plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
rising-turtle/slam_matlab-master
vl_demo_aib.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/demo/vl_demo_aib.m
2,928
utf_8
590c6db09451ea608d87bfd094662cac
function vl_demo_aib % VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB) D = 4 ; K = 20 ; randn('state',0) ; rand('state',0) ; X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ; X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ; X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ; figure(1) ; clf ; hold on ; vl_plotframe(X1,'color','r') ; vl_plotframe(X2,'color','g') ; vl_plotframe(X3,'color','b') ; axis equal ; xlim([-4 4]); ylim([-4 4]); axis off ; rectangle('position',D*[-1 -1 2 2]) vl_demo_print('aib_basic_data', .6) ; C = 1:K*K ; Pcx = zeros(3,K*K) ; f1 = quantize(X1,D,K) ; f2 = quantize(X2,D,K) ; f3 = quantize(X3,D,K) ; Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ; Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ; Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ; Pcx = Pcx / sum(Pcx(:)) ; [parents, cost] = vl_aib(Pcx) ; cutsize = [K*K, 10, 3, 2, 1] ; for i=1:length(cutsize) [cut,map,short] = vl_aibcut(parents, cutsize(i)) ; parents_cut(short > 0) = parents(short(short > 0)) ; C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ; figure(i+1) ; clf ; plotquantization(D,K,C) ; hold on ; %plottree(D,K,parents_cut) ; axis equal ; axis off ; title(sprintf('%d clusters', cutsize(i))) ; vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ; end % -------------------------------------------------------------------- function f = quantize(X,D,K) % -------------------------------------------------------------------- d = 2*D / K ; j = round((X(1,:) + D) / d) ; i = round((X(2,:) + D) / d) ; j = max(min(j,K),1) ; i = max(min(i,K),1) ; f = sub2ind([K K],i,j) ; % -------------------------------------------------------------------- function [i,j] = plotquantization(D,K,C) % -------------------------------------------------------------------- hold on ; cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ; d = 2*D / K ; for i=0:K-1 for j=0:K-1 patch(d*(j+[0 1 1 0])-D, ... d*(i+[0 0 1 1])-D, ... cl(C(j*K+i+1),:)) ; end end % -------------------------------------------------------------------- function h = plottree(D,K,parents) % -------------------------------------------------------------------- d = 2*D / K ; C = zeros(2,2*K*K-1)+NaN ; N = zeros(1,2*K*K-1) ; for i=0:K-1 for j=0:K-1 C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ; N(:,j*K+i+1) = 1 ; end end for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; if all(isnan(C(:,i))), continue; end if all(isnan(C(:,p))) C(:,p) = C(:,i) / N(i) ; else C(:,p) = C(:,p) + C(:,i) / N(i) ; end N(p) = N(p) + 1 ; end C(1,:) = C(1,:) ./ N ; C(2,:) = C(2,:) ./ N ; xt = zeros(3, 2*length(parents)-1)+NaN ; yt = zeros(3, 2*length(parents)-1)+NaN ; for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ; yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ; end h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
github
rising-turtle/slam_matlab-master
vl_demo_alldist.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/demo/vl_demo_alldist.m
5,460
utf_8
6d008a64d93445b9d7199b55d58db7eb
function vl_demo_alldist % numRepetitions = 3 ; numDimensions = 1000 ; numSamplesRange = [300] ; settingsRange = {{'alldist2', 'double', 'l2', }, ... {'alldist', 'double', 'l2', 'nosimd'}, ... {'alldist', 'double', 'l2' }, ... {'alldist2', 'single', 'l2', }, ... {'alldist', 'single', 'l2', 'nosimd'}, ... {'alldist', 'single', 'l2' }, ... {'alldist2', 'double', 'l1', }, ... {'alldist', 'double', 'l1', 'nosimd'}, ... {'alldist', 'double', 'l1' }, ... {'alldist2', 'single', 'l1', }, ... {'alldist', 'single', 'l1', 'nosimd'}, ... {'alldist', 'single', 'l1' }, ... {'alldist2', 'double', 'chi2', }, ... {'alldist', 'double', 'chi2', 'nosimd'}, ... {'alldist', 'double', 'chi2' }, ... {'alldist2', 'single', 'chi2', }, ... {'alldist', 'single', 'chi2', 'nosimd'}, ... {'alldist', 'single', 'chi2' }, ... {'alldist2', 'double', 'hell', }, ... {'alldist', 'double', 'hell', 'nosimd'}, ... {'alldist', 'double', 'hell' }, ... {'alldist2', 'single', 'hell', }, ... {'alldist', 'single', 'hell', 'nosimd'}, ... {'alldist', 'single', 'hell' }, ... {'alldist2', 'double', 'kl2', }, ... {'alldist', 'double', 'kl2', 'nosimd'}, ... {'alldist', 'double', 'kl2' }, ... {'alldist2', 'single', 'kl2', }, ... {'alldist', 'single', 'kl2', 'nosimd'}, ... {'alldist', 'single', 'kl2' }, ... {'alldist2', 'double', 'kl1', }, ... {'alldist', 'double', 'kl1', 'nosimd'}, ... {'alldist', 'double', 'kl1' }, ... {'alldist2', 'single', 'kl1', }, ... {'alldist', 'single', 'kl1', 'nosimd'}, ... {'alldist', 'single', 'kl1' }, ... {'alldist2', 'double', 'kchi2', }, ... {'alldist', 'double', 'kchi2', 'nosimd'}, ... {'alldist', 'double', 'kchi2' }, ... {'alldist2', 'single', 'kchi2', }, ... {'alldist', 'single', 'kchi2', 'nosimd'}, ... {'alldist', 'single', 'kchi2' }, ... {'alldist2', 'double', 'khell', }, ... {'alldist', 'double', 'khell', 'nosimd'}, ... {'alldist', 'double', 'khell' }, ... {'alldist2', 'single', 'khell', }, ... {'alldist', 'single', 'khell', 'nosimd'}, ... {'alldist', 'single', 'khell' }, ... } ; %settingsRange = settingsRange(end-5:end) ; styles = {} ; for marker={'x','+','.','*','o'} for color={'r','g','b','k','y'} styles{end+1} = {'color', char(color), 'marker', char(marker)} ; end end for ni=1:length(numSamplesRange) for ti=1:length(settingsRange) tocs = [] ; for ri=1:numRepetitions rand('state',ri) ; randn('state',ri) ; numSamples = numSamplesRange(ni) ; settings = settingsRange{ti} ; [tocs(end+1), D] = run_experiment(numDimensions, ... numSamples, ... settings) ; end means(ni,ti) = mean(tocs) ; stds(ni,ti) = std(tocs) ; if mod(ti-1,3) == 0 D0 = D ; else err = max(abs(D(:)-D0(:))) ; fprintf('err %f\n', err) ; if err > 1, keyboard ; end end end end if 0 figure(1) ; clf ; hold on ; numStyles = length(styles) ; for ti=1:length(settingsRange) si = mod(ti - 1, numStyles) + 1 ; h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ; leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ; end end for ti=1:length(settingsRange) leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; end figure(1) ; clf ; barh(means(end,:)) ; set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ; xlabel('Time [s]') ; function [elaps, D] = run_experiment(numDimensions, numSamples, settings) distType = 'l2' ; algType = 'alldist' ; classType = 'double' ; useSimd = true ; for si=1:length(settings) arg = settings{si} ; switch arg case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'} distType = arg ; case {'alldist', 'alldist2'} algType = arg ; case {'single', 'double'} classType = arg ; case 'simd' useSimd = true ; case 'nosimd' useSimd = false ; otherwise assert(false) ; end end X = rand(numDimensions, numSamples) ; X(X < .3) = 0 ; switch classType case 'double' case 'single' X = single(X) ; end vl_simdctrl(double(useSimd)) ; switch algType case 'alldist' tic ; D = vl_alldist(X, distType) ; elaps = toc ; case 'alldist2' tic ; D = vl_alldist2(X, distType) ; elaps = toc ; end
github
rising-turtle/slam_matlab-master
vl_demo_svmpegasos.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/demo/vl_demo_svmpegasos.m
1,304
utf_8
5470b2cbce41c6323cb562dbcd37556b
% VL_DEMO_SVMPEGASOS Demo: SVMPEGASOS: 2D linear learning function vl_demo_svmpegasos % Set up training data Np = 200 ; Nn = 200 ; Xp = diag([1 3])*randn(2, Np) ; Xn = diag([1 3])*randn(2, Nn) ; Xp(1,:) = Xp(1,:) + 2 ; Xn(1,:) = Xn(1,:) - 2 ; X = [Xp Xn] ; y = [ones(1,Np) -ones(1,Nn)] ; figure(1) plot(Xn(1,:),Xn(2,:),'*') hold on plot(Xp(1,:),Xp(2,:),'*r') axis equal ; %axis off ; axis tight ; vl_demo_print('pegasos_training') ; % parameters lambda = 0.01 ; % training energy = [] ; dataset = vl_maketrainingset(X, int8(y)) ; [w b info] = vl_svmpegasos(dataset, lambda, ... 'MaxIterations',5000,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticCallRef',energy) ; figure(1) ; x = min(X(1,:)):max(X(1,:)) ; hold on set(line([0 w(1)], [0 w(2)]), 'color', 'y', 'linewidth', 4) ; xlim([-3 3]) ; ylim([-3 3]) ; set(line(10*[w(2) -w(2)], 10*[-w(1) w(1)]), ... 'color', 'y', 'linewidth', 2, 'linestyle', '-') ; axis equal ; hold off %axis off ; axis tight ; vl_demo_print('pegasos_res') ; figure(2) %axis equal ; %axis off ; axis tight ; vl_demo_print('pegasos_energy') ; function energy = diagnostics(svm,energy) figure(2) ; %keyboard energy = [energy svm.energy] ; plot(energy) ; drawnow ;
github
rising-turtle/slam_matlab-master
vl_demo_kdtree_sift.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/demo/vl_demo_kdtree_sift.m
6,832
utf_8
e676f80ac330a351f0110533c6ebba89
function vl_demo_kdtree_sift % VL_DEMO_KDTREE_SIFT % Demonstrates the use of a kd-tree forest to match SIFT % features. If FLANN is present, this function runs a comparison % against it. % AUTORIGHS rand('state',0) ; randn('state',0); do_median = 0 ; do_mean = 1 ; % try to setup flann if ~exist('flann_search', 'file') if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ; end end do_flann = exist('nearest_neighbors') == 3 ; if ~do_flann warning('FLANN not found. Comparison disabled.') ; end maxNumComparisonsRange = [1 10 50 100 200 300 400] ; numTreesRange = [1 2 5 10] ; % get data (SIFT features) im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ; im1 = single(rgb2gray(im1)) ; im2 = single(rgb2gray(im2)) ; [f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ; [f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ; % add some noise to make matches unique d1 = single(d1) + rand(size(d1)) ; d2 = single(d2) + rand(size(d2)) ; % match exhaustively to get the ground truth elapsedDirect = tic ; D = vl_alldist(d1,d2) ; [drop, best] = min(D, [], 1) ; elapsedDirect = toc(elapsedDirect) ; for ti=1:length(numTreesRange) for vi=1:length(maxNumComparisonsRange) v = maxNumComparisonsRange(vi) ; t = numTreesRange(ti) ; if do_median tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'median', ... 'numtrees', t) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons',v) ; elapsedKD_median(vi,ti) = toc ; errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_mean tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'mean', ... 'numtrees', t) ; %kdtree = readflann(kdtree, '/tmp/flann.txt') ; %checkx(kdtree, d1, 1, 1) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons', v) ; elapsedKD_mean(vi,ti) = toc ; errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_flann tic ; [i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ... 'trees', t, ... 'checks', v)); ifla = i ; elapsedKD_flann(vi,ti) = toc; errors_flann(vi,ti) = sum(i ~= best) / length(best) ; errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ; end end end figure(1) ; clf ; leg = {} ; hnd = [] ; sty = {{'color','r'},{'color','g'},... {'color','b'},{'color','c'},... {'color','k'}} ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('percentage of incorrect matches (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_incorrect',.6) ; figure(2) ; clf ; leg = {} ; hnd = [] ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('relative overestimation of minmium distannce (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_distortion',.6) ; % -------------------------------------------------------------------- function checkx(kdtree, X, t, n, mib, mab) % -------------------------------------------------------------------- if nargin <= 4 mib = -inf * ones(size(X,1),1) ; mab = +inf * ones(size(X,1),1) ; end lc = kdtree.trees(t).nodes.lowerChild(n) ; uc = kdtree.trees(t).nodes.upperChild(n) ; if lc < 0 for i=-lc:-uc-1 di = kdtree.trees(t).dataIndex(i) ; if any(X(:,di) > mab) error('a') ; end if any(X(:,di) < mib) error('b') ; end end return end i = kdtree.trees(t).nodes.splitDimension(n) ; v = kdtree.trees(t).nodes.splitThreshold(n) ; mab_ = mab ; mab_(i) = min(mab(i), v) ; checkx(kdtree, X, t, lc, mib, mab_) ; mib_ = mib ; mib_(i) = max(mib(i), v) ; checkx(kdtree, X, t, uc, mib_, mab) ; % -------------------------------------------------------------------- function kdtree = readflann(kdtree, path) % -------------------------------------------------------------------- data = textread(path)' ; for i=1:size(data,2) nodeIds = data(1,:) ; ni = find(nodeIds == data(1,i)) ; if ~isnan(data(2,i)) % internal node li = find(nodeIds == data(4,i)) ; ri = find(nodeIds == data(5,i)) ; kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ; kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ; kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ; kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ; else di = data(3,i) + 1 ; kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ; kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ; end kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ; end
github
rising-turtle/slam_matlab-master
vl_impattern.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/imop/vl_impattern.m
6,702
utf_8
7f5d173ebd720f7b89eccfa416aa71d3
function im = vl_impattern(varargin) % VL_IMPATTERN Generate an image from a stock pattern % IM=VLPATTERN(NAME) returns an instance of the specified % pattern. These stock patterns are useful for testing algoirthms. % % All generated patterns are returned as an image of class % DOUBLE. Both gray-scale and colour images have range in [0,1]. % % VL_IMPATTERN() without arguments shows a gallery of the stock % patterns. The following patterns are supported: % % Wedge:: % The image of a wedge. % % Cone:: % The image of a cone. % % SmoothChecker:: % A checkerboard with Gaussian filtering on top. Use the % option-value pair 'sigma', SIGMA to specify the standard % deviation of the smoothing and the pair 'step', STEP to specfity % the checker size in pixels. % % ThreeDotsSquare:: % A pattern with three small dots and two squares. % % UniformNoise:: % Random i.i.d. noise. % % Blobs: % Gaussian blobs of various sizes and anisotropies. % % Blobs1: % Gaussian blobs of various orientations and anisotropies. % % Blob: % One Gaussian blob. Use the option-value pairs 'sigma', % 'orientation', and 'anisotropy' to specify the respective % parameters. 'sigma' is the scalar standard deviation of an % isotropic blob (the image domain is the rectangle % [-1,1]^2). 'orientation' is the clockwise rotation (as the Y % axis points downards). 'anisotropy' (>= 1) is the ratio of the % the largest over the smallest axis of the blob (the smallest % axis length is set by 'sigma'). Set 'cut' to TRUE to cut half % half of the blob. % % A stock image:: % Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'. % % All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but % the stock images, the default size is [128,128]. % Author: Andrea Vedaldi % AUTORIGHTS if nargin > 0 pattern=varargin{1} ; varargin=varargin(2:end) ; else pattern = 'gallery' ; end patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ... 'blob', 'blobs', 'blobs1', ... 'box', 'roofs1', 'roofs2', 'river1', 'river2'} ; % spooling switch lower(pattern) case 'wedge', im = wedge(varargin) ; case 'cone', im = cone(varargin) ; case 'smoothchecker', im = smoothChecker(varargin) ; case 'threedotssquare', im = threeDotSquare(varargin) ; case 'uniformnoise', im = uniformNoise(varargin) ; case 'blob', im = blob(varargin) ; case 'blobs', im = blobs(varargin) ; case 'blobs1', im = blobs1(varargin) ; case {'box','roofs1','roofs2','river1','river2','spots'} im = stockImage(pattern, varargin) ; case 'gallery' clf ; num = numel(patterns) ; for p = 1:num vl_tightsubplot(num,p,'box','outer') ; imagesc(vl_impattern(patterns{p}),[0 1]) ; axis image off ; title(patterns{p}) ; end colormap gray ; return ; otherwise error('Unknown patter ''%s''.', pattern) ; end if nargout == 0 clf ; imagesc(im) ; hold on ; colormap gray ; axis image off ; title(pattern) ; clear im ; end function [u,v,opts,args] = commonOpts(args) opts.size = [128 128] ; [opts,args] = vl_argparse(opts, args) ; ur = linspace(-1,1,opts.size(2)) ; vr = linspace(-1,1,opts.size(1)) ; [u,v] = meshgrid(ur,vr); function im = wedge(args) [u,v,opts,args] = commonOpts(args) ; im = abs(u) + abs(v) > (1/4) ; im(v < 0) = 0 ; function im = cone(args) [u,v,opts,args] = commonOpts(args) ; im = sqrt(u.^2+v.^2) ; im = im / max(im(:)) ; function im = smoothChecker(args) opts.size = [128 128] ; opts.step = 16 ; opts.sigma = 2 ; opts = vl_argparse(opts, args) ; [u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ; im = xor((mod(u,opts.step*2) < opts.step),... (mod(v,opts.step*2) < opts.step)) ; im = double(im) ; im = vl_imsmooth(im, opts.sigma) ; function im = threeDotSquare(args) [u,v,opts,args] = commonOpts(args) ; im = ones(size(u)) ; im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ; im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ; [drop,i] = min(abs(v(:,1))) ; [drop,j1] = min(abs(u(1,:)-1/6)) ; [drop,j2] = min(abs(u(1,:))) ; [drop,j3] = min(abs(u(1,:)+1/6)) ; im(i,j1) = 0 ; im(i,j2) = 0 ; im(i,j3) = 0 ; function im = blobs(args) [u,v,opts,args] = commonOpts(args) ; im = zeros(size(u)) ; num = 5 ; square = 2 / num ; sigma = square / 2 / 3 ; scales = logspace(log10(0.5), log10(1), num) ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ; C = inv(A'*A) ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = blob(args) [u,v,opts,args] = commonOpts(args) ; opts.sigma = 0.15 ; opts.anisotropy = .5 ; opts.orientation = 2/3 * pi ; opts.cut = false ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; th = opts.orientation ; R = [cos(th) -sin(th) ; sin(th) cos(th)] ; A = opts.sigma * R * diag([opts.anisotropy 1]) ; T = [0;0] ; [x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ; im = exp(-0.5 *(x.^2 + y.^2)) ; if opts.cut im = im .* double(x > 0) ; end function im = blobs1(args) [u,v,opts,args] = commonOpts(args) ; opts.number = 5 ; opts.sigma = [] ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; square = 2 / opts.number ; num = opts.number ; if isempty(opts.sigma) sigma = 1/6 * square ; else sigma = opts.sigma * square ; end rotations = linspace(0,pi,num+1) ; rotations(end) = [] ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; th = rotations(i) ; R = [cos(th) -sin(th); sin(th) cos(th)] ; A = sigma * R * diag([1 1/skews(j)]) ; C = inv(A*A') ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = uniformNoise(args) opts.size = [128 128] ; opts.seed = 1 ; opts = vl_argparse(opts, args) ; state = vl_twister('state') ; vl_twister('state',opts.seed) ; im = vl_twister(opts.size([2 1])) ; vl_twister('state',state) ; function im = stockImage(pattern,args) opts.size = [] ; opts = vl_argparse(opts, args) ; switch pattern case 'river1', path='river1.jpg' ; case 'river2', path='river2.jpg' ; case 'roofs1', path='roofs1.jpg' ; case 'roofs2', path='roofs2.jpg' ; case 'box', path='box.pgm' ; case 'spots', path='spots.jpg' ; end im = imread(fullfile(vl_root,'data',path)) ; im = im2double(im) ; if ~isempty(opts.size) im = imresize(im, opts.size) ; im = max(im,0) ; im = min(im,1) ; end
github
rising-turtle/slam_matlab-master
vl_tpsu.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/imop/vl_tpsu.m
1,755
utf_8
09f36e1a707c069b375eb2817d0e5f13
function [U,dU,delta]=vl_tpsu(X,Y) % VL_TPSU Compute the U matrix of a thin-plate spline transformation % U=VL_TPSU(X,Y) returns the matrix % % [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ] % [ ] % [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ] % % where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is % the opposite -r^2 log(r^2) of the radial basis function of the % thin plate spline specified by X and Y. % % [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with % respect to the parameters Y. The derivatives are arranged in a % Mx2xN array, one layer per column of U. % % See also: VL_TPS(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if exist('tpsumx') U = tpsumx(X,Y) ; else M=size(X,2) ; N=size(Y,2) ; % Faster than repmat, but still fairly slow r2 = ... (X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ... (X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ; U = - rb(r2) ; end if nargout > 1 M=size(X,2) ; N=size(Y,2) ; dx = X( ones(N,1), :)' - Y( ones(1,M), :) ; dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ; r2 = (dx.^2 + dy.^2) ; r = sqrt(r2) ; coeff = drb(r)./(r+eps) ; dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ; end % The radial basis function function y = rb(r2) y = zeros(size(r2)) ; sel = find(r2 ~= 0) ; y(sel) = - r2(sel) .* log(r2(sel)) ; % The derivative of the radial basis function function y = drb(r) y = zeros(size(r)) ; sel = find(r ~= 0) ; y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
github
rising-turtle/slam_matlab-master
vl_xyz2lab.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/imop/vl_xyz2lab.m
1,570
utf_8
09f95a6f9ae19c22486ec1157357f0e3
function J=vl_xyz2lab(I,il) % VL_XYZ2LAB Convert XYZ color space to LAB % J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format. % % VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55, % D65, D75, D93. The default illuminatn is E. % % See also: VL_XYZ2LUV(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 2 il='E' ; end switch lower(il) case 'a' xw = 0.4476 ; yw = 0.4074 ; case 'b' xw = 0.3324 ; yw = 0.3474 ; case 'c' xw = 0.3101 ; yw = 0.3162 ; case 'e' xw = 1/3 ; yw = 1/3 ; case 'd50' xw = 0.3457 ; yw = 0.3585 ; case 'd55' xw = 0.3324 ; yw = 0.3474 ; case 'd65' xw = 0.312713 ; yw = 0.329016 ; case 'd75' xw = 0.299 ; yw = 0.3149 ; case 'd93' xw = 0.2848 ; yw = 0.2932 ; end J=zeros(size(I)) ; % Reference white Yw = 1.0 ; Xw = xw/yw ; Zw = (1-xw-yw)/yw * Yw ; % XYZ components X = I(:,:,1) ; Y = I(:,:,2) ; Z = I(:,:,3) ; x = X/Xw ; y = Y/Yw ; z = Z/Zw ; L = 116 * f(y) - 16 ; a = 500*(f(x) - f(y)) ; b = 200*(f(y) - f(z)) ; J = cat(3,L,a,b) ; % -------------------------------------------------------------------- function b=f(a) % -------------------------------------------------------------------- sp = find(a > 0.00856) ; sm = find(a <= 0.00856) ; k = 903.3 ; b=zeros(size(a)) ; b(sp) = a(sp).^(1/3) ; b(sm) = (k*a(sm) + 16)/116 ;
github
rising-turtle/slam_matlab-master
vl_test_twister.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_twister.m
1,162
utf_8
1ae9040a416db503ad73600f081d096b
function results = vl_test_twister(varargin) % VL_TEST_TWISTER vl_test_init ; function test_illegal_args() vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ; function test_seed_by_scalar() rand('twister',1) ; a = rand ; vl_twister('state',1) ; b = vl_twister ; vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ; function test_get_set_state() rand('twister',1) ; a = rand('twister') ; vl_twister('state',1) ; b = vl_twister('state') ; vl_assert_equal(a,b,'read state') ; a(1) = a(1) + 1 ; vl_twister('state',a) ; b = vl_twister('state') ; vl_assert_equal(a,b,'set state') ; function test_multi_dimensions() b = rand('twister') ; rand('twister',b) ; vl_twister('state',b) ; a=rand([1 2 3 4 5]) ; b=vl_twister([1 2 3 4 5]) ; vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ; function test_multi_multi_args() a=rand(1, 2, 3, 4, 5) ; b=vl_twister(1, 2, 3, 4, 5) ; vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ; function test_square() a=rand(10) ; b=vl_twister(10) ; vl_assert_equal(a,b,'VL_TWISTER(N)') ;
github
rising-turtle/slam_matlab-master
vl_test_kdtree.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_kdtree.m
2,448
utf_8
66f429ff8286089a34c193d7d3f9f016
function results = vl_test_kdtree(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.X = single(randn(10, 1000)) ; s.Q = single(randn(10, 10)) ; function test_nearest(s) for tmethod = {'median', 'mean'} for type = {@single, @double} conv = type{1} ; tmethod = char(tmethod) ; X = conv(s.X) ; Q = conv(s.Q) ; tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ; [nn, d2] = vl_kdtreequery(tree, X,Q) ; D2 = vl_alldist2(X, Q, 'l2') ; [d2_, nn_] = min(D2) ; vl_assert_equal(... nn,uint32(nn_),... 'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ; vl_assert_almost_equal(... d2,d2_,... 'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ; end end function test_nearests(s) numNeighbors = 7 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; vl_assert_equal(nn,uint32(nn_)) ; vl_assert_almost_equal(d2,d2_) ; function test_ann(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 50 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end function test_ann_forest(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 25 ; numTrees = 5 ; tree = vl_kdtreebuild(s.X, 'numTrees', 5) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end
github
rising-turtle/slam_matlab-master
vl_test_imwbackward.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_imwbackward.m
514
utf_8
33baa0784c8f6f785a2951d7f1b49199
function results = vl_test_imwbackward(varargin) % VL_TEST_IMWBACKWARD vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; function test_identity(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ; function test_invalid_args(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
github
rising-turtle/slam_matlab-master
vl_test_pegasos.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_pegasos.m
5,428
utf_8
cc28a57ce6cf6ecba349d21698228e2e
function results = vl_test_pegasos(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.biasMultiplier = 10 ; s.lambda = 0.01 ; Np = 10 ; Nn = 10 ; Xp = diag([1 3])*randn(2, Np) ; Xn = diag([1 3])*randn(2, Nn) ; Xp(1,:) = Xp(1,:) + 2 + 1 ; Xn(1,:) = Xn(1,:) - 2 + 1 ; s.X = [Xp Xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; %s.w = exact_solver(s.X, s.y, s.lambda, s.biasMultiplier) s.w = [1.181106685845652 ; 0.098478251033487 ; -0.154057992404545 ] ; function test_problem_1(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; [w b info] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; % test input vl_assert_equal(info.biasMultiplier,s.biasMultiplier); vl_assert_almost_equal(info.biasLearningRate,.1,1e-3); vl_assert_almost_equal(conv([w; b]), conv(s.w), 0.1) ; end function test_continue_training(s) for conv = {@single,@double} conv = conv{1} ; vl_twister('state',0) ; [w b] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier) ; vl_twister('state',0) ; [w1 b1] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'StartingIteration', 1, ... 'MaxIterations', 1500, ... 'BiasMultiplier', s.biasMultiplier) ; [w2 b2] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'StartingIteration', 1501, ... 'StartingModel', w1, ... 'StartingBias', b1, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier) ; vl_assert_almost_equal([w; b],[w2; b2],1e-7) ; end function test_continue_training_with_perm(s) perm = uint32(randperm(size(s.X,2))) ; for conv = {@single,@double} conv = conv{1} ; vl_twister('state',0) ; [w b] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; vl_twister('state',0) ; [w1 b1] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'StartingIteration', 1, ... 'MaxIterations', 1500, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; [w2 b2] = vl_pegasos(conv(s.X), int8(s.y), s.lambda, ... 'StartingIteration', 1501, ... 'StartingModel', w1, ... 'StartingBias', b1, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; vl_assert_almost_equal([w; b],[w2; b2],1e-7) ; end function test_homkermap(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; sxe = vl_homkermap(conv(s.X), 1, 'kchi2', 'gamma', .5) ; [we be] = vl_pegasos(sxe, int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [w b] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1,... 'homkermap',1,... 'gamma',.5,... 'kchi2') ; vl_assert_almost_equal([w; b],[we; be], 1e-7) ; end function test_diagnostic(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; x = 0; dhandle = @(x,stat) (assert(stat.elapsedTime == 0 || stat.elapsedTime ~= 0)) ; [w b] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [wd bd] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1,... 'DiagnosticFunction',dhandle,... 'DiagnosticCallRef',x) ; vl_assert_almost_equal([w; b], [wd; bd], 1e-7) ; end function test_epsilon(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; [w b info] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 1000000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [we be infoe] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 1000000, ... 'Epsilon',1e-7,... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_assert_almost_equal([w; b], [we; be], 1e-2) ; assert(info.iterations > infoe.iterations); end function w = exact_solver(X, y, lambda, biasMultiplier) N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; w(3) = - model.rho / biasMultiplier ; format long ; disp('model w:') disp(w)
github
rising-turtle/slam_matlab-master
vl_test_alphanum.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_alphanum.m
1,624
utf_8
2da2b768c2d0f86d699b8f31614aa424
function results = vl_test_alphanum(varargin) % VL_TEST_ALPHANUM vl_test_init ; function s = setup() s.strings = ... {'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ; s.sortedStrings = ... {'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ; function test_basic(s) sorted = vl_alphanum(s.strings) ; assert(isequal(sorted,s.sortedStrings)) ;
github
rising-turtle/slam_matlab-master
vl_test_svmpegasos.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_svmpegasos.m
5,802
utf_8
dcd13a3246830b74817e8c44100db022
function results = vl_test_svmpegasos(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.biasMultiplier = 10 ; s.lambda = 0.01 ; Np = 10 ; Nn = 10 ; Xp = diag([1 3])*randn(2, Np) ; Xn = diag([1 3])*randn(2, Nn) ; Xp(1,:) = Xp(1,:) + 2 + 1 ; Xn(1,:) = Xn(1,:) - 2 + 1 ; s.X = [Xp Xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; %s.w = exact_solver(s.X, s.y, s.lambda, s.biasMultiplier) s.w = [1.181106685845652 ; 0.098478251033487 ; -0.154057992404545 ] ; function test_problem_1(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; dataset = vl_maketrainingset(conv(s.X), int8(s.y)) ; [w b info] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; % test input vl_assert_equal(info.biasMultiplier,s.biasMultiplier); vl_assert_almost_equal(info.biasLearningRate,.1,1e-3); vl_assert_almost_equal(conv([w; b]), conv(s.w), 0.1) ; end function test_continue_training(s) for conv = {@single,@double} conv = conv{1} ; vl_twister('state',0) ; dataset = vl_maketrainingset(conv(s.X), int8(s.y)) ; [w b] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier) ; vl_twister('state',0) ; [w1 b1] = vl_svmpegasos(dataset, s.lambda, ... 'StartingIteration', 1, ... 'MaxIterations', 1500, ... 'BiasMultiplier', s.biasMultiplier) ; [w2 b2] = vl_svmpegasos(dataset, s.lambda, ... 'StartingIteration', 1501, ... 'StartingModel', w1, ... 'StartingBias', b1, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier) ; vl_assert_almost_equal([w; b],[w2; b2],1e-7) ; end function test_continue_training_with_perm(s) perm = uint32(randperm(size(s.X,2))) ; for conv = {@single,@double} conv = conv{1} ; vl_twister('state',0) ; dataset = vl_maketrainingset(conv(s.X), int8(s.y)) ; [w b] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; vl_twister('state',0) ; [w1 b1] = vl_svmpegasos(dataset, s.lambda, ... 'StartingIteration', 1, ... 'MaxIterations', 1500, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; [w2 b2] = vl_svmpegasos(dataset, s.lambda, ... 'StartingIteration', 1501, ... 'StartingModel', w1, ... 'StartingBias', b1, ... 'MaxIterations', 3000, ... 'BiasMultiplier', s.biasMultiplier, ... 'Permutation', perm) ; vl_assert_almost_equal([w; b],[w2; b2],1e-7) ; end function test_homkermap(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; sxe = vl_homkermap(conv(s.X), 1, 'kchi2', 'gamma', .5) ; dataset = vl_maketrainingset(conv(s.X), int8(s.y),... 'homkermap',1,... 'gamma',.5,... 'kchi2') ; [we be] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [w b] = vl_pegasos(s.X, int8(s.y), s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1,... 'homkermap',1,... 'gamma',.5,... 'kchi2') ; vl_assert_almost_equal([w; b],[we; be], 1e-7) ; end function test_diagnostic(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; x = []; dhandle = @(stat,x) ([x stat.energy]) ; dataset = vl_maketrainingset(conv(s.X), int8(s.y)) ; [w b] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [wd bd info] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 100000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1,... 'DiagnosticFunction',dhandle,... 'DiagnosticCallRef',x) ; vl_assert_almost_equal([w; b], [wd; bd], 1e-7) ; end function test_epsilon(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; dataset = vl_maketrainingset(conv(s.X), int8(s.y)) ; [w b info] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 1000000, ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_twister('state',0) ; [we be infoe] = vl_svmpegasos(dataset, s.lambda, ... 'MaxIterations', 1000000, ... 'Epsilon',1e-7,... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', .1) ; vl_assert_almost_equal([w; b], [we; be], 1e-2) ; assert(info.iterations > infoe.iterations); end function w = exact_solver(X, y, lambda, biasMultiplier) N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; w(3) = - model.rho / biasMultiplier ; format long ; disp('model w:') disp(w)
github
rising-turtle/slam_matlab-master
vl_test_cummax.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_cummax.m
762
utf_8
3dddb5736dfffacdd94b156e67cb9c14
function results = vl_test_cummax(varargin) % VL_TEST_CUMMAX vl_test_init ; function test_basic() vl_assert_almost_equal(... vl_cummax(1), 1) ; vl_assert_almost_equal(... vl_cummax([1 2 3 4], 2), [1 2 3 4]) ; function test_multidim() a = [1 2 3 4 3 2 1] ; b = [1 2 3 4 4 4 4] ; for k=1:6 dims = ones(1,6) ; dims(k) = numel(a) ; a = reshape(a, dims) ; b = reshape(b, dims) ; vl_assert_almost_equal(... vl_cummax(a, k), b) ; end function test_storage_classes() types = {@double, @single, @int64, @uint64, ... @int32, @uint32, @int16, @uint16, ... @int8, @uint8} ; for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ; end end
github
rising-turtle/slam_matlab-master
vl_test_imintegral.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_imintegral.m
1,429
utf_8
4750f04ab0ac9fc4f55df2c8583e5498
function results = vl_test_imintegral(varargin) % VL_TEST_IMINTEGRAL vl_test_init ; function state = setup() state.I = ones(5,6) ; state.correct = [ 1 2 3 4 5 6 ; 2 4 6 8 10 12 ; 3 6 9 12 15 18 ; 4 8 12 16 20 24 ; 5 10 15 20 25 30 ; ] ; function test_matlab_equivalent(s) vl_assert_equal(slow_imintegral(s.I), s.correct) ; function test_basic(s) vl_assert_equal(vl_imintegral(s.I), s.correct) ; function test_multi_dimensional(s) vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ... repmat(s.correct, [1 1 3])) ; function test_random(s) numTests = 50 ; for i = 1:numTests I = rand(5) ; vl_assert_almost_equal(vl_imintegral(s.I), ... slow_imintegral(s.I)) ; end function test_datatypes(s) vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ; vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ; vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ; function integral = slow_imintegral(I) integral = zeros(size(I)); for k = 1:size(I,3) for r = 1:size(I,1) for c = 1:size(I,2) integral(r,c,k) = sum(sum(I(1:r,1:c,k))); end end end
github
rising-turtle/slam_matlab-master
vl_test_sift.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_sift.m
1,318
utf_8
806c61f9db9f2ebb1d649c9bfcf3dc0a
function results = vl_test_sift(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ; [s.ubc.f, s.ubc.d] = ... vl_ubcread(fullfile(vl_root,'data','box.sift')) ; function test_ubc_descriptor(s) err = [] ; [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'frames', s.ubc.f) ; D2 = vl_alldist(f, s.ubc.f) ; [drop, perm] = min(D2) ; f = f(:,perm) ; d = d(:,perm) ; error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ... / mean(sqrt(sum(single(s.ubc.d).^2))) ; assert(error < 0.1, ... 'sift descriptor did not produce desctiptors similar to UBC ones') ; function test_ubc_detector(s) [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'peakthresh', .01, ... 'edgethresh', 10) ; s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ; f(4,:) = mod(f(4,:), 2*pi) ; % scale the components so that 1 pixel erro in x,y,z is equal to a % 10-th of angle. S = diag([1 1 1 20/pi]); D2 = vl_alldist(S * s.ubc.f, S * f) ; [d2,perm] = sort(min(D2)) ; error = sqrt(d2) ; quant80 = round(.8 * size(f,2)) ; % check for less than one pixel error at 80% quantile assert(error(quant80) < 1, ... 'sift detector did not produce enough keypoints similar to UBC ones') ;
github
rising-turtle/slam_matlab-master
vl_test_binsum.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_binsum.m
1,301
utf_8
5bbd389cbc4d997e413d809fe4efda6d
function results = vl_test_binsum(varargin) % VL_TEST_BINSUM vl_test_init ; function test_three_args() vl_assert_almost_equal(... vl_binsum([0 0], 1, 2), [0 1]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, 1), [0 7]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ; function test_four_args() vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ; function test_3d_one() Z = zeros(3,3,3) ; B = 3*ones(3,1,3) ; R = Z ; R(:,3,:) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, 17, B, 2), R) ; function test_3d_two() Z = zeros(3,3,3) ; B = 3*ones(3,3,1) ; X = zeros(3,3,1) ; X(:,:,1) = 17 ; R = Z ; R(:,:,3) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, X, B, 3), R) ; function test_storage_classes() types = {@double, @single, @int64, @uint64, ... @int32, @uint32, @int16, @uint16, ... @int8, @uint8} ; for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ; end end
github
rising-turtle/slam_matlab-master
vl_test_lbp.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_lbp.m
1,056
utf_8
3b5cca50109af84014e56a4280a3352a
function results = vl_test_lbp(varargin) % VL_TEST_TWISTER vl_test_init ; function test_one_on() I = {} ; I{1} = [0 0 0 ; 0 0 1 ; 0 0 0] ; I{2} = [0 0 0 ; 0 0 0 ; 0 0 1] ; I{3} = [0 0 0 ; 0 0 0 ; 0 1 0] ; I{4} = [0 0 0 ; 0 0 0 ; 1 0 0] ; I{5} = [0 0 0 ; 1 0 0 ; 0 0 0] ; I{6} = [1 0 0 ; 0 0 0 ; 0 0 0] ; I{7} = [0 1 0 ; 0 0 0 ; 0 0 0] ; I{8} = [0 0 1 ; 0 0 0 ; 0 0 0] ; for j=0:7 h = vl_lbp(single(I{j+1}), 3) ; h = find(squeeze(h)) ; vl_assert_equal(h, j * 7 + 1) ; end function test_two_on() I = {} ; I{1} = [0 0 0 ; 0 0 1 ; 0 0 1] ; I{2} = [0 0 0 ; 0 0 0 ; 0 1 1] ; I{3} = [0 0 0 ; 0 0 0 ; 1 1 0] ; I{4} = [0 0 0 ; 1 0 0 ; 1 0 0] ; I{5} = [1 0 0 ; 1 0 0 ; 0 0 0] ; I{6} = [1 1 0 ; 0 0 0 ; 0 0 0] ; I{7} = [0 1 1 ; 0 0 0 ; 0 0 0] ; I{8} = [0 0 1 ; 0 0 1 ; 0 0 0] ; for j=0:7 h = vl_lbp(single(I{j+1}), 3) ; h = find(squeeze(h)) ; vl_assert_equal(h, j * 7 + 2) ; end function test_fliplr() randn('state',0) ; I = randn(256,256,1,'single') ; f = vl_lbp(fliplr(I), 8) ; f_ = vl_lbpfliplr(vl_lbp(I, 8)) ; vl_assert_almost_equal(f,f_,1e-3) ;
github
rising-turtle/slam_matlab-master
vl_test_colsubset.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_colsubset.m
828
utf_8
be0c080007445b36333b863326fb0f15
function results = vl_test_colsubset(varargin) % VL_TEST_COLSUBSET vl_test_init ; function s = setup() s.x = [5 2 3 6 4 7 1 9 8 0] ; function test_beginning(s) vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ; vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ; function test_ending(s) vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ; vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ; function test_largest(s) vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ; vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ; function test_smallest(s) vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ; vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ; function test_random(s) assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
github
rising-turtle/slam_matlab-master
vl_test_alldist.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_alldist.m
2,373
utf_8
9ea1a36c97fe715dfa2b8693876808ff
function results = vl_test_alldist(varargin) % VL_TEST_ALLDIST vl_test_init ; function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js', ... 'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y), ... @(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ; types = {'single', 'double'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; vl_assert_almost_equal(... vl_alldist(X,Y,dists{d}), ... makedist(distsEquiv{d},X,Y), ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist(X,X,ker) ; kyy = vl_alldist(Y,Y,ker) ; kxy = vl_alldist(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
rising-turtle/slam_matlab-master
vl_test_ihashsum.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_ihashsum.m
581
utf_8
edc283062469af62056b0782b171f5fc
function results = vl_test_ihashsum(varargin) % VL_TEST_IHASHSUM vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(round(16*rand(2,100))) ; sel = find(all(s.data==0)) ; s.data(1,sel)=1 ; function test_hash(s) D = size(s.data,1) ; K = 5 ; h = zeros(1,K,'uint32') ; id = zeros(D,K,'uint8'); next = zeros(1,K,'uint32') ; [h,id,next] = vl_ihashsum(h,id,next,K,s.data) ; sel = vl_ihashfind(id,next,K,s.data) ; count = double(h(sel)) ; [drop,i,j] = unique(s.data','rows') ; for k=1:size(s.data,2) count_(k) = sum(j == j(k)) ; end vl_assert_equal(count,count_) ;
github
rising-turtle/slam_matlab-master
vl_test_grad.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_grad.m
434
utf_8
4d03eb33a6a4f68659f868da95930ffb
function results = vl_test_grad(varargin) % VL_TEST_GRAD vl_test_init ; function s = setup() s.I = rand(150,253) ; s.I_small = rand(2,2) ; function test_equiv(s) vl_assert_equal(gradient(s.I), vl_grad(s.I)) ; function test_equiv_small(s) vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ; function test_equiv_forward(s) Ix = diff(s.I,2,1) ; Iy = diff(s.I,2,1) ; vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
github
rising-turtle/slam_matlab-master
vl_test_whistc.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_whistc.m
1,384
utf_8
81c446d35c82957659840ab2a579ec2c
function results = vl_test_whistc(varargin) % VL_TEST_WHISTC vl_test_init ; function test_acc() x = ones(1, 10) ; e = 1 ; o = 1:10 ; vl_assert_equal(vl_whistc(x, o, e), 55) ; function test_basic() x = 1:10 ; e = 1:10 ; o = ones(1, 10) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; x = linspace(-1,11,100) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; function test_multidim() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_nan() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; x(1:7:end) = NaN ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_no_edges() x = rand(10, 20, 30) ; o = ones(size(x)) ; vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ; vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ; vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ; vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ; vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
github
rising-turtle/slam_matlab-master
vl_test_roc.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_roc.m
1,019
utf_8
9b2ae71c9dc3eda0fc54c65d55054d0c
function results = vl_test_roc(varargin) % VL_TEST_ROC vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ; function test_perfect_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(info.eer, 0) ; vl_assert_almost_equal(info.auc, 1) ; function test_swap1_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ; function test_swap1_tptn_stable(s) [tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ; function test_swap1_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(info.eer, 1/3) ; vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
github
rising-turtle/slam_matlab-master
vl_test_dsift.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_dsift.m
2,048
utf_8
fbbfb16d5a21936c1862d9551f657ccc
function results = vl_test_dsift(varargin) % VL_TEST_DSIFT vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = rgb2gray(single(I)) ; function test_fast_slow(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSize = 5 ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; [f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors', ... 'fast') ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift fast approximation not close') ; function test_sift(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSizeRange = [1 1.2 5] ; for wi = 1:length(windowSizeRange) windowSize = windowSizeRange(wi) ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; numKeys = size(f, 2) ; f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ; [f_, d_] = vl_sift(s.I, ... 'magnif', magnif, ... 'frames', f_, ... 'firstoctave', -1, ... 'levels', 5, ... 'floatdescriptors', ... 'windowsize', windowSize) ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift and sift equivalence') ; end
github
rising-turtle/slam_matlab-master
vl_test_alldist2.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_alldist2.m
2,284
utf_8
89a787e3d83516653ae8d99c808b9d67
function results = vl_test_alldist2(varargin) % VL_TEST_ALLDIST vl_test_init ; % TODO: test integer classes function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist2(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', ... 'kchi2', 'kl2', 'kl1', 'khell'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y)}; types = {'single', 'double', 'sparse'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; a = vl_alldist2(X,Y,dists{d}) ; b = makedist(distsEquiv{d},X,Y) ; vl_assert_almost_equal(a,b, ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist2(X,X,ker) ; kyy = vl_alldist2(Y,Y,ker) ; kxy = vl_alldist2(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist2(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
rising-turtle/slam_matlab-master
vl_test_imsmooth.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_imsmooth.m
1,837
utf_8
718235242cad61c9804ba5e881c22f59
function results = vl_test_imsmooth(varargin) % VL_TEST_IMSMOOTH vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; I = max(min(vl_imdown(I),1),0) ; s.I = single(I) ; function test_pad_by_continuity(s) % Convolving a constant signal padded with continuity does not change % the signal. I = ones(3) ; for ker = {'triangular', 'gaussian'} ker = char(ker) ; J = vl_imsmooth(I, 2, ... 'kernel', ker, ... 'padding', 'continuity') ; vl_assert_almost_equal(J, I, 1e-4, ... 'padding by continutiy with kernel = %s', ker) ; end function test_kernels(s) for ker = {'triangular', 'gaussian'} ker = char(ker) ; for type = {@single, @double} for simd = [0 1] for sigma = [1 2 7] for step = [1 2 3] vl_simdctrl(simd) ; conv = type{1} ; g = equivalent_kernel(ker, sigma) ; J = vl_imsmooth(conv(s.I), sigma, ... 'kernel', ker, ... 'padding', 'zero', ... 'subsample', step) ; J_ = conv(convolve(s.I, g, step)) ; vl_assert_almost_equal(J, J_, 1e-4, ... 'kernel=%s sigma=%f step=%d simd=%d', ... ker, sigma, step, simd) ; end end end end end function g = equivalent_kernel(ker, sigma) switch ker case 'gaussian' W = ceil(4*sigma) ; g = exp(-.5*((-W:W)/(sigma+eps)).^2) ; case 'triangular' W = max(round(sigma),1) ; g = W - abs(-W+1:W-1) ; end g = g / sum(g) ; function I = convolve(I, g, step) if strcmp(class(I),'single') g = single(g) ; else g = double(g) ; end for k=1:size(I,3) I(:,:,k) = conv2(g,g,I(:,:,k),'same'); end I = I(1:step:end,1:step:end,:) ;
github
rising-turtle/slam_matlab-master
vl_test_phow.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_phow.m
549
utf_8
f761a3bb218af855986263c67b2da411
function results = vl_test_phow(varargin) % VL_TEST_PHOPW vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = single(s.I) ; function test_gray(s) [f,d] = vl_phow(s.I, 'color', 'gray') ; assert(size(d,1) == 128) ; function test_rgb(s) [f,d] = vl_phow(s.I, 'color', 'rgb') ; assert(size(d,1) == 128*3) ; function test_hsv(s) [f,d] = vl_phow(s.I, 'color', 'hsv') ; assert(size(d,1) == 128*3) ; function test_opponent(s) [f,d] = vl_phow(s.I, 'color', 'opponent') ; assert(size(d,1) == 128*3) ;
github
rising-turtle/slam_matlab-master
vl_test_kmeans.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_kmeans.m
2,788
utf_8
14374b7dbae832fc3509e02caf00cdf5
function results = vl_test_kmeans(varargin) % VL_TEST_KMEANS % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; function s = setup() randn('state',0) ; s.X = randn(128, 100) ; function test_basic(s) [centers, assignments, en] = vl_kmeans(s.X, 10, 'NumRepetitions', 10) ; [centers_, assignments_, en_] = simpleKMeans(s.X, 10) ; assert(en_ <= 1.1 * en, 'vl_kmeans did not optimize enough') ; function test_algorithms(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; [centers, assignments, en] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Lloyd', ... 'Distance', distance) ; vl_twister('state',0) ; [centers_, assignments_, en_] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Elkan', ... 'Distance', distance) ; vl_assert_almost_equal(centers, centers_, 1e-5) ; vl_assert_almost_equal(assignments, assignments_, 1e-5) ; vl_assert_almost_equal(en, en_, 1e-5) ; end end function test_patterns(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; data = [1 1 0 0 ; 1 0 1 0] ; data = conversion(data) ; [centers, assignments, en] = vl_kmeans(data, 4, ... 'NumRepetitions', 100, ... 'Distance', distance) ; assert(isempty(setdiff(data', centers', 'rows'))) ; end end function [centers, assignments, en] = simpleKMeans(X, numCenters) [dimension, numData] = size(X) ; centers = randn(dimension, numCenters) ; for iter = 1:10 [dists, assignments] = min(vl_alldist(centers, X)) ; en = sum(dists) ; centers = [zeros(dimension, numCenters) ; ones(1, numCenters)] ; centers = vl_binsum(centers, ... [X ; ones(1,numData)], ... repmat(assignments, dimension+1, 1), 2) ; centers = centers(1:end-1, :) ./ repmat(centers(end,:), dimension, 1) ; end
github
rising-turtle/slam_matlab-master
vl_test_hikmeans.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_hikmeans.m
463
utf_8
dc3b493646e66316184e86ff4e6138ab
function results = vl_test_hikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [tree, assign] = vl_hikmeans(s.data,3,100) ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [tree, assign] = vl_hikmeans(s.data,3,100,'method','elkan') ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ;
github
rising-turtle/slam_matlab-master
vl_test_aib.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_aib.m
1,277
utf_8
78978ae54e7ebe991d136336ba4bf9c6
function results = vl_test_aib(varargin) % VL_TEST_AIB vl_test_init ; function s = setup() s = [] ; function test_basic(s) Pcx = [.3 .3 0 0 0 0 .2 .2] ; % This results in the AIB tree % % 1 - \ % 5 - \ % 2 - / \ % - 7 % 3 - \ / % 6 - / % 4 - / % % coded by the map [5 5 6 6 7 1] (1 denotes the root). [parents,cost] = vl_aib(Pcx) ; vl_assert_equal(parents, [5 5 6 6 7 7 1]) ; vl_assert_almost_equal(mi(Pcx)*[1 1 1], cost(1:3), 1e-3) ; [cut,map,short] = vl_aibcut(parents,2) ; vl_assert_equal(cut, [5 6]) ; vl_assert_equal(map, [1 1 2 2 1 2 0]) ; vl_assert_equal(short, [5 5 6 6 5 6 7]) ; function test_cluster_null(s) Pcx = [.5 .5 0 0 0 0 0 0] ; % This results in the AIB tree % % 1 - \ % 5 % 2 - / % % 3 x % % 4 x % % If ClusterNull is specified, the values 3 and 4 % which have zero probability are merged first % % 1 ----------\ % 7 % 2 ----- \ / % 6-/ % 3 -\ / % 5 -/ % 4 -/ parents1 = vl_aib(Pcx) ; parents2 = vl_aib(Pcx,'ClusterNull') ; vl_assert_equal(parents1, [5 5 0 0 1 0 0]) ; vl_assert_equal(parents2(3), parents2(4)) ; function x = mi(P) % mutual information P1 = sum(P,1) ; P2 = sum(P,2) ; x = sum(sum(P .* log(max(P,1e-10) ./ (P2*P1)))) ;
github
rising-turtle/slam_matlab-master
vl_test_imarray.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_imarray.m
795
utf_8
c5e6a5aa8c2e63e248814f5bd89832a8
function results = vl_test_imarray(varargin) % VL_TEST_IMARRAY vl_test_init ; function test_movie_rgb(s) A = rand(23,15,3,4) ; B = vl_imarray(A,'movie',true) ; function test_movie_indexed(s) cmap = get(0,'DefaultFigureColormap') ; A = uint8(size(cmap,1)*rand(23,15,4)) ; A = min(A,size(cmap,1)-1) ; B = vl_imarray(A,'movie',true) ; function test_movie_gray_indexed(s) A = uint8(255*rand(23,15,4)) ; B = vl_imarray(A,'movie',true,'cmap',gray(256)) ; for k=1:size(A,3) vl_assert_equal(squeeze(A(:,:,k)), ... frame2im(B(k))) ; end function test_basic(s) M = 3 ; N = 4 ; width = 32 ; height = 15 ; for i=1:M for j=1:N A{i,j} = rand(width,height) ; end end A1 = A'; A1 = cat(3,A1{:}) ; A2 = cell2mat(A) ; B = vl_imarray(A1, 'layout', [M N]) ; vl_assert_equal(A2,B) ;
github
rising-turtle/slam_matlab-master
vl_test_homkermap.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_homkermap.m
1,903
utf_8
c157052bf4213793a961bde1f73fb307
function results = vl_test_homkermap(varargin) % VL_TEST_HOMKERMAP vl_test_init ; function check_ker(ker, n, window, period) args = {n, ker, 'window', window} ; if nargin > 3 args = {args{:}, 'period', period} ; end x = [-1 -.5 0 .5 1] ; y = linspace(0,2,100) ; for conv = {@single, @double} x = feval(conv{1}, x) ; y = feval(conv{1}, y) ; sx = sign(x) ; sy = sign(y) ; psix = vl_homkermap(x, args{:}) ; psiy = vl_homkermap(y, args{:}) ; k = vl_alldist(psix,psiy,'kl2') ; k_ = (sx'*sy) .* vl_alldist(sx.*x,sy.*y,ker) ; vl_assert_almost_equal(k, k_, 2e-2) ; end function test_uniform_kchi2(), check_ker('kchi2', 3, 'uniform', 15) ; function test_uniform_kjs(), check_ker('kjs', 3, 'uniform', 15) ; function test_uniform_kl1(), check_ker('kl1', 29, 'uniform', 15) ; function test_rect_kchi2(), check_ker('kchi2', 3, 'rectangular', 15) ; function test_rect_kjs(), check_ker('kjs', 3, 'rectangular', 15) ; function test_rect_kl1(), check_ker('kl1', 29, 'rectangular', 10) ; function test_auto_uniform_kchi2(),check_ker('kchi2', 3, 'uniform') ; function test_auto_uniform_kjs(), check_ker('kjs', 3, 'uniform') ; function test_auto_uniform_kl1(), check_ker('kl1', 25, 'uniform') ; function test_auto_rect_kchi2(), check_ker('kchi2', 3, 'rectangular') ; function test_auto_rect_kjs(), check_ker('kjs', 3, 'rectangular') ; function test_auto_rect_kl1(), check_ker('kl1', 25, 'rectangular') ; function test_gamma() x = linspace(0,1,20) ; for gamma = linspace(.2,2,10) k = vl_alldist(x, 'kchi2') .* (x'*x + 1e-12).^((gamma-1)/2) ; psix = vl_homkermap(x, 3, 'kchi2', 'gamma', gamma) ; assert(norm(k - psix'*psix) < 1e-2) ; end function test_negative() x = linspace(-1,1,20) ; k = vl_alldist(abs(x), 'kchi2') .* (sign(x)'*sign(x)) ; psix = vl_homkermap(x, 3, 'kchi2') ; assert(norm(k - psix'*psix) < 1e-2) ;
github
rising-turtle/slam_matlab-master
vl_test_slic.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_slic.m
211
utf_8
9077cfa77eb7b8d43880ba62408291f8
function results = vl_test_slic(varargin) % VL_TEST_SLIC vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; function test_slic(s) segmentation = vl_slic(s.im, 10, 0.1, 'verbose') ;
github
rising-turtle/slam_matlab-master
vl_test_ikmeans.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_ikmeans.m
466
utf_8
1ee2f647ac0035ed0d704a0cd615b040
function results = vl_test_ikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [centers, assign] = vl_ikmeans(s.data,100) ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [centers, assign] = vl_ikmeans(s.data,100,'method','elkan') ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ;
github
rising-turtle/slam_matlab-master
vl_test_mser.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_mser.m
242
utf_8
1ad33563b0c86542a2978ee94e0f4a39
function results = vl_test_mser(varargin) % VL_TEST_MSER vl_test_init ; function s = setup() s.im = im2uint8(rgb2gray(vl_impattern('roofs1'))) ; function test_mser(s) [regions,frames] = vl_mser(s.im) ; mask = vl_erfill(s.im, regions(1)) ;
github
rising-turtle/slam_matlab-master
vl_test_inthist.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_inthist.m
811
utf_8
459027d0c54d8f197563a02ab66ef45d
function results = vl_test_inthist(varargin) % VL_TEST_INTHIST vl_test_init ; function s = setup() rand('state',0) ; s.labels = uint32(8*rand(123, 76, 3)) ; function test_basic(s) l = 10 ; hist = vl_inthist(s.labels, 'numlabels', l) ; hist_ = inthist_slow(s.labels, l) ; vl_assert_equal(double(hist),hist_) ; function test_sample(s) rand('state',0) ; boxes = 10 * rand(4,20) + .5 ; boxes(3:4,:) = boxes(3:4,:) + boxes(1:2,:) ; boxes = min(boxes, 10) ; boxes = uint32(boxes) ; inthist = vl_inthist(s.labels) ; hist = vl_sampleinthist(inthist, boxes) ; function hist = inthist_slow(labels, numLabels) m = size(labels,1) ; n = size(labels,2) ; l = numLabels ; b = zeros(m*n,l) ; b = vl_binsum(b, 1, reshape(labels,m*n,[]), 2) ; b = reshape(b,m,n,l) ; for k=1:l hist(:,:,k) = cumsum(cumsum(b(:,:,k)')') ; end
github
rising-turtle/slam_matlab-master
vl_test_imdisttf.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_imdisttf.m
1,885
utf_8
ae921197988abeb984cbcdf9eaf80e77
function results = vl_test_imdisttf(varargin) % VL_TEST_DISTTF vl_test_init ; function test_basic() for conv = {@single, @double} conv = conv{1} ; I = conv([0 0 0 ; 0 -2 0 ; 0 0 0]) ; D = vl_imdisttf(I); assert(isequal(D, conv(- [0 1 0 ; 1 2 1 ; 0 1 0]))) ; I(2,2) = -3 ; [D,map] = vl_imdisttf(I) ; assert(isequal(D, conv(-1 - [0 1 0 ; 1 2 1 ; 0 1 0]))) ; assert(isequal(map, 5 * ones(3))) ; end function test_1x1() assert(isequal(1, vl_imdisttf(1))) ; function test_rand() I = rand(13,31) ; for t=1:4 param = [rand randn rand randn] ; [D0,map0] = imdisttf_equiv(I,param) ; [D,map] = vl_imdisttf(I,param) ; vl_assert_almost_equal(D,D0,1e-10) assert(isequal(map,map0)) ; end function test_param() I = zeros(3,4) ; I(1,1) = -1 ; [D,map] = vl_imdisttf(I,[1 0 1 0]); assert(isequal(-[1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ;], D)) ; D0 = -[1 .9 .6 .1 ; 0 0 0 0 ; 0 0 0 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[1 .9 .6 .1 ; .9 .8 .5 0 ; .6 .5 .2 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 .1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[.9 1 .9 .6 ; .8 .9 .8 .5 ; .5 .6 .5 .2 ; ] ; [D,map] = vl_imdisttf(I,[.1 1 .1 0]); vl_assert_almost_equal(D,D0,1e-10); function test_special() I = rand(13,31) -.5 ; D = vl_imdisttf(I, [0 0 1e5 0]) ; vl_assert_almost_equal(D(:,1),min(I,[],2),1e-10); D = vl_imdisttf(I, [1e5 0 0 0]) ; vl_assert_almost_equal(D(1,:),min(I,[],1),1e-10); function [D,map]=imdisttf_equiv(I,param) D = inf + zeros(size(I)) ; map = zeros(size(I)) ; ur = 1:size(D,2) ; vr = 1:size(D,1) ; [u,v] = meshgrid(ur,vr) ; for v_=vr for u_=ur E = I(v_,u_) + ... param(1) * (u - u_ - param(2)).^2 + ... param(3) * (v - v_ - param(4)).^2 ; map(E < D) = sub2ind(size(I),v_,u_) ; D = min(D,E) ; end end
github
rising-turtle/slam_matlab-master
vl_test_pr.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_pr.m
2,950
utf_8
fbe44689dacb16970984e4dbcede0430
function results = vl_test_pr(varargin) % VL_TEST_PR vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(pr, [1 1/1 2/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 2 2 2 2] / 2) ; function test_perfect_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(info.auc, 1) ; vl_assert_almost_equal(info.ap, 1) ; vl_assert_almost_equal(info.ap_interp_11, 1) ; function test_swap1_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(pr, [1 1/1 1/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 1 2 2 2] / 2) ; function test_swap1_tptn_stable(s) [rc,pr] = vl_pr(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(pr, [1/1 2/3 1/2 2/4 2/5]) ; vl_assert_almost_equal(rc, [1 2 1 2 2] / 2) ; function test_swap1_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores1) ; clf; vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(info.auc, [.5 + .5 * (.5 + 2/3)/2]) ; vl_assert_almost_equal(info.ap, [1/1 + 2/3]/2) ; vl_assert_almost_equal(info.ap_interp_11, mean([1 1 1 1 1 1 2/3 2/3 2/3 2/3 2/3])) ; function test_inf(s) scores = [1 -inf -1 -1 -1 -1] ; labels = [1 1 -1 -1 -1 -1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false) ; vl_assert_equal(numel(rc1), numel(rc2) + 1) ; vl_assert_almost_equal(info1.auc, [1 * .5 + (1/5 + 2/6)/2 * .5]) ; vl_assert_almost_equal(info1.ap, [1 * .5 + 2/6 * .5]) ; vl_assert_almost_equal(info1.ap_interp_11, [1 * 6/11 + 2/6 * 5/11]) ; vl_assert_almost_equal(info2.auc, 0.5) ; vl_assert_almost_equal(info2.ap, 0.5) ; vl_assert_almost_equal(info2.ap_interp_11, 1 * 6 / 11) ; function test_inf_stable(s) scores = [-1 -1 -1 -1 -inf +1] ; labels = [-1 -1 -1 -1 +1 +1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true, 'stable', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false, 'stable', true) ; [rc1_,pr1_,info1_] = vl_pr(labels, scores, 'includeInf', true, 'stable', false) ; [rc2_,pr2_,info2_] = vl_pr(labels, scores, 'includeInf', false, 'stable', false) ; % stability does not change scores vl_assert_almost_equal(info1,info1_) ; vl_assert_almost_equal(info2,info2_) ; % unstable with inf (first point (0,1) is conventional) vl_assert_almost_equal(rc1_, [0 .5 .5 .5 .5 .5 1]) vl_assert_almost_equal(pr1_, [1 1 1/2 1/3 1/4 1/5 2/6]) % unstable without inf vl_assert_almost_equal(rc2_, [0 .5 .5 .5 .5 .5]) vl_assert_almost_equal(pr2_, [1 1 1/2 1/3 1/4 1/5]) % stable with inf (no conventional point here) vl_assert_almost_equal(rc1, [.5 .5 .5 .5 1 .5]) ; vl_assert_almost_equal(pr1, [1/2 1/3 1/4 1/5 2/6 1]) ; % stable without inf (no conventional point and -inf are NaN) vl_assert_almost_equal(rc2, [.5 .5 .5 .5 NaN .5]) ; vl_assert_almost_equal(pr2, [1/2 1/3 1/4 1/5 NaN 1]) ;
github
rising-turtle/slam_matlab-master
vl_test_hog.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_hog.m
1,555
utf_8
eed7b2a116d142040587dc9c4eb7cd2e
function results = vl_test_hog(varargin) % VL_TEST_HOG vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; [x,y]= meshgrid(linspace(-1,1,128)) ; s.round = single(x.^2+y.^2); s.imSmall = s.im(1:128,1:128,:) ; s.imSmall = s.im ; s.imSmallFlipped = s.imSmall(:,end:-1:1,:) ; function test_basic_call(s) cellSize = 8 ; hog = vl_hog(s.im, cellSize) ; function test_bilinear_orientations(s) cellSize = 8 ; vl_hog(s.im, cellSize, 'bilinearOrientations') ; function test_variants_and_flipping(s) variants = {'uoctti', 'dalaltriggs'} ; numOrientationsRange = 3:9 ; cellSize = 8 ; for cellSize = [4 8 16] for i=1:numel(variants) for j=1:numel(numOrientationsRange) args = {'bilinearOrientations', ... 'variant', variants{i}, ... 'numOrientations', numOrientationsRange(j)} ; hog = vl_hog(s.imSmall, cellSize, args{:}) ; perm = vl_hog('permutation', args{:}) ; hog1 = vl_hog(s.imSmallFlipped, cellSize, args{:}) ; hog2 = hog(:,end:-1:1,perm) ; %norm(hog1(:)-hog2(:)) vl_assert_almost_equal(hog1,hog2,1e-3) ; end end end function test_polar(s) cellSize = 8 ; im = s.round ; for b = [0 1] if b args = {'bilinearOrientations'} ; else args = {} ; end hog1 = vl_hog(im, cellSize, args{:}) ; [ix,iy] = vl_grad(im) ; m = sqrt(ix.^2 + iy.^2) ; a = atan2(iy,ix) ; m(:,[1 end]) = 0 ; m([1 end],:) = 0 ; hog2 = vl_hog(cat(3,m,a), cellSize, 'DirectedPolarField', args{:}) ; vl_assert_almost_equal(hog1,hog2,norm(hog1(:))/1000) ; end
github
rising-turtle/slam_matlab-master
vl_test_argparse.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_argparse.m
795
utf_8
e72185b27206d0ee1dfdc19fe77a5be6
function results = vl_test_argparse(varargin) % VL_TEST_ARGPARSE vl_test_init ; function test_basic() opts.field1 = 1 ; opts.field2 = 2 ; opts.field3 = 3 ; opts_ = opts ; opts_.field1 = 3 ; opts_.field2 = 10 ; opts = vl_argparse(opts, {'field2', 10, 'field1', 3}) ; assert(isequal(opts, opts_)) ; opts_.field1 = 9 ; opts = vl_argparse(opts, {'field1', 4, 'field1', 9}) ; assert(isequal(opts, opts_)) ; function test_error() opts.field1 = 1 ; try opts = vl_argparse(opts, {'field2', 5}) ; catch e return ; end assert(false) ; function test_leftovers() opts1.field1 = 1 ; opts2.field2 = 1 ; opts1_.field1 = 2 ; opts2_.field2 = 2 ; [opts1,args] = vl_argparse(opts1, {'field1', 2, 'field2', 2}) ; opts2 = vl_argparse(opts2, args) ; assert(isequal(opts1,opts1_), isequal(opts2,opts2_)) ;
github
rising-turtle/slam_matlab-master
vl_test_binsearch.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_binsearch.m
1,339
utf_8
85dc020adce3f228fe7dfb24cf3acc63
function results = vl_test_binsearch(varargin) % VL_TEST_BINSEARCH vl_test_init ; function test_inf_bins() x = [-inf -1 0 1 +inf] ; vl_assert_equal(vl_binsearch([], x), [0 0 0 0 0]) ; vl_assert_equal(vl_binsearch([-inf 0], x), [1 1 2 2 2]) ; vl_assert_equal(vl_binsearch([-inf], x), [1 1 1 1 1]) ; vl_assert_equal(vl_binsearch([-inf +inf], x), [1 1 1 1 2]) ; function test_empty() vl_assert_equal(vl_binsearch([], []), []) ; function test_bnd() vl_assert_equal(vl_binsearch([], [1]), [0]) ; vl_assert_equal(vl_binsearch([], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([], [+inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [.9]), [0]) ; vl_assert_equal(vl_binsearch([1], [1]), [1]) ; vl_assert_equal(vl_binsearch([1], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [+inf]), [1]) ; function test_basic() vl_assert_equal(vl_binsearch(-10:10, -10:10), 1:21) ; vl_assert_equal(vl_binsearch(-10:10, -11:10), 0:21) ; vl_assert_equal(vl_binsearch(-10:10, [-inf, -11:10, +inf]), [0 0:21 21]) ; function test_frac() vl_assert_equal(vl_binsearch(1:10, 1:.5:10), floor(1:.5:10)) vl_assert_equal(vl_binsearch(1:10, fliplr(1:.5:10)), ... fliplr(floor(1:.5:10))) ; function test_array() a = reshape(1:100,10,10) ; b = reshape(1:.5:100.5, 2, []) ; c = floor(b) ; vl_assert_equal(vl_binsearch(a,b), c) ;
github
rising-turtle/slam_matlab-master
vl_test_maketrainingset.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/xtest/vl_test_maketrainingset.m
1,014
utf_8
147ca63d80a18ed3659dac4a3efcf84e
function results = vl_test_maketrainingset(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.biasMultiplier = 10 ; s.lambda = 0.01 ; Np = 10 ; Nn = 10 ; Xp = diag([1 3])*randn(2, Np) ; Xn = diag([1 3])*randn(2, Nn) ; Xp(1,:) = Xp(1,:) + 2 + 1 ; Xn(1,:) = Xn(1,:) - 2 + 1 ; s.X = [Xp Xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; function test_plain_trainingset(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; tset = vl_maketrainingset(conv(s.X),int8(s.y)) ; vl_assert_almost_equal(tset.data, conv(s.X), 0.1) ; vl_assert_almost_equal(tset.labels, int8(s.y), 0.1) ; end function test_homkermap(s) for conv = {@single,@double} vl_twister('state',0) ; conv = conv{1} ; tset = vl_maketrainingset(conv(s.X),int8(s.y),'homkermap',1, ... 'kchi2', 'gamma', .5) ; vl_assert_almost_equal(tset.data, conv(s.X), 0.1) ; vl_assert_almost_equal(tset.labels, int8(s.y), 0.1) ; vl_assert_equal(tset.map.order, 1) ; end
github
rising-turtle/slam_matlab-master
vl_plotframe.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/plotop/vl_plotframe.m
5,397
utf_8
eb21148a33aae6a835f47faa0db311d6
function h = vl_plotframe(frames,varargin) % VL_PLOTFRAME Plot feature frame % VL_PLOTFRAME(FRAME) plots the frames FRAME. Frames are attributed % image regions (as, for example, extracted by a feature detector). A % frame is a vector of D=2,3,..,6 real numbers, depending on its % class. VL_PLOTFRAME() supports the following classes: % % * POINTS % + FRAME(1:2) coordinates % % * CIRCLES % + FRAME(1:2) center % + FRAME(3) radius % % * ORIENTED CIRCLES % + FRAME(1:2) center % + FRAME(3) radius % + FRAME(4) orientation % % * ELLIPSES % + FRAME(1:2) center % + FRAME(3:5) S11, S12, S22 such that ELLIPSE = {x: x' inv(S) x = 1}. % % * ORIENTED ELLIPSES % + FRAME(1:2) center % + FRAME(3:6) stacking of A such that ELLIPSE = {A x : |x| = 1} % % H = VL_PLOTFRAME(...) returns the handle of the graphical object % representing the frames. % % VL_PLOTFRAME(FRAMES) where FRAMES is a matrix whose column are % FRAME vectors plots all frames simultaneously. Using this call is % much faster than calling VL_PLOTFRAME() for each frame. % % VL_PLOTFRAME(FRAMES,...) passes any extra argument to the % underlying plot function. The first optional argument can be a line % specification string such as the one used by PLOT(). % % See also: VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % number of vertices drawn for each frame np = 40 ; lineprop = {} ; if length(varargin) > 0 lineprop = vl_linespec2prop(varargin{1}) ; lineprop = {lineprop{:}, varargin{2:end}} ; end % -------------------------------------------------------------------- % Handle various frame classes % -------------------------------------------------------------------- % if just a vector, make sure it is column if(min(size(frames))==1) frames = frames(:) ; end [D,K] = size(frames) ; zero_dimensional = D==2 ; % just points? if zero_dimensional h = plot(frames(1,:),frames(2,:),'g.',lineprop{:}) ; return ; end % reduce all other cases to ellipses/oriented ellipses frames = frame2oell(frames) ; do_arrows = (D==4 || D==6) ; % -------------------------------------------------------------------- % Draw % -------------------------------------------------------------------- K = size(frames,2) ; thr = linspace(0,2*pi,np) ; % allx and ally are nan separated lists of the vertices describing the % boundary of the frames allx = nan*ones(1, np*K+(K-1)) ; ally = nan*ones(1, np*K+(K-1)) ; if do_arrows % allxf and allyf are nan separated lists of the vertices of the allxf = nan*ones(1, 3*K) ; allyf = nan*ones(1, 3*K) ; end % vertices around a unit circle Xp = [cos(thr) ; sin(thr) ;] ; for k=1:K % frame center xc = frames(1,k) ; yc = frames(2,k) ; % frame matrix A = reshape(frames(3:6,k),2,2) ; % vertices along the boundary X = A * Xp ; X(1,:) = X(1,:) + xc ; X(2,:) = X(2,:) + yc ; % store allx((k-1)*(np+1) + (1:np)) = X(1,:) ; ally((k-1)*(np+1) + (1:np)) = X(2,:) ; if do_arrows allxf((k-1)*3 + (1:2)) = xc + [0 A(1,1)] ; allyf((k-1)*3 + (1:2)) = yc + [0 A(2,1)] ; end end if do_arrows h = line([allx nan allxf], ... [ally nan allyf], ... 'Color','g','LineWidth',3, ... lineprop{:}) ; else h = line(allx, ally, ... 'Color','g','LineWidth',3, ... lineprop{:}) ; end % -------------------------------------------------------------------- function eframes = frame2oell(frames) % FRAMES2OELL Convert generic frame to oriented ellipse % EFRAMES = FRAME2OELL(FRAMES) converts the frames FRAMES to % oriented ellipses EFRAMES. This is useful because many tasks are % almost equivalent for all kind of regions and are immediately % reduced to the most general case. % Determine the kind of frames [D,K] = size(frames) ; switch D case 2, kind = 'point' ; case 3, kind = 'disk' ; case 4, kind = 'odisk' ; case 5, kind = 'ellipse' ; case 6, kind = 'oellipse' ; otherwise error(['FRAMES format is unknown']) ; end eframes = zeros(6,K) ; % Convert frames to oriented ellipses switch kind case 'point' eframes(1:2,:) = frames(1:2,:) ; case 'disk' eframes(1:2,:) = frames(1:2,:) ; eframes(3,:) = frames(3,:) ; eframes(6,:) = frames(3,:) ; case 'odisk' r = frames(3,:) ; c = r.*cos(frames(4,:)) ; s = r.*sin(frames(4,:)) ; eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = [c ; s ; -s ; c] ; case 'ellipse' eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = mapFromS(frames(3:5,:)) ; case 'oellipse' eframes = frames ; end % -------------------------------------------------------------------- function A = mapFromS(S) % -------------------------------------------------------------------- % Returns the (stacking of the) 2x2 matrix A that maps the unit circle % into the ellipses satisfying the equation x' inv(S) x = 1. Here S % is a stacked covariance matrix, with elements S11, S12 and S22. tmp = sqrt(S(3,:)) + eps ; A(1,:) = sqrt(S(1,:).*S(3,:) - S(2,:).^2) ./ tmp ; A(2,:) = zeros(1,length(tmp)); A(3,:) = S(2,:) ./ tmp ; A(4,:) = tmp ;
github
rising-turtle/slam_matlab-master
vl_roc.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/plotop/vl_roc.m
8,743
utf_8
eb8acd02ccf91e98a933e49754da010a
function [tpr,tnr,info] = vl_roc(labels, scores, varargin) %VL_ROC ROC curve. % [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating % Characteristic (ROC) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % labels. % % Samples are ranked by decreasing scores, starting from rank 1. % TPR(K) and TNR(K) are the true positive and true negative rates % when samples of rank smaller or equal to K-1 are predicted to be % positive. So for example TPR(3) is the true positive rate when the % two samples with largest score are predicted to be % positive. Similarly, TPR(1) is the true positive rate when no % samples are predicted to be positive, i.e. the constant 0. % % Set the zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the ROC curve % may have maximum TPR and TNR smaller than 1. % % [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO % with the following fields: % % info.auc:: Area under the ROC curve (AUC). % The ROC curve has a `staircase shape' because for each sample % only TP or TN changes, but not both at the same time. Therefore % there is no approximation involved in the computation of the % area. % % info.eer:: Equal error rate (EER). % The equal error rate is the value of FPR (or FNR) when the ROC % curves intersects the line connecting (0,0) to (1,1). % % VL_ROC(...) with no output arguments plots the ROC curve in the % current axis. % % VL_ROC() acccepts the following options: % % Plot:: [] % Setting this option turns on plotting unconditionally. The % following plot variants are supported: % % tntp:: Plot TPR against TNR (standard ROC plot). % tptn:: Plot TNR against TPR (recall on the horizontal axis). % fptp:: Plot TPR against FPR. % fpfn:: Plot FNR against FPR (similar to DET curve). % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems in % which one stores ony a handful of top results for efficiency % reasons. % % About the ROC curve:: % Consider a classifier that predicts as positive all samples whose % score is not smaller than a threshold S. The ROC curve represents % the performance of such classifier as the threshold S is % changed. Formally, define % % P = overall num. of positive samples, % N = overall num. of negative samples, % % and for each threshold S % % TP(S) = num. of samples that are correctly classified as positive, % TN(S) = num. of samples that are correctly classified as negative, % FP(S) = num. of samples that are incorrectly classified as positive, % FN(S) = num. of samples that are incorrectly classified as negative. % % Consider also the rates: % % TPR = TP(S) / P, FNR = FN(S) / P, % TNR = TN(S) / N, FPR = FP(S) / N, % % and notice that by definition % % P = TP(S) + FN(S) , N = TN(S) + FP(S), % 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). % % The ROC curve is the parametric curve (TPR(S), TNR(S)) obtained % as the classifier threshold S is varied in the reals. The TPR is % also known as recall (see VL_PR()). % % The ROC curve is contained in the square with vertices (0,0) The % (average) ROC curve of a random classifier is a line which % connects (1,0) and (0,1). % % The ROC curve is independent of the prior probability of the % labels (i.e. of P/(P+N) and N/(P+N)). % % REFERENCES: % [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic % % See also: VL_PR(), VL_DET(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.plot = [] ; opts.stable = false ; opts = vl_argparse(opts,varargin) ; % compute the rates small = 1e-10 ; tpr = tp / max(p, small) ; fpr = fp / max(n, small) ; fnr = 1 - tpr ; tnr = 1 - fpr ; % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % Area under the curve. Since the curve is a staircase (in the % sense that for each sample either tn is decremented by one % or tp is incremented by one but the other remains fixed), % the integral is particularly simple and exact. info.auc = sum(tnr .* diff([0 tpr])) ; % Equal error rate. One must find the index S for which there is a % crossing between TNR(S) and TPR(s). If such a crossing exists, % there are two cases: % % o tnr o % / \ % 1-eer = tnr o-x-o 1-eer = tpr o-x-o % / \ % tpr o o % % Moreover, if the maximum TPR is smaller than 1, then it is % possible that neither of the two cases realizes (then EER=NaN). s = max(find(tnr > tpr)) ; if s == length(tpr) info.eer = NaN ; else if tpr(s) == tpr(s+1) info.eer = 1 - tpr(s) ; else info.eer = 1 - tnr(s) ; end end end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if ~isempty(opts.plot) || nargout == 0 if isempty(opts.plot), opts.plot = 'tntp' ; end cla ; hold on ; switch lower(opts.plot) case {'truenegatives', 'tn', 'tntp'} hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true negative rate') ; ylabel('true positve rate (recall)') ; loc = 'sw' ; case {'falsepositives', 'fp', 'fptp'} hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; spline([1 0], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('false positve rate') ; ylabel('true positve rate (recall)') ; loc = 'se' ; case {'tptn'} hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true positve rate (recall)') ; ylabel('false positive rate') ; loc = 'sw' ; case {'fpfn'} hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive (false alarm) rate') ; ylabel('false negative (miss) rate') ; loc = 'ne' ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end grid on ; xlim([0 1]) ; ylim([0 1]) ; axis square ; title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... 'interpreter', 'none') ; legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable tpr(1) = [] ; tnr(1) = [] ; tpr_ = tpr ; tnr_ = tnr ; tpr = NaN(size(tpr)) ; tnr = NaN(size(tnr)) ; tpr(perm) = tpr_ ; tnr(perm) = tnr_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
rising-turtle/slam_matlab-master
vl_click.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/plotop/vl_click.m
2,661
utf_8
6982e869cf80da57fdf68f5ebcd05a86
function P = vl_click(N,varargin) ; % VL_CLICK Click a point % P=VL_CLICK() let the user click a point in the current figure and % returns its coordinates in P. P is a two dimensiona vectors where % P(1) is the point X-coordinate and P(2) the point Y-coordinate. The % user can abort the operation by pressing any key, in which case the % empty matrix is returned. % % P=VL_CLICK(N) lets the user select N points in a row. The user can % stop inserting points by pressing any key, in which case the % partial list is returned. % % VL_CLICK() accepts the following options: % % PlotMarker:: [0] % Plot a marker as points are selected. The markers are deleted on % exiting the function. % % See also: VL_CLICKPOINT(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). plot_marker = 0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'plotmarker' plot_marker = varargin{k+1} ; otherwise error(['Uknown option ''', varargin{k}, '''.']) ; end end if nargin < 1 N=1; end % -------------------------------------------------------------------- % Do job % -------------------------------------------------------------------- fig = gcf ; is_hold = ishold ; hold on ; bhandler = get(fig,'WindowButtonDownFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'WindowButtonDownFcn',@click_handler) ; set(fig,'KeyPressFcn',@key_handler) ; set(fig,'Pointer','crosshair') ; P=[] ; h=[] ; data.exit=0; guidata(fig,data) ; while size(P,2) < N uiwait(fig) ; data = guidata(fig) ; if(data.exit) break ; end P = [P data.P] ; if( plot_marker ) h=[h plot(data.P(1),data.P(2),'rx')] ; end end if ~is_hold hold off ; end if( plot_marker ) pause(.1); delete(h) ; end set(fig,'WindowButtonDownFcn',bhandler) ; set(fig,'KeyPressFcn',khandler) ; set(fig,'Pointer',pointer) ; % ==================================================================== function click_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; data.P = P ; guidata(obj,data) ; uiresume(gcbo) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
vl_pr.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/plotop/vl_pr.m
8,131
utf_8
089b4b895dac21402ff0f7fba75fb823
function [recall, precision, info] = vl_pr(labels, scores, varargin) %VL_PR Precision-recall curve. % [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the % precision-recall (PR) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % samples. % % Samples are ranked by decreasing scores, starting from rank 1. % PRECISION(K) and RECALL(K) are the precison and recall when % samples of rank smaller or equal to K-1 are predicted to be % positive and the remaining to be negative. So for example % PRECISION(3) is the percentage of positive samples among the two % samples with largest score. PRECISION(1) is the precision when no % samples are predicted to be positive and is conventionally set to % the value 1. % % Set the zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the PR curve % may have maximum recall smaller than 1, unless the INCLUDEINF % option is used (see below). The options NUMNEGATIVES and % NUMPOSITIVES can be used to specify additional samples with -INF % score (see below). % % [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional % structure INFO with the following fields: % % info.auc:: % The area under the precision-recall curve. If the INTERPOLATE % option is set to FALSE, then trapezoidal interpolation is used % to integrate the PR curve. If the INTERPOLATE option is set to % TRUE, then the curve is piecewise constant and no other % approximation is introduced in the calculation of the area. In % the latter case, INFO.AUC is the same as INFO.AP. % % info.ap:: % Average precision as defined by TREC. This is the average of the % precision observed each time a new positive sample is % recalled. In this calculation, any sample with -INF score % (unless INCLUDEINF is used) and any additional positive induced % by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE % option is set to true, the AP is computed from the interpolated % precision and the result is the same as INFO.AUC. Note that AP % as defined by TREC normally does not use interpolation [1]. % % info.ap_interp_11:: % 11-points interpolated average precision as defined by TREC. % This is the average of the maximum precision for recall levels % greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in % the PASCAL VOC challenge up to the 2008 edition. % % info.auc_pa08:: % Deprecated. It is the same of INFO.AP_INTERP_11. % % VL_PR(...) with no output arguments plots the PR curve in the % current axis. % % VL_PR() accepts the following options: % % Interpolate:: false % If set to true, use interpolated precision. The interpolated % precision is defined as the maximum precision for a given recall % level and onwards. Here it is implemented as the culumative % maximum from low to high scores of the precision. % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems % for which one stores ony a handful of top results for efficiency % reasons. % % IncludeInf:: false % If set to true, data with -INF score SCORES is included in the % evaluation and the maximum recall is 1 even if -INF scores are % present. This option does not include any additional positive or % negative data introduced by specifying NUMPOSITIVES and % NUMNEGATIVES. % % Stable:: false % If set to true, RECALL and PRECISION are returned the same order % of LABELS and SCORES rather than being sorted by decreasing % score (increasing recall). Samples with -INF scores are assigned % RECALL and PRECISION equal to NaN. % % About the PR curve:: % This section uses the same symbols used in the documentation of % the VL_ROC() function. In addition to those quantities, define: % % PRECISION(S) = TP(S) / (TP(S) + FP(S)) % RECALL(S) = TPR(S) = TP(S) / P % % The precision is the fraction of positivie predictions which are % correct, and the recall is the fraction of positive labels that % have been correctly classified (recalled). Notice that the recall % is also equal to the true positive rate for the ROC curve (see % VL_ROC()). % % REFERENCES: % [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to % Information Retrieval. Cambridge University Press, 2008. % % See also VL_ROC(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.stable = false ; opts.interpolate = false ; opts = vl_argparse(opts,varargin) ; % compute precision and recall small = 1e-10 ; recall = tp / max(p, small) ; precision = max(tp, small) ./ max(tp + fp, small) ; % interpolate precision if needed if opts.interpolate precision = fliplr(vl_cummax(fliplr(precision))) ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % area under the curve using trapezoid interpolation if ~opts.interpolate info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ; end % average precision (for each recalled positive sample) sel = find(diff(recall)) + 1 ; info.ap = sum(precision(sel)) / p ; if opts.interpolate info.auc = info.ap ; end % TREC 11 points average interpolated precision info.ap_interp_11 = 0.0 ; for rc = linspace(0,1,11) pr = max([0, precision(recall >= rc)]) ; info.ap_interp_11 = info.ap_interp_11 + pr / 11 ; end % legacy definition info.auc_pa08 = info.ap_interp_11 ; end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if nargout == 0 cla ; hold on ; plot(recall,precision,'linewidth',2) ; spline([0 1], [1 1] * p / length(labels), 'r--', 'linewidth', 2) ; axis square ; grid on ; xlim([0 1]) ; xlabel('recall') ; ylim([0 1]) ; ylabel('precision') ; title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ... info.auc * 100, ... info.ap * 100, ... info.ap_interp_11 * 100)) ; if opts.interpolate legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ; else legend('PR', 'PR rand.', 'Location', 'SouthEast') ; end clear recall precision info ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable precision(1) = [] ; recall(1) = [] ; precision_ = precision ; recall_ = recall ; precision = NaN(size(precision)) ; recall = NaN(size(recall)) ; precision(perm) = precision_ ; recall(perm) = recall_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
rising-turtle/slam_matlab-master
vl_ubcread.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/sift/vl_ubcread.m
3,015
utf_8
e8ddd3ecd87e76b6c738ba153fef050f
function [f,d] = vl_ubcread(file, varargin) % SIFTREAD Read Lowe's SIFT implementation data files % [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D % from FILE in UBC (Lowe's original implementation of SIFT) format % and returns F and D as defined by VL_SIFT(). % % VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by % Oxford VGG implementations . % % See also: VL_SIFT(), VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.verbosity = 0 ; opts.format = 'ubc' ; opts = vl_argparse(opts, varargin) ; g = fopen(file, 'r'); if g == -1 error(['Could not open file ''', file, '''.']) ; end [header, count] = fscanf(g, '%d', [1 2]) ; if count ~= 2 error('Invalid keypoint file header.'); end switch opts.format case 'ubc' numKeypoints = header(1) ; descrLen = header(2) ; case 'oxford' numKeypoints = header(2) ; descrLen = header(1) ; otherwise error('Unknown format ''%s''.', opts.format) ; end if(opts.verbosity > 0) fprintf('%d keypoints, %d descriptor length.\n', numKeypoints, descrLen) ; end %creates two output matrices switch opts.format case 'ubc' P = zeros(4,numKeypoints) ; case 'oxford' P = zeros(5,numKeypoints) ; end L = zeros(descrLen, numKeypoints) ; %parse tmp.key for k = 1:numKeypoints switch opts.format case 'ubc' % Record format: i,j,s,th [record, count] = fscanf(g, '%f', [1 4]) ; if count ~= 4 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; case 'oxford' % Record format: x, y, a, b, c such that x' [a b ; b c] x = 1 [record, count] = fscanf(g, '%f', [1 5]) ; if count ~= 5 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; end % Record format: descriptor [record, count] = fscanf(g, '%d', [1 descrLen]) ; if count ~= descrLen error(... sprintf('Invalid keypoint file (parsing keypoint %d, descriptor part)',k) ); end L(:,k) = record(:) ; end fclose(g) ; switch opts.format case 'ubc' P(1:2,:) = flipud(P(1:2,:)) + 1 ; % i,j -> x,y f=[ P(1:2,:) ; P(3,:) ; -P(4,:) ] ; d=uint8(L) ; p=[1 2 3 4 5 6 7 8] ; q=[1 8 7 6 5 4 3 2] ; for j=0:3 for i=0:3 d(8*(i+4*j)+p,:) = d(8*(i+4*j)+q,:) ; end end case 'oxford' P(1:2,:) = P(1:2,:) + 1 ; % matlab origin f = P ; f(3:5,:) = inv2x2(f(3:5,:)) ; d = uint8(L) ; end % -------------------------------------------------------------------- function S = inv2x2(C) % -------------------------------------------------------------------- den = C(1,:) .* C(3,:) - C(2,:) .* C(2,:) ; S = [C(3,:) ; -C(2,:) ; C(1,:)] ./ den([1 1 1], :) ;
github
rising-turtle/slam_matlab-master
vl_plotsiftdescriptor.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/toolbox/sift/vl_plotsiftdescriptor.m
4,348
utf_8
b9a98b0c298fa249fb5fcd1314762b88
function h=vl_plotsiftdescriptor(d,f,varargin) % VL_PLOTSIFTDESCRIPTOR Plot SIFT descriptor % VL_PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptors D, stored as % columns of the matrix D. D has the same format used by VL_SIFT(). % % VL_PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to % the SIFT frames F, specified as columns of the matrix F. F has the % same format used by VL_SIFT(). % % H=VL_PLOTSIFTDESCRIPTOR(...) returns the handle H to the line drawing % representing the descriptors. % % REMARK. By default, the function assumes descriptors with 4x4 % spatial bins and 8 orientation bins (Lowe's default.) % % The function supports the following options % % NumSpatialBins:: [4] % Number of spatial bins in each spatial direction. % % NumOrientBins:: [8] % Number of orientation bis. % % Magnif:: [3] % Magnification factor. % % See also: VL_SIFT(), VL_PLOTFRAME(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). magnif = 3.0 ; NBP = 4 ; NBO = 8 ; maxv = 0 ; if nargin > 1 if ~ isnumeric(f) error('F must be a numeric type (use [] to leave it unspecified)') ; end end for k=1:2:length(varargin) opt=lower(varargin{k}) ; arg=varargin{k+1} ; switch opt case 'numspatialbins' NBP = arg ; case 'numorientbins' NBO = arg ; case 'magnif' magnif = arg ; case 'maxv' maxv = arg ; otherwise error(sprintf('Unknown option ''%s''', opt)) ; end end % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= NBP*NBP*NBO) error('The number of rows of D does not match the geometry of the descriptor') ; end if nargin > 1 if (~isempty(f) & size(f,1) < 2 | size(f,1) > 4) error('F should be a 2xK, 3xK, 4xK matrix or the empty matrix'); end if size(f,1) == 2 f = [f; 10 * ones(1, size(f,2)) ; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 3 f = [f; 0 * zeros(1, size(f,2))] ; end if(~isempty(f) & size(f,2) ~= size(d,2)) error('D and F have incompatible dimension') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 | isempty(f) f = repmat([0;0;1;0],1,K) ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K SBP = magnif * f(3,k) ; th=f(4,k) ; c=cos(th) ; s=sin(th) ; [x,y] = render_descr(d(:,k), NBP, NBO, maxv) ; xall = [xall SBP*(c*x-s*y)+f(1,k)] ; yall = [yall SBP*(s*x+c*y)+f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- function [x,y] = render_descr(d, BP, BO, maxv) % -------------------------------------------------------------------- [x,y] = meshgrid(-BP/2:BP/2,-BP/2:BP/2) ; % Rescale d so that the biggest peak fits inside the bin diagram if maxv d = 0.4 * d / maxv ; else d = 0.4 * d / max(d(:)+eps) ; end % We have BP*BP bins to plot. Here are the centers: xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % We scramble the the centers to have the in row major order % (descriptor convention). xc = xc' ; yc = yc' ; % Each spatial bin contains a star with BO tips xc = repmat(xc(:)',BO,1) ; yc = repmat(yc(:)',BO,1) ; % Do the stars th=linspace(0,2*pi,BO+1) ; th=th(1:end-1) ; xd = repmat(cos(th), 1, BP*BP) ; yd = repmat(sin(th), 1, BP*BP) ; xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,BP^2*BO) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,BP+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
rising-turtle/slam_matlab-master
phow_caltech101.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/apps/phow_caltech101.m
11,301
utf_8
8316095b4842a2c43cf3dfc91e313aee
function phow_caltech101 % PHOW_CALTECH101 Image classification in the Caltech-101 dataset % This program demonstrates how to use VLFeat to construct an image % classifier on the Caltech-101 data. The classifier uses PHOW % features (dense SIFT), spatial histograms of visual words, and a % Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, % kd-trees, and homogeneous kernel map. The program also % demonstrates VLFeat PEGASOS SVM solver, although for this small % dataset other solvers such as LIBLINEAR can be more efficient. % % By default 15 training images are used, which should result in % about 64% performance (a good performance considering that only a % single feature type is being used). % % Call PHOW_CALTECH101 to train and test a classifier on a small % subset of the Caltech-101 data. Note that the program % automatically downloads a copy of the Caltech-101 data from the % Internet if it cannot find a local copy. % % Edit the PHOW_CALTECH101 file to change the program configuration. % % To run on the entire dataset change CONF.TINYPROBLEM to FALSE. % % The Caltech-101 data is saved into CONF.CALDIR, which defaults to % 'data/caltech-101'. Change this path to the desired location, for % instance to point to an existing copy of the Caltech-101 data. % % The program can also be used to train a model on custom data by % pointing CONF.CALDIR to it. Just create a subdirectory for each % class and put the training images there. Make sure to adjust % CONF.NUMTRAIN accordingly. % % Intermediate files are stored in the directory CONF.DATADIR. All % such files begin with the prefix CONF.PREFIX, which can be changed % to test different parameter settings without overriding previous % results. % % The program saves the trained model in % <CONF.DATADIR>/<CONF.PREFIX>-model.mat. This model can be used to % test novel images independently of the Caltech data. % % load('data/baseline-model.mat') ; # change to the model path % label = model.classify(model, im) ; % % AUTORIGHTS conf.calDir = 'data/caltech-101' ; conf.dataDir = 'data/' ; conf.autoDownloadData = true ; conf.numTrain = 15 ; conf.numTest = 15 ; conf.numClasses = 102 ; conf.numWords = 600 ; conf.numSpatialX = [2 4] ; conf.numSpatialY = [2 4] ; conf.quantizer = 'kdtree' ; conf.svm.C = 10 ; conf.svm.solver = 'pegasos' ; conf.svm.biasMultiplier = 1 ; conf.phowOpts = {'Step', 3} ; conf.clobber = false ; conf.tinyProblem = true ; conf.prefix = 'baseline' ; conf.randSeed = 1 ; if conf.tinyProblem conf.prefix = 'tiny' ; conf.numClasses = 5 ; conf.numSpatialX = 2 ; conf.numSpatialY = 2 ; conf.numWords = 300 ; conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; end conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; randn('state',conf.randSeed) ; rand('state',conf.randSeed) ; vl_twister('state',conf.randSeed) ; % -------------------------------------------------------------------- % Download Caltech-101 data % -------------------------------------------------------------------- if ~exist(conf.calDir, 'dir') || ... (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) if ~conf.autoDownloadData error(... ['Caltech-101 data not found. ' ... 'Set conf.autoDownloadData=true to download the required data.']) ; end vl_xmkdir(conf.calDir) ; calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... 'Caltech101/101_ObjectCategories.tar.gz'] ; fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; untar(calUrl, conf.calDir) ; end if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; end % -------------------------------------------------------------------- % Setup data % -------------------------------------------------------------------- classes = dir(conf.calDir) ; classes = classes([classes.isdir]) ; classes = {classes(3:conf.numClasses+2).name} ; images = {} ; imageClass = {} ; for ci = 1:length(classes) ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; images = {images{:}, ims{:}} ; imageClass{end+1} = ci * ones(1,length(ims)) ; end selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; selTest = setdiff(1:length(images), selTrain) ; imageClass = cat(2, imageClass{:}) ; model.classes = classes ; model.phowOpts = conf.phowOpts ; model.numSpatialX = conf.numSpatialX ; model.numSpatialY = conf.numSpatialY ; model.quantizer = conf.quantizer ; model.vocab = [] ; model.w = [] ; model.b = [] ; model.classify = @classify ; % -------------------------------------------------------------------- % Train vocabulary % -------------------------------------------------------------------- if ~exist(conf.vocabPath) || conf.clobber % Get some PHOW descriptors to train the dictionary selTrainFeats = vl_colsubset(selTrain, 30) ; descrs = {} ; %for ii = 1:length(selTrainFeats) parfor ii = 1:length(selTrainFeats) im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; im = standarizeImage(im) ; [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; end descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; descrs = single(descrs) ; % Quantize the descriptors to get the visual words vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan') ; save(conf.vocabPath, 'vocab') ; else load(conf.vocabPath) ; end model.vocab = vocab ; if strcmp(model.quantizer, 'kdtree') model.kdtree = vl_kdtreebuild(vocab) ; end % -------------------------------------------------------------------- % Compute spatial histograms % -------------------------------------------------------------------- if ~exist(conf.histPath) || conf.clobber hists = {} ; parfor ii = 1:length(images) % for ii = 1:length(images) fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; im = imread(fullfile(conf.calDir, images{ii})) ; hists{ii} = getImageDescriptor(model, im); end hists = cat(2, hists{:}) ; save(conf.histPath, 'hists') ; else load(conf.histPath) ; end % -------------------------------------------------------------------- % Compute feature map % -------------------------------------------------------------------- psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; % -------------------------------------------------------------------- % Train SVM % -------------------------------------------------------------------- if ~exist(conf.modelPath) || conf.clobber switch conf.svm.solver case 'pegasos' lambda = 1 / (conf.svm.C * length(selTrain)) ; w = [] ; % for ci = 1:length(classes) parfor ci = 1:length(classes) perm = randperm(length(selTrain)) ; fprintf('Training model for class %s\n', classes{ci}) ; y = 2 * (imageClass(selTrain) == ci) - 1 ; data = vl_maketrainingset(psix(:,selTrain(perm)), int8(y(perm))) ; [w(:,ci) b(ci)] = vl_svmpegasos(data, lambda, ... 'MaxIterations', 50/lambda, ... 'BiasMultiplier', conf.svm.biasMultiplier) ; end case 'liblinear' svm = train(imageClass(selTrain)', ... sparse(double(psix(:,selTrain))), ... sprintf(' -s 3 -B %f -c %f', ... conf.svm.biasMultiplier, conf.svm.C), ... 'col') ; w = svm.w' ; end model.b = conf.svm.biasMultiplier * b ; model.w = w ; save(conf.modelPath, 'model') ; else load(conf.modelPath) ; end % -------------------------------------------------------------------- % Test SVM and evaluate % -------------------------------------------------------------------- % Estimate the class of the test images scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; [drop, imageEstClass] = max(scores, [], 1) ; % Compute the confusion matrix idx = sub2ind([length(classes), length(classes)], ... imageClass(selTest), imageEstClass(selTest)) ; confus = zeros(length(classes)) ; confus = vl_binsum(confus, ones(size(idx)), idx) ; % Plots figure(1) ; clf; subplot(1,2,1) ; imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; subplot(1,2,2) ; imagesc(confus) ; title(sprintf('Confusion matrix (%.2f %% accuracy)', ... 100 * mean(diag(confus)/conf.numTest) )) ; print('-depsc2', [conf.resultPath '.ps']) ; save([conf.resultPath '.mat'], 'confus', 'conf') ; % ------------------------------------------------------------------------- function im = standarizeImage(im) % ------------------------------------------------------------------------- im = im2single(im) ; if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end % ------------------------------------------------------------------------- function hist = getImageDescriptor(model, im) % ------------------------------------------------------------------------- im = standarizeImage(im) ; width = size(im,2) ; height = size(im,1) ; numWords = size(model.vocab, 2) ; % get PHOW features [frames, descrs] = vl_phow(im, model.phowOpts{:}) ; % quantize appearance switch model.quantizer case 'vq' [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; case 'kdtree' binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... single(descrs), ... 'MaxComparisons', 15)) ; end for i = 1:length(model.numSpatialX) binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; % combined quantization bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... binsy,binsx,binsa) ; hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; hist = vl_binsum(hist, ones(size(bins)), bins) ; hists{i} = single(hist / sum(hist)) ; end hist = cat(1,hists{:}) ; hist = hist / sum(hist) ; % ------------------------------------------------------------------------- function [className, score] = classify(model, im) % ------------------------------------------------------------------------- hist = getImageDescriptor(model, im) ; psix = vl_homkermap(hist, 1, 'kchi2', 'period', .7) ; scores = model.w' * psix + model.b' ; [score, best] = max(scores) ; className = model.classes{best} ;
github
rising-turtle/slam_matlab-master
sift_mosaic.m
.m
slam_matlab-master/SIFT/vlfeat-0.9.16/apps/sift_mosaic.m
4,621
utf_8
8fa3ad91b401b8f2400fb65944c79712
function mosaic = sift_mosaic(im1, im2) % SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC % % SIFT_MOSAIC demonstrates matching two images based on SIFT % features and RANSAC and computing their mosaic. % % SIFT_MOSAIC by itself runs the algorithm on two standard test % images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two % custom images IM1 and IM2. % AUTORIGHTS if nargin == 0 im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; end % make single im1 = im2single(im1) ; im2 = im2single(im2) ; % make grayscale if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end % -------------------------------------------------------------------- % SIFT matches % -------------------------------------------------------------------- [f1,d1] = vl_sift(im1g) ; [f2,d2] = vl_sift(im2g) ; [matches, scores] = vl_ubcmatch(d1,d2) ; numMatches = size(matches,2) ; X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; % -------------------------------------------------------------------- % RANSAC with homography model % -------------------------------------------------------------------- clear H score ok ; for t = 1:100 % estimate homograpyh subset = vl_colsubset(1:numMatches, 4) ; A = [] ; for i = subset A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; end [U,S,V] = svd(A) ; H{t} = reshape(V(:,9),3,3) ; % score homography X2_ = H{t} * X1 ; du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; ok{t} = (du.*du + dv.*dv) < 6*6 ; score(t) = sum(ok{t}) ; end [score, best] = max(score) ; H = H{best} ; ok = ok{best} ; % -------------------------------------------------------------------- % Optional refinement % -------------------------------------------------------------------- function err = residual(H) u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; du = X2(1,ok) - u ./ d ; dv = X2(2,ok) - v ./ d ; err = sum(du.*du + dv.*dv) ; end if exist('fminsearch') == 2 H = H / H(3,3) ; opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; H(1:8) = fminsearch(@residual, H(1:8)', opts) ; else warning('Refinement disabled as fminsearch was not found.') ; end % -------------------------------------------------------------------- % Show matches % -------------------------------------------------------------------- dh1 = max(size(im2,1)-size(im1,1),0) ; dh2 = max(size(im1,1)-size(im2,1),0) ; figure(1) ; clf ; subplot(2,1,1) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... [f1(2,matches(1,:));f2(2,matches(2,:))]) ; title(sprintf('%d tentative matches', numMatches)) ; axis image off ; subplot(2,1,2) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; title(sprintf('%d (%.2f%%) inliner matches out of %d', ... sum(ok), ... 100*sum(ok)/numMatches, ... numMatches)) ; axis image off ; drawnow ; % -------------------------------------------------------------------- % Mosaic % -------------------------------------------------------------------- box2 = [1 size(im2,2) size(im2,2) 1 ; 1 1 size(im2,1) size(im2,1) ; 1 1 1 1 ] ; box2_ = inv(H) * box2 ; box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; [u,v] = meshgrid(ur,vr) ; im1_ = vl_imwbackward(im2double(im1),u,v) ; z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; im2_ = vl_imwbackward(im2double(im2),u_,v_) ; mass = ~isnan(im1_) + ~isnan(im2_) ; im1_(isnan(im1_)) = 0 ; im2_(isnan(im2_)) = 0 ; mosaic = (im1_ + im2_) ./ mass ; figure(2) ; clf ; imagesc(mosaic) ; axis image off ; title('Mosaic') ; if nargout == 0, clear mosaic ; end end
github
rising-turtle/slam_matlab-master
gen_shapes.m
.m
slam_matlab-master/SIFT/vicinalboost-1.0/code/gen_shapes.m
3,755
utf_8
059f82692aa112d79d75cc2e74209581
function gen_shapes % GEN_SHAPES Generate synthetic shapes dataset % Data will be saved to 'data/shapes.mat'. % N = number of patches per type % h = size of a patch in pixels N = 1000 ; h = 24 ; % these functions generates the basic shapes genf = { @genbox, @gentri, @gencirc, @genstar } ; % x will store the patterns and y their labels x = [] ; y = [] ; % loop over shapes kind for k=1:length(genf) % generate the shape and the virtual samples D = virtualsamples(genf{k},N,h) ; % generate a preview figure(k) ; clf ; imarraysc((D+1)/2,'clim',[-1 1]) ; colormap gray ; drawnow ; % store patterns x = [x reshape(D,h*h,N)] ; y = [y k*ones(1,size(D,3))] ; end save('data/shapes','x','y') ; % -------------------------------------------------------------------- function D=virtualsamples(shapef,N,h) % -------------------------------------------------------------------- % generate basic shape mask = feval(shapef,h) ; % parameters sigma(1) = .5 ; % std dev translation x sigma(2) = .5 ; % std dev translation y sigma(3) = .2 ; % std dev skewiness sigma(4) = .1 ; % std dev scale sigma(5) = .1 ; % std dev rotation sigma(6) = .08 ; % std dev brightness sigma(7) = .1 ; % std dev offset sigma(8) = .05 ; % std dev noise % brightness bias (min abs bright) bright = .5 ; % generate a bunch of random affine tf tx = sigma(1) * randn(1,N) ; ty = sigma(2) * randn(1,N) ; sk = sigma(3) * randn(1,N) ; sc = sigma(4) * randn(1,N) + 1 ; rt = sigma(5) * randn(1,N) ; % generate a bunch of illuminations b = sigma(6) * randn(1,N) ; b = sign(b)*bright + b ; o = sigma(7) * randn(1,N) ; % coordinate system ur=linspace(-h/2,h/2,h) ; vr=linspace(-h/2,h/2,h) ; [u,v]=meshgrid(ur,vr) ; % warp patches D = zeros(h,h,N) ; for n=1:N c = cos(rt(n)) ; s = sin(rt(n)) ; % rotation, skew, scale translation R = [c -s ; s c ] ; Q = [1 sk(n) ; 0 1 ] ; S = [sc(n) 0 ; 0 sc(n) ] ; T = [tx(n) ; ty(n) ] ; % compose A = R*S*Q ; % warp mesh [wu,wv]=waffine(A,T,u,v); % warp image I = imwbackward(ur,vr,mask,wu,wv) ; % pad with zeros instead of NaNs I(isnan(I))=0 ; % add brightness, offsett and noise I = b(n)*I + o(n) + sigma(8)*randn(h) ; % save back D(:,:,n) = I ; %figure(100) ; clf ; imagesc(I) ; drawnow ; colormap gray ; end % -------------------------------------------------------------------- function mask=genbox(h) % -------------------------------------------------------------------- mask = zeros(h) ; mask(6:18,6:18) =1 ; % -------------------------------------------------------------------- function mask=gencirc(h) % -------------------------------------------------------------------- mask = zeros(h) ; ur=linspace(-h/2,h/2,h) ; vr=linspace(-h/2,h/2,h) ; [u,v]=meshgrid(ur,vr) ; mask = (1+erf((h/3)^2 - u.*u-v.*v))*.5 ; % -------------------------------------------------------------------- function mask=gentri(h) % -------------------------------------------------------------------- ur=linspace(-h/2,h/2,h) ; vr=linspace(-h/2,h/2,h) ; [u,v]=meshgrid(ur,vr) ; mask = (1+erf((h/3)^2 - u.*u-v.*v)) ; n1 = [-sqrt(3),-1] ; l1 = +sqrt(3)/4 ; n2 = [+sqrt(3),-1] ; l2 = +sqrt(3)/4 ; n3 = [0,+1] ; l3 = +sqrt(3)/4 ; dv = -sqrt(3)/4 + 2/sqrt(3)/4 ; sc = 1.5/h; u = sc * u ; v = sc * v + dv ; mask = ones(h) ; mask = mask & (n1(1)*u+n1(2)*v+l1 >= 0) ; mask = mask & (n2(1)*u+n2(2)*v+l2 >= 0) ; mask = mask & (n3(1)*u+n3(2)*v+l3 >= 0) ; mask = double(mask) ; % -------------------------------------------------------------------- function mask=genstar(h) % -------------------------------------------------------------------- mask = gentri(h) ; mask = mask | flipud(gentri(h)) ; mask = double(mask) ;
github
rising-turtle/slam_matlab-master
vicinalboost.m
.m
slam_matlab-master/SIFT/vicinalboost-1.0/code/vicinalboost.m
18,197
utf_8
2f86f963b5d08b16753b25e8ac24f903
function rs = vicinalboost(cfg, data) % VICINALBOOST % % RS = VICINALBOOST(CFG, DATA) % % DATA is a structure with the following fields: % % DATA.Y Training data labels % DATA.X Training data samples % DATA.DX Data tangent vectors (scaled) % DATA.IS_TRAIN Mark training / testing data % DATA.F0 Collection of initial WCs % DATA.DIMS Dimensions of the data (for visualization) % % % CFG is a structure with the following fields: % % CFG.NWC Number of weak classifier of the final model % CFG.SIGMA Isotropic Parzen window smoothing % CFG.USE_TG Use or not the tangent space % CFG.GD_MAX_NITERS # of GD iterations (set to 0 to de-activate) % CFG.GD_RESTART_NITERS % # of GD iterations before restart % CFG.GD_METHOD CGD method: 'NONE', 'FR, 'PR', 'HS'. % CFG.HAAR_N # of HAAR wavelets (set t0 0 to de-activate) % CFG.VERBOSITY 0 - quiet, 1 - text, 2 - main figs, 3 - all % % RS is a structure with the following fields: % % RS.F Weak classifiers parameters % RS.COEFF Coefficients % RS.EE Exp. criterion as each WC is added % RS.E01 Train error as each WC is added % RS.E01T Test error as each WC is added % AUTORIGHTS % Copyright 2007 (c) Andrea Vedaldi and Paolo Favaro % % This file is part of VicinalBoost, available in the terms of the GNU % General Public License version 2. % -------------------------------------------------------------------- % Setup % -------------------------------------------------------------------- % sel = select training data % selt = select testing data sel = find( data.is_train) ; selt = find(~data.is_train) ; % this is not really necessary: sel = sel(randperm(length(sel))) ; selt = selt(randperm(length(selt))) ; % y = training data labels % yt = testing data labels % x = training data % xt = testing data y = data.y( sel ) ; yt = data.y( selt) ; x = data.x(:, sel ) ; xt = data.x(:, selt) ; % L = data dimensionality % N = # of training data % Nt = # of testing data % Np = # of positive training data % Nm = # of negative training data % Npt = # of positive testing data % Nmt = # of negative testing data L = size(data.x, 1) ; N = length(sel ) ; Nt = length(selt) ; Np = sum(y == +1) ; Npt = sum(yt == +1) ; Nm = N - Np ; Nmt = Nt - Npt ; % wgt = AdaBoost coefficients or weights % ywgt = weights .* y % F = weak classifiers selected so far % H = strong classifier H evaluated on train % Ht = strong classifier H evaluated on test wgt = ones(1,N) / N ; ywgt = y .* wgt ; F = zeros(L + 1, cfg.nwc) ; coeff = zeros(1, cfg.nwc) ; H = zeros(1, N ) ; Ht = zeros(1, Nt) ; movie_nf = 1 ; movie_do = 0 ; % e01 = 01 loss of strong class on train % e01t = 01 loss of strong class on test % ee = exp loss of strong class on train rs.e01 = zeros(1, cfg.nwc) ; rs.e01t = zeros(1, cfg.nwc) ; rs.ee = zeros(1, cfg.nwc) ; % weights used to rebalance the test set to correspond to the train % set when computing the test error adj_test = zeros(length(yt),1) ; adj_test(yt == +1) = (Nt / Npt) * (Np / N) ; adj_test(yt == -1) = (Nt / Nmt) * (Nm / N) ; if cfg.verbosity > 0 fprintf('vicinalboost: sigma = %g\n', cfg.sigma) ; fprintf('vicinalboost: use_tg = %g\n', cfg.use_tg) ; fprintf('vicinalboost: gd_max_niters = %d\n', cfg.gd_max_niters) ; fprintf('vicinalboost: gd_restart_niters = %d\n', cfg.gd_restart_niters) ; fprintf('vicinalboost: gd_method = %s\n', cfg.gd_method) ; fprintf('vicinalboost: haar_n = %d\n', cfg.haar_n) ; fprintf('vicinalboost: train data: %d (%d pos, %d neg)\n', N, Np, Nm ) ; fprintf('vicinalboost: test data: %d (%d pos, %d neg)\n', Nt, Npt, Nmt) ; fprintf('vicinalboost: init WCs: %d\n', size(data.F0,2)) ; end % -------------------------------------------------------------------- % Parzen smoothing % -------------------------------------------------------------------- % Prepare co-variance matrices of Parzen's kernels. % sigma = isotropic Parzen's window variance sigma = cfg.sigma ; if cfg.use_tg == 0 % for isotropic noise S is a scalar S = sigma * ones(1, N ) ; St = sigma * ones(1, Nt) ; if cfg.verbosity fprintf('vicinalboost: using isotropic Parzen window\n') ; end else % for anisotropic noise S is a scalar plus a vector for each % tangent space dimensions. P = length(data.dx) ; S = sigma * ones(P*L+1, N ) ; St = sigma * ones(P*L+1, Nt) ; for p=1:P S( 1 + (p-1) * L + (1:L), :) = data.dx{p}(:, sel ) ; St(1 + (p-1) * L + (1:L), :) = data.dx{p}(:, selt) ; end if cfg.verbosity fprintf('vicinalboost: using anisotropic Parzen window with %d directions\n', P) ; end end % -------------------------------------------------------------------- % Pre-processing % -------------------------------------------------------------------- % For each initial WC h in data.F0 compute % ha = - <gamma1,x_i> % hb = sqrt(2 gamma1'S(x_i)gamma1) if cfg.verbosity fprintf('vicinalboost: pre-processing initial WCs ... ') ; end K = size(data.F0, 2) ; ha = zeros(K, N) ; hb = zeros(K, N) ; for k = 1:K gamma1 = data.F0(2:end,k) ; ha(k,:) = - gamma1' * x ; hb(k,:) = sqrt( 2 * multvar(S,gamma1) ) ; if cfg.verbosity fprintf('\b\b\b\b\b\b\b [%4i]',k) ; end end if cfg.verbosity fprintf(' done.\n') ; end if 0 figure(1) ; clf ; colormap gray ; imarraysc(reshape(data.F0(2:end,:),24,24,WC)) ; end % -------------------------------------------------------------------- % Boost % -------------------------------------------------------------------- force_stop = 0 ; for t = 1:cfg.nwc % ------------------------------------------------------------------ % Select best initial WC % ------------------------------------------------------------------ % Compute optimal threshold and optimal correlation of each WC K = size(data.F0, 2) ; E = zeros(1, K) ; gamma0 = zeros(1, K) ; nu = sqrt(2/pi) ; for k = 1:K a = ha(k,:) ; b = hb(k,:) ; ywgtp = [ +ywgt -ywgt ] ; ap = [ a-b*nu a+b*nu ] ; bp = [ b*nu b*nu ] ; % divide ywgtp = ywgtp ./ bp ; % sort [ap,perm] = sort(ap) ; ywgtp = ywgtp(perm) ; % energy for all threhsolds Ep = - ap .* cumsum(ywgtp) + cumsum(ap .* ywgtp) ; % sanity check if 0 figure(212) ; clf ; hold on ; plot(ap,Ep) ; Epp = [] ; for t=ap param = [t;h_set(2:end,k)] ; Epp = [Epp -sum(ywgt.*weak_erf(param,x,S)) ] ; end plot(ap,Epp,'r') ; drawnow; end % select best threshold [Ep,best] = min(Ep) ; % this is the fit for the WC number k. Save back. E(k) = - Ep ; gamma0(k) = ap(best) ; end % Select best WC [drop,best] = max(E) ; % take the parameters of the WC and the optimal threshold param = [gamma0(best) ; data.F0(2:end,best)] ; h_cur = weak_erf(param,x,S) ; E = E(best) ; % ------------------------------------------------------------------ % Optimize WC % ------------------------------------------------------------------ % Optimize orientation and treshold by gradient descent % extract parameters gamma0 = param(1) ; gamma1 = param(2:end) ; % for non-linear conjugate gradient descent conj = [] ; for gd_iter = 1:cfg.gd_max_niters [gSg,Sg] = multvar(S,gamma1) ; gSg = 2 * gSg ; sgSg = sqrt(gSg) ; num = gamma0 + gamma1' * x ; wdrf = ywgt .* derf( num ./ sgSg ) ; tmp1 = wdrf ./ sgSg ; tmp2 = 2 * tmp1 .* num ./ gSg ; dgamma0 = sum(tmp1) ; dgamma1 = x * tmp1' - Sg * tmp2' ; % Non-linear conjugate gradient adjustment. % % See: % % http://www.ipp.mpg.de/de/for/bereiche/stellarator/ ... % Comp_sci/CompScience/csep/csep1.phy.ornl.gov/mo/node20.html if mod(gd_iter - 1, cfg.gd_restart_niters) == 0 % restart conjugate direction after n iterations grad = [dgamma0 ; dgamma1] ; conj = grad ; else % calculate conjugate direction grad_ = grad ; conj_ = conj ; grad = [dgamma0 ; dgamma1] ; switch cfg.gd_method case 'none' beta = 0 ; case 'fr' beta = (grad'*grad) / (grad_'*grad_) ; case 'pr' beta = (grad'*(grad-grad_)) / (grad_'*grad_) ; case 'hs' beta = (grad'*(grad-grad_)) / (conj_'*(grad-grad_)) ; end % rarely it might procude NaNs... in this case give up if isnan(beta), beta = 0 ; end conj = grad + beta*conj_ ; dgamma0 = conj(1) ; dgamma1 = conj(2:end) ; end % Now the direction is decided by the gradient; do % a Newton step along that direction! % % % MAPLE says: % a + l b % f := l -> ---------------------- % 2 % sqrt(c + 2 r l + d l ) % % b (a + l b) (2 r + 2 d l) % --------------------- - 1/2 ----------------------- % 2 1/2 2 3/2 % (c + 2 r l + d l ) (c + 2 r l + d l ) % % 2 % b (2 r + 2 d l) (a + l b) (2 r + 2 d l) (a + l b) d % - --------------------- + 3/4 ------------------------ - --------------------- % 2 3/2 2 5/2 2 3/2 % (c + 2 r l + d l ) (c + 2 r l + d l ) (c + 2 r l + d l ) step = 0 ; a = gamma0 + gamma1' * x ; b = dgamma0 + dgamma1' * x ; c = gSg / 2 ; d = multvar(S,dgamma1) ; r = multvar(S,gamma1,dgamma1) ; den = c + 2*r* step + d* step^2 ; dens = sqrt(den) ; den3s = den .* dens ; den5s = den .* den3s ; tmp1 = a + b * step ; tmp2 = 2 * (r + d * step) ; tmp3 = tmp1 ./ dens ; drf = ywgt .* derf(tmp3 / sqrt(2)) / sqrt(2) ; ddrf = ywgt .* dderf(tmp3 / sqrt(2)) / 2 ; tmp4 = b ./ dens - .5 * tmp1.*tmp2./den3s ; tmp5 = - b.*tmp2./den3s ... + 3/4 * tmp1.* tmp2.*tmp2./den5s ... - tmp1.*d./den3s ; dstep = sum( drf .* tmp4) ; ddstep = sum(ddrf .* tmp4.*tmp4 + drf .* tmp5); if abs(ddstep) < 1e-10 ddstep = 1e-10 ; end stepsz = - dstep / ddstep ; % We adjust stepsz for cases in which the Hessian is really bad % (stepsz < 0) and we also enlarge a little bit the aperture. stepsz = abs(stepsz) * 1.5 ; % Line search stepr = linspace(0,stepsz,15) ; for i = 1:length(stepr) step = stepr(i) ; den = c + 2*r* step + d* step^2 ; dens = sqrt(den) ; den3s = den .* dens ; den5s = den .* den3s ; tmp1 = a + b * step ; tmp2 = 2 * (r + d * step) ; tmp3 = tmp1 ./ dens ; rf = ywgt .* erf(tmp3 / sqrt(2)) ; E_ls(i) = sum(rf) ; end [E_,best] = max(E_ls) ; step = stepr(best) ; % do step, finally gamma1_ = gamma1 + step * dgamma1 ; gamma0_ = gamma0 + step * dgamma0 ; param_ = [gamma0_;gamma1_] ; h_cur_ = weak_erf(param_,x,S) ; % save pack for next iteration E = E_ ; gamma1 = gamma1_ ; gamma0 = gamma0_ ; param = param_ ; h_cur = h_cur_ ; % save history E_gd(gd_iter) = E ; if gd_iter > 1 && ... (E_gd(gd_iter) - E_gd(gd_iter-1))/E_gd(gd_iter-1) < 1e-5 break ; end if cfg.verbosity >=3 figure(1000) ; clf ; set(gcf,'color','w') ; axes('position',[.08 .08 .36 .36]) ; plot(E_gd(1:gd_iter),'linewidth',2) ; title('Weak classifier fit') ; ylabel('fit') ; xlabel('iteration') ; subplot(2,2,1) ; if length(data.dims == 2) imagesc(reshape(gamma1,data.dims)) axis equal ; axis off ; else plot(gamma1(:)) ; end title('Weak classifier') ; subplot(2,2,2) ; if length(data.dims == 2) imagesc(reshape(dgamma1,data.dims)) ; axis equal ; axis off ; else plot(dgamma1(:)) ; end title('Weak classifier gradient') ;; axes('position',[.58 .08 .36 .36]) ; plot(stepr,E_ls,'linewidth',2) ; title('Line search') ; ylabel('fit') ; xlabel('step size') ; drawnow ; spn = linspace(0,1,256) ; colormap(gray(256)) ; if movie_do MOV(nf) = getframe(1000) ; nf=nf+1 ; end end end % next GD iteration if cfg.haar_n > 0 % approximate WC with Haar wavelets sz = data.dims ; if (length(sz) ~= 2), error('Haar projection is supported only for 2D data'); end gamma_haar = image2dyadic(gamma1,sz); gamma_haar = haarfilter(gamma_haar,sz,... floor(log2(min(sz))),... cfg.haar_n) ; gamma_haar = dyadic2image(gamma_haar,sz); gamma1_ = gamma_haar(:); param_ = [gamma0;gamma1_] ; h_cur_ = weak_erf(param_,x,S) ; % save pack for next iteration gamma1 = gamma1_ ; param = param_ ; h_cur = h_cur_ ; % re-calculate correlation E = sum(ywgt .* h_cur) ; end % ------------------------------------------------------------------ % Calculate mixing constant % ------------------------------------------------------------------ % E at this point must contain correlation of current learner to % boosting gradient and SZ its size c = 0 ; wgt_ = wgt ; if all(y .* h_cur > 0) force_stop = 1 ; if t == 1 c = 1 ; else c = coeff(t - 1) ; end end while ~ force_stop % re-calculate weak classifier size SZ = sum(wgt .* h_cur .* h_cur) ; % Gauss-Newton step dc = E / SZ ; c = c + dc ; % update weights wgt = wgt_ .* exp( - c .* y .* h_cur) ; Z = sum(wgt) ; wgt = wgt / Z ; ywgt = y .* wgt ; if dc / (c+1e-3) < 1e-8 break end % re-calculate correlation E = sum(ywgt .* h_cur) ; end % ------------------------------------------------------------------ % Record new weak classifier % ------------------------------------------------------------------ F(:,t) = param ; coeff(t) = c ; % ------------------------------------------------------------------ % Update % ------------------------------------------------------------------ % train H = H + coeff(t) * h_cur ; % test ht = weak_erf(F(:,t), xt, St) ; Ht = Ht + coeff(t) * ht ; % ------------------------------------------------------------------ % Energies % ------------------------------------------------------------------ rs.ee(t) = mean(exp(- y .* H)) ; rs.e01(t) = mean((1 - y .* sign(H) ) / 2) ; rs.e01t(t) = mean((1 - yt .* sign(Ht)) / 2 .* adj_test') ; if force_stop break ; end % ------------------------------------------------------------------ % Plots % ------------------------------------------------------------------ % if(mod(t - 1, 10)~=0 && t ~= cfg.nwc) continue ; end %fprintf('ada: weak learner %d added\n',t) ; fprintf('vicinalboost: nwc:%4i train:%5.2f%% test:%5.2f%% exp:%5.2f%%\n',... t,... rs.e01(t) * 100, ... rs.e01t(t) * 100, ... rs.ee(t) * 100) ; if cfg.verbosity >= 2 figure(100) ; clf ; hold on ; plot(rs.ee(1:t) * 100, 'r-', 'LineWidth',2) ; plot(rs.e01(1:t) * 100, 'b-', 'LineWidth',2) ; plot(rs.e01t(1:t) * 100, 'g-', 'LineWidth',2) ; ylim([0 110]) ; ylabel('%') ; xlabel('num. WCs') ; legend('exp. bound','train err.','tes err.') ; title('Energies') ; end drawnow ; if movie_do MOV(nf) = getframe(gcf) ; nf=nf + 1 ; end end rs.ee(t+1:end) = rs.ee(t) ; rs.e01(t+1:end) = rs.e01(t) ; rs.e01t(t+1:end) = rs.e01t(t) ; rs.cfg = cfg ; rs.F = F ; rs.coeff = coeff ; % -------------------------------------------------------------------- function y = weak(h,X) % -------------------------------------------------------------------- % Calculate weak lerner. c = cos(h(1)) ; s = sin(h(1)) ; y = sign([c s]*X-h(2)) ; % -------------------------------------------------------------------- function y = weak_erf(h,X,S) % -------------------------------------------------------------------- % Calculate smooth weak learner. % Each column of S is either a scalar or a stacked varaince matrix. L = size(X,1) ; N = size(X,2) ; fast_erf = @erf ; num = h(2:end)' * X + h(1) ; den = sqrt( 2 * multvar(S,h(2:end)) ) ; y = fast_erf( num ./ den ) ; % -------------------------------------------------------------------- function y = derf(x) % -------------------------------------------------------------------- % erf derivative y = 2/sqrt(pi) * exp(-x.*x) ; % -------------------------------------------------------------------- function y = dderf(x) % -------------------------------------------------------------------- % erf second derivative y = - 4/sqrt(pi) * x .* exp(-x.*x) ;
github
rising-turtle/slam_matlab-master
plotexp.m
.m
slam_matlab-master/SIFT/vicinalboost-1.0/code/experiments/plotexp.m
5,198
utf_8
4cbdb4ceb5f1ff95ac8640af96a9cf85
function plotexp(rs, aggr, split, print_path) % PLOTEXP Plot experiment results % % PLOTEXP(RS, AGGR) plot the experiments RS. AGGR is a cell array of % string listing the fileds of the RS structure that should be used % to identify uniquely an experiment (experiments with the same % values of this field are treated as equivalent folds and aggregate % in the plotted statistics). cfg.do_bars = 1 ; rs = [rs{:}] ; if nargin < 3 || isequal(split, []) split = aggr{end} ; end if nargin < 3 print_path = [] ; end styles = { { 'color', [1 .75 .75], 'linestyle', '--', 'marker', 'none' }, ... { 'color', [1 .5 .5], 'linestyle', '-', 'marker', 'none' }, ... { 'color', [1 0 0], 'linestyle', '-', 'marker', '.' }, ... { 'color', [.75 1 .75], 'linestyle', '--', 'marker', 'none' }, ... { 'color', [.5 1 .5], 'linestyle', '-', 'marker', 'none' }, ... { 'color', [0 1 0], 'linestyle', '-', 'marker', '.' }, ... { 'color', [.75 .75 1], 'linestyle', '--', 'marker', 'none' }, ... { 'color', [.5 .5 1], 'linestyle', '-', 'marker', 'none' }, ... { 'color', [0 0 1], 'linestyle', '-', 'marker', '.' } } ; % -------------------------------------------------------------------- % Aggregate and split experiments % -------------------------------------------------------------------- % The fields in SPLIT are used to divide the experiments in % multplipe figures. % valies assumed by the split fields splitr = unique_cells({rs.(split)}) ; % remove from aggr fields the one appearing among the split fields aggr_ = aggr ; aggr_(strcmp(split, aggr_)) = [] ; % ------------------------------------------------------------------- % For each split a figure % ------------------------------------------------------------------- for splitv = splitr legend_content = {} ; bar_data = [] ; % create a new figure figure(find(splitv == splitr)) ; clf ; subplot(2,1,1) ; hold on ; % find subset of experiments with this value of the split parameter sel_split = find_cells({rs.(split)}, splitv) ; rs_split = rs(sel_split) ; % for all experiment in the split, aggregate the data and plot % the corresponding curves n_curve = 1 ; while ~ isempty(rs_split) % --------------------------------------------------------------- % For this figure % --------------------------------------------------------------- % Aggregate folds sel_aggr = 1:length(rs_split) ; legend_content{end+1} = '' ; for af = aggr_ % value of the next aggr field af = af{1} ; aggrv = rs_split(1).(af) ; % find all experiments with that value of the aggr field sel_aggr = intersect(sel_aggr, find_cells({rs_split.(af)}, aggrv)) ; legend_content{end} = [legend_content{end} ... sprintf('%s=%g ', af, aggrv)] ; end % collect error curves e01 = rs_split(sel_aggr(1)).e01t ; for s=sel_aggr(2:end) e01 = [e01 ; rs_split(s).e01t] ; end std_e01 = std(e01,1) ; avg_e01 = mean(e01,1) ; % add to bar data bar_data = [bar_data, ... [mean(avg_e01(end-3:end)); mean(std_e01(end-3:end)) ; ] ]; % plot if cfg.do_bars prec = std_e01 / sqrt(length(sel_aggr)) ; h = errorbar(1:size(e01,2), 100 * avg_e01, 100 * prec) ; else h = plot(1:size(e01,2), 100*mean(e01,1)) ; end if n_curve <= length(styles) set(h, styles{n_curve}{:}) ; else extra_cols = jet(256) ; set(h, 'color', extra_cols(n_curve, :)) ; end yl = get(gca,'ylim') ; yl(1)=0; set(gca,'ylim',yl) ; xlim([0 size(e01,2)]) ; % remove the aggregate set of experiments from the split rs_split(sel_aggr) = [] ; % next curve n_curve = n_curve + 1 ; % keyboard end if n_curve <= 10 h=legend(legend_content{:},'location','northeastoutside') ; else h=legend(legend_content{1:10},'...','location','northeastoutside') ; end for k=1:length(legend_content) fprintf('%5d: %s\n', k, legend_content{k}) ; end set(h,'interpreter','none') xlabel('num. WCs') ; ylabel('test error (%)') ; ylim([0 30]) ; title(sprintf('%s = %g', split, splitv)) ; % bar plot subplot(2,1,2) ; clear bard ; bard(1,:) = bar_data(1,:) - bar_data(2,:) ; bard(2,:) = bar_data(2,:) ; bard(3,:) = bar_data(2,:) ; bar(bard','stacked') ; xlabel('curve number') ; if ~isempty(print_path) name = [print_path sprintf('-%d',find(splitv == splitr))] ; print(fullfile('figures', name),'-depsc') ; end end % -------------------------------------------------------------------- function b = unique_cells(a) % -------------------------------------------------------------------- if isnumeric(a{1}) b = unique([a{:}]) ; else b = unique(a) ; end % -------------------------------------------------------------------- function b = find_cells(a, x) % -------------------------------------------------------------------- b = [] ; for t = 1:numel(a) if isequal(a{t}, x), b = [b t] ; end end
github
rising-turtle/slam_matlab-master
plotmatches.m
.m
slam_matlab-master/SIFT/sift-0.9.19/sift/plotmatches.m
10,144
utf_8
4d7daa0d3265f0885ebc7f3310a47fc1
function h=plotmatches(I1,I2,P1,P2,matches,varargin) % PLOTMATCHES Plot keypoint matches % PLOTMATCHES(I1,I2,P1,P2,MATCHES) plots the two images I1 and I2 % and lines connecting the frames (keypoints) P1 and P2 as specified % by MATCHES. % % P1 and P2 specify two sets of frames, one per column. The first % two elements of each column specify the X,Y coordinates of the % corresponding frame. Any other element is ignored. % % MATCHES specifies a set of matches, one per column. The two % elementes of each column are two indexes in the sets P1 and P2 % respectively. % % The images I1 and I2 might be either both grayscale or both color % and must have DOUBLE storage class. If they are color the range % must be normalized in [0,1]. % % The function accepts the following option-value pairs: % % 'Stacking' ['h'] % Stacking of images: horizontal ['h'], vertical ['v'], diagonal % ['h'], overlap ['o'] % % 'Interactive' [0] % If set to 1, starts the interactive session. In this mode the % program lets the user browse the matches by moving the mouse: % Click to select and highlight a match; press any key to end. % If set to a value greater than 1, the feature matches are not % drawn at all (useful for cluttered scenes). % % See also PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- stack='h' ; interactive=0 ; only_interactive=0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'stacking' stack=varargin{k+1} ; case 'interactive' interactive=varargin{k+1}; otherwise error(['[Unknown option ''', varargin{k}, '''.']) ; end end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- [M1,N1,K1]=size(I1) ; [M2,N2,K2]=size(I2) ; switch stack case 'h' N3=N1+N2 ; M3=max(M1,M2) ; oj=N1 ; oi=0 ; case 'v' M3=M1+M2 ; N3=max(N1,N2) ; oj=0 ; oi=M1 ; case 'd' M3=M1+M2 ; N3=N1+N2 ; oj=N1 ; oi=M1 ; case 'o' M3=max(M1,M2) ; N3=max(N1,N2) ; oj=0; oi=0; otherwise error(['Unkown stacking type '''], stack, ['''.']) ; end % Combine the two images. In most cases just place one image next to % the other. If the stacking is 'o', however, combine the two images % linearly. I=zeros(M3,N3,K1) ; if stack ~= 'o' I(1:M1,1:N1,:) = I1 ; I(oi+(1:M2),oj+(1:N2),:) = I2 ; else I(oi+(1:M2),oj+(1:N2),:) = I2 ; I(1:M1,1:N1,:) = I(1:M1,1:N1,:) + I1 ; I(1:min(M1,M2),1:min(N1,N2),:) = 0.5 * I(1:min(M1,M2),1:min(N1,N2),:) ; end axes('Position', [0 0 1 1]) ; imagesc(I) ; colormap gray ; hold on ; axis image ; axis off ; K = size(matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,matches(1,:)) ; P2(1,matches(2,:))+oj ; nans ] ; y = [ P1(2,matches(1,:)) ; P2(2,matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'g.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','g') ; % -------------------------------------------------------------------- % Interactive % -------------------------------------------------------------------- if(~interactive), return ; end sel1 = unique(matches(1,:)) ; sel2 = unique(matches(2,:)) ; K1 = length(sel1) ; %size(P1,2) ; K2 = length(sel2) ; %size(P2,2) ; X = [ P1(1,sel1) P2(1,sel2)+oj ; P1(2,sel1) P2(2,sel2)+oi ; ] ; fig = gcf ; is_hold = ishold ; hold on ; % save the handlers for later to restore dhandler = get(fig,'WindowButtonDownFcn') ; uhandler = get(fig,'WindowButtonUpFcn') ; mhandler = get(fig,'WindowButtonMotionFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'KeyPressFcn', @key_handler) ; set(fig,'WindowButtonDownFcn',@click_down_handler) ; set(fig,'WindowButtonUpFcn', @click_up_handler) ; set(fig,'Pointer','crosshair') ; data.exit = 0 ; % signal exit to the interactive mode data.selected = [] ; % currently selected feature data.X = X ; % feature anchors highlighted = [] ; % currently highlighted feature hh = [] ; % hook of the highlight plot guidata(fig,data) ; while ~ data.exit uiwait(fig) ; data = guidata(fig) ; if(any(size(highlighted) ~= size(data.selected)) || ... any(highlighted ~= data.selected) ) highlighted = data.selected ; % delete previous highlight if( ~isempty(hh) ) delete(hh) ; end hh=[] ; % each selected feature uses its own color c=1 ; colors=[1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0 ; 1.0 1.0 0.0 ; 0.0 1.0 1.0 ; 1.0 0.0 1.0 ] ; % more than one feature might be seleted at one time... for this=highlighted % find matches if( this <= K1 ) sel=find(matches(1,:)== sel1(this)) ; else sel=find(matches(2,:)== sel2(this-K1)) ; end K=length(sel) ; % plot matches x = [ P1(1,matches(1,sel)) ; P2(1,matches(2,sel))+oj ; nan*ones(1,K) ] ; y = [ P1(2,matches(1,sel)) ; P2(2,matches(2,sel))+oi ; nan*ones(1,K) ] ; hh = [hh line(x(:)', y(:)',... 'Marker','*',... 'Color',colors(c,:),... 'LineWidth',3)]; if( size(P1,1) == 4 ) f1 = unique(P1(:,matches(1,sel))','rows')' ; hp=plotsiftframe(f1); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end if( size(P2,1) == 4 ) f2 = unique(P2(:,matches(2,sel))','rows')' ; f2(1,:)=f2(1,:)+oj ; f2(2,:)=f2(2,:)+oi ; hp=plotsiftframe(f2); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end c=c+1 ; end drawnow ; end end if( ~isempty(hh) ) delete(hh) ; end if ~is_hold hold off ; end set(fig,'WindowButtonDownFcn', dhandler) ; set(fig,'WindowButtonUpFcn', uhandler) ; set(fig,'WindowButtonMotionFcn',mhandler) ; set(fig,'KeyPressFcn', khandler) ; set(fig,'Pointer', pointer ) ; % ==================================================================== function data=selection_helper(data) % -------------------------------------------------------------------- P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; d = (data.X(1,:) - P(1)).^2 + (data.X(2,:) - P(2)).^2 ; dmin=min(d) ; idx=find(d==dmin) ; data.selected = idx ; % ==================================================================== function click_down_handler(obj,event) % -------------------------------------------------------------------- % select a feature and change motion handler for dragging [obj,fig]=gcbo ; data = guidata(fig) ; data.mhandler = get(fig,'WindowButtonMotionFcn') ; set(fig,'WindowButtonMotionFcn',@motion_handler) ; data = selection_helper(data) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function click_up_handler(obj,event) % -------------------------------------------------------------------- % stop dragging [obj,fig]=gcbo ; data = guidata(fig) ; set(fig,'WindowButtonMotionFcn',data.mhandler) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function motion_handler(obj,event) % -------------------------------------------------------------------- % select features while dragging data = guidata(obj) ; data = selection_helper(data); guidata(obj,data) ; uiresume(obj) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- % use keypress to exit data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
gaussianss.m
.m
slam_matlab-master/SIFT/sift-0.9.19/sift/gaussianss.m
7,935
utf_8
ea953b78ba9dcf80cd10b1f4c599408e
function SS = gaussianss(I,sigman,O,S,omin,smin,smax,sigma0) % GAUSSIANSS % SS = GAUSSIANSS(I,SIGMAN,O,S,OMIN,SMIN,SMAX,SIGMA0) returns the % Gaussian scale space of image I. Image I is assumed to be % pre-smoothed at level SIGMAN. O,S,OMIN,SMIN,SMAX,SIGMA0 are the % parameters of the scale space as explained in PDF:SIFT.USER.SS. % % See also DIFFSS(), PDF:SIFT.USER.SS. % History % 4-15-2006 Fixed some comments % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(nargin < 6) error('Six arguments are required.') ; end if(~isreal(I) || ndims(I) > 2) error('I must be a real two dimensional matrix') ; end if(smin >= smax) error('smin must be greather or equal to smax') ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- % Scale multiplicative step k = 2^(1/S) ; % Lowe's convention: the scale (o,s)=(0,-1) has standard deviation % 1.6 (was it variance?) if(nargin < 7) sigma0 = 1.6 * k ; end dsigma0 = sigma0 * sqrt(1 - 1/k^2) ; % Scale step factor sigman = 0.5 ; % Nominal smoothing of the image % Scale space structure SS.O = O ; SS.S = S ; SS.sigma0 = sigma0 ; SS.omin = omin ; SS.smin = smin ; SS.smax = smax ; % If mino < 0, multiply the size of the image. % (The rest of the code is consistent with this.) if omin < 0 for o=1:-omin I = doubleSize(I) ; end elseif omin > 0 for o=1:omin I = halveSize(I) ; end end [M,N] = size(I) ; % Index offset so = -smin+1 ; % -------------------------------------------------------------------- % First octave % -------------------------------------------------------------------- % % The first level of the first octave has scale index (o,s) = % (omin,smin) and scale coordinate % % sigma(omin,smin) = sigma0 2^omin k^smin % % The input image I is at nominal scale sigman. Thus in order to get % the first level of the pyramid we need to apply a smoothing of % % sqrt( (sigma0 2^omin k^smin)^2 - sigman^2 ). % % As we have pre-scaled the image omin octaves (up or down, % depending on the sign of omin), we need to correct this value % by dividing by 2^omin, getting %e % sqrt( (sigma0 k^smin)^2 - (sigman/2^omin)^2 ) % if(sigma0 * 2^omin * k^smin < sigman) warning('The nominal smoothing exceeds the lowest level of the scale space.') ; end SS.octave{1} = zeros(M,N,smax-smin+1) ; SS.octave{1}(:,:,1) = imsmooth(I, ... sqrt((sigma0*k^smin)^2 - (sigman/2^omin)^2)) ; for s=smin+1:smax % Here we go from (omin,s-1) to (omin,s). The extra smoothing % standard deviation is % % (sigma0 2^omin 2^(s/S) )^2 - (simga0 2^omin 2^(s/S-1/S) )^2 % % Aftred dividing by 2^omin (to take into account the fact % that the image has been pre-scaled omin octaves), the % standard deviation of the smoothing kernel is % % dsigma = sigma0 k^s sqrt(1-1/k^2) % dsigma = k^s * dsigma0 ; SS.octave{1}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{1}(:,:,s-1 +so)... ), dsigma ) ; end % -------------------------------------------------------------------- % Other octaves % -------------------------------------------------------------------- for o=2:O % We need to initialize the first level of octave (o,smin) from % the closest possible level of the previous octave. A level (o,s) % in this octave corrsponds to the level (o-1,s+S) in the previous % octave. In particular, the level (o,smin) correspnds to % (o-1,smin+S). However (o-1,smin+S) might not be among the levels % (o-1,smin), ..., (o-1,smax) that we have previously computed. % The closest pick is % % / smin+S if smin+S <= smax % (o-1,sbest) , sbest = | % \ smax if smin+S > smax % % The amount of extra smoothing we need to apply is then given by % % ( sigma0 2^o 2^(smin/S) )^2 - ( sigma0 2^o 2^(sbest/S - 1) )^2 % % As usual, we divide by 2^o to cancel out the effect of the % downsampling and we get % % ( sigma 0 k^smin )^2 - ( sigma0 2^o k^(sbest - S) )^2 % sbest = min(smin + S, smax) ; TMP = halveSize(squeeze(SS.octave{o-1}(:,:,sbest+so))) ; target_sigma = sigma0 * k^smin ; prev_sigma = sigma0 * k^(sbest - S) ; if(target_sigma > prev_sigma) TMP = imsmooth(TMP, sqrt(target_sigma^2 - prev_sigma^2) ) ; end [M,N] = size(TMP) ; SS.octave{o} = zeros(M,N,smax-smin+1) ; SS.octave{o}(:,:,1) = TMP ; for s=smin+1:smax % The other levels are determined as above for the first octave. dsigma = k^s * dsigma0 ; SS.octave{o}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{o}(:,:,s-1 +so)... ), dsigma) ; end end % ------------------------------------------------------------------------- % Auxiliary functions % ------------------------------------------------------------------------- function J = doubleSize(I) [M,N]=size(I) ; J = zeros(2*M,2*N) ; J(1:2:end,1:2:end) = I ; J(2:2:end-1,2:2:end-1) = ... 0.25*I(1:end-1,1:end-1) + ... 0.25*I(2:end,1:end-1) + ... 0.25*I(1:end-1,2:end) + ... 0.25*I(2:end,2:end) ; J(2:2:end-1,1:2:end) = ... 0.5*I(1:end-1,:) + ... 0.5*I(2:end,:) ; J(1:2:end,2:2:end-1) = ... 0.5*I(:,1:end-1) + ... 0.5*I(:,2:end) ; function J = halveSize(I) J=I(1:2:end,1:2:end) ; %[M,N] = size(I) ; %m=floor((M+1)/2) ; %n=floor((N+1)/2) ; %J = I(:,1:2:2*n) + I(:,2:2:2*n+1) ; %J = 0.25*(J(1:2:2*m,:)+J(2:2:2*m+1,:)) ;
github
rising-turtle/slam_matlab-master
plotsiftdescriptor.m
.m
slam_matlab-master/SIFT/sift-0.9.19/sift/plotsiftdescriptor.m
5,461
utf_8
4159397cc60b624656bb3372023a43e9
function h=plotsiftdescriptor(d,f) % PLOTSIFTDESCRIPTOR Plot SIFT descriptor % PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptors D, stored as % columns of the matrix D. D has the same format used by SIFT(). % % PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to the % SIFT frames F, specified as columns of the matrix F. F has % the same format used by SIFT(). % % H=PLOTSIFTDESCRIPTOR(...) returns the handle H to the line drawing % representing the descriptors. % % REMARK. Currently the function supports only descriptors with 4x4 % spatial bins and 8 orientation bins (Lowe's default.) % % See also PLOTSIFTFRAME(), PLOTMATCHES(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. lowe_compatible = 1 ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= 128) error('D should be a 128xK matrix (only standard descriptors accepted)') ; end if nargin > 1 if(size(f,1) ~= 4) error('F should be a 4xK matrix'); end if(size(f,2) ~= size(f,2)) error('D and F must have the same number of columns') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 f = repmat([0;0;1;0],1,K) ; end maginf = 3.0 ; NBP=4 ; NBO=8 ; % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K SBP = maginf * f(3,k) ; th=f(4,k) ; c=cos(th) ; s=sin(th) ; [x,y] = render_descr(d(:,k)) ; xall = [xall SBP*(c*x-s*y)+f(1,k)+1] ; yall = [yall SBP*(s*x+c*y)+f(2,k)+1] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- % Helper functions % -------------------------------------------------------------------- % Renders a single descriptor function [x,y] = render_descr( d ) lowe_compatible=1; NBP=4 ; NBO=8 ; [x,y] = meshgrid(-NBP/2:NBP/2,-NBP/2:NBP/2) ; % Rescale d so that the biggest peak fits inside the bin diagram d = 0.4 * d / max(d(:)) ; % We have NBP*NBP bins to plot. Here are the centers: xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % We swap the order of the bin diagrams because they are stored row % major into the descriptor (Lowe's convention that we follow.) xc = xc' ; yc = yc' ; % Each bin contains a star with eight tips xc = repmat(xc(:)',NBO,1) ; yc = repmat(yc(:)',NBO,1) ; % Do the stars th=linspace(0,2*pi,NBO+1) ; th=th(1:end-1) ; if lowe_compatible xd = repmat(cos(-th), 1, NBP*NBP ) ; yd = repmat(sin(-th), 1, NBP*NBP ) ; else xd = repmat(cos(th), 1, NBP*NBP ) ; yd = repmat(sin(th), 1, NBP*NBP ) ; end xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,NBP^2*NBO) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,NBP+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
rising-turtle/slam_matlab-master
plotmatches.m
.m
slam_matlab-master/SIFT/sift-0.9.19-bin/sift/plotmatches.m
10,144
utf_8
4d7daa0d3265f0885ebc7f3310a47fc1
function h=plotmatches(I1,I2,P1,P2,matches,varargin) % PLOTMATCHES Plot keypoint matches % PLOTMATCHES(I1,I2,P1,P2,MATCHES) plots the two images I1 and I2 % and lines connecting the frames (keypoints) P1 and P2 as specified % by MATCHES. % % P1 and P2 specify two sets of frames, one per column. The first % two elements of each column specify the X,Y coordinates of the % corresponding frame. Any other element is ignored. % % MATCHES specifies a set of matches, one per column. The two % elementes of each column are two indexes in the sets P1 and P2 % respectively. % % The images I1 and I2 might be either both grayscale or both color % and must have DOUBLE storage class. If they are color the range % must be normalized in [0,1]. % % The function accepts the following option-value pairs: % % 'Stacking' ['h'] % Stacking of images: horizontal ['h'], vertical ['v'], diagonal % ['h'], overlap ['o'] % % 'Interactive' [0] % If set to 1, starts the interactive session. In this mode the % program lets the user browse the matches by moving the mouse: % Click to select and highlight a match; press any key to end. % If set to a value greater than 1, the feature matches are not % drawn at all (useful for cluttered scenes). % % See also PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- stack='h' ; interactive=0 ; only_interactive=0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'stacking' stack=varargin{k+1} ; case 'interactive' interactive=varargin{k+1}; otherwise error(['[Unknown option ''', varargin{k}, '''.']) ; end end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- [M1,N1,K1]=size(I1) ; [M2,N2,K2]=size(I2) ; switch stack case 'h' N3=N1+N2 ; M3=max(M1,M2) ; oj=N1 ; oi=0 ; case 'v' M3=M1+M2 ; N3=max(N1,N2) ; oj=0 ; oi=M1 ; case 'd' M3=M1+M2 ; N3=N1+N2 ; oj=N1 ; oi=M1 ; case 'o' M3=max(M1,M2) ; N3=max(N1,N2) ; oj=0; oi=0; otherwise error(['Unkown stacking type '''], stack, ['''.']) ; end % Combine the two images. In most cases just place one image next to % the other. If the stacking is 'o', however, combine the two images % linearly. I=zeros(M3,N3,K1) ; if stack ~= 'o' I(1:M1,1:N1,:) = I1 ; I(oi+(1:M2),oj+(1:N2),:) = I2 ; else I(oi+(1:M2),oj+(1:N2),:) = I2 ; I(1:M1,1:N1,:) = I(1:M1,1:N1,:) + I1 ; I(1:min(M1,M2),1:min(N1,N2),:) = 0.5 * I(1:min(M1,M2),1:min(N1,N2),:) ; end axes('Position', [0 0 1 1]) ; imagesc(I) ; colormap gray ; hold on ; axis image ; axis off ; K = size(matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,matches(1,:)) ; P2(1,matches(2,:))+oj ; nans ] ; y = [ P1(2,matches(1,:)) ; P2(2,matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'g.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','g') ; % -------------------------------------------------------------------- % Interactive % -------------------------------------------------------------------- if(~interactive), return ; end sel1 = unique(matches(1,:)) ; sel2 = unique(matches(2,:)) ; K1 = length(sel1) ; %size(P1,2) ; K2 = length(sel2) ; %size(P2,2) ; X = [ P1(1,sel1) P2(1,sel2)+oj ; P1(2,sel1) P2(2,sel2)+oi ; ] ; fig = gcf ; is_hold = ishold ; hold on ; % save the handlers for later to restore dhandler = get(fig,'WindowButtonDownFcn') ; uhandler = get(fig,'WindowButtonUpFcn') ; mhandler = get(fig,'WindowButtonMotionFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'KeyPressFcn', @key_handler) ; set(fig,'WindowButtonDownFcn',@click_down_handler) ; set(fig,'WindowButtonUpFcn', @click_up_handler) ; set(fig,'Pointer','crosshair') ; data.exit = 0 ; % signal exit to the interactive mode data.selected = [] ; % currently selected feature data.X = X ; % feature anchors highlighted = [] ; % currently highlighted feature hh = [] ; % hook of the highlight plot guidata(fig,data) ; while ~ data.exit uiwait(fig) ; data = guidata(fig) ; if(any(size(highlighted) ~= size(data.selected)) || ... any(highlighted ~= data.selected) ) highlighted = data.selected ; % delete previous highlight if( ~isempty(hh) ) delete(hh) ; end hh=[] ; % each selected feature uses its own color c=1 ; colors=[1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0 ; 1.0 1.0 0.0 ; 0.0 1.0 1.0 ; 1.0 0.0 1.0 ] ; % more than one feature might be seleted at one time... for this=highlighted % find matches if( this <= K1 ) sel=find(matches(1,:)== sel1(this)) ; else sel=find(matches(2,:)== sel2(this-K1)) ; end K=length(sel) ; % plot matches x = [ P1(1,matches(1,sel)) ; P2(1,matches(2,sel))+oj ; nan*ones(1,K) ] ; y = [ P1(2,matches(1,sel)) ; P2(2,matches(2,sel))+oi ; nan*ones(1,K) ] ; hh = [hh line(x(:)', y(:)',... 'Marker','*',... 'Color',colors(c,:),... 'LineWidth',3)]; if( size(P1,1) == 4 ) f1 = unique(P1(:,matches(1,sel))','rows')' ; hp=plotsiftframe(f1); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end if( size(P2,1) == 4 ) f2 = unique(P2(:,matches(2,sel))','rows')' ; f2(1,:)=f2(1,:)+oj ; f2(2,:)=f2(2,:)+oi ; hp=plotsiftframe(f2); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end c=c+1 ; end drawnow ; end end if( ~isempty(hh) ) delete(hh) ; end if ~is_hold hold off ; end set(fig,'WindowButtonDownFcn', dhandler) ; set(fig,'WindowButtonUpFcn', uhandler) ; set(fig,'WindowButtonMotionFcn',mhandler) ; set(fig,'KeyPressFcn', khandler) ; set(fig,'Pointer', pointer ) ; % ==================================================================== function data=selection_helper(data) % -------------------------------------------------------------------- P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; d = (data.X(1,:) - P(1)).^2 + (data.X(2,:) - P(2)).^2 ; dmin=min(d) ; idx=find(d==dmin) ; data.selected = idx ; % ==================================================================== function click_down_handler(obj,event) % -------------------------------------------------------------------- % select a feature and change motion handler for dragging [obj,fig]=gcbo ; data = guidata(fig) ; data.mhandler = get(fig,'WindowButtonMotionFcn') ; set(fig,'WindowButtonMotionFcn',@motion_handler) ; data = selection_helper(data) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function click_up_handler(obj,event) % -------------------------------------------------------------------- % stop dragging [obj,fig]=gcbo ; data = guidata(fig) ; set(fig,'WindowButtonMotionFcn',data.mhandler) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function motion_handler(obj,event) % -------------------------------------------------------------------- % select features while dragging data = guidata(obj) ; data = selection_helper(data); guidata(obj,data) ; uiresume(obj) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- % use keypress to exit data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
gaussianss.m
.m
slam_matlab-master/SIFT/sift-0.9.19-bin/sift/gaussianss.m
7,935
utf_8
ea953b78ba9dcf80cd10b1f4c599408e
function SS = gaussianss(I,sigman,O,S,omin,smin,smax,sigma0) % GAUSSIANSS % SS = GAUSSIANSS(I,SIGMAN,O,S,OMIN,SMIN,SMAX,SIGMA0) returns the % Gaussian scale space of image I. Image I is assumed to be % pre-smoothed at level SIGMAN. O,S,OMIN,SMIN,SMAX,SIGMA0 are the % parameters of the scale space as explained in PDF:SIFT.USER.SS. % % See also DIFFSS(), PDF:SIFT.USER.SS. % History % 4-15-2006 Fixed some comments % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(nargin < 6) error('Six arguments are required.') ; end if(~isreal(I) || ndims(I) > 2) error('I must be a real two dimensional matrix') ; end if(smin >= smax) error('smin must be greather or equal to smax') ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- % Scale multiplicative step k = 2^(1/S) ; % Lowe's convention: the scale (o,s)=(0,-1) has standard deviation % 1.6 (was it variance?) if(nargin < 7) sigma0 = 1.6 * k ; end dsigma0 = sigma0 * sqrt(1 - 1/k^2) ; % Scale step factor sigman = 0.5 ; % Nominal smoothing of the image % Scale space structure SS.O = O ; SS.S = S ; SS.sigma0 = sigma0 ; SS.omin = omin ; SS.smin = smin ; SS.smax = smax ; % If mino < 0, multiply the size of the image. % (The rest of the code is consistent with this.) if omin < 0 for o=1:-omin I = doubleSize(I) ; end elseif omin > 0 for o=1:omin I = halveSize(I) ; end end [M,N] = size(I) ; % Index offset so = -smin+1 ; % -------------------------------------------------------------------- % First octave % -------------------------------------------------------------------- % % The first level of the first octave has scale index (o,s) = % (omin,smin) and scale coordinate % % sigma(omin,smin) = sigma0 2^omin k^smin % % The input image I is at nominal scale sigman. Thus in order to get % the first level of the pyramid we need to apply a smoothing of % % sqrt( (sigma0 2^omin k^smin)^2 - sigman^2 ). % % As we have pre-scaled the image omin octaves (up or down, % depending on the sign of omin), we need to correct this value % by dividing by 2^omin, getting %e % sqrt( (sigma0 k^smin)^2 - (sigman/2^omin)^2 ) % if(sigma0 * 2^omin * k^smin < sigman) warning('The nominal smoothing exceeds the lowest level of the scale space.') ; end SS.octave{1} = zeros(M,N,smax-smin+1) ; SS.octave{1}(:,:,1) = imsmooth(I, ... sqrt((sigma0*k^smin)^2 - (sigman/2^omin)^2)) ; for s=smin+1:smax % Here we go from (omin,s-1) to (omin,s). The extra smoothing % standard deviation is % % (sigma0 2^omin 2^(s/S) )^2 - (simga0 2^omin 2^(s/S-1/S) )^2 % % Aftred dividing by 2^omin (to take into account the fact % that the image has been pre-scaled omin octaves), the % standard deviation of the smoothing kernel is % % dsigma = sigma0 k^s sqrt(1-1/k^2) % dsigma = k^s * dsigma0 ; SS.octave{1}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{1}(:,:,s-1 +so)... ), dsigma ) ; end % -------------------------------------------------------------------- % Other octaves % -------------------------------------------------------------------- for o=2:O % We need to initialize the first level of octave (o,smin) from % the closest possible level of the previous octave. A level (o,s) % in this octave corrsponds to the level (o-1,s+S) in the previous % octave. In particular, the level (o,smin) correspnds to % (o-1,smin+S). However (o-1,smin+S) might not be among the levels % (o-1,smin), ..., (o-1,smax) that we have previously computed. % The closest pick is % % / smin+S if smin+S <= smax % (o-1,sbest) , sbest = | % \ smax if smin+S > smax % % The amount of extra smoothing we need to apply is then given by % % ( sigma0 2^o 2^(smin/S) )^2 - ( sigma0 2^o 2^(sbest/S - 1) )^2 % % As usual, we divide by 2^o to cancel out the effect of the % downsampling and we get % % ( sigma 0 k^smin )^2 - ( sigma0 2^o k^(sbest - S) )^2 % sbest = min(smin + S, smax) ; TMP = halveSize(squeeze(SS.octave{o-1}(:,:,sbest+so))) ; target_sigma = sigma0 * k^smin ; prev_sigma = sigma0 * k^(sbest - S) ; if(target_sigma > prev_sigma) TMP = imsmooth(TMP, sqrt(target_sigma^2 - prev_sigma^2) ) ; end [M,N] = size(TMP) ; SS.octave{o} = zeros(M,N,smax-smin+1) ; SS.octave{o}(:,:,1) = TMP ; for s=smin+1:smax % The other levels are determined as above for the first octave. dsigma = k^s * dsigma0 ; SS.octave{o}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{o}(:,:,s-1 +so)... ), dsigma) ; end end % ------------------------------------------------------------------------- % Auxiliary functions % ------------------------------------------------------------------------- function J = doubleSize(I) [M,N]=size(I) ; J = zeros(2*M,2*N) ; J(1:2:end,1:2:end) = I ; J(2:2:end-1,2:2:end-1) = ... 0.25*I(1:end-1,1:end-1) + ... 0.25*I(2:end,1:end-1) + ... 0.25*I(1:end-1,2:end) + ... 0.25*I(2:end,2:end) ; J(2:2:end-1,1:2:end) = ... 0.5*I(1:end-1,:) + ... 0.5*I(2:end,:) ; J(1:2:end,2:2:end-1) = ... 0.5*I(:,1:end-1) + ... 0.5*I(:,2:end) ; function J = halveSize(I) J=I(1:2:end,1:2:end) ; %[M,N] = size(I) ; %m=floor((M+1)/2) ; %n=floor((N+1)/2) ; %J = I(:,1:2:2*n) + I(:,2:2:2*n+1) ; %J = 0.25*(J(1:2:2*m,:)+J(2:2:2*m+1,:)) ;
github
rising-turtle/slam_matlab-master
plotsiftdescriptor.m
.m
slam_matlab-master/SIFT/sift-0.9.19-bin/sift/plotsiftdescriptor.m
5,461
utf_8
4159397cc60b624656bb3372023a43e9
function h=plotsiftdescriptor(d,f) % PLOTSIFTDESCRIPTOR Plot SIFT descriptor % PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptors D, stored as % columns of the matrix D. D has the same format used by SIFT(). % % PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to the % SIFT frames F, specified as columns of the matrix F. F has % the same format used by SIFT(). % % H=PLOTSIFTDESCRIPTOR(...) returns the handle H to the line drawing % representing the descriptors. % % REMARK. Currently the function supports only descriptors with 4x4 % spatial bins and 8 orientation bins (Lowe's default.) % % See also PLOTSIFTFRAME(), PLOTMATCHES(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. lowe_compatible = 1 ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= 128) error('D should be a 128xK matrix (only standard descriptors accepted)') ; end if nargin > 1 if(size(f,1) ~= 4) error('F should be a 4xK matrix'); end if(size(f,2) ~= size(f,2)) error('D and F must have the same number of columns') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 f = repmat([0;0;1;0],1,K) ; end maginf = 3.0 ; NBP=4 ; NBO=8 ; % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K SBP = maginf * f(3,k) ; th=f(4,k) ; c=cos(th) ; s=sin(th) ; [x,y] = render_descr(d(:,k)) ; xall = [xall SBP*(c*x-s*y)+f(1,k)+1] ; yall = [yall SBP*(s*x+c*y)+f(2,k)+1] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- % Helper functions % -------------------------------------------------------------------- % Renders a single descriptor function [x,y] = render_descr( d ) lowe_compatible=1; NBP=4 ; NBO=8 ; [x,y] = meshgrid(-NBP/2:NBP/2,-NBP/2:NBP/2) ; % Rescale d so that the biggest peak fits inside the bin diagram d = 0.4 * d / max(d(:)) ; % We have NBP*NBP bins to plot. Here are the centers: xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % We swap the order of the bin diagrams because they are stored row % major into the descriptor (Lowe's convention that we follow.) xc = xc' ; yc = yc' ; % Each bin contains a star with eight tips xc = repmat(xc(:)',NBO,1) ; yc = repmat(yc(:)',NBO,1) ; % Do the stars th=linspace(0,2*pi,NBO+1) ; th=th(1:end-1) ; if lowe_compatible xd = repmat(cos(-th), 1, NBP*NBP ) ; yd = repmat(sin(-th), 1, NBP*NBP ) ; else xd = repmat(cos(th), 1, NBP*NBP ) ; yd = repmat(sin(th), 1, NBP*NBP ) ; end xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,NBP^2*NBO) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,NBP+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
rising-turtle/slam_matlab-master
plotmatches.m
.m
slam_matlab-master/SIFT/sift-0.9.17/sift/plotmatches.m
10,221
utf_8
a701b7d74819dd725219aa884d6f7f18
function h=plotmatches(I1,I2,P1,P2,matches,varargin) % PLOTMATCHES Plot keypoint matches % PLOTMATCHES(I1,I2,P1,P2,MATCHES) plots the two images I1 and I2 % and lines connecting the frames (keypoints) P1 and P2 as specified % by MATCHES. % % P1 and P2 specify two sets of frames, one per column. The first % two elements of each column specify the X,Y coordinates of the % corresponding frame. Any other element is ignored. % % MATCHES specifies a set of matches, one per column. The two % elementes of each column are two indexes in the sets P1 and P2 % respectively. % % The images I1 and I2 might be either both grayscale or both color % and must have DOUBLE storage class. If they are color the range % must be normalized in [0,1]. % % The function accepts the following option-value pairs: % % 'Stacking' ['h'] % Stacking of images: horizontal ['h'], vertical ['v'], diagonal % ['h'], overlap ['o'] % % 'Interactive' [0] % If set to 1, starts the interactive session. In this mode the % program lets the user browse the matches by moving the mouse: % Click to select and highlight a match; press any key to end. % If set to a value greater than 1, the feature matches are not % drawn at all (useful for cluttered scenes). % % See also PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- stack='h' ; interactive=0 ; only_interactive=0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'stacking' stack=varargin{k+1} ; case 'interactive' interactive=varargin{k+1}; otherwise error(['[Unknown option ''', varargin{k}, '''.']) ; end end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- [M1,N1,K1]=size(I1) ; [M2,N2,K2]=size(I2) ; switch stack case 'h' N3=N1+N2 ; M3=max(M1,M2) ; oj=N1 ; oi=0 ; case 'v' M3=M1+M2 ; N3=max(N1,N2) ; oj=0 ; oi=M1 ; case 'd' M3=M1+M2 ; N3=N1+N2 ; oj=N1 ; oi=M1 ; case 'o' M3=max(M1,M2) ; N3=max(N1,N2) ; oj=0; oi=0; otherwise error(['Unkown stacking type '''], stack, ['''.']) ; end % Combine the two images. In most cases just place one image next to % the other. If the stacking is 'o', however, combine the two images % linearly. I=zeros(M3,N3,K1) ; if stack ~= 'o' I(1:M1,1:N1,:) = I1 ; I(oi+(1:M2),oj+(1:N2),:) = I2 ; else I(oi+(1:M2),oj+(1:N2),:) = I2 ; I(1:M1,1:N1,:) = I(1:M1,1:N1,:) + I1 ; I(1:min(M1,M2),1:min(N1,N2),:) = 0.5 * I(1:min(M1,M2),1:min(N1,N2),:) ; end axes('Position', [0 0 1 1]) ; imagesc(I) ; colormap gray ; hold on ; axis image ; axis off ; K = size(matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,matches(1,:)) ; P2(1,matches(2,:))+oj ; nans ] ; y = [ P1(2,matches(1,:)) ; P2(2,matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'g.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','g') ; % -------------------------------------------------------------------- % Interactive % -------------------------------------------------------------------- if(~interactive), return ; end sel1 = unique(matches(1,:)) ; sel2 = unique(matches(2,:)) ; K1 = length(sel1) ; %size(P1,2) ; K2 = length(sel2) ; %size(P2,2) ; X = [ P1(1,sel1) P2(1,sel2)+oj ; P1(2,sel1) P2(2,sel2)+oi ; ] ; fig = gcf ; is_hold = ishold ; hold on ; % save the handlers for later to restore dhandler = get(fig,'WindowButtonDownFcn') ; uhandler = get(fig,'WindowButtonUpFcn') ; mhandler = get(fig,'WindowButtonMotionFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'KeyPressFcn', @key_handler) ; set(fig,'WindowButtonDownFcn',@click_down_handler) ; set(fig,'WindowButtonUpFcn', @click_up_handler) ; set(fig,'Pointer','crosshair') ; data.exit = 0 ; % signal exit to the interactive mode data.selected = [] ; % currently selected feature data.X = X ; % feature anchors highlighted = [] ; % currently highlighted feature hh = [] ; % hook of the highlight plot guidata(fig,data) ; while ~ data.exit uiwait(fig) ; data = guidata(fig) ; if(any(size(highlighted) ~= size(data.selected)) || ... any(highlighted ~= data.selected) ) highlighted = data.selected ; % delete previous highlight if( ~isempty(hh) ) delete(hh) ; end hh=[] ; % each selected feature uses its own color c=1 ; colors=[1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0 ; 1.0 1.0 0.0 ; 0.0 1.0 1.0 ; 1.0 0.0 1.0 ] ; % more than one feature might be seleted at one time... for this=highlighted % find matches if( this <= K1 ) sel=find(matches(1,:)== sel1(this)) ; else sel=find(matches(2,:)== sel2(this-K1)) ; end K=length(sel) ; % plot matches x = [ P1(1,matches(1,sel)) ; P2(1,matches(2,sel))+oj ; nan*ones(1,K) ] ; y = [ P1(2,matches(1,sel)) ; P2(2,matches(2,sel))+oi ; nan*ones(1,K) ] ; hh = [hh line(x(:)', y(:)',... 'Marker','*',... 'Color',colors(c,:),... 'LineWidth',3)]; if( size(P1,1) == 4 ) f1 = unique(P1(:,matches(1,sel))','rows')' ; hp=plotsiftframe(f1); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end if( size(P2,1) == 4 ) f2 = unique(P2(:,matches(2,sel))','rows')' ; f2(1,:)=f2(1,:)+oj ; f2(2,:)=f2(2,:)+oi ; hp=plotsiftframe(f2); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end c=c+1 ; end drawnow ; end end if( ~isempty(hh) ) delete(hh) ; end if ~is_hold hold off ; end set(fig,'WindowButtonDownFcn', dhandler) ; set(fig,'WindowButtonUpFcn', uhandler) ; set(fig,'WindowButtonMotionFcn',mhandler) ; set(fig,'KeyPressFcn', khandler) ; set(fig,'Pointer', pointer ) ; % ==================================================================== function data=selection_helper(data) % -------------------------------------------------------------------- P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; d = (data.X(1,:) - P(1)).^2 + (data.X(2,:) - P(2)).^2 ; dmin=min(d) ; idx=find(d==dmin) ; data.selected = idx ; % ==================================================================== function click_down_handler(obj,event) % -------------------------------------------------------------------- % select a feature and change motion handler for dragging [obj,fig]=gcbo ; data = guidata(fig) ; data.mhandler = get(fig,'WindowButtonMotionFcn') ; set(fig,'WindowButtonMotionFcn',@motion_handler) ; data = selection_helper(data) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function click_up_handler(obj,event) % -------------------------------------------------------------------- % stop dragging [obj,fig]=gcbo ; data = guidata(fig) ; set(fig,'WindowButtonMotionFcn',data.mhandler) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function motion_handler(obj,event) % -------------------------------------------------------------------- % select features while dragging data = guidata(obj) ; data = selection_helper(data); guidata(obj,data) ; uiresume(obj) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- % use keypress to exit data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
gaussianss.m
.m
slam_matlab-master/SIFT/sift-0.9.17/sift/gaussianss.m
7,995
utf_8
5ddc73695f19ef5411d4e19a24f9a860
function SS = gaussianss(I,sigman,O,S,omin,smin,smax,sigma0) % GAUSSIANSS % SS = GAUSSIANSS(I,SIGMAN,O,S,OMIN,SMIN,SMAX,SIGMA0) returns the % Gaussian scale space of image I. Image I is assumed to be % pre-smoothed at level SIGMAN. O,S,OMIN,SMIN,SMAX,SIGMA0 are the % parameters of the scale space as explained in PDF:SIFT.USER.SS. % % See also DIFFSS(), PDF:SIFT.USER.SS. % History % 4-15-2006 Fixed some comments % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(nargin < 6) error('Six arguments are required.') ; end if(~isreal(I) || ndims(I) > 2) error('I must be a real two dimensional matrix') ; end if(smin >= smax) error('smin must be greather or equal to smax') ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- % Scale multiplicative step k = 2^(1/S) ; % Lowe's convention: the scale (o,s)=(0,-1) has standard deviation % 1.6 (was it variance?) if(nargin < 7) sigma0 = 1.6 * k ; end dsigma0 = sigma0 * sqrt(1 - 1/k^2) ; % Scale step factor sigman = 0.5 ; % Nominal smoothing of the image % Scale space structure SS.O = O ; SS.S = S ; SS.sigma0 = sigma0 ; SS.omin = omin ; SS.smin = smin ; SS.smax = smax ; % If mino < 0, multiply the size of the image. % (The rest of the code is consistent with this.) if omin < 0 for o=1:-omin I = doubleSize(I) ; end elseif omin > 0 for o=1:omin I = halveSize(I) ; end end [M,N] = size(I) ; % Index offset so = -smin+1 ; % -------------------------------------------------------------------- % First octave % -------------------------------------------------------------------- % % The first level of the first octave has scale index (o,s) = % (omin,smin) and scale coordinate % % sigma(omin,smin) = sigma0 2^omin k^smin % % The input image I is at nominal scale sigman. Thus in order to get % the first level of the pyramid we need to apply a smoothing of % % sqrt( (sigma0 2^omin k^smin)^2 - sigman^2 ). % % As we have pre-scaled the image omin octaves (up or down, % depending on the sign of omin), we need to correct this value % by dividing by 2^omin, getting %e % sqrt( (sigma0 k^smin)^2 - (sigman/2^omin)^2 ) % if(sigma0 * 2^omin * k^smin < sigman) warning('The nominal smoothing exceeds the lowest level of the scale space.') ; end SS.octave{1} = zeros(M,N,smax-smin+1) ; SS.octave{1}(:,:,1) = imsmooth(I, ... sqrt((sigma0*k^smin)^2 - (sigman/2^omin)^2)) ; for s=smin+1:smax % Here we go from (omin,s-1) to (omin,s). The extra smoothing % standard deviation is % % (sigma0 2^omin 2^(s/S) )^2 - (simga0 2^omin 2^(s/S-1/S) )^2 % % Aftred dividing by 2^omin (to take into account the fact % that the image has been pre-scaled omin octaves), the % standard deviation of the smoothing kernel is % % dsigma = sigma0 k^s sqrt(1-1/k^2) % dsigma = k^s * dsigma0 ; SS.octave{1}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{1}(:,:,s-1 +so)... ), dsigma ) ; end % -------------------------------------------------------------------- % Other octaves % -------------------------------------------------------------------- for o=2:O % We need to initialize the first level of octave (o,smin) from % the closest possible level of the previous octave. A level (o,s) % in this octave corrsponds to the level (o-1,s+S) in the previous % octave. In particular, the level (o,smin) correspnds to % (o-1,smin+S). However (o-1,smin+S) might not be among the levels % (o-1,smin), ..., (o-1,smax) that we have previously computed. % The closest pick is % % / smin+S if smin+S <= smax % (o-1,sbest) , sbest = | % \ smax if smin+S > smax % % The amount of extra smoothing we need to apply is then given by % % ( sigma0 2^o 2^(smin/S) )^2 - ( sigma0 2^o 2^(sbest/S - 1) )^2 % % As usual, we divide by 2^o to cancel out the effect of the % downsampling and we get % % ( sigma 0 k^smin )^2 - ( sigma0 2^o k^(sbest - S) )^2 % sbest = min(smin + S, smax) ; TMP = halveSize(squeeze(SS.octave{o-1}(:,:,sbest+so))) ; target_sigma = sigma0 * k^smin ; prev_sigma = sigma0 * k^(sbest - S) ; if(target_sigma > prev_sigma) TMP = imsmooth(TMP, sqrt(target_sigma^2 - prev_sigma^2) ) ; end [M,N] = size(TMP) ; SS.octave{o} = zeros(M,N,smax-smin+1) ; SS.octave{o}(:,:,1) = TMP ; for s=smin+1:smax % The other levels are determined as above for the first octave. dsigma = k^s * dsigma0 ; SS.octave{o}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{o}(:,:,s-1 +so)... ), dsigma) ; end end % ------------------------------------------------------------------------- % Auxiliary functions % ------------------------------------------------------------------------- function J = doubleSize(I) [M,N]=size(I) ; J = zeros(2*M,2*N) ; J(1:2:end,1:2:end) = I ; J(2:2:end-1,2:2:end-1) = ... 0.25*I(1:end-1,1:end-1) + ... 0.25*I(2:end,1:end-1) + ... 0.25*I(1:end-1,2:end) + ... 0.25*I(2:end,2:end) ; J(2:2:end-1,1:2:end) = ... 0.5*I(1:end-1,:) + ... 0.5*I(2:end,:) ; J(1:2:end,2:2:end-1) = ... 0.5*I(:,1:end-1) + ... 0.5*I(:,2:end) ; function J = halveSize(I) J=I(1:2:end,1:2:end) ; %[M,N] = size(I) ; %m=floor((M+1)/2) ; %n=floor((N+1)/2) ; %J = I(:,1:2:2*n) + I(:,2:2:2*n+1) ; %J = 0.25*(J(1:2:2*m,:)+J(2:2:2*m+1,:)) ;
github
rising-turtle/slam_matlab-master
plotsiftdescriptor.m
.m
slam_matlab-master/SIFT/sift-0.9.17/sift/plotsiftdescriptor.m
5,466
utf_8
65f208762b6abd63cf2fa092410c1256
function h=plotsiftdescriptor(d,f) % PLOTSIFTDESCRIPTOR Plot SIFT descriptor % PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptors D, stored as % columns of the matrix D. D has the same format used by SIFT(). % % PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to the % SIFT frames F, specified as columns of the matrix F. F has % the same format used by SIFT(). % % H=PLOTSIFTDESCRIPTOR(...) returns the handle H to the line drawing % representing the descriptors. % % REMARK. Currently the function supports only descriptors with 4x4 % spatial bins and 8 orientation bins (Lowe's default.) % % See also PLOTSIFTFRAME(), PLOTMATCHES(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. lowe_compatible = 1 ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= 128) error('D should be a 128xK matrix (only standard descriptors accepted)') ; end if nargin > 1 if(size(f,1) ~= 4) error('F should be a 4xK matrix'); end if(size(f,2) ~= size(f,2)) error('D and F must have the same number of columns') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 f = repmat([0;0;1;0],1,K) ; end maginf = 3.0 ; NBP=4 ; NBO=8 ; % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K SBP = maginf * f(3,k) ; th=f(4,k) ; c=cos(th) ; s=sin(th) ; [x,y] = render_descr(d(:,k)) ; xall = [xall SBP*(c*x-s*y)+f(1,k)] ; yall = [yall SBP*(s*x+c*y)+f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- % Helper functions % -------------------------------------------------------------------- % Renders a single descriptor function [x,y] = render_descr( d ) lowe_compatible=1; NBP=4 ; NBO=8 ; [x,y] = meshgrid(-NBP/2:NBP/2,-NBP/2:NBP/2) ; % Rescale d so that the biggest peak fits inside the bin diagram d = 0.4 * d / max(d(:)) ; % We have NBP*NBP bins to plot. Here are the centers: xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % We swap the order of the bin diagrams because they are stored row % major into the descriptor (Lowe's convention that we follow.) xc = xc' ; yc = yc' ; % Each bin contains a star with eight tips xc = repmat(xc(:)',NBO,1) ; yc = repmat(yc(:)',NBO,1) ; % Do the stars th=linspace(0,2*pi,NBO+1) ; th=th(1:end-1) ; if lowe_compatible xd = repmat(cos(-th), 1, NBP*NBP ) ; yd = repmat(sin(-th), 1, NBP*NBP ) ; else xd = repmat(cos(th), 1, NBP*NBP ) ; yd = repmat(sin(th), 1, NBP*NBP ) ; end xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,NBP^2*NBO) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,NBP+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
rising-turtle/slam_matlab-master
syn_error_pos.m
.m
slam_matlab-master/torso_orien/syn_error_pos.m
1,620
utf_8
58cae15433fde58eb47ad2e429f1f1ae
function syn_error_pos() %% after synchronize, compute the error of position % est = load('estimate_07.log'); % load('estimate_06.log'); gt = load('gt_orien_07.log'); % load('gt_orien_06.log'); st_est = 1539612735.666800; % st_gt = 9.475; % syn_gt_est = syn_yaw_with_gt(gt, est, st_gt, st_est); %% find scale st = 30; et = 300; y = syn_gt_est(st:et, 2:4); x = syn_gt_est(:, 5:7); x(:,1) = x(:, 1) - mean(x(:,1)) + mean(y(:,1)); x(:,2) = x(:, 2) - mean(x(:,2)) + mean(y(:,2)); x = x(st:et, :); e = y - x; ir = find(abs(e(:,2)) < 0.02); e = e(ir, :); e = let_smooth(e); E = diag(e*e'); de = sqrt(sum(E)/size(E,1)); % de = sqrt(dot(e, e)/size(e,1)); disp(['rmse = ' num2str(de)]); t = 1:size(x,1); t = t/30; t = t(ir); %% plot the result plot(t, e(:,1), 'r-.'); % plot3(y(:,1), y(:,2), y(:,3), 'g-+'); % plot(y(:,1), y(:,3), 'g-+'); hold on; % plot(x, 'b--'); % plot3(x(:,1), x(:,2), x(:,3), 'b-*'); % plot(x(:,1), x(:,3), 'b-+'); plot(t, e(:,2), 'g-.'); hold on; plot(t, e(:,3), 'b-.'); end function x = let_smooth(x) x(:,1) = smooth(x(:,1), 7); x(:,2) = smooth(x(:,2), 7); x(:,3) = smooth(x(:,3), 7); end function [syn_gt] = syn_yaw_with_gt(gt, est, st_gt, st_est) syn_gt = []; j = 2; for i=1:size(est,1) query_t = est(i,1) - st_est + st_gt; if query_t < 0 continue; end while j < size(gt,1) if gt(j-1,1) <= query_t && gt(j,1) >= query_t syn_gt = [syn_gt; query_t-gt(1,1) gt(j,3:5) est(i,5:7)]; break; end j = j + 1; end end end
github
rising-turtle/slam_matlab-master
syn_error.m
.m
slam_matlab-master/torso_orien/syn_error.m
1,745
utf_8
fd003193838125b389c6b1332849a522
function syn_error() %% after synchronize, compute the error of orientation % est = load('estimate_05.log'); % load('estimate_06.log'); gt = load('gt_orien_05.log'); % load('gt_orien_06.log'); st_est = 1539117466.769190; % 1539117578.592901; st_gt = 48.825; % 50.75; syn_gt_est = syn_yaw_with_gt(gt, est, st_gt, st_est); %% find scale x = syn_gt_est(130:310,3); y = syn_gt_est(130:310,2); x = smooth(x, 9); %% fit the linear model % y = a*x+b; c = polyfit(x, y, 1); % Display evaluated equation y = m*x + b disp(['Equation is y = ' num2str(c(1)) '*x + ' num2str(c(2))]); yy = c(1)*x + c(2); e = y - yy; ir = find(abs(e(:)) < 5); x = x(ir); e = e(ir); y = y(ir); yy = yy(ir); x = smooth(x, 5); y = smooth(y, 5); yy = c(1)*x + c(2); yy = smooth(yy, 7); yy = smooth(yy, 7); e = y - yy; fprintf('max_e = %f std_e = %f', max(e), std(e)); de = sqrt(dot(e, e)/size(e,1)); disp(['rmse = ' num2str(de)]); % index = find(yy < 40); % yy = yy(index); % y = y(index); % x = x(index); t = 1:size(x,1); t = t/30; %% % e = e(ir, :); % e = let_smooth(e); %% plot the result plot(t, y, 'g-.'); hold on; % plot(x, 'r--'); hold on; plot(t, yy, 'b-.'); e = y - yy; plot(t, e, 'r-'); end function [syn_gt] = syn_yaw_with_gt(gt, est, st_gt, st_est) syn_gt = []; j = 2; for i=1:size(est,1) query_t = est(i,1) - st_est + st_gt; if query_t < 0 continue; end while j < size(gt,1) if gt(j-1,1) <= query_t && gt(j,1) >= query_t if gt(j,2) <= 30 && gt(j,2) >= -30 syn_gt = [syn_gt; query_t-gt(1,1) gt(j,2) est(i,3)]; end break; end j = j + 1; end end end
github
rising-turtle/slam_matlab-master
syn_error_z.m
.m
slam_matlab-master/torso_orien/syn_error_z.m
1,419
utf_8
d7ff4a4c9d65e80395717b4b96c7dca6
function syn_error_z() %% after synchronize, compute the depth error % est = load('estimate_07.log'); % load('estimate_06.log'); gt = load('gt_orien_07.log'); % load('gt_orien_06.log'); st_est = 1539612735.666800; % st_gt = 9.475; % syn_gt_est = syn_yaw_with_gt(gt, est, st_gt, st_est); %% find scale st = 30; et = 273; y = syn_gt_est(st:et, 4); x = syn_gt_est(st:et, 7); y = y - y(1); x = x - x(1); x = smooth(x, 5); e = y - x; % ir = find(abs(e(:,2)) < 0.02); % e = e(ir, :); % e = let_smooth(e); E = diag(e*e'); de = sqrt(sum(E)/size(E,1)); % de = sqrt(dot(e, e)/size(e,1)); disp(['rmse = ' num2str(de)]); t = 1:size(x,1); t = t/30; % t = t(ir); %% plot the result plot(t, y, 'g-.'); % plot3(y(:,1), y(:,2), y(:,3), 'g-+'); % plot(y(:,1), y(:,3), 'g-+'); hold on; plot(t, x, 'b-.'); % plot3(x(:,1), x(:,2), x(:,3), 'b-*'); % plot(x(:,1), x(:,3), 'b-+'); % plot(t, e(:,2), 'g-.'); hold on; plot(t, e, 'r-.'); end function [syn_gt] = syn_yaw_with_gt(gt, est, st_gt, st_est) syn_gt = []; j = 2; for i=1:size(est,1) query_t = est(i,1) - st_est + st_gt; if query_t < 0 continue; end while j < size(gt,1) if gt(j-1,1) <= query_t && gt(j,1) >= query_t syn_gt = [syn_gt; query_t-gt(1,1) gt(j,3:5) est(i,5:7)]; break; end j = j + 1; end end end
github
rising-turtle/slam_matlab-master
find_orien_gt.m
.m
slam_matlab-master/torso_orien/find_orien_gt.m
1,941
utf_8
b8d7bf0923f301abaea67a4802f61dfe
function find_orien_gt() % Oct. 7 2018, He Zhang, [email protected] % read points tracked by motion capture and estimate the square model in % the camera coordinate system, % then compute the normal of the torsor M = csvread('gt_seq_07.csv'); vt = M(:,1); pts_T = M(:,2:13); pts_S = M(:,14:25); mean_pts_T = mean(pts_T); T_T2w = compute_transform(mean_pts_T); T_c2T = [1 0 0 -0.055; 0 1 0 -0.05; 0 0 1 -0.0075; 0 0 0 1;]; T_c2w = T_c2T * T_T2w; [vyaw, vpos] = compute_yaw_and_pos(pts_S, T_c2w); D = [vt vyaw vpos]; dlmwrite('gt_orien_07.log', D, 'delimiter', '\t'); end %% compute yaw function [vyaw, vpos] = compute_yaw_and_pos(pts_S, T_c2w) [row, col] = size(pts_S); N = row*col; pts_S = reshape(pts_S', [1, N]); ps = reshape(pts_S, [3, N/3]); [R, t] = decompose(T_c2w); ps = R * ps + repmat(t, 1, N/3); vyaw = zeros(row, 1); vpos = zeros(row, 3); %% compute norm j = 1; for i = 1:4:size(ps, 2) psi = ps(:,i:i+3); ni = compute_normal(psi); central_pt = mean(psi,2); vyaw(j) = compute_yaw_norm(ni); vpos(j, :) = central_pt'; j = j + 1; end end %% compute yaw function yaw = compute_yaw_norm(n) yaw = asin(n(1)/sqrt(n(1)*n(1)+n(3)*n(3))) * 180. /pi; end %% compute normal function n = compute_normal(pts) mean_pt = mean(pts, 2); pts = pts - mean_pt; Cov = pts*pts'; [V,D] = eig(Cov); n = V(:,1); if n(3) > 0 n= n * -1.; end end %% estimate function T = compute_transform(p_w) % T pattern % p_world = reshape(p_w, [3, 4]); p_local = [0, 0, -0.04; 0.03, 0, 0; 0, 0, 0; -0.06, 0, 0]; [rot, trans] = find_transform_matrix( p_local', p_world); tmp_p_l = rot * p_world + repmat(trans, 1, 4); T = combine(rot, trans); end function [T] = combine(R, t) T = [R t; 0 0 0 1]; end function [R, t] = decompose(T) R = T(1:3, 1:3); t = T(1:3, 4); end
github
rising-turtle/slam_matlab-master
load_camera_frame.m
.m
slam_matlab-master/graph_slam/load_camera_frame.m
2,106
utf_8
f61def678bbb3739023b59fd0fc7aa40
function [img, frm, des, p, ld_err] = load_camera_frame(fid) % % David Z, March 3th, 2015 % load camera data: % img, 2D pixels % frm, % p [x y z]; (width, height, 3) % ld_err = 1, if not exist global g_data_dir g_data_prefix g_data_suffix g_camera_type global g_filter_type ld_err = 0; % TODO: take the load data error into consideration % now only support SwissRanger cut_off_boarder = 0; % weather to cut off the boarder pixels dm = 1; % directory of data? scale = 1; % scale the intensity image to the range [0~255] value_type = 'int'; % convert to int, after scaling the image %% feature has been stored if file_exist(fid) ~= 0 [img, frm, des, p] = load_feature(fid); return ; else if strcmp(g_camera_type, 'creative') [img, x, y, z, c] = LoadCreative_dat(g_camera_type, fid); else if strcmp(g_data_suffix, 'dat') [img, x, y, z, c] = LoadSR_no_bpc(g_camera_type, g_filter_type, ... cut_off_boarder, dm, fid, scale, value_type); elseif strcmp(g_data_suffix, 'bdat') [img, x, y, z, c] = LoadSR_no_bpc_time_single_binary(g_camera_type, ... g_filter_type, cut_off_boarder, dm, fid, scale, value_type); end end if isempty(img) frm = []; des = []; p =[]; ld_err = 1; return; end end %% sift feature global g_sift_threshold if g_sift_threshold == 0 [frm, des] = sift(img); else [frm, des] = sift(img, 'threshold', g_sift_threshold); end %% confindence filtering [frm, des] = confidence_filtering(frm, des, c); %% construct return value [m, n] = size(x); p = zeros(m, n, 3); p(:,:,1) = x; p(:,:,2) = y; p(:,:,3) = z; %% save it into file global g_save_vro_middle_result if g_save_vro_middle_result save_feature(fid, img, frm, des, p); end end %% check weather this visul feature exist function [exist_flag] = file_exist(id) %% get file name global g_data_dir g_data_prefix g_feature_dir file_name = sprintf('%s/%s/%s_%04d.mat', g_data_dir, g_feature_dir, g_data_prefix, id); exist_flag = exist(file_name, 'file'); end
github
rising-turtle/slam_matlab-master
pre_check_dir.m
.m
slam_matlab-master/graph_slam/pre_check_dir.m
547
utf_8
8a7e9d1ce4f080306bd3b5ee748a06f2
% % David Z, Jan 22th, 2015 % pre-check the save dir, if not exist, create it % function pre_check_dir(dir_) global g_feature_dir g_matched_dir g_pose_std_dir feature_dir = sprintf('/%s', g_feature_dir); match_dir = sprintf('/%s', g_matched_dir); not_exist_then_create(strcat(dir_, feature_dir)); not_exist_then_create(strcat(dir_, match_dir)); % not_exist_then_create(strcat(dir_, '/pose_std')); not_exist_then_create('./results'); end function not_exist_then_create(dir_) if ~isdir(dir_) mkdir(dir_); end end
github
rising-turtle/slam_matlab-master
LoadCreative_dat.m
.m
slam_matlab-master/graph_slam/LoadCreative_dat.m
783
utf_8
f539355d95dcac539680013bc4ae091c
% % David Z, Jan 22th, 2015 % Load Creative Data % function [img, x, y, z, c, time, err] = LoadCreative_dat(data_name, j) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name); img = []; x = []; y = []; z = []; c = []; err = 0; %% time elapse t_pre = tic; %% load data file [file_name, err] = sprintf('%s%d.dat', prefix, j); if ~exist(file_name, 'file') fprintf('LoadCreative_dat.m: file not exist: %s\n', file_name); err = 1; return ; end a = load(file_name); % elapsed time := 0.2 sec if isempty(a) fprintf('LoadCreative_dat.m: file is empty!\n'); err = 1; return; end row = size(a, 1); img = a(1:row/4, :); x = a((row/4+1):row/2, :); y= a(row/2+1:3*row/4, :); z = a(3*row/4+1:row, :); c = zeros(size(x)); time = toc(t_pre); end
github
rising-turtle/slam_matlab-master
VRO (2).m
.m
slam_matlab-master/graph_slam/VRO (2).m
9,711
utf_8
3d1a277522b64445257bd5affbb1e382
function [t, pose_std, e] = VRO(id1, id2, img1, img2, des1, frm1, p1, des2, frm2, p2) % % March 3th, 2015, David Z % match two images and return the transformation between img1 and img2 % t : [ phi, theta, psi, trans]; % pose_std: pose covariance % e : error % %% extract features, match img1 to img2 if ~exist('des1','var') [frm1, des1] = sift(img1); end if ~exist('des2','var') [frm2, des2] = sift(img2); end %% pose covariance pose_std = []; if file_exist(id1, id2) ~= 0 %% match points stored in a middle file [op_match, e] = load_matched_points_zh(id1, id2); if e > 0 [t,e] = error_exist('ransac filter failed!', 2); return ; end else %% if save the intermiddle data, do it global g_save_feature_for_debug if g_save_feature_for_debug ftar_name = sprintf('tar_nodes/node_%d.log', id1); fsrc_name = sprintf('src_nodes/node_%d.log', id2); save_feature(ftar_name, des1, frm1, p1, id1); save_feature(fsrc_name, des2, frm2, p2, id2); end %% first, sift feature match match = siftmatch(des1, des2, 2.); % fprintf('VRO.m after siftmatch, matched num: %d\n',size(match,2)); %% valid depth filter match correspondences global g_depth_filter_max g_minimum_ransac_num match = depth_filter(match, g_depth_filter_max, 0, frm1, frm2, p1, p2); % fprintf('VRO.m after depth_filter, matched num: %d\n',size(match,2)); pnum = size(match,2); % pnum: matched feature pairs if pnum <= g_minimum_ransac_num [t,e] = error_exist('too few valid sift points for ransac!', 1); return; end %% second, ransac to obtain the final transformation result [op_match, e] = ransac_filter(match, frm1, frm2, p1, p2); % op_match = match; if e > 0 [t,e] = error_exist('ransac filter failed!', 2); save_matched_points_zh(id1, id2, op_match, e); return ; end %% save the match points global g_save_vro_middle_result if g_save_vro_middle_result save_matched_points_zh(id1, id2, op_match); end end %% lastly, SVD to compute the transformation [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2); end %% SVD transformation function [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2) e = 0; op_num = size(op_match, 2); op_pset_cnt = 1; x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; end %% SVD solve [rot, trans, sta] = find_transform_matrix_e6(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); t = [ phi, theta, psi, trans']; if sta <= 0 [t,e] = error_exist('no solution in SVD.', 3); end %% compute pose convariance [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; end %% delete the pairs that contain (0,0,0) points function match = filter_zero_pairs(match, frm1, frm2, p1, p2) pnum = size(match, 2); r_match = []; % return match x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; p1x=-x1(ROW1, COL1); p1z=z1(ROW1, COL1); p1y=y1(ROW1, COL1); p2x=-x2(ROW2, COL2); p2z=z2(ROW2, COL2); p2y=y2(ROW2, COL2); %% deletet the zero pairs if (p1x + p1z + p1y == 0) || (p2x + p2y + p2z == 0) continue; end r_match = [r_match match(:,i)]; end match = r_match; end %% ransac transformation to get the result function [op_match, error] = ransac_filter(match, frm1, frm2, p1, p2) global g_ransac_iteration_limit % pnum = size(match,2); % number of matched pairs error = 0; op_match = []; %% delete the pairs that contain (0,0,0) points match = filter_zero_pairs(match, frm1, frm2, p1, p2); pnum = size(match,2); % number of matched pairs %% ransac with a limited number if g_ransac_iteration_limit > 0 % rst = min(g_ransac_iteration_limit, nchoosek(pnum, 4)); % at least C_n^4 times rst = g_ransac_iteration_limit; tmp_nmatch = zeros(2, pnum, rst); tmp_cnum = zeros(rst,1); for i=1:rst [n_match, rs_match, cnum, translation] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange', i); % tmp_nmatch(:,1:cnum, i) = n_match(:,1:cnum); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_cnum(i) = cnum; if cnum > 0 fprintf('iteration %d inlier num: %d, translation %f %f %f\n', i, cnum, translation); end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent i=0; eta_0 = 0.03; % 97 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; max_iteration = 120000; while eta > eta_0 i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange'); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end % tmp_nmatch(:,1:cnum,i) = n_match(:,1:cnum); tmp_cnum(i) = cnum; if cnum > 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration error = 1; break; end end ransac_iteration = i; end valid_ransac = 3; % this is the least valid number [rs_max, rs_ind] = max(tmp_cnum); fprintf('select %d with matched num = %d\n', rs_ind, rs_max); op_num = tmp_cnum(rs_ind); if (op_num < valid_ransac || error > 0) error = 1; return; end %% optimal matched pair set op_match(:, 1:op_num) = tmp_nmatch(:, 1:op_num, rs_ind); end %% error exist function [t, e] = error_exist(msg_err, e_type) fprintf('VRO.m: %s\n', msg_err); e = e_type; t = zeros(1,6); end %% using depth to filter the erroreous matches % p1 [x1 y1 z1] p2 [x2 y2 z2] % function match = depth_filter(m, max_d, min_d, frm1, frm2, p1, p2) match = []; m_img1 = []; m_img2 = []; m_dpt1 = []; m_dpt2 = []; cnt_new = 1; pnum = size(m,2); for i=1:pnum frm1_index = m(1,i); frm2_index = m(2,i); m_pix1 = frm1(:, frm1_index); m_pix2 = frm2(:, frm2_index); COL1 = round(m_pix1(1))+1; COL2 = round(m_pix2(1))+1; ROW1 = round(m_pix1(2))+1; ROW2 = round(m_pix2(2))+1; %% ? row, col is right? %% this match is a valid pair, this test is for Kinect % if z(ROW1, COL1) > min_d && z(ROW1, COL1) < max_d ... % && z(ROW2, COL2) > min_d && z(ROW2, COL2) < max_d % ... % end temp_pt1=[-p1(ROW1, COL1, 1), p1(ROW1, COL1, 3), p1(ROW1, COL1, 2)]; temp_pt2=[-p2(ROW2, COL2, 1), p2(ROW2, COL2, 3), p2(ROW2, COL2, 2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= min_d && temp_pt1_dist <= max_d ... && temp_pt2_dist >= min_d && temp_pt2_dist <= max_d match(:,cnt_new) = m(:,i); cnt_new = cnt_new + 1; end end end %% check weather this matched file exist function [exist_flag] = file_exist(id1, id2) %% get file name global g_data_dir g_data_prefix g_matched_dir file_name = sprintf('%s/%s/%s_%04d_%04d.mat', g_data_dir, g_matched_dir ... ,g_data_prefix, id1, id2); exist_flag = exist(file_name, 'file'); end %% save feature in a style that can be loaded into vo in my sr_slam function save_feature(fname, des, frm, p, id) %% open file fid = fopen(fname, 'w'); %% save feature loaction, size, orientation M = size(frm, 2); fprintf(fid, '-1 -1 %d 1 0\n', id); fprintf(fid, '%d\n', M); %% sift 2d information response = zeros(1, M); octave = zeros(1, M); class_id = ones(1, M).*-1; sift_loc_2d = [frm; response; octave; class_id]'; fprintf(fid, '%f %f %f %f %f %d %d \n', sift_loc_2d'); %% sift 3d location sift_loc_3d = zeros(M, 4); for i=1:M m_pix = frm(:, i); COL = round(m_pix(1))+1; ROW = round(m_pix(2))+1; pt =[-p(ROW, COL, 1), p(ROW, COL, 3), p(ROW, COL, 2)]; sift_loc_3d(i,1:3) = pt(1:3); sift_loc_3d(i,4) = 1; end fprintf(fid, '%f %f %f %f\n', sift_loc_3d'); %% sift descriptors D_SIZE = size(des, 1); fprintf(fid, '%d\n', D_SIZE); for i=1:M for j=1:D_SIZE fprintf(fid, '%f ', des(j,i)); end fprintf(fid, '\n'); end fclose(fid); end
github
rising-turtle/slam_matlab-master
graphslam_addpath.m
.m
slam_matlab-master/graph_slam/graphslam_addpath.m
1,409
utf_8
503a943bb30b3483282203370b1e5f57
% Add the path for graph slam % % Author : Soonhac Hong ([email protected]) % Date : 10/16/12 function graphslam_addpath % addpath('D:\Soonhac\SW\gtsam-toolbox-2.3.0-win64\toolbox'); % addpath('D:\soonhac\SW\kdtree'); % addpath('D:\soonhac\SW\LevenbergMarquardt'); % addpath('D:\soonhac\SW\Localization'); % addpath('D:\soonhac\SW\SIFT\sift-0.9.19-bin\sift'); % addpath('D:\soonhac\SW\slamtoolbox\slamToolbox_11_09_08\FrameTransforms\Rotations'); % addpath('D:\Soonhac\SW\plane_fitting_code'); % addpath('F:\co-worker\soonhac\gtsam-toolbox-2.3.0-win64\toolbox'); % addpath('F:\co-worker\soonhac\SW\kdtree'); % addpath('F:\co-worker\soonhac\LevenbergMarquardt'); % addpath('F:\co-worker\soonhac\Localization'); % addpath('F:\co-worker\soonhac\SIFT\sift-0.9.19-bin\sift'); % addpath('F:\co-worker\soonhac\slamtoolbox\slamToolbox_11_09_08\FrameTransforms\Rotations'); % addpath('F:\co-worker\soonhac\plane_fitting_code'); global g_ws_dir; addpath(strcat(g_ws_dir, '/gtsam-toolbox-2.3.0-win64/toolbox')); addpath(strcat(g_ws_dir, '/kdtree')); addpath(strcat(g_ws_dir, '/LevenbergMarquardt')); addpath(strcat(g_ws_dir, '/SIFT/sift-0.9.19-bin/sift')); addpath(strcat(g_ws_dir, '/slamtoolbox/slamToolbox_11_09_08/FrameTransforms/Rotations')); addpath(strcat(g_ws_dir, '/plane_fitting_code')); %% modified modules addpath(strcat(g_ws_dir, '/Localization')); %% addpath(strcat(g_ws_dir, '/GraphSLAM')); %% end
github
rising-turtle/slam_matlab-master
plot_graph_trajectory.m
.m
slam_matlab-master/graph_slam/plot_graph_trajectory.m
1,866
utf_8
57a03921cd0e61d805de50b94592cd8c
function plot_graph_trajectory(gtsam_pose_initial, gtsam_pose_result) % % David Z, 3/6/2015 % draw the trajectory in the graph structure % import gtsam.* plot_xyz_initial = []; %% plot the initial pose trajectory : VRO result keys = KeyVector(gtsam_pose_initial.keys); initial_max_index = keys.size-1; for i=0:int32(initial_max_index) key = keys.at(i); x = gtsam_pose_initial.at(key); % T = x.matrix(); % [ry, rx, rz] = rot_to_euler(T(1:3,1:3)); plot_xyz_initial(i+1,:)=[x.x x.y x.z]; end plot_xyz_result = []; %% plot the result pose trajectory : GO graph optimization result if exist('gtsam_pose_result', 'var') keys = KeyVector(gtsam_pose_result.keys); initial_max_index = keys.size-1; for i=0:int32(initial_max_index) key = keys.at(i); x = gtsam_pose_result.at(key); % T = x.matrix(); % [ry, rx, rz] = rot_to_euler(T(1:3,1:3)); plot_xyz_result(i+1,:)=[x.x x.y x.z]; end end %% plot them figure(1); subplot(1,2,2); plot(plot_xyz_initial(:,1),plot_xyz_initial(:,2),'b-', 'LineWidth', 2); legend('VRO'); hold on; plot_start_point(plot_xyz_initial); if exist('gtsam_pose_result', 'var') plot(plot_xyz_result(:,1),plot_xyz_result(:,2),'r-', 'LineWidth', 2); legend('PGO'); end xlabel('X');ylabel('Y'); % Modify size of x in the graph % xlim([-7 15]); % for etas523_exp2 % xlim([-15 5]); % for Amir's exp1 % xlim([-10 10]); % for etas523_exp2_lefthallway % ylim([-5 15]); global g_dis_x_min g_dis_x_max g_dis_y_min g_dis_y_max xlim([g_dis_x_min g_dis_x_max]); % for etas523_exp2_lefthallway ylim([g_dis_y_min g_dis_y_max]); hold off; grid; axis equal; end function plot_start_point(plot_xyz_result) plot(plot_xyz_result(1,1),plot_xyz_result(1,2),'ko', 'LineWidth', 3,'MarkerSize', 3); text(plot_xyz_result(1,1)-1.5,plot_xyz_result(1,2)-1.5,'Start','Color',[0 0 0]); end
github
rising-turtle/slam_matlab-master
img_preprocess.m
.m
slam_matlab-master/graph_slam/img_preprocess.m
1,748
utf_8
b8de79b4d263155edea6f71fe59278e6
function [ img ] = img_preprocess( data_name, old_file_version) %IMG_PREPROCESS Summary of this function goes here % Detailed explanation goes here if nargin < 1 old_file_version = 1; % 1; % data_name='/home/davidz/work/EmbMess/mesa/pcl_mesa/build/bin/sr_data/d1_0001.bdat'; data_name='/home/davidz/work/data/SwissRanger4000/try/d1_0001.bdat'; end fileID=fopen(data_name); if fileID==-1 %disp('File open fails !!'); return; end sr4k_image_width = 176; sr4k_image_height = 144; if old_file_version z=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); x=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); y=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); img=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); % img=fread(fileID,[144,176],'uint16'); else img=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); dis=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); dis = dis'; dis = scale_image(dis); imshow(dis); end img = img'; img = scale_image(img); imshow(img); end function [img] = scale_image(img) %% set the pixels that is larger than limit = 65000, to 0 [m, n] = find (img>65000); %???? imgt=img; num=size(m,1); for kk=1:num imgt(m(kk), n(kk))=0; end %% set the pixels larger than limit, to max(imgt) value imax=max(max(imgt)); for kk=1:num img(m(kk),n(kk))=imax; end %% sqrt(img) and rescale to 0-255 img=sqrt(img).*255./sqrt(max(max(img))); %This line degrade the performance of SURF img = uint8(img); %% Adaptive histogram equalization % img = adapthisteq(img); %% gaussian filter gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 % img=imfilter(img, gaussian_h,'replicate'); end
github
rising-turtle/slam_matlab-master
VRO.m
.m
slam_matlab-master/graph_slam/VRO.m
7,883
utf_8
375948226a012ecf3f66d09fec7af01c
function [t, pose_std, e] = VRO(id1, id2, img1, img2, des1, frm1, p1, des2, frm2, p2) % % March 3th, 2015, David Z % match two images and return the transformation between img1 and img2 % t : [ phi, theta, psi, trans]; % pose_std: pose covariance % e : error % %% extract features, match img1 to img2 if ~exist('des1','var') [frm1, des1] = sift(img1); end if ~exist('des2','var') [frm2, des2] = sift(img2); end %% pose covariance pose_std = []; if file_exist(id1, id2) ~= 0 %% match points stored in a middle file [op_match, e] = load_matched_points_zh(id1, id2); if e > 0 [t,e] = error_exist('ransac filter failed!', 2); return ; end else %% first, sift feature match match = siftmatch(des1, des2); % fprintf('VRO.m after siftmatch, matched num: %d\n',size(match,2)); %% valid depth filter match correspondences global g_depth_filter_max g_minimum_ransac_num match = depth_filter(match, g_depth_filter_max, 0, frm1, frm2, p1, p2); % fprintf('VRO.m after depth_filter, matched num: %d\n',size(match,2)); pnum = size(match,2); % pnum: matched feature pairs if pnum <= g_minimum_ransac_num [t,e] = error_exist('too few valid sift points for ransac!', 1); return; end %% second, ransac to obtain the final transformation result [op_match, e] = ransac_filter(match, frm1, frm2, p1, p2); % op_match = match; if e > 0 [t,e] = error_exist('ransac filter failed!', 2); save_matched_points_zh(id1, id2, op_match, e); return ; end %% save the match points save_matched_points_zh(id1, id2, op_match); end %% lastly, SVD to compute the transformation [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2); end %% SVD transformation function [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2) e = 0; op_num = size(op_match, 2); op_pset_cnt = 1; x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; end %% SVD solve [rot, trans, sta] = find_transform_matrix_e6(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); t = [ phi, theta, psi, trans']; if sta <= 0 [t,e] = error_exist('no solution in SVD.', 3); end %% compute pose convariance [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; end %% delete the pairs that contain (0,0,0) points function match = filter_zero_pairs(match, frm1, frm2, p1, p2) pnum = size(match, 2); r_match = []; % return match x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; p1x=-x1(ROW1, COL1); p1z=z1(ROW1, COL1); p1y=y1(ROW1, COL1); p2x=-x2(ROW2, COL2); p2z=z2(ROW2, COL2); p2y=y2(ROW2, COL2); %% deletet the zero pairs if (p1x + p1z + p1y == 0) || (p2x + p2y + p2z == 0) continue; end r_match = [r_match match(:,i)]; end match = r_match; end %% ransac transformation to get the result function [op_match, error] = ransac_filter(match, frm1, frm2, p1, p2) global g_ransac_iteration_limit % pnum = size(match,2); % number of matched pairs error = 0; op_match = []; %% delete the pairs that contain (0,0,0) points match = filter_zero_pairs(match, frm1, frm2, p1, p2); pnum = size(match,2); % number of matched pairs %% ransac with a limited number if g_ransac_iteration_limit > 0 rst = min(g_ransac_iteration_limit, nchoosek(pnum, 4)); % at least C_n^4 times tmp_nmatch = zeros(2, pnum, rst); tmp_cnum = zeros(rst,1); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange'); % tmp_nmatch(:,1:cnum, i) = n_match(:,1:cnum); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_cnum(i) = cnum; end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent i=0; eta_0 = 0.03; % 97 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; max_iteration = 120000; while eta > eta_0 i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange'); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end % tmp_nmatch(:,1:cnum,i) = n_match(:,1:cnum); tmp_cnum(i) = cnum; if cnum > 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration error = 1; break; end end ransac_iteration = i; end valid_ransac = 3; % this is the least valid number [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if (op_num < valid_ransac || error > 0) error = 1; return; end %% optimal matched pair set op_match(:, 1:op_num) = tmp_nmatch(:, 1:op_num, rs_ind); end %% error exist function [t, e] = error_exist(msg_err, e_type) fprintf('VRO.m: %s\n', msg_err); e = e_type; t = zeros(1,6); end %% using depth to filter the erroreous matches % p1 [x1 y1 z1] p2 [x2 y2 z2] % function match = depth_filter(m, max_d, min_d, frm1, frm2, p1, p2) match = []; m_img1 = []; m_img2 = []; m_dpt1 = []; m_dpt2 = []; cnt_new = 1; pnum = size(m,2); for i=1:pnum frm1_index = m(1,i); frm2_index = m(2,i); m_pix1 = frm1(:, frm1_index); m_pix2 = frm2(:, frm2_index); COL1 = round(m_pix1(1))+1; COL2 = round(m_pix2(1))+1; ROW1 = round(m_pix1(2))+1; ROW2 = round(m_pix2(2))+1; %% ? row, col is right? %% this match is a valid pair, this test is for Kinect % if z(ROW1, COL1) > min_d && z(ROW1, COL1) < max_d ... % && z(ROW2, COL2) > min_d && z(ROW2, COL2) < max_d % ... % end temp_pt1=[-p1(ROW1, COL1, 1), p1(ROW1, COL1, 3), p1(ROW1, COL1, 2)]; temp_pt2=[-p2(ROW2, COL2, 1), p2(ROW2, COL2, 3), p2(ROW2, COL2, 2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= min_d && temp_pt1_dist <= max_d ... && temp_pt2_dist >= min_d && temp_pt2_dist <= max_d match(:,cnt_new) = m(:,i); cnt_new = cnt_new + 1; end end end %% check weather this matched file exist function [exist_flag] = file_exist(id1, id2) %% get file name global g_data_dir g_data_prefix g_matched_dir file_name = sprintf('%s/%s/%s_%04d_%04d.mat', g_data_dir, g_matched_dir ... ,g_data_prefix, id1, id2); exist_flag = exist(file_name, 'file'); end
github
rising-turtle/slam_matlab-master
dump_matrix_2_file.m
.m
slam_matlab-master/graph_slam/dump_matrix_2_file.m
364
utf_8
ff92d9360b0b19252a256ed0ebd60fd3
function dump_matrix_2_file(fname, m) % % David Z, Feb 19, 2015 % try to construct a function to dump every kind of matrix into a text file % dump_matrix_2_file_wf(fname, m) end function dump_matrix_2_file_wf(f, m) f_id = fopen(f, 'w+'); for i=1:size(m,1) fprintf(f_id, '%f ', m(i,:)); fprintf(f_id, '\n'); end fclose(f_id); end
github
rising-turtle/slam_matlab-master
sampling_vro.m
.m
slam_matlab-master/Localization/sampling_vro.m
1,168
utf_8
6034c6abcaf471707991c8ae56168921
% Sampling VRO with interval % % Author : Soonhac Hong ([email protected]) % Date : 12/13/13 function sampling_vro() % Load data file_name = '498_frame_abs_intensity_sift_i_r_s_i_t_t_c_i_a_c_c_featureidxfix_fast_fast_dist2_nobpc_20st_gaussian_0.dat'; vro = load(file_name); % Sample VRO with interval interval = 15; new_vro=[]; vro_idx = 1; success_flag = 1; while vro_idx <= (max(vro(:,1))-interval) idx = find(vro(:,1)==vro_idx & vro(:,2) == (vro_idx+interval)); if ~isempty(idx) new_vro=[new_vro; vro(idx,:)]; vro_idx = vro_idx+interval; else success_flag = 0; disp('Faile to sample vro results'); break; end end % Write results if success_flag == 1 output_file_name = sprintf('result\\object_recognition\\indoor_monitor_1\\498_frame_abs_intensity_sift_i_r_s_i_t_t_c_i_a_c_c_featureidxfix_fast_fast_dist2_nobpc_20st_gaussian_0_monitor1_s%d.dat', interval); output_fd = fopen(output_file_name,'w'); fprintf(output_fd,'%d %d %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n', new_vro'); fclose(output_fd); end end
github
rising-turtle/slam_matlab-master
load_pose_std.m
.m
slam_matlab-master/Localization/load_pose_std.m
1,367
utf_8
329d9ca060491048ca17bf713699f70a
% Load matched points from a file % % Author : Soonhac Hong ([email protected]) % Date : 3/11/2013 function [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, isgframe, sequence_data) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end if strcmp(isgframe, 'gframe') file_name = sprintf('%s/pose_std_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/pose_std/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(isgframe, 'gframe') file_name = sprintf('%s/pose_std_gframe/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); else file_name = sprintf('%s/pose_std/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); end end % if strcmp(isgframe, 'gframe') % file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % else % file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % end load(file_name); end
github
rising-turtle/slam_matlab-master
compute_pose_std.m
.m
slam_matlab-master/Localization/compute_pose_std.m
1,000
utf_8
92a7ecfe7741a125b61cc27344fc802d
% Compute covariance of vro % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % % Reference : [cov_pose_shift,q_dpose,T_dpose] = bootstrap_cov_calc(idx1,idx2) % function [pose_std] = compute_pose_std(op_pset1,op_pset2,rot_mean, trans_mean) nData = size(op_pset1,2); sampleSize = min(40,floor(0.75*nData)); nSamplePossible = factorial(nData)/(factorial(sampleSize)*factorial(nData - sampleSize)); nSample = min(50,nSamplePossible); pose_std_total=[]; [phi_mean, theta_mean, psi_mean] = rot_to_euler(rot_mean); pose_mean = [phi_mean, theta_mean, psi_mean, trans_mean']; legitSamples = 0; for i=1:nSample idxRand = randsample(1:size(op_pset1,2),sampleSize); [rot, trans, sta] = find_transform_matrix(op_pset1(:,idxRand), op_pset2(:,idxRand)); [phi, theta, psi] = rot_to_euler(rot); pose_std_total(i,:) = [phi, theta, psi, trans']; end %pose_std = std(pose_std_total); pose_std = sqrt((sum((pose_std_total - repmat(pose_mean, nSample, 1)).^2))/(nSample-1)); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_a.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_a.m
20,536
utf_8
73fe356fb62535fac468a5d25f2e87ca
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_a(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); %[img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe);%% modify for read data from creative !!! [img1,x1, y1, z1] = load_argos3d(dm, cframe); elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); %[img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); [img2,x2, y2, z2] = load_argos3d(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max =1; % [m] valid_dist_min =0.15; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; %mapped cor_j1 is 320*240 matrix, then know the row and col %of matched point %[row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); %[row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; % temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; % temp_pt1_dist = sqrt(sum(temp_pt1.^2)); % temp_pt2_dist = sqrt(sum(temp_pt2.^2)); %%%%%above comment for creative temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[ROW1 COL1]'; match_depth2(:,cnt_new)=[ROW2 COL2]'; cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); [n_match, rs_match, cnum] = ransac_argos3d(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); %[n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
get_swing_filename.m
.m
slam_matlab-master/Localization/get_swing_filename.m
595
utf_8
8aea150ea1b5e47239276537edf87afc
% Get directory name of motive datasets % % Author : Soonhac Hong ([email protected]) % Date : 11/20/13 function motive_filename_lists=get_swing_filename() motive_filename_lists = {'forward1','forward2','forward3','forward4','forward5','forward6','forward7_10m','forward8_10m', 'forward9_10m','forward10_10m','forward11_10m','forward12_10m','forward13_10m','forward14_10m','forward15_10m','forward16_10m','revisiting1_10m','revisiting2_10m','revisiting3_10m','revisiting4_10m','revisiting5_10m','revisiting6_10m','revisiting7_10m','revisiting8_10m','revisiting9_10m','revisiting10_10m'}; end
github
rising-turtle/slam_matlab-master
LoadSR_no_bpc_wu.m
.m
slam_matlab-master/Localization/LoadSR_no_bpc_wu.m
4,230
utf_8
3481d9400dbded650f4cbb0568337a7a
% Load data from Swiss Ranger % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 % No bad pixel compensation function [img, x, y, z, c, rtime] = LoadSR_no_bpc_wu(data_name, filter_name, boarder_cut_off, dm, j, scale, type_value) % if nargin < 6 % scale = 1; % end %apitch=-43+3*dm; %[prefix, err]=sprintf('../data/d%d_%d/d%d', dm, apitch, dm); %[prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); confidence_read=1; path = 'd:/co_worker/image_'; if j<10 % [s, err]=sprintf('%s_000%d.dat', prefix, j); s=sprintf('%s%d/d1_000%d.dat',path, dm-1, j); elseif j<100 % [s, err]=sprintf('%s_00%d.dat', prefix, j); s=sprintf('%s%d/d1_00%d.dat', path, dm-1,j); elseif j<1000 % [s, err]=sprintf('%s_0%d.dat', prefix, j); s=sprintf('%s%d/d1_0%d.dat', path, dm-1,j); else % [s, err]=sprintf('%s_%d.dat', prefix, j); s=sprintf('%s%d/d1_%d.dat',path, dm-1, j); end %t_pre = clock; %cputime; t_pre = tic; fw=1; a = load(s); % elapsed time := 0.2 sec k=144*3+1; img = double(a(k:k+143, :)); z = a(1:144, :); x = a(145:288, :); y = a(289:144*3, :); z = medfilt2(z,[fw fw]); x = medfilt2(x, [fw fw]); y = medfilt2(y, [fw fw]); if confidence_read == 1 c = a(144*4+1:144*5, :); % Apply median filter to a pixel which confidence leve is zero. %confidence_cut_off = 1; %[img, x, y, z, c] = compensate_badpixel(img, x, y, z, c, confidence_cut_off); else c = 0; end %Cut-off on the horizontal boarder if boarder_cut_off > 0 img=cut_boarder(img,boarder_cut_off); x=cut_boarder(x,boarder_cut_off); y=cut_boarder(y,boarder_cut_off); z=cut_boarder(z,boarder_cut_off); end %Scale intensity image to [0 255] if scale == 1 img = scale_img(img, fw, type_value, 'intensity'); end % % Adaptive histogram equalization img = adapthisteq(img); %img = histeq(img); %filtering %filter_list={'none','median','gaussian'}; gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 gaussian_h_5 = fspecial('gaussian',[5 5],1); %sigma = 1 switch filter_name case 'median' img=medfilt2(img, [3 3]); x=medfilt2(x, [3 3]); y=medfilt2(y, [3 3]); z=medfilt2(z, [3 3]); case 'median5' img=medfilt2(img, [5 5]); x=medfilt2(x, [5 5]); y=medfilt2(y, [5 5]); z=medfilt2(z, [5 5]); case 'gaussian' img=imfilter(img, gaussian_h,'replicate'); x=imfilter(x, gaussian_h,'replicate'); y=imfilter(y, gaussian_h,'replicate'); z=imfilter(z, gaussian_h,'replicate'); case 'gaussian_edge_std' img=imfilter(img, gaussian_h,'replicate'); x_g=imfilter(x, gaussian_h,'replicate'); y_g=imfilter(y, gaussian_h,'replicate'); z_g=imfilter(z, gaussian_h,'replicate'); x = check_edges(x, x_g); y = check_edges(y, y_g); z = check_edges(z, z_g); case 'gaussian5' img=imfilter(img, gaussian_h_5,'replicate'); x=imfilter(x, gaussian_h_5,'replicate'); y=imfilter(y, gaussian_h_5,'replicate'); z=imfilter(z, gaussian_h_5,'replicate'); end %rtime = etime(clock, t_pre); %cputime - t_pre; rtime = toc(t_pre); end function [img]=cut_boarder(img, cut_off) image_size=size(img); h_cut_off_pixel=round(image_size(2)*cut_off/100); v_cut_off_pixel=round(image_size(1)*cut_off/100); img(:,(image_size(2)-h_cut_off_pixel+1):image_size(2))=[]; %right side of Horizontal img(:,1:h_cut_off_pixel)=[]; %left side of Horizontal img((image_size(1)-v_cut_off_pixel+1):image_size(1),:)=[]; %up side of vertical img(1:v_cut_off_pixel,:)=[]; %bottom side of vertical end function [data] = check_edges(data, data_g) %edges = 0; for i = 2:size(data,1)-1 for j= 2:size(data,2)-1 %if var(data(i-1:i+1,j-1:j+1)) <= 0.001 unit_vector = [data(i-1,j-1:j+1) data(i, j-1:j+1) data(i+1, j-1:j+1)]; %if std(unit_vector)/(max(unit_vector) - min(unit_vector)) <= 0.4 if std(unit_vector) <= 0.1 data(i,j) = data_g(i,j); %else % edges = edges + 1; end end end %edges end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_sr.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_sr.m
20,549
utf_8
963d2b78711e06b32a8bb36c6f2362ae
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_sr(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc_wu(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); %[img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe);%% modify for read data from creative !!! %[img1,x1, y1, z1] = load_argos3d(dm, cframe); elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc_wu(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); %[img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); %[img2,x2, y2, z2] = load_argos3d(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max =1.5; % [m] valid_dist_min =0.15; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; %mapped cor_j1 is 320*240 matrix, then know the row and col %of matched point %[row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); %[row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; % temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; % temp_pt1_dist = sqrt(sum(temp_pt1.^2)); % temp_pt2_dist = sqrt(sum(temp_pt2.^2)); %%%%%above comment for creative temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt2_dist = sqrt(sum(temp_pt2.^2)); temp_pt1_dist = sqrt(sum(temp_pt1.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); % match_image1(:,cnt_new)=[ROW1 COL1]'; % match_image2(:,cnt_new)=[ROW2 COL2]'; % match_depth1(:,cnt_new)=[ROW1 COL1]'; % match_depth2(:,cnt_new)=[ROW2 COL2]'; cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); [n_match, rs_match, cnum] = ransac_argos3d(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); %[n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); %[row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); % [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm.m
21,689
utf_8
bec6d7eeeab3f0472b13909cd21b1fea
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_p(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 %if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') % change to primesense by wei wu %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); %[img1, x1, y1, z1] = load_primesense(dm, cframe); [img1, x1, y1, z1] = LoadPrimesense_model(dm, cframe); elapsed_pre=0; else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe); %% modify for read data from creative !!! elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 % if strcmp(data_name, 'kinect_tum') % %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); % [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); if strcmp(data_name, 'primesense') % change to primesense by wei wu %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); %[img2, x2, y2, z2] = load_primesense(dm, cframe); [img2, x2, y2, z2] = LoadPrimesense_model(dm, cframe); elapsed_pre2=0; else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max = 1; % [m] valid_dist_min = 0.350; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; %if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) >valid_dist_min && z2(ROW2, COL2) > valid_dist_min&&z1(ROW1, COL1) <valid_dist_max && z2(ROW2, COL2) <valid_dist_max %if z1(ROW1, COL1)>valid_dist_min && z2(ROW2, COL2)>0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; % col1=SearchColumn(cor_i1,COL1,10); % row1=SearchRow(cor_j1,ROW1,10); %ADD BY WEI % col2=SearchColumn(cor_i2,COL2,10); % row2=SearchRow(cor_j2,ROW2,10); %ADD BY WEI [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); if col1~=0&&row1~=0&&col2~=0&&row2~=0 temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); % end if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[row1 col1]'; match_depth2(:,cnt_new)=[row2 col2]'; cnt_new = cnt_new + 1; end end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; % if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=-y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=-y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); % if strcmp(data_name, 'kinect_tum') % elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; if strcmp(data_name, 'primesense') % elapsed = [ elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
save_visual_features.m
.m
slam_matlab-master/Localization/save_visual_features.m
1,181
utf_8
ba22c81ae039ca48c4065d21de093e35
% Save sift visual feature into a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function save_visual_features(data_name, dm, cframe, frm, des, elapsed_sift, img, x, y, z, c, elapsed_pre, sequence_data, image_name) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end if strcmp(image_name, 'depth') file_name = sprintf('%s/depth_feature/d1_%04d.mat',dataset_dir, cframe); else file_name = sprintf('%s/visual_feature/d1_%04d.mat',dataset_dir, cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(image_name, 'depth') file_name = sprintf('%s/depth_feature/d%d_%04d.mat',dataset_dir, dm, cframe); else file_name = sprintf('%s/visual_feature/d%d_%04d.mat',dataset_dir, dm, cframe); end end %file_name = sprintf('%s/visual_feature/d1_%04d.mat',dataset_dir, cframe); save(file_name, 'frm', 'des', 'elapsed_sift', 'img', 'x', 'y', 'z', 'c', 'elapsed_pre'); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c2.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c2.m
17,776
utf_8
577e5b47084e3aab212e2ee92834b933
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c2(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1, x1, y1, z1] = load_creative_binary(dm, cframe); elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering % [frm1, des1] = confidence_filtering(frm1, des1, c1); % save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else % [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2, x2, y2, z2] = load_creative_binary(dm, cframe); elapsed_pre2=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering % [frm2, des2] = confidence_filtering(frm2, des2, c2); % % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % distance filtering if is_10M_data == 1 valid_dist_max = 8; % 5m else valid_dist_max = 1; % 5m end valid_dist_min = 0.15; % 0.8m match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane %if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast.m
16,231
utf_8
84b24dd4aa8859f73260befb87e72c1e
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, dis) if nargin < 13 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none') == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none'); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none'); t_svd = tic; end [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta == 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
LoadPrimesense_newmodel1.m
.m
slam_matlab-master/Localization/LoadPrimesense_newmodel1.m
2,543
utf_8
7ec641cc6b0375f05707697ba5146dc8
% Load data from Kinect % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, X, Y, Z] = LoadPrimesense_model(dm, file_index) if file_index<11 z_file_name=sprintf('D:/image/prime/image%d/depth/00%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/image%d/rgb/00%d.png',dm-1,file_index-1); elseif file_index<101 z_file_name=sprintf('D:/image/prime/image%d/depth/0%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/image%d/rgb/0%d.png',dm-1,file_index-1); elseif file_index<605 z_file_name=sprintf('D:/image/prime/image%d/depth/%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/image%d/rgb/%d.png',dm-1,file_index-1); end depth_img=imread(z_file_name); depth_img=double(depth_img); img1=imread(img_file_name); img=rgb2gray(img1); gaussian_h = fspecial('gaussian',[3 3],1); img=imfilter(img, gaussian_h,'replicate'); %img=im2double(img); %Rt=[ 0.99977 0.010962 -0.018654 0.023278; % -0.010059 0.9988 0.047831 -0.0097038; % 0.019156 -0.047632 0.99868 -0.0093007 ]; % add calibration R and T R=[ 1.0000 -0.0033 0.0028; %-26.87065; 0.0033 1.0000 0.0043; %0.94765; -0.0028 -0.0042 1.0000 ] ; % 6.74013]; % add calibration R and T T=[-26.9 0.9, 6.7]'; Kr=[543 0 318; 0 543 231; 0 0 1]; [imh, imw] = size(depth_img); X=zeros(imh,imw); Y=zeros(imh,imw); Z=zeros(imh,imw); fx = 570; %# focal length x 551.0/420 fy = 570; %# focal length y 548.0/420 cx = 320; %# optical center x //319.5 cy = 240; %# optical center y ///239.5 ds = 1.0; %# depth scaling factor = 1; %# for the 16-bit PNG files for v=1:size(depth_img,1) %height for u=1:size(depth_img,2) %width z = (depth_img(v,u) / factor) * ds; x = (u - cx) * z / fx; y = (v - cy) * z / fy; % X(v,u) = x; % Y(v,u) = y; % Z(v,u) = z; Pr=R*[x y z ]'+T; Z(v,u)=Pr(3,:); X(v,u)=(u-318)*Z(v,u)/541; Y(v,u)=(v-231)*Z(v,u)/541; % %u_vector=round(uv_vector(1,:)/uv_vector(3,:)); %v_vector=round(uv_vector(2,:)/uv_vector(3,:)); %if u_vector>0 && u_vector<640 &&v_vector>0 && v_vector<480 % X(v_vector,u_vector)=x; % Y(v_vector,u_vector)=y; % Z(v_vector,u_vector)=z; %end end end end
github
rising-turtle/slam_matlab-master
scale_img.m
.m
slam_matlab-master/Localization/scale_img.m
1,061
utf_8
9c5217d62c210a4383e5c109eb4964c6
% Scale and smoothing image % % Parameters % img : input image % fw : the size of median filter % % Author : Soonhac Hong ([email protected]) % Date : 4/21/11 function [img] = scale_img(img, fw, value_type, data_type) [m, n, v] = find (img>65000); %???? imgt=img; num=size(m,1); for kk=1:num imgt(m(kk), n(kk))=0; end imax=max(max(imgt)); for kk=1:num img(m(kk),n(kk))=imax; end min_v = min(min(img)); max_v = max(max(img)); sqt_max = sqrt(max_v); sqt_min = sqrt(min_v); % img=uint8(sqrt(img).*255./sqrt(max(max(img)))); if strcmp(data_type, 'intensity') % img=sqrt(img).*255./sqrt(max(max(img))); %This line degrade the performance of SURF % img = (sqrt(img)-sqt_min).*255./(sqt_max-sqt_min); img = sqrt(img).*255./(sqt_max); elseif strcmp(data_type, 'range') img_max = max(max(img)); if img_max <= 5.0 img_max = 5.0; end img=sqrt(abs(img)).*255./sqrt(img_max); %This line degrade the performance of SURF end if strcmp(value_type, 'int') img = uint8(img); end % img=medfilt2(img, [fw fw]); end
github
rising-turtle/slam_matlab-master
compensate_badpixel.m
.m
slam_matlab-master/Localization/compensate_badpixel.m
1,844
utf_8
f28d56efdbf5d1e06c25dd3f07945a90
% Compenstate the bad pixel with low confidence by median filter % Date : 3/13/12 % Author : Soonhac Hong ([email protected]) function [img, x, y, z, c] = compensate_badpixel(img, x, y, z, c, confidence_cut_off) e_index = c < confidence_cut_off; for i = 1:size(img,1) % row for j=1:size(img,2) % column if e_index(i,j) == 1 start_i = i-1; end_i = i+1; start_j = j-1; end_j = j+1; point_i = 2; point_j = 2; if i == 1 start_i = i; point_i = 1; if j == 1 point_j = 1; end end if i == size(img,1) end_i = i; if j == 1 point_j = 1; end end if j == 1 start_j = j; if i == 1 point_i = 1; end end if j == size(img,2) end_j = j; if i == 1 point_i = 1; end end img_unit=medfilt2(img(start_i:end_i,start_j:end_j), [3 3],'symmetric'); x_unit=medfilt2(x(start_i:end_i,start_j:end_j), [3 3],'symmetric'); y_unit=medfilt2(y(start_i:end_i,start_j:end_j), [3 3],'symmetric'); z_unit=medfilt2(z(start_i:end_i,start_j:end_j), [3 3],'symmetric'); img(i,j) = img_unit(point_i,point_j); x(i,j) = x_unit(point_i,point_j); y(i,j) = y_unit(point_i,point_j); z(i,j) = z_unit(point_i,point_j); end end end end
github
rising-turtle/slam_matlab-master
check_stored_depth_feature.m
.m
slam_matlab-master/Localization/check_stored_depth_feature.m
812
utf_8
a037ad501e066d47ebf04737a0196091
% Check if there is the stored visual feature % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function [exist_flag] = check_stored_depth_feature(data_name, dm, cframe) exist_flag = 0; [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); dataset_dir = strrep(prefix, '/d1',''); dataset_dir = sprintf('%s/depth_feature',dataset_dir); file_name = sprintf('d1_%04d.mat',cframe); dirData = dir(dataset_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; if isempty(file_list) return; else for i=1:size(file_list,1) if strcmp(file_list{i}, file_name) exist_flag = 1; break; end end end dirData=[]; dirIndex=[]; file_list=[]; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_icp2_cov_fast.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_icp2_cov_fast.m
17,406
utf_8
b03f8f6fe4f24a2e9865f15785efe46f
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 8/30/12 function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_icp2_cov_fast(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, icp_mode, dis) if nargin < 14 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') % Dynamic data cframe = sframe; else cframe = j; end if check_stored_visual_feature(data_name, dm, cframe) == 0 [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); %[frm1,des1] = vl_sift(single(img1)) ; else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature')% Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end if check_stored_visual_feature(data_name, dm, cframe) == 0 [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); %[frm2,des2] = vl_sift(single(img2)) ; else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %[match, scores] = vl_ubcmatch(des1,des2) ; %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= 0 && img2(ROW2, COL2) >= 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; % stdev_threshold = 0.1; % stdev_count = 0; % count_threshold = 15; % mean_threshold = 0.1; % mean_count = 0; % window_size = 30; % debug_data=[]; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % if cnum >= valid_ransac % break; % end % if cnum/pnum >= inlier_ratio % break; % enddynamic_data_index % total_cnum(i)=cnum; % if i > window_size && inliers_std ~= 0 % inliers_std_prev = inliers_std; % inliers_std = std(total_cnum(i-window_size:i)); %Moving STDEV % inliers_std_delta = abs(inliers_std - inliers_std_prev)/inliers_std_prev; % % inliers_mean_prev = inliers_mean; % inliers_mean = mean(total_cnum(i-window_size:i)); %Moving STDEV % inliers_mean_delta = abs(inliers_mean - inliers_mean_prev)/inliers_mean_prev; % % if inliers_std_delta < stdev_threshold % stdev_count = stdev_count + 1; % else % stdev_count = 0; % end % % if inliers_mean_delta < mean_threshold % mean_count = mean_count + 1; % else % mean_count = 0; % end % % inlier_ratio = max(total_cnum)/pnum; % % count_threshold = 120000 / ((inlier_ratio*100)^2); %-26 * (inlier_ratio*100 - 20) + 800; % % if stdev_count > count_threshold %&& mean_count > count_threshold % break; % end % else % inliers_std = std(total_cnum); % inliers_mean = mean(total_cnum); % end if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1 break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %% Run SVD %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Test LM %[rot_lm, trans_lm] = lm_point(op_pset1, op_pset2); % [rot_lm, trans_lm] = lm_point2plane(op_pset1, op_pset2); % [phi_lm, theta_lm, psi_lm] = rot_to_euler(rot_lm); % [theta*180/pi theta_lm*180/pi] % [phi*180/pi phi_lm*180/pi] % [psi*180/pi psi_lm*180/pi] % Save feature points %feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; % Compute RMSE op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse = rmse + unit_rmse; % end % rmse_feature = rmse / size(op_pset1,2); %rmse_feature = rms_error(op_pset1, op_pset2_transed); % Show correspondent points % plot3(op_pset1(1,:),op_pset1(2,:),op_pset1(3,:),'b*-'); % hold on; % plot3(op_pset2(1,:),op_pset2(2,:),op_pset2(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; %Compute the elapsed time %rt_total = etime(clock,t); %elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; %% Run ICP %[phi_icp, theta_icp, psi_icp, trans_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_2(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_3(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_4(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_5(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); if strcmp(icp_mode, 'icp_ch') [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); else [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_6_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); end %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_10(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_13(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %Check status of SVD if sta_icp == 0 || error ~= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta_icp == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %elapsed_icp = toc(t_icp); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; %rot = rot_icp; % [rmse_feature rmse_icp] % [theta*180/pi theta_icp*180/pi] % [trans(1) trans_icp(1)] %if rmse_icp <= rmse_feature trans = trans_icp; phi = phi_icp; theta = theta_icp; psi = psi_icp; %end %convert degree % r2d=180.0/pi; % phi=phi*r2d; % theta=theta*r2d; % psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
LoadKinect_depthbased.m
.m
slam_matlab-master/Localization/LoadKinect_depthbased.m
2,589
utf_8
eda775a4e73610c0ffdbdb3d7c327da6
% Load data from Kinect % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, X, Y, Z, rtime, depth_time_stamp] = LoadKinect_depthbased(dm, j) t_load = tic; dir_name_list = get_kinect_tum_dir_name(); dir_name = dir_name_list{dm}; % Load depth image [depth_data_dir, err] = sprintf('D:/Soonhac/Data/kinect_tum/%s/depth',dir_name); dirData = dir(depth_data_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; [file_name_full, err]=sprintf('%s/%s',depth_data_dir,file_list{j}); [file_name, err] = sprintf('%s',file_list{j}); depth_time_stamp = str2double(strrep(file_name, '.png','')); depth_img = imread(file_name_full); %figure;imshow(depth_img); depth_img = double(depth_img); [rgb_data_dir, err] = sprintf('D:/Soonhac/Data/kinect_tum/%s/rgb',dir_name); dirData = dir(rgb_data_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; for i=1:size(file_list,1) [color_file_name, err]=sprintf('%s',file_list{i}); color_time_stamp(i,1) = str2double(strrep(color_file_name, '.png','')); end % find nearest tiem stamp of color image color_file_nearest_index = find(color_time_stamp > depth_time_stamp, 1); if color_file_nearest_index ~= 1 && ((color_time_stamp(color_file_nearest_index,1) - depth_time_stamp) > (depth_time_stamp - color_time_stamp(color_file_nearest_index-1,1))) color_file_nearest_index = color_file_nearest_index - 1; end [file_name, err]=sprintf('%s/%s',rgb_data_dir,file_list{color_file_nearest_index}); rgb_img = imread(file_name); img = rgb2gray(rgb_img); %figure;imshow(rgb_img); %figure;imshow(img); %Noise reduction by Gaussian filter gaussian_h = fspecial('gaussian',[3 3],1); img=imfilter(img, gaussian_h,'replicate'); fx = 525.0; %# focal length x fy = 525.0; %# focal length y cx = 319.5; %# optical center x cy = 239.5; %# optical center y ds = 1.0; %# depth scaling factor = 5000.0; %# for the 16-bit PNG files %# OR: factor = 1 %# for the 32-bit float images in the ROS bag files for v=1:size(depth_img,1) %height for u=1:size(depth_img,2) %width z = (depth_img(v,u) / factor) * ds; x = (u - cx) * z / fx; y = (v - cy) * z / fy; X(v,u) = x; Y(v,u) = y; Z(v,u) = z; end end rtime = toc(t_load); %figure;imagesc(X); %figure;imagesc(Y); %figure;imagesc(Z); end
github
rising-turtle/slam_matlab-master
vro_icp_9_cov.m
.m
slam_matlab-master/Localization/vro_icp_9_cov.m
10,624
utf_8
e5d049b0e1df183d4947e039b8a2e8bf
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) < 10 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; for i=1:size(convexhull_1,1) for j=1:3 convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; end end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; M_k = 1; D_k = 1; M=[]; D=[]; convex_check = 1; % check convex hull max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M_test = [-x1(i,j) z1(i,j) y1(i,j)]; M_in_flag = inhull(M_test,op_pset1',convexhull_1); D_test = [-x2(i,j) z2(i,j) y2(i,j)]; D_in_flag = inhull(D_test,op_pset2',convexhull_2); if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; M_k = M_k + 1; end end if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; D_k = D_k + 1; end end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; end end elapsed_convex = toc(t_convex); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; end
github
rising-turtle/slam_matlab-master
check_stored_visual_feature.m
.m
slam_matlab-master/Localization/check_stored_visual_feature.m
1,230
utf_8
08b710330ed346960fc4aa626de7a5d7
% Check if there is the stored visual feature % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function [exist_flag] = check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) exist_flag = 0; [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end file_name = sprintf('d1_%04d.mat',cframe); else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); file_name = sprintf('d%d_%04d.mat',dm,cframe); end if strcmp(image_name, 'depth') dataset_dir = sprintf('%s/depth_feature',dataset_dir); else dataset_dir = sprintf('%s/visual_feature',dataset_dir); end %file_name = sprintf('d1_%04d.mat',cframe); dirData = dir(dataset_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; if isempty(file_list) return; else for i=1:size(file_list,1) if strcmp(file_list{i}, file_name) exist_flag = 1; break; end end end end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_svde6.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_svde6.m
17,644
utf_8
59d68df885879e92e4bb12165cf177a0
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_svde6(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % distance filtering if is_10M_data == 1 valid_dist_max = 8; % 5m else valid_dist_max = 5; % 5m end valid_dist_min = 0.8; % 0.8m match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); t_svd = tic; end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); %[rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [rot, trans, sta] = find_transform_matrix_e6(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; % elseif sta == 2 % fprintf('Points are in co-planar.\n'); % error=4; % phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; % elapsed_ransac = 0.0; % elapsed_svd = 0.0; % %elapsed_icp = 0.0; % %match_num = [pnum; gc_num; op_num]; % elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; % feature_points = []; % pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; % return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); else [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
check_feature_distance_icp.m
.m
slam_matlab-master/Localization/check_feature_distance_icp.m
781
utf_8
04b938571127b8ecb8e8139ba603a597
% Check the distance of feaure points % % Author : Soonhac Hong ([email protected]) % Date : 4/5/13 function [op_pset1, op_pset2] = check_feature_distance_icp(op_pset1, op_pset2) distance_min = 0.8; distance_max = 5; op_pset1_distance = sqrt(sum(op_pset1.^2)); op_pset2_distance = sqrt(sum(op_pset2.^2)); op_pset1_distance_flag = (op_pset1_distance < distance_min | op_pset1_distance > distance_max); op_pset2_distance_flag = (op_pset2_distance < distance_min | op_pset2_distance > distance_max); %debug % if sum(op_pset1_distance_flag) > 0 || sum(op_pset2_distance_flag) > 0 % disp('Distance filter is working'); % end op_pset1(:, op_pset1_distance_flag)=[]; % delete invalid feature points op_pset2(:, op_pset2_distance_flag)=[]; % delete invalid feature points end
github
rising-turtle/slam_matlab-master
load_visual_features.m
.m
slam_matlab-master/Localization/load_visual_features.m
1,115
utf_8
b287b4545e4f246bec0e76880f2e3716
% Load sift visual feature from a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function [frm, des, elapsed_sift, img, x, y, z, c, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end if strcmp(image_name, 'depth') file_name = sprintf('%s/depth_feature/d1_%04d.mat',dataset_dir, cframe); else file_name = sprintf('%s/visual_feature/d1_%04d.mat',dataset_dir, cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(image_name, 'depth') file_name = sprintf('%s/depth_feature/d%d_%04d.mat',dataset_dir, dm, cframe); else file_name = sprintf('%s/visual_feature/d%d_%04d.mat',dataset_dir, dm, cframe); end end %file_name = sprintf('%s/visual_feature/d1_%04d.mat',dataset_dir, cframe); load(file_name); end
github
rising-turtle/slam_matlab-master
load_matched_points.m
.m
slam_matlab-master/Localization/load_matched_points.m
950
utf_8
1a99af336cb68c960b51337530b7259d
% Load matched points from a file % % Author : Soonhac Hong ([email protected]) % Date : 3/11/2013 function [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, isgframe, sequence_data) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); end if strcmp(isgframe, 'gframe') file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end load(file_name); end
github
rising-turtle/slam_matlab-master
vro_icp_6_cov.m
.m
slam_matlab-master/Localization/vro_icp_6_cov.m
10,511
utf_8
641524042e16a232c87308d355249f26
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_6_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); % if size(op_pset1,2) < 5 % fprintf('Error in less point for convex hull.\n'); % error=6; % phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; % elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; % match_rmse = 0.0; % match_num = [0; 0]; % return; % end % compute 3D convex hull t_convex = tic; % convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); % convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull % convexhull_1_x =[]; % convexhull_1_y =[]; % convexhull_1_z =[]; % % for i=1:size(convexhull_1,1) % for j=1:3 % convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; % convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; % convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; % end % end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z); %M = op_pset1; %D = op_pset2; M_k = 1; D_k = 1; M=[]; D=[]; convex_check = 0; % check convex hull max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M_test = [-x1(i,j) z1(i,j) y1(i,j)]; % M_in_flag = inhull(M_test,op_pset1',convexhull_1); D_test = [-x2(i,j) z2(i,j) y2(i,j)]; % D_in_flag = inhull(D_test,op_pset2',convexhull_2); % if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 %100 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; M_k = M_k + 1; end % end % if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 %100 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; D_k = D_k + 1; end % end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; end end elapsed_convex = toc(t_convex); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); % %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; end