plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
rising-turtle/slam_matlab-master
vro_icp_9_cov_tol_batch.m
.m
slam_matlab-master/Localization/vro_icp_9_cov_tol_batch.m
11,537
utf_8
59fe048123dca9a364123c99bde295e7
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 % ICP9_cov + tolerance adjustment = ICP9_cov_tol function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) <= 8 || size(op_pset2,2) <= 8 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; for i=1:size(convexhull_1,1) for j=1:3 convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; end end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; %M_k = 1; %D_k = 1; M=[]; D=[]; %convex_check = 1; % check convex hull convexhull_tolerance = 0.1; %[m] max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); %M_test=[]; %D_test=[]; M_cf=[]; D_cf=[]; sample_idx=1; for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M = [M; -x1(i,j) z1(i,j) y1(i,j)]; D = [D; -x2(i,j) z2(i,j) y2(i,j)]; %if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M_cf(sample_idx,1)=1; %M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; %M_k = M_k + 1; else M_cf(sample_idx,1)=0; end %end %if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D_cf(sample_idx,1)=1; %D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; %D_k = D_k + 1; else D_cf(sample_idx,1)=0; end %end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; sample_idx = sample_idx + 1; end end m_cf_idx = M_cf(:) == 0; d_cf_idx = D_cf(:) == 0; M(m_cf_idx,:)=[]; D(d_cf_idx,:)=[]; M_in_flag = inhull(M,op_pset1',convexhull_1,convexhull_tolerance); D_in_flag = inhull(D,op_pset2',convexhull_2,convexhull_tolerance); M_in_flag_idx = M_in_flag(:) == 0; D_in_flag_idx = D_in_flag(:) == 0; M(M_in_flag_idx,:)=[]; D(D_in_flag_idx,:)=[]; M=M'; D=D'; elapsed_convex = toc(t_convex); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; convexhull_1=[]; convexhull_2=[]; convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; M_cf=[]; D_cf=[]; M_in_flag=[]; D_in_flag=[]; M_in_flag_idx=[]; D_in_flag_idx=[]; op_pset1=[]; op_pset2=[]; x1=[]; y1=[]; z1=[]; img1=[]; c1=[]; x2=[]; y2=[]; z2=[]; img2=[]; c2=[]; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_icp2_cov_fast_fast.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_icp2_cov_fast_fast.m
19,935
utf_8
b2230e5879dca9b7519e5b3b37483454
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 8/30/12 function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_icp2_cov_fast(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, icp_mode, dis) if nargin < 14 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') % Dynamic data cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); %[frm1,des1] = vl_sift(single(img1)) ; else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature')% Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); %[frm2,des2] = vl_sift(single(img2)) ; else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %[match, scores] = vl_ubcmatch(des1,des2) ; %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= 0 && img2(ROW2, COL2) >= 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; % stdev_threshold = 0.1; % stdev_count = 0; % count_threshold = 15; % mean_threshold = 0.1; % mean_count = 0; % window_size = 30; % debug_data=[]; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % if cnum >= valid_ransac % break; % end % if cnum/pnum >= inlier_ratio % break; % enddynamic_data_index % total_cnum(i)=cnum; % if i > window_size && inliers_std ~= 0 % inliers_std_prev = inliers_std; % inliers_std = std(total_cnum(i-window_size:i)); %Moving STDEV % inliers_std_delta = abs(inliers_std - inliers_std_prev)/inliers_std_prev; % % inliers_mean_prev = inliers_mean; % inliers_mean = mean(total_cnum(i-window_size:i)); %Moving STDEV % inliers_mean_delta = abs(inliers_mean - inliers_mean_prev)/inliers_mean_prev; % % if inliers_std_delta < stdev_threshold % stdev_count = stdev_count + 1; % else % stdev_count = 0; % end % % if inliers_mean_delta < mean_threshold % mean_count = mean_count + 1; % else % mean_count = 0; % end % % inlier_ratio = max(total_cnum)/pnum; % % count_threshold = 120000 / ((inlier_ratio*100)^2); %-26 * (inlier_ratio*100 - 20) + 800; % % if stdev_count > count_threshold %&& mean_count > count_threshold % break; % end % else % inliers_std = std(total_cnum); % inliers_mean = mean(total_cnum); % end if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1 break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %% Run SVD %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe); t_svd = tic; end [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Test LM %[rot_lm, trans_lm] = lm_point(op_pset1, op_pset2); % [rot_lm, trans_lm] = lm_point2plane(op_pset1, op_pset2); % [phi_lm, theta_lm, psi_lm] = rot_to_euler(rot_lm); % [theta*180/pi theta_lm*180/pi] % [phi*180/pi phi_lm*180/pi] % [psi*180/pi psi_lm*180/pi] % Save feature points %feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; % Compute RMSE op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse = rmse + unit_rmse; % end % rmse_feature = rmse / size(op_pset1,2); %rmse_feature = rms_error(op_pset1, op_pset2_transed); % Show correspondent points % plot3(op_pset1(1,:),op_pset1(2,:),op_pset1(3,:),'b*-'); % hold on; % plot3(op_pset2(1,:),op_pset2(2,:),op_pset2(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; %Compute the elapsed time %rt_total = etime(clock,t); %elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; %% Run ICP %[phi_icp, theta_icp, psi_icp, trans_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_2(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_3(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_4(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_5(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); if strcmp(icp_mode, 'icp_ch') [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); else [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_6_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); end %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_10(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_13(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %Check status of SVD if sta_icp == 0 || error ~= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta_icp == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %elapsed_icp = toc(t_icp); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; %rot = rot_icp; % [rmse_feature rmse_icp] % [theta*180/pi theta_icp*180/pi] % [trans(1) trans_icp(1)] %if rmse_icp <= rmse_feature trans = trans_icp; phi = phi_icp; theta = theta_icp; psi = psi_icp; %end %convert degree % r2d=180.0/pi; % phi=phi*r2d; % theta=theta*r2d; % psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
vro_icp_9_cov_tol_dist.m
.m
slam_matlab-master/Localization/vro_icp_9_cov_tol_dist.m
10,953
utf_8
db7a3f2c470869a3f34f6a0b48cec836
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 % ICP9_cov + tolerance adjustment = ICP9_cov_tol function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) <= 8 || size(op_pset2,2) <= 8 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; for i=1:size(convexhull_1,1) for j=1:3 convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; end end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; M_k = 1; D_k = 1; M=[]; D=[]; convex_check = 1; % check convex hull convexhull_tolerance = 0.1; %[m] max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M_test = [-x1(i,j) z1(i,j) y1(i,j)]; M_in_flag = inhull(M_test,op_pset1',convexhull_1,convexhull_tolerance); D_test = [-x2(i,j) z2(i,j) y2(i,j)]; D_in_flag = inhull(D_test,op_pset2',convexhull_2,convexhull_tolerance); if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; M_k = M_k + 1; end end if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; D_k = D_k + 1; end end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; end end elapsed_convex = toc(t_convex); %distance filter [M, D] = check_feature_distance_icp(M, D); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; pt1_new=[]; pt2_new=[]; op_pset1 = []; op_pset2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; convexhull_1=[]; convexhull_2=[]; M_in_flag=[]; D_in_flag=[]; end
github
rising-turtle/slam_matlab-master
check_stored_matched_points.m
.m
slam_matlab-master/Localization/check_stored_matched_points.m
1,184
utf_8
1620fb7c613849c92ba3def37bcd39da
% Check if there is the stored matched points % % Author : Soonhac Hong ([email protected]) % Date : 3/11/2013 function [exist_flag] = check_stored_matched_points(data_name, dm, first_cframe, second_cframe, isgframe, sequence_data) exist_flag = 0; [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); end if strcmp(isgframe, 'gframe') dataset_dir = sprintf('%s/matched_points_gframe',dataset_dir); else dataset_dir = sprintf('%s/matched_points',dataset_dir); end file_name = sprintf('d1_%04d_%04d.mat',first_cframe, second_cframe); dirData = dir(dataset_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; if isempty(file_list) return; else for i=1:size(file_list,1) if strcmp(file_list{i}, file_name) exist_flag = 1; break; end end end end
github
rising-turtle/slam_matlab-master
rot_to_euler.m
.m
slam_matlab-master/Localization/rot_to_euler.m
1,068
utf_8
5338a4d30525b25e07f1db2f561d509b
% Calculate the euler angle(yaw, pitch, roll) from rotation matrix % % Yaw is a counterclockwise rotation of phi(alpha) about the z-axis % Pitch is a counterclockwise rotation of theta(beta) about the y-axis % Roll is a counterclockwise rotation of psi(gamma) about the x-axis % % Author : Soonhac Hong ([email protected]) % Date : 3/19/2011 % Reference : S.M. Lavalle : Planning Algorithm (p.97-100) function [phi, theta, psi] = rot_to_euler(rot) % phi= atan2(rot(2,1), rot(1,1)); % theta = atan2(-rot(3,1), sqrt(rot(3,2)^2+rot(3,3)^2)); % psi = atan2(rot(3,2), rot(3,3)); % psi= atan2(rot(2,1), rot(1,1)); % phi = atan2(-rot(3,1), sqrt(rot(3,2)^2+rot(3,3)^2)); % theta = atan2(rot(3,2), rot(3,3)); % Original code from Dr. Ye psi = atan2(-rot(1,2), rot(2, 2)); % yaw about z --->this code is right, but the thesis is wrong. theta = atan2(rot(3,2), -rot(1,2)*sin(psi)+rot(2,2)*cos(psi)); % pitch about x phi = atan2(rot(1,3)*cos(psi)+rot(2,3)*sin(psi),rot(1,1)*cos(psi)+rot(2,1)*sin(psi)); % roll about y end
github
rising-turtle/slam_matlab-master
vro_icp_9_cov_tol_batch_dist.m
.m
slam_matlab-master/Localization/vro_icp_9_cov_tol_batch_dist.m
11,663
utf_8
012db11e606c43c3d00d9a83614fbd7c
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 % ICP9_cov + tolerance adjustment = ICP9_cov_tol function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch_dist(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) <= 8 || size(op_pset2,2) <= 8 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull % convexhull_1_x =[]; % convexhull_1_y =[]; % convexhull_1_z =[]; % % for i=1:size(convexhull_1,1) % for j=1:3 % convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; % convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; % convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; % end % end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; %M_k = 1; %D_k = 1; M=[]; D=[]; %convex_check = 1; % check convex hull convexhull_tolerance = 0.1; %[m] max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); %M_test=[]; %D_test=[]; M_cf=[]; D_cf=[]; sample_idx=1; for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M = [M; -x1(i,j) z1(i,j) y1(i,j)]; D = [D; -x2(i,j) z2(i,j) y2(i,j)]; %if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M_cf(sample_idx,1)=1; %M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; %M_k = M_k + 1; else M_cf(sample_idx,1)=0; end %end %if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D_cf(sample_idx,1)=1; %D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; %D_k = D_k + 1; else D_cf(sample_idx,1)=0; end %end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; sample_idx = sample_idx + 1; end end m_cf_idx = M_cf(:) == 0; d_cf_idx = D_cf(:) == 0; M(m_cf_idx,:)=[]; D(d_cf_idx,:)=[]; M_in_flag = inhull(M,op_pset1',convexhull_1,convexhull_tolerance); D_in_flag = inhull(D,op_pset2',convexhull_2,convexhull_tolerance); M_in_flag_idx = M_in_flag(:) == 0; D_in_flag_idx = D_in_flag(:) == 0; M(M_in_flag_idx,:)=[]; D(D_in_flag_idx,:)=[]; M=M'; D=D'; elapsed_convex = toc(t_convex); %distance filter [M, D] = check_feature_distance_icp(M, D); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; pt1_new=[]; pt2_new=[]; op_pset1 = []; op_pset2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; convexhull_1=[]; convexhull_2=[]; % convexhull_1_x =[]; % convexhull_1_y =[]; % convexhull_1_z =[]; M_cf=[]; D_cf=[]; m_cf_idx=[]; d_cf_idx=[]; M_in_flag=[]; D_in_flag=[]; M_in_flag_idx=[]; D_in_flag_idx=[]; op_pset1_icp_normal=[]; op_pset2_icp_transed=[]; end
github
rising-turtle/slam_matlab-master
load_icp_pose.m
.m
slam_matlab-master/Localization/load_icp_pose.m
1,573
utf_8
0187e4f56957260f4e18836e5804c8cf
% Load matched points from a file % % Author : Soonhac Hong ([email protected]) % Date : 3/11/2013 %function [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, isgframe, sequence_data) function [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = load_icp_pose(data_name, dm, first_cframe, second_cframe, icp_mode, sequence_data) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true dataset_dir = strrep(prefix, '/d1',''); if strcmp(icp_mode, 'icp_ch') file_name = sprintf('%s/icp_ch_pose/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/icp_pose/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(icp_mode, 'icp_ch') file_name = sprintf('%s/icp_ch_pose/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); else file_name = sprintf('%s/icp_pose/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); end end % if strcmp(isgframe, 'gframe') % file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % else % file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % end load(file_name); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist.m
16,414
utf_8
6d555711bc67c37d10257bef2804a3ea
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, dis) if nargin < 13 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none') == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none'); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none'); t_svd = tic; end [op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta == 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_addpath_creative.m
.m
slam_matlab-master/Localization/localization_addpath_creative.m
434
utf_8
d744a68621891ab087fb12d5c0431645
% Add the path for graph slam % % Author : Soonhac Hong ([email protected]) % Date : 10/16/12 function localization_addpath_creative %addpath('D:\Soonhac\SW\icp'); %addpath('D:\Soonhac\SW\kdtree'); %addpath('D:\Soonhac\SW\LevenbergMarquardt'); addpath('..\SIFT\sift-0.9.19-bin\sift'); %addpath('D:\Soonhac\SW\GradientConcensus'); %addpath('D:\Soonhac\SW\OpenSURF_version1c'); %addpath('E:\data\Amir\code\code3\code_from_dr_ye'); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2.m
17,174
utf_8
9d45403332d443c4e248983141bed911
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data); end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 if is_10M_data == 1 valid_dist_max = 8; % 5m else valid_dist_max = 5; % 5m end valid_dist_min = 0.8; % 0.8m match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); t_svd = tic; end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta == 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
save_depth_features.m
.m
slam_matlab-master/Localization/save_depth_features.m
429
utf_8
ac126f69540fa93b52e177bf4693644c
% Save sift visual feature into a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function save_depth_features(data_name, dm, cframe, depth_frm, depth_des, depth_ct) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); dataset_dir = strrep(prefix, '/d1',''); file_name = sprintf('%s/depth_feature/d1_%04d.mat',dataset_dir, cframe); save(file_name, 'depth_frm', 'depth_des', 'depth_ct'); end
github
rising-turtle/slam_matlab-master
get_kinect_tum_dir_name.m
.m
slam_matlab-master/Localization/get_kinect_tum_dir_name.m
823
utf_8
54ffe57adc759fb2881357d54c5bc99e
% Get directory name of kinect_tum data set % % Parameters % dm : index of directory of data % % Author : Soonhac Hong ([email protected]) % Date : 9/25/12 function [dir_name_list]=get_kinect_tum_dir_name() dir_name_list={'rgbd_dataset_freiburg1_xyz','rgbd_dataset_freiburg1_floor','rgbd_dataset_freiburg2_large_no_loop','rgbd_dataset_freiburg2_large_with_loop','rgbd_dataset_freiburg2_pioneer_slam','rgbd_dataset_freiburg2_pioneer_slam2','rgbd_dataset_freiburg2_pioneer_slam3','rgbd_dataset_freiburg3_long_office_household','rgbd_dataset_freiburg3_nostructure_texture_near_withloop','rgbd_dataset_freiburg3_structure_notexture_far','rgbd_dataset_freiburg3_structure_notexture_near','rgbd_dataset_freiburg3_structure_texture_far','rgbd_dataset_freiburg3_structure_texture_near'}; %dir_name=dir_name_list{dir_index}; end
github
rising-turtle/slam_matlab-master
vro_icp_9_cov_tol_dist_EKF.m
.m
slam_matlab-master/Localization/vro_icp_9_cov_tol_dist_EKF.m
11,437
utf_8
9c985fd9089bbf1de243e1f8f0ab0be1
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 % ICP9_cov + tolerance adjustment = ICP9_cov_tol % ICP9_cov_tol_dist + adjust coordinate for EKF = ICP9_cov_tol_dist_EKF function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov_tol_dist_EKF(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) <= 8 || size(op_pset2,2) <= 8 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; for i=1:size(convexhull_1,1) for j=1:3 convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; end end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; M_k = 1; D_k = 1; M=[]; D=[]; convex_check = 1; % check convex hull convexhull_tolerance = 0.1; %[m] max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M_test = [-x1(i,j) -y1(i,j) z1(i,j)]; M_in_flag = inhull(M_test,op_pset1',convexhull_1,convexhull_tolerance); D_test = [-x2(i,j) -y2(i,j) z2(i,j)]; D_in_flag = inhull(D_test,op_pset2',convexhull_2,convexhull_tolerance); if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; M_k = M_k + 1; end end if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; D_k = D_k + 1; end end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; end end elapsed_convex = toc(t_convex); %distance filter [M, D] = check_feature_distance_icp(M, D); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); %[t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); [t_init(1:3)] = R2e(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point_EKF(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); [euler_icp] = R2e(rot_icp); %rot_to_euler(rot_icp); phi_icp = euler_icp(1); theta_icp = euler_icp(2); psi_icp = euler_icp(3); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane %[pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); %pose_std = pose_std'; pose_std = []; % M = []; % D = []; % pt1 = []; % pt2 = []; % pt1_new=[]; % pt2_new=[]; % op_pset1 = []; % op_pset2 = []; % op_pset1_icp = []; % op_pset2_icp = []; % tree = []; % convexhull_1=[]; % convexhull_2=[]; % M_in_flag=[]; % D_in_flag=[]; clear M D pt1 pt2 pt1_new pt2_new op_pset1 op_pset2 op_pset1_icp op_pset2_icp tree convexhull_1 convexhull_2 M_in_flag D_in_flag convexhull_1_x convexhull_1_y convexhull_1_z clear FUN end
github
rising-turtle/slam_matlab-master
LoadSR_no_bpc_time_single_binary.m
.m
slam_matlab-master/Localization/LoadSR_no_bpc_time_single_binary.m
6,295
utf_8
c01368aeffe7d712b1c93d366697a3ee
% Load data from Swiss Ranger % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 % No bad pixel compensation function [img, x, y, z, c, rtime, error] = LoadSR_no_bpc_time_single_binary(data_name, filter_name, boarder_cut_off, dm, j, scale, type_value) % if nargin < 6 % scale = 1; % end %apitch=-43+3*dm; %[prefix, err]=sprintf('../data/d%d_%d/d%d', dm, apitch, dm); % [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); % % if j<10 % [s, err]=sprintf('%s_000%d.dat', prefix, j); % elseif j<100 % [s, err]=sprintf('%s_00%d.dat', prefix, j); % elseif j<1000 % [s, err]=sprintf('%s_0%d.dat', prefix, j); % else % [s, err]=sprintf('%s_%d.dat', prefix, j); % end img=[]; x=[]; y=[]; z=[]; c=[]; error=0; rtime=0; %s_binary='D:\soonhac\Project\PNBD\SW\sr4000\SwissRangerSampleGui\data\d1_0001.bdat'; %s_binary='d1_0001.bdat'; %s_binary=sprintf('E:\\data\\motive\\m5_swing_loop_2\\processed_data\\binary_data\\d1_%04d.bdat',j); %s_binary=sprintf('E:\\data\\swing\\revisiting2_10m\\processed_data\\binary_data\\d1_%04d.bdat',j); %s_binary=sprintf('E:\\data\\Amir\\processed_data\\exp1_bus_door_straight_150_Copy\\binary_data\\d1_%04d.bdat',j); %s_binary=sprintf('D:\\Soonhac\\Data\\sr4k\\exp1_bus_door_straight_150_Copy\\binary_data\\d1_%04d.bdat',j); %s_binary=sprintf('D:\\Soonhac\\Data\\sr4k\\smart_cane\\binary_data\\d1_%04d.bdat',j); % for KCLCD test %s_binary=sprintf('C:\\SC-DATA-TRANSFER\\d1_0001.bdat'); s_binary=sprintf('C:\\SC-DATA-TRANSFER\\d1_%04d.bdat',j); % for running demo %s_binary=sprintf('D:\\Soonhac\\Data\\sr4k\\smart_cane\\exp2_etas523_lefthallway_exp1\\d1_%04d.bdat',j); % for KCLCD test confidence_read=1; fw=1; sr4k_image_width = 176; sr4k_image_height = 144; sr4k_image_size=[sr4k_image_height sr4k_image_width]; %t_pre = clock; %cputime; t_pre = tic; %a = load(s); % text file fileID=fopen(s_binary); if fileID==-1 %disp('File open fails !!'); error=-1; return; end %a=fread(fileID,[sr4k_image_width*3,sr4k_image_height],'float'); %fseek(fileID,sr4k_image_height*3*sr4k_image_width,'bof'); %b=fread(fileID,[sr4k_image_width*2,sr4k_image_height],'uint16'); %a=vec2mat(a',sr4k_image_width); z=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); x=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); y=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); img=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); c=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); fclose(fileID); z=z'; x=x'; y=y'; img=img'; c=c'; % k=144*3+1; % img = double(b(1:sr4k_image_height, :)); % z = a(1:144, :); % x = a(145:288, :); % y = a(289:144*3, :); % z = medfilt2(z,[fw fw]); x = medfilt2(x, [fw fw]); y = medfilt2(y, [fw fw]); %time_stamp = a(721,1); % time stamp time_stamp=0; % if confidence_read == 1 % c = b(sr4k_image_height+1:sr4k_image_height*2, :); % %c = a(144*4+1:144*5, :); % % Apply median filter to a pixel which confidence leve is zero. % %confidence_cut_off = 1; % %[img, x, y, z, c] = compensate_badpixel(img, x, y, z, c, confidence_cut_off); % else % c = 0; % end img_size=size(img); x_size=size(x); y_size=size(y); z_size=size(z); c_size=size(c); if sum(img_size-sr4k_image_size)~=0 || sum(x_size-sr4k_image_size)~=0 || sum(y_size-sr4k_image_size)~=0 || sum(z_size-sr4k_image_size)~=0 || sum(c_size-sr4k_image_size)~=0 %disp('One of matrix is corrupted.'); error=-1; return; end %Cut-off on the horizontal boarder if boarder_cut_off > 0 img=cut_boarder(img,boarder_cut_off); x=cut_boarder(x,boarder_cut_off); y=cut_boarder(y,boarder_cut_off); z=cut_boarder(z,boarder_cut_off); end %Scale intensity image to [0 255] if scale == 1 img = scale_img(img, fw, type_value, 'intensity'); end % % Adaptive histogram equalization img = adapthisteq(img); %img = histeq(img); %filtering %filter_list={'none','median','gaussian'}; gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 gaussian_h_5 = fspecial('gaussian',[5 5],1); %sigma = 1 switch filter_name case 'median' img=medfilt2(img, [3 3]); x=medfilt2(x, [3 3]); y=medfilt2(y, [3 3]); z=medfilt2(z, [3 3]); case 'median5' img=medfilt2(img, [5 5]); x=medfilt2(x, [5 5]); y=medfilt2(y, [5 5]); z=medfilt2(z, [5 5]); case 'gaussian' img=imfilter(img, gaussian_h,'replicate'); x=imfilter(x, gaussian_h,'replicate'); y=imfilter(y, gaussian_h,'replicate'); z=imfilter(z, gaussian_h,'replicate'); case 'gaussian_edge_std' img=imfilter(img, gaussian_h,'replicate'); x_g=imfilter(x, gaussian_h,'replicate'); y_g=imfilter(y, gaussian_h,'replicate'); z_g=imfilter(z, gaussian_h,'replicate'); x = check_edges(x, x_g); y = check_edges(y, y_g); z = check_edges(z, z_g); case 'gaussian5' img=imfilter(img, gaussian_h_5,'replicate'); x=imfilter(x, gaussian_h_5,'replicate'); y=imfilter(y, gaussian_h_5,'replicate'); z=imfilter(z, gaussian_h_5,'replicate'); end %rtime = etime(clock, t_pre); %cputime - t_pre; %delete('d1_0001.bdat'); rtime = toc(t_pre); end function [img]=cut_boarder(img, cut_off) image_size=size(img); h_cut_off_pixel=round(image_size(2)*cut_off/100); v_cut_off_pixel=round(image_size(1)*cut_off/100); img(:,(image_size(2)-h_cut_off_pixel+1):image_size(2))=[]; %right side of Horizontal img(:,1:h_cut_off_pixel)=[]; %left side of Horizontal img((image_size(1)-v_cut_off_pixel+1):image_size(1),:)=[]; %up side of vertical img(1:v_cut_off_pixel,:)=[]; %bottom side of vertical end function [data] = check_edges(data, data_g) %edges = 0; for i = 2:size(data,1)-1 for j= 2:size(data,2)-1 %if var(data(i-1:i+1,j-1:j+1)) <= 0.001 unit_vector = [data(i-1,j-1:j+1) data(i, j-1:j+1) data(i+1, j-1:j+1)]; %if std(unit_vector)/(max(unit_vector) - min(unit_vector)) <= 0.4 if std(unit_vector) <= 0.1 data(i,j) = data_g(i,j); %else % edges = edges + 1; end end end %edges end
github
rising-turtle/slam_matlab-master
LoadPrimesense_newmodel.m
.m
slam_matlab-master/Localization/LoadPrimesense_newmodel.m
2,811
utf_8
fe8af725cda408eb2b6b0fd64fd56a85
% Load data from Kinect % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, X, Y, Z] = LoadPrimesense_model(dm, file_index) if file_index<11 z_file_name=sprintf('D:/image/pm5_roll/image%d/depth/00%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/pm5_roll/image%d/rgb/00%d.png',dm-1,file_index-1); elseif file_index<101 z_file_name=sprintf('D:/image/pm5_roll/image%d/depth/0%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/pm5_roll/image%d/rgb/0%d.png',dm-1,file_index-1); elseif file_index<605 z_file_name=sprintf('D:/image/pm5_roll/image%d/depth/%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/pm5_roll/image%d/rgb/%d.png',dm-1,file_index-1); end depth_img=imread(z_file_name); depth_img=double(depth_img); img1=imread(img_file_name); img=rgb2gray(img1); gaussian_h = fspecial('gaussian',[3 3],1); img=imfilter(img, gaussian_h,'replicate'); %img=im2double(img); %Rt=[ 0.99977 0.010962 -0.018654 0.023278; % -0.010059 0.9988 0.047831 -0.0097038; % 0.019156 -0.047632 0.99868 -0.0093007 ]; % add calibration R and T % R=[ 1.0000 -0.0033 0.0028 26.87065; % 0.0033 1.0000 0.0043 0.9; % -0.0028 -0.0042 1.0000 6.7; % 0 0 0 1 ] ; R=[ 1.0000 0 0 25; 0 1 0 0.9; 0 0 1 0.9; 0 0 0 1 ] ; IR=[1 0 0 0; 0 1 0 0; 0 0 1 0]; Kr=[ 552 0 321; 0 552 227; 0 0 1]; [imh, imw] = size(depth_img); X=zeros(imh,imw); Y=zeros(imh,imw); Z=zeros(imh,imw); fx = 584; %# focal length x 551.0/420 fy = 584; %# focal length y 548.0/420 cx = 318; %# optical center x //319.5 cy = 238; %# optical center y ///239.5 ds = 1.0; %# depth scaling factor = 1; %# for the 16-bit PNG files for v=1:size(depth_img,1) %height for u=1:size(depth_img,2) %width z = (depth_img(v,u) / factor) * ds; x = (u - cx) * z / fx; y = (v - cy) * z / fy; % X(v,u) = x; % Y(v,u) = y; % Z(v,u) = z; uv_vector1=R*[x y z 1]'; uv_vector=Kr*IR*uv_vector1; u_vector=ceil(uv_vector(1,:)/uv_vector(3,:)); v_vector=ceil(uv_vector(2,:)/uv_vector(3,:)); %u_vector=round(uv_vector(1,:)/uv_vector(3,:)); %v_vector=round(uv_vector(2,:)/uv_vector(3,:)); if u_vector>0 && u_vector<640 &&v_vector>0 && v_vector<480 X(v_vector,u_vector)=uv_vector1(1,:); Y(v_vector,u_vector)=uv_vector1(2,:); Z(v_vector,u_vector)=uv_vector1(3,:); end end end
github
rising-turtle/slam_matlab-master
confidence_filter.m
.m
slam_matlab-master/Localization/confidence_filter.m
633
utf_8
736f36b137dc30db3995599cb4ed1cb3
% Eliminate the points by confidence map function [updated_match] = confidence_filter(match, pset1_index, pset2_index, c1, c2) % confidence_threshold = 3; confidence_threshold_percentage = 0.4; confidence_threshold_1 = floor((max(max(c1)) - min(min(c1))) * confidence_threshold_percentage); confidence_threshold_2 = floor((max(max(c2)) - min(min(c2))) * confidence_threshold_percentage); i = 1; for m=1:size(match,2) if c1(pset1_index(1,m), pset1_index(2,m)) > confidence_threshold_1 && c2(pset2_index(1,m), pset2_index(2,m)) > confidence_threshold_2 updated_match(:,i) = match(:,m); i = i + 1; end end end
github
rising-turtle/slam_matlab-master
vro_icp_9_cov_tol.m
.m
slam_matlab-master/Localization/vro_icp_9_cov_tol.m
10,748
utf_8
47385bb52bb3f1b4eda923d9ea20d7d9
% This function compute the transformation of two 3D point clouds by ICP % % Parameters : % % Author : Soonhac Hong ([email protected]) % Date : 9/20/12 % ICP6 + convexhull = ICP9 % ICP9_cov + tolerance adjustment = ICP9_cov_tol function [phi_icp, theta_icp, psi_icp, trans_icp, match_rmse, match_num, elapsed_time, sta_icp, error, pose_std] = vro_icp_9_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2) error = 0; sta_icp = 1; t_icp = tic; % test for local minimum in optimization %trans = [0; 0; 0]; %rot = euler_to_rot(0, 27, 0); if size(op_pset1,2) < 5 fprintf('Error in less point for convex hull.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % compute 3D convex hull t_convex = tic; convexhull_1 = convhulln(op_pset1',{'Qt','Pp'}); convexhull_2 = convhulln(op_pset2',{'Qt','Pp'}); % %show convexhull convexhull_1_x =[]; convexhull_1_y =[]; convexhull_1_z =[]; for i=1:size(convexhull_1,1) for j=1:3 convexhull_1_x = [convexhull_1_x op_pset1(1,convexhull_1(i,j))]; convexhull_1_y = [convexhull_1_y op_pset1(2,convexhull_1(i,j))]; convexhull_1_z = [convexhull_1_z op_pset1(3,convexhull_1(i,j))]; end end % plot3(convexhull_1_x, convexhull_1_y, convexhull_1_z,'d-'); % grid; % axis equal; %draw_data = [convexhull_1_x' convexhull_1_y' convexhull_1_z']; %mesh(draw_data); %M = op_pset1; %D = op_pset2; M_k = 1; D_k = 1; M=[]; D=[]; convex_check = 1; % check convex hull convexhull_tolerance = 0.1; %[m] max_confidence_1 = max(c1(:)); max_confidence_2 = max(c2(:)); threshold = 0.5; confidence_thresh_1 = threshold * max_confidence_1; confidence_thresh_2 = threshold * max_confidence_2; %Initialize data by trans subsampling_factor = 2; h_border_cutoff = round(size(x1,2)*0.1/2); v_border_cutoff = round(size(x1,1)*0.1/2); for i=1+v_border_cutoff:subsampling_factor:size(x1,1)-v_border_cutoff for j=1+h_border_cutoff:subsampling_factor:size(x1,2)-h_border_cutoff M_test = [-x1(i,j) z1(i,j) y1(i,j)]; M_in_flag = inhull(M_test,op_pset1',convexhull_1,convexhull_tolerance); D_test = [-x2(i,j) z2(i,j) y2(i,j)]; D_in_flag = inhull(D_test,op_pset2',convexhull_2,convexhull_tolerance); if M_in_flag == 1 || convex_check == 0 % test point locates in the convex hull %if img1(i,j) >= 50 % intensity filtering for less noise if c1(i,j) >= confidence_thresh_1 % confidence filtering M(:,M_k) = M_test'; %[-x1(i,j); z1(i,j); y1(i,j)]; M_k = M_k + 1; end end if D_in_flag == 1 || convex_check == 0 %if img2(i,j) >= 50 % intensity filtering for less noise if c2(i,j) >= confidence_thresh_2 % confidence filtering D(:,D_k) = D_test'; %[-x2(i,j); z2(i,j); y2(i,j)]; D_k = D_k + 1; end end %temp_pt2 = [-x2(i,j); z2(i,j); y2(i,j)]; %D(:,k) = rot*temp_pt2 + trans; %transed_pt1 = rot*temp_pt + trans; %k = k + 1; end end elapsed_convex = toc(t_convex); ap_size=size(M,2); if isempty(M) || isempty(D) fprintf('Error in less point for ICP.\n'); error=6; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num = [0; 0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %t_icp = tic; %[Ricp, Ticp, ER, t]=icp(M, D,'Minimize','plane'); %elapsed_icp = toc(t_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); %Transform data-matrix using ICP result %Dicp = Ricp * D + repmat(Ticp, 1, n); t_icp_icp = tic; converged = 0; rmse_total=[]; rot_total=[]; trans_total=[]; match_num_total=[]; while_cnt = 1; while converged == 0 % find correspondent assoicate Dicp = rot * D + repmat(trans, 1, size(D,2)); %p = rand( 20, 2 ); % input data (m x n); n dimensionality %q = rand( 10, 2 ); % query data (d x n) t_kdtree = tic; pt1=[]; pt2=[]; if size(M,2) > size (D,2) tree = kdtree_build( M' ); correspondent_idxs = kdtree_nearest_neighbor(tree, Dicp'); pt2 = D; for i=1:size(correspondent_idxs,1) pt1(:,i) = M(:,correspondent_idxs(i)); end else tree = kdtree_build( Dicp' ); correspondent_idxs = kdtree_nearest_neighbor(tree, M'); pt1 = M; for i=1:size(correspondent_idxs,1) pt2(:,i) = D(:,correspondent_idxs(i)); end end elapsed_kdtree = toc(t_kdtree); %[R_icp, trans_icp, ER, t]=icp(pt1, pt2,'Minimize','plane','WorstRejection',0.1); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(R_icp); % Outlier removal % Compute error t_icp_ransac = tic; pt2_transed= rot * pt2 + repmat(trans, 1, size(pt2,2)); new_cnt = 1; pt1_new=[]; pt2_new=[]; correspondent_idxs_new=[]; for i=1:size(pt1,2) unit_rmse = sqrt(sum((pt2_transed(:,i) - pt1(:,i)).^2)); if unit_rmse < 0.03 pt1_new(:,new_cnt) = pt1(:,i); pt2_new(:,new_cnt) = pt2(:,i); correspondent_idxs_new(new_cnt) = correspondent_idxs(i); new_cnt = new_cnt + 1; end end pt1 = pt1_new; pt2 = pt2_new; correspondent_idxs = correspondent_idxs_new'; % Delete duplicates in correspondent points % correspondent_unique = unique(correspondent_idxs); % correspondent_unique_idx = ones(size(correspondent_idxs)); % for i=1:length(correspondent_unique) % unit_idx = find(correspondent_idxs == correspondent_unique(i)); % if length(unit_idx) > 1 % correspondent_unique_idx(unit_idx)=0; % end % end % % correspondent_delete_idx=find(correspondent_unique_idx == 0); % pt1(:,correspondent_delete_idx') = []; % pt2(:,correspondent_delete_idx') = []; % correspondent_idxs(correspondent_delete_idx,:) = []; if isempty(pt1) || isempty(pt2) fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; match_num=[ap_size;0]; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % op_pset1_icp = pt1_new; % op_pset2_icp = pt2_new; % elapsed_icp_ransac = toc(t_icp_ransac); %t_icp_ransac = tic; [op_match, match_num, rtime, error_ransac] = run_ransac_points(pt1, pt2, correspondent_idxs', 0); if error_ransac ~= 0 % Error in RANSAC fprintf('Error in RANSAC with additional points.\n'); error=5; phi_icp = 0.0; theta_icp = 0.0; psi_icp = 0.0; trans_icp = [0.0; 0.0; 0.0]; elapsed_time = [0.0, 0.0, 0.0, 0.0, 0.0]; sta_icp = 0; match_rmse = 0.0; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end op_pset1_icp = []; op_pset2_icp = []; for i=1:match_num(2) op_pset1_icp(:,i) = pt1(:,op_match(1,i)); op_pset2_icp(:,i) = pt2(:,op_match(2,i)); end elapsed_icp_ransac = toc(t_icp_ransac); % SVD t_svd_icp = tic; %[rot_icp, trans_icp, sta_icp] = find_transform_matrix(op_pset1_icp, op_pset2_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); %elapsed_svd = etime(clock, t_svd); sta_icp =1; t_init = zeros(6,1); [t_init(2), t_init(1), t_init(3)] = rot_to_euler(rot); t_init(4:6) = trans; [rot_icp, trans_icp] = lm_point(op_pset1_icp, op_pset2_icp, t_init); %[rot_icp, trans_icp] = lm_point2plane(op_pset1, op_pset2, t_init); elapsed_svd = toc(t_svd_icp); % M = op_pset1_icp; % D = op_pset2_icp; rot = rot_icp; trans = trans_icp; rot_total(:,:,while_cnt) = rot; trans_total(:,:,while_cnt) = trans; match_num_total(while_cnt) = size(op_pset1_icp,2); % Plot % figure; % plot3(op_pset1_icp(1,:),op_pset1_icp(2,:),op_pset1_icp(3,:),'b*-'); % hold on; % plot3(op_pset2_icp(1,:),op_pset2_icp(2,:),op_pset2_icp(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; % Compute error op_pset1_icp_normal = lsqnormest(op_pset1_icp,4); op_pset2_icp_transed= rot * op_pset2_icp + repmat(trans, 1, size(op_pset2_icp,2)); % rmse_icp = 0; % for i=1:size(M,2) % unit_rmse = sqrt(sum((D_transed(:,i) - M(:,i)).^2)/3); % rmse_icp = rmse_icp + unit_rmse; % end % rmse_icp = rmse_icp / size(M,2); %rmse_icp = rms_error(op_pset1_icp, op_pset2_icp_transed); rmse_icp = rms_error_normal(op_pset1_icp, op_pset2_icp_transed, op_pset1_icp_normal); % point-to-plain op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse_feature = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse_feature = rmse_feature + unit_rmse; % end % rmse_feature = rmse_feature / size(op_pset1,2); rmse_feature= rms_error(op_pset1,op_pset2_transed); rmse_total = [rmse_total (rmse_icp+rmse_feature)/2]; %rmse_total = [rmse_total rmse_icp]; rmse_thresh = 0.001; if length(rmse_total) > 3 rmse_diff = abs(diff(rmse_total)); rmse_diff_length = length(rmse_diff); if rmse_diff(rmse_diff_length) < rmse_thresh && rmse_diff(rmse_diff_length-1) < rmse_thresh && rmse_diff(rmse_diff_length-2) < rmse_thresh converged = 1; end end while_cnt = while_cnt + 1; end [match_rmse match_rmse_idx] = min(rmse_total); %match_rmse = rmse_total(end); %match_rmse_idx = size(rmse_total,2); match_num = [ap_size; match_num_total(match_rmse_idx)]; rot_icp = rot_total(:,:,match_rmse_idx); trans_icp = trans_total(:,:,match_rmse_idx); [phi_icp, theta_icp, psi_icp] = rot_to_euler(rot_icp); elapsed_icp_icp = toc(t_icp_icp); %t_icp_icp = tic; %[Ricp, trans_icp, ER, t]=icp(op_pset1_icp, op_pset2_icp,'Minimize','plane'); %elapsed_icp_icp = toc(t_icp_icp); %[phi_icp, theta_icp, psi_icp] = rot_to_euler(Ricp); elapsed_icp = toc(t_icp); elapsed_time = [elapsed_convex, elapsed_kdtree, elapsed_icp_ransac, elapsed_icp_icp, elapsed_icp]; %Compute covariane [pose_std] = compute_pose_std(op_pset1_icp,op_pset2_icp, rot_icp, trans_icp); pose_std = pose_std'; M = []; D = []; pt1 = []; pt2 = []; op_pset1_icp = []; op_pset2_icp = []; tree = []; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast.m
14,320
utf_8
4a81d4c1c55144dcff1bb08eb0eb1664
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, dis) if nargin < 13 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') % Dynamic data cframe = sframe; else cframe = j; end if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') % Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end if check_stored_visual_feature(data_name, dm, cframe) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta == 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_icp2_cov_fast_fast_dist2.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_icp2_cov_fast_fast_dist2.m
21,044
utf_8
f999be537c4198a4027573b0d293d8e8
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 8/30/12 function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_icp2_cov_fast_fast_dist2(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, icp_mode, dis) if nargin < 14 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') % Dynamic data cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); %[frm1,des1] = vl_sift(single(img1)) ; else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature')% Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); %[frm2,des2] = vl_sift(single(img2)) ; else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe,'none') == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %[match, scores] = vl_ubcmatch(des1,des2) ; %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 valid_dist_max = 5; % 5m valid_dist_min = 0.8; % 0.8m match_new = []; cnt_new = 1; pnum = size(match, 2); if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= 0 && img2(ROW2, COL2) >= 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; % stdev_threshold = 0.1; % stdev_count = 0; % count_threshold = 15; % mean_threshold = 0.1; % mean_count = 0; % window_size = 30; % debug_data=[]; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % if cnum >= valid_ransac % break; % end % if cnum/pnum >= inlier_ratio % break; % enddynamic_data_index % total_cnum(i)=cnum; % if i > window_size && inliers_std ~= 0 % inliers_std_prev = inliers_std; % inliers_std = std(total_cnum(i-window_size:i)); %Moving STDEV % inliers_std_delta = abs(inliers_std - inliers_std_prev)/inliers_std_prev; % % inliers_mean_prev = inliers_mean; % inliers_mean = mean(total_cnum(i-window_size:i)); %Moving STDEV % inliers_mean_delta = abs(inliers_mean - inliers_mean_prev)/inliers_mean_prev; % % if inliers_std_delta < stdev_threshold % stdev_count = stdev_count + 1; % else % stdev_count = 0; % end % % if inliers_mean_delta < mean_threshold % mean_count = mean_count + 1; % else % mean_count = 0; % end % % inlier_ratio = max(total_cnum)/pnum; % % count_threshold = 120000 / ((inlier_ratio*100)^2); %-26 * (inlier_ratio*100 - 20) + 800; % % if stdev_count > count_threshold %&& mean_count > count_threshold % break; % end % else % inliers_std = std(total_cnum); % inliers_mean = mean(total_cnum); % end if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1 break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %% Run SVD %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2,'none'); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe,'none'); t_svd = tic; end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Test LM %[rot_lm, trans_lm] = lm_point(op_pset1, op_pset2); % [rot_lm, trans_lm] = lm_point2plane(op_pset1, op_pset2); % [phi_lm, theta_lm, psi_lm] = rot_to_euler(rot_lm); % [theta*180/pi theta_lm*180/pi] % [phi*180/pi phi_lm*180/pi] % [psi*180/pi psi_lm*180/pi] % Save feature points %feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; % Compute RMSE op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse = rmse + unit_rmse; % end % rmse_feature = rmse / size(op_pset1,2); %rmse_feature = rms_error(op_pset1, op_pset2_transed); % Show correspondent points % plot3(op_pset1(1,:),op_pset1(2,:),op_pset1(3,:),'b*-'); % hold on; % plot3(op_pset2(1,:),op_pset2(2,:),op_pset2(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; %Compute the elapsed time %rt_total = etime(clock,t); %elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; %% Run ICP %[phi_icp, theta_icp, psi_icp, trans_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_2(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_3(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_4(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_5(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); if strcmp(icp_mode, 'icp_ch') [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_dist(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch_dist(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); else [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_6_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); end %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_10(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_13(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %Check status of SVD if sta_icp == 0 || error ~= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta_icp == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %elapsed_icp = toc(t_icp); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; %rot = rot_icp; % [rmse_feature rmse_icp] % [theta*180/pi theta_icp*180/pi] % [trans(1) trans_icp(1)] %if rmse_icp <= rmse_feature trans = trans_icp; phi = phi_icp; theta = theta_icp; psi = psi_icp; %end %convert degree % r2d=180.0/pi; % phi=phi*r2d; % theta=theta*r2d; % psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
save_icp_pose.m
.m
slam_matlab-master/Localization/save_icp_pose.m
1,449
utf_8
1dbca54b1c887539d2074a5459abc5db
% Save matched points into a file % % Author : Soonhac Hong ([email protected]) % Date : 8/12/2013 function save_icp_pose(data_name, dm, first_cframe, second_cframe, icp_mode, sequence_data, phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true dataset_dir = strrep(prefix, '/d1',''); if strcmp(icp_mode, 'icp_ch') file_name = sprintf('%s/icp_ch_pose/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/icp_pose/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(icp_mode, 'icp_ch') file_name = sprintf('%s/icp_ch_pose/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); else file_name = sprintf('%s/icp_pose/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); end end % if strcmp(isgframe, 'gframe') % file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % else % file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % end save(file_name, 'phi_icp', 'theta_icp', 'psi_icp', 'trans_icp', 'rmse_icp', 'match_num', 'elapsed_icp', 'sta_icp', 'error', 'pose_std'); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm1.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm1.m
20,682
utf_8
70768c121d2c12aee163d99545605f70
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm1(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'primesense') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); %[img1, x1, y1, z1] = LoadPrimesense_model(dm, cframe); [img1, x1, y1, z1] = LoadPrimesense_newmodel(dm, cframe); %[img1, x1, y1, z1] = LoadPrimesense_model(dm, cframe); % f1 = figure(1); %imshow(uint8(img1*255)); % f2=figure(2); % imagesc(z1); elapsed_pre=0; else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe); %% modify for read data from creative !!! elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'primesense') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); %[img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); %[img2, x2, y2, z2] = LoadPrimesense_model(dm, cframe); [img2, x2, y2, z2] = LoadPrimesense_newmodel(dm, cframe); elapsed_pre2=0; else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max = 1400; % [m] valid_dist_min = 450; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'primesense') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > valid_dist_min &&z1(ROW1, COL1)<valid_dist_max&& z2(ROW2, COL2) > valid_dist_min&&z2(ROW2, COL2)<valid_dist_max match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; % col1=SearchColumn(cor_i1,COL1,10); % row1=SearchRow(cor_j1,ROW1,10); %ADD BY WEI % col2=SearchColumn(cor_i2,COL2,10); % row2=SearchRow(cor_j2,ROW2,10); %ADD BY WEI [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); if col1~=0&&row1~=0&&col2~=0&&row2~=0 temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); % end if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[row1 col1]'; match_depth2(:,cnt_new)=[row2 col2]'; cnt_new = cnt_new + 1; end end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'primesense') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
LoadSR_no_bpc.m
.m
slam_matlab-master/Localization/LoadSR_no_bpc.m
4,431
utf_8
4949a8ca77cf111fa99a071ee8736c50
% Load data from Swiss Ranger % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 % No bad pixel compensation function [img, x, y, z, c, rtime] = LoadSR_no_bpc(data_name, filter_name, ... boarder_cut_off, dm, j, scale, type_value) % if nargin < 6 % scale = 1; % end %apitch=-43+3*dm; %[prefix, err]=sprintf('../data/d%d_%d/d%d', dm, apitch, dm); [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if j<10 [s, err]=sprintf('%s_000%d.dat', prefix, j); elseif j<100 [s, err]=sprintf('%s_00%d.dat', prefix, j); elseif j<1000 [s, err]=sprintf('%s_0%d.dat', prefix, j); else [s, err]=sprintf('%s_%d.dat', prefix, j); end %t_pre = clock; %cputime; t_pre = tic; fw=1; a = load(s); % elapsed time := 0.2 sec global g_data_height k=g_data_height*3+1; img = double(a(k:k+g_data_height-1, :)); z = a(1:g_data_height, :); x = a(g_data_height+1:2*g_data_height, :); y = a(2*g_data_height+1:g_data_height*3, :); % z = medfilt2(z,[fw fw]); x = medfilt2(x, [fw fw]); y = medfilt2(y, [fw fw]); % [frm, des] = sift(img); % imwrite(img, 'before_scale.png'); % imshow(img); confidence_read = 0; if confidence_read == 1 % c = a(144*4+1:144*5, :); c = a(g_data_height*4 +1:g_data_height*5, :); % Apply median filter to a pixel which confidence leve is zero. %confidence_cut_off = 1; %[img, x, y, z, c] = compensate_badpixel(img, x, y, z, c, confidence_cut_off); else c = 0; end %Cut-off on the horizontal boarder if boarder_cut_off > 0 img=cut_boarder(img,boarder_cut_off); x=cut_boarder(x,boarder_cut_off); y=cut_boarder(y,boarder_cut_off); z=cut_boarder(z,boarder_cut_off); end %Scale intensity image to [0 255] if scale == 1 img = scale_img(img, fw, type_value, 'intensity'); end % [frm, des] = sift(img); % imwrite(img, 'after_scale.png'); % imshow(img); % % Adaptive histogram equalization img = adapthisteq(img); % img = histeq(img); % [frm, des] = sift(img); % imshow(img); %filtering %filter_list={'none','median','gaussian'}; gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 gaussian_h_5 = fspecial('gaussian',[5 5],1); %sigma = 1 % filter_name = ''; switch filter_name case 'median' img=medfilt2(img, [3 3]); x=medfilt2(x, [3 3]); y=medfilt2(y, [3 3]); z=medfilt2(z, [3 3]); case 'median5' img=medfilt2(img, [5 5]); x=medfilt2(x, [5 5]); y=medfilt2(y, [5 5]); z=medfilt2(z, [5 5]); case 'gaussian' img=imfilter(img, gaussian_h,'replicate'); % x=imfilter(x, gaussian_h,'replicate'); % y=imfilter(y, gaussian_h,'replicate'); % z=imfilter(z, gaussian_h,'replicate'); case 'gaussian_edge_std' img=imfilter(img, gaussian_h,'replicate'); x_g=imfilter(x, gaussian_h,'replicate'); y_g=imfilter(y, gaussian_h,'replicate'); z_g=imfilter(z, gaussian_h,'replicate'); x = check_edges(x, x_g); y = check_edges(y, y_g); z = check_edges(z, z_g); case 'gaussian5' img=imfilter(img, gaussian_h_5,'replicate'); x=imfilter(x, gaussian_h_5,'replicate'); y=imfilter(y, gaussian_h_5,'replicate'); z=imfilter(z, gaussian_h_5,'replicate'); end % [frm, des] = sift(img); % imshow(img); %rtime = etime(clock, t_pre); %cputime - t_pre; rtime = toc(t_pre); end function [img]=cut_boarder(img, cut_off) image_size=size(img); h_cut_off_pixel=round(image_size(2)*cut_off/100); v_cut_off_pixel=round(image_size(1)*cut_off/100); img(:,(image_size(2)-h_cut_off_pixel+1):image_size(2))=[]; %right side of Horizontal img(:,1:h_cut_off_pixel)=[]; %left side of Horizontal img((image_size(1)-v_cut_off_pixel+1):image_size(1),:)=[]; %up side of vertical img(1:v_cut_off_pixel,:)=[]; %bottom side of vertical end function [data] = check_edges(data, data_g) %edges = 0; for i = 2:size(data,1)-1 for j= 2:size(data,2)-1 %if var(data(i-1:i+1,j-1:j+1)) <= 0.001 unit_vector = [data(i-1,j-1:j+1) data(i, j-1:j+1) data(i+1, j-1:j+1)]; %if std(unit_vector)/(max(unit_vector) - min(unit_vector)) <= 0.4 if std(unit_vector) <= 0.1 data(i,j) = data_g(i,j); %else % edges = edges + 1; end end end %edges end
github
rising-turtle/slam_matlab-master
get_motive_filename.m
.m
slam_matlab-master/Localization/get_motive_filename.m
358
utf_8
94ad2275c9cd7f075b6a46f6861a8908
% Get directory name of motive datasets % % Author : Soonhac Hong ([email protected]) % Date : 11/20/13 function motive_filename_lists=get_motive_filename() motive_filename_lists = {'move_forward','swing_forward','move_loop','swing_loop','move_loop_2','move_loop_3','swing_loop_2','m5_loop','m5_loop_2','m5_swing_loop','m5_loop_3','m5_swing_loop_2'}; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_p.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_p.m
21,626
utf_8
e92b786caef4fe42399ac6059bfd97f2
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_p(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 %if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') % change to primesense by wei wu %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); [img1, x1, y1, z1] = load_primesense(dm, cframe); %[img1, x1, y1, z1] = LoadPrimesense_model(dm, cframe); elapsed_pre=0; else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe); %% modify for read data from creative !!! elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 % if strcmp(data_name, 'kinect_tum') % %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); % [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); if strcmp(data_name, 'primesense') % change to primesense by wei wu %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); [img2, x2, y2, z2] = load_primesense(dm, cframe); % [img2, x2, y2, z2] = LoadPrimesense_model(dm, cframe); elapsed_pre2=0; else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max = 1; % [m] valid_dist_min = 0.350; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; %if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) >valid_dist_min && z2(ROW2, COL2) > valid_dist_min&&z1(ROW1, COL1) <valid_dist_max && z2(ROW2, COL2) <valid_dist_max match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; % col1=SearchColumn(cor_i1,COL1,10); % row1=SearchRow(cor_j1,ROW1,10); %ADD BY WEI % col2=SearchColumn(cor_i2,COL2,10); % row2=SearchRow(cor_j2,ROW2,10); %ADD BY WEI [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); if col1~=0&&row1~=0&&col2~=0&&row2~=0 temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); % end if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[row1 col1]'; match_depth2(:,cnt_new)=[row2 col2]'; cnt_new = cnt_new + 1; end end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; % if strcmp(data_name, 'kinect_tum') if strcmp(data_name, 'primesense') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); % if strcmp(data_name, 'kinect_tum') % elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; if strcmp(data_name, 'primesense') % elapsed = [ elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov.m
13,451
utf_8
05fdb67deba8117bf940baeee024754b
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, dis) if nargin < 13 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') % Dynamic data cframe = sframe; else cframe = j; end if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') % Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta == 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
run_ransac_points.m
.m
slam_matlab-master/Localization/run_ransac_points.m
2,268
utf_8
282c75429fdbf0eb0159f9aac971d395
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % pt1 : point cloud of data set (n x m) n : data dimensionality % pt2 : point cloud of data set (n x m) n : data dimensionality % match : match index % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 9/10/12 function [op_match, match_num, rtime, error] = run_ransac_points(pt1, pt2, match, dis) error = 0; pnum = size(match, 2); ransac_error = 0; if pnum<4 fprintf('too few sift points for ransac.\n'); op_num=0; op_match=0; rtime = 0; match_num = [pnum; op_num]; error=1; return; else t_ransac = tic; %Standard termination criterion valid_ransac = 12; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; max_iteration = 120000; while eta > eta_0 i = i+1; [n_match, rs_match, cnum] = ransac_gc(pt1, pt2); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); op_num=0; op_match=0; rtime = toc(t_ransac); match_num = [pnum; op_num]; error=2; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end rtime = toc(t_ransac); match_num = [pnum; op_num]; end end
github
rising-turtle/slam_matlab-master
LoadSR.m
.m
slam_matlab-master/Localization/LoadSR.m
3,943
utf_8
baf1a3a507ef76292082b44303a3d65b
% Load data from Swiss Ranger % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, x, y, z, c, rtime] = LoadSR(data_name, filter_name, boarder_cut_off, dm, j, scale, type_value) % if nargin < 6 % scale = 1; % end %apitch=-43+3*dm; %[prefix, err]=sprintf('../data/d%d_%d/d%d', dm, apitch, dm); [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if j<10 [s, err]=sprintf('%s_000%d.dat', prefix, j); elseif j<100 [s, err]=sprintf('%s_00%d.dat', prefix, j); elseif j<1000 [s, err]=sprintf('%s_0%d.dat', prefix, j); else [s, err]=sprintf('%s_%d.dat', prefix, j); end %t_pre = clock; %cputime; t_pre = tic; fw=1; a = load(s); % elapsed time := 0.2 sec k=144*3+1; img = double(a(k:k+143, :)); z = a(1:144, :); x = a(145:288, :); y = a(289:144*3, :); z = medfilt2(z,[fw fw]); x = medfilt2(x, [fw fw]); y = medfilt2(y, [fw fw]); if confidence_read == 1 c = a(144*4+1:144*5, :); % Apply median filter to a pixel which confidence leve is zero. confidence_cut_off = 1; [img, x, y, z, c] = compensate_badpixel(img, x, y, z, c, confidence_cut_off); else c = 0; end %Cut-off on the horizontal boarder if boarder_cut_off > 0 img=cut_boarder(img,boarder_cut_off); x=cut_boarder(x,boarder_cut_off); y=cut_boarder(y,boarder_cut_off); z=cut_boarder(z,boarder_cut_off); end %Scale intensity image to [0 255] if scale == 1 img = scale_img(img, fw, type_value, 'intensity'); end % % Adaptive histogram equalization %img = adapthisteq(img); img = histeq(img); %filtering %filter_list={'none','median','gaussian'}; gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 gaussian_h_5 = fspecial('gaussian',[5 5],1); %sigma = 1 switch filter_name case 'median' img=medfilt2(img, [3 3]); x=medfilt2(x, [3 3]); y=medfilt2(y, [3 3]); z=medfilt2(z, [3 3]); case 'median5' img=medfilt2(img, [5 5]); x=medfilt2(x, [5 5]); y=medfilt2(y, [5 5]); z=medfilt2(z, [5 5]); case 'gaussian' img=imfilter(img, gaussian_h,'replicate'); x=imfilter(x, gaussian_h,'replicate'); y=imfilter(y, gaussian_h,'replicate'); z=imfilter(z, gaussian_h,'replicate'); case 'gaussian_edge_std' img=imfilter(img, gaussian_h,'replicate'); x_g=imfilter(x, gaussian_h,'replicate'); y_g=imfilter(y, gaussian_h,'replicate'); z_g=imfilter(z, gaussian_h,'replicate'); x = check_edges(x, x_g); y = check_edges(y, y_g); z = check_edges(z, z_g); case 'gaussian5' img=imfilter(img, gaussian_h_5,'replicate'); x=imfilter(x, gaussian_h_5,'replicate'); y=imfilter(y, gaussian_h_5,'replicate'); z=imfilter(z, gaussian_h_5,'replicate'); end %rtime = etime(clock, t_pre); %cputime - t_pre; rtime = toc(t_pre); end function [img]=cut_boarder(img, cut_off) image_size=size(img); h_cut_off_pixel=round(image_size(2)*cut_off/100); v_cut_off_pixel=round(image_size(1)*cut_off/100); img(:,(image_size(2)-h_cut_off_pixel+1):image_size(2))=[]; %right side of Horizontal img(:,1:h_cut_off_pixel)=[]; %left side of Horizontal img((image_size(1)-v_cut_off_pixel+1):image_size(1),:)=[]; %up side of vertical img(1:v_cut_off_pixel,:)=[]; %bottom side of vertical end function [data] = check_edges(data, data_g) %edges = 0; for i = 2:size(data,1)-1 for j= 2:size(data,2)-1 %if var(data(i-1:i+1,j-1:j+1)) <= 0.001 unit_vector = [data(i-1,j-1:j+1) data(i, j-1:j+1) data(i+1, j-1:j+1)]; %if std(unit_vector)/(max(unit_vector) - min(unit_vector)) <= 0.4 if std(unit_vector) <= 0.1 data(i,j) = data_g(i,j); %else % edges = edges + 1; end end end %edges end
github
rising-turtle/slam_matlab-master
get_dir_name.m
.m
slam_matlab-master/Localization/get_dir_name.m
2,093
utf_8
f5ada152c3bd0fa001f52118d5833176
% Get directory name of each data se % % Author : Soonhac Hong ([email protected]) % Date : 4/4/13 function dir_name = get_dir_name(data_name) switch data_name case 'c1' dir_name = {'0','y-3_p6_x100','y-12_p9_x300','y-6_p12_x500'}; case 'c2' dir_name = {'0','y-6_p3_y200','y-9_p12_y400','y-12_p6_y600'}; case 'c3' dir_name = {'0','y3_p12_x100','y6_p9_x200','y9_p6_x300','y12_p3_x400'}; case 'c4' dir_name = {'0','y-3_p9_y300'}; case 'm' dir_name={'pitch_3degree','pitch_9degree','pan_3degree','pan_9degree','pan_30degree','pan_60degree','roll_3degree','roll_9degree','x_30mm','x_150mm','x_300mm','y_30mm','y_150mm','y_300mm','square_500','square_700','square_swing','square_1000','test'}; case 'etas' dir_name = {'3th_straight','3th_swing','4th_straight','4th_swing','5th_straight','5th_swing'}; case 'loops' dir_name = {'bus','bus_3','bus_door_straight_150','bus_straight_150','data_square_small_100','eit_data_150','exp1','exp2','exp3','exp4','exp5','lab_80_dynamic_1','lab_80_swing_1','lab_it_80','lab_lookforward_4','s2','second_floor_150_not_square','second_floor_150_square','second_floor_small_80_swing','third_floor_it_150'}; case 'loops2' dir_name = get_loops2_filename(); case 'sparse_feature' dir_name = get_sparse_feature_filename(); case {'swing', 'swing2'} dir_name = get_swing_filename(); %{'forward1','forward2','forward3','forward4','forward5','forward6','forward7_10m','forward8_10m', 'forward9_10m','forward10_10m','forward11_10m','forward12_10m','forward13_10m','forward14_10m','forward15_10m'}; case {'object_recognition'} dir_name = {'floor1','indoor_monitor_1','indoor_doorway_1','indoor_monitor_2','indoor_stairway_1','indoor_stairway_2', 'indoor_stairway_3', 'indoor_stairway_4', 'indoor_stairway_5', 'indoor_monitor_3', 'indoor_monitor_4'}; case {'motive'} dir_name = get_motive_filename(); case {'kinect_tum'} dir_name = get_kinect_tum_dir_name(); otherwise dir_name = {'none'}; end end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm2.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm2.m
20,597
utf_8
20cef817a6696c63b8f58ea860601567
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_pm2(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'primesense') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); %[img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); [img1, x1, y1, z1] = LoadPrimesense_model(dm, cframe); elapsed_pre=0; else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe); %% modify for read data from creative !!! elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'primesense') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); %[img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); [img2, x2, y2, z2] = LoadPrimesense_model(dm, cframe); elapsed_pre2=0; else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max = 1000; % [m] valid_dist_min = 150; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'primesense') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; % col1=SearchColumn(cor_i1,COL1,10); % row1=SearchRow(cor_j1,ROW1,10); %ADD BY WEI % col2=SearchColumn(cor_i2,COL2,10); % row2=SearchRow(cor_j2,ROW2,10); %ADD BY WEI [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); if col1~=0&&row1~=0&&col2~=0&&row2~=0 temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); % end if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[row1 col1]'; match_depth2(:,cnt_new)=[row2 col2]'; cnt_new = cnt_new + 1; end end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_primesense(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'primesense') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'primesense') %elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
save_pose_std.m
.m
slam_matlab-master/Localization/save_pose_std.m
1,374
utf_8
94abed80c2732098f1ef02641015c5f9
% Save matched points into a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, isgframe, sequence_data) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end if strcmp(isgframe, 'gframe') file_name = sprintf('%s/pose_std_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/pose_std/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); if strcmp(isgframe, 'gframe') file_name = sprintf('%s/pose_std_gframe/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); else file_name = sprintf('%s/pose_std/d1_%04d_d%d_%04d.mat',dataset_dir, first_cframe, dm, second_cframe); end end % if strcmp(isgframe, 'gframe') % file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % else % file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); % end save(file_name, 'pose_std'); end
github
rising-turtle/slam_matlab-master
check_stored_icp_pose.m
.m
slam_matlab-master/Localization/check_stored_icp_pose.m
1,201
utf_8
7af72ceae02de07502cf86983c93c78b
% Check if there is the stored matched points % % Author : Soonhac Hong ([email protected]) % Date : 8/12/2013 function [exist_flag] = check_stored_icp_pose(data_name, dm, first_cframe, second_cframe, icp_mode, sequence_data) exist_flag = 0; [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true dataset_dir = strrep(prefix, '/d1',''); file_name = sprintf('d1_%04d_%04d.mat',first_cframe, second_cframe); else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); file_name = sprintf('d1_%04d_d%d_%04d.mat',first_cframe, dm, second_cframe); end if strcmp(icp_mode, 'icp_ch') dataset_dir = sprintf('%s/icp_ch_pose',dataset_dir); else dataset_dir = sprintf('%s/icp_pose',dataset_dir); end %file_name = sprintf('d1_%04d_%04d.mat',first_cframe, second_cframe); dirData = dir(dataset_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; if isempty(file_list) return; else for i=1:size(file_list,1) if strcmp(file_list{i}, file_name) exist_flag = 1; break; end end end end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_icp2_cov_fast_fast_dist.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_icp2_cov_fast_fast_dist.m
20,434
utf_8
c03980c62e56add66fadbcc1d0662a38
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 8/30/12 function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_icp2_cov_fast_fast_dist(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, icp_mode, dis) if nargin < 14 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') % Dynamic data cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); %[frm1,des1] = vl_sift(single(img1)) ; else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe); end %Read second Data set if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature')% Dynamic data %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe) == 0 [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); %[frm2,des2] = vl_sift(single(img2)) ; else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe,'none') == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %[match, scores] = vl_ubcmatch(des1,des2) ; %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % Eliminate pairwises which have zero in depth image of kinect or less 100 gray level in image of SR4000 match_new = []; cnt_new = 1; pnum = size(match, 2); if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if img1(ROW1, COL1) >= 0 && img2(ROW2, COL2) >= 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; % stdev_threshold = 0.1; % stdev_count = 0; % count_threshold = 15; % mean_threshold = 0.1; % mean_count = 0; % window_size = 30; % debug_data=[]; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % if cnum >= valid_ransac % break; % end % if cnum/pnum >= inlier_ratio % break; % enddynamic_data_index % total_cnum(i)=cnum; % if i > window_size && inliers_std ~= 0 % inliers_std_prev = inliers_std; % inliers_std = std(total_cnum(i-window_size:i)); %Moving STDEV % inliers_std_delta = abs(inliers_std - inliers_std_prev)/inliers_std_prev; % % inliers_mean_prev = inliers_mean; % inliers_mean = mean(total_cnum(i-window_size:i)); %Moving STDEV % inliers_mean_delta = abs(inliers_mean - inliers_mean_prev)/inliers_mean_prev; % % if inliers_std_delta < stdev_threshold % stdev_count = stdev_count + 1; % else % stdev_count = 0; % end % % if inliers_mean_delta < mean_threshold % mean_count = mean_count + 1; % else % mean_count = 0; % end % % inlier_ratio = max(total_cnum)/pnum; % % count_threshold = 120000 / ((inlier_ratio*100)^2); %-26 * (inlier_ratio*100 - 20) + 800; % % if stdev_count > count_threshold %&& mean_count > count_threshold % break; % end % else % inliers_std = std(total_cnum); % inliers_mean = mean(total_cnum); % end if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1 break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %% Run SVD %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2,'none'); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe,'none'); t_svd = tic; end [op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); tmp_rsmatch = []; tmp_cnum = []; tmp_nmatch = []; op_match = []; %Test LM %[rot_lm, trans_lm] = lm_point(op_pset1, op_pset2); % [rot_lm, trans_lm] = lm_point2plane(op_pset1, op_pset2); % [phi_lm, theta_lm, psi_lm] = rot_to_euler(rot_lm); % [theta*180/pi theta_lm*180/pi] % [phi*180/pi phi_lm*180/pi] % [psi*180/pi psi_lm*180/pi] % Save feature points %feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; % Compute RMSE op_pset2_transed= rot * op_pset2 + repmat(trans, 1, size(op_pset2,2)); % rmse = 0; % for i=1:size(op_pset1,2) % unit_rmse = sqrt(sum((op_pset2_transed(:,i) - op_pset1(:,i)).^2)/3); % rmse = rmse + unit_rmse; % end % rmse_feature = rmse / size(op_pset1,2); %rmse_feature = rms_error(op_pset1, op_pset2_transed); % Show correspondent points % plot3(op_pset1(1,:),op_pset1(2,:),op_pset1(3,:),'b*-'); % hold on; % plot3(op_pset2(1,:),op_pset2(2,:),op_pset2(3,:),'ro-'); % xlabel('X'); % ylabel('Y'); % zlabel('Z'); % grid; % hold off; %Compute the elapsed time %rt_total = etime(clock,t); %elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; %% Run ICP %[phi_icp, theta_icp, psi_icp, trans_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_2(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_3(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_4(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_5(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); if strcmp(icp_mode, 'icp_ch') [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch_dist(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol_batch(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_9_cov_tol(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); else [phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error, pose_std] = vro_icp_6_cov(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, c1, x2, y2, z2, img2, c2); end %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_10(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %[phi_icp, theta_icp, psi_icp, trans_icp, rmse_icp, match_num, elapsed_icp, sta_icp, error] = vro_icp_13(op_pset1, op_pset2, rot, trans, x1, y1, z1, img1, x2, y2, z2, img2); %Check status of SVD if sta_icp == 0 || error ~= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta_icp == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end %elapsed_icp = toc(t_icp); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; elapsed_icp(5)]; %rot = rot_icp; % [rmse_feature rmse_icp] % [theta*180/pi theta_icp*180/pi] % [trans(1) trans_icp(1)] %if rmse_icp <= rmse_feature trans = trans_icp; phi = phi_icp; theta = theta_icp; psi = psi_icp; %end %convert degree % r2d=180.0/pi; % phi=phi*r2d; % theta=theta*r2d; % psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc.m
17,547
utf_8
cc4c56a90ef6a409e2b616c1da08c397
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else [img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering [frm1, des1] = confidence_filtering(frm1, des1, c1); save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); else [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else [img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering [frm2, des2] = confidence_filtering(frm2, des2, c2); save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); else [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); end if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); end % distance filtering if is_10M_data == 1 valid_dist_max = 8; % 5m else valid_dist_max = 5; % 5m end valid_dist_min = 0.8; % 0.8m match_new = []; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; temp_pt1=[-x1(ROW1, COL1), z1(ROW1, COL1), y1(ROW1, COL1)]; temp_pt2=[-x2(ROW2, COL2), z2(ROW2, COL2), y2(ROW2, COL2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; %end end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); else [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); t_svd = tic; end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); else [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
localization_addpath.m
.m
slam_matlab-master/Localization/localization_addpath.m
433
utf_8
e55d2d7d14b2ebe4c14e678200670c35
% Add the path for graph slam % % Author : Soonhac Hong ([email protected]) % Date : 10/16/12 function localization_addpath addpath('D:\Soonhac\SW\icp'); addpath('D:\Soonhac\SW\kdtree'); addpath('D:\Soonhac\SW\LevenbergMarquardt'); addpath('D:\Soonhac\SW\SIFT\sift-0.9.19-bin\sift'); %addpath('D:\Soonhac\SW\GradientConcensus'); %addpath('D:\Soonhac\SW\OpenSURF_version1c'); %addpath('E:\data\Amir\code\code3\code_from_dr_ye'); end
github
rising-turtle/slam_matlab-master
save_matched_points.m
.m
slam_matlab-master/Localization/save_matched_points.m
1,099
utf_8
a1d872acde1b9be2e749a1768097b780
% Save matched points into a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, isgframe, sequence_data) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); end if strcmp(isgframe, 'gframe') file_name = sprintf('%s/matched_points_gframe/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); else file_name = sprintf('%s/matched_points/d1_%04d_%04d.mat',dataset_dir, first_cframe, second_cframe); end save(file_name, 'match_num', 'ransac_iteration', 'op_pset1_image_index', 'op_pset2_image_index', 'op_pset_cnt', 'elapsed_match', 'elapsed_ransac', 'op_pset1', 'op_pset2'); end
github
rising-turtle/slam_matlab-master
get_kinect_tum_dir_name_vro_cpp.m
.m
slam_matlab-master/Localization/get_kinect_tum_dir_name_vro_cpp.m
355
utf_8
4dd3f8a1ba991e4517e0073c27ad290d
% Get directory name of kinect_tum data set % % Parameters % dm : index of directory of data % % Author : Soonhac Hong ([email protected]) % Date : 9/25/12 function [dir_name_list]=get_kinect_tum_dir_name() dir_name_list={'freiburg1_xyz','freiburg1_floor','freiburg2_large_no_loop','freiburg2_large_with_loop'}; %dir_name=dir_name_list{dir_index}; end
github
rising-turtle/slam_matlab-master
LoadKinect.m
.m
slam_matlab-master/Localization/LoadKinect.m
1,839
utf_8
45cf2fbc839ba26005f6f0a47ddc3e1d
% Load data from Kinect % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, X, Y, Z, rtime] = LoadKinect(dm, j) t_load = tic; dir_name = get_kinect_tum_dir_name(); [rgb_data_dir, err] = sprintf('E:/data/kinect_tum/%s/rgb',dir_name{dm}); dirData = dir(rgb_data_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; [file_name, err]=sprintf('%s/%s',rgb_data_dir,file_list{j}); rgb_img = imread(file_name); img = rgb2gray(rgb_img); %figure;imshow(rgb_img); %figure;imshow(img); %Noise reduction by Gaussian filter gaussian_h = fspecial('gaussian',[3 3],1); img=imfilter(img, gaussian_h,'replicate'); [depth_data_dir, err] = sprintf('E:/data/kinect_tum/%s/depth',dir_name{dm}); dirData = dir(depth_data_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; [file_name, err]=sprintf('%s/%s',depth_data_dir,file_list{j}); depth_img = imread(file_name); %figure;imshow(depth_img); depth_img = double(depth_img); fx = 525.0; %# focal length x fy = 525.0; %# focal length y cx = 319.5; %# optical center x cy = 239.5; %# optical center y ds = 1.0; %# depth scaling factor = 5000.0; %# for the 16-bit PNG files %# OR: factor = 1 %# for the 32-bit float images in the ROS bag files for v=1:size(depth_img,1) %height for u=1:size(depth_img,2) %width z = (depth_img(v,u) / factor) * ds; x = (u - cx) * z / fx; y = (v - cy) * z / fy; X(v,u) = x; Y(v,u) = y; Z(v,u) = z; end end rtime = toc(t_load); %figure;imagesc(X); %figure;imagesc(Y); %figure;imagesc(Z); end
github
rising-turtle/slam_matlab-master
LoadPrimesense_model.m
.m
slam_matlab-master/Localization/LoadPrimesense_model.m
4,098
utf_8
c81de6acde2583247da4ac18a068adff
% Load data from Kinect % % Parameters % data_name : the directory name of data % dm : index of directory of data % j : index of frame % % Author : Soonhac Hong ([email protected]) % Date : 4/20/11 function [img, X, Y, Z] = LoadPrimesense_model(dm, file_index) %t_load = tic; %dir_name_list = get_kinect_tum_dir_name(); %dir_name = dir_name_list{dm}; % Load depth image %[depth_data_dir, err] = sprintf('D:/Soonhac/Data/kinect_tum/%s/depth',dir_name); %dirData = dir(depth_data_dir); %# Get the data for the current directory %dirIndex = [dirData.isdir]; %# Find the index for directories %file_list = {dirData(~dirIndex).name}'; %[file_name_full, err]=sprintf('%s/%s',depth_data_dir,file_list{j}); %[file_name, err] = sprintf('%s',file_list{j}); %depth_time_stamp = str2double(strrep(file_name, '.png','')); %depth_img = imread(file_name_full); %figure;imshow(depth_img); %depth_img = double(depth_img); if file_index<11 z_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/depth/00%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/rgb/00%d.png',dm-1,file_index-1); %x_file_name=sprintf('D:/image/image%d/depth/00%dx.dat',dm-1,file_index-1); %y_file_name=sprintf('D:/image/image%d/depth/00%dy.dat',dm-1,file_index-1); elseif file_index<101 z_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/depth/0%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/rgb/0%d.png',dm-1,file_index-1); %x_file_name=sprintf('D:/image/image%d/depth/0%dx.dat',dm-1,file_index-1); % y_file_name=sprintf('D:/image/image%d/depth/0%dy.dat',dm-1,file_index-1); elseif file_index<605 z_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/depth/%d.png',dm-1,file_index-1); img_file_name=sprintf('D:/image/prime/12mm_primesense_registered2/image%d/rgb/%d.png',dm-1,file_index-1); % x_file_name=sprintf('D:/image/image%d/depth/%dx.dat',dm-1,file_index-1); % y_file_name=sprintf('D:/image/image%d/depth/%dy.dat',dm-1,file_index-1); end depth_img=imread(z_file_name); depth_img=double(depth_img); img1=imread(img_file_name); img=rgb2gray(img1); img=im2double(img); % center=[320,240]; % [imh, imw] = size(depth_img); % %constant = 570.3; % constant = 573; %constant = focal; % factor=1; % % convert depth image to 3d point clouds % %pclouds = zeros(imh,imw,3); % xgrid = ones(imh,1)*(1:imw) - center(1); % ygrid = (1:imh)'*ones(1,imw) - center(2); % X = xgrid.*depth_img/constant/factor; % Y = ygrid.*depth_img/constant/factor; % Z = depth_img/factor; fx = 543.0; %# focal length x fy = 543.0; %# focal length y cx = 319.5; %# optical center x cy = 239.5; %# optical center y ds = 1.0; %# depth scaling factor = 1; %# for the 16-bit PNG files %# OR: factor = 1 %# for the 32-bit float images in the ROS bag files for v=1:size(depth_img,1) %height for u=1:size(depth_img,2) %width z = (depth_img(v,u) / factor) * ds; x = (u - cx) * z / fx; y = (v - cy) * z / fy; X(v,u) = x; Y(v,u) = y; Z(v,u) = z; end end % distance = sqrt(sum(pclouds.^2,3)); %rgb_img = imread(file_name); %img = rgb2gray(rgb_img); %figure;imshow(rgb_img); %figure;imshow(img); %Noise reduction by Gaussian filter %gaussian_h = fspecial('gaussian',[3 3],1); %img=imfilter(img, gaussian_h,'replicate'); % fx = 570.3; %# focal length x 551.0/420 % fy = 570.3; %# focal length y 548.0/420 % cx = 320; %# optical center x //319.5 % cy = 240; %# optical center y ///239.5 % ds = 1.0; %# depth scaling % % factor = 1; %# for the 16-bit PNG files % % %# OR: factor = 1 %# for the 32-bit float images in the ROS bag files % % % for v=1:size(depth_img,1) %height % for u=1:size(depth_img,2) %width % z = (depth_img(v,u) / factor) * ds; % x = (u - cx) * z / fx; % y = (v - cy) * z / fy; % X(v,u) = x; % Y(v,u) = y; % Z(v,u) = z; % end % end %rtime = toc(t_load); %figure;imagesc(X); %figure;imagesc(Y); %figure;imagesc(Z); end
github
rising-turtle/slam_matlab-master
localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c.m
.m
slam_matlab-master/Localization/localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c.m
20,151
utf_8
1e5a7c5bc4ebf2876f8d7c79555abe21
% This function computes the pose of the sensor between two data set from % SR400 using SIFT . The orignial function was vot.m in the ASEE/pitch_4_plot1. % % Parameters : % dm : number of prefix of directory containing the first data set. % inc : relative number of prefix of directory containing the second data set. % The number of prefix of data set 2 will be dm+inc. % j : index of frame for data set 1 and data set 2 % dis : index to display logs and images [1 = display][0 = no display] % % Author : Soonhac Hong ([email protected]) % Date : 3/10/11 % localization_sift_ransac_limit + covariance % No bad pixel compensation function [phi, theta, psi, trans, error, elapsed, match_num, feature_points, pose_std] = localization_sift_ransac_limit_cov_fast_fast_dist2_nobpc_c(image_name, data_name, filter_name, boarder_cut_off, ransac_iteration_limit, valid_ransac, scale, value_type, dm, inc, j, sframe, sequence_data, is_10M_data, dis) if nargin < 15 dis = 0; end %Initilize parameters error = 0; sift_threshold = 0; %t = clock; %Read first data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true cframe = sframe; else cframe = j; end first_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img1, x1, y1, z1, elapsed_pre] = LoadKinect(dm, cframe); [img1, x1, y1, z1, elapsed_pre, time_stamp1] = LoadKinect_depthbased(dm, cframe); else %[img1, x1, y1, z1, c1, elapsed_pre] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img1,x1, y1, z1, cor_i1, cor_j1] = load_creative(dm, cframe); %% modify for read data from creative !!! elapsed_pre=0; end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img1 = scale_img(z1, 1, value_type,'range'); end if dis == 1 %CHANGE BY WEI FROM 1 TO 0 f1 = figure(4); imagesc(img1); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift = tic; [frm1, des1] = sift(img1, 'Verbosity', 1); %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); plotsiftframe(frm1); else %t_sift = clock; t_sift = tic; if sift_threshold == 0 [frm1, des1] = sift(img1); else [frm1, des1] = sift(img1, 'threshold', sift_threshold); end %elapsed_sift = etime(clock,t_sift); elapsed_sift = toc(t_sift); end % confidence filtering %[frm1, des1] = confidence_filtering(frm1, des1, c1); %save_visual_features(data_name, dm, cframe, frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre, sequence_data, image_name); % else % [frm1, des1, elapsed_sift, img1, x1, y1, z1, c1, elapsed_pre] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %Read second Data set %if strcmp(data_name, 'm') || strcmp(data_name, 'etas') || strcmp(data_name, 'loops') || strcmp(data_name, 'kinect_tum') || strcmp(data_name, 'loops2') || strcmp(data_name, 'sparse_feature') || strcmp(data_name, 'swing') % Dynamic data if sequence_data == true %cframe = j + sframe; %cframe = sframe+1; cframe = sframe + j; % Generate constraints else dm=dm+inc; cframe = j; end second_cframe = cframe; %if check_stored_visual_feature(data_name, dm, cframe, sequence_data, image_name) == 0 if strcmp(data_name, 'kinect_tum') %[img2, x2, y2, z2, elapsed_pre2] = LoadKinect(dm, cframe); [img2, x2, y2, z2, elapsed_pre2, time_stamp2] = LoadKinect_depthbased(dm, cframe); else %[img2, x2, y2, z2, c2, elapsed_pre2] = LoadSR_no_bpc(data_name, filter_name, boarder_cut_off, dm, cframe, scale, value_type); [img2,x2, y2, z2, cor_i2, cor_j2] = load_creative(dm, cframe); elapsed_pre2=0; %% modify for read data from creative !!! end if strcmp(image_name, 'depth') %image_name == 'depth' %Assign depth image to img1 img2 = scale_img(z2, 1, value_type, 'range'); end if dis == 1 f2=figure(5); imagesc(img2); colormap(gray); title(['frame ', int2str(j)]); %t_sift = clock; t_sift2 = tic; [frm2, des2] = sift(img2, 'Verbosity', 1); %elapsed_sift2 = etime(clock, t_sift); elapsed_sift2 = toc(t_sift2); plotsiftframe(frm2); else %t_sift = clock; t_sift2 = tic; if sift_threshold == 0 [frm2, des2] = sift(img2); else [frm2, des2] = sift(img2,'threshold', sift_threshold); end %elapsed_sift2 = etime(clock,t_sift); elapsed_sift2 = toc(t_sift2); end % confidence filtering %[frm2, des2] = confidence_filtering(frm2, des2, c2); % save_visual_features(data_name, dm, cframe, frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2, sequence_data, image_name); % % else % [frm2, des2, elapsed_sift2, img2, x2, y2, z2, c2, elapsed_pre2] = load_visual_features(data_name, dm, cframe, sequence_data, image_name); % end %if check_stored_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 %t_match = clock; t_match = tic; match = siftmatch(des1, des2); %elapsed_match = etime(clock,t_match); elapsed_match = toc(t_match); if dis == 1 %changed from 1 to 0 by wei f3=figure(6); plotmatches(img1,img2,frm1,frm2,match); title('Match of SIFT'); % f4=figure(7); % imshow(match); end % distance filtering % if is_10M_data == 1 % valid_dist_max = 8; % 5m % else % valid_dist_max = 5; % 5m % end % valid_dist_min = 0.8; % 0.8m %%debugging % figure; % imshow(img1); % figure; % z1_dis=z1; % z1_dis_max=max(max(z1)); % idx=find(z1==z1_dis_max); % z1_dis(idx)=0; % imshow(z1_dis, [0 255]); valid_dist_max = 1000; % [m] valid_dist_min = 150; % [m] match_new = []; match_image1=[]; match_image2=[]; match_depth1=[]; match_depth2=[]; cnt_new = 1; pnum = size(match, 2); intensity_threshold = 0; if strcmp(data_name, 'kinect_tum') for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; if z1(ROW1, COL1) > 0 && z2(ROW2, COL2) > 0 match_new(:,cnt_new) = match(:,i); cnt_new = cnt_new + 1; end end else for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; % col1=SearchColumn(cor_i1,COL1,10); % row1=SearchRow(cor_j1,ROW1,10); %ADD BY WEI % col2=SearchColumn(cor_i2,COL2,10); % row2=SearchRow(cor_j2,ROW2,10); %ADD BY WEI [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); if col1~=0&&row1~=0&&col2~=0&&row2~=0 temp_pt1=[-x1(row1, col1), z1(row1, col1), y1(row1, col1)]; temp_pt2=[-x2(row2, col2), z2(row2, col2), y2(row2, col2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); % end if temp_pt1_dist >= valid_dist_min && temp_pt1_dist <= valid_dist_max && temp_pt2_dist >= valid_dist_min && temp_pt2_dist <= valid_dist_max %if img1(ROW1, COL1) >= intensity_threshold && img2(ROW2, COL2) >= intensity_threshold match_new(:,cnt_new) = match(:,i); match_image1(:,cnt_new)=[ROW1 COL1]'; match_image2(:,cnt_new)=[ROW2 COL2]'; match_depth1(:,cnt_new)=[row1 col1]'; match_depth2(:,cnt_new)=[row2 col2]'; cnt_new = cnt_new + 1; end end end end match = match_new; %find the matched two point sets. %match = [4 6 21 18; 3 7 19 21]; pnum = size(match, 2); if pnum <= 12 % 39 fprintf('too few sift points for ransac.\n'); error=1; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; 0]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; 0]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; else %t_ransac = clock; %cputime; t_ransac = tic; %Eliminate outliers by geometric constraints % for i=1:pnum % frm1_index=match(1, i); frm2_index=match(2, i); % matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1)); ROW1=round(matched_pix1(2)); % matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1)); ROW2=round(matched_pix2(2)); % pset1(1,i)=-x1(ROW1, COL1); pset1(2,i)=z1(ROW1, COL1); pset1(3,i)=y1(ROW1, COL1); % pset2(1,i)=-x2(ROW2, COL2); pset2(2,i)=z2(ROW2, COL2); pset2(3,i)=y2(ROW2, COL2); % pset1_index(1,i) = ROW1; % pset1_index(2,i) = COL1; % pset2_index(1,i) = ROW2; % pset2_index(2,i) = COL2; % end % % [match] = gc_distance(match, pset1,pset2); % % Eliminate outlier by confidence map % [match] = confidence_filter(match, pset1_index, pset2_index, c1, c2); if ransac_iteration_limit ~= 0 % Fixed Iteration limit % rst = min(700, nchoosek(pnum, 4)); rst = min(ransac_iteration_limit, nchoosek(pnum, 4)); % rst = nchoosek(pnum, 4); % valid_ransac = 3; % stdev_threshold = 0.5; % stdev_threshold_min_iteration = 30; tmp_nmatch=zeros(2, pnum, rst); for i=1:rst %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; % total_cnum(i)=cnum; % inliers_std = std(total_cnum); % if i > stdev_threshold_min_iteration && inliers_std < stdev_threshold % break; % end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent % valid_ransac = 3; %inlier_ratio * pnum; i=0; eta_0 = 0.01; % 99 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; ransac_error = 0; max_iteration = 120000; while eta > eta_0 % t_ransac_internal = clock; %cputime; i = i+1; %[n_match, rs_match, cnum] = ransac(frm1, frm2, match, x1, y1, z1, x2, y2, z2, data_name); % [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,cor_i1,cor_j1,cor_i2,cor_j2, data_name); [n_match, rs_match, cnum] = ransac_creative(frm1, frm2, match, x1, y1, z1, x2, y2, z2,match_image1,match_image2,match_depth1,match_depth2, data_name); % [n_match, rs_match, cnum] = ransac_3point(frm1, frm2, match, x1, y1, z1, x2, y2, z2); %ct_internal = cputime - t_ransac_internal; % ct_internal = etime(clock, t_ransac_internal); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_rsmatch(:, :, i) = rs_match; tmp_cnum(i) = cnum; cnum if cnum ~= 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i end if i > max_iteration ransac_error = 1; break; end % debug_data(i,:)=[cnum, cur_p, eta, ct_internal]; end ransac_iteration = i; end [rs_max, rs_ind] = max(tmp_cnum); op_num = tmp_cnum(rs_ind); if(op_num<valid_ransac || ransac_error == 1) fprintf('no consensus found, ransac fails.\n'); error=2; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; match_num = [pnum; op_num]; %rt_total = etime(clock,t); elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end for k=1:op_num op_match(:, k) = tmp_nmatch(:, k, rs_ind); end if dis == 1 f4=figure(7); plotmatches(img1,img2,frm1,frm2,tmp_rsmatch(:,:,rs_ind)); title('Feature points for RANSAC'); f5=figure(8); plotmatches(img1,img2,frm1,frm2,op_match); title('Match after RANSAC'); % f6=figure(9); plotmatches_multi(img1,img2,frm1,frm2,op_match,match); title('Match after SIFT'); end %elapsed_ransac = etime(clock, t_ransac); %cputime - t_ransac; elapsed_ransac = toc(t_ransac); match_num = [pnum; op_num]; end %t_svd = clock; t_svd = tic; op_pset_cnt = 1; for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; if strcmp(data_name, 'kinect_tum') %op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=-y1(ROW1, COL1); %op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=-y2(ROW2, COL2); op_pset1(1,op_pset_cnt)=x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=y1(ROW1, COL1); op_pset1(3,op_pset_cnt)=z1(ROW1, COL1); op_pset2(1,op_pset_cnt)=x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=y2(ROW2, COL2); op_pset2(3,op_pset_cnt)=z2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; else %if img1(ROW1, COL1) >= 100 && img2(ROW2, COL2) >= 100 % [row1,col1]=Search_RowandCol(cor_j1,ROW1,cor_i1,COL1); % [row2,col2]=Search_RowandCol(cor_j2,ROW2,cor_i2,COL2); % if col1~=0&&row1~=0&&col2~=0&&row2~=0 % [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row1,col1]=match_rowandcol(match_image1,match_depth1,ROW1,COL1); [row2,col2]=match_rowandcol(match_image2,match_depth2,ROW2,COL2); op_pset1(1,op_pset_cnt)=-x1(row1, col1); op_pset1(2,op_pset_cnt)=z1(row1, col1); op_pset1(3,op_pset_cnt)=y1(row1, col1); op_pset2(1,op_pset_cnt)=-x2(row2, col2); op_pset2(2,op_pset_cnt)=z2(row2, col2); op_pset2(3,op_pset_cnt)=y2(row2, col2); op_pset_cnt = op_pset_cnt + 1; %changed by wu %end % end %% Modify coordinate according to Creative !! done end % op_pset1(1,i)=x1(ROW1, COL1); op_pset1(2,i)=y1(ROW1, COL1); op_pset1(3,i)=z1(ROW1, COL1); % op_pset2(1,i)=x2(ROW2, COL2); op_pset2(2,i)=y2(ROW2, COL2); op_pset2(3,i)=z2(ROW2, COL2); end % save_matched_points(data_name, dm, first_cframe, second_cframe, match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2, 'none', sequence_data); % % else % [match_num, ransac_iteration, op_pset1_image_index, op_pset2_image_index, op_pset_cnt, elapsed_match, elapsed_ransac, op_pset1, op_pset2] = load_matched_points(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % t_svd = tic; % end %[op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index); [rot, trans, sta] = find_transform_matrix(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); %elapsed_svd = etime(clock, t_svd); elapsed_svd = toc(t_svd); %Check status of SVD if sta <= 0 % No Solution fprintf('no solution in SVD.\n'); error=3; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; elseif sta == 2 fprintf('Points are in co-planar.\n'); error=4; phi=0.0; theta=0.0; psi=0.0; trans=[0.0; 0.0; 0.0]; elapsed_ransac = 0.0; elapsed_svd = 0.0; %elapsed_icp = 0.0; %match_num = [pnum; gc_num; op_num]; elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; feature_points = []; pose_std = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0]; return; end % Save feature points %feature_points_1 =[repmat(1,[op_num 1]) op_pset1']; %feature_points_2 =[repmat(2,[op_num 1]) op_pset2']; feature_points_1 =[repmat(1,[op_pset_cnt-1 1]) op_pset1' op_pset1_image_index]; feature_points_2 =[repmat(2,[op_pset_cnt-1 1]) op_pset2' op_pset2_image_index]; feature_points = [feature_points_1; feature_points_2]; %Compute the elapsed time %rt_total = etime(clock,t); if strcmp(data_name, 'kinect_tum') elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; time_stamp1; ransac_iteration]; else elapsed = [elapsed_pre; elapsed_sift; elapsed_pre2; elapsed_sift2; elapsed_match; elapsed_ransac; elapsed_svd; ransac_iteration]; end %Compute covariane % if check_stored_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data) == 0 [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; % % save_pose_std(data_name, dm, first_cframe, second_cframe, pose_std, 'none', sequence_data); % else % [pose_std] = load_pose_std(data_name, dm, first_cframe, second_cframe, 'none', sequence_data); % end %convert degree %r2d=180.0/pi; %phi=phi*r2d; %theta=theta*r2d; %psi=psi*r2d; %trans'; end
github
rising-turtle/slam_matlab-master
plotmatches_multi.m
.m
slam_matlab-master/Localization/plotmatches_multi.m
10,894
utf_8
1abc9136006be4112288feadc80f61fa
function h=plotmatches_multi(I1,I2,P1,P2,matches,matches2,varargin) % PLOTMATCHES Plot keypoint matches % PLOTMATCHES(I1,I2,P1,P2,MATCHES) plots the two images I1 and I2 % and lines connecting the frames (keypoints) P1 and P2 as specified % by MATCHES. % % P1 and P2 specify two sets of frames, one per column. The first % two elements of each column specify the X,Y coordinates of the % corresponding frame. Any other element is ignored. % % MATCHES specifies a set of matches, one per column. The two % elementes of each column are two indexes in the sets P1 and P2 % respectively. % % The images I1 and I2 might be either both grayscale or both color % and must have DOUBLE storage class. If they are color the range % must be normalized in [0,1]. % % The function accepts the following option-value pairs: % % 'Stacking' ['h'] % Stacking of images: horizontal ['h'], vertical ['v'], diagonal % ['h'], overlap ['o'] % % 'Interactive' [0] % If set to 1, starts the interactive session. In this mode the % program lets the user browse the matches by moving the mouse: % Click to select and highlight a match; press any key to end. % If set to a value greater than 1, the feature matches are not % drawn at all (useful for cluttered scenes). % % See also PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- stack='h' ; interactive=0 ; only_interactive=0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'stacking' stack=varargin{k+1} ; case 'interactive' interactive=varargin{k+1}; otherwise error(['[Unknown option ''', varargin{k}, '''.']) ; end end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- [M1,N1,K1]=size(I1) ; [M2,N2,K2]=size(I2) ; switch stack case 'h' N3=N1+N2 ; M3=max(M1,M2) ; oj=N1 ; oi=0 ; case 'v' M3=M1+M2 ; N3=max(N1,N2) ; oj=0 ; oi=M1 ; case 'd' M3=M1+M2 ; N3=N1+N2 ; oj=N1 ; oi=M1 ; case 'o' M3=max(M1,M2) ; N3=max(N1,N2) ; oj=0; oi=0; otherwise error(['Unkown stacking type '''], stack, ['''.']) ; end % Combine the two images. In most cases just place one image next to % the other. If the stacking is 'o', however, combine the two images % linearly. I=zeros(M3,N3,K1) ; if stack ~= 'o' I(1:M1,1:N1,:) = I1 ; I(oi+(1:M2),oj+(1:N2),:) = I2 ; else I(oi+(1:M2),oj+(1:N2),:) = I2 ; I(1:M1,1:N1,:) = I(1:M1,1:N1,:) + I1 ; I(1:min(M1,M2),1:min(N1,N2),:) = 0.5 * I(1:min(M1,M2),1:min(N1,N2),:) ; end axes('Position', [0 0 1 1]) ; imagesc(I) ; colormap gray ; hold on ; axis image ; axis off ; K = size(matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,matches(1,:)) ; P2(1,matches(2,:))+oj ; nans ] ; y = [ P1(2,matches(1,:)) ; P2(2,matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'g.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','g') ; new_matches = []; for k = 1:size(matches2,2) [row, col] = find(matches == matches2(1,k)); if size(row,1) ~= 0 for m = 1: size(row,2) if matches(2, col(1,m)) ~= matches2(2, k) new_matches = [new_matches matches2(:,K)]; end end else new_matches = [new_matches matches2(:,k)]; end end K = size(new_matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,new_matches(1,:)) ; P2(1,new_matches(2,:))+oj ; nans ] ; y = [ P1(2,new_matches(1,:)) ; P2(2,new_matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'r.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','r') ; % -------------------------------------------------------------------- % Interactive % -------------------------------------------------------------------- if(~interactive), return ; end sel1 = unique(matches(1,:)) ; sel2 = unique(matches(2,:)) ; K1 = length(sel1) ; %size(P1,2) ; K2 = length(sel2) ; %size(P2,2) ; X = [ P1(1,sel1) P2(1,sel2)+oj ; P1(2,sel1) P2(2,sel2)+oi ; ] ; fig = gcf ; is_hold = ishold ; hold on ; % save the handlers for later to restore dhandler = get(fig,'WindowButtonDownFcn') ; uhandler = get(fig,'WindowButtonUpFcn') ; mhandler = get(fig,'WindowButtonMotionFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'KeyPressFcn', @key_handler) ; set(fig,'WindowButtonDownFcn',@click_down_handler) ; set(fig,'WindowButtonUpFcn', @click_up_handler) ; set(fig,'Pointer','crosshair') ; data.exit = 0 ; % signal exit to the interactive mode data.selected = [] ; % currently selected feature data.X = X ; % feature anchors highlighted = [] ; % currently highlighted feature hh = [] ; % hook of the highlight plot guidata(fig,data) ; while ~ data.exit uiwait(fig) ; data = guidata(fig) ; if(any(size(highlighted) ~= size(data.selected)) || ... any(highlighted ~= data.selected) ) highlighted = data.selected ; % delete previous highlight if( ~isempty(hh) ) delete(hh) ; end hh=[] ; % each selected feature uses its own color c=1 ; colors=[1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0 ; 1.0 1.0 0.0 ; 0.0 1.0 1.0 ; 1.0 0.0 1.0 ] ; % more than one feature might be seleted at one time... for this=highlighted % find matches if( this <= K1 ) sel=find(matches(1,:)== sel1(this)) ; else sel=find(matches(2,:)== sel2(this-K1)) ; end K=length(sel) ; % plot matches x = [ P1(1,matches(1,sel)) ; P2(1,matches(2,sel))+oj ; nan*ones(1,K) ] ; y = [ P1(2,matches(1,sel)) ; P2(2,matches(2,sel))+oi ; nan*ones(1,K) ] ; hh = [hh line(x(:)', y(:)',... 'Marker','*',... 'Color',colors(c,:),... 'LineWidth',3)]; if( size(P1,1) == 4 ) f1 = unique(P1(:,matches(1,sel))','rows')' ; hp=plotsiftframe(f1); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end if( size(P2,1) == 4 ) f2 = unique(P2(:,matches(2,sel))','rows')' ; f2(1,:)=f2(1,:)+oj ; f2(2,:)=f2(2,:)+oi ; hp=plotsiftframe(f2); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end c=c+1 ; end drawnow ; end end if( ~isempty(hh) ) delete(hh) ; end if ~is_hold hold off ; end set(fig,'WindowButtonDownFcn', dhandler) ; set(fig,'WindowButtonUpFcn', uhandler) ; set(fig,'WindowButtonMotionFcn',mhandler) ; set(fig,'KeyPressFcn', khandler) ; set(fig,'Pointer', pointer ) ; % ==================================================================== function data=selection_helper(data) % -------------------------------------------------------------------- P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; d = (data.X(1,:) - P(1)).^2 + (data.X(2,:) - P(2)).^2 ; dmin=min(d) ; idx=find(d==dmin) ; data.selected = idx ; % ==================================================================== function click_down_handler(obj,event) % -------------------------------------------------------------------- % select a feature and change motion handler for dragging [obj,fig]=gcbo ; data = guidata(fig) ; data.mhandler = get(fig,'WindowButtonMotionFcn') ; set(fig,'WindowButtonMotionFcn',@motion_handler) ; data = selection_helper(data) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function click_up_handler(obj,event) % -------------------------------------------------------------------- % stop dragging [obj,fig]=gcbo ; data = guidata(fig) ; set(fig,'WindowButtonMotionFcn',data.mhandler) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function motion_handler(obj,event) % -------------------------------------------------------------------- % select features while dragging data = guidata(obj) ; data = selection_helper(data); guidata(obj,data) ; uiresume(obj) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- % use keypress to exit data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
load_depth_features.m
.m
slam_matlab-master/Localization/load_depth_features.m
397
utf_8
73b869902c9029fed3f113649c1e42e6
% Load sift visual feature from a file % % Author : Soonhac Hong ([email protected]) % Date : 2/13/2013 function [depth_frm, depth_des, depth_ct] = load_depth_features(data_name, dm, cframe) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); dataset_dir = strrep(prefix, '/d1',''); file_name = sprintf('%s/depth_feature/d1_%04d.mat',dataset_dir, cframe); load(file_name); end
github
rising-turtle/slam_matlab-master
check_feature_distance.m
.m
slam_matlab-master/Localization/check_feature_distance.m
1,190
utf_8
17b466611fb0573eb8e7667c8b2663d2
% Check the distance of feaure points % % Author : Soonhac Hong ([email protected]) % Date : 4/5/13 function [op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index] = check_feature_distance(op_pset1, op_pset2, op_pset_cnt, op_pset1_image_index, op_pset2_image_index) distance_min = 0.8; distance_max = 5; op_pset1_distance = sqrt(sum(op_pset1.^2)); op_pset2_distance = sqrt(sum(op_pset2.^2)); op_pset1_distance_flag = (op_pset1_distance < distance_min | op_pset1_distance > distance_max); op_pset2_distance_flag = (op_pset2_distance < distance_min | op_pset2_distance > distance_max); %debug if sum(op_pset1_distance_flag) > 0 || sum(op_pset2_distance_flag) > 0 disp('Distance filter is working'); op_pset_cnt = op_pset_cnt - max(sum(op_pset1_distance_flag),sum(op_pset2_distance_flag)); end op_pset1(:, (op_pset1_distance_flag|op_pset2_distance_flag))=[]; % delete invalid feature points op_pset2(:, (op_pset1_distance_flag|op_pset2_distance_flag))=[]; % delete invalid feature points op_pset1_image_index((op_pset1_distance_flag'|op_pset2_distance_flag'),:) = []; op_pset2_image_index((op_pset1_distance_flag'|op_pset2_distance_flag'),:) = []; end
github
rising-turtle/slam_matlab-master
get_nframe_nvro_npose.m
.m
slam_matlab-master/Localization/get_nframe_nvro_npose.m
8,552
utf_8
43e0c79509f888ceba43d604a05d6259
% Get nFrame, vro_size, pose_size % % Author : Soonhac Hong ([email protected]) % Date : 8/9/13 function [nFrame, vro_size, pose_size, vro_icp_size, pose_vro_icp_size, vro_icp_ch_size, pose_vro_icp_ch_size] = get_nframe_nvro_npose(file_index, dynamic_index) %% nFrame list etas_nFrame_list = [979 1488 988 1979 1889]; %[3rd_straight, 3rd_swing, 4th_straigth, 4th_swing, 5th_straight, 5th_swing] loops_nFrame_list = [0 1359 2498 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2669]; kinect_tum_nFrame_list = [0 98 0 0]; m_nFrame_list = [0 5414 0 729]; sparse_feature_nFrame_list = [232 198 432 365 277 413 0 206 235 0 706 190 275 358 290 578]; swing_nFrame_list = [271 322 600 534 530 334 381 379 379 381 381 299 365 248 245 249 220 245 249 302 399 389 489 446 383 486]; swing2_nFrame_list = [99 128 221 176 210 110]; motive_nFrame_list =[82 145 231 200 227 260 254 236 196 242 184 186]; object_recognition_nFrame_list =[998 498 498 498 398 398 398 848 848 798 848]; %% vro size list %etas_vro_size_list = [1940 0 1665 0 9490 0]; % NMMP < 13 etas_vro_size_list = [2629 0 1665 0 9490 0]; % NMMP < 6 %etas_vro_size_list_vro_icp_ch = [1938 0 1665 0 9490 0]; % NMMP < 13 etas_vro_size_list_vro_icp_ch = [2475 0 1665 0 9490 0]; % NMMP < 6 %etas_pose_size_list = [919 0 1665 0 9490 0]; % NMMP < 13 etas_pose_size_list = [964 0 1665 0 9490 0]; % NMMP < 6 %etas_pose_size_list_vro_icp_ch = [919 0 1665 0 9490 0]; % NMMP < 13 etas_pose_size_list_vro_icp_ch = [954 0 1665 0 9490 0];% NMMP < 6 loops_vro_size_list = [0 13098 12476 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26613]; kinect_tum_vro_size_list = [0 98 0 0]; sparse_feature_vro_size_list_vro = [814 689 1452 1716 851 2104 0 483 0 0 4438 0 0 0 0 4939]; %232 sparse_feature_vro_size_list_vro_icp = [926 0 1783 365 1153 2328 0 674 0 0 4122 0 0 0 0 0]; %926 232 sparse_feature_vro_size_list_vro_icp_ch = [874 762 1616 1889 1153 2308 0 575 0 0 4738 0 0 0 0 5187];% 896 232 2040 sparse_feature_pose_size_list_vro = [232 195 432 364 258 408 0 184 0 0 701 0 0 0 0 576]; sparse_feature_pose_size_list_vro_icp = [232 0 432 365 274 413 0 201 0 0 708 0 0 0 0 0]; sparse_feature_pose_size_list_vro_icp_ch = [232 197 432 365 274 410 0 195 0 0 703 0 0 0 0 578]; %410 swing_vro_size_list_vro = [1525 1230 432 363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; swing_vro_size_list_vro_icp = [1943 1815 1783 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %232 swing_vro_size_list_vro_icp_ch = [1790 1437 1650 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %1494 swing_pose_size_list = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; swing_pose_size_list_vro_icp = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; swing_pose_size_list_vro_icp_ch = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; swing2_vro_size_list_vro = [171 0 0 0]; swing2_vro_size_list_vro_icp = [236 0 0 0]; %232 swing2_vro_size_list_vro_icp_ch = [206 0 0 0]; %1494 swing2_pose_size_list = [99 0 0 0]; loops2_nFrame_list = [830 582 830 832 649 930 479 580 699 458 368 239]; %loops2_nFrame_list = [830 0 832 832 649 932 479 580 699 458 398 239]; %2498 578 loops2_vro_size_list = [9508 7344 8915 7341 9157 5278 2777 9485 6435 4465 3035 673]; %4145 5754 with static5 %loops2_vro_size_list = [10792 9468 11700 7341 9157 5278 2777 9485 6435 4465 3035 673]; %4145 5754 loops2_vro_size_list_vro_icp = [830 0 11293 7427 649 932 479 580 699 458 398 1118]; %4145 5754 loops2_vro_size_list_vro_icp_ch = [10511 8762 11416 7427 10814 6473 3273 10685 7102 4612 3188 783]; % % NMMP < 6 %loops2_vro_size_list_vro_icp_ch = [9506 7329 10525 7427 9123 5275 2757 9481 6417 4463 3032 783]; % NMMP < 13 loops2_pose_size_list = [830 582 830 832 649 928 477 580 699 455 365 227]; loops2_pose_size_list_vro_icp = [830 582 830 832 649 932 479 580 699 458 398 238]; %loops2_pose_size_list_vro_icp_ch = [830 582 830 832 649 928 477 580 698 455 364 234]; % NMMP < 13 loops2_pose_size_list_vro_icp_ch = [830 582 830 832 649 929 479 580 698 458 366 234]; % NMMP < 6 motive_vro_size_list_vro = [1525 1230 432 363 0 0 0 0 0 0 0 0 0 0 0]; motive_vro_size_list_vro_icp = [1943 1815 1783 365 0 0 0 0 0 0 0 0 0 0 0]; %232 motive_vro_size_list_vro_icp_ch = [1790 1437 1650 365 0 0 0 0 0 0 0 0 0 0 0]; %1494 motive_pose_size_list = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0]; motive_pose_size_list_vro_icp = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0]; motive_pose_size_list_vro_icp_ch = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0]; object_recognition_vro_size_list_vro = [1525 1230 432 9706 0 0 0 0 0 0 16089]; object_recognition_vro_size_list_vro_icp = [1943 1815 1783 365 0 0 0 0 0 0 0 0 0 0 0]; %232 object_recognition_vro_size_list_vro_icp_ch = [1790 1437 1650 365 0 0 0 0 0 0 0 0 0 0 0]; %1494 object_recognition_pose_size_list = [269 321 432 365 0 0 0 0 0 0 848]; object_recognition_pose_size_list_vro_icp = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0]; object_recognition_pose_size_list_vro_icp_ch = [269 321 432 365 0 0 0 0 0 0 0 0 0 0 0]; switch file_index case 5 nFrame = m_nFrame_list(dynamic_index - 14); vro_size = 6992; %5382; %46; %5365; %5169; case 6 nFrame = etas_nFrame_list(dynamic_index); %289; 5414; %46; %5468; %296; %46; %86; %580; %3920; vro_size = etas_vro_size_list(dynamic_index); %etas_vro_size_list(dynamic_index); %1951; 1942; %5382; %46; %5365; %5169; pose_size = etas_pose_size_list(dynamic_index); vro_icp_size = 0; pose_vro_icp_size = 0; vro_icp_ch_size = etas_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size =etas_pose_size_list_vro_icp_ch(dynamic_index); case 7 nFrame = loops_nFrame_list(dynamic_index); vro_size = loops_vro_size_list(dynamic_index); case 8 nFrame = kinect_tum_nFrame_list(dynamic_index); vro_size = kinect_tum_vro_size_list(dynamic_index); case 9 nFrame = loops2_nFrame_list(dynamic_index); vro_size = loops2_vro_size_list(dynamic_index); pose_size = loops2_pose_size_list(dynamic_index); vro_icp_size = loops2_vro_size_list_vro_icp(dynamic_index); pose_vro_icp_size = loops2_pose_size_list_vro_icp(dynamic_index); vro_icp_ch_size = loops2_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size = loops2_pose_size_list_vro_icp_ch(dynamic_index); case 11 nFrame = sparse_feature_nFrame_list(dynamic_index); vro_size = sparse_feature_vro_size_list_vro(dynamic_index); pose_size = sparse_feature_pose_size_list_vro(dynamic_index); vro_icp_size = sparse_feature_vro_size_list_vro_icp(dynamic_index); pose_vro_icp_size = sparse_feature_pose_size_list_vro_icp(dynamic_index); vro_icp_ch_size = sparse_feature_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size = sparse_feature_pose_size_list_vro_icp_ch(dynamic_index); case 12 nFrame = swing_nFrame_list(dynamic_index); vro_size = swing_vro_size_list_vro(dynamic_index); pose_size = swing_pose_size_list(dynamic_index); vro_icp_size = swing_vro_size_list_vro_icp(dynamic_index); pose_vro_icp_size = swing_pose_size_list_vro_icp(dynamic_index); vro_icp_ch_size = swing_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size = swing_pose_size_list_vro_icp_ch(dynamic_index); case 13 nFrame = swing2_nFrame_list(dynamic_index); vro_size = swing2_vro_size_list_vro(dynamic_index); pose_size = swing2_pose_size_list(dynamic_index); case 14 nFrame = motive_nFrame_list(dynamic_index); vro_size = motive_vro_size_list_vro(dynamic_index); pose_size = motive_pose_size_list(dynamic_index); vro_icp_size = motive_vro_size_list_vro_icp(dynamic_index); pose_vro_icp_size = motive_pose_size_list_vro_icp(dynamic_index); vro_icp_ch_size = motive_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size = motive_pose_size_list_vro_icp_ch(dynamic_index); case 15 nFrame = object_recognition_nFrame_list(dynamic_index); vro_size = object_recognition_vro_size_list_vro(dynamic_index); pose_size = object_recognition_pose_size_list(dynamic_index); vro_icp_size = object_recognition_vro_size_list_vro_icp(dynamic_index); pose_vro_icp_size = object_recognition_pose_size_list_vro_icp(dynamic_index); vro_icp_ch_size = object_recognition_vro_size_list_vro_icp_ch(dynamic_index); pose_vro_icp_ch_size = object_recognition_pose_size_list_vro_icp_ch(dynamic_index); end end
github
rising-turtle/slam_matlab-master
check_stored_pose_std.m
.m
slam_matlab-master/Localization/check_stored_pose_std.m
1,321
utf_8
b4da71858b5b61210cfbb759eee86f78
% Check if there is the stored matched points % % Author : Soonhac Hong ([email protected]) % Date : 3/11/2013 function [exist_flag] = check_stored_pose_std(data_name, dm, first_cframe, second_cframe, isgframe, sequence_data) exist_flag = 0; [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name, dm); if sequence_data == true if strcmp(data_name, 'object_recognition') dataset_dir = strrep(prefix, '/f1',''); else dataset_dir = strrep(prefix, '/d1',''); end file_name = sprintf('d1_%04d_%04d.mat',first_cframe, second_cframe); else dataset_dir = prefix(1:max(strfind(prefix,sprintf('/d%d',dm)))-1); file_name = sprintf('d1_%04d_d%d_%04d.mat',first_cframe, dm, second_cframe); end if strcmp(isgframe, 'gframe') dataset_dir = sprintf('%s/pose_std_gframe',dataset_dir); else dataset_dir = sprintf('%s/pose_std',dataset_dir); end %file_name = sprintf('d1_%04d_%04d.mat',first_cframe, second_cframe); dirData = dir(dataset_dir); %# Get the data for the current directory dirIndex = [dirData.isdir]; %# Find the index for directories file_list = {dirData(~dirIndex).name}'; if isempty(file_list) return; else for i=1:size(file_list,1) if strcmp(file_list{i}, file_name) exist_flag = 1; break; end end end end
github
uoa1184615/EquationFreeGit-master
functionTemplate.m
.m
EquationFreeGit-master/functionTemplate.m
521
utf_8
a1e11c88c02bb31c1cfedaab3fe4023d
% Short explanation for users typing "help fun" % Author, date %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{...}: ...} \label{sec:...} \localtableofcontents \subsection{Introduction} Overview LaTeX explanation. \begin{matlab} %} function ... %{ \end{matlab} \paragraph{Input} ... \paragraph{Output} ... \begin{devMan} Repeated as desired: LaTeX between end-matlab and begin-matlab \begin{matlab} %} Matlab code between %} and %{ %{ \end{matlab} Concluding LaTeX before following final lines. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
validateDelta.m
.m
EquationFreeGit-master/SandpitPlay/validateDelta.m
804
utf_8
6bc74cb092b53e03ebbdf85b7cbdea9f
%{ Validates dD>log(bD)/bD rule for PIRK2 by finding the dD at which the PIRK2 scheme reduces by a factor of 10 each step, given the fast decay is a rate bD. Reducing by a factor of two is barely any different. AJR, 5 Feb 2019 %} clear all, close all global betaD betaDs=logspace(log10(exp(1)),3,41); bTtenth=nan(size(betaDs)); for j=1:length(betaDs) betaD=betaDs(j); bT0=log(betaD)/betaD; bTtenth(j)=fsolve(@pirk2fac,bT0); end clf() loglog(betaDs,[log(betaDs)./betaDs; bTtenth]') grid xlabel('\beta\Delta'),ylabel('(\delta/\Delta)_{min}') function raterr=pirk2fac(bT) stepFactor=0.1; x = PIRK2(@eburst, bT, 0:2, 1); raterr=x(end,:)./x(end-1,:) - stepFactor; end function [ts, xs] = eburst(ti, xi, bT) global betaD ts = linspace(ti,ti+bT,11)'; xs = xi.*exp(-betaD.*(ts-ti)); end
github
uoa1184615/EquationFreeGit-master
ensHeteroDiff.m
.m
EquationFreeGit-master/SandpitPlay/ensHeteroDiff.m
1,172
utf_8
e15cc2732ea08d02271b756707ff2f8f
% Computes the time derivatives of heterogeneous diffusion % in 1D on patches. Used by homogenisationExample.m, % ensembleAverageExample.m % AJR, 4 Apr 2019 -- 7 Feb 2020 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \subsection{\texttt{heteroDiff()}: heterogeneous diffusion} \label{sec:heteroDiff} This function codes the lattice heterogeneous diffusion inside the patches. For 2D input arrays~\verb|u| and~\verb|x| (via edge-value interpolation of \verb|patchSys1|, \cref{sec:patchSys1}), computes the time derivative~\cref{eq:HomogenisationExample} at each point in the interior of a patch, output in~\verb|ut|. The column vector (or possibly array) of diffusion coefficients~\(c_i\) have previously been stored in struct~\verb|patches|. \begin{matlab} %} function ut = ensHeteroDiff(t,u,x) global patches dx = diff(x(2:3)); % space step i = 2:size(u,1)-1; % interior points in a patch m = size(u,3); j=1:m; jp=[2:m 1]; jm=[m 1:m-1]; % ensemble indices ut = nan(size(u)); % preallocate output array ut(i,:,j) = (patches.c(1,1,jp).*(u(i+1,:,jp)-u(i,:,j)) ... +patches.c(1,1,j).*(u(i-1,:,jm)-u(i,:,j)))/dx^2; end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
heteroLanLif1D.m
.m
EquationFreeGit-master/SandpitPlay/heteroLanLif1D.m
2,278
utf_8
205cf93e1f254b8cfc678ee3dc654256
% Computes the time derivatives of heterogeneous % Landau--Lifshitz PDE on 1D lattice within spatial patches. % From Leitenmaier & Runborg, arxiv.org/abs/2108.09463 and % used by homoLanLif1D.m AJR, Sep 2021 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \subsection{\texttt{heteroLanLif1D()}: heterogeneous Landau--Lifshitz PDE} \label{sec:heteroLanLif1D} This function codes the lattice heterogeneous Landau--Lifshitz PDE \cite[(1.1)]{Leitenmaier2021} inside patches in 1D space. For 4D input array~\verb|M| storing the three components of~\Mv\ (via edge-value interpolation of \verb|patchSys1|, \cref{sec:patchSys1}), computes the time derivative at each point in the interior of a patch, output in~\verb|Mt|. The column vector of coefficients \(c_i=1+\tfrac12\sin(2\pi x_i/\epsilon)\) have previously been stored in struct~\verb|patches.cs|. \begin{itemize} \item With \verb|ex5p1=0| computes the example \textsc{ex1} \cite[p.6]{Leitenmaier2021}. \item With \verb|ex5p1=1| computes the first 'locally periodic' example \cite[p.27]{Leitenmaier2021}. \end{itemize} \begin{matlab} %} function Mt = heteroLanLif1D(t,M,patches) global alpha ex5p1 dx = diff(patches.x(2:3)); % space step i = 2:size(M,1)-1; % interior points in a patch %{ \end{matlab} Compute the heterogeneous \(\Hv:=\divv(a\grad\Mv)\) \begin{matlab} %} a = patches.cs ... +ex5p1*(0.1+0.25*sin(2*pi*(patches.x(2:end,:,:,:)-dx/2)+1.1)); H = diff(a.*diff(M))/dx^2; %{ \end{matlab} At each microscale grid point, compute the cross-products \(\Mv\times \Hv\) and \(\Mv\times(\Mv\times \Hv)\) to then give the time derivative \(\Mv_t=-\Mv\times \Hv -\alpha \Mv\times (\Mv\times \Hv)\) \cite[(1.1)]{Leitenmaier2021}: \begin{matlab} %} MH=nan+H; % preallocate for MxH MH(:,3,:,:) = M(i,1,:,:).*H(:,2,:,:)-M(i,2,:,:).*H(:,1,:,:); MH(:,2,:,:) = M(i,3,:,:).*H(:,1,:,:)-M(i,1,:,:).*H(:,3,:,:); MH(:,1,:,:) = M(i,2,:,:).*H(:,3,:,:)-M(i,3,:,:).*H(:,2,:,:); MMH=nan+H; % preallocate for MxMxH MMH(:,3,:,:)= M(i,1,:,:).*MH(:,2,:,:)-M(i,2,:,:).*MH(:,1,:,:); MMH(:,2,:,:)= M(i,3,:,:).*MH(:,1,:,:)-M(i,1,:,:).*MH(:,3,:,:); MMH(:,1,:,:)= M(i,2,:,:).*MH(:,3,:,:)-M(i,3,:,:).*MH(:,2,:,:); Mt = nan+M; % preallocate output array Mt(i,:,:,:) = -MH-alpha*MMH; end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
rk2.m
.m
EquationFreeGit-master/SandpitPlay/rk2.m
615
utf_8
fc1b911f55a37b5b71802b80ecf35a6a
% Second order Runge-Kutta. No adaptive stepping, no error % control. Use when testing other schemes. Alternatively % see RKint/rk2int.m for a documented code that also % estimates errors. % Inputs: % differential equation dxdt = dxdt(t,x) % vector of times tSpan % initial condition xIC function [tOut,xOut] = rk2(dxdt,tSpan,xIC) deltas = diff(tSpan); tOut = tSpan; xOut = zeros(length(tSpan),length(xIC)); xOut(1,:) = xIC; xIC = xIC(:); for n = 1:length(deltas) del = deltas(n); t = tSpan(n); k1 = dxdt(t,xIC); k2 = dxdt(t+del,xIC+del*k1); xIC = xIC+del*(k1+k2)/2; xOut(n+1,:)=xIC; end
github
uoa1184615/EquationFreeGit-master
homoDiffBdryEquil3.m
.m
EquationFreeGit-master/SandpitPlay/BCs/homoDiffBdryEquil3.m
6,957
utf_8
d7383388286f2dd582ff26e30b2dc4ff
% Finds equilibrium of forced heterogeneous diffusion in 3D % cube on 3D patches as an example application. Boundary % conditions are Neumann on the right face of the cube, and % Dirichlet on the other faces. The microscale is of known % period so we interpolate next-to-edge values to get % opposite edge values. AJR, 1 Feb 2023 %!TEX root = doc.tex %{ \section{\texttt{homoDiffBdryEquil3}: equilibrium via computational homogenisation of a 3D heterogeneous diffusion on small patches} \label{sec:homoDiffBdryEquil3} Find the equilibrium of a forced heterogeneous diffusion in 3D space on 3D patches as an example application. Boundary conditions are Neumann on the right face of the cube, and Dirichlet on the other faces. \cref{fig:homoDiffBdryEquil3} shows five isosurfaces of the 3D solution field. \begin{figure}\centering \caption{\label{fig:homoDiffBdryEquil3}% Equilibrium of the macroscale of the random heterogeneous diffusion in 3D with boundary conditions of zero on all faces except for the Neumann condition on \(x=1\) (\cref{sec:homoDiffBdryEquil3}). The small patches are equispaced in space. } \includegraphics[scale=0.8]{Figs/homoDiffBdryEquil3.png} \end{figure} Clear variables, and establish globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plots %{ \end{matlab} Set random heterogeneous diffusivities of random (small) period in each of the three directions. Crudely normalise by the harmonic mean so the decay time scale is roughly one. \begin{matlab} %} mPeriod = randi([2 3],1,3) cDiff = exp(0.3*randn([mPeriod 3])); cDiff = cDiff*mean(1./cDiff(:)) %{ \end{matlab} Configure the patch scheme with some arbitrary choices of cubic domain, patches, and micro-grid spacing~\(0.05\). Use high order interpolation as few patches in each direction. Configure for Dirichlet boundaries except for Neumann on the right \(x\)-face. \begin{matlab} %} nSubP = mPeriod+2; nPatch = 5; Dom.type = 'equispace'; Dom.bcOffset = zeros(2,3); Dom.bcOffset(2) = 0.5; configPatches3(@microDiffBdry3, [-1 1], Dom ... , nPatch, 0, 0.05, nSubP, 'EdgyInt',true ... ,'hetCoeffs',cDiff ); %{ \end{matlab} Set forcing, and store in global patches for access by the microcode \begin{matlab} %} patches.fu = 10*exp(-patches.x.^2-patches.y.^2-patches.z.^2); patches.fu = patches.fu.*(1+rand(size(patches.fu))); %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, store in global patches for access by \verb|theRes|, and the number of unknowns is then its number of elements. \begin{matlab} %} u0 = zeros([nSubP,1,1,nPatch,nPatch,nPatch]); u0([1 end],:,:,:) = nan; u0(:,[1 end],:,:) = nan; u0(:,:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (optionally \verb|optimoptions| to omit trace information), via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}). \begin{matlab} %} disp('Solving system, takes 10--40 secs'),tic uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solveTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) %{ \end{matlab} Store the solution into the patches, and give magnitudes. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt3(u0); %{ \end{matlab} \paragraph{Plot isosurfaces of the solution} \begin{matlab} %} figure(1), clf rgb=get(gca,'defaultAxesColorOrder'); %{ \end{matlab} Reshape spatial coordinates of patches. \begin{matlab} %} x = patches.x(:); y = patches.y(:); z = patches.z(:); %{ \end{matlab} Draw isosurfaces. Get the solution with interpolated faces, form into a 6D array, and reshape and transpose~\(x\) and~\(y\) to suit the isosurface function. \begin{matlab} %} u = reshape( permute(squeeze(u0),[2 5 1 4 3 6]) ... , [numel(y) numel(x) numel(z)]); maxu=max(u(:)), minu=min(u(:)) %{ \end{matlab} Optionally cut-out the front corner so we can see inside. \begin{matlab} %} u( (x'>0) & (y<0) & (shiftdim(z,-2)>0) ) = nan; %{ \end{matlab} Draw some isosurfaces. \begin{matlab} %} clf; for iso=5:-1:1 isov=(iso-0.5)/5*(maxu-minu)+minu; hsurf(iso) = patch(isosurface(x,y,z,u,isov)); isonormals(x,y,z,u,hsurf(iso)) set(hsurf(iso) ,'FaceColor',rgb(iso,:) ... ,'EdgeColor','none' ,'FaceAlpha',iso/5); hold on end hold off axis equal, axis([-1 1 -1 1 -1 1]), view(35,25) xlabel('$x$'), ylabel('$y$'), zlabel('$z$') camlight, lighting gouraud ifOurCf2eps(mfilename) %optionally save plot if exist('OurCf2eps') && OurCf2eps, print('-dpng',['Figs/' mfilename]), end %{ \end{matlab} \subsection{\texttt{microDiffBdry3()}: 3D forced heterogeneous diffusion with boundaries} \label{sec:microDiffBdry3} This function codes the lattice forced heterogeneous diffusion inside the 3D patches. For 8D input array~\verb|u| (via edge-value interpolation of \verb|patchEdgeInt3|, such as by \verb|patchSys3|, \cref{sec:patchSys3}), computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. The three 3D array of diffusivities,~$c^x_{ijk}$, $c^y_{ijk}$ and~$c^z_{ijk}$, have previously been stored in~\verb|patches.cs| (4D). Supply patch information as a third argument (required by parallel computation), or otherwise by a global variable. \begin{matlab} %} function ut = microDiffBdry3(t,u,patches) if nargin<3, global patches, end %{ \end{matlab} Microscale space-steps. \begin{matlab} %} dx = diff(patches.x(2:3)); % x micro-scale step dy = diff(patches.y(2:3)); % y micro-scale step dz = diff(patches.z(2:3)); % z micro-scale step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch k = 2:size(u,3)-1; % y interior points in a patch %{ \end{matlab} Code microscale boundary conditions of say Neumann on right, and Dirichlet on left, top, bottom, front, and back (viewed along the \(z\)-axis). \begin{matlab} %} u( 1 ,:,:,:,:, 1 ,:,:)=0; %left face of leftmost patch u(end,:,:,:,:,end,:,:)=u(end-1,:,:,:,:,end,:,:); %right face of rightmost u(:, 1 ,:,:,:,:, 1 ,:)=0; %bottom face of bottommost u(:,end,:,:,:,:,end,:)=0; %top face of topmost u(:,:, 1 ,:,:,:,:, 1 )=0; %front face of frontmost u(:,:,end,:,:,:,:,end)=0; %back face of backmost %{ \end{matlab} Reserve storage and then assign interior patch values to the heterogeneous diffusion time derivatives. Using \verb|nan+u| appears quicker than \verb|nan(size(u),patches.codist)| \begin{matlab} %} ut = nan+u; % reserve storage ut(i,j,k,:) ... = diff(patches.cs(:,j,k,1).*diff(u(:,j,k,:),1,1),1,1)/dx^2 ... +diff(patches.cs(i,:,k,2).*diff(u(i,:,k,:),1,2),1,2)/dy^2 ... +diff(patches.cs(i,j,:,3).*diff(u(i,j,:,:),1,3),1,3)/dz^2 ... +patches.fu(i,j,k); end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt3.m
.m
EquationFreeGit-master/SandpitPlay/BCs/patchEdgeInt3.m
26,337
utf_8
658f0a10f8d51dd9022ca660c17ff77e
% patchEdgeInt3() provides the interpolation across 3D space % for 3D patches of simulations of a smooth lattice system % such as PDE discretisations. AJR, Aug 2020 -- 2 Feb 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt3()}: sets 3D patch face values from 3D macroscale interpolation} \label{sec:patchEdgeInt3} Couples 3D patches across 3D space by computing their face values via macroscale interpolation. Assumes patch face values are determined by macroscale interpolation of the patch centre-plane values \cite[]{Roberts2011a, Bunder2019d}, or patch next-to-face values which appears better \cite[]{Bunder2020a}. This function is primarily used by \verb|patchSys3()| but is also useful for user graphics. \footnote{Script \texttt{patchEdgeInt3test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct \verb|patches|. \begin{matlab} %} function u = patchEdgeInt3(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ multiscale spatial grid on the $\verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ array of patches. \item \verb|patches| a struct set by \verb|configPatches3()| which includes the following information. \begin{itemize} \item \verb|.x| is $\verb|nSubP1| \times1 \times1 \times1 \times1 \times \verb|nPatch1| \times1 \times1 $ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.y| is similarly $1\times \verb|nSubP2| \times1 \times1 \times1 \times1 \times \verb|nPatch2| \times1$ array of the spatial locations~$y_{jJ}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$j$, but may be variable spaced in macroscale index~$J$. \item \verb|.z| is similarly $1 \times1 \times \verb|nSubP3| \times1 \times1 \times1 \times1 \times \verb|nPatch3|$ array of the spatial locations~$z_{kK}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$k$, but may be variable spaced in macroscale index~$K$. \item \verb|.ordCC| is order of interpolation, currently only $\{0,2,4,\ldots\}$ \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left, right, top, bottom, front and back boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation. Currently must be zero. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation in each of the $x,y,z$-directions---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre cross-patch values (near original scheme). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 8D array, $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$, of the fields with face values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [~,~,nz,~,~,~,~,Nz] = size(patches.z); [~,ny,~,~,~,~,Ny,~] = size(patches.y); [nx,~,~,~,~,Nx,~,~] = size(patches.x); nEnsem = patches.nEnsem; nVars = round( numel(u)/numel(patches.x) ... /numel(patches.y)/numel(patches.z)/nEnsem ); assert(numel(u) == nx*ny*nz*Nx*Ny*Nz*nVars*nEnsem ... ,'patchEdgeInt3: input u has wrong size for parameters') u = reshape(u,[nx ny nz nVars nEnsem Nx Ny Nz]); %{ \end{matlab} For the moment assume the physical domain is either macroscale periodic or macroscale rectangle so that the coupling formulas are simplest. These index vectors point to patches and, if periodic, their six immediate neighbours. \begin{matlab} %} I=1:Nx; Ip=mod(I,Nx)+1; Im=mod(I-2,Nx)+1; J=1:Ny; Jp=mod(J,Ny)+1; Jm=mod(J-2,Ny)+1; K=1:Nz; Kp=mod(K,Nz)+1; Km=mod(K-2,Nz)+1; %{ \end{matlab} The centre of each patch (as \verb|nx|, \verb|ny| and \verb|nz| are odd for centre-patch interpolation) is at indices \begin{matlab} %} i0 = round((nx+1)/2); j0 = round((ny+1)/2); k0 = round((nz+1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches in each direction. \begin{matlab} %} rx = patches.ratio(1); ry = patches.ratio(2); rz = patches.ratio(3); %{ \end{matlab} \subsubsection{Lagrange interpolation gives patch-face values} Compute centred differences of the mid-patch values for the macro-interpolation, of all fields. Here the domain is macro-periodic. \begin{matlab} %} ordCC = patches.ordCC; if ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. \paragraph{\(x\)-normal face values} The patch-edge values are either interpolated from the next-to-edge-face values, or from the centre-cross-plane values (not the patch-centre value itself as that seems to have worse properties in general). Have not yet implemented core averages. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u([2 nx-1],2:(ny-1),2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(i0,2:(ny-1),2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Just in case the last array dimension(s) are one, we have to force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') % dmux(:,:,:,:,:,I,:,:,1) = (Ux(:,:,:,:,:,Ip,:,:) +Ux(:,:,:,:,:,Im,:,:))/2; % \mu % dmux(:,:,:,:,:,I,:,:,2) = (Ux(:,:,:,:,:,Ip,:,:) -Ux(:,:,:,:,:,Im,:,:)); % \delta % Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 % dmuy(:,:,:,:,:,:,J,:,1) = (Ux(:,:,:,:,:,:,Jp,:)+Ux(:,:,:,:,:,:,Jm,:))/2; % \mu % dmuy(:,:,:,:,:,:,J,:,2) = (Ux(:,:,:,:,:,:,Jp,:)-Ux(:,:,:,:,:,:,Jm,:)); % \delta % Jp = Jp(Jp); Jm = Jm(Jm); % increase shifts to \pm2 % dmuz(:,:,:,:,:,:,:,K,1) = (Ux(:,:,:,:,:,:,:,Kp)+Ux(:,:,:,:,:,:,:,Km))/2; % \mu % dmuz(:,:,:,:,:,:,:,K,2) = (Ux(:,:,:,:,:,:,:,Kp)-Ux(:,:,:,:,:,:,:,Km)); % \delta % Kp = Kp(Kp); Km = Km(Km); % increase shifts to \pm2 else %disp('starting standard interpolation') dmu(:,:,:,:,:,I,:,:,1) = (U(:,:,:,:,:,Ip,:,:) ... -U(:,:,:,:,:,Im,:,:))/2; %\mu\delta dmu(:,:,:,:,:,I,:,:,2) = (U(:,:,:,:,:,Ip,:,:) ... -2*U(:,:,:,:,:,I,:,:) +U(:,:,:,:,:,Im,:,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,I,:,:,k) = dmu(:,:,:,:,:,Ip,:,:,k-2) ... -2*dmu(:,:,:,:,:,I,:,:,k-2) +dmu(:,:,:,:,:,Im,:,:,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet face values for each patch \cite[]{Roberts06d, Bunder2013b}, using the weights pre-computed by \verb|configPatches3()|. Here interpolate to specified order. For the case where next-to-face values interpolate to the opposite face-values: when we have an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(nx,2:(ny-1),2:(nz-1),:,patches.ri,I,:,:) ... = U(1,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,1),-8).*dmu(1,:,:,:,:,:,:,:,:) ,9); u(1 ,2:(ny-1),2:(nz-1),:,patches.le,I,:,:) ... = U(k,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,1),-8).*dmu(k,:,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(y\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,[2 ny-1],2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(:,j0,2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,J,:,1) = (U(:,:,:,:,:,:,Jp,:) ... -U(:,:,:,:,:,:,Jm,:))/2; %\mu\delta dmu(:,:,:,:,:,:,J,:,2) = (U(:,:,:,:,:,:,Jp,:) ... -2*U(:,:,:,:,:,:,J,:) +U(:,:,:,:,:,:,Jm,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,J,:,k) = dmu(:,:,:,:,:,:,Jp,:,k-2) ... -2*dmu(:,:,:,:,:,:,J,:,k-2) +dmu(:,:,:,:,:,:,Jm,:,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,ny,2:(nz-1),:,patches.to,:,J,:) ... = U(:,1,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,2),-8).*dmu(:,1,:,:,:,:,:,:,:) ,9); u(:,1 ,2:(nz-1),:,patches.bo,:,J,:) ... = U(:,k,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,2),-8).*dmu(:,k,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(z\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,:,[2 nz-1],:,:,I,J,K); else % interpolate centre-cross values U = u(:,:,k0,:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,:,K,1) = (U(:,:,:,:,:,:,:,Kp) ... -U(:,:,:,:,:,:,:,Km))/2; %\mu\delta dmu(:,:,:,:,:,:,:,K,2) = (U(:,:,:,:,:,:,:,Kp) ... -2*U(:,:,:,:,:,:,:,K) +U(:,:,:,:,:,:,:,Km)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,:,K,k) = dmu(:,:,:,:,:,:,:,Kp,k-2) ... -2*dmu(:,:,:,:,:,:,:,K,k-2) +dmu(:,:,:,:,:,:,:,Km,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,:,nz,:,patches.fr,:,:,K) ... = U(:,:,1,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,3),-8).*dmu(:,:,1,:,:,:,:,:,:) ,9); u(:,:,1 ,:,patches.ba,:,:,K) ... = U(:,:,k,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,3),-8).*dmu(:,:,k,:,:,:,:,:,:) ,9); %{ \end{matlab} \subsubsection{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} We interpolate in terms of the patch index, $I$~say, not directly in space. As the macroscale fields are $N$-periodic in the patch index~$I$, the macroscale Fourier transform writes the centre-patch values as $U_I=\sum_{k}C_ke^{ik2\pi I/N}$. Then the face-patch values $U_{I\pm r} =\sum_{k}C_ke^{ik2\pi/N(I\pm r)} =\sum_{k}C'_ke^{ik2\pi I/N}$ where $C'_k =C_ke^{ikr2\pi/N}$. For $N$~patches we resolve `wavenumbers' $|k|<N/2$, so set row vector $\verb|ks| =k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, \pm(k_{\max}+1) -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches3| tests there are an even number of patches). Then the patch-ratio is effectively halved. The patch faces are near the middle of the gaps and swapped. \begin{matlab} %} if patches.stag % transform by doubling the number of fields error('staggered grid not yet implemented??') v=nan(size(u)); % currently to restore the shape of u u=cat(3,u(:,1:2:nPatch,:),u(:,2:2:nPatch,:)); stagShift=reshape(0.5*[ones(nVars,1);-ones(nVars,1)],1,1,[]); iV=[nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r=r/2; % ratio effectively halved nPatch=nPatch/2; % halve the number of patches nVars=nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. Need these indices of patch interior. \begin{matlab} %} ix = 2:nx-1; iy = 2:ny-1; iz = 2:nz-1; %{ \end{matlab} \paragraph{\(x\)-normal face values} Now set wavenumbers into a vector at the correct dimension. In the case of even~$N$ these compute the $+$-case for the highest wavenumber zig-zag mode, $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, +(k_{\max}+1) -k_{\max}, \ldots, -1)$. \begin{matlab} %} kMax = floor((Nx-1)/2); kr = shiftdim( rx*2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ,-4); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. Unless doing patch-edgy interpolation when FT the next-to-face values. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(i0,iy,iz,:,:,:,:,:) ,[],6); Cp = Cm; else Cm = fft( u( 2,iy,iz ,:,patches.le,:,:,:) ,[],6); Cp = fft( u(nx-1,iy,iz ,:,patches.ri,:,:,:) ,[],6); end%if ~patches.EdgyInt %{ \end{matlab} Now invert the Fourier transforms to complete interpolation. Enforce reality when appropriate. \begin{matlab} %} u(nx,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],6) ); u( 1,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],6) ); %{ \end{matlab} \paragraph{\(y\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Ny-1)/2); kr = shiftdim( ry*2*pi/Ny*(mod((0:Ny-1)+kMax,Ny)-kMax) ,-5); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,j0,iz,:,:,:,:,:) ,[],7); Cp = Cm; else Cm = fft( u(:,2 ,iz ,:,patches.bo,:,:,:) ,[],7); Cp = fft( u(:,ny-1,iz ,:,patches.to,:,:,:) ,[],7); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,ny,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],7) ); u(:, 1,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],7) ); %{ \end{matlab} \paragraph{\(z\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Nz-1)/2); kr = shiftdim( rz*2*pi/Nz*(mod((0:Nz-1)+kMax,Nz)-kMax) ,-6); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,:,k0,:,:,:,:,:) ,[],8); Cp = Cm; else Cm = fft( u(:,:,2 ,:,patches.ba,:,:,:) ,[],8); Cp = fft( u(:,:,nz-1 ,:,patches.fr,:,:,:) ,[],8); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,:,nz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],8) ); u(:,:, 1,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],8) ); %{ \end{matlab} \begin{matlab} %} end% if ordCC>0 %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|px|, \verb|py| and~\verb|pz| (potentially different in the different directions!), and hence size of the (forward) divided difference tables in~\verb|F|~(9D) for interpolating to left/right, top/bottom, and front/back faces. Because of the product-form of the patch grid, and because we are doing \emph{only} either edgy interpolation or cross-patch interpolation (\emph{not} just the centre patch value), the interpolations are all 1D interpolations. \begin{matlab} %} if patches.ordCC<1 px = Nx-1; py = Ny-1; pz = Nz-1; else px = min(patches.ordCC,Nx-1); py = min(patches.ordCC,Ny-1); pz = min(patches.ordCC,Nz-1); end % interior indices of faces (ix n/a) ix=2:nx-1; iy=2:ny-1; iz=2:nz-1; %{ \end{matlab} \subsubsection{\(x\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-face values are because their values are to interpolate to the opposite face of each patch. \todo{Have no plans to implement core averaging as yet.} \begin{matlab} %} F = nan(patches.EdgyInt+1,ny-2,nz-2,nVars,nEnsem,Nx,Ny,Nz,px+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u([nx-1 2],iy,iz,:,:,:,:,:); X = patches.x([nx-1 2],:,:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(i0,iy,iz,:,:,:,:,:); X = patches.x(i0,:,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} \paragraph{Form tables of divided differences} Compute tables of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable, and across ensemble, and in both directions, and for all three types of faces (left/right, top/bottom, and front/back). Recursively find all divided differences in the respective direction. \begin{matlab} %} for q = 1:px i = 1:Nx-q; F(:,:,:,:,:,i,:,:,q+1) ... = ( F(:,:,:,:,:,i+1,:,:,q)-F(:,:,:,:,:,i,:,:,q)) ... ./(X(:,:,:,:,:,i+q,:,:) -X(:,:,:,:,:,i,:,:)); end %{ \end{matlab} \paragraph{Interpolate with divided differences} Now interpolate to find the face-values on left/right faces at~\verb|Xface| for every interior~\verb|Y,Z|. \begin{matlab} %} Xface = patches.x([1 nx],:,:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left face of each interpolation stencil, because the table is of forward differences. This alternative: the case of order~\(p_x\), \(p_y\) and~\(p_z\) interpolation across the domain, asymmetric near the boundaries of the rectangular domain. \begin{matlab} %} i = max(1,min(1:Nx,Nx-ceil(px/2))-floor(px/2)); Uface = F(:,:,:,:,:,i,:,:,px+1); for q = px:-1:1 Uface = F(:,:,:,:,:,i,:,:,q) ... +(Xface-X(:,:,:,:,:,i+q-1,:,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,iy,iz,:,patches.le,:,:,:) = Uface(1,:,:,:,:,:,:,:); u(nx,iy,iz,:,patches.ri,:,:,:) = Uface(2,:,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(y\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,patches.EdgyInt+1,nz-2,nVars,nEnsem,Nx,Ny,Nz,py+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,[ny-1 2],iz,:,:,:,:,:); Y = patches.y(:,[ny-1 2],:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,j0,iz,:,:,:,:,:); Y = patches.y(:,j0,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:py j = 1:Ny-q; F(:,:,:,:,:,:,j,:,q+1) ... = ( F(:,:,:,:,:,:,j+1,:,q)-F(:,:,:,:,:,:,j,:,q)) ... ./(Y(:,:,:,:,:,:,j+q,:) -Y(:,:,:,:,:,:,j,:)); end %{ \end{matlab} Interpolate to find the top/bottom faces~\verb|Yface| for every~\(x\) and interior~\(z\). \begin{matlab} %} Yface = patches.y(:,[1 ny],:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|j| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} j = max(1,min(1:Ny,Ny-ceil(py/2))-floor(py/2)); Uface = F(:,:,:,:,:,:,j,:,py+1); for q = py:-1:1 Uface = F(:,:,:,:,:,:,j,:,q) ... +(Yface-Y(:,:,:,:,:,:,j+q-1,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,1 ,iz,:,patches.bo,:,:,:) = Uface(:,1,:,:,:,:,:,:); u(:,ny,iz,:,patches.to,:,:,:) = Uface(:,2,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(z\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,ny,patches.EdgyInt+1,nVars,nEnsem,Nx,Ny,Nz,pz+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,:,[nz-1 2],:,:,:,:,:); Z = patches.z(:,:,[nz-1 2],:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,:,k0,:,:,:,:,:); Z = patches.z(:,:,k0,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:pz k = 1:Nz-q; F(:,:,:,:,:,:,:,k,q+1) ... = ( F(:,:,:,:,:,:,:,k+1,q)-F(:,:,:,:,:,:,:,k,q)) ... ./(Z(:,:,:,:,:,:,:,k+q) -Z(:,:,:,:,:,:,:,k)); end %{ \end{matlab} Interpolate to find the face-values on front/back faces~\verb|Zface| for every~\(x,y\). \begin{matlab} %} Zface = patches.z(:,:,[1 nz],:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|k| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} k = max(1,min(1:Nz,Nz-ceil(pz/2))-floor(pz/2)); Uface = F(:,:,:,:,:,:,:,k,pz+1); for q = pz:-1:1 Uface = F(:,:,:,:,:,:,:,k,q) ... +(Zface-Z(:,:,:,:,:,:,:,k+q-1)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,:,1 ,:,patches.fr,:,:,:) = Uface(:,:,1,:,:,:,:,:); u(:,:,nz,:,patches.ba,:,:,:) = Uface(:,:,2,:,:,:,:,:); %{ \end{matlab} \subsubsection{Optional NaNs for safety} We want a user to set outer face values on the extreme patches according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} u( 1,:,:,:,:, 1,:,:) = nan; u(nx,:,:,:,:,Nx,:,:) = nan; u(:, 1,:,:,:,:, 1,:) = nan; u(:,ny,:,:,:,:,Ny,:) = nan; u(:,:, 1,:,:,:,:, 1) = nan; u(:,:,nz,:,:,:,:,Nz) = nan; %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic else %{ \end{matlab} Fin, returning the 8D array of field values with interpolated faces. \begin{matlab} %} end% function patchEdgeInt3 %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
configPatches1.m
.m
EquationFreeGit-master/SandpitPlay/BCs/configPatches1.m
23,698
utf_8
f00f13351f335beceda77bc01a5c7a7c
% configPatches1() creates a data struct of the design of % 1D patches for later use by the patch functions such as % patchSys1(). AJR, Nov 2017 -- 4 Jan 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches1()}: configures spatial patches in 1D} \label{sec:configPatches1} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys1()|. \cref{sec:configPatches1eg} lists an example of its use. \begin{matlab} %} function patches = configPatches1(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating Burgers' \pde---see \cref{sec:configPatches1eg} for the example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)|, that computes time derivatives (or time-steps) of quantities on the 1D micro-grid within all the 1D~patches. \item \verb|Xlim| give the macro-space spatial domain of the computation, namely the interval $[ \verb|Xlim(1)|, \verb|Xlim(2)|]$. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is macro-periodic in the 1D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left(right) edge of the leftmost(rightmost) patches. \item \verb|.bcOffset|, optional one or two element array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right macroscale boundaries are aligned to the left\slash right edges of the corresponding extreme patches, but offset by \verb|bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when applying Dirichlet boundary values on the extreme edge micro-grid points, whereas use \verb|bcOffset=0.5| when applying Neumann boundary conditions halfway between the extreme edge micro-grid points. \item \verb|.X|, optional array, in the case~\verb|'usergiven'| it specifies the locations of the centres of the \verb|nPatch| patches---the user is responsible it makes sense. \end{itemize} \item \verb|nPatch| is the number of equi-spaced spatial patches. \item \verb|ordCC|, must be~$\geq -1$, is the `order' of interpolation across empty space of the macroscale patch values to the edge of the patches for inter-patch coupling: where \verb|ordCC| of~$0$ or~$-1$ gives spectral interpolation; and \verb|ordCC| being odd specifies staggered spatial grids. \item \verb|dx| (real) is usually the sub-patch micro-grid spacing in~\(x\). However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio|, namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch. If not using \verb|EdgyInt|, then must be odd so that there is a centre-patch lattice point. \item \verb|nEdge| (not yet implemented), \emph{optional}, default=1, for each patch, the number of edge values set by interpolation at the edge regions of each patch. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|EdgyInt|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right edge-values from right\slash left next-to-edge values. If false or omitted, then interpolate from centre-patch values. \item \verb|nEnsem|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|hetCoeffs|, \emph{optional}, default empty. Supply a 1D or 2D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times n_c$, where $n_c$~is the number of different sets of coefficients. The coefficients are to be the same for each and every patch; however, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the first point in each patch. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x$ and construct an ensemble of all $m_x$~phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|nCore|, \emph{optional-experimental}, default one, but if more, and only for non-EdgyInt, then interpolates from an average over the core of a patch, a core of size ??. Then edge values are set according to interpolation of the averages?? or so that average at edges is the interpolant?? \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x$. A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)|, that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling. \item \verb|.Cwtsr| and \verb|.Cwtsl|, only for macro-periodic conditions, are the $\verb|ordCC|$-vector of weights for the inter-patch interpolation onto the right and left edges (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (4D) is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the regular spatial locations~$x_{iI}$ of the $i$th~microscale grid point in the $I$th~patch. \item \verb|.ratio|, only for macro-periodic conditions, is the size ratio of every patch. \item \verb|.nEdge| is, for each patch, the number of edge values set by interpolation at the edge regions of each patch. \item \verb|.le|, \verb|.ri| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times n_c$ 2D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1) \times n_c\times m_x$ 3D array of $m_x$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches1eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of Burgers PDE') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches1 \item ode15s integrator \into patchSys1 \into user's PDE \item process results \end{enumerate} Establish global patch data struct to point to and interface with a function coding Burgers' \pde: to be solved on $2\pi$-periodic domain, with eight patches, spectral interpolation couples the patches, with micro-grid spacing~$0.06$, and with seven microscale points forming each patch. \begin{matlab} %} global patches patches = configPatches1(@BurgersPDE,[0 2*pi], [], 8, 0, 0.06, 7); %{ \end{matlab} Set some initial condition, with some microscale randomness. \begin{matlab} %} u0=0.3*(1+sin(patches.x))+0.1*randn(size(patches.x)); %{ \end{matlab} Simulate in time using a standard stiff integrator and the interface function \verb|patchSys1()| (\cref{sec:patchSys1}). \begin{matlab} %} if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode15s( @patchSys1,[0 0.5],u0(:)); else % octave version [ts,us] = odeOcts(@patchSys1,[0 0.5],u0(:)); end %{ \end{matlab} Plot the simulation using only the microscale values interior to the patches: either set $x$-edges to \verb|nan| to leave the gaps; or use \verb|patchEdgyInt1| to re-interpolate correct patch edge values and thereby join the patches. \cref{fig:config1Burgers} illustrates an example simulation in time generated by the patch scheme applied to Burgers'~\pde. \begin{matlab} %} figure(1),clf if 1, patches.x([1 end],:,:,:)=nan; us=us.'; else us=reshape(patchEdgyInt1(us.'),[],length(ts)); end surf(ts,patches.x(:),us) view(60,40), colormap(0.8*hsv) title('Burgers PDE: patches in space, continuous time') xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:config1Burgers}field $u(x,t)$ of the patch scheme applied to Burgers'~\pde.} \includegraphics[scale=0.85]{configPatches1} \end{figure} Upon finishing execution of the example, optionally save the graph to be shown in \cref{fig:config1Burgers}, then exit this function. \begin{matlab} %} ifOurCf2eps(mfilename) return end%if nargin==0 %{ \end{matlab} \IfFileExists{../Patch/BurgersPDE.m}{\input{../Patch/BurgersPDE.m}}{} \IfFileExists{../Patch/odeOcts.m}{\input{../Patch/odeOcts.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle'); %test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % nothing yet decided addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); addParameter(p,'nCore',1,@isnumeric); parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; patches.nCore = p.Results.nCore; %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'two entries of Xlim must be ordered increasing') assert(patches.nEdge==1 ... ,'multi-edge-value interp not yet implemented') assert(2*patches.nEdge+1<=nSubP ... ,'too many edge values requested') if patches.nCore>1 warning('nCore>1 not yet tested in this version') end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| parameter. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and then get corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} Check what is and is not specified, and provide default of Dirichlet boundaries if no \verb|bcOffset| specified when needed. \begin{matlab} %} patches.periodic=false; switch Dom.type case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end if isfield(Dom,'X') warning('X not available for Dom.type = periodic'), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=[0;0]; end if length(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,1); end if isfield(Dom,'X') warning('X not available for Dom.type = equispace or chebyshev') end case 'usergiven' if isfield(Dom,'bcOffset') warning('bcOffset not available for usergiven Dom.type'), end assert(isfield(Dom,'X'),'X required for Dom.type = usergiven') otherwise error([Dom.type ' is unknown Dom.type']) end%switch Dom.type %{ \end{matlab} \subsection{The code to make patches and interpolation} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun=fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ and~$-1$. \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC|, interpolate based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag=mod(ordCC,2); ordCC=ordCC+patches.stag; patches.ordCC=ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(mod(nPatch,2)==0, ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} Third, set the centre of the patches in the macroscale grid of patches, depending upon \verb|Dom.type|. \begin{matlab} %} switch Dom.type %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' X=linspace(Xlim(1),Xlim(2),nPatch+1); DX=X(2)-X(1); X=X(1:nPatch)+diff(X)/2; pEI=patches.EdgyInt;% abbreviation if pre2023, dx = ratio*DX/(nSubP-1-pEI)*(2-pEI); else ratio = dx/DX*(nSubP-1-pEI)/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. \begin{matlab} %} case 'equispace' X=linspace(Xlim(1)+((nSubP-1)/2-Dom.bcOffset(1))*dx ... ,Xlim(2)-((nSubP-1)/2-Dom.bcOffset(2))*dx ,nPatch); DX=diff(X(1:2)); width=(1+patches.EdgyInt)/2*(nSubP-1-patches.EdgyInt)*dx; if DX<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(X_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'.\footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatial analogue of the `christmas tree' of projective integration and its projection to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx*(nSubP-1)/2; X1 = Xlim(1)+halfWidth-Dom.bcOffset(1)*dx; X2 = Xlim(2)-halfWidth+Dom.bcOffset(2)*dx; % X = (X1+X2)/2-(X2-X1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. \begin{matlab} %} width=(1+patches.EdgyInt)/2*(nSubP-1-patches.EdgyInt)*dx; for b=0:2:nPatch-2 DXmin=(X2-X1-b*width)/2*( 1-cos(pi/(nPatch-b-1)) ); if DXmin>width, break, end end if DXmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} X = [ X1+(0:b/2-1)*width ... (X1+X2)/2-(X2-X1-b*width)/2*cos(linspace(0,pi,nPatch-b)) ... X2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just force it to have the correct shape of a row. \begin{matlab} %} case 'usergiven' X = reshape(Dom.X,1,[]); end%switch Dom.type %{ \end{matlab} Fourth, construct the microscale grid in each patch. Reshape the grid to be 4D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} assert(patches.EdgyInt | mod(nSubP,2)==1, ... 'configPatches1: nSubP must be odd') i0=(nSubP+1)/2; patches.x = reshape( dx*(-i0+1:i0-1)'+X ,nSubP,1,1,nPatch); %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to left-edge~\verb|le|, and \item the left-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Alternatively, one may use the statement \begin{verbatim} c=hankel(c(1:nSubP-1),c([nSubP 1:nSubP-2])); \end{verbatim} to \emph{correspondingly} generates all phase shifted copies of microscale heterogeneity (see \verb|homoDiffEdgy1| of \cref{sec:homoDiffEdgy1}). The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt1()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 2D, then the higher-dimensions are reshaped into the 2nd dimension. \begin{matlab} %} if ~isempty(cs) [mx,nc] = size(cs); nx = nSubP(1); cs = repmat(cs,nSubP,1); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_x$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx; patches.cs = nan(nx-1,nc,mx); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,i) = cs(is,:); end patches.cs = reshape(patches.cs,nx-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} patches.le = mod((0:mx-1)'+mod(nx-2,mx),mx)+1; patches.ri = mod((0:mx-1)'-mod(nx-2,mx),mx)+1; %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. Need to justify this and the arbitrary threshold more carefully?? \begin{matlab} %} if ratio*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel % theparpool=gcp() spmd %{ \end{matlab} Second, choose to slice parallel workers in the spatial direction. \begin{matlab} %} pari = 1; patches.codist=codistributor1d(3+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
Combescure2022.m
.m
EquationFreeGit-master/SandpitPlay/BCs/Combescure2022.m
20,001
utf_8
1e16325003790d6ce54ef341008ceea9
% For an example nonlinear elasticity in 1D, simulate and % use MatCont to continue parametrised equilibria. An % example of working via patches in space. Adapted from the % example Figure 3(a) of Combescure(2022). AJR Nov 2022 -- % Jan 2023 %!TEX root = doc.tex %{ \section{\texttt{Combescure2022}: simulation and continuation of a 1D example nonlinear elasticity, via patches} \label{sec:Combescure2022} Here we explore a nonlinear 1D elasticity problem with complicated microstructure. Executes a simulation. \emph{But the main aim is to show how one may use MatCont continuation toolbox \cite[]{Govaerts2019} together with the Patch Scheme toolbox} \cite[]{Maclean2020a} in order to explore parameter space by continuing branches of equilibria, etc. \begin{figure} \centering \caption{\label{fig:toyElas}1D arrangement of non-linear springs with connections to (a) next-to-neighbour node \protect\cite[Fig.~3(a)]{Combescure2022}. The blue box is one cell of one period, width~\(2b\), containing an odd and an even~\(i\).} \setlength{\unitlength}{0.01\linewidth} \begin{picture}(100,31) \put(0,0){\framebox(100,31){}} \put(0,0){\includegraphics[width=\linewidth]{Figs/toyElas}} \put(36,4){\color{blue}\framebox(27,23){cell}} \end{picture} \end{figure} \cref{fig:toyElas} shows the microscale elasticity---adapted from Fig.~3(a) by \cite{Combescure2022}. Let the spatial microscale lattice be at rest at points~\(x_i\), with constant spacing~\(b\). With displacement variables~\(u_i(t)\), simulate the microscale lattice toy elasticity system with 2-periodicity: for \(p=1,2\) (respectively black and red in \cref{fig:toyElas}) and for every~\(i\), \begin{align} &\epsilon^p_i:=\frac1{pb}(u_{i+p/2}-u_{i-p/2}), &&\sigma^p_i:=w'_p(\epsilon^p_i), \nonumber\\ &\DD t{u_{i}}= \sum_{p=1}^2\frac1{pb?}(\sigma^p_{i+p/2}-\sigma^p_{i-p/2}), &&w'_p(\epsilon):=\epsilon-M_p\epsilon^3+\epsilon^5. \label{eq:heteroNLE} \end{align} The system has a microscale heterogeneity via the two different functions~\(w'_p(\epsilon)\) \cite[\S4]{Combescure2022}: \begin{itemize} \item microscale `instability' (structure) arises with \(M_1:=2\) and \(M_2:=1\) (\cref{fig:Comb22diffuSvis2b,fig:Comb22cpl}(b)); and \item large scale `instability' (structure) arises with \(M_1:=-1\) and \(M_2:=3\) (\cref{fig:Comb22diffuLvis1,fig:Comb22cpl}(a)). \end{itemize} \paragraph{Microscale case} Set \(M_1:=2\) and \(M_2:=1\)\,. We fix the boundary conditions \(u(0)=0\) and parametrise solutions by~\(u(L)\). There are equilibria \(u\approx u(L)x/L\), but under large compression (large negative~\(u(L)\)) interesting structures develop. \cref{fig:Comb22diffuSvis2b} shows boundary layers with microscale variations develop for \(u(L)<-13\). This figure plots a strain~\(\epsilon\) as the strain is nearly constant across the interior, so the boundary layers show up clearly. As~\(u(L)\) decreases further, \cref{fig:Comb22diffuSvis2b} shows the family of equilibria form complicated folds. \cref{tblMicro} lists that MatCont also reports some branch points and neutral saddle equilibria in this same regime (see \cref{fig:Comb22cpl}(b)). I have not yet followed any of the branches. \begin{SCfigure} \centering \caption{\label{fig:Comb22diffuSvis2b}the case of microscale `instability' appears as fluctuations close to both boundaries. As the system is physically compressed, the equilibrium curve has complicated folds, as shown here (and \cref{fig:Comb22cpl}(b)).} \includegraphics[scale=0.8]{Comb22diffuSvis2b} \end{SCfigure} \begin{SCtable} \centering\caption{\label{tblMicro}Interesting equilibria for the cases of small scale instability: \(M_1:=2\), \(M_2:=1\) (\cref{fig:Comb22diffuSvis2b,fig:Comb22cpl}(b)). The rightmost column gives the \(-u(L)\)~parameter values for corresponding critical points in the three-patch code (\cref{fig:Comb22diffuSvis2N3}).} \begin{tabular}{@{}rp{12.1em}r@{}} \hline $-u(L)$&MatCont description &\text{Patch}\\\hline 14.684 & Branch point &14.599\\ 14.702 & Limit point &14.610\\ 14.612 & Neutral Saddle Equilibrium &-\\ 14.063 & Neutral Saddle Equilibrium &-\\ 13.972 & Limit point &13.817\\ 13.988 & Branch point &13.828\\ 17.184 & Branch point &17.197\\ - & Limit point &17.227\\ 17.183 & Neutral Saddle Equilibrium &17.211\\ %15.034 & Neutral Saddle Equilibrium \\ %15.024 & Limit point \\ %15.032 & Branch point \\ %17.987 & Branch point \\ %17.993 & Limit point \\ %17.987 & Neutral Saddle Equilibrium \\ \hline \end{tabular} \end{SCtable} The previous paragraph's discussion is for a full domain simulation, albeit done through an imposed computational framework of physically abutting patches. \cref{fig:Comb22diffuSvis2N3} shows the corresponding MatCont continuation for the patch scheme with \(N=3\) patches in the domain. Just three patches may well be reasonable as the structures in this problem are the two boundary layers, and a constant interior. \cref{fig:Comb22diffuSvis2N3} shows the patch scheme reasonably resolves these. \cref{tblMicro} also lists the special points, as reported by MatCont, in the equilibria of the patch scheme. The locations of these special points reasonably match those found by the full domain simulation. Importantly, MatCont is about \emph{ten times quicker to execute on the patches} than on the full domain code. This speed-up indicates that on larger scale problems the patch scheme could be very useful in continuation explorations. \begin{SCfigure} \centering \caption{\label{fig:Comb22diffuSvis2N3}using just three patches, the case of microscale instability appears as fluctuations close to both boundaries. As the system is physically compressed, the equilibrium curve has complicated folds, as shown, and that approximately match \cref{fig:Comb22diffuSvis2b}. But it is computed ten times quicker.} \includegraphics[scale=0.8]{Comb22diffuSvis2N3} \end{SCfigure} \paragraph{Large scale case} Set \(M_1:=-1\) and \(M_2:=3\)\,. We fix the boundary conditions \(u(0)=0\) and parametrise solutions by~\(u(L)\). There are equilibria \(u\approx u(L)x/L\), but under large compression (large negative~\(u(L)\)) interesting structures develop. \cref{fig:Comb22diffuLvis1} shows an interior region of higher magnitude strain develops. Again, this figure plots a strain~\(\epsilon\) as the strain is nearly constant across the domain, so the interior structure shows up clearly. As~\(u(L)\) decreases further, \cref{fig:Comb22diffuLvis1} shows the family of equilibria form complicated folds. \cref{tblLarge} lists that MatCont also reports some branch points and neutral saddle equilibria in this regime (see \cref{fig:Comb22cpl}(a)). I have not yet followed any of the branches. \begin{SCfigure} \centering \caption{\label{fig:Comb22diffuLvis1}the case of large scale `instability'. Spatial structure appears in the middle of the domain. As the system is physically compressed, the equilibrium curve has complicated folds, as shown here and in \cref{fig:Comb22cpl}(a).} \includegraphics[scale=0.8]{Comb22diffuLvis1} \end{SCfigure} \begin{SCtable} \centering\caption{\label{tblLarge}Interesting equilibria for the cases of large scale instability: \(M_1:=-1\), \(M_2:=3\) (\cref{fig:Comb22diffuLvis1,fig:Comb22cpl}(a)).} \begin{tabular}{@{}rp{12.1em}r@{}} \hline $-u(L)$&MatCont description \\\hline 21.295 & Limit point \\ 18.783 & Branch point \\ 18.762 & Neutral Saddle Equilibrium \\ 18.761 & Neutral Saddle Equilibrium \\ 18.761 & Limit point \\ 18.934 & Branch point \\ 19.393 & Branch point \\ 19.928 & Branch point \\ 20.490 & Branch point \\ 21.055 & Branch point \\ 21.627 & Branch point \\ \hline \end{tabular} % these are from N=3 patches %21.469 & Branch point \\ %23.342 & Neutral Saddle Equilibrium \\ %23.462 & Branch point \\ %29.95 & Hopf \\ \end{SCtable} The patch scheme with \(N=3\) patches does not make reasonable predictions here. I suspect this failure is because the nontrivial interior structure here occupies too much of the domain to fit into one `small' patch. Here the patch scheme may be useful if the physical domain is larger. \subsection{Configure heterogeneous toy elasticity systems} \label{sec:chtes} Set some physical parameters. Each cell is of width~\(dx:=2b\) as I choose to store~\(u_i\) for odd~\(i\) in \verb|u((i+1)/2,1,:)| and for even~\(i\) in \verb|u(i/2,2,:)|, that is, the the physical displacements form the array \begin{equation*} \verb|u|=\begin{bmatrix} u_1&u_2\\ u_3&u_4\\ u_5&u_6\\ \vdots&\vdots \end{bmatrix}. \end{equation*} Then corresponding velocities are adjoined as 3rd and 4th column. \begin{matlab} %} clear all global b M vis b = 1 % separation of lattice points N = 42 % # lattice steps in L L = b*N % length of domain %{ \end{matlab} The nonlinear coefficients of stress-strain are in array~\verb|M|, chosen by~\verb|theCase|. \begin{matlab} %} theCase = 2 switch theCase case 1, M = [0 0 0 0] % linear spring coefficients case 2, M = [ 2 1 1 1] % micro scale instability?? case 3, M = [-1 3 1 1] % large scale instability?? end% switch vis = 0.1 % does not appear to affect the equilibria tEnd = 25 %{ \end{matlab} Patch parameters: here \verb|nSubP| is the number of cells. \begin{matlab} %} edgyInt = true nSubP = 6, nPatch = 5 % gives full-domain on N=42, dx=2 %nSubP = 6, nPatch = 3 % patches for some crude comparison %{ \end{matlab} Establish the global data struct~\verb|patches| for the microscale heterogeneous lattice elasticity system~\cref{eq:heteroNLE}. Solved with \verb|nPatch| patches, and interpolation (as high-order as possible) to provide the edge-values of the inter-patch coupling conditions. \begin{matlab} %} global patches configPatches1(@heteroNLE,[0 L],'equispace',nPatch ... ,0,2*b,nSubP,'EdgyInt',edgyInt); xx = patches.x+[-1 1]*b/2; % staggered sub-cell positions %{ \end{matlab} \subsection{Simulate in time} Set the initial displacement and velocity of a simulation. Integrate some time using standard integrator. \begin{matlab} %} u0 = [ sin(pi/L*xx) -0*0.14*cos(pi/L*xx) ]; tic [ts,ust] = ode23(@patchSys1, tEnd*linspace(0,1,41), u0(:) ... ,[],patches,0); cpuIntegrateTime = toc %{ \end{matlab} \paragraph{Plot space-time surface of the simulation} To see the edge values of the patches, interpolate and then adjoin a row of \verb|nan|s between patches. Because of the odd/even storage we need to do a lot of permuting and reshaping. First, array of sub-cell coordinates in a column for each patch, separating patches also by an extra row of nans. \begin{matlab} %} xs = reshape( permute( xx ,[2 1 3 4]), 2*nSubP,nPatch); xs(end+1,:) = nan; %{ \end{matlab} Interpolate patch edge values, at all times simultaneously by including time data into the 2nd dimension, and 2nd reshaping it into the 3rd dimension. \begin{matlab} %} uvs = reshape( permute( reshape(ust ... ,length(ts),nSubP,4,1,nPatch) ,[2 3 1 4 5]) ,nSubP,[],1,nPatch); uvs = reshape( patchEdgeInt1(uvs) ,nSubP,4,[],nPatch); %{ \end{matlab} Extract displacement field, merge the 1st two columns, permute the time variations to the 3rd, separate patches by NaNs, and merge spatial data into the 1st column. \begin{matlab} %} us = reshape( permute( uvs(:,1:2,:,:) ... ,[2 1 4 3]) ,2*nSubP,nPatch,[]); us(end+1,:,:) = nan; us = reshape(us,[],length(ts)); %{ \end{matlab} Plot space-time surface of displacements over the macroscale duration of the simulation. \begin{matlab} %} figure(1), clf() mesh(ts,xs(:),us) view(60,40), colormap(0.8*jet), axis tight xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') %{ \end{matlab} Ditto for the velocity. \begin{matlab} %} vs = reshape( permute( uvs(:,3:4,:,:) ... ,[2 1 4 3]) ,2*nSubP,nPatch,[]); vs(end+1,:,:) = nan; vs = reshape(vs,[],length(ts)); figure(2), clf() mesh(ts,xs(:),vs) view(60,40), colormap(0.8*jet), axis tight xlabel('time t'), ylabel('space x'), zlabel('v(x,t)') drawnow %{ \end{matlab} \subsection{MatCont continuation} First, use \verb|fsolve| to find an equilibrium at some starting compressive displacement---a compression that differs depending upon the case of nonlinearity. \begin{matlab} %} muL0 = 12+6*(theCase==3) u0 = [ -muL0*xx/L 0*xx ]; u0([1 end],:,:,:)=nan; patches.i = find(~isnan(u0)); nVars=length(patches.i) ueq=fsolve(@(v) dudtSys(0,v,muL0),u0(patches.i)); %{ \end{matlab} Start search for equilibria at other compression parameters. Starting from zero, need 1000+ to find both the large-scale and small-scale instability cases. But need less points when starting from parameter~\(12\) or so. \begin{matlab} %} disp('Searching for equilibria, may take 1000+ secs') [uv0,vec0]=init_EP_EP(@matContSys,ueq,muL0,[1]); opt=contset; % initialise MatCont options opt=contset(opt,'Singularities',true); %to report branch points, p.24 opt=contset(opt,'MaxNumPoints',400); % restricts how far matcont goes opt=contset(opt,'Backward',true); % strangely, needs to go backwards?? [uv,vec,s,h,f]=cont(@equilibrium, uv0, [], opt); %MatCont continuation %{ \end{matlab} \paragraph{Post-process the report} \begin{matlab} %} disp('List of interesting critical points') muLs=uv(nVars+1,:); for j=1:numel(s) disp([num2str(muLs(s(j).index),5) ' & ' s(j).msg ' \\']) end %{ \end{matlab} Find a range of parameter and corresponding indices where all the critical points occur. \begin{matlab} %} p1=muLs(end); pe=muLs(1); if numel(s)>3, for j=2:numel(s)-1 p1=min(p1,muLs(s(j).index)); pe=max(pe,muLs(s(j).index)); end, end pMid=(p1+pe)/2, pWid=abs(pe-p1) iPars=find(abs(muLs(:)-pMid)<pWid);%include some either side %{ \end{matlab} Choose an `evenly spaced' subset of the range so we only plot up to sixty of the parameter values reported in the range. \begin{matlab} %} nPars=numel(iPars) dP=ceil((nPars-1)/60) iP=1:dP:nPars; muLP=muLs(iPars(iP)); %{ \end{matlab} Interpolate patch edge values, at all parameters simultaneously by including parameter-wise data into the 2nd dimension, and 2nd reshaping it into the 3rd dimension. \begin{matlab} %} uvs=nan(numel(iP),numel(u0)); uvs(:,patches.i)=uv(1:nVars,iPars(iP))'; uvs = reshape( permute( reshape(uvs ... ,length(muLP),nSubP,4,1,nPatch) ,[2 3 1 4 5]) ,nSubP,[],1,nPatch); uvs = reshape( patchEdgeInt1(uvs) ,nSubP,4,[],nPatch); %{ \end{matlab} Extract displacement field, merge the 1st two columns, permute the parameter variations to the 3rd, separate patches by NaNs, and merge spatial data into the 1st column. \begin{matlab} %} us = reshape( permute( uvs(:,1:2,:,:) ... ,[2 1 4 3]) ,2*nSubP,nPatch,[]); us(end+1,:,:) = nan; us = reshape(us,[],length(muLP)); %{ \end{matlab} Plot space-time surface of displacements over the macroscale duration of the simulation. \begin{matlab} %} figure(4), clf() mesh(muLP,xs(:),us) view(60,40), colormap(0.8*jet), axis tight xlabel('-u(L)'), ylabel('space x'), zlabel('u(x)') %{ \end{matlab} Plot space-time surface of strain, differences in displacements, over the parameter variation. \begin{matlab} %} figure(5), clf() mesh(muLP,xs(1:end-1),diff(us)) view(45,20), colormap(0.8*jet), axis tight xlabel('-u(L)'), ylabel('space x'), zlabel('strain \delta u(x)') set(gcf,'PaperPosition',[0 0 12 9]) print('-depsc',['Figs/Comb22diffu' num2str(theCase) '.eps']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:Comb22cpl}cross-sections through \cref{fig:Comb22diffuLvis1,fig:Comb22diffuSvis2b}: (a)~large scale case, at the mid-point in space of \cref{fig:Comb22diffuLvis1}; (b)~microscale case, in a boundary layer of \cref{fig:Comb22diffuSvis2b}. These cross-sections are labelled with the various critical points.} \begin{tabular}{@{}cc@{}} (a) large scale case & (b) microscale case\\ \includegraphics[scale=0.75]{Figs/Comb22cpl3}& \includegraphics[scale=0.75]{Figs/Comb22cpl2} \end{tabular} \end{figure} \paragraph{Labelled parameter plot} Get the labelled 2D plots of \cref{fig:Comb22cpl} via MatCont's \verb|cpl| function. In high-D problems it is unlikely that any one variable is a good thing to plot, so I show how to plot something else, here a strain. I use all the computed points so reform~\verb|uvs| (possibly better to have merged the critical points into the list of plotted parameters??). \begin{matlab} %} uvs = nan(numel(muLs),numel(u0)); uvs(:,patches.i) = uv(1:nVars,:)'; uvs = reshape( uvs ,[],nSubP,4,nPatch); %{ \end{matlab} As a function of the parameter, plot the strain in the middle of the domain (the middle of the middle patch), unless it is the microscale case when we plot a strain near the middle of the left boundary layer. \begin{matlab} %} if theCase==2, thePatch=1; else thePatch=(nPatch+1)/2; end%if figure(7),clf du = diff( uvs(:,nSubP/2,1:2,thePatch) ,1,3); cpl([muLs;du'],[],s); xlabel('-u(L)') if thePatch==1, ylabel('boundary layer strain') else ylabel('mid-domain strain') end set(gcf,'PaperPosition',[0 0 9 7]) print('-depsc',['Figs/Comb22cpl' num2str(theCase) '.eps']) %{ \end{matlab} \subsection{\texttt{matContSys}: basic function for MatCont analysis} This is the simple `odefile' of the patch scheme wrapped around the microcode. \begin{matlab} %} function out = matContSys%(t,coordinates,flag,y,z) out{1} = [];%@init; out{2} = @dudtSys; out{3} = [];%@jacobian; out{4} = [];%@jacobianp; out{5} = [];%@hessians; out{6} = [];%@hessiansp; out{7} = []; out{8} = []; out{9} = []; end% function matContSys %{ \end{matlab} \subsection{\texttt{dudtSys()}: wraps around the patch wrapper} This function adjoins \verb|patches| to the argument list, places the variables within the patch structure, and then extracts their time derivatives to return. Used by both MatCont and \verb|fsolve|. \begin{matlab} %} function ut = dudtSys(t,u,p) global patches U=repmat(nan+patches.x,1,4,1,1); U(patches.i)=u(:); Ut=patchSys1(t,U,patches,p); ut=Ut(patches.i); end %{ \end{matlab} \subsection{\texttt{heteroNLE()}: forced heterogeneous elasticity} \label{sec:heteroNLE} This function codes the lattice heterogeneous example elasticity inside the patches. Computes the time derivative at each point in the interior of a patch, output in~\verb|uvt|. \begin{matlab} %} function uvt = heteroNLE(t,uv,patches,muL) if nargin<4, muL=0; end% default end displacement is zero global b M vis %{ \end{matlab} Separate state vector into displacement and velocity fields: \(u_{ijI}\)~is the displacement at the \(j\)th~point in the \(i\)th 2-cell in the \(I\)th~patch; similarly for velocity~\(v_{ijI}\). That is, physically neighbouring points have different~\(j\), whereas physical next-to-neighbours have \(i\)~different by one. \begin{matlab} %} u=uv(:,1:2,:,:); v=uv(:,3:4,:,:); % separate u and v=du/dt %{ \end{matlab} Provide boundary conditions, here fixed displacement and velocity in the left/right sub-cells of the leftmost/rightmost patches. \begin{matlab} %} u(1,:,:,1)=0; v(1,:,:,1)=0; u(end,:,:,end)=-muL; v(end,:,:,end)=0; %{ \end{matlab} Compute the two different strain fields, and also a first derivative for some optional viscosity. \begin{matlab} %} eps2 = diff(u)/(2*b); eps1 = [u(:,2,:,:)-u(:,1,:,:) u([2:end 1],1,:,:)-u(:,2,:,:)]/b; eps1(end,2,:,:)=nan; % as this value is fake vx1 = [v(:,2,:,:)-v(:,1,:,:) v([2:end 1],1,:,:)-v(:,2,:,:)]/b; vx1(end,2,:,:)=nan; % as this value is fake %{ \end{matlab} Set corresponding nonlinear stresses \begin{matlab} %} sig2 = eps2-M(2)*eps2.^3+M(4)*eps2.^5; sig1 = eps1-M(1)*eps1.^3+M(3)*eps1.^5; %{ \end{matlab} Preallocate output array, and fill in time derivatives of displacement and velocity, from velocity and gradient of stresses, respectively. \begin{matlab} %} uvt = nan+uv; % preallocate output array i=2:size(uv,1)-1; % rate of change of position uvt(i,1:2,:,:) = v(i,:,:,:); % rate of change of velocity +some artificial viscosity?? uvt(i,3:4,:,:) = diff(sig2) ... +[ sig1(i,1,:,:)-sig1(i-1,2,:,:) diff(sig1(i,:,:,:),1,2)] ... +vis*[ vx1(i,1,:,:)-vx1(i-1,2,:,:) diff(vx1(i,:,:,:),1,2) ]; %{ \end{matlab} \begin{matlab} %} end% function heteroNLE %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
elastic2Dstaggered.m
.m
EquationFreeGit-master/SandpitPlay/BCs/elastic2Dstaggered.m
10,276
utf_8
d292f24139a8d4f68f460dc05e1e062a
% The aim is to simulate a heterogeneous 2D beam using an % Equation-free Patch Scheme. Here we code patches to use a % microscale staggered grid of the microscale heterogeneous % elasticity PDEs. This function computes the time % derivatives given that interpolation has provided the % patch-edge values, except we code boundary conditions on % extreme patches. AJR, 20 Aug 2022 -- 4 Feb 2023 %!TEX root = doc.tex %{ \subsection{\texttt{elastic2Dstaggered()}: \(\D t{}\) of 2D heterogeneous elastic patch on staggered grid} \label{secelastic2Dstaggered} Let's try a staggered microgrid for patches of heterogeneous 2D elasticity forming a 2D beam. \cref{figpatchgridv} draw the microgrid in a patches: the microgrid is akin to that by \cite{Virieux86}. \begin{matlab} %} function [Ut]=elastic2Dstaggered(t,U,patches) %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|t| is time (real scalar). \item \verb|U| is vector of \((u,v,\dot u,\dot v)\) values in each and every patch. \item \verb|patches| data structure from \verb|configPatches|, with extra physical parameters. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|Ut| is corresponding vector of time derivatives of~\verb|U| \end{itemize} \paragraph{Unpack the data vector} Form data vector into a 4D array: \verb|nx|~is the number of points along a patch; \verb|Nx|~is the number of patches. \begin{matlab} %} [nx,~,~,Nx] = size(patches.x); nEnsem = patches.nEnsem; nVars = round(numel(U)/numel(patches.x)/nEnsem); U = reshape(U,nx,nVars,nEnsem,Nx); %{ \end{matlab} \input{Figs/figpatchgridv} Set microgrid parameters of patches like \cref{figpatchgridv}. \begin{matlab} %} ny=(nVars+2)/4; nny=2*ny-1; dx=diff(patches.x(2:3)); dy=dx; % now set by new sim script i =2:nx-1; % indices for interior x ix=1:nx-1; ju=1:ny-1; % indices y structures of u, u_t jv=1:ny; % indices y structures of v, v_t jse=1:2:nny; jnw=2:2:nny; % indices of elasticity y structure %{ \end{matlab} Then split input field into the four physical fields. \begin{matlab} %} u = U(:,ju ,:,:); v = U(:,jv+ju(end),:,:); ut= U(:,ju+nny,:,:); vt= U(:,jv+nny+ju(end),:,:); %{ \end{matlab} Unpack the physical, microscale heterogeneous, elastic parameters. \begin{matlab} %} mu =patches.cs(:,1:nny); lamb=patches.cs(:,2*ny:end); visc=patches.viscosity; %{ \end{matlab} Temporary trace print. \begin{matlab} %} if t<0 usz=size(u),us=squeeze(u); vsz=size(v),vs=squeeze(v); utsz=size(ut),uts=squeeze(ut); vtsz=size(vt),vts=squeeze(vt); musz=size(mu),mus=squeeze(mu); lambsz=size(lamb),lambs=squeeze(lamb); end %{ \end{matlab} \paragraph{Mathematical expression of elasticity} Strain tensor \(\varepsilon_{ij} := \tfrac12 (u_{i,j} +u_{j,i})\) is symmetric. Remember stress~\(\sigma_{ij}\) is the force in the \(j\)th~direction across a surface whose normal is the \(i\)th~direction. So across a surface whose normal is~\nv, the stress is~\(\nv^T\sigma\), equivalently~\(n_i\sigma_{ij}\). Denote the 2D displacement vector by \(\uv=(u,v)\). \footnote{Adapted from Wikipedia: linear elasticity: Derivation of Navier--Cauchy equations} First, consider the \(x\)-direction. Substitute the strain-displacement equations into the equilibrium equation in the \(x\)-direction to get \begin{align*}& \sigma_{xx} =2\mu \varepsilon_{xx} +\lambda (\varepsilon_{xx} +\varepsilon_{yy}) =(2\mu+\lambda) {\D xu} +\lambda {\D yv} \\& \sigma_{xy} = 2\mu \varepsilon_{xy} =\mu \left({\D yu} +{\D xv}\right) \end{align*} \paragraph{Discretise in space} Form equi-spaced microscale grid of spacing~\(dx,dy\) and indices~\(i,j\) in the \(x,y\)-directions respectively (\cref{figpatchgridv}). Field values are at various `quarter points' within the microgrid elements (\ne, \nw, \sw, \se). \begin{itemize} \item locate \(u\) at \ne-points \item locate \(v\) at \sw-points \item evaluate diagonal strains \(\varepsilon_{xx}, \varepsilon_{yy}\) at \nw-points, also~\(\lambda,\mu\) \item evaluate off-diagonal strains \(\varepsilon_{xy} =\varepsilon_{yx}\) at \se-points, also~\(\mu\). \item evaluate \pde{}s at the appropriate \sw,\ne~points, via gradients of stresses from the \nw,\se~points. \end{itemize} All the above derivatives in space then involve simple first differences from grid points half-spacing away. They do \emph{not} involve any averaging. Such staggered spatial discretisation is the best chance of best behaviour. For interpolation between patches in the \(x\)-direction, that edge values of~\(u,v\) are in zig-zag positions makes absolutely no difference to the patch interpolation schemes, since all coded schemes are invariant to translations in the \(x\)-direction just so long as the translation is the same across all patches for each of the edge variables. \paragraph{Physical boundary conditions on extreme patches} Fixed boundaries are to simply code zero displacements and zero time derivatives (velocities) at the boundaries. First at the left edge of the leftmost patch: \begin{matlab} %} tweak=1;% choose simple zero, or accurate one?? u(1,:,:,1) = +u(2,:,:,1)/5*tweak; v(1,:,:,1) = -v(2,:,:,1)/3*tweak; ut(1,:,:,1)= +ut(2,:,:,1)/5*tweak; vt(1,:,:,1)= -vt(2,:,:,1)/3*tweak; %{ \end{matlab} Second, at the right edge of the rightmost patch: first alternative is fixed boundary. \begin{matlab} %} if ~patches.stressFreeRightBC u(nx,:,:,Nx) = -u(nx-1,:,:,Nx)/3*tweak; v(nx,:,:,Nx) = +v(nx-1,:,:,Nx)/5*tweak; ut(nx,:,:,Nx)= -ut(nx-1,:,:,Nx)/3*tweak; vt(nx,:,:,Nx)= +vt(nx-1,:,:,Nx)/5*tweak; %{ \end{matlab} otherwise code a stress free boundary at the location of the \(x\)-direction displacements and velocities (as for the top-bottom boundaries). \begin{matlab} %} else% patches.stressFreeRightBC %{ \end{matlab} Need \verb|sxy| (below) to be computed zero at the bdry---assume \(u\) fattened by zero difference in~\(y\) at top/bottom. Later set \verb|sxx| to zero. \begin{matlab} %} uDy = diff(u(nx-1,:,:,Nx),1,2); v(nx,:,:,Nx) = v(nx-1,:,:,Nx)-dx/dy*[0 uDy 0]; %{ \end{matlab} For phenomenological viscosity purposes assume \(\D x{\dot u}=\D x{\dot v}=0\) at the free boundary. \begin{matlab} %} vt(nx,:,:,Nx) = vt(nx-1,:,:,Nx); ut(nx,:,:,Nx) = ut(nx-2,:,:,Nx); end%if ~patches.stressFreeRightBC %{ \end{matlab} \paragraph{Patch-interior elasticity} For the case of \cref{figpatchgridv}, fatten~\verb|u| using zero stress on top-bottom, although not really needed it does mean that~\(\sigma_{xy}\) computed next is zero on the top-bottom. \begin{matlab} %} u= [nan(nx,1,nEnsem,Nx) u nan(nx,1,nEnsem,Nx) ]; u(ix,1 ,:,:)=u(ix,2 ,:,:)+dy/dx*diff(v(:,1 ,:,:)); u(ix,ny+1,:,:)=u(ix,ny,:,:)-dy/dx*diff(v(:,ny,:,:)); %{ \end{matlab} \begin{itemize} \item Compute stresses \(\sigma_{xy}\) at \se-points. \begin{matlab} %} sxy = mu(ix,jse).*( diff(u(ix,:,:,:),1,2)/dy+diff(v)/dx ); %{ \end{matlab} \item Compute stresses \(\sigma_{yy}\) at \nw-points (omitting leftmost~\(\sigma_{yy}\)), fattening the array to cater for ghost nodes. Little tricky with indices of \nw-elasticity parameters as they cross over the `grid lines'. \begin{matlab} %} syy = nan(nx,ny+1,nEnsem,Nx); syy(ix+1,ju+1,:,:) = ... (2*mu(:,jnw)+lamb(:,jnw)).*diff(v(ix+1,:,:,:),1,2)/dy ... +lamb(:,jnw).*diff(u(:,2:ny,:,:))/dx; %{ \end{matlab} \item Compute~\(\sigma_{xx}\) at \nw-points (omitting leftmost \(i=1\)). \begin{matlab} %} sxx = lamb(:,jnw).*diff(v(ix+1,:,:,:),1,2)/dy ... +(2*mu(:,jnw)+lamb(:,jnw)).*diff(u(:,ju+1,:,:))/dx; %{ \end{matlab} \end{itemize} \paragraph{Top-bottom boundary conditions} At the top-bottom of the beam we need \(\sigma_{xy}=\sigma_{yy}=0\). Given the micro-grid of \cref{figpatchgridv}, the first is already catered for. Here use \(\sigma_{yy}=0\) at \sw~points on the top-bottom to set ghost values. \begin{matlab} %} syy(:, 1,:,:) = -syy(:,2 ,:,:); syy(:,ny+1,:,:) = -syy(:,ny,:,:); %{ \end{matlab} Similarly for any stress-free right boundary condition (remembering \verb|sxx| currently omits leftmost \(i=1\)). \begin{matlab} %} if patches.stressFreeRightBC sxx(nx-1,:,:,Nx) = -sxx(nx-2,:,:,Nx); end %{ \end{matlab} Temporary trace print. \begin{matlab} %} if t<0 sxysz=size(sxy),sxys=squeeze(sxy); syysz=size(syy),syys=squeeze(syy); sxxsz=size(sxx),sxxs=squeeze(sxx); end %{ \end{matlab} \paragraph{Second derivatives for viscosity} This code is for constant viscosity---if spatially varying, then modify each to be two first-derivatives in each direction. The \(x\)-derivatives are well-defined second differences. \begin{matlab} %} utxx = visc*diff(ut,2,1)/dx^2; vtxx = visc*diff(vt,2,1)/dx^2; %{ \end{matlab} On \cref{figpatchgridv}, and for the purpose of viscosity, assume \(\D y{\dot u}=\D y{\dot v}=0\) on the top-bottom (we just need `viscosity' to be some phenomenological dissipation). \begin{matlab} %} utyy = visc*diff(ut(i,[1 ju ny-1],:,:),2,2)/dy^2; vtyy = visc*diff(vt(i,[2 jv ny-1],:,:),2,2)/dy^2; %{ \end{matlab} Temporary trace print. \begin{matlab} %} if t<0 utxxsz=size(utxx),utxxs=squeeze(utxx); vtxxsz=size(vtxx),vtxxs=squeeze(vtxx); utyysz=size(utyy),utyys=squeeze(utyy); vtyysz=size(vtyy),vtyys=squeeze(vtyy); end %{ \end{matlab} \paragraph{Time derivatives} The rate of change of displacement is the provided velocities: \(\D tu=\dot u\) and \(\D tv=\dot v\). Time derivative array should really be initialised to~\verb|nan|, but \verb|ode15s| chokes on any \verb|nan|s at the patch edges. \begin{matlab} %} Ut=zeros(nx,nVars,nEnsem,Nx); Ut(i,ju ,:,:) = ut(i,:,:,:); % dudt = ut Ut(i,jv+ju(end),:,:) = vt(i,:,:,:); % dvdt = vt %{ \end{matlab} Substitute the stresses into the dynamical \pde{}s in the \(x\)-direction to get \begin{align*}& \rho \D t{\dot u} = {\D {x}{\sigma_{xx}}} +{\D {y}{\sigma_{yx}}} +\kappa(\dot u_{xx}+\dot u_{yy}) +F_{x} \,, \end{align*} and correspondingly for the \(y\)-direction. Here, we include some viscous dissipation of strength \(\kappa=\verb|visc|\), but \emph{do not} justify it as visco-elasticity. First code above \(x\)-direction, then the corresponding \(y\)-direction. \begin{matlab} %} Ut(i,ju+nny,:,:) ... = diff(sxx)/dx +diff(sxy(i,:,:,:),1,2)/dy +(utxx+utyy); Ut(i,jv+nny+ju(end),:,:) ... = diff(syy(i,:,:,:),1,2)/dy +diff(sxy)/dx +(vtxx+vtyy); %{ \end{matlab} End of function. %}
github
uoa1184615/EquationFreeGit-master
elastic2DstagHeteroSim.m
.m
EquationFreeGit-master/SandpitPlay/BCs/elastic2DstagHeteroSim.m
8,178
utf_8
db57f7bfe05dea4bcf7cf1ad70c2c16e
% Execute patch scheme on the heterogeneous miscroscale grid % coded in function elastic2Dstaggered() with specified % microscale boundary conditions on the beam ends. AJR, 27 % Sep 2022 -- 4 Feb 2023 %!TEX root = doc.tex %{ \section{\texttt{elastic2DstagHeteroSim}: simulate 2D heterogeneous elastic patches on staggered grid} \label{elastic2DstagHeteroSim} Execute patch scheme on the miscroscale grid of heterogeneous elasticity in a 2D beam as coded in the function \verb|elastic2Dstaggered()| of \cref{secelastic2Dstaggered}. Here a beam of length~\(\pi\) with either fixed or stress-free boundary conditions. This patch scheme provides an effective computational homogenisation of the microscale heterogeneous beam. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot %{ \end{matlab} \paragraph{Set some patch and physical parameters} \begin{matlab} %} nPatch = 5 nSubP = 7 ny = 4 xLim = [0 pi] yLim= [-1 1]*0.06 nVars = 4*ny-2; iOrd = 0 edgyInt = true heteroStrength = 1 % -2--2 ?? stressFreeRightBC = true viscosity = 2e-3; % 1e-3 sometimes has unstable micro-modes!!! tEnd = 30 basename = mfilename; %{ \end{matlab} Viscosity of 1e-3 sometimes has unstable modes: only one pair for homogeneous beam, but three pairs for heterogeneous beam?? Set the cross-beam microscale \(y\)-coordinates and indices in row vectors: one for \(u,\sigma_{xx},\sigma_{yy}\)-level; and one for \(v,\sigma_{xy}\)-level. Then show the micro-grid spacing. \begin{matlab} %} yv=linspace(yLim(1),yLim(2),ny); yu=(yv(1:ny-1)+yv(2:ny))/2; ju=1:ny-1; jv=1:ny; dy=diff(yu(1:2)) %{ \end{matlab} \paragraph{Physical elastic parameters---random} Initially express in terms of Young's modulus and Poisson's ratio to be passed to the micro-code via \verb|patches|. For heterogeneous elasticity, in the microgrid, we need \(\lambda\)~at just \nw-points, and \(\mu\)~at both \nw,\se~points. Might as well provide at all quarter points as they both come from~\(E,\nu\), so we need these two parameters at each of \(2n_y-1\) points across the beam. Edgy interpolation requires patches to be two microgrid points longer than any multiple of the microgrid periodicity, whereas non-edgy requires one more than an even multiple. Have to be careful with heterogeneities as \nw,\se-points are alternately either side of the notional microgrid lines. \begin{matlab} %} xHeteroPeriod = (nSubP-1-edgyInt)/(2-edgyInt) E = 1*exp(heteroStrength*0.5*randn(xHeteroPeriod,2*ny-1) ); nu = 0.3 +heteroStrength*0.1*(2*rand(xHeteroPeriod,2*ny-1)-1); Equantiles = quantile( E(:),[0:0.25:1]) nuQuantiles = quantile(nu(:),[0:0.25:1]) %{ \end{matlab} Compute corresponding \(\lambda,\mu\)-fields, and store so \verb|configPatches1| \(x\)-expands micro-heterogeneity to fill patch as necessary. \begin{matlab} %} lambda=nu.*E./(1+nu)./(1-2*nu); mu = E./(1+nu)./2; cElas = [mu lambda]; %{ \end{matlab} \paragraph{Configure patches} Using \verb|hetCoeffs| to manage form heterogeneity in the patch, and adjoin viscosity coefficient. \begin{matlab} %} Dom.type='equispace'; Dom.bcOffset = [ 0 0.75*stressFreeRightBC ]; configPatches1(@elastic2Dstaggered,xLim,'equispace',nPatch ... ,iOrd,dy,nSubP,'EdgyInt',edgyInt,'hetCoeffs',cElas); patches.viscosity = viscosity; patches.stressFreeRightBC = stressFreeRightBC; dx=diff(patches.x(1:2)) %{ \end{matlab} \paragraph{Set initial condition} Say choose initial velocities zero, and displacements varying somehow. \begin{matlab} %} U0 = zeros(nSubP,nVars,1,nPatch); U0(:,ju,:,:) = 0.1*sin(patches.x/(1+stressFreeRightBC))+0.*yu; if stressFreeRightBC U0(:,jv+ju(end),:,:) = 0.02*patches.x.^2.*(2.5-patches.x)+0.*yv; else U0(:,jv+ju(end),:,:) = 0.2*sin(patches.x)+0.*yv; end %{ \end{matlab} Optionally test the function \begin{matlab} %} if 1 % test the new function Ut=elastic2Dstaggered(-1,U0,patches); Ut=reshape(Ut,nSubP,nVars,nPatch); dudt=squeeze(Ut(:,ju,:)) dvdt=squeeze(Ut(:,jv+ju(end),:)) dutdt=squeeze(Ut(:,ju+2*ny-1,:)) dvtdt=squeeze(Ut(:,jv+2*ny-1+ju(end),:)) return end %{ \end{matlab} \paragraph{Integrate in time} \begin{matlab} %} [ts,Us] = ode15s(@patchSys1, [0 tEnd], U0(:)); %{ \end{matlab} \paragraph{Plot summary of simulation} First, subsample the time-steps to roughly 150~steps. \begin{matlab} %} nt=numel(ts) jt=1:ceil(nt/150):nt; ts=ts(jt); Us=reshape(Us(jt,:),[],nSubP,nVars,1,nPatch); %{ \end{matlab} Extract displacement fields. \begin{matlab} %} us=Us(:,:,ju,:,:); vs=Us(:,:,jv+ju(end),:,:); %{ \end{matlab} Form arrays of averages and variation across \(y\), reshaped into 2D arrays. \begin{matlab} %} uMean=reshape(mean(us,3),[],nSubP*nPatch); uStd=reshape(std(us,0,3),[],nSubP*nPatch); vMean=reshape(mean(vs,3),[],nSubP*nPatch); vStd=reshape(std(vs,0,3),[],nSubP*nPatch); %{ \end{matlab} Plot \(xt\)-meshes coloured by the variation across~\(y\), first the \(u\)-field of compression waves, see \cref{figelastic2DstagHeteroSimu}. The small space-shift in \(x\)-location is due to the staggered micro-grid for the patches as coded. %\begin{figure} %\centering %\caption{\label{figelastic2DstagHeteroSimu}% %mean field~\(u\) in space-time showing compression waves. etc.} %\input{Figs/elastic2DstagHeteroSimu} %\end{figure} \begin{matlab} %} xs = patches.x; xs([1 end],:) = nan; figure(1),clf mesh(xs(:)+dx/4,ts,uMean,uStd); ylabel('time $t$'),xlabel('space $x$'),zlabel('mean $u$') xlim([0 pi]),view(40,55),colorbar ifOurCf2eps([basename 'us'])%optionally save %{ \end{matlab} Draw the \(v\)-field showing the beam bending, see \cref{figelastic2DstagHeteroSimv}. The small space-shift in \(x\)-location is due to the staggered micro-grid for the patches as coded. %\begin{figure} %\centering %\caption{\label{figelastic2DstagHeteroSimv}% %mean field~\(v\) in space-time showing beam bending. etc.} %\input{Figs/elastic2DstagHeteroSimv} %\end{figure} \begin{matlab} %} figure(2),clf mesh(xs(:)-dx/4,ts,vMean,vStd); ylabel('time $t$'),xlabel('space $x$'),zlabel('mean $v$') xlim([0 pi]),view(40,55),colorbar drawnow ifOurCf2eps([basename 'vs'])%optionally save %{ \end{matlab} \paragraph{Compute Jacobian and its spectrum} The aim here is four-fold: \begin{itemize} \item to show the patch scheme is stable for all elastic waves; \item to have a clear separation between fast and slow waves; \item for compression macro-waves to match theory of frequency \(\omega=\sqrt E k\) for integer wavenumber~\(k\); and \item for beam macro-waves to match beam theory of \(mv_{tt}=EIv_{xxxx}\) for mass-density \(m:=2h\) and moment \(I:=\int_{-h}^h y^2\,dy=\tfrac23h^3\) giving frequencies \(\omega=\sqrt{E/3}hk\) where \(h\)~is the half-width of the beam. \end{itemize} Form the Jacobian matrix, the linear operator, by numerical construction about a zero field. Use~\verb|i| to store the indices of the micro-grid points that are interior to the patches and hence are the system variables. \begin{matlab} %} u0 = zeros(nSubP,nVars,1,nPatch); u0([1 end],:,:,:)=nan; u0=u0(:); i=find(~isnan(u0)); nVariables=length(i) Jac=nan(nVariables); for j=1:nVariables u0(i)=((1:nVariables)==j); dudt=patchSys1(0,u0); Jac(:,j)=dudt(i); end nJacEffZero = sum(abs(Jac(:))<1e-12) Jac(abs(Jac)<1e-12) = 0; %{ \end{matlab} Find the eigenvalues of the Jacobian, and list the slowest for inspection. \begin{matlab} %} [evecs,evals]=eig(Jac); cabs=@(z) -real(z)*1e5+abs(imag(z)); [~,j]=sort(cabs(diag(evals))); evals=diag(evals(j,j)); evecs=evecs(:,j); nZeroEvals=sum(abs(evals)<1e-5) j=find(abs(evals)>1e-5); leadingNonzeroEvals=evals(j(1:4*nPatch)) %{ \end{matlab} Plot quasi-log view of the spectrum, see \cref{figelastic2DstagHeteroSimEig}. %\begin{figure} %\centering %\caption{\label{figelastic2DstagHeteroSimEig}% %spectrum of the patch scheme showing slow macroscale waves, %and fast sub-patch microscale modes. etc.} %\input{Figs/elastic2DstagHeteroSimEig} %\end{figure} \begin{matlab} %} figure(3),clf handle = plot(real(evals),imag(evals),'.'); xlabel('real-part'), ylabel('imag-part') quasiLogAxes(handle,0.01,0.1); ifOurCf2eps([basename 'Eig'])%optionally save %{ \end{matlab} \input{elastic2Dstaggered.m} %}
github
uoa1184615/EquationFreeGit-master
heteroBurstF.m
.m
EquationFreeGit-master/SandpitPlay/BCs/heteroBurstF.m
715
utf_8
611b10c66c13bed0fd051798cd7e543d
% Simulates a burst of the system linked to by the % configuration of patches. Used by ??.m % AJR, 4 Apr 2019 -- 21 Oct 2022 %!TEX root = doc.tex %{ \subsection{\texttt{heteroBurstF()}: a burst of heterogeneous diffusion} \label{sec:heteroBurstF} This code integrates in time the derivatives computed by \verb|heteroDiff| from within the patch coupling of \verb|patchSys1|. Try~\verb|ode23|, although \verb|ode45| may give smoother results. Sample every period of the microscale time fluctuations (or, at least, close to the period). \begin{matlab} %} function [ts, ucts] = heteroBurstF(ti, ui, bT) global microTimePeriod [ts,ucts] = ode45( @patchSys1,ti+(0:microTimePeriod:bT),ui(:)); end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
configPatches2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/configPatches2.m
30,136
utf_8
60d970c3501f89f25665af35ee248993
% configPatches2() creates a data struct of the design of 2D % patches for later use by the patch functions such as % patchSys2(). AJR, Nov 2018 -- Jan 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches2()}: configures spatial patches in 2D} \label{sec:configPatches2} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys2()|. \cref{sec:configPatches2eg} lists an example of its use. \begin{matlab} %} function patches = configPatches2(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating a nonlinear diffusion \pde\ relevant to the lubrication flow of a thin layer of fluid---see \cref{sec:configPatches2eg} for an example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)|, that computes time-derivatives (or time-steps) of quantities on the 2D micro-grid within all the 2D~patches. \item \verb|Xlim| array/vector giving the rectangular macro-space domain of the computation, namely $[\verb|Xlim(1)|, \verb|Xlim(2)|] \times [\verb|Xlim(3)|, \verb|Xlim(4)|]$. If \verb|Xlim| has two elements, then the domain is the square domain of the same interval in both directions. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is doubly macro-periodic in the 2D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left\slash right\slash bottom\slash top edges of the leftmost\slash rightmost\slash bottommost\slash topmost patches, respectively. \item \verb|.bcOffset|, optional one, two or four element vector/array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right\slash top\slash bottom macroscale boundaries are aligned to the left\slash right\slash top\slash bottom edges of the corresponding extreme patches, but offset by \verb|.bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when the micro-code applies Dirichlet boundary values on the extreme edge micro-grid points, whereas use \verb|bcOffset=0.5| when the microcode applies Neumann boundary conditions halfway between the extreme edge micro-grid points. Similarly for the top and bottom edges. If \verb|.bcOffset| is a scalar, then apply the same offset to all boundaries. If two elements, then apply the first offset to both \(x\)-boundaries, and the second offset to both \(y\)-boundaries. If four elements, then apply the first two offsets to the respective \(x\)-boundaries, and the last two offsets to the respective \(y\)-boundaries. \item \verb|.X|, optional vector/array with \verb|nPatch(1)| elements, in the case \verb|'usergiven'| it specifies the \(x\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Y|, optional vector/array with \verb|nPatch(2)| elements, in the case \verb|'usergiven'| it specifies the \(y\)-locations of the centres of the patches---the user is responsible the locations makes sense. \end{itemize} \item \verb|nPatch| sets the number of equi-spaced spatial patches: if scalar, then use the same number of patches in both directions, otherwise \verb|nPatch(1:2)| gives the number of patches~($\geq1$) in each direction. \item \verb|ordCC| is the `order' of interpolation for inter-patch coupling across empty space of the macroscale patch values to the edge-values of the patches: currently must be~$0,2,4,\ldots$; where $0$~gives spectral interpolation. \item \verb|dx| (real---scalar or two element) is usually the sub-patch micro-grid spacing in~\(x\) and~\(y\). If scalar, then use the same \verb|dx| in both directions, otherwise \verb|dx(1:2)| gives the spacing in each of the two directions. However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio| (scalar or two element), namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch: if scalar, then use the same number in both directions, otherwise \verb|nSubP(1:2)| gives the number in each direction. If not using \verb|EdgyInt|, then must be odd so that there is/are centre-patch micro-grid point\slash lines in each patch. \item \verb|nEdge| (not yet implemented), \emph{optional}, default=1, for each patch, the number of edge values set by interpolation at the edge regions of each patch. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|EdgyInt|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right\slash top\slash bottom edge-values from right\slash left\slash bottom\slash top next-to-edge values. If false or omitted, then interpolate from centre cross-patch lines. \item \verb|nEnsem|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|hetCoeffs|, \emph{optional}, default empty. Supply a 2D or 3D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times m_y\times n_c$, where $n_c$~is the number of different sets of coefficients. For example, in heterogeneous diffusion, $n_c=2$ for the diffusivities in the \emph{two} different spatial directions (or $n_c=3$ for the diffusivity tensor). The coefficients are to be the same for each and every patch; however, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the $(1,1)$-point in each patch. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x\cdot m_y$ and construct an ensemble of all $m_x\cdot m_y$ phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities in~$x$ and~$y$ directions, respectively, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x,y$ corresponding to the highest~\verb|\nPatch| (if a tie, then chooses the rightmost of~$x,y$). A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|, and \verb|patches.y|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)|, that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling---not yet implemented. \item \verb|.Cwtsr| and \verb|.Cwtsl|, only for macro-periodic conditions, are the $\verb|ordCC|\times 2$-array of weights for the inter-patch interpolation onto the right\slash top and left\slash bottom edges (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (6D) is $\verb|nSubP(1)| \times1 \times1 \times1 \times \verb|nPatch(1)| \times1$ array of the regular spatial locations~$x_{iI}$ of the microscale grid points in every patch. \item \verb|.y| (6D) is $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times \verb|nPatch(2)|$ array of the regular spatial locations~$y_{jJ}$ of the microscale grid points in every patch. \item \verb|.ratio| $1\times 2$, only for macro-periodic conditions, are the size ratios of every patch. \item \verb|.nEdge| is, for each patch, the number of edge values set by interpolation at the edge regions of each patch. \item \verb|.le|, \verb|.ri|, \verb|.bo|, \verb|.to| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times n_c$ 3D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times n_c\times m_xm_y$ 4D array of $m_xm_y$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches2eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of nonlinear diffusion') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches2 \item ode23 integrator \into patchSys2 \into user's PDE \item process results \end{enumerate} Establish global patch data struct to interface with a function coding a nonlinear `diffusion' \pde: to be solved on $6\times4$-periodic domain, with $9\times7$ patches, spectral interpolation~($0$) couples the patches, with $5\times5$ points forming the micro-grid in each patch, and a sub-patch micro-grid spacing of~\(0.12\) (relatively large for visualisation). \cite{Roberts2011a} established that this scheme is consistent with the \pde\ (as the patch spacing decreases). \begin{matlab} %} global patches patches = configPatches2(@nonDiffPDE,[-3 3 -2 2], [] ... , [9 7], 0, 0.12, 5 ,'EdgyInt',false); %{ \end{matlab} Set an initial condition of a perturbed-Gaussian using auto-replication of the spatial grid. \begin{matlab} %} u0 = exp(-patches.x.^2-patches.y.^2); u0 = u0.*(0.9+0.1*rand(size(u0))); %{ \end{matlab} Initiate a plot of the simulation using only the microscale values interior to the patches: optionally set $x$~and $y$-edges to \verb|nan| to leave the gaps between patches. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) x = squeeze(patches.x); y = squeeze(patches.y); if 1, x([1 end],:) = nan; y([1 end],:) = nan; end %{ \end{matlab} Start by showing the initial conditions of \cref{fig:configPatches2ic} while the simulation computes. \begin{matlab} %} u = reshape(permute(squeeze(u0) ... ,[1 3 2 4]), [numel(x) numel(y)]); hsurf = surf(x(:),y(:),u'); axis([-3 3 -3 3 -0.03 1]), view(60,40) legend('time = 0.00','Location','north') xlabel('space x'), ylabel('space y'), zlabel('u(x,y)') colormap(hsv) ifOurCf2eps([mfilename 'ic']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches2ic}initial field~$u(x,y,t)$ at time $t=0$ of the patch scheme applied to a nonlinear `diffusion'~\pde: \cref{fig:configPatches2t3} plots the computed field at time $t=3$.} \includegraphics[scale=0.9]{configPatches2ic} \end{figure} Integrate in time to $t=4$ using standard functions. In \Matlab\ \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is quicker \cite [Fig.~4] {Maclean2020a}. Ask for output at non-uniform times because the diffusion slows. \begin{matlab} %} disp('Wait to simulate nonlinear diffusion h_t=(h^3)_xx+(h^3)_yy') drawnow if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode23(@patchSys2,linspace(0,2).^2,u0(:)); else % octave version is quite slow for me lsode_options('absolute tolerance',1e-4); lsode_options('relative tolerance',1e-4); [ts,us] = odeOcts(@patchSys2,[0 1],u0(:)); end %{ \end{matlab} Animate the computed simulation to end with \cref{fig:configPatches2t3}. Use \verb|patchEdgeInt2| to interpolate patch-edge values. \begin{matlab} %} for i = 1:length(ts) u = patchEdgeInt2(us(i,:)); u = reshape(permute(squeeze(u) ... ,[1 3 2 4]), [numel(x) numel(y)]); set(hsurf,'ZData', u'); legend(['time = ' num2str(ts(i),'%4.2f')]) pause(0.1) end ifOurCf2eps([mfilename 't3']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches2t3}field~$u(x,y,t)$ at time $t=3$ of the patch scheme applied to a nonlinear `diffusion'~\pde\ with initial condition in \cref{fig:configPatches2ic}.} \includegraphics[scale=0.9]{configPatches2t3} \end{figure} Upon finishing execution of the example, exit this function. \begin{matlab} %} return end%if no arguments %{ \end{matlab} \IfFileExists{../Patch/nonDiffPDE.m}{\input{../Patch/nonDiffPDE.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle');%test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % nothing yet decided addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); %addParameter(p,'nCore',1,@isnumeric); % not yet implemented parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; %patches.nCore = p.Results.nCore; %{ \end{matlab} Initially duplicate parameters for both space dimensions as needed. \begin{matlab} %} if numel(Xlim)==2, Xlim = repmat(Xlim,1,2); end if numel(nPatch)==1, nPatch = repmat(nPatch,1,2); end if numel(dx)==1, dx = repmat(dx,1,2); end if numel(nSubP)==1, nSubP = repmat(nSubP,1,2); end %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'first pair of Xlim must be ordered increasing') assert(Xlim(3)<Xlim(4) ... ,'second pair of Xlim must be ordered increasing') assert(patches.nEdge==1 ... ,'multi-edge-value interp not yet implemented') assert(all(2*patches.nEdge<nSubP) ... ,'too many edge values requested') %if patches.nCore>1 % warning('nCore>1 not yet tested in this version') % end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| vector. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and subsequently set corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} We allow different macroscale domain conditions in the different directions. But for the moment do not allow periodic to be mixed with the others (as the interpolation mechanism is different code)---hence why we choose \verb|periodic| be seven characters, whereas the others are eight characters. The different conditions are coded in different rows of \verb|Dom.type|, so we duplicate the string if only one row specified. \begin{matlab} %} if size(Dom.type,1)==1, Dom.type=repmat(Dom.type,2,1); end %{ \end{matlab} Check what is and is not specified, and provide default of zero (Dirichlet boundaries) if no \verb|bcOffset| specified when needed. Do so for both directions independently. \begin{matlab} %} patches.periodic=false; for p=1:2 switch Dom.type(p,:) case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end msg=' not available for Dom.type = periodic'; if isfield(Dom,'X'), warning(['X' msg]), end if isfield(Dom,'Y'), warning(['Y' msg]), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=zeros(2,2); end % for mixed with usergiven, following should still work if numel(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,2); end if numel(Dom.bcOffset)==2 Dom.bcOffset=repmat(Dom.bcOffset(:)',2,1); end msg=' not available for Dom.type = equispace or chebyshev'; if (p==1)& isfield(Dom,'X'), warning(['X' msg]), end if (p==2)& isfield(Dom,'Y'), warning(['Y' msg]), end case 'usergiven' % if isfield(Dom,'bcOffset') % warning('bcOffset not available for usergiven Dom.type'), end msg=' required for Dom.type = usergiven'; if p==1, assert(isfield(Dom,'X'),['X' msg]), end if p==2, assert(isfield(Dom,'Y'),['Y' msg]), end otherwise error([Dom.type 'is unknown Dom.type']) end%switch Dom.type end%for p %{ \end{matlab} \subsection{The code to make patches} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun = fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ or (not yet??)~$-1$. \todo{Perhaps implement staggered spectral coupling.} \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC| do interpolation based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag = mod(ordCC,2); assert(patches.stag==0,'staggered not yet implemented??') ordCC = ordCC+patches.stag; patches.ordCC = ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(all(mod(nPatch,2)==0), ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} \paragraph{Set the macro-distribution of patches} Third, set the centre of the patches in the macroscale grid of patches. Loop over the coordinate directions, setting the distribution into~\verb|Q| and finally assigning to array of corresponding direction. \begin{matlab} %} for q=1:2 qq=2*q-1; %{ \end{matlab} Distribution depends upon \verb|Dom.type|: \begin{matlab} %} switch Dom.type(q,:) %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' Q=linspace(Xlim(qq),Xlim(qq+1),nPatch(q)+1); DQ=Q(2)-Q(1); Q=Q(1:nPatch(q))+diff(Q)/2; pEI=patches.EdgyInt;% abbreviation if pre2023, dx(q) = ratio(q)*DQ/(nSubP(q)-1-pEI)*(2-pEI); else ratio(q) = dx(q)/DQ*(nSubP(q)-1-pEI)/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. \begin{matlab} %} case 'equispace' Q=linspace(Xlim(qq)+((nSubP(q)-1)/2-Dom.bcOffset(qq))*dx(q) ... ,Xlim(qq+1)-((nSubP(q)-1)/2-Dom.bcOffset(qq+1))*dx(q) ... ,nPatch(q)); DQ=diff(Q(1:2)); width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx; if DQ<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(Q_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'. \footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatially analogue of the `christmas tree' of projective integration and its integration to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx(q)*(nSubP(q)-1)/2; Q1 = Xlim(1)+halfWidth-Dom.bcOffset(qq)*dx(q); Q2 = Xlim(2)-halfWidth+Dom.bcOffset(qq+1)*dx(q); % Q = (Q1+Q2)/2-(Q2-Q1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. \begin{matlab} %} width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx(q); for b=0:2:nPatch(q)-2 DQmin=(Q2-Q1-b*width)/2*( 1-cos(pi/(nPatch(q)-b-1)) ); if DQmin>width, break, end end if DQmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} Q =[ Q1+(0:b/2-1)*width ... (Q1+Q2)/2-(Q2-Q1-b*width)/2*cos(linspace(0,pi,nPatch(q)-b)) ... Q2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just ensure it has the correct shape of a row??. \begin{matlab} %} case 'usergiven' if q==1, Q = reshape(Dom.X,1,[]); else Q = reshape(Dom.Y,1,[]); end%if end%switch Dom.type %{ \end{matlab} Assign \(Q\)-coordinates to the correct spatial direction. At this stage they are all rows. \begin{matlab} %} if q==1, X=Q; end if q==2, Y=Q; end end%for q %{ \end{matlab} \paragraph{Construct the micro-grids} Fourth, construct the microscale grid in each patch. Reshape the grid to be 6D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} nSubP = reshape(nSubP,1,2); % force to be row vector assert(patches.EdgyInt | all(mod(nSubP,2)==1), ... 'configPatches2: nSubP must be odd') i0 = (nSubP(1)+1)/2; patches.x = reshape( dx(1)*(-i0+1:i0-1)'+X ... ,nSubP(1),1,1,1,nPatch(1),1); %{ \end{matlab} Next the \(y\)-direction. \begin{matlab} %} i0 = (nSubP(2)+1)/2; patches.y = reshape( dx(2)*(-i0+1:i0-1)'+Y ... ,1,nSubP(2),1,1,1,nPatch(2)); %{ \end{matlab} \paragraph{Pre-compute weights for macro-periodic} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if patches.periodic ratio = reshape(ratio,1,2); % force to be row vector patches.ratio=ratio; if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end%if end%if patches.periodic %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to left-edge~\verb|le|, and \item the left-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Similarly for bottom-edge\slash centre interpolation to top-edge via~\verb|to|, and top-edge\slash centre interpolation to bottom-edge via~\verb|bo|. The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt2()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; patches.bo = 1:nE; patches.to = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 3D, then the higher-dimensions are reshaped into the 3rd dimension. \begin{matlab} %} if ~isempty(cs) [mx,my,nc] = size(cs); nx = nSubP(1); ny = nSubP(2); cs = repmat(cs,nSubP); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,1:ny-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_xm_y$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx*my; patches.cs = nan(nx-1,ny-1,nc,mx,my); for j = 1:my js = (j:j+ny-2); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,:,i,j) = cs(is,js,:); end end patches.cs = reshape(patches.cs,nx-1,ny-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right\slash bottom\slash top realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} le = mod((0:mx-1)+mod(nx-2,mx),mx)+1; patches.le = reshape( le'+mx*(0:my-1) ,[],1); ri = mod((0:mx-1)-mod(nx-2,mx),mx)+1; patches.ri = reshape( ri'+mx*(0:my-1) ,[],1); bo = mod((0:my-1)+mod(ny-2,my),my)+1; patches.bo = reshape( (1:mx)'+mx*(bo-1) ,[],1); to = mod((0:my-1)-mod(ny-2,my),my)+1; patches.to = reshape( (1:mx)'+mx*(to-1) ,[],1); %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. \todo{Maybe need to justify this and the arbitrary threshold more carefully??} \begin{matlab} %} if prod(ratio)*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel % theparpool=gcp() spmd %{ \end{matlab} Second, decide which dimension is to be sliced among parallel workers (for the moment, do not consider slicing the ensemble). Choose the direction of most patches, biased towards the last. \begin{matlab} %} [~,pari]=max(nPatch+0.01*(1:2)); patches.codist=codistributor1d(4+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the appropriate coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); case 2, patches.y=codistributed(patches.y,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/patchEdgeInt2.m
20,179
utf_8
7cac816a06110db2af6ca47960709934
% patchEdgeInt2() provides the interpolation across 2D space % for 2D patches of simulations of a lattice system such as % a PDE discretisation. AJR, Nov 2018 -- 2 Feb 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt2()}: sets 2D patch edge values from 2D macroscale interpolation} \label{sec:patchEdgeInt2} Couples 2D patches across 2D space by computing their edge values via macroscale interpolation. Research \cite[]{Roberts2011a, Bunder2019d} indicates the patch centre-values are sensible macroscale variables, and macroscale interpolation of these determine patch-edge values. However, for computational homogenisation in multi-D, interpolating patch next-to-edge values appears better \cite[]{Bunder2020a}. This function is primarily used by \verb|patchSys2()| but is also useful for user graphics. \footnote{Script \texttt{patchEdgeInt2test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct \verb|patches|. \begin{matlab} %} function u = patchEdgeInt2(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nPatch1| \cdot \verb|nPatch2|$ multiscale spatial grid on the $\verb|nPatch1| \cdot \verb|nPatch2|$ array of patches. \item \verb|patches| a struct set by \verb|configPatches2()| which includes the following information. \begin{itemize} \item \verb|.x| is $\verb|nSubP1| \times1 \times1 \times1 \times \verb|nPatch1| \times1 $ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.y| is similarly $1 \times \verb|nSubP2| \times1 \times1 \times1 \times \verb|nPatch2|$ array of the spatial locations~$y_{jJ}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$j$, but may be variable spaced in macroscale index~$J$. \item \verb|.ordCC| is order of interpolation, currently only $\{0,2,4,\ldots\}$ \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left, right, top and bottom boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation. Currently must be zero. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation in both the $x,y$-directions---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre cross-patch values (near original scheme). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 6D array, $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch1| \cdot \verb|nPatch2|$, of the fields with edge values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [~,ny,~,~,~,Ny] = size(patches.y); [nx,~,~,~,Nx,~] = size(patches.x); nEnsem = patches.nEnsem; nVars = round(numel(u)/numel(patches.x)/numel(patches.y)/nEnsem); assert(numel(u) == nx*ny*Nx*Ny*nVars*nEnsem ... ,'patchEdgeInt2: input u has wrong size for parameters') u = reshape(u,[nx ny nVars nEnsem Nx Ny ]); %{ \end{matlab} For the moment assume the physical domain is either macroscale periodic or macroscale rectangle so that the coupling formulas are simplest. These index vectors point to patches and, if periodic, their four immediate neighbours. \begin{matlab} %} I=1:Nx; Ip=mod(I,Nx)+1; Im=mod(I-2,Nx)+1; J=1:Ny; Jp=mod(J,Ny)+1; Jm=mod(J-2,Ny)+1; %{ \end{matlab} The centre of each patch (as \verb|nx| and~\verb|ny| are odd for centre-patch interpolation) is at indices \begin{matlab} %} i0 = round((nx+1)/2); j0 = round((ny+1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches. \begin{matlab} %} rx = patches.ratio(1); ry = patches.ratio(2); %{ \end{matlab} \subsubsection{Lagrange interpolation gives patch-edge values} Compute centred differences of the mid-patch values for the macro-interpolation, of all fields. Here the domain is macro-periodic. \begin{matlab} %} ordCC = patches.ordCC; if ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in corner values. Start with \(x\)-direction, and give most documentation for that case as the \(y\)-direction is essentially the same. \paragraph{\(x\)-normal edge values} The patch-edge values are either interpolated from the next-to-edge values, or from the centre-cross values (not the patch-centre value itself as that seems to have worse properties in general). Have not yet implemented core averages. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u([2 nx-1],2:(ny-1),:,:,I,J); else % interpolate centre-cross values U = u(i0,2:(ny-1),:,:,I,J); end;%if patches.EdgyInt %{ \end{matlab} Just in case the last array dimension(s) are one, we have to force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,6-length(szUO)) ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 7D else dmu = zeros(szUO,patches.codist); % 7D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') % dmux(:,:,:,:,I,:,1) = (Ux(:,:,:,:,Ip,:)+Ux(:,:,:,:,Im,:))/2; % \mu % dmux(:,:,:,:,I,:,2) = (Ux(:,:,:,:,Ip,:)-Ux(:,:,:,:,Im,:)); % \delta % Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 % dmuy(:,:,:,:,:,J,1) = (Ux(:,:,:,:,:,Jp)+Ux(:,:,:,:,:,Jm))/2; % \mu % dmuy(:,:,:,:,:,J,2) = (Ux(:,:,:,:,:,Jp)-Ux(:,:,:,:,:,Jm)); % \delta % Jp = Jp(Jp); Jm = Jm(Jm); % increase shifts to \pm2 else %disp('starting standard interpolation') dmu(:,:,:,:,I,:,1) = (U(:,:,:,:,Ip,:) ... -U(:,:,:,:,Im,:))/2; %\mu\delta dmu(:,:,:,:,I,:,2) = (U(:,:,:,:,Ip,:) ... -2*U(:,:,:,:,I,:) +U(:,:,:,:,Im,:)); %\delta^2 end% if patches.stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,I,:,k) = dmu(:,:,:,:,Ip,:,k-2) ... -2*dmu(:,:,:,:,I,:,k-2) +dmu(:,:,:,:,Im,:,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet edge values for each patch \cite[]{Roberts06d, Bunder2013b}, using weights computed in \verb|configPatches2()|. Here interpolate to specified order. For the case where next-to-edge values interpolate to the opposite edge-values: when we have an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to| and \verb|patches.bo|. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two edges u(nx,2:(ny-1),:,patches.ri,I,:) ... = U(1,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,1),-6).*dmu(1,:,:,:,:,:,:) ,7); u(1 ,2:(ny-1),:,patches.le,I,:,:) ... = U(k,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,1),-6).*dmu(k,:,:,:,:,:,:) ,7); %{ \end{matlab} \paragraph{\(y\)-normal edge values} Interpolate from either the next-to-edge values, or the centre-cross-line values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,[2 ny-1],:,:,I,J); else % interpolate centre-cross values U = u(:,j0,:,:,I,J); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,6-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 7D else dmu = zeros(szUO,patches.codist); % 7D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,J,1) = (U(:,:,:,:,:,Jp) ... -U(:,:,:,:,:,Jm))/2; %\mu\delta dmu(:,:,:,:,:,J,2) = (U(:,:,:,:,:,Jp) ... -2*U(:,:,:,:,:,J) +U(:,:,:,:,:,Jm)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,J,k) = dmu(:,:,:,:,:,Jp,k-2) ... -2*dmu(:,:,:,:,:,J,k-2) +dmu(:,:,:,:,:,Jm,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches2()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k = 1+patches.EdgyInt; % use centre or two edges u(:,ny,:,patches.to,:,J) ... = U(:,1,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,2),-6).*dmu(:,1,:,:,:,:,:) ,7); u(:,1 ,:,patches.bo,:,J) ... = U(:,k,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,2),-6).*dmu(:,k,:,:,:,:,:) ,7); %{ \end{matlab} \subsubsection{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} We interpolate in terms of the patch index, $j$~say, not directly in space. As the macroscale fields are $N$-periodic in the patch index~$I$, the macroscale Fourier transform writes the centre-patch values as $U_I=\sum_{k}C_ke^{ik2\pi I/N}$. Then the edge-patch values $U_{I\pm r} =\sum_{k}C_ke^{ik2\pi/N(I\pm r)} =\sum_{k}C'_ke^{ik2\pi I/N}$ where $C'_k=C_ke^{ikr2\pi/N}$. For $N$~patches we resolve `wavenumbers' $|k|<N/2$, so set row vector $\verb|ks|=k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, \pm(k_{\max}+1) -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches2| tests there are an even number of patches). Then the patch-ratio is effectively halved. The patch edges are near the middle of the gaps and swapped. \begin{matlab} %} if patches.stag % transform by doubling the number of fields error('staggered grid not yet implemented??') v=nan(size(u)); % currently to restore the shape of u u=cat(3,u(:,1:2:nPatch,:),u(:,2:2:nPatch,:)); stagShift=reshape(0.5*[ones(nVars,1);-ones(nVars,1)],1,1,[]); iV=[nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r=r/2; % ratio effectively halved nPatch=nPatch/2; % halve the number of patches nVars=nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Interpolate the two directions in succession, in this way we naturally fill-in edge-corner values. Start with \(x\)-direction, and give most documentation for that case as the other is essentially the same. Need these indices of patch interior. \begin{matlab} %} ix = 2:nx-1; iy = 2:ny-1; %{ \end{matlab} \paragraph{\(x\)-normal edge values} Now set wavenumbers into a vector at the correct dimension. In the case of even~$N$ these compute the $+$-case for the highest wavenumber zig-zag mode, $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, +(k_{\max}+1) -k_{\max}, \ldots, -1)$. \begin{matlab} %} kMax = floor((Nx-1)/2); kr = shiftdim( rx*2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ,-3); %{ \end{matlab} Compute the Fourier transform of the centre-cross values. Unless doing patch-edgy interpolation when FT the next-to-edge values. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to| and \verb|patches.bo|. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(i0,iy,:,:,:,:) ,[],5); Cp = Cm; else Cm = fft( u( 2,iy ,:,patches.le,:,:) ,[],5); Cp = fft( u(nx-1,iy ,:,patches.ri,:,:) ,[],5); end%if ~patches.EdgyInt %{ \end{matlab} Now invert the Fourier transforms to complete interpolation. Enforce reality when appropriate. \begin{matlab} %} u(nx,iy,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],5) ); u( 1,iy,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],5) ); %{ \end{matlab} \paragraph{\(y\)-normal edge values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Ny-1)/2); kr = shiftdim( ry*2*pi/Ny*(mod((0:Ny-1)+kMax,Ny)-kMax) ,-4); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-lines for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,j0,:,:,:,:) ,[],6); Cp = Cm; else Cm = fft( u(:,2 ,:,patches.bo,:,:) ,[],6); Cp = fft( u(:,ny-1 ,:,patches.to,:,:) ,[],6); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,ny,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],6) ); u(:, 1,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],6) ); %{ \end{matlab} \begin{matlab} %} end% if ordCC>0 else, so spectral %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|px| and~\verb|py| (potentially different in the different directions!), and hence size of the (forward) divided difference tables in~\verb|F|~(7D) for interpolating to left/right, and top/bottom edges. Because of the product-form of the patch grid, and because we are doing \emph{only} either edgy interpolation or cross-patch interpolation (\emph{not} just the centre patch value), the interpolations are all 1D interpolations. \begin{matlab} %} if patches.ordCC<1 px = Nx-1; py = Ny-1; else px = min(patches.ordCC,Nx-1); py = min(patches.ordCC,Ny-1); end ix=2:nx-1; iy=2:ny-1; % indices of edge 'interior' (ix n/a) %{ \end{matlab} \subsubsection{\(x\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-edge values are because their values are to interpolate to the opposite edge of each patch. \todo{Have no plans to implement core averaging as yet.} \begin{matlab} %} F = nan(patches.EdgyInt+1,ny-2,nVars,nEnsem,Nx,Ny,px+1); if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,:,:,1) = u([nx-1 2],iy,:,:,:,:); X = patches.x([nx-1 2],:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,1) = u(i0,iy,:,:,:,:); X = patches.x(i0,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} \paragraph{Form tables of divided differences} Compute tables of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable, and across ensemble, and for left/right edges. Recursively find all divided differences. \begin{matlab} %} for q = 1:px i = 1:Nx-q; F(:,:,:,:,i,:,q+1) ... = (F(:,:,:,:,i+1 ,:,q)-F(:,:,:,:,i,:,q)) ... ./(X(:,:,:,:,i+q,:) -X(:,:,:,:,i,:)); end %{ \end{matlab} \paragraph{Interpolate with divided differences} Now interpolate to find the edge-values on left/right edges at~\verb|Xedge| for every interior~\verb|Y|. \begin{matlab} %} Xedge = patches.x([1 nx],:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left edge of each interpolation stencil, because the table is of forward differences. This alternative: the case of order~\(p_x\) and~\(p_y\) interpolation across the domain, asymmetric near the boundaries of the rectangular domain. \begin{matlab} %} i = max(1,min(1:Nx,Nx-ceil(px/2))-floor(px/2)); Uedge = F(:,:,:,:,i,:,px+1); for q = px:-1:1 Uedge = F(:,:,:,:,i,:,q)+(Xedge-X(:,:,:,:,i+q-1,:)).*Uedge; end %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,iy,:,patches.le,:,:) = Uedge(1,:,:,:,:,:); u(nx,iy,:,patches.ri,:,:) = Uedge(2,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(y\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,patches.EdgyInt+1,nVars,nEnsem,Nx,Ny,py+1); if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,:,:,1) = u(:,[ny-1 2],:,:,:,:); Y = patches.y(:,[ny-1 2],:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,1) = u(:,j0,:,:,:,:); Y = patches.y(:,j0,:,:,:,:); end; %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:py j = 1:Ny-q; F(:,:,:,:,:,j,q+1) ... = (F(:,:,:,:,:,j+1 ,q)-F(:,:,:,:,:,j,q)) ... ./(Y(:,:,:,:,:,j+q) -Y(:,:,:,:,:,j)); end %{ \end{matlab} Interpolate to find the edge-values on top/bottom edges~\verb|Yedge| for every~\(x\). \begin{matlab} %} Yedge = patches.y(:,[1 ny],:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|j| are those of the bottom edge of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} j = max(1,min(1:Ny,Ny-ceil(py/2))-floor(py/2)); Uedge = F(:,:,:,:,:,j,py+1); for q = py:-1:1 Uedge = F(:,:,:,:,:,j,q)+(Yedge-Y(:,:,:,:,:,j+q-1)).*Uedge; end %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,1 ,:,patches.bo,:,:) = Uedge(:,1,:,:,:,:); u(:,ny,:,patches.to,:,:) = Uedge(:,2,:,:,:,:); %{ \end{matlab} \subsubsection{Optional NaNs for safety} We want a user to set outer edge values on the extreme patches according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} u( 1,:,:,:, 1,:) = nan; u(nx,:,:,:,Nx,:) = nan; u(:, 1,:,:,:, 1) = nan; u(:,ny,:,:,:,Ny) = nan; %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic else %{ \end{matlab} Fin, returning the 6D array of field values with interpolated edges. \begin{matlab} %} end% function patchEdgeInt2 %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
patchSys2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/patchSys2.m
3,798
utf_8
951820e31f71da29cc283e05c0913575
% patchSys2() Provides an interface to time integrators % for the dynamics on patches in 2D coupled across space. % The system must be a smooth lattice system such as PDE % discretisations. AJR, Nov 2018 -- Nov 2020 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchSys2()}: interface 2D space to time integrators} \label{sec:patchSys2} To simulate in time with 2D spatial patches we often need to interface a users time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function provides an interface. It assumes that the sub-patch structure is \emph{smooth enough} so that the patch centre-values are sensible macroscale variables, and patch edge-values are determined by macroscale interpolation of the patch-centre or edge values. Nonetheless, microscale heterogeneous systems may be accurately simulated with this function via appropriate interpolation. Communicate patch-design variables (\cref{sec:configPatches2}) either via the global struct~\verb|patches| or via an optional third argument (except that this last is required for parallel computing of \verb|spmd|). \begin{matlab} %} function dudt = patchSys2(t,u,patches) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$ grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches2()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| that computes the time derivatives on the patchy lattice. The array~\verb|u| has size $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nVars| \times \verb|nEsem| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$. Time derivatives must be computed into the same sized array, although herein the patch edge-values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP(1)| \times1 \times1 \times1 \verb|nPatch(1)| \times1$ array of the spatial locations~$x_{i}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales. \item \verb|.y| is similarly $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times \verb|nPatch(2)|$ array of the spatial locations~$y_{j}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Reshape the fields~\verb|u| as a 6D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt2} describes \verb|patchEdgeInt2()|. \begin{matlab} %} sizeu = size(u); u = patchEdgeInt2(u,patches); %{ \end{matlab} Ask the user function for the time derivatives computed in the array, overwrite its edge values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt = patches.fun(t,u,patches); dudt([1 end],:,:,:,:,:) = 0; dudt(:,[1 end],:,:,:,:) = 0; dudt = reshape(dudt,sizeu); %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
twoscaleDiffEquil2Errs.m
.m
EquationFreeGit-master/SandpitPlay/BCs/twoscaleDiffEquil2Errs.m
12,199
utf_8
2d63db620941b674ef8a74a65ebb2bdd
% Explore errors in the steady state of twoscale % heterogeneous diffusion in 2D on patches as an example, % inspired by section 5.3.1 of Freese et al., 2211.13731. % AJR, 31 Jan 2023 %!TEX root = doc.tex %{ \section{\texttt{twoscaleDiffEquil2Errs}: errors in equilibria of a 2D twoscale heterogeneous diffusion via small patches} \label{sec:twoscaleDiffEquil2Errs} \begin{figure} \centering\caption{\label{fig:twoscaleDiffEquil2Errsus} For various numbers of patches as indicated on the colorbar, plot the equilibrium of the multiscale diffusion problem of Freese with Dirichlet zero-value boundary conditions (\cref{sec:twoscaleDiffEquil2Errs}). We only compare solutions only in these 25~common patches.} \includegraphics[scale=0.8]{Figs/twoscaleDiffEquil2Errsus} \end{figure}% Here we find the steady state~\(u(x,y)\) to the heterogeneous \pde\ (inspired by Freese et al.\footnote{ \protect \url{http://arxiv.org/abs/2211.13731}} \S5.3.1) \begin{equation*} u_t=A(x,y)\grad\grad u+f, \end{equation*} on domain \([-1,1]^2\) with Dirichlet BCs, for coefficient `diffusion' matrix, varying with some microscale period~\(\epsilon\) (here \(\epsilon\approx 0.24, 0.12, 0.06, 0.03\)), of \begin{equation*} A:=\begin{bmatrix} 2& a\\a & 2 \end{bmatrix} \quad \text{with } a:=\sin(\pi x/\epsilon)\sin(\pi y/\epsilon), \end{equation*} and for forcing \(f:=10(x+y+\cos\pi x)\) (for which the solution has magnitude up to one).\footnote{Freese et al.\ had forcing \(f:=(x+\cos3\pi x)y^3\), but here we want smoother forcing so we get meaningful results in a minute or two computation.\footnote{Except in the `usergiven' case, for $N=65$, that is $152\,100$ unknowns, it takes an hour to compute the Jacobian, then chokes.} For the same reason we do not invoke their smaller \(\epsilon\approx 0.01\).} \begin{figure} \centering\caption{\label{fig:twoscaleDiffEquil2Errs} For various numbers of patches as indicated on the colorbar, plot the equilibrium of the multiscale diffusion problem of Freese with Dirichlet zero-value boundary conditions (\cref{sec:twoscaleDiffEquil2Errs}). We only compare solutions only in these 25~common patches.} \includegraphics[scale=0.8]{Figs/twoscaleDiffEquil2Errs} \end{figure}% Here we explore the errors for increasing number~\(N\) of patches (in both directions). Find mean-abs errors to be the following (for different orders of interpolation and patch distribution): \begin{equation*} \begin{array}{rcccc} N&5&9&17&33%&65 \\\hline \text{equispace, 2nd-order} &6\E2 &3\E2 &1\E2 &3\E3 \\ \text{equispace, 4th-order} &3\E2 &8\E3 &7\E4 &7\E5 \\ \text{chebyshev, 4th-order} &1\E2 &2\E2 &6\E3 &2\E3 \\ \text{usergiven, 4th-order} &1\E2 &2\E2 &4\E3 &\text{n/a} \\ \text{equispace, 6th-order} &3\E2 &1\E3 &1\E4 &2\E5 \\\hline \end{array} \end{equation*} \paragraph{Script start} Clear, and initiate global patches. Choose the type of patch distribution to be either `equispace', `chebyshev', or `usergiven'. Also set order of interpolation (fourth-order is good start). \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot switch 1 case 1, Dom.type = 'equispace' case 2, Dom.type = 'chebyshev' case 3, Dom.type = 'usergiven' end% switch ordInt = 4 %{ \end{matlab} \paragraph{First configure the patch system} Establish the microscale heterogeneity has micro-period \verb|mPeriod| on the spatial lattice. Then \verb|configPatches2| replicates the heterogeneity as needed to fill each patch. \begin{matlab} %} mPeriod = 6 z = (0.5:mPeriod)'/mPeriod; A = sin(2*pi*z).*sin(2*pi*z'); %{ \end{matlab} To use a hierarchy of patches with \verb|nPatch| of~5, 9, 17, \ldots, we need up to \(N\)~patches plus one~\verb|dx| to fit into the domain interval. Cater for up to some full-domain simulation---can compute \(\verb|log2Nmax|=5\) (\(\epsilon=0.06\)) within minutes: \begin{matlab} %} log2Nmax = 4 % >2 up to 6 OKish nPatchMax=2^log2Nmax+1 %{ \end{matlab} Set the periodicity~\(\epsilon\), and other microscale parameters. \begin{matlab} %} nPeriodsPatch = 1 % any integer nSubP = nPeriodsPatch*mPeriod+2 % for edgy int epsilon = 2/(nPatchMax*nPeriodsPatch+1/mPeriod) dx = epsilon/mPeriod %{ \end{matlab} \paragraph{For various numbers of patches} Choose five patches to be the coarsest number of patches. Define variables to store common results for the solutions from differing patches. Assign \verb|Ps| to be the indices of the common patches: for equispace set to the five common patches, but for `chebyshev' the only common ones are the three centre and boundary-adjacent patches. \begin{matlab} %} us=[]; xs=[]; ys=[]; nPs=[]; for log2N=log2Nmax:-1:2 if log2N==log2Nmax Ps=linspace(1,nPatchMax ... ,5-2*all(Dom.type=='chebyshev')) else Ps=(Ps+1)/2 end %{ \end{matlab} Set the number of patches in \((-1,1)\): \begin{matlab} %} nPatch = 2^log2N+1 %{ \end{matlab} In the case of `usergiven', we set the standard Chebyshev distribution of the patch-centres, which involves overlapping of patches near the boundaries! (instead of the coded chebyshev which has boundary layers of abutting patches, and non-overlapping Chebyshev between the boundary layers). \begin{matlab} %} if all(Dom.type=='usergiven') halfWidth = dx*(nSubP-1)/2; X1 = -1+halfWidth; X2 = 1-halfWidth; Dom.X = (X1+X2)/2-(X2-X1)/2*cos(linspace(0,pi,nPatch)); Dom.Y = Dom.X; end %{ \end{matlab} Configure the patches: \begin{matlab} %} configPatches2(@twoscaleDiffForce2,[-1 1],Dom,nPatch ... ,ordInt ,dx ,nSubP ,'EdgyInt',true ,'hetCoeffs',A ); %{ \end{matlab} Compute the time-constant forcing, and store in struct \verb|patches| for access by the microcode of \cref{sec:twoscaleDiffForce2}. \begin{matlab} %} if 1 patches.fu = 10*(patches.x+cos(pi*patches.x)+patches.y); else patches.fu = 8+0*patches.x+0*patches.y; end %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of either zero or a subsample of the previous, next-finer, solution. \verb|NaN| indicates patch-edge values. Index~\verb|i| are the indices of patch-interior points, and the number of unknowns is then its length. \begin{matlab} %} if log2N==log2Nmax u0 = zeros(nSubP,nSubP,1,1,nPatch,nPatch); else u0 = u0(:,:,:,:,1:2:end,1:2:end); end u0([1 end],:,:) = nan; u0(:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} First try to solve via iterative solver \verb|bicgstab|, via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}). \begin{matlab} %} tic; maxIt = ceil(nVariables/10); rhsb = theRes( zeros(size(patches.i)) ); [uSoln,flag] = bicgstab(@(u) rhsb-theRes(u),rhsb ... ,1e-9,maxIt,[],[],u0(patches.i)); bicgTime = toc %{ \end{matlab} However, the above often fails (and \verb|fsolve| sometimes takes too long here), so then try a preconditioned version of \verb|bicgstab|. The preconditioner is derived from the Jacobian which is expensive to find (four minutes for \(N=33\), one hour for $N=65$), but we do so as follows. \begin{matlab} %} if flag>0, disp('**** bicg failed, trying ILU preconditioner') disp(['Computing Jacobian: wait roughly ' ... num2str(nPatch^4/4500,2) ' secs']) tic Jac=sparse(nVariables,nVariables); for j=1:nVariables Jac(:,j)=sparse( rhsb-theRes((1:nVariables)'==j) ); end formJacTime=toc %{ \end{matlab} Compute an incomplete \(LU\)-factorization, and use it as preconditioner to \verb|bicgstab|. \begin{matlab} %} tic [L,U] = ilu(Jac,struct('type','ilutp','droptol',1e-4)); LUfillFactor = (nnz(L)+nnz(U))/nnz(Jac) [uSoln,flag] = bicgstab(@(u) rhsb-theRes(u),rhsb ... ,1e-9,maxIt,L,U,u0(patches.i)); precondSolveTime=toc assert(flag==0,'preconditioner fails bicgstab. Lower droptol?') end%if flag %{ \end{matlab} Store the solution into the patches, and give magnitudes---Inf norm is max(abs()). \begin{matlab} %} normResidual = norm(theRes(uSoln),Inf) normSoln = norm(uSoln,Inf) u0(patches.i) = uSoln; u0 = patchEdgeInt2(u0); u0( 1 ,:,:,:, 1 ,:)=0; % left edge of left patches u0(end,:,:,:,end,:)=0; % right edge of right patches u0(:, 1 ,:,:,:, 1 )=0; % bottom edge of bottom patches u0(:,end,:,:,:,end)=0; % top edge of top patches assert(normResidual<1e-5,'poor--bad solution found') %{ \end{matlab} Concatenate the solution on common patches into stores. \begin{matlab} %} us=cat(5,us,squeeze(u0(:,:,:,:,Ps,Ps))); xs=cat(3,xs,squeeze(patches.x(:,:,:,:,Ps,:))); ys=cat(3,ys,squeeze(patches.y(:,:,:,:,:,Ps))); nPs = [nPs;nPatch]; %{ \end{matlab} End loop. Check micro-grids are aligned, then compute errors compared to the full-domain solution (or the highest resolution solution for the case of `usergiven'). \begin{matlab} %} end%for log2N assert(max(abs(reshape(diff(xs,1,3),[],1)))<1e-12,'x-coord failure') assert(max(abs(reshape(diff(ys,1,3),[],1)))<1e-12,'y-coord failure') errs = us-us(:,:,:,:,1); meanAbsErrs = mean(abs(reshape(errs,[],size(us,5)))) ratioErrs = meanAbsErrs(2:end)./meanAbsErrs(1:end-1) %{ \end{matlab} \paragraph{Plot solution in common patches} First reshape arrays to suit 2D space surface plots, inserting nans to separate patches. \begin{matlab} %} x = xs(:,:,1); y = ys(:,:,1); u=us; x(end+1,:)=nan; y(end+1,:)=nan; u(end+1,:,:)=nan; u(:,end+1,:)=nan; u = reshape(permute(u,[1 3 2 4 5]),numel(x),numel(y),[]); %{ \end{matlab} Plot the patch solution surfaces, with colour offset between surfaces (best if \(u\)-field has a range of one): blues are the full-domain solution, reds the coarsest patches. \begin{matlab} %} figure(1), clf, colormap(jet) for p=1:size(u,3) mesh(x(:),y(:),u(:,:,p)',p+u(:,:,p)'); hold on; end, hold off view(60,55) colorbar('Ticks',1:size(u,3) ... ,'TickLabels',[num2str(nPs) ['x';'x';'x'] num2str(nPs)]); xlabel('space x'), ylabel('space y'), zlabel('u(x,y)') ifOurCf2eps([mfilename 'us'])%optionally save %{ \end{matlab} \paragraph{Plot error surfaces} Plot the error surfaces, with colour offset between surfaces (best if \(u\)-field has a range of one): dark blue is the full-domain zero error, reds the coarsest patches. \begin{matlab} %} err=u(:,:,1)-u; maxAbsErr=max(abs(err(:))); figure(2), clf, colormap(jet) for p=1:size(u,3) mesh(x(:),y(:),err(:,:,p)',p+err(:,:,p)'/maxAbsErr); hold on; end, hold off view(60,55) colorbar('Ticks',1:size(u,3) ... ,'TickLabels',[num2str(nPs) ['x';'x';'x'] num2str(nPs)]); xlabel('space x'), ylabel('space y') zlabel('errors in u(x,y)') ifOurCf2eps(mfilename)%optionally save %{ \end{matlab} \subsection{\texttt{twoscaleDiffForce2()}: microscale discretisation inside patches of forced diffusion PDE} \label{sec:twoscaleDiffForce2} This function codes the lattice heterogeneous diffusion of the \pde\ inside the patches. For 6D input arrays~\verb|u|, \verb|x|, and~\verb|y|, computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. \begin{matlab} %} function ut = twoscaleDiffForce2(t,u,patches) dx = diff(patches.x(2:3)); % x space step dy = diff(patches.y(2:3)); % y space step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} Set Dirichlet boundary value of zero around the square domain. \begin{matlab} %} u( 1 ,:,:,:, 1 ,:)=0; % left edge of left patches u(end,:,:,:,end,:)=0; % right edge of right patches u(:, 1 ,:,:,:, 1 )=0; % bottom edge of bottom patches u(:,end,:,:,:,end)=0; % top edge of top patches %{ \end{matlab} Compute the time derivatives via stored forcing and coefficients. Easier to code by conflating the last four dimensions into the one~\verb|,:|. \begin{matlab} %} ut(i,j,:) ... = 2*diff(u(:,j,:),2,1)/dx^2 +2*diff(u(i,:,:),2,2)/dy^2 ... +2*patches.cs(i,j).*( u(i+1,j+1,:) -u(i-1,j+1,:) ... -u(i+1,j-1,:) +u(i-1,j-1,:) )/(4*dx*dy) ... +patches.fu(i,j,:); end%function twoscaleDiffForce2 %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt1.m
.m
EquationFreeGit-master/SandpitPlay/BCs/patchEdgeInt1.m
15,387
utf_8
bb791ea67bf7f51783c12add715bca8b
% patchEdgeInt1() provides the interpolation across 1D space % for 1D patches of simulations of a lattice system such as % PDE discretisations. AJR & JB, Sep 2018 -- Jan 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt1()}: sets patch-edge values from interpolation over the 1D macroscale} \label{sec:patchEdgeInt1} Couples 1D patches across 1D space by computing their edge values from macroscale interpolation of either the mid-patch value \cite[]{Roberts00a, Roberts06d}, or the patch-core average \cite[]{Bunder2013b}, or the opposite next-to-edge values \cite[]{Bunder2020a}---this last alternative often maintains symmetry. This function is primarily used by \verb|patchSys1()| but is also useful for user graphics. When using core averages (not fully implemented), assumes the averages are sensible macroscale variables: then patch edge values are determined by macroscale interpolation of the core averages \citep{Bunder2013b}. \footnote{Script \texttt{patchEdgeInt1test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct~\verb|patches|. \begin{matlab} %} function u=patchEdgeInt1(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|nSubP| \cdot \verb|nVars|\cdot \verb|nEnsem|\cdot \verb|nPatch|$ where there are $\verb|nVars|\cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP| \times \verb|nPatch|$ multiscale spatial grid. \item \verb|patches| a struct largely set by \verb|configPatches1()|, and which includes the following. \begin{itemize} \item \verb|.x| is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.ordCC| is order of interpolation, integer~$\geq -1$. \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left and right boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation, and zero for ordinary grid. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre-patch values (original scheme). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \item \verb|.nCore| \todo{introduced sometime but not fully implemented yet, because prefer ensemble} \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 4D array, $\verb|nSubP| \times \verb|nVars| \times \verb|nEnsem| \times \verb|nPatch|$, of the fields with edge values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [nx,~,~,Nx] = size(patches.x); nEnsem = patches.nEnsem; nVars = round(numel(u)/numel(patches.x)/nEnsem); assert(numel(u) == nx*nVars*nEnsem*Nx ... ,'patchEdgeInt1: input u has wrong size for parameters') u = reshape(u,nx,nVars,nEnsem,Nx); %{ \end{matlab} If the user has not defined the patch core, then we assume it to be a single point in the middle of the patch, unless we are interpolating from next-to-edge values. These index vectors point to patches and their two immediate neighbours, for periodic domain. \begin{matlab} %} I = 1:Nx; Ip = mod(I,Nx)+1; Im = mod(I-2,Nx)+1; %{ \end{matlab} Calculate centre of each patch and the surrounding core (\verb|nx| and \verb|nCore| are both odd). \begin{matlab} %} i0 = round((nx+1)/2); c = round((patches.nCore-1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches, then use finite width stencils or spectral. \begin{matlab} %} r = patches.ratio(1); if patches.ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} \paragraph{Lagrange interpolation gives patch-edge values} Consequently, compute centred differences of the patch core/edge averages/values for the macro-interpolation of all fields. Here the domain is macro-periodic. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-edge values Ux = u([2 nx-1],:,:,I); else % interpolate mid-patch values/sums Ux = sum( u((i0-c):(i0+c),:,:,I) ,1); end; %{ \end{matlab} Just in case any last array dimension(s) are one, we have to force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUxO=size(Ux); szUxO=[szUxO ones(1,4-length(szUxO)) patches.ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if patches.parallel dmu = zeros(szUxO,patches.codist); % 5D else dmu = zeros(szUxO); % 5D end %{ \end{matlab} First compute differences, either $\mu$ and $\delta$, or $\mu\delta$ and $\delta^2$ in space. \begin{matlab} %} if patches.stag % use only odd numbered neighbours dmu(:,:,:,I,1) = (Ux(:,:,:,Ip)+Ux(:,:,:,Im))/2; % \mu dmu(:,:,:,I,2) = (Ux(:,:,:,Ip)-Ux(:,:,:,Im)); % \delta Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 else % standard dmu(:,:,:,I,1) = (Ux(:,:,:,Ip)-Ux(:,:,:,Im))/2; % \mu\delta dmu(:,:,:,I,2) = (Ux(:,:,:,Ip)-2*Ux(:,:,:,I) ... +Ux(:,:,:,Im)); % \delta^2 end%if patches.stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:patches.ordCC dmu(:,:,:,:,k) = dmu(:,:,:,Ip,k-2) ... -2*dmu(:,:,:,I,k-2) +dmu(:,:,:,Im,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet edge values for each patch \cite[]{Roberts06d, Bunder2013b}, using weights computed in \verb|configPatches1()|. Here interpolate to specified order. For the case where single-point values interpolate to patch-edge values: when we have an ensemble of configurations, different realisations are coupled to each other as specified by \verb|patches.le| and \verb|patches.ri|. \begin{matlab} %} if patches.nCore==1 k=1+patches.EdgyInt; % use centre/core or two edges u(nx,:,patches.ri,I) = Ux(1,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr,-4).*dmu(1,:,:,:,:) ,5); u(1 ,:,patches.le,I) = Ux(k,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl,-4).*dmu(k,:,:,:,:) ,5); %{ \end{matlab} For a non-trivial core then more needs doing: the core (one or more) of each patch interpolates to the edge action regions. When more than one in the core, the edge is set depending upon near edge values so the average near the edge is correct. \begin{matlab} %} else% patches.nCore>1 error('not yet considered, july--dec 2020 ??') u(nx,:,:,I) = Ux(:,:,I)*(1-patches.stag) ... + reshape(-sum(u((nx-patches.nCore+1):(nx-1),:,:,I),1) ... + sum( patches.Cwtsr.*dmu ),Nx,nVars); u(1,:,:,I) = Ux(:,:,I)*(1-patches.stag) ... + reshape(-sum(u(2:patches.nCore,:,:,I),1) ... + sum( patches.Cwtsl.*dmu ),Nx,nVars); end%if patches.nCore %{ \end{matlab} \paragraph{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} As the macroscale fields are $N$-periodic, the macroscale Fourier transform writes the centre-patch values as $U_j = \sum_{k}C_ke^{ik2\pi j/N}$. Then the edge-patch values $U_{j\pm r} =\sum_{k}C_ke^{ik2\pi/N(j\pm r)} =\sum_{k}C'_ke^{ik2\pi j/N}$ where $C'_k = C_ke^{ikr2\pi/N}$. For \verb|Nx|~patches we resolve `wavenumbers' $|k|<\verb|Nx|/2$, so set row vector $\verb|ks| = k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k = (0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k = (0,1, \ldots, k_{\max}, (k_{\max}+1), -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches1()| tests that there are an even number of patches). Then the patch-ratio is effectively halved. The patch edges are near the middle of the gaps and swapped. \todo{Have not yet tested whether works for Edgy Interpolation.} \begin{matlab} %} if patches.stag % transform by doubling the number of fields v = nan(size(u)); % currently to restore the shape of u u = [u(:,:,:,1:2:Nx) u(:,:,:,2:2:Nx)]; stagShift = 0.5*[ones(1,nVars) -ones(1,nVars)]; iV = [nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r = r/2; % ratio effectively halved Nx = Nx/2; % halve the number of patches nVars = nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Now set wavenumbers (when \verb|Nx| is even then highest wavenumber is~$\pi$). \begin{matlab} %} kMax = floor((Nx-1)/2); ks = shiftdim( ... 2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ... ,-2); %{ \end{matlab} Compute the Fourier transform across patches of the patch centre or next-to-edge values for all the fields. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le| and \verb|patches.ri|. \begin{matlab} %} if ~patches.EdgyInt Cleft = fft(u(i0 ,:,:,:),[],4); Cright = Cleft; else Cleft = fft(u(2 ,:,:,:),[],4); Cright= fft(u(nx-1,:,:,:),[],4); end %{ \end{matlab} The inverse Fourier transform gives the edge values via a shift a fraction~$r$ to the next macroscale grid point. \begin{matlab} %} u(nx,iV,patches.ri,:) = uclean( ifft( ... Cleft.*exp(1i*ks.*(stagShift+r)) ,[],4)); u(1 ,iV,patches.le,:) = uclean( ifft( ... Cright.*exp(1i*ks.*(stagShift-r)) ,[],4)); %{ \end{matlab} Restore staggered grid when appropriate. This dimensional shifting appears to work. Is there a better way to do this? \begin{matlab} %} if patches.stag nVars = nVars/2; u=reshape(u,nx,nVars,2,nEnsem,Nx); Nx = 2*Nx; v(:,:,:,1:2:Nx) = u(:,:,1,:,:); v(:,:,:,2:2:Nx) = u(:,:,2,:,:); u = v; end%if patches.stag end%if patches.ordCC %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|p|, and hence size of the (forward) divided difference table in~\verb|F|. \begin{matlab} %} if patches.ordCC<1, patches.ordCC = Nx-1; end p = min(patches.ordCC,Nx-1); F = nan(patches.EdgyInt+1,nVars,nEnsem,Nx,p+1); %{ \end{matlab} Set function values in first `column' of the table for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-edge values are because their values are to interpolate to the opposite edge of each patch. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,1) = u([nx-1 2],:,:,I); X(:,:,:,:) = patches.x([nx-1 2],:,:,I); else % interpolate mid-patch values/sums F(:,:,:,:,1) = sum( u((i0-c):(i0+c),:,:,I) ,1); X(:,:,:,:) = patches.x(i0,:,:,I); end; %{ \end{matlab} Compute table of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable and across ensemble. \begin{matlab} %} for q = 1:p i = 1:Nx-q; F(:,:,:,i,q+1) = (F(:,:,:,i+1,q)-F(:,:,:,i,q)) ... ./(X(:,:,:,i+q) -X(:,:,:,i)); end %{ \end{matlab} Now interpolate to the edge-values at locations~\verb|Xedge|. \begin{matlab} %} Xedge = patches.x([1 nx],:,:,:); %{ \end{matlab} Code Horner's evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left end of each interpolation stencil because the table is of forward differences.\footnote{For EdgyInt, perhaps interpret odd order interpolation in such a way that first-order interpolations reduces to appropriate linear interpolation so that as patches abut the scheme is `full-domain'. May mean left-edge and right-edge have different indices. Explore sometime??} First alternative: the case of order~\(p\) interpolation across the domain, asymmetric near the boundary. Use this first alternative for now. \begin{matlab} %} if true i = max(1,min(1:Nx,Nx-ceil(p/2))-floor(p/2)); Uedge = F(:,:,:,i,p+1); for q = p:-1:1 Uedge = F(:,:,:,i,q)+(Xedge-X(:,:,:,i+q-1)).*Uedge; end %{ \end{matlab} Second alternative: lower the degree of interpolation near the boundary to maintain the band-width of the interpolation. Such symmetry might be essential for multi-D. \footnote{The aim is to preserve symmetry?? Does it?? As of Jan 2023 it only partially does---fails near boundaries, and maybe fails with uneven spacing.} \begin{matlab} %} else%if false i = max(1,I-floor(p/2)); %{ \end{matlab} For the tapering order of interpolation, form the interior mask~\verb|Q| (logical) that signifies which interpolations are to be done at order~\verb|q|. This logical mask spreads by two as each order~\verb|q| decreases. \begin{matlab} %} Q = (I-1>=floor(p/2)) & (Nx-I>=p/2); Imid = floor(Nx/2); %{ \end{matlab} Initialise to highest divide difference, surrounded by zeros. \begin{matlab} %} Uedge = zeros(patches.EdgyInt+1,nVars,nEnsem,Nx); Uedge(:,:,:,Q) = F(:,:,:,i(Q),p+1); %{ \end{matlab} Complete Horner evaluation of the relevant polynomials. \begin{matlab} %} for q = p:-1:1 Q = [Q(2:Imid) true(1,2) Q(Imid+1:end-1)]; % spread mask Uedge(:,:,:,Q) = F(:,:,:,i(Q),q) ... +(Xedge(:,:,:,Q)-X(:,:,:,i(Q)+q-1)).*Uedge(:,:,:,Q); end%for q end%if %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,:,patches.le,I) = Uedge(1,:,:,I); u(nx,:,patches.ri,I) = Uedge(2,:,:,I); %{ \end{matlab} We want a user to set the extreme patch edge values according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, may override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} u( 1,:,:, 1) = nan; u(nx,:,:,Nx) = nan; %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic %{ \end{matlab} Fin, returning the 4D array of field values. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
abdulleDiffEquil2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/abdulleDiffEquil2.m
6,045
utf_8
39a09e5e4134b72d1f242ad011a85436
% Solve for steady state of multiscale heterogeneous diffusion % in 2D on patches as an example application, varied from % example of section 5.1 of Abdulle et al., (2020b). AJR, % 31 Jan 2023 %!TEX root = doc.tex %{ \section{\texttt{abdulleDiffEquil2}: equilibrium of a 2D multiscale heterogeneous diffusion via small patches} \label{sec:abdulleDiffEquil2} Here we find the steady state~\(u(x,y)\) to the heterogeneous \pde\ \cite[inspired by][\S5.1]{Abdulle2020b} \begin{equation*} u_t=\divv[a(x,y)\grad u]+10, \end{equation*} on square domain \([0,1]^2\) with zero-Dirichlet BCs, for coefficient `diffusion' matrix, varying with period~\(\epsilon\) of (their~(45)) \begin{equation*} a:=\frac{2+1.8\sin2\pi x/\epsilon}{2+1.8\cos2\pi y/\epsilon} +\frac{2+\sin2\pi y/\epsilon}{2+1.8\cos2\pi x/\epsilon}. \end{equation*} \cref{fig:abdulleDiffEquil2} shows solutions have some nice microscale wiggles reflecting the heterogeneity. \begin{figure} \centering\caption{\label{fig:abdulleDiffEquil2}% Equilibrium of the macroscale diffusion problem of Abdulle with boundary conditions of Dirichlet zero-value except for \(x=0\) which is Neumann (\cref{sec:abdulleDiffEquil2}). Here the patches have a Chebyshev-like spatial distribution. The patch size is chosen large enough to see within.} \includegraphics[scale=0.8]{Figs/abdulleDiffEquil2} \end{figure} Clear, and initiate globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot %{ \end{matlab} First establish the microscale heterogeneity has micro-period~\verb|mPeriod| on the spatial micro-grid lattice. Then \verb|configPatches2| replicates the heterogeneity to fill each patch. (These diffusion coefficients should really recognise the half-grid-point shifts, but let's not bother.) \begin{matlab} %} mPeriod = 6 x = (0.5:mPeriod)'/mPeriod; y=x'; a = (2+1.8*sin(2*pi*x))./(2+1.8*sin(2*pi*y)) ... +(2+ sin(2*pi*y))./(2+1.8*sin(2*pi*x)); diffusivityRange = [min(a(:)) max(a(:))] %{ \end{matlab} Set the periodicity~\(\epsilon\), here big enough so we can see the patches, and other microscale parameters. \begin{matlab} %} epsilon = 0.04 dx = epsilon/mPeriod nPeriodsPatch = 1 % any integer nSubP = nPeriodsPatch*mPeriod+2 % when edgy int %{ \end{matlab} \paragraph{Patch configuration} Choose either Dirichlet (default) or Neumann on the left boundary in coordination with micro-code in \cref{sec:abdulleDiffForce2} \begin{matlab} %} Dom.bcOffset = zeros(2); if 1, Dom.bcOffset(1)=0.5; end% left Neumann %{ \end{matlab} Say use \(7\times7\) patches in \((0,1)^2\), fourth order interpolation, and either `equispace' or `chebyshev': \begin{matlab} %} nPatch = 7 Dom.type='chebyshev'; configPatches2(@abdulleDiffForce2,[0 1],Dom ... ,nPatch ,4 ,dx ,nSubP ,'EdgyInt',true ,'hetCoeffs',a ); %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, and the number of unknowns is then its length. \begin{matlab} %} u0 = zeros(nSubP,nSubP,1,1,nPatch,nPatch); u0([1 end],:,:) = nan; u0(:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (and using \verb|optimoptions| to omit trace information), via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}), and give magnitudes. \begin{matlab} %} tic; uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solnTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) %{ \end{matlab} Store the solution vector into the patches, and interpolate, but have not bothered to set boundary values so they stay NaN from the interpolation. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt2(u0); %{ \end{matlab} \paragraph{Draw solution profile} Separate patches with NaNs, then reshape arrays to suit 2D space surface plots. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) patches.x(end+1,:,:)=nan; u0(end+1,:,:)=nan; patches.y(:,end+1,:)=nan; u0(:,end+1,:)=nan; u = reshape(permute(squeeze(u0),[1 3 2 4]) ... , [numel(patches.x) numel(patches.y)]); %{ \end{matlab} Draw the patch solution surface, with boundary-values omitted as already~\verb|NaN| by not bothering to set them. \begin{matlab} %} mesh(patches.x(:),patches.y(:),u'); view(60,55) xlabel('space $x$'), ylabel('space $y$'), zlabel('$u(x,y)$') ifOurCf2eps(mfilename) %optionally save plot %{ \end{matlab} \subsection{\texttt{abdulleDiffForce2()}: microscale discretisation inside patches of forced diffusion PDE} \label{sec:abdulleDiffForce2} This function codes the lattice heterogeneous diffusion of the \pde\ inside the patches. For 6D input arrays~\verb|u|, \verb|x|, and~\verb|y|, computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. \begin{matlab} %} function ut = abdulleDiffForce2(t,u,patches) dx = diff(patches.x(2:3)); % x space step dy = diff(patches.y(2:3)); % y space step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} Set Dirichlet boundary value of zero around the square domain, but also cater for zero Neumann condition on the left boundary. \begin{matlab} %} u( 1 ,:,:,:, 1 ,:)=0; % left edge of left patches u(end,:,:,:,end,:)=0; % right edge of right patches u(:, 1 ,:,:,:, 1 )=0; % bottom edge of bottom patches u(:,end,:,:,:,end)=0; % top edge of top patches if 1, u(1,:,:,:,1,:)=u(2,:,:,:,1,:); end% left Neumann %{ \end{matlab} Compute the time derivatives via stored forcing and coefficients. Easier to code by conflating the last four dimensions into the one~\verb|,:|. \begin{matlab} %} ut(i,j,:) = diff(patches.cs(:,j).*diff(u(:,j,:)))/dx^2 ... + diff(patches.cs(i,:).*diff(u(i,:,:),1,2),1,2)/dy^2 ... + 10; end%function abdulleDiffForce2 %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
theRes.m
.m
EquationFreeGit-master/SandpitPlay/BCs/theRes.m
1,032
utf_8
8cdbd483b1840c6fb1b04f49c5e6fbda
% This functions converts a vector of values into the % interior values of the patches, then evaluates the time % derivative of the system at $t=1$, and returns the vector % of patch-interior time derivatives. AJR, 1 Feb 2023 %!TEX root = doc.tex %{ \section{\texttt{theRes()}: wrapper function to zero} \label{sec:theRes} This functions converts a vector of values into the interior values of the patches, then evaluates the time derivative of the system at time \(t=1\), and returns the vector of patch-interior time derivatives. \begin{matlab} %} function f=theRes(u) global patches switch numel(size(patches.x)) case 4, pSys = @patchSys1; v=nan(size(patches.x)); case 5, pSys = @patchSys2; v=nan(size(patches.x+patches.y)); case 6, pSys = @patchSys3; v=nan(size(patches.x+patches.y+patches.z)); otherwise error('number of dimensions is somehow wrong') end%switch v(patches.i) = u; f = pSys(1,v(:),patches); f = f(patches.i); end%function theRes %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
heteroDiffF.m
.m
EquationFreeGit-master/SandpitPlay/BCs/heteroDiffF.m
1,725
utf_8
05cc0adfbdb44ef3b989b2c4a40bccfa
% Computes the time derivatives of forced heterogeneous % diffusion in 1D on patches. AJR, Apr 2019 -- 3 Jan 2023 %!TEX root = doc.tex %{ \subsection{\texttt{heteroDiffF()}: forced heterogeneous diffusion} \label{sec:heteroDiffF} This function codes the lattice heterogeneous diffusion inside the patches with forcing and with microscale boundary conditions on the macroscale boundaries. Computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. The column vector of diffusivities~\(a_i\) has been stored in struct~\verb|patches.cs|, as has the array of forcing coefficients. \begin{matlab} %} function ut = heteroDiffF(t,u,patches) %{ \end{matlab} Cater for the two cases: one of a non-autonomous forcing oscillating in time when \(\verb|microTimePeriod|>0\), or otherwise the case of an autonomous diffusion constant in time. \begin{matlab} %} global microTimePeriod if microTimePeriod>0 % optional time fluctuations at = cos(2*pi*t/microTimePeriod)/30; else at=0; end %{ \end{matlab} Two basic parameters, and initialise result array to NaNs. \begin{matlab} %} dx = diff(patches.x(2:3)); % space step i = 2:size(u,1)-1; % interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} The macroscale Dirichlet boundary conditions are zero at the extreme edges of the two extreme patches. \begin{matlab} %} u( 1 ,:,:, 1 )=0; % left-edge of leftmost is zero u(end,:,:,end)=0; % right-edge of rightmost is zero %{ \end{matlab} Code the microscale forced diffusion. \begin{matlab} %} ut(i,:,:,:) = diff((patches.cs(:,1,:)+at).*diff(u))/dx^2 ... +patches.f2(i,:,:,:)*t^2+patches.f1(i,:,:,:)*t; end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
configPatches3.m
.m
EquationFreeGit-master/SandpitPlay/BCs/configPatches3.m
32,908
utf_8
d0d168ba4e05326bca019ec74e76e6c7
% configPatches3() creates a data struct of the design of 3D % patches for later use by the patch functions such as % patchSys3(). AJR, Aug 2020 -- 2 Feb 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches3()}: configures spatial patches in 3D} \label{sec:configPatches3} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys3()|, and possibly other patch functions. \cref{sec:configPatches3eg,sec:homoDiffEdgy3} list examples of its use. \begin{matlab} %} function patches = configPatches3(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating a heterogeneous wave \pde---see \cref{sec:configPatches3eg} for an example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)|, that computes time-derivatives (or time-steps) of quantities on the 3D micro-grid within all the 3D~patches. \item \verb|Xlim| array/vector giving the rectangular-cuboid macro-space domain of the computation: namely $[\verb|Xlim(1)|, \verb|Xlim(2)|] \times [\verb|Xlim(3)|, \verb|Xlim(4)| \times [\verb|Xlim(5)|, \verb|Xlim(6)|]$. If \verb|Xlim| has two elements, then the domain is the cubic domain of the same interval in all three directions. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is triply macro-periodic in the 3D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left\slash right\slash bottom\slash top\slash back\slash front faces of the leftmost\slash rightmost\slash bottommost\slash topmost\slash backmost\slash frontmost patches, respectively. \item \verb|.bcOffset|, optional one, three or six element vector/array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right macroscale boundaries are aligned to the left\slash right faces of the corresponding extreme patches, but offset by \verb|bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when the micro-code applies Dirichlet boundary values on the extreme face micro-grid points, whereas use \verb|bcOffset=0.5| when the microcode applies Neumann boundary conditions halfway between the extreme face micro-grid points. Similarly for the top, bottom, back, and front faces. If \verb|.bcOffset| is a scalar, then apply the same offset to all boundaries. If three elements, then apply the first offset to both \(x\)-boundaries, the second offset to both \(y\)-boundaries, and the third offset to both \(z\)-boundaries. If six elements, then apply the first two offsets to the respective \(x\)-boundaries, the middle two offsets to the respective \(y\)-boundaries, and the last two offsets to the respective \(z\)-boundaries. \item \verb|.X|, optional vector/array with \verb|nPatch(1)| elements, in the case \verb|'usergiven'| it specifies the \(x\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Y|, optional vector/array with \verb|nPatch(2)| elements, in the case \verb|'usergiven'| it specifies the \(y\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Z|, optional vector/array with \verb|nPatch(3)| elements, in the case \verb|'usergiven'| it specifies the \(z\)-locations of the centres of the patches---the user is responsible the locations makes sense. \end{itemize} \item \verb|nPatch| sets the number of equi-spaced spatial patches: if scalar, then use the same number of patches in all three directions, otherwise \verb|nPatch(1:3)| gives the number~($\geq1$) of patches in each direction. \item \verb|ordCC| is the `order' of interpolation for inter-patch coupling across empty space of the macroscale patch values to the face-values of the patches: currently must be~$0,2,4,\ldots$; where $0$~gives spectral interpolation. \item \verb|dx| (real---scalar or three elements) is usually the sub-patch micro-grid spacing in~\(x\), \(y\) and~\(z\). If scalar, then use the same \verb|dx| in all three directions, otherwise \verb|dx(1:3)| gives the spacing in each of the three directions. However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio| (scalar or three elements), namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch: if scalar, then use the same number in all three directions, otherwise \verb|nSubP(1:3)| gives the number in each direction. If not using \verb|EdgyInt|, then must be odd so that there is/are centre-patch micro-grid point\slash planes in each patch. \item \verb|'nEdge'| (not yet implemented), \emph{optional}, default=1, for each patch, the number of face values set by interpolation at the face regions of each patch. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|'EdgyInt'|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right\slash top\slash bottom\slash front\slash back face-values from right\slash left\slash bottom\slash top\slash back\slash front next-to-face values. If false or omitted, then interpolate from centre-patch planes. \item \verb|'nEnsem'|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|'hetCoeffs'|, \emph{optional}, default empty. Supply a 3D or 4D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times m_y\times m_z\times n_c$, where $n_c$~is the number of different arrays of coefficients. For example, in heterogeneous diffusion, $n_c=3$ for the diffusivities in the \emph{three} different spatial directions (or $n_c=6$ for the diffusivity tensor). The coefficients are to be the same for each and every patch. However, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the $(1,1,1)$-point in each patch. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x\cdot m_y\cdot m_z$ and construct an ensemble of all $m_x\cdot m_y\cdot m_z$ phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities in $x,y,z$-directions, respectively, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x,y,z$ corresponding to the highest~\verb|nPatch| (if a tie, then chooses the rightmost of~$x,y,z$). A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|, \verb|patches.y|, and \verb|patches.z|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)| that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling---not yet implemented. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the $\verb|ordCC|\times 3$-array of weights for the inter-patch interpolation onto the right\slash top\slash front and left\slash bottom\slash back faces (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (8D) is $\verb|nSubP(1)| \times1 \times1 \times1 \times1 \times \verb|nPatch(1)| \times1 \times1$ array of the regular spatial locations~$x_{iI}$ of the microscale grid points in every patch. \item \verb|.y| (8D) is $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times1 \times \verb|nPatch(2)| \times1$ array of the regular spatial locations~$y_{jJ}$ of the microscale grid points in every patch. \item \verb|.z| (8D) is $1 \times1 \times \verb|nSubP(3)| \times1 \times1 \times1 \times1 \times \verb|nPatch(3)|$ array of the regular spatial locations~$z_{kK}$ of the microscale grid points in every patch. \item \verb|.ratio| $1\times 3$, only for macro-periodic conditions, are the size ratios of every patch. \item \verb|.nEdge| is, for each patch, the number of face values set by interpolation at the face regions of each patch. \item \verb|.le|, \verb|.ri|, \verb|.bo|, \verb|.to|, \verb|.ba|, \verb|.fr| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times (\verb|nSubP(3)|-1)\times n_c$ 4D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times (\verb|nSubP(3)|-1)\times n_c\times m_xm_ym_z$ 5D array of $m_xm_ym_z$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches3eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of heterogeneous wave') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches3 \item ode23 integrator \into patchSys3 \into user's PDE \item process results \end{enumerate} Set random heterogeneous coefficients of period two in each of the three directions. Crudely normalise by the harmonic mean so the macro-wave time scale is roughly one. \begin{matlab} %} mPeriod = [2 2 2]; cHetr = exp(0.9*randn([mPeriod 3])); cHetr = cHetr*mean(1./cHetr(:)) %{ \end{matlab} Establish global patch data struct to interface with a function coding a nonlinear `diffusion' \pde: to be solved on $[-\pi,\pi]^3$-periodic domain, with $5^3$~patches, spectral interpolation~($0$) couples the patches, each patch with micro-grid spacing~$0.22$ (relatively large for visualisation), and with $4^3$~points forming each patch. \begin{matlab} %} global patches patches = configPatches3(@heteroWave3,[-pi pi], 'periodic' ... , 5, 0, 0.22, mPeriod+2 ,'EdgyInt',true ... ,'hetCoeffs',cHetr); %{ \end{matlab} Set a wave initial state using auto-replication of the spatial grid, and as \cref{fig:configPatches3ic} shows. This wave propagates diagonally across space. Concatenate the two \(u,v\)-fields to be the two components of the fourth dimension. \begin{matlab} %} u0 = 0.5+0.5*sin(patches.x+patches.y+patches.z); v0 = -0.5*cos(patches.x+patches.y+patches.z)*sqrt(3); uv0 = cat(4,u0,v0); %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches3ic}initial field~$u(x,y,z,t)$ at time $t=0$ of the patch scheme applied to a heterogeneous wave~\pde: \cref{fig:configPatches3fin} plots the computed field at time $t=6$.} \includegraphics[scale=0.9]{configPatches3ic} \end{figure} Integrate in time to $t=6$ using standard functions. In Matlab \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is much quicker \cite[Fig.~4]{Maclean2020a}. \begin{matlab} %} disp('Simulate heterogeneous wave u_tt=div[C*grad(u)]') if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode23(@patchSys3,linspace(0,6),uv0(:)); else %disp('octave version is very slow for me') lsode_options('absolute tolerance',1e-4); lsode_options('relative tolerance',1e-4); [ts,us] = odeOcts(@patchSys3,[0 1 2],uv0(:)); end %{ \end{matlab} Animate the computed simulation to end with \cref{fig:configPatches3fin}. Use \verb|patchEdgeInt3| to obtain patch-face values in order to most easily reconstruct the array data structure. Replicate $x$, $y$, and~$z$ arrays to get individual spatial coordinates of every data point. Then, optionally, set faces to~\verb|nan| so the plot just shows patch-interior data. \begin{matlab} %} figure(1), clf, colormap(0.8*jet) xs = patches.x+0*patches.y+0*patches.z; ys = patches.y+0*patches.x+0*patches.z; zs = patches.z+0*patches.y+0*patches.x; if 1, xs([1 end],:,:,:)=nan; xs(:,[1 end],:,:)=nan; xs(:,:,[1 end],:)=nan; end;%option j=find(~isnan(xs)); %{ \end{matlab} In the scatter plot, these functions \verb|pix()| and \verb|col()| map the $u$-data values to the size of the dots and to the colour of the dots, respectively. \begin{matlab} %} pix = @(u) 15*abs(u)+7; col = @(u) sign(u).*abs(u); %{ \end{matlab} Loop to plot at each and every time step. \begin{matlab} %} for i = 1:length(ts) uv = patchEdgeInt3(us(i,:)); u = uv(:,:,:,1,:); for p=1:2 subplot(1,2,p) if (i==1)| exist('OCTAVE_VERSION','builtin') scat(p) = scatter3(xs(j),ys(j),zs(j),'filled'); axis equal, caxis(col([0 1])), view(45-5*p,25) xlabel('x'), ylabel('y'), zlabel('z') title('view stereo pair cross-eyed') end % in matlab just update values set(scat(p),'CData',col(u(j)) ... ,'SizeData',pix((8+xs(j)-ys(j)+zs(j))/6+0*u(j))); legend(['time = ' num2str(ts(i),'%4.2f')],'Location','north') end %{ \end{matlab} Optionally save the initial condition to graphic file for \cref{fig:configPatches2ic}, and optionally save the last plot. \begin{matlab} %} if i==1, ifOurCf2eps([mfilename 'ic']) disp('Type space character to animate simulation') pause else pause(0.05) end end% i-loop over all times ifOurCf2eps([mfilename 'fin']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches3fin}field~$u(x,y,z,t)$ at time $t=6$ of the patch scheme applied to the heterogeneous wave~\pde\ with initial condition in \cref{fig:configPatches3ic}.} \includegraphics[scale=0.9]{configPatches3fin} \end{figure} Upon finishing execution of the example, exit this function. \begin{matlab} %} return end%if no arguments %{ \end{matlab} \IfFileExists{../Patch/heteroWave3.m}{\input{../Patch/heteroWave3.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle'); %test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % too flexible addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); %addParameter(p,'nCore',1,@isnumeric); % not yet implemented parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; %patches.nCore = p.Results.nCore; %{ \end{matlab} Initially duplicate parameters for three space dimensions as needed. \begin{matlab} %} if numel(Xlim)==2, Xlim = repmat(Xlim,1,3); end if numel(nPatch)==1, nPatch = repmat(nPatch,1,3); end if numel(dx)==1, dx = repmat(dx,1,3); end if numel(nSubP)==1, nSubP = repmat(nSubP,1,3); end %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'first pair of Xlim must be ordered increasing') assert(Xlim(3)<Xlim(4) ... ,'second pair of Xlim must be ordered increasing') assert(Xlim(5)<Xlim(6) ... ,'third pair of Xlim must be ordered increasing') assert(patches.nEdge==1 ... ,'multi-edge-value interp not yet implemented') assert(all(2*patches.nEdge<nSubP) ... ,'too many edge values requested') %if patches.nCore>1 % warning('nCore>1 not yet tested in this version') % end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| vector. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and subsequently set corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} We allow different macroscale domain conditions in the different directions. But for the moment do not allow periodic to be mixed with the others (as the interpolation mechanism is different code)---hence why we choose \verb|periodic| be seven characters, whereas the others are eight characters. The different conditions are coded in different rows of \verb|Dom.type|, so we duplicate the string if only one row specified. \begin{matlab} %} if size(Dom.type,1)==1, Dom.type=repmat(Dom.type,3,1); end %{ \end{matlab} Check what is and is not specified, and provide default of Dirichlet boundaries if no \verb|bcOffset| specified when needed. Do so for all three directions independently. \begin{matlab} %} patches.periodic=false; for p=1:3 switch Dom.type(p,:) case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end msg=' not available for Dom.type = periodic'; if isfield(Dom,'X'), warning(['X' msg]), end if isfield(Dom,'Y'), warning(['Y' msg]), end if isfield(Dom,'Z'), warning(['Z' msg]), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=zeros(2,3); end % for mixed with usergiven, following should still work if numel(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,3); end if numel(Dom.bcOffset)==3 Dom.bcOffset=repmat(Dom.bcOffset(:)',2,1); end msg=' not available for Dom.type = equispace or chebyshev'; if (p==1)& isfield(Dom,'X'), warning(['X' msg]), end if (p==2)& isfield(Dom,'Y'), warning(['Y' msg]), end if (p==3)& isfield(Dom,'Z'), warning(['Z' msg]), end case 'usergiven' % if isfield(Dom,'bcOffset') % warning('bcOffset not available for usergiven Dom.type'), end msg=' required for Dom.type = usergiven'; if p==1, assert(isfield(Dom,'X'),['X' msg]), end if p==2, assert(isfield(Dom,'Y'),['Y' msg]), end if p==3, assert(isfield(Dom,'Z'),['Z' msg]), end otherwise error([Dom.type 'is unknown Dom.type']) end%switch Dom.type end%for p %{ \end{matlab} \subsection{The code to make patches} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun = fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ or (not yet??)~$-1$. \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC| do interpolation based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag = mod(ordCC,2); assert(patches.stag==0,'staggered not yet implemented??') ordCC = ordCC+patches.stag; patches.ordCC = ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(all(mod(nPatch,2)==0), ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} \paragraph{Set the macro-distribution of patches} Third, set the centre of the patches in the macroscale grid of patches. Loop over the coordinate directions, setting the distribution into~\verb|Q| and finally assigning to array of corresponding direction. \begin{matlab} %} for q=1:3 qq=2*q-1; %{ \end{matlab} Distribution depends upon \verb|Dom.type|: \begin{matlab} %} switch Dom.type(q,:) %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' Q=linspace(Xlim(qq),Xlim(qq+1),nPatch(q)+1); DQ=Q(2)-Q(1); Q=Q(1:nPatch(q))+diff(Q)/2; pEI=patches.EdgyInt;% abbreviation if pre2023, dx(q) = ratio(q)*DQ/(nSubP(q)-1-pEI)*(2-pEI); else ratio(q) = dx(q)/DQ*(nSubP(q)-1-pEI)/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. \begin{matlab} %} case 'equispace' Q=linspace(Xlim(qq)+((nSubP(q)-1)/2-Dom.bcOffset(qq))*dx(q) ... ,Xlim(qq+1)-((nSubP(q)-1)/2-Dom.bcOffset(qq+1))*dx(q) ... ,nPatch(q)); DQ=diff(Q(1:2)); width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx; if DQ<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(Q_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'. \footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatially analogue of the `christmas tree' of projective integration and its integration to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx(q)*(nSubP(q)-1)/2; Q1 = Xlim(1)+halfWidth-Dom.bcOffset(qq)*dx(q); Q2 = Xlim(2)-halfWidth+Dom.bcOffset(qq+1)*dx(q); % Q = (Q1+Q2)/2-(Q2-Q1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. \begin{matlab} %} width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx(q); for b=0:2:nPatch(q)-2 DQmin=(Q2-Q1-b*width)/2*( 1-cos(pi/(nPatch(q)-b-1)) ); if DQmin>width, break, end end%for if DQmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end%if %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} Q =[ Q1+(0:b/2-1)*width ... (Q1+Q2)/2-(Q2-Q1-b*width)/2*cos(linspace(0,pi,nPatch(q)-b)) ... Q2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just ensure it has the correct shape of a row. \begin{matlab} %} case 'usergiven' if q==1, Q = reshape(Dom.X,1,[]); end if q==2, Q = reshape(Dom.Y,1,[]); end if q==3, Q = reshape(Dom.Z,1,[]); end end%switch Dom.type %{ \end{matlab} Assign \(Q\)-coordinates to the correct spatial direction. At this stage they are all rows. \begin{matlab} %} if q==1, X=Q; end if q==2, Y=Q; end if q==3, Z=Q; end end%for q %{ \end{matlab} \paragraph{Construct the micro-grids} Construct the microscale in each patch. Reshape the grid to be 8D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} nSubP = reshape(nSubP,1,3); % force to be row vector assert(patches.EdgyInt | all(mod(nSubP,2)==1), ... 'configPatches3: nSubP must be odd') i0 = (nSubP(1)+1)/2; patches.x = reshape( dx(1)*(-i0+1:i0-1)'+X ... ,nSubP(1),1,1,1,1,nPatch(1),1,1); i0 = (nSubP(2)+1)/2; patches.y = reshape( dx(2)*(-i0+1:i0-1)'+Y ... ,1,nSubP(2),1,1,1,1,nPatch(2),1); i0 = (nSubP(3)+1)/2; patches.z = reshape( dx(3)*(-i0+1:i0-1)'+Z ... ,1,1,nSubP(3),1,1,1,1,nPatch(3)); %{ \end{matlab} \paragraph{Pre-compute weights for macro-periodic} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if patches.periodic ratio = reshape(ratio,1,3); % force to be row vector patches.ratio = ratio; if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end%if end%if patches.periodic %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-face\slash centre realisations \verb|1:nEnsem| are to interpolate to left-face~\verb|le|, and \item the left-face\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Similarly for bottom-face\slash centre interpolation to top-face via~\verb|to|, top-face\slash centre interpolation to bottom-face via~\verb|bo|, back-face\slash centre interpolation to front-face via~\verb|fr|, and front-face\slash centre interpolation to back-face via~\verb|ba|. The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt3()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; patches.bo = 1:nE; patches.to = 1:nE; patches.ba = 1:nE; patches.fr = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 4D, then the higher-dimensions are reshaped into the 4th dimension. \begin{matlab} %} if ~isempty(cs) [mx,my,mz,nc] = size(cs); nx = nSubP(1); ny = nSubP(2); nz = nSubP(3); cs = repmat(cs,nSubP); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,1:ny-1,1:nz-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_xm_ym_z$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx*my*mz; patches.cs = nan(nx-1,ny-1,nz-1,nc,mx,my,mz); for k = 1:mz ks = (k:k+nz-2); for j = 1:my js = (j:j+ny-2); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,:,:,i,j,k) = cs(is,js,ks,:); end end end patches.cs = reshape(patches.cs,nx-1,ny-1,nz-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right\slash bottom\slash top\slash front\slash back realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} mmx=(0:mx-1)'; mmy=0:my-1; mmz=shiftdim(0:mz-1,-1); le = mod(mmx+mod(nx-2,mx),mx)+1; patches.le = reshape( le+mx*(mmy+my*mmz) ,[],1); ri = mod(mmx-mod(nx-2,mx),mx)+1; patches.ri = reshape( ri+mx*(mmy+my*mmz) ,[],1); bo = mod(mmy+mod(ny-2,my),my)+1; patches.bo = reshape( 1+mmx+mx*(bo-1+my*mmz) ,[],1); to = mod(mmy-mod(ny-2,my),my)+1; patches.to = reshape( 1+mmx+mx*(to-1+my*mmz) ,[],1); ba = mod(mmz+mod(nz-2,mz),mz)+1; patches.ba = reshape( 1+mmx+mx*(mmy+my*(ba-1)) ,[],1); fr = mod(mmz-mod(nz-2,mz),mz)+1; patches.fr = reshape( 1+mmx+mx*(mmy+my*(fr-1)) ,[],1); %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. \todo{Need to justify this and the arbitrary threshold more carefully??} \begin{matlab} %} if prod(ratio)*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel spmd %{ \end{matlab} Second, decide which dimension is to be sliced among parallel workers (for the moment, do not consider slicing the ensemble). Choose the direction of most patches, biased towards the last. \begin{matlab} %} [~,pari]=max(nPatch+0.01*(1:3)); patches.codist=codistributor1d(5+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the appropriate coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); case 2, patches.y=codistributed(patches.y,patches.codist); case 3, patches.z=codistributed(patches.z,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
monoscaleDiffEquil2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/monoscaleDiffEquil2.m
6,300
utf_8
b5bff0521417654313c3c19b2d649993
% Solve for steady state of monoscale heterogeneous % diffusion in 2D on patches as an example application, from % section 5.2 of Freese, 2211.13731. AJR, 31 Jan 2023 %!TEX root = doc.tex %{ \section{\texttt{monoscaleDiffEquil2}: equilibrium of a 2D monoscale heterogeneous diffusion via small patches} \label{sec:monoscaleDiffEquil2} Here we find the steady state~\(u(x,y)\), see \cref{fig:monoscaleDiffEquil2}, to the heterogeneous \pde (inspired by Freese et al.\footnote{ \protect \url{http://arxiv.org/abs/2211.13731}} \S5.2) \begin{equation*} u_t=A(x,y)\grad\grad u-f, \end{equation*} on domain \([-1,1]^2\) with Dirichlet BCs, for coefficient pseudo-diffusion matrix \begin{equation*} A:=\begin{bmatrix} 2& a\\a & 2 \end{bmatrix} \quad \text{with } a:=\sign(xy) \text{ or }a:=\sin(\pi x)\sin(\pi y), \end{equation*} and for forcing~\(f(x,y)\) such that the exact equilibrium is \(u = x\big(1-e^{1-|x|}\big) y \big(1-e^{1-|y|}\big)\). But for simplicity, let's obtain \(u = x(1-x^2) y(1-y^2)\) for which we code~\(f\) later---as determined by this Reduce algebra code. \begin{figure} \centering\begin{tabular}{@{}c@{\ }c@{}} \parbox[t]{10em}{\caption{\label{fig:monoscaleDiffEquil2}% Equilibrium of the macroscale diffusion problem of Freese with Dirichlet zero-value boundary conditions (\cref{sec:monoscaleDiffEquil2}). The patch size is not small so we can see the patches.}} & \def\extraAxisOptions{label shift={-1.5ex}} \raisebox{-\height}{\input{Figs/monoscaleDiffEquil2}} \end{tabular} \end{figure} %let { df(sign(~x),~x)=>0 % , df(abs(~x),~x)=>sign(x) % , abs(~x)^2=>abs(x), sign(~x)^2=>1 }; %u:=x*(1-exp(1-abs(x)))*y*(1-exp(1-abs(y))); \begin{verbatim} on gcd; factor sin; u:=x*(1-x^2)*y*(1-y^2); a:=sin(pi*x)*sin(pi*y); f:=2*df(u,x,x)+2*a*df(u,x,y)+2*df(u,y,y); \end{verbatim} Clear, and initiate globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot %{ \end{matlab} \paragraph{Patch configuration} Initially use \(7\times7\) patches in the square \((-1,1)^2\). For continuous forcing we may have small patches of any reasonable microgrid spacing---here the microgrid error dominates. \begin{matlab} %} nPatch = 7 nSubP = 5 dx = 0.03 %{ \end{matlab} Specify some order of interpolation. \begin{matlab} %} configPatches2(@monoscaleDiffForce2,[-1 1 -1 1],'equispace' ... ,nPatch ,4 ,dx ,nSubP ,'EdgyInt',true ); %{ \end{matlab} Compute the time-constant coefficient and time-constant forcing, and store them in struct \verb|patches| for access by the microcode of \cref{sec:monoscaleDiffForce2}. \begin{matlab} %} x=patches.x; y=patches.y; patches.A = sin(pi*x).*sin(pi*y); patches.fu = ... +2*patches.A.*(9*x.^2.*y.^2-3*x.^2-3*y.^2+1) ... +12*x.*y.*(x.^2+y.^2-2); %{ \end{matlab} By construction, the \pde\ has analytic solution \begin{matlab} %} uAnal = x.*(1-x.^2).*y.*(1-y.^2); %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, and the number of unknowns is then its length. \begin{matlab} %} u0 = zeros(nSubP,nSubP,1,1,nPatch,nPatch); u0([1 end],:,:) = nan; u0(:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (using \verb|optimoptions| to omit its trace information), and give magnitudes. \begin{matlab} %} tic; uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solnTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) normError = norm(uSoln-uAnal(patches.i)) %{ \end{matlab} Store the solution vector into the patches, and interpolate, but have not bothered to set boundary values so they stay NaN from the interpolation. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt2(u0); %{ \end{matlab} \paragraph{Draw solution profile} Separate patches with NaNs, then reshape arrays to suit 2D space surface plots. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) x(end+1,:,:)=nan; u0(end+1,:,:)=nan; y(:,end+1,:)=nan; u0(:,end+1,:)=nan; u = reshape(permute(squeeze(u0),[1 3 2 4]), [numel(x) numel(y)]); %{ \end{matlab} Draw the patch solution surface, with boundary-values omitted as already~\verb|NaN| by not bothering to set them. \begin{matlab} %} mesh(x(:),y(:),u'); view(60,55) xlabel('space $x$'), ylabel('space $y$'), zlabel('$u(x,y)$') ifOurCf2tex(mfilename)%optionally save %{ \end{matlab} \subsection{\texttt{monoscaleDiffForce2()}: microscale discretisation inside patches of forced diffusion PDE} \label{sec:monoscaleDiffForce2} This function codes the lattice heterogeneous diffusion of the \pde\ inside the patches. For 6D input arrays~\verb|u|, \verb|x|, and~\verb|y|, computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. \begin{matlab} %} function ut = monoscaleDiffForce2(t,u,patches) dx = diff(patches.x(2:3)); % x space step dy = diff(patches.y(2:3)); % y space step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} Set Dirichlet boundary value of zero around the square domain. \begin{matlab} %} u( 1 ,:,:,:, 1 ,:)=0; % left edge of left patches u(end,:,:,:,end,:)=0; % right edge of right patches u(:, 1 ,:,:,:, 1 )=0; % bottom edge of bottom patches u(:,end,:,:,:,end)=0; % top edge of top patches %{ \end{matlab} Or code some function variation around the boundary, such as a function of~\(y\) on the left boundary, and a (constant) function of~\(x\) at the top boundary. \begin{matlab} %} if 0 u(1,:,:,:,1,:)=(1+patches.y)/2; % left edge of left patches u(:,end,:,:,:,end)=1; % top edge of top patches end%if %{ \end{matlab} Compute the time derivatives via stored forcing and coefficients. Easier to code by conflating the last four dimensions into the one~\verb|,:|. \begin{matlab} %} ut(i,j,:) ... = 2*diff(u(:,j,:),2,1)/dx^2 +2*diff(u(i,:,:),2,2)/dy^2 ... +2*patches.A(i,j,:).*( u(i+1,j+1,:) -u(i-1,j+1,:) ... -u(i+1,j-1,:) +u(i-1,j-1,:) )/(4*dx*dy) ... -patches.fu(i,j,:); end%function monoscaleDiffForce2 %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
randAdvecDiffEquil2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/randAdvecDiffEquil2.m
6,862
utf_8
8ec5f7b765db0f9321d4903f46912f15
% Solve for steady state of two-scale heterogeneous % diffusion in 2D on patches as an example application % involving Neumann boundary conditions, from section 6.2 of % Bonizzoni, 2211.15221. AJR, 1 Feb 2023 %!TEX root = doc.tex %{ \section{\texttt{randAdvecDiffEquil2}: equilibrium of a 2D random heterogeneous advection-diffusion via small patches} \label{sec:randAdvecDiffEquil2} Here we find the steady state~\(u(x,y)\) of the heterogeneous \pde\ (inspired by Bonizzoni et al.\footnote{ \protect \url{http://arxiv.org/abs/2211.15221}} \S6.2) \begin{equation*} u_t=\mu_1\delsq u -(\cos\mu_2,\sin\mu_2)\cdot\grad u -u +f\,, \end{equation*} on domain \([0,1]^2\) with Neumann boundary conditions, for microscale random pseudo-diffusion and pseudo-advection coefficients, \(\mu_1(x,y)\in[0.01,0.1]\)\footnote{More interesting microscale structure arises here for~\(\mu_1\) a factor of three smaller.} and \(\mu_2(x,y)\in[0,2\pi)\), and for forcing \begin{equation*} f(x,y):=\exp\left[-\frac{(x-\mu_3)^2+(y-\mu_4)^2}{\mu_5^2}\right], \end{equation*} smoothly varying in space for fixed \(\mu_3, \mu_4 \in [0.25,0.75]\) and \(\mu_5 \in [0.1,0.25]\). The above system is dominantly diffusive for lengths scales \(\ell<0.01 = \min\mu_1\). Due to the randomness, we get different solutions each execution of this code. \cref{fig:randAdvecDiffEquil2} plots one example. A physical interpretation of the solution field is confounded because the problem is pseudo-advection-diffusion due to the varying coefficients being outside the \(\grad\)~operator. \begin{figure} \centering\caption{\label{fig:randAdvecDiffEquil2}% Equilibrium of the macroscale diffusion problem of Bonizzoni et al.\ with Neumann boundary conditions of zero (\cref{sec:randAdvecDiffEquil2}). Here the patches have a equispaced spatial distribution. The microscale periodicity, and hence the patch size, is chosen large enough to see within.} \includegraphics[scale=0.8]{Figs/randAdvecDiffEquil2} \end{figure} Clear, and initiate globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot %{ \end{matlab} First establish the microscale heterogeneity has micro-period \verb|mPeriod| on the spatial lattice. Then \verb|configPatches2| replicates the heterogeneity to fill each patch. \begin{matlab} %} mPeriod = 4 mu1 = 0.01*10.^rand(mPeriod) mu2 = 2*pi*rand(mPeriod) cs = cat(3,mu1,cos(mu2),sin(mu2)); meanDiffAdvec=squeeze(mean(mean(cs))) %{ \end{matlab} Set the periodicity~\(\epsilon\), here big enough so we can see the patches, and other microscale parameters. \begin{matlab} %} epsilon = 0.04 dx = epsilon/mPeriod nPeriodsPatch = 1 % any integer nSubP = nPeriodsPatch*mPeriod+2 % for edgy int %{ \end{matlab} \paragraph{Patch configuration} Say use \(7\times7\) patches in \((0,1)^2\), fourth order interpolation, either `equispace' or `chebyshev', and the offset for Neumann boundary conditions: \begin{matlab} %} nPatch = 7 Dom.type= 'equispace'; Dom.bcOffset = 0.5; configPatches2(@randAdvecDiffForce2,[0 1],Dom ... ,nPatch ,4 ,dx ,nSubP ,'EdgyInt',true ,'hetCoeffs',cs ); %{ \end{matlab} Compute the time-constant forcing, and store in struct \verb|patches| for access by the microcode of \cref{sec:randAdvecDiffForce2}. \begin{matlab} %} mu = [ 0.25+0.5*rand(1,2) 0.1+0.15*rand ] patches.fu = exp(-((patches.x-mu(1)).^2 ... +(patches.y-mu(2)).^2)/mu(3)^2); %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, store in global patches for access by \verb|theRes|, and the number of unknowns is then its number of elements. \begin{matlab} %} u0 = zeros(nSubP,nSubP,1,1,nPatch,nPatch); u0([1 end],:,:) = nan; u0(:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (and using \verb|optimoptions| to omit trace information), via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}). \begin{matlab} %} tic; uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solnTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) %{ \end{matlab} Store the solution vector into the patches, and interpolate, but have not bothered to set boundary values so they stay NaN from the interpolation. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt2(u0); %{ \end{matlab} \paragraph{Draw solution profile} Separate patches with NaNs, then reshape arrays to suit 2D space surface plots. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) patches.x(end+1,:,:)=nan; u0(end+1,:,:)=nan; patches.y(:,end+1,:)=nan; u0(:,end+1,:)=nan; u = reshape(permute(squeeze(u0),[1 3 2 4]) ... , [numel(patches.x) numel(patches.y)]); %{ \end{matlab} Draw the patch solution surface, with boundary-values omitted as already~\verb|NaN| by not bothering to set them. \begin{matlab} %} mesh(patches.x(:),patches.y(:),u'); view(60,55) xlabel('space $x$'), ylabel('space $y$'), zlabel('$u(x,y)$') ifOurCf2eps(mfilename) %optionally save plot %{ \end{matlab} \subsection{\texttt{randAdvecDiffForce2()}: microscale discretisation inside patches of forced diffusion PDE} \label{sec:randAdvecDiffForce2} This function codes the lattice heterogeneous diffusion of the \pde\ inside the patches. For 6D input arrays~\verb|u|, \verb|x|, and~\verb|y|, computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. \begin{matlab} %} function ut = randAdvecDiffForce2(t,u,patches) dx = diff(patches.x(2:3)); % x space step dy = diff(patches.y(2:3)); % y space step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} Set Neumann boundary condition of zero derivative around the square domain: that is, the edge value equals the next-to-edge value. \begin{matlab} %} u( 1 ,:,:,:, 1 ,:)=u( 2 ,:,:,:, 1 ,:); % left edge of left patches u(end,:,:,:,end,:)=u(end-1,:,:,:,end,:); % right edge of right patches u(:, 1 ,:,:,:, 1 )=u(:, 2 ,:,:,:, 1 ); % bottom edge of bottom patches u(:,end,:,:,:,end)=u(:,end-1,:,:,:,end); % top edge of top patches %{ \end{matlab} Compute the time derivatives via stored forcing and coefficients. Easier to code by conflating the last four dimensions into the one~\verb|,:|. \begin{matlab} %} ut(i,j,:) ... = patches.cs(i,j,1).*(diff(u(:,j,:),2,1)/dx^2 ... +diff(u(i,:,:),2,2)/dy^2)... -patches.cs(i,j,2).*(u(i+1,j,:)-u(i-1,j,:))/(2*dx) ... -patches.cs(i,j,3).*(u(i,j+1,:)-u(i,j-1,:))/(2*dy) ... -u(i,j,:) +patches.fu(i,j,:); end%function randAdvecDiffForce2 %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
twoscaleDiffEquil2.m
.m
EquationFreeGit-master/SandpitPlay/BCs/twoscaleDiffEquil2.m
5,848
utf_8
b5a2f015f12f802529041681a6493474
% Solve for steady state of twoscale heterogeneous diffusion % in 2D on patches as an example application, from section % 5.3.1 of Freese, 2211.13731. AJR, 31 Jan 2023 %!TEX root = doc.tex %{ \section{\texttt{twoscaleDiffEquil2}: equilibrium of a 2D twoscale heterogeneous diffusion via small patches} \label{sec:twoscaleDiffEquil2} Here we find the steady state~\(u(x,y)\) to the heterogeneous \pde\ (inspired by Freese et al.\footnote{ \protect \url{http://arxiv.org/abs/2211.13731}} \S5.3.1) \begin{equation*} u_t=A(x,y)\grad\grad u-f, \end{equation*} on domain \([-1,1]^2\) with Dirichlet BCs, for coefficient `diffusion' matrix, varying with period~\(2\epsilon\) on the microscale \(\epsilon=2^{-7}\), of \begin{equation*} A:=\begin{bmatrix} 2& a\\a & 2 \end{bmatrix} \quad \text{with } a:=\sin(\pi x/\epsilon)\sin(\pi y/\epsilon), \end{equation*} and for forcing \(f:=(x+\cos3\pi x)y^3\). \begin{figure} \centering\begin{tabular}{@{}c@{\ }c@{}} \parbox[t]{10em}{\caption{\label{fig:twoscaleDiffEquil2}% Equilibrium of the multiscale diffusion problem of Freese with Dirichlet zero-value boundary conditions (\cref{sec:twoscaleDiffEquil2}). The patch size is not small so we can see the patches and the sub-patch grid. The solution~\(u(x,y)\) is boringly smooth.}} & \def\extraAxisOptions{label shift={-1.5ex}} \raisebox{-\height}{\input{Figs/twoscaleDiffEquil2}} \end{tabular} \end{figure} Clear, and initiate globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plot %{ \end{matlab} First establish the microscale heterogeneity has micro-period \verb|mPeriod| on the spatial lattice. Set the phase of the heterogeneity so that each patch centre is a point of symmetry of the diffusivity. Then \verb|configPatches2| replicates the heterogeneity to fill each patch. \begin{matlab} %} mPeriod = 6 z = (0.5:mPeriod)'/mPeriod; A = sin(2*pi*z).*sin(2*pi*z'); %{ \end{matlab} Set the periodicity, via~\(\epsilon\), and other microscale parameters. \begin{matlab} %} nPeriodsPatch = 1 % any integer epsilon = 2^(-6) % 4 or 5 to see the patches dx = (2*epsilon)/mPeriod nSubP = nPeriodsPatch*mPeriod+2 % for edgy int %{ \end{matlab} \paragraph{Patch configuration} Say use \(7\times7\) patches in \((-1,1)^2\), fourth order interpolation, and either `equispace' or `chebyshev': \begin{matlab} %} nPatch = 7 configPatches2(@twoscaleDiffForce2,[-1 1],'equispace' ... ,nPatch ,4 ,dx ,nSubP ,'EdgyInt',true ,'hetCoeffs',A ); %{ \end{matlab} Compute the time-constant forcing, and store in struct \verb|patches| for access by the microcode of \cref{sec:twoscaleDiffForce2}. \begin{matlab} %} x = patches.x; y = patches.y; patches.fu = 100*(x+cos(3*pi*x)).*y.^3; %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, and the number of unknowns is then its length. \begin{matlab} %} u0 = zeros(nSubP,nSubP,1,1,nPatch,nPatch); u0([1 end],:,:) = nan; u0(:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (and using \verb|optimoptions| to omit trace information), via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}), and give magnitudes. \begin{matlab} %} tic; uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solveTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) %{ \end{matlab} Store the solution vector into the patches, and interpolate, but have not bothered to set boundary values so they stay NaN from the interpolation. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt2(u0); %{ \end{matlab} \paragraph{Draw solution profile} Separate patches with NaNs, then reshape arrays to suit 2D space surface plots. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) x(end+1,:,:)=nan; u0(end+1,:,:)=nan; y(:,end+1,:)=nan; u0(:,end+1,:)=nan; u = reshape(permute(squeeze(u0),[1 3 2 4]), [numel(x) numel(y)]); %{ \end{matlab} Draw the patch solution surface, with boundary-values omitted as already~\verb|NaN| by not bothering to set them. \begin{matlab} %} mesh(x(:),y(:),u'); view(60,55) xlabel('space $x$'), ylabel('space $y$'), zlabel('$u(x,y)$') ifOurCf2tex(mfilename)%optionally save %{ \end{matlab} \subsection{\texttt{twoscaleDiffForce2()}: microscale discretisation inside patches of forced diffusion PDE} \label{sec:twoscaleDiffForce2} This function codes the lattice heterogeneous diffusion of the \pde\ inside the patches. For 6D input arrays~\verb|u|, \verb|x|, and~\verb|y|, computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. \begin{matlab} %} function ut = twoscaleDiffForce2(t,u,patches) dx = diff(patches.x(2:3)); % x space step dy = diff(patches.y(2:3)); % y space step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch ut = nan+u; % preallocate output array %{ \end{matlab} Set Dirichlet boundary value of zero around the square domain. \begin{matlab} %} u( 1 ,:,:,:, 1 ,:)=0; % left edge of left patches u(end,:,:,:,end,:)=0; % right edge of right patches u(:, 1 ,:,:,:, 1 )=0; % bottom edge of bottom patches u(:,end,:,:,:,end)=0; % top edge of top patches %{ \end{matlab} Compute the time derivatives via stored forcing and coefficients. Easier to code by conflating the last four dimensions into the one~\verb|,:|. \begin{matlab} %} ut(i,j,:) ... = 2*diff(u(:,j,:),2,1)/dx^2 +2*diff(u(i,:,:),2,2)/dy^2 ... +2*patches.cs(i,j).*( u(i+1,j+1,:) -u(i-1,j+1,:) ... -u(i+1,j-1,:) +u(i-1,j-1,:) )/(4*dx*dy) ... -patches.fu(i,j,:); end%function twoscaleDiffForce2 %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchSys1.m
.m
EquationFreeGit-master/SandpitPlay/BCs/patchSys1.m
3,474
utf_8
255dbcfbe2dcb47cbf775fe5a41f94bd
% patchSys1() provides an interface to time integrators % for the dynamics on patches coupled across space. The % system must be a smooth lattice system such as PDE % discretisations. AJR, Nov 2017 -- Feb 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchSys1()}: interface 1D space to time integrators} \label{sec:patchSys1} To simulate in time with 1D spatial patches we often need to interface a user's time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function provides an interface. It mostly assumes that the sub-patch structure is \emph{smooth enough} so that the patch centre-values are sensible macroscale variables, and patch edge values are determined by macroscale interpolation of the patch-centre or edge values. Nonetheless, microscale heterogeneous systems may be accurately simulated with this function via appropriate interpolation. Communicate patch-design variables (\cref{sec:configPatches1}) either via the global struct~\verb|patches| or via an optional third argument (except that this last is required for parallel computing of \verb|spmd|). \begin{matlab} %} function dudt=patchSys1(t,u,patches,varargin) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP|\times \verb|nPatch|$ grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches1()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| that computes the time derivatives on the patchy lattice. The array~\verb|u| has size $\verb|nSubP| \times \verb|nVars| \times \verb|nEnsem| \times \verb|nPatch|$. Time derivatives should be computed into the same sized array, then herein the patch edge values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the spatial locations~$x_{i}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale. \end{itemize} \item \verb|varargin| is arbitrary number of parameters to be passed onto the users time-derivative function as specified in configPatches1. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Reshape the fields~\verb|u| as a 4D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt1} describes \verb|patchEdgeInt1()|. \begin{matlab} %} sizeu = size(u); u = patchEdgeInt1(u,patches); %{ \end{matlab} Ask the user function for the time derivatives computed in the array, overwrite its edge values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt=patches.fun(t,u,patches,varargin{:}); dudt([1 end],:,:,:) = 0; dudt=reshape(dudt,sizeu); %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
projIntDMDExample1.m
.m
EquationFreeGit-master/SandpitPlay/ProjIntDMD/projIntDMDExample1.m
2,643
utf_8
cea35b451ac65ded69b367b6fb56ea1a
% Example of the time integration function projIntDMD() % on discretisation of nonlinear diffusion PDE. % AJR, Oct 2017 %!TEX root = doc.tex %{ \section{\texttt{projIntDMDExample1}: A first test of basic projective integration} \label{sec:ftbpi} \localtableofcontents Seek to simulate the nonlinear diffusion \pde\ \begin{equation*} \D tu=u\DD xu\quad \text{such that }u(\pm 1)=0, \end{equation*} with random positive initial condition. \cref{fig:pit1u} shows solutions are attracted to the parabolic \(u=a(t)(1-x^2)\) with slow algebraic decay \(\dot a=-2a^2\). \begin{figure}\centering \caption{\label{fig:pit1u}field \(u(x,t)\) tests basic projective integration.} \includegraphics[width=\linewidth]{pi1Example1u9} \end{figure} Set the number of interior points in the domain~\([-1,1]\), and the macroscale time-step. \begin{matlab} %} %function projIntDMDExample1 n=19 ts=0:1:6 %{ \end{matlab} Set the initial condition to parabola or some skewed random positive values. \begin{matlab} %} x=linspace(-1,1,n+2)'; %u0=(1-x.^2).*(1+1e-9*randn(n+2,1)); u0=rand(n+2,1).*(1-x.^2); %{ \end{matlab} Projectively integrate in time with: rank-two DMD projection; guessed microscale time-step but chosen so an integral number of micro-steps fits into a macro-step for comparison; and guessed transient time~\(0.4\) and \(7\)~micro-steps `on the slow manifold'. \begin{matlab} %} dt=2/n^2 [us,uss,tss]=projIntDMD(@dudt,u0,ts,2,dt,[0.5 4*dt]); %{ \end{matlab} Plot the macroscale predictions to draw \cref{fig:pit1u}. \begin{matlab} %} clf,plot(x,us,'o-') xlabel('space x'),ylabel('u(x,t)') %matlab2tikz('pi1Example1u.ltx','noSize',true) %print('-depsc2',['pi1Example1u' num2str(n)]) %{ \end{matlab} Also plot a surface of the microscale bursts as shown in \cref{fig:pit1micro}. \begin{figure}\centering \caption{\label{fig:pit1micro}field \(u(x,t)\) during each of the microscale bursts used in the projective integration.} \includegraphics[width=\linewidth]{pi1Example1micro9} \end{figure} \begin{matlab} %} %tss(end)=nan;% omit the last time point clf,mesh(tss,x,uss)%,'EdgeColor','none') ylabel('space x'),xlabel('time t'),zlabel('u(x,t)') view([40 30]) %print('-depsc2',['pi1Example1micro' num2str(n)]) %{ \end{matlab} End the main function (not needed for new enough Matlab). \begin{matlab} %} %end %{ \end{matlab} \paragraph{The nonlinear PDE discretisation} Code the simple centred difference discretisation of the nonlinear diffusion \pde\ with constant (usually zero) boundary values. \begin{matlab} %} function ut=dudt(t,u) n=length(u); dx=2/(n-1); j=2:n-1; ut=[0 u(j).*(u(j+1)-2*u(j)+u(j-1))/dx^2 0]; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
projIntDMDExplore2.m
.m
EquationFreeGit-master/SandpitPlay/ProjIntDMD/projIntDMDExplore2.m
2,944
utf_8
78117aa55dce93ef25d0520f2fbaf9d3
% Explore the time integration function projIntDMD() % on discretisation of a nonlinear diffusion PDE. % Test dependence of errors on macro-time-step. % AJR, Feb 2018 %!TEX root = doc.tex %{ \section{\texttt{projIntDMDExplore2}: explore effect of varying parameters} \label{sec:pi1eevp} \localtableofcontents Seek to simulate the nonlinear diffusion \pde\ \begin{equation*} \D tu=u\DD xu\quad \text{such that }u(\pm 1)=0, \end{equation*} with random positive initial condition. Set the number of interior points in the domain~\([-1,1]\), and the macroscale time-step. \begin{matlab} %} function projIntDMDExplore2 n=9 dt=2/n^2 ICNoise=0 %{ \end{matlab} Set micro-simulation parameters. Rank two is fine when starting on the slow manifold. Choose middle of the road transient and analysed time. \begin{matlab} %} rank=2 timeSteps=[0.2 0.2] %{ \end{matlab} Try integrating with macro time-steps up to this sort of magnitude. \begin{matlab} %} Ttot=9 %{ \end{matlab} Set the initial condition to parabola or some skewed random positive values. Without noise this initial condition is already on the slow manifold so only little reason for transient time. \begin{matlab} %} x=linspace(-1,1,n+2)'; u0=(0.5+ICNoise*rand(n+2,1)).*(1-x.^2); %{ \end{matlab} First find a reference solution of the microscale dynamics over all time, here stored in \verb|Uss|. \begin{matlab} %} [Us,Uss,Tss]=projIntDMD(@dudt,u0,[0 Ttot],2,dt,[0 Ttot]); %{ \end{matlab} Projectively integrate two steps in time with various parameters. But remember that \verb|projIntDMD| rounds \verb|timeSteps| etc to nearest multiple of~\verb|dt|, so some of the following is a little dodgy but should not matter for overall trend. \begin{matlab} %} Dts=0.1*[1 2 4 6 10 16 26] errs=[]; relerrs=[]; DTs=[]; for p=Dts [~,j]=min(abs(sum(timeSteps)+p-Tss)) ts=Tss(j)*(0:2) js=1+(j-1)*(0:2); [us,uss,tss]=projIntDMD(@dudt,u0,ts,rank,dt,timeSteps); %{ \end{matlab} Plot the macroscale predictions \begin{matlab} %} if 1 clf,plot(x,Uss(:,js),'o-',x,us,'x--') xlabel('space x'),ylabel('u(x,t)') pause(0.01) end %{ \end{matlab} Accumulate errors as function of time. \begin{matlab} %} err=sqrt(sum((us-Uss(:,js)).^2)) errs=[errs;err]; relerrs=[relerrs;err./sqrt(sum(Uss(:,js).^2))]; %{ \end{matlab} End the loop over parameters. \begin{matlab} %} end %{ \end{matlab} Plot errors \begin{matlab} %} loglog(Dts,errs(:,2:3),'o:') xlabel('projective time-step') ylabel('steps error') legend('one','two') grid matlab2tikz('pi1x2.ltx') %{ \end{matlab} End the main function (not needed for new enough Matlab). \begin{matlab} %} end %{ \end{matlab} \paragraph{The nonlinear PDE discretisation} Code the simple centred difference discretisation of the nonlinear diffusion \pde\ with constant (usually zero) boundary values. \begin{matlab} %} function ut=dudt(t,u) n=length(u); dx=2/(n-1); j=2:n-1; ut=[0 u(j).*(u(j+1)-2*u(j)+u(j-1))/dx^2 0]; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
projIntDMDPatches.m
.m
EquationFreeGit-master/SandpitPlay/ProjIntDMD/projIntDMDPatches.m
5,220
utf_8
dc589e422abbb92a08ec8450030743be
% Example of the time integration function projIntDMD() % on a patch simulation of Burgers PDE. % AJR, Oct 2017 %!TEX root = doc.tex %{ \section{\texttt{projIntDMDPatches}: Projective integration of patch scheme} \label{sec:pips} \localtableofcontents As an example of the use of projective integration, seek to simulate the nonlinear Burgers' \pde\ \begin{equation*} \D tu+cu\D xu=\DD xu\quad \text{for $2\pi$-periodic }u, \end{equation*} for \(c=30\), and with various initial conditions. Use a patch scheme \cite[]{Roberts06d} to only compute on part of space as shown in \autoref{fig:pit1psu}. \begin{figure} \centering \caption{\label{fig:pit1psu}field \(u(x,t)\) tests basic projective integration of a basic patch scheme of Burgers' \pde, from randomly corrupted initial conditions.} \includegraphics[width=\linewidth]{pi1PatchesU} \end{figure} Function header and variables needed by discrete patch scheme. \begin{matlab} %} function projIntDMDPatches global dx DX ratio j jp jm i I %{ \end{matlab} Set parameters of the patch scheme: the number of patches; number of micro-grid points within each patch; the patch size to macroscale ratio. \begin{matlab} %} nPatch=8 nSubP=11 ratio=0.1 %{ \end{matlab} The points in the microscale, sub-patch, grid are indexed by~\verb|i|, and \verb|I| is the index of the mid-patch value used for coupling patches. The macroscale patches are indexed by~\verb|j| and the neighbours by \verb|jp| and \verb|jm|. \begin{matlab} %} i=2:nSubP-1; % microscopic internal points for PDE I=round((nSubP+1)/2); % midpoint of each patch j=1:nPatch; jp=mod(j,nPatch)+1; jm=mod(j-2,nPatch)+1; % patch index %{ \end{matlab} Make the spatial grid of patches centred at~\(X_j\) and of half-size \(h=r\Delta X\). To suit Neumann boundary conditions on the patches make the micro-grid straddle the patch boundary by setting \(dx=2h/(n_\mu-2)\). In order for the microscale simulation to be stable, we should have \(dt\ll dx^2\). Then generate the microscale grid locations for all patches: \(x_{ij}\)~is the location of the \(i\)th~micro-point in the \(j\)th~patch. \begin{matlab} %} X=linspace(0,2*pi,nPatch+1); X=X(j); % patch mid-points DX=X(2)-X(1) % spacing of mid-patch points dx=2*ratio*DX/(nSubP-2) % micro-grid size dt=0.4*dx^2; % micro-time-step x=bsxfun(@plus,dx*(-I+1:I-1)',X); % micro-grids %{ \end{matlab} Set the initial condition of a sine wave with random perturbations, surrounded with entries for boundary values of each patch. \begin{matlab} %} u0=[nan(1,nPatch) 0.3*(1+sin(x(i,:)))+0.03*randn(size(x(i,:))) nan(1,nPatch)]; %{ \end{matlab} Set the desired macroscale time-steps over the time domain. \begin{matlab} %} ts=linspace(0,0.45,10) %{ \end{matlab} Projectively integrate in time with: \dmd\ projection of rank \(\verb|nPatch|+1\); guessed microscale time-step~\verb|dt|; and guessed numbers of transient and slow steps. \begin{matlab} %} [us,uss,tss]=projIntDMD(@dudt,u0(:),ts,nPatch+1,dt,[20 nPatch*2]); %{ \end{matlab} Plot the macroscale predictions to draw \autoref{fig:pit1psu}, in groups of five in a plot. \begin{matlab} %} figure(1),clf k=length(ts); ls=nan(5,ceil(k/5)); ls(1:k)=1:k; for k=1:size(ls,2) subplot(size(ls,2),1,k) plot(x(:),us(:,ls(:,k)),'.') ylabel('u(x,t)') legend(num2str(ts(ls(:,k))')) end xlabel('space x') %matlab2tikz('pi1Test1u.ltx','noSize',true) %print('-depsc2','pi1PatchesU') %{ \end{matlab} Also plot a surface of the microscale bursts as shown in \autoref{fig:piBurgersMicro}. \begin{figure} \centering \caption{\label{fig:piBurgersMicro}stereo pair of the field \(u(x,t)\) during each of the microscale bursts used in the projective integration.} \includegraphics[width=\linewidth]{pi1PatchesMicro} \end{figure} \begin{matlab} %} tss(end)=nan; %omit end time-point figure(2),clf for k=1:2, subplot(2,2,k) surf(tss,x(:),uss,'EdgeColor','none') ylabel('x'),xlabel('t'),zlabel('u(x,t)') axis tight, view(121-4*k,45) end %print('-depsc2','pi1PatchesMicro') %{ \end{matlab} End the main function (not needed for new enough Matlab). \begin{matlab} %} end %{ \end{matlab} \paragraph{Discretisation of Burgers PDE in coupled patches} Code the simple centred difference discretisation of the nonlinear Burgers' \pde, \(2\pi\)-periodic in space. \begin{matlab} %} function ut=dudt(t,u) global dx DX ratio j jp jm i I nPatch=j(end); u=reshape(u,[],nPatch); %{ \end{matlab} Compute differences of the mid-patch values. \begin{matlab} %} dmu=(u(I,jp)-u(I,jm))/2; % \mu\delta ddu=(u(I,jp)-2*u(I,j)+u(I,jm)); % \delta^2 dddmu=dmu(jp)-2*dmu(j)+dmu(jm); ddddu=ddu(jp)-2*ddu(j)+ddu(jm); %{ \end{matlab} Use these differences to interpolate fluxes on the patch boundaries and hence set the edge values on the patch \cite[]{Roberts06d}. \begin{matlab} %} u(end,j)=u(end-1,j)+(dx/DX)*(dmu+ratio*ddu ... -(dddmu*(1/6-ratio^2/2)+ddddu*ratio*(1/12-ratio^2/6))); u(1,j)=u(2,j) -(dx/DX)*(dmu-ratio*ddu ... -(dddmu*(1/6-ratio^2/2)-ddddu*ratio*(1/12-ratio^2/6))); %{ \end{matlab} Code Burgers' \pde\ in the interior of every patch. \begin{matlab} %} ut=(u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2 ... -30*u(i,j).*(u(i+1,j)-u(i-1,j))/(2*dx); ut=reshape([nan(1,nPatch);ut;nan(1,nPatch)] ,[],1); end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
projIntDMD.m
.m
EquationFreeGit-master/SandpitPlay/ProjIntDMD/projIntDMD.m
9,508
utf_8
48b56d75182b6b1f3285402fa2864144
% projIntDMD() is a basic projective integration of a % given system of stiff deterministic ODEs. AJR, Oct 2017 %!TEX root = doc.tex %{ \section{\texttt{projIntDMD()}} \label{sec:projIntDMD} \localtableofcontents This is a basic example of projective integration of a given system of stiff deterministic \ode{}s via \dmd, the Dynamic Mode Decomposition \cite[]{Kutz2016}. \begin{matlab} %} function [xs,xss,tss]=projIntDMD(fun,x0,Ts,rank,dt,timeSteps) %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|fun()| is a function such as \verb|dxdt=fun(t,x)| that computes the right-hand side of the \ode\ \(d\xv/dt=\fv(t,\xv)\) where \xv~is a column vector, say in \(\RR^n\) for \(n\geq1\)\,, \(t\)~is a scalar, and the result~\fv\ is a column vector in~\(\RR^n\). \item \verb|x0| is an \(n\)-vector of initial values at the time \verb|ts(1)|. If any entries in~\verb|x0| are~\verb|NaN|, then \verb|fun()| must cope, and only the non-\verb|NaN| components are projected in time. \item \verb|Ts| is a vector of times to compute the approximate solution, say in~\(\RR^\ell\) for \(\ell\geq2\)\,. \item \verb|rank| is the rank of the \dmd\ extrapolation over macroscale time-steps. Suspect \verb|rank| should be at least one more than the effective number of slow variables. \item \verb|dt| is the size of the microscale time-step. Must be small enough so that RK2 integration of the \ode{}s is stable. \item \verb|timeSteps| is a two element vector: \begin{itemize} \item \verb|timeSteps(1)| is the time thought to be needed for microscale simulation to reach the slow manifold; \item \verb|timeSteps(2)| is the subsequent time which \dmd\ analyses to model the slow manifold (must be longer than \(\verb|rank|\cdot\verb|dt|\)). \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|xs|, \(n\times\ell\) array of approximate solution vector at the specified times (the transpose of what \Matlab\ integrators do!) \item \verb|xss|, optional, \(n\times\text{big}\) array of the microscale simulation bursts---separated by NaNs for possible plotting. \item \verb|tss|, optional, \(1\times\text{big}\) vector of times corresponding to the columns of~\verb|xss|. \end{itemize} Compute the time-steps and create storage for outputs. \begin{matlab} %} DT=diff(Ts); n=length(x0); xs=nan(n,length(Ts)); xss=[];tss=[]; %{ \end{matlab} If any~\verb|x0| are \verb|NaN|, then assume the time derivative routine can cope, and here we just exclude these from \dmd\ projection and from any error estimation. This allows a user to have space in the solutions for breaks in the data vector (that, for example, may be filled in with boundary values for a \pde\ discretisation). \begin{matlab} %} j=find(~isnan(x0)); %{ \end{matlab} If either of the timeSteps are non-integer valued, then assume they are both times, instead of micro-time-steps, so set the number of time-steps accordingly (multiples of~\verb|dt|). \begin{matlab} %} timeSteps=round(timeSteps/dt); timeSteps(2)=max(rank+1,timeSteps(2)); %{ \end{matlab} Set an algorithmic tolerance for miscellaneous purposes. As at Jan 2018, it is a guess. It might be similar to some level of microscale `noise' in the burst. Also, in an oscillatory mode for projection, set the expected maximum number of cycles in a projection. \begin{matlab} %} algTol=log(1e8); cycMax=3; %{ \end{matlab} Initialise first result to the given initial condition. \begin{matlab} %} xs(:,1)=x0(:); %{ \end{matlab} Projectively integrate each of the time-steps from~\(t_k\) to~\(t_{k+1}\). \begin{matlab} %} for k=1:length(DT) if k>1, timeSteps(1)=timeSteps(2); end%only use long burst for initial ??????????? %{ \end{matlab} Microscale integration is simple, second-order, Runge--Kutta method. Reasons: the start-up time for implicit integrators, such as ode15s, is too onerous to be worthwhile for each short burst; the microscale time-step needed for stability of explicit integrators is so small that a low order method is usually accurate enough. \begin{matlab} %} x=[x0(:) nan(n,sum(timeSteps))]; for i=1:sum(timeSteps) xmid =x(:,i)+dt/2*fun(Ts(k)+(i-1)*dt,x(:,i)); x(:,i+1)=x(:,i)+dt*fun(Ts(k)+(i-0.5)*dt,xmid); end %{ \end{matlab} If user requests microscale bursts, then store. \begin{matlab} %} if nargout>1,xss=[xss x nan(n,1)]; if nargout>2,tss=[tss Ts(k)+(0:sum(timeSteps))*dt nan]; end,end %{ \end{matlab} Grossly check on whether the microscale integration is stable. Use the 1-norm, the largest column sum of the absolute values, for little reason. Is this any use?? \begin{matlab} %} if norm(x(j,ceil(end/2):end),1) ... > 10*norm(x(j,1:floor(end/2)),1) xMicroscaleIntegration=x, macroTime=Ts(k) warning('projIntDMD: microscale integration appears unstable') break%out of the integration loop end %{ \end{matlab} Similarly if any non-numbers generated. \begin{matlab} %} if sum(~isfinite(x(:)))>0 break%out of integration loop end %{ \end{matlab} \paragraph{DMD extrapolation over the macroscale} But skip if the simulation has already reached the next time. \begin{matlab} %} iFin=1+sum(timeSteps); DTgap=DT(k)-iFin*dt; if DTgap*sign(dt)<=1e-9 i=round(DT(k)/dt); x0(j)=x(:,i+1); else %{ \end{matlab} \dmd\ appears to work better when ones are adjoined to the data vectors. \footnote{A reason is as follows. Consider the one variable linear \ode\ \(\dot x=f+J(x-x_0)\) with \(x(0)=x_0\) (as from a local linearisation of nonlinear \ode). The solution is \(x(t)=(x_0-f/J)+(f/J)e^{Jt}\) which sampled at a time-step~\(\tau\) is \(x_k=(x_0-f/J)+(f/J)G^k\) for \(G:=e^{J\tau}\). Then \(x_{k+1}\neq ax_k\) for any~\(a\). However, \(\begin{bmat} x_{k+1}\\1 \end{bmat} =\begin{bmat} G&a\\0&1 \end{bmat} \begin{bmat} x_k\\1 \end{bmat}\) for a constant \(a:=(x_0-f/J)(1-G)\). That is, with ones adjoined, the data from the \ode\ fits the \dmd\ approach. } \begin{matlab} %} iStart=1+timeSteps(1); x=[x;ones(1,iFin)]; j1=[j;n+1]; %{ \end{matlab} Then the basic \dmd\ algorithm: first the fit. However, need to test whether we need to worry about the microscale time-step being too small and leading to an effect analogous to `numerical differentiation' errors: akin to the rule-of-thumb in fitting chaos with time-delay coordinates that a good time-step is approximately the time of the first zero of the autocorrelation. \begin{matlab} %} [U,S,V]=svd(x(j1,iStart:iFin-1),'econ'); S=diag(S); Sr = S(1:rank); % singular values, rx1 AUr=bsxfun(@rdivide,x(j1,iStart+1:iFin)*V(:,1:rank),Sr.');%nxr Atilde = U(:,1:rank)'*AUr; % low-rank dynamics, rxr [Wr, D] = eig(Atilde); % rxr Phi = AUr*Wr; % DMD modes, nxr %{ \end{matlab} Second, reconstruct a prediction for the time-step. The current micro-simulation time is \verb|dt*iFin|, so step forward an amount to predict the systems state at \verb|Ts(k+1)|. Perhaps should test~\(\omega\) and abort if 'large' and/or positive?? Answer: not necessarily as if the rank is large then the omega could contain large negative values. \begin{matlab} %} omega = log(diag(D))/dt; % continuous-time eigenvalues, rx1 bFin=Phi\x(j1,iFin); % rx1 %{ \end{matlab} But we want to neglect modes that are insignificant as characterised by \autoref{tbl:negbad}, or be warned of modes that grow too rapidly. \begin{table} \caption{\label{tbl:negbad}criterion for deciding if some \dmd\ modes are to be neglected, and if not neglected then are they growing too badly?} \begin{equation*} \begin{array}{llp{0.5\linewidth}}\hline \text{neglectness}& \parbox[t]{4em}{\raggedright range for \(\varepsilon\approx 10^{-8}\)}& \text{reason}\\\hline \max(0,-\log_e|b_i|)& 0-19 & Very small noise in the burst implies a numerical error mode. \\ \max(0,-\Re\omega_i\,\Delta t)& 0-19 & Rapidly decaying mode of the macro-time-step is a micro-mode that happened to be resolved in the data. \\\hline \text{badness}& & provided not already neglected \\\hline \max(0,+\Re\omega_i\,\Delta t)& 0-19 & Micro-scale mode that rapidly grows, so macro-step should be smaller. \\ \frac3C|\Im\omega_i|\Delta t& 0-19 & An oscillatory mode with\({}\geq C\) cycles in macro-step~\(\Delta t\). \\\hline \end{array} \end{equation*} \end{table} Assume appropriate to sum the neglect-ness, and the badness, for testing. Then warn if there is a mode that is too bad. \begin{matlab} %} DTgap=DT(k)-iFin*dt; negness=max(0,-log(abs(bFin)))+max(0,-real(omega*DTgap)); badness=max(0,+real(omega*DTgap))+3/cycMax*abs(imag(omega))*DTgap; iOK=find(negness<algTol); iBad=find(badness(iOK)>algTol); if ~isempty(iBad) warning('projIntDMD: some bad modes in projection') badness=badness(iOK(iBad)) rank=rank burstDt=timeSteps*dt break end %{ \end{matlab} Scatter the prediction into the non-Nan elements of \verb|x0|. \begin{matlab} %} x0(j)=Phi(1:end-1,iOK)*(bFin(iOK).*exp(omega(iOK)*DTgap)); % nx1 %{ \end{matlab} End the omission of the projection in the case when the burst is longer than the macroscale step. \begin{matlab} %} end %{ \end{matlab} Since some of the~\(\omega\) may be complex, if the simulation burst is real, then force the \dmd\ prediction to be real. \begin{matlab} %} if isreal(x), x0=real(x0); end xs(:,k+1)=x0; %{ \end{matlab} End the macroscale time-stepping. \begin{matlab} %} end %{ \end{matlab} If requested, then add the final point to the microscale data. \begin{matlab} %} if nargout>1,xss=[xss x0]; if nargout>2,tss=[tss Ts(end)]; end,end %{ \end{matlab} End of the function with result vectors returned in columns of~\verb|xs|, one column for each time in~\verb|Ts|. %}
github
uoa1184615/EquationFreeGit-master
projIntDMDExplore1.m
.m
EquationFreeGit-master/SandpitPlay/ProjIntDMD/projIntDMDExplore1.m
4,839
utf_8
25dc7d34dbd51ab52031fda41616128b
% Explore the time integration function projIntDMD() % on discretisation of a nonlinear diffusion PDE. % AJR, Jan 2018 %!TEX root = doc.tex %{ \section{\texttt{projIntDMDExplore1}: explore effect of varying parameters} \label{sec:pi1eevp} \localtableofcontents Seek to simulate the nonlinear diffusion \pde\ \begin{equation*} \D tu=u\DD xu\quad \text{such that }u(\pm 1)=0, \end{equation*} with random positive initial condition. Set the number of interior points in the domain~\([-1,1]\), and the macroscale time-step. \begin{matlab} %} function projIntDMDExplore1 n=9 ts=0:2:6 dt=2/n^2 ICNoise=0.3 %{ \end{matlab} Very strangely, the results from Matlab and Octave are different for the zero noise case!???? It should be deterministic. Significantly different in that Matlab fails more often. \begin{figure} \caption{\label{fig:explor1icn0}errors in the projective integration of the nonlinear diffusion \pde\ from initial conditions that are on the slow manifold. Plotted are stereo views of isosurfaces in parameter space: the first row is after the first projective step; the second row after the second step. } \centering \includegraphics[width=\linewidth]{explore1icn0} \end{figure}% \autoref{fig:explor1icn0} shows the parameter variations when the system is already on the slow manifold. The picture after two time-steps, bottom row, appears clearer than for one time-step. The errors do not vary with rank provided that it is\({}\geq2\). There is only a very weak dependence upon the length of the burst being analysed---and that could be due to reduction in the gap. There is a weak dependence upon the transient-time, but only by a factor of two across the domain considered. \begin{figure} \caption{\label{fig:explor1icn3}errors in the projective integration of the nonlinear diffusion \pde\ from initial conditions with noise~\texttt{0.3*rand}. Plotted are stereo views of isosurfaces in parameter space: the first row is after the first projective step; the second row after the second step. } \centering \includegraphics[width=\linewidth]{explore1icn3} \end{figure}% With the addition of a noisy initial conditions, \autoref{fig:explor1icn3}, the rank has an effect, and the transient-time appears to be a slightly stronger influence. I suspect this means that we need to allow the initial burst to have a longer transient time than subsequent bursts. Initial conditions may typically need a longer `healing' time. Thus code an extra \verb|timeStep| parameter. Set the initial condition to parabola or some skewed random positive values. Without noise this initial condition is already on the slow manifold so only little reason for transient time. \begin{matlab} %} x=linspace(-1,1,n+2)'; u0=(0.5+ICNoise*rand(n+2,1)).*(1-x.^2); %{ \end{matlab} First find a reference solution of the microscale dynamics over all time. \begin{matlab} %} [Us,Uss,Tss]=projIntDMD(@dudt,u0,ts,2,dt,[0 2]); %{ \end{matlab} Set up various combinations of parameters. \begin{matlab} %} [rank,trant,slowt]=meshgrid(1:5,[1 2 4 6 8]*0.05,[2 4 8 12 16]*dt); ps=[rank(:) trant(:) slowt(:)]; %{ \end{matlab} Projectively integrate in time with various parameters. \begin{matlab} %} errs=[]; relerrs=[]; for p=ps' [us,uss,tss]=projIntDMD(@dudt,u0,ts,p(1),dt,p(2:3)); %{ \end{matlab} Plot the macroscale predictions \begin{matlab} %} if 0 clf,plot(x,Us,'o-',x,us,'x--') xlabel('space x'),ylabel('u(x,t)') pause(0.01) end %{ \end{matlab} Accumulate errors as function of time. \begin{matlab} %} err=sqrt(sum((us-Us).^2)) errs=[errs;err]; relerrs=[relerrs;err./sqrt(sum(Us.^2))]; %{ \end{matlab} End the loop over parameters. \begin{matlab} %} end %{ \end{matlab} Stereo view of isosurfaces of errors after both one and two time-steps. The three surfaces are the quartiles of the errors, coloured accordingly, but with a little extra colour from position for clarity. \begin{matlab} %} clf() vals=nan(size(rank)); for k=1:2 vals(:)=errs(:,k+1); q=prctile(vals(:),(0:4)*25) for j=1:2, subplot(2,2,j+2*(k-1)),hold on for i=2:4 % draw three quartiles isosurface(rank,trant,slowt,vals,q(i) ... ,q(i)+0.03*(rank/10-trant+slowt)) end,hold off xlabel('rank'),ylabel('transient'),zlabel('analysed') colorbar set(gca,'view',[57-j*5,30]) end%j end%k %{ \end{matlab} Save to file \begin{matlab} %} print('-depsc2',['explore1icn' num2str(ICNoise*10)]) %{ \end{matlab} End the main function (not needed for new enough Matlab). \begin{matlab} %} end %{ \end{matlab} \paragraph{The nonlinear PDE discretisation} Code the simple centred difference discretisation of the nonlinear diffusion \pde\ with constant (usually zero) boundary values. \begin{matlab} %} function ut=dudt(t,u) n=length(u); dx=2/(n-1); j=2:n-1; ut=[0 u(j).*(u(j+1)-2*u(j)+u(j-1))/dx^2 0]; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
mmPatchSys2.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mmPatchSys2.m
18,670
utf_8
6414e727f6bee29c0f16dc8daec55977
% mmPatchSys2() provides an interface to time integrators % for the dynamics on moving patches coupled across space. The % system must be a lattice system such as a PDE % discretisation. AJR, Aug 2021 -- Sep 2021 %!TEX root = doc.tex %{ \section{\texttt{mmPatchSys2()}: interface 2D space of moving patches to time integrators} \label{sec:mmPatchSys2} \paragraph{Beware ad hoc assumptions} In an effort to get started, I make some plausible generalisations from the 1D code to this 2D code, in the option \verb|adhoc|. Also, I code the alternative \verb|Huang98| which aims to implement the method of \cite{Huang98}. To simulate in time with 2D patches moving in space we need to interface a users time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function \verb|mmPatchSys2()| provides an interface. Patch edge values are determined by macroscale interpolation of the patch-centre or edge values. Microscale heterogeneous systems may be accurately simulated with this function via appropriate interpolation. Communicate patch-design variables (\cref{sec:configPatches2}) either via the global struct~\verb|patches| or via an optional third argument (except that this last is required for parallel computing of \verb|spmd|). \begin{matlab} %} function dudt = mmPatchSys2(t,u,patches) global theMethod % adhoc or Huang98 global ind % =1 for x-dirn and =2 for y-dirn testing Huang if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector of length $2\cdot\verb|prod(nPatch)| +\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$ grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches2()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,M,patches)| that computes the time derivatives on the patchy lattice, where the \((I,J)\)th~patch moves at velocity~\((M.Vx_I,M.Vy_J)\) and at current time is displaced~\((M.Dx_I,M.Dy_J)\) from the fixed reference positions in~\verb|.x| and~\verb|.y|\,. The array~\verb|u| has size $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nVars| \times \verb|nEsem| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$. Time derivatives must be computed into the same sized array, although herein the patch edge-values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP(1)| \times1 \times1 \times1 \verb|nPatch(1)| \times1$ array of the spatial locations~$x_{i}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales?? \item \verb|.y| is similarly $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times \verb|nPatch(2)|$ array of the spatial locations~$y_{j}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales. \item \verb|.Xlim| ?? \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $2\cdot\verb|prod(nPatch)| + \verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Extract the \(2\cdot\verb|prod(nPatch)|\) displacement values from the start of the vectors of evolving variables. Reshape the rest as the fields~\verb|u| in a 6D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt2} describes \verb|patchEdgeInt2()|. \begin{matlab} %} Nx = size(patches.x,5); Ny = size(patches.y,6); nM = Nx*Ny; M.Dx = reshape(u( 1:nM ),[1 1 1 1 Nx Ny]); M.Dy = reshape(u(nM+1:2*nM),[1 1 1 1 Nx Ny]); u = patchEdgeInt2(u(2*nM+1:end),patches); %{ \end{matlab} \paragraph{Moving mesh velocity} Developing from standard moving meshes for \pde{}s \cite[e.g.]{Budd2009, Huang10}, we follow \cite{Maclean2021a}, and generalise to~2D according to the algorithm of \cite{Huang98}, and also ad hoc. Here the patch indices~\(I,J\) play the role of mesh variables~\(\xi,\eta\) of \cite{Huang98}. There exists a set of macro-scale mesh points $\Xv_{IJ}(t) := \big(X_{IJ}(t) \C Y_{IJ}(t) \big) := \big( X_{IJ}^0+Dx_{IJ}(t) \C Y_{IJ}^0+Dy_{IJ}(t) \big)$ (at the centre) of each patch with associated field values, say $U_{IJ}(t):=\overline{u_{ijIJ}(t)}$. Also, remove microscale dimensions from the front of these macro-mesh arrays, so \verb|X,Y| are~2D, and \verb|U| is~4D. \begin{matlab} %} X = shiftdim( mean(patches.x,1)+M.Dx ,4); Y = shiftdim( mean(patches.y,2)+M.Dy ,4); U = shiftdim( mean(mean(u,1,'omitnan'),2,'omitnan') ,2); %{ \end{matlab} Then for every patch~\((I,J)\) we set \(??:={}\)the \(q\)th~spatial component of the step to the next patch in the \(p\)th~index direction, for periodic patch indices~\((I,J)\). Throughout, use appended \verb|r,u| to denote mesh-midpoint quantities at \(I+\frac12\) and \(J+\frac12\), respectively, and use \verb|_I,_J| to respectively denote differences in the macro-mesh indices~\(I,J\) which then estimate derivatives in the mesh parameters, \(\D\xi{}\) and \(\D\eta{}\), respectively. \begin{matlab} %} I=1:Nx; Ip=[2:Nx 1]; Im=[Nx 1:Nx-1]; J=1:Ny; Jp=[2:Ny 1]; Jm=[Ny 1:Ny-1]; Xr_I = X(Ip,J)-X(I,J); % propto dX/dxi Yr_I = Y(Ip,J)-Y(I,J); % propto dY/dxi Xu_J = X(I,Jp)-X(I,J); % propto dX/deta Yu_J = Y(I,Jp)-Y(I,J); % propto dY/deta Xr_I(Nx,:) = Xr_I(Nx,:)+diff(patches.Xlim(1:2)); Yu_J(:,Ny) = Yu_J(:,Ny)+diff(patches.Xlim(3:4)); %{ \end{matlab} \subsection{ad hoc attempt} \begin{matlab} %} switch theMethod case 'adhoc' %{ \end{matlab} Temporarily shift the macro-mesh info into dimensions~3 and~4: \begin{matlab} %} Xr_I = shiftdim(Xr_I,-2); Yr_I = shiftdim(Yr_I,-2); Xu_J = shiftdim(Xu_J,-2); Yu_J = shiftdim(Yu_J,-2); %{ \end{matlab} We discretise a moving mesh \pde\ for node locations~$(X_{IJ},Y_{IJ})$ with field values~$U_{IJ}$ via the second derivatives estimates ?? \begin{subequations} \label{mm2Disc} \begin{equation} U''_{j} := \frac2{H_j+H_{j-1}}\left[ \frac{U_{j+1} - U_j}{H_j} - \frac{U_{j} - U_{j-1}}{H_{j-1}} \right] . \end{equation} First, compute first derivatives at \((I+\tfrac12,J)\) and \((I,J+\tfrac12)\) respectively---these are derivatives in the macro-mesh directions, incorrectly scaled. \begin{matlab} %} Ux = (U(:,:,Ip,J)-U(:,:,I,J))./Xr_I(:,:,I,J); Uy = (U(:,:,I,Jp)-U(:,:,I,J))./Yu_J(:,:,I,J); %{ \end{matlab} Second, compute second derivative matrix, without assuming symmetry because the derivatives in space are not quite the same as the derivatives in indices. The mixed derivatives are at \((I+\tfrac12,J+\tfrac12)\), so average to get at patch locations. \begin{matlab} %} Uxx = ( Ux(:,:,I,J)-Ux(:,:,Im,J) )*2./(Xr_I(:,:,I,J)+Xr_I(:,:,Im,J)); Uyy = ( Uy(:,:,I,J)-Uy(:,:,I,Jm) )*2./(Yu_J(:,:,I,J)+Yu_J(:,:,I,Jm)); Uyx = ( Uy(:,:,Ip,J)-Uy(:,:,I,J) )./Xr_I(:,:,I,J); Uxy = ( Ux(:,:,I,Jp)-Ux(:,:,I,J) )./Yu_J(:,:,I,J); Uyx = (Uyx(:,:,I,J)+Uyx(:,:,Im,J)+Uyx(:,:,I,Jm)+Uyx(:,:,Im,Jm))/4; Uxy = (Uxy(:,:,I,J)+Uxy(:,:,Im,J)+Uxy(:,:,I,Jm)+Uxy(:,:,Im,Jm))/4; %{ \end{matlab} And compute its norm over all variables and ensembles (arbitrarily?? chose the mean square norm here, using \verb|abs.^2| as they may be complex), shifting the variable and ensemble dimensions out of the result to give 2D array of values, one for each patch (use \verb|shiftdim| rather than \verb|squeeze| as users may invoke a 1D array of 2D patches, as in channel dispersion). \begin{matlab} %} U2 = shiftdim( mean(mean( ... abs(Uxx).^2+abs(Uyy).^2+abs(Uxy).^2+abs(Uyx).^2 ... ,1),2) ,2); Xr_I = shiftdim(Xr_I,2); Yr_I = shiftdim(Yr_I,2); Xu_J = shiftdim(Xu_J,2); Yu_J = shiftdim(Yu_J,2); %{ \end{matlab} Having squeezed out all microscale information, the global moderating coefficient in~1D?? \begin{equation} \label{mm2Al} \alpha := \max\left\{ 1\C \left[\frac{1}{b-a}\sum_{j} H_{j-1} \frac12 \left({U''_{j}}^{2/3} + {U''_{j-1}}^{2/3}\right)\right]^3 \right\} \end{equation} generalises to an integral over \emph{approximate} parallelograms in~2D?? (area approximately?? determined by cross-product). Rather than \(\max(1,\cdot)\) surely better to use something smooth like~\(\sqrt(1+\cdot^2)\)?? \begin{matlab} %} U23 = U2.^(1/3); alpha = sum(sum( ... abs( Xr_I(Im,Jm).*Yu_J(Im,Jm)-Yr_I(Im,Jm).*Xu_J(Im,Jm) ) ... .*( U23(I,J)+U23(Im,J)+U23(I,Jm)+U23(Im,Jm) )/4 ... ))/diff(patches.Xlim(1:2))/diff(patches.Xlim(3:4)); alpha = sqrt(1+alpha^6); %{ \end{matlab} Then the importance function at each patch is the 2D array \begin{equation} \label{mm2R} \rho_j := \left(1 + \frac{1}{\alpha} {U''_{j}}^2 \right)^{1/3}, \end{equation} \begin{matlab} %} rho = ( 1+U2/alpha ).^(1/3); %{ \end{matlab} For every patch, we move all micro-grid points according to the following velocity of the notional macro-scale node of that patch: (Since we differentiate the importance function, maybe best to compute it above at half-grid points of the patches---aka a staggered scheme??) \begin{equation} \label{mm2X} V_j:= \de t{X_j} = \frac{(N-1)^2}{2\rho_j \tau } \left[ (\rho_{j+1}+\rho_j) H_j - (\rho_j + \rho_{j-1}) H_{j-1} \right]. \end{equation} Is the \verb|Nx| and \verb|Ny| correct here?? And are the derivatives appropriate since these here are scaled index derivatives, not actually spatial derivatives?? \begin{matlab} %} M.Vx = shiftdim( ... ((rho(Ip,J)+rho(I,J)).*Xr_I(I,J) ... -(rho(Im,J)+rho(I,J)).*Xr_I(Im,J) ) ... ./rho(I,J) *(Nx^2/2/patches.mmTime) ... ,-4); M.Vy = shiftdim( ... ((rho(I,Jp)+rho(I,J)).*Yu_J(I,J) ... -(rho(I,Jm)+rho(I,J)).*Yu_J(I,Jm) ) ... ./rho(I,J) *(Ny^2/2/patches.mmTime) ... ,-4); %{ \end{matlab} \end{subequations} \subsection{Huang98} Here encode the algorithm of \cite{Huang98}. \begin{matlab} %} case 'Huang98' %= theMethod %{ \end{matlab} The Jacobian at the \(N_x\times N_y\) mesh-points is, using centred differences, \begin{matlab} %} Jac = 0.25*( (Xr_I+Xr_I(Im,J)).*(Yu_J+Yu_J(I,Jm)) ... -(Yr_I+Yr_I(Im,J)).*(Xu_J+Xu_J(I,Jm)) ); %{ \end{matlab} \begin{subequations} \label{mm2Disc} The mesh movement \pde\ is \cite[(24), with \(\gamma_2=0\)]{Huang98} \begin{align}& \D t\Xv =-\frac{\Xv_\xi}{\tau\sqrt{\tilde g_1}\cJ}\left\{ +\D\xi{}\left[\frac{\Xv_\eta^TG_1\Xv_\eta}{\cJ g_1}\right] -\D\eta{}\left[\frac{\Xv_\xi^TG_1\Xv_\eta}{\cJ g_1}\right] \right\} \nonumber\\& \phantom{\D t\Xv =}{} -\frac{\Xv_\eta}{\tau\sqrt{\tilde g_2}\cJ}\left\{ -\D\xi{}\left[\frac{\Xv_\eta^TG_2\Xv_\xi}{\cJ g_2}\right] +\D\eta{}\left[\frac{\Xv_\xi^TG_2\Xv_\xi}{\cJ g_2}\right] \right\} , \label{mm2DiscdXdt} \\& \text{Jacobian }\cJ :=X_\xi Y_\eta -X_\eta Y_\xi\,, \\& g_k :=\det(G_k), \\& G_1 :=\sqrt{1+\|\grad U\|^2}\left[(1-\gamma_1)\cI +\gamma_1S(\grad\tilde \xi)\right], \\& G_2 :=\sqrt{1+\|\grad U\|^2}\left[(1-\gamma_1)\cI +\gamma_1S(\grad\tilde\eta)\right], \\& \text{matrix }S(\vv) :=\vv_\perp\vv_\perp^T/\|\vv\|^2 \quad\text{for }\vv_\perp:=(v_2,-v_1), \\&\text{identity }\cI. \end{align} In their examples, \cite{Huang98} chose the mesh orthogonality parameter \(\gamma_1=0.1\)\,. \begin{matlab} %} gamma1=0.1; %{ \end{matlab} The tildes appear to denote a reference mesh \cite[p.1005]{Huang98} which could be the identity map \((\tilde\xi,\tilde\eta)=(x,y)\), so here maybe \((\tilde I,\tilde J)=(\tilde\xi,\tilde\eta)=(X/H_x,Y/H_y)\). We discretise the moving mesh \pde\ for node locations~$(X_{IJ},Y_{IJ})$ with field values~$U_{IJ}$ via the second derivatives estimates ?? So \cite{Huang98}'s \(\xi,i\mapsto I\), and \(\eta,j\mapsto J\), and \(\xv\mapsto \verb|Xv|\)?? \paragraph{Importance functions} First, compute the gradients of the macroscale field formed into \(w=\sqrt{1+\|\grad\Uv\|^2}\) \cite[(30)]{Huang98}, using centred differences from patch to patch, unless we use the patches to estimate first derivatives (implicitly the interpolation). Need to shift dimensions of macroscale mesh to cater for components of the field~\Uv. \begin{matlab} %} Y_J = shiftdim( (Yu_J(I,J)+Yu_J(I,Jm))/2 ,-2); Y_I = shiftdim( (Yr_I(I,J)+Yr_I(Im,J))/2 ,-2); U_x = ( (Y_J(:,:,Ip,J).*U(:,:,Ip,J)-Y_J(:,:,Im,J).*U(:,:,Im,J))/2 ... -(Y_I(:,:,I,Jp).*U(:,:,I,Jp)-Y_I(:,:,I,Jm).*U(:,:,I,Jm))/2 ... )./Jac; X_J = shiftdim( (Xu_J(I,J)+Xu_J(I,Jm))/2 ,-2); X_I = shiftdim( (Xr_I(I,J)+Xr_I(Im,J))/2 ,-2); U_y = ( (X_J(:,:,Ip,J).*U(:,:,Ip,J)-X_J(:,:,Im,J).*U(:,:,Im,J))/2 ... -(X_I(:,:,I,Jp).*U(:,:,I,Jp)-X_I(:,:,I,Jm).*U(:,:,I,Jm))/2 ... )./Jac; w = sqrt(1 + sum(sum(U_x.^2+U_y.^2,1),2) ); testy(w,2+ind,'w') %{ \end{matlab} In order to compute~\(G_k\), it seems \(\grad\eta=(Y_\eta,-Y_\xi)/\cJ\) and \(\grad\xi=(-X_\eta,X_\xi)/\cJ\). Then, \(S(\grad\xi)\) has \(\vv_\perp=(X_\xi,X_\eta)/\cJ\) so \(S(\grad\xi)=\begin{bmat} X_\xi^2 &X_\xi X_\eta \\ X_\xi X_\eta &X_\eta^2 \end{bmat}/(X_\xi^2+X_\eta^2)\). Now \cite{Huang98} has tildes on these, so they are meant to be reference coordinates?? in which case we would have \(X_\eta=0\)\,, so \(S=\begin{bmat}1 &0 \\ 0 &0 \end{bmat}\), and so \(G_1\propto \begin{bmat} 1&0\\0&1-\gamma_1 \end{bmat}\)---\emph{I do not see how this helps stop the mesh degenerating}. \begin{matlab} %} G1 = w.*( (1-gamma1)*eye(2) ... +gamma1*[Y_I.^2 Y_I.*Y_J; Y_I.*Y_J Y_J.^2]./(Y_I.^2+Y_J.^2) ); G2 = w.*( (1-gamma1)*eye(2) ... +gamma1*[X_I.^2 X_I.*X_J; X_I.*X_J X_J.^2]./(X_I.^2+X_J.^2) ); testy(G1,2+ind,'G1') testy(G2,2+ind,'G2') %{ \end{matlab} Apply low-pass filter \cite[(27)]{Huang98} (although unclear whether to apply the filter four times to the whole of both matrices?? or once to each of the four components of both matrices??): \begin{matlab} %} for k=1:1 G1 = G1/4 ... +(G1(:,:,Ip,J)+G1(:,:,Im,J)+G1(:,:,I,Jp)+G1(:,:,I,Jm))/8 ... +(G1(:,:,Ip,Jp)+G1(:,:,Im,Jm)+G1(:,:,Im,Jp)+G1(:,:,Ip,Jm))/16; G2 = G2/4 ... +(G2(:,:,Ip,J)+G2(:,:,Im,J)+G2(:,:,I,Jp)+G2(:,:,I,Jm))/8 ... +(G2(:,:,Ip,Jp)+G2(:,:,Im,Jm)+G2(:,:,Im,Jp)+G2(:,:,Ip,Jm))/16; end testy(G1,2+ind,'G1') testy(G2,2+ind,'G2') %{ \end{matlab} \paragraph{Macro-mesh movement} These are the \(2\times2\) matrices at \(N_x\times N_y\) midpoints of the mesh-net \cite[(27)]{Huang98}: \begin{matlab} %} G1r = (G1(:,:,Ip,:)+G1(:,:,I,:))/2; G2r = (G2(:,:,Ip,:)+G2(:,:,I,:))/2; G1u = (G1(:,:,:,Jp)+G1(:,:,:,J))/2; G2u = (G2(:,:,:,Jp)+G2(:,:,:,J))/2; testy(G1r,2+ind,'G1') testy(G2r,2+ind,'G2') testy(G1u,2+ind,'G1') testy(G2u,2+ind,'G2') %{ \end{matlab} Compute \(N_x\times N_y\) determinant of matrices \cite[(27)]{Huang98}: \begin{matlab} %} g1 = shiftdim( G1(1,1,:,:).*G1(2,2,:,:) ... -G1(1,2,:,:).*G1(2,1,:,:) ,2); g2 = shiftdim( G2(1,1,:,:).*G2(2,2,:,:) ... -G2(1,2,:,:).*G2(2,1,:,:) ,2); testy(g1,ind,'g1') testy(g2,ind,'g2') g1r = shiftdim( G1r(1,1,:,:).*G1r(2,2,:,:) ... -G1r(1,2,:,:).*G1r(2,1,:,:) ,2); g2r = shiftdim( G2r(1,1,:,:).*G2r(2,2,:,:) ... -G2r(1,2,:,:).*G2r(2,1,:,:) ,2); g1u = shiftdim( G1u(1,1,:,:).*G1u(2,2,:,:) ... -G1u(1,2,:,:).*G1u(2,1,:,:) ,2); g2u = shiftdim( G2u(1,1,:,:).*G2u(2,2,:,:) ... -G2u(1,2,:,:).*G2u(2,1,:,:) ,2); %{ \end{matlab} Compute vector \verb|Xv._.| of coordinate derivatives \cite[(27)]{Huang98}---use arrays \verb|X_.| and \verb|Y_.| here as they know the macro-periodicity. \begin{matlab} %} Xr_J = 0.25*(Xu_J(I,Jm)+Xu_J(I,J)+Xu_J(Ip,Jm)+Xu_J(Ip,J)); Yr_J = 0.25*(Yu_J(I,Jm)+Yu_J(I,J)+Yu_J(Ip,Jm)+Yu_J(Ip,J)); Xvr_J = [shiftdim(Xr_J,-1);shiftdim(Yr_J,-1)]; Xvr_I = [shiftdim(Xr_I,-1);shiftdim(Yr_I,-1)]; testy(Xvr_J,1+ind,'Xvr_J') testy(Xvr_I,1+ind,'Xvr_I') Xu_I = 0.25*(Xr_I(Im,J)+Xr_I(I,J)+Xr_I(Im,Jp)+Xr_I(I,Jp)); Yu_I = 0.25*(Yr_I(Im,J)+Yr_I(I,J)+Yr_I(Im,Jp)+Yr_I(I,Jp)); Xvu_I = [shiftdim(Xu_I,-1);shiftdim(Yu_I,-1)]; Xvu_J = [shiftdim(Xu_J,-1);shiftdim(Yu_J,-1)]; testy(Xvu_J,1+ind,'Xvu_J') testy(Xvu_I,1+ind,'Xvu_I') %{ \end{matlab} Then the two Jacobians at the \(N_x\times N_y\) midpoints of the mesh-net are \cite[(27)]{Huang98}: \begin{matlab} %} Jacr = Xr_I.*Yr_J - Yr_I.*Xr_J; Jacu = Yu_J.*Xu_I - Xu_J.*Yu_I; testy(Jacr,ind,'Jacr') testy(Jacu,ind,'Jacu') %{ \end{matlab} For vectors~\xv,\yv\ of dimension \(d\times N_x\times N_y\) and array~\(G\) of dimension \(d\times d\times N_x\times N_y\), define function to evaluate product~\(\xv^TG\yv\) of dimension \(N_x\times N_y\): \begin{matlab} %} xtGy = @(x,G,y) shiftdim(sum(sum( ... permute(x,[1 4 2 3]).*G.*shiftdim(y,-1) ... )),2); %{ \end{matlab} The moving mesh \ode{}s~\eqref{mm2DiscdXdt} are then coded \cite[(26)]{Huang98} as (should \verb|sqrt(g1)| be \verb|sqrt(g1tilde)|??) \begin{matlab} %} brace1 = xtGy(Xvr_J(:,I,J),G1r(:,:,I,J),Xvr_J(:,I,J))... ./Jacr(I,J)./g1r(I,J) ... -xtGy(Xvr_J(:,Im,J),G1r(:,:,Im,J),Xvr_J(:,Im,J))... ./Jacr(Im,J)./g1r(Im,J) ... -xtGy(Xvr_I(:,I,J),G1u(:,:,I,J),Xvr_J(:,I,J))... ./Jacu(I,J)./g1r(I,J) ... +xtGy(Xvr_I(:,I,Jm),G1u(:,:,I,Jm),Xvr_J(:,I,Jm))... ./Jacu(I,Jm)./g1r(I,Jm); brace2 =-xtGy(Xvr_J(:,I,J),G2r(:,:,I,J),Xvr_I(:,I,J))... ./Jacr(I,J)./g2r(I,J) ... +xtGy(Xvr_J(:,Im,J),G2r(:,:,Im,J),Xvr_I(:,Im,J))... ./Jacr(Im,J)./g2r(Im,J) ... +xtGy(Xvr_I(:,I,J),G2u(:,:,I,J),Xvr_I(:,I,J))... ./Jacu(I,J)./g2u(I,J) ... -xtGy(Xvr_I(:,I,Jm),G2u(:,:,I,Jm),Xvr_I(:,I,Jm))... ./Jacu(I,Jm)./g2u(I,Jm); testy(brace1,ind,'brace1') testy(brace2,ind,'brace2') M.Vx = shiftdim( ... -squeeze(X_I)./(sqrt(g1).*Jac).*brace1 ... -squeeze(X_J)./(sqrt(g2).*Jac).*brace2 ... ,-4)/patches.mmTime; M.Vy = shiftdim( ... -squeeze(Y_I)./(sqrt(g1).*Jac).*brace1 ... -squeeze(Y_J)./(sqrt(g2).*Jac).*brace2 ... ,-4)/patches.mmTime; testy(M.Vx ,4+ind,'M.Vx') testy(M.Vy ,4+ind,'M.Vy') %{ \end{matlab} \end{subequations} \begin{matlab} %} end% switch theMethod %{ \end{matlab} \subsection{Evaluate system differential equation} Ask the user function for the time derivatives computed in the array, overwrite its edge values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt = patches.fun(t,u,M,patches); dudt([1 end],:,:,:,:,:) = 0; dudt(:,[1 end],:,:,:,:) = 0; dudt=[M.Vx(:); M.Vy(:); dudt(:)]; %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
mmNonDiffPDE.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mmNonDiffPDE.m
1,206
utf_8
ded09a422eb4981ce37cf704c78d2e51
% Microscale discretisation of a nonlinear diffusion PDE in % 2D space (x,y) on moving 2D patches. % AJR, Aug 2021 -- Sep 2021 %!TEX root = doc.tex %{ \subsection{\texttt{mmNonDiffPDE():} (non)linear diffusion PDE inside moving patches} As a microscale discretisation of \(u_t=\Vv\cdot\grad u+\delsq(u^3)\), code \(\dot u_{ijkl} =\cdots +\frac1{\delta x^2} (u_{i+1,j,k,l}^3 -2u_{i,j,k,l}^3 +u_{i-1,j,k,l}^3) + \frac1{\delta y^2} (u_{i,j+1,k,l}^3 -2u_{i,j,k,l}^3 +u_{i,j-1,k,l}^3)\). \begin{matlab} %} function ut = mmNonDiffPDE(t,u,M,patches) if nargin<3, global patches, end u = squeeze(u); % reduce to 4D Vx = shiftdim(M.Vx,2); % omit two singleton dimens Vy = shiftdim(M.Vy,2); % omit two singleton dimens dx = diff(patches.x(1:2)); % microgrid spacing dy = diff(patches.y(1:2)); i = 2:size(u,1)-1; j = 2:size(u,2)-1; % interior patch points ut = nan+u; % preallocate output array ut(i,j,:,:) = ... +Vx.*(u(i+1,j,:,:)-u(i-1,j,:,:))/(2*dx) ... +Vy.*(u(i,j+1,:,:)-u(i,j-1,:,:))/(2*dy) ... +diff(u(:,j,:,:),2,1)/dx^2 ... +diff(u(i,:,:,:),2,2)/dy^2 ; % +diff(u(:,j,:,:).^3,2,1)/dx^2 ... % +diff(u(i,:,:,:).^3,2,2)/dy^2 ; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
mmBurgersPDE.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mmBurgersPDE.m
2,354
utf_8
d592a3874ab094fa21b653f27077e4b9
% mmBurgersPDE() is a microscale discretisation of Burgers' % PDE on multiscale patches of a lattice x, when the patches % move according to some scheme. AJR, Aug 2021 %!TEX root = doc.tex %{ \subsection{\texttt{mmBurgersPDE()}: Burgers PDE inside a moving mesh of patches} For the evolving scalar field~\(u(t,x)\), we code a microscale discretisation of Burgers' \pde\ \(u_t = \epsilon u_{xx} -uu_x\), for say \(\epsilon=0.02\)\,, when the patches of microscale lattice move with various velocities~\(V\). \begin{matlab} %} function ut = mmBurgersPDE(t,u,M,patches) epsilon = 0.02; %{ \end{matlab} \paragraph{Generic input/output variables} \begin{itemize} \item \verb|t| (scalar) current time---not used here as the \pde\ has no explicit time dependence (autonomous). \item \verb|u| (\(n\times1\times1\times N\)) field values on the patches of microscale lattice. \item \verb|M| a struct of the following components. \begin{itemize} \item \verb|V| (\(1\times1\times1\times N\)) moving velocity of the \(j\)th~patch. \item \verb|D| (\(1\times1\times1\times N\)) displacement of the \(j\)th~patch from the fixed spatial positions stored in \verb|patches.x|---not used here as the \pde\ has no explicit space dependence (homogeneous). \end{itemize} \item \verb|patches| struct of patch configuration information. \item \verb|ut| (\(n\times1\times1\times N\)) output computed values of the time derivatives \(Du/Dt\) on the patches of microscale lattice. \end{itemize} Here there is only one field variable, and one in the ensemble, so for simpler coding of the \pde\ we squeeze them out (no need to reshape when via \verb|mmPatchSys1|). \begin{matlab} %} u=squeeze(u); % omit singleton dimensions V=shiftdim(M.V,2); % omit two singleton dimens %{ \end{matlab} \paragraph{Burgers PDE} In terms of the moving derivative \(Du/Dt:=u_t+Vu_x\) the \pde\ becomes \(Du/Dt=\epsilon u_{xx}+(V-u)u_x\)\,. So code for every patch that \(\dot u_{ij} =\frac\epsilon{h^2} (u_{i+1,j}-2u_{i,j}+u_{i-1,j}) +(V_j-u_{ij}) \frac1{2h}(u_{i+1,j}-u_{i-1,j})\) at all interior lattice points. \begin{matlab} %} dx=diff(patches.x(1:2)); % microscale spacing i=2:size(u,1)-1; % interior points in patches ut=nan+u; % preallocate output array ut(i,:) = epsilon*diff(u,2)/dx^2 ... +(V-u(i,:)).*(u(i+1,:)-u(i-1,:))/(2*dx); end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
mmPatchSys1.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mmPatchSys1.m
11,231
utf_8
1adfa605d2346d08dd479dce644de6a6
% mmPatchSys1() provides an interface to time integrators % for the dynamics on moving patches coupled across space. The % system must be a lattice system such as a PDE % discretisation. AJR, Aug 2021 %!TEX root = doc.tex %{ \section{\texttt{mmPatchSys1()}: interface 1D space of moving patches to time integrators} \label{sec:mmPatchSys1} To simulate in time with moving 1D spatial patches we need to interface a user's time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function \verb|mmPatchSys1()| provides an interface. Patch edge values are determined by macroscale interpolation of the patch-centre or edge values. Microscale heterogeneous systems may be accurately simulated with this function via appropriate interpolation. Communicate patch-design variables (\cref{sec:configPatches1}) either via the global struct~\verb|patches| or via an optional third argument (except that this last is required for parallel computing of \verb|spmd|). \begin{matlab} %} function dudt = mmPatchSys1(t,u,patches) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector of length $\verb|nPatch| + \verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP|\times \verb|nPatch|$ grid, and because of the moving mesh there are an additional \verb|nPatch| patch displacement values at its start. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches1()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,M,patches)| that computes the time derivatives on the patchy lattice, where the \(j\)th~patch moves at velocity~\(M.V_j\) and at current time is displaced~\(M.D_j\) from the fixed reference position in~\verb|.x|\,. The array~\verb|u| has size $\verb|nSubP| \times \verb|nVars| \times \verb|nEnsem| \times \verb|nPatch|$. Time derivatives should be computed into the same sized array, then herein the patch edge values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the spatial locations~$x_{i}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and microscales ?? \item \verb|.Xlim| is two element vector of the (periodic) spatial domain within which the patches are placed. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|nPatch| + \verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$. \end{itemize} \begin{devMan} \paragraph{Alternative estimates of derivatives} The moving mesh depends upon estimates of the second derivative of macroscale fields. Traditionally these are obtained from the macroscale variations in the fields. But with the patch scheme we can also estimate from the sub-patch fields. As yet we have little idea which is better. So here code three alternatives depending upon \begin{matlab} %} subpatDerivs = 2; %{ \end{matlab} \begin{itemize} \begin{figure} \centering \begin{tabular}{cc} \parbox[b]{0.3\linewidth}{% \caption{\label{fig:mm1dBurgersExampleMesh0}patch locations as a function of time for the case \(\texttt{subpatDerivs} = 0\): these locations form a macroscale moving mesh. The shock here should be moving but appears to get pinned. These three are for \(u_0=0.3+\sin(2\pi x)\), spectral interpolation, mesh \(\tau=0.8\)\,.}} &\includegraphics[width=0.6\linewidth]{Figs/mm1dBurgersExampleMesh0} \end{tabular} \end{figure} \item \verb|subpatDerivs=0|, implements classic moving mesh algorithm obtaining estimates of the 2nd derivative at each patch from the macroscale inter-patch field---the moving shock is does not appear well represented (what about more patches?); \begin{figure} \centering \begin{tabular}{cc} \parbox[b]{0.3\linewidth}{% \caption{\label{fig:mm1dBurgersExampleMesh2}patch locations as a function of time for the case \(\texttt{subpatDerivs} = 2\): these locations form a macroscale moving mesh. The shock here moves nicely, and the patches do not appear to overlap (much, or at all??). But what happens at time~0.4??}} &\includegraphics[width=0.6\linewidth]{Figs/mm1dBurgersExampleMesh2} \end{tabular} \end{figure} \item \verb|subpatDerivs=2|, obtains estimates of the 2nd derivative at each patch from the microscale sub-patch field (potentially subject to round-off problems)---but appears to track the shock OK; \begin{figure} \centering \begin{tabular}{cc} \parbox[b]{0.3\linewidth}{% \caption{\label{fig:mm1dBurgersExampleMesh1}patch locations as a function of time for the case \(\texttt{subpatDerivs} = 1\): these locations form a macroscale moving mesh. The moving macroscale mesh of patches has some wacko oscillatory instability!}} &\includegraphics[width=0.6\linewidth]{Figs/mm1dBurgersExampleMesh1} \end{tabular} \end{figure} \item \verb|subpatDerivs=1|, estimates the first derivative from the microscale sub-patch field (I expect round-off negligible), and then using macroscale differences to estimate the 2nd derivative at points mid-way between patches---seems to be subject to weird mesh oscillations. \end{itemize} \paragraph{Preliminaries} Extract the \verb|nPatch| displacement values from the start of the vectors of evolving variables. Reshape the rest as the fields~\verb|u| in a 4D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt1} describes \verb|patchEdgeInt1()|. \begin{matlab} %} nx= size(patches.x,1); N = size(patches.x,4); M.D = reshape(u(1:N),[1 1 1 N]); u = patchEdgeInt1(u(N+1:end),patches); %{ \end{matlab} \paragraph{Moving mesh velocity} Developing from standard moving meshes for \pde{}s \cite[e.g.]{Budd2009, Huang10}, we follow \cite{Maclean2021a}. There exists a set of macro-scale mesh points~$X_j(t):=X_j^0+D_j(t)$ (at the centre) of each patch with associated field values, say $U_j(t):=\overline{u_{ij}(t)}$. \begin{matlab} %} X = mean(patches.x,1)+M.D; if subpatDerivs==0, U = mean(u,1); end %{ \end{matlab} Then for every patch~\(j\) we set \(H_j:=X_{j+1}-X_j\) for periodic patch indices~\(j\) \begin{matlab} %} j=1:N; jp=[2:N 1]; jm=[N 1:N-1]; H = X(:,:,:,jp)-X(:,:,:,j); H(N) = H(N)+diff(patches.Xlim); %{ \end{matlab} we discretise a moving mesh \pde\ for node locations~$X_j$ with field values~$U_j$ via the second derivative w.r.t.~\(x\), estimated by \begin{subequations} \label{mmDisc} \begin{equation} U''_{j} := \frac2{H_j+H_{j-1}}\left[ \frac{U_{j+1} - U_j}{H_j} - \frac{U_{j} - U_{j-1}}{H_{j-1}} \right] . \end{equation} Here \(\verb|U2|:=\Uv''_j\), \begin{matlab} %} switch subpatDerivs case 0 U2 = ( (U(:,:,:,jp)-U(:,:,:,j))./H(:,:,:,j) ... -(U(:,:,:,j)-U(:,:,:,jm))./H(:,:,:,jm) ... )*2./(H(:,:,:,j)+H(:,:,:,jm)); %{ \end{matlab} Alternatively, use the sub-patch field to determine the second derivatives. It should be more accurate, unless round-off error becomes significant. However, it may focus too much on the microscale, and not enough on the macroscale variation. \begin{itemize} \item In the case of non-edgy interpolation, since we here use near edge-values, the derivative is essentially a numerical derivative of the interpolation scheme. \item In the case of edgy-interpolation, \emph{and} if periodic heterogeneous micro-structure, then we must have an \emph{even number of periods} in every patch so that the second differences steps are done over a whole number of micro-scale periods. \end{itemize} \begin{matlab} %} case 2 idel=floor((nx-1)/2); dx=diff(patches.x([1 idel+1])); U2=diff(u(1:idel:nx,:,:,:),2,1)/dx^2; if rem(nx,2)==0 % use average when even sub-patch points U2=( U2+diff(u(2:idel:nx,:,:,:),2,1)/dx^2 )/2; end%if nx even %{ \end{matlab} Alternatively, use the sub-patch field to determine the first derivatives at each patch, and then a macroscale derivative to determine second derivative at mid-gaps inter-patch. The sub-patch first derivative is a numerical estimate of the derivative of the inter-patch interpolation scheme as it only uses edge-values, values which come directly from the patch interpolation scheme. \begin{matlab} %} case 1 dx = diff(patches.x([1 nx])); U2 = diff(u([1 nx],:,:,:),1)/dx; U2 = (U2(:,:,:,jp)-U2(:,:,:,j))./H(:,:,:,j); end%switch subpatDerivs %{ \end{matlab} Compute a norm over ensemble and all variables (arbitrarily?? chose the mean square norm here, so here \verb|U2| denotes both 2nd derivative and the square, here \(\verb|U2|:= \|\Uv''_j\|^2\)). \begin{matlab} %} U2 = squeeze( mean(mean( abs(U2).^2 ,2),3) ); H = squeeze(H); %{ \end{matlab} Having squeezed out all microscale information, the coefficient \begin{equation} \label{mmAl} \alpha := \max\left\{ 1\C \left[\frac{1}{b-a}\sum_{j} H_{j-1} \frac12 \left({U''_{j}}^{2/3} + {U''_{j-1}}^{2/3}\right)\right]^3 \right\} \end{equation} Rather than \(\max(1,\cdot)\) surely better to use something smooth like~\(\sqrt{1+\cdot^2}\)?? \begin{matlab} %} if subpatDerivs==1 % mid-point integration alpha = sum( H.*U2.^(1/3) )/sum(H); else % trapezoidal integration alpha = sum( H(jm).*( U2(j).^(1/3)+U2(jm).^(1/3) ))/2/sum(H); end%if %alpha = max(1,alpha^3); alpha = sqrt(1+alpha^6); %{ \end{matlab} Then the importance function (alternatively at patches or at mid-gap inter-patch) \begin{equation} \label{mmR} \rho_j := \left(1 + \frac{1}{\alpha} {U''_{j}}^2 \right)^{1/3}, \end{equation} \begin{matlab} %} rho = ( 1+U2/alpha ).^(1/3); %{ \end{matlab} For every patch, we move all micro-grid points according to the following velocity of the notional macro-scale node of that patch: \begin{equation} \label{mmX} V_j:= \de t{X_j} = \frac{(N-1)^2}{2\rho_j \tau } \left[ (\rho_{j+1}+\rho_j) H_j - (\rho_j + \rho_{j-1}) H_{j-1} \right]. \end{equation} \begin{matlab} %} M.V = nan+M.D; % allocate storage if subpatDerivs==1 % mid-point derivative M.V(:) = ( rho(j).*H(j) -rho(jm).*H(jm) ) ... ./(rho(j)+rho(jm)) *((N-1)^2*2/patches.mmTime); else % derivative of linear interpolation M.V(:) = ( (rho(jp)+rho(j)).*H(j) -(rho(j)+rho(jm)).*H(jm) ) ... ./rho(j) *((N-1)^2/2/patches.mmTime); end%if %{ \end{matlab} \end{subequations} \paragraph{Control overlapping of patches?} Surely cannot yet be done because the interpolation is in index space, so that adjoining patches generally have different field values interpolated to their edges. Need to interpolate in physical space in order to get the interpolated field to `merge' adjoining patches. \paragraph{Evaluate system differential equation} Ask the user function for the advected time derivatives on the moving patches, overwrite its edge values with the dummy value of zero (since \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as a vector. \begin{matlab} %} dudt=patches.fun(t,u,M,patches); dudt([1 end],:,:,:) = 0; dudt=[M.V(:); dudt(:)]; %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
mm2dExample.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mm2dExample.m
9,008
utf_8
a64d0699cbdd1be97f6526f8e6569531
% mm2dExample: moving patches of Burgers PDE %!TEX root = doc.tex %{ \section{\texttt{mm2dExample}: example of moving patches in 2D for nonlinear diffusion} \label{sec:mm2dExample} The code here shows two ways to use moving patches in 2D. Plausible generalisations from the 1D code to this 2D code is the case \verb|adhoc|. The alternative \verb|Huang98| aims to implement the method of \cite{Huang98}. \begin{matlab} %} clear all global theMethod if 0, theMethod = 'adhoc', else theMethod = 'Huang98', end %{ \end{matlab} However, \verb|mmPatchSys2()| has far too many ad hoc assumptions, so fix those before exploring predictions here. Establish global patch data struct to interface with a function coding the microscale. Prefer EdgyInt as we suspect it performs better for moving meshes. Using \verb|nxy=3| means that there are no sub-patch modes, all modes are those of the macro-diffusion and the macro-mesh movement. There are \(N_x+N_y\) zero eigenvalues associated with the mesh movement. And there are \(N_xN_y\) slow eigenvalues of the diffusion (one of them looks like zero badly affected by round-off to be as big as \(10^{-4}\) or so). So far we generally see the macro-diffusion is poorly perturbed by the mesh movement in that there are some diffusion modes with imaginary part up to five. \begin{matlab} %} global patches nxy=3 % =3 means no sub-patch dynamics Nx=7, Ny=5 patches = configPatches2(@mmNonDiffPDE,[-3 3 -2 2], nan ... , [Nx Ny], 0, 0.1, nxy ,'EdgyInt',true); patches.mmTime=0.03; patches.Xlim=[-3 3 -2 2]; Npts = Nx*Ny; %{ \end{matlab} The above two amendments to \verb|patches| should eventually be part of the configuration function. \paragraph{Decide the moving mesh time parameter} %Here for \(\epsilon=0.02\). %\begin{itemize} %\item Would be best if the moving mesh was no stiffer than %the stiffest microscale sub-patch mode. These would both be %the zig-zag modes. %\begin{itemize} %\item Here the mesh \pde\ is \(X_t=(N^2/\tau)X_{jj}\) so its %zig-zag mode decays with rate \(4N^2/\tau\)\,. %\item Here the patch width is~\(h=0.2/15=1/75\), and so the %microscale step is \(\delta=h/4=1/300\). Hence the %diffusion \(u_t=\epsilon u_{xx}\) has zig-zag mode decaying %at rate \(4\epsilon/\delta^2\). %\end{itemize} %So, surely best to have \(4N^2/\tau \lesssim 4\epsilon %/\delta^2\), that is, \(\tau \gtrsim N^2\delta^2 /\epsilon %\approx 0.1\). % %\item But also we do not want the slowest modes of the %moving mesh to obfuscate the system's macroscale modes---the %macroscale zig-zag. %\begin{itemize} %\item The slowest moving mesh mode has wavenumber in~\(j\) %of~\(2\pi/N\), and hence rate of decay \((N^2/\tau) %(2\pi/N)^2 =4\pi^2/\tau\). %\item The fastest zig-zag mode of the system \(U_t=\epsilon %U_{xx}\) on step~\(H\) has decay rate \(4\epsilon/H^2\). %\end{itemize} %So best if \(4\pi^2/\tau \gtrsim 4\epsilon/H^2\), that is, %\(\tau \lesssim \pi^2H^2 /\epsilon \approx 2\)\,. % %(Computations indicate need \(\tau<0.8\)??) %\end{itemize} \paragraph{Spectrum of the moving patch system} Compute the spectrum based upon the linearisation about some state: \(u={}\)constant with \(D=0\) are equilibria; otherwise the computation is about a 'quasi-equilibrium' on the `fast-time'. \begin{matlab} %} global ind, ind=2 evals=[]; patches.mmTime = patches.mmTime/0.95; for iv=1:4 patches.mmTime = 0.95*patches.mmTime; % u00 = 0.1 u0 = u00+sin(0*patches.x*pi/3+0*patches.y*pi/2); u0([1 end],:,:)=nan; u0(:,[1 end],:)=nan; u0 = [zeros(2*Npts,1); u0(:)]; f0 = mmPatchSys2(0,u0); normf0 = norm(f0) %if normf0>1e-9, error('Jacobian: u0 is not equilibrium'),end %{ \end{matlab} But we must only use the dynamic variables, so let's find where they are. \begin{matlab} %} i=find(~isnan( u0(:) )); nJac=length(i) %{ \end{matlab} Construct Jacobian with numerical differentiation. \begin{matlab} %} deltau=1e-7; Jac=nan(nJac); for j=1:nJac uj=u0; uj(i(j))=uj(i(j))+deltau; fj = mmPatchSys2(0,uj); Jac(:,j)=(fj(i)-f0(i))/deltau; end %{ \end{matlab} Compute and plot the spectrum with non-linear axis scaling (\cref{fig:mm2dExampleSpec}). \begin{matlab} %} eval=eig(Jac); [~,k]=sort(-real(eval)); eval=eval(k); nZero = sum(abs(real(eval))<1e-3) nSlow = sum(-100<real(eval))-nZero %eSlowest = eval(1:30) %(0+(1:2:nSlow)) %eFast = eval([nZero+nSlow+1 end]) evals=[evals eval]; end%iv-loop %{ \end{matlab} \paragraph{Plot spectrum} Choose whether to save some plots, or not. \begin{matlab} %} global OurCf2eps OurCf2eps = false; %{ \end{matlab} Draw spectrum on quasi-log axes. \begin{matlab} %} figure(3),clf hp = plot(real(evals),imag(evals),'.'); xlabel('Re\lambda'), ylabel('Im\lambda') quasiLogAxes(hp,1,1); ifOurCf2eps([mfilename theMethod 'Spec']) return%%%%%%%%%%%%%% %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:mm2dExampleadhocSpec}spectrum of the \emph{adhoc} moving mesh 2D diffusion system (about \(u=0.1\)). The clusters are: right real, macroscale diffusion modes with some neutral mesh deformations; left real, moving mesh and sub-patch modes. Coloured dots are `trails' for \(\tau\)~reducing by~5\% between each, starting from blue dots.} \includegraphics[scale=0.85]{Figs/mm2dExampleadhocSpec} \end{figure} \begin{figure} \centering \caption{\label{fig:mm2dExampleHuang98Spec}spectrum of the \emph{Huang98} moving mesh 2D diffusion system (about \(u=0.1\)). Currently there are badly unstable modes. The clusters are: \dotfill\ confused.} \includegraphics[scale=0.85]{Figs/mm2dExampleHuang98Spec} \end{figure} \paragraph{Simulate in time} Set an initial condition of a perturbed-Gaussian using auto-replication of the spatial grid. \begin{matlab} %} u0 = exp(-patches.x.^2-patches.y.^2); u0 = 1+0*u0.*(0.9+0.0*rand(size(u0))); D0 = zeros(2*Npts,1); %{ \end{matlab} Integrate in time to $t=2$ using standard functions. In \Matlab\ \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is quicker \cite [Fig.~4] {Maclean2020a}. Ask for output at non-uniform times because the diffusion slows. \begin{matlab} %} disp('Simulating nonlinear diffusion h_t=(h^3)_xx+(h^3)_yy') tic [ts,us] = ode23(@mmPatchSys2,2*linspace(0,1).^2,[D0;u0(:)]); cpuTime = toc %{ \end{matlab} \paragraph{Plots} Extract data from time simulation. Be wary that the patch-edge values do not change from initial, so either set to~\verb|NaN|, or set via interpolation. \begin{matlab} %} nTime=length(ts); Ds=reshape(us(:,1:2*Npts).',1,1,Nx,Ny,2,nTime); us=reshape(us(:,2*Npts+1:end).',nxy,nxy,Nx,Ny,nTime); us([1 end],:,:,:)=nan; us(:,[1 end],:,:)=nan; % nan edges %{ \end{matlab} Choose macro-mesh plot or micro-surf-patch plots. \begin{matlab} %} if 1 %{ \end{matlab} Plot the movement of the mesh, with the field vertical, at the centre of each patch. \begin{matlab} %} %% section marker for macro-mesh plot execution figure(1),clf, colormap(0.8*hsv) Us=shiftdim( mean(mean(us,1,'omitnan'),2,'omitnan') ,2); Xs=shiftdim(mean(patches.x),4); Ys=shiftdim(mean(patches.y),4); for k=1:nTime Xk=Xs+shiftdim(Ds(:,:,:,:,1,k),2); Yk=Ys+shiftdim(Ds(:,:,:,:,2,k),2); if k==1, hand=mesh(Xk,Yk,Us(:,:,k)); ylabel('space y'),xlabel('space x'),zlabel('mean field U') axis([patches.Xlim 0 1]), caxis([0 1]) colorbar if 0, view(0,90) % vertical view else view(-25,60) % 3D perspective end else set(hand,'XData',Xk,'YData',Yk ... ,'ZData',Us(:,:,k),'CData',Us(:,:,k)) end legend(['time =' num2str(ts(k),4)],'Location','north') if rem(k,31)==1, ifOurCf2eps([mfilename theMethod num2str(k)]), end pause(0.05) end% for each time else%if macro-mesh or micro-surf %{ \end{matlab} Plot the movement of the patches, with the field vertical in each patch. \begin{matlab} %} %% section marker for patch-surf plot execution figure(2),clf, colormap(0.8*hsv) xs=reshape(patches.x,nxy,1,Nx,1); ys=reshape(patches.y,1,nxy,1,Ny); for k=1:nTime xk=xs+0*ys+Ds(:,:,:,:,1,k); yk=ys+0*xs+Ds(:,:,:,:,2,k); uk=reshape(permute(us(:,:,:,:,k),[1 3 2 4]),nxy*Nx,nxy*Ny); xk=reshape(permute(xk,[1 3 2 4]),nxy*Nx,nxy*Ny); yk=reshape(permute(yk,[1 3 2 4]),nxy*Nx,nxy*Ny); if k==1, hand=surf(xk,yk,uk); ylabel('space y'),xlabel('space x'),zlabel('field u(x,y,t)') axis([patches.Xlim 0 1]), caxis([0 1]) colorbar else set(hand,'XData',xk,'YData',yk,'ZData',uk,'CData',uk) end legend(['time =' num2str(ts(k),4)],'Location','north') % if rem(k,31)==1, ifOurCf2eps([mfilename theMethod num2str(k)]), end pause(0.05) end% for each time %% end%if macro-mesh or micro-surf %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:mm2dExample}field $u(x,t)$ of the moving patch scheme applied to nonlinear diffusion~\pde.} \begin{tabular}{@{}cc@{}} \includegraphics[width=0.47\linewidth]{Figs/mm2dExample1} & \includegraphics[width=0.47\linewidth]{Figs/mm2dExample32} \\ \includegraphics[width=0.47\linewidth]{Figs/mm2dExample63} & \includegraphics[width=0.47\linewidth]{Figs/mm2dExample94} \end{tabular} \end{figure} Fin. %}
github
uoa1184615/EquationFreeGit-master
mm1dBurgersExample.m
.m
EquationFreeGit-master/SandpitPlay/MoveMesh/mm1dBurgersExample.m
6,382
utf_8
e41c7863cd3185ecc93835286bc7fdd7
% mm1dBurgersExample: moving patches of Burgers PDE %!TEX root = doc.tex %{ \section{\texttt{mm1dBurgersExample}: example of moving patches for Burgers' PDE} \label{sec:mm1dBurgersExample} The code here shows one way to get started: a user's script may have the following three steps (left-right arrows denote function recursion). \begin{enumerate}\def\itemsep{-1ex} \item configPatches1 \item ode15s integrator \into\ mmPatchSys1 \into\ user's PDE \item process results \end{enumerate} The simulation seems perfectly happy for the patches to move so that they overlap in the shock! and then separate again as the shock decays. Establish global patch data struct to point to and interface with a function coding Burgers' \pde: to be solved on $1$-periodic domain, with fifteen patches, spectral interpolation couples the patches, each patch of half-size ratio~$0.2$, and with five microscale points forming each patch. Prefer EdgyInt as we suspect it performs better for moving meshes. \begin{matlab} %} clear all global patches patches = configPatches1(@mmBurgersPDE,[0 1], nan, 15, 0, 0.2, 5 ... ,'EdgyInt',true); patches.mmTime=0.8; patches.Xlim=[0 1]; %{ \end{matlab} The above two amendments to \verb|patches| should eventually be part of the configuration function. \paragraph{Decide the moving mesh time parameter} Here for \(\epsilon=0.02\). \begin{itemize} \item Would be best if the moving mesh was no stiffer than the stiffest microscale sub-patch mode. These would both be the zig-zag modes. \begin{itemize} \item Here the mesh \pde\ is \(X_t=(N^2/\tau)X_{jj}\) so its zig-zag mode decays with rate~\(4N^2/\tau\)\,. \item Here the patch width is~\(h=0.2/15=1/75\), and so the microscale step is \(\delta=h/4=1/300\). Hence the diffusion \(u_t=\epsilon u_{xx}\) has zig-zag mode decaying at rate~\(4\epsilon/\delta^2\). \end{itemize} So, surely best to have \(4N^2/\tau \lesssim 4\epsilon /\delta^2\), that is, \(\tau \gtrsim N^2\delta^2 /\epsilon \approx 0.1\). \item But also we do not want the slowest modes of the moving mesh to obfuscate the system's macroscale modes---the macroscale zig-zag. \begin{itemize} \item The slowest moving mesh mode has wavenumber in~\(j\) of~\(2\pi/N\), and hence rate of decay \((N^2/\tau) (2\pi/N)^2 =4\pi^2/\tau\). \item The fastest zig-zag mode of the system \(U_t=\epsilon U_{xx}\) on step~\(H\) has decay rate \(4\epsilon/H^2\). \end{itemize} So best if \(4\pi^2/\tau \gtrsim 4\epsilon/H^2\), that is, \(\tau \lesssim \pi^2H^2 /\epsilon \approx 2\)\,. (Computations indicate need \(\tau<0.8\)??) \end{itemize} \paragraph{Simulate in time} Set usual sinusoidal initial condition. Add some microscale randomness that decays within time of~\(0.01\), but also seeds slight macroscale variations. \begin{matlab} %} u0 = 0.3+sin(2*pi*patches.x)+0.0*randn(size(patches.x)); N = size(patches.x,4) D0 = zeros(N,1); %ud=mmPatchSys1(0,[D0;u0(:)],patches); %return %{ \end{matlab} Simulate in time using a standard stiff integrator and the interface function \verb|mmPatchSys1()| (\cref{sec:mmPatchSys1}). \begin{matlab} %} tic [ts,us] = ode15s(@mmPatchSys1,linspace(0,0.8),[D0;u0(:)]); cpuTime = toc %{ \end{matlab} \paragraph{Plots} Choose whether to save some plots, or not. \begin{matlab} %} global OurCf2eps OurCf2eps = false; %{ \end{matlab} Plot the movement of the mesh, the centre of each patch, as a function of time: spatial domain horizontal, and time vertical. \begin{matlab} %} figure(1),clf Ds=us(:,1:N); Xs=shiftdim(mean(patches.x),2); plot(Xs+Ds,ts), ylabel('time t'),xlabel('space x') title('Burgers PDE: patch locations over time') ifOurCf2eps([mfilename 'Mesh']) %{ \end{matlab} Animate the simulation using only the microscale values interior to the patches: set $x$-edges to \verb|nan| to leave the gaps. \cref{fig:mmBurgersExample} illustrates an example simulation in time generated by the patch scheme applied to Burgers'~\pde. \begin{matlab} %} uLim=[min(u0(:)) max(u0(:))] us=us(:,N+1:end).'; us(abs(us)>2)=nan; x0s=squeeze(patches.x); x0s([1 end],:)=nan; %% section break to ease rerun of animation figure(2),clf for i=1:length(ts) xs=x0s+Ds(i,:); if i==1, hpts=plot(xs(:),us(:,i),'.'); ylabel('field u'), xlabel('space x') axis([0 1 uLim]) else set(hpts,'XData',xs(:),'YData',us(:,i)); end legend(['time = ' num2str(ts(i),2)],'Location','north') if rem(i,31)==1, ifOurCf2eps([mfilename num2str(i)]), end pause(0.09) end %% %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:mmBurgersExample}field $u(x,t)$ of the moving patch scheme applied to Burgers'~\pde.} \begin{tabular}{@{}cc@{}} \includegraphics[width=0.47\linewidth]{Figs/mmBurgersExample1} & \includegraphics[width=0.47\linewidth]{Figs/mmBurgersExample32} \\ \includegraphics[width=0.47\linewidth]{Figs/mmBurgersExample63} & \includegraphics[width=0.47\linewidth]{Figs/mmBurgersExample94} \end{tabular} \end{figure} \paragraph{Spectrum of the moving patch system} Compute the spectrum based upon the linearisation about some state: \(u={}\)constant with \(D=0\) are equilibria; otherwise the computation is about a 'quasi-equilibrium' on the `fast-time'. \begin{matlab} %} u0 = 0.1+0*sin(2*pi*patches.x); u0 = [zeros(N,1); u0(:)]; f0 = mmPatchSys1(0,u0); normf0=norm(f0) %{ \end{matlab} But we must only use the dynamic variables, so let's find where they are. \begin{matlab} %} xs=patches.x; xs([1 end],:,:,:)=nan; i=find(~isnan( [zeros(N,1);xs(:)] )); nJac=length(i) %{ \end{matlab} Construct Jacobian with numerical differentiation. \begin{matlab} %} deltau=1e-7; Jac=nan(nJac); for j=1:nJac uj=u0; uj(i(j))=uj(i(j))+deltau; fj = mmPatchSys1(0,uj); Jac(:,j)=(fj(i)-f0(i))/deltau; end %{ \end{matlab} Compute and plot the spectrum with non-linear axis scaling (\cref{fig:mm1dBurgersExampleSpec}). \begin{matlab} %} eval=-sort(-eig(Jac)) figure(3),clf hp=plot(real(eval),imag(eval),'.'); xlabel('Re\lambda'), ylabel('Im\lambda') quasiLogAxes(hp,10,1) ifOurCf2eps([mfilename 'Spec']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:mm1dBurgersExampleSpec}spectrum of the moving mesh Burgers' system (about \(u=0.1\)). The four clusters are: right, macroscale Burgers' \pde\ (complex conjugate pairs); left complex pairs, sub-patch \pde\ modes; left real, moving mesh modes.} \includegraphics[scale=0.85]{Figs/mm1dBurgersExampleSpec} \end{figure} Fin. %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt3.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchEdgeInt3.m
28,529
utf_8
994388f67e0cb617d206311ba65f6db3
% patchEdgeInt3() provides the interpolation across 3D space % for 3D patches of simulations of a smooth lattice system % such as PDE discretisations. AJR, Aug 2020 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt3()}: sets 3D patch face values from 3D macroscale interpolation} \label{sec:patchEdgeInt3} Couples 3D patches across 3D space by computing their face values via macroscale interpolation. Assumes patch face values are determined by macroscale interpolation of the patch centre-plane values \cite[]{Roberts2011a, Bunder2019d}, or patch next-to-face values which appears better \cite[]{Bunder2020a}. This function is primarily used by \verb|patchSys3()| but is also useful for user graphics. \footnote{Script \texttt{patchEdgeInt3test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct~\verb|patches|. \begin{matlab} %} function u = patchEdgeInt3(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ multiscale spatial grid on the $\verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ array of patches. \item \verb|patches| a struct set by \verb|configPatches3()| which includes the following information. \begin{itemize} \item \verb|.x| is $\verb|nSubP1| \times1 \times1 \times1 \times1 \times \verb|nPatch1| \times1 \times1 $ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.y| is similarly $1\times \verb|nSubP2| \times1 \times1 \times1 \times1 \times \verb|nPatch2| \times1$ array of the spatial locations~$y_{jJ}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$j$, but may be variable spaced in macroscale index~$J$. \item \verb|.z| is similarly $1 \times1 \times \verb|nSubP3| \times1 \times1 \times1 \times1 \times \verb|nPatch3|$ array of the spatial locations~$z_{kK}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$k$, but may be variable spaced in macroscale index~$K$. \item \verb|.ordCC| is order of interpolation, currently only $\{0,2,4,\ldots\}$ \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left, right, top, bottom, front and back boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation. Currently must be zero. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation in each of the $x,y,z$-directions---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre cross-patch values (near original scheme). \item \verb|.nEdge|, three elements, the width of edge values set by interpolation at the \(x,y,z\)-face regions, respectively, of each patch (default is one all \(x,y,z\)-faces). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 8D array, $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$, of the fields with face values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [~,~,nz,~,~,~,~,Nz] = size(patches.z); [~,ny,~,~,~,~,Ny,~] = size(patches.y); [nx,~,~,~,~,Nx,~,~] = size(patches.x); nEnsem = patches.nEnsem; nVars = round( numel(u)/numel(patches.x) ... /numel(patches.y)/numel(patches.z)/nEnsem ); assert(numel(u) == nx*ny*nz*Nx*Ny*Nz*nVars*nEnsem ... ,'patchEdgeInt3: input u has wrong size for parameters') u = reshape(u,[nx ny nz nVars nEnsem Nx Ny Nz]); %{ \end{matlab} For the moment assume the physical domain is either macroscale periodic or macroscale rectangle so that the coupling formulas are simplest. These index vectors point to patches and, if periodic, their six immediate neighbours. \begin{matlab} %} I=1:Nx; Ip=mod(I,Nx)+1; Im=mod(I-2,Nx)+1; J=1:Ny; Jp=mod(J,Ny)+1; Jm=mod(J-2,Ny)+1; K=1:Nz; Kp=mod(K,Nz)+1; Km=mod(K-2,Nz)+1; %{ \end{matlab} \paragraph{Implement multiple width edges by folding} Subsample~\(x,y,z\) coordinates, noting it is only differences that count \emph{and} the microgrid~\(x,y,z\) spacing must be uniform. \begin{matlab} %} %x = patches.x; %if patches.nEdge(1)>1 % m = patches.nEdge(1); % x = x(1:m:nx,:,:,:,:,:,:,:); % nx = nx/m; % u = reshape(u,m,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[2:4 1 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(1) %y = patches.y; %if patches.nEdge(2)>1 % m = patches.nEdge(2); % y = y(:,1:m:ny,:,:,:,:,:,:); % ny = ny/m; % u = reshape(u,nx,m,ny,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[1 3:4 2 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(2) %z = patches.z; %if patches.nEdge(3)>1 % m = patches.nEdge(3); % z = z(:,:,1:m:nz,:,:,:,:,:); % nz = nz/m; % u = reshape(u,nx,ny,m,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[1:2 4 3 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(3) x = patches.x; y = patches.y; z = patches.z; if mean(patches.nEdge)>1 mx = patches.nEdge(1); my = patches.nEdge(2); mz = patches.nEdge(3); x = x(1:mx:nx,:,:,:,:,:,:,:); y = y(:,1:my:ny,:,:,:,:,:,:); z = z(:,:,1:mz:nz,:,:,:,:,:); nx = nx/mx; ny = ny/my; nz = nz/mz; u = reshape(u,mx,nx,my,ny,mz,nz,nVars,nEnsem,Nx,Ny,Nz); nVars = nVars*mx*my*mz; u = reshape( permute(u,[2:2:6 1:2:5 7:11]) ... ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); end%if patches.nEdge %{ \end{matlab} The centre of each patch (as \verb|nx|, \verb|ny| and \verb|nz| are odd for centre-patch interpolation) is at indices \begin{matlab} %} i0 = round((nx+1)/2); j0 = round((ny+1)/2); k0 = round((nz+1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches in each direction. \begin{matlab} %} rx = patches.ratio(1); ry = patches.ratio(2); rz = patches.ratio(3); %{ \end{matlab} \subsubsection{Lagrange interpolation gives patch-face values} Compute centred differences of the mid-patch values for the macro-interpolation, of all fields. Here the domain is macro-periodic. \begin{matlab} %} ordCC = patches.ordCC; if ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. \paragraph{\(x\)-normal face values} The patch-edge values are either interpolated from the next-to-edge-face values, or from the centre-cross-plane values (not the patch-centre value itself as that seems to have worse properties in general). Have not yet implemented core averages. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u([2 nx-1],2:(ny-1),2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(i0,2:(ny-1),2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Just in case any last array dimension(s) are one, we force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') % dmux(:,:,:,:,:,I,:,:,1) = (Ux(:,:,:,:,:,Ip,:,:) +Ux(:,:,:,:,:,Im,:,:))/2; % \mu % dmux(:,:,:,:,:,I,:,:,2) = (Ux(:,:,:,:,:,Ip,:,:) -Ux(:,:,:,:,:,Im,:,:)); % \delta % Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 % dmuy(:,:,:,:,:,:,J,:,1) = (Ux(:,:,:,:,:,:,Jp,:)+Ux(:,:,:,:,:,:,Jm,:))/2; % \mu % dmuy(:,:,:,:,:,:,J,:,2) = (Ux(:,:,:,:,:,:,Jp,:)-Ux(:,:,:,:,:,:,Jm,:)); % \delta % Jp = Jp(Jp); Jm = Jm(Jm); % increase shifts to \pm2 % dmuz(:,:,:,:,:,:,:,K,1) = (Ux(:,:,:,:,:,:,:,Kp)+Ux(:,:,:,:,:,:,:,Km))/2; % \mu % dmuz(:,:,:,:,:,:,:,K,2) = (Ux(:,:,:,:,:,:,:,Kp)-Ux(:,:,:,:,:,:,:,Km)); % \delta % Kp = Kp(Kp); Km = Km(Km); % increase shifts to \pm2 else %disp('starting standard interpolation') dmu(:,:,:,:,:,I,:,:,1) = (U(:,:,:,:,:,Ip,:,:) ... -U(:,:,:,:,:,Im,:,:))/2; %\mu\delta dmu(:,:,:,:,:,I,:,:,2) = (U(:,:,:,:,:,Ip,:,:) ... -2*U(:,:,:,:,:,I,:,:) +U(:,:,:,:,:,Im,:,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,I,:,:,k) = dmu(:,:,:,:,:,Ip,:,:,k-2) ... -2*dmu(:,:,:,:,:,I,:,:,k-2) +dmu(:,:,:,:,:,Im,:,:,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet face values for each patch \cite[]{Roberts06d, Bunder2013b}, using the weights pre-computed by \verb|configPatches3()|. Here interpolate to specified order. For the case where next-to-face values interpolate to the opposite face-values: when we have an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(nx,2:(ny-1),2:(nz-1),:,patches.ri,I,:,:) ... = U(1,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,1),-8).*dmu(1,:,:,:,:,:,:,:,:) ,9); u(1 ,2:(ny-1),2:(nz-1),:,patches.le,I,:,:) ... = U(k,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,1),-8).*dmu(k,:,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(y\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,[2 ny-1],2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(:,j0,2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,J,:,1) = (U(:,:,:,:,:,:,Jp,:) ... -U(:,:,:,:,:,:,Jm,:))/2; %\mu\delta dmu(:,:,:,:,:,:,J,:,2) = (U(:,:,:,:,:,:,Jp,:) ... -2*U(:,:,:,:,:,:,J,:) +U(:,:,:,:,:,:,Jm,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,J,:,k) = dmu(:,:,:,:,:,:,Jp,:,k-2) ... -2*dmu(:,:,:,:,:,:,J,:,k-2) +dmu(:,:,:,:,:,:,Jm,:,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,ny,2:(nz-1),:,patches.to,:,J,:) ... = U(:,1,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,2),-8).*dmu(:,1,:,:,:,:,:,:,:) ,9); u(:,1 ,2:(nz-1),:,patches.bo,:,J,:) ... = U(:,k,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,2),-8).*dmu(:,k,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(z\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,:,[2 nz-1],:,:,I,J,K); else % interpolate centre-cross values U = u(:,:,k0,:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,:,K,1) = (U(:,:,:,:,:,:,:,Kp) ... -U(:,:,:,:,:,:,:,Km))/2; %\mu\delta dmu(:,:,:,:,:,:,:,K,2) = (U(:,:,:,:,:,:,:,Kp) ... -2*U(:,:,:,:,:,:,:,K) +U(:,:,:,:,:,:,:,Km)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,:,K,k) = dmu(:,:,:,:,:,:,:,Kp,k-2) ... -2*dmu(:,:,:,:,:,:,:,K,k-2) +dmu(:,:,:,:,:,:,:,Km,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,:,nz,:,patches.fr,:,:,K) ... = U(:,:,1,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,3),-8).*dmu(:,:,1,:,:,:,:,:,:) ,9); u(:,:,1 ,:,patches.ba,:,:,K) ... = U(:,:,k,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,3),-8).*dmu(:,:,k,:,:,:,:,:,:) ,9); %{ \end{matlab} \subsubsection{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} We interpolate in terms of the patch index, $I$~say, not directly in space. As the macroscale fields are $N$-periodic in the patch index~$I$, the macroscale Fourier transform writes the centre-patch values as $U_I=\sum_{k}C_ke^{ik2\pi I/N}$. Then the face-patch values $U_{I\pm r} =\sum_{k}C_ke^{ik2\pi/N(I\pm r)} =\sum_{k}C'_ke^{ik2\pi I/N}$ where $C'_k =C_ke^{ikr2\pi/N}$. For $N$~patches we resolve `wavenumbers' $|k|<N/2$, so set row vector $\verb|ks| =k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, \pm(k_{\max}+1) -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches3| tests there are an even number of patches). Then the patch-ratio is effectively halved. The patch faces are near the middle of the gaps and swapped. \begin{matlab} %} if patches.stag % transform by doubling the number of fields error('staggered grid not yet implemented??') v=nan(size(u)); % currently to restore the shape of u u=cat(3,u(:,1:2:nPatch,:),u(:,2:2:nPatch,:)); stagShift=reshape(0.5*[ones(nVars,1);-ones(nVars,1)],1,1,[]); iV=[nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r=r/2; % ratio effectively halved nPatch=nPatch/2; % halve the number of patches nVars=nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. Need these indices of patch interior. \begin{matlab} %} ix = 2:nx-1; iy = 2:ny-1; iz = 2:nz-1; %{ \end{matlab} \paragraph{\(x\)-normal face values} Now set wavenumbers into a vector at the correct dimension. In the case of even~$N$ these compute the $+$-case for the highest wavenumber zig-zag mode, $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, +(k_{\max}+1) -k_{\max}, \ldots, -1)$. \begin{matlab} %} kMax = floor((Nx-1)/2); kr = shiftdim( rx*2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ,-4); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. Unless doing patch-edgy interpolation when FT the next-to-face values. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(i0,iy,iz,:,:,:,:,:) ,[],6); Cp = Cm; else Cm = fft( u( 2,iy,iz ,:,patches.le,:,:,:) ,[],6); Cp = fft( u(nx-1,iy,iz ,:,patches.ri,:,:,:) ,[],6); end%if ~patches.EdgyInt %{ \end{matlab} Now invert the Fourier transforms to complete interpolation. Enforce reality when appropriate. \begin{matlab} %} u(nx,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],6) ); u( 1,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],6) ); %{ \end{matlab} \paragraph{\(y\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Ny-1)/2); kr = shiftdim( ry*2*pi/Ny*(mod((0:Ny-1)+kMax,Ny)-kMax) ,-5); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,j0,iz,:,:,:,:,:) ,[],7); Cp = Cm; else Cm = fft( u(:,2 ,iz ,:,patches.bo,:,:,:) ,[],7); Cp = fft( u(:,ny-1,iz ,:,patches.to,:,:,:) ,[],7); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,ny,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],7) ); u(:, 1,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],7) ); %{ \end{matlab} \paragraph{\(z\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Nz-1)/2); kr = shiftdim( rz*2*pi/Nz*(mod((0:Nz-1)+kMax,Nz)-kMax) ,-6); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,:,k0,:,:,:,:,:) ,[],8); Cp = Cm; else Cm = fft( u(:,:,2 ,:,patches.ba,:,:,:) ,[],8); Cp = fft( u(:,:,nz-1 ,:,patches.fr,:,:,:) ,[],8); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,:,nz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],8) ); u(:,:, 1,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],8) ); %{ \end{matlab} \begin{matlab} %} end% if ordCC>0 %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|px|, \verb|py| and~\verb|pz| (potentially different in the different directions!), and hence size of the (forward) divided difference tables in~\verb|F|~(9D) for interpolating to left/right, top/bottom, and front/back faces. Because of the product-form of the patch grid, and because we are doing \emph{only} either edgy interpolation or cross-patch interpolation (\emph{not} just the centre patch value), the interpolations are all 1D interpolations. \begin{matlab} %} if patches.ordCC<1 px = Nx-1; py = Ny-1; pz = Nz-1; else px = min(patches.ordCC,Nx-1); py = min(patches.ordCC,Ny-1); pz = min(patches.ordCC,Nz-1); end % interior indices of faces (ix n/a) ix=2:nx-1; iy=2:ny-1; iz=2:nz-1; %{ \end{matlab} \subsubsection{\(x\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-face values are because their values are to interpolate to the opposite face of each patch. \todo{Have no plans to implement core averaging as yet.} \begin{matlab} %} F = nan(patches.EdgyInt+1,ny-2,nz-2,nVars,nEnsem,Nx,Ny,Nz,px+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u([nx-1 2],iy,iz,:,:,:,:,:); X = x([nx-1 2],:,:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(i0,iy,iz,:,:,:,:,:); X = x(i0,:,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} \paragraph{Form tables of divided differences} Compute tables of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable, and across ensemble, and in both directions, and for all three types of faces (left/right, top/bottom, and front/back). Recursively find all divided differences in the respective direction. \begin{matlab} %} for q = 1:px i = 1:Nx-q; F(:,:,:,:,:,i,:,:,q+1) ... = ( F(:,:,:,:,:,i+1,:,:,q)-F(:,:,:,:,:,i,:,:,q)) ... ./(X(:,:,:,:,:,i+q,:,:) -X(:,:,:,:,:,i,:,:)); end %{ \end{matlab} \paragraph{Interpolate with divided differences} Now interpolate to find the face-values on left/right faces at~\verb|Xface| for every interior~\verb|Y,Z|. \begin{matlab} %} Xface = x([1 nx],:,:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left face of each interpolation stencil, because the table is of forward differences. This alternative: the case of order~\(p_x\), \(p_y\) and~\(p_z\) interpolation across the domain, asymmetric near the boundaries of the rectangular domain. \begin{matlab} %} i = max(1,min(1:Nx,Nx-ceil(px/2))-floor(px/2)); Uface = F(:,:,:,:,:,i,:,:,px+1); for q = px:-1:1 Uface = F(:,:,:,:,:,i,:,:,q) ... +(Xface-X(:,:,:,:,:,i+q-1,:,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,iy,iz,:,patches.le,:,:,:) = Uface(1,:,:,:,:,:,:,:); u(nx,iy,iz,:,patches.ri,:,:,:) = Uface(2,:,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(y\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,patches.EdgyInt+1,nz-2,nVars,nEnsem,Nx,Ny,Nz,py+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,[ny-1 2],iz,:,:,:,:,:); Y = y(:,[ny-1 2],:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,j0,iz,:,:,:,:,:); Y = y(:,j0,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:py j = 1:Ny-q; F(:,:,:,:,:,:,j,:,q+1) ... = ( F(:,:,:,:,:,:,j+1,:,q)-F(:,:,:,:,:,:,j,:,q)) ... ./(Y(:,:,:,:,:,:,j+q,:) -Y(:,:,:,:,:,:,j,:)); end %{ \end{matlab} Interpolate to find the top/bottom faces~\verb|Yface| for every~\(x\) and interior~\(z\). \begin{matlab} %} Yface = y(:,[1 ny],:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|j| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} j = max(1,min(1:Ny,Ny-ceil(py/2))-floor(py/2)); Uface = F(:,:,:,:,:,:,j,:,py+1); for q = py:-1:1 Uface = F(:,:,:,:,:,:,j,:,q) ... +(Yface-Y(:,:,:,:,:,:,j+q-1,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,1 ,iz,:,patches.bo,:,:,:) = Uface(:,1,:,:,:,:,:,:); u(:,ny,iz,:,patches.to,:,:,:) = Uface(:,2,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(z\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,ny,patches.EdgyInt+1,nVars,nEnsem,Nx,Ny,Nz,pz+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,:,[nz-1 2],:,:,:,:,:); Z = z(:,:,[nz-1 2],:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,:,k0,:,:,:,:,:); Z = z(:,:,k0,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:pz k = 1:Nz-q; F(:,:,:,:,:,:,:,k,q+1) ... = ( F(:,:,:,:,:,:,:,k+1,q)-F(:,:,:,:,:,:,:,k,q)) ... ./(Z(:,:,:,:,:,:,:,k+q) -Z(:,:,:,:,:,:,:,k)); end %{ \end{matlab} Interpolate to find the face-values on front/back faces~\verb|Zface| for every~\(x,y\). \begin{matlab} %} Zface = z(:,:,[1 nz],:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|k| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} k = max(1,min(1:Nz,Nz-ceil(pz/2))-floor(pz/2)); Uface = F(:,:,:,:,:,:,:,k,pz+1); for q = pz:-1:1 Uface = F(:,:,:,:,:,:,:,k,q) ... +(Zface-Z(:,:,:,:,:,:,:,k+q-1)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,:,1 ,:,patches.fr,:,:,:) = Uface(:,:,1,:,:,:,:,:); u(:,:,nz,:,patches.ba,:,:,:) = Uface(:,:,2,:,:,:,:,:); %{ \end{matlab} \subsubsection{Optional NaNs for safety} We want a user to set outer face values on the extreme patches according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, unless testing, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} if isfield(patches,'intTest')&&patches.intTest else % usual case u( 1,:,:,:,:, 1,:,:) = nan; u(nx,:,:,:,:,Nx,:,:) = nan; u(:, 1,:,:,:,:, 1,:) = nan; u(:,ny,:,:,:,:,Ny,:) = nan; u(:,:, 1,:,:,:,:, 1) = nan; u(:,:,nz,:,:,:,:,Nz) = nan; end%if %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic else %{ \end{matlab} \paragraph{Unfold multiple edges} No need to restore~\(x,y,z\). \begin{matlab} %} if mean(patches.nEdge)>1 nVars = nVars/(mx*my*mz); u = reshape( u ,nx,ny,nz,mx,my,mz,nVars,nEnsem,Nx,Ny,Nz); nx = nx*mx; ny = ny*my; nz = nz*mz; u = reshape( permute(u,[4 1 5 2 6 3 7:11]) ... ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); end%if patches.nEdge %{ \end{matlab} Fin, returning the 8D array of field values with interpolated faces. \begin{matlab} %} end% function patchEdgeInt3 %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
configPatches1.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/configPatches1.m
24,736
utf_8
658f09fbcd57e0cafaf7592fe95529ef
% configPatches1() creates a data struct of the design of % 1D patches for later use by the patch functions such as % patchSys1(). AJR, Nov 2017 -- 23 Mar 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches1()}: configure spatial patches in 1D} \label{sec:configPatches1} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys1()|. \cref{sec:configPatches1eg} lists an example of its use. \begin{matlab} %} function patches = configPatches1(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) version = '2023-03-23'; %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating Burgers' \pde---see \cref{sec:configPatches1eg} for the example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)|, that computes time derivatives (or time-steps) of quantities on the 1D micro-grid within all the 1D~patches. \item \verb|Xlim| give the macro-space spatial domain of the computation, namely the interval $[ \verb|Xlim(1)|, \verb|Xlim(2)|]$. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is macro-periodic in the 1D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left(right) edge of the leftmost(rightmost) patches. \item \verb|.bcOffset|, optional one or two element array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right macroscale boundaries are aligned to the left\slash right edges of the corresponding extreme patches, but offset by \verb|bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when applying Dirichlet boundary values on the extreme edge micro-grid points, whereas use \verb|bcOffset=0.5| when applying Neumann boundary conditions halfway between the extreme edge micro-grid points. \item \verb|.X|, optional array, in the case~\verb|'usergiven'| it specifies the locations of the centres of the \verb|nPatch| patches---the user is responsible it makes sense. \end{itemize} \item \verb|nPatch| is the number of equi-spaced spatial patches. \item \verb|ordCC|, must be~$\geq -1$, is the `order' of interpolation across empty space of the macroscale patch values to the edge of the patches for inter-patch coupling: where \verb|ordCC| of~$0$ or~$-1$ gives spectral interpolation; and \verb|ordCC| being odd specifies staggered spatial grids. \item \verb|dx| (real) is usually the sub-patch micro-grid spacing in~\(x\). However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio|, namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points---adjusted a little when $\verb|nEdge|>1$. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch. If not using \verb|EdgyInt|, then $\verb|nSubP/nEdge|$ must be odd integer so that there is/are centre-patch lattice point(s). So for the defaults of $\verb|nEdge|=1$ and not \verb|EdgyInt|, then \verb|nSubP| must be odd. \item \verb|'nEdge'|, \emph{optional}, default=1, the number of edge values set by interpolation at the edge regions of each patch. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|EdgyInt|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right edge-values from right\slash left next-to-edge values. If false or omitted, then interpolate from centre-patch values. \item \verb|nEnsem|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|hetCoeffs|, \emph{optional}, default empty. Supply a 1D or 2D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times n_c$, where $n_c$~is the number of different sets of coefficients. The coefficients are to be the same for each and every patch; however, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the first point in each patch. Best accuracy usually obtained when the periodicity of the coefficients is a factor of \verb|nSubP-2*nEdge| for \verb|EdgyInt|, or a factor of \verb|(nSubP-nEdge)/2| for not \verb|EdgyInt|. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x$ and construct an ensemble of all $m_x$~phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|nCore|, \emph{optional-experimental}, default one, but if more, and only for non-EdgyInt, then interpolates from an average over the core of a patch, a core of size ??. Then edge values are set according to interpolation of the averages?? or so that average at edges is the interpolant?? \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x$. A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end patches.version = version; %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)|, that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling. \item \verb|.Cwtsr| and \verb|.Cwtsl|, only for macro-periodic conditions, are the $\verb|ordCC|$-vector of weights for the inter-patch interpolation onto the right and left edges (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (4D) is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the regular spatial locations~$x_{iI}$ of the $i$th~microscale grid point in the $I$th~patch. \item \verb|.ratio|, only for macro-periodic conditions, is the size ratio of every patch. \item \verb|.nEdge| is, for each patch, the number of edge values set by interpolation at the edge regions of each patch. \item \verb|.le|, \verb|.ri| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times n_c$ 2D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1) \times n_c\times m_x$ 3D array of $m_x$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches1eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of Burgers PDE') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches1 \item ode15s integrator \into patchSys1 \into user's PDE \item process results \end{enumerate} Establish global patch data struct to point to and interface with a function coding Burgers' \pde: to be solved on $2\pi$-periodic domain, with eight patches, spectral interpolation couples the patches, with micro-grid spacing~$0.06$, and with seven microscale points forming each patch. \begin{matlab} %} global patches patches = configPatches1(@BurgersPDE, [0 2*pi], ... 'periodic', 8, 0, 0.06, 7); %{ \end{matlab} Set some initial condition, with some microscale randomness. \begin{matlab} %} u0=0.3*(1+sin(patches.x))+0.1*randn(size(patches.x)); %{ \end{matlab} Simulate in time using a standard stiff integrator and the interface function \verb|patchSys1()| (\cref{sec:patchSys1}). \begin{matlab} %} if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode15s( @patchSys1,[0 0.5],u0(:)); else % octave version [ts,us] = odeOcts(@patchSys1,[0 0.5],u0(:)); end %{ \end{matlab} Plot the simulation using only the microscale values interior to the patches: either set $x$-edges to \verb|nan| to leave the gaps; or use \verb|patchEdgyInt1| to re-interpolate correct patch edge values and thereby join the patches. \cref{fig:config1Burgers} illustrates an example simulation in time generated by the patch scheme applied to Burgers'~\pde. \begin{matlab} %} figure(1),clf if 1, patches.x([1 end],:,:,:)=nan; us=us.'; else us=reshape(patchEdgyInt1(us.'),[],length(ts)); end mesh(ts,patches.x(:),us) view(60,40), colormap(0.7*hsv) title('Burgers PDE: patches in space, continuous time') xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:config1Burgers}field $u(x,t)$ of the patch scheme applied to Burgers'~\pde.} \includegraphics[scale=0.85]{configPatches1} \end{figure} Upon finishing execution of the example, optionally save the graph to be shown in \cref{fig:config1Burgers}, then exit this function. \begin{matlab} %} ifOurCf2eps(mfilename) return end%if nargin==0 %{ \end{matlab} \IfFileExists{../Patch/BurgersPDE.m}{\input{../Patch/BurgersPDE.m}}{} \IfFileExists{../Patch/odeOcts.m}{\input{../Patch/odeOcts.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle'); %test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % nothing yet decided addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); addParameter(p,'nCore',1,@isnumeric); parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; patches.nCore = p.Results.nCore; %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'two entries of Xlim must be ordered increasing') assert((mod(ordCC,2)==0)|(patches.nEdge==1) ... ,'Cannot yet have nEdge>1 and staggered patch grids') assert(3*patches.nEdge<=nSubP ... ,'too many edge values requested') assert(rem(nSubP,patches.nEdge)==0 ... ,'nSubP must be integer multiple of nEdge') if ~patches.EdgyInt, assert(rem(nSubP/patches.nEdge,2)==1 ... ,'for non-edgyInt, nSubP/nEdge must be odd integer') end if (patches.nEnsem>1)&(patches.nEdge>1) warning('not yet tested when both nEnsem and nEdge non-one') end if patches.nCore>1 warning('nCore>1 not yet tested in this version') end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| parameter. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and then get corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} Check what is and is not specified, and provide default of Dirichlet boundaries if no \verb|bcOffset| specified when needed. \begin{matlab} %} patches.periodic=false; switch Dom.type case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end if isfield(Dom,'X') warning('X not available for Dom.type = periodic'), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=[0;0]; end if length(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,1); end if isfield(Dom,'X') warning('X not available for Dom.type = equispace or chebyshev') end case 'usergiven' if isfield(Dom,'bcOffset') warning('bcOffset not available for usergiven Dom.type'), end assert(isfield(Dom,'X'),'X required for Dom.type = usergiven') otherwise error([Dom.type ' is unknown Dom.type']) end%switch Dom.type %{ \end{matlab} \subsection{The code to make patches and interpolation} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun=fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ and~$-1$. \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC|, interpolate based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag=mod(ordCC,2); ordCC=ordCC+patches.stag; patches.ordCC=ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(mod(nPatch,2)==0, ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} Third, set the centre of the patches in the macroscale grid of patches, depending upon \verb|Dom.type|. \begin{matlab} %} switch Dom.type %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' X=linspace(Xlim(1),Xlim(2),nPatch+1); DX=X(2)-X(1); X=X(1:nPatch)+diff(X)/2; pEI=patches.EdgyInt;% abbreviation pnE=patches.nEdge; % abbreviation if pre2023, dx = ratio*DX/(nSubP-pnE*(1+pEI))*(2-pEI); else ratio = dx/DX*(nSubP-pnE*(1+pEI))/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. %\todo{This warning needs refinement for multi-edges??} \begin{matlab} %} case 'equispace' X=linspace(Xlim(1)+((nSubP-1)/2-Dom.bcOffset(1))*dx ... ,Xlim(2)-((nSubP-1)/2-Dom.bcOffset(2))*dx ,nPatch); DX=diff(X(1:2)); width=(1+patches.EdgyInt)/2*(nSubP-1-patches.EdgyInt)*dx; if DX<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(X_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'. \footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatial analogue of the `christmas tree' of projective integration and its projection to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx*(nSubP-1)/2; X1 = Xlim(1)+halfWidth-Dom.bcOffset(1)*dx; X2 = Xlim(2)-halfWidth+Dom.bcOffset(2)*dx; % X = (X1+X2)/2-(X2-X1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. We need to find~\verb|b|, the number of patches `glued' together at the boundaries. \begin{matlab} %} pEI=patches.EdgyInt;% abbreviation pnE=patches.nEdge; % abbreviation width=(1+pEI)/2*(nSubP-pnE-pEI*pnE)*dx; for b=0:2:nPatch-2 DXmin=(X2-X1-b*width)/2*( 1-cos(pi/(nPatch-b-1)) ); if DXmin>width, break, end end%for if DXmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} X = [ X1+(0:b/2-1)*width ... (X1+X2)/2-(X2-X1-b*width)/2*cos(linspace(0,pi,nPatch-b)) ... X2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just force it to have the correct shape of a row. \begin{matlab} %} case 'usergiven' X = reshape(Dom.X,1,[]); end%switch Dom.type %{ \end{matlab} Fourth, construct the microscale grid in each patch, centred about the given mid-points~\verb|X|. Reshape the grid to be 4D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} xs = dx*( (1:nSubP)-mean(1:nSubP) ); patches.x = reshape( xs'+X ,nSubP,1,1,nPatch); %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to left-edge~\verb|le|, and \item the left-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Alternatively, one may use the statement \begin{verbatim} c=hankel(c(1:nSubP-1),c([nSubP 1:nSubP-2])); \end{verbatim} to \emph{correspondingly} generates all phase shifted copies of microscale heterogeneity (see \verb|homoDiffEdgy1| of \cref{sec:homoDiffEdgy1}). The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt1()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 2D, then the higher-dimensions are reshaped into the 2nd dimension. \begin{matlab} %} if ~isempty(cs) [mx,nc] = size(cs); nx = nSubP(1); cs = repmat(cs,nSubP,1); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_x$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx; patches.cs = nan(nx-1,nc,mx); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,i) = cs(is,:); end patches.cs = reshape(patches.cs,nx-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} patches.le = mod((0:mx-1)'+mod(nx-2,mx),mx)+1; patches.ri = mod((0:mx-1)'-mod(nx-2,mx),mx)+1; %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. Need to justify this and the arbitrary threshold more carefully?? \begin{matlab} %} if ratio*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel % theparpool=gcp() spmd %{ \end{matlab} Second, choose to slice parallel workers in the spatial direction. \begin{matlab} %} pari = 1; patches.codist=codistributor1d(3+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
hyperDiffHetero.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/hyperDiffHetero.m
5,068
utf_8
86abdf14874293588d096b8c6c5856cc
% Simulate a heterogeneous version of hyper-diffusion PDE in % 1D on patches as an example application with pairs of edge % points needing to be interpolated between patches in % space. AJR, 12 Apr 2023 %!TEX root = doc.tex %{ \section{\texttt{hyperDiffHetero}: simulate a heterogeneous hyper-diffusion PDE in 1D on patches} \label{sec:hyperDiffHetero} \localtableofcontents \cref{fig:hyperDiffHeteroU} shows an example simulation in time generated by the patch scheme applied to a heterogeneous version of the hyper-diffusion \pde. That such simulations makes valid predictions was established by \cite{Bunder2013b} who proved that the scheme is accurate when the number of points in a patch is tied to a multiple of the periodicity of the pattern. \begin{figure} \centering \caption{\label{fig:hyperDiffHeteroU} hyper-diffusing field~\(u(x,t)\) in the patch scheme applied to microscale heterogeneous hyper-diffusion (\cref{sec:hyperDiffHetero}). The log-time axis shows: \(t<10^{-2}\), rapid decay of sub-patch micro-structure; \(10^{-2}<t<1\), meso-time quasi-equilibrium; and \(1<t<10^2\), slow decay of macroscale structures.} \includegraphics[scale=0.9]{hyperDiffHeteroUxt} \end{figure}% We aim to simulate the heterogeneous hyper-diffusion \pde \begin{equation} u_t= -D[c_1(x)Du] \quad\text{where operator } D := \partial_x( c_2(x) \partial_x ), \label{eq:hyperDiffHetero} \end{equation} for microscale periodic coefficients~\(c_l(x)\), and boundary conditions of \(u=u_x=0\) at \(x=0,L\). In this 1D space, the macroscale, homogenised, effective hyper-diffusion should be some unknown `average' of these coefficients, but we use the patch scheme to provide a computational homogenisation. We discretise the \pde\ to a lattice of values~\(u_i(t)\), with lattice spacing~\(dx\), and governed by \begin{equation*} \dot u_i = -D[c_{i1}D u_i] \quad\text{where operator } D := \delta( c_{i2}\delta )/dx^2 \end{equation*} in terms of centred difference operator \(\delta u_i := u_{i+1/2} - u_{i-1/2}\). Set the desired microscale periodicity, and correspondingly choose random microscale diffusion coefficients (with some subscripts shifted by a half). \begin{matlab} %} clear all basename = mfilename %global OurCf2eps, OurCf2eps=true %optional to save plots nGap = 3 % controls size of gap between patches nPtsPeriod = 5 dx = 0.5/nGap/nPtsPeriod %{ \end{matlab} Create some random heterogeneous coefficients, log-uniform. \begin{matlab} %} csVar = 1 cs = 0.2*exp( -csVar/2+csVar.*rand(nPtsPeriod,2) ) %{ \end{matlab} Establish global data struct~\verb|patches| for heterogeneous hyper-diffusion on a finite domain with, on average, one patch per unit length. Use seven patches, and use high-order interpolation with \(\verb|ordCC|=0\). \begin{matlab} %} nPatch = 7 nSubP = 2*nPtsPeriod+4 % or +2 for not-edgyInt Len = nPatch; ordCC = 0; dom.type = 'equispace'; dom.bcOffset = 0.5 % for BC type patches = configPatches1(@hyperDiffPDE,[0 Len],dom ... ,nPatch,ordCC,dx,nSubP,'EdgyInt',true,'nEdge',2 ... ,'hetCoeffs',cs); xs=squeeze(patches.x); %{ \end{matlab} \paragraph{Simulate in time} Set an initial condition, and here integrate forward in time using a standard method for stiff systems---because of the simplicity of linear problems this method works quite efficiently here. Integrate the interface \verb|patchSys1| (\cref{sec:patchSys1}) to the microscale differential equations. \begin{matlab} %} u0 = sin(2*pi/Len*patches.x).*rand(nSubP,1,1,nPatch); tic [ts,us] = ode15s(@patchSys1, [0 100], u0(:) ,[],patches); simulateTime = toc us = reshape(us,length(ts),numel(patches.x(:)),[]); %{ \end{matlab} Plot the simulation in \cref{fig:hyperDiffHeteroU}, using log-axis for time so we can see a little of both micro- and macro-dynamics. \begin{matlab} %} figure(1),clf xs([1:2 end-1:end],:) = nan; t0=min(find(ts>1e-5)); mesh(ts(t0:3:end),xs(:),us(t0:3:end,:)'), view(55,50) colormap(0.7*hsv) xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') ca=gca; ca.XScale='log'; ca.XLim=ts([t0 end]); ifOurCf2eps([basename 'Uxt']) %{ \end{matlab} Fin. \subsection{Heterogeneous hyper-diffusion PDE inside patches} As a microscale discretisation of hyper-diffusion \pde~\cref{eq:hyperDiffHetero} \(u_t= -D[c_1(x)Du] \), where heterogeneous operator \(D = \partial_x( c_2(x) \partial_x )\). \begin{matlab} %} function ut=hyperDiffPDE(t,u,patches) dx=diff(patches.x(1:2)); % microscale spacing %{ \end{matlab} Code Dirichlet boundary conditions of zero function and derivative at left-end of left-patch, and right-end of right-patch. For slightly simpler coding, squeeze out the two singleton dimensions. \begin{matlab} %} u = squeeze(u); if ~patches.periodic % discretise BC u=u_x=0 u(1:2,1)=0; u(end-1:end,end)=0; end%if %{ \end{matlab} Here code straightforward centred discretisation in space. \begin{matlab} %} ut = nan+u; % preallocate output array v = patches.cs(2:end,1).*diff(patches.cs(:,2).*diff(u))/dx^2; ut(3:end-2,:) = -diff(patches.cs(2:end-1,2).*diff(v))/dx^2 ; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
configPatches2.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/configPatches2.m
31,139
utf_8
0503e5a59406ec06c7901c982f712d36
% configPatches2() creates a data struct of the design of 2D % patches for later use by the patch functions such as % patchSys2(). AJR, Nov 2018 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches2()}: configures spatial patches in 2D} \label{sec:configPatches2} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys2()|. \cref{sec:configPatches2eg} lists an example of its use. \begin{matlab} %} function patches = configPatches2(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) version = '2023-04-12'; %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating a nonlinear diffusion \pde\ relevant to the lubrication flow of a thin layer of fluid---see \cref{sec:configPatches2eg} for an example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)|, that computes time-derivatives (or time-steps) of quantities on the 2D micro-grid within all the 2D~patches. \item \verb|Xlim| array/vector giving the rectangular macro-space domain of the computation, namely $[\verb|Xlim(1)|, \verb|Xlim(2)|] \times [\verb|Xlim(3)|, \verb|Xlim(4)|]$. If \verb|Xlim| has two elements, then the domain is the square domain of the same interval in both directions. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is doubly macro-periodic in the 2D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left\slash right\slash bottom\slash top edges of the leftmost\slash rightmost\slash bottommost\slash topmost patches, respectively. \item \verb|.bcOffset|, optional one, two or four element vector/array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right\slash top\slash bottom macroscale boundaries are aligned to the left\slash right\slash top\slash bottom edges of the corresponding extreme patches, but offset by \verb|.bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when the micro-code applies Dirichlet boundary values on the extreme edge micro-grid points, whereas use \verb|bcOffset=0.5| when the microcode applies Neumann boundary conditions halfway between the extreme edge micro-grid points. Similarly for the top and bottom edges. If \verb|.bcOffset| is a scalar, then apply the same offset to all boundaries. If two elements, then apply the first offset to both \(x\)-boundaries, and the second offset to both \(y\)-boundaries. If four elements, then apply the first two offsets to the respective \(x\)-boundaries, and the last two offsets to the respective \(y\)-boundaries. \item \verb|.X|, optional vector/array with \verb|nPatch(1)| elements, in the case \verb|'usergiven'| it specifies the \(x\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Y|, optional vector/array with \verb|nPatch(2)| elements, in the case \verb|'usergiven'| it specifies the \(y\)-locations of the centres of the patches---the user is responsible the locations makes sense. \end{itemize} \item \verb|nPatch| sets the number of equi-spaced spatial patches: if scalar, then use the same number of patches in both directions, otherwise \verb|nPatch(1:2)| gives the number of patches~($\geq1$) in each direction. \item \verb|ordCC| is the `order' of interpolation for inter-patch coupling across empty space of the macroscale patch values to the edge-values of the patches: currently must be~$0,2,4,\ldots$; where $0$~gives spectral interpolation. \item \verb|dx| (real---scalar or two element) is usually the sub-patch micro-grid spacing in~\(x\) and~\(y\). If scalar, then use the same \verb|dx| in both directions, otherwise \verb|dx(1:2)| gives the spacing in each of the two directions. However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio| (scalar or two element), namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points---adjusted a little when $\verb|nEdge|>1$. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch: if scalar, then use the same number in both directions, otherwise \verb|nSubP(1:2)| gives the number in each direction. If not using \verb|EdgyInt|, then $\verb|nSubP./nEdge|$ must be odd integer(s) so that there is/are centre-patch lattice lines. So for the defaults of $\verb|nEdge|=1$ and not \verb|EdgyInt|, then \verb|nSubP| must be odd. \item \verb|'nEdge'|, \emph{optional} (integer---scalar or two element), default=1, the width of edge values set by interpolation at the edge regions of each patch. If two elements, then respectively the width in \(x,y\)-directions. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|EdgyInt|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right\slash top\slash bottom edge-values from right\slash left\slash bottom\slash top next-to-edge values. If false or omitted, then interpolate from centre cross-patch lines. \item \verb|nEnsem|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|hetCoeffs|, \emph{optional}, default empty. Supply a 2D or 3D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times m_y\times n_c$, where $n_c$~is the number of different sets of coefficients. For example, in heterogeneous diffusion, $n_c=2$ for the diffusivities in the \emph{two} different spatial directions (or $n_c=3$ for the diffusivity tensor). The coefficients are to be the same for each and every patch; however, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the $(1,1)$-point in each patch. Best accuracy usually obtained when the periodicity of the coefficients is a factor of \verb|nSubP-2*nEdge| for \verb|EdgyInt|, or a factor of \verb|(nSubP-nEdge)/2| for not \verb|EdgyInt|. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x\cdot m_y$ and construct an ensemble of all $m_x\cdot m_y$ phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities in~$x$ and~$y$ directions, respectively, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x,y$ corresponding to the highest~\verb|\nPatch| (if a tie, then chooses the rightmost of~$x,y$). A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|, and \verb|patches.y|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end patches.version = version; %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)|, that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling---not yet implemented. \item \verb|.Cwtsr| and \verb|.Cwtsl|, only for macro-periodic conditions, are the $\verb|ordCC|\times 2$-array of weights for the inter-patch interpolation onto the right\slash top and left\slash bottom edges (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (6D) is $\verb|nSubP(1)| \times1 \times1 \times1 \times \verb|nPatch(1)| \times1$ array of the regular spatial locations~$x_{iI}$ of the microscale grid points in every patch. \item \verb|.y| (6D) is $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times \verb|nPatch(2)|$ array of the regular spatial locations~$y_{jJ}$ of the microscale grid points in every patch. \item \verb|.ratio| $1\times 2$, only for macro-periodic conditions, are the size ratios of every patch. \item \verb|.nEdge| $1\times 2$, is the width of edge values set by interpolation at the edge regions of each patch, in the \(x,y\)-directions respectively. \item \verb|.le|, \verb|.ri|, \verb|.bo|, \verb|.to| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times n_c$ 3D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times n_c\times m_xm_y$ 4D array of $m_xm_y$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches2eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of nonlinear diffusion') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches2 \item ode23 integrator \into patchSys2 \into user's PDE \item process results \end{enumerate} Establish global patch data struct to interface with a function coding a nonlinear `diffusion' \pde: to be solved on $6\times4$-periodic domain, with $9\times7$ patches, spectral interpolation~($0$) couples the patches, with $5\times5$ points forming the micro-grid in each patch, and a sub-patch micro-grid spacing of~\(0.12\) (relatively large for visualisation). \cite{Roberts2011a} established that this scheme is consistent with the \pde\ (as the patch spacing decreases). \begin{matlab} %} global patches patches = configPatches2(@nonDiffPDE,[-3 3 -2 2] ... ,'periodic', [9 7], 0, 0.12, 5 ,'EdgyInt',false); %{ \end{matlab} Set an initial condition of a perturbed-Gaussian using auto-replication of the spatial grid. \begin{matlab} %} u0 = exp(-patches.x.^2-patches.y.^2); u0 = u0.*(0.9+0.1*rand(size(u0))); %{ \end{matlab} Initiate a plot of the simulation using only the microscale values interior to the patches: optionally set $x$~and $y$-edges to \verb|nan| to leave the gaps between patches. \begin{matlab} %} figure(1), clf, colormap(0.8*hsv) x = squeeze(patches.x); y = squeeze(patches.y); if 1, x([1 end],:) = nan; y([1 end],:) = nan; end %{ \end{matlab} Start by showing the initial conditions of \cref{fig:configPatches2ic} while the simulation computes. \begin{matlab} %} u = reshape(permute(squeeze(u0) ... ,[1 3 2 4]), [numel(x) numel(y)]); hsurf = mesh(x(:),y(:),u'); axis([-3 3 -3 3 -0.03 1]), view(60,40) legend('time = 0.00','Location','north') xlabel('space x'), ylabel('space y'), zlabel('u(x,y)') colormap(hsv) ifOurCf2eps([mfilename 'ic']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches2ic}initial field~$u(x,y,t)$ at time $t=0$ of the patch scheme applied to a nonlinear `diffusion'~\pde: \cref{fig:configPatches2t3} plots the computed field at time $t=3$.} \includegraphics[scale=0.9]{configPatches2ic} \end{figure} Integrate in time to $t=4$ using standard functions. In \Matlab\ \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is quicker \cite [Fig.~4] {Maclean2020a}. Ask for output at non-uniform times because the diffusion slows. \begin{matlab} %} disp('Wait to simulate nonlinear diffusion h_t=(h^3)_xx+(h^3)_yy') drawnow if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode23(@patchSys2,linspace(0,2).^2,u0(:)); else % octave version is quite slow for me lsode_options('absolute tolerance',1e-4); lsode_options('relative tolerance',1e-4); [ts,us] = odeOcts(@patchSys2,[0 1],u0(:)); end %{ \end{matlab} Animate the computed simulation to end with \cref{fig:configPatches2t3}. Use \verb|patchEdgeInt2| to interpolate patch-edge values. \begin{matlab} %} for i = 1:length(ts) u = patchEdgeInt2(us(i,:)); u = reshape(permute(squeeze(u) ... ,[1 3 2 4]), [numel(x) numel(y)]); set(hsurf,'ZData', u'); legend(['time = ' num2str(ts(i),'%4.2f')]) pause(0.1) end ifOurCf2eps([mfilename 't3']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches2t3}field~$u(x,y,t)$ at time $t=3$ of the patch scheme applied to a nonlinear `diffusion'~\pde\ with initial condition in \cref{fig:configPatches2ic}.} \includegraphics[scale=0.9]{configPatches2t3} \end{figure} Upon finishing execution of the example, exit this function. \begin{matlab} %} return end%if no arguments %{ \end{matlab} \IfFileExists{../Patch/nonDiffPDE.m}{\input{../Patch/nonDiffPDE.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle');%test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % nothing yet decided addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); %addParameter(p,'nCore',1,@isnumeric); % not yet implemented parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; if numel(patches.nEdge)==1 patches.nEdge = repmat(patches.nEdge,1,2); end patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; %patches.nCore = p.Results.nCore; %{ \end{matlab} Initially duplicate parameters for both space dimensions as needed. \begin{matlab} %} if numel(Xlim)==2, Xlim = repmat(Xlim,1,2); end if numel(nPatch)==1, nPatch = repmat(nPatch,1,2); end if numel(dx)==1, dx = repmat(dx,1,2); end if numel(nSubP)==1, nSubP = repmat(nSubP,1,2); end %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'first pair of Xlim must be ordered increasing') assert(Xlim(3)<Xlim(4) ... ,'second pair of Xlim must be ordered increasing') assert((mod(ordCC,2)==0)|all(patches.nEdge==1) ... ,'Cannot yet have nEdge>1 and staggered patch grids') assert(all(3*patches.nEdge<=nSubP) ... ,'too many edge values requested') assert(all(rem(nSubP,patches.nEdge)==0) ... ,'nSubP must be integer multiple of nEdge') if ~patches.EdgyInt, assert(all(rem(nSubP./patches.nEdge,2)==1) ... ,'for non-edgyInt, nSubP./nEdge must be odd integer') end if (patches.nEnsem>1)&all(patches.nEdge>1) warning('not yet tested when both nEnsem and nEdge non-one') end %if patches.nCore>1 % warning('nCore>1 not yet tested in this version') % end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| vector. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and subsequently set corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} We allow different macroscale domain conditions in the different directions. But for the moment do not allow periodic to be mixed with the others (as the interpolation mechanism is different code)---hence why we choose \verb|periodic| be seven characters, whereas the others are eight characters. The different conditions are coded in different rows of \verb|Dom.type|, so we duplicate the string if only one row specified. \begin{matlab} %} if size(Dom.type,1)==1, Dom.type=repmat(Dom.type,2,1); end %{ \end{matlab} Check what is and is not specified, and provide default of zero (Dirichlet boundaries) if no \verb|bcOffset| specified when needed. Do so for both directions independently. \begin{matlab} %} patches.periodic=false; for p=1:2 switch Dom.type(p,:) case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end msg=' not available for Dom.type = periodic'; if isfield(Dom,'X'), warning(['X' msg]), end if isfield(Dom,'Y'), warning(['Y' msg]), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=zeros(2,2); end % for mixed with usergiven, following should still work if numel(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,2); end if numel(Dom.bcOffset)==2 Dom.bcOffset=repmat(Dom.bcOffset(:)',2,1); end msg=' not available for Dom.type = equispace or chebyshev'; if (p==1)& isfield(Dom,'X'), warning(['X' msg]), end if (p==2)& isfield(Dom,'Y'), warning(['Y' msg]), end case 'usergiven' % if isfield(Dom,'bcOffset') % warning('bcOffset not available for usergiven Dom.type'), end msg=' required for Dom.type = usergiven'; if p==1, assert(isfield(Dom,'X'),['X' msg]), end if p==2, assert(isfield(Dom,'Y'),['Y' msg]), end otherwise error([Dom.type ' is unknown Dom.type']) end%switch Dom.type end%for p %{ \end{matlab} \subsection{The code to make patches} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun = fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ or (not yet??)~$-1$. \todo{Perhaps implement staggered spectral coupling.} \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC| do interpolation based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag = mod(ordCC,2); assert(patches.stag==0,'staggered not yet implemented??') ordCC = ordCC+patches.stag; patches.ordCC = ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(all(mod(nPatch,2)==0), ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} \paragraph{Set the macro-distribution of patches} Third, set the centre of the patches in the macroscale grid of patches. Loop over the coordinate directions, setting the distribution into~\verb|Q| and finally assigning to array of corresponding direction. \begin{matlab} %} for q=1:2 qq=2*q-1; %{ \end{matlab} Distribution depends upon \verb|Dom.type|: \begin{matlab} %} switch Dom.type(q,:) %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' Q=linspace(Xlim(qq),Xlim(qq+1),nPatch(q)+1); DQ=Q(2)-Q(1); Q=Q(1:nPatch(q))+diff(Q)/2; pEI=patches.EdgyInt; % abbreviation pnE=patches.nEdge(q);% abbreviation if pre2023, dx(q) = ratio(q)*DQ/(nSubP(q)-pnE*(1+pEI))*(2-pEI); else ratio(q) = dx(q)/DQ*(nSubP(q)-pnE*(1+pEI))/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. \begin{matlab} %} case 'equispace' Q=linspace(Xlim(qq)+((nSubP(q)-1)/2-Dom.bcOffset(qq))*dx(q) ... ,Xlim(qq+1)-((nSubP(q)-1)/2-Dom.bcOffset(qq+1))*dx(q) ... ,nPatch(q)); DQ=diff(Q(1:2)); width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx; if DQ<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(Q_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'. \footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatially analogue of the `christmas tree' of projective integration and its integration to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx(q)*(nSubP(q)-1)/2; Q1 = Xlim(1)+halfWidth-Dom.bcOffset(qq)*dx(q); Q2 = Xlim(2)-halfWidth+Dom.bcOffset(qq+1)*dx(q); % Q = (Q1+Q2)/2-(Q2-Q1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. \begin{matlab} %} pEI=patches.EdgyInt; % abbreviation pnE=patches.nEdge(q);% abbreviation width=(1+pEI)/2*(nSubP(q)-pnE*(1+pEI))*dx(q); for b=0:2:nPatch(q)-2 DQmin=(Q2-Q1-b*width)/2*( 1-cos(pi/(nPatch(q)-b-1)) ); if DQmin>width, break, end end%for if DQmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} Q =[ Q1+(0:b/2-1)*width ... (Q1+Q2)/2-(Q2-Q1-b*width)/2*cos(linspace(0,pi,nPatch(q)-b)) ... Q2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just force it to have the correct shape of a row. \begin{matlab} %} case 'usergiven' if q==1, Q = reshape(Dom.X,1,[]); else Q = reshape(Dom.Y,1,[]); end%if end%switch Dom.type %{ \end{matlab} Assign \(Q\)-coordinates to the correct spatial direction. At this stage they are all rows. \begin{matlab} %} if q==1, X=Q; end if q==2, Y=Q; end end%for q %{ \end{matlab} \paragraph{Construct the micro-grids} Fourth, construct the microscale grid in each patch, centred about the given mid-points~\verb|X,Y|. Reshape the grid to be 6D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} xs = dx(1)*( (1:nSubP(1))-mean(1:nSubP(1)) ); patches.x = reshape( xs'+X ... ,nSubP(1),1,1,1,nPatch(1),1); ys = dx(2)*( (1:nSubP(2))-mean(1:nSubP(2)) ); patches.y = reshape( ys'+Y ... ,1,nSubP(2),1,1,1,nPatch(2)); %{ \end{matlab} \paragraph{Pre-compute weights for macro-periodic} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if patches.periodic ratio = reshape(ratio,1,2); % force to be row vector patches.ratio=ratio; if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end%if end%if patches.periodic %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to left-edge~\verb|le|, and \item the left-edge\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Similarly for bottom-edge\slash centre interpolation to top-edge via~\verb|to|, and top-edge\slash centre interpolation to bottom-edge via~\verb|bo|. The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt2()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; patches.bo = 1:nE; patches.to = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 3D, then the higher-dimensions are reshaped into the 3rd dimension. \begin{matlab} %} if ~isempty(cs) [mx,my,nc] = size(cs); nx = nSubP(1); ny = nSubP(2); cs = repmat(cs,nSubP); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,1:ny-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_xm_y$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx*my; patches.cs = nan(nx-1,ny-1,nc,mx,my); for j = 1:my js = (j:j+ny-2); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,:,i,j) = cs(is,js,:); end end patches.cs = reshape(patches.cs,nx-1,ny-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right\slash bottom\slash top realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} le = mod((0:mx-1)+mod(nx-2,mx),mx)+1; patches.le = reshape( le'+mx*(0:my-1) ,[],1); ri = mod((0:mx-1)-mod(nx-2,mx),mx)+1; patches.ri = reshape( ri'+mx*(0:my-1) ,[],1); bo = mod((0:my-1)+mod(ny-2,my),my)+1; patches.bo = reshape( (1:mx)'+mx*(bo-1) ,[],1); to = mod((0:my-1)-mod(ny-2,my),my)+1; patches.to = reshape( (1:mx)'+mx*(to-1) ,[],1); %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. \todo{Maybe need to justify this and the arbitrary threshold more carefully??} \begin{matlab} %} if prod(ratio)*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel % theparpool=gcp() spmd %{ \end{matlab} Second, decide which dimension is to be sliced among parallel workers (for the moment, do not consider slicing the ensemble). Choose the direction of most patches, biased towards the last. \begin{matlab} %} [~,pari]=max(nPatch+0.01*(1:2)); patches.codist=codistributor1d(4+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the appropriate coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); case 2, patches.y=codistributed(patches.y,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
SwiftHohenbergPattern.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/SwiftHohenbergPattern.m
6,903
utf_8
39b464ae1e17aa2bb9504ef140cd20eb
% Simulate Swift--Hohenberg PDE in 1D on patches as an % example application of patches in space with pairs of edge % points needing to be interpolated between patches. AJR, % 28 Mar 2023 %!TEX root = doc.tex %{ \section{\texttt{SwiftHohenbergPattern}: patterns of the Swift--Hohenberg PDE in 1D on patches} \label{sec:SwiftHohenbergPattern} \localtableofcontents \cref{fig:SwiftHohenbergPatternUxt} shows an example simulation in time generated by the patch scheme applied to the patterns arising from the Swift--Hohenberg \pde. That such simulations of patterns makes valid predictions was established by \cite{Bunder2013b} who proved that the scheme is accurate when the number of points in a patch is just more than a multiple of the periodicity of the pattern. \begin{figure} \centering \caption{\label{fig:SwiftHohenbergPatternUxt}the pattern forming field~\(u(x,t)\) in the patch (gap-tooth) scheme applied to a microscale discretisation of the Swift--Hohenberg \pde\ (\cref{sec:SwiftHohenbergPattern}). Physically we see the rapid decay of much microstructure, but also the meso-time growth of sub-patch-scale patterns, wavenumber~\(k_0\), that are modulated over the inter-patch distances and over long times.} \includegraphics[scale=0.9]{Figs/SwiftHohenbergPatternUxt} \end{figure}% Consider a lattice of values~\(u_i(t)\), with lattice spacing~\(dx\), and governed by a microscale centred discretisation of the Swift--Hohenberg \pde \begin{equation} \partial_tu = -(1+\partial_x^2/k_0^2)^2u+\Ra u-u^3, \label{eq:SwiftHohenbergPattern} \end{equation} with boundary conditions of \(u=u_x=0\) at \(x=0,L\). For \Ra\ just above critical, say \(\Ra=0.1\), the system rapidly evolves to spatial quasi-periodic solutions with period\({} \approx 0.166\) when wavenumber parameter \(k_0 = 38\). On medium times these spatial oscillations grow to near equilibrium amplitude of~\(\sqrt{\Ra}\), and over very long times the phases of the oscillations evolve in space to adapt to the boundaries. Set the desired microscale periodicity of the emergent pattern. \begin{matlab} %} clear all, close all %global OurCf2eps, OurCf2eps=true %optional to save plots Ra = 0.1 % Ra>0 leads to patterns nGap = 3 %waveLength = 0.496688741721854 /nGap %for nPatch==5 waveLength = 0.497630331753555 /nGap %for nPatch==7 %waveLength = 0.5 /nGap %for periodic case nPtsPeriod = 10 dx = waveLength/nPtsPeriod k0 = 2*pi/waveLength %{ \end{matlab} Establish global data struct~\verb|patches| for the Swift--Hohenberg \pde\ on some length domain. Use seven patches. Quartic (fourth-order) interpolation \(\verb|ordCC|=4\) provides values for the inter-patch coupling conditions. \begin{matlab} %} nPatch = 7 nSubP = 2*nPtsPeriod+4 %nSubP = 2*nGap*nPtsPeriod+4 % full-domain Len = nPatch; ordCC = 4; dom.type='equispace'; dom.bcOffset=0.5 patches = configPatches1(@SwiftHohenbergPDE,[0 Len],dom ... ,nPatch,ordCC,dx,nSubP,'EdgyInt',true,'nEdge',2); xs=squeeze(patches.x); %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:SwiftHohenbergPatternEquilib} an equilibrium of the Swift--Hohenberg \pde\ on seven patches in 1D~space. In the sub-patch patterns, there is a small phase shift in the patterns from patch to patch. And the amplitude of the pattern has to go to `zero' at the boundaries. } \def\extraAxisOptions{small,mark size=1pt,width=12cm,height=4cm} \input{Figs/SwiftHohenbergPatternEquilib} \end{figure} \subsubsection{Find equilibrium with fsolve} Start the search from some guess. \begin{matlab} %} fprintf('\n**** Find equilibrium with fsolve\n') u = 0.4*sin(k0*patches.x); %{ \end{matlab} But set the pairs of patch-edge values to \verb|Nan| in order to use \verb|patches.i| to index the interior sub-patch points as they are the variables. \begin{matlab} %} u([1:2 end-1:end],:) = nan; patches.i = find(~isnan(u)); %{ \end{matlab} Seek the equilibrium, and report the norm of the residual, via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}). \begin{matlab} %} tic [u(patches.i),res] = fsolve(@(v) theRes(v,patches,k0,Ra) ... ,u(patches.i) ,optimoptions('fsolve','Display','off')); solveTime = toc normRes = norm(res) assert(normRes<1e-6,'**** fsolve solution not accurate') %{ \end{matlab} \paragraph{Plot the equilibrium} see \cref{fig:SwiftHohenbergPatternEquilib}. \begin{matlab} %} figure(1),clf subplot(2,1,1) plot(xs,squeeze(u),'.-') xlabel('space $x$'),ylabel('equilibrium $u(x)$') ifOurCf2tex([mfilename 'Equilib'])%optionally save %{ \end{matlab} \subsubsection{Simulate in time} Set an initial condition, and here integrate forward in time using a standard method for stiff systems---because of the simplicity of linear problems this method works quite efficiently here. Integrate the interface \verb|patchSys1| (\cref{sec:patchSys1}) to the microscale differential equations. \begin{matlab} %} fprintf('\n**** Simulate in time\n') u0 = 0*patches.x+0.1*randn(nSubP,1,1,nPatch); tic [ts,us] = ode15s(@patchSys1, [0 40], u0(:) ,[],patches,k0,Ra); simulateTime = toc us = reshape(us,length(ts),numel(patches.x(:)),[]); %{ \end{matlab} Plot the simulation in \cref{fig:SwiftHohenbergPatternUxt}. \begin{matlab} %} figure(2),clf xs([1:2 end-1:end],:) = nan; mesh(ts(1:3:end),xs(:),us(1:3:end,:)'), view(65,60) colormap(0.7*hsv) xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') ifOurCf2eps([mfilename 'Uxt']) %{ \end{matlab} Fin. \subsection{The Swift--Hohenberg PDE and BCs inside patches} As a microscale discretisation of Swift--Hohenberg \pde\ \(u_t= -(1+\partial_{x}^2/k_0^2)^2u +\Ra u -u^3\), here code straightforward centred discretisation in space. \begin{matlab} %} function ut=SwiftHohenbergPDE(t,u,patches,k0,Ra) dx=diff(patches.x(1:2)); % microscale spacing i=3:size(u,1)-2; % interior points in patches %{ \end{matlab} Code Dirichlet boundary conditions of zero function and derivative, \(u=u_x=0\), at the left-end of the leftmost-patch, and the right-end of the rightmost-patch. For slightly simpler coding, squeeze out the two singleton dimensions. \begin{matlab} %} u = squeeze(u); u(1:2,1)=0; u(end-1:end,end)=0; %{ \end{matlab} Here code straightforward centred discretisation in space. \begin{matlab} %} ut=nan+u; % preallocate output array v = u(2:end-1,:)+diff(u,2)/dx^2/k0^2; ut(i,:) = -( v(2:end-1,:)+diff(v,2)/dx^2/k0^2 ) ... +Ra*u(i,:) -u(i,:).^3; end %{ \end{matlab} \subsection{\texttt{theRes()}: wrapper function to zero for equilibria} \label{sec:theRes} This functions converts a vector of values into the interior values of the patches, then evaluates the time derivative of the system at time zero, and returns the vector of patch-interior time derivatives. \begin{matlab} %} function f=theRes(u,patches,k0,Ra) v=nan(size(patches.x)); v(patches.i) = u; f = patchSys1(0,v(:),patches,k0,Ra); f = f(patches.i); end%function theRes %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt2.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchEdgeInt2.m
21,894
utf_8
69c7eba8d39f1ca697e955100def73e9
% patchEdgeInt2() provides the interpolation across 2D space % for 2D patches of simulations of a lattice system such as % a PDE discretisation. AJR, Nov 2018 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt2()}: sets 2D patch edge values from 2D macroscale interpolation} \label{sec:patchEdgeInt2} Couples 2D patches across 2D space by computing their edge values via macroscale interpolation. Research \cite[]{Roberts2011a, Bunder2019d} indicates the patch centre-values are sensible macroscale variables, and macroscale interpolation of these determine patch-edge values. However, for computational homogenisation in multi-D, interpolating patch next-to-edge values appears better \cite[]{Bunder2020a}. This function is primarily used by \verb|patchSys2()| but is also useful for user graphics. \footnote{Script \texttt{patchEdgeInt2test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct~\verb|patches|. \begin{matlab} %} function u = patchEdgeInt2(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nPatch1| \cdot \verb|nPatch2|$ multiscale spatial grid on the $\verb|nPatch1| \cdot \verb|nPatch2|$ array of patches. \item \verb|patches| a struct set by \verb|configPatches2()| which includes the following information. \begin{itemize} \item \verb|.x| is $\verb|nSubP1| \times1 \times1 \times1 \times \verb|nPatch1| \times1 $ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.y| is similarly $1 \times \verb|nSubP2| \times1 \times1 \times1 \times \verb|nPatch2|$ array of the spatial locations~$y_{jJ}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$j$, but may be variable spaced in macroscale index~$J$. \item \verb|.ordCC| is order of interpolation, currently only $\{0,2,4,\ldots\}$ \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left, right, top and bottom boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation. Currently must be zero. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation in both the $x,y$-directions---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre cross-patch values (near original scheme). \item \verb|.nEdge|, two elements, the width of edge values set by interpolation at the \(x,y\)-edge regions, respectively, of each patch (default is one for both \(x,y\)-edges). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 6D array, $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch1| \cdot \verb|nPatch2|$, of the fields with edge values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [~,ny,~,~,~,Ny] = size(patches.y); [nx,~,~,~,Nx,~] = size(patches.x); nEnsem = patches.nEnsem; nVars = round(numel(u)/numel(patches.x)/numel(patches.y)/nEnsem); assert(numel(u) == nx*ny*Nx*Ny*nVars*nEnsem ... ,'patchEdgeInt2: input u has wrong size for parameters') u = reshape(u,[nx ny nVars nEnsem Nx Ny ]); %{ \end{matlab} For the moment assume the physical domain is either macroscale periodic or macroscale rectangle so that the coupling formulas are simplest. These index vectors point to patches and, if periodic, their four immediate neighbours. \begin{matlab} %} I=1:Nx; Ip=mod(I,Nx)+1; Im=mod(I-2,Nx)+1; J=1:Ny; Jp=mod(J,Ny)+1; Jm=mod(J-2,Ny)+1; %{ \end{matlab} \paragraph{Implement multiple width edges by folding} Subsample~\(x,y\) coordinates, noting it is only differences that count \emph{and} the microgrid~\(x,y\) spacing must be uniform. \begin{matlab} %} %x = patches.x; %if patches.nEdge(1)>1 % m = patches.nEdge(1); % x = x(1:m:nx,:,:,:,:,:); % nx = nx/m; % u = reshape(u,m,nx,ny,nVars,nEnsem,Nx,Ny); % nVars = nVars*m; % u = reshape( permute(u,[2:3 1 4:7]) ... % ,nx,ny,nVars,nEnsem,Nx,Ny); %end%if patches.nEdge(1) %y = patches.y; %if patches.nEdge(2)>1 % m = patches.nEdge(2); % y = y(:,1:m:ny,:,:,:,:); % ny = ny/m; % u = reshape(u,nx,m,ny,nVars,nEnsem,Nx,Ny); % nVars = nVars*m; % u = reshape( permute(u,[1 3 2 4:7]) ... % ,nx,ny,nVars,nEnsem,Nx,Ny); %end%if patches.nEdge(2) x = patches.x; y = patches.y; if mean(patches.nEdge)>1 mx = patches.nEdge(1); my = patches.nEdge(2); x = x(1:mx:nx,:,:,:,:,:); y = y(:,1:my:ny,:,:,:,:); nx = nx/mx; ny = ny/my; u = reshape(u,mx,nx,my,ny,nVars,nEnsem,Nx,Ny); nVars = nVars*mx*my; u = reshape( permute(u,[2 4 1 3 5:8]) ... ,nx,ny,nVars,nEnsem,Nx,Ny); end%if patches.nEdge %{ \end{matlab} The centre of each patch (as \verb|nx| and~\verb|ny| are odd for centre-patch interpolation) is at indices \begin{matlab} %} i0 = round((nx+1)/2); j0 = round((ny+1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches. \begin{matlab} %} rx = patches.ratio(1); ry = patches.ratio(2); %{ \end{matlab} \subsubsection{Lagrange interpolation gives patch-edge values} Compute centred differences of the mid-patch values for the macro-interpolation, of all fields. Here the domain is macro-periodic. \begin{matlab} %} ordCC = patches.ordCC; if ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in corner values. Start with \(x\)-direction, and give most documentation for that case as the \(y\)-direction is essentially the same. \paragraph{\(x\)-normal edge values} The patch-edge values are either interpolated from the next-to-edge values, or from the centre-cross values (not the patch-centre value itself as that seems to have worse properties in general). Have not yet implemented core averages. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u([2 nx-1],2:(ny-1),:,:,I,J); else % interpolate centre-cross values U = u(i0,2:(ny-1),:,:,I,J); end;%if patches.EdgyInt %{ \end{matlab} Just in case any last array dimension(s) are one, we force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,6-length(szUO)) ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 7D else dmu = zeros(szUO,patches.codist); % 7D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') % dmux(:,:,:,:,I,:,1) = (Ux(:,:,:,:,Ip,:)+Ux(:,:,:,:,Im,:))/2; % \mu % dmux(:,:,:,:,I,:,2) = (Ux(:,:,:,:,Ip,:)-Ux(:,:,:,:,Im,:)); % \delta % Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 % dmuy(:,:,:,:,:,J,1) = (Ux(:,:,:,:,:,Jp)+Ux(:,:,:,:,:,Jm))/2; % \mu % dmuy(:,:,:,:,:,J,2) = (Ux(:,:,:,:,:,Jp)-Ux(:,:,:,:,:,Jm)); % \delta % Jp = Jp(Jp); Jm = Jm(Jm); % increase shifts to \pm2 else %disp('starting standard interpolation') dmu(:,:,:,:,I,:,1) = (U(:,:,:,:,Ip,:) ... -U(:,:,:,:,Im,:))/2; %\mu\delta dmu(:,:,:,:,I,:,2) = (U(:,:,:,:,Ip,:) ... -2*U(:,:,:,:,I,:) +U(:,:,:,:,Im,:)); %\delta^2 end% if patches.stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,I,:,k) = dmu(:,:,:,:,Ip,:,k-2) ... -2*dmu(:,:,:,:,I,:,k-2) +dmu(:,:,:,:,Im,:,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet edge values for each patch \cite[]{Roberts06d, Bunder2013b}, using weights computed in \verb|configPatches2()|. Here interpolate to specified order. For the case where next-to-edge values interpolate to the opposite edge-values: when we have an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to| and \verb|patches.bo|. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two edges u(nx,2:(ny-1),:,patches.ri,I,:) ... = U(1,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,1),-6).*dmu(1,:,:,:,:,:,:) ,7); u(1 ,2:(ny-1),:,patches.le,I,:,:) ... = U(k,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,1),-6).*dmu(k,:,:,:,:,:,:) ,7); %{ \end{matlab} \paragraph{\(y\)-normal edge values} Interpolate from either the next-to-edge values, or the centre-cross-line values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,[2 ny-1],:,:,I,J); else % interpolate centre-cross values U = u(:,j0,:,:,I,J); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,6-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 7D else dmu = zeros(szUO,patches.codist); % 7D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,J,1) = (U(:,:,:,:,:,Jp) ... -U(:,:,:,:,:,Jm))/2; %\mu\delta dmu(:,:,:,:,:,J,2) = (U(:,:,:,:,:,Jp) ... -2*U(:,:,:,:,:,J) +U(:,:,:,:,:,Jm)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,J,k) = dmu(:,:,:,:,:,Jp,k-2) ... -2*dmu(:,:,:,:,:,J,k-2) +dmu(:,:,:,:,:,Jm,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches2()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k = 1+patches.EdgyInt; % use centre or two edges u(:,ny,:,patches.to,:,J) ... = U(:,1,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,2),-6).*dmu(:,1,:,:,:,:,:) ,7); u(:,1 ,:,patches.bo,:,J) ... = U(:,k,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,2),-6).*dmu(:,k,:,:,:,:,:) ,7); %{ \end{matlab} \subsubsection{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} We interpolate in terms of the patch index, $j$~say, not directly in space. As the macroscale fields are $N$-periodic in the patch index~$I$, the macroscale Fourier transform writes the centre-patch values as $U_I=\sum_{k}C_ke^{ik2\pi I/N}$. Then the edge-patch values $U_{I\pm r} =\sum_{k}C_ke^{ik2\pi/N(I\pm r)} =\sum_{k}C'_ke^{ik2\pi I/N}$ where $C'_k=C_ke^{ikr2\pi/N}$. For $N$~patches we resolve `wavenumbers' $|k|<N/2$, so set row vector $\verb|ks|=k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, \pm(k_{\max}+1) -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches2| tests there are an even number of patches). Then the patch-ratio is effectively halved. The patch edges are near the middle of the gaps and swapped. \begin{matlab} %} if patches.stag % transform by doubling the number of fields error('staggered grid not yet implemented??') v=nan(size(u)); % currently to restore the shape of u u=cat(3,u(:,1:2:nPatch,:),u(:,2:2:nPatch,:)); stagShift=reshape(0.5*[ones(nVars,1);-ones(nVars,1)],1,1,[]); iV=[nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r=r/2; % ratio effectively halved nPatch=nPatch/2; % halve the number of patches nVars=nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Interpolate the two directions in succession, in this way we naturally fill-in edge-corner values. Start with \(x\)-direction, and give most documentation for that case as the other is essentially the same. Need these indices of patch interior. \begin{matlab} %} ix = 2:nx-1; iy = 2:ny-1; %{ \end{matlab} \paragraph{\(x\)-normal edge values} Now set wavenumbers into a vector at the correct dimension. In the case of even~$N$ these compute the $+$-case for the highest wavenumber zig-zag mode, $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, +(k_{\max}+1) -k_{\max}, \ldots, -1)$. \begin{matlab} %} kMax = floor((Nx-1)/2); kr = shiftdim( rx*2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ,-3); %{ \end{matlab} Compute the Fourier transform of the centre-cross values. Unless doing patch-edgy interpolation when FT the next-to-edge values. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to| and \verb|patches.bo|. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(i0,iy,:,:,:,:) ,[],5); Cp = Cm; else Cm = fft( u( 2,iy ,:,patches.le,:,:) ,[],5); Cp = fft( u(nx-1,iy ,:,patches.ri,:,:) ,[],5); end%if ~patches.EdgyInt %{ \end{matlab} Now invert the Fourier transforms to complete interpolation. Enforce reality when appropriate. \begin{matlab} %} u(nx,iy,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],5) ); u( 1,iy,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],5) ); %{ \end{matlab} \paragraph{\(y\)-normal edge values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Ny-1)/2); kr = shiftdim( ry*2*pi/Ny*(mod((0:Ny-1)+kMax,Ny)-kMax) ,-4); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-lines for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,j0,:,:,:,:) ,[],6); Cp = Cm; else Cm = fft( u(:,2 ,:,patches.bo,:,:) ,[],6); Cp = fft( u(:,ny-1 ,:,patches.to,:,:) ,[],6); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,ny,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],6) ); u(:, 1,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],6) ); %{ \end{matlab} \begin{matlab} %} end% if ordCC>0 else, so spectral %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|px| and~\verb|py| (potentially different in the different directions!), and hence size of the (forward) divided difference tables in~\verb|F|~(7D) for interpolating to left/right, and top/bottom edges. Because of the product-form of the patch grid, and because we are doing \emph{only} either edgy interpolation or cross-patch interpolation (\emph{not} just the centre patch value), the interpolations are all 1D interpolations. \begin{matlab} %} if patches.ordCC<1 px = Nx-1; py = Ny-1; else px = min(patches.ordCC,Nx-1); py = min(patches.ordCC,Ny-1); end ix=2:nx-1; iy=2:ny-1; % indices of edge 'interior' (ix n/a) %{ \end{matlab} \subsubsection{\(x\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-edge values are because their values are to interpolate to the opposite edge of each patch. \todo{Have no plans to implement core averaging as yet.} \begin{matlab} %} F = nan(patches.EdgyInt+1,ny-2,nVars,nEnsem,Nx,Ny,px+1); if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,:,:,1) = u([nx-1 2],iy,:,:,:,:); X = x([nx-1 2],:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,1) = u(i0,iy,:,:,:,:); X = x(i0,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} \paragraph{Form tables of divided differences} Compute tables of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable, and across ensemble, and for left/right edges. Recursively find all divided differences. \begin{matlab} %} for q = 1:px i = 1:Nx-q; F(:,:,:,:,i,:,q+1) ... = (F(:,:,:,:,i+1 ,:,q)-F(:,:,:,:,i,:,q)) ... ./(X(:,:,:,:,i+q,:) -X(:,:,:,:,i,:)); end %{ \end{matlab} \paragraph{Interpolate with divided differences} Now interpolate to find the edge-values on left/right edges at~\verb|Xedge| for every interior~\verb|Y|. \begin{matlab} %} Xedge = x([1 nx],:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left edge of each interpolation stencil, because the table is of forward differences. This alternative: the case of order~\(p_x\) and~\(p_y\) interpolation across the domain, asymmetric near the boundaries of the rectangular domain. \begin{matlab} %} i = max(1,min(1:Nx,Nx-ceil(px/2))-floor(px/2)); Uedge = F(:,:,:,:,i,:,px+1); for q = px:-1:1 Uedge = F(:,:,:,:,i,:,q)+(Xedge-X(:,:,:,:,i+q-1,:)).*Uedge; end %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,iy,:,patches.le,:,:) = Uedge(1,:,:,:,:,:); u(nx,iy,:,patches.ri,:,:) = Uedge(2,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(y\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,patches.EdgyInt+1,nVars,nEnsem,Nx,Ny,py+1); if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,:,:,1) = u(:,[ny-1 2],:,:,:,:); Y = y(:,[ny-1 2],:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,1) = u(:,j0,:,:,:,:); Y = y(:,j0,:,:,:,:); end; %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:py j = 1:Ny-q; F(:,:,:,:,:,j,q+1) ... = (F(:,:,:,:,:,j+1 ,q)-F(:,:,:,:,:,j,q)) ... ./(Y(:,:,:,:,:,j+q) -Y(:,:,:,:,:,j)); end %{ \end{matlab} Interpolate to find the edge-values on top/bottom edges~\verb|Yedge| for every~\(x\). \begin{matlab} %} Yedge = y(:,[1 ny],:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|j| are those of the bottom edge of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} j = max(1,min(1:Ny,Ny-ceil(py/2))-floor(py/2)); Uedge = F(:,:,:,:,:,j,py+1); for q = py:-1:1 Uedge = F(:,:,:,:,:,j,q)+(Yedge-Y(:,:,:,:,:,j+q-1)).*Uedge; end %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,1 ,:,patches.bo,:,:) = Uedge(:,1,:,:,:,:); u(:,ny,:,patches.to,:,:) = Uedge(:,2,:,:,:,:); %{ \end{matlab} \subsubsection{Optional NaNs for safety} We want a user to set outer edge values on the extreme patches according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, unless testing, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} if isfield(patches,'intTest')&&patches.intTest else % usual case u( 1,:,:,:, 1,:) = nan; u(nx,:,:,:,Nx,:) = nan; u(:, 1,:,:,:, 1) = nan; u(:,ny,:,:,:,Ny) = nan; end%if %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic else %{ \end{matlab} \paragraph{Unfold multiple edges} No need to restore~\(x,y\). \begin{matlab} %} if mean(patches.nEdge)>1 nVars = nVars/(mx*my); u = reshape( u ,nx,ny,mx,my,nVars,nEnsem,Nx,Ny); nx = nx*mx; ny = ny*my; u = reshape( permute(u,[3 1 4 2 5:8]) ... ,nx,ny,nVars,nEnsem,Nx,Ny); end%if patches.nEdge %{ \end{matlab} Fin, returning the 6D array of field values with interpolated edges. \begin{matlab} %} end% function patchEdgeInt2 %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
SwiftHohenbergHetero.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/SwiftHohenbergHetero.m
13,923
utf_8
24872db870e64f9f9566f80b37600307
% Simulate a heterogeneous version of Swift--Hohenberg PDE % in 1D on patches as an example application with pairs of % edge points needing to be interpolated between patches in % space. AJR, 28 Mar 2023 %!TEX root = doc.tex %{ \section{\texttt{SwiftHohenbergHetero}: patterns of a heterogeneous Swift--Hohenberg PDE in 1D on patches} \label{sec:SwiftHohenbergHetero} \localtableofcontents \cref{fig:SwiftHohenbergHeteroU} shows an example simulation in time generated by the patch scheme applied to the patterns arising from a heterogeneous version of the Swift--Hohenberg \pde. That such simulations of patterns makes valid predictions was established by \cite{Bunder2013b} who proved that the scheme is accurate when the number of points in a patch is tied to a multiple of the periodicity of the pattern. \begin{figure} \centering \caption{\label{fig:SwiftHohenbergHeteroU} the field~\(u(x,t)\) in the patch (gap-tooth) scheme applied to microscale heterogeneous Swift--Hohenberg \pde\ (\cref{sec:SwiftHohenbergHetero}). The heterogeneous coefficients are approximately uniform over~\([0.9,1.1]\). This heterogeneity has no noticeable affect on the simulation.} \includegraphics[scale=0.85]{r26479SwiftHohenbergHeteroUxt} \end{figure}% Consider a lattice of values~\(u_i(t)\), with lattice spacing~\(dx\), arising from a microscale discretisation of the pattern forming, heterogeneous, Swift--Hohenberg \pde \begin{equation} \partial_t u=-D[c_1(x)Du] +\Ra u-u^3, \quad D:=1+\partial_x[c_2(x)\partial_x\cdot]/k_0^2, \label{eq:SwiftHohenbergHetero} \end{equation} where \(c_\ell(x)\) have period~\(2\pi/k_0\). Coefficients~\(c_\ell\) are chosen iid random, nearly uniform, with mean near one. With mean one, the periodicity of~\(c_\ell\) approximately matches the periodicity of the resultant spatial pattern. The current patch scheme coding preserves symmetry in the case of periodic patches (for every order of interpolation). For equispace and chebyshev options, the coupling currently fails symmetry. Consider the spectrum in the symmetric cases of periodic patches (based upon only the cases \(N=5,7\)). There are \(2N\)~small eigenvalues, separated by a gap from the rest. In the homogeneous case, these occur as \(N\)~pairs. With small heterogeneity, they appear to split into \(N-1\)~pairs, and two distinct. With stronger heterogeneity (say~\(0.5\)), they \emph{often} appear to also split into two clusters, each of~\(N\) eigenvalues, with one small-valued cluster, and one meso-valued cluster---curious. Further analysis with sparse approximation of the invariant spaces suggests the following: \begin{itemize} \item for homogeneous, the \(2N\)~modes are local oscillations in each patch, with two modes each corresponding to phase shifts of the possible oscillations; \item for heterogeneous \begin{itemize} \item \(N\)~eigenmodes appear to be one phase `locking' to the heterogeneity; and \item \(N\)~eigenmodes appear to be other phase `locking' to the heterogeneity. Unless it is something to do with the coupling, but then it only appears with heterogeneity. \end{itemize} \end{itemize} Consider the spectrum with BCs of \(u=u_{xx}=0\) at ends. Non-symmetric so some eigenvalues are complex! For small or zero heterogeneity find \(2N-2\) eigenvalues are small. Effectively, two modes in each of \(N-2\) interior patches, and one mode each in the two end patches. With increasing heterogeneity (say above~\(0.3\)), the gap decreases as a couple (or some) of the small eigenvalues become larger in magnitude. Consider the spectrum with BCs of \(u=u_{x}=0\) at ends. Non-symmetric so some eigenvalues are complex! For small or zero heterogeneity find \(2N-4\) eigenvalues are small. Effectively, two modes in each of \(N-2\) interior patches. With increasing heterogeneity (say above~\(0.4\)), half \((N-2)\) of the small eigenvalues become larger in magnitude (presumably some phase `locking' to the heterogeneity): effectively forms two clusters of modes. Set the desired microscale periodicity of the patterns, here~\(0.062\), and on the microscale lattice of spacing~\(0.0062\), correspondingly choose random microscale material coefficients. The wavenumber of this microscale patterns is \(k_0\approx 101\). \begin{matlab} %} clear all %global OurCf2eps, OurCf2eps=true %optional to save plots basename = ['r' num2str(floor(1e5*rem(now,1))) mfilename] Ra = 0.1 % Ra>0 leads to patterns nGap = 8 % controls size of gap between patches waveLength = 0.496688741721854 /nGap %for nPatch==5 %waveLength = 0.497630331753555 /nGap %for nPatch==7 %waveLength = 0.5 /nGap %for periodic case nPtsPeriod = 10 dx = waveLength/nPtsPeriod k0 = 2*pi/waveLength %{ \end{matlab} Create some random heterogeneous coefficients. \begin{matlab} %} heteroVar = 0.99*[1 1] % must be <2 cl = 1./(1-heteroVar/2+heteroVar.*rand(nPtsPeriod,2)); cRange = quantile(cl,0:0.5:1) %{ \end{matlab} Establish global data struct~\verb|patches| for heterogeneous Swift--Hohenberg \pde\ with, on average, one patch per units length. Use seven patches to start with. Quartic (fourth-order) interpolation \(\verb|ordCC|=4\) provides values for the inter-patch coupling conditions. Or use as high-order as possible with \(\verb|ordCC|=0\). \begin{matlab} %} nPatch = 5 nSubP = 2*nPtsPeriod+4 % +2 for not-edgyInt %nSubP = 2*nGap*nPtsPeriod+4 % approx full-domain Len = nPatch; ordCC = 0; dom.type='equispace'; dom.bcOffset=0.5 patches = configPatches1(@heteroSwiftHohenbergPDE,[0 Len],dom ... ,nPatch,ordCC,dx,nSubP,'EdgyInt',true,'nEdge',2 ... ,'hetCoeffs',cl); xs=squeeze(patches.x); %{ \end{matlab} \subsubsection{Explore the Jacobian} Finds that with periodic patches, everything is symmetric. However, for equispace or chebyshev, the patch coupling is not symmetric---is this to be expected? \begin{matlab} %} fprintf('\n**** Explore the Jacobian\n') u0 = 0*patches.x; u0([1:2 end-1:end],:) = nan; patches.i = find(~isnan(u0)); nVars = numel(patches.i) Jac = nan(nVars); for j=1:nVars Jac(:,j)=theRes((1:nVars)==j,patches,k0,0,0); end %{ \end{matlab} Check on the symmetry of the Jacobian \begin{matlab} %} nonSymmetric = norm(Jac-Jac') Jac(abs(Jac)<1e-12)=0; antiJac = Jac-Jac'; antiJac(abs(antiJac)<1e-12)=0; figure(6),clf spy(Jac,'.'),hold on, spy(antiJac,'rx'),hold off if nonSymmetric>5e-9, warning('failed symmetry'), else Jac = (Jac+Jac')/2; %tweak to symmetry end %{ \end{matlab} Compute eigenvalues and eigenvectors. \begin{matlab} %} figure(5),clf [evec,mEval] = eig(-Jac ,'vector'); [~,j]=sort(real(mEval)); mEval=mEval(j); evec=evec(:,j); loglog(real(mEval),'.') ylabel('$-\Re\lambda$') ifOurCf2tex([basename 'Eval'])%optionally save %{ \end{matlab} \begin{SCfigure} \centering \caption{\label{fig:SwiftHohenbergHeteroEval} eigenvalues of the patch scheme on the heterogeneous Swift--Hohenberg \pde\ (linearised). With \(N=5\) patches and \bc{}s of \(u=u_x=0\) at \(x\in\{0,5\}\), there are \(2(N-2)=6\) small eigenvalues, \(|\lambda|<0.001\), corresponding to six slow modes in the interior.} \def\extraAxisOptions{mark size=1pt} \input{Figs/r26479SwiftHohenbergHeteroEval} \end{SCfigure} Explore sparse approximations of all the slowest together (lots of iterations required), or separately of the two clusters of the slowest (few iterations needed). First ascertain whether one or two clusters of small eigenvalues. \begin{matlab} %} logGaps=diff(log10(real(mEval))); [~,j]=sort(-logGaps); %someLogGaps=[logGaps(j(1:5)) j(1:5)] if logGaps(j(2))<0.4*logGaps(j(1)), nSlow=j(1) else nSlow=min( sort(j(1:2)) , 3*nPatch) end log10Gap=logGaps(nSlow) smallEvals=-mEval(1:nSlow(end)+2) %{ \end{matlab} Second, make eigenvectors all real, sparsely approximate cluster modes via an algorithm developed from \cite{ZhenfangHu2014}, and plot. \cref{fig:SwiftHohenbergHeteroEvec} shows that each pair of basis vectors are phase-shifted by~\(90^\circ\). \begin{matlab} %} js=find(imag(mEval)>0); evec(:,js)=imag(evec(:,js)); evec=real(evec); if numel(nSlow)==1, S = spcart(evec(:,1:nSlow)); else S = spcart(evec(:,1:nSlow(1))); S = [S spcart(evec(:,nSlow(1)+1:nSlow(2))) ]; end; figure(3),clf vStep=ceil(max(abs(S(:)))*10+1)/10 for j=1:nSlow(end) u0(patches.i)=S(:,j); plot(xs,vStep*(j-1)+squeeze(u0),'.-'),hold on end hold off, xlabel('space $x$') ifOurCf2tex([basename 'Evec'])%optionally save %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:SwiftHohenbergHeteroEvec} sparse approximations of the eigenvectors of the six slow modes of \cref{fig:SwiftHohenbergHeteroEval}. Plotted are sparse basis vectors for the invariant space spanned by the six slow eigenvectors: each basis vector shifted vertically to separate. Thus a fair approximation is that there are effectively two modes for each of the \(N-2=3\) interior patches.} \def\extraAxisOptions{small, mark size=1pt, width=13cm, height=7cm} \input{Figs/r26479SwiftHohenbergHeteroEvec} \end{figure} Reorganise the eigenvectors to maybe clarify. \begin{matlab} %} [i,j]=find(abs(S)>vStep/2); j=find([1;diff(j)]); [i,k]=sort(i(j)); figure(4) for p=1:2 clf,subplot(2,1,1) for j=p:2:numel(k) u0(patches.i)=S(:,k(j)); plot(xs,squeeze(u0),'.-'),hold on end% for j hold off, xlabel('space $x$') ifOurCf2tex([basename 'Evec' num2str(p)])%optionally save end%for p %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:SwiftHohenbergHeteroEvec2} sparse basis approximations for the invariant subspace of the six slow modes of \cref{fig:SwiftHohenbergHeteroEval}. A replot of \cref{fig:SwiftHohenbergHeteroEvec} but with three of the basis vectors superimposed in each of the two panels.} \def\extraAxisOptions{small, mark size=1pt, width=13cm, height=3cm} \input{Figs/r26479SwiftHohenbergHeteroEvec1} \input{Figs/r26479SwiftHohenbergHeteroEvec2} \end{figure} \subsubsection{Find an equilibrium with fsolve} Start the search from some guess. \begin{matlab} %} fprintf('\n**** Find equilibrium with fsolve\n') u = 0.4*sin(2*pi/waveLength*patches.x); %{ \end{matlab} But set the pairs of patch-edge values to \verb|Nan| in order to use \verb|patches.i| to index the interior sub-patch points as they are the variables. \begin{matlab} %} u([1:2 end-1:end],:) = nan; patches.i = find(~isnan(u)); %{ \end{matlab} Seek the equilibrium, and report the norm of the residual, via the generic patch system wrapper \verb|theRes| (\cref{sec:theResSWhetero}). \begin{matlab} %} tic [u(patches.i),res] = fsolve(@(v) theRes(v,patches,k0,Ra,1) ... ,u(patches.i) ,optimoptions('fsolve','Display','off')); solveTime = toc normRes = norm(res) if normRes>1e-7, warning('residual large: bad equilibrium'),end %{ \end{matlab} \paragraph{Plot the equilibrium} see \cref{fig:SwiftHohenbergHeteroEquilib}. \begin{matlab} %} figure(1),clf subplot(2,1,1) plot(xs,squeeze(u),'.-') xlabel('space $x$'),ylabel('equilibrium $u(x)$') ifOurCf2tex([basename 'Equilib'])%optionally save %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:SwiftHohenbergHeteroEquilib} an equilibrium of the heterogeneous Swift--Hohenberg \pde\ determined by the patch scheme} \def\extraAxisOptions{small, mark size=1pt, width=13cm, height=4cm} \input{Figs/r26479SwiftHohenbergHeteroEquilib} \end{figure} \subsubsection{Simulate in time} Set an initial condition, and here integrate forward in time using a standard method for stiff systems---because of the simplicity of linear problems this method works quite efficiently here. Integrate the interface \verb|patchSys1| (\cref{sec:patchSys1}) to the microscale differential equations. \begin{matlab} %} fprintf('\n**** Simulate in time\n') u0 = 0*sin(2*pi/waveLength*patches.x)+0.1*randn(nSubP,1,1,nPatch); tic [ts,us] = ode15s(@patchSys1, [0 40], u0(:) ,[],patches,k0,Ra,1); simulateTime = toc us = reshape(us,length(ts),numel(patches.x(:)),[]); %{ \end{matlab} Plot the simulation in \cref{fig:SwiftHohenbergHeteroU}. \begin{matlab} %} figure(2),clf xs([1:2 end-1:end],:) = nan; mesh(ts(1:3:end),xs(:),us(1:3:end,:)'), view(65,60) colormap(0.7*hsv) xlabel('time t'), ylabel('space x'), zlabel('u(x,t)') ifOurCf2eps([basename 'Uxt']) %{ \end{matlab} Fin. \subsection{Heterogeneous SwiftHohenberg PDE+BCs inside patches} As a microscale discretisation of Swift--Hohenberg \pde\ \(u_t= -D[c_1(x)Du] +\Ra u -u^3\), where heterogeneous operator \(D = 1 +\partial_x( c_2(x) \partial_x )/k_0^2\). \begin{matlab} %} function ut=heteroSwiftHohenbergPDE(t,u,patches,k0,Ra,cubic) dx=diff(patches.x(1:2)); % microscale spacing i=3:size(u,1)-2; % interior points in patches %{ \end{matlab} Code a couple of different boundary conditions of zero function and derivative(s) at left-end of left-patch, and right-end of right-patch. For slightly simpler coding, squeeze out the two singleton dimensions. \begin{matlab} %} u = squeeze(u); if ~patches.periodic switch 1 case 1 % these are u=u_x=0 u(1:2,1)=0; u(end-1:end,end)=0; case 2 % these are u=u_{xx}=0 u(1:2,1) = [-u(3,1); 0]; u(end-1:end,end) = [0; -u(end-2,end)]; end% case end%if %{ \end{matlab} Here code straightforward centred discretisation in space. \begin{matlab} %} ut = nan+u; % preallocate output array v = u(2:end-1,:)+diff(patches.cs(: ,2).*diff(u))/dx^2/k0^2; v = v.*patches.cs(2:end,1); v = v(2:end-1,:)+diff(patches.cs(2:end-1,2).*diff(v))/dx^2/k0^2; ut(i,:) = -v +Ra*u(i,:) -cubic*u(i,:).^3; end %{ \end{matlab} \subsection{\texttt{theRes()}: a wrapper function} \label{sec:theResSWhetero} This functions converts a vector of values into the interior values of the patches, then evaluates the time derivative of the system at time zero, and returns the vector of patch-interior time derivatives. \begin{matlab} %} function f=theRes(u,patches,k0,Ra,cubic) v=nan(size(patches.x)); v(patches.i) = u; f = patchSys1(0,v(:),patches,k0,Ra,cubic); f = f(patches.i); end%function theRes %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchSys2.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchSys2.m
3,739
utf_8
89dfc4cb2288733f30c09a385da6fe21
% patchSys2() Provides an interface to time integrators % for the dynamics on patches in 2D coupled across space. % The system must be a lattice system such as PDE % discretisations. AJR, Nov 2018 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchSys2()}: interface 2D space to time integrators} \label{sec:patchSys2} To simulate in time with 2D spatial patches we often need to interface a users time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function provides an interface. Communicate patch-design variables (\cref{sec:configPatches2}) either via the global struct~\verb|patches| or via an optional third argument. \verb|patches| is required for the parallel computing of \verb|spmd|, or if parameters are to be passed though to the user microscale function. \begin{matlab} %} function dudt = patchSys2(t,u,patches,varargin) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$ grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches2()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches,...)| that computes the time derivatives on the patchy lattice. The array~\verb|u| has size $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nVars| \times \verb|nEsem| \times \verb|nPatch(1)| \times \verb|nPatch(2)|$. Time derivatives must be computed into the same sized array, although herein the patch edge-values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP(1)| \times1 \times1 \times1 \verb|nPatch(1)| \times1$ array of the spatial locations~$x_{i}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales. \item \verb|.y| is similarly $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times \verb|nPatch(2)|$ array of the spatial locations~$y_{j}$ of the microscale $(i,j)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and micro-scales. \end{itemize} \item \verb|varargin|, optional, is arbitrary list of parameters to be passed onto the users time-derivative function as specified in configPatches2. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Reshape the fields~\verb|u| as a 6D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt2} describes \verb|patchEdgeInt2()|. \begin{matlab} %} sizeu = size(u); u = patchEdgeInt2(u,patches); %{ \end{matlab} Ask the user function for the time derivatives computed in the array, overwrite its edge values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt = patches.fun(t,u,patches,varargin{:}); m = patches.nEdge(1); dudt([1:m end-m+1:end],:,:) = 0; m = patches.nEdge(2); dudt(:,[1:m end-m+1:end],:) = 0; dudt = reshape(dudt,sizeu); %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt1.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchEdgeInt1.m
16,444
utf_8
4d5890cdcc086ffde04fad57d210c2f8
% patchEdgeInt1() provides the interpolation across 1D space % for 1D patches of simulations of a lattice system such as % PDE discretisations. AJR & JB, Sep 2018 -- 23 Mar 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt1()}: sets patch-edge values from interpolation over the 1D macroscale} \label{sec:patchEdgeInt1} Couples 1D patches across 1D space by computing their edge values from macroscale interpolation of either the mid-patch value \cite[]{Roberts00a, Roberts06d}, or the patch-core average \cite[]{Bunder2013b}, or the opposite next-to-edge values \cite[]{Bunder2020a}---this last alternative often maintains symmetry. This function is primarily used by \verb|patchSys1()| but is also useful for user graphics. When using core averages (not fully implemented), assumes the averages are sensible macroscale variables: then patch edge values are determined by macroscale interpolation of the core averages \citep{Bunder2013b}. \footnote{Script \texttt{patchEdgeInt1test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct \verb|patches|. \begin{matlab} %} function u=patchEdgeInt1(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|nSubP| \cdot \verb|nVars|\cdot \verb|nEnsem|\cdot \verb|nPatch|$ where there are $\verb|nVars|\cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP| \times \verb|nPatch|$ multiscale spatial grid. \item \verb|patches| a struct largely set by \verb|configPatches1()|, and which includes the following. \begin{itemize} \item \verb|.x| is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.ordCC| is order of interpolation, integer~$\geq -1$. \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left and right boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation, and zero for ordinary grid. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre-patch values (original scheme). \item \verb|.nEdge|, for each patch, the number of edge values set by interpolation at the edge regions of each patch (default is one). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \item \verb|.nCore| \todo{introduced sometime but not fully implemented yet, because prefer ensemble} \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 4D array, $\verb|nSubP| \times \verb|nVars| \times \verb|nEnsem| \times \verb|nPatch|$, of the fields with edge values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [nx,~,~,Nx] = size(patches.x); nEnsem = patches.nEnsem; nVars = round(numel(u)/numel(patches.x)/nEnsem); assert(numel(u) == nx*nVars*nEnsem*Nx ... ,'patchEdgeInt1: input u has wrong size for parameters') u = reshape(u,nx,nVars,nEnsem,Nx); %{ \end{matlab} If the user has not defined the patch core, then we assume it to be a single point in the middle of the patch, unless we are interpolating from next-to-edge values. These index vectors point to patches and their two immediate neighbours, for periodic domain. \begin{matlab} %} I = 1:Nx; Ip = mod(I,Nx)+1; Im = mod(I-2,Nx)+1; %{ \end{matlab} \paragraph{Implement multiple width edges by folding} Subsample~\(x\) coordinates, noting it is only differences that count \emph{and} the microgrid~\(x\) spacing must be uniform. \begin{matlab} %} x = patches.x; if patches.nEdge>1 nEdge = patches.nEdge; x = x(1:nEdge:nx,:,:,:); nx = nx/nEdge; u = reshape(u,nEdge,nx,nVars,nEnsem,Nx); nVars = nVars*nEdge; u = reshape( permute(u,[2 1 3:5]) ,nx,nVars,nEnsem,Nx); end%if patches.nEdge %{ \end{matlab} Calculate centre of each patch and the surrounding core (\verb|nx| and \verb|nCore| are both odd). \begin{matlab} %} i0 = round((nx+1)/2); c = round((patches.nCore-1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches, then use finite width stencils or spectral. \begin{matlab} %} r = patches.ratio(1); if patches.ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} \paragraph{Lagrange interpolation gives patch-edge values} Consequently, compute centred differences of the patch core/edge averages/values for the macro-interpolation of all fields. Here the domain is macro-periodic. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-edge values Ux = u([2 nx-1],:,:,I); else % interpolate mid-patch values/sums Ux = sum( u((i0-c):(i0+c),:,:,I) ,1); end; %{ \end{matlab} Just in case any last array dimension(s) are one, we force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUxO=size(Ux); szUxO=[szUxO ones(1,4-length(szUxO)) patches.ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if patches.parallel dmu = zeros(szUxO,patches.codist); % 5D else dmu = zeros(szUxO); % 5D end %{ \end{matlab} First compute differences, either $\mu$ and $\delta$, or $\mu\delta$ and $\delta^2$ in space. \begin{matlab} %} if patches.stag % use only odd numbered neighbours dmu(:,:,:,I,1) = (Ux(:,:,:,Ip)+Ux(:,:,:,Im))/2; % \mu dmu(:,:,:,I,2) = (Ux(:,:,:,Ip)-Ux(:,:,:,Im)); % \delta Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 else % standard dmu(:,:,:,I,1) = (Ux(:,:,:,Ip)-Ux(:,:,:,Im))/2; % \mu\delta dmu(:,:,:,I,2) = (Ux(:,:,:,Ip)-2*Ux(:,:,:,I) ... +Ux(:,:,:,Im)); % \delta^2 end%if patches.stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:patches.ordCC dmu(:,:,:,:,k) = dmu(:,:,:,Ip,k-2) ... -2*dmu(:,:,:,I,k-2) +dmu(:,:,:,Im,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet edge values for each patch \cite[]{Roberts06d, Bunder2013b}, using weights computed in \verb|configPatches1()|. Here interpolate to specified order. For the case where single-point values interpolate to patch-edge values: when we have an ensemble of configurations, different realisations are coupled to each other as specified by \verb|patches.le| and \verb|patches.ri|. \begin{matlab} %} if patches.nCore==1 k=1+patches.EdgyInt; % use centre/core or two edges u(nx,:,patches.ri,I) = Ux(1,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr,-4).*dmu(1,:,:,:,:) ,5); u(1 ,:,patches.le,I) = Ux(k,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl,-4).*dmu(k,:,:,:,:) ,5); %{ \end{matlab} For a non-trivial core then more needs doing: the core (one or more) of each patch interpolates to the edge action regions. When more than one in the core, the edge is set depending upon near edge values so the average near the edge is correct. \begin{matlab} %} else% patches.nCore>1 error('not yet considered, july--dec 2020 ??') u(nx,:,:,I) = Ux(:,:,I)*(1-patches.stag) ... + reshape(-sum(u((nx-patches.nCore+1):(nx-1),:,:,I),1) ... + sum( patches.Cwtsr.*dmu ),Nx,nVars); u(1,:,:,I) = Ux(:,:,I)*(1-patches.stag) ... + reshape(-sum(u(2:patches.nCore,:,:,I),1) ... + sum( patches.Cwtsl.*dmu ),Nx,nVars); end%if patches.nCore %{ \end{matlab} \paragraph{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} As the macroscale fields are $N$-periodic, the macroscale Fourier transform writes the centre-patch values as $U_j = \sum_{k}C_ke^{ik2\pi j/N}$. Then the edge-patch values $U_{j\pm r} =\sum_{k}C_ke^{ik2\pi/N(j\pm r)} =\sum_{k}C'_ke^{ik2\pi j/N}$ where $C'_k = C_ke^{ikr2\pi/N}$. For \verb|Nx|~patches we resolve `wavenumbers' $|k|<\verb|Nx|/2$, so set row vector $\verb|ks| = k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k = (0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k = (0,1, \ldots, k_{\max}, (k_{\max}+1), -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches1()| tests that there are an even number of patches). Then the patch-ratio is effectively halved. The patch edges are near the middle of the gaps and swapped. \todo{Have not yet tested whether works for Edgy Interpolation.} \todo{Have not yet implemented multiple edge values for a staggered grid as I am uncertain whether it makes any sense. } \begin{matlab} %} if patches.stag % transform by doubling the number of fields v = nan(size(u)); % currently to restore the shape of u u = [u(:,:,:,1:2:Nx) u(:,:,:,2:2:Nx)]; stagShift = 0.5*[ones(1,nVars) -ones(1,nVars)]; iV = [nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r = r/2; % ratio effectively halved Nx = Nx/2; % halve the number of patches nVars = nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Now set wavenumbers (when \verb|Nx| is even then highest wavenumber is~$\pi$). \begin{matlab} %} kMax = floor((Nx-1)/2); ks = shiftdim( ... 2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ... ,-2); %{ \end{matlab} Compute the Fourier transform across patches of the patch centre or next-to-edge values for all the fields. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le| and \verb|patches.ri|. \begin{matlab} %} if ~patches.EdgyInt Cleft = fft(u(i0 ,:,:,:),[],4); Cright = Cleft; else Cleft = fft(u(2 ,:,:,:),[],4); Cright= fft(u(nx-1,:,:,:),[],4); end %{ \end{matlab} The inverse Fourier transform gives the edge values via a shift a fraction~$r$ to the next macroscale grid point. \begin{matlab} %} u(nx,iV,patches.ri,:) = uclean( ifft( ... Cleft.*exp(1i*ks.*(stagShift+r)) ,[],4)); u(1 ,iV,patches.le,:) = uclean( ifft( ... Cright.*exp(1i*ks.*(stagShift-r)) ,[],4)); %{ \end{matlab} Restore staggered grid when appropriate. This dimensional shifting appears to work. Is there a better way to do this? \begin{matlab} %} if patches.stag nVars = nVars/2; u=reshape(u,nx,nVars,2,nEnsem,Nx); Nx = 2*Nx; v(:,:,:,1:2:Nx) = u(:,:,1,:,:); v(:,:,:,2:2:Nx) = u(:,:,2,:,:); u = v; end%if patches.stag end%if patches.ordCC %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|p|, and hence size of the (forward) divided difference table in~\verb|F|. \begin{matlab} %} if patches.ordCC<1, patches.ordCC = Nx-1; end p = min(patches.ordCC,Nx-1); F = nan(patches.EdgyInt+1,nVars,nEnsem,Nx,p+1); %{ \end{matlab} Set function values in first `column' of the table for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-edge values are because their values are to interpolate to the opposite edge of each patch. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-edge values F(:,:,:,:,1) = u([nx-1 2],:,:,I); X(:,:,:,:) = x([nx-1 2],:,:,I); else % interpolate mid-patch values/sums F(:,:,:,:,1) = sum( u((i0-c):(i0+c),:,:,I) ,1); X(:,:,:,:) = x(i0,:,:,I); end; %{ \end{matlab} Compute table of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable and across ensemble. \begin{matlab} %} for q = 1:p i = 1:Nx-q; F(:,:,:,i,q+1) = (F(:,:,:,i+1,q)-F(:,:,:,i,q)) ... ./(X(:,:,:,i+q) -X(:,:,:,i)); end %{ \end{matlab} Now interpolate to the edge-values at locations~\verb|Xedge|. \begin{matlab} %} Xedge = x([1 nx],:,:,:); %{ \end{matlab} Code Horner's evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left end of each interpolation stencil because the table is of forward differences.\footnote{For EdgyInt, perhaps interpret odd order interpolation in such a way that first-order interpolations reduces to appropriate linear interpolation so that as patches abut the scheme is `full-domain'. May mean left-edge and right-edge have different indices. Explore sometime??} First alternative: the case of order~\(p\) interpolation across the domain, asymmetric near the boundary. Use this first alternative for now. \begin{matlab} %} if true i = max(1,min(1:Nx,Nx-ceil(p/2))-floor(p/2)); Uedge = F(:,:,:,i,p+1); for q = p:-1:1 Uedge = F(:,:,:,i,q)+(Xedge-X(:,:,:,i+q-1)).*Uedge; end %{ \end{matlab} Second alternative: lower the degree of interpolation near the boundary to maintain the band-width of the interpolation. Such symmetry might be essential for multi-D. \footnote{The aim is to preserve symmetry?? Does it?? As of Jan 2023 it only partially does---fails near boundaries, and maybe fails with uneven spacing.} \begin{matlab} %} else%if false i = max(1,I-floor(p/2)); %{ \end{matlab} For the tapering order of interpolation, form the interior mask~\verb|Q| (logical) that signifies which interpolations are to be done at order~\verb|q|. This logical mask spreads by two as each order~\verb|q| decreases. \begin{matlab} %} Q = (I-1>=floor(p/2)) & (Nx-I>=p/2); Imid = floor(Nx/2); %{ \end{matlab} Initialise to highest divide difference, surrounded by zeros. \begin{matlab} %} Uedge = zeros(patches.EdgyInt+1,nVars,nEnsem,Nx); Uedge(:,:,:,Q) = F(:,:,:,i(Q),p+1); %{ \end{matlab} Complete Horner evaluation of the relevant polynomials. \begin{matlab} %} for q = p:-1:1 Q = [Q(2:Imid) true(1,2) Q(Imid+1:end-1)]; % spread mask Uedge(:,:,:,Q) = F(:,:,:,i(Q),q) ... +(Xedge(:,:,:,Q)-X(:,:,:,i(Q)+q-1)).*Uedge(:,:,:,Q); end%for q end%if %{ \end{matlab} Finally, insert edge values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,:,patches.le,I) = Uedge(1,:,:,I); u(nx,:,patches.ri,I) = Uedge(2,:,:,I); %{ \end{matlab} We want a user to set the extreme patch edge values according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, unless testing, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} if isfield(patches,'intTest')&&patches.intTest else % usual case u( 1,:,:, 1) = nan; u(nx,:,:,Nx) = nan; end%if %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic %{ \end{matlab} \paragraph{Unfold multiple edges} No need to restore~\(x\). \begin{matlab} %} if patches.nEdge>1 nVars = nVars/nEdge; u = reshape( u ,nx,nEdge,nVars,nEnsem,Nx); nx = nx*nEdge; u = reshape( permute(u,[2 1 3:5]) ,nx,nVars,nEnsem,Nx); end%if patches.nEdge %{ \end{matlab} Fin, returning the 4D array of field values. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
patchSys3.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchSys3.m
4,266
utf_8
5fe96a5fc1710aa27ba6225006093653
% patchSys3() provides an interface to time integrators % for the dynamics on patches in 3D coupled across space. % The system must be a lattice system such as PDE % discretisations. AJR, Aug 2020 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchSys3()}: interface 3D space to time integrators} \label{sec:patchSys3} To simulate in time with 3D spatial patches we often need to interface a users time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function provides an interface. Communicate patch-design variables (\cref{sec:configPatches3}) either via the global struct~\verb|patches| or via an optional third argument. \verb|patches| is required for the parallel computing of \verb|spmd|, or if parameters are to be passed though to the user microscale function. \begin{matlab} %} function dudt = patchSys3(t,u,patches,varargin) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nSubP(3)| \times \verb|nPatch(1)| \times \verb|nPatch(2)| \times \verb|nPatch(3)|$ spatial grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches3()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches,...)| that computes the time derivatives on the patchy lattice. The array~\verb|u| has size $\verb|nSubP(1)| \times \verb|nSubP(2)| \times \verb|nSubP(3)| \times \verb|nVars| \times \verb|nEsem| \times \verb|nPatch(1)| \times \verb|nPatch(2)| \times \verb|nPatch(3)|$. Time derivatives must be computed into the same sized array, although herein the patch edge-values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP(1)| \times1 \times1 \times1 \times1 \verb|nPatch(1)| \times1 \times1$ array of the spatial locations~$x_{i}$ of the microscale $(i,j,k)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and microscales. \item \verb|.y| is similarly $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times1 \times \verb|nPatch(2)| \times1$ array of the spatial locations~$y_{j}$ of the microscale $(i,j,k)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and microscales. \item \verb|.z| is similarly $1 \times1 \times \verb|nSubP(3)| \times1 \times1 \times1 \times1 \times \verb|nPatch(3)|$ array of the spatial locations~$z_{k}$ of the microscale $(i,j,k)$-grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on both macro- and microscales. \end{itemize} \item \verb|varargin|, optional, is arbitrary list of parameters to be passed onto the users time-derivative function as specified in configPatches3. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Sets the edge-face values from macroscale interpolation of centre-patch values, and if necessary, reshapes the fields~\verb|u| as a 8D-array. \cref{sec:patchEdgeInt3} describes \verb|patchEdgeInt3()|. \begin{matlab} %} sizeu = size(u); u = patchEdgeInt3(u,patches); %{ \end{matlab} Ask the user function for the time derivatives computed in the array, overwrite its edge\slash face values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt = patches.fun(t,u,patches,varargin{:}); m = patches.nEdge(1); dudt([1:m end-m+1:end],:,:,:) = 0; m = patches.nEdge(2); dudt(:,[1:m end-m+1:end],:,:) = 0; m = patches.nEdge(3); dudt(:,:,[1:m end-m+1:end],:) = 0; dudt = reshape(dudt,sizeu); %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
heteroDispersiveWave3.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/heteroDispersiveWave3.m
6,842
utf_8
2c0f537ee293e1547eb9cea5e368629a
% Simulate in 3D on patches the heterogeneous dispersive % waves in a fourth-order wave PDE. AJR, 16 Apr 2023 %!TEX root = doc.tex %{ \section{\texttt{heteroDispersiveWave3}: heterogeneous Dispersive Waves from 4th order PDE} \label{sec:heteroDispersiveWave3} This uses small spatial patches to simulate heterogeneous dispersive waves in 3D. The wave equation for~\(u(x,y,z,t)\) is the fourth-order in space \pde \begin{equation*} u_{tt}=-\delsq(C\delsq u) \end{equation*} for microscale variations in scalar~\(C(x,y,z)\). Initialise some Matlab aspects. \begin{matlab} %} clear all cMap=jet(64); cMap=0.8*cMap(7:end-7,:); % set colormap basename = [num2str(floor(1e5*rem(now,1))) mfilename] %global OurCf2eps, OurCf2eps=true %optional to save plots %{ \end{matlab} Set random heterogeneous coefficients of period two in each of the three directions. Crudely normalise by the harmonic mean so the macro-wave time scale is roughly one. \begin{matlab} %} mPeriod = [2 2 2]; cHetr = exp(0.9*randn(mPeriod)); cHetr = cHetr*mean(1./cHetr(:)) %{ \end{matlab} Establish global patch data struct to interface with a function coding a fourth-order heterogeneous wave \pde: to be solved on $[-\pi,\pi]^3$-periodic domain, with $5^3$~patches, spectral interpolation~($0$) couples the patches, each patch with micro-grid spacing~$0.22$ (relatively large for visualisation), and with $6^3$~points forming each patch. (Six because two edge layers on each of two faces, and two interior points for the \pde.) \begin{matlab} %} global patches patches = configPatches3(@heteroDispWave3,[-pi pi] ... ,'periodic', 5, 0, 0.22, mPeriod+4 ,'EdgyInt',true ... ,'hetCoeffs',cHetr ,'nEdge',2); %{ \end{matlab} Set a wave initial state using auto-replication of the spatial grid, and as \cref{fig:heteroDispersiveWave3ic} shows. This wave propagates diagonally across space. Concatenate the two \(u,v\)-fields to be the two components of the fourth dimension. \begin{matlab} %} u0 = 0.5+0.5*sin(patches.x+patches.y+patches.z); v0 = -0.5*cos(patches.x+patches.y+patches.z)*3; uv0 = cat(4,u0,v0); %{ \end{matlab} \begin{figure}\centering \caption{\label{fig:heteroDispersiveWave3ic} initial field~$u(x,y,z,t)$ at time $t=0$ of the patch scheme applied to a heterogeneous dispersive wave~\pde: \cref{fig:heteroDispersiveWave3fin} plots the computed field at time $t=6$.} \includegraphics[scale=0.9]{24168heteroDispersiveWave3ic} \end{figure} Integrate in time to $t=6$ using standard functions. In Matlab \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is much quicker \cite[Fig.~4]{Maclean2020a}. \begin{matlab} %} disp('Simulate heterogeneous wave u_tt=delsq[C*delsq(u)]') tic [ts,us] = ode23(@patchSys3,linspace(0,6),uv0(:)); simulateTime=toc %{ \end{matlab} Animate the computed simulation to end with \cref{fig:heteroDispersiveWave3fin}. Use \verb|patchEdgeInt3| to obtain patch-face values in order to most easily reconstruct the array data structure. Replicate $x$, $y$, and~$z$ arrays to get individual spatial coordinates of every data point. Then, optionally, set faces to~\verb|nan| so the plot just shows patch-interior data. \begin{matlab} %} %% figure(1), clf, colormap(cMap) xs = patches.x+0*patches.y+0*patches.z; ys = patches.y+0*patches.x+0*patches.z; zs = patches.z+0*patches.y+0*patches.x; if 1, xs([1:2 end-1:end],:,:,:)=nan; xs(:,[1:2 end-1:end],:,:)=nan; xs(:,:,[1:2 end-1:end],:)=nan; end;%option j=find(~isnan(xs)); %{ \end{matlab} In the scatter plot, \verb|col()| maps the $u$-data values to the colour of the dots. \begin{matlab} %} col = @(u) sign(u).*abs(u); %{ \end{matlab} Loop to plot at each and every time step. \begin{matlab} %} for i = 1:length(ts) uv = patchEdgeInt3(us(i,:)); u = uv(:,:,:,1,:); for p=1:2 subplot(1,2,p) if (i==1) scat(p) = scatter3(xs(j),ys(j),zs(j),'.'); axis equal, caxis(col([0 1])), view(45-4*p,42) xlabel('x'), ylabel('y'), zlabel('z') end title(['view cross-eyed: time = ' num2str(ts(i),'%4.2f')]) set( scat(p),'CData',col(u(j)) ); end %{ \end{matlab} Optionally save the initial condition to graphic file for \cref{fig:heteroDispersiveWave3ic}, and optionally save the last plot. \begin{matlab} %} if i==1, ifOurCf2eps([basename 'ic']) disp('Type space character to animate simulation') pause else pause(0.1) end end% i-loop over all times ifOurCf2eps([basename 'fin']) %{ \end{matlab} \begin{figure}\centering \caption{\label{fig:heteroDispersiveWave3fin} field~$u(x,y,z,t)$ at time $t=6$ of the patch scheme applied to the heterogeneous dispersive wave~\pde\ with initial condition in \cref{fig:heteroDispersiveWave3ic}.} \includegraphics[scale=0.9]{24168heteroDispersiveWave3fin} \end{figure} \subsection{\texttt{heteroDispWave3()}: PDE function of 4th-order heterogeneous dispersive waves} \label{sec:heteroDispWave3} This function codes the lattice heterogeneous waves inside the patches. The wave \pde\ for \(u(x,y,z,t)\) and `velocity'~\(v(x,y,z,t)\) is \begin{equation*} u_t=v,\quad v_t=-\delsq(C\delsq u) \end{equation*} for microscale variations in scalar~\(C(x,y,z)\). For 8D input arrays~\verb|u|, \verb|x|, \verb|y|, and~\verb|z| (via edge-value interpolation of \verb|patchSys3|, \cref{sec:patchSys3}), computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. The 3D array of heterogeneous coefficients,~$C_{ijk}$, $c^y_{ijk}$ and~$c^z_{ijk}$, have been stored in~\verb|patches.cs| (3D). Supply patch information as a third argument (required by parallel computation), or otherwise by a global variable. \begin{matlab} %} function ut = heteroDispWave3(t,u,patches) if nargin<3, global patches, end %{ \end{matlab} Micro-grid space steps. \begin{matlab} %} dx = diff(patches.x(2:3)); dy = diff(patches.y(2:3)); dz = diff(patches.z(2:3)); %{ \end{matlab} First, compute \(C\delsq u\) into say~\verb|u|, using indices for all but extreme micro-grid points. We use a single colon to represent the last four array dimensions because the result arrays are already dimensioned. \begin{matlab} %} I = 2:size(u,1)-1; J = 2:size(u,2)-1; K = 2:size(u,3)-1; u(I,J,K,1,:) = patches.cs(I,J,K,1,:).*( diff(u(:,J,K,1,:),2,1)/dx^2 ... +diff(u(I,:,K,1,:),2,2)/dy^2 +diff(u(I,J,:,1,:),2,3)/dz^2 ); %{ \end{matlab} Reserve storage, set lowercase indices to non-edge interior, and then assign interior patch values to the heterogeneous diffusion time derivatives. \begin{matlab} %} ut = nan+u; % preallocate output array i = I(2:end-1); j = J(2:end-1); k = K(2:end-1); ut(i,j,k,1,:) = u(i,j,k,2,:); % du/dt=v % dv/dt=delta^2 of above C*delta^2 ut(i,j,k,2,:) = -( diff(u(I,j,k,1,:),2,1)/dx^2 ... +diff(u(i,J,k,1,:),2,2)/dy^2 +diff(u(i,j,K,1,:),2,3)/dz^2 ); end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
configPatches3.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/configPatches3.m
33,983
utf_8
b4291a4d1d004f1936b796a38893502e
% configPatches3() creates a data struct of the design of 3D % patches for later use by the patch functions such as % patchSys3(). AJR, Aug 2020 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{configPatches3()}: configures spatial patches in 3D} \label{sec:configPatches3} \localtableofcontents Makes the struct~\verb|patches| for use by the patch\slash gap-tooth time derivative\slash step function \verb|patchSys3()|, and possibly other patch functions. \cref{sec:configPatches3eg,sec:homoDiffEdgy3} list examples of its use. \begin{matlab} %} function patches = configPatches3(fun,Xlim,Dom ... ,nPatch,ordCC,dx,nSubP,varargin) version = '2023-04-12'; %{ \end{matlab} \paragraph{Input} If invoked with no input arguments, then executes an example of simulating a heterogeneous wave \pde---see \cref{sec:configPatches3eg} for an example code. \begin{itemize} \item \verb|fun| is the name of the user function, \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)|, that computes time-derivatives (or time-steps) of quantities on the 3D micro-grid within all the 3D~patches. \item \verb|Xlim| array/vector giving the rectangular-cuboid macro-space domain of the computation: namely $[\verb|Xlim(1)|, \verb|Xlim(2)|] \times [\verb|Xlim(3)|, \verb|Xlim(4)| \times [\verb|Xlim(5)|, \verb|Xlim(6)|]$. If \verb|Xlim| has two elements, then the domain is the cubic domain of the same interval in all three directions. \item \verb|Dom| sets the type of macroscale conditions for the patches, and reflects the type of microscale boundary conditions of the problem. If \verb|Dom| is \verb|NaN| or \verb|[]|, then the field~\verb|u| is triply macro-periodic in the 3D spatial domain, and resolved on equi-spaced patches. If \verb|Dom| is a character string, then that specifies the \verb|.type| of the following structure, with \verb|.bcOffset| set to the default zero. Otherwise \verb|Dom| is a structure with the following components. \begin{itemize} \item \verb|.type|, string, of either \verb|'periodic'| (the default), \verb|'equispace'|, \verb|'chebyshev'|, \verb|'usergiven'|. For all cases except \verb|'periodic'|, users \emph{must} code into \verb|fun| the micro-grid boundary conditions that apply at the left\slash right\slash bottom\slash top\slash back\slash front faces of the leftmost\slash rightmost\slash bottommost\slash topmost\slash backmost\slash frontmost patches, respectively. \item \verb|.bcOffset|, optional one, three or six element vector/array, in the cases of \verb|'equispace'| or \verb|'chebyshev'| the patches are placed so the left\slash right macroscale boundaries are aligned to the left\slash right faces of the corresponding extreme patches, but offset by \verb|bcOffset| of the sub-patch micro-grid spacing. For example, use \verb|bcOffset=0| when the micro-code applies Dirichlet boundary values on the extreme face micro-grid points, whereas use \verb|bcOffset=0.5| when the microcode applies Neumann boundary conditions halfway between the extreme face micro-grid points. Similarly for the top, bottom, back, and front faces. If \verb|.bcOffset| is a scalar, then apply the same offset to all boundaries. If three elements, then apply the first offset to both \(x\)-boundaries, the second offset to both \(y\)-boundaries, and the third offset to both \(z\)-boundaries. If six elements, then apply the first two offsets to the respective \(x\)-boundaries, the middle two offsets to the respective \(y\)-boundaries, and the last two offsets to the respective \(z\)-boundaries. \item \verb|.X|, optional vector/array with \verb|nPatch(1)| elements, in the case \verb|'usergiven'| it specifies the \(x\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Y|, optional vector/array with \verb|nPatch(2)| elements, in the case \verb|'usergiven'| it specifies the \(y\)-locations of the centres of the patches---the user is responsible the locations makes sense. \item \verb|.Z|, optional vector/array with \verb|nPatch(3)| elements, in the case \verb|'usergiven'| it specifies the \(z\)-locations of the centres of the patches---the user is responsible the locations makes sense. \end{itemize} \item \verb|nPatch| sets the number of equi-spaced spatial patches: if scalar, then use the same number of patches in all three directions, otherwise \verb|nPatch(1:3)| gives the number~($\geq1$) of patches in each direction. \item \verb|ordCC| is the `order' of interpolation for inter-patch coupling across empty space of the macroscale patch values to the face-values of the patches: currently must be~$0,2,4,\ldots$; where $0$~gives spectral interpolation. \item \verb|dx| (real---scalar or three elements) is usually the sub-patch micro-grid spacing in~\(x\), \(y\) and~\(z\). If scalar, then use the same \verb|dx| in all three directions, otherwise \verb|dx(1:3)| gives the spacing in each of the three directions. However, if \verb|Dom| is~\verb|NaN| (as for pre-2023), then \verb|dx| actually is \verb|ratio| (scalar or three elements), namely the ratio of (depending upon \verb|EdgyInt|) either the half-width or full-width of a patch to the equi-spacing of the patch mid-points---adjusted a little when $\verb|nEdge|>1$. So either $\verb|ratio|=\tfrac12$ means the patches abut and $\verb|ratio|=1$ is overlapping patches as in holistic discretisation, or $\verb|ratio|=1$ means the patches abut. Small~\verb|ratio| should greatly reduce computational time. \item \verb|nSubP| is the number of equi-spaced microscale lattice points in each patch: if scalar, then use the same number in all three directions, otherwise \verb|nSubP(1:3)| gives the number in each direction. If not using \verb|EdgyInt|, then $\verb|nSubP./nEdge|$ must be odd integer(s) so that there is/are centre-patch lattice planes. So for the defaults of $\verb|nEdge|=1$ and not \verb|EdgyInt|, then \verb|nSubP| must be odd. \item \verb|'nEdge'|, \emph{optional} (integer---scalar or three element), default=1, the width of face values set by interpolation at the face regions of each patch. If two elements, then respectively the width in \(x,y\)-directions. The default is one (suitable for microscale lattices with only nearest neighbour interactions). \item \verb|'EdgyInt'|, true/false, \emph{optional}, default=false. If true, then interpolate to left\slash right\slash top\slash bottom\slash front\slash back face-values from right\slash left\slash bottom\slash top\slash back\slash front next-to-face values. If false or omitted, then interpolate from centre-patch planes. \item \verb|'nEnsem'|, \emph{optional-experimental}, default one, but if more, then an ensemble over this number of realisations. \item \verb|'hetCoeffs'|, \emph{optional}, default empty. Supply a 3D or 4D array of microscale heterogeneous coefficients to be used by the given microscale \verb|fun| in each patch. Say the given array~\verb|cs| is of size $m_x\times m_y\times m_z\times n_c$, where $n_c$~is the number of different arrays of coefficients. For example, in heterogeneous diffusion, $n_c=3$ for the diffusivities in the \emph{three} different spatial directions (or $n_c=6$ for the diffusivity tensor). The coefficients are to be the same for each and every patch. However, macroscale variations are catered for by the $n_c$~coefficients being $n_c$~parameters in some macroscale formula. \begin{itemize} \item If $\verb|nEnsem|=1$, then the array of coefficients is just tiled across the patch size to fill up each patch, starting from the $(1,1,1)$-point in each patch. Best accuracy usually obtained when the periodicity of the coefficients is a factor of \verb|nSubP-2*nEdge| for \verb|EdgyInt|, or a factor of \verb|(nSubP-nEdge)/2| for not \verb|EdgyInt|. \item If $\verb|nEnsem|>1$ (value immaterial), then reset $\verb|nEnsem|:=m_x\cdot m_y\cdot m_z$ and construct an ensemble of all $m_x\cdot m_y\cdot m_z$ phase-shifts of the coefficients. In this scenario, the inter-patch coupling couples different members in the ensemble. When \verb|EdgyInt| is true, and when the coefficients are diffusivities\slash elasticities in $x,y,z$-directions, respectively, then this coupling cunningly preserves symmetry. \end{itemize} \item \verb|'parallel'|, true/false, \emph{optional}, default=false. If false, then all patch computations are on the user's main \textsc{cpu}---although a user may well separately invoke, say, a \textsc{gpu} to accelerate sub-patch computations. If true, and it requires that you have \Matlab's Parallel Computing Toolbox, then it will distribute the patches over multiple \textsc{cpu}s\slash cores. In \Matlab, only one array dimension can be split in the distribution, so it chooses the one space dimension~$x,y,z$ corresponding to the highest~\verb|nPatch| (if a tie, then chooses the rightmost of~$x,y,z$). A user may correspondingly distribute arrays with property \verb|patches.codist|, or simply use formulas invoking the preset distributed arrays \verb|patches.x|, \verb|patches.y|, and \verb|patches.z|. If a user has not yet established a parallel pool, then a `local' pool is started. \end{itemize} \paragraph{Output} The struct \verb|patches| is created and set with the following components. If no output variable is provided for \verb|patches|, then make the struct available as a global variable.\footnote{When using \texttt{spmd} parallel computing, it is generally best to avoid global variables, and so instead prefer using an explicit output variable.} \begin{matlab} %} if nargout==0, global patches, end patches.version = version; %{ \end{matlab} \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches)| or \verb|fun(t,u)| or \verb|fun(t,u,patches,...)| that computes the time derivatives (or steps) on the patchy lattice. \item \verb|.ordCC| is the specified order of inter-patch coupling. \item \verb|.periodic|: either true, for interpolation on the macro-periodic domain; or false, for general interpolation by divided differences over non-periodic domain or unevenly distributed patches. \item \verb|.stag| is true for interpolation using only odd neighbouring patches as for staggered grids, and false for the usual case of all neighbour coupling---not yet implemented. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the $\verb|ordCC|\times 3$-array of weights for the inter-patch interpolation onto the right\slash top\slash front and left\slash bottom\slash back faces (respectively) with patch:macroscale ratio as specified or as derived from~\verb|dx|. \item \verb|.x| (8D) is $\verb|nSubP(1)| \times1 \times1 \times1 \times1 \times \verb|nPatch(1)| \times1 \times1$ array of the regular spatial locations~$x_{iI}$ of the microscale grid points in every patch. \item \verb|.y| (8D) is $1 \times \verb|nSubP(2)| \times1 \times1 \times1 \times1 \times \verb|nPatch(2)| \times1$ array of the regular spatial locations~$y_{jJ}$ of the microscale grid points in every patch. \item \verb|.z| (8D) is $1 \times1 \times \verb|nSubP(3)| \times1 \times1 \times1 \times1 \times \verb|nPatch(3)|$ array of the regular spatial locations~$z_{kK}$ of the microscale grid points in every patch. \item \verb|.ratio| $1\times 3$, only for macro-periodic conditions, are the size ratios of every patch. \item \verb|.nEdge| $1\times 3$, is the width of face values set by interpolation at the face regions of each patch, in the \(x,y,z\)-directions respectively. \item \verb|.le|, \verb|.ri|, \verb|.bo|, \verb|.to|, \verb|.ba|, \verb|.fr| determine inter-patch coupling of members in an ensemble. Each a column vector of length~\verb|nEnsem|. \item \verb|.cs| either \begin{itemize} \item \verb|[]| 0D, or \item if $\verb|nEnsem|=1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times (\verb|nSubP(3)|-1)\times n_c$ 4D array of microscale heterogeneous coefficients, or \item if $\verb|nEnsem|>1$, $(\verb|nSubP(1)|-1)\times (\verb|nSubP(2)|-1)\times (\verb|nSubP(3)|-1)\times n_c\times m_xm_ym_z$ 5D array of $m_xm_ym_z$~ensemble of phase-shifts of the microscale heterogeneous coefficients. \end{itemize} \item \verb|.parallel|, logical: true if patches are distributed over multiple \textsc{cpu}s\slash cores for the Parallel Computing Toolbox, otherwise false (the default is to activate the \emph{local} pool). \item \verb|.codist|, \emph{optional}, describes the particular parallel distribution of arrays over the active parallel pool. \end{itemize} \subsection{If no arguments, then execute an example} \label{sec:configPatches3eg} \begin{matlab} %} if nargin==0 disp('With no arguments, simulate example of heterogeneous wave') %{ \end{matlab} The code here shows one way to get started: a user's script may have the following three steps (``\into'' denotes function recursion). \begin{enumerate}\def\itemsep{-1.5ex} \item configPatches3 \item ode23 integrator \into patchSys3 \into user's PDE \item process results \end{enumerate} Set random heterogeneous coefficients of period two in each of the three directions. Crudely normalise by the harmonic mean so the macro-wave time scale is roughly one. \begin{matlab} %} mPeriod = [2 2 2]; cHetr = exp(0.9*randn([mPeriod 3])); cHetr = cHetr*mean(1./cHetr(:)) %{ \end{matlab} Establish global patch data struct to interface with a function coding a nonlinear `diffusion' \pde: to be solved on $[-\pi,\pi]^3$-periodic domain, with $5^3$~patches, spectral interpolation~($0$) couples the patches, each patch with micro-grid spacing~$0.22$ (relatively large for visualisation), and with $4^3$~points forming each patch. \begin{matlab} %} global patches patches = configPatches3(@heteroWave3,[-pi pi] ... ,'periodic' , 5, 0, 0.22, mPeriod+2 ,'EdgyInt',true ... ,'hetCoeffs',cHetr); %{ \end{matlab} Set a wave initial state using auto-replication of the spatial grid, and as \cref{fig:configPatches3ic} shows. This wave propagates diagonally across space. Concatenate the two \(u,v\)-fields to be the two components of the fourth dimension. \begin{matlab} %} u0 = 0.5+0.5*sin(patches.x+patches.y+patches.z); v0 = -0.5*cos(patches.x+patches.y+patches.z)*sqrt(3); uv0 = cat(4,u0,v0); %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches3ic}initial field~$u(x,y,z,t)$ at time $t=0$ of the patch scheme applied to a heterogeneous wave~\pde: \cref{fig:configPatches3fin} plots the computed field at time $t=6$.} \includegraphics[scale=0.9]{configPatches3ic} \end{figure} Integrate in time to $t=6$ using standard functions. In Matlab \verb|ode15s| would be natural as the patch scheme is naturally stiff, but \verb|ode23| is much quicker \cite[Fig.~4]{Maclean2020a}. \begin{matlab} %} disp('Simulate heterogeneous wave u_tt=div[C*grad(u)]') if ~exist('OCTAVE_VERSION','builtin') [ts,us] = ode23(@patchSys3,linspace(0,6),uv0(:)); else %disp('octave version is very slow for me') lsode_options('absolute tolerance',1e-4); lsode_options('relative tolerance',1e-4); [ts,us] = odeOcts(@patchSys3,[0 1 2],uv0(:)); end %{ \end{matlab} Animate the computed simulation to end with \cref{fig:configPatches3fin}. Use \verb|patchEdgeInt3| to obtain patch-face values in order to most easily reconstruct the array data structure. Replicate $x$, $y$, and~$z$ arrays to get individual spatial coordinates of every data point. Then, optionally, set faces to~\verb|nan| so the plot just shows patch-interior data. \begin{matlab} %} figure(1), clf, colormap(0.8*jet) xs = patches.x+0*patches.y+0*patches.z; ys = patches.y+0*patches.x+0*patches.z; zs = patches.z+0*patches.y+0*patches.x; if 1, xs([1 end],:,:,:)=nan; xs(:,[1 end],:,:)=nan; xs(:,:,[1 end],:)=nan; end;%option j=find(~isnan(xs)); %{ \end{matlab} In the scatter plot, these functions \verb|pix()| and \verb|col()| map the $u$-data values to the size of the dots and to the colour of the dots, respectively. \begin{matlab} %} pix = @(u) 15*abs(u)+7; col = @(u) sign(u).*abs(u); %{ \end{matlab} Loop to plot at each and every time step. \begin{matlab} %} for i = 1:length(ts) uv = patchEdgeInt3(us(i,:)); u = uv(:,:,:,1,:); for p=1:2 subplot(1,2,p) if (i==1)| exist('OCTAVE_VERSION','builtin') scat(p) = scatter3(xs(j),ys(j),zs(j),'filled'); axis equal, caxis(col([0 1])), view(45-5*p,25) xlabel('x'), ylabel('y'), zlabel('z') title('view stereo pair cross-eyed') end % in matlab just update values set(scat(p),'CData',col(u(j)) ... ,'SizeData',pix((8+xs(j)-ys(j)+zs(j))/6+0*u(j))); legend(['time = ' num2str(ts(i),'%4.2f')],'Location','north') end %{ \end{matlab} Optionally save the initial condition to graphic file for \cref{fig:configPatches2ic}, and optionally save the last plot. \begin{matlab} %} if i==1, ifOurCf2eps([mfilename 'ic']) disp('Type space character to animate simulation') pause else pause(0.05) end end% i-loop over all times ifOurCf2eps([mfilename 'fin']) %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:configPatches3fin}field~$u(x,y,z,t)$ at time $t=6$ of the patch scheme applied to the heterogeneous wave~\pde\ with initial condition in \cref{fig:configPatches3ic}.} \includegraphics[scale=0.9]{configPatches3fin} \end{figure} Upon finishing execution of the example, exit this function. \begin{matlab} %} return end%if no arguments %{ \end{matlab} \IfFileExists{../Patch/heteroWave3.m}{\input{../Patch/heteroWave3.m}}{} \begin{devMan} \subsection{Parse input arguments and defaults} \begin{matlab} %} p = inputParser; fnValidation = @(f) isa(f, 'function_handle'); %test for fn name addRequired(p,'fun',fnValidation); addRequired(p,'Xlim',@isnumeric); %addRequired(p,'Dom'); % too flexible addRequired(p,'nPatch',@isnumeric); addRequired(p,'ordCC',@isnumeric); addRequired(p,'dx',@isnumeric); addRequired(p,'nSubP',@isnumeric); addParameter(p,'nEdge',1,@isnumeric); addParameter(p,'EdgyInt',false,@islogical); addParameter(p,'nEnsem',1,@isnumeric); addParameter(p,'hetCoeffs',[],@isnumeric); addParameter(p,'parallel',false,@islogical); %addParameter(p,'nCore',1,@isnumeric); % not yet implemented parse(p,fun,Xlim,nPatch,ordCC,dx,nSubP,varargin{:}); %{ \end{matlab} Set the optional parameters. \begin{matlab} %} patches.nEdge = p.Results.nEdge; if numel(patches.nEdge)==1 patches.nEdge = repmat(patches.nEdge,1,3); end patches.EdgyInt = p.Results.EdgyInt; patches.nEnsem = p.Results.nEnsem; cs = p.Results.hetCoeffs; patches.parallel = p.Results.parallel; %patches.nCore = p.Results.nCore; %{ \end{matlab} Initially duplicate parameters for three space dimensions as needed. \begin{matlab} %} if numel(Xlim)==2, Xlim = repmat(Xlim,1,3); end if numel(nPatch)==1, nPatch = repmat(nPatch,1,3); end if numel(dx)==1, dx = repmat(dx,1,3); end if numel(nSubP)==1, nSubP = repmat(nSubP,1,3); end %{ \end{matlab} Check parameters. \begin{matlab} %} assert(Xlim(1)<Xlim(2) ... ,'first pair of Xlim must be ordered increasing') assert(Xlim(3)<Xlim(4) ... ,'second pair of Xlim must be ordered increasing') assert(Xlim(5)<Xlim(6) ... ,'third pair of Xlim must be ordered increasing') assert((mod(ordCC,2)==0)|all(patches.nEdge==1) ... ,'Cannot yet have nEdge>1 and staggered patch grids') assert(all(3*patches.nEdge<=nSubP) ... ,'too many edge values requested') assert(all(rem(nSubP,patches.nEdge)==0) ... ,'nSubP must be integer multiple of nEdge') if ~patches.EdgyInt, assert(all(rem(nSubP./patches.nEdge,2)==1) ... ,'for non-edgyInt, nSubP./nEdge must be odd integer') end if (patches.nEnsem>1)&all(patches.nEdge>1) warning('not yet tested when both nEnsem and nEdge non-one') end %if patches.nCore>1 % warning('nCore>1 not yet tested in this version') % end %{ \end{matlab} For compatibility with pre-2023 functions, if parameter \verb|Dom| is \verb|Nan|, then we set the \verb|ratio| to be the value of the so-called \verb|dx| vector. \begin{matlab} %} if ~isstruct(Dom), pre2023=isnan(Dom); else pre2023=false; end if pre2023, ratio=dx; dx=nan; end %{ \end{matlab} Default macroscale conditions are periodic with evenly spaced patches. \begin{matlab} %} if isempty(Dom), Dom=struct('type','periodic'); end if (~isstruct(Dom))&isnan(Dom), Dom=struct('type','periodic'); end %{ \end{matlab} If \verb|Dom| is a string, then just set type to that string, and subsequently set corresponding defaults for others fields. \begin{matlab} %} if ischar(Dom), Dom=struct('type',Dom); end %{ \end{matlab} We allow different macroscale domain conditions in the different directions. But for the moment do not allow periodic to be mixed with the others (as the interpolation mechanism is different code)---hence why we choose \verb|periodic| be seven characters, whereas the others are eight characters. The different conditions are coded in different rows of \verb|Dom.type|, so we duplicate the string if only one row specified. \begin{matlab} %} if size(Dom.type,1)==1, Dom.type=repmat(Dom.type,3,1); end %{ \end{matlab} Check what is and is not specified, and provide default of Dirichlet boundaries if no \verb|bcOffset| specified when needed. Do so for all three directions independently. \begin{matlab} %} patches.periodic=false; for p=1:3 switch Dom.type(p,:) case 'periodic' patches.periodic=true; if isfield(Dom,'bcOffset') warning('bcOffset not available for Dom.type = periodic'), end msg=' not available for Dom.type = periodic'; if isfield(Dom,'X'), warning(['X' msg]), end if isfield(Dom,'Y'), warning(['Y' msg]), end if isfield(Dom,'Z'), warning(['Z' msg]), end case {'equispace','chebyshev'} if ~isfield(Dom,'bcOffset'), Dom.bcOffset=zeros(2,3); end % for mixed with usergiven, following should still work if numel(Dom.bcOffset)==1 Dom.bcOffset=repmat(Dom.bcOffset,2,3); end if numel(Dom.bcOffset)==3 Dom.bcOffset=repmat(Dom.bcOffset(:)',2,1); end msg=' not available for Dom.type = equispace or chebyshev'; if (p==1)& isfield(Dom,'X'), warning(['X' msg]), end if (p==2)& isfield(Dom,'Y'), warning(['Y' msg]), end if (p==3)& isfield(Dom,'Z'), warning(['Z' msg]), end case 'usergiven' % if isfield(Dom,'bcOffset') % warning('bcOffset not available for usergiven Dom.type'), end msg=' required for Dom.type = usergiven'; if p==1, assert(isfield(Dom,'X'),['X' msg]), end if p==2, assert(isfield(Dom,'Y'),['Y' msg]), end if p==3, assert(isfield(Dom,'Z'),['Z' msg]), end otherwise error([Dom.type ' is unknown Dom.type']) end%switch Dom.type end%for p %{ \end{matlab} \subsection{The code to make patches} First, store the pointer to the time derivative function in the struct. \begin{matlab} %} patches.fun = fun; %{ \end{matlab} Second, store the order of interpolation that is to provide the values for the inter-patch coupling conditions. Spectral coupling is \verb|ordCC| of~$0$ or (not yet??)~$-1$. \begin{matlab} %} assert((ordCC>=-1) & (floor(ordCC)==ordCC), ... 'ordCC out of allowed range integer>=-1') %{ \end{matlab} For odd~\verb|ordCC| do interpolation based upon odd neighbouring patches as is useful for staggered grids. \begin{matlab} %} patches.stag = mod(ordCC,2); assert(patches.stag==0,'staggered not yet implemented??') ordCC = ordCC+patches.stag; patches.ordCC = ordCC; %{ \end{matlab} Check for staggered grid and periodic case. \begin{matlab} %} if patches.stag, assert(all(mod(nPatch,2)==0), ... 'Require an even number of patches for staggered grid') end %{ \end{matlab} \paragraph{Set the macro-distribution of patches} Third, set the centre of the patches in the macroscale grid of patches. Loop over the coordinate directions, setting the distribution into~\verb|Q| and finally assigning to array of corresponding direction. \begin{matlab} %} for q=1:3 qq=2*q-1; %{ \end{matlab} Distribution depends upon \verb|Dom.type|: \begin{matlab} %} switch Dom.type(q,:) %{ \end{matlab} %: case periodic The periodic case is evenly spaced within the spatial domain. Store the size ratio in \verb|patches|. \begin{matlab} %} case 'periodic' Q=linspace(Xlim(qq),Xlim(qq+1),nPatch(q)+1); DQ=Q(2)-Q(1); Q=Q(1:nPatch(q))+diff(Q)/2; pEI=patches.EdgyInt;% abbreviation pnE=patches.nEdge(q);% abbreviation if pre2023, dx(q) = ratio(q)*DQ/(nSubP(q)-pnE*(1+pEI))*(2-pEI); else ratio(q) = dx(q)/DQ*(nSubP(q)-pnE*(1+pEI))/(2-pEI); end patches.ratio=ratio; %{ \end{matlab} %: case equispace The equi-spaced case is also evenly spaced but with the extreme edges aligned with the spatial domain boundaries, modified by the offset. \begin{matlab} %} case 'equispace' Q=linspace(Xlim(qq)+((nSubP(q)-1)/2-Dom.bcOffset(qq))*dx(q) ... ,Xlim(qq+1)-((nSubP(q)-1)/2-Dom.bcOffset(qq+1))*dx(q) ... ,nPatch(q)); DQ=diff(Q(1:2)); width=(1+patches.EdgyInt)/2*(nSubP(q)-1-patches.EdgyInt)*dx; if DQ<width*0.999999 warning('too many equispace patches (double overlapping)') end %{ \end{matlab} %: case chebyshev The Chebyshev case is spaced according to the Chebyshev distribution in order to reduce macro-interpolation errors, \(Q_i \propto -\cos(i\pi/N)\), but with the extreme edges aligned with the spatial domain boundaries, modified by the offset, and modified by possible `boundary layers'. \footnote{ However, maybe overlapping patches near a boundary should be viewed as some sort of spatially analogue of the `christmas tree' of projective integration and its integration to a slow manifold. Here maybe the overlapping patches allow for a `christmas tree' approach to the boundary layers. Needs to be explored??} \begin{matlab} %} case 'chebyshev' halfWidth=dx(q)*(nSubP(q)-1)/2; Q1 = Xlim(1)+halfWidth-Dom.bcOffset(qq)*dx(q); Q2 = Xlim(2)-halfWidth+Dom.bcOffset(qq+1)*dx(q); % Q = (Q1+Q2)/2-(Q2-Q1)/2*cos(linspace(0,pi,nPatch)); %{ \end{matlab} Search for total width of `boundary layers' so that in the interior the patches are non-overlapping Chebyshev. But the width for assessing overlap of patches is the following variable \verb|width|. \begin{matlab} %} pEI=patches.EdgyInt; % abbreviation pnE=patches.nEdge(q);% abbreviation width=(1+pEI)/2*(nSubP(q)-pnE*(1+pEI))*dx(q); for b=0:2:nPatch(q)-2 DQmin=(Q2-Q1-b*width)/2*( 1-cos(pi/(nPatch(q)-b-1)) ); if DQmin>width, break, end end%for if DQmin<width*0.999999 warning('too many Chebyshev patches (mid-domain overlap)') end%if %{ \end{matlab} Assign the centre-patch coordinates. \begin{matlab} %} Q =[ Q1+(0:b/2-1)*width ... (Q1+Q2)/2-(Q2-Q1-b*width)/2*cos(linspace(0,pi,nPatch(q)-b)) ... Q2+(1-b/2:0)*width ]; %{ \end{matlab} %: case usergiven The user-given case is entirely up to a user to specify, we just ensure it has the correct shape of a row. \begin{matlab} %} case 'usergiven' if q==1, Q = reshape(Dom.X,1,[]); end if q==2, Q = reshape(Dom.Y,1,[]); end if q==3, Q = reshape(Dom.Z,1,[]); end end%switch Dom.type %{ \end{matlab} Assign \(Q\)-coordinates to the correct spatial direction. At this stage they are all rows. \begin{matlab} %} if q==1, X=Q; end if q==2, Y=Q; end if q==3, Z=Q; end end%for q %{ \end{matlab} \paragraph{Construct the micro-grids} Fourth, construct the microscale grid in each patch, centred about the given mid-points~\verb|X,Y,Z|. Reshape the grid to be 8D to suit dimensions (micro,Vars,Ens,macro). \begin{matlab} %} xs = dx(1)*( (1:nSubP(1))-mean(1:nSubP(1)) ); patches.x = reshape( xs'+X ... ,nSubP(1),1,1,1,1,nPatch(1),1,1); ys = dx(2)*( (1:nSubP(2))-mean(1:nSubP(2)) ); patches.y = reshape( ys'+Y ... ,1,nSubP(2),1,1,1,1,nPatch(2),1); zs = dx(3)*( (1:nSubP(3))-mean(1:nSubP(3)) ); patches.z = reshape( zs'+Z ... ,1,1,nSubP(3),1,1,1,1,nPatch(3)); %{ \end{matlab} \paragraph{Pre-compute weights for macro-periodic} In the case of macro-periodicity, precompute the weightings to interpolate field values for coupling. \todo{Might sometime extend to coupling via derivative values.} \begin{matlab} %} if patches.periodic ratio = reshape(ratio,1,3); % force to be row vector patches.ratio = ratio; if ordCC>0 [Cwtsr,Cwtsl] = patchCwts(ratio,ordCC,patches.stag); patches.Cwtsr = Cwtsr; patches.Cwtsl = Cwtsl; end%if end%if patches.periodic %{ \end{matlab} \subsection{Set ensemble inter-patch communication} For \verb|EdgyInt| or centre interpolation respectively, \begin{itemize} \item the right-face\slash centre realisations \verb|1:nEnsem| are to interpolate to left-face~\verb|le|, and \item the left-face\slash centre realisations \verb|1:nEnsem| are to interpolate to~\verb|re|. \end{itemize} \verb|re| and \verb|li| are `transposes' of each other as \verb|re(li)=le(ri)| are both \verb|1:nEnsem|. Similarly for bottom-face\slash centre interpolation to top-face via~\verb|to|, top-face\slash centre interpolation to bottom-face via~\verb|bo|, back-face\slash centre interpolation to front-face via~\verb|fr|, and front-face\slash centre interpolation to back-face via~\verb|ba|. The default is nothing shifty. This setting reduces the number of if-statements in function \verb|patchEdgeInt3()|. \begin{matlab} %} nE = patches.nEnsem; patches.le = 1:nE; patches.ri = 1:nE; patches.bo = 1:nE; patches.to = 1:nE; patches.ba = 1:nE; patches.fr = 1:nE; %{ \end{matlab} However, if heterogeneous coefficients are supplied via \verb|hetCoeffs|, then do some non-trivial replications. First, get microscale periods, patch size, and replicate many times in order to subsequently sub-sample: \verb|nSubP| times should be enough. If \verb|cs| is more then 4D, then the higher-dimensions are reshaped into the 4th dimension. \begin{matlab} %} if ~isempty(cs) [mx,my,mz,nc] = size(cs); nx = nSubP(1); ny = nSubP(2); nz = nSubP(3); cs = repmat(cs,nSubP); %{ \end{matlab} If only one member of the ensemble is required, then sub-sample to patch size, and store coefficients in \verb|patches| as is. \begin{matlab} %} if nE==1, patches.cs = cs(1:nx-1,1:ny-1,1:nz-1,:); else %{ \end{matlab} But for $\verb|nEnsem|>1$ an ensemble of $m_xm_ym_z$~phase-shifts of the coefficients is constructed from the over-supply. Here code phase-shifts over the periods---the phase shifts are like Hankel-matrices. \begin{matlab} %} patches.nEnsem = mx*my*mz; patches.cs = nan(nx-1,ny-1,nz-1,nc,mx,my,mz); for k = 1:mz ks = (k:k+nz-2); for j = 1:my js = (j:j+ny-2); for i = 1:mx is = (i:i+nx-2); patches.cs(:,:,:,:,i,j,k) = cs(is,js,ks,:); end end end patches.cs = reshape(patches.cs,nx-1,ny-1,nz-1,nc,[]); %{ \end{matlab} Further, set a cunning left\slash right\slash bottom\slash top\slash front\slash back realisation of inter-patch coupling. The aim is to preserve symmetry in the system when also invoking \verb|EdgyInt|. What this coupling does without \verb|EdgyInt| is unknown. Use auto-replication. \begin{matlab} %} mmx=(0:mx-1)'; mmy=0:my-1; mmz=shiftdim(0:mz-1,-1); le = mod(mmx+mod(nx-2,mx),mx)+1; patches.le = reshape( le+mx*(mmy+my*mmz) ,[],1); ri = mod(mmx-mod(nx-2,mx),mx)+1; patches.ri = reshape( ri+mx*(mmy+my*mmz) ,[],1); bo = mod(mmy+mod(ny-2,my),my)+1; patches.bo = reshape( 1+mmx+mx*(bo-1+my*mmz) ,[],1); to = mod(mmy-mod(ny-2,my),my)+1; patches.to = reshape( 1+mmx+mx*(to-1+my*mmz) ,[],1); ba = mod(mmz+mod(nz-2,mz),mz)+1; patches.ba = reshape( 1+mmx+mx*(mmy+my*(ba-1)) ,[],1); fr = mod(mmz-mod(nz-2,mz),mz)+1; patches.fr = reshape( 1+mmx+mx*(mmy+my*(fr-1)) ,[],1); %{ \end{matlab} Issue warning if the ensemble is likely to be affected by lack of scale separation. \todo{Need to justify this and the arbitrary threshold more carefully??} \begin{matlab} %} if prod(ratio)*patches.nEnsem>0.9, warning( ... 'Probably poor scale separation in ensemble of coupled phase-shifts') scaleSeparationParameter = ratio*patches.nEnsem end %{ \end{matlab} End the two if-statements. \begin{matlab} %} end%if-else nEnsem>1 end%if not-empty(cs) %{ \end{matlab} \paragraph{If parallel code} then first assume this is not within an \verb|spmd|-environment, and so we invoke \verb|spmd...end| (which starts a parallel pool if not already started). At this point, the global \verb|patches| is copied for each worker processor and so it becomes \emph{composite} when we distribute any one of the fields. Hereafter, {\em all fields in the global variable \verb|patches| must only be referenced within an \verb|spmd|-environment.}% \footnote{If subsequently outside spmd, then one must use functions like \texttt{getfield(patches\{1\},'a')}.} \begin{matlab} %} if patches.parallel spmd %{ \end{matlab} Second, decide which dimension is to be sliced among parallel workers (for the moment, do not consider slicing the ensemble). Choose the direction of most patches, biased towards the last. \begin{matlab} %} [~,pari]=max(nPatch+0.01*(1:3)); patches.codist=codistributor1d(5+pari); %{ \end{matlab} \verb|patches.codist.Dimension| is the index that is split among workers. Then distribute the appropriate coordinate direction among the workers: the function must be invoked inside an \verb|spmd|-group in order for this to work---so we do not need \verb|parallel| in argument list. \begin{matlab} %} switch pari case 1, patches.x=codistributed(patches.x,patches.codist); case 2, patches.y=codistributed(patches.y,patches.codist); case 3, patches.z=codistributed(patches.z,patches.codist); otherwise error('should never have bad index for parallel distribution') end%switch end%spmd %{ \end{matlab} If not parallel, then clean out \verb|patches.codist| if it exists. May not need, but safer. \begin{matlab} %} else% not parallel if isfield(patches,'codist'), rmfield(patches,'codist'); end end%if-parallel %{ \end{matlab} \paragraph{Fin} \begin{matlab} %} end% function %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
quasiLogAxes.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/quasiLogAxes.m
7,770
utf_8
3c6cea4c5e176ba4f43466f34876e111
% quasiLogAxes() transforms selected axes of the given plot % to a quasi-log axes (via asinh), including possibly % transforming color axis. AJR, 25 Sep 2021 -- 18 Apr 2023 %!TEX root = doc.tex %{ \section{\texttt{quasiLogAxes()}: transforms some axes of a plot to quasi-log} \label{sec:quasiLogAxes} This function rescales some coordinates and labels the axes of the given 2D or 3D~plot. The original aim was to effectively show the complex spectrum of multiscale systems such as the patch scheme. The eigenvalues are over a wide range of magnitudes, but are signed. So we use a nonlinear asinh transformation of the axes, and then label the axes with reasonable ticks. The nonlinear rescaling is useful in other scenarios also. \begin{matlab} %} function quasiLogAxes(handle,xScale,yScale,zScale,cScale) %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|handle|: handle to your plot to transform, for example, obtained by \verb|handle=plot(...)| \item \verb|xScale| (optional, default~inf): if inf, then no transformation is done in the `x'-coordinate. Otherwise, when \verb|xScale| is not inf, transforms the plot \(x\)-coordinates with the \(\text{asinh}()\) function so that \begin{itemize} \item for \(|x|\lesssim x_{\text{scale}}\) the x-axis scaling is approximately linear, whereas \item for \(|x|\gtrsim x_{\text{scale}}\) the x-axis scaling is approximately signed-logarithmic. \end{itemize} \item \verb|yScale| (optional, default~inf): corresponds to \verb|xScale| for the second axis scaling. \item \verb|zScale| (optional, default~inf): corresponds to \verb|xScale| for a third axis scaling if it exists. \item \verb|cScale| (optional, default~inf): corresponds to \verb|xScale| but for a colormap, and colorbar scaling if one exists. \end{itemize} \paragraph{Output} None, just the transformed plot. \paragraph{Example} If invoked with no arguments, then execute an example. \begin{matlab} %} if nargin==0 % generate some data n=99; fast=(rand(n,1)<0.8); z = -rand(n,1).*(1+1e3*fast)+1i*randn(n,1).*(5+1e2*fast); % plot data and transform axes handle = plot(real(z),imag(z),'.'); xlabel('real-part'), ylabel('imag-part') quasiLogAxes(handle,1,10); return end% example %{ \end{matlab} Default values for scaling, \verb|inf| denotes no transformation of that axis. \begin{matlab} %} if nargin<5, cScale=inf; end if nargin<4, zScale=inf; end if nargin<3, yScale=inf; end if nargin<2, xScale=inf; end %{ \end{matlab} \begin{devMan} Get current limits of the plot to use if the user has set them already. And also get the pointer to the axes and to the figure of the plot. \begin{matlab} %} xlim0=xlim; ylim0=ylim; zlim0=zlim; clim0=caxis; theAxes = get(handle(1),'parent'); theFig = get(theAxes,'parent'); %{ \end{matlab} Find overall factors so the data is nonlinearly mapped to order oneish---so that then pgfplots et al.\ do not think there is an overall scaling factor on the axes. \begin{matlab} %} xFac=1e-99; yFac=xFac; zFac=xFac; cFac=xFac; for k=1:length(handle) if ~isinf(xScale) temp = asinh(handle(k).XData/xScale); xFac = max(xFac, max(abs(temp(:)),[],'omitnan') ); end if ~isinf(yScale) temp = asinh(handle(k).YData/yScale); yFac = max(yFac, max(abs(temp(:)),[],'omitnan') ); end if ~isinf(zScale) temp = asinh(handle(k).ZData/zScale); zFac = max(zFac, max(abs(temp(:)),[],'omitnan') ); end if ~isinf(cScale) temp = asinh(handle(k).CData/cScale); cFac = max(cFac, max(abs(temp(:)),[],'omitnan') ); end end%for xFac=9/xFac; yFac=9/yFac; zFac=9/zFac; cFac=9/cFac; %{ \end{matlab} Scale the plot data in the plot \verb|handle|. Give an error if it appears that the plot-data has already been transformed. Color data has to be transformed first because usually there is automatic flow from z-data to c-data. \begin{matlab} %} for k=1:length(handle) assert(~strcmp(handle(k).UserData,'quasiLogAxes'), ... 'Replot graph---it appears plot data is already transformed') if ~isinf(cScale) handle(k).CData = cFac*asinh(handle(k).CData/cScale); clim1=[min(handle(k).CData(:)) max(handle(k).CData(:))]; end if ~isinf(xScale) handle(k).XData = xFac*asinh(handle(k).XData/xScale); xlim1=[min(handle(k).XData(:)) max(handle(k).XData(:))]; end if ~isinf(yScale) handle(k).YData = yFac*asinh(handle(k).YData/yScale); ylim1=[min(handle(k).YData(:)) max(handle(k).YData(:))]; end if ~isinf(zScale) handle(k).ZData = zFac*asinh(handle(k).ZData/zScale); zlim1=[min(handle(k).ZData(:)) max(handle(k).ZData(:))]; end handle(k).UserData = 'quasiLogAxes'; end%for %{ \end{matlab} Set 4\%~padding around all margins of transformed data---crude but serviceable. Unless the axis had already been manually set, in which case use the transformed set limits. \begin{matlab} %} if ~isinf(xScale), if xlim('mode')=="manual" xlim1=xFac*asinh(xlim0/xScale); else xlim1=xlim1+0.04*diff(xlim1)*[-1 1]; end, end if ~isinf(yScale), if ylim('mode')=="manual" ylim1=yFac*asinh(ylim0/yScale); else ylim1=ylim1+0.04*diff(ylim1)*[-1 1]; end, end if ~isinf(zScale), if zlim('mode')=="manual" zlim1=zFac*asinh(zlim0/zScale); else zlim1=zlim1+0.04*diff(zlim1)*[-1 1]; end, end if ~isinf(cScale), if theAxes.CLimMode=="manual" clim1=cFac*asinh(clim0/cScale); else clim1=clim1+ 0*diff(clim1)*[-1 1]; end, end %{ \end{matlab} \paragraph{Scale axes, and tick marks on axes} \begin{matlab} %} if ~isinf(xScale) xlim(xlim1); tickingQuasiLogAxes(theAxes,'X',xlim1,xScale,xFac) end%if if ~isinf(yScale) ylim(ylim1); tickingQuasiLogAxes(theAxes,'Y',ylim1,yScale,yFac) end%if if ~isinf(zScale) zlim(zlim1); tickingQuasiLogAxes(theAxes,'Z',zlim1,zScale,zFac) end%if %{ \end{matlab} But for color, only tick when we find a colorbar. \begin{matlab} %} if ~isinf(cScale) caxis(clim1); for p=1:numel(theFig.Children) ca = theFig.Children(p); if class(ca) == "matlab.graphics.illustration.ColorBar" tickingQuasiLogAxes(ca,'C',clim1,cScale,cFac) break end end end%if %{ \end{matlab} Turn the grid on by default. \begin{matlab} %} grid on end%function %{ \end{matlab} \subsection{\texttt{tickingQuasiLogAxes()}: typeset ticks and labels on an axis} \begin{matlab} %} function tickingQuasiLogAxes(ca,Q,qlim1,qScale,qFac) %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|ca|: pointer to axes/colorbar dataset. \item \verb|Q|: character, either \texttt{X,Y,Z,C}. \item \verb|qlim1|: the scaled limits of the axis. \item \verb|qScale|: the scaling parameter for the axis. \item \verb|qFac|: the scaling factor for the axis. \end{itemize} \paragraph{Output} None, just the ticked and labelled axes. Get the order of magnitude of the horizontal data. \begin{matlab} %} qmax=max(abs(qlim1)); qmag=floor(log10(qScale*sinh(qmax/qFac))); %{ \end{matlab} Form a range of ticks, geometrically spaced, trim off the small values that would be too dense near zero (omit those within 6\% of \verb|qmax|). \begin{matlab} %} ticks=10.^(qmag+(-7:0)); j=find(ticks>qScale*sinh(0.06*qmax/qFac)); nj=length(j); if nj<3, ticks=[1;2;5]*ticks(j); elseif nj<5, ticks=[1;3]*ticks(j); else ticks=ticks(j); end ticks=sort([0;ticks(:);-ticks(:)]); %{ \end{matlab} Set the ticks in place according to the transformation. \begin{matlab} %} if Q=='C', p='s'; Q=''; else p=''; end set(ca,[Q 'Tick' p],qFac*asinh(ticks/qScale) ... ,[Q 'TickLabel' p],cellstr(num2str(ticks,4))) if Q=='X', set(ca,[Q 'TickLabelRotation'],40), end end%function qScaling %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
SwiftHohenberg2dPattern.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/SwiftHohenberg2dPattern.m
7,080
utf_8
07fe674e7f52283bfae0d9831267a22f
% Simulate Swift--Hohenberg PDE in 2D on patches as an % example application of patches in 2D space with pairs of % edge points needing to be interpolated between patches. % AJR, 13 Apr 2023 %!TEX root = doc.tex %{ \section{\texttt{SwiftHohenberg2dPattern}: patterns of the Swift--Hohenberg PDE in 2D on patches} \label{sec:SwiftHohenberg2dPattern} \localtableofcontents \cref{fig:SwiftHohenberg2dPattern2,fig:SwiftHohenberg2dPattern3% ,fig:SwiftHohenberg2dPattern4,fig:SwiftHohenberg2dPattern5% ,fig:SwiftHohenberg2dPattern6,fig:SwiftHohenberg2dPattern7} show an example simulation in time generated by the patch scheme applied to the patterns arising from the 2D Swift--Hohenberg \pde. Consider a lattice of values~\(u_i(t)\), with lattice spacing~\(dx\), and governed by a microscale centred discretisation of the Swift--Hohenberg \pde \begin{equation} \partial_tu = -(1+\delsq/k_0^2)^2u+\Ra u-u^3, \label{eq:SwiftHohenberg2dPattern} \end{equation} with various boundary conditions at \(x,y=0,L\). For \Ra\ just above critical, say \(\Ra=0.1\), the system rapidly evolves to spatial quasi-periodic solutions with period\({} \approx 0.24\) when wavenumber parameter \(k_0 = 26\). These spatial oscillations are here resolved on a micro-grid of spacing~\(0.042\). On medium times these spatial oscillations grow to near equilibrium amplitude of~\(\sqrt{\Ra}\), and over very long times the phases of the oscillations evolve in space to adapt to the boundaries. Set the desired microscale periodicity, and correspondingly choose random microscale diffusion coefficients (with subscripts shifted by a half). \begin{matlab} %} clear all cMap=jet(64); cMap=0.8*cMap(7:end-7,:); % set colormap basename = ['r' num2str(floor(1e5*rem(now,1))) mfilename] %global OurCf2eps, OurCf2eps=true %optional to save plots Ra = 0.2 % Ra>0 leads to patterns nGapFac = 2 waveLength = 0.5/nGapFac nPtsPeriod = 6 dx = waveLength/nPtsPeriod k0 = 2.1*pi/waveLength %{ \end{matlab} The above factor~\(2.1\) is close to \(3/\sqrt2=2.1213\) for which \((\pm1,\pm2)\) modes have same linear growth-rate as~\((\pm2,0)\) modes. Establish global data struct~\verb|patches| for the Swift--Hohenberg \pde\ on some square domain. For simplicity, use five patches in each direction. Quartic (fourth-order) interpolation \(\verb|ordCC|=4\) provides values for the inter-patch coupling conditions. Set \verb|bcOffset| for different boundary conditions around the square domain. \begin{matlab} %} nPatch = 5 nSubP = 2*nPtsPeriod+4 Len = nPatch; ordCC = 4; dom.type='equispace'; dom.bcOffset=[0.5 0.5;1.0 1.5] patches = configPatches2(@SwiftHohenbergPDE,[0 Len],dom ... ,nPatch,ordCC,dx,nSubP,'EdgyInt',true,'nEdge',2); xs=squeeze(patches.x); ys=squeeze(patches.y); %{ \end{matlab} \subsubsection{Simulate in time} Set an initial condition, and here integrate forward in time using a standard method for stiff systems. Integrate the interface \verb|patchSys2| (\cref{sec:patchSys2}) to the microscale differential equations (despite the extreme stiffness, \verb|ode23| is ten times quicker than \verb|ode15s|). Because pattern evolution is eventually phase-diffusion, here sample the pattern at quadratically varying times. \begin{matlab} %} fprintf('\n**** Simulate in time\n') u0 = 0.3*( -1+2*rand(size(patches.x+patches.y)) ); Ts=400*linspace(0,1,97).^2; tic [ts,us] = ode23(@patchSys2, Ts, u0(:),[],patches,k0,Ra); simulateTime = toc us = reshape(us',nSubP,nSubP,nPatch,nPatch,[]); %{ \end{matlab} \foreach \p in {2,...,7}{% \begin{SCfigure}\centering \caption{\label{fig:SwiftHohenberg2dPattern\p} pattern field \(u(x,y,t)\) in the patch scheme applied to a microscale discretisation of the 2D Swift--Hohenberg \pde. \ifcase\p\or \or%2 At this early time much of the random sub-patch microstrucre has decayed leaving some random marginal modes starting to grow. \or%3 By now the local sub-patch patterns have reached a quasi-equilibrium amplitude. \or%4 Patterns within the patches are evolving to the preferred rolls, but with weak coupling to other patches. \or%5 Can see different effects arising at different types of boundaries. \else \ldots \fi} \includegraphics[scale=0.9]{r26336SwiftHohenberg2dPattern\p} \end{SCfigure} }%end foreach Plot the simulation such as that shown in \cref{fig:SwiftHohenberg2dPattern2,fig:SwiftHohenberg2dPattern3% ,fig:SwiftHohenberg2dPattern4,fig:SwiftHohenberg2dPattern5% ,fig:SwiftHohenberg2dPattern6,fig:SwiftHohenberg2dPattern7} First, reshape the data, omitting edge values. \begin{matlab} %} xs([1:2 end-1:end],:) = nan; ys([1:2 end-1:end],:) = nan; us = reshape( permute(us,[1 3 2 4 5]) ... ,nSubP*nPatch,nSubP*nPatch,[]); uRange=[min(us(:)) max(us(:))]; %{ \end{matlab} Second, plot six examples of the evolving pattern, equi-spaced in time-index. \begin{matlab} %} plots = round( 1+linspace(0,1,7)*(numel(ts)-1) ) for p=2:numel(plots) figure(p),clf mesh(xs(:),ys(:),us(:,:,plots(p))') axis equal, view(0,90) caxis(uRange), colormap(cMap), colorbar xlabel('space $x$'), ylabel('space $y$'), zlabel('$u(x,y,t)$') title(['time = ' num2str(ts(plots(p)),3)]) ifOurCf2eps([basename num2str(p)],[12 11]) end%for p %{ \end{matlab} Third, plot animation in time: starts after a key press. \begin{matlab} %} %% figure(1),clf cf=mesh(xs(:),ys(:),us(:,:,1)'); axis equal, view(0,90) caxis(uRange), colormap(cMap), colorbar xlabel('space x'), ylabel('space y'), zlabel('$u(x,y,t)$') title(['time = ' num2str(ts(1),3)]) ca=gca; disp('Press any key to start animation'),pause for p=2:numel(ts) cf.ZData=us(:,:,p)'; cf.CData=us(:,:,p)'; ca.Title.String=['time = ' num2str(ts(p),3)]; pause(0.1) end %{ \end{matlab} Fin. \subsection{The Swift--Hohenberg PDE and BCs inside patches} As a microscale discretisation of Swift--Hohenberg \pde\ \(u_t= -(1+\delsq/k_0^2)^2u +\Ra u -u^3\), here code straightforward centred discretisation in space. \begin{matlab} %} function ut=SwiftHohenbergPDE(t,u,patches,k0,Ra) dx=diff(patches.x(1:2)); % microscale spacing dy=diff(patches.y(1:2)); % microscale spacing i=3:size(u,1)-2; % interior points in patches j=3:size(u,2)-2; % interior points in patches %{ \end{matlab} Code various boundary conditions. For slightly simpler coding, squeeze out the two singleton dimensions. \begin{matlab} %} u = squeeze(u); u(1:2,:,1,:)=0; % u=u_x=0 at x=0 u(:,1:2,:,1)=0; % u=u_y=0 at y=0 u(end-1,:,end,:)=0; % u=0 at x=L u(end ,:,end,:)=-u(end-2,:,end,:); % u_x=0 at x=L u(:,end-1,:,end)=-u(:,end-2,:,end); % u_y=0 at y=L u(:,end ,:,end)=-u(:,end-3,:,end); % u_yyy=0 at y=L %{ \end{matlab} Here code straightforward centred discretisation in space. \begin{matlab} %} ut=nan+u; % preallocate output array v = u(2:end-1,2:end-1,:,:) ... +( diff(u(:,2:end-1,:,:),2,1)/dx^2 ... +diff(u(2:end-1,:,:,:),2,2)/dy^2 )/k0^2; ut(i,j,:,:) = -( v(2:end-1,2:end-1,:,:) ... +( diff(v(:,2:end-1,:,:),2,1)/dx^2 ... +diff(v(2:end-1,:,:,:),2,2)/dy^2 )/k0^2 ) ... +Ra*u(i,j,:,:) -u(i,j,:,:).^3; end %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchSys1.m
.m
EquationFreeGit-master/SandpitPlay/MultiEdgeValues/patchSys1.m
3,219
utf_8
a1fb92a0c8cf097956420a725b7f4cef
% patchSys1() provides an interface to time integrators for % the dynamics on patches coupled across space. The system % must be a lattice system such as PDE discretisations. % AJR, Nov 2017 -- 31 Mar 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchSys1()}: interface 1D space to time integrators} \label{sec:patchSys1} To simulate in time with 1D spatial patches we often need to interface a user's time derivative function with time integration routines such as \verb|ode23| or~\verb|PIRK2|. This function provides an interface. Communicate patch-design variables (\cref{sec:configPatches1}) either via the global struct~\verb|patches| or via an optional third argument. \verb|patches| is required for the parallel computing of \verb|spmd|, or if parameters are to be passed though to the user microscale function. \begin{matlab} %} function dudt=patchSys1(t,u,patches,varargin) if nargin<3, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP|\times \verb|nPatch|$ grid. \item \verb|t| is the current time to be passed to the user's time derivative function. \item \verb|patches| a struct set by \verb|configPatches1()| with the following information used here. \begin{itemize} \item \verb|.fun| is the name of the user's function \verb|fun(t,u,patches,...)| that computes the time derivatives on the patchy lattice. The array~\verb|u| has size $\verb|nSubP| \times \verb|nVars| \times \verb|nEnsem| \times \verb|nPatch|$. Time derivatives should be computed into the same sized array, then herein the patch edge values are overwritten by zeros. \item \verb|.x| is $\verb|nSubP| \times1 \times1 \times \verb|nPatch|$ array of the spatial locations~$x_{i}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale. \end{itemize} \item \verb|varargin|, optional, is arbitrary number of parameters to be passed onto the users time-derivative function as specified in configPatches1. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|dudt| is a vector\slash array of of time derivatives, but with patch edge-values set to zero. It is of total length $\verb|nSubP| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch|$ and the same dimensions as~\verb|u|. \end{itemize} \begin{devMan} Reshape the fields~\verb|u| as a 4D-array, and sets the edge values from macroscale interpolation of centre-patch values. \cref{sec:patchEdgeInt1} describes \verb|patchEdgeInt1()|. \begin{matlab} %} sizeu = size(u); u = patchEdgeInt1(u,patches); %{ \end{matlab} Ask the user function for the time derivatives computed in the array, overwrite its edge values with the dummy value of zero (as \verb|ode15s| chokes on NaNs), then return to the user\slash integrator as same sized array as input. \begin{matlab} %} dudt=patches.fun(t,u,patches,varargin{:}); n=patches.nEdge; dudt([1:n end-n+1:end],:,:,:) = 0; dudt=reshape(dudt,sizeu); %{ \end{matlab} Fin. \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
rk2int.m
.m
EquationFreeGit-master/SandpitPlay/RKInt/rk2int.m
2,266
utf_8
74c1245d7cd40c8ace1329480e507287
%rk2int() is a simple example of Runge--Kutta, 2nd order, %integration of a given deterministic ODE. %AJR, 29 Mar 2017 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{rk2int()}} \label{sec:rk2int} \localtableofcontents This is a simple example of Runge--Kutta, 2nd order, integration of a given deterministic \ode. \begin{matlab} %} function [xs,errs] = rk2int(fun,ts,x0) %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|fun()| is a function such as \verb|dxdt=fun(t,x)| that computes the right-hand side of the \ode\ \(d\xv/dt=\fv(\xv,t)\) where \xv~is a column vector, say in \(\RR^n\) for \(n\geq1\)\,, \(t\)~is a scalar, and the result~\fv\ is a column vector in~\(\RR^n\). \item \verb|x0| is an \(\RR^n\) vector of initial values at the time \verb|ts(1)|. \item \verb|ts| is a vector of times to compute the approximate solution, say in~\(\RR^\ell\) for \(\ell\geq2\)\,. \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|xs|, array in \(\RR^{\ell\times n}\) of approximate solution row vector at the specified times. \item \verb|errs|, column vector in \(\RR^{\ell}\) of error estimate for the step from \(t_{k-1}\) to~\(t_k\). \end{itemize} Compute the time-steps and create storage for outputs. \begin{matlab} %} dt = diff(ts); xs = nan(numel(x0),numel(ts)); errs = nan(numel(ts),1); %{ \end{matlab} Initialise first result to the given initial condition, and evaluate the initial time derivative into~\verb|f1|. \begin{matlab} %} xs(:,1) = x0(:); errs(1) = 0; f1 = fun(ts(1),xs(:,1)); %{ \end{matlab} Compute the time-steps from~\(t_k\) to~\(t_{k+1}\), copying the derivative~\verb|f1| at the end of the last time-step to be the derivative at the start of this one. \begin{matlab} %} for k = 1:numel(dt) f0 = f1; %{ \end{matlab} Simple second-order accurate time-step. \begin{matlab} %} xh = xs(:,k)+f0*dt(k)/2; fh = fun(ts(k)+dt(k)/2,xh); xs(:,k+1) = xs(:,k)+fh*dt(k); f1 = fun(ts(k+1),xs(:,k+1)); %{ \end{matlab} Use the time derivative at~\(t_{k+1}\) to estimate an error by storing the difference with what Simpson's rule would estimate. \begin{matlab} %} errs(k+1) = norm(f0-2*fh+f1)*dt(k)/6; end xs = xs.'; %{ \end{matlab} End of the function with results returned in~\verb|xs| and~\verb|errs|. %}
github
uoa1184615/EquationFreeGit-master
homoDiffBdryEquil3.m
.m
EquationFreeGit-master/Patch/homoDiffBdryEquil3.m
6,974
utf_8
7cecd10e3fe6ae3ac7058761acf6df6a
% Finds equilibrium of forced heterogeneous diffusion in 3D % cube on 3D patches as an example application. Boundary % conditions are Neumann on the right face of the cube, and % Dirichlet on the other faces. The microscale is of known % period so we interpolate next-to-edge values to get % opposite edge values. AJR, 1 Feb 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{homoDiffBdryEquil3}: equilibrium via computational homogenisation of a 3D heterogeneous diffusion on small patches} \label{sec:homoDiffBdryEquil3} Find the equilibrium of a forced heterogeneous diffusion in 3D space on 3D patches as an example application. Boundary conditions are Neumann on the right face of the cube, and Dirichlet on the other faces. \cref{fig:homoDiffBdryEquil3} shows five isosurfaces of the 3D solution field. \begin{figure}\centering \caption{\label{fig:homoDiffBdryEquil3}% Equilibrium of the macroscale of the random heterogeneous diffusion in 3D with boundary conditions of zero on all faces except for the Neumann condition on \(x=1\) (\cref{sec:homoDiffBdryEquil3}). The small patches are equispaced in space. } \includegraphics[scale=0.8]{Figs/homoDiffBdryEquil3.png} \end{figure} Clear variables, and establish globals. \begin{matlab} %} clear all global patches %global OurCf2eps, OurCf2eps=true %option to save plots %{ \end{matlab} Set random heterogeneous diffusivities of random (small) period in each of the three directions. Crudely normalise by the harmonic mean so the decay time scale is roughly one. \begin{matlab} %} mPeriod = randi([2 3],1,3) cDiff = exp(0.3*randn([mPeriod 3])); cDiff = cDiff*mean(1./cDiff(:)) %{ \end{matlab} Configure the patch scheme with some arbitrary choices of cubic domain, patches, and micro-grid spacing~\(0.05\). Use high order interpolation as few patches in each direction. Configure for Dirichlet boundaries except for Neumann on the right \(x\)-face. \begin{matlab} %} nSubP = mPeriod+2; nPatch = 5; Dom.type = 'equispace'; Dom.bcOffset = zeros(2,3); Dom.bcOffset(2) = 0.5; configPatches3(@microDiffBdry3, [-1 1], Dom ... , nPatch, 0, 0.05, nSubP, 'EdgyInt',true ... ,'hetCoeffs',cDiff ); %{ \end{matlab} Set forcing, and store in global patches for access by the microcode \begin{matlab} %} patches.fu = 10*exp(-patches.x.^2-patches.y.^2-patches.z.^2); patches.fu = patches.fu.*(1+rand(size(patches.fu))); %{ \end{matlab} \paragraph{Solve for steady state} Set initial guess of zero, with \verb|NaN| to indicate patch-edge values. Index~\verb|i| are the indices of patch-interior points, store in global patches for access by \verb|theRes|, and the number of unknowns is then its number of elements. \begin{matlab} %} u0 = zeros([nSubP,1,1,nPatch,nPatch,nPatch]); u0([1 end],:,:,:) = nan; u0(:,[1 end],:,:) = nan; u0(:,:,[1 end],:) = nan; patches.i = find(~isnan(u0)); nVariables = numel(patches.i) %{ \end{matlab} Solve by iteration. Use \verb|fsolve| for simplicity and robustness (optionally \verb|optimoptions| to omit trace information), via the generic patch system wrapper \verb|theRes| (\cref{sec:theRes}). \begin{matlab} %} disp('Solving system, takes 10--40 secs'),tic uSoln = fsolve(@theRes,u0(patches.i) ... ,optimoptions('fsolve','Display','off')); solveTime = toc normResidual = norm(theRes(uSoln)) normSoln = norm(uSoln) %{ \end{matlab} Store the solution into the patches, and give magnitudes. \begin{matlab} %} u0(patches.i) = uSoln; u0 = patchEdgeInt3(u0); %{ \end{matlab} \paragraph{Plot isosurfaces of the solution} \begin{matlab} %} figure(1), clf rgb=get(gca,'defaultAxesColorOrder'); %{ \end{matlab} Reshape spatial coordinates of patches. \begin{matlab} %} x = patches.x(:); y = patches.y(:); z = patches.z(:); %{ \end{matlab} Draw isosurfaces. Get the solution with interpolated faces, form into a 6D array, and reshape and transpose~\(x\) and~\(y\) to suit the isosurface function. \begin{matlab} %} u = reshape( permute(squeeze(u0),[2 5 1 4 3 6]) ... , [numel(y) numel(x) numel(z)]); maxu=max(u(:)), minu=min(u(:)) %{ \end{matlab} Optionally cut-out the front corner so we can see inside. \begin{matlab} %} u( (x'>0) & (y<0) & (shiftdim(z,-2)>0) ) = nan; %{ \end{matlab} Draw some isosurfaces. \begin{matlab} %} clf; for iso=5:-1:1 isov=(iso-0.5)/5*(maxu-minu)+minu; hsurf(iso) = patch(isosurface(x,y,z,u,isov)); isonormals(x,y,z,u,hsurf(iso)) set(hsurf(iso) ,'FaceColor',rgb(iso,:) ... ,'EdgeColor','none' ,'FaceAlpha',iso/5); hold on end hold off axis equal, axis([-1 1 -1 1 -1 1]), view(35,25) xlabel('$x$'), ylabel('$y$'), zlabel('$z$') camlight, lighting gouraud ifOurCf2eps(mfilename) %optionally save plot if exist('OurCf2eps') && OurCf2eps, print('-dpng',['Figs/' mfilename]), end %{ \end{matlab} \subsection{\texttt{microDiffBdry3()}: 3D forced heterogeneous diffusion with boundaries} \label{sec:microDiffBdry3} This function codes the lattice forced heterogeneous diffusion inside the 3D patches. For 8D input array~\verb|u| (via edge-value interpolation of \verb|patchEdgeInt3|, such as by \verb|patchSys3|, \cref{sec:patchSys3}), computes the time derivative at each point in the interior of a patch, output in~\verb|ut|. The three 3D array of diffusivities,~$c^x_{ijk}$, $c^y_{ijk}$ and~$c^z_{ijk}$, have previously been stored in~\verb|patches.cs| (4D). Supply patch information as a third argument (required by parallel computation), or otherwise by a global variable. \begin{matlab} %} function ut = microDiffBdry3(t,u,patches) if nargin<3, global patches, end %{ \end{matlab} Microscale space-steps. \begin{matlab} %} dx = diff(patches.x(2:3)); % x micro-scale step dy = diff(patches.y(2:3)); % y micro-scale step dz = diff(patches.z(2:3)); % z micro-scale step i = 2:size(u,1)-1; % x interior points in a patch j = 2:size(u,2)-1; % y interior points in a patch k = 2:size(u,3)-1; % y interior points in a patch %{ \end{matlab} Code microscale boundary conditions of say Neumann on right, and Dirichlet on left, top, bottom, front, and back (viewed along the \(z\)-axis). \begin{matlab} %} u( 1 ,:,:,:,:, 1 ,:,:)=0; %left face of leftmost patch u(end,:,:,:,:,end,:,:)=u(end-1,:,:,:,:,end,:,:); %right face of rightmost u(:, 1 ,:,:,:,:, 1 ,:)=0; %bottom face of bottommost u(:,end,:,:,:,:,end,:)=0; %top face of topmost u(:,:, 1 ,:,:,:,:, 1 )=0; %front face of frontmost u(:,:,end,:,:,:,:,end)=0; %back face of backmost %{ \end{matlab} Reserve storage and then assign interior patch values to the heterogeneous diffusion time derivatives. Using \verb|nan+u| appears quicker than \verb|nan(size(u),patches.codist)| \begin{matlab} %} ut = nan+u; % reserve storage ut(i,j,k,:) ... = diff(patches.cs(:,j,k,1).*diff(u(:,j,k,:),1,1),1,1)/dx^2 ... +diff(patches.cs(i,:,k,2).*diff(u(i,:,k,:),1,2),1,2)/dy^2 ... +diff(patches.cs(i,j,:,3).*diff(u(i,j,:,:),1,3),1,3)/dz^2 ... +patches.fu(i,j,k); end% function %{ \end{matlab} %}
github
uoa1184615/EquationFreeGit-master
patchEdgeInt3.m
.m
EquationFreeGit-master/Patch/patchEdgeInt3.m
28,529
utf_8
994388f67e0cb617d206311ba65f6db3
% patchEdgeInt3() provides the interpolation across 3D space % for 3D patches of simulations of a smooth lattice system % such as PDE discretisations. AJR, Aug 2020 -- 12 Apr 2023 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{patchEdgeInt3()}: sets 3D patch face values from 3D macroscale interpolation} \label{sec:patchEdgeInt3} Couples 3D patches across 3D space by computing their face values via macroscale interpolation. Assumes patch face values are determined by macroscale interpolation of the patch centre-plane values \cite[]{Roberts2011a, Bunder2019d}, or patch next-to-face values which appears better \cite[]{Bunder2020a}. This function is primarily used by \verb|patchSys3()| but is also useful for user graphics. \footnote{Script \texttt{patchEdgeInt3test.m} verifies this code.} Communicate patch-design variables via a second argument (optional, except required for parallel computing of \verb|spmd|), or otherwise via the global struct~\verb|patches|. \begin{matlab} %} function u = patchEdgeInt3(u,patches) if nargin<2, global patches, end %{ \end{matlab} \paragraph{Input} \begin{itemize} \item \verb|u| is a vector\slash array of length $\verb|prod(nSubP)| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|prod(nPatch)|$ where there are $\verb|nVars| \cdot \verb|nEnsem|$ field values at each of the points in the $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ multiscale spatial grid on the $\verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$ array of patches. \item \verb|patches| a struct set by \verb|configPatches3()| which includes the following information. \begin{itemize} \item \verb|.x| is $\verb|nSubP1| \times1 \times1 \times1 \times1 \times \verb|nPatch1| \times1 \times1 $ array of the spatial locations~$x_{iI}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$i$, but may be variable spaced in macroscale index~$I$. \item \verb|.y| is similarly $1\times \verb|nSubP2| \times1 \times1 \times1 \times1 \times \verb|nPatch2| \times1$ array of the spatial locations~$y_{jJ}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$j$, but may be variable spaced in macroscale index~$J$. \item \verb|.z| is similarly $1 \times1 \times \verb|nSubP3| \times1 \times1 \times1 \times1 \times \verb|nPatch3|$ array of the spatial locations~$z_{kK}$ of the microscale grid points in every patch. Currently it \emph{must} be an equi-spaced lattice on the microscale index~$k$, but may be variable spaced in macroscale index~$K$. \item \verb|.ordCC| is order of interpolation, currently only $\{0,2,4,\ldots\}$ \item \verb|.periodic| indicates whether macroscale is periodic domain, or alternatively that the macroscale has left, right, top, bottom, front and back boundaries so interpolation is via divided differences. \item \verb|.stag| in $\{0,1\}$ is one for staggered grid (alternating) interpolation. Currently must be zero. \item \verb|.Cwtsr| and \verb|.Cwtsl| are the coupling coefficients for finite width interpolation in each of the $x,y,z$-directions---when invoking a periodic domain. \item \verb|.EdgyInt|, true/false, for determining patch-edge values by interpolation: true, from opposite-edge next-to-edge values (often preserves symmetry); false, from centre cross-patch values (near original scheme). \item \verb|.nEdge|, three elements, the width of edge values set by interpolation at the \(x,y,z\)-face regions, respectively, of each patch (default is one all \(x,y,z\)-faces). \item \verb|.nEnsem| the number of realisations in the ensemble. \item \verb|.parallel| whether serial or parallel. \end{itemize} \end{itemize} \paragraph{Output} \begin{itemize} \item \verb|u| is 8D array, $\verb|nSubP1| \cdot \verb|nSubP2| \cdot \verb|nSubP3| \cdot \verb|nVars| \cdot \verb|nEnsem| \cdot \verb|nPatch1| \cdot \verb|nPatch2| \cdot \verb|nPatch3|$, of the fields with face values set by interpolation. \end{itemize} \begin{devMan} Test for reality of the field values, and define a function accordingly. Could be problematic if some variables are real and some are complex, or if variables are of quite different sizes. \begin{matlab} %} if max(abs(imag(u(:))))<1e-9*max(abs(u(:))) uclean=@(u) real(u); else uclean=@(u) u; end %{ \end{matlab} Determine the sizes of things. Any error arising in the reshape indicates~\verb|u| has the wrong size. \begin{matlab} %} [~,~,nz,~,~,~,~,Nz] = size(patches.z); [~,ny,~,~,~,~,Ny,~] = size(patches.y); [nx,~,~,~,~,Nx,~,~] = size(patches.x); nEnsem = patches.nEnsem; nVars = round( numel(u)/numel(patches.x) ... /numel(patches.y)/numel(patches.z)/nEnsem ); assert(numel(u) == nx*ny*nz*Nx*Ny*Nz*nVars*nEnsem ... ,'patchEdgeInt3: input u has wrong size for parameters') u = reshape(u,[nx ny nz nVars nEnsem Nx Ny Nz]); %{ \end{matlab} For the moment assume the physical domain is either macroscale periodic or macroscale rectangle so that the coupling formulas are simplest. These index vectors point to patches and, if periodic, their six immediate neighbours. \begin{matlab} %} I=1:Nx; Ip=mod(I,Nx)+1; Im=mod(I-2,Nx)+1; J=1:Ny; Jp=mod(J,Ny)+1; Jm=mod(J-2,Ny)+1; K=1:Nz; Kp=mod(K,Nz)+1; Km=mod(K-2,Nz)+1; %{ \end{matlab} \paragraph{Implement multiple width edges by folding} Subsample~\(x,y,z\) coordinates, noting it is only differences that count \emph{and} the microgrid~\(x,y,z\) spacing must be uniform. \begin{matlab} %} %x = patches.x; %if patches.nEdge(1)>1 % m = patches.nEdge(1); % x = x(1:m:nx,:,:,:,:,:,:,:); % nx = nx/m; % u = reshape(u,m,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[2:4 1 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(1) %y = patches.y; %if patches.nEdge(2)>1 % m = patches.nEdge(2); % y = y(:,1:m:ny,:,:,:,:,:,:); % ny = ny/m; % u = reshape(u,nx,m,ny,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[1 3:4 2 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(2) %z = patches.z; %if patches.nEdge(3)>1 % m = patches.nEdge(3); % z = z(:,:,1:m:nz,:,:,:,:,:); % nz = nz/m; % u = reshape(u,nx,ny,m,nz,nVars,nEnsem,Nx,Ny,Nz); % nVars = nVars*m; % u = reshape( permute(u,[1:2 4 3 5:9]) ... % ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); %end%if patches.nEdge(3) x = patches.x; y = patches.y; z = patches.z; if mean(patches.nEdge)>1 mx = patches.nEdge(1); my = patches.nEdge(2); mz = patches.nEdge(3); x = x(1:mx:nx,:,:,:,:,:,:,:); y = y(:,1:my:ny,:,:,:,:,:,:); z = z(:,:,1:mz:nz,:,:,:,:,:); nx = nx/mx; ny = ny/my; nz = nz/mz; u = reshape(u,mx,nx,my,ny,mz,nz,nVars,nEnsem,Nx,Ny,Nz); nVars = nVars*mx*my*mz; u = reshape( permute(u,[2:2:6 1:2:5 7:11]) ... ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); end%if patches.nEdge %{ \end{matlab} The centre of each patch (as \verb|nx|, \verb|ny| and \verb|nz| are odd for centre-patch interpolation) is at indices \begin{matlab} %} i0 = round((nx+1)/2); j0 = round((ny+1)/2); k0 = round((nz+1)/2); %{ \end{matlab} \subsection{Periodic macroscale interpolation schemes} \begin{matlab} %} if patches.periodic %{ \end{matlab} Get the size ratios of the patches in each direction. \begin{matlab} %} rx = patches.ratio(1); ry = patches.ratio(2); rz = patches.ratio(3); %{ \end{matlab} \subsubsection{Lagrange interpolation gives patch-face values} Compute centred differences of the mid-patch values for the macro-interpolation, of all fields. Here the domain is macro-periodic. \begin{matlab} %} ordCC = patches.ordCC; if ordCC>0 % then finite-width polynomial interpolation %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. \paragraph{\(x\)-normal face values} The patch-edge values are either interpolated from the next-to-edge-face values, or from the centre-cross-plane values (not the patch-centre value itself as that seems to have worse properties in general). Have not yet implemented core averages. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u([2 nx-1],2:(ny-1),2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(i0,2:(ny-1),2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Just in case any last array dimension(s) are one, we force a padding of the sizes, then adjoin the extra dimension for the subsequent array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Use finite difference formulas for the interpolation, so store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in these arrays. When parallel, in order to preserve the distributed array structure we use an index at the end for the differences. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') % dmux(:,:,:,:,:,I,:,:,1) = (Ux(:,:,:,:,:,Ip,:,:) +Ux(:,:,:,:,:,Im,:,:))/2; % \mu % dmux(:,:,:,:,:,I,:,:,2) = (Ux(:,:,:,:,:,Ip,:,:) -Ux(:,:,:,:,:,Im,:,:)); % \delta % Ip = Ip(Ip); Im = Im(Im); % increase shifts to \pm2 % dmuy(:,:,:,:,:,:,J,:,1) = (Ux(:,:,:,:,:,:,Jp,:)+Ux(:,:,:,:,:,:,Jm,:))/2; % \mu % dmuy(:,:,:,:,:,:,J,:,2) = (Ux(:,:,:,:,:,:,Jp,:)-Ux(:,:,:,:,:,:,Jm,:)); % \delta % Jp = Jp(Jp); Jm = Jm(Jm); % increase shifts to \pm2 % dmuz(:,:,:,:,:,:,:,K,1) = (Ux(:,:,:,:,:,:,:,Kp)+Ux(:,:,:,:,:,:,:,Km))/2; % \mu % dmuz(:,:,:,:,:,:,:,K,2) = (Ux(:,:,:,:,:,:,:,Kp)-Ux(:,:,:,:,:,:,:,Km)); % \delta % Kp = Kp(Kp); Km = Km(Km); % increase shifts to \pm2 else %disp('starting standard interpolation') dmu(:,:,:,:,:,I,:,:,1) = (U(:,:,:,:,:,Ip,:,:) ... -U(:,:,:,:,:,Im,:,:))/2; %\mu\delta dmu(:,:,:,:,:,I,:,:,2) = (U(:,:,:,:,:,Ip,:,:) ... -2*U(:,:,:,:,:,I,:,:) +U(:,:,:,:,:,Im,:,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$ of these to form successively higher order centred differences in space. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,I,:,:,k) = dmu(:,:,:,:,:,Ip,:,:,k-2) ... -2*dmu(:,:,:,:,:,I,:,:,k-2) +dmu(:,:,:,:,:,Im,:,:,k-2); end %{ \end{matlab} Interpolate macro-values to be Dirichlet face values for each patch \cite[]{Roberts06d, Bunder2013b}, using the weights pre-computed by \verb|configPatches3()|. Here interpolate to specified order. For the case where next-to-face values interpolate to the opposite face-values: when we have an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(nx,2:(ny-1),2:(nz-1),:,patches.ri,I,:,:) ... = U(1,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,1),-8).*dmu(1,:,:,:,:,:,:,:,:) ,9); u(1 ,2:(ny-1),2:(nz-1),:,patches.le,I,:,:) ... = U(k,:,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,1),-8).*dmu(k,:,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(y\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,[2 ny-1],2:(nz-1),:,:,I,J,K); else % interpolate centre-cross values U = u(:,j0,2:(nz-1),:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,J,:,1) = (U(:,:,:,:,:,:,Jp,:) ... -U(:,:,:,:,:,:,Jm,:))/2; %\mu\delta dmu(:,:,:,:,:,:,J,:,2) = (U(:,:,:,:,:,:,Jp,:) ... -2*U(:,:,:,:,:,:,J,:) +U(:,:,:,:,:,:,Jm,:)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,J,:,k) = dmu(:,:,:,:,:,:,Jp,:,k-2) ... -2*dmu(:,:,:,:,:,:,J,:,k-2) +dmu(:,:,:,:,:,:,Jm,:,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,ny,2:(nz-1),:,patches.to,:,J,:) ... = U(:,1,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,2),-8).*dmu(:,1,:,:,:,:,:,:,:) ,9); u(:,1 ,2:(nz-1),:,patches.bo,:,J,:) ... = U(:,k,:,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,2),-8).*dmu(:,k,:,:,:,:,:,:,:) ,9); %{ \end{matlab} \paragraph{\(z\)-normal face values} Interpolate from either the next-to-edge-face values, or the centre-cross-plane values. \begin{matlab} %} if patches.EdgyInt % interpolate next-to-face values U = u(:,:,[2 nz-1],:,:,I,J,K); else % interpolate centre-cross values U = u(:,:,k0,:,:,I,J,K); end;%if patches.EdgyInt %{ \end{matlab} Adjoin extra dimension for the array of differences. \begin{matlab} %} szUO=size(U); szUO=[szUO ones(1,8-length(szUO)) ordCC]; %{ \end{matlab} Store finite differences ($\mu\delta, \delta^2, \mu\delta^3, \delta^4, \ldots$) in this array. \begin{matlab} %} if ~patches.parallel, dmu = zeros(szUO); % 9D else dmu = zeros(szUO,patches.codist); % 9D end%if patches.parallel %{ \end{matlab} First compute differences $\mu\delta$ and $\delta^2$. \begin{matlab} %} if patches.stag % use only odd numbered neighbours error('polynomial interpolation not yet for staggered patch coupling') else %disp('starting standard interpolation') dmu(:,:,:,:,:,:,:,K,1) = (U(:,:,:,:,:,:,:,Kp) ... -U(:,:,:,:,:,:,:,Km))/2; %\mu\delta dmu(:,:,:,:,:,:,:,K,2) = (U(:,:,:,:,:,:,:,Kp) ... -2*U(:,:,:,:,:,:,:,K) +U(:,:,:,:,:,:,:,Km)); %\delta^2 end% if stag %{ \end{matlab} Recursively take $\delta^2$. \begin{matlab} %} for k = 3:ordCC dmu(:,:,:,:,:,:,:,K,k) = dmu(:,:,:,:,:,:,:,Kp,k-2) ... -2*dmu(:,:,:,:,:,:,:,K,k-2) +dmu(:,:,:,:,:,:,:,Km,k-2); end %{ \end{matlab} Interpolate macro-values using the weights pre-computed by \verb|configPatches3()|. An ensemble of configurations may have cross-coupling. \begin{matlab} %} k=1+patches.EdgyInt; % use centre or two faces u(:,:,nz,:,patches.fr,:,:,K) ... = U(:,:,1,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsr(:,3),-8).*dmu(:,:,1,:,:,:,:,:,:) ,9); u(:,:,1 ,:,patches.ba,:,:,K) ... = U(:,:,k,:,:,:,:,:)*(1-patches.stag) ... +sum( shiftdim(patches.Cwtsl(:,3),-8).*dmu(:,:,k,:,:,:,:,:,:) ,9); %{ \end{matlab} \subsubsection{Case of spectral interpolation} Assumes the domain is macro-periodic. \begin{matlab} %} else% patches.ordCC<=0, spectral interpolation %{ \end{matlab} We interpolate in terms of the patch index, $I$~say, not directly in space. As the macroscale fields are $N$-periodic in the patch index~$I$, the macroscale Fourier transform writes the centre-patch values as $U_I=\sum_{k}C_ke^{ik2\pi I/N}$. Then the face-patch values $U_{I\pm r} =\sum_{k}C_ke^{ik2\pi/N(I\pm r)} =\sum_{k}C'_ke^{ik2\pi I/N}$ where $C'_k =C_ke^{ikr2\pi/N}$. For $N$~patches we resolve `wavenumbers' $|k|<N/2$, so set row vector $\verb|ks| =k2\pi/N$ for `wavenumbers' $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, -k_{\max}, \ldots, -1)$ for odd~$N$, and $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, \pm(k_{\max}+1) -k_{\max}, \ldots, -1)$ for even~$N$. Deal with staggered grid by doubling the number of fields and halving the number of patches (\verb|configPatches3| tests there are an even number of patches). Then the patch-ratio is effectively halved. The patch faces are near the middle of the gaps and swapped. \begin{matlab} %} if patches.stag % transform by doubling the number of fields error('staggered grid not yet implemented??') v=nan(size(u)); % currently to restore the shape of u u=cat(3,u(:,1:2:nPatch,:),u(:,2:2:nPatch,:)); stagShift=reshape(0.5*[ones(nVars,1);-ones(nVars,1)],1,1,[]); iV=[nVars+1:2*nVars 1:nVars]; % scatter interp to alternate field r=r/2; % ratio effectively halved nPatch=nPatch/2; % halve the number of patches nVars=nVars*2; % double the number of fields else % the values for standard spectral stagShift = 0; iV = 1:nVars; end%if patches.stag %{ \end{matlab} Interpolate the three directions in succession, in this way we naturally fill-in face-edge and corner values. Start with \(x\)-direction, and give most documentation for that case as the others are essentially the same. Need these indices of patch interior. \begin{matlab} %} ix = 2:nx-1; iy = 2:ny-1; iz = 2:nz-1; %{ \end{matlab} \paragraph{\(x\)-normal face values} Now set wavenumbers into a vector at the correct dimension. In the case of even~$N$ these compute the $+$-case for the highest wavenumber zig-zag mode, $\mathcode`\,="213B k=(0,1, \ldots, k_{\max}, +(k_{\max}+1) -k_{\max}, \ldots, -1)$. \begin{matlab} %} kMax = floor((Nx-1)/2); kr = shiftdim( rx*2*pi/Nx*(mod((0:Nx-1)+kMax,Nx)-kMax) ,-4); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. Unless doing patch-edgy interpolation when FT the next-to-face values. If there are an even number of points, then if complex, treat as positive wavenumber, but if real, treat as cosine. When using an ensemble of configurations, different configurations might be coupled to each other, as specified by \verb|patches.le|, \verb|patches.ri|, \verb|patches.to|, \verb|patches.bo|, \verb|patches.fr| and \verb|patches.ba|. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(i0,iy,iz,:,:,:,:,:) ,[],6); Cp = Cm; else Cm = fft( u( 2,iy,iz ,:,patches.le,:,:,:) ,[],6); Cp = fft( u(nx-1,iy,iz ,:,patches.ri,:,:,:) ,[],6); end%if ~patches.EdgyInt %{ \end{matlab} Now invert the Fourier transforms to complete interpolation. Enforce reality when appropriate. \begin{matlab} %} u(nx,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],6) ); u( 1,iy,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],6) ); %{ \end{matlab} \paragraph{\(y\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Ny-1)/2); kr = shiftdim( ry*2*pi/Ny*(mod((0:Ny-1)+kMax,Ny)-kMax) ,-5); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,j0,iz,:,:,:,:,:) ,[],7); Cp = Cm; else Cm = fft( u(:,2 ,iz ,:,patches.bo,:,:,:) ,[],7); Cp = fft( u(:,ny-1,iz ,:,patches.to,:,:,:) ,[],7); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,ny,iz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],7) ); u(:, 1,iz,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],7) ); %{ \end{matlab} \paragraph{\(z\)-normal face values} Set wavenumbers into a vector. \begin{matlab} %} kMax = floor((Nz-1)/2); kr = shiftdim( rz*2*pi/Nz*(mod((0:Nz-1)+kMax,Nz)-kMax) ,-6); %{ \end{matlab} Compute the Fourier transform of the patch values on the centre-planes for all the fields. \begin{matlab} %} if ~patches.EdgyInt Cm = fft( u(:,:,k0,:,:,:,:,:) ,[],8); Cp = Cm; else Cm = fft( u(:,:,2 ,:,patches.ba,:,:,:) ,[],8); Cp = fft( u(:,:,nz-1 ,:,patches.fr,:,:,:) ,[],8); end%if ~patches.EdgyInt %{ \end{matlab} Invert the Fourier transforms to complete interpolation. \begin{matlab} %} u(:,:,nz,:,:,:,:,:) = uclean( ifft( ... Cm.*exp(1i*(stagShift+kr)) ,[],8) ); u(:,:, 1,:,:,:,:,:) = uclean( ifft( ... Cp.*exp(1i*(stagShift-kr)) ,[],8) ); %{ \end{matlab} \begin{matlab} %} end% if ordCC>0 %{ \end{matlab} \subsection{Non-periodic macroscale interpolation} \begin{matlab} %} else% patches.periodic false assert(~patches.stag, ... 'not yet implemented staggered grids for non-periodic') %{ \end{matlab} Determine the order of interpolation~\verb|px|, \verb|py| and~\verb|pz| (potentially different in the different directions!), and hence size of the (forward) divided difference tables in~\verb|F|~(9D) for interpolating to left/right, top/bottom, and front/back faces. Because of the product-form of the patch grid, and because we are doing \emph{only} either edgy interpolation or cross-patch interpolation (\emph{not} just the centre patch value), the interpolations are all 1D interpolations. \begin{matlab} %} if patches.ordCC<1 px = Nx-1; py = Ny-1; pz = Nz-1; else px = min(patches.ordCC,Nx-1); py = min(patches.ordCC,Ny-1); pz = min(patches.ordCC,Nz-1); end % interior indices of faces (ix n/a) ix=2:nx-1; iy=2:ny-1; iz=2:nz-1; %{ \end{matlab} \subsubsection{\(x\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. For~\verb|EdgyInt|, the `reversal' of the next-to-face values are because their values are to interpolate to the opposite face of each patch. \todo{Have no plans to implement core averaging as yet.} \begin{matlab} %} F = nan(patches.EdgyInt+1,ny-2,nz-2,nVars,nEnsem,Nx,Ny,Nz,px+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u([nx-1 2],iy,iz,:,:,:,:,:); X = x([nx-1 2],:,:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(i0,iy,iz,:,:,:,:,:); X = x(i0,:,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} \paragraph{Form tables of divided differences} Compute tables of (forward) divided differences \cite[e.g.,][]{DividedDifferences} for every variable, and across ensemble, and in both directions, and for all three types of faces (left/right, top/bottom, and front/back). Recursively find all divided differences in the respective direction. \begin{matlab} %} for q = 1:px i = 1:Nx-q; F(:,:,:,:,:,i,:,:,q+1) ... = ( F(:,:,:,:,:,i+1,:,:,q)-F(:,:,:,:,:,i,:,:,q)) ... ./(X(:,:,:,:,:,i+q,:,:) -X(:,:,:,:,:,i,:,:)); end %{ \end{matlab} \paragraph{Interpolate with divided differences} Now interpolate to find the face-values on left/right faces at~\verb|Xface| for every interior~\verb|Y,Z|. \begin{matlab} %} Xface = x([1 nx],:,:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|i| are those of the left face of each interpolation stencil, because the table is of forward differences. This alternative: the case of order~\(p_x\), \(p_y\) and~\(p_z\) interpolation across the domain, asymmetric near the boundaries of the rectangular domain. \begin{matlab} %} i = max(1,min(1:Nx,Nx-ceil(px/2))-floor(px/2)); Uface = F(:,:,:,:,:,i,:,:,px+1); for q = px:-1:1 Uface = F(:,:,:,:,:,i,:,:,q) ... +(Xface-X(:,:,:,:,:,i+q-1,:,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(1 ,iy,iz,:,patches.le,:,:,:) = Uface(1,:,:,:,:,:,:,:); u(nx,iy,iz,:,patches.ri,:,:,:) = Uface(2,:,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(y\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,patches.EdgyInt+1,nz-2,nVars,nEnsem,Nx,Ny,Nz,py+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,[ny-1 2],iz,:,:,:,:,:); Y = y(:,[ny-1 2],:,:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,j0,iz,:,:,:,:,:); Y = y(:,j0,:,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:py j = 1:Ny-q; F(:,:,:,:,:,:,j,:,q+1) ... = ( F(:,:,:,:,:,:,j+1,:,q)-F(:,:,:,:,:,:,j,:,q)) ... ./(Y(:,:,:,:,:,:,j+q,:) -Y(:,:,:,:,:,:,j,:)); end %{ \end{matlab} Interpolate to find the top/bottom faces~\verb|Yface| for every~\(x\) and interior~\(z\). \begin{matlab} %} Yface = y(:,[1 ny],:,:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|j| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} j = max(1,min(1:Ny,Ny-ceil(py/2))-floor(py/2)); Uface = F(:,:,:,:,:,:,j,:,py+1); for q = py:-1:1 Uface = F(:,:,:,:,:,:,j,:,q) ... +(Yface-Y(:,:,:,:,:,:,j+q-1,:)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,1 ,iz,:,patches.bo,:,:,:) = Uface(:,1,:,:,:,:,:,:); u(:,ny,iz,:,patches.to,:,:,:) = Uface(:,2,:,:,:,:,:,:); %{ \end{matlab} \subsubsection{\(z\)-direction values} Set function values in first `column' of the tables for every variable and across ensemble. \begin{matlab} %} F = nan(nx,ny,patches.EdgyInt+1,nVars,nEnsem,Nx,Ny,Nz,pz+1); if patches.EdgyInt % interpolate next-to-face values F(:,:,:,:,:,:,:,:,1) = u(:,:,[nz-1 2],:,:,:,:,:); Z = z(:,:,[nz-1 2],:,:,:,:,:); else % interpolate mid-patch cross-patch values F(:,:,:,:,:,:,:,:,1) = u(:,:,k0,:,:,:,:,:); Z = z(:,:,k0,:,:,:,:,:); end%if patches.EdgyInt %{ \end{matlab} Form tables of divided differences. \begin{matlab} %} for q = 1:pz k = 1:Nz-q; F(:,:,:,:,:,:,:,k,q+1) ... = ( F(:,:,:,:,:,:,:,k+1,q)-F(:,:,:,:,:,:,:,k,q)) ... ./(Z(:,:,:,:,:,:,:,k+q) -Z(:,:,:,:,:,:,:,k)); end %{ \end{matlab} Interpolate to find the face-values on front/back faces~\verb|Zface| for every~\(x,y\). \begin{matlab} %} Zface = z(:,:,[1 nz],:,:,:,:,:); %{ \end{matlab} Code Horner's recursive evaluation of the interpolation polynomials. Indices~\verb|k| are those of the bottom face of each interpolation stencil, because the table is of forward differences. \begin{matlab} %} k = max(1,min(1:Nz,Nz-ceil(pz/2))-floor(pz/2)); Uface = F(:,:,:,:,:,:,:,k,pz+1); for q = pz:-1:1 Uface = F(:,:,:,:,:,:,:,k,q) ... +(Zface-Z(:,:,:,:,:,:,:,k+q-1)).*Uface; end %{ \end{matlab} Finally, insert face values into the array of field values, using the required ensemble shifts. \begin{matlab} %} u(:,:,1 ,:,patches.fr,:,:,:) = Uface(:,:,1,:,:,:,:,:); u(:,:,nz,:,patches.ba,:,:,:) = Uface(:,:,2,:,:,:,:,:); %{ \end{matlab} \subsubsection{Optional NaNs for safety} We want a user to set outer face values on the extreme patches according to the microscale boundary conditions that hold at the extremes of the domain. Consequently, unless testing, override their computed interpolation values with~\verb|NaN|. \begin{matlab} %} if isfield(patches,'intTest')&&patches.intTest else % usual case u( 1,:,:,:,:, 1,:,:) = nan; u(nx,:,:,:,:,Nx,:,:) = nan; u(:, 1,:,:,:,:, 1,:) = nan; u(:,ny,:,:,:,:,Ny,:) = nan; u(:,:, 1,:,:,:,:, 1) = nan; u(:,:,nz,:,:,:,:,Nz) = nan; end%if %{ \end{matlab} End of the non-periodic interpolation code. \begin{matlab} %} end%if patches.periodic else %{ \end{matlab} \paragraph{Unfold multiple edges} No need to restore~\(x,y,z\). \begin{matlab} %} if mean(patches.nEdge)>1 nVars = nVars/(mx*my*mz); u = reshape( u ,nx,ny,nz,mx,my,mz,nVars,nEnsem,Nx,Ny,Nz); nx = nx*mx; ny = ny*my; nz = nz*mz; u = reshape( permute(u,[4 1 5 2 6 3 7:11]) ... ,nx,ny,nz,nVars,nEnsem,Nx,Ny,Nz); end%if patches.nEdge %{ \end{matlab} Fin, returning the 8D array of field values with interpolated faces. \begin{matlab} %} end% function patchEdgeInt3 %{ \end{matlab} \end{devMan} %}
github
uoa1184615/EquationFreeGit-master
homoDiff31spmd.m
.m
EquationFreeGit-master/Patch/homoDiff31spmd.m
10,046
utf_8
893ea075ff595700254aece837a89c03
% homoDiff31spmd simulates heterogeneous diffusion in 1D % space on 3D patches as a Proof of Principle example of % parallel computing with spmd. The interest here is on % using spmd and comparing it with code not using spmd. The % discussion here only addresses issues with spmd and % parallel computing. For discussion on the 3D patch scheme % with heterogeneous diffusion, see code and documentation % for homoDiffEdgy3. AJR, Aug--Dec 2020 %!TEX root = ../Doc/eqnFreeDevMan.tex %{ \section{\texttt{homoDiff31spmd}: computational homogenisation of a 1D dispersion via parallel simulation on small 3D patches of heterogeneous diffusion} \label{sec:homoDiff31spmd} \localtableofcontents Simulate effective dispersion along 1D space on 3D patches of heterogeneous diffusion as a Proof of Principle example of parallel computing with \verb|spmd|. With only one patch in each of the $y,z$-directions, the solution simulated is strictly periodic in~$y,z$ with period~\verb|ratio|: there are only macro-scale variations in the $x$-direction. The discussion here only addresses issues with \verb|spmd| parallel computing. For discussion on the 3D patch scheme with heterogeneous diffusion, see code and documentation for \verb|homoDiffEdgy3| in \cref{sec:homoDiffEdgy3}. Choose one of four cases: \begin{itemize} \item \verb|theCase=1| is corresponding code without parallelisation (in this toy problem it is much the quickest because there is no expensive communication); \item \verb|theCase=2| for minimising coding by a user of \verb|spmd|-blocks; \item \verb|theCase=3| is for users happier to explicitly invoke \verb|spmd|-blocks. \item \verb|theCase=4| invokes projective integration for long-time simulation via short bursts of the micro-computation, bursts done within \verb|spmd|-blocks for parallel computing. \end{itemize} First, clear all to remove any existing globals, old composites, etc---although a parallel pool persists. Then choose the case. \begin{matlab} %} clear all theCase = 1 %{ \end{matlab} Set micro-scale heterogeneity with various spatial periods in the three directions. \begin{matlab} %} mPeriod = [4 3 2] %1+randperm(3) cHetr = exp(0.3*randn([mPeriod 3])); cHetr = cHetr*mean(1./cHetr(:)) %{ \end{matlab} Configure the patch scheme with some arbitrary choices of domain, patches, size ratios---here each patch is a unit cube in space. Choose some random order of interpolation. Set \verb|patches| information to be global so the info can be used for Case~1 without being explicitly passed as arguments. Choose the parallel option if not Case~1, which invokes \verb|spmd|-block internally, so that field variables become \emph{distributed} across cpus. \begin{matlab} %} if any(theCase==[1 2]), global patches, end nSubP=mPeriod+2 nPatch=[9 1 1] ratio=0.3 Len=nPatch(1)/ratio ordCC=2*randi([0 3]) disp('**** Setting configPatches3') patches = configPatches3(@heteroDiff3,[0 Len 0 1 0 1], nan ... , nPatch, ordCC, [ratio 1 1], nSubP, 'EdgyInt',true ... ,'hetCoeffs',cHetr ,'parallel',(theCase>1) ); %{ \end{matlab} \subsection{Simulate heterogeneous diffusion} Set initial conditions of a simulation as shown in \cref{fig:homoDiff31spmdt0}. \begin{matlab} %} disp('**** Set initial condition and testing du0dt =') if theCase==1 %{ \end{matlab} Without parallel processing, invoke the usual operations. \begin{matlab} %} u0 = exp( -(patches.x-Len/2).^2/Len ... -patches.y.^2/2-patches.z.^2 ); u0 = u0.*(1+0.2*rand(size(u0))); du0dt = patchSys3(0,u0); %{ \end{matlab} With parallel, must use an \verb|spmd|-block for computations: there is no difference in cases~2--4 here. Also, we must sometimes explicitly code how to distribute some new arrays over the cpus. Now \verb|patchSys3| does not invoke \verb|spmd| so higher level code must, as here. Even if \verb|patches| is global, inside \verb|spmd|-block we must pass it explicitly as a parameter to \verb|patchSys3|. \begin{matlab} %} else, spmd u0 = exp( -(patches.x-Len/2).^2/Len ... -patches.y.^2/2-patches.z.^2/4 ); u0 = u0.*(1+0.2*rand(size(u0),patches.codist)); du0dt = patchSys3(0,u0,patches); end%spmd end%if theCase %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:homoDiff31spmdt0}initial field~$u(x,y,z,0)$ of the patch scheme applied to a heterogeneous diffusion~\pde. The vertical spread indicates the extent of the structure in~$u$ in the cross-section variables~$y,z$. \cref{fig:homoDiff31spmdtFin} plots the nearly smooth field values at time $t=0.4$. } \includegraphics[scale=0.8]{homoDiff31spmdt0} \end{figure} Integrate in time. Use non-uniform time-steps for fun, and to show more of the initial rapid transients. Alternatively, use \verb|RK2mesoPatch| which reduces communication between patches, recalling that, by default, \verb|RK2mesoPatch| does ten micro-steps for each specified step in~\verb|ts|. For unit cube patches, need micro-steps less than about~$0.004$ for stability. \begin{matlab} %} warning('Integrating system in time, wait patiently') ts=0.4*linspace(0,1,21).^2; %{ \end{matlab} Go to the selected case. \begin{matlab} %} switch theCase %{ \end{matlab} \begin{enumerate} \item For non-parallel, we could use \verb|RK2mesoPatch| as indicated below, but instead choose to use standard \verb|ode23| as here \verb|patchSys3| accesses patch information via global \verb|patches|. For post-processing, reshape each and every row of the computed solution to the correct array size---that of the initial condition. \begin{matlab} %} case 1 % [us,uerrs] = RK2mesoPatch(ts,u0); [ts,us] = ode23(@patchSys3,ts,u0(:)); us=reshape(us,[length(ts) size(u0)]); %{ \end{matlab} \item In the second case, \verb|RK2mesoPatch| detects a parallel patch code has been requested, but has only one cpu worker, so it auto-initiates an \verb|spmd|-block for the integration. Both this and the next case return \emph{composite} results, so just keep one version of the results. \begin{matlab} %} case 2 us = RK2mesoPatch(ts,u0); us = us{1}; %{ \end{matlab} \item In this third case, a user could merge this explicit \verb|spmd|-block with the previous one that sets the initial conditions. \begin{matlab} %} case 3,spmd us = RK2mesoPatch(ts,u0,[],patches); end%spmd us = us{1}; %{ \end{matlab} \item In this fourth case, use Projective Integration (PI) over long times (\verb|PIRK4| also works). Currently the PI is done serially, with parallel \verb|spmd|-blocks only invoked inside function \verb|aBurst()| (\cref{secmBfPI}) to compute each burst of the micro-scale simulation. A macro-scale time-step of about~$3$ seems good to resolve the decay of the macro-scale `homogenised' diffusion. \footnote{Curiously, \texttt{PIG()} appears to suffer unrecoverable instabilities with its variable step size!} The function \verb|microBurst()| here interfaces to \verb|aBurst()| (\cref{secmBfPI}) in order to provide shaped initial states, and to provide the patch information. \begin{matlab} %} case 4 microBurst = @(tb0,xb0,bT) ... aBurst(tb0 ,reshape(xb0,size(u0)) ,patches); ts = 0:3:51 us = PIRK2(microBurst,ts,gather(u0(:))); us = reshape(us,[length(ts) size(u0)]); %{ \end{matlab} \end{enumerate} End the four cases. \begin{matlab} %} end%switch theCase %{ \end{matlab} \subsection{Plot the solution} Optionally save some plots to file. \begin{matlab} %} if 0, global OurCf2eps, OurCf2eps=true, end %{ \end{matlab} Animate the solution field over time. Since the spatial domain is long in~$x$ and thin in~$y,z$, just plot field values as a function of~$x$. \begin{matlab} %} figure(1), clf if theCase==1 x = reshape( patches.x(2:end-1,:,:,:) ,[],1); else, spmd x = reshape(gather( patches.x(2:end-1,:,:,:) ),[],1); end%spmd x = x{1}; end %{ \end{matlab} For every time step draw the field values as dots and pause for a short display. \begin{matlab} %} nTimes = length(ts) for l = 1:length(ts) %{ \end{matlab} At each time, squeeze interior point data into a 4D array, permute to get all the $x$-variation in the first two dimensions, and reshape into $x$-variation for each and every~$(y,z)$. \begin{matlab} %} u = reshape( permute( squeeze( ... us(l,2:end-1,2:end-1,2:end-1,:) ) ,[1 4 2 3]) ,numel(x),[]); %{ \end{matlab} Draw point data to show spread at each cross-section, as well as macro-scale variation in the long space direction. \begin{matlab} %} if l==1 hp = plot(x,u,'.'); axis([0 Len 0 max(u(:))]) xlabel('space $x$'), ylabel('$u(x,y,z,t)$') ifOurCf2eps([mfilename 't0']) legend(['time = ' num2str(ts(l),'%4.2f')]) disp('**** pausing, press blank to animate') pause else for p=1:size(u,2), hp(p).YData=u(:,p); end legend(['time = ' num2str(ts(l),'%4.2f')]) pause(0.1) end %{ \end{matlab} \begin{figure} \centering \caption{\label{fig:homoDiff31spmdtFin}final field~$u(x,y,z,0.4)$ of the patch scheme applied to a heterogeneous diffusion~\pde. } \includegraphics[scale=0.8]{homoDiff31spmdtFin} \end{figure} Finish the animation loop, and optionally output the final plot, \cref{fig:homoDiff31spmdtFin}. \begin{matlab} %} end%for over time ifOurCf2eps([mfilename 'tFin']) %{ \end{matlab} \subsection{\texttt{microBurst} function for Projective Integration} \label{secmBfPI} Projective Integration stability seems to need bursts longer than~$0.2$. Here take ten meso-steps, each with default ten micro-steps so the micro-scale step is~$0.002$. With macro-step~$3$, these parameters usually give stable projective integration (but not always). \begin{matlab} %} function [tbs,xbs] = aBurst(tb0,xb0,patches) normx=max(abs(xb0(:))); disp(['aBurst t = ' num2str(tb0) ' |x| = ' num2str(normx)]) assert(normx<10,'solution exploding') tbs = tb0+(0:0.02:0.2); spmd xb0 = codistributed(xb0,patches.codist); xbs = RK2mesoPatch(tbs,xb0,[],patches); end%spmd xbs=reshape(xbs{1},length(tbs),[]); end%function %{ \end{matlab} %\input{../Patch/heteroDiff3.m} Fin. %}
github
uoa1184615/EquationFreeGit-master
simpleWavepde.m
.m
EquationFreeGit-master/Patch/simpleWavepde.m
1,216
utf_8
67dc4777a37a0c263f408f1bfaf79596
% Used by patchEdgeInt1test.m % AJR, 2018 function Ut=simpleWavepde(t,U,x) % global patches dx=x(2)-x(1); Ut=nan(size(U)); ht=Ut; %{ \end{matlab} Compute the PDE derivatives at points internal to the patches. \begin{matlab} %} i=2:size(U,1)-1; %{ \end{matlab} Here `wastefully' compute time derivatives for both \pde{}s at all grid points---for `simplicity'---and then merges the staggered results. Since \(\dot h_{ij} \approx-(u_{i+1,j}-u_{i-1,j})/(2\cdot dx) =-(U_{i+1,j}-U_{i-1,j})/(2\cdot dx)\) as adding\slash subtracting one from the index of a \(h\)-value is the location of the neighbouring \(u\)-value on the staggered micro-grid. \begin{matlab} %} ht(i,:)=-(U(i+1,:)-U(i-1,:))/(2*dx); %{ \end{matlab} Since \(\dot u_{ij} \approx-(h_{i+1,j}-h_{i-1,j})/(2\cdot dx) =-(U_{i+1,j}-U_{i-1,j})/(2\cdot dx)\) as adding\slash subtracting one from the index of a \(u\)-value is the location of the neighbouring \(h\)-value on the staggered micro-grid. \begin{matlab} %} Ut(i,:)=-(U(i+1,:)-U(i-1,:))/(2*dx); %{ \end{matlab} Then overwrite the unwanted~\(\dot u_{ij}\) with the corresponding wanted~\(\dot h_{ij}\). \begin{matlab} %} % Ut(patches.hPts)=ht(patches.hPts); Ut(1:2:end) = ht(1:2:end); Ut([1 end]) = 0; end