,0.49]; %%%% 'ls_t' ell = 4; %%%% 'ls_e' TP = 0; %%%% 'ty' L = []; %%%% 'l_' U = []; %%%% 'u_' P = []; %%%% 'p_' kappa = 1; %%%% 'sca' V0 = 'ones(n,1)+rand(n,1)'; %%%% 'v0' %% initiation nselect=[]; Sigma=[]; options=[]; Operator_B=[]; jmin=-1; jmax=-1; V=[]; AV=[]; BV=[]; par=[]; %------------------------------------------------ %------- Find quantities ------------------------ %------------------------------------------------ jj=[]; for j = 2:nargin if isstruct(varargin{j}) options = varargin{j}; elseif ischar(varargin{j}) s=varargin{j}; if exist(s)==2 & isempty(Operator_B) Operator_B=s; elseif length(s) == 2 & isempty(Sigma) s=upper(s); switch s case {'LM','SM','LR','SR','BE'}, Sigma=s; otherwise jj=[jj,j]; end else jj=[jj,j]; end elseif min([n,n]==size(varargin{j})) & isempty(Operator_B) Operator_B=varargin{j}; elseif length(varargin{j}) == 1 s = varargin{j}; if isempty(nselect) & isreal(s) & (s == fix(s)) & (s > 0) nselect = min(n,s); elseif isempty(Sigma) Sigma = s; else jj=[jj,j]; end elseif min(size(varargin{j}))==1 & isempty(Sigma) Sigma = varargin{j}; if size(Sigma,1)==1, Sigma=Sigma'; end elseif min(size(varargin{j}))==2 & isempty(Sigma) Sigma = varargin{j}; if size(Sigma,2)>2 , Sigma=Sigma'; end else jj=[jj,j]; end end %------- find parameters for operators ----------- Operator_Params=[]; Operator_Params{2}=''; k=length(jj); if k>0 Operator_Params(3:k+2)=varargin(jj); if ~ischar(Operator_A) msg=sprintf(', %i',jj); msg=sprintf('Input argument, number%s, not recognized.',msg); button=questdlg(msg,'Input arguments','Ignore','Stop','Ignore'); if strcmp(button,'Stop'), n=-1; return, end end end %------- operator B ----------------------------- if isempty(Operator_B) if ischar(Operator_A) Operator_Form=2; % or Operator_Form=3, or Operator_Form=5; else Operator_Form=8; end else if ischar(Operator_B) if ischar(Operator_A), Operator_Form=1; else, Operator_Form=6; end elseif ischar(Operator_A) Operator_Form=4; else Operator_Form=7; end end if n<2, return, end %------- number of eigs to be computed ---------- if isempty(nselect), nselect=min(n,nselect0); end %------------------------------------------------ %------- Analyse Options ------------------------ %------------------------------------------------ fopts = []; if ~isempty(options), fopts = fieldnames(options); end %------- preconditioner ------------------------- Precond_L=findfield(options,fopts,'pr',[]); [L,ok]=findfield(options,fopts,'l_',Precond_L); if ok & ~isempty(Precond_L), msg =sprintf('A preconditioner is defined in'); msg =[msg,sprintf('\n''Precond'', but also in ''L_precond''.')]; msg=[msg,sprintf('\nWhat is the correct one?')]; button=questdlg(msg,'Preconditioner','L_Precond','Precond','L_Precond'); if strcmp(button,'L_Precond'), Precond_L = L; end else Precond_L = L; end if ~isempty(Precond_L) Precond_U=findfield(options,fopts,'u_',[]); Precond_P=findfield(options,fopts,'p_',[]); end Precond_Params=[]; Precond_Params{2}=''; Params=findfield(options,fopts,'par',[]); [l,k]=size(Params); if k>0, if iscell(Params), Precond_Params(3:k+2)=Params; else, Precond_Params{3}=Params; end end TP=findfield(options,fopts,'ty',TP); n=SetPrecond(n,TP); if n<2, return, end %------- max, min dimension search subspace ------ jmin=min(n,findfield(options,fopts,'jmi',jmin)); jmax=min(n,findfield(options,fopts,'jma',jmax)); if jmax < 0 if jmin<0, jmin=min(n,nselect+p0); end jmax=min(n,jmin+p1); else if jmin<0, jmin=max(1,jmax-p1); end end maxit=findfield(options,fopts,'ma',maxit); %------- initial search subspace ---------------- V=findfield(options,fopts,'v',[]); [m,d]=size(V); if m~=n if m>n, V = V(1:n,:); end if m<n, V = [V;0.001*rand(n-m-1,d)]; end end V=orth(V); [m,d]=size(V); if d==0, nr=0; while nr==0, V=eval(V0); nr=norm(V); V=V/nr; end, end %------- Check definition B, Compute AV, BV ----- [AV,BV,n]=CheckDimMV(V); if n<2, return, end %------- Other options -------------------------- tol=findfield(options,fopts,'to',tol); kappa = findfield(options,fopts,'sca',kappa); kappa = abs(kappa(1,1)); if kappa==0, kappa=1; end PAIRS = findfield(options,fopts,'pai',PAIRS,[0,1]); SCHUR = findfield(options,fopts,'sch',SCHUR,[0,1,0.5]); DISP = findfield(options,fopts,'di',DISP,[0,1]); JDV = findfield(options,fopts,'av',JDV,[0,1]); track = max(abs(findfield(options,fopts,'tr',track,[0,track,inf])),0); NSIGMA = findfield(options,fopts,'ns',NSIGMA,[0,1]); FIX = max(abs(findfield(options,fopts,'fix',0,[0,FIX,inf])),0); CHORDALDISTANCE = findfield(options,fopts,'ch',CHORD,[0,1]); [TS0,ok] = findfield(options,fopts,'te',TS); if ok & ischar(TS0) if strncmpi(TS0,'st',2), TS=0; %% 'standard' elseif strncmpi(TS0,'ha',2), TS=1; %% 'harmonic' elseif strncmpi(TS0,'se',2), TS=2; %% 'searchspace' elseif strncmpi(TS0,'bv',2), TS=3; elseif strncmpi(TS0,'av',2), TS=4; end else TS=max(0,min(4,round(TS0(1,1)))); end %------- set targets ---------------- if isempty(Sigma) if TS==1, Sigma=[0,1]; else, Sigma = 'LM'; end elseif ischar(Sigma) switch Sigma case {'LM','LR','SR','BE','SM'} if ~ok, TS=3; end end else [k,l]=size(Sigma); if l==1, Sigma=[Sigma,ones(k,1)]; l=2; end Sigma=ScaleEig(Sigma); end if ischar(Sigma) & TS<2 msg1=sprintf(' The choice sigma = ''%s'' does not match the\n',Sigma); msg2=sprintf(' selected test subspace. Specify a numerical\n'); msg3=sprintf(' value for sigma (e.g. sigma = '); msg4=''; switch Sigma case {'LM','LR'} msg4=sprintf('[1,0]'); case {'SM','SR','BE'} msg4=sprintf(' [0,1]'); end msg5=sprintf('),\n or continue with ''TestSpace''=''B*V''.'); msg=[msg1,msg2,msg3,msg4,msg5]; button=questdlg(msg,'Targets and test subspaces','Continue','Stop','Continue'); if strcmp(button,'Continue'), TS=3; else, n=-1; return, end end %------- linear solver -------------------------- lsolver = findfield(options,fopts,'lso',lsolver); method=strvcat('exact','olsen','iluexact','gmres','cgstab','bicgstab'); j=strmatch(lower(lsolver),method); if isempty(j), msg=['The linear solver ''',lsolver,''' is not included.']; msg=[msg,sprintf('\nIs GMRES ok?')]; button=questdlg(msg,'Linear solver','Yes','No','Yes'); if strcmp(button,'Yes'), j=4; ls_maxit=5; else, n=-1; return, end end if j==1, lsolver='exact'; Precond_Form = 0; elseif j==2 | j==3, lsolver='olsen'; elseif j==4, lsolver='gmres'; ls_maxit=5; else, lsolver='cgstab'; ls_tol=1.0e-10; end ls_maxit= findfield(options,fopts,'ls_m',ls_maxit); ls_tol = findfield(options,fopts,'ls_t',ls_tol); ell = findfield(options,fopts,'ls_e',ell); par=[ls_tol,ls_maxit,ell]; %----- Display the parameters that are used ---------------- if DISP fprintf('\n'),fprintf('PROBLEM\n') switch Operator_Form case {1,4,6,7} fprintf('%13s: %s\n','A',StrOp(Operator_A)); fprintf('%13s: %s\n','B',StrOp(Operator_B)); case 2 fprintf('%13s: ''%s'' ([Av,Bv] = %s(v))\n','A,B',Operator_A,Operator_A); case 3 fprintf('%13s: ''%s''\n','A,B',Operator_A); fprintf('%15s(Av = %s(v,''A''), Bv = %s(v,''B''))\n',... '',Operator_A,Operator_A); case {5,8} fprintf('%13s: %s\n','A',StrOp(Operator_A)); fprintf('%13s: %s\n','B','Identity (B*v = v)'); end fprintf('%13s: %i\n','dimension',n); fprintf('%13s: %i\n\n','nselect',nselect); if length(jj)>0 & (ischar(Operator_A) | ischar(Operator_B)) msgj=sprintf(', %i',jj); msgo=''; if ischar(Operator_A), msgo=sprintf(' ''%s''',Operator_A); end if ischar(Operator_B), msgo=sprintf('%s ''%s''.',msgo,Operator_B); end fprintf(' The JDQZ input arguments, number%s, are\n',msgj) fprintf(' taken as input parameters 3:%i for%s.\n\n',length(jj)+2,msgo); end fprintf('TARGET\n') if ischar(Sigma) fprintf('%13s: ''%s''\n','sigma',Sigma) else fprintf('%13s: %s\n','sigma',mydisp(Sigma(1,:))) for j=2:size(Sigma,1), fprintf('%13s: %s\n','',mydisp(Sigma(j,:))) end end fprintf('\nOPTIONS\n') fprintf('%13s: %g\n','Schur',SCHUR) fprintf('%13s: %g\n','Tol',tol) fprintf('%13s: %i\n','Disp',DISP) fprintf('%13s: %i\n','jmin',jmin) fprintf('%13s: %i\n','jmax',jmax) fprintf('%13s: %i\n','MaxIt',maxit) fprintf('%13s: %s\n','v0',StrOp(V)) fprintf('%13s: %i\n','Pairs',PAIRS) fprintf('%13s: %i\n','AvoidStag',JDV) fprintf('%13s: %i\n','NSigma',NSIGMA) fprintf('%13s: %g\n','Track',track) fprintf('%13s: %g\n','FixShift',FIX) fprintf('%13s: %i\n','Chord',CHORDALDISTANCE) fprintf('%13s: ''%s''\n','LSolver',lsolver) str=sprintf('%g ',ls_tol); fprintf('%13s: [ %s]\n','LS_Tol',str) fprintf('%13s: %i\n','LS_MaxIt',ls_maxit) if strcmp(lsolver,'cgstab') fprintf('%13s: %i\n','LS_ell',ell) end DisplayPreconditioner(n); fprintf('\n') switch TS case 0, str='Standard, W = alpha''*A*V + beta''*B*V'; case 1, str='Harmonic, W = beta*A*V - alpha*B*V'; case 2, str='SearchSpace, W = V'; case 3, str='Petrov, W = B*V'; case 4, str='Petrov, W = A*V'; end fprintf('%13s: %s\n','TestSpace',str); fprintf('\n\n'); end return %------------------------------------------------------------------------ function msg=StrOp(Op) if ischar(Op) msg=sprintf('''%s''',Op); elseif issparse(Op), [n,k]=size(Op); msg=sprintf('[%ix%i sparse]',n,k); else, [n,k]=size(Op); msg=sprintf('[%ix%i double]',n,k); end return %------------------------------------------------------------------------ function DisplayPreconditioner(n) global Precond_Form Precond_Type ... Precond_L Precond_U Precond_P FP=Precond_Form; switch Precond_Form case 0, fprintf('%13s: %s\n','Precond','No preconditioner'); case {1,2,5} fprintf('%13s: %s','Precond',StrOp(Precond_L)); if FP==2, fprintf(' (M\\v = %s(v,''preconditioner''))',Precond_L); end fprintf('\n') case {3,4,6,7} fprintf('%13s: %s\n','L precond',StrOp(Precond_L)); fprintf('%13s: %s\n','U precond',StrOp(Precond_U)); if FP==7, fprintf('%13s: %s\n','P precond',StrOp(Precond_P)); end if FP==4,fprintf('%15s(M\\v = %s(%s(v,''L''),''U''))\n',... '',Precond_L,Precond_L); end end if FP switch Precond_Type case 0, str='explicit left'; case 1, str='explicit right'; case 2, str='implicit'; end fprintf('%15sTo be used as %s preconditioner.\n','',str) end return %------------------------------------------------------------------------ function possibilities fprintf('\n') fprintf('PROBLEM\n') fprintf(' A: [ square matrix | string ]\n'); fprintf(' B: [ square matrix {identity} | string ]\n'); fprintf(' nselect: [ positive integer {5} ]\n\n'); fprintf('TARGET\n') fprintf(' sigma: [ vector of scalars | \n'); fprintf(' pair of vectors of scalars |\n'); fprintf(' {''LM''} | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n'); fprintf('OPTIONS\n'); fprintf(' Schur: [ yes | {no} ]\n'); fprintf(' Tol: [ positive scalar {1e-8} ]\n'); fprintf(' Disp: [ yes | {no} ]\n'); fprintf(' jmin: [ positive integer {nselect+5} ]\n'); fprintf(' jmax: [ positive integer {jmin+5} ]\n'); fprintf(' MaxIt: [ positive integer {200} ]\n'); fprintf(' v0: '); fprintf('[ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n'); fprintf(' TestSpace: '); fprintf('[ Standard | {Harmonic} | SearchSpace | BV | AV ]\n'); fprintf(' Pairs: [ yes | {no} ] \n'); fprintf(' AvoidStag: [ yes | {no} ]\n'); fprintf(' Track: [ {yes} | no non-negative scalar {1e-4} ]\n'); fprintf(' NSigma: [ yes | {no} ]\n'); fprintf(' FixShift: [ yes | {no} | non-negative scalar {1e+3} ]\n'); fprintf(' Chord: [ {yes} | no ]\n'); fprintf(' Scale: [ positive scalar {1} ]\n'); fprintf(' LSolver: [ {gmres} | bicgstab ]\n'); fprintf(' LS_Tol: [ row of positive scalar {[0.7,0.49]} ]\n'); fprintf(' LS_MaxIt: [ positive integer {5} ]\n'); fprintf(' LS_ell: [ positive integer {4} ]\n'); fprintf(' Precond: '); fprintf('[ n by n matrix {identity} | n by 2n matrix | string ]\n'); fprintf(' L_Precond: same as ''Precond''\n'); fprintf(' U_Precond: [ n by n matrix {identity} | string ]\n'); fprintf(' P_Precond: [ n by n matrix {identity} ]\n'); fprintf(' Type_Precond: [ {left} | right | implicit ]\n'); fprintf('\n') return %------------------------------------------------------------------------ function x = boolean(x,gamma,string) %Y = BOOLEAN(X,GAMMA,STRING) % GAMMA(1) is the default. % If GAMMA is not specified, GAMMA = 0. % STRING is a cell of accepted strings. % If STRING is not specified STRING = {'n' 'y'} % STRING{I} and GAMMA(I) are accepted expressions for X % If X=GAMMA(I) then Y=X. If the first L characters % of X matches those of STRING{I}, then Y=GAMMA(I+1). % Here L=SIZE({STRING{1},2). % For other values of X, Y=GAMMA(1); if nargin < 2, gamma=[0,0,1]; end if nargin < 3, string={'n' 'y'}; end if ischar(x) l=size(string{1},2); i=min(find(strncmpi(x,string,l))); if isempty(i), i=0; end, x=gamma(i+1); elseif max((gamma-x)==0) elseif gamma(end) == inf else, x=gamma(1); end return %------------------------------------------------------------------------ function [a,ok]=findfield(options,fopts,str,default,gamma,stri) % Searches the fieldnames in FOPTS for the string STR. % The field is detected if only the first part of the fieldname % matches the string STR. The search is case insensitive. % If the field is detected, then OK=1 and A is the fieldvalue. % Otherwise OK=0 and A=DEFAULT l=size(str,2); j=min(find(strncmpi(str,fopts,l))); if ~isempty(j) a=getfield(options,char(fopts(j,:))); ok=1; if nargin == 5, a = boolean(a,[default,gamma]); elseif nargin == 6, a = boolean(a,[default,gamma],stri); end elseif nargin>3 a=default; ok=0; else a=[]; ok=0; end return %%%====================================================================== function n=CheckMatrix(A,gamma) if ischar(A), n=-1; if exist(A) ~=2 msg=sprintf(' Can not find the M-file ''%s.m'' ',A); errordlg(msg,'MATRIX'),n=-2; end if n==-1 & gamma, eval('n=feval(A,[],''dimension'');','n=-1;'), end else, [n,n] = size(A); if any(size(A) ~= n) msg=sprintf(' The operator must be a square matrix or a string. '); errordlg(msg,'MATRIX'),n=-3; end end return %------------------------------------------------------------------------ function [Av,Bv,n]=CheckDimMV(v) % [Av,Bv]=CheckDimMV(v) % Av=A*v, Bv=B*v Checks correctness operator definitions global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params [n,k]=size(v); if k>1, V=v(:,2:k); v=v(:,1); end Bv=v; switch Operator_Form case 1 % both Operator_A and B are strings Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); Bv=feval(Operator_B,Operator_Params{:}); case 2 %%% or Operator_Form=3 or Operator_Form=5??? Operator_Params{1}=v; eval('[Av,Bv]=feval(Operator_A,Operator_Params{:});','Operator_Form=3;') if Operator_Form==3, ok=1; Operator_Params{2}='A'; eval('Av=feval(Operator_A,Operator_Params{:});','ok=0;') if ok, Operator_Params{2}='B'; eval('Bv=feval(Operator_A,Operator_Params{:});','ok=0;'), end if ~ok, Operator_Form=5; Operator_Params{2}=''; Av=feval(Operator_A,Operator_Params{:}); end end case 3 Operator_Params{1}=v; Operator_Params{2}='A'; Av=feval(Operator_A,Operator_Params{:}); Operator_Params{2}='B'; Bv=feval(Operator_A,Operator_Params{:}); case 4 Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); Bv=Operator_B*v; case 5 Operator_Params{1}=v; Av=feval(Operator_A,Operator_Params{:}); case 6 Av=Operator_A*v; Operator_Params{1}=v; Bv=feval(Operator_B,Operator_Params{:}); case 7 Av=Operator_A*v; Bv=Operator_B*v; case 8 Av=Operator_A*v; end Operator_MVs = 1; ok_A=min(size(Av)==size(v)); ok_B=min(size(Bv)==size(v)); if ok_A & ok_B if k>1, ok=1; eval('[AV,BV]=MV(V);','ok=0;') if ok Av=[Av,AV]; Bv=[Bv,BV]; else for j=2:k, [Av(:,j),Bv(:,j)]=MV(V(:,j-1)); end end end return end if ~ok_A Operator=Operator_A; elseif ~ok_B Operator=Operator_B; end msg=sprintf(' %s does not produce a vector of size %d',Operator,n) errordlg(msg,'MATRIX'), n=-1; return %------------------------------------------------------------------------ function n=SetPrecond(n,TP) % finds out how the preconditioners are defined (Precond_Form) % and checks consistency of the definitions. % % If M is the preconditioner then P*M=L*U. Defaults: L=U=P=I. % % Precond_Form % 0: no L % 1: L M-file, no U, L ~= A % 2: L M-file, no U, L == A % 3: L M-file, U M-file, L ~= A, U ~= A, L ~=U % 4: L M-file, U M-file, L == U % 5: L matrix, no U % 6: L matrix, U matrix no P % 7: L matrix, U matrix, P matrix % % Precond_Type % 0: Explicit left % 1: Explicit right % 2: Implicit % global Operator_A ... Precond_Form Precond_Solves ... Precond_Type ... Precond_L Precond_U Precond_P Precond_Params Precond_Type = 0; if ischar(TP) TP=lower(TP(1,1)); switch TP case 'l' Precond_Type = 0; case 'r' Precond_Type = 1; case 'i' Precond_Type = 2; end else Precond_Type=max(0,min(fix(TP),2)); end Precond_Solves = 0; % Set type preconditioner Precond_Form=0; if isempty(Precond_L), return, end if ~isempty(Precond_U) & ischar(Precond_L)~=ischar(Precond_U) msg=sprintf(' L and U should both be strings or matrices'); errordlg(msg,'PRECONDITIONER'), n=-1; return end if ~isempty(Precond_P) & (ischar(Precond_P) | ischar(Precond_L)) msg=sprintf(' P can be specified only if P, L and U are matrices'); errordlg(msg,'PRECONDITIONER'), n=-1; return end tp=1+4*~ischar(Precond_L)+2*~isempty(Precond_U)+~isempty(Precond_P); if tp==1, tp = tp + strcmp(Precond_L,Operator_A); end if tp==3, tp = tp + strcmp(Precond_L,Precond_U); end if tp==3 & strcmp(Precond_U,Operator_A) msg=sprintf(' If L and A use the same M-file,') msg=[msg,sprintf('\n then so should U.')]; errordlg(msg,'PRECONDITIONER'), n=-1; return end if tp>5, tp=tp-1; end, Precond_Form=tp; % Check consistency definitions if tp<5 & exist(Precond_L) ~=2 msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_L); errordlg(msg,'PRECONDITIONER'), n=-1; return end ok=1; if tp == 2 Precond_Params{1}=zeros(n,1); Precond_Params{2}='preconditioner'; eval('v=feval(Operator_A,Precond_Params{:});','ok=0;') if ~ok msg='Preconditioner and matrix use the same M-file'; msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)]; msg=[msg,'Therefore the preconditioner is called as']; msg=[msg,sprintf('\n\n\tw=%s(v,''preconditioner'')\n\n',Precond_L)]; msg=[msg,sprintf('Put this "switch" in ''%s.m''.',Precond_L)]; end end if tp == 4 | ~ok ok1=1; Precond_Params{1}=zeros(n,1); Precond_Params{2}='L'; eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;') Precond_Params{2}='U'; eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;') if ok1 Precond_Form = 4; Precond_U = Precond_L; ok=1; else if tp == 4 msg='L and U use the same M-file'; msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)]; msg=[msg,'Therefore L and U are called']; msg=[msg,sprintf(' as\n\n\tw=%s(v,''L'')',Precond_L)]; msg=[msg,sprintf(' \n\tw=%s(v,''U'')\n\n',Precond_L)]; msg=[msg,sprintf('Check the dimensions and/or\n')]; msg=[msg,sprintf('put this "switch" in ''%s.m''.',Precond_L)]; end errordlg(msg,'PRECONDITIONER'), n=-1; return end end if tp==1 | tp==3 Precond_Params{1}=zeros(n,1); Precond_Params{2}=''; eval('v=feval(Precond_L,Precond_Params{:});','ok=0') if ~ok msg=sprintf('''%s'' should produce %i-vectors',Precond_L,n); errordlg(msg,'PRECONDITIONER'), n=-1; return end end if tp==3 if exist(Precond_U) ~=2 msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_U); errordlg(msg,'PRECONDITIONER'), n=-1; return else Precond_Params{1}=zeros(n,1); Precond_Params{2}=''; eval('v=feval(Precond_U,Precond_Params{:});','ok=0') if ~ok msg=sprintf('''%s'' should produce %i-vectors',Precond_U,n); errordlg(msg,'PRECONDITIONER'), n=-1; return end end end if tp==5 if min([n,2*n]==size(Precond_L)) Precond_U=Precond_L(:,n+1:2*n); Precond_L=Precond_L(:,1:n); Precond_Form=6; elseif min([n,3*n]==size(Precond_L)) Precond_U=Precond_L(:,n+1:2*n); Precond_P=Precond_L(:,2*n+1:3*n); Precond_L=Precond_L(:,1:n); Precond_Form=7; elseif ~min([n,n]==size(Precond_L)) msg=sprintf('The preconditioning matrix\n'); msg2=sprintf('should be %iX%i or %ix%i ([L,U])\n',n,n,n,2*n); msg3=sprintf('or %ix%i ([L,U,P])\n',n,3*n); errordlg([msg,msg2,msg3],'PRECONDITIONER'), n=-1; return end end if tp==6 & ~min([n,n]==size(Precond_L) & [n,n]==size(Precond_U)) msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1; errordlg(msg,'PRECONDITIONER'), n=-1; return end if tp==7 & ~min([n,n]==size(Precond_L) & ... [n,n]==size(Precond_U) & [n,n]==size(Precond_P)) msg=sprintf('L, U, and P should all be %iX%i.',n,n); n=-1; errordlg(msg,'PRECONDITIONER'), n=-1; return end return %%%====================================================================== %%%========= DISPLAY FUNCTIONS =========================================== %%%====================================================================== function Result(Sigm,Target,S,T,tol) if nargin == 1 fprintf('\n\n %20s\n','Eigenvalues') for j=1:size(Sigm,1), fprintf('%2i %s\n',j,mydisp(Sigm(j,:),5)) end return end fprintf('\n\n%17s %25s%18s\n','Targets','Eigenvalues','RelErr/Cond') for j=1:size(S,1), l=Target(j,1); s=S(j,:); t=T(j,:); lm=mydisp(s/t,5); if l>0 fprintf('%2i %8s ''%s'' %9s %23s',j,'',Sigm(l,:),'',lm) else fprintf('%2i %23s %23s',j,mydisp(Target(j,2:3),5),lm) end re=1-tol/abs(t); if re>0, re=(1+tol/abs(s))/re; re=min(re-1,1); else, re=1; end if re>0.999, fprintf(' 1\n'), else, fprintf(' %5.0e\n',re), end end return %------------------------------------------------------------------------ function s=mydisp(lambda,d) if nargin <2, d=4; end if size(lambda,2)==2, if lambda(:,2)==0, s='Inf'; return, end lambda=lambda(:,1)/lambda(:,2); end a=real(lambda); b=imag(lambda); if max(a,b)==inf, s='Inf'; return, end e=0; if abs(a)>0; e= floor(log10(abs(a))); end if abs(b)>0; e= max(e,floor(log10(abs(b)))); end p=10^d; q=p/(10^e); a=round(a*q)/p; b=round(b*q)/p; st=['%',num2str(d+2),'.',num2str(d),'f']; ab=abs(b)==0; if ab, str=[''' ']; else, str=['''(']; end if a>=0, str=[str,'+']; a=abs(a); end, str=[str,st]; if ab, str=[str,'e']; else if b>=0, str=[str,'+']; b=abs(b); end, str=[str,st,'i)e']; end if e>=0, str=[str,'+']; else, str=[str,'-']; e=-e; end if e<10, str=[str,'0%i''']; else, str=[str,'%i''']; end if ab, s=eval(sprintf(str,a,e)); else, s=eval(sprintf(str,a,b,e)); end return %%%====================================================================== function ShowEig(theta,target,k) if ischar(target) fprintf('\n target=''%s'', ',target) else fprintf('\n target=%s, ',mydisp(target,5)) end fprintf('lambda_%i=%s\n',k,mydisp(theta,5)); return %%%====================================================================== function texttest(s,nr,gamma) if nargin<3, gamma=100*eps; end if nr > gamma % if nr>100*eps fprintf('\n %35s is: %9.3g\t',s,nr) end return %%%======================================================================
github
pvarin/DynamicVAE-master
lnst.m
.m
DynamicVAE-master/drtoolbox/gui/lnst.m
866
utf_8
fd307c356d0eb128b0d57c9df000197e
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology function lnst(hs,he) ls=get(he,'value'); switch ls case 1 set(hs,'LineStyle','-','marker','x','color','b'); case 2 set(hs,'LineStyle','-','marker','o','color','r'); case 3 set(hs,'LineStyle','none','marker','o','color','b'); case 4 set(hs,'LineStyle','-','marker','none','color','g'); case 5 set(hs,'LineStyle','--','marker','d','color','b'); end drawnow;
github
pvarin/DynamicVAE-master
scatter12n.m
.m
DynamicVAE-master/drtoolbox/gui/scatter12n.m
1,309
utf_8
5a079c0bf3db6d26fd87f0cb3297c45b
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology function scatter12n(name,data,labels) ld=length(data(1,:)); if ld==2 hf=figure; set(hf,'name',name,'NumberTitle','off'); %if handles.islb scatter(data(:,1),data(:,2),5,labels); % else % scatter(data(:,1),data(:,2),5); % end title(name); else if ld==1 hf=figure; set(hf,'name',name,'NumberTitle','off'); %if handles.islb scatter(data(:,1),zeros(length(data(:,1)),1),5,labels); % else % scatter(data(:,1),zeros(length(data(:,1)),1),5); % end title(name); else %if handles.islb scattern(name,data,labels); % else % scattern('Result of dimensionality reduction',data); % end end end
github
pvarin/DynamicVAE-master
not_calculated.m
.m
DynamicVAE-master/drtoolbox/gui/not_calculated.m
7,602
utf_8
9f98d51f0c8207bd788383e580814903
function varargout = not_calculated(varargin) % NOT_CALCULATED M-file for not_calculated.fig % NOT_CALCULATED by itself, creates a new NOT_CALCULATED or raises the % existing singleton*. % % H = NOT_CALCULATED returns the handle to a new NOT_CALCULATED or the handle to % the existing singleton*. % % NOT_CALCULATED('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NOT_CALCULATED.M with the given input arguments. % % NOT_CALCULATED('Property','Value',...) creates a new NOT_CALCULATED or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before not_calculated_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to not_calculated_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help not_calculated % Last Modified by GUIDE v2.5 30-Jul-2008 11:02:27 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @not_calculated_OpeningFcn, ... 'gui_OutputFcn', @not_calculated_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before not_calculated is made visible. function not_calculated_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to not_calculated (see VARARGIN) % Choose default command line output for not_calculated handles.output = 'Yes'; % Update handles structure guidata(hObject, handles); % Insert custom Title and Text if specified by the user % Hint: when choosing keywords, be sure they are not easily confused % with existing figure properties. See the output of set(figure) for % a list of figure properties. if(nargin > 3) for index = 1:2:(nargin-3), if nargin-3==index, break, end switch lower(varargin{index}) case 'title' set(hObject, 'Name', varargin{index+1}); case 'string' set(handles.text1, 'String', varargin{index+1}); end end end % Determine the position of the dialog - centered on the callback figure % if available, else, centered on the screen FigPos=get(0,'DefaultFigurePosition'); OldUnits = get(hObject, 'Units'); set(hObject, 'Units', 'pixels'); OldPos = get(hObject,'Position'); FigWidth = OldPos(3); FigHeight = OldPos(4); if isempty(gcbf) ScreenUnits=get(0,'Units'); set(0,'Units','pixels'); ScreenSize=get(0,'ScreenSize'); set(0,'Units',ScreenUnits); FigPos(1)=1/2*(ScreenSize(3)-FigWidth); FigPos(2)=2/3*(ScreenSize(4)-FigHeight); else GCBFOldUnits = get(gcbf,'Units'); set(gcbf,'Units','pixels'); GCBFPos = get(gcbf,'Position'); set(gcbf,'Units',GCBFOldUnits); FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ... (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2]; end FigPos(3:4)=[FigWidth FigHeight]; set(hObject, 'Position', FigPos); set(hObject, 'Units', OldUnits); % Show a question icon from dialogicons.mat - variables questIconData % and questIconMap load dialogicons.mat IconData=questIconData; questIconMap(256,:) = get(handles.figure1, 'Color'); IconCMap=questIconMap; Img=image(IconData, 'Parent', handles.axes1); set(handles.figure1, 'Colormap', IconCMap); set(handles.axes1, ... 'Visible', 'off', ... 'YDir' , 'reverse' , ... 'XLim' , get(Img,'XData'), ... 'YLim' , get(Img,'YData') ... ); % Make the GUI modal set(handles.figure1,'WindowStyle','modal') % UIWAIT makes not_calculated wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = not_calculated_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % The figure can be deleted now delete(handles.figure1); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if isequal(get(handles.figure1, 'waitstatus'), 'waiting') % The GUI is still in UIWAIT, us UIRESUME uiresume(handles.figure1); else % The GUI is no longer waiting, just close it delete(handles.figure1); end % --- Executes on key press over figure1 with no controls selected. function figure1_KeyPressFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Check for "enter" or "escape" if isequal(get(hObject,'CurrentKey'),'escape') % User said no by hitting escape handles.output = 'No'; % Update handles structure guidata(hObject, handles); uiresume(handles.figure1); end if isequal(get(hObject,'CurrentKey'),'return') uiresume(handles.figure1); end
github
pvarin/DynamicVAE-master
choose_method.m
.m
DynamicVAE-master/drtoolbox/gui/choose_method.m
5,336
utf_8
a50c15d7c51725e6e88bb12bf5be57a3
function varargout = choose_method(varargin) % CHOOSE_METHOD M-file for choose_method.fig % CHOOSE_METHOD, by itself, creates a new CHOOSE_METHOD or raises the existing % singleton*. % % H = CHOOSE_METHOD returns the handle to a new CHOOSE_METHOD or the handle to % the existing singleton*. % % CHOOSE_METHOD('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CHOOSE_METHOD.M with the given input arguments. % % CHOOSE_METHOD('Property','Value',...) creates a new CHOOSE_METHOD or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before choose_method_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to choose_method_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help choose_method % Last Modified by GUIDE v2.5 25-Jul-2008 10:40:42 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @choose_method_OpeningFcn, ... 'gui_OutputFcn', @choose_method_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before choose_method is made visible. function choose_method_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to choose_method (see VARARGIN) % Choose default command line output for choose_method handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes choose_method wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = choose_method_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in listbox1. function listbox1_Callback(hObject, eventdata, handles) vl=get(hObject,'Value'); switch vl case 1 str='CorrDim'; case 2 str='NearNbDim'; case 3 str='GMST'; case 4 str='PackingNumbers'; case 5 str='EigValue'; case 6 str='MLE'; end set(handles.str,'string',str); drawnow; % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function str_Callback(hObject, eventdata, handles) % hObject handle to str (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of str as text % str2double(get(hObject,'String')) returns contents of str as a double % --- Executes during object creation, after setting all properties. function str_CreateFcn(hObject, eventdata, handles) % hObject handle to str (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in ok. function ok_Callback(hObject, eventdata, handles) uiresume(handles.figure1);
github
pvarin/DynamicVAE-master
load_data_1_var.m
.m
DynamicVAE-master/drtoolbox/gui/load_data_1_var.m
4,776
utf_8
213540e0f2d0e24db85ee4c6184178c8
function varargout = load_data_1_var(varargin) % LOAD_DATA_1_VAR M-file for load_data_1_var.fig % LOAD_DATA_1_VAR, by itself, creates a new LOAD_DATA_1_VAR or raises the existing % singleton*. % % H = LOAD_DATA_1_VAR returns the handle to a new LOAD_DATA_1_VAR or the handle to % the existing singleton*. % % LOAD_DATA_1_VAR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LOAD_DATA_1_VAR.M with the given input arguments. % % LOAD_DATA_1_VAR('Property','Value',...) creates a new LOAD_DATA_1_VAR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before load_data_1_var_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to load_data_1_var_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help load_data_1_var % Last Modified by GUIDE v2.5 23-Jul-2008 17:31:19 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @load_data_1_var_OpeningFcn, ... 'gui_OutputFcn', @load_data_1_var_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before load_data_1_var is made visible. function load_data_1_var_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to load_data_1_var (see VARARGIN) % Choose default command line output for load_data_1_var handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes load_data_1_var wait for user response (see UIRESUME) uiwait(handles.figure1); % uiwait; % --- Outputs from this function are returned to the command line. function varargout = load_data_1_var_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function cn_Callback(hObject, eventdata, handles) % hObject handle to cn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of cn as text % str2double(get(hObject,'String')) returns contents of cn as a double % --- Executes during object creation, after setting all properties. function cn_CreateFcn(hObject, eventdata, handles) % hObject handle to cn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in ok. function ok_Callback(hObject, eventdata, handles) uiresume(handles.figure1); % -------------------------------------------------------------------- function uipanel1_SelectionChangeFcn(hObject, eventdata, handles) if get(handles.i,'value') set(handles.cn,'Enable','on'); set(handles.cnt,'ForegroundColor',[0 0 0]); else set(handles.cn,'Enable','off'); set(handles.cnt,'ForegroundColor',[0.4 0.4 0.4]); end
github
pvarin/DynamicVAE-master
plotn.m
.m
DynamicVAE-master/drtoolbox/gui/plotn.m
3,947
utf_8
ba3674531d91bc0b2ca405e0a9d0bc3a
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology function plotn(name,data) % plot if dimensionality>=3 % format: plotn(name,data) % name - text that will be dispayed as name of figure % data - multidimentional data, row - is one datapoint bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961]; bgc1=[1 1 1]; bgc1=bgc; % if length(varargin)==1 % labels=varargin{1}; % islb=true; % else islb=false; % end hf=figure; set(hf,'name',name,'NumberTitle','off'); set(hf,'units','normalized'); set(hf,'position',[0.1 0.1 0.7 0.75]); set(hf,'color',bgc); ha=axes; set(ha,'units','normalized'); set(ha,'position',[0.1 0.1 0.8 0.7]); % if islb % hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha); % else hs=plot3(data(:,1),data(:,2),data(:,3),'x-','parent',ha); % end set(hs,'UserData',data); % memorize data in userdata of plot % title as text contol: xc=0.5; yc=0.94; dx=0.8; dy=0.04; uicontrol('Style', 'text',... 'parent',hf,... 'String', name,... 'units','normalized',... 'fontunits','normalized',... 'HorizontalAlignment','center',... 'Position', [xc-dx/2 yc dx dy],... 'backgroundcolor',bgc1); % dimensionality text xc=0.5; yc=0.9; dx=0.2; dy=0.04; uicontrol('Style', 'text',... 'parent',hf,... 'String', ['dimensionality=' num2str(length(data(1,:)))],... 'units','normalized',... 'fontunits','normalized',... 'Position', [xc-dx/2 yc dx dy],... 'backgroundcolor',bgc1); % edits: xc=0.5; yc=0.86; dy=0.04; dytx=0.03; x0=0.03; dxg=0.03; xt=x0; for cc=1:3 switch cc case 1 ls='X'; case 2 ls='Y'; case 3 ls='Z'; end dx1=0.07; uicontrol('Style', 'text',... 'parent',hf,... 'String', [ls ' ' 'data:'],... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dytx/2 dx1 dytx],... 'backgroundcolor',bgc1); xt=xt+dx1+0.005; dx1=0.07; he=uicontrol('Style', 'edit',... 'parent',hf,... 'String', num2str(cc),... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dy/2 dx1 dy],... 'backgroundcolor',[1 1 1]); set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']); xt=xt+dx1+0.005; dx1=0.065; uicontrol('Style', 'text',... 'parent',hf,... 'String', 'column',... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dytx/2 dx1 dytx],... 'backgroundcolor',bgc1); xt=xt+dx1+0.005; xt=xt+dxg; end dx1=0.1; uicontrol('Style', 'text',... 'parent',hf,... 'String', 'line style:',... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dytx/2 dx1 dytx],... 'backgroundcolor',bgc1); xt=xt+dx1+0.005; dx1=0.07; he=uicontrol('Style', 'popupmenu',... 'parent',hf,... 'String', '1|2|3|4|5',... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dy/2 dx1 dy],... 'backgroundcolor',[1 1 1]); set(he,'callback',['lnst(' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']); xlabel(ha,'X'); ylabel(ha,'Y'); zlabel(ha,'Z'); set(hf,'Toolbar','figure');
github
pvarin/DynamicVAE-master
scattern.m
.m
DynamicVAE-master/drtoolbox/gui/scattern.m
3,514
utf_8
aca2d60a4f80079c67204845b2499143
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology function scattern(name,data,varargin) % scatter plot if dimensionality>=3 % format: scattern(name,data) % name - text that will be dispayed as name of figure % data - multidimentional data, row - is one datapoint % scattern(name,data,labels) - if labels spacified, used for color of points bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961]; bgc1=[1 1 1]; bgc1=bgc; if length(varargin)==1 labels=varargin{1}; islb=true; else islb=false; end hf=figure; set(hf,'name',name,'NumberTitle','off'); set(hf,'units','normalized'); set(hf,'position',[0.1 0.1 0.7 0.75]); set(hf,'color',bgc); ha=axes; set(ha,'units','normalized'); set(ha,'position',[0.1 0.1 0.8 0.7]); if islb && size(data, 1) == numel(labels) hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha); else hs=scatter3(data(:,1),data(:,2),data(:,3),5,'parent',ha); end if size(data, 1) ~= numel(labels) warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.'); end set(hs,'UserData',data); % memorize data in userdata of plot % title as text contol: xc=0.5; yc=0.94; dx=0.8; dy=0.04; uicontrol('Style', 'text',... 'parent',hf,... 'String', name,... 'units','normalized',... 'fontunits','normalized',... 'HorizontalAlignment','center',... 'Position', [xc-dx/2 yc dx dy],... 'backgroundcolor',bgc1); % dimensionality text xc=0.5; yc=0.9; dx=0.2; dy=0.04; uicontrol('Style', 'text',... 'parent',hf,... 'String', ['dimensionality=' num2str(length(data(1,:)))],... 'units','normalized',... 'fontunits','normalized',... 'Position', [xc-dx/2 yc dx dy],... 'backgroundcolor',bgc1); % edits: xc=0.5; yc=0.86; dy=0.04; dytx=0.03; x0=0.12; dxg=0.05; xt=x0; for cc=1:3 switch cc case 1 ls='X'; case 2 ls='Y'; case 3 ls='Z'; end dx1=0.07; uicontrol('Style', 'text',... 'parent',hf,... 'String', [ls ' ' 'data:'],... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dytx/2 dx1 dytx],... 'backgroundcolor',bgc1); xt=xt+dx1+0.005; dx1=0.07; he=uicontrol('Style', 'edit',... 'parent',hf,... 'String', num2str(cc),... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dy/2 dx1 dy],... 'backgroundcolor',[1 1 1]); set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']); xt=xt+dx1+0.005; dx1=0.065; uicontrol('Style', 'text',... 'parent',hf,... 'String', 'column',... 'units','normalized',... 'fontunits','normalized',... 'Position', [xt yc-dytx/2 dx1 dytx],... 'backgroundcolor',bgc1); xt=xt+dx1+0.005; xt=xt+dxg; end xlabel(ha,'X'); ylabel(ha,'Y'); zlabel(ha,'Z'); set(hf,'Toolbar','figure');
github
pvarin/DynamicVAE-master
no_history.m
.m
DynamicVAE-master/drtoolbox/gui/no_history.m
7,508
utf_8
d5c85b897eeca97b3e37ea41551de2b1
function varargout = no_history(varargin) % NO_HISTORY M-file for no_history.fig % NO_HISTORY by itself, creates a new NO_HISTORY or raises the % existing singleton*. % % H = NO_HISTORY returns the handle to a new NO_HISTORY or the handle to % the existing singleton*. % % NO_HISTORY('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NO_HISTORY.M with the given input arguments. % % NO_HISTORY('Property','Value',...) creates a new NO_HISTORY or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before no_history_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to no_history_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help no_history % Last Modified by GUIDE v2.5 16-Sep-2008 15:57:20 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @no_history_OpeningFcn, ... 'gui_OutputFcn', @no_history_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before no_history is made visible. function no_history_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to no_history (see VARARGIN) % Choose default command line output for no_history handles.output = 'Yes'; % Update handles structure guidata(hObject, handles); % Insert custom Title and Text if specified by the user % Hint: when choosing keywords, be sure they are not easily confused % with existing figure properties. See the output of set(figure) for % a list of figure properties. if(nargin > 3) for index = 1:2:(nargin-3), if nargin-3==index, break, end switch lower(varargin{index}) case 'title' set(hObject, 'Name', varargin{index+1}); case 'string' set(handles.text1, 'String', varargin{index+1}); end end end % Determine the position of the dialog - centered on the callback figure % if available, else, centered on the screen FigPos=get(0,'DefaultFigurePosition'); OldUnits = get(hObject, 'Units'); set(hObject, 'Units', 'pixels'); OldPos = get(hObject,'Position'); FigWidth = OldPos(3); FigHeight = OldPos(4); if isempty(gcbf) ScreenUnits=get(0,'Units'); set(0,'Units','pixels'); ScreenSize=get(0,'ScreenSize'); set(0,'Units',ScreenUnits); FigPos(1)=1/2*(ScreenSize(3)-FigWidth); FigPos(2)=2/3*(ScreenSize(4)-FigHeight); else GCBFOldUnits = get(gcbf,'Units'); set(gcbf,'Units','pixels'); GCBFPos = get(gcbf,'Position'); set(gcbf,'Units',GCBFOldUnits); FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ... (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2]; end FigPos(3:4)=[FigWidth FigHeight]; set(hObject, 'Position', FigPos); set(hObject, 'Units', OldUnits); % Show a question icon from dialogicons.mat - variables questIconData % and questIconMap load dialogicons.mat IconData=questIconData; questIconMap(256,:) = get(handles.figure1, 'Color'); IconCMap=questIconMap; Img=image(IconData, 'Parent', handles.axes1); set(handles.figure1, 'Colormap', IconCMap); set(handles.axes1, ... 'Visible', 'off', ... 'YDir' , 'reverse' , ... 'XLim' , get(Img,'XData'), ... 'YLim' , get(Img,'YData') ... ); % Make the GUI modal set(handles.figure1,'WindowStyle','modal') % UIWAIT makes no_history wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = no_history_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % The figure can be deleted now delete(handles.figure1); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if isequal(get(handles.figure1, 'waitstatus'), 'waiting') % The GUI is still in UIWAIT, us UIRESUME uiresume(handles.figure1); else % The GUI is no longer waiting, just close it delete(handles.figure1); end % --- Executes on key press over figure1 with no controls selected. function figure1_KeyPressFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Check for "enter" or "escape" if isequal(get(hObject,'CurrentKey'),'escape') % User said no by hitting escape handles.output = 'No'; % Update handles structure guidata(hObject, handles); uiresume(handles.figure1); end if isequal(get(hObject,'CurrentKey'),'return') uiresume(handles.figure1); end
github
pvarin/DynamicVAE-master
load_data_vars.m
.m
DynamicVAE-master/drtoolbox/gui/load_data_vars.m
7,727
utf_8
a89e86bdd4785b42127825a4c304fb5e
function varargout = load_data_vars(varargin) % LOAD_DATA_VARS M-file for load_data_vars.fig % LOAD_DATA_VARS, by itself, creates a new LOAD_DATA_VARS or raises the existing % singleton*. % % H = LOAD_DATA_VARS returns the handle to a new LOAD_DATA_VARS or the handle to % the existing singleton*. % % LOAD_DATA_VARS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LOAD_DATA_VARS.M with the given input arguments. % % LOAD_DATA_VARS('Property','Value',...) creates a new LOAD_DATA_VARS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before load_data_vars_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to load_data_vars_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help load_data_vars % Last Modified by GUIDE v2.5 23-Jul-2008 18:19:22 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @load_data_vars_OpeningFcn, ... 'gui_OutputFcn', @load_data_vars_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before load_data_vars is made visible. function load_data_vars_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to load_data_vars (see VARARGIN) % Choose default command line output for load_data_vars handles.output = hObject; % Update handles structure guidata(hObject, handles); vn=varargin{1}; % variable names str=''; for vnc=1:length(vn) str=[str vn{vnc}]; if vnc~=length(vn) str=[str ' ']; end end set(handles.lv,'string',str); set(handles.d,'string',vn{1}); set(handles.ivn,'string',vn{2}); % UIWAIT makes load_data_vars wait for user response (see UIRESUME) uiwait(handles.figure1); %uiwait; % --- Outputs from this function are returned to the command line. function varargout = load_data_vars_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function lv_Callback(hObject, eventdata, handles) % hObject handle to lv (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of lv as text % str2double(get(hObject,'String')) returns contents of lv as a double % --- Executes during object creation, after setting all properties. function lv_CreateFcn(hObject, eventdata, handles) % hObject handle to lv (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function d_Callback(hObject, eventdata, handles) % hObject handle to d (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of d as text % str2double(get(hObject,'String')) returns contents of d as a double % --- Executes during object creation, after setting all properties. function d_CreateFcn(hObject, eventdata, handles) % hObject handle to d (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function ivn_Callback(hObject, eventdata, handles) % hObject handle to ivn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ivn as text % str2double(get(hObject,'String')) returns contents of ivn as a double % --- Executes during object creation, after setting all properties. function ivn_CreateFcn(hObject, eventdata, handles) % hObject handle to ivn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function icn_Callback(hObject, eventdata, handles) % hObject handle to icn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of icn as text % str2double(get(hObject,'String')) returns contents of icn as a double % --- Executes during object creation, after setting all properties. function icn_CreateFcn(hObject, eventdata, handles) % hObject handle to icn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in ok. function ok_Callback(hObject, eventdata, handles) uiresume(handles.figure1); % -------------------------------------------------------------------- function uipanel1_SelectionChangeFcn(hObject, eventdata, handles) if get(handles.iv,'value') set(handles.ivn,'Enable','on'); else set(handles.ivn,'Enable','off'); end if get(handles.ic,'value') set(handles.icn,'Enable','on'); else set(handles.icn,'Enable','off'); end
github
pvarin/DynamicVAE-master
mapping_parameters.m
.m
DynamicVAE-master/drtoolbox/gui/mapping_parameters.m
23,373
utf_8
59c32ad869cef7d4887bd7f6bd777624
function varargout = mapping_parameters(varargin) % MAPPING_PARAMETERS M-file for mapping_parameters.fig % MAPPING_PARAMETERS, by itself, creates a new MAPPING_PARAMETERS or raises the existing % singleton*. % % H = MAPPING_PARAMETERS returns the handle to a new MAPPING_PARAMETERS or the handle to % the existing singleton*. % % MAPPING_PARAMETERS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAPPING_PARAMETERS.M with the given input arguments. % % MAPPING_PARAMETERS('Property','Value',...) creates a new MAPPING_PARAMETERS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mapping_parameters_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mapping_parameters_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Last Modified by GUIDE v2.5 28-Jul-2008 16:23:20 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mapping_parameters_OpeningFcn, ... 'gui_OutputFcn', @mapping_parameters_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before mapping_parameters is made visible. function mapping_parameters_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to mapping_parameters (see VARARGIN) % Choose default command line output for mapping_parameters handles.output = hObject; no_dims=varargin{1}; handles.islb=varargin{2}; if length(no_dims)~=0 set(handles.nd,'string',num2str(round(no_dims))); else set(handles.nd,'string','2'); end case1; % case one is default for start % Update handles structure guidata(hObject, handles); % handles % UIWAIT makes mapping_parameters wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = mapping_parameters_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in listbox1. function listbox1_Callback(hObject, eventdata, handles) % figure1: 218.0023 % sm: 240.0021 % na: 239.0021 % nat: 238.0021 % uipanel_tp: 235.0021 % prp: 234.0021 % prpt: 233.0021 % kpd: 232.0021 % kpdt: 231.0021 % kpR: 230.0021 % kpRt: 229.0021 % kgs: 228.0021 % kgst: 227.0021 % uipanel_k: 223.0022 % uipanel_ft: 220.0022 % sig: 53.0027 % sigt: 52.0027 % uipanel_ei: 49.0027 % prc: 48.0027 % prct: 47.0027 % k: 46.0028 % kt: 45.0028 % mi: 44.0028 % mit: 43.0029 % nd: 42.0029 % text3: 41.0034 % wl: 40.0029 % text1: 39.0033 % listbox1: 219.0023 % tl: 237.0021 % tg: 236.0021 % kp: 226.0022 % kg: 225.0022 % kl: 224.0022 % ftn: 222.0022 % fty: 221.0022 % eij: 51.0027 % eim: 50.0027 % output: 218.0023 % islb: % PCA % LDA % MDS % SimplePCA % ProbPCA % FactorAnalysis % Isomap % LandmarkIsomap % LLE % Laplacian % HessianLLE % LTSA % MVU % CCA % LandmarkMVU % FastMVU % DiffusionMaps % KernelPCA % GDA % SNE % SymSNE % t-SNE % LPP % NPE % LLTSA % SPE % Autoencoder % LLC % ManifoldChart % CFA % GPLVM switch get(hObject,'Value') case 1 % PCA % no parameters; case1; case 2 % LDA % no parameters; case1; if handles.islb set(handles.wl,'visible','off'); set(handles.sm,'Enable','on'); else set(handles.wl,'visible','on'); set(handles.sm,'Enable','off'); end case 3 % MDS % no parameters; case1; case 4 % SimplePCA % no parameters; case1; case 5 % ProbPCA case1; % hide all contols first set(handles.mi,'Visible','on'); set(handles.mit,'Visible','on'); case 6 % FactorAnalysis % no parameters; case1; case 7 % Isomap case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; case 8 % LandmarkIsomap case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.prc,'Visible','on'); set(handles.prct,'Visible','on'); case 9 % LLE case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 10 % Laplacian case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.sig,'Visible','on'); set(handles.sigt,'Visible','on'); set(handles.uipanel_ei,'Visible','on'); case 11 % HessianLLE case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 12 % LTSA case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 13 % MVU case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 14 % CCA case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 15 % LandmarkMVU case1; % hide all contols first set(handles.k,'Visible','on','string',5); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; case 16 % FastMVU case1; % hide all contols first set(handles.k,'Visible','on','string',5); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); set(handles.uipanel_ft,'Visible','on'); case 17 % DiffusionMaps case1; % hide all contols first set(handles.t,'Visible','on'); set(handles.tt,'Visible','on'); set(handles.sig,'Visible','on'); set(handles.sigt,'Visible','on'); case 18 % KernelPCA case1; % hide all contols first set(handles.uipanel_k,'Visible','on'); update_kernel_uipanel; case 19 % GDA case1; % hide all contols first if handles.islb set(handles.wl,'visible','off'); set(handles.sm,'Enable','on'); set(handles.uipanel_k,'Visible','on'); update_kernel_uipanel; else set(handles.wl,'visible','on'); set(handles.sm,'Enable','off'); end case 20 % SNE case1; % hide all contols first set(handles.prp,'Visible','on'); set(handles.prpt,'Visible','on'); case 21 % SymSNE case1; % hide all contols first set(handles.prp,'Visible','on'); set(handles.prpt,'Visible','on'); case 22 % t-SNE case1; % hide all contols first set(handles.prp,'Visible','on'); set(handles.prpt,'Visible','on'); case 23 % LPP case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.sig,'Visible','on'); set(handles.sigt,'Visible','on'); set(handles.uipanel_ei,'Visible','on'); case 24 % NPE case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 25 % LLTSA case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.uipanel_ei,'Visible','on'); case 26 % SPE case1; % hide all contols first set(handles.uipanel_tp,'Visible','on'); update_type_uipanel; set(handles.k,'Enable','on'); adaptive_callback; case 27 % Autoencoder % no parameters; case1; case 28 % LLC case1; % hide all contols first set(handles.k,'Visible','on','string',12); set(handles.kt,'Visible','on'); set(handles.ka,'Visible','on'); adaptive_callback; set(handles.na,'Visible','on'); set(handles.nat,'Visible','on'); set(handles.mi,'Visible','on'); set(handles.mit,'Visible','on'); set(handles.uipanel_ei,'Visible','on'); case 29 % ManifoldChart case1; % hide all contols first set(handles.na,'Visible','on'); set(handles.nat,'Visible','on'); set(handles.mi,'Visible','on'); set(handles.mit,'Visible','on'); set(handles.uipanel_ei,'Visible','on'); case 30 % CFA case1; % hide all contols first set(handles.na,'Visible','on'); set(handles.nat,'Visible','on'); set(handles.mi,'Visible','on'); set(handles.mit,'Visible','on'); case 31 % GPLVM case1; % hide all contols first set(handles.sig,'Visible','on'); set(handles.sigt,'Visible','on'); case 32 % NCA case1; case 33 % MCML case1; end % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function nd_Callback(hObject, eventdata, handles) % hObject handle to nd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of nd as text % str2double(get(hObject,'String')) returns contents of nd as a double % --- Executes during object creation, after setting all properties. function nd_CreateFcn(hObject, eventdata, handles) % hObject handle to nd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function mi_Callback(hObject, eventdata, handles) % hObject handle to mi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of mi as text % str2double(get(hObject,'String')) returns contents of mi as a double % --- Executes during object creation, after setting all properties. function mi_CreateFcn(hObject, eventdata, handles) % hObject handle to mi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function k_Callback(hObject, eventdata, handles) % hObject handle to k (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of k as text % str2double(get(hObject,'String')) returns contents of k as a double % --- Executes during object creation, after setting all properties. function k_CreateFcn(hObject, eventdata, handles) % hObject handle to k (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function prc_Callback(hObject, eventdata, handles) % hObject handle to prc (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of prc as text % str2double(get(hObject,'String')) returns contents of prc as a double % --- Executes during object creation, after setting all properties. function prc_CreateFcn(hObject, eventdata, handles) % hObject handle to prc (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function sig_Callback(hObject, eventdata, handles) % hObject handle to sig (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of sig as text % str2double(get(hObject,'String')) returns contents of sig as a double % --- Executes during object creation, after setting all properties. function sig_CreateFcn(hObject, eventdata, handles) % hObject handle to sig (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function kgs_Callback(hObject, eventdata, handles) % hObject handle to kgs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of kgs as text % str2double(get(hObject,'String')) returns contents of kgs as a double % --- Executes during object creation, after setting all properties. function kgs_CreateFcn(hObject, eventdata, handles) % hObject handle to kgs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function kpR_Callback(hObject, eventdata, handles) % hObject handle to kpR (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of kpR as text % str2double(get(hObject,'String')) returns contents of kpR as a double % --- Executes during object creation, after setting all properties. function kpR_CreateFcn(hObject, eventdata, handles) % hObject handle to kpR (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function kpd_Callback(hObject, eventdata, handles) % hObject handle to kpd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of kpd as text % str2double(get(hObject,'String')) returns contents of kpd as a double % --- Executes during object creation, after setting all properties. function kpd_CreateFcn(hObject, eventdata, handles) % hObject handle to kpd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function prp_Callback(hObject, eventdata, handles) % hObject handle to prp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of prp as text % str2double(get(hObject,'String')) returns contents of prp as a double % --- Executes during object creation, after setting all properties. function prp_CreateFcn(hObject, eventdata, handles) % hObject handle to prp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function na_Callback(hObject, eventdata, handles) % hObject handle to na (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of na as text % str2double(get(hObject,'String')) returns contents of na as a double % --- Executes during object creation, after setting all properties. function na_CreateFcn(hObject, eventdata, handles) % hObject handle to na (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in sm. function sm_Callback(hObject, eventdata, handles) set(handles.sm,'Enable','off'); drawnow; uiresume(handles.figure1); function t_Callback(hObject, eventdata, handles) % hObject handle to t (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of t as text % str2double(get(hObject,'String')) returns contents of t as a double % --- Executes during object creation, after setting all properties. function t_CreateFcn(hObject, eventdata, handles) % hObject handle to t (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % -------------------------------------------------------------------- function uipanel_k_SelectionChangeFcn(hObject, eventdata, handles) update_kernel_uipanel; % -------------------------------------------------------------------- function uipanel_tp_SelectionChangeFcn(hObject, eventdata, handles) update_type_uipanel; % --- Executes on button press in ka. function ka_Callback(hObject, eventdata, handles) adaptive_callback;
github
pvarin/DynamicVAE-master
load_xls.m
.m
DynamicVAE-master/drtoolbox/gui/load_xls.m
4,845
utf_8
98f040ec0685b024ddf99d454fea770d
function varargout = load_xls(varargin) % LOAD_XLS M-file for load_xls.fig % LOAD_XLS, by itself, creates a new LOAD_XLS or raises the existing % singleton*. % % H = LOAD_XLS returns the handle to a new LOAD_XLS or the handle to % the existing singleton*. % % LOAD_XLS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LOAD_XLS.M with the given input arguments. % % LOAD_XLS('Property','Value',...) creates a new LOAD_XLS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before load_xls_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to load_xls_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help load_xls % Last Modified by GUIDE v2.5 11-Sep-2008 10:53:04 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @load_xls_OpeningFcn, ... 'gui_OutputFcn', @load_xls_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before load_xls is made visible. function load_xls_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to load_xls (see VARARGIN) % Choose default command line output for load_xls handles.output = hObject; nmc=varargin{1}; % number of columns % Update handles structure guidata(hObject, handles); set(handles.noc,'string',num2str(nmc)); set(handles.col,'string',num2str(nmc)); cl=[0.4 0.4 0.4]; set(handles.coltxt,'ForegroundColor',cl); set(handles.col,'Enable','off'); % UIWAIT makes load_xls wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = load_xls_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function col_Callback(hObject, eventdata, handles) % hObject handle to col (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of col as text % str2double(get(hObject,'String')) returns contents of col as a double % --- Executes during object creation, after setting all properties. function col_CreateFcn(hObject, eventdata, handles) % hObject handle to col (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in ok. function ok_Callback(hObject, eventdata, handles) uiresume(handles.figure1); % --- Executes when selected object is changed in uipanel1. function uipanel1_SelectionChangeFcn(hObject, eventdata, handles) if get(handles.uc,'value') cl=[0 0 0]; set(handles.coltxt,'ForegroundColor',cl); set(handles.col,'Enable','on'); else cl=[0.4 0.4 0.4]; set(handles.coltxt,'ForegroundColor',cl); set(handles.col,'Enable','off'); end
github
pvarin/DynamicVAE-master
drtool.m
.m
DynamicVAE-master/drtoolbox/gui/drtool.m
52,422
utf_8
c15180ca46e1dcb99c001125b7429b14
function varargout = drtool(varargin) % DRTOOL M-file for drtool.fig % DRTOOL, by itself, creates a new DRTOOL or raises the existing % singleton*. % % H = DRTOOL returns the handle to a new DRTOOL or the handle to % the existing singleton*. % % DRTOOL('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DRTOOL.M with the given input arguments. % % DRTOOL('Property','Value',...) creates a new DRTOOL or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before drtool_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to drtool_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help drtool % Last Modified by GUIDE v2.5 16-Sep-2008 12:18:29 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @drtool_OpeningFcn, ... 'gui_OutputFcn', @drtool_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before drtool is made visible. function drtool_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to drtool (see VARARGIN) % Choose default command line output for drtool handles.output = hObject; set(handles.edr,'UserData',[]); % demention not estimated at begining % here data will be stored: handles.X=[]; handles.labels=[]; handles.islb=false; % if labels provided handles.isl=false; % if data loaded handles.mcd=false; % if mapping was calculated handles.mX=[]; % mapped X handles.m1={}; % m-code from part1 handles.m2={}; % m-code from part2 handles.m21={}; % addition with no_dims handles.m3={}; % m-code from part3 handles.a2=false; % if code part with no_dims was writed handles.mstf={}; % save to file part handles.isxls=[]; % if data loaded as xls-file (will be used before save history) %handles.ndr=[]; % rounded number of dimention from intrinsic_dim, need for m-file % Update handles structure guidata(hObject, handles); % UIWAIT makes drtool wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = drtool_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in ld. function ld_Callback(hObject, eventdata, handles) handles.a2=false; set(handles.ld,'Enable','off'); drawnow; % load data lead to clear mapped data handles.mcd=false; % if mapping was calculated handles.mX=[]; % mapped X set(handles.cd,'Visible','off'); try hs=load_data; catch set(handles.ld,'Enable','on'); return end hands_l_d=guidata(hs); if (~get(hands_l_d.file,'value'))&&(~get(hands_l_d.xls,'value')) %if not from file and not from xls-file handles.isxls=[]; set(hands_l_d.ok,'Enable','off'); drawnow; if get(hands_l_d.sw,'value') dataname='swiss'; end if get(hands_l_d.hl,'value') dataname='helix'; end if get(hands_l_d.tp,'value') dataname='twinpeaks'; end if get(hands_l_d.cl,'value') dataname='3d_clusters'; end if get(hands_l_d.is,'value') dataname='intersect'; end n=str2num(get(hands_l_d.ndp,'string')); noise=str2num(get(hands_l_d.nl,'string')); [X, labels] = generate_data(dataname, n,noise); handles.X=X; handles.labels=labels; handles.islb=true; handles.isl=true; set(handles.dld,'visible','on'); % m-file memorizing: % clear all previose history because new original dataset generated: handles.m1={}; handles.m2={}; handles.m3={}; handles.mstf={}; handles.m1={ '% generate data'; ['n = ' num2str(n) '; % number of datapoints' ]; ['noise = ' num2str(noise) '; % noise level' ]; ['[X, labels] = generate_data(''' dataname ''', n,noise); % generate ' dataname ' data']}; delete(hands_l_d.figure1); drawnow; else if get(hands_l_d.file,'value') % here if need to load data from file handles.isxls=false; delete(hands_l_d.figure1); drawnow; S = uiimport; if length(S)==0 handles.X=[]; handles.labels=[]; handles.islb=false; handles.isl=false; set(handles.dld,'visible','off'); handles.m1={}; handles.m2={}; handles.m3={}; handles.mstf={}; else vn=fieldnames(S); if length(vn)==1 X = getfield(S, vn{1}); hs1=load_data_1_var; hld1=guidata(hs1); if get(hld1.i,'value') cn=str2num(get(hld1.cn,'string')); lX=length(X(1,:)); ncn1=1:lX; ncni=find(ncn1~=cn); ncn=ncn1(ncni); handles.X=X(:,ncn); handles.isl=true; set(handles.dld,'visible','on'); labels=X(:,cn); handles.labels=labels; handles.islb=true; else % one variable without labels handles.X=X; handles.isl=true; set(handles.dld,'visible','on'); handles.labels=[]; handles.islb=false; end delete(hld1.figure1); else hss=load_data_vars(vn); hlds=guidata(hss); Xn=get(hlds.d,'string'); X = getfield(S, Xn); if get(hlds.ni,'value') % not include handles.labels=[]; handles.islb=false; handles.X=X; handles.isl=true; set(handles.dld,'visible','on'); end if get(hlds.iv,'value') % include from variable ivn=get(hlds.ivn,'String'); labels = getfield(S, ivn); handles.labels=labels; handles.islb=true; handles.X=X; handles.isl=true; set(handles.dld,'visible','on'); end if get(hlds.ic,'value') % include from column cn=str2num(get(hlds.icn,'String')); lX=length(X(1,:)); ncn1=1:lX; ncni=find(ncn1~=cn); ncn=ncn1(ncni); handles.X=X(:,ncn); handles.isl=true; set(handles.dld,'visible','on'); labels=X(:,cn); handles.labels=labels; handles.islb=true; end delete(hlds.figure1); end % history: % clear: handles.m1={}; handles.m2={}; handles.m3={}; handles.mstf={}; if handles.islb handles.m1={'load(''X.mat''); % load data'; 'load(''labels.mat''); % load labels';}; else handles.m1={'load(''X.mat''); % load data'}; end end else % here if load from xls file handles.isxls=true; delete(hands_l_d.figure1); drawnow; [FileName,PathName] = uigetfile({'*.xls';'*.xlsx'},'Select the xls-file'); if (FileName==0) % do nothing if click cancel else X = xlsread([PathName FileName]); % load fom xls numbers only handles.m1={}; handles.m2={}; handles.m3={}; handles.mstf={}; hstmp=load_xls(length(X(1,:))); drawnow; hands_l_x=guidata(hstmp); if get(hands_l_x.wl,'value') % if not use labels handles.labels=[]; handles.islb=false; handles.X=X; handles.isl=true; % history: handles.m1={['PathName = ''' PathName '''; % path to xls-file']; ['FileName = ''' FileName '''; % file name of xls-file']; 'X = xlsread([PathName FileName]); % load xls file'}; set(handles.dld,'visible','on'); else % if use labels cn=str2num(get(hands_l_x.col,'String')); lX=length(X(1,:)); ncn1=1:lX; ncni=find(ncn1~=cn); ncn=ncn1(ncni); handles.X=X(:,ncn); handles.isl=true; set(handles.dld,'visible','on'); labels=X(:,cn); handles.labels=labels; handles.islb=true; % history: handles.m1={['PathName = ''' PathName '''; % path to xls-file']; ['FileName = ''' FileName '''; % file name of xls-file']; 'X = xlsread([PathName FileName]); % load xls file'; ['cn = ' num2str(cn) '; % column number where labels are placed']; 'lX=length(X(1,:)); % total number of column'; 'ncn1=1:lX;'; 'ncni=find(ncn1~=cn); % indexes of data columns'; 'ncn=ncn1(ncni); % data columns'; 'labels=X(:,cn); % get labels'; 'X=X(:,ncn); % get data'}; end delete(hands_l_x.figure1); drawnow; end end end set(handles.edr,'String',''); set(handles.cd,'visible','off'); handles.mcd=false; guidata(handles.figure1, handles); set(handles.ld,'Enable','on'); drawnow; % --- Executes on button press in sp. function sp_Callback(hObject, eventdata, handles) if handles.isl ld=length(handles.X(1,:)); if ld==2 hf=figure; set(hf,'name','Original dataset','NumberTitle','off'); if handles.islb scatter(handles.X(:,1),handles.X(:,2),5,handles.labels); else scatter(handles.X(:,1),handles.X(:,2),5); end title('Original dataset'); else if handles.islb scattern('Original dataset',handles.X,handles.labels); else scattern('Original dataset',handles.X); end end else % 'not loaded' not_loaded; end % --- Executes on button press in p. function p_Callback(hObject, eventdata, handles) if handles.isl ld=length(handles.X(1,:)); if ld==2 hf=figure; set(hf,'name','Original dataset','NumberTitle','off'); % if handles.islb % plot(handles.X(:,1),handles.X(:,2),5,handles.labels); % else plot(handles.X(:,1),handles.X(:,2),'.r'); % end title('Original dataset'); else % if handles.islb % scattern('Original dataset',handles.X,handles.labels); % else plotn('Original dataset',handles.X); % end end else % 'not loaded' not_loaded; end % --- Executes on button press in ed. function ed_Callback(hObject, eventdata, handles) handles.a2=false; if handles.isl try s=choose_method; catch return end hs1=guidata(s); set(hs1.ok,'Enable','off'); drawnow; method=get(hs1.str,'string'); no_dims = intrinsic_dim(handles.X, method); % estimate dimention lead to clear calculated data: handles.mcd=false; % if mapping was calculated handles.mX=[]; % mapped X set(handles.cd,'Visible','off'); % history: handles.m2={}; handles.m3={}; handles.mstf={}; % get detailed method name from listbox: lstbs=get(hs1.listbox1,'string'); lstv=get(hs1.listbox1,'value'); mthds=lstbs{lstv}; handles.m2={['method_ed = ''' method '''; % (' mthds ') method of estimation of dimensionality']; ['no_dims = intrinsic_dim(X, method_ed); % estimate intrinsic dimensionality']}; delete(hs1.figure1); drawnow; set(handles.edr,'string',num2str(no_dims)); set(handles.edr,'UserData',no_dims); % memorize pricise value in userdata guidata(handles.figure1, handles); else % 'not loaded' not_loaded; end function edr_Callback(hObject, eventdata, handles) % hObject handle to edr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edr as text % str2double(get(hObject,'String')) returns contents of edr as a double % --- Executes during object creation, after setting all properties. function edr_CreateFcn(hObject, eventdata, handles) % hObject handle to edr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cm. function cm_Callback(hObject, eventdata, handles) if handles.isl handles.m3={}; % eraise priviose history handles.mstf={}; no_dims=get(handles.edr,'UserData'); no_dims_old=no_dims; try s=mapping_parameters(no_dims,handles.islb); catch return end hs1=guidata(s); %mappedA = compute_mapping(A, type, no_dims, parameters, eig_impl) no_dims=str2num(get(hs1.nd,'string')); %if (~handles.a2)||(round(no_dims_old)~=no_dims) % if was not added or if changed handles.a2=true; if ~isempty(no_dims_old) if round(no_dims_old)~=no_dims % if demetion was changed handles.m21={' '; ['no_dims = ' num2str(no_dims) '; % supposed number of dimensions']; ' '}; else handles.m21={' '; ['no_dims = round(no_dims); % round number of dimensions to have integer number']; ' '}; end else handles.m21={' '; ['no_dims = ' num2str(no_dims) '; % supposed number of dimensions']; ' '}; end if isempty(handles.m2) handles.m21={' '; ['no_dims = ' num2str(no_dims) '; % supposed number of dimensions']; ' '}; end %handles.m2=vertcat(handles.m2,m2t); %end mappedA=[]; try noparam=false; % if no parameters mthd=''; % method when no parameters switch get(hs1.listbox1,'Value') case 1 % PCA % no parameters; mappedA = compute_mapping(handles.X, 'PCA', no_dims); noparam=true; mthd='PCA'; case 2 % LDA % no parameters; % correct lables only to column-vector: lb=handles.labels; slb=size(lb); if min(slb)>1 warning('slb must be vector'); end if slb(1)<slb(2) lb=lb'; end if handles.islb mappedA = compute_mapping([lb handles.X], 'LDA', no_dims); % set labels through first column if slb(1)<slb(2) handles.m3={['labels=labels''; % labels must be a vector-column ']; ['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']}; else handles.m3={['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']}; end else % imposible because data without labels warning('it is imposible to be here'); end case 3 % MDS % no parameters; mappedA = compute_mapping(handles.X, 'MDS', no_dims); noparam=true; mthd='MDS'; case 4 % SimplePCA % no parameters; mappedA = compute_mapping(handles.X, 'SimplePCA', no_dims); noparam=true; mthd='SimplePCA'; case 5 % ProbPCA mi=str2num(get(hs1.mi,'string')); mappedA = compute_mapping(handles.X, 'ProbPCA', no_dims, mi); handles.m3={['mi = ' num2str(mi) '; % max iterations']; ['mappedX = compute_mapping(X, ''ProbPCA'', no_dims, mi);']}; case 6 % FactorAnalysis % no parameters; mappedA = compute_mapping(handles.X, 'FactorAnalysis', no_dims); noparam=true; mthd='FactorAnalysis'; case 7 % Isomap if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end mappedA = compute_mapping(handles.X, 'Isomap', no_dims, k); m3t={['mappedX = compute_mapping(X, ''Isomap'', no_dims, k);']}; handles.m3=vertcat(handles.m3,m3t); case 8 % LandmarkIsomap if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end prc=str2num(get(hs1.prc,'string')); m3t={['prc = ' num2str(prc) '; % percentage']}; handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'LandmarkIsomap', no_dims, k, prc); m3t={['mappedX = compute_mapping(X, ''LandmarkIsomap'', no_dims, k, prc);']}; handles.m3=vertcat(handles.m3,m3t); case 9 % LLE if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); [mappedA, mapping] = compute_mapping(handles.X, 'LLE', no_dims, k, eim); m3t={['[mappedX, mapping] = compute_mapping(X, ''LLE'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 10 % Laplacian if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end sig=str2num(get(hs1.sig,'string')); m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']}; handles.m3=vertcat(handles.m3,m3t); if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'Laplacian', no_dims, k, sig, eim); m3t={['mappedX = compute_mapping(X, ''Laplacian'', no_dims, k, sig, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 11 % HessianLLE if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'HessianLLE', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''HessianLLE'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 12 % LTSA if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'LTSA', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''LTSA'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 13 % MVU if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'MVU', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''MVU'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 14 % CCA if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'CCA', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''CCA'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 15 % LandmarkMVU if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end mappedA = compute_mapping(handles.X, 'LandmarkMVU', no_dims, k); m3t={['mappedX = compute_mapping(X, ''LandmarkMVU'', no_dims, k);']}; handles.m3=vertcat(handles.m3,m3t); case 16 % FastMVU if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end ft=get(hs1.fty,'value'); if ft m3t={['ft = true; % finetune']}; else m3t={['ft = false; % finetune']}; end handles.m3=vertcat(handles.m3,m3t); if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'FastMVU', no_dims, k, ft, eim); m3t={['mappedX = compute_mapping(X, ''FastMVU'', no_dims, k, ft, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 17 % DiffusionMaps t=str2num(get(hs1.t,'string')); handles.m3={['t = ' num2str(t) ';']}; sig=str2num(get(hs1.sig,'string')); m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']}; handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'DiffusionMaps', no_dims, t, sig); m3t={['mappedX = compute_mapping(X, ''DiffusionMaps'', no_dims, t, sig);']}; handles.m3=vertcat(handles.m3,m3t); case 18 % KernelPCA kernel='gauss'; if get(hs1.kl,'value') kernel='linear'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel); handles.m3={['kernel = ''linear'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']}; end if get(hs1.kg,'value') s=str2num(get(hs1.kgs,'string')); handles.m3={['s = ' num2str(s) '; % variance']}; kernel='gauss'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s); m3t={['kernel = ''gauss'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']}; handles.m3=vertcat(handles.m3,m3t); end if get(hs1.kp,'value') R=str2num(get(hs1.kpR,'string')); handles.m3={['R = ' num2str(R) '; % additional value']}; d=str2num(get(hs1.kpd,'string')); m3t={['d = ' num2str(d) '; % power number']}; handles.m3=vertcat(handles.m3,m3t); kernel='poly'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d); m3t={['kernel = ''poly'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']}; handles.m3=vertcat(handles.m3,m3t); end case 19 % GDA % correct lables only to column-vector: lb=handles.labels; slb=size(lb); if min(slb)>1 warning('slb must be vector'); end if slb(1)<slb(2) lb=lb'; end if slb(1)<slb(2) m3t={['labels=labels''; % labels must be a vector-column ']}; else m3t={}; end if handles.islb kernel='gauss'; if get(hs1.kl,'value') kernel='linear'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel); handles.m3={['kernel = ''linear'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']}; handles.m3=vertcat(m3t,handles.m3); end if get(hs1.kg,'value') s=str2num(get(hs1.kgs,'string')); handles.m3={['s = ' num2str(s) '; % variance']}; handles.m3=vertcat(m3t,handles.m3); kernel='gauss'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s); m3t={['kernel = ''gauss'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']}; handles.m3=vertcat(handles.m3,m3t); end if get(hs1.kp,'value') R=str2num(get(hs1.kpR,'string')); handles.m3={['R = ' num2str(R) '; % additional value']}; handles.m3=vertcat(m3t,handles.m3); d=str2num(get(hs1.kpd,'string')); m3t={['d = ' num2str(d) '; % power number']}; handles.m3=vertcat(handles.m3,m3t); kernel='poly'; mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d); m3t={['kernel = ''poly'';']; ['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']}; handles.m3=vertcat(handles.m3,m3t); end else % imposible because data without labels warning('it is imposible to be here'); end case 20 % SNE prp=str2num(get(hs1.prp,'string')); handles.m3={['prp = ' num2str(prp) '; % perplexity']}; mappedA = compute_mapping(handles.X, 'SNE', no_dims, prp); m3t={['mappedX = compute_mapping(X, ''SNE'', no_dims, prp);']}; handles.m3=vertcat(handles.m3,m3t); case 21 % SymSNE prp=str2num(get(hs1.prp,'string')); handles.m3={['prp = ' num2str(prp) '; % perplexity']}; mappedA = compute_mapping(handles.X, 'SymSNE', no_dims, prp); m3t={['mappedX = compute_mapping(X, ''SymSNE'', no_dims, prp);']}; handles.m3=vertcat(handles.m3,m3t); case 22 % t-SNE prp=str2num(get(hs1.prp,'string')); handles.m3={['prp = ' num2str(prp) '; % perplexity']}; mappedA = compute_mapping(handles.X, 't-SNE', no_dims, prp); m3t={['mappedX = compute_mapping(X, ''t-SNE'', no_dims, prp);']}; handles.m3=vertcat(handles.m3,m3t); case 23 % LPP if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end sig=str2num(get(hs1.sig,'string')); m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']}; handles.m3=vertcat(handles.m3,m3t); if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'LPP', no_dims, k, sig, eim); m3t={['mappedX = compute_mapping(X, ''LPP'', no_dims, k, sig, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 24 % NPE if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'NPE', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''NPE'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 25 % LLTSA if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'LLTSA', no_dims, k, eim); m3t={['mappedX = compute_mapping(X, ''LLTSA'', no_dims, k, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 26 % SPE tp='Global'; if get(hs1.tg,'value') tp='Global'; mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp); handles.m3={'tp = ''Global''; % type of stress function that minimized'; ['mappedX = compute_mapping(X, ''SPE'', no_dims, tp);']}; end if get(hs1.tl,'value') tp='Local'; k=str2num(get(hs1.k,'string')); mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp, k); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']; 'tp = ''Local''; % type of stress function that minimized'; ['mappedX = compute_mapping(X, ''SPE'', no_dims, tp, k);']}; end case 27 % AutoEncoder % no parameters; mappedA = compute_mapping(handles.X, 'Autoencoder', no_dims); noparam=true; mthd='Autoencoder'; case 28 % LLC % no parameters; mappedA = compute_mapping(handles.X, 'LLC', no_dims); noparam=true; mthd='LLC'; case 29 % LLC if get(hs1.ka,'value') k='adaptive'; handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']}; else k=str2num(get(hs1.k,'string')); handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']}; end na=str2num(get(hs1.na,'string')); m3t={['na = ' num2str(na) '; % number of factor analyzers']}; handles.m3=vertcat(handles.m3,m3t); mi=str2num(get(hs1.mi,'string')); m3t={['mi = ' num2str(mi) '; % max iterations']}; handles.m3=vertcat(handles.m3,m3t); if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end mappedA = compute_mapping(handles.X, 'LLC', no_dims, k, na, mi, eim); m3t={['mappedX = compute_mapping(X, ''LLC'', no_dims, k, na, mi, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 30 % ManifoldChart na=str2num(get(hs1.na,'string')); handles.m3={['na = ' num2str(na) '; % number of factor analyzers']}; mi=str2num(get(hs1.mi,'string')); m3t={['mi = ' num2str(mi) '; % max iterations']}; handles.m3=vertcat(handles.m3,m3t); if get(hs1.eim,'value') eim='Matlab'; m3t={'eim = ''Matlab''; % eigenanalysis implementation'}; else eim='JDQR'; m3t={'eim = ''JDQR''; % eigenanalysis implementation'}; end mappedA = compute_mapping(handles.X, 'ManifoldChart', no_dims, na, mi, eim); m3t={['mappedX = compute_mapping(X, ''ManifoldChart'', no_dims, na, mi, eim);']}; handles.m3=vertcat(handles.m3,m3t); case 31 % CFA na=str2num(get(hs1.na,'string')); handles.m3={['na = ' num2str(na) '; % number of factor analyzers']}; mi=str2num(get(hs1.mi,'string')); m3t={['mi = ' num2str(mi) '; % max iterations']}; handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'CFA', no_dims, na, mi); m3t={['mappedX = compute_mapping(X, ''CFA'', no_dims, na, mi);']}; handles.m3=vertcat(handles.m3,m3t); case 32 % GPLVM sig=str2num(get(hs1.sig,'string')); m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']}; handles.m3=vertcat(handles.m3,m3t); mappedA = compute_mapping(handles.X, 'GPLVM', no_dims, sig); m3t={['mappedX = compute_mapping(X, ''GPLVM'', no_dims, sig);']}; handles.m3=vertcat(handles.m3,m3t); case 33 % NCA mappedA = compute_mapping(handles.X, 'NCA', no_dims); m3t={'mappedX = compute_mapping(X, ''NCA'', no_dims);'}; handles.m3=vertcat(handles.m3,m3t); case 34 % MCML mappedA = compute_mapping(handles.X, 'MCML', no_dims); m3t={'mappedX = compute_mapping(X, ''MCML'', no_dims);'}; handles.m3=vertcat(handles.m3,m3t); end if noparam handles.m3={['mappedX = compute_mapping(X, ''' mthd ''', no_dims); % compute mapping using ' mthd ' method']}; end catch set(handles.cd,'visible','off'); handles.mcd=false; warning('mapping was not calculated'); handles.m3={}; handles.mstf={}; guidata(handles.figure1, handles); delete(hs1.figure1); drawnow; rethrow(lasterror); return end if length(mappedA)~=0 set(handles.cd,'visible','on'); handles.mX=mappedA; handles.mcd=true; else set(handles.cd,'visible','off'); handles.mcd=false; warning('mapping was not calculated'); handles.m3={}; handles.mstf={}; end guidata(handles.figure1, handles); delete(hs1.figure1); drawnow; else % 'not loaded' not_loaded; end % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) if handles.mcd ld=length(handles.mX(1,:)); if ld==2 hf=figure; set(hf,'name','Result of dimensionality reduction','NumberTitle','off'); if handles.islb && size(handles.mX, 1) == numel(handles.labels) scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels); else scatter(handles.mX(:,1),handles.mX(:,2),5); end title('Result of dimensionality reduction'); if size(handles.mX, 1) ~= numel(handles.labels) warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.'); end else if ld==1 hf=figure; set(hf,'name','Result of dimensionality reduction','NumberTitle','off'); if handles.islb && size(handles.mX, 1) == numel(handles.labels) scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels); else scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5); end title('Result of dimensionality reduction'); if size(handles.mX, 1) ~= numel(handles.labels) warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.'); end else if handles.islb scattern('Result of dimensionality reduction',handles.mX,handles.labels); else scattern('Result of dimensionality reduction',handles.mX); end end end else % 'not calulated' not_calculated; end % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) if handles.mcd ld=length(handles.mX(1,:)); if ld==2 hf=figure; set(hf,'name','Result of dimensionality reduction','NumberTitle','off'); % if handles.islb % scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels); % else plot(handles.mX(:,1),handles.mX(:,2),'.r'); % end title('Result of dimensionality reduction'); else if ld==1 hf=figure; set(hf,'name','Result of dimensionality reduction','NumberTitle','off'); %if handles.islb %scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels); %else plot(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),'.k'); %end title('Result of dimensionality reduction'); else %if handles.islb % scattern('Result of dimensionality reduction',handles.mX,handles.labels); %else plotn('Result of dimensionality reduction',handles.mX); %end end end else % 'not calulated' not_calculated; end % --- Executes on button press in stmf. function stmf_Callback(hObject, eventdata, handles) [file,path] = uiputfile('*.mat','Save Mapped Data As'); if length(file)==1 if file==0 return end end mX=handles.mX; save([path file], 'mX'); % --- Executes on button press in sttf. function sttf_Callback(hObject, eventdata, handles) [file,path] = uiputfile('*.txt','Save Mapped Data As'); if length(file)==1 if file==0 return end end mX=handles.mX; save([path file], 'mX','-ascii', '-tabs'); % --- Executes on button press in stf. function stf_Callback(hObject, eventdata, handles) set(handles.stf,'Enable','off'); drawnow; if handles.mcd if get(handles.stmfr,'value') [file,path] = uiputfile('*.mat','Save Mapped Data As'); if length(file)==1 if file==0 set(handles.stf,'Enable','on'); drawnow; return end end mX=handles.mX; save([path file], 'mX'); handles.mstf={['save(''' path file ''', ''mappedX''); % save result to mat-file']}; end if get(handles.sttfr,'value') [file,path] = uiputfile('*.txt','Save Mapped Data As'); if length(file)==1 if file==0 set(handles.stf,'Enable','on'); drawnow; return end end mX=handles.mX; save([path file], 'mX','-ascii', '-tabs'); handles.mstf={['save(''' path file ''', ''mappedX'',''-ascii'', ''-tabs''); % save result to txt-file']}; end if get(handles.stxfr,'value') [file,path] = uiputfile('*.xls','Save Mapped Data As'); if length(file)==1 if file==0 set(handles.stf,'Enable','on'); drawnow; return end end mX=handles.mX; xlswrite([path file], mX); handles.mstf={['xlswrite(''' path file ''', mappedX); % save result to xls-file']}; end guidata(handles.figure1, handles); else % 'not calulated' not_calculated; end set(handles.stf,'Enable','on'); drawnow; % --- Executes when selected object is changed in uipanel1. function uipanel1_SelectionChangeFcn(hObject, eventdata, handles) % hObject handle to the selected object in uipanel1 % eventdata structure with the following fields (see UIBUTTONGROUP) % EventName: string 'SelectionChanged' (read only) % OldValue: handle of the previously selected object or empty if none was selected % NewValue: handle of the currently selected object % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in sh. function sh_Callback(hObject, eventdata, handles) set(handles.sh,'enable','off'); drawnow; if (isempty(handles.m1))&&(isempty(handles.m2))&&(isempty(handles.m3)) no_history; else [file,path] = uiputfile('*.m','Save History As'); if length(file)==1 if file==0 set(handles.sh,'enable','on'); drawnow; return end end fid = fopen([path file],'w'); fprintf(fid,'%s\r\n',['% this file was generated by drtool at ' datestr(now)]); fprintf(fid,'%s\r\n',' '); % empty line - delimeter if ~isempty(handles.isxls) if ~handles.isxls % here if txt/mat file was loaded so it is need save data and labels X=handles.X; save([path 'X.mat'],'X'); if handles.islb % save labells if any labels=handles.labels; save([path 'labels.mat'],'labels'); fprintf(fid,'%s\r\n','% Note: data and labels were saved in X.mat and labels.mat together with this m-file in the same folder'); else fprintf(fid,'%s\r\n','% Note: data was saved in X.mat together with this m-file in the same folder'); end end end fprintf(fid,'%s\r\n',' '); fprintf(fid,'%s\r\n','% 1.'); fprintf(fid,'%s\r\n','% get data'); for mc=1:length(handles.m1) fprintf(fid,'%s\r\n',handles.m1{mc}); end % plot original data: mpod={'% plot original data:'}; ld=length(handles.X(1,:)); if ld==2 mpodt={'hf=figure;'; 'set(hf,''name'',''Original dataset'',''NumberTitle'',''off'');'}; mpod=vertcat(mpod,mpodt); if handles.islb mpodt={'scatter(X(:,1),X(:,2),5,labels);'}; else mpodt={'plot(X(:,1),X(:,2),''x-'');'}; end mpod=vertcat(mpod,mpodt); mpodt={'title(''Original dataset'');'}; mpod=vertcat(mpod,mpodt); else if handles.islb mpodt={'scattern(''Original dataset'',X,labels);'}; else mpodt={'plotn(''Original dataset'',X);'}; end mpod=vertcat(mpod,mpodt); end fprintf(fid,'%s\r\n',' '); for mc=1:length(mpod) fprintf(fid,'%s\r\n',mpod{mc}); end fprintf(fid,'%s\r\n',' '); if length(handles.m2)~=0 fprintf(fid,'%s\r\n',' '); % empty line - delimeter handles.m2=vertcat(handles.m2,handles.m21); fprintf(fid,'%s\r\n','% 2.'); fprintf(fid,'%s\r\n','% estimate intrinsic dimensionality'); for mc=1:length(handles.m2) fprintf(fid,'%s\r\n',handles.m2{mc}); end else if length(handles.m3)~=0 % if was not dimetion estimation thet it is need to set it for % part 3 for mc=1:length(handles.m21) fprintf(fid,'%s\r\n',handles.m21{mc}); end end end if length(handles.m3)~=0 fprintf(fid,'%s\r\n',' '); % empty line - delimeter fprintf(fid,'%s\r\n','% 3.'); fprintf(fid,'%s\r\n','% compute mapping'); for mc=1:length(handles.m3) fprintf(fid,'%s\r\n',handles.m3{mc}); end % plot result mpod={'% plot result of dimensionality reduction:'}; if handles.islb mpodt={'scatter12n(''Result of dimensionality reduction'',mappedX,labels);'}; else mpodt={'plot12n(''Result of dimensionality reduction'',mappedX);'}; end mpod=vertcat(mpod,mpodt); fprintf(fid,'%s\r\n',' '); for mc=1:length(mpod) fprintf(fid,'%s\r\n',mpod{mc}); end fprintf(fid,'%s\r\n',' '); end if length(handles.mstf)~=0 fprintf(fid,'%s\r\n',' '); % empty line - delimeter fprintf(fid,'%s\r\n',' '); % empty line - delimeter for mc=1:length(handles.mstf) fprintf(fid,'%s\r\n',handles.mstf{mc}); end end fclose(fid); end set(handles.sh,'enable','on'); drawnow;
github
pvarin/DynamicVAE-master
plot12n.m
.m
DynamicVAE-master/drtoolbox/gui/plot12n.m
1,318
utf_8
d01421c22964c2a3a5ae9dd99d026708
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology function plot12n(name,data) ld=length(data(1,:)); if ld==2 hf=figure; set(hf,'name',name,'NumberTitle','off'); % if handles.islb % scatter(data(:,1),data(:,2),5,handles.labels); % else plot(data(:,1),data(:,2),'.r'); % end title(name); else if ld==1 hf=figure; set(hf,'name',name,'NumberTitle','off'); %if handles.islb %scatter(data(:,1),zeros(length(data(:,1)),1),5,handles.labels); %else plot(data(:,1),zeros(length(data(:,1)),1),'.k'); %end title(name); else %if handles.islb % scattern('Result of dimensionality reduction',data,handles.labels); %else plotn(name,data); %end end end
github
pvarin/DynamicVAE-master
not_loaded.m
.m
DynamicVAE-master/drtoolbox/gui/not_loaded.m
7,513
utf_8
749124a9066ce5eec69372e3d16cd9d1
function varargout = not_loaded(varargin) % NOT_LOADED M-file for not_loaded.fig % NOT_LOADED by itself, creates a new NOT_LOADED or raises the % existing singleton*. % % H = NOT_LOADED returns the handle to a new NOT_LOADED or the handle to % the existing singleton*. % % NOT_LOADED('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NOT_LOADED.M with the given input arguments. % % NOT_LOADED('Property','Value',...) creates a new NOT_LOADED or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before not_loaded_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to not_loaded_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help not_loaded % Last Modified by GUIDE v2.5 24-Jul-2008 18:38:56 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @not_loaded_OpeningFcn, ... 'gui_OutputFcn', @not_loaded_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before not_loaded is made visible. function not_loaded_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to not_loaded (see VARARGIN) % Choose default command line output for not_loaded handles.output = 'Yes'; % Update handles structure guidata(hObject, handles); % Insert custom Title and Text if specified by the user % Hint: when choosing keywords, be sure they are not easily confused % with existing figure properties. See the output of set(figure) for % a list of figure properties. if(nargin > 3) for index = 1:2:(nargin-3), if nargin-3==index, break, end switch lower(varargin{index}) case 'title' set(hObject, 'Name', varargin{index+1}); case 'string' set(handles.text1, 'String', varargin{index+1}); end end end % Determine the position of the dialog - centered on the callback figure % if available, else, centered on the screen FigPos=get(0,'DefaultFigurePosition'); OldUnits = get(hObject, 'Units'); set(hObject, 'Units', 'pixels'); OldPos = get(hObject,'Position'); FigWidth = OldPos(3); FigHeight = OldPos(4); if isempty(gcbf) ScreenUnits=get(0,'Units'); set(0,'Units','pixels'); ScreenSize=get(0,'ScreenSize'); set(0,'Units',ScreenUnits); FigPos(1)=1/2*(ScreenSize(3)-FigWidth); FigPos(2)=2/3*(ScreenSize(4)-FigHeight); else GCBFOldUnits = get(gcbf,'Units'); set(gcbf,'Units','pixels'); GCBFPos = get(gcbf,'Position'); set(gcbf,'Units',GCBFOldUnits); FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ... (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2]; end FigPos(3:4)=[FigWidth FigHeight]; set(hObject, 'Position', FigPos); set(hObject, 'Units', OldUnits); % Show a question icon from dialogicons.mat - variables questIconData % and questIconMap load dialogicons.mat IconData=questIconData; questIconMap(256,:) = get(handles.figure1, 'Color'); IconCMap=questIconMap; Img=image(IconData, 'Parent', handles.axes1); set(handles.figure1, 'Colormap', IconCMap); set(handles.axes1, ... 'Visible', 'off', ... 'YDir' , 'reverse' , ... 'XLim' , get(Img,'XData'), ... 'YLim' , get(Img,'YData') ... ); % Make the GUI modal set(handles.figure1,'WindowStyle','modal') % UIWAIT makes not_loaded wait for user response (see UIRESUME) uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = not_loaded_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % The figure can be deleted now delete(handles.figure1); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = get(hObject,'String'); % Update handles structure guidata(hObject, handles); % Use UIRESUME instead of delete because the OutputFcn needs % to get the updated handles structure. uiresume(handles.figure1); % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if isequal(get(handles.figure1, 'waitstatus'), 'waiting') % The GUI is still in UIWAIT, us UIRESUME uiresume(handles.figure1); else % The GUI is no longer waiting, just close it delete(handles.figure1); end % --- Executes on key press over figure1 with no controls selected. function figure1_KeyPressFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Check for "enter" or "escape" if isequal(get(hObject,'CurrentKey'),'escape') % User said no by hitting escape handles.output = 'No'; % Update handles structure guidata(hObject, handles); uiresume(handles.figure1); end if isequal(get(hObject,'CurrentKey'),'return') uiresume(handles.figure1); end
github
pvarin/DynamicVAE-master
load_data.m
.m
DynamicVAE-master/drtoolbox/gui/load_data.m
6,360
utf_8
e87e4a8d82078cbbec95c41a786cd407
function varargout = load_data(varargin) % LOAD_DATA M-file for load_data.fig % LOAD_DATA, by itself, creates a new LOAD_DATA or raises the existing % singleton*. % % H = LOAD_DATA returns the handle to a new LOAD_DATA or the handle to % the existing singleton*. % % LOAD_DATA('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LOAD_DATA.M with the given input arguments. % % LOAD_DATA('Property','Value',...) creates a new LOAD_DATA or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before load_data_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to load_data_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b. % The toolbox can be obtained from http://homepage.tudelft.nl/19j49 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author. % % (C) Laurens van der Maaten, 2010 % University California, San Diego / Delft University of Technology % Edit the above text to modify the response to help load_data % Last Modified by GUIDE v2.5 23-Jul-2008 16:01:33 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @load_data_OpeningFcn, ... 'gui_OutputFcn', @load_data_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before load_data is made visible. function load_data_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to load_data (see VARARGIN) % Choose default command line output for load_data handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes load_data wait for user response (see UIRESUME) uiwait(handles.figure1); % uiwait; % --- Outputs from this function are returned to the command line. function varargout = load_data_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function ndp_Callback(hObject, eventdata, handles) % hObject handle to ndp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ndp as text % str2double(get(hObject,'String')) returns contents of ndp as a double % --- Executes during object creation, after setting all properties. function ndp_CreateFcn(hObject, eventdata, handles) % hObject handle to ndp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function nl_Callback(hObject, eventdata, handles) % hObject handle to nl (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of nl as text % str2double(get(hObject,'String')) returns contents of nl as a double % --- Executes during object creation, after setting all properties. function nl_CreateFcn(hObject, eventdata, handles) % hObject handle to nl (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in ok. function ok_Callback(hObject, eventdata, handles) uiresume(handles.figure1); % -------------------------------------------------------------------- function uipanel1_SelectionChangeFcn(hObject, eventdata, handles) if get(handles.file,'value') cl=[0.4 0.4 0.4]; set(handles.ndpt,'ForegroundColor',cl); set(handles.nlt,'ForegroundColor',cl); set(handles.ndp,'Enable','off'); set(handles.nl,'Enable','off'); set(handles.ok,'String','Start wizard'); else cl=[0 0 0]; set(handles.ndpt,'ForegroundColor',cl); set(handles.nlt,'ForegroundColor',cl); set(handles.ndp,'Enable','on'); set(handles.nl,'Enable','on'); set(handles.ok,'String','OK'); end if get(handles.xls,'value') cl=[0.4 0.4 0.4]; set(handles.ndpt,'ForegroundColor',cl); set(handles.nlt,'ForegroundColor',cl); set(handles.ndp,'Enable','off'); set(handles.nl,'Enable','off'); set(handles.ok,'String','Open XLS-file'); else if ~get(handles.file,'value') cl=[0 0 0]; set(handles.ndpt,'ForegroundColor',cl); set(handles.nlt,'ForegroundColor',cl); set(handles.ndp,'Enable','on'); set(handles.nl,'Enable','on'); set(handles.ok,'String','OK'); end end
github
pvarin/DynamicVAE-master
directCollocation.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/directCollocation.m
17,680
utf_8
99bcafa9cb7f42b2b2d8ab91d91d7e26
function soln = directCollocation(problem) % soln = directCollocation(problem) % % OptimTraj utility function % % This function is designed to be called by either "trapezoid" or % "hermiteSimpson". It actually calls FMINCON to solve the trajectory % optimization problem. % % Analytic gradients are supported. % % NOTES: % % If analytic gradients are used, then the sparsity pattern is returned % in the struct: soln.info.sparsityPattern. View it using spy(). % %To make code more readable G = problem.guess; B = problem.bounds; F = problem.func; Opt = problem.options; nGrid = length(F.weights); flagGradObj = strcmp(Opt.nlpOpt.GradObj,'on'); flagGradCst = strcmp(Opt.nlpOpt.GradConstr,'on'); % Print out notice about analytic gradients if Opt.verbose > 0 if flagGradObj fprintf(' - using analytic gradients of objective function\n'); end if flagGradCst fprintf(' - using analytic gradients of constraint function\n'); end fprintf('\n'); end % Interpolate the guess at the grid-points for transcription: guess.tSpan = G.time([1,end]); guess.time = linspace(guess.tSpan(1), guess.tSpan(2), nGrid); guess.state = interp1(G.time', G.state', guess.time')'; guess.control = interp1(G.time', G.control', guess.time')'; [zGuess, pack] = packDecVar(guess.time, guess.state, guess.control); if flagGradCst || flagGradObj gradInfo = grad_computeInfo(pack); end % Unpack all bounds: tLow = linspace(B.initialTime.low, B.finalTime.low, nGrid); xLow = [B.initialState.low, B.state.low*ones(1,nGrid-2), B.finalState.low]; uLow = B.control.low*ones(1,nGrid); zLow = packDecVar(tLow,xLow,uLow); tUpp = linspace(B.initialTime.upp, B.finalTime.upp, nGrid); xUpp = [B.initialState.upp, B.state.upp*ones(1,nGrid-2), B.finalState.upp]; uUpp = B.control.upp*ones(1,nGrid); zUpp = packDecVar(tUpp,xUpp,uUpp); %%%% Set up problem for fmincon: if flagGradObj P.objective = @(z)( ... myObjGrad(z, pack, F.pathObj, F.bndObj, F.weights, gradInfo) ); %Analytic gradients [~, objGradInit] = P.objective(zGuess); sparsityPattern.objective = (objGradInit~=0)'; % Only used for visualization! else P.objective = @(z)( ... myObjective(z, pack, F.pathObj, F.bndObj, F.weights) ); %Numerical gradients end if flagGradCst P.nonlcon = @(z)( ... myCstGrad(z, pack, F.dynamics, F.pathCst, F.bndCst, F.defectCst, gradInfo) ); %Analytic gradients [~,~,cstIneqInit,cstEqInit] = P.nonlcon(zGuess); sparsityPattern.equalityConstraint = (cstEqInit~=0)'; % Only used for visualization! sparsityPattern.inequalityConstraint = (cstIneqInit~=0)'; % Only used for visualization! else P.nonlcon = @(z)( ... myConstraint(z, pack, F.dynamics, F.pathCst, F.bndCst, F.defectCst) ); %Numerical gradients end P.x0 = zGuess; P.lb = zLow; P.ub = zUpp; P.Aineq = []; P.bineq = []; P.Aeq = []; P.beq = []; P.options = Opt.nlpOpt; P.solver = 'fmincon'; %%%% Call fmincon to solve the non-linear program (NLP) tic; [zSoln, objVal,exitFlag,output] = fmincon(P); [tSoln,xSoln,uSoln] = unPackDecVar(zSoln,pack); nlpTime = toc; %%%% Store the results: soln.grid.time = tSoln; soln.grid.state = xSoln; soln.grid.control = uSoln; soln.interp.state = @(t)( interp1(tSoln',xSoln',t','linear',nan)' ); soln.interp.control = @(t)( interp1(tSoln',uSoln',t','linear',nan)' ); soln.info = output; soln.info.nlpTime = nlpTime; soln.info.exitFlag = exitFlag; soln.info.objVal = objVal; if flagGradCst || flagGradObj % Then return sparsity pattern for visualization if flagGradObj [~, objGradInit] = P.objective(zSoln); sparsityPattern.objective = (objGradInit~=0)'; end if flagGradCst [~,~,cstIneqInit,cstEqInit] = P.nonlcon(zSoln); sparsityPattern.equalityConstraint = (cstEqInit~=0)'; sparsityPattern.inequalityConstraint = (cstIneqInit~=0)'; end soln.info.sparsityPattern = sparsityPattern; end soln.problem = problem; % Return the fully detailed problem struct end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [z,pack] = packDecVar(t,x,u) % % This function collapses the time (t), state (x) % and control (u) matricies into a single vector % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % % OUTPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % nTime = length(t); nState = size(x,1); nControl = size(u,1); tSpan = [t(1); t(end)]; xCol = reshape(x, nState*nTime, 1); uCol = reshape(u, nControl*nTime, 1); indz = reshape(2+(1:numel(u)+numel(x)),nState+nControl,nTime); % index of time, state, control variables in the decVar vector tIdx = 1:2; xIdx = indz(1:nState,:); uIdx = indz(nState+(1:nControl),:); % decision variables % variables are indexed so that the defects gradients appear as a banded % matrix z = zeros(2+numel(indz),1); z(tIdx(:),1) = tSpan; z(xIdx(:),1) = xCol; z(uIdx(:),1) = uCol; pack.nTime = nTime; pack.nState = nState; pack.nControl = nControl; pack.tIdx = tIdx; pack.xIdx = xIdx; pack.uIdx = uIdx; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [t,x,u] = unPackDecVar(z,pack) % % This function unpacks the decision variables for % trajectory optimization into the time (t), % state (x), and control (u) matricies % % INPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % % OUTPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; t = linspace(z(1),z(2),nTime); x = z(pack.xIdx); u = z(pack.uIdx); % make sure x and u are returned as vectors, [nState,nTime] and % [nControl,nTime] x = reshape(x,nState,nTime); u = reshape(u,nControl,nTime); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function cost = myObjective(z,pack,pathObj,bndObj,weights) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % pathObj = user-defined integral objective function % endObj = user-defined end-point objective function % % OUTPUTS: % cost = scale cost for this set of decision variables % [t,x,u] = unPackDecVar(z,pack); % Compute the cost integral along trajectory if isempty(pathObj) integralCost = 0; else dt = (t(end)-t(1))/(pack.nTime-1); integrand = pathObj(t,x,u); %Calculate the integrand of the cost function integralCost = dt*integrand*weights; %Trapazoidal integration end % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); bndCost = bndObj(t0,x0,tF,xF); end cost = bndCost + integralCost; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [c, ceq] = myConstraint(z,pack,dynFun, pathCst, bndCst, defectCst) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynFun = user-defined dynamics function % pathCst = user-defined constraints along the path % endCst = user-defined constraints at the boundaries % % OUTPUTS: % c = inequality constraints to be passed to fmincon % ceq = equality constraints to be passed to fmincon % [t,x,u] = unPackDecVar(z,pack); %%%% Compute defects along the trajectory: dt = (t(end)-t(1))/(length(t)-1); f = dynFun(t,x,u); defects = defectCst(dt,x,f); %%%% Call user-defined constraints and pack up: [c, ceq] = collectConstraints(t,x,u,defects, pathCst, bndCst); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% Additional Sub-Functions for Gradients %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function gradInfo = grad_computeInfo(pack) % % This function computes the matrix dimensions and indicies that are used % to map the gradients from the user functions to the gradients needed by % fmincon. The key difference is that the gradients in the user functions % are with respect to their input (t,x,u) or (t0,x0,tF,xF), while the % gradients for fmincon are with respect to all decision variables. % % INPUTS: % nDeVar = number of decision variables % pack = details about packing and unpacking the decision variables % .nTime % .nState % .nControl % % OUTPUTS: % gradInfo = details about how to transform gradients % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; nDecVar = 2 + nState*nTime + nControl*nTime; zIdx = 1:nDecVar; gradInfo.nDecVar = nDecVar; [tIdx, xIdx, uIdx] = unPackDecVar(zIdx,pack); gradInfo.tIdx = tIdx([1,end]); gradInfo.xuIdx = [xIdx;uIdx]; %%%% Compute gradients of time: % alpha = (0..N-1)/(N-1) % t = alpha*tUpp + (1-alpha)*tLow alpha = (0:(nTime-1))/(nTime-1); gradInfo.alpha = [1-alpha; alpha]; if (gradInfo.tIdx(1)~=1 || gradInfo.tIdx(end)~=2) error('The first two decision variables must be the initial and final time') end gradInfo.dtGrad = [-1; 1]/(nTime-1); %%%% Compute gradients of state gradInfo.xGrad = zeros(nState,nTime,nDecVar); for iTime=1:nTime for iState=1:nState gradInfo.xGrad(iState,iTime,xIdx(iState,iTime)) = 1; end end %%%% For unpacking the boundary constraints and objective: gradInfo.bndIdxMap = [tIdx(1); xIdx(:,1); tIdx(end); xIdx(:,end)]; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo) % [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo) % % OptimTraj utility function. % % Collects the defects, calls user-defined constraints, and then packs % everything up into a form that is good for fmincon. Additionally, it % reshapes and packs up the gradients of these constraints. % % INPUTS: % t = time vector % x = state matrix % u = control matrix % defects = defects matrix % pathCst = user-defined path constraint function % bndCst = user-defined boundary constraint function % % OUTPUTS: % c = inequality constraint for fmincon % ceq = equality constraint for fmincon % ceq_dyn = reshape(defects,numel(defects),1); ceq_dynGrad = grad_flattenPathCst(defectsGrad); %%%% Compute the user-defined constraints: if isempty(pathCst) c_path = []; ceq_path = []; c_pathGrad = []; ceq_pathGrad = []; else [c_pathRaw, ceq_pathRaw, c_pathGradRaw, ceq_pathGradRaw] = pathCst(t,x,u); c_path = reshape(c_pathRaw,numel(c_pathRaw),1); ceq_path = reshape(ceq_pathRaw,numel(ceq_pathRaw),1); c_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(c_pathGradRaw,gradInfo)); ceq_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(ceq_pathGradRaw,gradInfo)); end if isempty(bndCst) c_bnd = []; ceq_bnd = []; c_bndGrad = []; ceq_bndGrad = []; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); [c_bnd, ceq_bnd, c_bndGradRaw, ceq_bndGradRaw] = bndCst(t0,x0,tF,xF); c_bndGrad = grad_reshapeBoundary(c_bndGradRaw,gradInfo); ceq_bndGrad = grad_reshapeBoundary(ceq_bndGradRaw,gradInfo); end %%%% Pack everything up: c = [c_path;c_bnd]; ceq = [ceq_dyn; ceq_path; ceq_bnd]; cGrad = [c_pathGrad;c_bndGrad]'; ceqGrad = [ceq_dynGrad; ceq_pathGrad; ceq_bndGrad]'; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function C = grad_flattenPathCst(CC) % % This function takes a path constraint and reshapes the first two % dimensions so that it can be passed to fmincon % if isempty(CC) C = []; else [n1,n2,n3] = size(CC); C = reshape(CC,n1*n2,n3); end end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function CC = grad_reshapeBoundary(C,gradInfo) % % This function takes a boundary constraint or objective from the user % and expands it to match the full set of decision variables % CC = zeros(size(C,1),gradInfo.nDecVar); CC(:,gradInfo.bndIdxMap) = C; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function grad = grad_reshapeContinuous(gradRaw,gradInfo) % grad = grad_reshapeContinuous(gradRaw,gradInfo) % % OptimTraj utility function. % % This function converts the raw gradients from the user function into % gradients with respect to the decision variables. % % INPUTS: % stateRaw = [nOutput,nInput,nTime] % % OUTPUTS: % grad = [nOutput,nTime,nDecVar] % if isempty(gradRaw) grad = []; else [nOutput, ~, nTime] = size(gradRaw); grad = zeros(nOutput,nTime,gradInfo.nDecVar); % First, loop through and deal with time. timeGrad = gradRaw(:,1,:); timeGrad = permute(timeGrad,[1,3,2]); for iOutput=1:nOutput A = ([1;1]*timeGrad(iOutput,:)).*gradInfo.alpha; grad(iOutput,:,gradInfo.tIdx) = permute(A,[3,2,1]); end % Now deal with state and control: for iOutput=1:nOutput for iTime=1:nTime B = gradRaw(iOutput,2:end,iTime); grad(iOutput,iTime,gradInfo.xuIdx(:,iTime)) = permute(B,[3,1,2]); end end end end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [cost, costGrad] = myObjGrad(z,pack,pathObj,bndObj,weights,gradInfo) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % pathObj = user-defined integral objective function % endObj = user-defined end-point objective function % % OUTPUTS: % cost = scale cost for this set of decision variables % %Unpack the decision variables: [t,x,u] = unPackDecVar(z,pack); % Time step for integration: dt = (t(end)-t(1))/(length(t)-1); dtGrad = gradInfo.dtGrad; nTime = length(t); nState = size(x,1); nControl = size(u,1); nDecVar = length(z); % Compute the cost integral along the trajectory if isempty(pathObj) integralCost = 0; integralCostGrad = zeros(nState+nControl,1); else % Objective function integrand and gradients: [obj, objGradRaw] = pathObj(t,x,u); nInput = size(objGradRaw,1); objGradRaw = reshape(objGradRaw,1,nInput,nTime); objGrad = grad_reshapeContinuous(objGradRaw,gradInfo); % integral objective function unScaledIntegral = obj*weights; integralCost = dt*unScaledIntegral; % Gradient of integral objective function dtGradTerm = zeros(1,nDecVar); dtGradTerm(1) = dtGrad(1)*unScaledIntegral; dtGradTerm(2) = dtGrad(2)*unScaledIntegral; objGrad = reshape(objGrad,nTime,nDecVar); integralCostGrad = ... dtGradTerm + ... dt*sum(objGrad.*(weights*ones(1,nDecVar)),1); end % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; bndCostGrad = zeros(1,nDecVar); else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); [bndCost, bndCostGradRaw] = bndObj(t0,x0,tF,xF); bndCostGrad = grad_reshapeBoundary(bndCostGradRaw,gradInfo); end % Cost function cost = bndCost + integralCost; % Gradients costGrad = bndCostGrad + integralCostGrad; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [c, ceq, cGrad, ceqGrad] = myCstGrad(z,pack,dynFun, pathCst, bndCst, defectCst, gradInfo) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynFun = user-defined dynamics function % pathCst = user-defined constraints along the path % endCst = user-defined constraints at the boundaries % % OUTPUTS: % c = inequality constraints to be passed to fmincon % ceq = equality constraints to be passed to fmincon % %Unpack the decision variables: [t,x,u] = unPackDecVar(z,pack); % Time step for integration: dt = (t(end)-t(1))/(length(t)-1); dtGrad = gradInfo.dtGrad; % Gradient of the state with respect to decision variables xGrad = gradInfo.xGrad; %%%% Compute defects along the trajectory: [f, fGradRaw] = dynFun(t,x,u); fGrad = grad_reshapeContinuous(fGradRaw,gradInfo); [defects, defectsGrad] = defectCst(dt,x,f,... dtGrad, xGrad, fGrad); % Compute gradients of the user-defined constraints and then pack up: [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,... defects, defectsGrad, pathCst, bndCst, gradInfo); end
github
pvarin/DynamicVAE-master
chebyshev.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/chebyshev.m
10,613
utf_8
d197906d586572ca06c189288281ded9
function soln = chebyshev(problem) % soln = chebyshev(problem) % % This function transcribes a trajectory optimization problem Chebyshev % orthogonal polynomials for basis functions. This is an orthogonal % collocation method, where the entire trajectory is represented as a % single polynomial. It is for problems where the solution can be % gaurenteed to be smooth to the same degree as the order of the underlying % polynomial (nColPts-1). % % The technique is described in detail in the paper: % % " A Chebyshev Technique for Solving Nonlinear Optimal Control Problems" % ISSS Trans. Automatic Control, 1988 % by: Jacques Vlassenbroeck and Rene Van Dooren % % My implementation for computation of the differentiation matrix, % quadrature rules, and interpolation are based on the following: % % "Barycentric Lagrange Interpolation" % Siam Review, 2004 % Publisher: Society for Industrial and Applied Mathematics % by: Jean-Paul Berrut and Lloyd N. Trefethen % % "Approximation Theory and Approximation Practice" % Textbook by Lloyd N. Trefethen % % "Chebfun" Matlab toolbox % Website: http://www.chebfun.org/ % by Lloyd N. Trefethen et al. % % For details on the input and output, see the help file for optimTraj.m % % Method specific parameters: % % problem.options.method = 'chebyshev' % problem.options.chebyshev = struct with method parameters: % .nColPts = number of collocation points % %To make code more readable G = problem.guess; B = problem.bounds; F = problem.func; Opt = problem.options; nColPts = Opt.chebyshev.nColPts; %Number of grid points for transcription % Print out some solver info if desired: if Opt.verbose > 0 disp(' -> Transcription via Chebyshev orthogonal collocation'); fprintf(' nColPts = %d \n', nColPts); end % Compute the parameters for the ORTHogonal polynomial, in this case the % Chebyshev polynomial roots, quadrature weights, interpolation weights, % and the differentiation matrix. try [orth.xx, orth.ww, orth.vv] = chebpts(nColPts); catch ME error('Missing dependency: chebfun (http://www.chebfun.org/) '); end orth.D = getDifferentiationMatrix(orth.xx,orth.vv); % Interpolate the guess at the chebyshev-points for transcription: guess.tSpan = G.time([1,end]); guess.time = chebpts(nColPts,guess.tSpan)'; guess.state = interp1(G.time', G.state', guess.time')'; guess.control = interp1(G.time', G.control', guess.time')'; [zGuess, pack] = packDecVar(guess.time, guess.state, guess.control); % Unpack all bounds: dummyMatrix = zeros(1,nColPts-2); %This just needs to be the right size tLow = [B.initialTime.low, dummyMatrix, B.finalTime.low]; xLow = [B.initialState.low, B.state.low*ones(1,nColPts-2), B.finalState.low]; uLow = B.control.low*ones(1,nColPts); zLow = packDecVar(tLow,xLow,uLow); tUpp = [B.initialTime.upp, dummyMatrix, B.finalTime.upp]; xUpp = [B.initialState.upp, B.state.upp*ones(1,nColPts-2), B.finalState.upp]; uUpp = B.control.upp*ones(1,nColPts); zUpp = packDecVar(tUpp,xUpp,uUpp); %%%% Set up problem for fmincon: P.objective = @(z)( ... myObjective(z, pack, F.pathObj, F.bndObj, orth) ); P.nonlcon = @(z)( ... myConstraint(z, pack, F.dynamics, F.pathCst, F.bndCst, orth) ); P.x0 = zGuess; P.lb = zLow; P.ub = zUpp; P.Aineq = []; P.bineq = []; P.Aeq = []; P.beq = []; P.options = Opt.nlpOpt; P.solver = 'fmincon'; %%%% Call fmincon to solve the non-linear program (NLP) tic; [zSoln, objVal,exitFlag,output] = fmincon(P); [tSoln,xSoln,uSoln] = unPackDecVar(zSoln,pack,orth); nlpTime = toc; %%%% Store the results: soln.grid.time = tSoln; soln.grid.state = xSoln; soln.grid.control = uSoln; %%%% Rescale the points: dSoln = tSoln([1,end]); %Domain of the final solution xxSoln = orthScale(orth,dSoln); soln.interp.state = @(t)( barycentricInterpolate(t', xSoln',xxSoln,orth.vv)' ); soln.interp.control = @(t)( barycentricInterpolate(t', uSoln',xxSoln,orth.vv)' ); soln.info = output; soln.info.nlpTime = nlpTime; soln.info.exitFlag = exitFlag; soln.info.objVal = objVal; soln.problem = problem; % Return the fully detailed problem struct end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [z,pack] = packDecVar(t,x,u) % % This function collapses the time (t), state (x) % and control (u) matricies into a single vector % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % % OUTPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % nTime = length(t); nState = size(x,1); nControl = size(u,1); tSpan = [t(1); t(end)]; xCol = reshape(x, nState*nTime, 1); uCol = reshape(u, nControl*nTime, 1); z = [tSpan;xCol;uCol]; pack.nTime = nTime; pack.nState = nState; pack.nControl = nControl; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [t,x,u,w] = unPackDecVar(z,pack,orth) % % This function unpacks the decision variables for % trajectory optimization into the time (t), % state (x), and control (u) matricies % % INPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % % OUTPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % w = [1, nTime] = weights for clenshaw-curtis quadrature % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; nx = nState*nTime; nu = nControl*nTime; [t, w] = orthScale(orth,[z(1),z(2)]); t = t'; x = reshape(z((2+1):(2+nx)),nState,nTime); u = reshape(z((2+nx+1):(2+nx+nu)),nControl,nTime); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function cost = myObjective(z,pack,pathObj,bndObj,cheb) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % pathObj = user-defined integral objective function % endObj = user-defined end-point objective function % % OUTPUTS: % cost = scale cost for this set of decision variables % [t,x,u,w] = unPackDecVar(z,pack,cheb); % Compute the cost integral along trajectory if isempty(pathObj) integralCost = 0; else integrand = pathObj(t,x,u); %Calculate the integrand of the cost function integralCost = dot(w,integrand); %Clenshw-curtise quadrature end % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); bndCost = bndObj(t0,x0,tF,xF); end cost = bndCost + integralCost; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [c, ceq] = myConstraint(z,pack,dynFun, pathCst, bndCst, orth) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynFun = user-defined dynamics function % pathCst = user-defined constraints along the path % endCst = user-defined constraints at the boundaries % % OUTPUTS: % c = inequality constraints to be passed to fmincon % ceq = equality constraints to be passed to fmincon % [t,x,u] = unPackDecVar(z,pack,orth); %%%% Enforce the dynamics: % Analytic differentiation of the trajectory at chebyshev points: d = t([1,end]); %Domain of the trajectory [~,~,D] = orthScale(orth,d); %Scale the differentiation matrix dxFun = (D*(x'))'; %Differentiate trajectory % Derivative, according to the dynamics function: dxDyn = dynFun(t,x,u); % Add a constraint that both versions of the derivative must match: defects = dxFun - dxDyn; %%%% Call user-defined constraints and pack up: [c, ceq] = collectConstraints(t,x,u,defects, pathCst, bndCst); end function [x,w,D] = orthScale(orth,d) % [x,w,D] = orthScale(orth,d) % % This function scales the chebyshev points to an arbitrary interval % % INPUTS: % xx = chebyshev points on the domain [-1,1] % ww = chebysehv weights on the domain [-1,1] % d = [low, upp] = new domain % % OUTPUTS: % x = chebyshev points on the new domain d % w = chebyshev weights on the new domain d % shift = 0.5*(d(1) + d(2)); scale = 0.5*(d(2) - d(1)); x = scale*orth.xx + shift; if nargout > 1 w = orth.ww*scale; end if nargout > 2 D = orth.D/scale; end end function D = getDifferentiationMatrix(x,v,d) % D = getDifferentiationMatrix(x,v,d) % % % INPUTS: % x = [n,1] = vector of roots of the orthogonal polynomial of interest % v = [n,1] = vector of barycentric weights corresponding to each root % d = [1,2] = domain of the polynomial (optional) % % OUTPUTS: % D = [n,n] = differentiation matrix such that dy/dx = D*y @ points in x % % NOTES: % Reference: % 1) ChebFun (http://www.chebfun.org/) % 2) "Barycentric Lagrange Interpolation" SIAM Review 2004 % Jean-Paul Berrut and Lloyd N. Trefethen % % Inputs: x and v are typically produced by a call to any of: % chebpts, trigpts, legpts, jacpts, lagpts, hermpts, lobpts, radaupts % if nargin == 2 d = [-1,1]; end n = length(x); D = zeros(n,n); for i=1:n D(i,:) = (v/v(i))./(x(i)-x); D(i,i) = 0; D(i,i) = -sum(D(i,:)); end D = 2*D/(d(2)-d(1)); end function y = barycentricInterpolate(x,yk,xk,vk) % y = barycentricInterpolate(x,yk,xk,vk) % % Interpolates an orthogonal polynomial using barycentric interpolation % % INPUTS: % x = [nTime, 1] = vector of points to evaluate polynomial at % yk = [nGrid, nOut] = value of the function to be interpolated at each % grid point % xk = [nGrid, 1] = roots of orthogonal polynomial % vk = [nGrid, 1] = barycentric interpolation weights % % OUTPUTS: % y = [nTime, nOut] = value of the function at the desired points % % NOTES: % xk and yk should be produced by chebfun (help chebpts) % nOut = size(yk,2); nTime = length(x); y = zeros(nTime, nOut); for i=1:nOut y(:,i) = bary(x,yk(:,i),xk,vk); end end
github
pvarin/DynamicVAE-master
hermiteSimpson.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/hermiteSimpson.m
11,560
utf_8
690c510dbe95d1ee31b9a2c2fcda28f8
function soln = hermiteSimpson(problem) % soln = hermiteSimpson(problem) % % This function transcribes a trajectory optimization problem using the % Hermite-Simpson (Seperated) method for enforcing the dynamics. It can be % found in chapter four of Bett's book: % % John T. Betts, 2001 % Practical Methods for Optimal Control Using Nonlinear Programming % % For details on the input and output, see the help file for optimTraj.m % % Method specific parameters: % % problem.options.method = 'hermiteSimpson' % problem.options.hermiteSimpson = struct with method parameters: % .nSegment = number of trajectory segments % % This transcription method is compatable with analytic gradients. To % enable this option, set: % problem.nlpOpt.GradObj = 'on' % problem.nlpOpt.GradConstr = 'on' % % Then the user-provided functions must provide gradients. The modified % function templates are as follows: % % [dx, dxGrad] = dynamics(t,x,u) % dx = [nState, nTime] = dx/dt = derivative of state wrt time % dxGrad = [nState, 1+nx+nu, nTime] % % [dObj, dObjGrad] = pathObj(t,x,u) % dObj = [1, nTime] = integrand from the cost function % dObjGrad = [1+nx+nu, nTime] % % [c, ceq, cGrad, ceqGrad] = pathCst(t,x,u) % c = [nCst, nTime] = column vector of inequality constraints ( c <= 0 ) % ceq = [nCstEq, nTime] = column vector of equality constraints ( c == 0 ) % cGrad = [nCst, 1+nx+nu, nTime]; % ceqGrad = [nCstEq, 1+nx+nu, nTime]; % % [obj, objGrad] = bndObj(t0,x0,tF,xF) % obj = scalar = objective function for boundry points % objGrad = [1+nx+1+nx, 1] % % [c, ceq, cGrad, ceqGrad] = bndCst(t0,x0,tF,xF) % c = [nCst,1] = column vector of inequality constraints ( c <= 0 ) % ceq = [nCstEq,1] = column vector of equality constraints ( c == 0 ) % cGrad = [nCst, 1+nx+1+nx]; % ceqGrad = [nCstEq, 1+nx+1+nx]; % % NOTES: % % If analytic gradients are used, then the sparsity pattern is returned % in the struct: soln.info.sparsityPattern. View it using spy(). % % Each segment needs an additional data point in the middle, thus: nGrid = 2*problem.options.hermiteSimpson.nSegment+1; % Print out some solver info if desired: if problem.options.verbose > 0 fprintf(' -> Transcription via Hermite-Simpson method, nSegment = %d\n',... problem.options.hermiteSimpson.nSegment); end %%%% Method-specific details to pass along to solver: %Simpson quadrature for integration of the cost function: problem.func.weights = (2/3)*ones(nGrid,1); problem.func.weights(2:2:end) = 4/3; problem.func.weights([1,end]) = 1/3; % Hermite-Simpson calculation of defects: problem.func.defectCst = @computeDefects; %%%% The key line - solve the problem by direct collocation: soln = directCollocation(problem); % Use method-consistent interpolation tSoln = soln.grid.time; xSoln = soln.grid.state; uSoln = soln.grid.control; fSoln = problem.func.dynamics(tSoln,xSoln,uSoln); soln.interp.state = @(t)( pwPoly3(tSoln,xSoln,fSoln,t) ); soln.interp.control = @(t)(pwPoly2(tSoln,uSoln,t)); % Interpolation for checking collocation constraint along trajectory: % collocation constraint = (dynamics) - (derivative of state trajectory) soln.interp.collCst = @(t)( ... problem.func.dynamics(t, soln.interp.state(t), soln.interp.control(t))... - pwPoly2(tSoln,fSoln,t) ); % Use multi-segment simpson quadrature to estimate the absolute local error % along the trajectory. absColErr = @(t)(abs(soln.interp.collCst(t))); nSegment = problem.options.hermiteSimpson.nSegment; nState = size(xSoln,1); quadTol = 1e-12; %Compute quadrature to this tolerance soln.info.error = zeros(nState,nSegment); for i=1:nSegment idx = 2*i + [-1,1]; soln.info.error(:,i) = rombergQuadrature(absColErr,tSoln([idx(1), idx(2)]),quadTol); end soln.info.maxError = max(max(soln.info.error)); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [defects, defectsGrad] = computeDefects(dt,x,f,dtGrad,xGrad,fGrad) % % This function computes the defects that are used to enforce the % continuous dynamics of the system along the trajectory. % % INPUTS: % dt = time step (scalar) % x = [nState, nTime] = state at each grid-point along the trajectory % f = [nState, nTime] = dynamics of the state along the trajectory % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % dtGrad = [2,1] = gradient of time step with respect to [t0; tF] % xGrad = [nState,nTime,nDecVar] = gradient of trajectory wrt dec vars % fGrad = [nState,nTime,nDecVar] = gradient of dynamics wrt dec vars % % OUTPUTS: % defects = [nState, nTime-1] = error in dynamics along the trajectory % defectsGrad = [nState, nTime-1, nDecVars] = gradient of defects % nTime = size(x,2); nState = size(x,1); iLow = 1:2:(nTime-1); iMid = iLow + 1; iUpp = iMid + 1; xLow = x(:,iLow); xMid = x(:,iMid); xUpp = x(:,iUpp); fLow = f(:,iLow); fMid = f(:,iMid); fUpp = f(:,iUpp); % Mid-point constraint (Hermite) defectMidpoint = xMid - (xUpp+xLow)/2 - dt*(fLow-fUpp)/4; % Interval constraint (Simpson) defectInterval = xUpp - xLow - dt*(fUpp + 4*fMid + fLow)/3; % Pack up all defects: Arrnage for bandedness defects = zeros(nState,nTime-1); defects(:,iLow) = defectInterval; defects(:,iMid) = defectMidpoint; %%%% Gradient Calculations: if nargout == 2 xLowGrad = xGrad(:,iLow,:); xMidGrad = xGrad(:,iMid,:); xUppGrad = xGrad(:,iUpp,:); fLowGrad = fGrad(:,iLow,:); fMidGrad = fGrad(:,iMid,:); fUppGrad = fGrad(:,iUpp,:); % Mid-point constraint (Hermite) dtGradTerm = zeros(size(xMidGrad)); dtGradTerm(:,:,1) = -dtGrad(1)*(fLow-fUpp)/4; dtGradTerm(:,:,2) = -dtGrad(2)*(fLow-fUpp)/4; defectMidpointGrad = xMidGrad - (xUppGrad+xLowGrad)/2 + dtGradTerm + ... - dt*(fLowGrad-fUppGrad)/4; % Interval constraint (Simpson) dtGradTerm = zeros(size(xUppGrad)); dtGradTerm(:,:,1) = -dtGrad(1)*(fUpp + 4*fMid + fLow)/3; dtGradTerm(:,:,2) = -dtGrad(2)*(fUpp + 4*fMid + fLow)/3; defectIntervalGrad = xUppGrad - xLowGrad + dtGradTerm + ... - dt*(fUppGrad + 4*fMidGrad + fLowGrad)/3; %Pack up the gradients of the defects: % organize defect constraints for bandned structure defectsGrad = zeros(nState,nTime-1,size(defectMidpointGrad,3)); defectsGrad(:,iLow,:) = defectIntervalGrad; defectsGrad(:,iMid,:) = defectMidpointGrad; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Functions for interpolation of the control solution % function x = pwPoly2(tGrid,xGrid,t) % x = pwPoly2(tGrid,xGrid,t) % % This function does piece-wise quadratic interpolation of a set of data, % given the function value at the edges and midpoint of the interval of % interest. % % INPUTS: % tGrid = [1, 2*n-1] = time grid, knot idx = 1:2:end % xGrid = [m, 2*n-1] = function at each grid point in tGrid % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % nGrid = length(tGrid); if mod(nGrid-1,2)~=0 || nGrid < 3 error('The number of grid-points must be odd and at least 3'); end % Figure out sizes n = floor((length(tGrid)-1)/2); m = size(xGrid,1); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on edges = [-inf, tGrid(1:2:end), inf]; [~, bin] = histc(t,edges); % Loop over each quadratic segment for i=1:n idx = bin==(i+1); if sum(idx) > 0 gridIdx = 2*(i-1) + [1,2,3]; x(:,idx) = quadInterp(tGrid(gridIdx),xGrid(:,gridIdx),t(idx)); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==1 | bin==(n+2); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = quadInterp(tGrid,xGrid,t) % % This function computes the interpolant over a single interval % % INPUTS: % tGrid = [1, 3] = time grid % xGrid = [m, 3] = function grid % t = [1, p] = query times, spanned by tGrid % % OUTPUTS: % x = [m, p] = function at query times % % Rescale the query points to be on the domain [-1,1] t = 2*(t-tGrid(1))/(tGrid(3)-tGrid(1)) - 1; % Compute the coefficients: a = 0.5*(xGrid(:,3) + xGrid(:,1)) - xGrid(:,2); b = 0.5*(xGrid(:,3)-xGrid(:,1)); c = xGrid(:,2); % Evaluate the polynomial for each dimension of the function: p = length(t); m = size(xGrid,1); x = zeros(m,p); tt = t.^2; for i=1:m x(i,:) = a(i)*tt + b(i)*t + c(i); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Functions for interpolation of the state solution % function x = pwPoly3(tGrid,xGrid,fGrid,t) % x = pwPoly3(tGrid,xGrid,fGrid,t) % % This function does piece-wise quadratic interpolation of a set of data, % given the function value at the edges and midpoint of the interval of % interest. % % INPUTS: % tGrid = [1, 2*n-1] = time grid, knot idx = 1:2:end % xGrid = [m, 2*n-1] = function at each grid point in time % fGrid = [m, 2*n-1] = derivative at each grid point in time % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % nGrid = length(tGrid); if mod(nGrid-1,2)~=0 || nGrid < 3 error('The number of grid-points must be odd and at least 3'); end % Figure out sizes n = floor((length(tGrid)-1)/2); m = size(xGrid,1); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on edges = [-inf, tGrid(1:2:end), inf]; [~, bin] = histc(t,edges); % Loop over each quadratic segment for i=1:n idx = bin==(i+1); if sum(idx) > 0 kLow = 2*(i-1) + 1; kMid = kLow + 1; kUpp = kLow + 2; h = tGrid(kUpp)-tGrid(kLow); xLow = xGrid(:,kLow); fLow = fGrid(:,kLow); fMid = fGrid(:,kMid); fUpp = fGrid(:,kUpp); alpha = t(idx) - tGrid(kLow); x(:,idx) = cubicInterp(h,xLow, fLow, fMid, fUpp,alpha); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==1 | bin==(n+2); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = cubicInterp(h,xLow, fLow, fMid, fUpp,del) % % This function computes the interpolant over a single interval % % INPUTS: % h = time step (tUpp-tLow) % xLow = function value at tLow % fLow = derivative at tLow % fMid = derivative at tMid % fUpp = derivative at tUpp % del = query points on domain [0, h] % % OUTPUTS: % x = [m, p] = function at query times % %%% Fix matrix dimensions for vectorized calculations nx = length(xLow); nt = length(del); xLow = xLow*ones(1,nt); fLow = fLow*ones(1,nt); fMid = fMid*ones(1,nt); fUpp = fUpp*ones(1,nt); del = ones(nx,1)*del; a = (2.*(fLow - 2.*fMid + fUpp))./(3.*h.^2); b = -(3.*fLow - 4.*fMid + fUpp)./(2.*h); c = fLow; d = xLow; x = d + del.*(c + del.*(b + del.*a)); end
github
pvarin/DynamicVAE-master
trapezoid.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/trapezoid.m
7,774
utf_8
d24e512cdcb2f48f403da6b41b881bcb
function soln = trapezoid(problem) % soln = trapezoid(problem) % % This function transcribes a trajectory optimization problem using the % trapezoid method for enforcing the dynamics. It can be found in chapter % four of Bett's book: % % John T. Betts, 2001 % Practical Methods for Optimal Control Using Nonlinear Programming % % For details on the input and output, see the help file for optimTraj.m % % Method specific parameters: % % problem.options.method = 'trapezoid' % problem.options.trapezoid = struct with method parameters: % .nGrid = number of grid points to use for transcription % % % This transcription method is compatable with analytic gradients. To % enable this option, set: % problem.nlpOpt.GradObj = 'on' % problem.nlpOpt.GradConstr = 'on' % % Then the user-provided functions must provide gradients. The modified % function templates are as follows: % % [dx, dxGrad] = dynamics(t,x,u) % dx = [nState, nTime] = dx/dt = derivative of state wrt time % dxGrad = [nState, 1+nx+nu, nTime] % % [dObj, dObjGrad] = pathObj(t,x,u) % dObj = [1, nTime] = integrand from the cost function % dObjGrad = [1+nx+nu, nTime] % % [c, ceq, cGrad, ceqGrad] = pathCst(t,x,u) % c = [nCst, nTime] = column vector of inequality constraints ( c <= 0 ) % ceq = [nCstEq, nTime] = column vector of equality constraints ( c == 0 ) % cGrad = [nCst, 1+nx+nu, nTime]; % ceqGrad = [nCstEq, 1+nx+nu, nTime]; % % [obj, objGrad] = bndObj(t0,x0,tF,xF) % obj = scalar = objective function for boundry points % objGrad = [1+nx+1+nx, 1] % % [c, ceq, cGrad, ceqGrad] = bndCst(t0,x0,tF,xF) % c = [nCst,1] = column vector of inequality constraints ( c <= 0 ) % ceq = [nCstEq,1] = column vector of equality constraints ( c == 0 ) % cGrad = [nCst, 1+nx+1+nx]; % ceqGrad = [nCstEq, 1+nx+1+nx]; % % NOTES: % % If analytic gradients are used, then the sparsity pattern is returned % in the struct: soln.info.sparsityPattern. View it using spy(). % % Print out some solver info if desired: nGrid = problem.options.trapezoid.nGrid; if problem.options.verbose > 0 fprintf(' -> Transcription via trapezoid method, nGrid = %d\n',nGrid); end %%%% Method-specific details to pass along to solver: % Quadrature weights for trapezoid integration: problem.func.weights = ones(nGrid,1); problem.func.weights([1,end]) = 0.5; % Trapazoid integration calculation of defects: problem.func.defectCst = @computeDefects; %%%% The key line - solve the problem by direct collocation: soln = directCollocation(problem); % Use piecewise linear interpolation for the control tSoln = soln.grid.time; xSoln = soln.grid.state; uSoln = soln.grid.control; soln.interp.control = @(t)( interp1(tSoln',uSoln',t')' ); % Use piecewise quadratic interpolation for the state: fSoln = problem.func.dynamics(tSoln,xSoln,uSoln); soln.interp.state = @(t)( bSpline2(tSoln,xSoln,fSoln,t) ); % Interpolation for checking collocation constraint along trajectory: % collocation constraint = (dynamics) - (derivative of state trajectory) soln.interp.collCst = @(t)( ... problem.func.dynamics(t, soln.interp.state(t), soln.interp.control(t))... - interp1(tSoln',fSoln',t')' ); % Use multi-segment simpson quadrature to estimate the absolute local error % along the trajectory. absColErr = @(t)(abs(soln.interp.collCst(t))); nSegment = nGrid-1; nState = size(xSoln,1); quadTol = 1e-12; %Compute quadrature to this tolerance soln.info.error = zeros(nState,nSegment); for i=1:nSegment soln.info.error(:,i) = rombergQuadrature(absColErr,tSoln([i,i+1]),quadTol); end soln.info.maxError = max(max(soln.info.error)); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [defects, defectsGrad] = computeDefects(dt,x,f,dtGrad,xGrad,fGrad) % % This function computes the defects that are used to enforce the % continuous dynamics of the system along the trajectory. % % INPUTS: % dt = time step (scalar) % x = [nState, nTime] = state at each grid-point along the trajectory % f = [nState, nTime] = dynamics of the state along the trajectory % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % dtGrad = [2,1] = gradient of time step with respect to [t0; tF] % xGrad = [nState,nTime,nDecVar] = gradient of trajectory wrt dec vars % fGrad = [nState,nTime,nDecVar] = gradient of dynamics wrt dec vars % % OUTPUTS: % defects = [nState, nTime-1] = error in dynamics along the trajectory % defectsGrad = [nState, nTime-1, nDecVars] = gradient of defects % nTime = size(x,2); idxLow = 1:(nTime-1); idxUpp = 2:nTime; xLow = x(:,idxLow); xUpp = x(:,idxUpp); fLow = f(:,idxLow); fUpp = f(:,idxUpp); % This is the key line: (Trapazoid Rule) defects = xUpp-xLow - 0.5*dt*(fLow+fUpp); %%%% Gradient Calculations: if nargout == 2 xLowGrad = xGrad(:,idxLow,:); xUppGrad = xGrad(:,idxUpp,:); fLowGrad = fGrad(:,idxLow,:); fUppGrad = fGrad(:,idxUpp,:); % Gradient of the defects: (chain rule!) dtGradTerm = zeros(size(xUppGrad)); dtGradTerm(:,:,1) = -0.5*dtGrad(1)*(fLow+fUpp); dtGradTerm(:,:,2) = -0.5*dtGrad(2)*(fLow+fUpp); defectsGrad = xUppGrad - xLowGrad + dtGradTerm + ... - 0.5*dt*(fLowGrad+fUppGrad); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = bSpline2(tGrid,xGrid,fGrid,t) % x = bSpline2(tGrid,xGrid,fGrid,t) % % This function does piece-wise quadratic interpolation of a set of data. % The quadratic interpolant is constructed such that the slope matches on % both sides of each interval, and the function value matches on the lower % side of the interval. % % INPUTS: % tGrid = [1, n] = time grid (knot points) % xGrid = [m, n] = function at each grid point in tGrid % fGrid = [m, n] = derivative at each grid point in tGrid % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % [m,n] = size(xGrid); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on [~, bin] = histc(t,[-inf,tGrid,inf]); bin = bin - 1; % Loop over each quadratic segment for i=1:(n-1) idx = i==bin; if sum(idx) > 0 h = (tGrid(i+1)-tGrid(i)); xLow = xGrid(:,i); fLow = fGrid(:,i); fUpp = fGrid(:,i+1); delta = t(idx) - tGrid(i); x(:,idx) = bSpline2Core(h,delta,xLow,fLow,fUpp); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==0 | bin==(n+1); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = bSpline2Core(h,delta,xLow,fLow,fUpp) % % This function computes the interpolant over a single interval % % INPUTS: % alpha = fraction of the way through the interval % xLow = function value at lower bound % fLow = derivative at lower bound % fUpp = derivative at upper bound % % OUTPUTS: % x = [m, p] = function at query times % %Fix dimensions for matrix operations... col = ones(size(delta)); row = ones(size(xLow)); delta = row*delta; xLow = xLow*col; fLow = fLow*col; fUpp = fUpp*col; fDel = (0.5/h)*(fUpp-fLow); x = delta.*(delta.*fDel + fLow) + xLow; end
github
pvarin/DynamicVAE-master
rungeKutta.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/rungeKutta.m
39,686
utf_8
23640bdd822c19de616e744a6202c456
function soln = rungeKutta(problem) % soln = rungeKutta(problem) % % This function transcribes a trajectory optimization problem using the % multiple shooting, with 4th-order Runge Kutta integration % % See Bett's book for details on the method % % For details on the input and output, see the help file for optimTraj.m % % Method specific parameters: % % problem.options.method = 'rungeKutta' % problem.options.rungeKutta = struct with method parameters: % .nSegment = number of trajectory segments % .nSubStep = number of sub-steps to use in each segment % .adaptiveDerivativeCheck = 'off' by default. Set to 'on' to enable % numerical checks on the analytic gradients, computed using the % derivest package, rather than fmincon's internal checks. % Derivest is slower, but more accurate than fmincon. Derivest % can be downloaded from the Mathworks File Exchange, file id of % 13490 - Adaptive Robust Numerical Differentation, John D-Errico % % % NOTES: % % Code for computing analyic gradients of the Runge Kutta method was % contributed by Will Wehner. % % If analytic gradients are used, then the sparsity pattern is returned % in the struct: soln.info.sparsityPattern. View it using spy(). % % %To make code more readable G = problem.guess; B = problem.bounds; F = problem.func; Opt = problem.options; % Figure out grid size: nSegment = Opt.rungeKutta.nSegment; nSubStep = Opt.rungeKutta.nSubStep; nGridControl = 2*nSegment*nSubStep + 1; nGridState = nSegment + 1; % Print out some solver info if desired: if Opt.verbose > 0 fprintf(' -> Transcription via 4th-order Runge-Kutta method \n'); fprintf(' nSegments = %d \n', nSegment); fprintf(' nSubSteps = %d \n', nSubStep); end % Interpolate the guess at the transcription grid points for initial guess: guess.tSpan = G.time([1,end]); guess.tState = linspace(guess.tSpan(1), guess.tSpan(2), nGridState); guess.tControl = linspace(guess.tSpan(1), guess.tSpan(2), nGridControl); guess.state = interp1(G.time', G.state', guess.tState')'; guess.control = interp1(G.time', G.control', guess.tControl')'; [zGuess, pack] = packDecVar(guess.tSpan, guess.state, guess.control); % Unpack all bounds: tLow = [B.initialTime.low, B.finalTime.low]; xLow = [B.initialState.low, B.state.low*ones(1,nGridState-2), B.finalState.low]; uLow = B.control.low*ones(1,nGridControl); zLow = packDecVar(tLow,xLow,uLow); tUpp = [B.initialTime.upp, B.finalTime.upp]; xUpp = [B.initialState.upp, B.state.upp*ones(1,nGridState-2), B.finalState.upp]; uUpp = B.control.upp*ones(1,nGridControl); zUpp = packDecVar(tUpp,xUpp,uUpp); %%%% Set up problem for fmincon: flagGradObj = strcmp(Opt.nlpOpt.GradObj,'on'); flagGradCst = strcmp(Opt.nlpOpt.GradConstr,'on'); if flagGradObj || flagGradCst gradInfo = grad_computeInfo(pack); end if flagGradObj P.objective = @(z)( ... myObjGrad(z, pack, F.dynamics, F.pathObj, F.bndObj, gradInfo) ); %Analytic gradients [~, objGradInit] = P.objective(zGuess); sparsityPattern.objective = (objGradInit~=0)'; else P.objective = @(z)( ... myObjective(z, pack, F.dynamics, F.pathObj, F.bndObj) ); %Numerical gradients end if flagGradCst P.nonlcon = @(z)( ... myCstGrad(z, pack, F.dynamics, F.pathObj, F.pathCst, F.bndCst, gradInfo) ); %Analytic gradients [~,~,cstIneqInit,cstEqInit] = P.nonlcon(zGuess); sparsityPattern.equalityConstraint = (cstEqInit~=0)'; sparsityPattern.inequalityConstraint = (cstIneqInit~=0)'; else P.nonlcon = @(z)( ... myConstraint(z, pack, F.dynamics, F.pathObj, F.pathCst, F.bndCst) ); %Numerical gradients end % Check analytic gradients with DERIVEST package if strcmp(Opt.rungeKutta.adaptiveDerivativeCheck,'on') if exist('jacobianest','file') runGradientCheck(zGuess, pack,F.dynamics, F.pathObj, F.bndObj, F.pathCst, F.bndCst, gradInfo); Opt.nlpOpt.DerivativeCheck = []; %Disable built-in derivative check else Opt.rungeKutta.adaptiveDerivativeCheck = 'cannot find jacobianest.m'; disp('Warning: the derivest package is not on search path.'); disp(' --> Using fmincon''s built-in derivative checks.'); end end % Build the standard fmincon problem struct P.x0 = zGuess; P.lb = zLow; P.ub = zUpp; P.Aineq = []; P.bineq = []; P.Aeq = []; P.beq = []; P.solver = 'fmincon'; P.options = Opt.nlpOpt; %%%% Call fmincon to solve the non-linear program (NLP) tic; [zSoln, objVal,exitFlag,output] = fmincon(P); [tSpan,~,uSoln] = unPackDecVar(zSoln,pack); nlpTime = toc; %%%% Store the results: [tGrid,xGrid,uGrid] = simulateSystem(zSoln, pack, F.dynamics, F.pathObj); soln.grid.time = tGrid; soln.grid.state = xGrid; soln.grid.control = uGrid; % Quadratic interpolation over each sub-step for the control: tSoln = linspace(tSpan(1),tSpan(2),nGridControl); soln.interp.control = @(t)( interp1(tSoln', uSoln', t','pchip')' ); % Cubic spline representation of the state over each substep: dxGrid = F.dynamics(tGrid,xGrid,uGrid); xSpline = pwch(tGrid, xGrid, dxGrid); soln.interp.state = @(t)( ppval(xSpline,t) ); % General information about the optimization run soln.info = output; soln.info.nlpTime = nlpTime; soln.info.exitFlag = exitFlag; soln.info.objVal = objVal; if flagGradCst || flagGradObj soln.info.sparsityPattern = sparsityPattern; end soln.problem = problem; % Return the fully detailed problem struct end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [decVars,pack] = packDecVar(tSpan,state,control) % % This function collapses the time (t), state (x) % and control (u) matricies into a single vector % % INPUTS: % tSpan = [1, 2] = time bounds % state = [nState, nGridState] = state vector at each grid point % control = [nControl, nGridControl] = control vector at each grid point % % OUTPUTS: % decVars = column vector of 2 + nState*nGridState + nControl*nGridControl) decision variables % pack = details about how to convert z back into t,x, and u % .nState % .nGridState % .nControl % .nGridControl % % NOTES: % nGridControl = 2*nSegment*nSubStep + 1; % nGridState = nSegment + 1; % [nState, nGridState] = size(state); [nControl, nGridControl] = size(control); nSegment = nGridState - 1; nSubStep = (nGridControl - 1)/(2*nSegment); xCol = reshape(state, nState*nGridState, 1); uCol = reshape(control, nControl*nGridControl, 1); indz = 1:numel(control)+numel(state)+numel(tSpan); % index of time in decVar indt = 1:2; % the z index of the first element of each state over time indtemp = 2 + (1 : (nState + (2*nSubStep)*nControl ) : numel(control)+numel(state)); % remaining state elements at each time indx = repmat(indtemp,nState,1) + cumsum(ones(nState,nGridState),1) - 1; % index of control in decVar indu = indz; indu([indt(:);indx(:)])=[]; indu = reshape(indu,nControl,nGridControl); % pack up decVars decVars = zeros(numel(indz),1); decVars(indt(:),1) = tSpan; decVars(indx(:),1) = xCol; decVars(indu(:),1) = uCol; % pack structure pack.nState = nState; pack.nGridState = nGridState; pack.nControl = nControl; pack.nGridControl = nGridControl; pack.nSegment = nGridState - 1; pack.nSubStep = (nGridControl-1)/(2*pack.nSegment); pack.indt = indt; pack.indx = indx; pack.indu = indu; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [tSpan, state, control] = unPackDecVar(decVars,pack) % % This function unpacks the decision variables for % trajectory optimization into the time (t), % state (x), and control (u) matricies % % INPUTS: % decVars = column vector of 2 + nState*nGridState + nControl*nGridControl) decision variables % pack = details about how to convert z back into t,x, and u % .nState % .nGridState % .nControl % .nGridControl % % OUTPUTS: % tSpan = [1, 2] = time bounds % state = [nState, nGridState] = state vector at each grid point % control = [nControl, nGridControl] = control vector at each grid point % tSpan = [decVars(1),decVars(2)]; % state = reshape(decVars((2+1):(2+nx)), pack.nState, pack.nGridState); % control = reshape(decVars((2+nx+1):(2+nx+nu)), pack.nControl, pack.nGridControl); state = decVars(pack.indx); control = decVars(pack.indu); % make sure x and u are returned as vectors, [nState,nTime] and % [nControl,nTime] state = reshape(state,pack.nState,pack.nGridState); control = reshape(control,pack.nControl,pack.nGridControl); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function cost = myObjective(decVars, pack,dynamics, pathObj, bndObj) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % bndObj = user-defined boundary objective function % % OUTPUTS: % cost = scalar cost for this set of decision variables % % % All of the real work happens inside this function: [t,x,~,~,pathCost] = simulateSystem(decVars, pack, dynamics, pathObj); % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); bndCost = bndObj(t0,x0,tF,xF); end cost = bndCost + pathCost; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [c, ceq] = myConstraint(decVars, pack, dynamics, pathObj, pathCst, bndCst) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % pathCst = user-defined path-constraint function % bndCst = user-defined boundary constraint function % % OUTPUTS: % c = non-linear inequality constraint % ceq = non-linear equatlity cosntraint % % NOTE: % - path constraints are satisfied at the start and end of each sub-step % [t,x,u,defects] = simulateSystem(decVars, pack, dynamics, pathObj); %%%% Call user-defined constraints and pack up: [c, ceq] = collectConstraints(t,x,u,... defects,... pathCst, bndCst); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [t,x,u,defects,pathCost] = simulateSystem(decVars, pack, dynFun, pathObj) % % This function does the real work of the transcription method. It % simulates the system forward in time across each segment of the % trajectory, computes the integral of the cost function, and then matches % up the defects between the end of each segment and the start of the next. % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % % OUTPUTS: % t = [1 x nGrid] = time vector for the edges of the sub-step grid % x = [nState x nGrid] = state vector % u = [nControl x nGrid] = control vector % defects = [nState x nSegment] = defect matrix % pathCost = scalar cost for the path integral % % NOTES: % - nGrid = nSegment*nSubStep+1 % - This function is usually called twice for each combination of % decision variables: once by the objective function and once by the % constraint function. To keep the code fast I cache the old values and % only recompute when the inputs change. % %%%% CODE OPTIMIZATION %%%% % % Prevents the same exact code from being called twice by caching the % solution and reusing it when appropriate. % global RUNGE_KUTTA_t RUNGE_KUTTA_x RUNGE_KUTTA_u global RUNGE_KUTTA_defects RUNGE_KUTTA_pathCost global RUNGE_KUTTA_decVars % usePreviousValues = false; if ~isempty(RUNGE_KUTTA_decVars) if length(RUNGE_KUTTA_decVars) == length(decVars) if ~any(RUNGE_KUTTA_decVars ~= decVars) usePreviousValues = true; end end end % if usePreviousValues t = RUNGE_KUTTA_t; x = RUNGE_KUTTA_x; u = RUNGE_KUTTA_u; defects = RUNGE_KUTTA_defects; pathCost = RUNGE_KUTTA_pathCost; else % % %%%% END CODE OPTIMIZATION %%%% [tSpan, state, control] = unPackDecVar(decVars,pack); nState = pack.nState; nSegment = pack.nSegment; nSubStep = pack.nSubStep; % NOTES: % The following bit of code is a bit confusing, mostly due to the % need for vectorization to make things run at a reasonable speed in % Matlab. Part of the confusion comes because the decision variables % include the state at the beginning of each segment, but the control % at the beginning and middle of each substep - thus there are more % control grid-points than state grid points. The calculations are % vectorized over segments, but not sub-steps, since the result of % one sub-step is required for the next. % time, state, and control at the ends of each substep nTime = 1+nSegment*nSubStep; t = linspace(tSpan(1), tSpan(2), nTime); x = zeros(nState, nTime); u = control(:,1:2:end); % Control a the endpoints of each segment uMid = control(:,2:2:end); %Control at the mid-points of each segment c = zeros(1, nTime-1); %Integral cost for each segment dt = (t(end)-t(1))/(nTime-1); idx = 1:nSubStep:(nTime-1); %Indicies for the start of each segment x(:,[idx,end]) = state; %Fill in the states that we already know for iSubStep = 1:nSubStep % March forward Runge-Kutta step t0 = t(idx); x0 = x(:,idx); k0 = combinedDynamics(t0, x0, u(:,idx), dynFun,pathObj); k1 = combinedDynamics(t0+0.5*dt, x0 + 0.5*dt*k0(1:nState,:), uMid(:,idx), dynFun,pathObj); k2 = combinedDynamics(t0+0.5*dt, x0 + 0.5*dt*k1(1:nState,:), uMid(:,idx), dynFun,pathObj); k3 = combinedDynamics(t0+dt, x0 + dt*k2(1:nState,:), u(:,idx+1), dynFun,pathObj); z = (dt/6)*(k0 + 2*k1 + 2*k2 + k3); %Change over the sub-step xNext = x0 + z(1:nState,:); %Next state c(idx) = z(end,:); %Integral of the cost function over this step if iSubStep == nSubStep %We've reached the end of the interval % Compute the defect vector: defects = xNext - x(:,idx+1); else % Store the state for next step in time idx = idx+1; % <-- This is important!! x(:,idx) = xNext; end end pathCost = sum(c); %Sum up the integral cost over each segment %%%% Cache results to use on the next call to this function. RUNGE_KUTTA_t = t; RUNGE_KUTTA_x = x; RUNGE_KUTTA_u = u; RUNGE_KUTTA_defects = defects; RUNGE_KUTTA_pathCost = pathCost; end end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function dz = combinedDynamics(t,x,u,dynFun,pathObj) % dz = combinedDynamics(t,x,u,dynFun,pathObj) % % This function packages the dynamics and the cost function together so % that they can be integrated at the same time. % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % dynamics(t,x,u) = dynamics function handle % dx = [nState, nTime] = dx/dt = derivative of state wrt time % pathObj(t,x,u) = integral cost function handle % dObj = [1, nTime] = integrand from the cost function % % OUTPUTS: % dz = [dx; dObj] = combined dynamics of state and cost dx = dynFun(t,x,u); if isempty(pathObj) dc = zeros(size(t)); else dc = pathObj(t,x,u); end dz = [dx;dc]; %Combine and return end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% Analytic Gradient Stuff %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function gradInfo = grad_computeInfo(pack) % % This function computes the matrix dimensions and indicies that are used % to map the gradients from the user functions to the gradients needed by % fmincon. The key difference is that the gradients in the user functions % are with respect to their input (t,x,u) or (t0,x0,tF,xF), while the % gradients for fmincon are with respect to all decision variables. % % INPUTS: % nDeVar = number of decision variables % pack = details about packing and unpacking the decision variables % .nTime % .nState % .nControl % % OUTPUTS: % gradInfo = details about how to transform gradients % %nTime = pack.nTime; nState = pack.nState; nGridState = pack.nGridState; nControl = pack.nControl; nGridControl = pack.nGridControl; nDecVar = 2 + nState*nGridState + nControl*nGridControl; zIdx = 1:nDecVar; gradInfo.nDecVar = nDecVar; [tIdx, xIdx, uIdx] = unPackDecVar(zIdx,pack); gradInfo.tIdx = tIdx([1,end]); gradInfo.xIdx = xIdx; gradInfo.uIdx = uIdx; nSegment = pack.nSegment; nSubStep = pack.nSubStep; % indices of decVars associated with u indu = 1:2:(1+2*nSegment*nSubStep); gradInfo.indu = uIdx(:,indu); % indices of decVars associated with uMid indumid = 2:2:(1+2*nSegment*nSubStep); gradInfo.indumid = uIdx(:,indumid); %%%% For unpacking the boundary constraints and objective: gradInfo.bndIdxMap = [tIdx(1); xIdx(:,1); tIdx(end); xIdx(:,end)]; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [fail] = runGradientCheck(z_test, pack,dynamics, pathObj, bndObj, pathCst, bndCst, gradInfo) % % This function tests the analytic gradients of the objective and % nonlinear constraints with the DERIVEST package. The finite difference % calculations in matlab's optimization package were not sufficiently % accurate. % GradientCheckTol = 1e-6; %Analytic gradients must match numerical within this bound fail = 0; fprintf('\n%s\n','____________________________________________________________') fprintf('%s\n',' DerivativeCheck Information with DERIVEST Package ') % analytic gradient [~, dcost] = myObjGrad(z_test, pack, dynamics, pathObj, bndObj, gradInfo); % check gradient with derivest package deriv = gradest(@(z) myObjGrad(z, pack, dynamics, pathObj, bndObj, gradInfo),z_test); % print largest difference in numerical and analytic gradients fprintf('\n%s\n','Objective function derivatives:') fprintf('%s\n','Maximum relative difference between user-supplied') fprintf('%s %1.5e \n','and finite-difference derivatives = ',max(abs(dcost-deriv'))) if any(abs(dcost-deriv') > GradientCheckTol) error('Objective gradient did not pass') end % analytic nonlinear constraints [c, ceq,dc, dceq] = myCstGrad(z_test, pack, dynamics, pathObj, pathCst, bndCst, gradInfo); % check nonlinear inequality constraints with 'jacobianest' if ~isempty(c) jac = jacobianest(@(z) myConstraint(z, pack, dynamics, pathObj, pathCst, bndCst),z_test); % print largest difference in numerical and analytic gradients fprintf('\n%s\n','Nonlinear inequality constraint function derivatives:') fprintf('%s\n','Maximum relative difference between user-supplied') fprintf('%s %1.5e \n','and finite-difference derivatives = ',max(max(abs(dc-jac')))) if any(any(abs(dc - jac') > GradientCheckTol)) error('Nonlinear inequality constraint did not pass') end end % check nonlinear equality constraints with 'jacobianest' if ~isempty(ceq) jac = jacobianest(@(z) myCstGradCheckEq(z, pack, dynamics, pathObj, pathCst, bndCst),z_test); % print largest difference in numerical and analytic gradients fprintf('\n%s\n','Nonlinear equality constraint function derivatives:') fprintf('%s\n','Maximum relative difference between user-supplied') fprintf('%s %1.5e \n','and finite-difference derivatives = ',max(max(abs(dceq-jac')))) if any(any(abs(dceq - jac') > GradientCheckTol)) error('Nonlinear equality constraint did not pass') end end fprintf('\n%s\n','DerivativeCheck successfully passed.') fprintf('%s\n','____________________________________________________________') end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function ceq = myCstGradCheckEq(decVars, pack, dynamics, pathObj, pathCst, bndCst) % This function is necessary for runGradientCheck function % return only equality constraint (ceq) for use with jacobest.m [t,x,u,defects] = simulateSystem(decVars, pack, dynamics, pathObj); %%%% Call user-defined constraints and pack up: [~, ceq] = collectConstraints(t,x,u,... defects,... pathCst, bndCst); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [cost, dcost] = myObjGrad(decVars, pack,dynamics, pathObj, bndObj, gradInfo) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % bndObj = user-defined boundary objective function % gradInfo = % % OUTPUTS: % cost = scalar cost for this set of decision variables % dcost = gradient of cost % NOTE: gradients are only available for pathCost that depends only on % input parameters not states. % % % All of the real work happens inside this function: [t,x,~,~,pathCost,dxdalpha,dJdalpha] = simSysGrad(decVars, pack, dynamics, pathObj, gradInfo); %#ok<ASGLU> % dxdalpha is included in outputs to make sure subsequent calls to % simulateSystem without change a to decVars have access to the correct value % of dxdalpha - see simulateSystem in which dxdalpha is not calculated unless % nargout > 5 % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); bndCost = bndObj(t0,x0,tF,xF); end cost = pathCost + bndCost; % calculate gradient of cost function if nargout > 1 nState = pack.nState; nControl = pack.nControl; nSegment = pack.nSegment; nSubStep = pack.nSubStep; nDecVar = 2+nState*(1+nSegment)+nControl*(1+nSegment*nSubStep*2); % allocate gradient of cost dcost_pth = zeros(nDecVar,1); dcost_bnd = zeros(nDecVar,1); % gradient assocated with bound objective if ~isempty(bndObj) % bound costs and gradients w.r.t. t0, x0, tF, xF [~, d_bnd] = bndObj(t0,x0,tF,xF); % gradients of t0, x0, tF, xF w.r.t. decision parameters (labeled alpha) dt0_dalpha = zeros(1,nDecVar); dt0_dalpha(1) = 1; % t0 is always the first decVar % dx0_dalpha = zeros(nState,nDecVar); dx0_dalpha(1:nState,gradInfo.xIdx(:,end)) = eye(nState); % dtF_dalpha = zeros(1,nDecVar); dtF_dalpha(2) = 1; % tF is always the second decVar % dxF_dalpha = zeros(nState,nDecVar); dxF_dalpha(1:nState,gradInfo.xIdx(:,end)) = eye(nState); % gradient of bound cost dcost_bnd(:) = [dt0_dalpha; dx0_dalpha; dtF_dalpha; dxF_dalpha]' * d_bnd'; end % gradient assocated with path objective if ~isempty(pathObj) dcost_pth = dJdalpha'; end dcost = dcost_pth + dcost_bnd; end end function [c, ceq, dc, dceq] = myCstGrad(decVars, pack, dynamics, pathObj, pathCst, bndCst, gradInfo) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % pathCst = user-defined path-constraint function % bndCst = user-defined boundary constraint function % gradInfo = % % OUTPUTS: % c = non-linear inequality constraint % ceq = non-linear equatlity cosntraint % dc = gradient of c w.r.t. decVars % dceq = gradient of ceq w.r.t. decVars % % NOTE: % - path constraints are satisfied at the start and end of each sub-step % [t,x,u,defects,pathcost,dxdalpha] = simSysGrad(decVars, pack, dynamics, pathObj, gradInfo); %#ok<ASGLU> %%%% Call user-defined constraints and pack up: if nargout <= 2 [c, ceq] = collectConstraints(t,x,u,... defects,... pathCst, bndCst); else [c, ceq, dc, dceq] = collectConstraintsGrad(t,x,u,... defects,... pathCst, bndCst, pack, gradInfo, dxdalpha); end end function [c, ceq, dc, dceq] = collectConstraintsGrad(t,x,u,defects, pathCst, bndCst, pack, gradInfo, dxdalpha) % [c, ceq, dc, dceq] = collectConstraints(t,x,u,defects, pathCst, bndCst, pack, gradInfo, dxdalpha) % % OptimTraj utility function. % % Collects the defects, calls user-defined constraints, and then packs % everything up into a form that is good for fmincon. % % INPUTS: % t = time vector (time at each substep) nTime = 1+nSegment*nSubStep % x = state matrix (states at each time in t) % u = control matrix (control at each time in t) % defects = defects matrix % pathCst = user-defined path constraint function % bndCst = user-defined boundary constraint function % pack = % gradInfo = % dxdalpha = partial derivative of state at each substep w.r.t. decVars % % OUTPUTS: % c = inequality constraint for fmincon % ceq = equality constraint for fmincon % dc = gradient of c w.r.t. decVars % dceq = gradient of ceq w.r.t. decVars % % problem dimensions nState = pack.nState; nControl = pack.nControl; nSegment = pack.nSegment; nSubStep = pack.nSubStep; nDecVar = 2+nState*(1+nSegment)+nControl*(1+nSegment*nSubStep*2); %%%% defect constraints ceq_dyn = reshape(defects,numel(defects),1); dceq_dyn = zeros(nDecVar,length(ceq_dyn)); Inx = eye(nState); for j = 1:nSegment rows = gradInfo.xIdx(:,j+1); cols = (j-1)*nState+(1:nState); dceq_dyn(:,cols) = dxdalpha{j}(:,:,end)'; % gradient w.r.t. to x_i(+) dceq_dyn(rows,cols) = -Inx; % gradient w.r.t. to x_i end %%%% Compute the user-defined constraints: %%%% path constraints if isempty(pathCst) c_path = []; ceq_path = []; dc_path = []; dceq_path = []; else [c_pathRaw, ceq_pathRaw, c_pathGradRaw, ceq_pathGradRaw] = pathCst(t,x,u); c_path = reshape(c_pathRaw,numel(c_pathRaw),1); ceq_path = reshape(ceq_pathRaw,numel(ceq_pathRaw),1); dc_path = zeros(nDecVar,length(c_path)); dceq_path = zeros(nDecVar,length(ceq_path)); % dt/dalpha : gradient of time w.r.t. decVars dt_dalpha = zeros(1,nDecVar); nTime = 1+nSegment*nSubStep; n_time = 0:nTime-1; % gradients of path constraints nc = size(c_pathRaw,1); % number path constraints at each time nceq = size(ceq_pathRaw,1); for j = 1:(nSegment+1) for i = 1:nSubStep % d(t[n])/dalpha n_time0 = n_time((j-1)*nSubStep+i); dt_dalpha(1) = (1 - n_time0/(nTime-1)); dt_dalpha(2) = (n_time0/(nTime-1)); % if j < nSegment+1 dxi_dalpha = dxdalpha{j}(:,:,i); else dxi_dalpha = zeros(nState,nDecVar); cols = gradInfo.xIdx(:,j); dxi_dalpha(:,cols) = eye(nState); end % dui_dalpha = zeros(nControl,nDecVar); cols = gradInfo.indu(:,(j-1)*nSubStep+i); dui_dalpha(:,cols) = eye(nControl); % inequality path constraints if nc > 0 cols = (1:nc) + nc*((j-1)*nSubStep+i-1); dc_path(:,cols) = [dt_dalpha; dxi_dalpha; dui_dalpha]' * c_pathGradRaw(:,:,nSubStep*(j-1)+i)'; end % equality path constraints if nceq > 0 cols = (1:nceq) + nceq*((j-1)*nSubStep+i-1); dceq_path(:,cols) = [dt_dalpha; dxi_dalpha; dui_dalpha]' * ceq_pathGradRaw(:,:,nSubStep*(j-1)+i)'; end % no need to continue with inner loop. if j == nSegment+1 break; end end end end %%%% bound constraints if isempty(bndCst) c_bnd = []; ceq_bnd = []; dc_bnd = []; dceq_bnd = []; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); % bound constraints and gradients w.r.t. t0, x0, tF, xF [c_bnd, ceq_bnd, d_bnd, deq_bnd] = bndCst(t0,x0,tF,xF); % gradients of t0, x0, tF, xF w.r.t. decision parameters (labeled alpha) dt0_dalpha = zeros(1,nDecVar); dt0_dalpha(1) = 1; % t0 is always the first decVar % dx0_dalpha = zeros(nState,nDecVar); cols = gradInfo.xIdx(:,1); dx0_dalpha(1:nState,cols) = eye(nState); % dtF_dalpha = zeros(1,nDecVar); dtF_dalpha(2) = 1; % tF is always the second decVar % dxF_dalpha = zeros(nState,nDecVar); cols = gradInfo.xIdx(:,end); dxF_dalpha(1:nState,cols) = eye(nState); % inequality bound constraints dc_bnd = [dt0_dalpha; dx0_dalpha; dtF_dalpha; dxF_dalpha]' * d_bnd'; % equality bound constraints dceq_bnd = [dt0_dalpha; dx0_dalpha; dtF_dalpha; dxF_dalpha]' * deq_bnd'; end %%%% Pack everything up: c = [c_path;c_bnd]; ceq = [ceq_dyn; ceq_path; ceq_bnd]; dc = [dc_path, dc_bnd]; dceq = [dceq_dyn, dceq_path, dceq_bnd]; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [t,x,u,defects,pathCost,dxdalpha,dJdalpha] = simSysGrad(decVars, pack, dynFun, pathObj, gradInfo) % % This function does the real work of the transcription method. It % simulates the system forward in time across each segment of the % trajectory, computes the integral of the cost function, and then matches % up the defects between the end of each segment and the start of the next. % % INPUTS: % decVars = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynamics = user-defined dynamics function handle % pathObj = user-defined path-objective function % % OUTPUTS: % t = [1 x nGrid] = time vector for the edges of the sub-step grid % x = [nState x nGrid] = state vector % u = [nControl x nGrid] = control vector % defects = [nState x nSegment] = defect matrix % pathCost = scalar cost for the path integral % % NOTES: % - nGrid = nSegment*nSubStep+1 % - This function is usually called twice for each combination of % decision variables: once by the objective function and once by the % constraint function. To keep the code fast I cache the old values and % only recompute when the inputs change. % %%%% CODE OPTIMIZATION %%%% % % Prevents the same exact code from being called twice by caching the % solution and reusing it when appropriate. % global RUNGE_KUTTA_t RUNGE_KUTTA_x RUNGE_KUTTA_u global RUNGE_KUTTA_defects RUNGE_KUTTA_pathCost global RUNGE_KUTTA_decVars RUNGE_KUTTA_dxdalpha RUNGE_KUTTA_dJdalpha % usePreviousValues = false; if ~isempty(RUNGE_KUTTA_decVars) if length(RUNGE_KUTTA_decVars) == length(decVars) if ~any(RUNGE_KUTTA_decVars ~= decVars) usePreviousValues = true; end end end % if usePreviousValues t = RUNGE_KUTTA_t; x = RUNGE_KUTTA_x; u = RUNGE_KUTTA_u; defects = RUNGE_KUTTA_defects; pathCost = RUNGE_KUTTA_pathCost; dxdalpha = RUNGE_KUTTA_dxdalpha; dJdalpha = RUNGE_KUTTA_dJdalpha; else % % %%%% END CODE OPTIMIZATION %%%% [tSpan, state, control] = unPackDecVar(decVars,pack); nState = pack.nState; nControl = pack.nControl; nSegment = pack.nSegment; nSubStep = pack.nSubStep; % NOTES: % The following bit of code is a bit confusing, mostly due to the % need for vectorization to make things run at a reasonable speed in % Matlab. Part of the confusion comes because the decision variables % include the state at the beginning of each segment, but the control % at the beginning and middle of each substep - thus there are more % control grid-points than state grid points. The calculations are % vectorized over segments, but not sub-steps, since the result of % one sub-step is required for the next. % time, state, and control at the ends of each substep nTime = 1+nSegment*nSubStep; t = linspace(tSpan(1), tSpan(2), nTime); x = zeros(nState, nTime); u = control(:,1:2:end); % Control a the endpoints of each segment uMid = control(:,2:2:end); %Control at the mid-points of each segment c = zeros(1, nTime-1); %Integral cost for each segment dt = (t(end)-t(1))/(nTime-1); idx = 1:nSubStep:(nTime-1); %Indicies for the start of each segment x(:,[idx,end]) = state; %Fill in the states that we already know % VARIABLES for analytic gradient evaluations. % size of decicion parameters (2 for time), nstate*(nSegment+1), ... % dxdalpha = partial derivative of state w.r.t. decVars (alpha) nalpha = 2 + nState*(1+nSegment) + nControl*(1+2*nSubStep*nSegment); dxdalpha = cell(1,nSegment); for i = 1:nSegment dxdalpha{i} = zeros(nState,nalpha,nSubStep+1); cols = gradInfo.xIdx(:,i); dxdalpha{i}(:,cols,1) = eye(nState); end dTdalpha = zeros(1,nalpha); dTdalpha(1:2) = [-1,1]; dt_dalpha = zeros(1,nalpha); n_time = 0:nTime-1; % gradient of path cost dJdalpha = zeros(1,nalpha); for iSubStep = 1:nSubStep % March forward Runge-Kutta step t0 = t(idx); x0 = x(:,idx); %------------------------------------------ % Code for calculating dxdalpha (partial derivative of state w.r.t. % the descision parameters): dxdalpha = nstate x nalpha % assume nargout <=5 when using finite difference calculation for % gradients in which case dxdalpha is unnecessary. % Gradient of time w.r.t. decVars % ------------------------------------------------------------ % dt = (tF-t0)/(nTime-1) % t = t0 + n*dt % t = t0 + n*(tF-t0)/(nTime-1) % t = t0*(1-n/(nTime-1)) + tF*(n/(nTime-1)) % % alpha = [t0, tF, x0, x1, ..., xN, u0, uM0, u1, ..., uN] % dt/dalpha = [1 - n/(nTime-1), n/(nTime-1), 0, 0, ... 0] % ------------------------------------------------------------ n_time0 = n_time(idx); [k0, dk0] = combinedDynGrad(t0, x0, u(:,idx), dynFun,pathObj); [k1, dk1] = combinedDynGrad(t0+0.5*dt, x0 + 0.5*dt*k0(1:nState,:), uMid(:,idx), dynFun,pathObj); [k2, dk2] = combinedDynGrad(t0+0.5*dt, x0 + 0.5*dt*k1(1:nState,:), uMid(:,idx), dynFun,pathObj); [k3, dk3] = combinedDynGrad(t0+dt, x0 + dt*k2(1:nState,:), u(:,idx+1), dynFun,pathObj); z = (dt/6)*(k0 + 2*k1 + 2*k2 + k3); %Change over the sub-step for j = 1:nSegment % d(t[n])/dalpha dt_dalpha(1) = (1 - n_time0(j)/(nTime-1)); dt_dalpha(2) = (n_time0(j)/(nTime-1)); % du[n]/dalpha du_dalpha = zeros(nControl,nalpha); du_dalpha(:,gradInfo.indu(:,idx(j))) = eye(nControl); % duMid[n]/dalpha duMid_dalpha = zeros(nControl,nalpha); duMid_dalpha(:,gradInfo.indumid(:,idx(j))) = eye(nControl); % du[n+1]/dalpha du1_dalpha = zeros(nControl,nalpha); du1_dalpha(:,gradInfo.indu(:,idx(j)+1)) = eye(nControl); % dk0/dalpha dk0da = dk0(:,:,j) * [dt_dalpha; dxdalpha{j}(:,:,iSubStep); du_dalpha]; % dk1/dalpha dk1da = dk1(:,:,j) * [dt_dalpha + 0.5/(nTime-1)*dTdalpha; dxdalpha{j}(:,:,iSubStep) + 0.5*dt*dk0da(1:nState,:) + 0.5/(nTime-1)*k0(1:nState,j)*dTdalpha; duMid_dalpha]; % dk2/dalpha dk2da = dk2(:,:,j) * [dt_dalpha + 0.5/(nTime-1)*dTdalpha; dxdalpha{j}(:,:,iSubStep) + 0.5*dt*dk1da(1:nState,:) + 0.5/(nTime-1)*k1(1:nState,j)*dTdalpha; duMid_dalpha]; % dk3/dalpha dk3da = dk3(:,:,j) * [dt_dalpha + 1/(nTime-1)*dTdalpha; dxdalpha{j}(:,:,iSubStep) + dt*dk2da(1:nState,:) + 1/(nTime-1)*k2(1:nState,j)*dTdalpha; du1_dalpha]; dz = (dt/6)*(dk0da + 2*dk1da + 2*dk2da + dk3da)... + 1/(6*(nTime-1))*(k0(:,j)+2*k1(:,j)+2*k2(:,j)+k3(:,j))*dTdalpha; % update dxdalpha dxdalpha{j}(:,:,iSubStep+1) = dxdalpha{j}(:,:,iSubStep) + dz(1:nState,:); % update dJdalpha dJdalpha = dJdalpha + dz(nState+1,:); end xNext = x0 + z(1:nState,:); %Next state c(idx) = z(end,:); %Integral of the cost function over this step if iSubStep == nSubStep %We've reached the end of the interval % Compute the defect vector: defects = xNext - x(:,idx+1); else % Store the state for next step in time idx = idx+1; % <-- This is important!! x(:,idx) = xNext; end end pathCost = sum(c); %Sum up the integral cost over each segment %%%% Cache results to use on the next call to this function. RUNGE_KUTTA_t = t; RUNGE_KUTTA_x = x; RUNGE_KUTTA_u = u; RUNGE_KUTTA_defects = defects; RUNGE_KUTTA_pathCost = pathCost; RUNGE_KUTTA_dxdalpha = dxdalpha; RUNGE_KUTTA_dJdalpha = dJdalpha; end end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [dz, J] = combinedDynGrad(t,x,u,dynFun,pathObj) % [dz, dJ] = combinedDynGrad(t,x,u,dynFun,pathObj) % % This function packages the dynamics and the cost function together so % that they can be integrated at the same time. % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % dynamics(t,x,u) = dynamics function handle % dx = [nState, nTime] = dx/dt = derivative of state wrt time % pathObj(t,x,u) = integral cost function handle % dObj = [1, nTime] = integrand from the cost function % % OUTPUTS: % dz = [dx; dObj] = combined dynamics of state and cost % dJ = [JAC(dynamics), JAC(objective)] = combined jacobian of dynamics % and objective w.r.t. (t,x,u) nState = size(x,1); nControl = size(u,1); [dx,Jx] = dynFun(t,x,u); if isempty(pathObj) dc = zeros(size(t)); Jc = zeros(1,1+nState+nControl,length(t)); else [dc,Jc] = pathObj(t,x,u); Jc = reshape(Jc,1,1+nState+nControl,length(t)); end dz = [dx;dc]; J = cat(1,Jx,Jc); end
github
pvarin/DynamicVAE-master
getDefaultOptions.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/getDefaultOptions.m
8,511
UNKNOWN
b0e50d99e831c558cf728ae9bb423345
function problem = getDefaultOptions(problem) % problem = getDefaultOptions(problem) % % This function fills in any blank entries in the problem.options struct. % It is designed to be called from inside of optimTraj.m, and not by the % user. % %%%% Top-level default options: OPT.method = 'trapezoid'; OPT.verbose = 2; OPT.defaultAccuracy = 'medium'; %%%% Basic setup % ensure that options is not empty if ~isfield(problem,'options') problem.options.method = OPT.method; end opt = problem.options; % Loop over each options struct and fill in top-level options for i=1:length(opt) if ~isfield(opt(i),'method') opt(i).method = OPT.method; elseif isempty(opt(i).method) opt(i).method = OPT.method; end if ~isfield(opt(i),'verbose') opt(i).verbose = OPT.verbose; elseif isempty(opt(i).verbose) opt(i).verbose = OPT.verbose; end if ~isfield(opt(i),'defaultAccuracy') opt(i).defaultAccuracy = OPT.defaultAccuracy; elseif isempty(opt(i).defaultAccuracy) opt(i).defaultAccuracy = OPT.defaultAccuracy; end end % Figure out basic problem size: nState = size(problem.guess.state,1); nControl = size(problem.guess.control,1); % Loop over opt and fill in nlpOpt struct: for i=1:length(opt) switch opt(i).verbose case 0 NLP_display = 'notify'; case 1 NLP_display = 'final-detailed'; case 2 NLP_display = 'iter'; case 3 NLP_display = 'iter-detailed'; otherwise error('Invalid value for options.verbose'); end switch opt(i).defaultAccuracy case 'low' OPT.nlpOpt = optimset(... 'Display',NLP_display,... 'TolFun',1e-4,... 'MaxIter',200,... 'MaxFunEvals',1e4*(nState+nControl)); case 'medium' OPT.nlpOpt = optimset(... 'Display',NLP_display,... 'TolFun',1e-6,... 'MaxIter',400,... 'MaxFunEvals',5e4*(nState+nControl)); case 'high' OPT.nlpOpt = optimset(... 'Display',NLP_display,... 'TolFun',1e-8,... 'MaxIter',800,... 'MaxFunEvals',1e5*(nState+nControl)); otherwise error('Invalid value for options.defaultAccuracy') end if isfield(opt(i),'nlpOpt') if isstruct(opt(i).nlpOpt) && ~isempty(opt(i).nlpOpt) names = fieldnames(opt(i).nlpOpt); for j=1:length(names) if ~isfield(OPT.nlpOpt,names{j}) disp(['WARNING: options.nlpOpt.' names{j} ' is not a valid option']); else OPT.nlpOpt.(names{j}) = opt(i).nlpOpt.(names{j}); end end end end opt(i).nlpOpt = OPT.nlpOpt; end % Check ChebFun dependency: missingChebFun = false; for i=1:length(opt) if strcmp(opt(i).method,'chebyshev') try chebpts(3); %Test call to chebfun catch ME %#ok<NASGU> missingChebFun = true; opt(i).method = 'trapezoid'; %Force default method end end end if missingChebFun warning('''chebyshev'' method requires the Chebfun toolbox'); disp(' --> Install Chebfun toolbox: (http://www.chebfun.org/)'); disp(' --> Running with default method instead (''trapezoid'')'); end % Fill in method-specific paramters: for i=1:length(opt) OPT_method = opt(i).method; switch OPT_method case 'trapezoid' OPT.trapezoid = defaults_trapezoid(opt(i).defaultAccuracy); case 'hermiteSimpson' OPT.hermiteSimpson = defaults_hermiteSimpson(opt(i).defaultAccuracy); case 'chebyshev' OPT.chebyshev = defaults_chebyshev(opt(i).defaultAccuracy); case 'multiCheb' OPT.multiCheb = defaults_multiCheb(opt(i).defaultAccuracy); case 'rungeKutta' OPT.rungeKutta = defaults_rungeKutta(opt(i).defaultAccuracy); case 'gpops' OPT.gpops = defaults_gpops(opt(i).defaultAccuracy); otherwise error('Invalid value for options.method'); end if isfield(opt(i),OPT_method) if isstruct(opt(i).(OPT_method)) && ~isempty(opt(i).(OPT_method)) names = fieldnames(opt(i).(OPT_method)); for j=1:length(names) if ~isfield(OPT.(OPT_method),names{j}) disp(['WARNING: options.' OPT_method '.' names{j} ' is not a valid option']); else OPT.(OPT_method).(names{j}) = opt(i).(OPT_method).(names{j}); end end end end opt(i).(OPT_method) = OPT.(OPT_method); end problem.options = opt; end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Method-specific parameters % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_trapezoid = defaults_trapezoid(accuracy) switch accuracy case 'low' OPT_trapezoid.nGrid = 12; case 'medium' OPT_trapezoid.nGrid = 30; case 'high' OPT_trapezoid.nGrid = 60; otherwise error('Invalid value for options.defaultAccuracy') end OPT_trapezoid.adaptiveDerivativeCheck = 'off'; end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_hermiteSimpson = defaults_hermiteSimpson(accuracy) switch accuracy case 'low' OPT_hermiteSimpson.nSegment = 10; case 'medium' OPT_hermiteSimpson.nSegment = 20; case 'high' OPT_hermiteSimpson.nSegment = 40; otherwise error('Invalid value for options.defaultAccuracy') end OPT_hermiteSimpson.adaptiveDerivativeCheck = 'off'; end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_chebyshev = defaults_chebyshev(accuracy) switch accuracy case 'low' OPT_chebyshev.nColPts = 9; case 'medium' OPT_chebyshev.nColPts = 13; case 'high' OPT_chebyshev.nColPts = 23; otherwise error('Invalid value for options.defaultAccuracy') end end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_multiCheb = defaults_multiCheb(accuracy) switch accuracy case 'low' OPT_multiCheb.nColPts = 6; OPT_multiCheb.nSegment = 3; case 'medium' OPT_multiCheb.nColPts = 8; OPT_multiCheb.nSegment = 6; case 'high' OPT_multiCheb.nColPts = 8; OPT_multiCheb.nSegment = 12; otherwise error('Invalid value for options.defaultAccuracy') end end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_rungeKutta = defaults_rungeKutta(accuracy) switch accuracy case 'low' OPT_rungeKutta.nSegment = 10; OPT_rungeKutta.nSubStep = 2; case 'medium' OPT_rungeKutta.nSegment = 20; OPT_rungeKutta.nSubStep = 2; case 'high' OPT_rungeKutta.nSegment = 20; OPT_rungeKutta.nSubStep = 4; otherwise error('Invalid value for options.defaultAccuracy') end OPT_rungeKutta.adaptiveDerivativeCheck = 'off'; end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function OPT_gpops = defaults_gpops(accuracy) OPT_gpops.bounds.phase.integral.lower = -inf; OPT_gpops.bounds.phase.integral.upper = inf; OPT_gpops.guess.phase.integral = 0; OPT_gpops.name = 'OptimTraj_GPOPS'; OPT_gpops.auxdata = []; OPT_gpops.nlp.solver = 'ipopt'; % {'ipopt','snopt'} OPT_gpops.derivatives.dependencies = 'full'; %�full�, �sparse� or �sparseNaN� OPT_gpops.derivatives.supplier = 'sparseCD'; %'sparseCD'; %'adigator' OPT_gpops.derivatives.derivativelevel = 'first'; %'second'; OPT_gpops.mesh.method = 'hp-PattersonRao'; OPT_gpops.method = 'RPM-Integration'; OPT_gpops.mesh.phase.colpoints = 10*ones(1,10); OPT_gpops.mesh.phase.fraction = ones(1,10)/10; OPT_gpops.scales.method = 'none'; % { 'none' , automatic-hybridUpdate' , 'automatic-bounds'; switch accuracy case 'low' OPT_gpops.mesh.tolerance = 1e-2; OPT_gpops.mesh.maxiterations = 0; case 'medium' OPT_gpops.mesh.tolerance = 1e-3; OPT_gpops.mesh.maxiterations = 1; case 'high' OPT_gpops.mesh.tolerance = 1e-4; OPT_gpops.mesh.maxiterations = 3; otherwise error('Invalid value for options.defaultAccuracy') end end
github
pvarin/DynamicVAE-master
gpopsWrapper.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/gpopsWrapper.m
5,777
utf_8
fb8e22a03bfa72046ab9bf5458b31b1f
function soln = gpopsWrapper(problem) % soln = gpopsWrapper(problem) % % This function is a wrapper that converts the standard input for optimTraj % into a call to GPOPS2, a commercially available transcription software % for matlab. You can purchase and download it at http://www.gpops2.com/ % % GPOPS2 implements an adaptive transcription method - it adjusts both the % number of trajectory segments and the order of the interpolating % polynomial in each segment. Many GPOPS features are available in OptimTraj, % but not all. Notably, OptimTraj cannot solve multi-phase problems. % % Set any special GPOPS options by storing the 'setup' sturuct in the % problem.options.gpops struct. % % If using SNOPT, be careful about any constant terms in your constraints. % When using numerical gradients, SNOPT drops any constant terms in your % constraints, which is why it has non-zero bounds. This is exactly the % opposite of the convention that FMINCON uses, where all constraint bounds % must be zero. If your constraints have non-zero bounds, and you would % like to use GPOPS with SNOPT as the solver, then manually set the fields % in problem.gpops.phase.bounds.path and problem.gpops.eventgroup to % include these bounds, and then remove them from the constraint function. % % Print out some solver info if desired: if problem.options.verbose > 0 disp('Transcription using GPOPS2'); end % Copy the problem specification setup = problem.options.gpops; setup.bounds.phase.initialtime.lower = problem.bounds.initialTime.low'; setup.bounds.phase.initialtime.upper = problem.bounds.initialTime.upp'; setup.bounds.phase.finaltime.lower = problem.bounds.finalTime.low'; setup.bounds.phase.finaltime.upper = problem.bounds.finalTime.upp'; setup.bounds.phase.initialstate.lower = problem.bounds.initialState.low'; setup.bounds.phase.initialstate.upper = problem.bounds.initialState.upp'; setup.bounds.phase.finalstate.lower = problem.bounds.finalState.low'; setup.bounds.phase.finalstate.upper = problem.bounds.finalState.upp'; setup.bounds.phase.state.lower = problem.bounds.state.low'; setup.bounds.phase.state.upper = problem.bounds.state.upp'; setup.bounds.phase.control.lower = problem.bounds.control.low'; setup.bounds.phase.control.upper = problem.bounds.control.upp'; setup.guess.phase.time = problem.guess.time'; setup.guess.phase.state = problem.guess.state'; setup.guess.phase.control = problem.guess.control'; % Configure bounds on the path constraints if ~isempty(problem.func.pathCst) if ~isfield(setup.bounds.phase, 'path') [cTest, ceqTest] = problem.func.pathCst(... problem.guess.time,problem.guess.state,problem.guess.control); nc = size(cTest,1); nceq = size(ceqTest,1); setup.bounds.phase.path.lower = [-inf(1,nc), zeros(1,nceq)]; setup.bounds.phase.path.upper = zeros(1,nc+nceq); end end % Configure bounds on the endpoint constraints if ~isempty(problem.func.bndCst) if ~isfield(setup.bounds, 'eventgroup') t0 = problem.guess.time(1); tF = problem.guess.time(end); x0 = problem.guess.state(:,1); xF = problem.guess.state(:,end); [cTest, ceqTest] = problem.func.bndCst(t0, x0,tF,xF); nc = size(cTest,1); nceq = size(ceqTest,1); setup.bounds.eventgroup.lower = [-inf(1,nc), zeros(1,nceq)]; setup.bounds.eventgroup.upper = zeros(1,nc+nceq); end end F = problem.func; setup.functions.continuous = @(input)( gpops_continuous(input,F.dynamics,F.pathObj,F.pathCst) ); setup.functions.endpoint = @(input)( gpops_endpoint(input,F.bndObj,F.bndCst) ); %%%% KEY LINE: Solve the optimization problem with GPOPS II output = gpops2(setup); % Pack up the results: soln.grid.time = output.result.solution.phase.time'; soln.grid.state = output.result.solution.phase.state'; soln.grid.control = output.result.solution.phase.control'; tSoln = output.result.interpsolution.phase.time'; xSoln = output.result.interpsolution.phase.state'; uSoln = output.result.interpsolution.phase.control'; soln.interp.state = @(t)( interp1(tSoln',xSoln',t','pchip',nan)' ); soln.interp.control = @(t)( interp1(tSoln',uSoln',t','pchip',nan)' ); soln.info.nlpTime = output.totaltime; soln.info.objVal = output.result.objective; soln.info.gpops.meshcounts = output.meshcounts; soln.info.gpops.result.maxerror = output.result.maxerror; soln.info.gpops.result.nlpinfo = output.result.nlpinfo; soln.info.gpops.result.setup = output.result.setup; soln.problem = problem; soln.problem.options.nlpOpt = []; % did not use the fmincon options end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function output = gpops_endpoint(input,bndObj,bndCst) % % The endpoint function contains the boundary constraints and objective % functions for the trajectory optimization problem. % t0 = input.phase.initialtime; tF = input.phase.finaltime; x0 = input.phase.initialstate'; xF = input.phase.finalstate'; if isempty(bndObj) output.objective = input.phase.integral; else output.objective = input.phase.integral + bndObj(t0,x0,tF,xF); end if ~isempty(bndCst) [c, ceq] = bndCst(t0,x0,tF,xF); output.eventgroup.event = [c;ceq]'; end end function output = gpops_continuous(input,dynamics,pathObj,pathCst) % % The continuous function contains the path objective, dynamics, and path % constraint functions. % t = input.phase.time'; x = input.phase.state'; u = input.phase.control'; f = dynamics(t,x,u); c = pathObj(t,x,u); output.dynamics = f'; output.integrand = c'; if ~isempty(pathCst) [c, ceq] = pathCst(t,x,u); output.path = [c;ceq]'; end end
github
pvarin/DynamicVAE-master
inputValidation.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/inputValidation.m
4,319
utf_8
394cd18a2f88465b4d3adbfe71561f8c
function problem = inputValidation(problem) % % This function runs through the problem struct and sets any missing fields % to the default value. If a mandatory field is missing, then it throws an % error. % % INPUTS: % problem = a partially completed problem struct % % OUTPUTS: % problem = a complete problem struct, with validated fields % %%%% Check the function handles: if ~isfield(problem,'func') error('Field ''func'' cannot be ommitted from ''problem'''); else if ~isfield(problem.func,'dynamics') error('Field ''dynamics'' cannot be ommitted from ''problem.func'''); end if ~isfield(problem.func,'pathObj'), problem.func.pathObj = []; end if ~isfield(problem.func,'bndObj'), problem.func.bndObj = []; end if ~isfield(problem.func,'pathCst'), problem.func.pathCst = []; end if ~isfield(problem.func,'bndCst'), problem.func.bndCst = []; end end %%%% Check the initial guess (also compute nState and nControl): if ~isfield(problem, 'guess') error('Field ''guess'' cannot be ommitted from ''problem'''); else if ~isfield(problem.guess,'time') error('Field ''time'' cannot be ommitted from ''problem.guess'''); end if ~isfield(problem.guess, 'state') error('Field ''state'' cannot be ommitted from ''problem.guess'''); end if ~isfield(problem.guess, 'control') error('Field ''control'' cannot be ommitted from ''problem.guess'''); end % Compute the size of the time, state, and control based on guess [checkOne, nTime] = size(problem.guess.time); [nState, checkTimeState] = size(problem.guess.state); [nControl, checkTimeControl] = size(problem.guess.control); if nTime < 2 || checkOne ~= 1 error('guess.time must have dimensions of [1, nTime], where nTime > 1'); end if checkTimeState ~= nTime error('guess.state must have dimensions of [nState, nTime]'); end if checkTimeControl ~= nTime error('guess.control must have dimensions of [nControl, nTime]'); end end %%%% Check the problem bounds: if ~isfield(problem,'bounds') problem.bounds.initialTime = []; problem.bounds.finalTime = []; problem.bounds.state = []; problem.bounds.initialState = []; problem.bounds.finalState = []; problem.bounds.control = []; else if ~isfield(problem.bounds,'initialTime') problem.bounds.initialTime = []; end problem.bounds.initialTime = ... checkLowUpp(problem.bounds.initialTime,1,1,'initialTime'); if ~isfield(problem.bounds,'finalTime') problem.bounds.finalTime = []; end problem.bounds.finalTime = ... checkLowUpp(problem.bounds.finalTime,1,1,'finalTime'); if ~isfield(problem.bounds,'state') problem.bounds.state = []; end problem.bounds.state = ... checkLowUpp(problem.bounds.state,nState,1,'state'); if ~isfield(problem.bounds,'initialState') problem.bounds.initialState = []; end problem.bounds.initialState = ... checkLowUpp(problem.bounds.initialState,nState,1,'initialState'); if ~isfield(problem.bounds,'finalState') problem.bounds.finalState = []; end problem.bounds.finalState = ... checkLowUpp(problem.bounds.finalState,nState,1,'finalState'); if ~isfield(problem.bounds,'control') problem.bounds.control = []; end problem.bounds.control = ... checkLowUpp(problem.bounds.control,nControl,1,'control'); end end function input = checkLowUpp(input,nRow,nCol,name) % % This function checks that input has the following is true: % size(input.low) == [nRow, nCol] % size(input.upp) == [nRow, nCol] if ~isfield(input,'low') input.low = -inf(nRow,nCol); end if ~isfield(input,'upp') input.upp = inf(nRow,nCol); end [lowRow, lowCol] = size(input.low); if lowRow ~= nRow || lowCol ~= nCol error(['problem.bounds.' name ... '.low must have size = [' num2str(nRow) ', ' num2str(nCol) ']']); end [uppRow, uppCol] = size(input.upp); if uppRow ~= nRow || uppCol ~= nCol error(['problem.bounds.' name ... '.upp must have size = [' num2str(nRow) ', ' num2str(nCol) ']']); end if sum(sum(input.upp-input.low < 0)) error(... ['problem.bounds.' name '.upp must be >= problem.bounds.' name '.low!']); end end
github
pvarin/DynamicVAE-master
multiCheb.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/multiCheb.m
21,236
utf_8
f3b52105bdd4fc219954b4149df07295
function soln = multiCheb(problem) % soln = multiCheb(problem) % % DEPRICATED % % % ************************************************************************* % This file is no longer used, and is preserved for reference only. The % numerical methods for connecting segments are not the most stable, % particularily for low-order polynomials. This file will later be replaced % with HP orthogonal collocation, based on Legendre polynomials. % ************************************************************************* % % % This function transcribes a trajectory optimization problem Chebyshev % orthogonal polynomials for basis functions. This is an orthogonal % collocation method. This method is similiar to Chebyshev, except that % here I break the trajectory into several segments, rahter than just one. % % The technique is similar to the one described in detail in the paper: % % " A Chebyshev Technique for Solving Nonlinear Optimal Control Problems" % ISSS Trans. Automatic Control, 1988 % by: Jacques Vlassenbroeck and Rene Van Dooren % % My implementation for computation of the differentiation matrix, % quadrature rules, and interpolation are based on the following: % % "Barycentric Lagrange Interpolation" % Siam Review, 2004 % Publisher: Society for Industrial and Applied Mathematics % by: Jean-Paul Berrut and Lloyd N. Trefethen % % "Approximation Theory and Approximation Practice" % Textbook by Lloyd N. Trefethen % % "Chebfun" Matlab toolbox % Website: http://www.chebfun.org/ % by Lloyd N. Trefethen et al. % % For details on the input and output, see the help file for optimTraj.m % % Method specific parameters: % % problem.options.method = 'multiCheb' % problem.options.multiCheb = struct with method parameters: % .nColPts = number of collocation points in each trajectory segment % .nSegment = number of segments to break the trajectory into % % % ************************************************************************* % DEPRICATED % ************************************************************************* % %To make code more readable G = problem.guess; B = problem.bounds; F = problem.func; Opt = problem.options; nColPts = Opt.multiCheb.nColPts; %Number of collocation points in each segment nSegment = Opt.multiCheb.nSegment; %Fraction of the duration spent in each segment % Print out some solver info if desired: if Opt.verbose > 0 disp(' -> Transcription via Multiple-segment Chebyshev orthogonal collocation'); disp(' '); end % This method seems to fail if a low-order polynomial is used. % It gives reasonable solutions for medium-high order polynomials if nColPts < 6 disp(' WARNING: using fewer than six collocation points per interval can lead to numerical problems!'); end % Chebyshev points and weights on the default domain [xx,ww] = chebyshevPoints(nColPts,[-1,1]); cheb.xx = xx; cheb.ww = ww; cheb.nSegment = nSegment; cheb.nColPts = nColPts; % Interpolate the guess at the chebyshev-points for transcription: guess.tSpan = G.time([1,end]); guess.time = getMultiChebTime(cheb,guess.tSpan); guess.state = interp1(G.time', G.state', guess.time')'; guess.control = interp1(G.time', G.control', guess.time')'; [zGuess, pack] = packDecVar(guess.time, guess.state, guess.control); % Unpack all bounds: nGrid = nSegment*nColPts; tLow = getMultiChebTime(cheb,[B.initialTime.low, B.finalTime.low]); xLow = [B.initialState.low, B.state.low*ones(1,nGrid-2), B.finalState.low]; uLow = B.control.low*ones(1,nGrid); zLow = packDecVar(tLow,xLow,uLow); tUpp = getMultiChebTime(cheb,[B.initialTime.upp, B.finalTime.upp]); xUpp = [B.initialState.upp, B.state.upp*ones(1,nGrid-2), B.finalState.upp]; uUpp = B.control.upp*ones(1,nGrid); zUpp = packDecVar(tUpp,xUpp,uUpp); %%%% Set up problem for fmincon: P.objective = @(z)( ... myObjective(z, pack, F.pathObj, F.bndObj, cheb) ); P.nonlcon = @(z)( ... myConstraint(z, pack, F.dynamics, F.pathCst, F.bndCst, cheb) ); P.x0 = zGuess; P.lb = zLow; P.ub = zUpp; P.Aineq = []; P.bineq = []; P.Aeq = []; P.beq = []; P.options = Opt.nlpOpt; P.solver = 'fmincon'; %%%% Call fmincon to solve the non-linear program (NLP) tic; [zSoln, objVal,exitFlag,output] = fmincon(P); nlpTime = toc; soln = formatTrajectory(zSoln, pack, cheb); soln.info = output; soln.info.nlpTime = nlpTime; soln.info.exitFlag = exitFlag; soln.info.objVal = objVal; soln.problem = problem; % Return the fully detailed problem struct end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% %%%% SUB FUNCTIONS %%%% %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [z,pack] = packDecVar(t,x,u) % % This function collapses the time (t), state (x) % and control (u) matricies into a single vector % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % % OUTPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % nTime = length(t); nState = size(x,1); nControl = size(u,1); tSpan = [t(1); t(end)]; xCol = reshape(x, nState*nTime, 1); uCol = reshape(u, nControl*nTime, 1); z = [tSpan;xCol;uCol]; pack.nTime = nTime; pack.nState = nState; pack.nControl = nControl; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [t,x,u,w] = unPackDecVar(z,pack,cheb) % % This function unpacks the decision variables for % trajectory optimization into the time (t), % state (x), and control (u) matricies % % INPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % % OUTPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % w = [1, nTime] = weights for clenshaw-curtis quadrature % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; nx = nState*nTime; nu = nControl*nTime; [t, w] = getMultiChebTime(cheb,[z(1),z(2)]); x = reshape(z((2+1):(2+nx)),nState,nTime); u = reshape(z((2+nx+1):(2+nx+nu)),nControl,nTime); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [time, weights] = getMultiChebTime(cheb,tSpan) % % This function computes the time grid for a trajectory that is made up of % a series of chebyshev orthogonal polynomials. % % INPUTS: % cheb = struct of information about the chebyshev basis functions % .xx = chebyshev points, on the domain [-1,1] % .ww = chebyshev weights, on the domain [-1,1] % .nSegment = number of trajectory segments % tSpan = [tInitial, tFinal] % % OUTPUTS: % time = [timeSegment_1, timeSegment_2, ... timeSegment_nSegment]; % % NOTES: % This function will return duplicate times at the boundary to each % segment, so that the dynamics of each segment can easily be solved % independantly. These redundant points must be removed before returning % the output to the user. % % For example, time should like something like: % time = [0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9]; % d = [0, (tSpan(2)-tSpan(1))/cheb.nSegment]; %Domain for the scaled points [x, w] = chebyshevScalePoints(cheb.xx,cheb.ww,d); %Scaled points offset = linspace(tSpan(1),tSpan(2),cheb.nSegment+1); %Starting time for each segment time = x'*ones(1,cheb.nSegment) + ones(cheb.nColPts,1)*offset(1:(end-1)); nGrid = numel(time); time = reshape(time,1,nGrid); weights = reshape(w'*ones(1,cheb.nSegment),1,nGrid); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [x,w] = chebyshevScalePoints(xx,ww,d) % [x,w] = chebyshevScalePoints(xx,ww,d) % % This function scales the chebyshev points to an arbitrary interval % % INPUTS: % xx = chebyshev points on the domain [-1,1] % ww = chebysehv weights on the domain [-1,1] % d = [low, upp] = new domain % % OUTPUTS: % x = chebyshev points on the new domain d % w = chebyshev weights on the new domain d % x = ((d(2)-d(1))*xx + sum(d))/2; w = ww*(d(2)-d(1))/2; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function cost = myObjective(z,pack,pathObj,bndObj,cheb) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % pathObj = user-defined integral objective function % endObj = user-defined end-point objective function % % OUTPUTS: % cost = scale cost for this set of decision variables % [t,x,u,w] = unPackDecVar(z,pack,cheb); % Compute the cost integral along trajectory if isempty(pathObj) integralCost = 0; else integrand = pathObj(t,x,u); %Calculate the integrand of the cost function integralCost = dot(w,integrand); %Clenshw-curtise quadrature end % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); bndCost = bndObj(t0,x0,tF,xF); end cost = bndCost + integralCost; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [c, ceq] = myConstraint(z,pack,dynFun, pathCst, bndCst, cheb) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynFun = user-defined dynamics function % pathCst = user-defined constraints along the path % endCst = user-defined constraints at the boundaries % % OUTPUTS: % c = inequality constraints to be passed to fmincon % ceq = equality constraints to be passed to fmincon % [t,x,u] = unPackDecVar(z,pack,cheb); nSegment = cheb.nSegment; %%%% Enforce the dynamics: % Analytic differentiation of the trajectory at chebyshev points: domain = [0, (t(end)-t(1))/nSegment]; %Domain for the scaled points xTemplate = chebyshevScalePoints(cheb.xx,cheb.ww,domain); %Scaled points D = chebyshevDifferentiationMatrix(xTemplate); dxFun = zeros(size(x)); idx = 1:cheb.nColPts; for i=1:nSegment %Loop over each segment of the trajectory dxFun(:,idx) = (D*x(:,idx)')'; idx = idx + cheb.nColPts; end % Derivative, according to the dynamics function: dxDyn = dynFun(t,x,u); % Add a constraint that both versions of the derivative must match. % This ensures that the dynamics inside of each segment are correct. dxError = dxFun - dxDyn; % Add an additional defect that makes the state at the end of one % segment match the state at the beginning of the next segment. idxLow = cheb.nColPts*(1:(nSegment-1)); idxUpp = idxLow + 1; stitchState = x(:,idxLow)-x(:,idxUpp); stitchControl = u(:,idxLow)-u(:,idxUpp); %Also need continuous control defects = [... reshape(dxError, numel(dxError),1); reshape(stitchState, numel(stitchState),1); reshape(stitchControl, numel(stitchControl),1)]; %%%% Call user-defined constraints and pack up: [c, ceq] = collectConstraints(t,x,u, defects, pathCst, bndCst); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function soln = formatTrajectory(zSoln, pack, cheb) % % This function formats the result of the trajectory optimization so that % it is easy to use for plotting and analysis by the user. % [tSoln,xSoln,uSoln] = unPackDecVar(zSoln,pack,cheb); nSegment = cheb.nSegment; nColPts = cheb.nColPts; %%%% Need to remove the duplicate data points between segments: idxLow = nColPts*(1:(nSegment-1)); idxUpp = idxLow + 1; tSoln(idxUpp) = []; xSoln(:,idxLow) = 0.5*(xSoln(:,idxLow)+xSoln(:,idxUpp)); xSoln(:,idxUpp) = []; uSoln(:,idxLow) = 0.5*(uSoln(:,idxLow)+uSoln(:,idxUpp)); uSoln(:,idxUpp) = []; %%%% Store the results: soln.grid.time = tSoln; soln.grid.state = xSoln; soln.grid.control = uSoln; %%%% Set up interpolating of the chebyshev trajectory: idxKnot = (nColPts-1)*(1:(nSegment-1)) + 1; soln.interp.state = @(t)( chebyshevMultiInterpolate(xSoln,tSoln,idxKnot,t) ); soln.interp.control = @(t)( chebyshevMultiInterpolate(uSoln,tSoln,idxKnot,t) ); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [x, w] = chebyshevPoints(n,d) %[x, w] = chebyshevPoints(n,d) % % This function is a light-weight version of the function: chebpts.m % written by Lloyd Trefethen as part of his Chebyshev Polynomial matlab % toolbox: chebyfun, which can be downloaded from: % http://www2.maths.ox.ac.uk/chebfun/download/ % % The algorithm for computing the quadrature weights is also from % trefethen's toolbox, with the citation: % Jörg Waldvogel, "Fast construction of the Fejér and Clenshaw-Curtis % quadrature rules", BIT Numerical Mathematics 43 (1), p. 001-018 (2004). % http://www2.maths.ox.ac.uk/chebfun/and_beyond/programme/slides/wald.pdf % % Slight modifications made by Matthew Kelly % October 27, 2013 % Cornell University % % This function returns the n chebyshev points, over the interval d. Error % checking has not been included on the inputs. % % INPUTS: % n = [1x1] the desired number of chebyshev points % d = [1x2] domain of the polynomial. Default = [-1,1] % % OUTPUTS: (2nd-kind chebyshev points and weights) % x = [1xn] the n chebyshev points over the interval d % w = [1xn] the n chebyshev weights for Clenshaw-Curtis quadrature % if n == 1, x = 0; return, end % Special case %Compute the chebyshev points on the domain [-1,1]: m = n-1; x = sin(pi*(-m:2:m)/(2*m)); % Chebyshev points %Rescale (if necessary): if nargin~=1 x = (diff(d)*x + sum(d))/2; end %Check if weights are needed: if nargout==2 w = chebyshevWeights(n)*diff(d)/2; end end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function w = chebyshevWeights(n) % 2nd-kind Chebyshev wieghts % Jörg Waldvogel, "Fast construction of the Fejér and Clenshaw-Curtis % quadrature rules", BIT Numerical Mathematics 43 (1), p. 001-018 (2004). % http://www2.maths.ox.ac.uk/chebfun/and_beyond/programme/slides/wald.pdf if n == 1 w = 2; else % new n = n-1; u0 = 1/(n^2-1+mod(n,2)); % Boundary weights L = 0:n-1; r = 2./(1-4*min(L,n-L).^2); % Auxiliary vectors w = [ifft(r-u0) u0]; % C-C weights end end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function D = chebyshevDifferentiationMatrix(x) % % Computes the chebyshev differentiation matrix % % NOTES: % % Example usage: Df = (D*f')'; % where f = [nState x nPoints] values at each chebyshev node % n = length(x); %Get the weight vector w = ones(1,n); w(2:2:n) = -1; w([1,end]) = w([1,end])/2; %First, compute the weighting matrix: W = (1./w)'*w; %Next, compute the matrix with inverse of the node distance X = zeros(n); for i=1:n idx = (i+1):n; X(i,idx) = 1./(x(i)-x(idx)); end %Use the property that this matrix is anti-symetric X = X - X'; %Compute the i~=j case: D = W.*X; %Deal with the i=j case: D = D - diag(sum(D,2)); end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function Df = chebyshevDerivative(f,x) %Df = chebyshevDerivative(f,x) % % FUNCTION: % This function computes the derivative of the chebyshev interpolant % at each of the chebyshev nodes. % % INPUTS: % f = [nState x nPoints] values at each chebyshev node % x = chebyshev points % % OUTPUTS: % Df = the derivative of the chebyshev interpolant at each chebyshev node % % NOTES: % The derivative at each node is computed by multiplying f by a % differentiation matrix. This matrix is [nPoints x nPoints]. If f is a % very large order interpolant then computing this matrix may max out the % memory available to matlab. % D = chebyshevDifferentiationMatrix(x); %Apply the differentiation matrix Df = (D*f')'; end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function y = chebyshevMultiInterpolate(yData,tData,idxKnot,t) % % This function is a wrapper for chebyshevInterpolate that handles the % piece-wise chebyshev polynomial trajectory % % All points are considered valid, so extend edge bins: Tbins = [-inf, tData(idxKnot), inf]; %Figure out which bins each query is in: [~, idx] = histc(t,Tbins); % Loop over each segment of the trajectory: ny = size(yData,1); nt = length(t); gridIdx = [1, idxKnot, length(tData)]; nSegment = length(gridIdx)-1; y = zeros(ny,nt); for i=1:nSegment if sum(idx==i)>0 % Then there are points to evaluate here! y(:,(idx==i)) = chebyshevInterpolate(... yData(:,gridIdx(i):gridIdx(i+1)),... t(idx==i),... tData(gridIdx([i,i+1])) ); end end end %%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%% function [y, Dy, DDy, DDDy] = chebyshevInterpolate(f,t,d) %[y, Dy, DDy, DDDy] = chebyshevInterpolate(f,t,d) % % This function uses barycentric interpolation to evaluate a chebyshev % polynomial. Technical details are taken from the book: Approximation % Theory and Approximation Practice by Lloyd Trefethen. The core equation % that I use can be found as Theorem 5.2 in this book, and is called % Barycentric Interpolation. % % Written by Matthew Kelly % October 27, 2013 % Updated: November 8, 2013 % Cornell University % % This function computes the value of the chebyshev polynomial that is % defined by the vector f, at the inputs t. It can also be used to return % the first and second derivatives of y with respect to t. % % INPUTS: % f = [KxN] value of the chebyshev polynomial at each of the chebyshev % points (these can be computed using chebyshevPoints.m). Each row % represents a single set of chebyshev node values for a single % state. % t = [1xM] vector of inputs to be evaluated (monotonically increasing) % d = [1x2] vector specifying the domain of the polynomial % % OUTPUTS: % y = [KxM] the value of the interpolant at each point in t % Dy = first derivative of y with respect to t % DDy = second derivative of y with respect to t % DDDy = third derivative of y with respect to t % % What is happening here, in plain english: % % There are several Chebyshev points (or nodes) that are spread out % across the interval d using a special grid spacing. We will call these % points x. For each of the points in x, there is a corresponding value % of the chebyshev function, we'll call it f. % % Let's say that we want to find the value of the approximation for some % input that is not in x. This can be done using a interpolation of the % values in f: % y = c(t,x).*f % % Note that the weighting terms are a function of both the desired input % and the chebyshev points. It turns out that there is a more stable and % efficient way to calculate this interpolation, which is roughly of the % form: % y = (k(t,x).*f)/sum(k(t,x)) % % This code evaluates k(t,x) which it then uses to evaluate and return y. % % % NOTE - The base algorithm (described above) is not defined for points in % t that are close to the chebyshev nodes in x. If a point in t matches a % point in x, then an additional claculation is required. If a point in t % is very close to a gridpoint, then there is a slight loss of accuracy, % which is more pronounced. % %Check to see if the t vector is on the proper domain: idxBndFail = t<min(d) | t>max(d); %Get the chebyshev points [k,n] = size(f); x = chebyshevPoints(n,d); ONE1 = ones(k,1); ONE2 = ones(1,length(t)); %Loop through each chebyshev node. num = zeros(k,length(t)); den = zeros(k,length(t)); for i=1:n val = ONE1*(1./(t-x(i))); if mod(i,2)==1, val=-val; end; if i==1 || i==n num = num + 0.5*(f(:,i)*ONE2).*val; den = den + 0.5*(val); else num = num + (f(:,i)*ONE2).*val; den = den + val; end end %compute the solution: y = num./den; %Check for any values that were too close to nodes and correct them nanIdx = isnan(y); if sum(sum(nanIdx))>0 nanRowIdx = max(nanIdx,[],1); y(:,nanRowIdx) = interp1(x',f',t(nanRowIdx)')'; end %%%% Replace any out-of-bound queries with NaN: y(:,idxBndFail) = nan; %%%% Derivative Calculations %%%% if nargout == 2 Df = chebyshevDerivative(f,d); Dy = chebyshevInterpolate(Df,t,d); Dy(:,idxBndFail) = nan; elseif nargout == 3 [Df, DDf] = chebyshevDerivative(f,d); Dy = chebyshevInterpolate(Df,t,d); DDy = chebyshevInterpolate(DDf,t,d); Dy(:,idxBndFail) = nan; DDy(:,idxBndFail) = nan; elseif nargout == 4 [Df, DDf, DDDf] = chebyshevDerivative(f,d); Dy = chebyshevInterpolate(Df,t,d); DDy = chebyshevInterpolate(DDf,t,d); DDDy = chebyshevInterpolate(DDDf,t,d); Dy(:,idxBndFail) = nan; DDy(:,idxBndFail) = nan; DDDy(:,idxBndFail) = nan; end end
github
pvarin/DynamicVAE-master
drawCartPoleAnim.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/demo/cartPole/drawCartPoleAnim.m
2,133
utf_8
2334402558a3114d7f969148319c70cd
function drawCartPoleAnim(~,p,xLow, xUpp, yLow, yUpp) % drawCartPoleTraj(t,p,xLow, xUpp, yLow, yUpp) % % INPUTS: % t = [1,n] = time stamp for the data in p1 and p2 % p = [4,n] = [p1;p2]; % clf; hold on; Cart_Width = 0.15; Cart_Height = 0.05; p1 = p(1:2,:); p2 = p(3:4,:); Pole_Width = 4; %pixels %%%% Figure out the window size: xLow = xLow - 0.7*Cart_Width; xUpp = xUpp + 0.7*Cart_Width; yLow = yLow - 0.7*Cart_Height; yUpp = yUpp + 0.7*Cart_Height; Limits = [xLow,xUpp,yLow,yUpp]; %%%% Get color map for the figure % map = colormap; % tMap = linspace(t(1),t(end),size(map,1))'; %%%% Plot Rails plot([Limits(1) Limits(2)],-0.5*Cart_Height*[1,1],'k-','LineWidth',2) %%%% Draw the trace of the pendulum tip (continuously vary color) % nTime = length(t); % for i=1:(nTime-1) % idx = i:(i+1); % x = p2(1,idx); % y = p2(2,idx); % c = interp1(tMap,map,mean(t(idx))); % plot(x,y,'Color',c); % end %%%% Compute the frames for plotting: % tFrame = linspace(t(1), t(end), nFrame); % cart = interp1(t',p1',tFrame')'; % pole = interp1(t',p2',tFrame')'; cart = p1; pole = p2; % for i = 1:nFrame % Compute color: color = [0.2,0.7,0.1]; %interp1(tMap,map,tFrame(i)); %Plot Cart x = cart(1) - 0.5*Cart_Width; y = -0.5*Cart_Height; w = Cart_Width; h = Cart_Height; hCart = rectangle('Position',[x,y,w,h],'LineWidth',2); set(hCart,'FaceColor',color); set(hCart,'EdgeColor',0.8*color); %Plot Pendulum Rod_X = [cart(1), pole(1)]; Rod_Y = [cart(2), pole(2)]; plot(Rod_X,Rod_Y,'k-','LineWidth',Pole_Width,'Color',color) %Plot Bob and hinge plot(pole(1),pole(2),'k.','MarkerSize',40,'Color',color) plot(cart(1),cart(2),'k.','MarkerSize',60,'Color',color) % end %These commands keep the window from automatically rescaling in funny ways. axis(Limits); axis('equal'); axis manual; axis off; end function [xLow, xUpp, yLow, yUpp] = getBounds(p1,p2) % % Returns the upper and lower bound on the data in val % val = [p1,p2]; xLow = min(val(1,:)); xUpp = max(val(1,:)); yLow = min(val(2,:)); yUpp = max(val(2,:)); end
github
pvarin/DynamicVAE-master
drawCartPoleTraj.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/demo/cartPole/drawCartPoleTraj.m
2,226
utf_8
d998353b28a3858bf2e12e289f80f3a0
function drawCartPoleTraj(t,p1,p2,nFrame) % drawCartPoleTraj(t,p1,p2,nFrame) % % INPUTS: % t = [1,n] = time stamp for the data in p1 and p2 % p1 = [2,n] = [x;y] = position of center of the cart % p2 = [2,n] = [x;y] = position of tip of the pendulum % nFrame = scalar integer = number of "freeze" frames to display % clf; hold on; Cart_Width = 0.15; Cart_Height = 0.05; Pole_Width = 4; %pixels %%%% Figure out the window size: [xLow, xUpp, yLow, yUpp] = getBounds(p1,p2); xLow = xLow - 0.7*Cart_Width; xUpp = xUpp + 0.7*Cart_Width; yLow = yLow - 0.7*Cart_Height; yUpp = yUpp + 0.7*Cart_Height; Limits = [xLow,xUpp,yLow,yUpp]; %%%% Get color map for the figure map = colormap; tMap = linspace(t(1),t(end),size(map,1))'; %%%% Plot Rails plot([Limits(1) Limits(2)],-0.5*Cart_Height*[1,1],'k-','LineWidth',2) %%%% Draw the trace of the pendulum tip (continuously vary color) nTime = length(t); for i=1:(nTime-1) idx = i:(i+1); x = p2(1,idx); y = p2(2,idx); c = interp1(tMap,map,mean(t(idx))); plot(x,y,'Color',c); end %%%% Compute the frames for plotting: tFrame = linspace(t(1), t(end), nFrame); cart = interp1(t',p1',tFrame')'; pole = interp1(t',p2',tFrame')'; for i = 1:nFrame % Compute color: color = interp1(tMap,map,tFrame(i)); %Plot Cart x = cart(1,i) - 0.5*Cart_Width; y = -0.5*Cart_Height; w = Cart_Width; h = Cart_Height; hCart = rectangle('Position',[x,y,w,h],'LineWidth',2); set(hCart,'FaceColor',color); set(hCart,'EdgeColor',0.8*color); %Plot Pendulum Rod_X = [cart(1,i), pole(1,i)]; Rod_Y = [cart(2,i), pole(2,i)]; plot(Rod_X,Rod_Y,'k-','LineWidth',Pole_Width,'Color',color) %Plot Bob and hinge plot(pole(1,i),pole(2,i),'k.','MarkerSize',40,'Color',color) plot(cart(1,i),cart(2,i),'k.','MarkerSize',60,'Color',color) end %These commands keep the window from automatically rescaling in funny ways. axis(Limits); axis('equal'); axis manual; axis off; end function [xLow, xUpp, yLow, yUpp] = getBounds(p1,p2) % % Returns the upper and lower bound on the data in val % val = [p1,p2]; xLow = min(val(1,:)); xUpp = max(val(1,:)); yLow = min(val(2,:)); yUpp = max(val(2,:)); end
github
pvarin/DynamicVAE-master
Derive_Equations.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/demo/fiveLinkBiped/Derive_Equations.m
22,822
utf_8
db9aaefe0015ed46a21528cd1f049d49
function Derive_Equations() %%%% Derive Equations - Five Link Biped Model %%%% % % This function derives the equations of motion, as well as some other useful % equations (kinematics, contact forces, ...) for the five-link biped % model. % % % Nomenclature: % % - There are five links, which will be numbered starting with "1" for the % stance leg tibia, increasing as the links are father from the base joint, % and ending with "5" for the swing leg tibia. % 1 - stance leg tibia (lower leg) % 2 - stance leg femur (upper leg) % 3 - torso % 4 - swing leg femur % 5 - swing leg tibia % % - This script uses absolute angles, which are represented with "q". All % angles use positive convention, with the zero angle corresponding to a % vertically aligned link configuration. [q] = [0] has the torso balanced % upright, with both legs fully extended straight below it. % % - Derivatives with respect to time are notated by prepending a "d". For % example the rate of change in an absolute angle is "dq" and angular % acceleration would be "ddq" % % - Joint positions are given with "P", center of mass positions are "G" % clc; clear; disp('Creating variables and derivatives...') %%%% Absolute orientation (angle) of each link q1 = sym('q1', 'real'); q2 = sym('q2','real'); q3 = sym('q3','real'); q4 = sym('q4','real'); q5 = sym('q5','real'); %%%% Absolute angular rate of each link dq1 = sym('dq1','real'); dq2 = sym('dq2','real'); dq3 = sym('dq3','real'); dq4 = sym('dq4','real'); dq5 = sym('dq5','real'); %%%% Absolute angular acceleration of each linke ddq1 = sym('ddq1','real'); ddq2 = sym('ddq2','real'); ddq3 = sym('ddq3','real'); ddq4 = sym('ddq4','real'); ddq5 = sym('ddq5','real'); %%%% Torques at each joint u1 = sym('u1','real'); %Stance foot u2 = sym('u2','real'); %Stance knee u3 = sym('u3','real'); %Stance hip u4 = sym('u4','real'); %Swing hip u5 = sym('u5','real'); %Swing knee %%%% Mass of each link m1 = sym('m1','real'); m2 = sym('m2','real'); m3 = sym('m3','real'); m4 = sym('m4','real'); m5 = sym('m5','real'); %%%% Distance between parent joint and link center of mass c1 = sym('c1','real'); c2 = sym('c2','real'); c3 = sym('c3','real'); c4 = sym('c4','real'); c5 = sym('c5','real'); %%%% Length of each link l1 = sym('l1','real'); l2 = sym('l2','real'); l3 = sym('l3','real'); l4 = sym('l4','real'); l5 = sym('l5','real'); %%%% Moment of inertia of each link about its own center of mass I1 = sym('I1','real'); I2 = sym('I2','real'); I3 = sym('I3','real'); I4 = sym('I4','real'); I5 = sym('I5','real'); g = sym('g','real'); % Gravity Fx = sym('Fx','real'); %Horizontal contact force at stance foot Fy = sym('Fy','real'); %Vertical contact force at stance foot empty = sym('empty','real'); %Used for vectorization, user should pass a vector of zeros t = sym('t','real'); %dummy continuous time %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Set up coordinate system and unit vectors % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% i = sym([1;0]); %Horizontal axis j = sym([0;1]); %Vertical axis e1 = cos(q1)*(j) + sin(q1)*(-i); %unit vector from P0 -> P1, (contact point to stance knee) e2 = cos(q2)*(j) + sin(q2)*(-i); %unit vector from P1 -> P2, (stance knee to hip) e3 = cos(q3)*(j) + sin(q3)*(-i); %unit vector from P2 -> P3, (hip to shoulders); e4 = -cos(q4)*(j) - sin(q4)*(-i); %unit vector from P2 -> P4, (hip to swing knee); e5 = -cos(q5)*(j) - sin(q5)*(-i); %unit vector from P4 -> P5, (swing knee to swing foot); P0 = 0*i + 0*j; %stance foot = Contact point = origin P1 = P0 + l1*e1; %stance knee P2 = P1 + l2*e2; %hip P3 = P2 + l3*e3; %shoulders P4 = P2 + l4*e4; %swing knee P5 = P4 + l5*e5; %swing foot G1 = P1 - c1*e1; % CoM stance leg tibia G2 = P2 - c2*e2; % CoM stance leg febur G3 = P3 - c3*e3; % CoM torso G4 = P2 + c4*e4; % CoM swing leg femur G5 = P4 + c5*e5; % CoM swing leg tibia G = (m1*G1 + m2*G2 + m3*G3 + m4*G4 + m5*G5)/(m1+m2+m3+m4+m5); %Center of mass for entire robot %%%% Define a function for doing '2d' cross product: dot(a x b, k) cross2d = @(a,b)(a(1)*b(2) - a(2)*b(1)); %%%% Weight of each link: w1 = -m1*g*j; w2 = -m2*g*j; w3 = -m3*g*j; w4 = -m4*g*j; w5 = -m5*g*j; %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Derivatives % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% q = [q1;q2;q3;q4;q5]; dq = [dq1;dq2;dq3;dq4;dq5]; ddq = [ddq1;ddq2;ddq3;ddq4;ddq5]; u = [u1;u2;u3;u4;u5]; z = [t;q;dq;u]; % time-varying vector of inputs % Neat trick to compute derivatives using the chain rule derivative = @(in)( jacobian(in,[q;dq])*[dq;ddq] ); % Velocity of the swing foot (used for step constraints) dP5 = derivative(P5); % Compute derivatives for the CoM of each link: dG1 = derivative(G1); ddG1 = derivative(dG1); dG2 = derivative(G2); ddG2 = derivative(dG2); dG3 = derivative(G3); ddG3 = derivative(dG3); dG4 = derivative(G4); ddG4 = derivative(dG4); dG5 = derivative(G5); ddG5 = derivative(dG5); dG = derivative(G); ddG = derivative(dG); %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Calculations: % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% singleStanceDynamics(); objectiveFunctions(); heelStrikeDynamics(); mechanicalEnergy(); contactForces(); kinematics(); disp('Done!'); % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Single-Stance Dynamics % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % I solve the dynamics here by carefully selecting angular momentum balance % equations about each joint, working my way out the kinematic tree from % the root. function singleStanceDynamics() disp('Deriving single stance dynamics...') %%%% AMB - entire system @ P0 eqnTorque0 = ... cross2d(G1-P0,w1) + ... cross2d(G2-P0,w2) + ... cross2d(G3-P0,w3) + ... cross2d(G4-P0,w4) + ... cross2d(G5-P0,w5) + ... u1; eqnInertia0 = ... cross2d(G1-P0,m1*ddG1) + ddq1*I1 + ... cross2d(G2-P0,m2*ddG2) + ddq2*I2 + ... cross2d(G3-P0,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P0,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P0,m5*ddG5) + ddq5*I5; %%%% AMB - swing leg, torso, stance femer @ stance knee eqnTorque1 = ... cross2d(G2-P1,w2) + ... cross2d(G3-P1,w3) + ... cross2d(G4-P1,w4) + ... cross2d(G5-P1,w5) + ... u2; eqnInertia1 = ... cross2d(G2-P1,m2*ddG2) + ddq2*I2 + ... cross2d(G3-P1,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P1,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P1,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing leg, torso @ hip eqnTorque2 = ... cross2d(G3-P2,w3) + ... cross2d(G4-P2,w4) + ... cross2d(G5-P2,w5) + ... u3; eqnInertia2 = ... cross2d(G3-P2,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P2,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P2,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing leg @ hip eqnTorque3 = ... cross2d(G4-P2,w4) + ... cross2d(G5-P2,w5) + ... u4; eqnInertia3 = ... cross2d(G4-P2,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P2,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing tibia % swing knee eqnTorque4 = ... cross2d(G5-P4,w5) + ... u5; eqnInertia4 = ... cross2d(G5-P4,m5*ddG5) + ddq5*I5 ; %%%% Collect and solve equations: eqns = [... eqnTorque0 - eqnInertia0; eqnTorque1 - eqnInertia1; eqnTorque2 - eqnInertia2; eqnTorque3 - eqnInertia3; eqnTorque4 - eqnInertia4]; [MM, FF] = equationsToMatrix(eqns,ddq); % ddq = MM\ff; %%%% Compute gradients: [m, mi, mz, mzi, mzd] = computeGradients(MM,z,empty); [f, fi, fz, fzi, fzd] = computeGradients(FF,z,empty); % Write function file: matlabFunction(m, mi, f, fi,... %dynamics mz, mzi, mzd, fz, fzi, fzd,... %gradients 'file','autoGen_dynSs.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'u1','u2','u3','u4','u5',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g','empty'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Objective Functions % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function objectiveFunctions() %%%% Torque-squared objective function F = u1*u1 + u2*u2 + u3*u3 + u4*u4 + u5*u5; [f, ~, fz, fzi, ~] = computeGradients(F,z,empty); matlabFunction(f,fz,fzi,... 'file','autoGen_obj_torqueSquared.m',... 'vars',{'u1','u2','u3','u4','u5'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Heel-Strike Dynamics % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function heelStrikeDynamics() disp('Deriving heel-strike dynamics...') %%%% Notes: % xF - heelStrike(xI) --> constraint --> 0 % xF - collision(footSwap(xI)); % % Angles before heel-strike: q1m = sym('q1m','real'); q2m = sym('q2m','real'); q3m = sym('q3m','real'); q4m = sym('q4m','real'); q5m = sym('q5m','real'); qm = [q1m;q2m;q3m;q4m;q5m]; % Angles after heel-strike q1p = sym('q1p','real'); q2p = sym('q2p','real'); q3p = sym('q3p','real'); q4p = sym('q4p','real'); q5p = sym('q5p','real'); qp = [q1p;q2p;q3p;q4p;q5p]; % Angular rates before heel-strike: dq1m = sym('dq1m','real'); dq2m = sym('dq2m','real'); dq3m = sym('dq3m','real'); dq4m = sym('dq4m','real'); dq5m = sym('dq5m','real'); dqm = [dq1m;dq2m;dq3m;dq4m;dq5m]; % Angular rates after heel-strike dq1p = sym('dq1p','real'); dq2p = sym('dq2p','real'); dq3p = sym('dq3p','real'); dq4p = sym('dq4p','real'); dq5p = sym('dq5p','real'); dqp = [dq1p;dq2p;dq3p;dq4p;dq5p]; % Compute kinematics before heel-strike: inVars = {'q1','q2','q3','q4','q5','dq1','dq2','dq3','dq4','dq5'}; outVarsM = {'q1m','q2m','q3m','q4m','q5m','dq1m','dq2m','dq3m','dq4m','dq5m'}; % P0m = subs(P0,inVars,outVarsM); P1m = subs(P1,inVars,outVarsM); P2m = subs(P2,inVars,outVarsM); % P3m = subs(P3,inVars,outVarsM); P4m = subs(P4,inVars,outVarsM); P5m = subs(P5,inVars,outVarsM); dP5m = subs(dP5,inVars,outVarsM); G1m = subs(G1,inVars,outVarsM); G2m = subs(G2,inVars,outVarsM); G3m = subs(G3,inVars,outVarsM); G4m = subs(G4,inVars,outVarsM); G5m = subs(G5,inVars,outVarsM); dG1m = subs(dG1,inVars,outVarsM); dG2m = subs(dG2,inVars,outVarsM); dG3m = subs(dG3,inVars,outVarsM); dG4m = subs(dG4,inVars,outVarsM); dG5m = subs(dG5,inVars,outVarsM); % Compute kinematics after heel-strike: outVarsP = {'q1p','q2p','q3p','q4p','q5p','dq1p','dq2p','dq3p','dq4p','dq5p'}; P0p = subs(P0,inVars,outVarsP); P1p = subs(P1,inVars,outVarsP); P2p = subs(P2,inVars,outVarsP); % P3p = subs(P3,inVars,outVarsP); P4p = subs(P4,inVars,outVarsP); % P5p = subs(P5,inVars,outVarsP); dP5p = subs(dP5,inVars,outVarsP); G1p = subs(G1,inVars,outVarsP); G2p = subs(G2,inVars,outVarsP); G3p = subs(G3,inVars,outVarsP); G4p = subs(G4,inVars,outVarsP); G5p = subs(G5,inVars,outVarsP); dG1p = subs(dG1,inVars,outVarsP); dG2p = subs(dG2,inVars,outVarsP); dG3p = subs(dG3,inVars,outVarsP); dG4p = subs(dG4,inVars,outVarsP); dG5p = subs(dG5,inVars,outVarsP); %%%% AMB - entire system @ New stance foot eqnHs0m = ... %Before collision cross2d(G1m-P5m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P5m,m2*dG2m) + dq2m*I2 + ... cross2d(G3m-P5m,m3*dG3m) + dq3m*I3 + ... cross2d(G4m-P5m,m4*dG4m) + dq4m*I4 + ... cross2d(G5m-P5m,m5*dG5m) + dq5m*I5; eqnHs0 = ... %After collision cross2d(G1p-P0p,m1*dG1p) + dq1p*I1 + ... cross2d(G2p-P0p,m2*dG2p) + dq2p*I2 + ... cross2d(G3p-P0p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P0p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P0p,m5*dG5p) + dq5p*I5; %%%% AMB - new swing leg, torso, stance femer @ stance knee eqnHs1m = ... %Before collision cross2d(G1m-P4m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P4m,m2*dG2m) + dq2m*I2 + ... cross2d(G3m-P4m,m3*dG3m) + dq3m*I3 + ... cross2d(G4m-P4m,m4*dG4m) + dq4m*I4; eqnHs1 = ... %After collision cross2d(G2p-P1p,m2*dG2p) + dq2p*I2 + ... cross2d(G3p-P1p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P1p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P1p,m5*dG5p) + dq5p*I5; %%%% AMB - swing leg, torso @ new hip eqnHs2m = ... %Before collision cross2d(G3m-P2m,m3*dG3m) + dq3m*I3 + ... cross2d(G2m-P2m,m2*dG2m) + dq2m*I2 + ... cross2d(G1m-P2m,m1*dG1m) + dq1m*I1; eqnHs2 = ... %After collision cross2d(G3p-P2p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P2p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P2p,m5*dG5p) + dq5p*I5; %%%% AMB - swing leg @ new hip eqnHs3m = ... %Before collision cross2d(G1m-P2m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P2m,m2*dG2m) + dq2m*I2; eqnHs3 = ... %After collision cross2d(G4p-P2p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P2p,m5*dG5p) + dq5p*I5; %%%% AMB - swing tibia @ new swing knee eqnHs4m = ... %Before collision cross2d(G1m-P1m,m1*dG1m) + dq1m*I1; eqnHs4 = ... %After collision cross2d(G5p-P4p,m5*dG5p) + dq5p*I5; %%%% Collect and solve equations: eqnHs = [... eqnHs0m - eqnHs0; eqnHs1m - eqnHs1; eqnHs2m - eqnHs2; eqnHs3m - eqnHs3; eqnHs4m - eqnHs4]; [MM, FF] = equationsToMatrix(eqnHs,dqp); %%%% Compute gradients: tp = sym('tp','real'); %Initial trajectory time tm = sym('tm','real'); %Final trajectory time zBnd = [tp;qp;dqp;tm;qm;dqm]; [m, mi, mz, mzi, mzd] = computeGradients(MM,zBnd,empty); [f, fi, fz, fzi, fzd] = computeGradients(FF,zBnd,empty); % Heel-strike matlabFunction(m, mi, f, fi,... %dynamics mz, mzi, mzd, fz, fzi, fzd,... %gradients 'file','autoGen_cst_heelStrike.m',... 'vars',{... 'q1p','q2p','q3p','q4p','q5p',... 'q1m','q2m','q3m','q4m','q5m',... 'dq1m','dq2m','dq3m','dq4m','dq5m',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4','l5',... 'c1','c2','c3','c4','c5','empty'}); % Collision velocity of the swing foot: cst = [-dP5p(2); dP5m(2)]; %Swing foot velocity before and after collision (negative sign is intentional, since output is constrained to be negative); cstJac = jacobian(cst,zBnd); %Gradient matlabFunction(cst, cstJac,... 'file','autoGen_cst_footVel.m',... 'vars',{... 'q1p','q2p','q4p','q5p',... 'q1m','q2m','q4m','q5m',... 'dq1p','dq2p','dq4p','dq5p',... 'dq1m','dq2m','dq4m','dq5m',... 'l1','l2','l4','l5'}); % Step length and height constraint: stepLength = sym('stepLength','real'); ceq = [P5m(1)-stepLength; P5m(2)]; ceqJac = jacobian(ceq,zBnd); %Gradient matlabFunction(ceq, ceqJac,... 'file','autoGen_cst_steplength.m',... 'vars',{... 'q1m','q2m','q4m','q5m',... 'l1','l2','l4','l5','stepLength'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Mechanical Energy % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function mechanicalEnergy() disp('Deriving mechanical energy...') %%%% Energy: KineticEnergy = ... 0.5*m1*dot(dG1,dG1) + 0.5*I1*dq1^2 + ... 0.5*m2*dot(dG2,dG2) + 0.5*I2*dq2^2 + ... 0.5*m3*dot(dG3,dG3) + 0.5*I3*dq3^2 + ... 0.5*m4*dot(dG4,dG4) + 0.5*I4*dq4^2 + ... 0.5*m5*dot(dG5,dG5) + 0.5*I5*dq5^2; PotentialEnergy = ... m1*g*G1(2) + ... m2*g*G2(2) + ... m3*g*G3(2) + ... m4*g*G4(2) + ... m5*g*G5(2); matlabFunction(KineticEnergy, PotentialEnergy,... 'file','autoGen_energy.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g'},... 'outputs',{'KE','PE'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Contact Forces % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function contactForces() %%%% Contact Forces: eqnForce5 = w1 + w2 + w3 + w4 + w5 + Fx*i + Fy*j; eqnInertia5 = (m1+m2+m3+m4+m5)*ddG; [AA,bb] = equationsToMatrix(eqnForce5-eqnInertia5,[Fx;Fy]); ContactForces = AA\bb; matlabFunction(ContactForces(1),ContactForces(2),... 'file','autoGen_contactForce.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'ddq1','ddq2','ddq3','ddq4','ddq5',... 'm1','m2','m3','m4','m5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g'},... 'outputs',{'Fx','Fy'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Write Kinematics Files % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function kinematics() disp('Writing kinematics files...') P = [P1; P2; P3; P4; P5]; Gvec = [G1; G2; G3; G4; G5]; % Used for plotting and animation matlabFunction(P,Gvec,'file','autoGen_getPoints.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'l1','l2','l3','l4','l5',... 'c1','c2','c3','c4','c5'},... 'outputs',{'P','Gvec'}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Helper Functions % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [m, mi, mz, mzi, dim] = computeGradients(M,z,empty) % % This function computes the gradients of a matrix M with respect the the % variables in z, and then returns both the matrix and its gradient as % column vectors of their non-zero elements, along with the linear indicies % to unpack them. It also simplifies m and mz. % % INPUTS: % M = [na, nb] = symbolic matrix % z = [nc, 1] = symbolic vector % % OUTPUTS: % m = [nd, 1] = symbolic vector of non-zero elements in M % i = [nd, 1] = linear indicies to map m --> [na,nb] matrix % mz = [ne, 1] = symbolic vector of non-zero elements in Mz % iz = [ne, 1] = linear indicies to map mz --> [na,nb,nc] array % dim = [3,1] = [na,nb,nc] = dimensions of 3d version of mz % [na, nb] = size(M); nc = size(z,1); M = simplify(M); mz2 = jacobian(M(:),z); %Compute jacobian of M, by first reshaping M to be a column vector mz3 = reshape(mz2,na,nb,nc); %Expand back out to a three-dimensional array mz3 = simplify(mz3); % Extract non-zero elements to a column vector: mi = find(M); m = M(mi); mzi = find(mz3); mz = mz3(mzi); mz = mz(:); %Collapse to a column vector dim = [na,nb,nc]; % Pad any constant terms with "empty" to permit vectorization: m = vectorizeHack(m, z, empty); mz = vectorizeHack(mz, z, empty); end function x = vectorizeHack(x, z, empty) % % This function searches for any elements of x that are not dependent on % any element of z. In this case, the automatically generated code will % fail to vectorize properly. One solution is to add an array of zeros % (empty) to the element. % % x = column vector of symbolic expressions % z = column vector of symbolic variables % z = symbolic variable, which the user will set equal to zero. % % Compute dependencies g = jacobian(x,z); % Check for rows of x with no dependence on z [n,m] = size(g); idxConst = true(n,1); for i=1:n for j=1:m if ~isequal(sym(0),g(i,j)) idxConst(i) = false; break; end end end % Add empty to those enteries x(idxConst) = x(idxConst) + empty; end
github
pvarin/DynamicVAE-master
dirColGrad.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/demo/fiveLinkBiped/costOfTransport/dirColGrad.m
11,673
utf_8
f7fd60b58db9ceade9467b4c0c3233f9
function soln = dirColGrad(P, problem) % soln = dirColGrad(P, problem) % % OptimTraj utility function - Direct Collocation with Gradients % % This function is core function that is called to run the transcription % for both the "trapezoid" and the "hermiteSimpson" methods when they are % running analytic gradients. % % F = problem.func; if isempty(P.objective) P.objective = @(z)( ... grad_objective(z, pack, F.pathObj, F.bndObj, gradInfo, weights) ); %Analytic gradients end if isempty(P.constraint) P.nonlcon = @(z)( ... myCstGrad(z, pack, F.dynamics, F.pathCst, F.bndCst, F.defectCst, gradInfo) ); %Analytic gradients end %%%% Call fmincon to solve the non-linear program (NLP) tic; [zSoln, objVal,exitFlag,output] = fmincon(P); [tSoln,xSoln,uSoln] = unPackDecVar(zSoln,pack); nlpTime = toc; %%%% Store the results: soln.grid.time = tSoln; soln.grid.state = xSoln; soln.grid.control = uSoln; soln.info = output; soln.info.nlpTime = nlpTime; soln.info.exitFlag = exitFlag; soln.info.objVal = objVal; soln.problem = problem; % Return the fully detailed problem struct end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [z,pack] = packDecVar(t,x,u) % % This function collapses the time (t), state (x) % and control (u) matricies into a single vector % % INPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % % OUTPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % nTime = length(t); nState = size(x,1); nControl = size(u,1); tSpan = [t(1); t(end)]; xCol = reshape(x, nState*nTime, 1); uCol = reshape(u, nControl*nTime, 1); z = [tSpan;xCol;uCol]; pack.nTime = nTime; pack.nState = nState; pack.nControl = nControl; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [t,x,u] = unPackDecVar(z,pack) % % This function unpacks the decision variables for % trajectory optimization into the time (t), % state (x), and control (u) matricies % % INPUTS: % z = column vector of 2 + nTime*(nState+nControl) decision variables % pack = details about how to convert z back into t,x, and u % .nTime % .nState % .nControl % % OUTPUTS: % t = [1, nTime] = time vector (grid points) % x = [nState, nTime] = state vector at each grid point % u = [nControl, nTime] = control vector at each grid point % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; nx = nState*nTime; nu = nControl*nTime; t = linspace(z(1),z(2),nTime); x = reshape(z((2+1):(2+nx)),nState,nTime); u = reshape(z((2+nx+1):(2+nx+nu)),nControl,nTime); end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function gradInfo = grad_computeInfo(pack) % % This function computes the matrix dimensions and indicies that are used % to map the gradients from the user functions to the gradients needed by % fmincon. The key difference is that the gradients in the user functions % are with respect to their input (t,x,u) or (t0,x0,tF,xF), while the % gradients for fmincon are with respect to all decision variables. % % INPUTS: % nDeVar = number of decision variables % pack = details about packing and unpacking the decision variables % .nTime % .nState % .nControl % % OUTPUTS: % gradInfo = details about how to transform gradients % nTime = pack.nTime; nState = pack.nState; nControl = pack.nControl; nDecVar = 2 + nState*nTime + nControl*nTime; zIdx = 1:nDecVar; gradInfo.nDecVar = nDecVar; [tIdx, xIdx, uIdx] = unPackDecVar(zIdx,pack); gradInfo.tIdx = tIdx([1,end]); gradInfo.xuIdx = [xIdx;uIdx]; %%%% Compute gradients of time: % alpha = (0..N-1)/(N-1) % t = alpha*tUpp + (1-alpha)*tLow alpha = (0:(nTime-1))/(nTime-1); gradInfo.alpha = [1-alpha; alpha]; %%%% Compute gradients of state gradInfo.xGrad = zeros(nState,nTime,nDecVar); for iTime=1:nTime for iState=1:nState gradInfo.xGrad(iState,iTime,xIdx(iState,iTime)) = 1; end end %%%% For unpacking the boundary constraints and objective: gradInfo.bndIdxMap = [tIdx(1); xIdx(:,1); tIdx(end); xIdx(:,end)]; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [dt, dtGrad] = grad_timeStep(t,gradInfo) % % OptimTraj utility function % % Computes the time step and its gradient % % dt = [1,1] % dtGrad = [1,nz] % nTime = length(t); dt = (t(end)-t(1))/(nTime-1); dtGrad = zeros(1,gradInfo.nDecVar); dtGrad(1,gradInfo.tIdx(1)) = -1/(nTime-1); dtGrad(1,gradInfo.tIdx(2)) = 1/(nTime-1); end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo) % [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo) % % OptimTraj utility function. % % Collects the defects, calls user-defined constraints, and then packs % everything up into a form that is good for fmincon. Additionally, it % reshapes and packs up the gradients of these constraints. % % INPUTS: % t = time vector % x = state matrix % u = control matrix % defects = defects matrix % pathCst = user-defined path constraint function % bndCst = user-defined boundary constraint function % % OUTPUTS: % c = inequality constraint for fmincon % ceq = equality constraint for fmincon % ceq_dyn = reshape(defects,numel(defects),1); ceq_dynGrad = grad_flattenPathCst(defectsGrad); %%%% Compute the user-defined constraints: if isempty(pathCst) c_path = []; ceq_path = []; c_pathGrad = []; ceq_pathGrad = []; else [c_path, ceq_path, c_pathGradRaw, ceq_pathGradRaw] = pathCst(t,x,u); c_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(c_pathGradRaw,gradInfo)); ceq_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(ceq_pathGradRaw,gradInfo)); end if isempty(bndCst) c_bnd = []; ceq_bnd = []; c_bndGrad = []; ceq_bndGrad = []; else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); [c_bnd, ceq_bnd, c_bndGradRaw, ceq_bndGradRaw] = bndCst(t0,x0,tF,xF); c_bndGrad = grad_reshapeBoundary(c_bndGradRaw,gradInfo); ceq_bndGrad = grad_reshapeBoundary(ceq_bndGradRaw,gradInfo); end %%%% Pack everything up: c = [c_path;c_bnd]; ceq = [ceq_dyn; ceq_path; ceq_bnd]; cGrad = [c_pathGrad;c_bndGrad]'; ceqGrad = [ceq_dynGrad; ceq_pathGrad; ceq_bndGrad]'; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function C = grad_flattenPathCst(CC) % % This function takes a path constraint and reshapes the first two % dimensions so that it can be passed to fmincon % if isempty(CC) C = []; else [n1,n2,n3] = size(CC); C = reshape(CC,n1*n2,n3); end end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function CC = grad_reshapeBoundary(C,gradInfo) % % This function takes a boundary constraint or objective from the user % and expands it to match the full set of decision variables % CC = zeros(size(C,1),gradInfo.nDecVar); CC(:,gradInfo.bndIdxMap) = C; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function grad = grad_reshapeContinuous(gradRaw,gradInfo) % grad = grad_reshapeContinuous(gradRaw,gradInfo) % % OptimTraj utility function. % % This function converts the raw gradients from the user function into % gradients with respect to the decision variables. % % INPUTS: % stateRaw = [nOutput,nInput,nTime] % % OUTPUTS: % grad = [nOutput,nTime,nDecVar] % if isempty(gradRaw) grad = []; else [nOutput, ~, nTime] = size(gradRaw); grad = zeros(nOutput,nTime,gradInfo.nDecVar); % First, loop through and deal with time. timeGrad = gradRaw(:,1,:); timeGrad = permute(timeGrad,[1,3,2]); for iOutput=1:nOutput A = ([1;1]*timeGrad(iOutput,:)).*gradInfo.alpha; grad(iOutput,:,gradInfo.tIdx) = permute(A,[3,2,1]); end % Now deal with state and control: for iOutput=1:nOutput for iTime=1:nTime B = gradRaw(iOutput,2:end,iTime); grad(iOutput,iTime,gradInfo.xuIdx(:,iTime)) = permute(B,[3,1,2]); end end end end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [cost, costGrad] = grad_objective(z,pack,pathObj,bndObj,gradInfo,weights) % % This function unpacks the decision variables, sends them to the % user-defined objective functions, and then returns the final cost % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % pathObj = user-defined integral objective function % endObj = user-defined end-point objective function % % OUTPUTS: % cost = scale cost for this set of decision variables % %Unpack the decision variables: [t,x,u] = unPackDecVar(z,pack); % Time step for integration: [dt, dtGrad] = grad_timeStep(t, gradInfo); nTime = length(t); nState = size(x,1); nControl = size(u,1); nDecVar = length(z); % Compute the cost integral along the trajectory if isempty(pathObj) integralCost = 0; integralCostGrad = zeros(nState+nControl,1); else % Objective function integrand and gradients: [obj, objGradRaw] = pathObj(t,x,u); nInput = size(objGradRaw,1); objGradRaw = reshape(objGradRaw,1,nInput,nTime); objGrad = grad_reshapeContinuous(objGradRaw,gradInfo); % Integration by quadrature: integralCost = dt*obj*weights; % Integration % Gradient of integral objective function objGrad = reshape(objGrad,nTime,nDecVar); integralCostGrad = ... dtGrad*(obj*weights) + ... dt*sum(objGrad.*(weights*ones(1,nDecVar)),1); end % Compute the cost at the boundaries of the trajectory if isempty(bndObj) bndCost = 0; bndCostGrad = zeros(1,nDecVar); else t0 = t(1); tF = t(end); x0 = x(:,1); xF = x(:,end); [bndCost, bndCostGradRaw] = bndObj(t0,x0,tF,xF); bndCostGrad = grad_reshapeBoundary(bndCostGradRaw,gradInfo); end % Cost function cost = bndCost + integralCost; % Gradients costGrad = bndCostGrad + integralCostGrad; end %%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%% function [c, ceq, cGrad, ceqGrad] = myCstGrad(z,pack,dynFun, pathCst, bndCst, defectCst, gradInfo) % % This function unpacks the decision variables, computes the defects along % the trajectory, and then evaluates the user-defined constraint functions. % % INPUTS: % z = column vector of decision variables % pack = details about how to convert decision variables into t,x, and u % dynFun = user-defined dynamics function % pathCst = user-defined constraints along the path % endCst = user-defined constraints at the boundaries % % OUTPUTS: % c = inequality constraints to be passed to fmincon % ceq = equality constraints to be passed to fmincon % %Unpack the decision variables: [t,x,u] = unPackDecVar(z,pack); % Time step for integration: [dt, dtGrad] = grad_timeStep(t,gradInfo); %%%% Compute defects along the trajectory: [f, fGradRaw] = dynFun(t,x,u); fGrad = grad_reshapeContinuous(fGradRaw,gradInfo); [defects, defectsGrad] = defectCst(dt,x,f,dtGrad,xGrad,fGrad,gradInfo); % Compute gradients of the user-defined constraints and then pack up: [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,... defects, defectsGrad, pathCst, bndCst, gradInfo); end
github
pvarin/DynamicVAE-master
Derive_Equations.m
.m
DynamicVAE-master/MatthewPeterKelly-OptimTraj-9a33249/demo/fiveLinkBiped/costOfTransport/Derive_Equations.m
27,136
utf_8
2ee06d2549cae61acad48475153b4214
function Derive_Equations() %%%% Derive Equations - Five Link Biped Model %%%% % % This function derives the equations of motion, as well as some other useful % equations (kinematics, contact forces, ...) for the five-link biped % model. % % This version of the code includes a few more complicated features for % dealing with difficult cost functions. In particular, it adds 10 slack % variables to compute the abs(power) term in the cost function, and the % primary control is the derivative of torque, rather than torque itself. % This allows for regularization by the derivative of the input. % % % Nomenclature: % % - There are five links, which will be numbered starting with "1" for the % stance leg tibia, increasing as the links are father from the base joint, % and ending with "5" for the swing leg tibia. % 1 - stance leg tibia (lower leg) % 2 - stance leg femur (upper leg) % 3 - torso % 4 - swing leg femur % 5 - swing leg tibia % % - This script uses absolute angles, which are represented with "q". All % angles use positive convention, with the zero angle corresponding to a % vertically aligned link configuration. [q] = [0] has the torso balanced % upright, with both legs fully extended straight below it. % % - Derivatives with respect to time are notated by prepending a "d". For % example the rate of change in an absolute angle is "dq" and angular % acceleration would be "ddq" % % - Joint positions are given with "P", center of mass positions are "G" % clc; clear; disp('Creating variables and derivatives...') %%%% Absolute orientation (angle) of each link q1 = sym('q1', 'real'); q2 = sym('q2','real'); q3 = sym('q3','real'); q4 = sym('q4','real'); q5 = sym('q5','real'); %%%% Absolute angular rate of each link dq1 = sym('dq1','real'); dq2 = sym('dq2','real'); dq3 = sym('dq3','real'); dq4 = sym('dq4','real'); dq5 = sym('dq5','real'); %%%% Absolute angular acceleration of each linke ddq1 = sym('ddq1','real'); ddq2 = sym('ddq2','real'); ddq3 = sym('ddq3','real'); ddq4 = sym('ddq4','real'); ddq5 = sym('ddq5','real'); %%%% Torques at each joint u1 = sym('u1','real'); %Stance foot u2 = sym('u2','real'); %Stance knee u3 = sym('u3','real'); %Stance hip u4 = sym('u4','real'); %Swing hip u5 = sym('u5','real'); %Swing knee %%%% Torques rate at each joint du1 = sym('du1','real'); %Stance foot du2 = sym('du2','real'); %Stance knee du3 = sym('du3','real'); %Stance hip du4 = sym('du4','real'); %Swing hip du5 = sym('du5','real'); %Swing knee %%%% Slack variables -- negative component of power sn1 = sym('sn1','real'); %Stance foot sn2 = sym('sn2','real'); %Stance knee sn3 = sym('sn3','real'); %Stance hip sn4 = sym('sn4','real'); %Swing hip sn5 = sym('sn5','real'); %Swing knee %%%% Slack variables -- positive component of power sp1 = sym('sp1','real'); %Stance foot sp2 = sym('sp2','real'); %Stance knee sp3 = sym('sp3','real'); %Stance hip sp4 = sym('sp4','real'); %Swing hip sp5 = sym('sp5','real'); %Swing knee %%%% Mass of each link m1 = sym('m1','real'); m2 = sym('m2','real'); m3 = sym('m3','real'); m4 = sym('m4','real'); m5 = sym('m5','real'); %%%% Distance between parent joint and link center of mass c1 = sym('c1','real'); c2 = sym('c2','real'); c3 = sym('c3','real'); c4 = sym('c4','real'); c5 = sym('c5','real'); %%%% Length of each link l1 = sym('l1','real'); l2 = sym('l2','real'); l3 = sym('l3','real'); l4 = sym('l4','real'); l5 = sym('l5','real'); %%%% Moment of inertia of each link about its own center of mass I1 = sym('I1','real'); I2 = sym('I2','real'); I3 = sym('I3','real'); I4 = sym('I4','real'); I5 = sym('I5','real'); g = sym('g','real'); % Gravity Fx = sym('Fx','real'); %Horizontal contact force at stance foot Fy = sym('Fy','real'); %Vertical contact force at stance foot empty = sym('empty','real'); %Used for vectorization, user should pass a vector of zeros t = sym('t','real'); %dummy continuous time %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Set up coordinate system and unit vectors % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% i = sym([1;0]); %Horizontal axis j = sym([0;1]); %Vertical axis e1 = cos(q1)*(j) + sin(q1)*(-i); %unit vector from P0 -> P1, (contact point to stance knee) e2 = cos(q2)*(j) + sin(q2)*(-i); %unit vector from P1 -> P2, (stance knee to hip) e3 = cos(q3)*(j) + sin(q3)*(-i); %unit vector from P2 -> P3, (hip to shoulders); e4 = -cos(q4)*(j) - sin(q4)*(-i); %unit vector from P2 -> P4, (hip to swing knee); e5 = -cos(q5)*(j) - sin(q5)*(-i); %unit vector from P4 -> P5, (swing knee to swing foot); P0 = 0*i + 0*j; %stance foot = Contact point = origin P1 = P0 + l1*e1; %stance knee P2 = P1 + l2*e2; %hip P3 = P2 + l3*e3; %shoulders P4 = P2 + l4*e4; %swing knee P5 = P4 + l5*e5; %swing foot G1 = P1 - c1*e1; % CoM stance leg tibia G2 = P2 - c2*e2; % CoM stance leg febur G3 = P3 - c3*e3; % CoM torso G4 = P2 + c4*e4; % CoM swing leg femur G5 = P4 + c5*e5; % CoM swing leg tibia G = (m1*G1 + m2*G2 + m3*G3 + m4*G4 + m5*G5)/(m1+m2+m3+m4+m5); %Center of mass for entire robot %%%% Define a function for doing '2d' cross product: dot(a x b, k) cross2d = @(a,b)(a(1)*b(2) - a(2)*b(1)); %%%% Weight of each link: w1 = -m1*g*j; w2 = -m2*g*j; w3 = -m3*g*j; w4 = -m4*g*j; w5 = -m5*g*j; %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Derivatives % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% q = [q1;q2;q3;q4;q5]; dq = [dq1;dq2;dq3;dq4;dq5]; ddq = [ddq1;ddq2;ddq3;ddq4;ddq5]; u = [u1;u2;u3;u4;u5]; du = [du1;du2;du3;du4;du5]; sn = [sn1;sn2;sn3;sn4;sn5]; sp = [sp1;sp2;sp3;sp4;sp5]; z = [t;q;dq;u;du;sn;sp]; % time-varying vector of inputs % Neat trick to compute derivatives using the chain rule derivative = @(in)( jacobian(in,[q;dq;u])*[dq;ddq;du] ); % Velocity of the swing foot (used for step constraints) dP5 = derivative(P5); % Compute derivatives for the CoM of each link: dG1 = derivative(G1); ddG1 = derivative(dG1); dG2 = derivative(G2); ddG2 = derivative(dG2); dG3 = derivative(G3); ddG3 = derivative(dG3); dG4 = derivative(G4); ddG4 = derivative(dG4); dG5 = derivative(G5); ddG5 = derivative(dG5); dG = derivative(G); ddG = derivative(dG); %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Calculations: % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% singleStanceDynamics(); objectiveFunctions(); heelStrikeDynamics(); mechanicalEnergy(); contactForces(); kinematics(); disp('Done!'); % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Single-Stance Dynamics % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % I solve the dynamics here by carefully selecting angular momentum balance % equations about each joint, working my way out the kinematic tree from % the root. function singleStanceDynamics() disp('Deriving single stance dynamics...') %%%% AMB - entire system @ P0 eqnTorque0 = ... cross2d(G1-P0,w1) + ... cross2d(G2-P0,w2) + ... cross2d(G3-P0,w3) + ... cross2d(G4-P0,w4) + ... cross2d(G5-P0,w5) + ... u1; eqnInertia0 = ... cross2d(G1-P0,m1*ddG1) + ddq1*I1 + ... cross2d(G2-P0,m2*ddG2) + ddq2*I2 + ... cross2d(G3-P0,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P0,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P0,m5*ddG5) + ddq5*I5; %%%% AMB - swing leg, torso, stance femer @ stance knee eqnTorque1 = ... cross2d(G2-P1,w2) + ... cross2d(G3-P1,w3) + ... cross2d(G4-P1,w4) + ... cross2d(G5-P1,w5) + ... u2; eqnInertia1 = ... cross2d(G2-P1,m2*ddG2) + ddq2*I2 + ... cross2d(G3-P1,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P1,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P1,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing leg, torso @ hip eqnTorque2 = ... cross2d(G3-P2,w3) + ... cross2d(G4-P2,w4) + ... cross2d(G5-P2,w5) + ... u3; eqnInertia2 = ... cross2d(G3-P2,m3*ddG3) + ddq3*I3 + ... cross2d(G4-P2,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P2,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing leg @ hip eqnTorque3 = ... cross2d(G4-P2,w4) + ... cross2d(G5-P2,w5) + ... u4; eqnInertia3 = ... cross2d(G4-P2,m4*ddG4) + ddq4*I4 + ... cross2d(G5-P2,m5*ddG5) + ddq5*I5 ; %%%% AMB - swing tibia % swing knee eqnTorque4 = ... cross2d(G5-P4,w5) + ... u5; eqnInertia4 = ... cross2d(G5-P4,m5*ddG5) + ddq5*I5 ; %%%% Collect and solve equations: eqns = [... eqnTorque0 - eqnInertia0; eqnTorque1 - eqnInertia1; eqnTorque2 - eqnInertia2; eqnTorque3 - eqnInertia3; eqnTorque4 - eqnInertia4]; [MM, FF] = equationsToMatrix(eqns,ddq); % ddq = MM\ff; %%%% Compute gradients: [m, mi, mz, mzi, mzd] = computeGradients(MM,z,empty); [f, fi, fz, fzi, fzd] = computeGradients(FF,z,empty); % Write function file: matlabFunction(m, mi, f, fi,... %dynamics mz, mzi, mzd, fz, fzi, fzd,... %gradients 'file','autoGen_dynSs.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'u1','u2','u3','u4','u5',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g','empty'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Objective Functions % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function objectiveFunctions() % Joint rates: v1 = dq1; % joint rate 1 v2 = dq2-dq1; % joint rate 2 v3 = dq3-dq2; % joint rate 3 v4 = dq4-dq3; % joint rate 4 v5 = dq5-dq4; % joint rate 5 % Compute the power used by each joint pow1 = v1*u1; %Power used by joint 1 pow2 = v2*u2; %Power used by joint 2 pow3 = v3*u3; %Power used by joint 3 pow4 = v4*u4; %Power used by joint 4 pow5 = v5*u5; %Power used by joint 5 % Constraint on the slack variables: slackCst = [... pow1 - (sp1 - sn1); pow2 - (sp2 - sn2); pow3 - (sp3 - sn3); pow4 - (sp4 - sn4); pow5 - (sp5 - sn5)]; % Gradients of the constraint on slack variables: [c, ~, cz, czi, ~] = computeGradients(slackCst,z,empty); matlabFunction(c,cz,czi,... 'file','autoGen_cst_costOfTransport.m',... 'vars',{... 'dq1','dq2','dq3','dq4','dq5',... 'u1','u2','u3','u4','u5',... 'sn1','sn2','sn3','sn4','sn5',... 'sp1','sp2','sp3','sp4','sp5','empty'}); % abs(power) using slack variables: gammaNeg = sym('gammaNeg','real'); %Torque-squared smoothing parameter gammaPos = sym('gammaPos','real'); %Torque-squared smoothing parameter absPower = gammaNeg*(sn1 + sn2 + sn3 + sn4 + sn5) + ... gammaPos*(sp1 + sp2 + sp3 + sp4 + sp5); % Cost of Transport: weight = (m1+m2+m3+m4+m5)*g; stepLength = sym('stepLength','real'); alpha = sym('alpha','real'); %Torque-squared smoothing parameter beta = sym('beta','real'); %Torque-rate squared smoothing F = absPower/(weight*stepLength) + ... alpha*(u1^2 + u2^2 + u3^2 + u4^2 + u5^2) + ... beta*(du1^2 + du2^2 + du3^2 + du4^2 + du5^2); [f, ~, fz, fzi, ~] = computeGradients(F,z,empty); matlabFunction(f,fz,fzi,... 'file','autoGen_obj_costOfTransport.m',... 'vars',{... 'm1','m2','m3','m4','m5',... 'u1','u2','u3','u4','u5',... 'du1','du2','du3','du4','du5',... 'sn1','sn2','sn3','sn4','sn5', ... 'sp1','sp2','sp3','sp4','sp5',... 'g','stepLength','gammaNeg','gammaPos','alpha','beta','empty'}); % Swing foot height: stepHeight = sym('stepHeight','real'); yFoot = P5(2); xFoot = P5(1); yMin = stepHeight*(1 - (xFoot/stepLength)^2); yCst = yMin - yFoot; %Must be negative [y, ~, yz, yzi, ~] = computeGradients(yCst,z,empty); matlabFunction(y,yz,yzi,... 'file','autoGen_cst_swingFootHeight.m',... 'vars',{... 'q1','q2','q4','q5',... 'l1','l2','l4','l5'... 'stepLength','stepHeight'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Heel-Strike Dynamics % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function heelStrikeDynamics() disp('Deriving heel-strike dynamics...') %%%% Notes: % xF - heelStrike(xI) --> constraint --> 0 % xF - collision(footSwap(xI)); % % Angles before heel-strike: q1m = sym('q1m','real'); q2m = sym('q2m','real'); q3m = sym('q3m','real'); q4m = sym('q4m','real'); q5m = sym('q5m','real'); qm = [q1m;q2m;q3m;q4m;q5m]; % Angles after heel-strike q1p = sym('q1p','real'); q2p = sym('q2p','real'); q3p = sym('q3p','real'); q4p = sym('q4p','real'); q5p = sym('q5p','real'); qp = [q1p;q2p;q3p;q4p;q5p]; % Angular rates before heel-strike: dq1m = sym('dq1m','real'); dq2m = sym('dq2m','real'); dq3m = sym('dq3m','real'); dq4m = sym('dq4m','real'); dq5m = sym('dq5m','real'); dqm = [dq1m;dq2m;dq3m;dq4m;dq5m]; % Angular rates after heel-strike dq1p = sym('dq1p','real'); dq2p = sym('dq2p','real'); dq3p = sym('dq3p','real'); dq4p = sym('dq4p','real'); dq5p = sym('dq5p','real'); dqp = [dq1p;dq2p;dq3p;dq4p;dq5p]; % torque before heel-strike: u1m = sym('u1m','real'); u2m = sym('u2m','real'); u3m = sym('u3m','real'); u4m = sym('u4m','real'); u5m = sym('u5m','real'); um = [u1m;u2m;u3m;u4m;u5m]; % torque after heel-strike u1p = sym('u1p','real'); u2p = sym('u2p','real'); u3p = sym('u3p','real'); u4p = sym('u4p','real'); u5p = sym('u5p','real'); up = [u1p;u2p;u3p;u4p;u5p]; % Compute kinematics before heel-strike: inVars = {'q1','q2','q3','q4','q5','dq1','dq2','dq3','dq4','dq5'}; outVarsM = {'q1m','q2m','q3m','q4m','q5m','dq1m','dq2m','dq3m','dq4m','dq5m'}; % P0m = subs(P0,inVars,outVarsM); P1m = subs(P1,inVars,outVarsM); P2m = subs(P2,inVars,outVarsM); % P3m = subs(P3,inVars,outVarsM); P4m = subs(P4,inVars,outVarsM); P5m = subs(P5,inVars,outVarsM); dP5m = subs(dP5,inVars,outVarsM); G1m = subs(G1,inVars,outVarsM); G2m = subs(G2,inVars,outVarsM); G3m = subs(G3,inVars,outVarsM); G4m = subs(G4,inVars,outVarsM); G5m = subs(G5,inVars,outVarsM); dG1m = subs(dG1,inVars,outVarsM); dG2m = subs(dG2,inVars,outVarsM); dG3m = subs(dG3,inVars,outVarsM); dG4m = subs(dG4,inVars,outVarsM); dG5m = subs(dG5,inVars,outVarsM); % Compute kinematics after heel-strike: outVarsP = {'q1p','q2p','q3p','q4p','q5p','dq1p','dq2p','dq3p','dq4p','dq5p'}; P0p = subs(P0,inVars,outVarsP); P1p = subs(P1,inVars,outVarsP); P2p = subs(P2,inVars,outVarsP); % P3p = subs(P3,inVars,outVarsP); P4p = subs(P4,inVars,outVarsP); % P5p = subs(P5,inVars,outVarsP); dP5p = subs(dP5,inVars,outVarsP); G1p = subs(G1,inVars,outVarsP); G2p = subs(G2,inVars,outVarsP); G3p = subs(G3,inVars,outVarsP); G4p = subs(G4,inVars,outVarsP); G5p = subs(G5,inVars,outVarsP); dG1p = subs(dG1,inVars,outVarsP); dG2p = subs(dG2,inVars,outVarsP); dG3p = subs(dG3,inVars,outVarsP); dG4p = subs(dG4,inVars,outVarsP); dG5p = subs(dG5,inVars,outVarsP); %%%% AMB - entire system @ New stance foot eqnHs0m = ... %Before collision cross2d(G1m-P5m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P5m,m2*dG2m) + dq2m*I2 + ... cross2d(G3m-P5m,m3*dG3m) + dq3m*I3 + ... cross2d(G4m-P5m,m4*dG4m) + dq4m*I4 + ... cross2d(G5m-P5m,m5*dG5m) + dq5m*I5; eqnHs0 = ... %After collision cross2d(G1p-P0p,m1*dG1p) + dq1p*I1 + ... cross2d(G2p-P0p,m2*dG2p) + dq2p*I2 + ... cross2d(G3p-P0p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P0p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P0p,m5*dG5p) + dq5p*I5; %%%% AMB - new swing leg, torso, stance femer @ stance knee eqnHs1m = ... %Before collision cross2d(G1m-P4m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P4m,m2*dG2m) + dq2m*I2 + ... cross2d(G3m-P4m,m3*dG3m) + dq3m*I3 + ... cross2d(G4m-P4m,m4*dG4m) + dq4m*I4; eqnHs1 = ... %After collision cross2d(G2p-P1p,m2*dG2p) + dq2p*I2 + ... cross2d(G3p-P1p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P1p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P1p,m5*dG5p) + dq5p*I5; %%%% AMB - swing leg, torso @ new hip eqnHs2m = ... %Before collision cross2d(G3m-P2m,m3*dG3m) + dq3m*I3 + ... cross2d(G2m-P2m,m2*dG2m) + dq2m*I2 + ... cross2d(G1m-P2m,m1*dG1m) + dq1m*I1; eqnHs2 = ... %After collision cross2d(G3p-P2p,m3*dG3p) + dq3p*I3 + ... cross2d(G4p-P2p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P2p,m5*dG5p) + dq5p*I5; %%%% AMB - swing leg @ new hip eqnHs3m = ... %Before collision cross2d(G1m-P2m,m1*dG1m) + dq1m*I1 + ... cross2d(G2m-P2m,m2*dG2m) + dq2m*I2; eqnHs3 = ... %After collision cross2d(G4p-P2p,m4*dG4p) + dq4p*I4 + ... cross2d(G5p-P2p,m5*dG5p) + dq5p*I5; %%%% AMB - swing tibia @ new swing knee eqnHs4m = ... %Before collision cross2d(G1m-P1m,m1*dG1m) + dq1m*I1; eqnHs4 = ... %After collision cross2d(G5p-P4p,m5*dG5p) + dq5p*I5; %%%% Collect and solve equations: eqnHs = [... eqnHs0m - eqnHs0; eqnHs1m - eqnHs1; eqnHs2m - eqnHs2; eqnHs3m - eqnHs3; eqnHs4m - eqnHs4]; [MM, FF] = equationsToMatrix(eqnHs,dqp); %%%% Compute gradients: tp = sym('tp','real'); %Initial trajectory time tm = sym('tm','real'); %Final trajectory time zBnd = [tp;qp;dqp;up;tm;qm;dqm;um]; [m, mi, mz, mzi, mzd] = computeGradients(MM,zBnd,empty); [f, fi, fz, fzi, fzd] = computeGradients(FF,zBnd,empty); % Heel-strike matlabFunction(m, mi, f, fi,... %dynamics mz, mzi, mzd, fz, fzi, fzd,... %gradients 'file','autoGen_cst_heelStrike.m',... 'vars',{... 'q1p','q2p','q3p','q4p','q5p',... 'q1m','q2m','q3m','q4m','q5m',... 'dq1m','dq2m','dq3m','dq4m','dq5m',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4','l5',... 'c1','c2','c3','c4','c5','empty'}); % Collision velocity of the swing foot: cst = [-dP5p(2); dP5m(2)]; %Swing foot velocity before and after collision (negative sign is intentional, since output is constrained to be negative); cstJac = jacobian(cst,zBnd); %Gradient matlabFunction(cst, cstJac,... 'file','autoGen_cst_footVel.m',... 'vars',{... 'q1p','q2p','q4p','q5p',... 'q1m','q2m','q4m','q5m',... 'dq1p','dq2p','dq4p','dq5p',... 'dq1m','dq2m','dq4m','dq5m',... 'l1','l2','l4','l5'}); % Step length and height constraint: stepLength = sym('stepLength','real'); ceq = [P5m(1)-stepLength; P5m(2)]; ceqJac = jacobian(ceq,zBnd); %Gradient matlabFunction(ceq, ceqJac,... 'file','autoGen_cst_steplength.m',... 'vars',{... 'q1m','q2m','q4m','q5m',... 'l1','l2','l4','l5','stepLength'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Mechanical Energy % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function mechanicalEnergy() disp('Deriving mechanical energy...') %%%% Energy: KineticEnergy = ... 0.5*m1*dot(dG1,dG1) + 0.5*I1*dq1^2 + ... 0.5*m2*dot(dG2,dG2) + 0.5*I2*dq2^2 + ... 0.5*m3*dot(dG3,dG3) + 0.5*I3*dq3^2 + ... 0.5*m4*dot(dG4,dG4) + 0.5*I4*dq4^2 + ... 0.5*m5*dot(dG5,dG5) + 0.5*I5*dq5^2; PotentialEnergy = ... m1*g*G1(2) + ... m2*g*G2(2) + ... m3*g*G3(2) + ... m4*g*G4(2) + ... m5*g*G5(2); matlabFunction(KineticEnergy, PotentialEnergy,... 'file','autoGen_energy.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'm1','m2','m3','m4','m5',... 'I1','I2','I3','I4','I5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g'},... 'outputs',{'KE','PE'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Contact Forces % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function contactForces() %%%% Contact Forces: eqnForce5 = w1 + w2 + w3 + w4 + w5 + Fx*i + Fy*j; eqnInertia5 = (m1+m2+m3+m4+m5)*ddG; [AA,bb] = equationsToMatrix(eqnForce5-eqnInertia5,[Fx;Fy]); ContactForces = AA\bb; matlabFunction(ContactForces(1),ContactForces(2),... 'file','autoGen_contactForce.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'dq1','dq2','dq3','dq4','dq5',... 'ddq1','ddq2','ddq3','ddq4','ddq5',... 'm1','m2','m3','m4','m5',... 'l1','l2','l3','l4',... 'c1','c2','c3','c4','c5',... 'g'},... 'outputs',{'Fx','Fy'}); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% % Write Kinematics Files % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% function kinematics() disp('Writing kinematics files...') P = [P1; P2; P3; P4; P5]; Gvec = [G1; G2; G3; G4; G5]; % Used for plotting and animation matlabFunction(P,Gvec,'file','autoGen_getPoints.m',... 'vars',{... 'q1','q2','q3','q4','q5',... 'l1','l2','l3','l4','l5',... 'c1','c2','c3','c4','c5'},... 'outputs',{'P','Gvec'}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Helper Functions % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [m, mi, mz, mzi, dim] = computeGradients(M,z,empty) % % This function computes the gradients of a matrix M with respect the the % variables in z, and then returns both the matrix and its gradient as % column vectors of their non-zero elements, along with the linear indicies % to unpack them. It also simplifies m and mz. % % INPUTS: % M = [na, nb] = symbolic matrix % z = [nc, 1] = symbolic vector % % OUTPUTS: % m = [nd, 1] = symbolic vector of non-zero elements in M % mi = [nd, 1] = linear indicies to map m --> [na,nb] matrix % mz = [ne, 1] = symbolic vector of non-zero elements in Mz % mzi = [ne, 1] = linear indicies to map mz --> [na,nb,nc] array % dim = [3,1] = [na,nb,nc] = dimensions of 3d version of mz % [na, nb] = size(M); nc = size(z,1); M = simplify(M); mz2 = jacobian(M(:),z); %Compute jacobian of M, by first reshaping M to be a column vector mz3 = reshape(mz2,na,nb,nc); %Expand back out to a three-dimensional array mz3 = simplify(mz3); % Extract non-zero elements to a column vector: mi = find(M); m = M(mi); mzi = find(mz3); mz = mz3(mzi); mz = mz(:); %Collapse to a column vector dim = [na,nb,nc]; % Pad any constant terms with "empty" to permit vectorization: m = vectorizeHack(m, z, empty); mz = vectorizeHack(mz, z, empty); end function x = vectorizeHack(x, z, empty) % % This function searches for any elements of x that are not dependent on % any element of z. In this case, the automatically generated code will % fail to vectorize properly. One solution is to add an array of zeros % (empty) to the element. % % x = column vector of symbolic expressions % z = column vector of symbolic variables % z = symbolic variable, which the user will set equal to zero. % % Compute dependencies g = jacobian(x,z); % Check for rows of x with no dependence on z [n,m] = size(g); idxConst = true(n,1); for i=1:n for j=1:m if ~isequal(sym(0),g(i,j)) idxConst(i) = false; break; end end end % Add empty to those enteries x(idxConst) = x(idxConst) + empty; end
github
minitaur-users/minitaur-mainboard-code-master
open_log.m
.m
minitaur-mainboard-code-master/libraries/OpenLog/open_log.m
1,347
utf_8
66368e5a8bb5f6c5ddc3d16fdaa79511
%{ * Copyright (C) Ghost Robotics - All Rights Reserved * Unauthorized copying of this file, via any medium is strictly prohibited * Proprietary and confidential * Written by Avik De <[email protected]> and Pranav Bhounsule %} function s = open_log(fname) if ~exist(fname,'file') error('File not found: %s', fname) end fileID = fopen(fname); colnames = fgetl(fileID); fmt = fgetl(fileID); fprintf('Opened %s\nKeys: %s\nFormat: %s\n', fname, colnames, fmt) colnames = strsplit(colnames, ','); data = zeros([0,length(colnames)]); i = 0; try while ~feof(fileID) alignment1 = fread(fileID,1,'uint8'); if alignment1 ~= 170 continue; end alignment2 = fread(fileID,1,'uint8'); if alignment2 ~= 187 continue; end i = i+1; for j=1:length(fmt) if (fmt(j)=='f') type = 'float'; elseif (fmt(j)=='I') type = 'uint32'; elseif (fmt(j) =='B') type = 'uint8'; else error('unspecfied datatype in fmt'); end data(i,j)=fread(fileID,1,type); end end fclose(fileID); catch disp('Finished reading'); end % Return data in a struct s = struct(); for cn=1:length(colnames) % convert time to seconds if strcmp(colnames{cn},'t') data(:,cn) = 0.001 * data(:,cn); end s = setfield(s,colnames{cn},data(:,cn)); end end
github
thomaskuestner/CNNArt-master
pdftops.m
.m
CNNArt-master/matlab/utils/export_fig/pdftops.m
3,077
utf_8
8dff856e4b450072050d8aa571d1a08e
function varargout = pdftops(cmd) %PDFTOPS Calls a local pdftops executable with the input command % % Example: % [status result] = pdftops(cmd) % % Attempts to locate a pdftops executable, finally asking the user to % specify the directory pdftops was installed into. The resulting path is % stored for future reference. % % Once found, the executable is called with the input command string. % % This function requires that you have pdftops (from the Xpdf package) % installed on your system. You can download this from: % http://www.foolabs.com/xpdf % % IN: % cmd - Command string to be passed into pdftops. % % OUT: % status - 0 iff command ran without problem. % result - Output from pdftops. % Copyright: Oliver Woodford, 2009-2010 % Thanks to Jonas Dorn for the fix for the title of the uigetdir window on % Mac OS. % Thanks to Christoph Hertel for pointing out a bug in check_xpdf_path % under linux. % 23/01/2014 - Add full path to pdftops.txt in warning. % Call pdftops [varargout{1:nargout}] = system(sprintf('"%s" %s', xpdf_path, cmd)); end function path_ = xpdf_path % Return a valid path % Start with the currently set path path_ = user_string('pdftops'); % Check the path works if check_xpdf_path(path_) return end % Check whether the binary is on the path if ispc bin = 'pdftops.exe'; else bin = 'pdftops'; end if check_store_xpdf_path(bin) path_ = bin; return end % Search the obvious places if ispc path_ = 'C:\Program Files\xpdf\pdftops.exe'; else path_ = '/usr/local/bin/pdftops'; end if check_store_xpdf_path(path_) return end % Ask the user to enter the path while 1 if strncmp(computer,'MAC',3) % Is a Mac % Give separate warning as the uigetdir dialogue box doesn't have a % title uiwait(warndlg('Pdftops not found. Please locate the program, or install xpdf-tools from http://users.phg-online.de/tk/MOSXS/.')) end base = uigetdir('/', 'Pdftops not found. Please locate the program.'); if isequal(base, 0) % User hit cancel or closed window break; end base = [base filesep]; bin_dir = {'', ['bin' filesep], ['lib' filesep]}; for a = 1:numel(bin_dir) path_ = [base bin_dir{a} bin]; if exist(path_, 'file') == 2 break; end end if check_store_xpdf_path(path_) return end end error('pdftops executable not found.'); end function good = check_store_xpdf_path(path_) % Check the path is valid good = check_xpdf_path(path_); if ~good return end % Update the current default path to the path found if ~user_string('pdftops', path_) warning('Path to pdftops executable could not be saved. Enter it manually in %s.', fullfile(fileparts(which('user_string.m')), '.ignore', 'pdftops.txt')); return end end function good = check_xpdf_path(path_) % Check the path is valid [good, message] = system(sprintf('"%s" -h', path_)); % system returns good = 1 even when the command runs % Look for something distinct in the help text good = ~isempty(strfind(message, 'PostScript')); end
github
thomaskuestner/CNNArt-master
crop_borders.m
.m
CNNArt-master/matlab/utils/export_fig/crop_borders.m
1,669
utf_8
725f526e7270a9b417300035d8748a9c
%CROP_BORDERS Crop the borders of an image or stack of images % % [B, v] = crop_borders(A, bcol, [padding]) % %IN: % A - HxWxCxN stack of images. % bcol - Cx1 background colour vector. % padding - scalar indicating how many pixels padding to have. Default: 0. % %OUT: % B - JxKxCxN cropped stack of images. % v - 1x4 vector of start and end indices for first two dimensions, s.t. % B = A(v(1):v(2),v(3):v(4),:,:). function [A, v] = crop_borders(A, bcol, padding) if nargin < 3 padding = 0; end [h, w, c, n] = size(A); if isscalar(bcol) bcol = bcol(ones(c, 1)); end bail = false; for l = 1:w for a = 1:c if ~all(col(A(:,l,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end bcol = A(ceil(end/2),w,:,1); bail = false; for r = w:-1:l for a = 1:c if ~all(col(A(:,r,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end bcol = A(1,ceil(end/2),:,1); bail = false; for t = 1:h for a = 1:c if ~all(col(A(t,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end bcol = A(h,ceil(end/2),:,1); bail = false; for b = h:-1:t for a = 1:c if ~all(col(A(b,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end % Crop the background, leaving one boundary pixel to avoid bleeding on resize v = [max(t-padding, 1) min(b+padding, h) max(l-padding, 1) min(r+padding, w)]; A = A(v(1):v(2),v(3):v(4),:,:); end function A = col(A) A = A(:); end
github
thomaskuestner/CNNArt-master
isolate_axes.m
.m
CNNArt-master/matlab/utils/export_fig/isolate_axes.m
3,668
utf_8
e2dce471e433886fcb87f9dcb284a2cb
%ISOLATE_AXES Isolate the specified axes in a figure on their own % % Examples: % fh = isolate_axes(ah) % fh = isolate_axes(ah, vis) % % This function will create a new figure containing the axes/uipanels % specified, and also their associated legends and colorbars. The objects % specified must all be in the same figure, but they will generally only be % a subset of the objects in the figure. % % IN: % ah - An array of axes and uipanel handles, which must come from the % same figure. % vis - A boolean indicating whether the new figure should be visible. % Default: false. % % OUT: % fh - The handle of the created figure. % Copyright (C) Oliver Woodford 2011-2013 % Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs % 16/3/2012 Moved copyfig to its own function. Thanks to Bob Fratantonio % for pointing out that the function is also used in export_fig.m. % 12/12/12 - Add support for isolating uipanels. Thanks to michael for % suggesting it. % 08/10/13 - Bug fix to allchildren suggested by Will Grant (many thanks!). % 05/12/13 - Bug fix to axes having different units. Thanks to Remington % Reid for reporting the issue. function fh = isolate_axes(ah, vis) % Make sure we have an array of handles if ~all(ishandle(ah)) error('ah must be an array of handles'); end % Check that the handles are all for axes or uipanels, and are all in the same figure fh = ancestor(ah(1), 'figure'); nAx = numel(ah); for a = 1:nAx if ~ismember(get(ah(a), 'Type'), {'axes', 'uipanel'}) error('All handles must be axes or uipanel handles.'); end if ~isequal(ancestor(ah(a), 'figure'), fh) error('Axes must all come from the same figure.'); end end % Tag the objects so we can find them in the copy old_tag = get(ah, 'Tag'); if nAx == 1 old_tag = {old_tag}; end set(ah, 'Tag', 'ObjectToCopy'); % Create a new figure exactly the same as the old one fh = copyfig(fh); %copyobj(fh, 0); if nargin < 2 || ~vis set(fh, 'Visible', 'off'); end % Reset the object tags for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Find the objects to save ah = findall(fh, 'Tag', 'ObjectToCopy'); if numel(ah) ~= nAx close(fh); error('Incorrect number of objects found.'); end % Set the axes tags to what they should be for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Keep any legends and colorbars which overlap the subplots lh = findall(fh, 'Type', 'axes', '-and', {'Tag', 'legend', '-or', 'Tag', 'Colorbar'}); nLeg = numel(lh); if nLeg > 0 set([ah(:); lh(:)], 'Units', 'normalized'); ax_pos = get(ah, 'OuterPosition'); if nAx > 1 ax_pos = cell2mat(ax_pos(:)); end ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2); leg_pos = get(lh, 'OuterPosition'); if nLeg > 1; leg_pos = cell2mat(leg_pos); end leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2); ax_pos = shiftdim(ax_pos, -1); % Overlap test M = bsxfun(@lt, leg_pos(:,1), ax_pos(:,:,3)) & ... bsxfun(@lt, leg_pos(:,2), ax_pos(:,:,4)) & ... bsxfun(@gt, leg_pos(:,3), ax_pos(:,:,1)) & ... bsxfun(@gt, leg_pos(:,4), ax_pos(:,:,2)); ah = [ah; lh(any(M, 2))]; end % Get all the objects in the figure axs = findall(fh); % Delete everything except for the input objects and associated items delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)]))); end function ah = allchildren(ah) ah = findall(ah); if iscell(ah) ah = cell2mat(ah); end ah = ah(:); end function ph = allancestors(ah) ph = []; for a = 1:numel(ah) h = get(ah(a), 'parent'); while h ~= 0 ph = [ph; h]; h = get(h, 'parent'); end end end
github
thomaskuestner/CNNArt-master
im2gif.m
.m
CNNArt-master/matlab/utils/export_fig/im2gif.m
6,168
utf_8
01a5042cc084cddfe4ce631d33de7c8f
%IM2GIF Convert a multiframe image to an animated GIF file % % Examples: % im2gif infile % im2gif infile outfile % im2gif(A, outfile) % im2gif(..., '-nocrop') % im2gif(..., '-nodither') % im2gif(..., '-ncolors', n) % im2gif(..., '-loops', n) % im2gif(..., '-delay', n) % % This function converts a multiframe image to an animated GIF. % % To create an animation from a series of figures, export to a multiframe % TIFF file using export_fig, then convert to a GIF, as follows: % % for a = 2 .^ (3:6) % peaks(a); % export_fig test.tif -nocrop -append % end % im2gif('test.tif', '-delay', 0.5); % %IN: % infile - string containing the name of the input image. % outfile - string containing the name of the output image (must have the % .gif extension). Default: infile, with .gif extension. % A - HxWxCxN array of input images, stacked along fourth dimension, to % be converted to gif. % -nocrop - option indicating that the borders of the output are not to % be cropped. % -nodither - option indicating that dithering is not to be used when % converting the image. % -ncolors - option pair, the value of which indicates the maximum number % of colors the GIF can have. This can also be a quantization % tolerance, between 0 and 1. Default/maximum: 256. % -loops - option pair, the value of which gives the number of times the % animation is to be looped. Default: 65535. % -delay - option pair, the value of which gives the time, in seconds, % between frames. Default: 1/15. % Copyright (C) Oliver Woodford 2011 function im2gif(A, varargin) % Parse the input arguments [A, options] = parse_args(A, varargin{:}); if options.crop ~= 0 % Crop A = crop_borders(A, A(ceil(end/2),1,:,1)); end if(size(A,3) == 1) A = repmat(A,[1 1 3 1]); end % Convert to indexed image [h, w, c, n] = size(A); A = reshape(permute(A, [1 2 4 3]), h, w*n, c); map = unique(reshape(A, h*w*n, c), 'rows'); if size(map, 1) > 256 dither_str = {'dither', 'nodither'}; dither_str = dither_str{1+(options.dither==0)}; if options.ncolors <= 1 [B, map] = rgb2ind(A, options.ncolors, dither_str); if size(map, 1) > 256 [B, map] = rgb2ind(A, 256, dither_str); end else [B, map] = rgb2ind(A, min(round(options.ncolors), 256), dither_str); end else if max(map(:)) > 1 map = double(map) / 255; A = double(A) / 255; end % if(ndims(A) == 2) % A = repmat(A,[1 1 3]); % end B = rgb2ind(im2double(A), map); end B = reshape(B, h, w, 1, n); % Bug fix to rgb2ind map(B(1)+1,:) = im2double(A(1,1,:)); % Save as a gif imwrite(B, map, options.outfile, 'LoopCount', round(options.loops(1)), 'DelayTime', options.delay); end %% Parse the input arguments function [A, options] = parse_args(A, varargin) % Set the defaults options = struct('outfile', '', ... 'dither', true, ... 'crop', true, ... 'ncolors', 256, ... 'loops', 65535, ... 'delay', 1/15); % Go through the arguments a = 0; n = numel(varargin); while a < n a = a + 1; if ischar(varargin{a}) && ~isempty(varargin{a}) if varargin{a}(1) == '-' opt = lower(varargin{a}(2:end)); switch opt case 'nocrop' options.crop = false; case 'nodither' options.dither = false; otherwise if ~isfield(options, opt) error('Option %s not recognized', varargin{a}); end a = a + 1; if ischar(varargin{a}) && ~ischar(options.(opt)) options.(opt) = str2double(varargin{a}); else options.(opt) = varargin{a}; end end else options.outfile = varargin{a}; end end end if isempty(options.outfile) if ~ischar(A) error('No output filename given.'); end % Generate the output filename from the input filename [path, outfile] = fileparts(A); options.outfile = fullfile(path, [outfile '.gif']); end if ischar(A) % Read in the image A = imread_rgb(A); end end %% Read image to uint8 rgb array function [A, alpha] = imread_rgb(name) % Get file info info = imfinfo(name); % Special case formats switch lower(info(1).Format) case 'gif' [A, map] = imread(name, 'frames', 'all'); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 A = permute(A, [1 2 5 4 3]); end case {'tif', 'tiff'} A = cell(numel(info), 1); for a = 1:numel(A) [A{a}, map] = imread(name, 'Index', a, 'Info', info); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A{a} = reshape(map(uint32(A{a})+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 end if size(A{a}, 3) == 4 % TIFF in CMYK colourspace - convert to RGB if isfloat(A{a}) A{a} = A{a} * 255; else A{a} = single(A{a}); end A{a} = 255 - A{a}; A{a}(:,:,4) = A{a}(:,:,4) / 255; A{a} = uint8(A(:,:,1:3) .* A{a}(:,:,[4 4 4])); end end A = cat(4, A{:}); otherwise [A, map, alpha] = imread(name); A = A(:,:,:,1); % Keep only first frame of multi-frame files if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 elseif size(A, 3) == 4 % Assume 4th channel is an alpha matte alpha = A(:,:,4); A = A(:,:,1:3); end end end
github
thomaskuestner/CNNArt-master
read_write_entire_textfile.m
.m
CNNArt-master/matlab/utils/export_fig/read_write_entire_textfile.m
924
utf_8
779e56972f5d9778c40dee98ddbd677e
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory % % Read or write an entire text file to/from memory, without leaving the % file open if an error occurs. % % Reading: % fstrm = read_write_entire_textfile(fname) % Writing: % read_write_entire_textfile(fname, fstrm) % %IN: % fname - Pathname of text file to be read in. % fstrm - String to be written to the file, including carriage returns. % %OUT: % fstrm - String read from the file. If an fstrm input is given the % output is the same as that input. function fstrm = read_write_entire_textfile(fname, fstrm) modes = {'rt', 'wt'}; writing = nargin > 1; fh = fopen(fname, modes{1+writing}); if fh == -1 error('Unable to open file %s.', fname); end try if writing fwrite(fh, fstrm, 'char*1'); else fstrm = fread(fh, '*char')'; end catch ex fclose(fh); rethrow(ex); end fclose(fh); end
github
thomaskuestner/CNNArt-master
pdf2eps.m
.m
CNNArt-master/matlab/utils/export_fig/pdf2eps.m
1,471
utf_8
a1f41f0c7713c73886a2323e53ed982b
%PDF2EPS Convert a pdf file to eps format using pdftops % % Examples: % pdf2eps source dest % % This function converts a pdf file to eps format. % % This function requires that you have pdftops, from the Xpdf suite of % functions, installed on your system. This can be downloaded from: % http://www.foolabs.com/xpdf % %IN: % source - filename of the source pdf file to convert. The filename is % assumed to already have the extension ".pdf". % dest - filename of the destination eps file. The filename is assumed to % already have the extension ".eps". % Copyright (C) Oliver Woodford 2009-2010 % Thanks to Aldebaro Klautau for reporting a bug when saving to % non-existant directories. function pdf2eps(source, dest) % Construct the options string for pdftops options = ['-q -paper match -eps -level2 "' source '" "' dest '"']; % Convert to eps using pdftops [status, message] = pdftops(options); % Check for error if status % Report error if isempty(message) error('Unable to generate eps. Check destination directory is writable.'); else error(message); end end % Fix the DSC error created by pdftops fid = fopen(dest, 'r+'); if fid == -1 % Cannot open the file return end fgetl(fid); % Get the first line str = fgetl(fid); % Get the second line if strcmp(str(1:min(13, end)), '% Produced by') fseek(fid, -numel(str)-1, 'cof'); fwrite(fid, '%'); % Turn ' ' into '%' end fclose(fid); end
github
thomaskuestner/CNNArt-master
print2array.m
.m
CNNArt-master/matlab/utils/export_fig/print2array.m
6,273
utf_8
c2feb752d8836426a74edd9357f1ff17
%PRINT2ARRAY Exports a figure to an image array % % Examples: % A = print2array % A = print2array(figure_handle) % A = print2array(figure_handle, resolution) % A = print2array(figure_handle, resolution, renderer) % [A bcol] = print2array(...) % % This function outputs a bitmap image of the given figure, at the desired % resolution. % % If renderer is '-painters' then ghostcript needs to be installed. This % can be downloaded from: http://www.ghostscript.com % % IN: % figure_handle - The handle of the figure to be exported. Default: gcf. % resolution - Resolution of the output, as a factor of screen % resolution. Default: 1. % renderer - string containing the renderer paramater to be passed to % print. Default: '-opengl'. % % OUT: % A - MxNx3 uint8 image of the figure. % bcol - 1x3 uint8 vector of the background color % Copyright (C) Oliver Woodford 2008-2012 % 05/09/11: Set EraseModes to normal when using opengl or zbuffer % renderers. Thanks to Pawel Kocieniewski for reporting the % issue. % 21/09/11: Bug fix: unit8 -> uint8! Thanks to Tobias Lamour for reporting % the issue. % 14/11/11: Bug fix: stop using hardcopy(), as it interfered with figure % size and erasemode settings. Makes it a bit slower, but more % reliable. Thanks to Phil Trinh and Meelis Lootus for reporting % the issues. % 09/12/11: Pass font path to ghostscript. % 27/01/12: Bug fix affecting painters rendering tall figures. Thanks to % Ken Campbell for reporting it. % 03/04/12: Bug fix to median input. Thanks to Andy Matthews for reporting % it. % 26/10/12: Set PaperOrientation to portrait. Thanks to Michael Watts for % reporting the issue. function [A, bcol] = print2array(fig, res, renderer) % Generate default input arguments, if needed if nargin < 2 res = 1; if nargin < 1 fig = gcf; end end % Warn if output is large old_mode = get(fig, 'Units'); set(fig, 'Units', 'pixels'); px = get(fig, 'Position'); set(fig, 'Units', old_mode); npx = prod(px(3:4)*res)/1e6; if npx > 30 % 30M pixels or larger! warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx); end % Retrieve the background colour bcol = get(fig, 'Color'); % Set the resolution parameter res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))]; % Generate temporary file name tmp_nam = [tempname '.tif']; if nargin > 2 && strcmp(renderer, '-painters') % Print to eps file tmp_eps = [tempname '.eps']; print2eps(tmp_eps, fig, 0, renderer, '-loose'); try % Initialize the command to export to tiff using ghostscript cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc']; % Set the font path fp = font_path(); if ~isempty(fp) cmd_str = [cmd_str ' -sFONTPATH="' fp '"']; end % Add the filenames cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"']; % Execute the ghostscript command ghostscript(cmd_str); catch me % Delete the intermediate file delete(tmp_eps); rethrow(me); end % Delete the intermediate file delete(tmp_eps); % Read in the generated bitmap A = imread(tmp_nam); % Delete the temporary bitmap file delete(tmp_nam); % Set border pixels to the correct colour if isequal(bcol, 'none') bcol = []; elseif isequal(bcol, [1 1 1]) bcol = uint8([255 255 255]); else for l = 1:size(A, 2) if ~all(reshape(A(:,l,:) == 255, [], 1)) break; end end for r = size(A, 2):-1:l if ~all(reshape(A(:,r,:) == 255, [], 1)) break; end end for t = 1:size(A, 1) if ~all(reshape(A(t,:,:) == 255, [], 1)) break; end end for b = size(A, 1):-1:t if ~all(reshape(A(b,:,:) == 255, [], 1)) break; end end bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1)); for c = 1:size(A, 3) A(:,[1:l-1, r+1:end],c) = bcol(c); A([1:t-1, b+1:end],:,c) = bcol(c); end end else if nargin < 3 renderer = '-opengl'; end err = false; % Set paper size old_pos_mode = get(fig, 'PaperPositionMode'); old_orientation = get(fig, 'PaperOrientation'); set(fig, 'PaperPositionMode', 'auto', 'PaperOrientation', 'portrait'); try % Print to tiff file print(fig, renderer, res_str, '-dtiff', tmp_nam); % Read in the printed file A = imread(tmp_nam); % Delete the temporary file delete(tmp_nam); catch ex err = true; end % Reset paper size set(fig, 'PaperPositionMode', old_pos_mode, 'PaperOrientation', old_orientation); % Throw any error that occurred if err rethrow(ex); end % Set the background color if isequal(bcol, 'none') bcol = []; else bcol = bcol * 255; if isequal(bcol, round(bcol)) bcol = uint8(bcol); else bcol = squeeze(A(1,1,:)); end end end % Check the output size is correct if isequal(res, round(res)) px = [px([4 3])*res 3]; if ~isequal(size(A), px) % Correct the output size A = A(1:min(end,px(1)),1:min(end,px(2)),:); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
thomaskuestner/CNNArt-master
append_pdfs.m
.m
CNNArt-master/matlab/utils/export_fig/append_pdfs.m
2,010
utf_8
1034abde9642693c404671ff1c693a22
%APPEND_PDFS Appends/concatenates multiple PDF files % % Example: % append_pdfs(output, input1, input2, ...) % append_pdfs(output, input_list{:}) % append_pdfs test.pdf temp1.pdf temp2.pdf % % This function appends multiple PDF files to an existing PDF file, or % concatenates them into a PDF file if the output file doesn't yet exist. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % % IN: % output - string of output file name (including the extension, .pdf). % If it exists it is appended to; if not, it is created. % input1 - string of an input file name (including the extension, .pdf). % All input files are appended in order. % input_list - cell array list of input file name strings. All input % files are appended in order. % Copyright: Oliver Woodford, 2011 % Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in % one go is much faster than appending them one at a time. % Thanks to Michael Teo for reporting the issue of a too long command line. % Issue resolved on 5/5/2011, by passing gs a command file. % Thanks to Martin Wittmann for pointing out the quality issue when % appending multiple bitmaps. % Issue resolved (to best of my ability) 1/6/2011, using the prepress % setting function append_pdfs(varargin) % Are we appending or creating a new file append = exist(varargin{1}, 'file') == 2; if append output = [tempname '.pdf']; else output = varargin{1}; varargin = varargin(2:end); end % Create the command file cmdfile = [tempname '.txt']; fh = fopen(cmdfile, 'w'); fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" -f', output); fprintf(fh, ' "%s"', varargin{:}); fclose(fh); % Call ghostscript ghostscript(['@"' cmdfile '"']); % Delete the command file delete(cmdfile); % Rename the file if needed if append movefile(output, varargin{1}); end end
github
thomaskuestner/CNNArt-master
using_hg2.m
.m
CNNArt-master/matlab/utils/export_fig/using_hg2.m
365
utf_8
6a7f56042fda1873d8225eb3ec1cc197
%USING_HG2 Determine if the HG2 graphics pipeline is used % % tf = using_hg2(fig) % %IN: % fig - handle to the figure in question. % %OUT: % tf - boolean indicating whether the HG2 graphics pipeline is being used % (true) or not (false). function tf = using_hg2(fig) try tf = ~graphicsversion(fig, 'handlegraphics'); catch tf = false; end end
github
thomaskuestner/CNNArt-master
eps2pdf.m
.m
CNNArt-master/matlab/utils/export_fig/eps2pdf.m
5,009
utf_8
5658b3d96232e138be7fd49693d88453
%EPS2PDF Convert an eps file to pdf format using ghostscript % % Examples: % eps2pdf source dest % eps2pdf(source, dest, crop) % eps2pdf(source, dest, crop, append) % eps2pdf(source, dest, crop, append, gray) % eps2pdf(source, dest, crop, append, gray, quality) % % This function converts an eps file to pdf format. The output can be % optionally cropped and also converted to grayscale. If the output pdf % file already exists then the eps file can optionally be appended as a new % page on the end of the eps file. The level of bitmap compression can also % optionally be set. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % %IN: % source - filename of the source eps file to convert. The filename is % assumed to already have the extension ".eps". % dest - filename of the destination pdf file. The filename is assumed to % already have the extension ".pdf". % crop - boolean indicating whether to crop the borders off the pdf. % Default: true. % append - boolean indicating whether the eps should be appended to the % end of the pdf as a new page (if the pdf exists already). % Default: false. % gray - boolean indicating whether the output pdf should be grayscale or % not. Default: false. % quality - scalar indicating the level of image bitmap quality to % output. A larger value gives a higher quality. quality > 100 % gives lossless output. Default: ghostscript prepress default. % Copyright (C) Oliver Woodford 2009-2011 % Suggestion of appending pdf files provided by Matt C at: % http://www.mathworks.com/matlabcentral/fileexchange/23629 % Thank you to Fabio Viola for pointing out compression artifacts, leading % to the quality setting. % Thank you to Scott for pointing out the subsampling of very small images, % which was fixed for lossless compression settings. % 9/12/2011 Pass font path to ghostscript. function eps2pdf(source, dest, crop, append, gray, quality) % Intialise the options string for ghostscript options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"']; % Set crop option if nargin < 3 || crop options = [options ' -dEPSCrop']; end % Set the font path fp = font_path(); if ~isempty(fp) options = [options ' -sFONTPATH="' fp '"']; end % Set the grayscale option if nargin > 4 && gray options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray']; end % Set the bitmap quality if nargin > 5 && ~isempty(quality) options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false']; if quality > 100 options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"']; else options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode']; v = 1 + (quality < 80); quality = 1 - quality / 100; s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v); options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s); end end % Check if the output file exists if nargin > 3 && append && exist(dest, 'file') == 2 % File exists - append current figure to the end tmp_nam = tempname; % Copy the file copyfile(dest, tmp_nam); % Add the output file names options = [options ' -f "' tmp_nam '" "' source '"']; try % Convert to pdf using ghostscript [status, message] = ghostscript(options); catch me % Delete the intermediate file delete(tmp_nam); rethrow(me); end % Delete the intermediate file delete(tmp_nam); else % File doesn't exist or should be over-written % Add the output file names options = [options ' -f "' source '"']; % Convert to pdf using ghostscript [status, message] = ghostscript(options); end % Check for error if status % Report error if isempty(message) error('Unable to generate pdf. Check destination directory is writable.'); else error(message); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
thomaskuestner/CNNArt-master
copyfig.m
.m
CNNArt-master/matlab/utils/export_fig/copyfig.m
812
utf_8
b6b1fa9a9351df33ae0d42056c3df40a
%COPYFIG Create a copy of a figure, without changing the figure % % Examples: % fh_new = copyfig(fh_old) % % This function will create a copy of a figure, but not change the figure, % as copyobj sometimes does, e.g. by changing legends. % % IN: % fh_old - The handle of the figure to be copied. Default: gcf. % % OUT: % fh_new - The handle of the created figure. % Copyright (C) Oliver Woodford 2012 function fh = copyfig(fh) % Set the default if nargin == 0 fh = gcf; end % Is there a legend? if isempty(findall(fh, 'Type', 'axes', 'Tag', 'legend')) % Safe to copy using copyobj fh = copyobj(fh, 0); else % copyobj will change the figure, so save and then load it instead tmp_nam = [tempname '.fig']; hgsave(fh, tmp_nam); fh = hgload(tmp_nam); delete(tmp_nam); end end
github
thomaskuestner/CNNArt-master
user_string.m
.m
CNNArt-master/matlab/utils/export_fig/user_string.m
2,460
utf_8
e8aa836a5140410546fceccb4cca47aa
%USER_STRING Get/set a user specific string % % Examples: % string = user_string(string_name) % saved = user_string(string_name, new_string) % % Function to get and set a string in a system or user specific file. This % enables, for example, system specific paths to binaries to be saved. % % IN: % string_name - String containing the name of the string required. The % string is extracted from a file called (string_name).txt, % stored in the same directory as user_string.m. % new_string - The new string to be saved under the name given by % string_name. % % OUT: % string - The currently saved string. Default: ''. % saved - Boolean indicating whether the save was succesful % Copyright (C) Oliver Woodford 2011-2013 % This method of saving paths avoids changing .m files which might be in a % version control system. Instead it saves the user dependent paths in % separate files with a .txt extension, which need not be checked in to % the version control system. Thank you to Jonas Dorn for suggesting this % approach. % 10/01/2013 - Access files in text, not binary mode, as latter can cause % errors. Thanks to Christian for pointing this out. function string = user_string(string_name, string) if ~ischar(string_name) error('string_name must be a string.'); end % Create the full filename string_name = fullfile(fileparts(mfilename('fullpath')), '.ignore', [string_name '.txt']); if nargin > 1 % Set string if ~ischar(string) error('new_string must be a string.'); end % Make sure the save directory exists dname = fileparts(string_name); if ~exist(dname, 'dir') % Create the directory try if ~mkdir(dname) string = false; return end catch string = false; return end % Make it hidden try fileattrib(dname, '+h'); catch end end % Write the file fid = fopen(string_name, 'wt'); if fid == -1 string = false; return end try fprintf(fid, '%s', string); catch fclose(fid); string = false; return end fclose(fid); string = true; else % Get string fid = fopen(string_name, 'rt'); if fid == -1 string = ''; return end string = fgetl(fid); fclose(fid); end end
github
thomaskuestner/CNNArt-master
export_fig.m
.m
CNNArt-master/matlab/utils/export_fig/export_fig.m
29,720
utf_8
923dcc1ad89f1381ee70abbf422b20a5
%EXPORT_FIG Exports figures suitable for publication % % Examples: % im = export_fig % [im alpha] = export_fig % export_fig filename % export_fig filename -format1 -format2 % export_fig ... -nocrop % export_fig ... -transparent % export_fig ... -native % export_fig ... -m<val> % export_fig ... -r<val> % export_fig ... -a<val> % export_fig ... -q<val> % export_fig ... -p<val> % export_fig ... -<renderer> % export_fig ... -<colorspace> % export_fig ... -append % export_fig ... -bookmark % export_fig(..., handle) % % This function saves a figure or single axes to one or more vector and/or % bitmap file formats, and/or outputs a rasterized version to the % workspace, with the following properties: % - Figure/axes reproduced as it appears on screen % - Cropped borders (optional) % - Embedded fonts (vector formats) % - Improved line and grid line styles % - Anti-aliased graphics (bitmap formats) % - Render images at native resolution (optional for bitmap formats) % - Transparent background supported (pdf, eps, png) % - Semi-transparent patch objects supported (png only) % - RGB, CMYK or grayscale output (CMYK only with pdf, eps, tiff) % - Variable image compression, including lossless (pdf, eps, jpg) % - Optionally append to file (pdf, tiff) % - Vector formats: pdf, eps % - Bitmap formats: png, tiff, jpg, bmp, export to workspace % % This function is especially suited to exporting figures for use in % publications and presentations, because of the high quality and % portability of media produced. % % Note that the background color and figure dimensions are reproduced % (the latter approximately, and ignoring cropping & magnification) in the % output file. For transparent background (and semi-transparent patch % objects), use the -transparent option or set the figure 'Color' property % to 'none'. To make axes transparent set the axes 'Color' property to % 'none'. Pdf, eps and png are the only file formats to support a % transparent background, whilst the png format alone supports transparency % of patch objects. % % The choice of renderer (opengl, zbuffer or painters) has a large impact % on the quality of output. Whilst the default value (opengl for bitmaps, % painters for vector formats) generally gives good results, if you aren't % satisfied then try another renderer. Notes: 1) For vector formats (eps, % pdf), only painters generates vector graphics. 2) For bitmaps, only % opengl can render transparent patch objects correctly. 3) For bitmaps, % only painters will correctly scale line dash and dot lengths when % magnifying or anti-aliasing. 4) Fonts may be substitued with Courier when % using painters. % % When exporting to vector format (pdf & eps) and bitmap format using the % painters renderer, this function requires that ghostscript is installed % on your system. You can download this from: % http://www.ghostscript.com % When exporting to eps it additionally requires pdftops, from the Xpdf % suite of functions. You can download this from: % http://www.foolabs.com/xpdf % %IN: % filename - string containing the name (optionally including full or % relative path) of the file the figure is to be saved as. If % a path is not specified, the figure is saved in the current % directory. If no name and no output arguments are specified, % the default name, 'export_fig_out', is used. If neither a % file extension nor a format are specified, a ".png" is added % and the figure saved in that format. % -format1, -format2, etc. - strings containing the extensions of the % file formats the figure is to be saved as. % Valid options are: '-pdf', '-eps', '-png', % '-tif', '-jpg' and '-bmp'. All combinations % of formats are valid. % -nocrop - option indicating that the borders of the output are not to % be cropped. % -transparent - option indicating that the figure background is to be % made transparent (png, pdf and eps output only). % -m<val> - option where val indicates the factor to magnify the % on-screen figure pixel dimensions by when generating bitmap % outputs. Default: '-m1'. % -r<val> - option val indicates the resolution (in pixels per inch) to % export bitmap and vector outputs at, keeping the dimensions % of the on-screen figure. Default: '-r864' (for vector output % only). Note that the -m option overides the -r option for % bitmap outputs only. % -native - option indicating that the output resolution (when outputting % a bitmap format) should be such that the vertical resolution % of the first suitable image found in the figure is at the % native resolution of that image. To specify a particular % image to use, give it the tag 'export_fig_native'. Notes: % This overrides any value set with the -m and -r options. It % also assumes that the image is displayed front-to-parallel % with the screen. The output resolution is approximate and % should not be relied upon. Anti-aliasing can have adverse % effects on image quality (disable with the -a1 option). % -a1, -a2, -a3, -a4 - option indicating the amount of anti-aliasing to % use for bitmap outputs. '-a1' means no anti- % aliasing; '-a4' is the maximum amount (default). % -<renderer> - option to force a particular renderer (painters, opengl % or zbuffer) to be used over the default: opengl for % bitmaps; painters for vector formats. % -<colorspace> - option indicating which colorspace color figures should % be saved in: RGB (default), CMYK or gray. CMYK is only % supported in pdf, eps and tiff output. % -q<val> - option to vary bitmap image quality (in pdf, eps and jpg % files only). Larger val, in the range 0-100, gives higher % quality/lower compression. val > 100 gives lossless % compression. Default: '-q95' for jpg, ghostscript prepress % default for pdf & eps. Note: lossless compression can % sometimes give a smaller file size than the default lossy % compression, depending on the type of images. % -p<val> - option to add a border of width val to eps and pdf files, % where val is in units of the intermediate eps file. Default: % 0 (i.e. no padding). % -append - option indicating that if the file (pdfs only) already % exists, the figure is to be appended as a new page, instead % of being overwritten (default). % -bookmark - option to indicate that a bookmark with the name of the % figure is to be created in the output file (pdf only). % handle - The handle of the figure, axes or uipanels (can be an array of % handles, but the objects must be in the same figure) to be % saved. Default: gcf. % %OUT: % im - MxNxC uint8 image array of the figure. % alpha - MxN single array of alphamatte values in range [0,1], for the % case when the background is transparent. % % Some helpful examples and tips can be found at: % https://github.com/ojwoodford/export_fig % % See also PRINT, SAVEAS. % Copyright (C) Oliver Woodford 2008-2014 % The idea of using ghostscript is inspired by Peder Axensten's SAVEFIG % (fex id: 10889) which is itself inspired by EPS2PDF (fex id: 5782). % The idea for using pdftops came from the MATLAB newsgroup (id: 168171). % The idea of editing the EPS file to change line styles comes from Jiro % Doke's FIXPSLINESTYLE (fex id: 17928). % The idea of changing dash length with line width came from comments on % fex id: 5743, but the implementation is mine :) % The idea of anti-aliasing bitmaps came from Anders Brun's MYAA (fex id: % 20979). % The idea of appending figures in pdfs came from Matt C in comments on the % FEX (id: 23629) % Thanks to Roland Martin for pointing out the colour MATLAB % bug/feature with colorbar axes and transparent backgrounds. % Thanks also to Andrew Matthews for describing a bug to do with the figure % size changing in -nodisplay mode. I couldn't reproduce it, but included a % fix anyway. % Thanks to Tammy Threadgill for reporting a bug where an axes is not % isolated from gui objects. % 23/02/12: Ensure that axes limits don't change during printing % 14/03/12: Fix bug in fixing the axes limits (thanks to Tobias Lamour for % reporting it). % 02/05/12: Incorporate patch of Petr Nechaev (many thanks), enabling % bookmarking of figures in pdf files. % 09/05/12: Incorporate patch of Arcelia Arrieta (many thanks), to keep % tick marks fixed. % 12/12/12: Add support for isolating uipanels. Thanks to michael for % suggesting it. % 25/09/13: Add support for changing resolution in vector formats. Thanks % to Jan Jaap Meijer for suggesting it. % 07/05/14: Add support for '~' at start of path. Thanks to Sally Warner % for suggesting it. function [im, alpha] = export_fig(varargin) % Make sure the figure is rendered correctly _now_ so that properties like % axes limits are up-to-date. drawnow; % Parse the input arguments [fig, options] = parse_args(nargout, varargin{:}); % Isolate the subplot, if it is one cls = all(ismember(get(fig, 'Type'), {'axes', 'uipanel'})); if cls % Given handles of one or more axes, so isolate them from the rest fig = isolate_axes(fig); else % Check we have a figure if ~isequal(get(fig, 'Type'), 'figure'); error('Handle must be that of a figure, axes or uipanel'); end % Get the old InvertHardcopy mode old_mode = get(fig, 'InvertHardcopy'); end % Hack the font units where necessary (due to a font rendering bug in % print?). This may not work perfectly in all cases. Also it can change the % figure layout if reverted, so use a copy. magnify = options.magnify * options.aa_factor; if isbitmap(options) && magnify ~= 1 fontu = findobj(fig, 'FontUnits', 'normalized'); if ~isempty(fontu) % Some normalized font units found if ~cls fig = copyfig(fig); set(fig, 'Visible', 'off'); fontu = findobj(fig, 'FontUnits', 'normalized'); cls = true; end set(fontu, 'FontUnits', 'points'); end end % MATLAB "feature": axes limits and tick marks can change when printing Hlims = findall(fig, 'Type', 'axes'); if ~cls % Record the old axes limit and tick modes Xlims = make_cell(get(Hlims, 'XLimMode')); Ylims = make_cell(get(Hlims, 'YLimMode')); Zlims = make_cell(get(Hlims, 'ZLimMode')); Xtick = make_cell(get(Hlims, 'XTickMode')); Ytick = make_cell(get(Hlims, 'YTickMode')); Ztick = make_cell(get(Hlims, 'ZTickMode')); end % Set all axes limit and tick modes to manual, so the limits and ticks can't change set(Hlims, 'XLimMode', 'manual', 'YLimMode', 'manual', 'ZLimMode', 'manual'); set_tick_mode(Hlims, 'X'); set_tick_mode(Hlims, 'Y'); set_tick_mode(Hlims, 'Z'); % Set to print exactly what is there set(fig, 'InvertHardcopy', 'off'); % Set the renderer switch options.renderer case 1 renderer = '-opengl'; case 2 renderer = '-zbuffer'; case 3 renderer = '-painters'; otherwise renderer = '-opengl'; % Default for bitmaps end % Do the bitmap formats first if isbitmap(options) % Get the background colour if options.transparent && (options.png || options.alpha) % Get out an alpha channel % MATLAB "feature": black colorbar axes can change to white and vice versa! hCB = findobj(fig, 'Type', 'axes', 'Tag', 'Colorbar'); if isempty(hCB) yCol = []; xCol = []; else yCol = get(hCB, 'YColor'); xCol = get(hCB, 'XColor'); if iscell(yCol) yCol = cell2mat(yCol); xCol = cell2mat(xCol); end yCol = sum(yCol, 2); xCol = sum(xCol, 2); end % MATLAB "feature": apparently figure size can change when changing % colour in -nodisplay mode pos = get(fig, 'Position'); % Set the background colour to black, and set size in case it was % changed internally tcol = get(fig, 'Color'); set(fig, 'Color', 'k', 'Position', pos); % Correct the colorbar axes colours set(hCB(yCol==0), 'YColor', [0 0 0]); set(hCB(xCol==0), 'XColor', [0 0 0]); % Print large version to array B = print2array(fig, magnify, renderer); % Downscale the image B = downsize(single(B), options.aa_factor); % Set background to white (and set size) set(fig, 'Color', 'w', 'Position', pos); % Correct the colorbar axes colours set(hCB(yCol==3), 'YColor', [1 1 1]); set(hCB(xCol==3), 'XColor', [1 1 1]); % Print large version to array A = print2array(fig, magnify, renderer); % Downscale the image A = downsize(single(A), options.aa_factor); % Set the background colour (and size) back to normal set(fig, 'Color', tcol, 'Position', pos); % Compute the alpha map alpha = round(sum(B - A, 3)) / (255 * 3) + 1; A = alpha; A(A==0) = 1; A = B ./ A(:,:,[1 1 1]); clear B % Convert to greyscale if options.colourspace == 2 A = rgb2grey(A); end A = uint8(A); % Crop the background if options.crop [alpha, v] = crop_borders(alpha, 0, 1); A = A(v(1):v(2),v(3):v(4),:); end if options.png % Compute the resolution res = options.magnify * get(0, 'ScreenPixelsPerInch') / 25.4e-3; % Save the png imwrite(A, [options.name '.png'], 'Alpha', double(alpha), 'ResolutionUnit', 'meter', 'XResolution', res, 'YResolution', res); % Clear the png bit options.png = false; end % Return only one channel for greyscale if isbitmap(options) A = check_greyscale(A); end if options.alpha % Store the image im = A; % Clear the alpha bit options.alpha = false; end % Get the non-alpha image if isbitmap(options) alph = alpha(:,:,ones(1, size(A, 3))); A = uint8(single(A) .* alph + 255 * (1 - alph)); clear alph end if options.im % Store the new image im = A; end else % Print large version to array if options.transparent % MATLAB "feature": apparently figure size can change when changing % colour in -nodisplay mode pos = get(fig, 'Position'); tcol = get(fig, 'Color'); set(fig, 'Color', 'w', 'Position', pos); A = print2array(fig, magnify, renderer); set(fig, 'Color', tcol, 'Position', pos); tcol = 255; else [A, tcol] = print2array(fig, magnify, renderer); end % Crop the background if options.crop A = crop_borders(A, tcol, 1); end % Downscale the image A = downsize(A, options.aa_factor); if options.colourspace == 2 % Convert to greyscale A = rgb2grey(A); else % Return only one channel for greyscale A = check_greyscale(A); end % Outputs if options.im im = A; end if options.alpha im = A; alpha = zeros(size(A, 1), size(A, 2), 'single'); end end % Save the images if options.png res = options.magnify * get(0, 'ScreenPixelsPerInch') / 25.4e-3; imwrite(A, [options.name '.png'], 'ResolutionUnit', 'meter', 'XResolution', res, 'YResolution', res); end if options.bmp imwrite(A, [options.name '.bmp']); end % Save jpeg with given quality if options.jpg quality = options.quality; if isempty(quality) quality = 95; end if quality > 100 imwrite(A, [options.name '.jpg'], 'Mode', 'lossless'); else imwrite(A, [options.name '.jpg'], 'Quality', quality); end end % Save tif images in cmyk if wanted (and possible) if options.tif if options.colourspace == 1 && size(A, 3) == 3 A = double(255 - A); K = min(A, [], 3); K_ = 255 ./ max(255 - K, 1); C = (A(:,:,1) - K) .* K_; M = (A(:,:,2) - K) .* K_; Y = (A(:,:,3) - K) .* K_; A = uint8(cat(3, C, M, Y, K)); clear C M Y K K_ end append_mode = {'overwrite', 'append'}; imwrite(A, [options.name '.tif'], 'Resolution', options.magnify*get(0, 'ScreenPixelsPerInch'), 'WriteMode', append_mode{options.append+1}); end end % Now do the vector formats if isvector(options) % Set the default renderer to painters if ~options.renderer renderer = '-painters'; end % Generate some filenames tmp_nam = [tempname '.eps']; if options.pdf pdf_nam = [options.name '.pdf']; else pdf_nam = [tempname '.pdf']; end % Generate the options for print p2eArgs = {renderer, sprintf('-r%d', options.resolution)}; if options.colourspace == 1 p2eArgs = [p2eArgs {'-cmyk'}]; end if ~options.crop p2eArgs = [p2eArgs {'-loose'}]; end try % Generate an eps print2eps(tmp_nam, fig, options.bb_padding, p2eArgs{:}); % Remove the background, if desired if options.transparent && ~isequal(get(fig, 'Color'), 'none') eps_remove_background(tmp_nam, 1 + using_hg2(fig)); end % Add a bookmark to the PDF if desired if options.bookmark fig_nam = get(fig, 'Name'); if isempty(fig_nam) warning('export_fig:EmptyBookmark', 'Bookmark requested for figure with no name. Bookmark will be empty.'); end add_bookmark(tmp_nam, fig_nam); end % Generate a pdf eps2pdf(tmp_nam, pdf_nam, 1, options.append, options.colourspace==2, options.quality); catch ex % Delete the eps delete(tmp_nam); rethrow(ex); end % Delete the eps delete(tmp_nam); if options.eps try % Generate an eps from the pdf pdf2eps(pdf_nam, [options.name '.eps']); catch ex if ~options.pdf % Delete the pdf delete(pdf_nam); end rethrow(ex); end if ~options.pdf % Delete the pdf delete(pdf_nam); end end end if cls % Close the created figure close(fig); else % Reset the hardcopy mode set(fig, 'InvertHardcopy', old_mode); % Reset the axes limit and tick modes for a = 1:numel(Hlims) set(Hlims(a), 'XLimMode', Xlims{a}, 'YLimMode', Ylims{a}, 'ZLimMode', Zlims{a}, 'XTickMode', Xtick{a}, 'YTickMode', Ytick{a}, 'ZTickMode', Ztick{a}); end end end function [fig, options] = parse_args(nout, varargin) % Parse the input arguments % Set the defaults fig = get(0, 'CurrentFigure'); options = struct('name', 'export_fig_out', ... 'crop', true, ... 'transparent', false, ... 'renderer', 0, ... % 0: default, 1: OpenGL, 2: ZBuffer, 3: Painters 'pdf', false, ... 'eps', false, ... 'png', false, ... 'tif', false, ... 'jpg', false, ... 'bmp', false, ... 'colourspace', 0, ... % 0: RGB/gray, 1: CMYK, 2: gray 'append', false, ... 'im', nout == 1, ... 'alpha', nout == 2, ... 'aa_factor', 0, ... 'bb_padding', 0, ... 'magnify', [], ... 'resolution', [], ... 'bookmark', false, ... 'quality', []); native = false; % Set resolution to native of an image % Go through the other arguments for a = 1:nargin-1 if all(ishandle(varargin{a})) fig = varargin{a}; elseif ischar(varargin{a}) && ~isempty(varargin{a}) if varargin{a}(1) == '-' switch lower(varargin{a}(2:end)) case 'nocrop' options.crop = false; case {'trans', 'transparent'} options.transparent = true; case 'opengl' options.renderer = 1; case 'zbuffer' options.renderer = 2; case 'painters' options.renderer = 3; case 'pdf' options.pdf = true; case 'eps' options.eps = true; case 'png' options.png = true; case {'tif', 'tiff'} options.tif = true; case {'jpg', 'jpeg'} options.jpg = true; case 'bmp' options.bmp = true; case 'rgb' options.colourspace = 0; case 'cmyk' options.colourspace = 1; case {'gray', 'grey'} options.colourspace = 2; case {'a1', 'a2', 'a3', 'a4'} options.aa_factor = str2double(varargin{a}(3)); case 'append' options.append = true; case 'bookmark' options.bookmark = true; case 'native' native = true; otherwise val = str2double(regexp(varargin{a}, '(?<=-(m|M|r|R|q|Q|p|P))-?\d*.?\d+', 'match')); if ~isscalar(val) error('option %s not recognised', varargin{a}); end switch lower(varargin{a}(2)) case 'm' options.magnify = val; case 'r' options.resolution = val; case 'q' options.quality = max(val, 0); case 'p' options.bb_padding = val; end end else [p, options.name, ext] = fileparts(varargin{a}); if ~isempty(p) options.name = [p filesep options.name]; end switch lower(ext) case {'.tif', '.tiff'} options.tif = true; case {'.jpg', '.jpeg'} options.jpg = true; case '.png' options.png = true; case '.bmp' options.bmp = true; case '.eps' options.eps = true; case '.pdf' options.pdf = true; otherwise options.name = varargin{a}; end end end end % Set default anti-aliasing now we know the renderer if options.aa_factor == 0 options.aa_factor = 1 + 2 * (~(using_hg2(fig) && strcmp(get(ancestor(fig, 'figure'), 'GraphicsSmoothing'), 'on')) | (options.renderer == 3)); end % Convert user dir '~' to full path if numel(options.name) > 2 && options.name(1) == '~' && (options.name(2) == '/' || options.name(2) == '\') options.name = fullfile(char(java.lang.System.getProperty('user.home')), options.name(2:end)); end % Compute the magnification and resolution if isempty(options.magnify) if isempty(options.resolution) options.magnify = 1; options.resolution = 864; else options.magnify = options.resolution ./ get(0, 'ScreenPixelsPerInch'); end elseif isempty(options.resolution) options.resolution = 864; end % Check we have a figure handle if isempty(fig) error('No figure found'); end % Set the default format if ~isvector(options) && ~isbitmap(options) options.png = true; end % Check whether transparent background is wanted (old way) if isequal(get(ancestor(fig(1), 'figure'), 'Color'), 'none') options.transparent = true; end % If requested, set the resolution to the native vertical resolution of the % first suitable image found if native && isbitmap(options) % Find a suitable image list = findobj(fig, 'Type', 'image', 'Tag', 'export_fig_native'); if isempty(list) list = findobj(fig, 'Type', 'image', 'Visible', 'on'); end for hIm = list(:)' % Check height is >= 2 height = size(get(hIm, 'CData'), 1); if height < 2 continue end % Account for the image filling only part of the axes, or vice % versa yl = get(hIm, 'YData'); if isscalar(yl) yl = [yl(1)-0.5 yl(1)+height+0.5]; else if ~diff(yl) continue end yl = yl + [-0.5 0.5] * (diff(yl) / (height - 1)); end hAx = get(hIm, 'Parent'); yl2 = get(hAx, 'YLim'); % Find the pixel height of the axes oldUnits = get(hAx, 'Units'); set(hAx, 'Units', 'pixels'); pos = get(hAx, 'Position'); set(hAx, 'Units', oldUnits); if ~pos(4) continue end % Found a suitable image % Account for stretch-to-fill being disabled pbar = get(hAx, 'PlotBoxAspectRatio'); pos = min(pos(4), pbar(2)*pos(3)/pbar(1)); % Set the magnification to give native resolution options.magnify = (height * diff(yl2)) / (pos * diff(yl)); break end end end function A = downsize(A, factor) % Downsample an image if factor == 1 % Nothing to do return end try % Faster, but requires image processing toolbox A = imresize(A, 1/factor, 'bilinear'); catch % No image processing toolbox - resize manually % Lowpass filter - use Gaussian as is separable, so faster % Compute the 1d Gaussian filter filt = (-factor-1:factor+1) / (factor * 0.6); filt = exp(-filt .* filt); % Normalize the filter filt = single(filt / sum(filt)); % Filter the image padding = floor(numel(filt) / 2); for a = 1:size(A, 3) A(:,:,a) = conv2(filt, filt', single(A([ones(1, padding) 1:end repmat(end, 1, padding)],[ones(1, padding) 1:end repmat(end, 1, padding)],a)), 'valid'); end % Subsample A = A(1+floor(mod(end-1, factor)/2):factor:end,1+floor(mod(end-1, factor)/2):factor:end,:); end end function A = rgb2grey(A) A = cast(reshape(reshape(single(A), [], 3) * single([0.299; 0.587; 0.114]), size(A, 1), size(A, 2)), class(A)); end function A = check_greyscale(A) % Check if the image is greyscale if size(A, 3) == 3 && ... all(reshape(A(:,:,1) == A(:,:,2), [], 1)) && ... all(reshape(A(:,:,2) == A(:,:,3), [], 1)) A = A(:,:,1); % Save only one channel for 8-bit output end end function eps_remove_background(fname, count) % Remove the background of an eps file % Open the file fh = fopen(fname, 'r+'); if fh == -1 error('Not able to open file %s.', fname); end % Read the file line by line while count % Get the next line l = fgets(fh); if isequal(l, -1) break; % Quit, no rectangle found end % Check if the line contains the background rectangle if isequal(regexp(l, ' *0 +0 +\d+ +\d+ +r[fe] *[\n\r]+', 'start'), 1) % Set the line to whitespace and quit l(1:regexp(l, '[\n\r]', 'start', 'once')-1) = ' '; fseek(fh, -numel(l), 0); fprintf(fh, l); % Reduce the count count = count - 1; end end % Close the file fclose(fh); end function b = isvector(options) b = options.pdf || options.eps; end function b = isbitmap(options) b = options.png || options.tif || options.jpg || options.bmp || options.im || options.alpha; end % Helper function function A = make_cell(A) if ~iscell(A) A = {A}; end end function add_bookmark(fname, bookmark_text) % Adds a bookmark to the temporary EPS file after %%EndPageSetup % Read in the file fh = fopen(fname, 'r'); if fh == -1 error('File %s not found.', fname); end try fstrm = fread(fh, '*char')'; catch ex fclose(fh); rethrow(ex); end fclose(fh); % Include standard pdfmark prolog to maximize compatibility fstrm = strrep(fstrm, '%%BeginProlog', sprintf('%%%%BeginProlog\n/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse')); % Add page bookmark fstrm = strrep(fstrm, '%%EndPageSetup', sprintf('%%%%EndPageSetup\n[ /Title (%s) /OUT pdfmark',bookmark_text)); % Write out the updated file fh = fopen(fname, 'w'); if fh == -1 error('Unable to open %s for writing.', fname); end try fwrite(fh, fstrm, 'char*1'); catch ex fclose(fh); rethrow(ex); end fclose(fh); end function set_tick_mode(Hlims, ax) % Set the tick mode of linear axes to manual % Leave log axes alone as these are tricky M = get(Hlims, [ax 'Scale']); if ~iscell(M) M = {M}; end M = cellfun(@(c) strcmp(c, 'linear'), M); set(Hlims(M), [ax 'TickMode'], 'manual'); end
github
thomaskuestner/CNNArt-master
ghostscript.m
.m
CNNArt-master/matlab/utils/export_fig/ghostscript.m
5,009
utf_8
e93de4034ac6e4ac154729dc2c12f725
%GHOSTSCRIPT Calls a local GhostScript executable with the input command % % Example: % [status result] = ghostscript(cmd) % % Attempts to locate a ghostscript executable, finally asking the user to % specify the directory ghostcript was installed into. The resulting path % is stored for future reference. % % Once found, the executable is called with the input command string. % % This function requires that you have Ghostscript installed on your % system. You can download this from: http://www.ghostscript.com % % IN: % cmd - Command string to be passed into ghostscript. % % OUT: % status - 0 iff command ran without problem. % result - Output from ghostscript. % Copyright: Oliver Woodford, 2009-2013 % Thanks to Jonas Dorn for the fix for the title of the uigetdir window on % Mac OS. % Thanks to Nathan Childress for the fix to the default location on 64-bit % Windows systems. % 27/4/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and % Shaun Kline for pointing out the issue % 4/5/11 - Thanks to David Chorlian for pointing out an alternative % location for gs on linux. % 12/12/12 - Add extra executable name on Windows. Thanks to Ratish % Punnoose for highlighting the issue. % 28/6/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick % Steinbring for proposing the fix. % 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes % for the fix. % 23/01/2014 - Add full path to ghostscript.txt in warning. Thanks to Koen % Vermeer for raising the issue. function varargout = ghostscript(cmd) % Initialize any required system calls before calling ghostscript shell_cmd = ''; if isunix shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07 end if ismac shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07 end % Call ghostscript [varargout{1:nargout}] = system(sprintf('%s"%s" %s', shell_cmd, gs_path, cmd)); end function path_ = gs_path % Return a valid path % Start with the currently set path path_ = user_string('ghostscript'); % Check the path works if check_gs_path(path_) return end % Check whether the binary is on the path if ispc bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'}; else bin = {'gs'}; end for a = 1:numel(bin) path_ = bin{a}; if check_store_gs_path(path_) return end end % Search the obvious places if ispc default_location = 'C:\Program Files\gs\'; dir_list = dir(default_location); if isempty(dir_list) default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems dir_list = dir(default_location); end executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'}; ver_num = 0; % If there are multiple versions, use the newest for a = 1:numel(dir_list) ver_num2 = sscanf(dir_list(a).name, 'gs%g'); if ~isempty(ver_num2) && ver_num2 > ver_num for b = 1:numel(executable) path2 = [default_location dir_list(a).name executable{b}]; if exist(path2, 'file') == 2 path_ = path2; ver_num = ver_num2; end end end end if check_store_gs_path(path_) return end else executable = {'/usr/bin/gs', '/usr/local/bin/gs'}; for a = 1:numel(executable) path_ = executable{a}; if check_store_gs_path(path_) return end end end % Ask the user to enter the path while 1 if strncmp(computer, 'MAC', 3) % Is a Mac % Give separate warning as the uigetdir dialogue box doesn't have a % title uiwait(warndlg('Ghostscript not found. Please locate the program.')) end base = uigetdir('/', 'Ghostcript not found. Please locate the program.'); if isequal(base, 0) % User hit cancel or closed window break; end base = [base filesep]; bin_dir = {'', ['bin' filesep], ['lib' filesep]}; for a = 1:numel(bin_dir) for b = 1:numel(bin) path_ = [base bin_dir{a} bin{b}]; if exist(path_, 'file') == 2 if check_store_gs_path(path_) return end end end end end error('Ghostscript not found. Have you installed it from www.ghostscript.com?'); end function good = check_store_gs_path(path_) % Check the path is valid good = check_gs_path(path_); if ~good return end % Update the current default path to the path found if ~user_string('ghostscript', path_) warning('Path to ghostscript installation could not be saved. Enter it manually in %s.', fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt')); return end end function good = check_gs_path(path_) % Check the path is valid shell_cmd = ''; if ismac shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07 end [good, message] = system(sprintf('%s"%s" -h', shell_cmd, path_)); good = good == 0; end
github
thomaskuestner/CNNArt-master
fix_lines.m
.m
CNNArt-master/matlab/utils/export_fig/fix_lines.m
5,759
utf_8
3338572f35c4669b79cc3265892d35de
%FIX_LINES Improves the line style of eps files generated by print % % Examples: % fix_lines fname % fix_lines fname fname2 % fstrm_out = fixlines(fstrm_in) % % This function improves the style of lines in eps files generated by % MATLAB's print function, making them more similar to those seen on % screen. Grid lines are also changed from a dashed style to a dotted % style, for greater differentiation from dashed lines. % % The function also places embedded fonts after the postscript header, in % versions of MATLAB which place the fonts first (R2006b and earlier), in % order to allow programs such as Ghostscript to find the bounding box % information. % %IN: % fname - Name or path of source eps file. % fname2 - Name or path of destination eps file. Default: same as fname. % fstrm_in - File contents of a MATLAB-generated eps file. % %OUT: % fstrm_out - Contents of the eps file with line styles fixed. % Copyright: (C) Oliver Woodford, 2008-2014 % The idea of editing the EPS file to change line styles comes from Jiro % Doke's FIXPSLINESTYLE (fex id: 17928) % The idea of changing dash length with line width came from comments on % fex id: 5743, but the implementation is mine :) % Thank you to Sylvain Favrot for bringing the embedded font/bounding box % interaction in older versions of MATLAB to my attention. % Thank you to D Ko for bringing an error with eps files with tiff previews % to my attention. % Thank you to Laurence K for suggesting the check to see if the file was % opened. function fstrm = fix_lines(fstrm, fname2) if nargout == 0 || nargin > 1 if nargin < 2 % Overwrite the input file fname2 = fstrm; end % Read in the file fstrm = read_write_entire_textfile(fstrm); end % Move any embedded fonts after the postscript header if strcmp(fstrm(1:15), '%!PS-AdobeFont-') % Find the start and end of the header ind = regexp(fstrm, '[\n\r]%!PS-Adobe-'); [ind2, ind2] = regexp(fstrm, '[\n\r]%%EndComments[\n\r]+'); % Put the header first if ~isempty(ind) && ~isempty(ind2) && ind(1) < ind2(1) fstrm = fstrm([ind(1)+1:ind2(1) 1:ind(1) ind2(1)+1:end]); end end % Make sure all line width commands come before the line style definitions, % so that dash lengths can be based on the correct widths % Find all line style sections ind = [regexp(fstrm, '[\n\r]SO[\n\r]'),... % This needs to be here even though it doesn't have dots/dashes! regexp(fstrm, '[\n\r]DO[\n\r]'),... regexp(fstrm, '[\n\r]DA[\n\r]'),... regexp(fstrm, '[\n\r]DD[\n\r]')]; ind = sort(ind); % Find line width commands [ind2, ind3] = regexp(fstrm, '[\n\r]\d* w[\n\r]'); % Go through each line style section and swap with any line width commands % near by b = 1; m = numel(ind); n = numel(ind2); for a = 1:m % Go forwards width commands until we pass the current line style while b <= n && ind2(b) < ind(a) b = b + 1; end if b > n % No more width commands break; end % Check we haven't gone past another line style (including SO!) if a < m && ind2(b) > ind(a+1) continue; end % Are the commands close enough to be confident we can swap them? if (ind2(b) - ind(a)) > 8 continue; end % Move the line style command below the line width command fstrm(ind(a)+1:ind3(b)) = [fstrm(ind(a)+4:ind3(b)) fstrm(ind(a)+1:ind(a)+3)]; b = b + 1; end % Find any grid line definitions and change to GR format % Find the DO sections again as they may have moved ind = int32(regexp(fstrm, '[\n\r]DO[\n\r]')); if ~isempty(ind) % Find all occurrences of what are believed to be axes and grid lines ind2 = int32(regexp(fstrm, '[\n\r] *\d* *\d* *mt *\d* *\d* *L[\n\r]')); if ~isempty(ind2) % Now see which DO sections come just before axes and grid lines ind2 = repmat(ind2', [1 numel(ind)]) - repmat(ind, [numel(ind2) 1]); ind2 = any(ind2 > 0 & ind2 < 12); % 12 chars seems about right ind = ind(ind2); % Change any regions we believe to be grid lines to GR fstrm(ind+1) = 'G'; fstrm(ind+2) = 'R'; end end % Isolate line style definition section first_sec = strfind(fstrm, '% line types:'); [second_sec, remaining] = strtok(fstrm(first_sec+1:end), '/'); [remaining, remaining] = strtok(remaining, '%'); % Define the new styles, including the new GR format % Dot and dash lengths have two parts: a constant amount plus a line width % variable amount. The constant amount comes after dpi2point, and the % variable amount comes after currentlinewidth. If you want to change % dot/dash lengths for a one particular line style only, edit the numbers % in the /DO (dotted lines), /DA (dashed lines), /DD (dot dash lines) and % /GR (grid lines) lines for the style you want to change. new_style = {'/dom { dpi2point 1 currentlinewidth 0.08 mul add mul mul } bdef',... % Dot length macro based on line width '/dam { dpi2point 2 currentlinewidth 0.04 mul add mul mul } bdef',... % Dash length macro based on line width '/SO { [] 0 setdash 0 setlinecap } bdef',... % Solid lines '/DO { [1 dom 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dotted lines '/DA { [4 dam 1.5 dam] 0 setdash 0 setlinecap } bdef',... % Dashed lines '/DD { [1 dom 1.2 dom 4 dam 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dot dash lines '/GR { [0 dpi2point mul 4 dpi2point mul] 0 setdash 1 setlinecap } bdef'}; % Grid lines - dot spacing remains constant % Construct the output fstrm = [fstrm(1:first_sec) second_sec sprintf('%s\r', new_style{:}) remaining]; % Write the output file if nargout == 0 || nargin > 1 read_write_entire_textfile(fname2, fstrm); end end
github
thomaskuestner/CNNArt-master
fReadDICOM.m
.m
CNNArt-master/matlab/io/fReadDICOM.m
8,286
utf_8
f42fb2403d27a894219274abc728ca3e
function [dImg, SInfo, SCoord] = fReadDICOM(sFolder) % read in DICOM files % % (c) Christian Wuerslin, Thomas Kuestner, 2011 % --------------------------------------------------------------------- % iMAXSIZE = 256; if ispc, sS='\'; else sS='/'; end; if ~nargin, sFolder = cd; end SFolder = dir(sFolder); SFiles = SFolder(~[SFolder.isdir]); % Try to find first readable DICOM file and use as reference SFirstTag = []; iInd = 1; while isempty(SFirstTag) && iInd <= length(SFiles) try SFirstTag = dicominfo([sFolder, sS, SFiles(iInd).name]); catch iInd = iInd + 1; end end if isempty(SFirstTag) return end if(usejava('jvm') && ~feature('ShowFigureWindows')) flagDisp = false; else flagDisp = true; end flagDisp = false; % force UI off % Try to read the remaining files in the dir if(isfield(SFirstTag,'ProtocolName') && strcmp(SFirstTag.ProtocolName,'FastView')) dImg = cell(1,3); SInfo = dImg; SCoord = dImg; cOrient = cell(1,3); fprintf(1, 'Parsing FastView images'); for iPre = iInd:length(SFiles) sThisTag = dicominfo([sFolder, sS, SFiles(iPre).name]); [~,dOrient] = min(sum(abs(reshape(sThisTag.ImageOrientationPatient, [3, 2])'))); switch dOrient case 1 % sag cOrient{1} = [cOrient{1}, iPre]; case 2 % cor cOrient{2} = [cOrient{2}, iPre]; case 3 % tra cOrient{3} = [cOrient{3}, iPre]; end if(mod(iPre,10) == 0), fprintf('.'); end; end fprintf('\n'); for iJ=1:3 [dImg{iJ}, SInfo{iJ}, SCoord{iJ}] = fReadDICOMSingleOrient(SFiles(cOrient{iJ}), 1); end else [dImg, SInfo, SCoord] = fReadDICOMSingleOrient(SFiles, iInd); end function [dImg, SInfo, SCoord] = fReadDICOMSingleOrient(SFiles, iInd) iNDicom = 0; SFirstTag = dicominfo([sFolder, sS, SFiles(1).name]); dImg = zeros(SFirstTag.Height, SFirstTag.Width, length(SFiles) - iInd + 1); if(flagDisp), hWait = showWaitbar('Loading DICOM images', 0); end; for iI = iInd:length(SFiles) try % Try to read the Dicom information. SThisTag = dicominfo([sFolder, sS, SFiles(iI).name]); [dThisImg, iThisBinHdr] = fDicomReadFast([sFolder, sS, SFiles(iI).name], SThisTag.Height, SThisTag.Width); dThisImg = double(dThisImg); % if ~fTestImageCompatibility(SThisTag, SFirstTag), continue; end iNDicom = iNDicom + 1; if isfield(SThisTag, 'RescaleIntercept') dThisImg = dThisImg - SThisTag.RescaleIntercept; end if isfield(SThisTag, 'RescaleSlope') dThisImg = dThisImg.*SThisTag.RescaleSlope; end dImg(:, :, iNDicom) = dThisImg; SInfo(iNDicom).STag = SThisTag; SInfo(iNDicom).sFilename = SFiles(iI).name; SInfo(iNDicom).iBinHdr = iThisBinHdr; catch end if(flagDisp), hWait = showWaitbar('Loading DICOM images', iI/length(SFiles), hWait); end; end if(flagDisp), showWaitbar('Loading DICOM images', 'Close', hWait); end; % Crop Images dImg = dImg(:, :, 1:iNDicom); % Sort images according to acquisition time dTime = zeros(iNDicom, 1); for iI = 1:length(dTime) iHour = str2double(SInfo(iI).STag.AcquisitionTime(1:2)); iMin = str2double(SInfo(iI).STag.AcquisitionTime(3:4)); iSek = str2double(SInfo(iI).STag.AcquisitionTime(5:end)); dTime(iI) = iSek + 60*iMin + 3600*iHour; end [temp, iInd] = sort(dTime); dImg = dImg(:,:,iInd); SInfo = SInfo(iInd); % Orientation dOrient = reshape(SInfo(1).STag.ImageOrientationPatient, [3, 2])'; dPixelSpacing = SInfo(1).STag.PixelSpacing; dPosition = zeros(length(SInfo), 3); for iI = 1:length(SInfo) dPosition(iI, :) = SInfo(iI).STag.ImagePositionPatient'; end dOrientIndicator = sum(abs(dOrient)); [dVal, iInd] = min(dOrientIndicator); switch(iInd) case 1 SCoord.sOrientation = 'Sag'; SCoord.dLR = dPosition(:, 1); SCoord.dAP = (dPosition(1, 2) + dOrient(1, 2).*(0:size(dImg, 2) - 1).*dPixelSpacing(1))'; [dTmp, ~, iInd] = unique(dPosition(:, 3)); % continous table movement if(length(dTmp) == 1) SCoord.dFH = (dPosition(1, 3) + dOrient(2, 3).*(0:size(dImg, 1) - 1).*dPixelSpacing(2))'; else % FH coordinates for each image seperately SCoord.dFH = (repmat(dTmp,[1 size(dImg, 1)]) + repmat(dOrient(2, 3).*(0:size(dImg, 1) - 1).*dPixelSpacing(2),[length(dTmp) 1]))'; SCoord.TimCT = iInd; end case 2 SCoord.sOrientation = 'Cor'; SCoord.dLR = (dPosition(1, 1) + dOrient(1, 1).*(0:size(dImg, 2) - 1).*dPixelSpacing(1))'; SCoord.dAP = dPosition(:, 2); [dTmp, ~, iInd] = unique(dPosition(:, 3)); % continous table movement if(length(dTmp) == 1) SCoord.dFH = (dPosition(1, 3) + dOrient(2, 3).*(0:size(dImg, 1) - 1).*dPixelSpacing(2))'; else % FH coordinates for each image seperately SCoord.dFH = (repmat(dTmp,[1 size(dImg, 1)]) + repmat(dOrient(2, 3).*(0:size(dImg, 1) - 1).*dPixelSpacing(2),[length(dTmp) 1]))'; SCoord.TimCT = iInd; end case 3 SCoord.sOrientation = 'Tra'; SCoord.dLR = (dPosition(1, 1) + dOrient(1, 1).*(0:size(dImg, 2) - 1).*dPixelSpacing(1))'; SCoord.dAP = (dPosition(1, 2) + dOrient(2, 2).*(0:size(dImg, 1) - 1).*dPixelSpacing(2))'; SCoord.dFH = dPosition(:, 3); % if SCoord.dFH(2) -SCoord.dFH(1) < 1 % dImg = flipdim(dImg, 3); % SCoord.dFH = SCoord.dFH(end:-1:1); % end if(isfield(SThisTag,'ProtocolName') && ~strcmp(SThisTag.ProtocolName,'FastView')) [temp, iInd] = sort(SCoord.dFH, 'ascend'); SCoord.dFH = SCoord.dFH(iInd); dImg = dImg(:,:,iInd); SInfo = SInfo(iInd); end end fprintf(1, '\nNumber of matching DICOM images in folder : %u\n', iNDicom); fprintf(1, ' Number of other files in folder : %u\n', length(SFiles) - iNDicom); fprintf(1, ' Image Modality : %s\n', SInfo(1).STag.Modality); fprintf(1, ' Image Orientation : %s\n', SCoord.sOrientation); fprintf(1, ' Image Resolution : %u x %u\n\n', size(dImg, 2), size(dImg, 1)); fprintf(1, ' range metric FOV center of FOV\n'); fprintf(1, 'LR %-3.2f mm .. %-3.2f mm %-3.2f mm %-3.2f mm\n', min(SCoord.dLR), max(SCoord.dLR), max(SCoord.dLR) - min(SCoord.dLR), (max(SCoord.dLR) + min(SCoord.dLR))/2); fprintf(1, 'AP %-3.2f mm .. %-3.2f mm %-3.2f mm %-3.2f mm\n', min(SCoord.dAP), max(SCoord.dAP), max(SCoord.dAP) - min(SCoord.dAP), (max(SCoord.dAP) + min(SCoord.dAP))/2); fprintf(1, 'FH %-3.2f mm .. %-3.2f mm %-3.2f mm %-3.2f mm\n', min(SCoord.dFH), max(SCoord.dFH), max(SCoord.dFH) - min(SCoord.dFH), (max(SCoord.dFH) + min(SCoord.dFH))/2); end function lMatch = fTestImageCompatibility(STag, SRefTag) lMatch = false; % csTagsToCheck = {'FrameOfReferenceUID', 'PixelSpacing', 'ImageOrientationPatient', 'Modality', 'Width', 'Height'}; csTagsToCheck = {'PixelSpacing', 'Modality', 'Width', 'Height'}; for iI = 1:length(csTagsToCheck) eval(['rVar = STag.', csTagsToCheck{iI}, ';']); eval(['rVarRef = SRefTag.', csTagsToCheck{iI}, ';']); if isnumeric(rVar) if any(rVar ~= rVarRef) fprintf(1, ['*** ', csTagsToCheck{iI}, ' ***\n']); return; end elseif islogical(rVar) if any(rVar ~= rVarRef) fprintf(1, ['*** ', csTagsToCheck{iI}, ' ***\n']); return; end else if ~strcmp(rVar, rVarRef) fprintf(1, ['*** ', csTagsToCheck{iI}, ' ***\n']); return; end end end lMatch = true; end function hWait = showWaitbar(sMessage, dValue, hWait) if(exist('multiWaitbar','file')) multiWaitbar(sMessage, dValue); hWait = 0; else if(nargin < 3) hWait = waitbar(dValue, sMessage); else if(isnumeric(dValue)) waitbar(dValue, hWait); else % close waitbar close(hWait); end end end end end
github
thomaskuestner/CNNArt-master
fPatchOverlay.m
.m
CNNArt-master/matlab/deepvis/fPatchOverlay.m
4,179
utf_8
9bc1e1c7e4769b84666acb79855b317d
function hfig = fPatchOverlay( dImg, dPatch, iScale, dAlpha, sPathOut, cPlotLimits, lLabel, lGray) %FPATCHOVERLAY overlay figure if(nargin < 8) lGray = false; end if(nargin < 7) lLabel = true; end if(nargin < 6) xLimits = [1 size(dImg,2)]; yLimits = [1 size(dImg,1)]; else xLimits = cPlotLimits{1}; yLimits = cPlotLimits{2}; end if(nargin < 5) sPathOut = cd; end if(nargin < 4) dAlpha = 0.6; end if(nargin < 3) iScale = [0 1; 0 1]; end h.sPathOut = sPathOut; h.dAlpha = dAlpha; h.lGray = lGray; h.colRange = iScale; hfig = figure; dImg = ((dImg - min(dImg(:))).*(h.colRange(1,2)-h.colRange(1,1)))./(max(dImg(:) - min(dImg(:)))); if(h.lGray) alpha = bsxfun(@times, ones(size(dPatch,1), size(dPatch,2)), .6); % find a scale dynamically with some limit Foreground_min = min( min(dPatch(:)), h.colRange(1) ); Foreground_max = max( max(dPatch(:)), h.colRange(2) ); Background_blending = bsxfun(@times, dImg, bsxfun(@minus,1,alpha)); Foreground_blending = bsxfun( @times, bsxfun( @rdivide, ... bsxfun(@minus, dPatch, Foreground_min), ... Foreground_max-Foreground_min ), alpha ); h.dImg = Background_blending + Foreground_blending; h.hI = imshow(h.dImg(:,:,1), h.colRange); else h.hI = axes(); h.dImg = dImg; h.dPatch = dPatch; [h.hFront,h.hBack] = imoverlay(dImg(:,:,1,1),dPatch(:,:,1,1),h.colRange(1,:),h.colRange(2,:),'jet',h.dAlpha, h.hI); end xlim(xLimits); ylim(yLimits); h.hA = gca; h.iActive = 1; if(lLabel) % h.hT = uicontrol('Style','text', 'units','normalized', 'Position', [0.925 0.975 0.075 0.0255],'String',sprintf('I: [%.2f:%.2f]', h.colRange(1), h.colRange(2)),'ForegroundColor','k','Backgroundcolor','w'); h.hT = uicontrol('Style','text', 'units','normalized', 'Position', [0.925 0.975 0.075 0.0255],'String',sprintf('%02d/%02d', h.iActive, size(h.dImg,3)),'ForegroundColor','k','Backgroundcolor','w'); end h.lLabel = lLabel; set(h.hA, 'Position', [0 0 1 1]); set(hfig, 'Position', [0 0 size(dImg, 2).*4 size(dImg, 1).*4]); set(hfig, 'WindowScrollWheelFcn', @fScroll); set(hfig, 'KeyPressFcn' , @fKeyPressFcn); currpath = fileparts(mfilename('fullpath')); addpath(genpath([fileparts(fileparts(currpath)),filesep,'export_fig'])); % set(hfig, 'WindowButtonDownFcn', @fWindowButtonDownFcn); % set(hfig, 'WindowButtonMotionFcn', @fWindowButtonMotionFcn); % set(hfig, 'WindowButtonUpFcn', @fWindowButtonUpFcn); movegui('center'); hold on guidata(hfig, h); end function fScroll(hObject, eventdata, handles) h = guidata(hObject); if eventdata.VerticalScrollCount < 0 h.iActive = max([1 h.iActive - 1]); else h.iActive = min([size(h.dImg, 3) h.iActive + 1]); end if(h.lGray) set(h.hI, 'CData', h.dImg(:,:,h.iActive)); else [h.hFront,h.hBack] = imoverlay(h.dImg(:,:,h.iActive,1),h.dPatch(:,:,h.iActive,1),h.colRange(1,:),h.colRange(2,:),'jet',h.dAlpha, h.hI); end set(h.hT, 'String', sprintf('%02d/%02d', h.iActive, size(h.dImg,3))); guidata(hObject, h); end function fKeyPressFcn(hObject, eventdata) if(strcmpi(eventdata.Key,'p')) h = guidata(hObject); set(h.hT, 'Visible', 'off'); if(~exist(h.sPathOut,'dir')) mkdir(h.sPathOut); end sFiles = dir(h.sPathOut); iFound = cellfun(@(x) ~isempty(x), regexp({sFiles(:).name},[num2str(h.iActive,'%03d')])); if(any(iFound)) sFile = [num2str(h.iActive,'%03d'),'_',nnz(iFound)]; else sFile = num2str(h.iActive,'%03d'); end % iFile = nnz(~cell2mat({sFiles(:).isdir})) + 1; % sFile = num2str(iFile); try export_fig([h.sPathOut,filesep,sFile,'.tif']); catch warning('export_fig() not on path'); end set(h.hT, 'Visible', 'on'); end guidata(hObject, h); end
github
AMGoldsborough/tSDRG_PBC-master
PBC_pos.m
.m
tSDRG_PBC-master/PBC_pos.m
149
utf_8
cfa59d5fd986e812e7f18499790643a4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = PBC_pos(x,L) %gives position with PBCs x = mod(x-1,L)+1; end
github
jsjolund/sailoraid-master
serialRead.m
.m
sailoraid-master/Utilities/matlab/serialRead.m
3,280
utf_8
c5128330d2222fc30a7bed8ecebfb4f5
%% Start listening to sensor data function serialRead(serialPort,callback) if exist('s', 'var') try fclose(s); catch end delete(s); clear s; end % Supported baud rates 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, % 38400, 57600, 115200, 230400, 460800, 921600 s = serial(serialPort); if (s.Status == 'closed') s.BaudRate = 230400; s.ReadAsyncMode = 'continuous'; s.InputBufferSize = 1024; s.ByteOrder = 'littleEndian'; s.BytesAvailableFcnMode = 'byte'; s.BytesAvailableFcnCount = 31*4; s.Timeout = 2; % Open the serial connection fprintf('Opening connection...\n') fprintf('Press Ctrl+C to stop recording.\n') fprintf('Recording.'); fopen(s); % Start the sensor value stream fprintf(s,sprintf('\r\n\r\n\r\nmatlab\r\n')); tic(); set(s,'BytesAvailableFcn',{@serialReceive,callback}); % Read pause(1); % Close the serial connection fprintf('Closing connection...\n') fclose(s); delete(s); clear s; end end %% Read the serial stream function serialReceive(obj,~,callback) % Read data as float array [data,~] = fread(obj, 31*4, 'float32'); % If last float is not NaN, we need to sync the stream if ~isnan(data(31)) fprintf('\nSynchronizing...\n'); ffCnt = 0; while 1 [data,~] = fread(obj, 1, 'uint8'); if data(1) == 255 ffCnt = ffCnt+1; else ffCnt = 0; end if ffCnt == 4 break; end end fprintf('Recording.'); return; end % Store sensor values in struct with fields sensor.imu.ax = data(1); sensor.imu.ay = data(2); sensor.imu.az = data(3); sensor.imu.gx = data(4); sensor.imu.gy = data(5); sensor.imu.gz = data(6); sensor.imu.mx = data(7); sensor.imu.my = data(8); sensor.imu.mz = data(9); sensor.imu.roll = data(10); sensor.imu.pitch = data(11); sensor.imu.yaw = data(12); sensor.env.humidity = data(13); sensor.env.pressure = data(14); sensor.env.temperature = data(15); sensor.gps.time.year = ftoi(data(16)); sensor.gps.time.month = ftoi(data(17)); sensor.gps.time.day = ftoi(data(18)); sensor.gps.time.hour = ftoi(data(19)); sensor.gps.time.min = ftoi(data(20)); sensor.gps.time.sec = ftoi(data(21)); sensor.gps.time.hsec = ftoi(data(22)); sensor.gps.pos.latitude = data(23); sensor.gps.pos.longitude = data(24); sensor.gps.pos.elevation = data(25); sensor.gps.pos.speed = data(26); sensor.gps.pos.direction = data(27); sensor.gps.info.satUse = ftoi(data(28)); sensor.gps.info.satView = ftoi(data(29)); sensor.range.range0 = data(30); % Add a timestamp sensor.sys.dateTime = now; % Store time in milliseconds since last update sensor.sys.deltaTime = toc()*1000; tic(); % Absolute time in ms global absTime if isempty(absTime) absTime = 0; end absTime = absTime + sensor.sys.deltaTime; sensor.sys.absTime = absTime; % User callback callback(sensor); end %% Cast 32 bit floating point to 32 bit integer function i = ftoi(f) i = typecast(single(f),'int32'); end
github
jsjolund/sailoraid-master
main.m
.m
sailoraid-master/Utilities/matlab/main.m
1,656
utf_8
17a84b2c220b6a508d528876ff8e2695
%% Script which logs sensor values from serial port and can plot real-time % Press Ctrl+C in the Command Window to stop reading and recording. clear -global; clear; %serialPort = 'COM1'; % Windows serialPort = '/dev/ttyACM0'; % Linux % Can be removed for faster logging % realTimePlot(); % Start reading from serial serialRead(serialPort, @sensorUpdateCallback); % Plot from sensor log after serial read stopped global sensorLog % imuLog = [sensorLog.imu]; % timeLog = [sensorLog.sys]; % plot([timeLog.absTime],[imuLog.az]) fprintf('Program terminated.\n'); %% This callback is run when sensor values are updated function sensorUpdateCallback(sensor) global hp sensorLog sensorLog = [sensorLog, sensor]; if ishghandle(hp) realTimePlotUpdate(sensor); end if mod(length(sensorLog), 25) == 0 fprintf('.'); end end %% Real time plot functions % Create a figure to plot into function realTimePlot() global hp step % Number of "sliding points" in your figure nPointsInFigure = 300; % X points spacing step = 0.01; % Prepare empty data for the plot xVals = linspace(-(nPointsInFigure-1)*step, 0, nPointsInFigure); yVals = NaN(nPointsInFigure, 1); figure(1); % Generate the plot (with empty data) it will be passed to the callback. hp = plot(xVals , yVals); ylim([-100 100]); end % Update the plot by circle shifting the values as needed function realTimePlotUpdate(sensor) plotVar = sensor.range.range0; global hp step xVals = get(hp,'XData'); yVals = get(hp,'YData'); yVals = circshift(yVals,-1); yVals(end) = plotVar; xVals = circshift(xVals,-1); xVals(end) = xVals(end-1) + step; set(hp, 'XData', xVals, 'YData', yVals); drawnow limitrate end
github
jsjolund/sailoraid-master
serialRead.m
.m
sailoraid-master/Kalman_Filter/Serial_Read/serialRead.m
2,808
utf_8
607933805d0c2b6a07459c8e7cd4a338
%% Start listening to sensor data function serialRead(serialPort,callback) if exist('s', 'var') try fclose(s); catch end delete(s); clear s; end s = serial(serialPort); if (s.Status == 'closed') s.BaudRate = 115200; s.ReadAsyncMode = 'continuous'; s.InputBufferSize = 1024; s.ByteOrder = 'littleEndian'; s.BytesAvailableFcnMode = 'byte'; s.BytesAvailableFcnCount = 30*4; set(s,'BytesAvailableFcn',{@serialReceive,callback}) s.Timeout = 2; % Open the serial connection fprintf('Opening connection...\n') fopen(s); pause(1); % Start the sensor value stream fprintf(s,sprintf('\r\n\r\n\r\nmatlab\r\n')); pause(1); % Close the serial connection fprintf('Closing connection...\n') fclose(s); delete(s); clear s; end end %% Read the serial stream function serialReceive(obj,~,callback) % Read data as float array [data,~] = fread(obj, 30*4, 'float32'); % If last float is not NaN, we need to sync the stream if ~isnan(data(30)) fprintf('Synchronizing...\n'); nanCnt = 0; while 1 [data,~] = fread(obj, 1, 'uint8'); if data(1) == 255 nanCnt = nanCnt+1; else nanCnt = 0; end if nanCnt == 4 break; end end return; end % Store in struct with fields sensor.imu.ax = data(1); sensor.imu.ay = data(2); sensor.imu.az = data(3); sensor.imu.gx = data(4); sensor.imu.gy = data(5); sensor.imu.gz = data(6); sensor.imu.mx = data(7); sensor.imu.my = data(8); sensor.imu.mz = data(9); sensor.imu.roll = data(10); sensor.imu.pitch = data(11); sensor.imu.yaw = data(12); sensor.env.humidity = data(13); sensor.env.pressure = data(14); sensor.env.temperature = data(15); sensor.gps.time.year = typecast(single(data(16)),'int32'); sensor.gps.time.month = typecast(single(data(17)),'int32'); sensor.gps.time.day = typecast(single(data(18)),'int32'); sensor.gps.time.hour = typecast(single(data(19)),'int32'); sensor.gps.time.min = typecast(single(data(20)),'int32'); sensor.gps.time.sec = typecast(single(data(21)),'int32'); sensor.gps.time.hsec = typecast(single(data(22)),'int32'); sensor.gps.pos.latitude = data(23); sensor.gps.pos.longitude = data(24); sensor.gps.pos.elevation = data(25); sensor.gps.pos.speed = data(26); sensor.gps.pos.direction = data(27); sensor.gps.info.satUse = typecast(single(data(28)),'int32'); sensor.gps.info.satView = typecast(single(data(29)),'int32'); % Add a timestamp sensor.sys.dateTime = datevec(now); try % Store time in milliseconds since last update sensor.sys.deltaTime = toc()*1000; catch sensor.sys.deltaTime = 0; end tic(); % User callback callback(sensor); end
github
jsjolund/sailoraid-master
main.m
.m
sailoraid-master/Kalman_Filter/Serial_Read/main.m
1,485
utf_8
50d87825b14a282b6b04225f526eb936
%% Script which logs sensor values from serial port and can plot real-time clear -global; clear; serialPort = 'COM7'; % Windows %serialPort = '/dev/ttyACM3'; % Linux % realTimePlot(); % Start reading from serial serialRead(serialPort, @sensorUpdateCallback); % Plot from sensor log global sensorLog imu = [sensorLog.imu]; plot([sensorLog.timestamp],[imu.az]) fprintf('Program terminated.\n'); %% This callback is run when sensor values are updated function sensorUpdateCallback(sensor) global hp sensorLog sensorLog = [sensorLog, sensor]; if ishghandle(hp) realTimePlotUpdate(sensor); end end %% Real time plot functions % Create a figure to plot into function realTimePlot() global hp step nPointsInFigure = 250; % Number of "sliding points" in your figure step = 0.01; % X points spacing xVals = linspace(-(nPointsInFigure-1)*step, 0, nPointsInFigure); % Prepare empty data for the plot yVals = NaN(nPointsInFigure, 1); figure(1); hp = plot(xVals , yVals); % Generate the plot (with empty data) it will be passed to the callback. ylim([-3 3]); end % Update the plot by circle shifting the values as needed function realTimePlotUpdate(sensor) global hp step xVals = get(hp,'XData'); yVals = get(hp,'YData'); yVals = circshift(yVals,-1); yVals(end) = sensor.imu.az; % Plot variable xVals = circshift(xVals,-1); xVals(end) = xVals(end-1) + step; set(hp, 'XData', xVals, 'YData', yVals); drawnow limitrate end
github
Kazell/coloring-contours-of-objects-master
fig_n.m
.m
coloring-contours-of-objects-master/fig_n.m
3,150
utf_8
fb24e5717c1560f3bfecedccce8df1b2
function clea=fig_n(a) % %This function takes a picture a='name.extension' as an argument and returns a figure of external boundaries of objects %placed on picture all colored differently (on the white background)if the background of the given picture is uniform %and all objects don't touch the borders of the picture. % b=imread(a); %Function imread returns the matrix of three dimentions (number of pixels in length, number of pixels in hight, rgb - 3 numbers ) k=size(b); %gives the matrix=[length hight 3] b1=b(1,1,:); %left upper corner, gives rgb combination for background c=[]; %prepares an empty massive for matrix(length, hight) with 0 for background coordinates and 1 for objects' pixels for i=1:1:k(1,1); %goes through raws from the first to the last for j=1:1:k(1,2); %and columns if b(i,j,:)==b1; c(i,j)=0; %changes all background's rgb-vectors to 0 else c(i,j)=1; % changes objects' rgb-vectors to 1 end end end %starting from here prepares a massive l (<--it is small letter L) for object contours (not colored). Points of boundaries will be equal to 0, %all the others to 1. l=[]; l(size(c)(1,1),size(c)(1,2))=1; %violently makes right lower corner equal to 1, i.e.it is background. l(1,size(c)(1,2))=1;% the same with right upper l(size(c)(1,1),1)=1;%...and left lower l(1,1)=1;% and left upper for i=2:1:(size(c)(1,1)-1); %goes through raws l(i,1)=1; %makes first raw to be a background l(i,size(c)(1,2))=1; %and the last for j=2:1:(size(c)(1,2)-1);%through columns l(1,j)=1; %makes the first column to be a background l(size(c)(1,1),j)=1; %and the last if ((c(i,j)==0) && (c(i,j+1)==1)) || ((c(i,j)==0) && (c(i,j-1)==1)) || ((c(i,j)==0) && (c(i+1,j)==1)) || ((c(i,j)==0) && (c(i-1,j)==1));% if at least one of the l(i,j)=0; %neighbor-pixels for 0-pixel of massive l (<--small L again) is 1 it stays 0 (as it was) else l(i,j)=1; %if not turns into 1 end end end % now we have all contours marked as 0 in matrix l p=ones(size(l)(1,1),size(l)(1,2),3).*255; %creates massive to be transformed into picture with rgb-colors. At this step it is a white empty picture p1=size(p)(1,1); %length of future picture p2=size(p)(1,2);%its height for i=2:1:(size(l)(1,1)-1); %goes through lines for j=2:1:(size(l)(1,2)-1); % through columns if l(i,j)==0; % point belongs to the objects' contour d=[rand(max(p1,p2),max(p1,p2),255)(i,j) rand(max(p1,p2),max(p1,p2),255)(1,i) rand(max(p1,p2),max(p1,p2),255)(j,i)];%randomly chooses color [l,p] = recurpix (l,p,d,i,j); %%% calls a function (with full description in file named recurpix.m) end end end clea = imshow(p); %returns a picture of an object end
github
gunpowder78/CMU-Perceptual-Computing-Lab-openpose-master
classification_demo.m
.m
CMU-Perceptual-Computing-Lab-openpose-master/3rdparty/caffe/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
lifeng9472/IBCCF-master
tracker.m
.m
IBCCF-master/tracker.m
8,795
utf_8
12e1cf165656dd49d0a525d7b49f7501
% Tracker: Integrating Boundary and Center Correlation Filters for Visual Tracking with % Aspect Ratio Variation % % Input: % - img_files: list of image names % - pos: intialized center position of the target in (row, col) % - init_target_sz: intialized target size in (Height, Width) % Output: % - results: return the tracking results and fps % function results = tracker(img_files, pos, init_target_sz) % ================================================================================ % Environment setting % ================================================================================ % read the default parameters from file opts = []; opts = init_params(opts); % Get the CNN layers for both CCF and BCFs indLayers = opts.indLayers ; indLayers_border = opts.indLayers_border; % Initialize the parameters of CCF padding = opts.padding; cell_size = opts.cell_size; % Initialize the parameters of BCFs decay_ratio = opts.decay_ratio; cell_size_border = opts.cell_size_border; % Get the range of target scale changes during tracking min_scale_factor = opts.min_scale_factor; max_scale_factor = opts.max_scale_factor; % Other parameters output_sigma_factor = opts.output_sigma_factor; show_visualization = opts.show_visualization; video_path = []; % Get the number of layers for CCF numLayers = length(indLayers); numLayers_border = length(indLayers_border); % Get image size and search window size for CCF im_sz = size(imread([video_path img_files{1}])); [searching_sz, padding_strategy] = get_search_window(init_target_sz, im_sz, padding, -1); % Get the padding method and search window size for BCFs padding_border = get_border_padding(init_target_sz, im_sz); searching_sz_horz = floor(init_target_sz .* [padding_border.secondary, padding_border.primary_horz]); searching_sz_vert = floor(init_target_sz .* [padding_border.primary_vert, padding_border.secondary]); opts.padding_border = padding_border; % Compute the sigma for the Gaussian function label output_sigma = sqrt(prod(init_target_sz)) * output_sigma_factor / cell_size; output_sigma_horz = searching_sz_horz(2) * output_sigma_factor / cell_size_border; output_sigma_vert = searching_sz_vert(1) * output_sigma_factor / cell_size_border; % Compute the desired filter sizes feature_sz = floor(searching_sz / cell_size); feature_sz_horz = floor(searching_sz_horz / cell_size_border); feature_sz_vert = floor(searching_sz_vert / cell_size_border); % Compute the Fourier Transform of the Gaussian function label yf = fft2(gaussian_shaped_labels(output_sigma, feature_sz,'center')); yf_horz = fft(gaussian_shaped_labels(output_sigma_horz, feature_sz_horz(2),'horz'))'; yf_vert = fft(gaussian_shaped_labels(output_sigma_vert, feature_sz_vert(1),'vert')); % Compute the cosine window (for avoiding boundary discontinuity) cos_window = hann(size(yf,1)) * hann(size(yf,2))'; cos_window_horz = hann(size(yf_horz, 2))'; cos_window_vert = hann(size(yf_vert, 1)); % Clip the boundary cosine windows to suppress the effects of context % region cos_window_horz(1:floor(size(yf_horz,2) / 2)) = cos_window_horz(1:floor(size(yf_horz, 2) / 2)) * decay_ratio; cos_window_vert(1:floor(size(yf_vert,1) / 2)) = cos_window_vert(1:floor(size(yf_vert, 1) / 2)) * decay_ratio; % Create video interface for visualization if(show_visualization) update_visualization = show_video(img_files, video_path); end % Initialize the variables positions = zeros(numel(img_files), 4); boundary_positions = zeros(numel(img_files), 4); boundary_positions(1,:) = get_boundary_position(pos, init_target_sz); % Initialize the processing orders of the boundary features opts.reshape_mode = [{'horz'},{'horz'},{'vert'},{'vert'}]; opts.feat_size_border = [{feature_sz_horz},{feature_sz_horz},{feature_sz_vert},{feature_sz_vert}]; opts.cos_window_border = [{cos_window_horz},{cos_window_horz(end:-1:1)},{cos_window_vert},{cos_window_vert(end:-1:1)}]; opts.yf_border = [{yf_horz},{yf_horz},{yf_vert},{yf_vert}]; % Note: variables ending with 'f' are in the Fourier domain. [model_xf, model_alphaf] = deal(cell(numLayers, 1)); [model_xf_border, model_alphaf_border] = deal(cell(numLayers_border, 4)); % Initialize the target position, size and time cur_pos = pos; cur_target_sz = init_target_sz; time = 0; % ================================================================================ % Start tracking % ================================================================================ for frame = 1:numel(img_files) opts.frame = frame; im = imread([video_path img_files{frame}]); % Load the image at the current frame if ismatrix(im) im = cat(3, im, im, im); end tic(); % ================================================================================ % Predict the object position from the learned CFs % ================================================================================ if frame > 1 % Estimate the intial positions of the target with the center CF % Extract the deep features feat = extract_features_CCF(im, cur_pos, searching_sz, cos_window, opts); % Predict the initial position in current frame [cur_pos, confidence_CCF] = predict_position_CCF(feat, cur_pos, feature_sz, model_xf, model_alphaf, cur_target_sz ./ init_target_sz ,opts); % Compute the initial positions for four boundaries in current frame boundary_positions(frame,:) = get_boundary_position(cur_pos, cur_target_sz); % Extract deep features for 1D boundary trackers feat_border = extract_features_BCFs(im, cur_pos, cur_target_sz, opts); % Refine the boundary positions with 1D boundary trackers delta_border = predict_position_BCFs(feat_border, model_xf_border, model_alphaf_border, opts); boundary_positions(frame, :) = boundary_positions(frame, :) + delta_border; % Clamp the boundaries boundary_positions(frame, :) = clamp_region(boundary_positions(frame, :), size(im)); old_pos = cur_pos; old_target_sz = cur_target_sz; cur_pos = [(boundary_positions(frame, 3) + boundary_positions(frame, 4)), (boundary_positions(frame, 1) + boundary_positions(frame, 2)) ] / 2; cur_target_sz = [(boundary_positions(frame, 4) - boundary_positions(frame, 3) + mod(cur_target_sz(1),2)),... (boundary_positions(frame, 2) - boundary_positions(frame, 1) + mod(cur_target_sz(2),2))]; % Clamp the target size cur_target_sz = clamp_target_sz(cur_target_sz, init_target_sz, min_scale_factor, max_scale_factor); % Compare the tracking results between CCF and BCFs searching_sz = get_search_window(cur_target_sz, im_sz, padding, padding_strategy); feat = extract_features_CCF(im, cur_pos, searching_sz, cos_window, opts); [~, confidence_BCFs] = predict_position_CCF(feat, cur_pos, feature_sz, model_xf, model_alphaf, cur_target_sz ./ init_target_sz, opts); if(confidence_BCFs < confidence_CCF) cur_target_sz = old_target_sz; cur_pos = old_pos; end % Clamp the target size again cur_target_sz = clamp_target_sz(cur_target_sz, init_target_sz, min_scale_factor, max_scale_factor); end % ================================================================================ % Update the CF models with Alternating Direction Method of Multipliers (ADMM) % ================================================================================ searching_sz = get_search_window(cur_target_sz, im_sz, padding, padding_strategy); feat = extract_features_CCF(im, cur_pos, searching_sz, cos_window, opts); feat_border = extract_features_BCFs(im, cur_pos, cur_target_sz, opts); [model_xf, model_xf_border, model_alphaf, model_alphaf_border] = update_model(feat, feat_border,... yf, model_xf, model_xf_border, model_alphaf, model_alphaf_border, init_target_sz, opts); % ================================================================================ % Save predicted position and time % ================================================================================ positions(frame,:) = [cur_pos([2,1]) - cur_target_sz([2,1])/2, cur_target_sz([2,1])]; time = time + toc(); % Visualization if show_visualization, box = [cur_pos([2,1]) - cur_target_sz([2,1])/2, cur_target_sz([2,1])]; stop = update_visualization(frame, box); if stop, break, end %user pressed Esc, stop early drawnow end end results.type = 'rect'; results.res = positions; results.fps = numel(img_files) / time; end
github
lifeng9472/IBCCF-master
test_examples.m
.m
IBCCF-master/external_libs/matconvnet/utils/test_examples.m
1,591
utf_8
16831be7382a9343beff5cc3fe301e51
function test_examples() %TEST_EXAMPLES Test some of the examples in the `examples/` directory addpath examples/mnist ; addpath examples/cifar ; trainOpts.gpus = [] ; trainOpts.continue = true ; num = 1 ; exps = {} ; for networkType = {'dagnn', 'simplenn'} for index = 1:4 clear ex ; ex.trainOpts = trainOpts ; ex.networkType = char(networkType) ; ex.index = index ; exps{end+1} = ex ; end end if num > 1 if isempty(gcp('nocreate')), parpool('local',num) ; end parfor e = 1:numel(exps) test_one(exps{e}) ; end else for e = 1:numel(exps) test_one(exps{e}) ; end end % ------------------------------------------------------------------------ function test_one(ex) % ------------------------------------------------------------------------- suffix = ['-' ex.networkType] ; switch ex.index case 1 cnn_mnist(... 'expDir', ['data/test-mnist' suffix], ... 'batchNormalization', false, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 2 cnn_mnist(... 'expDir', ['data/test-mnist-bnorm' suffix], ... 'batchNormalization', true, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 3 cnn_cifar(... 'expDir', ['data/test-cifar-lenet' suffix], ... 'modelType', 'lenet', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 4 cnn_cifar(... 'expDir', ['data/test-cifar-nin' suffix], ... 'modelType', 'nin', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; end
github
lifeng9472/IBCCF-master
simplenn_caffe_compare.m
.m
IBCCF-master/external_libs/matconvnet/utils/simplenn_caffe_compare.m
5,638
utf_8
8e9862ffbf247836e6ff7579d1e6dc85
function diffStats = simplenn_caffe_compare( net, caffeModelBaseName, testData, varargin) % SIMPLENN_CAFFE_COMPARE compare the simplenn network and caffe models % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME) Evaluates a forward % pass of a simplenn network NET and caffe models stored in % CAFFE_BASE_MODELNAME and numerically compares the network outputs using % a random input data. % % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME, TEST_DATA) Evaluates % the simplenn network and Caffe model on a given data. If TEST_DATA is % an empty array, uses a random input. % % RES = SIMPLENN_CAFFE_COMPARE(...) returns a structure with the % statistics of the differences where each field of a structure RES is % named after a blob and contains basic statistics: % `[MIN_DIFF, MEAN_DIFF, MAX_DIFF]` % % This script attempts to match the NET layer names and caffe blob names % and shows the MIN, MEAN and MAX difference between the outputs. For % caffe model, the mean image stored with the caffe model is used (see % `simplenn_caffe_deploy` for details). Furthermore the script compares % the execution time of both networks. % % Compiled MatCaffe (usually located in `<caffe_dir>/matlab`, built % with the `matcaffe` target) must be in path. % % SIMPLENN_CAFFE_COMPARE(..., 'OPT', VAL, ...) takes the following % options: % % `numRepetitions`:: `1` % Evaluate the network multiple times. Useful to compare the execution % time. % % `device`:: `cpu` % Evaluate the network on the specified device (CPU or GPU). For GPU % evaluation, the current GPU is used for both Caffe and simplenn. % % `silent`:: `false` % When true, supress all outputs to stdin. % % See Also: simplenn_caffe_deploy % Copyright (C) 2016 Karel Lenc, Zohar Bar-Yehuda % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.numRepetitions = 1; opts.randScale = 100; opts.device = 'cpu'; opts.silent = false; opts = vl_argparse(opts, varargin); info = @(varargin) fprintf(1, varargin{:}); if opts.silent, info = @(varargin) []; end; if ~exist('caffe.Net', 'class'), error('MatCaffe not in path.'); end prototxtFilename = [caffeModelBaseName '.prototxt']; if ~exist(prototxtFilename, 'file') error('Caffe net definition `%s` not found', prototxtFilename); end; modelFilename = [caffeModelBaseName '.caffemodel']; if ~exist(prototxtFilename, 'file') error('Caffe net model `%s` not found', modelFilename); end; meanFilename = [caffeModelBaseName, '_mean_image.binaryproto']; net = vl_simplenn_tidy(net); net = vl_simplenn_move(net, opts.device); netBlobNames = [{'data'}, cellfun(@(l) l.name, net.layers, ... 'UniformOutput', false)]; % Load the Caffe model caffeNet = caffe.Net(prototxtFilename, modelFilename, 'test'); switch opts.device case 'cpu' caffe.set_mode_cpu(); case 'gpu' caffe.set_mode_gpu(); gpuDev = gpuDevice(); caffe.set_device(gpuDev.Index - 1); end caffeBlobNames = caffeNet.blob_names'; [caffeLayerFound, caffe2netres] = ismember(caffeBlobNames, netBlobNames); info('Found %d matches between simplenn layers and caffe blob names.\n',... sum(caffeLayerFound)); % If testData not supplied, use random input imSize = net.meta.normalization.imageSize; if ~exist('testData', 'var') || isempty(testData) testData = rand(imSize, 'single') * opts.randScale; end if ischar(testData), testData = imread(testData); end testDataSize = [size(testData), 1, 1]; assert(all(testDataSize(1:3) == imSize(1:3)), 'Invalid test data size.'); testData = single(testData); dataCaffe = matlab_img_to_caffe(testData); if isfield(net.meta.normalization, 'averageImage') && ... ~isempty(net.meta.normalization.averageImage) avImage = net.meta.normalization.averageImage; if numel(avImage) == imSize(3) avImage = reshape(avImage, 1, 1, imSize(3)); end testData = bsxfun(@minus, testData, avImage); end % Test MatConvNet model stime = tic; for rep = 1:opts.numRepetitions res = vl_simplenn(net, testData, [], [], 'ConserveMemory', false); end info('MatConvNet %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); if ~isempty(meanFilename) && exist(meanFilename, 'file') mean_img_caffe = caffe.io.read_mean(meanFilename); dataCaffe = bsxfun(@minus, dataCaffe, mean_img_caffe); end % Test Caffe model stime = tic; for rep = 1:opts.numRepetitions caffeNet.forward({dataCaffe}); end info('Caffe %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); diffStats = struct(); for li = 1:numel(caffeBlobNames) blob = caffeNet.blobs(caffeBlobNames{li}); caffeData = permute(blob.get_data(), [2, 1, 3, 4]); if li == 1 && size(caffeData, 3) == 3 caffeData = caffeData(:, :, [3, 2, 1]); end mcnData = gather(res(caffe2netres(li)).x); diff = abs(caffeData(:) - mcnData(:)); diffStats.(caffeBlobNames{li}) = [min(diff), mean(diff), max(diff)]'; end if ~opts.silent pp = '% 10s % 10s % 10s % 10s\n'; precp = '% 10.2e'; fprintf(pp, 'Layer name', 'Min', 'Mean', 'Max'); for li = 1:numel(caffeBlobNames) lstats = diffStats.(caffeBlobNames{li}); fprintf(pp, caffeBlobNames{li}, sprintf(precp, lstats(1)), ... sprintf(precp, lstats(2)), sprintf(precp, lstats(3))); end fprintf('\n'); end end function img = matlab_img_to_caffe(img) img = single(img); % Convert from HxWxCxN to WxHxCxN per Caffe's convention img = permute(img, [2 1 3 4]); if size(img,3) == 3 % Convert from RGB to BGR channel order per Caffe's convention img = img(:,:, [3 2 1], :); end end
github
lifeng9472/IBCCF-master
cnn_train_dag.m
.m
IBCCF-master/external_libs/matconvnet/examples/cnn_train_dag.m
13,629
utf_8
73e1103b1f7118b23a1bc12237e953ed
function [net,stats] = cnn_train_dag(net, imdb, getBatch, varargin) %CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper % CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with % the DagNN wrapper instead of the SimpleNN wrapper. % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.derOutputs = {'objective', 1} ; opts.extractStatsFn = @extractStats ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- evaluateMode = isempty(opts.train) ; if ~evaluateMode if isempty(opts.derOutputs) error('DEROUTPUTS must be specified when training.\n') ; end end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(opts.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if opts.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) state.momentum = num2cell(zeros(1, numel(net.params))) ; end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net.move('gpu') ; state.momentum = cellfun(@gpuArray, state.momentum, 'uniformoutput', false) ; end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; net.setParameterServer(parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end num = 0 ; epoch = params.epoch ; subset = params.(mode) ; adjustTime = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if strcmp(mode, 'train') net.mode = 'normal' ; net.accumulateParamDers = (s ~= 1) ; net.eval(inputs, params.derOutputs, 'holdOn', s < params.numSubBatches) ; else net.mode = 'test' ; net.eval(inputs) ; end end % Accumulate gradient. if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end state = accumulateGradients(net, state, params, batchSize, parserv) ; end % Get statistics. time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats.num = num ; stats.time = time ; stats = params.extractStatsFn(stats,net) ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else state.momentum = cellfun(@gather, state.momentum, 'uniformoutput', false) ; end net.reset() ; net.move('cpu') ; % ------------------------------------------------------------------------- function state = accumulateGradients(net, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for p=1:numel(net.params) if ~isempty(parserv) parDer = parserv.pullWithIndex(p) ; else parDer = net.params(p).der ; end switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate ; net.params(p).value = vl_taccum(... 1 - thisLR, net.params(p).value, ... (thisLR/batchSize/net.params(p).fanout), parDer) ; case 'gradient' thisDecay = params.weightDecay * net.params(p).weightDecay ; thisLR = params.learningRate * net.params(p).learningRate ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.params(p).value) ; % Update momentum. state.momentum{p} = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; else delta = state.momentum{p} ; end % Update parameters. net.params(p).value = vl_taccum(... 1, net.params(p).value, thisLR, delta) ; end otherwise error('Unknown training method ''%s'' for parameter ''%s''.', ... net.params(p).trainMethod, ... net.params(p).name) ; end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(stats, net) % ------------------------------------------------------------------------- sel = find(cellfun(@(x) isa(x,'dagnn.Loss'), {net.layers.block})) ; for i = 1:numel(sel) stats.(net.layers(sel(i)).outputs{1}) = net.layers(sel(i)).block.average ; end % ------------------------------------------------------------------------- function saveState(fileName, net_, state) % ------------------------------------------------------------------------- net = net_.saveobj() ; save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = dagnn.DagNN.loadobj(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(opts, cold) % ------------------------------------------------------------------------- numGpus = numel(opts.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) clearMex() ; if numGpus == 1 gpuDevice(opts.gpus) else spmd clearMex() ; gpuDevice(opts.gpus(labindex)) end end end
github
lifeng9472/IBCCF-master
cnn_train.m
.m
IBCCF-master/external_libs/matconvnet/examples/cnn_train.m
19,153
utf_8
c6c0c0c8532f9c3653af4410497f80c3
function [net, stats] = cnn_train(net, imdb, getBatch, varargin) %CNN_TRAIN An example implementation of SGD for training CNNs % CNN_TRAIN() is an example learner implementing stochastic % gradient descent with momentum to train a CNN. It can be used % with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) for i = 1:numel(net.layers) for j = 1:numel(net.layers{i}.weights) state.momentum{i}{j} = 0 ; end end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move(net, 'gpu') ; for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gpuArray(state.momentum{i}{j}) ; end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels] = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; res = vl_simplenn(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats = extractStats(net, params, error / num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; % collect diagnostic statistics if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gather(state.momentum{i}{j}) ; end end end net = vl_simplenn_move(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for l=numel(net.layers):-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else % Standard gradient training. thisDecay = params.weightDecay * net.layers{l}.weightDecay(j) ; thisLR = params.learningRate * net.layers{l}.learningRate(j) ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.layers{l}.weights{j}) ; % Update momentum. state.momentum{l}{j} = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; else delta = state.momentum{l}{j} ; end % Update parameters. net.layers{l}.weights{j} = vl_taccum(... 1, net.layers{l}.weights{j}, ... thisLR, delta) ; end end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} variation = thisLR * mean(abs(state.momentum{l}{j}(:))) ; power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power) ;%mean(abs(res(l+1).x(:))) ; label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end
github
lifeng9472/IBCCF-master
cnn_stn_cluttered_mnist.m
.m
IBCCF-master/external_libs/matconvnet/examples/spatial_transformer/cnn_stn_cluttered_mnist.m
3,872
utf_8
3235801f70028cc27d54d15ec2964808
function [net, info] = cnn_stn_cluttered_mnist(varargin) %CNN_STN_CLUTTERED_MNIST Demonstrates training a spatial transformer % The spatial transformer network (STN) is trained on the % cluttered MNIST dataset. run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.useSpatialTransformer = true ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataPath = fullfile(opts.dataDir,'cluttered-mnist.mat') ; if opts.useSpatialTransformer opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-stn') ; else opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-no-stn') ; end [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.dataURL = 'http://www.vlfeat.org/matconvnet/download/data/cluttered-mnist.mat' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getImdDB(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net = cnn_stn_cluttered_mnist_init([60 60], true) ; % initialize the network net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- fbatch = @(i,b) getBatch(opts.train,i,b); [net, info] = cnn_train_dag(net, imdb, fbatch, ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 2)) ; % -------------------------------------------------------------------- % Show transformer % -------------------------------------------------------------------- figure(100) ; clf ; v = net.getVarIndex('xST') ; net.vars(v).precious = true ; net.eval({'input',imdb.images.data(:,:,:,1:6)}) ; for t = 1:6 subplot(2,6,t) ; imagesc(imdb.images.data(:,:,:,t)) ; axis image off ; subplot(2,6,6+t) ; imagesc(net.vars(v).value(:,:,:,t)) ; axis image off ; colormap gray ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if ~isa(imdb.images.data, 'gpuArray') && numel(opts.gpus) > 0 imdb.images.data = gpuArray(imdb.images.data); imdb.images.labels = gpuArray(imdb.images.labels); end images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getImdDB(opts) % -------------------------------------------------------------------- % Prepare the IMDB structure: if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end if ~exist(opts.dataPath) fprintf('Downloading %s to %s.\n', opts.dataURL, opts.dataPath) ; urlwrite(opts.dataURL, opts.dataPath) ; end dat = load(opts.dataPath); set = [ones(1,numel(dat.y_tr)) 2*ones(1,numel(dat.y_vl)) 3*ones(1,numel(dat.y_ts))]; data = single(cat(4,dat.x_tr,dat.x_vl,dat.x_ts)); imdb.images.data = data ; imdb.images.labels = single(cat(2, dat.y_tr,dat.y_vl,dat.y_ts)) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
lifeng9472/IBCCF-master
fast_rcnn_train.m
.m
IBCCF-master/external_libs/matconvnet/examples/fast_rcnn/fast_rcnn_train.m
6,399
utf_8
54b0bc7fa26d672ed6673d3f1832944e
function [net, info] = fast_rcnn_train(varargin) %FAST_RCNN_TRAIN Demonstrates training a Fast-RCNN detector % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn,'examples','fast_rcnn','bbox_functions')); addpath(fullfile(vl_rootnn,'examples','fast_rcnn','datasets')); opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.sswDir = fullfile(vl_rootnn, 'data', 'SSW'); opts.expDir = fullfile(vl_rootnn, 'data', 'fast-rcnn-vgg16-pascal07') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.dataDir, 'models', ... 'imagenet-vgg-verydeep-16.mat') ; opts.piecewise = true; % piecewise training (+bbox regression) opts.train.gpus = [] ; opts.train.batchSize = 2 ; opts.train.numSubBatches = 1 ; opts.train.continue = true ; opts.train.prefetch = false ; % does not help for two images in a batch opts.train.learningRate = 1e-3 / 64 * [ones(1,6) 0.1*ones(1,6)]; opts.train.weightDecay = 0.0005 ; opts.train.numEpochs = 12 ; opts.train.derOutputs = {'losscls', 1, 'lossbbox', 1} ; opts.lite = false ; opts.numFetchThreads = 2 ; opts = vl_argparse(opts, varargin) ; display(opts); opts.train.expDir = opts.expDir ; opts.train.numEpochs = numel(opts.train.learningRate) ; % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = fast_rcnn_init(... 'piecewise',opts.piecewise,... 'modelPath',opts.modelPath); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') == 2 fprintf('Loading imdb...'); imdb = load(opts.imdbPath) ; else if ~exist(opts.expDir,'dir') mkdir(opts.expDir); end fprintf('Setting VOC2007 up, this may take a few minutes\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir', opts.dataDir, ... 'sswDir', opts.sswDir, ... 'addFlipped', true, ... 'useDifficult', true) ; save(opts.imdbPath,'-struct', 'imdb','-v7.3'); fprintf('\n'); end fprintf('done\n'); % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- % use train + val split to train imdb.images.set(imdb.images.set == 2) = 1; % minibatch options bopts = net.meta.normalization; bopts.useGpu = numel(opts.train.gpus) > 0 ; bopts.numFgRoisPerImg = 16; bopts.numRoisPerImg = 64; bopts.maxScale = 1000; bopts.scale = 600; bopts.bgLabel = numel(imdb.classes.name)+1; bopts.visualize = 0; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; bopts.prefetch = opts.train.prefetch; [net,info] = cnn_train_dag(net, imdb, @(i,b) ... getBatch(bopts,i,b), ... opts.train) ; % -------------------------------------------------------------------- % Deploy % -------------------------------------------------------------------- modelPath = fullfile(opts.expDir, 'net-deployed.mat'); if ~exist(modelPath,'file') net = deployFRCNN(net,imdb); net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- opts.visualize = 0; if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois,labels,btargets] = fast_rcnn_train_get_batch(images,imdb,... batch, opts); if opts.prefetch, return; end nb = numel(labels); nc = numel(imdb.classes.name) + 1; % regression error only for positives instance_weights = zeros(1,1,4*nc,nb,'single'); targets = zeros(1,1,4*nc,nb,'single'); for b=1:nb if labels(b)>0 && labels(b)~=opts.bgLabel targets(1,1,4*(labels(b)-1)+1:4*labels(b),b) = btargets(b,:)'; instance_weights(1,1,4*(labels(b)-1)+1:4*labels(b),b) = 1; end end rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; targets = gpuArray(targets) ; instance_weights = gpuArray(instance_weights) ; end inputs = {'input', im, 'label', labels, 'rois', rois, 'targets', targets, ... 'instance_weights', instance_weights} ; % -------------------------------------------------------------------- function net = deployFRCNN(net,imdb) % -------------------------------------------------------------------- % function net = deployFRCNN(net) for l = numel(net.layers):-1:1 if isa(net.layers(l).block, 'dagnn.Loss') || ... isa(net.layers(l).block, 'dagnn.DropOut') layer = net.layers(l); net.removeLayer(layer.name); net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end end net.rebuild(); pfc8 = net.getLayerIndex('predcls') ; net.addLayer('probcls',dagnn.SoftMax(),net.layers(pfc8).outputs{1},... 'probcls',{}); net.vars(net.getVarIndex('probcls')).precious = true ; idxBox = net.getLayerIndex('predbbox') ; if ~isnan(idxBox) net.vars(net.layers(idxBox).outputIndexes(1)).precious = true ; % incorporate mean and std to bbox regression parameters blayer = net.layers(idxBox) ; filters = net.params(net.getParamIndex(blayer.params{1})).value ; biases = net.params(net.getParamIndex(blayer.params{2})).value ; boxMeans = single(imdb.boxes.bboxMeanStd{1}'); boxStds = single(imdb.boxes.bboxMeanStd{2}'); net.params(net.getParamIndex(blayer.params{1})).value = ... bsxfun(@times,filters,... reshape([boxStds(:)' zeros(1,4,'single')]',... [1 1 1 4*numel(net.meta.classes.name)])); biases = biases .* [boxStds(:)' zeros(1,4,'single')]; net.params(net.getParamIndex(blayer.params{2})).value = ... bsxfun(@plus,biases, [boxMeans(:)' zeros(1,4,'single')]); end net.mode = 'test' ;
github
lifeng9472/IBCCF-master
fast_rcnn_evaluate.m
.m
IBCCF-master/external_libs/matconvnet/examples/fast_rcnn/fast_rcnn_evaluate.m
6,941
utf_8
a54a3f8c3c8e5a8ff7ebe4e2b12ede30
function [aps, speed] = fast_rcnn_evaluate(varargin) %FAST_RCNN_EVALUATE Evaluate a trained Fast-RCNN model on PASCAL VOC 2007 % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn, 'data', 'VOCdevkit', 'VOCcode')); addpath(genpath(fullfile(vl_rootnn, 'examples', 'fast_rcnn'))); opts.dataDir = fullfile(vl_rootnn, 'data') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.sswDir = fullfile(opts.dataDir, 'SSW'); opts.expDir = fullfile(opts.dataDir, 'fast-rcnn-vgg16-pascal07') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.expDir, 'net-deployed.mat') ; opts.gpu = [] ; opts.numFetchThreads = 1 ; opts.nmsThresh = 0.3 ; opts.maxPerImage = 100 ; opts = vl_argparse(opts, varargin) ; display(opts) ; if ~exist(opts.expDir,'dir') mkdir(opts.expDir) ; end if ~isempty(opts.gpu) gpuDevice(opts.gpu) end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = dagnn.DagNN.loadobj(load(opts.modelPath)) ; net.mode = 'test' ; if ~isempty(opts.gpu) net.move('gpu') ; end % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') fprintf('Loading precomputed imdb...\n'); imdb = load(opts.imdbPath) ; else fprintf('Obtaining dataset and imdb...\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir',opts.dataDir,... 'sswDir',opts.sswDir); save(opts.imdbPath,'-struct', 'imdb','-v7.3'); end fprintf('done\n'); bopts.averageImage = net.meta.normalization.averageImage; bopts.useGpu = numel(opts.gpu) > 0 ; bopts.maxScale = 1000; bopts.bgLabel = 21; bopts.visualize = 0; bopts.scale = 600; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; % ------------------------------------------------------------------------- % Evaluate % ------------------------------------------------------------------------- VOCinit; VOCopts.testset='test'; testIdx = find(imdb.images.set == 3) ; cls_probs = cell(1,numel(testIdx)) ; box_deltas = cell(1,numel(testIdx)) ; boxscores_nms = cell(numel(VOCopts.classes),numel(testIdx)) ; ids = cell(numel(VOCopts.classes),numel(testIdx)) ; dataVar = 'input' ; probVarI = net.getVarIndex('probcls') ; boxVarI = net.getVarIndex('predbbox') ; if isnan(probVarI) dataVar = 'data' ; probVarI = net.getVarIndex('cls_prob') ; boxVarI = net.getVarIndex('bbox_pred') ; end net.vars(probVarI).precious = true ; net.vars(boxVarI).precious = true ; start = tic ; for t=1:numel(testIdx) speed = t/toc(start) ; fprintf('Image %d of %d (%.f HZ)\n', t, numel(testIdx), speed) ; batch = testIdx(t); inputs = getBatch(bopts, imdb, batch); inputs{1} = dataVar ; net.eval(inputs) ; cls_probs{t} = squeeze(gather(net.vars(probVarI).value)) ; box_deltas{t} = squeeze(gather(net.vars(boxVarI).value)) ; end % heuristic: keep an average of 40 detections per class per images prior % to NMS max_per_set = 40 * numel(testIdx); % detection thresold for each class (this is adaptively set based on the % max_per_set constraint) cls_thresholds = zeros(1,numel(VOCopts.classes)); cls_probs_concat = horzcat(cls_probs{:}); for c = 1:numel(VOCopts.classes) q = find(strcmp(VOCopts.classes{c}, net.meta.classes.name)) ; so = sort(cls_probs_concat(q,:),'descend'); cls_thresholds(q) = so(min(max_per_set,numel(so))); fprintf('Applying NMS for %s\n',VOCopts.classes{c}); for t=1:numel(testIdx) si = find(cls_probs{t}(q,:) >= cls_thresholds(q)) ; if isempty(si), continue; end cls_prob = cls_probs{t}(q,si)'; pbox = imdb.boxes.pbox{testIdx(t)}(si,:); % back-transform bounding box corrections delta = box_deltas{t}(4*(q-1)+1:4*q,si)'; pred_box = bbox_transform_inv(pbox, delta); im_size = imdb.images.size(testIdx(t),[2 1]); pred_box = bbox_clip(round(pred_box), im_size); % Threshold. Heuristic: keep at most 100 detection per class per image % prior to NMS. boxscore = [pred_box cls_prob]; [~,si] = sort(boxscore(:,5),'descend'); boxscore = boxscore(si,:); boxscore = boxscore(1:min(size(boxscore,1),opts.maxPerImage),:); % NMS pick = bbox_nms(double(boxscore),opts.nmsThresh); boxscores_nms{c,t} = boxscore(pick,:) ; ids{c,t} = repmat({imdb.images.name{testIdx(t)}(1:end-4)},numel(pick),1) ; if 0 figure(1) ; clf ; idx = boxscores_nms{c,t}(:,5)>0.5; if sum(idx)==0, continue; end bbox_draw(imread(fullfile(imdb.imageDir,imdb.images.name{testIdx(t)})), ... boxscores_nms{c,t}(idx,:)) ; title(net.meta.classes.name{q}) ; drawnow ; pause; %keyboard end end end %% PASCAL VOC evaluation VOCdevkitPath = fullfile(vl_rootnn,'data','VOCdevkit'); aps = zeros(numel(VOCopts.classes),1); % fix voc folders VOCopts.imgsetpath = fullfile(VOCdevkitPath,'VOC2007','ImageSets','Main','%s.txt'); VOCopts.annopath = fullfile(VOCdevkitPath,'VOC2007','Annotations','%s.xml'); VOCopts.localdir = fullfile(VOCdevkitPath,'local','VOC2007'); VOCopts.detrespath = fullfile(VOCdevkitPath, 'results', 'VOC2007', 'Main', ['%s_det_', VOCopts.testset, '_%s.txt']); % write det results to txt files for c=1:numel(VOCopts.classes) fid = fopen(sprintf(VOCopts.detrespath,'comp3',VOCopts.classes{c}),'w'); for i=1:numel(testIdx) if isempty(boxscores_nms{c,i}), continue; end dets = boxscores_nms{c,i}; for j=1:size(dets,1) fprintf(fid,'%s %.6f %d %d %d %d\n', ... imdb.images.name{testIdx(i)}(1:end-4), ... dets(j,5),dets(j,1:4)) ; end end fclose(fid); [rec,prec,ap] = VOCevaldet(VOCopts,'comp3',VOCopts.classes{c},0); fprintf('%s ap %.1f\n',VOCopts.classes{c},100*ap); aps(c) = ap; end fprintf('mean ap %.1f\n',100*mean(aps)); % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois] = fast_rcnn_eval_get_batch(images, imdb, batch, opts); rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; end inputs = {'input', im, 'rois', rois} ;
github
lifeng9472/IBCCF-master
cnn_cifar.m
.m
IBCCF-master/external_libs/matconvnet/examples/cifar/cnn_cifar.m
5,334
utf_8
eb9aa887d804ee635c4295a7a397206f
function [net, info] = cnn_cifar(varargin) % CNN_CIFAR Demonstrates MatConvNet on CIFAR-10 % The demo includes two standard model: LeNet and Network in % Network (NIN). Use the 'modelType' option to choose one. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.modelType = 'lenet' ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.expDir = fullfile(vl_rootnn, 'data', ... sprintf('cifar-%s', opts.modelType)) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data','cifar') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.whitenData = true ; opts.contrastNormalization = true ; opts.networkType = 'simplenn' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare model and data % ------------------------------------------------------------------------- switch opts.modelType case 'lenet' net = cnn_cifar_init('networkType', opts.networkType) ; case 'nin' net = cnn_cifar_init_nin('networkType', opts.networkType) ; otherwise error('Unknown model type ''%s''.', opts.modelType) ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getCifarImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = imdb.meta.classes(:)' ; % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % ------------------------------------------------------------------------- function fn = getBatch(opts) % ------------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % ------------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end % ------------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % ------------------------------------------------------------------------- function imdb = getCifarImdb(opts) % ------------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat'); files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ... {'test_batch.mat'}]; files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false); file_set = uint8([ones(1, 5), 3]); if any(cellfun(@(fn) ~exist(fn, 'file'), files)) url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ; fprintf('downloading %s\n', url) ; untar(url, opts.dataDir) ; end data = cell(1, numel(files)); labels = cell(1, numel(files)); sets = cell(1, numel(files)); for fi = 1:numel(files) fd = load(files{fi}) ; data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ; labels{fi} = fd.labels' + 1; % Index from 1 sets{fi} = repmat(file_set(fi), size(labels{fi})); end set = cat(2, sets{:}); data = single(cat(4, data{:})); % remove mean in any case dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean); % normalize by image mean and std as suggested in `An Analysis of % Single-Layer Networks in Unsupervised Feature Learning` Adam % Coates, Honglak Lee, Andrew Y. Ng if opts.contrastNormalization z = reshape(data,[],60000) ; z = bsxfun(@minus, z, mean(z,1)) ; n = std(z,0,1) ; z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ; data = reshape(z, 32, 32, 3, []) ; end if opts.whitenData z = reshape(data,[],60000) ; W = z(:,set == 1)*z(:,set == 1)'/60000 ; [V,D] = eig(W) ; % the scale is selected to approximately preserve the norm of W d2 = diag(D) ; en = sqrt(mean(d2)) ; z = V*diag(en./max(sqrt(d2), 10))*V'*z ; data = reshape(z, 32, 32, 3, []) ; end clNames = load(fullfile(unpackPath, 'batches.meta.mat')); imdb.images.data = data ; imdb.images.labels = single(cat(2, labels{:})) ; imdb.images.set = set; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = clNames.label_names;
github
lifeng9472/IBCCF-master
cnn_cifar_init_nin.m
.m
IBCCF-master/external_libs/matconvnet/examples/cifar/cnn_cifar_init_nin.m
5,561
utf_8
aca711e04a8cd82821f658922218368c
function net = cnn_cifar_init_nin(varargin) opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; % CIFAR-10 model from % M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, % abs/1312.4400, 2013. % % It reproduces the NIN + Dropout result of Table 1 (<= 10.41% top1 error). net.layers = {} ; lr = [1 10] ; % Block 1 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv1', ... 'weights', {init_weights(5,3,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp1', ... 'weights', {init_weights(1,192,160)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp2', ... 'weights', {init_weights(1,160,96)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp2') ; net.layers{end+1} = struct('name', 'pool1', ... 'type', 'pool', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout1', 'rate', 0.5) ; % Block 2 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv2', ... 'weights', {init_weights(5,96,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu2') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp3', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp4', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp4') ; net.layers{end+1} = struct('name', 'pool2', ... 'type', 'pool', ... 'method', 'avg', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout2', 'rate', 0.5) ; % Block 3 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv3', ... 'weights', {init_weights(3,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 1) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp5', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp5') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp6', ... 'weights', {init_weights(1,192,10)}, ... 'learningRate', 0.001*lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end}.weights{1} = 0.1 * net.layers{end}.weights{1} ; %net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp6') ; net.layers{end+1} = struct('type', 'pool', ... 'name', 'pool3', ... 'method', 'avg', ... 'pool', [7 7], ... 'stride', 1, ... 'pad', 0) ; % Loss layer net.layers{end+1} = struct('type', 'softmaxloss') ; % Meta parameters net.meta.inputSize = [32 32 3] ; net.meta.trainOpts.learningRate = [0.002, 0.01, 0.02, 0.04 * ones(1,80), 0.004 * ones(1,10), 0.0004 * ones(1,10)] ; net.meta.trainOpts.weightDecay = 0.0005 ; net.meta.trainOpts.batchSize = 100 ; net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('error', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'error') ; otherwise assert(false) ; end function weights = init_weights(k,m,n) weights{1} = randn(k,k,m,n,'single') * sqrt(2/(k*k*m)) ; weights{2} = zeros(n,1,'single') ;
github
lifeng9472/IBCCF-master
cnn_imagenet_init_resnet.m
.m
IBCCF-master/external_libs/matconvnet/examples/imagenet/cnn_imagenet_init_resnet.m
6,717
utf_8
aa905a97830e90dc7d33f75ad078301e
function net = cnn_imagenet_init_resnet(varargin) %CNN_IMAGENET_INIT_RESNET Initialize the ResNet-50 model for ImageNet classification opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts = vl_argparse(opts, varargin) ; net = dagnn.DagNN() ; lastAdded.var = 'input' ; lastAdded.depth = 3 ; function Conv(name, ksize, depth, varargin) % Helper function to add a Convolutional + BatchNorm + ReLU % sequence to the network. args.relu = true ; args.downsample = false ; args.bias = false ; args = vl_argparse(args, varargin) ; if args.downsample, stride = 2 ; else stride = 1 ; end if args.bias, pars = {[name '_f'], [name '_b']} ; else pars = {[name '_f']} ; end net.addLayer([name '_conv'], ... dagnn.Conv('size', [ksize ksize lastAdded.depth depth], ... 'stride', stride, .... 'pad', (ksize - 1) / 2, ... 'hasBias', args.bias, ... 'opts', {'cudnnworkspacelimit', opts.cudnnWorkspaceLimit}), ... lastAdded.var, ... [name '_conv'], ... pars) ; net.addLayer([name '_bn'], ... dagnn.BatchNorm('numChannels', depth, 'epsilon', 1e-5), ... [name '_conv'], ... [name '_bn'], ... {[name '_bn_w'], [name '_bn_b'], [name '_bn_m']}) ; lastAdded.depth = depth ; lastAdded.var = [name '_bn'] ; if args.relu net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... lastAdded.var, ... [name '_relu']) ; lastAdded.var = [name '_relu'] ; end end % ------------------------------------------------------------------------- % Add input section % ------------------------------------------------------------------------- Conv('conv1', 7, 64, ... 'relu', true, ... 'bias', false, ... 'downsample', true) ; net.addLayer(... 'conv1_pool' , ... dagnn.Pooling('poolSize', [3 3], ... 'stride', 2, ... 'pad', 1, ... 'method', 'max'), ... lastAdded.var, ... 'conv1') ; lastAdded.var = 'conv1' ; % ------------------------------------------------------------------------- % Add intermediate sections % ------------------------------------------------------------------------- for s = 2:5 switch s case 2, sectionLen = 3 ; case 3, sectionLen = 4 ; % 8 ; case 4, sectionLen = 6 ; % 23 ; % 36 ; case 5, sectionLen = 3 ; end % ----------------------------------------------------------------------- % Add intermediate segments for each section for l = 1:sectionLen depth = 2^(s+4) ; sectionInput = lastAdded ; name = sprintf('conv%d_%d', s, l) ; % Optional adapter layer if l == 1 Conv([name '_adapt_conv'], 1, 2^(s+6), 'downsample', s >= 3, 'relu', false) ; end sumInput = lastAdded ; % ABC: 1x1, 3x3, 1x1; downsample if first segment in section from % section 2 onwards. lastAdded = sectionInput ; %Conv([name 'a'], 1, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; %Conv([name 'b'], 3, 2^(s+4)) ; Conv([name 'a'], 1, 2^(s+4)) ; Conv([name 'b'], 3, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; Conv([name 'c'], 1, 2^(s+6), 'relu', false) ; % Sum layer net.addLayer([name '_sum'] , ... dagnn.Sum(), ... {sumInput.var, lastAdded.var}, ... [name '_sum']) ; net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... [name '_sum'], ... name) ; lastAdded.var = name ; end end net.addLayer('prediction_avg' , ... dagnn.Pooling('poolSize', [7 7], 'method', 'avg'), ... lastAdded.var, ... 'prediction_avg') ; net.addLayer('prediction' , ... dagnn.Conv('size', [1 1 2048 1000]), ... 'prediction_avg', ... 'prediction', ... {'prediction_f', 'prediction_b'}) ; net.addLayer('loss', ... dagnn.Loss('loss', 'softmaxlog') ,... {'prediction', 'label'}, ... 'objective') ; net.addLayer('top1error', ... dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, ... 'top1error') ; net.addLayer('top5error', ... dagnn.Loss('loss', 'topkerror', 'opts', {'topK', 5}), ... {'prediction', 'label'}, ... 'top5error') ; % ------------------------------------------------------------------------- % Meta parameters % ------------------------------------------------------------------------- net.meta.normalization.imageSize = [224 224 3] ; net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions ; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [3/4, 4/3] ; net.meta.augmentation.jitterScale = [0.4, 1.1] ; %net.meta.augmentation.jitterSaturation = 0.4 ; %net.meta.augmentation.jitterContrast = 0.4 ; net.meta.inputSize = {'input', [net.meta.normalization.imageSize 32]} ; %lr = logspace(-1, -3, 60) ; lr = [0.1 * ones(1,30), 0.01*ones(1,30), 0.001*ones(1,30)] ; net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.momentum = 0.9 ; net.meta.trainOpts.batchSize = 256 ; net.meta.trainOpts.numSubBatches = 4 ; net.meta.trainOpts.weightDecay = 0.0001 ; % Init parameters randomly net.initParams() ; % For uniformity with the other ImageNet networks, t % the input data is *not* normalized to have unit standard deviation, % whereas this is enforced by batch normalization deeper down. % The ImageNet standard deviation (for each of R, G, and B) is about 60, so % we adjust the weights and learing rate accordingly in the first layer. % % This simple change improves performance almost +1% top 1 error. p = net.getParamIndex('conv1_f') ; net.params(p).value = net.params(p).value / 100 ; net.params(p).learningRate = net.params(p).learningRate / 100^2 ; for l = 1:numel(net.layers) if isa(net.layers(l).block, 'dagnn.BatchNorm') k = net.getParamIndex(net.layers(l).params{3}) ; net.params(k).learningRate = 0.3 ; end end end
github
lifeng9472/IBCCF-master
cnn_imagenet_init.m
.m
IBCCF-master/external_libs/matconvnet/examples/imagenet/cnn_imagenet_init.m
15,279
utf_8
43bffc7ab4042d49c4f17c0e44c36bf9
function net = cnn_imagenet_init(varargin) % CNN_IMAGENET_INIT Initialize a standard CNN for ImageNet opts.scale = 1 ; opts.initBias = 0 ; opts.weightDecay = 1 ; %opts.weightInitMethod = 'xavierimproved' ; opts.weightInitMethod = 'gaussian' ; opts.model = 'alexnet' ; opts.batchNormalization = false ; opts.networkType = 'simplenn' ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts = vl_argparse(opts, varargin) ; % Define layers switch opts.model case 'alexnet' net.meta.normalization.imageSize = [227, 227, 3] ; net = alexnet(net, opts) ; bs = 256 ; case 'vgg-f' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_f(net, opts) ; bs = 256 ; case {'vgg-m', 'vgg-m-1024'} net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_m(net, opts) ; bs = 196 ; case 'vgg-s' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_s(net, opts) ; bs = 128 ; case 'vgg-vd-16' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 32 ; case 'vgg-vd-19' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 24 ; otherwise error('Unknown model ''%s''', opts.model) ; end % final touches switch lower(opts.weightInitMethod) case {'xavier', 'xavierimproved'} net.layers{end}.weights{1} = net.layers{end}.weights{1} / 10 ; end net.layers{end+1} = struct('type', 'softmaxloss', 'name', 'loss') ; % Meta parameters net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [2/3, 3/2] ; if ~opts.batchNormalization lr = logspace(-2, -4, 60) ; else lr = logspace(-1, -4, 20) ; end net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.batchSize = bs ; net.meta.trainOpts.weightDecay = 0.0005 ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {'prediction','label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = add_block(net, opts, id, h, w, in, out, stride, pad) % -------------------------------------------------------------------- info = vl_simplenn_display(net) ; fc = (h == info.dataSize(1,end) && w == info.dataSize(2,end)) ; if fc name = 'fc' ; else name = 'conv' ; end convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ; net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', name, id), ... 'weights', {{init_weight(opts, h, w, in, out, 'single'), ... ones(out, 1, 'single')*opts.initBias}}, ... 'stride', stride, ... 'pad', pad, ... 'dilate', 1, ... 'learningRate', [1 2], ... 'weightDecay', [opts.weightDecay 0], ... 'opts', {convOpts}) ; if opts.batchNormalization net.layers{end+1} = struct('type', 'bnorm', 'name', sprintf('bn%s',id), ... 'weights', {{ones(out, 1, 'single'), zeros(out, 1, 'single'), ... zeros(out, 2, 'single')}}, ... 'epsilon', 1e-4, ... 'learningRate', [2 1 0.1], ... 'weightDecay', [0 0]) ; end net.layers{end+1} = struct('type', 'relu', 'name', sprintf('relu%s',id)) ; % ------------------------------------------------------------------------- function weights = init_weight(opts, h, w, in, out, type) % ------------------------------------------------------------------------- % See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into % rectifiers: Surpassing human-level performance on imagenet % classification. CoRR, (arXiv:1502.01852v1), 2015. switch lower(opts.weightInitMethod) case 'gaussian' sc = 0.01/opts.scale ; weights = randn(h, w, in, out, type)*sc; case 'xavier' sc = sqrt(3/(h*w*in)) ; weights = (rand(h, w, in, out, type)*2 - 1)*sc ; case 'xavierimproved' sc = sqrt(2/(h*w*out)) ; weights = randn(h, w, in, out, type)*sc ; otherwise error('Unknown weight initialization method''%s''', opts.weightInitMethod) ; end % -------------------------------------------------------------------- function net = add_norm(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'normalize', ... 'name', sprintf('norm%s', id), ... 'param', [5 1 0.0001/5 0.75]) ; end % -------------------------------------------------------------------- function net = add_dropout(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'dropout', ... 'name', sprintf('dropout%s', id), ... 'rate', 0.5) ; end % -------------------------------------------------------------------- function net = alexnet(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 96, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 48, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 384, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 192, 384, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 192, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_s(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 2 0 2]) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 1, 0) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_m(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 2, 1) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; switch opts.model case 'vgg-m' bottleneck = 4096 ; case 'vgg-m-1024' bottleneck = 1024 ; end net = add_block(net, opts, '7', 1, 1, 4096, bottleneck, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, bottleneck, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_f(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 64, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '2', 5, 5, 64, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 256, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_vd(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1_1', 3, 3, 3, 64, 1, 1) ; net = add_block(net, opts, '1_2', 3, 3, 64, 64, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2_1', 3, 3, 64, 128, 1, 1) ; net = add_block(net, opts, '2_2', 3, 3, 128, 128, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3_1', 3, 3, 128, 256, 1, 1) ; net = add_block(net, opts, '3_2', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '3_3', 3, 3, 256, 256, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '3_4', 3, 3, 256, 256, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool3', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '4_1', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '4_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '4_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool4', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '5_1', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '5_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 7, 7, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end
github
lifeng9472/IBCCF-master
cnn_imagenet.m
.m
IBCCF-master/external_libs/matconvnet/examples/imagenet/cnn_imagenet.m
6,211
utf_8
f11556c91bb9796f533c8f624ad8adbd
function [net, info] = cnn_imagenet(varargin) %CNN_IMAGENET Demonstrates training a CNN on ImageNet % This demo demonstrates training the AlexNet, VGG-F, VGG-S, VGG-M, % VGG-VD-16, and VGG-VD-19 architectures on ImageNet data. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data','ILSVRC2012') ; opts.modelType = 'alexnet' ; opts.network = [] ; opts.networkType = 'simplenn' ; opts.batchNormalization = true ; opts.weightInitMethod = 'gaussian' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.modelType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end sfx = [sfx '-' opts.networkType] ; opts.expDir = fullfile(vl_rootnn, 'data', ['imagenet12-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.numFetchThreads = 12 ; opts.lite = false ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % Compute image statistics (mean, RGB covariances, etc.) imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; if exist(imageStatsPath) load(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; else train = find(imdb.images.set == 1) ; images = fullfile(imdb.imageDir, imdb.images.name(train(1:100:end))) ; [averageImage, rgbMean, rgbCovariance] = getImageStats(images, ... 'imageSize', [256 256], ... 'numThreads', opts.numFetchThreads, ... 'gpus', opts.train.gpus) ; save(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; end [v,d] = eig(rgbCovariance) ; rgbDeviation = v*sqrt(d) ; clear v d ; % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- if isempty(opts.network) switch opts.modelType case 'resnet-50' net = cnn_imagenet_init_resnet('averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; opts.networkType = 'dagnn' ; otherwise net = cnn_imagenet_init('model', opts.modelType, ... 'batchNormalization', opts.batchNormalization, ... 'weightInitMethod', opts.weightInitMethod, ... 'networkType', opts.networkType, ... 'averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; end else net = opts.network ; opts.network = [] ; end % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainFn = @cnn_train ; case 'dagnn', trainFn = @cnn_train_dag ; end [net, info] = trainFn(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train) ; % ------------------------------------------------------------------------- % Deploy % ------------------------------------------------------------------------- net = cnn_imagenet_deploy(net) ; modelPath = fullfile(opts.expDir, 'net-deployed.mat') switch opts.networkType case 'simplenn' save(modelPath, '-struct', 'net') ; case 'dagnn' net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', meta.normalization.cropSize, ... 'subtractAverage', mu) ; % Copy the parameters for data augmentation bopts.train = bopts.test ; for f = fieldnames(meta.augmentation)' f = char(f) ; bopts.train.(f) = meta.augmentation.(f) ; end fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
lifeng9472/IBCCF-master
cnn_imagenet_deploy.m
.m
IBCCF-master/external_libs/matconvnet/examples/imagenet/cnn_imagenet_deploy.m
6,585
utf_8
2f3e6d216fa697ff9adfce33e75d44d8
function net = cnn_imagenet_deploy(net) %CNN_IMAGENET_DEPLOY Deploy a CNN isDag = isa(net, 'dagnn.DagNN') ; if isDag dagRemoveLayersOfType(net, 'dagnn.Loss') ; dagRemoveLayersOfType(net, 'dagnn.DropOut') ; else net = simpleRemoveLayersOfType(net, 'softmaxloss') ; net = simpleRemoveLayersOfType(net, 'dropout') ; end if isDag net.addLayer('prob', dagnn.SoftMax(), 'prediction', 'prob', {}) ; else net.layers{end+1} = struct('name', 'prob', 'type', 'softmax') ; end if isDag dagMergeBatchNorm(net) ; dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ; else net = simpleMergeBatchNorm(net) ; net = simpleRemoveLayersOfType(net, 'bnorm') ; end if ~isDag net = simpleRemoveMomentum(net) ; end % Switch to use MatConvNet default memory limit for CuDNN (512 MB) if ~isDag for l = simpleFindLayersOfType(net, 'conv') net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ; end else for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ; end end % ------------------------------------------------------------------------- function opts = removeCuDNNMemoryLimit(opts) % ------------------------------------------------------------------------- remove = false(1, numel(opts)) ; for i = 1:numel(opts) if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit') remove([i i+1]) = true ; end end opts = opts(~remove) ; % ------------------------------------------------------------------------- function net = simpleRemoveMomentum(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if isfield(net.layers{l}, 'momentum') net.layers{l} = rmfield(net.layers{l}, 'momentum') ; end end % ------------------------------------------------------------------------- function layers = simpleFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ; % ------------------------------------------------------------------------- function net = simpleRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- layers = simpleFindLayersOfType(net, type) ; net.layers(layers) = [] ; % ------------------------------------------------------------------------- function layers = dagFindLayersWithOutput(net, outVarName) % ------------------------------------------------------------------------- layers = {} ; for l = 1:numel(net.layers) if any(strcmp(net.layers(l).outputs, outVarName)) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function dagRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, type) ; for i = 1:numel(names) layer = net.layers(net.getLayerIndex(names{i})) ; net.removeLayer(names{i}) ; net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end % ------------------------------------------------------------------------- function dagMergeBatchNorm(net) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ; for name = names name = char(name) ; layer = net.layers(net.getLayerIndex(name)) ; % merge into previous conv layer playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ; playerName = playerName{1} ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; if ~isa(player.block, 'dagnn.Conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end % if the convolution layer does not have a bias, % recreate it to have one if ~player.block.hasBias block = player.block ; block.hasBias = true ; net.renameLayer(playerName, 'tmp') ; net.addLayer(playerName, ... block, ... player.inputs, ... player.outputs, ... {player.params{1}, sprintf('%s_b',playerName)}) ; net.removeLayer('tmp') ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; biases = net.getParamIndex(player.params{2}) ; net.params(biases).value = zeros(block.size(4), 1, 'single') ; end filters = net.getParamIndex(player.params{1}) ; biases = net.getParamIndex(player.params{2}) ; multipliers = net.getParamIndex(layer.params{1}) ; offsets = net.getParamIndex(layer.params{2}) ; moments = net.getParamIndex(layer.params{3}) ; [filtersValue, biasesValue] = mergeBatchNorm(... net.params(filters).value, ... net.params(biases).value, ... net.params(multipliers).value, ... net.params(offsets).value, ... net.params(moments).value) ; net.params(filters).value = filtersValue ; net.params(biases).value = biasesValue ; end % ------------------------------------------------------------------------- function net = simpleMergeBatchNorm(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if strcmp(net.layers{l}.type, 'bnorm') if ~strcmp(net.layers{l-1}.type, 'conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end [filters, biases] = mergeBatchNorm(... net.layers{l-1}.weights{1}, ... net.layers{l-1}.weights{2}, ... net.layers{l}.weights{1}, ... net.layers{l}.weights{2}, ... net.layers{l}.weights{3}) ; net.layers{l-1}.weights = {filters, biases} ; end end % ------------------------------------------------------------------------- function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments) % ------------------------------------------------------------------------- % wk / sqrt(sigmak^2 + eps) % bk - wk muk / sqrt(sigmak^2 + eps) a = multipliers(:) ./ moments(:,2) ; b = offsets(:) - moments(:,1) .* a ; biases(:) = biases(:) + b(:) ; sz = size(filters) ; numFilters = sz(4) ; filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
github
lifeng9472/IBCCF-master
cnn_imagenet_evaluate.m
.m
IBCCF-master/external_libs/matconvnet/examples/imagenet/cnn_imagenet_evaluate.m
5,089
utf_8
f22247bd3614223cad4301daa91f6bd7
function info = cnn_imagenet_evaluate(varargin) % CNN_IMAGENET_EVALUATE Evauate MatConvNet models on ImageNet run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile('data', 'ILSVRC2012') ; opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ; opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.networkType = [] ; opts.lite = false ; opts.numFetchThreads = 12 ; opts.train.batchSize = 128 ; opts.train.numEpochs = 1 ; opts.train.gpus = [] ; opts.train.prefetch = true ; opts.train.expDir = opts.expDir ; opts = vl_argparse(opts, varargin) ; display(opts); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = load(opts.modelPath) ; if isfield(net, 'net') ; net = net.net ; end % Cannot use isa('dagnn.DagNN') because it is not an object yet isDag = isfield(net, 'params') ; if isDag opts.networkType = 'dagnn' ; net = dagnn.DagNN.loadobj(net) ; trainfn = @cnn_train_dag ; % Drop existing loss layers drop = arrayfun(@(x) isa(x.block,'dagnn.Loss'), net.layers) ; for n = {net.layers(drop).name} net.removeLayer(n) ; end % Extract raw predictions from softmax sftmx = arrayfun(@(x) isa(x.block,'dagnn.SoftMax'), net.layers) ; predVar = 'prediction' ; for n = {net.layers(sftmx).name} % check if output l = net.getLayerIndex(n) ; v = net.getVarIndex(net.layers(l).outputs{1}) ; if net.vars(v).fanout == 0 % remove this layer and update prediction variable predVar = net.layers(l).inputs{1} ; net.removeLayer(n) ; end end % Add custom objective and loss layers on top of raw predictions net.addLayer('objective', dagnn.Loss('loss', 'softmaxlog'), ... {predVar,'label'}, 'objective') ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {predVar,'label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {predVar,'label'}, 'top5err') ; % Make sure that the input is called 'input' v = net.getVarIndex('data') ; if ~isnan(v) net.renameVar('data', 'input') ; end % Swtich to test mode net.mode = 'test' ; else opts.networkType = 'simplenn' ; net = vl_simplenn_tidy(net) ; trainfn = @cnn_train ; net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss end % Synchronize label indexes used in IMDB with the ones used in NET imdb = cnn_imagenet_sync_labels(imdb, net); % Run evaluation [net, info] = trainfn(net, imdb, getBatchFn(opts, net.meta), ... opts.train, ... 'train', NaN, ... 'val', find(imdb.images.set==2)) ; % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if isfield(meta.normalization, 'keepAspect') keepAspect = meta.normalization.keepAspect ; else keepAspect = true ; end if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', max(meta.normalization.imageSize(1:2)) / 256, ... 'subtractAverage', mu, ... 'keepAspect', keepAspect) ; fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
lifeng9472/IBCCF-master
cnn_mnist_init.m
.m
IBCCF-master/external_libs/matconvnet/examples/mnist/cnn_mnist_init.m
3,111
utf_8
367b1185af58e108aec40b61818ec6e7
function net = cnn_mnist_init(varargin) % CNN_MNIST_LENET Initialize a CNN similar for MNIST opts.batchNormalization = true ; opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; rng('default'); rng(0) ; f=1/100 ; net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,1,20, 'single'), zeros(1, 20, 'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,20,50, 'single'),zeros(1,50,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(4,4,50,500, 'single'), zeros(1,500,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu') ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(1,1,500,10, 'single'), zeros(1,10,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % optionally switch to batch normalization if opts.batchNormalization net = insertBnorm(net, 1) ; net = insertBnorm(net, 4) ; net = insertBnorm(net, 7) ; end % Meta parameters net.meta.inputSize = [28 28 1] ; net.meta.trainOpts.learningRate = 0.001 ; net.meta.trainOpts.numEpochs = 20 ; net.meta.trainOpts.batchSize = 100 ; % Fill in defaul values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, 'error') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topk', 5}), {'prediction', 'label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = insertBnorm(net, l) % -------------------------------------------------------------------- assert(isfield(net.layers{l}, 'weights')); ndim = size(net.layers{l}.weights{1}, 4); layer = struct('type', 'bnorm', ... 'weights', {{ones(ndim, 1, 'single'), zeros(ndim, 1, 'single')}}, ... 'learningRate', [1 1 0.05], ... 'weightDecay', [0 0]) ; net.layers{l}.biases = [] ; net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
github
lifeng9472/IBCCF-master
cnn_mnist.m
.m
IBCCF-master/external_libs/matconvnet/examples/mnist/cnn_mnist.m
4,613
utf_8
d23586e79502282a6f6d632c3cf8a47e
function [net, info] = cnn_mnist(varargin) %CNN_MNIST Demonstrates MatConvNet on MNIST run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.batchNormalization = false ; opts.network = [] ; opts.networkType = 'simplenn' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.networkType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end opts.expDir = fullfile(vl_rootnn, 'data', ['mnist-baseline-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data', 'mnist') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if isempty(opts.network) net = cnn_mnist_init('batchNormalization', opts.batchNormalization, ... 'networkType', opts.networkType) ; else net = opts.network ; opts.network = [] ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getMnistImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % -------------------------------------------------------------------- function fn = getBatch(opts) % -------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % -------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; % -------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getMnistImdb(opts) % -------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted files = {'train-images-idx3-ubyte', ... 'train-labels-idx1-ubyte', ... 't10k-images-idx3-ubyte', ... 't10k-labels-idx1-ubyte'} ; if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end for i=1:4 if ~exist(fullfile(opts.dataDir, files{i}), 'file') url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ; fprintf('downloading %s\n', url) ; gunzip(url, opts.dataDir) ; end end f=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ; x1=fread(f,inf,'uint8'); fclose(f) ; x1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ; x2=fread(f,inf,'uint8'); fclose(f) ; x2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ; y1=fread(f,inf,'uint8'); fclose(f) ; y1=double(y1(9:end)')+1 ; f=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ; y2=fread(f,inf,'uint8'); fclose(f) ; y2=double(y2(9:end)')+1 ; set = [ones(1,numel(y1)) 3*ones(1,numel(y2))]; data = single(reshape(cat(3, x1, x2),28,28,1,[])); dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean) ; imdb.images.data = data ; imdb.images.data_mean = dataMean; imdb.images.labels = cat(2, y1, y2) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
lifeng9472/IBCCF-master
vl_nnloss.m
.m
IBCCF-master/external_libs/matconvnet/matlab/vl_nnloss.m
11,212
utf_8
e4c325752a9cddab59f01afa0d561ea1
function y = vl_nnloss(x,c,dzdy,varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logisticlog` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end hasIgnoreLabel = any(c(:) == 0); % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; else instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; y(ci) = y(ci) - 1 ; y = bsxfun(@times, dzdy, y) ; case 'mhinge' y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
lifeng9472/IBCCF-master
vl_compilenn.m
.m
IBCCF-master/external_libs/matconvnet/matlab/vl_compilenn.m
30,050
utf_8
6339b625106e6c7b479e57c2b9aa578e
function vl_compilenn(varargin) %VL_COMPILENN Compile the MatConvNet toolbox. % The `vl_compilenn()` function compiles the MEX files in the % MatConvNet toolbox. See below for the requirements for compiling % CPU and GPU code, respectively. % % `vl_compilenn('OPTION', ARG, ...)` accepts the following options: % % `EnableGpu`:: `false` % Set to true in order to enable GPU support. % % `Verbose`:: 0 % Set the verbosity level (0, 1 or 2). % % `Debug`:: `false` % Set to true to compile the binaries with debugging % information. % % `CudaMethod`:: Linux & Mac OS X: `mex`; Windows: `nvcc` % Choose the method used to compile the CUDA code. There are two % methods: % % * The **`mex`** method uses the MATLAB MEX command with the % configuration file % `<MatConvNet>/matlab/src/config/mex_CUDA_<arch>.[sh/xml]` % This configuration file is in XML format since MATLAB 8.3 % (R2014a) and is a Shell script for earlier versions. This % is, principle, the preferred method as it uses the % MATLAB-sanctioned compiler options. % % * The **`nvcc`** method calls the NVIDIA CUDA compiler `nvcc` % directly to compile CUDA source code into object files. % % This method allows to use a CUDA toolkit version that is not % the one that officially supported by a particular MATALB % version (see below). It is also the default method for % compilation under Windows and with CuDNN. % % `CudaRoot`:: guessed automatically % This option specifies the path to the CUDA toolkit to use for % compilation. % % `EnableImreadJpeg`:: `true` % Set this option to `true` to compile `vl_imreadjpeg`. % % `EnableDouble`:: `true` % Set this option to `true` to compile the support for DOUBLE % data types. % % `ImageLibrary`:: `libjpeg` (Linux), `gdiplus` (Windows), `quartz` (Mac) % The image library to use for `vl_impreadjpeg`. % % `ImageLibraryCompileFlags`:: platform dependent % A cell-array of additional flags to use when compiling % `vl_imreadjpeg`. % % `ImageLibraryLinkFlags`:: platform dependent % A cell-array of additional flags to use when linking % `vl_imreadjpeg`. % % `EnableCudnn`:: `false` % Set to `true` to compile CuDNN support. See CuDNN % documentation for the Hardware/CUDA version requirements. % % `CudnnRoot`:: `'local/'` % Directory containing the unpacked binaries and header files of % the CuDNN library. % % ## Compiling the CPU code % % By default, the `EnableGpu` option is switched to off, such that % the GPU code support is not compiled in. % % Generally, you only need a 64bit C/C++ compiler (usually Xcode, GCC or % Visual Studio for Mac, Linux, and Windows respectively). The % compiler can be setup in MATLAB using the % % mex -setup % % command. % % ## Compiling the GPU code % % In order to compile the GPU code, set the `EnableGpu` option to % `true`. For this to work you will need: % % * To satisfy all the requirements to compile the CPU code (see % above). % % * A NVIDIA GPU with at least *compute capability 2.0*. % % * The *MATALB Parallel Computing Toolbox*. This can be purchased % from Mathworks (type `ver` in MATLAB to see if this toolbox is % already comprised in your MATLAB installation; it often is). % % * A copy of the *CUDA Devkit*, which can be downloaded for free % from NVIDIA. Note that each MATLAB version requires a % particular CUDA Devkit version: % % | MATLAB version | Release | CUDA Devkit | % |----------------|---------|--------------| % | 8.2 | 2013b | 5.5 | % | 8.3 | 2014a | 5.5 | % | 8.4 | 2014b | 6.0 | % | 8.6 | 2015b | 7.0 | % | 9.0 | 2016a | 7.5 | % % Different versions of CUDA may work using the hack described % above (i.e. setting the `CudaMethod` to `nvcc`). % % The following configurations have been tested successfully: % % * Windows 7 x64, MATLAB R2014a, Visual C++ 2010, 2013 and CUDA Toolkit % 6.5. VS 2015 CPU version only (not supported by CUDA Toolkit yet). % * Windows 8 x64, MATLAB R2014a, Visual C++ 2013 and CUDA % Toolkit 6.5. % * Mac OS X 10.9, 10.10, 10.11, MATLAB R2013a to R2016a, Xcode, CUDA % Toolkit 5.5 to 7.5. % * GNU/Linux, MATALB R2014a/R2015a/R2015b/R2016a, gcc/g++, CUDA Toolkit 5.5/6.5/7.5. % % Compilation on Windows with MinGW compiler (the default mex compiler in % Matlab) is not supported. For Windows, please reconfigure mex to use % Visual Studio C/C++ compiler. % Furthermore your GPU card must have ComputeCapability >= 2.0 (see % output of `gpuDevice()`) in order to be able to run the GPU code. % To change the compute capabilities, for `mex` `CudaMethod` edit % the particular config file. For the 'nvcc' method, compute % capability is guessed based on the GPUDEVICE output. You can % override it by setting the 'CudaArch' parameter (e.g. in case of % multiple GPUs with various architectures). % % See also: [Compliling MatConvNet](../install.md#compiling), % [Compiling MEX files containing CUDA % code](http://mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html), % `vl_setup()`, `vl_imreadjpeg()`. % Copyright (C) 2014-16 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % Get MatConvNet root directory root = fileparts(fileparts(mfilename('fullpath'))) ; addpath(fullfile(root, 'matlab')) ; % -------------------------------------------------------------------- % Parse options % -------------------------------------------------------------------- opts.enableGpu = false; opts.enableImreadJpeg = true; opts.enableCudnn = false; opts.enableDouble = true; opts.imageLibrary = [] ; opts.imageLibraryCompileFlags = {} ; opts.imageLibraryLinkFlags = [] ; opts.verbose = 0; opts.debug = false; opts.cudaMethod = [] ; opts.cudaRoot = [] ; opts.cudaArch = [] ; opts.defCudaArch = [... '-gencode=arch=compute_20,code=\"sm_20,compute_20\" '... '-gencode=arch=compute_30,code=\"sm_30,compute_30\"']; opts.cudnnRoot = 'local/cudnn' ; opts = vl_argparse(opts, varargin); % -------------------------------------------------------------------- % Files to compile % -------------------------------------------------------------------- arch = computer('arch') ; if isempty(opts.imageLibrary) switch arch case 'glnxa64', opts.imageLibrary = 'libjpeg' ; case 'maci64', opts.imageLibrary = 'quartz' ; case 'win64', opts.imageLibrary = 'gdiplus' ; end end if isempty(opts.imageLibraryLinkFlags) switch opts.imageLibrary case 'libjpeg', opts.imageLibraryLinkFlags = {'-ljpeg'} ; case 'quartz', opts.imageLibraryLinkFlags = {'-framework Cocoa -framework ImageIO'} ; case 'gdiplus', opts.imageLibraryLinkFlags = {'gdiplus.lib'} ; end end lib_src = {} ; mex_src = {} ; % Files that are compiled as CPP or CU depending on whether GPU support % is enabled. if opts.enableGpu, ext = 'cu' ; else ext='cpp' ; end lib_src{end+1} = fullfile(root,'matlab','src','bits',['data.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['datamex.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnconv.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnfullyconnected.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnsubsample.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnpooling.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnnormalize.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbnorm.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbias.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbilinearsampler.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnroipooling.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconv.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconvt.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnpool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnnormalize.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbnorm.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbilinearsampler.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnroipool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_taccummex.' ext]) ; switch arch case {'glnxa64','maci64'} % not yet supported in windows mex_src{end+1} = fullfile(root,'matlab','src',['vl_tmove.' ext]) ; end % CPU-specific files lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','tinythread.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','imread.cpp') ; % GPU-specific files if opts.enableGpu lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','datacu.cu') ; mex_src{end+1} = fullfile(root,'matlab','src','vl_cudatool.cu') ; end % cuDNN-specific files if opts.enableCudnn lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnconv_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbias_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnpooling_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbilinearsampler_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbnorm_cudnn.cu') ; end % Other files if opts.enableImreadJpeg mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg_old.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src', 'bits', 'impl', ['imread_' opts.imageLibrary '.cpp']) ; end % -------------------------------------------------------------------- % Setup CUDA toolkit % -------------------------------------------------------------------- if opts.enableGpu opts.verbose && fprintf('%s: * CUDA configuration *\n', mfilename) ; % Find the CUDA Devkit if isempty(opts.cudaRoot), opts.cudaRoot = search_cuda_devkit(opts) ; end opts.verbose && fprintf('%s:\tCUDA: using CUDA Devkit ''%s''.\n', ... mfilename, opts.cudaRoot) ; opts.nvccPath = fullfile(opts.cudaRoot, 'bin', 'nvcc') ; switch arch case 'win64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib', 'x64') ; case 'maci64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib') ; case 'glnxa64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end % Set the nvcc method as default for Win platforms if strcmp(arch, 'win64') && isempty(opts.cudaMethod) opts.cudaMethod = 'nvcc'; end % Activate the CUDA Devkit cuver = activate_nvcc(opts.nvccPath) ; opts.verbose && fprintf('%s:\tCUDA: using NVCC ''%s'' (%d).\n', ... mfilename, opts.nvccPath, cuver) ; % Set the CUDA arch string (select GPU architecture) if isempty(opts.cudaArch), opts.cudaArch = get_cuda_arch(opts) ; end opts.verbose && fprintf('%s:\tCUDA: NVCC architecture string: ''%s''.\n', ... mfilename, opts.cudaArch) ; end if opts.enableCudnn opts.cudnnIncludeDir = fullfile(opts.cudnnRoot, 'include') ; switch arch case 'win64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib', 'x64') ; case 'maci64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib') ; case 'glnxa64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end end % -------------------------------------------------------------------- % Compiler options % -------------------------------------------------------------------- % Build directories mex_dir = fullfile(root, 'matlab', 'mex') ; bld_dir = fullfile(mex_dir, '.build'); if ~exist(fullfile(bld_dir,'bits','impl'), 'dir') mkdir(fullfile(bld_dir,'bits','impl')) ; end % Compiler flags flags.cc = {} ; flags.ccpass = {} ; flags.ccoptim = {} ; flags.link = {} ; flags.linklibs = {} ; flags.linkpass = {} ; flags.nvccpass = {char(opts.cudaArch)} ; if opts.verbose > 1 flags.cc{end+1} = '-v' ; end if opts.debug flags.cc{end+1} = '-g' ; flags.nvccpass{end+1} = '-O0' ; else flags.cc{end+1} = '-DNDEBUG' ; flags.nvccpass{end+1} = '-O3' ; end if opts.enableGpu flags.cc{end+1} = '-DENABLE_GPU' ; end if opts.enableCudnn flags.cc{end+1} = '-DENABLE_CUDNN' ; flags.cc{end+1} = ['-I"' opts.cudnnIncludeDir '"'] ; end if opts.enableDouble flags.cc{end+1} = '-DENABLE_DOUBLE' ; end flags.link{end+1} = '-lmwblas' ; switch arch case {'maci64'} case {'glnxa64'} flags.linklibs{end+1} = '-lrt' ; case {'win64'} % VisualC does not pass this even if available in the CPU architecture flags.cc{end+1} = '-D__SSSE3__' ; end if opts.enableImreadJpeg flags.cc = horzcat(flags.cc, opts.imageLibraryCompileFlags) ; flags.linklibs = horzcat(flags.linklibs, opts.imageLibraryLinkFlags) ; end if opts.enableGpu flags.link = horzcat(flags.link, {['-L"' opts.cudaLibDir '"'], '-lcudart', '-lcublas'}) ; switch arch case {'maci64', 'glnxa64'} flags.link{end+1} = '-lmwgpu' ; case 'win64' flags.link{end+1} = '-lgpu' ; end if opts.enableCudnn flags.link{end+1} = ['-L"' opts.cudnnLibDir '"'] ; flags.link{end+1} = '-lcudnn' ; end end switch arch case {'maci64'} flags.ccpass{end+1} = '-mmacosx-version-min=10.9' ; flags.linkpass{end+1} = '-mmacosx-version-min=10.9' ; flags.ccoptim{end+1} = '-mssse3 -ffast-math' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end if opts.enableGpu && cuver < 70000 % CUDA prior to 7.0 on Mac require GCC libstdc++ instead of the native % clang libc++. This should go away in the future. flags.ccpass{end+1} = '-stdlib=libstdc++' ; flags.linkpass{end+1} = '-stdlib=libstdc++' ; if ~verLessThan('matlab', '8.5.0') % Complicating matters, MATLAB 8.5.0 links to clang's libc++ by % default when linking MEX files overriding the option above. We % force it to use GCC libstdc++ flags.linkpass{end+1} = '-L"$MATLABROOT/bin/maci64" -lmx -lmex -lmat -lstdc++' ; end end case {'glnxa64'} flags.ccoptim{end+1} = '-mssse3 -ftree-vect-loop-version -ffast-math -funroll-all-loops' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC -D_FORCE_INLINES' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end case {'win64'} flags.nvccpass{end+1} = '-Xcompiler /MD' ; cl_path = fileparts(check_clpath()); % check whether cl.exe in path flags.nvccpass{end+1} = sprintf('--compiler-bindir "%s"', cl_path) ; end % -------------------------------------------------------------------- % Command flags % -------------------------------------------------------------------- flags.mexcc = horzcat(flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' strjoin(flags.ccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' strjoin(flags.ccoptim)]}) ; if ~ispc, flags.mexcc{end+1} = '-cxx'; end % mex: compile GPU flags.mexcu= horzcat({'-f' mex_cuda_config(root)}, ... flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' quote_nvcc(flags.ccpass) ' ' strjoin(flags.nvccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' quote_nvcc(flags.ccoptim)]}) ; % mex: link flags.mexlink = horzcat(flags.cc, flags.link, ... {'-largeArrayDims'}, ... {['LDFLAGS=$LDFLAGS ', strjoin(flags.linkpass)]}, ... {['LINKLIBS=', strjoin(flags.linklibs), ' $LINKLIBS']}) ; % nvcc: compile GPU flags.nvcc = horzcat(flags.cc, ... {opts.cudaArch}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'extern', 'include'))}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'toolbox','distcomp','gpu','extern','include'))}, ... {quote_nvcc(flags.ccpass)}, ... {quote_nvcc(flags.ccoptim)}, ... flags.nvccpass) ; if opts.verbose fprintf('%s: * Compiler and linker configurations *\n', mfilename) ; fprintf('%s: \tintermediate build products directory: %s\n', mfilename, bld_dir) ; fprintf('%s: \tMEX files: %s/\n', mfilename, mex_dir) ; fprintf('%s: \tMEX options [CC CPU]: %s\n', mfilename, strjoin(flags.mexcc)) ; fprintf('%s: \tMEX options [LINK]: %s\n', mfilename, strjoin(flags.mexlink)) ; end if opts.verbose && opts.enableGpu fprintf('%s: \tMEX options [CC GPU]: %s\n', mfilename, strjoin(flags.mexcu)) ; end if opts.verbose && opts.enableGpu && strcmp(opts.cudaMethod,'nvcc') fprintf('%s: \tNVCC options [CC GPU]: %s\n', mfilename, strjoin(flags.nvcc)) ; end if opts.verbose && opts.enableImreadJpeg fprintf('%s: * Reading images *\n', mfilename) ; fprintf('%s: \tvl_imreadjpeg enabled\n', mfilename) ; fprintf('%s: \timage library: %s\n', mfilename, opts.imageLibrary) ; fprintf('%s: \timage library compile flags: %s\n', mfilename, strjoin(opts.imageLibraryCompileFlags)) ; fprintf('%s: \timage library link flags: %s\n', mfilename, strjoin(opts.imageLibraryLinkFlags)) ; end % -------------------------------------------------------------------- % Compile % -------------------------------------------------------------------- % Intermediate object files srcs = horzcat(lib_src,mex_src) ; for i = 1:numel(horzcat(lib_src, mex_src)) [~,~,ext] = fileparts(srcs{i}) ; ext(1) = [] ; objfile = toobj(bld_dir,srcs{i}); if strcmp(ext,'cu') if strcmp(opts.cudaMethod,'nvcc') nvcc_compile(opts, srcs{i}, objfile, flags.nvcc) ; else mex_compile(opts, srcs{i}, objfile, flags.mexcu) ; end else mex_compile(opts, srcs{i}, objfile, flags.mexcc) ; end assert(exist(objfile, 'file') ~= 0, 'Compilation of %s failed.', objfile); end % Link into MEX files for i = 1:numel(mex_src) objs = toobj(bld_dir, [mex_src(i), lib_src]) ; mex_link(opts, objs, mex_dir, flags.mexlink) ; end % Reset path adding the mex subdirectory just created vl_setupnn() ; % -------------------------------------------------------------------- % Utility functions % -------------------------------------------------------------------- % -------------------------------------------------------------------- function objs = toobj(bld_dir,srcs) % -------------------------------------------------------------------- str = fullfile('matlab','src') ; multiple = iscell(srcs) ; if ~multiple, srcs = {srcs} ; end objs = cell(1, numel(srcs)); for t = 1:numel(srcs) i = strfind(srcs{t},str); objs{t} = fullfile(bld_dir, srcs{t}(i+numel(str):end)) ; end if ~multiple, objs = objs{1} ; end objs = regexprep(objs,'.cpp$',['.' objext]) ; objs = regexprep(objs,'.cu$',['.' objext]) ; objs = regexprep(objs,'.c$',['.' objext]) ; % -------------------------------------------------------------------- function mex_compile(opts, src, tgt, mex_opts) % -------------------------------------------------------------------- mopts = {'-outdir', fileparts(tgt), src, '-c', mex_opts{:}} ; opts.verbose && fprintf('%s: MEX CC: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function nvcc_compile(opts, src, tgt, nvcc_opts) % -------------------------------------------------------------------- nvcc_path = fullfile(opts.cudaRoot, 'bin', 'nvcc'); nvcc_cmd = sprintf('"%s" -c "%s" %s -o "%s"', ... nvcc_path, src, ... strjoin(nvcc_opts), tgt); opts.verbose && fprintf('%s: NVCC CC: %s\n', mfilename, nvcc_cmd) ; status = system(nvcc_cmd); if status, error('Command %s failed.', nvcc_cmd); end; % -------------------------------------------------------------------- function mex_link(opts, objs, mex_dir, mex_flags) % -------------------------------------------------------------------- mopts = {'-outdir', mex_dir, mex_flags{:}, objs{:}} ; opts.verbose && fprintf('%s: MEX LINK: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function ext = objext() % -------------------------------------------------------------------- % Get the extension for an 'object' file for the current computer % architecture switch computer('arch') case 'win64', ext = 'obj'; case {'maci64', 'glnxa64'}, ext = 'o' ; otherwise, error('Unsupported architecture %s.', computer) ; end % -------------------------------------------------------------------- function conf_file = mex_cuda_config(root) % -------------------------------------------------------------------- % Get mex CUDA config file mver = [1e4 1e2 1] * sscanf(version, '%d.%d.%d') ; if mver <= 80200, ext = 'sh' ; else ext = 'xml' ; end arch = computer('arch') ; switch arch case {'win64'} config_dir = fullfile(matlabroot, 'toolbox', ... 'distcomp', 'gpu', 'extern', ... 'src', 'mex', arch) ; case {'maci64', 'glnxa64'} config_dir = fullfile(root, 'matlab', 'src', 'config') ; end conf_file = fullfile(config_dir, ['mex_CUDA_' arch '.' ext]); fprintf('%s:\tCUDA: MEX config file: ''%s''\n', mfilename, conf_file); % -------------------------------------------------------------------- function cl_path = check_clpath() % -------------------------------------------------------------------- % Checks whether the cl.exe is in the path (needed for the nvcc). If % not, tries to guess the location out of mex configuration. cc = mex.getCompilerConfigurations('c++'); if isempty(cc) error(['Mex is not configured.'... 'Run "mex -setup" to configure your compiler. See ',... 'http://www.mathworks.com/support/compilers ', ... 'for supported compilers for your platform.']); end cl_path = fullfile(cc.Location, 'VC', 'bin', 'amd64'); [status, ~] = system('cl.exe -help'); if status == 1 warning('CL.EXE not found in PATH. Trying to guess out of mex setup.'); prev_path = getenv('PATH'); setenv('PATH', [prev_path ';' cl_path]); status = system('cl.exe'); if status == 1 setenv('PATH', prev_path); error('Unable to find cl.exe'); else fprintf('Location of cl.exe (%s) successfully added to your PATH.\n', ... cl_path); end end % ------------------------------------------------------------------------- function paths = which_nvcc() % ------------------------------------------------------------------------- switch computer('arch') case 'win64' [~, paths] = system('where nvcc.exe'); paths = strtrim(paths); paths = paths(strfind(paths, '.exe')); case {'maci64', 'glnxa64'} [~, paths] = system('which nvcc'); paths = strtrim(paths) ; end % ------------------------------------------------------------------------- function cuda_root = search_cuda_devkit(opts) % ------------------------------------------------------------------------- % This function tries to to locate a working copy of the CUDA Devkit. opts.verbose && fprintf(['%s:\tCUDA: searching for the CUDA Devkit' ... ' (use the option ''CudaRoot'' to override):\n'], mfilename); % Propose a number of candidate paths for NVCC paths = {getenv('MW_NVCC_PATH')} ; paths = [paths, which_nvcc()] ; for v = {'5.5', '6.0', '6.5', '7.0', '7.5', '8.0', '8.5', '9.0'} switch computer('arch') case 'glnxa64' paths{end+1} = sprintf('/usr/local/cuda-%s/bin/nvcc', char(v)) ; case 'maci64' paths{end+1} = sprintf('/Developer/NVIDIA/CUDA-%s/bin/nvcc', char(v)) ; case 'win64' paths{end+1} = sprintf('C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v%s\\bin\\nvcc.exe', char(v)) ; end end paths{end+1} = sprintf('/usr/local/cuda/bin/nvcc') ; % Validate each candidate NVCC path for i=1:numel(paths) nvcc(i).path = paths{i} ; [nvcc(i).isvalid, nvcc(i).version] = validate_nvcc(paths{i}) ; end if opts.verbose fprintf('\t| %5s | %5s | %-70s |\n', 'valid', 'ver', 'NVCC path') ; for i=1:numel(paths) fprintf('\t| %5d | %5d | %-70s |\n', ... nvcc(i).isvalid, nvcc(i).version, nvcc(i).path) ; end end % Pick an entry index = find([nvcc.isvalid]) ; if isempty(index) error('Could not find a valid NVCC executable\n') ; end [~, newest] = max([nvcc(index).version]); nvcc = nvcc(index(newest)) ; cuda_root = fileparts(fileparts(nvcc.path)) ; if opts.verbose fprintf('%s:\tCUDA: choosing NVCC compiler ''%s'' (version %d)\n', ... mfilename, nvcc.path, nvcc.version) ; end % ------------------------------------------------------------------------- function [valid, cuver] = validate_nvcc(nvccPath) % ------------------------------------------------------------------------- [status, output] = system(sprintf('"%s" --version', nvccPath)) ; valid = (status == 0) ; if ~valid cuver = 0 ; return ; end match = regexp(output, 'V(\d+\.\d+\.\d+)', 'match') ; if isempty(match), valid = false ; return ; end cuver = [1e4 1e2 1] * sscanf(match{1}, 'V%d.%d.%d') ; % -------------------------------------------------------------------- function cuver = activate_nvcc(nvccPath) % -------------------------------------------------------------------- % Validate the NVCC compiler installation [valid, cuver] = validate_nvcc(nvccPath) ; if ~valid error('The NVCC compiler ''%s'' does not appear to be valid.', nvccPath) ; end % Make sure that NVCC is visible by MEX by setting the MW_NVCC_PATH % environment variable to the NVCC compiler path if ~strcmp(getenv('MW_NVCC_PATH'), nvccPath) warning('Setting the ''MW_NVCC_PATH'' environment variable to ''%s''', nvccPath) ; setenv('MW_NVCC_PATH', nvccPath) ; end % In some operating systems and MATLAB versions, NVCC must also be % available in the command line search path. Make sure that this is% % the case. [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver warning('NVCC not found in the command line path or the one found does not matches ''%s''.', nvccPath); nvccDir = fileparts(nvccPath) ; prevPath = getenv('PATH') ; switch computer case 'PCWIN64', separator = ';' ; case {'GLNXA64', 'MACI64'}, separator = ':' ; end setenv('PATH', [nvccDir separator prevPath]) ; [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver setenv('PATH', prevPath) ; error('Unable to set the command line path to point to ''%s'' correctly.', nvccPath) ; else fprintf('Location of NVCC (%s) added to your command search PATH.\n', nvccDir) ; end end % ------------------------------------------------------------------------- function str = quote_nvcc(str) % ------------------------------------------------------------------------- if iscell(str), str = strjoin(str) ; end str = strrep(strtrim(str), ' ', ',') ; if ~isempty(str), str = ['-Xcompiler ' str] ; end % -------------------------------------------------------------------- function cudaArch = get_cuda_arch(opts) % -------------------------------------------------------------------- opts.verbose && fprintf('%s:\tCUDA: determining GPU compute capability (use the ''CudaArch'' option to override)\n', mfilename); try gpu_device = gpuDevice(); arch_code = strrep(gpu_device.ComputeCapability, '.', ''); cudaArch = ... sprintf('-gencode=arch=compute_%s,code=\\\"sm_%s,compute_%s\\\" ', ... arch_code, arch_code, arch_code) ; catch opts.verbose && fprintf(['%s:\tCUDA: cannot determine the capabilities of the installed GPU; ' ... 'falling back to default\n'], mfilename); cudaArch = opts.defCudaArch; end