plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
reggcv.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/extra/backwards/private/reggcv.m
| 4,183 |
utf_8
|
96e102b790fbfa5f01c26445d60a36fc
|
function reg_min=reggcv(Y,Vn,Sn,method,show)
%REGGCV Compute regularization using generalized cross validation.
% Determine the regularization parameter for ordkernel
% using Generalized Cross-Validation (GCV). It plots the
% GCV function as a function of the regularization
% parameter and finds its minimum.
%
% Syntax:
% reg=reggcv(Y,V,S)
% reg=reggcv(Y,V,S,method,show)
%
% Input:
% Y,V,S Data matrices from lpvkernel or bilkernel.
% method Regularization method to be used.
% 'Tikh' - Tikhonov regularization (default).
% 'tsvd' - Truncated singular value decomposition.
% show Display intermediate steps of the algorithm.
%
% Output:
% reg Regularization paramater for the kernel
% subspace identification method of ordkernel.
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% default method
if nargin<4
method='Tikh';
end
if nargin<5
show=0;
end
if size(Y,1)~=size(Vn,1)
error('The number of rows in Y must equal the number of rows in V.')
end
if size(Vn,1)~=size(Vn,2)
error('V must be a square matrix.')
end
if size(Sn,2)~=1
error('S must be a column vector.')
end
if size(Vn,1)~=size(Sn,1)
error('The number of rows in S must equal the number of rows in V.')
end
% Initialization.
N = size(Sn,1);
beta = Vn'*Y;
% Tikhonov regularization
if (strncmp(method,'Tikh',4) || strncmp(method,'tikh',4))
npoints = 200; % Number of points on the curve.
smin_ratio = 16*eps; % Smallest regularization parameter.
reg_param = zeros(npoints,1);
G = zeros(npoints,1);
s = sqrt(Sn);
reg_param(npoints) = max([s(N),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
for i=npoints-1:-1:1
reg_param(i) = ratio*reg_param(i+1);
end
if show==1
disp('Calculating GCV curve.')
end
% Vector of GCV-function values.
for i=1:npoints
G(i) = reggcvfun(reg_param(i),Sn,beta);
end
% Plot GCV function.
if show==1
loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)')
title('GCV function')
end
% Find minimum
if show==1
disp('Searching GCV minimum')
OPT=optimset('Display','iter');
else
OPT=optimset('Display','off');
end
[minG,minGi] = min(G); % Initial guess.
reg_min = fminbnd(@reggcvfun,...
reg_param(min(minGi+1,npoints)),...
reg_param(max(minGi-1,1)),OPT,Sn,beta); % Minimizer.
minG = reggcvfun(reg_min,Sn,beta); % Minimum of GCV function.
if show==1
ax = axis;
HoldState = ishold; hold on;
loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
axis(ax)
if (~HoldState)
hold off
end
end
% Truncated SVD
elseif (strncmp(method,'tsvd',4) || strncmp(method,'TSVD',4))
rho=zeros(1,N-1);
G=zeros(1,N-1);
rho(N-1) = sum(beta(N,:).^2);
G(N-1) = rho(N-1);
for k=N-2:-1:1
rho(k) = rho(k+1) + sum(beta(k+1,:).^2);
G(k) = rho(k)/((N - k)^2);
end
reg_param = (1:N-1)';
% Plot GCV function.
if show==1
semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)')
title('GCV function')
end
% Find minimum
[minG,reg_min] = min(G);
if show==1
ax = axis;
HoldState = ishold; hold on;
semilogy(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
title(['GCV function, minimum at k = ',num2str(reg_min)])
axis(ax);
if (~HoldState)
hold off
end
end
else
error('Illegal method.')
end
end
function G=reggcvfun(lam,s2,beta)
% reggcvfun Computes GCV function for reggcv.
% Auxiliary function for reggcv.
%
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
f=lam^2./(s2+lam^2);
G=norm((f*ones(1,size(beta,2))).*beta,'fro')^2/(sum(f)^2);
end
|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
exls_back.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/extra/backwards/private/exls_back.m
| 6,802 |
utf_8
|
17f72f64cc45a64fce83e4c308ef12ae
|
function [VARMAX,Z] = exls_back(Y,Z,p,r,method,tol,reg,opt,VARMAX0)
%EXLS Extended Least Squares
% [VARMAX,Z] = EXLS(Y,Z,P,R,METHOD,TOL,REG,OPT,VARMAX0) computes the
% extended least squares regression for the VARMAX estimation problem
% using recursive least squares. This function is intended for DORDVARMAX.
% Ivo Houtzager
% Delft Center of Systems and Control
% Delft University of Technology
% The Netherlands, 2010
% assign default values to unspecified parameters
if (nargin < 8) || isempty(opt)
opt = 'gcv';
end
if (nargin < 7) || isempty(reg)
reg = 'tikh';
end
if (nargin < 6) || isempty(tol)
tol = 1e-4;
end
if (nargin < 5) || isempty(method)
method = 'els';
end
% if strcmpi(method,'gradient') || strcmpi(method,'grad')
% if ~strcmpi(reg,'none')
% error('Gradient method does not support regularisation!')
% end
% end
ireg = sqrt(tol);
% determine size
N = size(Y,2)+p;
l = size(Y,1);
m = r+2*l;
% calculate initial VARMAX solution
if nargin < 9 || isempty(VARMAX0)
if ~strcmpi(reg,'none')
if strcmpi(method,'gradient') || strcmpi(method,'grad')
[VARMAX,reg_min] = regress(Y,Z,reg,opt);
else
VARMAX = zeros(l,size(Z,1));
end
else
VARMAX = zeros(l,size(Z,1));
end
else
if ~strcmpi(reg,'none')
[~,reg_min] = regress(Y,Z,reg,opt,VARMAX0);
end
VARMAX = VARMAX0;
end
cost1 = 1e10;
switch lower(method)
case 'els'
% do the VARMAX whitening iterations
PS = ireg;
if isscalar('opt')
reg_min = opt;
else
reg_min = 0;
end
lambda = tol^(1/N);
maxit = 10;
ok = true;
k = 1;
PS0 = PS;
while ok == true && k <= maxit
if ~strcmpi(reg,'none') && ~isscalar('opt')
Y1 = Y.*(ones(size(Y,1),1)*lambda.^(length(Y)-1:-1:0));
Z1 = Z.*(ones(size(Z,1),1)*lambda.^(length(Z)-1:-1:0));
[~,reg_min] = regress(Y1,Z1,reg,opt,VARMAX);
end
PS = PS0;
for i = N-p:-1:1
if ~strcmpi(reg,'none')
[VARMAX,PS] = rls_ew_track_reg(Z(:,i),Y(:,i),VARMAX,PS,lambda,reg_min);
else
[VARMAX,PS] = rls_ew_track(Z(:,i),Y(:,i),VARMAX,PS,lambda);
end
E = Y(:,i) - VARMAX*Z(:,i);
if i ~= 1
for j = 1:l
Z((l+r)+j,i) = E(j);
Z((2:p)*(l+r)+(1:p-1)*l+j,i-1) = Z((1:p-1)*(l+r)+(0:p-2)*l+j,i);
end
end
end
% pre-allocate matrices
E = Y - VARMAX*Z;
% check residue
cost = norm(E','fro')^2 + reg_min^2*norm(VARMAX,'fro')^2;
if abs(cost1 - cost) <= tol^2*N
ok = false;
end
% store the past and future vectors
e = zeros(l,N);
e(:,1:N-p) = E;
for i = 1:p
Z((p-i)*m+r+l+1:(p-i+1)*m,:) = e(:,i:N+i-p-1);
end
% recalculate forgetting factor
k = k + 1;
lambda = (lambda^N)^(1/(k*N));
% swap
cost1 = cost;
end
otherwise
disp('Unknown method.')
end
end
function [theta,P] = rls_ew_track(z,y,theta,P,lambda)
%RLS_EW_TRACK Exponentially Weighted RLS iteration
% [THETA,P]=RLS_EW_TRACK(Z,Y,THETA,P,LAMBDA) applies one iteration of
% exponentially weighted regularized least-squares problem. In recursive
% least-squares, we deal with the issue of an inceasing amount of date Z
% and Y. At each iteration, THETA is the solution. The scalar LAMBDA is
% called the forgetting factor since past data are exponentially weighted
% less heavily than more recent data.
% Ivo Houtzager
% Delft Center of Systems and Control
% The Netherlands, 2010
% Assign default values to unspecified parameters
mz = size(z,1);
if (nargin < 5) || isempty(lambda)
lambda = 1;
end
if (nargin < 4) || isempty(P)
P = zeros(mz);
elseif isscalar(P)
P = (1/P).*eye(mz);
end
if (nargin < 3) || isempty(theta)
theta = zeros(size(y,1),mz);
end
% Exponentially-Weighted, Tracking, Regularized, Least-Squares Iteration
P = (1/lambda).*(P - P*(z*z')*P./(lambda + z'*P*z));
P = 0.5.*(P+P'); % force symmetric
e = y - theta*z;
theta = theta + e*z'*P;
end % end of function RLS_EW_TRACK
function [theta,P] = rls_ew_track_reg(z,y,theta,P,lambda,reg_min)
%RLS_EW_TRACK_REG Exponentially Weighted and Regularized RLS iteration
% [THETA,P]=RLS_EW_TRACK_REG(Z,Y,THETA,P,LAMBDA,REG) applies one iteration
% of exponentially weighted regularized least-squares problem. In
% recursive least-squares, we deal with the issue of an inceasing amount
% of date Z and Y. At each iteration, THETA is the solution. The scalar
% LAMBDA is called the forgetting factor since past data are exponentially
% weighted less heavily than more recent data.
% Ivo Houtzager
% Delft Center of Systems and Control
% The Netherlands, 2010
% Assign default values to unspecified parameters
mz = size(z,1);
if (nargin < 6) || isempty(reg_min)
reg_min = 0;
end
if (nargin < 5) || isempty(lambda)
lambda = 1;
end
if (nargin < 4) || isempty(P)
P = zeros(mz);
elseif isscalar(P)
P = (1/P).*eye(mz);
end
if (nargin < 3) || isempty(theta)
theta = zeros(size(y,1),mz);
end
% Exponentially-Weighted, Tracking, Regularized, Least-Squares Iteration
P = (1/lambda).*(P - P*(z*z')*P./(lambda + z'*P*z));
P = 0.5.*(P+P'); % force symmetric
if isscalar(reg_min)
opts.SYM = true;
opts.POSDEF = true;
P1 = linsolve((eye(size(P)) + reg_min^2.*P),P,opts);
e = y - theta*z;
theta = theta + e*z'*P1;
elseif strcmpi(reg_min,'tikh')
[U,S,V] = svd(pinv(P));
s = diag(S);
YP = (y-theta*z)';
if isscalar(opt)
reg_min = opt;
elseif strcmpi(opt,'lcurve')
reg_min = reglcurve(YP,U,s);
elseif strcmpi(opt,'gcv')
reg_min = reggcv(YP,U,s);
end
theta = theta + (V*(diag(s./(s.^2 + reg_min^2)))*U'*YP)';
elseif strcmpi(reg_min,'tsvd')
[U,S,V] = svd(pinv(P));
s = diag(S);
YP = (y-theta*z)';
if isscalar(opt)
k_min = opt;
elseif strcmpi(opt,'lcurve')
k_min = reglcurve(YP,U,s,'tsvd');
elseif strcmpi(opt,'gcv')
k_min = reggcv(YP,U,s,'tsvd');
end
theta = theta + (V(:,1:k_min)*diag(1./s(1:k_min))*U(:,1:k_min)'*YP)';
end
end % end of function RLS_EW_TRACK
|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
reglcurve.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/extra/backwards/private/reglcurve.m
| 9,669 |
utf_8
|
4ba1982fb3c44a326be1ff4bec03edef
|
function reg_c=reglcurve(Y,Vn,Sn,method,show)
%REGLCURVE Compute regularization using L-curve criterion.
% Determine the regularization parameter for ordkernel
% using L-curve criterion. It plots the L-curve and
% find its corner. If the regularization method is
% 'tsvd' then the Spline Toolbox is needed to determine
% the corner. If this toolbox is not available NaN is
% returned.
%
% Syntax:
% reg=reglcurve(Y,V,S)
% reg=reglcurve(Y,V,S,method,show)
%
% Input:
% Y,V,S Data matrices from lpvkernel or bilkernel.
% method Regularization method to be used.
% 'Tikh' - Tikhonov regularization (default).
% 'tsvd' - Truncated singular value decomposition.
% show Display intermediate steps of the algorithm.
%
% Output:
% reg Regularization paramater for the kernel
% subspace identification method of ordkernel.
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% default method
if nargin<4
method='Tikh';
end
if nargin<5
show=0;
end
if size(Y,1)~=size(Vn,1)
error('The number of rows in Y must equal the number of rows in V.')
end
if size(Vn,1)~=size(Vn,2)
error('V must be a square matrix.')
end
if size(Sn,2)~=1
error('S must be a column vector.')
end
if size(Vn,1)~=size(Sn,1)
error('The number of rows in S must equal the number of rows in V.')
end
% Initialization.
N = size(Sn,1);
s=sqrt(Sn);
beta = Vn'*Y;
xi = diag(1./s)*beta;
%%%%%%%%%%%%%%%%
% Tikhonov regularization
if (strncmp(method,'Tikh',4) || strncmp(method,'tikh',4))
SkipCorner=0;
txt = 'Tikh.';
marker='-';
npoints = 200; % Number of points on the curve.
smin_ratio = 16*eps; % Smallest regularization parameter.
eta = zeros(npoints,1);
rho = zeros(npoints,1);
reg_param = zeros(npoints,1);
reg_param(npoints) = max([s(N),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
if show==1
disp('Calculation points on L-curve')
end
for i=npoints-1:-1:1
reg_param(i) = ratio*reg_param(i+1);
end
n=size(xi,2);
for i=1:npoints
f = Sn./(Sn + reg_param(i)^2);
eta(i) = norm((f*ones(1,n)).*xi,'fro');
rho(i) = norm(((1-f)*ones(1,n)).*beta,'fro');
end
% locate corner
if show==1
disp('Calculating curvature of L-curve')
end
% The L-curve is differentiable; computation of curvature in
% log-log scale is easy.
% Compute g = - curvature of L-curve.
g = reglcfun(reg_param,Sn,beta,xi);
% Locate the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
if show==1
disp('Searching for corner in L-curve')
OPT=optimset('Display','iter');
else
OPT=optimset('Display','off');
end
[gmin,gi] = min(g);
reg_c = fminbnd(@reglcfun,...
reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
OPT,Sn,beta,xi); % Minimizer.
kappa_max = - reglcfun(reg_c,Sn,beta,xi); % Maximum curvature.
if (kappa_max < 0)
lr = length(rho);
reg_c = reg_param(lr);
rho_c = rho(lr);
eta_c = eta(lr);
else
f = Sn./(Sn + reg_c^2);
eta_c = norm((f*ones(1,n)).*xi,'fro');
rho_c = norm(((1-f)*ones(1,n)).*beta,'fro');
end
%%%%%%%%%%%%%%%%
% Truncated SVD
elseif (strncmp(method,'tsvd',4) || strncmp(method,'TSVD',4))
% spline toolbox needed for determination of the corner.
SkipCorner = exist('splines','dir')~=7;
txt = 'TSVD';
marker='o';
eta = zeros(N,1);
rho = zeros(N,1);
eta(1) = sum(xi(1,:).^2);
for k=2:N
eta(k) = eta(k-1) + sum(xi(k,:).^2);
end
eta = sqrt(eta);
rho(N) = eps^2;
for k=N-1:-1:1
rho(k) = rho(k+1) + sum(beta(k+1,:).^2);
end
rho = sqrt(rho);
reg_param = (1:N)';
% Determine corner using Splines
if (SkipCorner)
reg_c = NaN;
else
% The L-curve is discrete and may include unwanted fine-grained
% corners. Use local smoothing, followed by fitting a 2-D spline
% curve to the smoothed discrete L-curve.
% Set default parameters for treatment of discrete L-curve.
deg = 2; % Degree of local smooting polynomial.
q = 2; % Half-width of local smoothing interval.
order = 4; % Order of fitting 2-D spline curve.
% Neglect singular values less than s_thr.
s_thr = eps;
index = find(s > s_thr);
rho_t = rho(index);
eta_t = eta(index);
reg_param_t = reg_param(index);
% Convert to logarithms.
lr = length(rho_t);
lrho = log(rho_t);
leta = log(eta_t);
slrho = lrho;
sleta = leta;
% For all interior points k = q+1:length(rho)-q-1 on the discrete
% L-curve, perform local smoothing with a polynomial of degree deg
% to the points k-q:k+q.
v = (-q:q)';
A = zeros(2*q+1,deg+1);
A(:,1) = ones(length(v),1);
for j = 2:deg+1
A(:,j) = A(:,j-1).*v;
end
for k = q+1:lr-q-1
cr = A\lrho(k+v); slrho(k) = cr(1);
ce = A\leta(k+v); sleta(k) = ce(1);
end
% Fit a 2-D spline curve to the smoothed discrete L-curve.
sp = spmak(1:lr+order,[slrho';sleta']);
pp = ppbrk(sp2pp(sp),[4,lr+1]);
% Extract abscissa and ordinate splines and differentiate them.
% Compute as many function values as default in spleval.
P = spleval(pp); dpp = fnder(pp);
D = spleval(dpp); ddpp = fnder(pp,2);
DD = spleval(ddpp);
ppx = P(1,:); ppy = P(2,:);
dppx = D(1,:); dppy = D(2,:);
ddppx = DD(1,:); ddppy = DD(2,:);
% Compute the corner of the discretized .spline curve via max. curvature.
% No need to refine this corner, since the final regularization
% parameter is discrete anyway.
% Define curvature = 0 where both dppx and dppy are zero.
k1 = dppx.*ddppy - ddppx.*dppy;
k2 = (dppx.^2 + dppy.^2).^(1.5);
I_nz = find(k2 ~= 0);
kappa = zeros(1,length(dppx));
kappa(I_nz) = -k1(I_nz)./k2(I_nz);
[kmax,ikmax] = max(kappa);
x_corner = ppx(ikmax); y_corner = ppy(ikmax);
% Locate the point on the discrete L-curve which is closest to the
% corner of the spline curve. Prefer a point below and to the
% left of the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
if (kmax < 0)
reg_c = reg_param_t(lr);
rho_c = rho_t(lr);
eta_c = eta_t(lr);
else
index = find(lrho < x_corner & leta < y_corner);
if ~isempty(index)
[dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);
rpi = index(rpi);
else
[dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);
end
reg_c = reg_param_t(rpi); rho_c = rho_t(rpi); eta_c = eta_t(rpi);
end
end
else
error('Illegal method')
end
%%%%%%%%%%%%%%%%
% Plot
if show==1
N=length(rho);
loglog(rho(2:end-1),eta(2:end-1))
ax = axis;
ni = round(N/10);
if (max(eta)/min(eta) > 10 || max(rho)/min(rho) > 10)
loglog(rho,eta,marker,rho(ni:ni:N),eta(ni:ni:N),'x')
else
plot(rho,eta,marker,rho(ni:ni:N),eta(ni:ni:N),'x')
end
HoldState = ishold;
hold on;
for k = ni:ni:N
text(rho(k),eta(k),num2str(reg_param(k)));
end
if ~(SkipCorner)
loglog([min(rho)/100,rho_c],[eta_c,eta_c],':r',...
[rho_c,rho_c],[min(eta)/100,eta_c],':r')
title(['L-curve, ',txt,' corner at ',num2str(reg_c)]);
else
title('L-curve')
end
axis(ax)
if (~HoldState)
hold off
end
xlabel('residual norm || A x - b ||_2')
ylabel('solution norm || x ||_2')
end
end
function g = reglcfun(lambda,Sn,beta,xi)
% reglcfun Computes L-curve for reglcurve.
% Auxiliary function for reglcurve.
%
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% Initialization.
L=size(lambda,1);
n=size(xi,2);
phi = zeros(L,1);
dphi = zeros(L,1);
psi = zeros(L,1);
dpsi = zeros(L,1);
eta = zeros(L,1);
rho = zeros(L,1);
% Compute some intermediate quantities.
for i = 1:L
f = Sn./(Sn + lambda(i)^2);
cf = 1 - f;
eta(i) = norm((f*ones(1,n)).*xi,'fro');
rho(i) = norm((cf*ones(1,n)).*beta,'fro');
f1 = -2*f.*cf/lambda(i);
f2 = -f1.*(3-4*f)/lambda(i);
phi(i) = sum(f.*f1.*sum(xi.^2,2));
psi(i) = sum(cf.*f1.*sum(beta.^2,2));
dphi(i) = sum((f1.^2 + f.*f2).*sum(xi.^2,2));
dpsi(i) = sum((-f1.^2 + cf.*f2).*sum(beta.^2,2));
end
% Now compute the first and second derivatives of eta and rho
% with respect to lambda;
deta = phi./eta;
drho = -psi./rho;
ddeta = dphi./eta - deta.*(deta./eta);
ddrho = -dpsi./rho - drho.*(drho./rho);
% Convert to derivatives of log(eta) and log(rho).
dlogeta = deta./eta;
dlogrho = drho./rho;
ddlogeta = ddeta./eta - (dlogeta).^2;
ddlogrho = ddrho./rho - (dlogrho).^2;
% Let g = curvature.
g = - (dlogrho.*ddlogeta - ddlogrho.*dlogeta)./...
(dlogrho.^2 + dlogeta.^2).^(1.5);
end
|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
reggcv.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/extra/greybox/private/reggcv.m
| 4,183 |
utf_8
|
96e102b790fbfa5f01c26445d60a36fc
|
function reg_min=reggcv(Y,Vn,Sn,method,show)
%REGGCV Compute regularization using generalized cross validation.
% Determine the regularization parameter for ordkernel
% using Generalized Cross-Validation (GCV). It plots the
% GCV function as a function of the regularization
% parameter and finds its minimum.
%
% Syntax:
% reg=reggcv(Y,V,S)
% reg=reggcv(Y,V,S,method,show)
%
% Input:
% Y,V,S Data matrices from lpvkernel or bilkernel.
% method Regularization method to be used.
% 'Tikh' - Tikhonov regularization (default).
% 'tsvd' - Truncated singular value decomposition.
% show Display intermediate steps of the algorithm.
%
% Output:
% reg Regularization paramater for the kernel
% subspace identification method of ordkernel.
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% default method
if nargin<4
method='Tikh';
end
if nargin<5
show=0;
end
if size(Y,1)~=size(Vn,1)
error('The number of rows in Y must equal the number of rows in V.')
end
if size(Vn,1)~=size(Vn,2)
error('V must be a square matrix.')
end
if size(Sn,2)~=1
error('S must be a column vector.')
end
if size(Vn,1)~=size(Sn,1)
error('The number of rows in S must equal the number of rows in V.')
end
% Initialization.
N = size(Sn,1);
beta = Vn'*Y;
% Tikhonov regularization
if (strncmp(method,'Tikh',4) || strncmp(method,'tikh',4))
npoints = 200; % Number of points on the curve.
smin_ratio = 16*eps; % Smallest regularization parameter.
reg_param = zeros(npoints,1);
G = zeros(npoints,1);
s = sqrt(Sn);
reg_param(npoints) = max([s(N),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
for i=npoints-1:-1:1
reg_param(i) = ratio*reg_param(i+1);
end
if show==1
disp('Calculating GCV curve.')
end
% Vector of GCV-function values.
for i=1:npoints
G(i) = reggcvfun(reg_param(i),Sn,beta);
end
% Plot GCV function.
if show==1
loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)')
title('GCV function')
end
% Find minimum
if show==1
disp('Searching GCV minimum')
OPT=optimset('Display','iter');
else
OPT=optimset('Display','off');
end
[minG,minGi] = min(G); % Initial guess.
reg_min = fminbnd(@reggcvfun,...
reg_param(min(minGi+1,npoints)),...
reg_param(max(minGi-1,1)),OPT,Sn,beta); % Minimizer.
minG = reggcvfun(reg_min,Sn,beta); % Minimum of GCV function.
if show==1
ax = axis;
HoldState = ishold; hold on;
loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
axis(ax)
if (~HoldState)
hold off
end
end
% Truncated SVD
elseif (strncmp(method,'tsvd',4) || strncmp(method,'TSVD',4))
rho=zeros(1,N-1);
G=zeros(1,N-1);
rho(N-1) = sum(beta(N,:).^2);
G(N-1) = rho(N-1);
for k=N-2:-1:1
rho(k) = rho(k+1) + sum(beta(k+1,:).^2);
G(k) = rho(k)/((N - k)^2);
end
reg_param = (1:N-1)';
% Plot GCV function.
if show==1
semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)')
title('GCV function')
end
% Find minimum
[minG,reg_min] = min(G);
if show==1
ax = axis;
HoldState = ishold; hold on;
semilogy(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
title(['GCV function, minimum at k = ',num2str(reg_min)])
axis(ax);
if (~HoldState)
hold off
end
end
else
error('Illegal method.')
end
end
function G=reggcvfun(lam,s2,beta)
% reggcvfun Computes GCV function for reggcv.
% Auxiliary function for reggcv.
%
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
f=lam^2./(s2+lam^2);
G=norm((f*ones(1,size(beta,2))).*beta,'fro')^2/(sum(f)^2);
end
|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
reglcurve.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/extra/greybox/private/reglcurve.m
| 9,669 |
utf_8
|
4ba1982fb3c44a326be1ff4bec03edef
|
function reg_c=reglcurve(Y,Vn,Sn,method,show)
%REGLCURVE Compute regularization using L-curve criterion.
% Determine the regularization parameter for ordkernel
% using L-curve criterion. It plots the L-curve and
% find its corner. If the regularization method is
% 'tsvd' then the Spline Toolbox is needed to determine
% the corner. If this toolbox is not available NaN is
% returned.
%
% Syntax:
% reg=reglcurve(Y,V,S)
% reg=reglcurve(Y,V,S,method,show)
%
% Input:
% Y,V,S Data matrices from lpvkernel or bilkernel.
% method Regularization method to be used.
% 'Tikh' - Tikhonov regularization (default).
% 'tsvd' - Truncated singular value decomposition.
% show Display intermediate steps of the algorithm.
%
% Output:
% reg Regularization paramater for the kernel
% subspace identification method of ordkernel.
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% default method
if nargin<4
method='Tikh';
end
if nargin<5
show=0;
end
if size(Y,1)~=size(Vn,1)
error('The number of rows in Y must equal the number of rows in V.')
end
if size(Vn,1)~=size(Vn,2)
error('V must be a square matrix.')
end
if size(Sn,2)~=1
error('S must be a column vector.')
end
if size(Vn,1)~=size(Sn,1)
error('The number of rows in S must equal the number of rows in V.')
end
% Initialization.
N = size(Sn,1);
s=sqrt(Sn);
beta = Vn'*Y;
xi = diag(1./s)*beta;
%%%%%%%%%%%%%%%%
% Tikhonov regularization
if (strncmp(method,'Tikh',4) || strncmp(method,'tikh',4))
SkipCorner=0;
txt = 'Tikh.';
marker='-';
npoints = 200; % Number of points on the curve.
smin_ratio = 16*eps; % Smallest regularization parameter.
eta = zeros(npoints,1);
rho = zeros(npoints,1);
reg_param = zeros(npoints,1);
reg_param(npoints) = max([s(N),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
if show==1
disp('Calculation points on L-curve')
end
for i=npoints-1:-1:1
reg_param(i) = ratio*reg_param(i+1);
end
n=size(xi,2);
for i=1:npoints
f = Sn./(Sn + reg_param(i)^2);
eta(i) = norm((f*ones(1,n)).*xi,'fro');
rho(i) = norm(((1-f)*ones(1,n)).*beta,'fro');
end
% locate corner
if show==1
disp('Calculating curvature of L-curve')
end
% The L-curve is differentiable; computation of curvature in
% log-log scale is easy.
% Compute g = - curvature of L-curve.
g = reglcfun(reg_param,Sn,beta,xi);
% Locate the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
if show==1
disp('Searching for corner in L-curve')
OPT=optimset('Display','iter');
else
OPT=optimset('Display','off');
end
[gmin,gi] = min(g);
reg_c = fminbnd(@reglcfun,...
reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
OPT,Sn,beta,xi); % Minimizer.
kappa_max = - reglcfun(reg_c,Sn,beta,xi); % Maximum curvature.
if (kappa_max < 0)
lr = length(rho);
reg_c = reg_param(lr);
rho_c = rho(lr);
eta_c = eta(lr);
else
f = Sn./(Sn + reg_c^2);
eta_c = norm((f*ones(1,n)).*xi,'fro');
rho_c = norm(((1-f)*ones(1,n)).*beta,'fro');
end
%%%%%%%%%%%%%%%%
% Truncated SVD
elseif (strncmp(method,'tsvd',4) || strncmp(method,'TSVD',4))
% spline toolbox needed for determination of the corner.
SkipCorner = exist('splines','dir')~=7;
txt = 'TSVD';
marker='o';
eta = zeros(N,1);
rho = zeros(N,1);
eta(1) = sum(xi(1,:).^2);
for k=2:N
eta(k) = eta(k-1) + sum(xi(k,:).^2);
end
eta = sqrt(eta);
rho(N) = eps^2;
for k=N-1:-1:1
rho(k) = rho(k+1) + sum(beta(k+1,:).^2);
end
rho = sqrt(rho);
reg_param = (1:N)';
% Determine corner using Splines
if (SkipCorner)
reg_c = NaN;
else
% The L-curve is discrete and may include unwanted fine-grained
% corners. Use local smoothing, followed by fitting a 2-D spline
% curve to the smoothed discrete L-curve.
% Set default parameters for treatment of discrete L-curve.
deg = 2; % Degree of local smooting polynomial.
q = 2; % Half-width of local smoothing interval.
order = 4; % Order of fitting 2-D spline curve.
% Neglect singular values less than s_thr.
s_thr = eps;
index = find(s > s_thr);
rho_t = rho(index);
eta_t = eta(index);
reg_param_t = reg_param(index);
% Convert to logarithms.
lr = length(rho_t);
lrho = log(rho_t);
leta = log(eta_t);
slrho = lrho;
sleta = leta;
% For all interior points k = q+1:length(rho)-q-1 on the discrete
% L-curve, perform local smoothing with a polynomial of degree deg
% to the points k-q:k+q.
v = (-q:q)';
A = zeros(2*q+1,deg+1);
A(:,1) = ones(length(v),1);
for j = 2:deg+1
A(:,j) = A(:,j-1).*v;
end
for k = q+1:lr-q-1
cr = A\lrho(k+v); slrho(k) = cr(1);
ce = A\leta(k+v); sleta(k) = ce(1);
end
% Fit a 2-D spline curve to the smoothed discrete L-curve.
sp = spmak(1:lr+order,[slrho';sleta']);
pp = ppbrk(sp2pp(sp),[4,lr+1]);
% Extract abscissa and ordinate splines and differentiate them.
% Compute as many function values as default in spleval.
P = spleval(pp); dpp = fnder(pp);
D = spleval(dpp); ddpp = fnder(pp,2);
DD = spleval(ddpp);
ppx = P(1,:); ppy = P(2,:);
dppx = D(1,:); dppy = D(2,:);
ddppx = DD(1,:); ddppy = DD(2,:);
% Compute the corner of the discretized .spline curve via max. curvature.
% No need to refine this corner, since the final regularization
% parameter is discrete anyway.
% Define curvature = 0 where both dppx and dppy are zero.
k1 = dppx.*ddppy - ddppx.*dppy;
k2 = (dppx.^2 + dppy.^2).^(1.5);
I_nz = find(k2 ~= 0);
kappa = zeros(1,length(dppx));
kappa(I_nz) = -k1(I_nz)./k2(I_nz);
[kmax,ikmax] = max(kappa);
x_corner = ppx(ikmax); y_corner = ppy(ikmax);
% Locate the point on the discrete L-curve which is closest to the
% corner of the spline curve. Prefer a point below and to the
% left of the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
if (kmax < 0)
reg_c = reg_param_t(lr);
rho_c = rho_t(lr);
eta_c = eta_t(lr);
else
index = find(lrho < x_corner & leta < y_corner);
if ~isempty(index)
[dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);
rpi = index(rpi);
else
[dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);
end
reg_c = reg_param_t(rpi); rho_c = rho_t(rpi); eta_c = eta_t(rpi);
end
end
else
error('Illegal method')
end
%%%%%%%%%%%%%%%%
% Plot
if show==1
N=length(rho);
loglog(rho(2:end-1),eta(2:end-1))
ax = axis;
ni = round(N/10);
if (max(eta)/min(eta) > 10 || max(rho)/min(rho) > 10)
loglog(rho,eta,marker,rho(ni:ni:N),eta(ni:ni:N),'x')
else
plot(rho,eta,marker,rho(ni:ni:N),eta(ni:ni:N),'x')
end
HoldState = ishold;
hold on;
for k = ni:ni:N
text(rho(k),eta(k),num2str(reg_param(k)));
end
if ~(SkipCorner)
loglog([min(rho)/100,rho_c],[eta_c,eta_c],':r',...
[rho_c,rho_c],[min(eta)/100,eta_c],':r')
title(['L-curve, ',txt,' corner at ',num2str(reg_c)]);
else
title('L-curve')
end
axis(ax)
if (~HoldState)
hold off
end
xlabel('residual norm || A x - b ||_2')
ylabel('solution norm || x ||_2')
end
end
function g = reglcfun(lambda,Sn,beta,xi)
% reglcfun Computes L-curve for reglcurve.
% Auxiliary function for reglcurve.
%
% Written by Vincent Verdult, May 2004.
% Based on Regularization Tools by P. C. Hansen
% Initialization.
L=size(lambda,1);
n=size(xi,2);
phi = zeros(L,1);
dphi = zeros(L,1);
psi = zeros(L,1);
dpsi = zeros(L,1);
eta = zeros(L,1);
rho = zeros(L,1);
% Compute some intermediate quantities.
for i = 1:L
f = Sn./(Sn + lambda(i)^2);
cf = 1 - f;
eta(i) = norm((f*ones(1,n)).*xi,'fro');
rho(i) = norm((cf*ones(1,n)).*beta,'fro');
f1 = -2*f.*cf/lambda(i);
f2 = -f1.*(3-4*f)/lambda(i);
phi(i) = sum(f.*f1.*sum(xi.^2,2));
psi(i) = sum(cf.*f1.*sum(beta.^2,2));
dphi(i) = sum((f1.^2 + f.*f2).*sum(xi.^2,2));
dpsi(i) = sum((-f1.^2 + cf.*f2).*sum(beta.^2,2));
end
% Now compute the first and second derivatives of eta and rho
% with respect to lambda;
deta = phi./eta;
drho = -psi./rho;
ddeta = dphi./eta - deta.*(deta./eta);
ddrho = -dpsi./rho - drho.*(drho./rho);
% Convert to derivatives of log(eta) and log(rho).
dlogeta = deta./eta;
dlogrho = drho./rho;
ddlogeta = ddeta./eta - (dlogeta).^2;
ddlogrho = ddrho./rho - (dlogrho).^2;
% Let g = curvature.
g = - (dlogrho.*ddlogeta - ddlogrho.*dlogeta)./...
(dlogrho.^2 + dlogeta.^2).^(1.5);
end
|
github
|
TUDelft-DataDrivenControl/Predictor-Based-Subspace-IDentification-toolbox-master
|
sfun_xygraph.m
|
.m
|
Predictor-Based-Subspace-IDentification-toolbox-master/simulink/sfun_xygraph.m
| 13,103 |
utf_8
|
5cf0dd62ab47b4f64b3e2f897ecaee5d
|
function [sys, x0, str, ts, simStateCompliance] = sfunxy_new(t,x,u,flag,ax,varargin)
%SFUNXY S-function that acts as an X-Y scope using MATLAB plotting functions.
% This M-file is designed to be used in a Simulink S-function block.
% It draws a line from the previous input point, which is stored using
% discrete states, and the current point. It then stores the current
% point for use in the next invocation.
%
% See also SFUNXYS, LORENZS.
% Copyright 1990-2008 The MathWorks, Inc.
% $Revision: 1.38.2.9 $
% Andrew Grace 5-30-91.
% Revised Wes Wang 4-28-93, 8-17-93, 12-15-93
% Revised Craig Santos 10-28-96
% Store the block handle and check if it's valid
blockHandle = gcbh;
IsValidBlock(blockHandle, flag);
switch flag
%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0
[sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(ax,varargin{:});
SetBlockCallbacks(blockHandle);
%%%%%%%%%%
% Update %
%%%%%%%%%%
case 2
sys = mdlUpdate(t,x,u,flag,ax,blockHandle,varargin{:});
%%%%%%%%%
% Start %
%%%%%%%%%
case 'Start'
LocalBlockStartFcn(blockHandle)
%%%%%%%%
% Stop %
%%%%%%%%
case 'Stop'
LocalBlockStopFcn(blockHandle)
%%%%%%%%%%%%%%
% NameChange %
%%%%%%%%%%%%%%
case 'NameChange'
LocalBlockNameChangeFcn(blockHandle)
%%%%%%%%%%%%%%%%%%%%%%%%
% CopyBlock, LoadBlock %
%%%%%%%%%%%%%%%%%%%%%%%%
case { 'CopyBlock', 'LoadBlock' }
LocalBlockLoadCopyFcn(blockHandle)
%%%%%%%%%%%%%%%
% DeleteBlock %
%%%%%%%%%%%%%%%
case 'DeleteBlock'
LocalBlockDeleteFcn(blockHandle)
%%%%%%%%%%%%%%%%
% DeleteFigure %
%%%%%%%%%%%%%%%%
case 'DeleteFigure'
LocalFigureDeleteFcn
%%%%%%%%%%%%%%%%
% Unused flags %
%%%%%%%%%%%%%%%%
case { 3, 9 }
sys = [];
%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
if ischar(flag),
DAStudio.error('Simulink:blocks:unhandledFlag', flag);
else
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
end
% end sfunxy
%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(ax,varargin)
if length (ax)~=4
DAStudio.error('Simulink:blocks:axisLimitsMustBeDefined');
end
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 0;
sizes.NumInputs = 3;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
%
% initialize the array of sample times, note that in earlier
% versions of this scope, a sample time was not one of the input
% arguments, the varargs checks for this and if not present, assigns
% the sample time to -1 (inherited)
%
if ~isempty(varargin) > 0
ts = [varargin{1} 0];
else
ts = [-1 0];
end
% specify that the simState for this s-function is same as the default
simStateCompliance = 'DefaultSimState';
% end mdlInitializeSizes
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u,flag,ax,block,varargin)%#ok
%
% always return empty, there are no states...
%
sys = [];
%
% Locate the figure window associated with this block. If it's not a valid
% handle (it may have been closed by the user), then return.
%
FigHandle=GetSfunXYFigure(block);
if ~ishandle(FigHandle),
return
end
%
% Get UserData of the figure.
%
ud = get(FigHandle,'UserData');
persistent lastU3;
reset = false;
if isempty(lastU3)
lastU3 = u(3);
else
if (u(3)-lastU3 > 0.5)
reset = true;
end
lastU3 = u(3);
end
if reset
LocalBlockStartFcn(gcbh)
end
if reset || isempty(ud.XData),
x_data = [u(1) u(1)];
y_data = [u(2) u(2)];
else
x_data = [ud.XData(end) u(1)];
y_data = [ud.YData(end) u(2)];
end
% plot the input lines
set(ud.XYAxes, ...
'Xlim', ax(1:2),...
'Ylim', ax(3:4));
set(ud.XYLine,...
'Xdata',x_data,...
'Ydata',y_data);
set(ud.XYTitle,'String','X Y Plot');
set(FigHandle,'Color',get(FigHandle,'Color'));
%
% update the X/Y stored data points
ud.XData(end+1) = u(1);
ud.YData(end+1) = u(2);
set(FigHandle,'UserData',ud);
drawnow;
% end mdlUpdate
%
%=============================================================================
% LocalBlockStartFcn
% Function that is called when the simulation starts. Initialize the
% XY Graph scope figure.
%=============================================================================
%
function LocalBlockStartFcn(block)
%
% get the figure associated with this block, create a figure if it doesn't
% exist
%
FigHandle = GetSfunXYFigure(block);
if ~ishandle(FigHandle),
FigHandle = CreateSfunXYFigure(block);
end
ud = get(FigHandle,'UserData');
set(ud.XYLine,'Erasemode','normal');
set(ud.XYLine,'XData',[],'YData',[]);
set(ud.XYLine,'XData',0,'YData',0,'Erasemode','none');
ud.XData = [];
ud.YData = [];
set(FigHandle,'UserData',ud);
% end LocalBlockStartFcn
%
%=============================================================================
% LocalBlockStopFcn
% At the end of the simulation, set the line's X and Y data to contain
% the complete set of points that were acquire during the simulation.
% Recall that during the simulation, the lines are only small segments from
% the last time step to the current one.
%=============================================================================
%
function LocalBlockStopFcn(block)
FigHandle=GetSfunXYFigure(block);
if ishandle(FigHandle),
%
% Get UserData of the figure.
%
ud = get(FigHandle,'UserData');
set(ud.XYLine,...
'Xdata',ud.XData,...
'Ydata',ud.YData,...
'LineStyle','-');
end
set(0,'ShowHiddenHandles','Off')
% end LocalBlockStopFcn
%
%=============================================================================
% LocalBlockNameChangeFcn
% Function that handles name changes on the Graph scope block.
%=============================================================================
%
function LocalBlockNameChangeFcn(block)
%
% get the figure associated with this block, if it's valid, change
% the name of the figure
%
FigHandle = GetSfunXYFigure(block);
if ishandle(FigHandle),
set(FigHandle,'Name',BlockFigureTitle(block));
end
% end LocalBlockNameChangeFcn
%
%=============================================================================
% LocalBlockLoadCopyFcn
% This is the XYGraph block's LoadFcn and CopyFcn. Initialize the block's
% UserData such that a figure is not associated with the block.
%=============================================================================
%
function LocalBlockLoadCopyFcn(block)
SetSfunXYFigure(block,-1);
% end LocalBlockLoadCopyFcn
%
%=============================================================================
% LocalBlockDeleteFcn
% This is the XY Graph block'DeleteFcn. Delete the block's figure window,
% if present, upon deletion of the block.
%=============================================================================
%
function LocalBlockDeleteFcn(block)
%
% Get the figure handle associated with the block, if it exists, delete
% the figure.
%
FigHandle=GetSfunXYFigure(block);
if ishandle(FigHandle),
delete(FigHandle);
SetSfunXYFigure(block,-1);
end
% end LocalBlockDeleteFcn
%
%=============================================================================
% LocalFigureDeleteFcn
% This is the XY Graph figure window's DeleteFcn. The figure window is
% being deleted, update the XY Graph block's UserData to reflect the change.
%=============================================================================
%
function LocalFigureDeleteFcn
%
% Get the block associated with this figure and set it's figure to -1
%
ud=get(gcbf,'UserData');
SetSfunXYFigure(ud.Block,-1)
% end LocalFigureDeleteFcn
%
%=============================================================================
% GetSfunXYFigure
% Retrieves the figure window associated with this S-function XY Graph block
% from the block's parent subsystem's UserData.
%=============================================================================
%
function FigHandle=GetSfunXYFigure(block)
if strcmp(get_param(block,'BlockType'),'S-Function'),
block=get_param(block,'Parent');
end
FigHandle=get_param(block,'UserData');
if isempty(FigHandle),
FigHandle=-1;
end
% end GetSfunXYFigure
%
%=============================================================================
% SetSfunXYFigure
% Stores the figure window associated with this S-function XY Graph block
% in the block's parent subsystem's UserData.
%=============================================================================
%
function SetSfunXYFigure(block,FigHandle)
if strcmp(get_param(bdroot,'BlockDiagramType'),'model'),
if strcmp(get_param(block,'BlockType'),'S-Function'),
block=get_param(block,'Parent');
end
set_param(block,'UserData',FigHandle);
end
% end SetSfunXYFigure
%
%=============================================================================
% CreateSfunXYFigure
% Creates the figure window associated with this S-function XY Graph block.
%=============================================================================
%
function FigHandle=CreateSfunXYFigure(block)
%
% the figure doesn't exist, create one
%
screenLoc = get(0,'ScreenSize');
if screenLoc(1) < 0
left = -screenLoc(1) + 100;
else
left = 100;
end
if screenLoc(2) < 0
bottom = -screenLoc(2) + 100;
else
bottom = 100;
end
FigHandle = figure('Units', 'pixel',...
'Position', [left bottom 400 300],...
'Name', BlockFigureTitle(block),...
'Tag', 'SIMULINK_XYGRAPH_FIGURE',...
'NumberTitle', 'off',...
'IntegerHandle', 'off',...
'Toolbar', 'none',...
'Menubar', 'none',...
'DeleteFcn', 'sfunxy([],[],[],''DeleteFigure'')');
%
% store the block's handle in the figure's UserData
%
ud.Block=block;
%
% create various objects in the figure
%
ud.XYAxes = axes;
ud.XYLine = plot(0,0,'EraseMode','None');
ud.XYXlabel = xlabel('X Axis');
ud.XYYlabel = ylabel('Y Axis');
ud.XYTitle = get(ud.XYAxes,'Title');
ud.XData = [];
ud.YData = [];
%
% Associate the figure with the block, and set the figure's UserData.
%
SetSfunXYFigure(block,FigHandle);
set(FigHandle,'HandleVisibility','callback','UserData',ud);
% end CreateSfunXYFigure
%
%=============================================================================
% BlockFigureTitle
% String to display for figure window title
%=============================================================================
%
function title = BlockFigureTitle(block)
iotype = get_param(block,'iotype');
if strcmp(iotype,'viewer')
title = viewertitle(block,false);
else
title = get_param(block,'Name');
end
%end BlockFigureTitle
%
%=============================================================================
% IsValidBlock
% Check if this is a valid block
%=============================================================================
%
function IsValidBlock(block, flag)
if strcmp(get_param(block,'BlockType'),'S-Function'),
thisBlock = get_param(block,'Parent');
else
thisBlock = block;
end
if(~strcmp(flag,'DeleteFigure'))
if(~strcmp(get_param(thisBlock,'MaskType'), 'XY scope.'))
DAStudio.error('Simulink:blocks:invalidBlock');
end
end
%end IsValidBlock
%
%=============================================================================
% SetBlockCallbacks
% This sets the callbacks of the block if it is not a reference.
%=============================================================================
%
function SetBlockCallbacks(block)
%
% the actual source of the block is the parent subsystem
%
block=get_param(block,'Parent');
%
% if the block isn't linked, issue a warning, and then set the callbacks
% for the block so that it has the proper operation
%
if strcmp(get_param(block,'LinkStatus'),'none'),
warnmsg=sprintf(['The XY Graph scope ''%s'' should be replaced with a ' ...
'new version from the Simulink block library'],...
block);
warning(warnmsg);%#ok
callbacks={
'CopyFcn', 'sfunxy([],[],[],''CopyBlock'')' ;
'DeleteFcn', 'sfunxy([],[],[],''DeleteBlock'')' ;
'LoadFcn', 'sfunxy([],[],[],''LoadBlock'')' ;
'StartFcn', 'sfunxy([],[],[],''Start'')' ;
'StopFcn' 'sfunxy([],[],[],''Stop'')'
'NameChangeFcn', 'sfunxy([],[],[],''NameChange'')' ;
};
for i=1:length(callbacks),
if ~strcmp(get_param(block,callbacks{i,1}),callbacks{i,2}),
set_param(block,callbacks{i,1},callbacks{i,2})
end
end
end
% end SetBlockCallbacks
|
github
|
misztal/GRIT-master
|
meshdemond.m
|
.m
|
GRIT-master/UTILITIES/meshing/distmesh/meshdemond.m
| 1,036 |
utf_8
|
1610b2dc0c78ee32ea73e9a715f3bb47
|
function meshdemond
%MESHDEMOND distmeshnd examples.
% Copyright (C) 2004-2012 Per-Olof Persson. See COPYRIGHT.TXT for details.
rand('state',1); % Always the same results
set(gcf,'rend','opengl');
disp('(9) 3-D Unit ball')
fd=inline('sqrt(sum(p.^2,2))-1','p');
[p,t]=distmeshnd(fd,@huniform,0.2,[-1,-1,-1;1,1,1],[]);
post(p,t)
disp('(10) Cylinder with hole')
[p,t]=distmeshnd(@fd10,@fh10,0.1,[-1,-1,-1;1,1,1],[]);
post(p,t)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function post(p,t)
disp(sprintf(' (press any key)'))
disp(' ')
pause
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d=fd10(p)
r=sqrt(p(:,1).^2+p(:,2).^2);
z=p(:,3);
d1=r-1;
d2=z-1;
d3=-z-1;
d4=sqrt(d1.^2+d2.^2);
d5=sqrt(d1.^2+d3.^2);
d=dintersect(dintersect(d1,d2),d3);
ix=d1>0 & d2>0;
d(ix)=d4(ix);
ix=d1>0 & d3>0;
d(ix)=d5(ix);
d=ddiff(d,dsphere(p,0,0,0,0.5));
function h=fh10(p)
h1=4*sqrt(sum(p.^2,2))-1;
h=min(h1,2);
|
github
|
cwkx/IGAC-master
|
objwrite.m
|
.m
|
IGAC-master/wrappers/matlab/lib/objwrite.m
| 7,931 |
utf_8
|
75fc005aa03085efb4f12d8879670ec6
|
function objwrite(OBJ,fullfilename)
% Write objects to a Wavefront OBJ file
%
% write_wobj(OBJ,filename);
%
% OBJ struct containing:
%
% OBJ.vertices : Vertices coordinates
% OBJ.vertices_texture: Texture coordinates
% OBJ.vertices_normal : Normal vectors
% OBJ.vertices_point : Vertice data used for points and lines
% OBJ.material : Parameters from external .MTL file, will contain parameters like
% newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks,
% example of an entry from the material object:
% OBJ.material(i).type = newmtl
% OBJ.material(i).data = 'vase_tex'
% OBJ.objects : Cell object with all objects in the OBJ file,
% example of a mesh object:
% OBJ.objects(i).type='f'
% OBJ.objects(i).data.vertices: [n x 3 double]
% OBJ.objects(i).data.texture: [n x 3 double]
% OBJ.objects(i).data.normal: [n x 3 double]
%
% example reading/writing,
%
% OBJ=read_wobj('examples\example10.obj');
% write_wobj(OBJ,'test.obj');
%
% example isosurface to obj-file,
%
% % Load MRI scan
% load('mri','D'); D=smooth3(squeeze(D));
% % Make iso-surface (Mesh) of skin
% FV=isosurface(D,1);
% % Calculate Iso-Normals of the surface
% N=isonormals(D,FV.vertices);
% L=sqrt(N(:,1).^2+N(:,2).^2+N(:,3).^2)+eps;
% N(:,1)=N(:,1)./L; N(:,2)=N(:,2)./L; N(:,3)=N(:,3)./L;
% % Display the iso-surface
% figure, patch(FV,'facecolor',[1 0 0],'edgecolor','none'); view(3);camlight
% % Invert Face rotation
% FV.faces=[FV.faces(:,3) FV.faces(:,2) FV.faces(:,1)];
%
% % Make a material structure
% material(1).type='newmtl';
% material(1).data='skin';
% material(2).type='Ka';
% material(2).data=[0.8 0.4 0.4];
% material(3).type='Kd';
% material(3).data=[0.8 0.4 0.4];
% material(4).type='Ks';
% material(4).data=[1 1 1];
% material(5).type='illum';
% material(5).data=2;
% material(6).type='Ns';
% material(6).data=27;
%
% % Make OBJ structure
% clear OBJ
% OBJ.vertices = FV.vertices;
% OBJ.vertices_normal = N;
% OBJ.material = material;
% OBJ.objects(1).type='g';
% OBJ.objects(1).data='skin';
% OBJ.objects(2).type='usemtl';
% OBJ.objects(2).data='skin';
% OBJ.objects(3).type='f';
% OBJ.objects(3).data.vertices=FV.faces;
% OBJ.objects(3).data.normal=FV.faces;
% write_wobj(OBJ,'skinMRI.obj');
%
% Function is written by D.Kroon University of Twente (June 2010)
if(exist('fullfilename','var')==0)
[filename, filefolder] = uiputfile('*.obj', 'Write obj-file');
fullfilename = [filefolder filename];
end
[filefolder,filename] = fileparts( fullfilename);
comments=cell(1,4);
comments{1}=' Produced by Matlab Write Wobj exporter ';
comments{2}='';
fid = fopen(fullfilename,'w');
write_comment(fid,comments);
if(isfield(OBJ,'material')&&~isempty(OBJ.material))
filename_mtl=fullfile(filefolder,[filename '.mtl']);
fprintf(fid,'mtllib %s\n',filename_mtl);
write_MTL_file(filename_mtl,OBJ.material)
end
if(isfield(OBJ,'vertices')&&~isempty(OBJ.vertices))
write_vertices(fid,OBJ.vertices,'v');
end
if(isfield(OBJ,'vertices_point')&&~isempty(OBJ.vertices_point))
write_vertices(fid,OBJ.vertices_point,'vp');
end
if(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal))
write_vertices(fid,OBJ.vertices_normal,'vn');
end
if(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture))
write_vertices(fid,OBJ.vertices_texture,'vt');
end
for i=1:length(OBJ.objects)
type=OBJ.objects(i).type;
data=OBJ.objects(i).data;
switch(type)
case 'usemtl'
fprintf(fid,'usemtl %s\n',data);
case 'f'
check1=(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture));
check2=(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal));
if(check1&&check2)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d/%d/%d',data.vertices(j,1),data.texture(j,1),data.normal(j,1));
fprintf(fid,' %d/%d/%d', data.vertices(j,2),data.texture(j,2),data.normal(j,2));
fprintf(fid,' %d/%d/%d\n', data.vertices(j,3),data.texture(j,3),data.normal(j,3));
end
elseif(check1)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d/%d',data.vertices(j,1),data.texture(j,1));
fprintf(fid,' %d/%d', data.vertices(j,2),data.texture(j,2));
fprintf(fid,' %d/%d\n', data.vertices(j,3),data.texture(j,3));
end
elseif(check2)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d//%d',data.vertices(j,1),data.normal(j,1));
fprintf(fid,' %d//%d', data.vertices(j,2),data.normal(j,2));
fprintf(fid,' %d//%d\n', data.vertices(j,3),data.normal(j,3));
end
else
for j=1:size(data.vertices,1)
fprintf(fid,'f %d %d %d\n',data.vertices(j,1),data.vertices(j,2),data.vertices(j,3));
end
end
otherwise
fprintf(fid,'%s ',type);
if(iscell(data))
for j=1:length(data)
if(ischar(data{j}))
fprintf(fid,'%s ',data{j});
else
fprintf(fid,'%0.5g ',data{j});
end
end
elseif(ischar(data))
fprintf(fid,'%s ',data);
else
for j=1:length(data)
fprintf(fid,'%0.5g ',data(j));
end
end
fprintf(fid,'\n');
end
end
fclose(fid);
function write_MTL_file(filename,material)
fid = fopen(filename,'w');
comments=cell(1,2);
comments{1}=' Produced by Matlab Write Wobj exporter ';
comments{2}='';
write_comment(fid,comments);
for i=1:length(material)
type=material(i).type;
data=material(i).data;
switch(type)
case('newmtl')
fprintf(fid,'%s ',type);
fprintf(fid,'%s\n',data);
case{'Ka','Kd','Ks'}
fprintf(fid,'%s ',type);
fprintf(fid,'%5.5f %5.5f %5.5f\n',data);
case('illum')
fprintf(fid,'%s ',type);
fprintf(fid,'%d\n',data);
case {'Ns','Tr','d'}
fprintf(fid,'%s ',type);
fprintf(fid,'%5.5f\n',data);
otherwise
fprintf(fid,'%s ',type);
if(iscell(data))
for j=1:length(data)
if(ischar(data{j}))
fprintf(fid,'%s ',data{j});
else
fprintf(fid,'%0.5g ',data{j});
end
end
elseif(ischar(data))
fprintf(fid,'%s ',data);
else
for j=1:length(data)
fprintf(fid,'%0.5g ',data(j));
end
end
fprintf(fid,'\n');
end
end
comments=cell(1,2);
comments{1}='';
comments{2}=' EOF';
write_comment(fid,comments);
fclose(fid);
function write_comment(fid,comments)
for i=1:length(comments), fprintf(fid,'# %s\n',comments{i}); end
function write_vertices(fid,V,type)
switch size(V,2)
case 1
for i=1:size(V,1)
fprintf(fid,'%s %5.5f\n', type, V(i,1));
end
case 2
for i=1:size(V,1)
fprintf(fid,'%s %5.5f %5.5f\n', type, V(i,1), V(i,2));
end
case 3
for i=1:size(V,1)
fprintf(fid,'%s %5.5f %5.5f %5.5f\n', type, V(i,1), V(i,2), V(i,3));
end
otherwise
end
switch(type)
case 'v'
fprintf(fid,'# %d vertices \n', size(V,1));
case 'vt'
fprintf(fid,'# %d texture verticies \n', size(V,1));
case 'vn'
fprintf(fid,'# %d normals \n', size(V,1));
otherwise
fprintf(fid,'# %d\n', size(V,1));
end
|
github
|
cwkx/IGAC-master
|
stlwrite.m
|
.m
|
IGAC-master/wrappers/matlab/lib/stlwrite.m
| 10,024 |
utf_8
|
501ff36176fdfe30bfa6352a0991d7c3
|
function stlwrite(filename, varargin)
%STLWRITE Write STL file from patch or surface data.
%
% STLWRITE(FILE, FV) writes a stereolithography (STL) file to FILE for a
% triangulated patch defined by FV (a structure with fields 'vertices'
% and 'faces').
%
% STLWRITE(FILE, FACES, VERTICES) takes faces and vertices separately,
% rather than in an FV struct
%
% STLWRITE(FILE, X, Y, Z) creates an STL file from surface data in X, Y,
% and Z. STLWRITE triangulates this gridded data into a triangulated
% surface using triangulation options specified below. X, Y and Z can be
% two-dimensional arrays with the same size. If X and Y are vectors with
% length equal to SIZE(Z,2) and SIZE(Z,1), respectively, they are passed
% through MESHGRID to create gridded data. If X or Y are scalar values,
% they are used to specify the X and Y spacing between grid points.
%
% STLWRITE(...,'PropertyName',VALUE,'PropertyName',VALUE,...) writes an
% STL file using the following property values:
%
% MODE - File is written using 'binary' (default) or 'ascii'.
%
% TITLE - Header text (max 80 chars) written to the STL file.
%
% TRIANGULATION - When used with gridded data, TRIANGULATION is either:
% 'delaunay' - (default) Delaunay triangulation of X, Y
% 'f' - Forward slash division of grid quads
% 'b' - Back slash division of quadrilaterals
% 'x' - Cross division of quadrilaterals
% Note that 'f', 'b', or 't' triangulations now use an
% inbuilt version of FEX entry 28327, "mesh2tri".
%
% FACECOLOR - Single colour (1-by-3) or one-colour-per-face (N-by-3)
% vector of RGB colours, for face/vertex input. RGB range
% is 5 bits (0:31), stored in VisCAM/SolidView format
% (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL)
%
% Example 1:
% % Write binary STL from face/vertex data
% tmpvol = false(20,20,20); % Empty voxel volume
% tmpvol(8:12,8:12,5:15) = 1; % Turn some voxels on
% fv = isosurface(~tmpvol, 0.5); % Make patch w. faces "out"
% stlwrite('test.stl',fv) % Save to binary .stl
%
% Example 2:
% % Write ascii STL from gridded data
% [X,Y] = deal(1:40); % Create grid reference
% Z = peaks(40); % Create grid height
% stlwrite('test.stl',X,Y,Z,'mode','ascii')
%
% Example 3:
% % Write binary STL with coloured faces
% cVals = fv.vertices(fv.faces(:,1),3); % Colour by Z height.
% cLims = [min(cVals) max(cVals)]; % Transform height values
% nCols = 255; cMap = jet(nCols); % onto an 8-bit colour map
% fColsDbl = interp1(linspace(cLims(1),cLims(2),nCols),cMap,cVals);
% fCols8bit = fColsDbl*255; % Pass cols in 8bit (0-255) RGB triplets
% stlwrite('testCol.stl',fv,'FaceColor',fCols8bit)
% Original idea adapted from surf2stl by Bill McDonald. Huge speed
% improvements implemented by Oliver Woodford. Non-Delaunay triangulation
% of quadrilateral surface courtesy of Kevin Moerman. FaceColor
% implementation by Grant Lohsen.
%
% Author: Sven Holcombe, 11-24-11
% Check valid filename path
path = fileparts(filename);
if ~isempty(path) && ~exist(path,'dir')
error('Directory "%s" does not exist.',path);
end
% Get faces, vertices, and user-defined options for writing
[faces, vertices, options] = parseInputs(varargin{:});
asciiMode = strcmp( options.mode ,'ascii');
% Create the facets
facets = single(vertices');
facets = reshape(facets(:,faces'), 3, 3, []);
% Compute their normals
V1 = squeeze(facets(:,2,:) - facets(:,1,:));
V2 = squeeze(facets(:,3,:) - facets(:,1,:));
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:);
clear V1 V2
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1)));
facets = cat(2, reshape(normals, 3, 1, []), facets);
clear normals
% Open the file for writing
permissions = {'w','wb+'};
fid = fopen(filename, permissions{asciiMode+1});
if (fid == -1)
error('stlwrite:cannotWriteFile', 'Unable to write to %s', filename);
end
% Write the file contents
if asciiMode
% Write HEADER
fprintf(fid,'solid %s\r\n',options.title);
% Write DATA
fprintf(fid,[...
'facet normal %.7E %.7E %.7E\r\n' ...
'outer loop\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'endloop\r\n' ...
'endfacet\r\n'], facets);
% Write FOOTER
fprintf(fid,'endsolid %s\r\n',options.title);
else % BINARY
% Write HEADER
fprintf(fid, '%-80s', options.title); % Title
fwrite(fid, size(facets, 3), 'uint32'); % Number of facets
% Write DATA
% Add one uint16(0) to the end of each facet using a typecasting trick
facets = reshape(typecast(facets(:), 'uint16'), 12*2, []);
% Set the last bit to 0 (default) or supplied RGB
facets(end+1,:) = options.facecolor;
fwrite(fid, facets, 'uint16');
end
% Close the file
fclose(fid);
fprintf('Wrote %d facets\n',size(facets, 2));
%% Input handling subfunctions
function [faces, vertices, options] = parseInputs(varargin)
% Determine input type
if isstruct(varargin{1}) % stlwrite('file', FVstruct, ...)
if ~all(isfield(varargin{1},{'vertices','faces'}))
error( 'Variable p must be a faces/vertices structure' );
end
faces = varargin{1}.faces;
vertices = varargin{1}.vertices;
options = parseOptions(varargin{2:end});
elseif isnumeric(varargin{1})
firstNumInput = cellfun(@isnumeric,varargin);
firstNumInput(find(~firstNumInput,1):end) = 0; % Only consider numerical input PRIOR to the first non-numeric
numericInputCnt = nnz(firstNumInput);
options = parseOptions(varargin{numericInputCnt+1:end});
switch numericInputCnt
case 3 % stlwrite('file', X, Y, Z, ...)
% Extract the matrix Z
Z = varargin{3};
% Convert scalar XY to vectors
ZsizeXY = fliplr(size(Z));
for i = 1:2
if isscalar(varargin{i})
varargin{i} = (0:ZsizeXY(i)-1) * varargin{i};
end
end
% Extract X and Y
if isequal(size(Z), size(varargin{1}), size(varargin{2}))
% X,Y,Z were all provided as matrices
[X,Y] = varargin{1:2};
elseif numel(varargin{1})==ZsizeXY(1) && numel(varargin{2})==ZsizeXY(2)
% Convert vector XY to meshgrid
[X,Y] = meshgrid(varargin{1}, varargin{2});
else
error('stlwrite:badinput', 'Unable to resolve X and Y variables');
end
% Convert to faces/vertices
if strcmp(options.triangulation,'delaunay')
faces = delaunay(X,Y);
vertices = [X(:) Y(:) Z(:)];
else
if ~exist('mesh2tri','file')
error('stlwrite:missing', '"mesh2tri" is required to convert X,Y,Z matrices to STL. It can be downloaded from:\n%s\n',...
'http://www.mathworks.com/matlabcentral/fileexchange/28327')
end
[faces, vertices] = mesh2tri(X, Y, Z, options.triangulation);
end
case 2 % stlwrite('file', FACES, VERTICES, ...)
faces = varargin{1};
vertices = varargin{2};
otherwise
error('stlwrite:badinput', 'Unable to resolve input types.');
end
end
if ~isempty(options.facecolor) % Handle colour preparation
facecolor = uint16(options.facecolor);
%Set the Valid Color bit (bit 15)
c0 = bitshift(ones(size(faces,1),1,'uint16'),15);
%Red color (10:15), Blue color (5:9), Green color (0:4)
c0 = bitor(bitshift(bitand(2^6-1, facecolor(:,1)),10),c0);
c0 = bitor(bitshift(bitand(2^11-1, facecolor(:,2)),5),c0);
c0 = bitor(bitand(2^6-1, facecolor(:,3)),c0);
options.facecolor = c0;
else
options.facecolor = 0;
end
function options = parseOptions(varargin)
IP = inputParser;
IP.addParameter('mode', 'binary', @ischar)
IP.addParameter('title', sprintf('Durham University %s',datestr(now)), @ischar);
IP.addParameter('triangulation', 'delaunay', @ischar);
IP.addParameter('facecolor',[], @isnumeric)
IP.addParameter('facecolour',[], @isnumeric)
IP.parse(varargin{:});
options = IP.Results;
if ~isempty(options.facecolour)
options.facecolor = options.facecolour;
end
function [F,V]=mesh2tri(X,Y,Z,tri_type)
% function [F,V]=mesh2tri(X,Y,Z,tri_type)
%
% Available from http://www.mathworks.com/matlabcentral/fileexchange/28327
% Included here for convenience. Many thanks to Kevin Mattheus Moerman
% [email protected]
% 15/07/2010
%------------------------------------------------------------------------
[J,I]=meshgrid(1:1:size(X,2)-1,1:1:size(X,1)-1);
switch tri_type
case 'f'%Forward slash
TRI_I=[I(:),I(:)+1,I(:)+1; I(:),I(:),I(:)+1];
TRI_J=[J(:),J(:)+1,J(:); J(:),J(:)+1,J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'b'%Back slash
TRI_I=[I(:),I(:)+1,I(:); I(:)+1,I(:)+1,I(:)];
TRI_J=[J(:)+1,J(:),J(:); J(:)+1,J(:),J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'x'%Cross
TRI_I=[I(:)+1,I(:); I(:)+1,I(:)+1; I(:),I(:)+1; I(:),I(:)];
TRI_J=[J(:),J(:); J(:)+1,J(:); J(:)+1,J(:)+1; J(:),J(:)+1];
IND=((numel(X)+1):numel(X)+prod(size(X)-1))';
F = sub2ind(size(X),TRI_I,TRI_J);
F(:,3)=repmat(IND,[4,1]);
Fe_I=[I(:),I(:)+1,I(:)+1,I(:)]; Fe_J=[J(:),J(:),J(:)+1,J(:)+1];
Fe = sub2ind(size(X),Fe_I,Fe_J);
Xe=mean(X(Fe),2); Ye=mean(Y(Fe),2); Ze=mean(Z(Fe),2);
X=[X(:);Xe(:)]; Y=[Y(:);Ye(:)]; Z=[Z(:);Ze(:)];
end
V=[X(:),Y(:),Z(:)];
|
github
|
cwkx/IGAC-master
|
myaa.m
|
.m
|
IGAC-master/wrappers/matlab/lib/myaa.m
| 11,141 |
utf_8
|
a66dd7fc188c3f6a1a0a0c07623cf831
|
function [varargout] = myaa(varargin)
%MYAA Render figure with anti-aliasing.
% MYAA
% Anti-aliased rendering of the current figure. This makes graphics look
% a lot better than in a standard matlab figure, which is useful for
% publishing results on the web or to better see the fine details in a
% complex and cluttered plot. Some simple keyboard commands allow
% the user to set the rendering quality interactively, zoom in/out and
% re-render when needed.
%
% Usage:
% myaa: Renders an anti-aliased version of the current figure.
%
% myaa(K): Sets the supersampling factor to K. Using a
% higher K yields better rendering but takes longer time. If K is
% omitted, it defaults to 4. It may be useful to run e.g. myaa(2) to
% make a low-quality rendering as a first try, because it is a lot
% faster than the default.
%
% myaa([K D]): Sets supersampling factor to K but downsamples the
% image by a factor of D. If D is larger than K, the rendered image
% will be smaller than the original. If D is smaller than K, the
% rendering will be bigger.
%
% myaa('publish'): An experimental parameter, useful for publishing
% matlab programs (see example 3). Beware, it kills the current figure.
%
% Interactivity:
% The anti-aliased figure can be updated with the following keyboard
% commands:
%
% <space> Re-render image (to reflect changes in the figure)
% + Zoom in (decrease downsampling factor)
% - Zoom out (increase downsampling factor)
% 1 ... 9 Change supersampling and downsampling factor to ...
% q Quit, i.e. close the anti-aliased figure
%
% Myaa can also be called with up to 3 parameters.
% FIG = MYAA(K,AAMETHOD,FIGMODE)
% Parameters and output:
% K Subsampling factor. If a vector is specified, [K D], then
% the second element will describe the downsampling factor.
% Default is K = 4 and D = 4.
% AAMETHOD Downsampling method. Normally this is chosen automatically.
% 'standard': convolution based filtering and downsampling
% 'imresize': downsampling using the imresize command from
% the image toolbox.
% 'noshrink': used internally
% FIGMODE Display mode
% 'figure': the normal mode, a new figure is created
% 'update': internally used for interactive sessions
% 'publish': used internally
% FIG A handle to the new anti-aliased figure
%
% Example 1:
% spharm2;
% myaa;
% % Press '1', '2' or '4' and try '+' and '-'
% % Press 'r' or <space> to update the anti-aliased rendering, e.g.
% % after rotating the 3-D object in the original figure.
%
% Example 2:
% line(randn(2500,2)',randn(2500,2)','color','black','linewidth',0.01)
% myaa(8);
%
% Example 3:
% xpklein;
% myaa(2,'standard');
%
% Example 3:
% Put the following in test.m
% %% My test publish
% % Testing to publish some anti-aliased images
% %
% spharm2; % Produce some nice graphics
% myaa('publish'); % Render an anti-aliased version
%
% Then run:
% publish test.m;
% showdemo test;
%
%
% BUGS:
% Dotted and dashed lines in plots are not rendered correctly. This is
% probably due to a bug in Matlab and it will hopefully be fixed in a
% future version.
% The OpenGL renderer does not always manage to render an image large
% enough. Try the zbuffer renderer if you have problems or decrease the
% K factor. You can set the current renderer to zbuffer by running e.g.
% set(gcf,'renderer','zbuffer').
%
% See also PUBLISH, PRINT
%
% Version 1.1, 2008-08-21
% Version 1.0, 2008-08-05
%
% Author: Anders Brun
% [email protected]
%
%% Force drawing of graphics
drawnow;
%% Find out about the current DPI...
screen_DPI = get(0,'ScreenPixelsPerInch');
%% Determine the best choice of convolver.
% If IPPL is available, imfilter is much faster. Otherwise it does not
% matter too much.
try
if ippl()
myconv = @imfilter;
else
myconv = @conv2;
end
catch
myconv = @conv2;
end
%% Set default options and interpret arguments
if isempty(varargin)
self.K = [4 4];
try
imfilter(zeros(2,2),zeros(2,2));
self.aamethod = 'imresize';
catch
self.aamethod = 'standard';
end
self.figmode = 'figure';
elseif strcmp(varargin{1},'publish')
self.K = [4 4];
self.aamethod = 'noshrink';
self.figmode = 'publish';
elseif strcmp(varargin{1},'update')
self = get(gcf,'UserData');
figure(self.source_fig);
drawnow;
self.figmode = 'update';
elseif strcmp(varargin{1},'lazyupdate')
self = get(gcf,'UserData');
self.figmode = 'lazyupdate';
elseif length(varargin) == 1
self.K = varargin{1};
if length(self.K) == 1
self.K = [self.K self.K];
end
if self.K(1) > 16
error('To avoid excessive use of memory, K has been limited to max 16. Change the code to fix this on your own risk.');
end
try
imfilter(zeros(2,2),zeros(2,2));
self.aamethod = 'imresize';
catch
self.aamethod = 'standard';
end
self.figmode = 'figure';
elseif length(varargin) == 2
self.K = varargin{1};
self.aamethod = varargin{2};
self.figmode = 'figure';
elseif length(varargin) == 3
self.K = varargin{1};
self.aamethod = varargin{2};
self.figmode = varargin{3};
if strcmp(self.figmode,'publish') && ~strcmp(varargin{2},'noshrink')
printf('\nThe AAMETHOD was not set to ''noshrink'': Fixed.\n\n');
self.aamethod = 'noshrink';
end
else
error('Wrong syntax, run: help myaa');
end
if length(self.K) == 1
self.K = [self.K self.K];
end
%% Capture current figure in high resolution
if ~strcmp(self.figmode,'lazyupdate');
tempfile = 'myaa_temp_screendump.png';
self.source_fig = gcf;
current_paperpositionmode = get(self.source_fig,'PaperPositionMode');
current_inverthardcopy = get(self.source_fig,'InvertHardcopy');
set(self.source_fig,'PaperPositionMode','auto');
set(self.source_fig,'InvertHardcopy','off');
print(self.source_fig,['-r',num2str(screen_DPI*self.K(1))], '-dpng', tempfile);
set(self.source_fig,'InvertHardcopy',current_inverthardcopy);
set(self.source_fig,'PaperPositionMode',current_paperpositionmode);
self.raw_hires = imread(tempfile);
delete(tempfile);
end
%% Start filtering to remove aliasing
w = warning;
warning off;
if strcmp(self.aamethod,'standard') || strcmp(self.aamethod,'noshrink')
% Subsample hires figure image with standard anti-aliasing using a
% butterworth filter
kk = lpfilter(self.K(2)*3,self.K(2)*0.9,2);
mm = myconv(ones(size(self.raw_hires(:,:,1))),kk,'same');
a1 = max(min(myconv(single(self.raw_hires(:,:,1))/(256),kk,'same'),1),0)./mm;
a2 = max(min(myconv(single(self.raw_hires(:,:,2))/(256),kk,'same'),1),0)./mm;
a3 = max(min(myconv(single(self.raw_hires(:,:,3))/(256),kk,'same'),1),0)./mm;
if strcmp(self.aamethod,'standard')
if abs(1-self.K(2)) > 0.001
raw_lowres = double(cat(3,a1(2:self.K(2):end,2:self.K(2):end),a2(2:self.K(2):end,2:self.K(2):end),a3(2:self.K(2):end,2:self.K(2):end)));
else
raw_lowres = self.raw_hires;
end
else
raw_lowres = double(cat(3,a1,a2,a3));
end
elseif strcmp(self.aamethod,'imresize')
% This is probably the fastest method available at this moment...
raw_lowres = single(imresize(self.raw_hires,1/self.K(2),'bilinear'))/256;
end
warning(w);
%% Place the anti-aliased image in some image on the screen ...
if strcmp(self.figmode,'figure');
% Create a new figure at the same place as the previous
% The content of this new image is just a bitmap...
oldpos = get(gcf,'Position');
self.myaa_figure = figure;
fig = self.myaa_figure;
set(fig,'Menubar','none');
set(fig,'Resize','off');
sz = size(raw_lowres);
set(fig,'Units','pixels');
pos = [oldpos(1:2) sz(2:-1:1)];
set(fig,'Position',pos);
ax = axes;
image(raw_lowres);
set(ax,'Units','pixels');
set(ax,'Position',[1 1 sz(2) sz(1)]);
axis off;
elseif strcmp(self.figmode,'publish');
% Create a new figure at the same place as the previous
% The content of this new image is just a bitmap...
self.myaa_figure = figure;
fig = self.myaa_figure;
current_units = get(self.source_fig,'Units');
set(self.source_fig,'Units','pixels');
pos = get(self.source_fig,'Position');
set(self.source_fig,'Units',current_units);
set(fig,'Position',[pos(1) pos(2) pos(3) pos(4)]);
ax = axes;
image(raw_lowres);
set(ax,'Units','normalized');
set(ax,'Position',[0 0 1 1]);
axis off;
close(self.source_fig);
elseif strcmp(self.figmode,'update');
fig = self.myaa_figure;
figure(fig);
clf;
set(fig,'Menubar','none');
set(fig,'Resize','off');
sz = size(raw_lowres);
set(fig,'Units','pixels');
pos = get(fig,'Position');
pos(3:4) = sz(2:-1:1);
set(fig,'Position',pos);
ax = axes;
image(raw_lowres);
set(ax,'Units','pixels');
set(ax,'Position',[1 1 sz(2) sz(1)]);
axis off;
elseif strcmp(self.figmode,'lazyupdate');
clf;
fig = self.myaa_figure;
sz = size(raw_lowres);
pos = get(fig,'Position');
pos(3:4) = sz(2:-1:1);
set(fig,'Position',pos);
ax = axes;
image(raw_lowres);
set(ax,'Units','pixels');
set(ax,'Position',[1 1 sz(2) sz(1)]);
axis off;
end
%% Store current state
set(gcf,'userdata',self);
set(gcf,'KeyPressFcn',@keypress);
set(gcf,'Interruptible','off');
%% Avoid unnecessary console output
if nargout == 1
varargout(1) = {fig};
end
%% A simple lowpass filter kernel (Butterworth).
% sz is the size of the filter
% subsmp is the downsampling factor to be used later
% n is the degree of the butterworth filter
function kk = lpfilter(sz, subsmp, n)
sz = 2*floor(sz/2)+1; % make sure the size of the filter is odd
cut_frequency = 0.5 / subsmp;
range = (-(sz-1)/2:(sz-1)/2)/(sz-1);
[ii,jj] = ndgrid(range,range);
rr = sqrt(ii.^2+jj.^2);
kk = ifftshift(1./(1+(rr./cut_frequency).^(2*n)));
kk = fftshift(real(ifft2(kk)));
kk = kk./sum(kk(:));
function keypress(src,evnt)
if isempty(evnt.Character)
return
end
recognized = 0;
self = get(gcf,'userdata');
if evnt.Character == '+'
self.K(2) = max(self.K(2).*0.5^(1/2),1);
recognized = 1;
set(gcf,'userdata',self);
myaa('lazyupdate');
elseif evnt.Character == '-'
self.K(2) = min(self.K(2).*2^(1/2),16);
recognized = 1;
set(gcf,'userdata',self);
myaa('lazyupdate');
elseif evnt.Character == ' ' || evnt.Character == 'r' || evnt.Character == 'R'
set(gcf,'userdata',self);
myaa('update');
elseif evnt.Character == 'q'
close(gcf);
elseif find('123456789' == evnt.Character)
self.K = [str2double(evnt.Character) str2double(evnt.Character)];
set(gcf,'userdata',self);
myaa('update');
end
|
github
|
yangyangHu/deblur-master
|
create_greenspan_settings.m
|
.m
|
deblur-master/code/create_greenspan_settings.m
| 2,527 |
utf_8
|
cfad68ce50fdb9d9dcc4b38e9b9c14fe
|
function S = create_greenspan_settings(varargin)
% Author: Bryan Russell
% Version: 1.0, distribution code.
% Project: Removing Camera Shake from a Single Image, SIGGRAPH 2006 paper
% Copyright 2006, Massachusetts Institute of Technology
% CREATE_GREENSPAN_SETTINGS - Creates a data structure containing the
% various parameter settings for the Greenspan nonlinear enhancement
% algorithm.
%
% S = CREATE_GREENSPAN_SETTINGS creates the default settings and stores
% them in S.
%
% S = CREATE_GREENSPAN_SETTINGS('P1',SET1,'P2',SET2,...) sets the
% parameters P1 to be SET1, etc. The settings that can be changed are as
% follows:
%
% 'lo_filt' - Lowpass filter, which can be any kernel or one of 'gauss'
% or 'binomial5' (default 'binomial5')
% 'c' - Clipping constant (default 0.4). You may also specify
% 'derived', which sets it to be the derived value, 0.45. This
% constant must be in [0,1]. This constant provides the
% nonlinearity and augments the frequency content of the image.
% 's' - Scaling constant (default 5). You may also specify 'derived'
% which sets it to be the derived vaule, 3. This constant
% provides the sharp slope, thus reducing the blurring effect,
% yet augmenting the ringing side-effect.
% 'bp' - Bandpass filtering flag, which can be either 0 or 1 (default
% 1).
% 'factor' - Zoom by a factor of 2^factor (default is 1).
%
% See also GREENSPAN.
%
% <[email protected]>
S.lo_filt = binomialFilter(5);
S.lo_filt = S.lo_filt*S.lo_filt';
S.c = 0.4;
S.s = 5;
S.bp = 1;
S.factor = 1;
S = parse_args(S,varargin{:});
function S = parse_args(S,varargin)
n = length(varargin);
for k = 1:2:n-1
param = varargin{k};
setting = varargin{k+1};
switch lower(param)
case 'lo_filt'
if ischar(setting)
switch lower(setting)
case 'gauss'
S.lo_filt = fspecial('gauss',[3 3],1);
case 'binomial5'
S.lo_filt = binomialFilter(5);
S.lo_filt = S.lo_filt*S.lo_filt';
otherwise
error('Invalid setting of lo_filt');
end
else
S.lo_filt = setting;
end
case 'c'
if ischar(setting) & strcmp(lower(setting),'derived')
S.c = 0.45;
else
S.c = setting;
end
case 's'
if ischar(setting) & strcmp(lower(setting),'derived')
S.s = 3;
else
S.s = setting;
end
case 'bp'
S.bp = setting;
case 'factor'
S.factor = setting;
otherwise
error('Invalid parameter');
end
end
|
github
|
dmarcosg/RotEqNet-master
|
cnn_mnist_rot_dag.m
|
.m
|
RotEqNet-master/cnn_mnist_rot_dag.m
| 3,269 |
utf_8
|
097dc6b8c124ce44eaff65b75b03bd81
|
function [net, info] = cnn_mnist_rot_dag(varargin)
%CNN_MNIST Demonstrates MatConvNet on MNIST
run(fullfile(fileparts(mfilename('fullpath')),...
'..', '..', 'matlab', 'vl_setupnn.m')) ;
run(fullfile(fileparts(mfilename('fullpath')),...
'setup_mcnRotEqNet.m')) ;
opts.batchNormalization = true ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.expDir = fullfile('models', ['mnist-rot_size5_12k']) ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.dataDir = 'data';
opts.imdbPath = fullfile(opts.expDir, 'imdb.mat');
opts.train = struct() ;
opts = vl_argparse(opts, varargin) ;
if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end;
% --------------------------------------------------------------------
% Prepare data
% --------------------------------------------------------------------
net = netinit_mnist_dag() ;
if exist(opts.imdbPath, 'file')
imdb = load(opts.imdbPath) ;
else
imdb = getMnistImdb(opts) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ;
% --------------------------------------------------------------------
% Train
% --------------------------------------------------------------------
trainfn = @cnn_train_dag ;
[net, info] = trainfn(net, imdb, getBatch(opts), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
opts.train, ...
'val', find(imdb.images.set == 3));
% --------------------------------------------------------------------
function fn = getBatch(opts)
% --------------------------------------------------------------------
bopts = struct('numGpus', numel(opts.train.gpus)) ;
fn = @(x,y) getDagNNBatch(bopts,x,y) ;
function inputs = getDagNNBatch(opts, imdb, batch)
% --------------------------------------------------------------------
images = imdb.images.data(:,:,:,batch) ;
for i = 1:size(images,4)
images(:,:,:,i) = imrotate(images(:,:,:,i),rand*360,'crop');
end
labels = imdb.images.labels(1,batch) ;
if opts.numGpus > 0
images = gpuArray(images) ;
end
inputs = {'input', images, 'label', labels} ;
% --------------------------------------------------------------------
function imdb = getMnistImdb(opts)
% --------------------------------------------------------------------
% Prepare the imdb structure, returns image data with mean image subtracted
urlroot = 'http://www.iro.umontreal.ca/~lisa/icml2007data/';
files = {'mnist_rotation_new.zip'};
if ~exist(opts.dataDir, 'dir')
mkdir(opts.dataDir) ;
end
if ~exist(fullfile(opts.dataDir, files{1}), 'file')
url = sprintf([urlroot,files{1}]) ;
fprintf('downloading %s\n', url) ;
gunzip(url, opts.dataDir) ;
unzip(fullfile(opts.dataDir,files{1}),opts.dataDir);
end
d = single(dlmread(fullfile(opts.dataDir,'mnist_all_rotation_normalized_float_train_valid.amat')));
data = reshape(d(:,1:end-1)',28,28,1,[]);
set = [ones(1,size(data,4)-100) 3*ones(1,100)];
y = d(:,end)';
imdb.images.data = data ;
imdb.images.labels = y + 1 ;
imdb.images.set = set ;
imdb.meta.sets = {'train', 'val', 'test'} ;
imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
|
github
|
dmarcosg/RotEqNet-master
|
vl_nnpoolangle.m
|
.m
|
RotEqNet-master/matlab/vl_nnpoolangle.m
| 5,992 |
utf_8
|
41d89f1d4728b2ec44b115fb1382e485
|
function y = vl_nnpoolangle(x,varargin)
dzdy = [];
if nargin > 1
if ~ischar(varargin{1})
dzdy = varargin{1};
if numel(varargin) > 1
varargin = varargin(2:end);
end
end
end
opts.bins = 1;
opts.angle_n = 8;
opts.max_angle = 360;
opts.output_relative_angles = false;
opts.output_absolute_angles = false;
opts.opts = {};
if isempty(varargin{end})
varargin = varargin(1:end-1);
end
opts = vl_argparse(opts, varargin);
bins = opts.bins;
angle_n = opts.angle_n;
max_angle = opts.max_angle;
rel_ang = opts.output_relative_angles;
abs_ang = opts.output_absolute_angles;
if bins == 0
output_mode = 2;
bins = 1;
rel_ang = false;
abs_ang = false;
else
output_mode = 1;
end
if rel_ang || abs_ang
bins = 1;
end
if nargin <= 3 || isempty(dzdy) % Forward
x = permute(x,[1 2 4 3]);
xs = stackSteeredFilters(x,angle_n);
nearest_center = getNearestCenter(angle_n,bins,max_angle);
if output_mode == 1
if abs_ang || rel_ang
y = zeros(size(xs,1),size(xs,2),size(xs,3),...
size(xs,4)*(1 + 2*abs_ang + 2*(size(xs,4)-1)*rel_ang),1,'like',xs);
[y(:,:,:,1:size(xs,4)), y_ind] = max(xs,[],5);
y_ind = y_ind*2*pi/angle_n;
b = 1;
if rel_ang
for b = 1:size(xs,4)-1
dif_y = y_ind - circshift(y_ind,b,4);
y(:,:,:,(2*b-1)*size(xs,4)+1:2*b*size(xs,4)) = cos(dif_y);
y(:,:,:,2*b*size(xs,4)+1:(2*b+1)*size(xs,4)) = sin(dif_y);
end
b = b + 1;
end
if abs_ang
y(:,:,:,(2*b-1)*size(xs,4)+1:2*b*size(xs,4)) = cos(y_ind);
y(:,:,:,2*b*size(xs,4)+1:(2*b+1)*size(xs,4)) = sin(y_ind);
end
else
y = zeros(size(xs,1),size(xs,2),size(xs,3),size(xs,4),bins,'like',xs);
for i = 1:bins
y(:,:,:,:,i) = max(xs(:,:,:,:,nearest_center==i),[],5);
end
end
y = stackSteeredFilters(y,bins);
y = permute(y,[1 2 4 3]);
else % output_mode == 2
d_alpha = max_angle/angle_n;
alphas = 0:d_alpha:max_angle;
alphas(end) = [];
p1 = cos(alphas*pi/180);
p2 = sin(alphas*pi/180);
[absy,inds] = max(xs,[],5);
inds = reshape(inds,size(absy));
y1 = absy .* reshape(p1(inds),size(absy));
y2 = absy .* reshape(p2(inds),size(absy));
%y1 = stackSteeredFilters(y1,bins);
y1 = permute(y1,[1 2 4 3]);
%y2 = stackSteeredFilters(y2,bins);
y2 = permute(y2,[1 2 4 3]);
y = zeros([size(y1,1),size(y1,2),size(y1,3),size(y1,4),2],'like',x);
y(:,:,:,:,1) = y1;
y(:,:,:,:,2) = y2;
%y = stackSteeredFilters(permute(y,[1 2 4 3 5]),2);
%y = permute(y,[1 2 4 3]);
end
else % Backward
if abs_ang || rel_ang
dzdy = dzdy(:,:,1:size(x,3)/angle_n,:,:);
end
x = permute(x,[1 2 4 3]);
xs = stackSteeredFilters(x,angle_n);
nearest_center = getNearestCenter(angle_n,bins,max_angle);
if output_mode == 2
%temp_dzdy = zeros(size(dzdy(:,:,:,:,1)),'like',dzdy);
%for m = 1:2
% temp_dzdy = temp_dzdy + dzdy(:,:,:,:,m).^2;
%end
%dzdy = permute(dzdy,[1 2 4 3]);
%dzdy = stackSteeredFilters(dzdy,2);
%temp_dzdy = sqrt(sum(dzdy.^2,5));
d_alpha = opts.max_angle/angle_n;
alphas = 0:d_alpha:opts.max_angle;
alphas(end) = [];
p1 = cos(alphas*pi/180);
p2 = sin(alphas*pi/180);
[absy,inds] = max(xs,[],5);
inds = permute(inds,[1 2 4 3]);
dzdy = dzdy(:,:,:,:,1).*reshape(p1(inds),size(inds)) + dzdy(:,:,:,:,2).*reshape(p2(inds),size(inds)) ;
%dzdy = dzdy(:,:,:,:,1) + dzdy(:,:,:,:,2);
%dzdy = (temp_dzdy).*sign(permute(absy,[1 2 4 3]));
%inds = permute(inds,[1 2 4 3]);
%dzdy = dzdy(:,:,:,:,1).*sign(p1(inds)) + dzdy(:,:,:,:,2).*sign(p2(inds));
end
dzdy = permute(dzdy,[1 2 4 3]);
dzdys = stackSteeredFilters(dzdy,bins);
y = zeros(size(xs,1),size(xs,2),size(xs,3),size(xs,4),angle_n,'like',xs);
inds = zeros(size(xs,1),size(xs,2),size(xs,3),size(xs,4),bins,'like',xs);
inds_pre = zeros(size(xs,1),size(xs,2),size(xs,3),size(xs,4),bins,'like',xs);
offset = 0;
for i = 1:bins
[~,inds(:,:,:,:,i)] = max(xs(:,:,:,:,nearest_center==i),[],5);
inds_pre(:,:,:,:,i) = inds(:,:,:,:,i) + offset;
offset = offset + sum(nearest_center==i);
end
for i = 1:bins
new_y = zeros(size(y,1),size(y,2),size(y,3),size(y,4),sum(nearest_center==i),'like',y);
for j = 1:sum(nearest_center==i)
new_y(:,:,:,:,j) = dzdys(:,:,:,:,i).*(inds(:,:,:,:,i)==j);
end
y(:,:,:,:,nearest_center==i) = new_y;
end
y = stackSteeredFilters(y,angle_n);
y = permute(y,[1 2 4 3]);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function nearest_center = getNearestCenter(angle_n,bins,max_angle)
bin_centers = linspace(0,max_angle,bins+1);
bin_centers = bin_centers(1:end-1);
angles = linspace(0,max_angle,angle_n+1);
angles = angles(1:end-1);
dist_to_centers = pdist2(bin_centers',angles');
[~,nearest_center] = min(dist_to_centers,[],1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function fs = stackSteeredFilters(f,angle_n)
siz = [size(f),1,1];
if size(f,5) == 1 % it's a normal 4D filter bank
filt_num = siz(4) / angle_n;
fs = zeros([siz(1:3), filt_num, angle_n],'like',f);
for i = 1:angle_n
fs(:,:,:,:,i) = f(:,:,:,i:angle_n:filt_num*angle_n-angle_n + i);
end
else % it's a steered 5D filter bank
angle_n = siz(5);
filt_num = angle_n * siz(4);
fs = zeros([siz(1:3), filt_num],'like',f);
for i = 1:angle_n
fs(:,:,:,i:angle_n:filt_num-angle_n + i) = f(:,:,:,:,i);
end
end
end
|
github
|
dmarcosg/RotEqNet-master
|
vl_nnconvsteer.m
|
.m
|
RotEqNet-master/matlab/vl_nnconvsteer.m
| 3,965 |
utf_8
|
0164847c23a50e4cd3af8614cb0f6978
|
function [y,dzdf,dzdb] = vl_nnconvsteer(x,f,b,varargin)
% Forward: y = vl_nnconvsteer(x,f,b)
% Backward: [dzdx,dzdf,dzdb] = vl_nnconvsteer(x,f,b,dzdy)
% Options:
% 'angle_n': number of rotations to compute for each filter in f
if isa(x,'gpuArray')
f = gpuArray(f);
b = gpuArray(b);
end
cudnn = 'CuDNN';
dzdy = [];
if nargin > 3
if ~ischar(varargin{1})
dzdy = varargin{1};
if numel(varargin) > 1
varargin = varargin(2:end);
else
varargin = {};
end
end
if ~isempty(varargin) && ischar(varargin{end})
cudnn = varargin{end};
varargin = varargin(1:end-1);
end
end
opts.pad = 0 ;
opts.stride = 1 ;
opts.angle_n = 8;
opts.max_angle = 360;
%opts.
if ~isempty(varargin)
opts = vl_argparse(opts, varargin);
end
if size(f,5) == 2
input_mode = 2;
else
input_mode = 1;
end
if opts.angle_n > 1
mask = fspecial('disk', size(f,1)/2);
mask = imresize(mask,[size(f,1),size(f,2)]);
mask = mask / max(mask(:));
mask = mask > 0.5;
f = bsxfun(@times,f,mask);
end
if nargin <= 3 || isempty(dzdy) % Forward
br = zeros(1,numel(b)*opts.angle_n,'like',b);
for i = 1:numel(b)
br((i-1)*opts.angle_n+1:i*opts.angle_n) = b(i);
end
% If each input pixel is a 2D vector, apply conv to each dimension
% separately and add the result (scalar product)
y = zeros(1,'like',b);
fr = getSteeredFilters(f,opts.angle_n,opts.max_angle);
for m = 1:input_mode
tempy = vl_nnconv(x(:,:,:,:,m),fr(:,:,:,:,m),br,'pad',opts.pad,'stride',opts.stride,cudnn);
y = y + tempy;
end
dzdf = [];
dzdb = [];
else % Backward
% Multiplex the biases
br = zeros(1,numel(b)*opts.angle_n,'like',b);
for i = 1:numel(b)
br((i-1)*opts.angle_n+1:i*opts.angle_n) = b(i);
end
b = br;
dzdb_temp = {};
dzdx_temp = {};
% Get all steered filters
fr = getSteeredFilters(f,opts.angle_n,opts.max_angle);
dzdfr = zeros(size(fr),'like',fr);
for m = 1:input_mode
% Get gradients
[dzdx_temp{m}, dzdfr(:,:,:,:,m), dzdb_temp{m}] = vl_nnconv(x(:,:,:,:,m),fr(:,:,:,:,m),b,dzdy,'pad',opts.pad,'stride',opts.stride,cudnn);
% Demultiplex the bias gradients by averaging
dzdbr = zeros(1,numel(dzdb_temp{m})/opts.angle_n,'like',dzdb_temp{m});
for i = 1:numel(dzdbr)
dzdbr(i) = sum(dzdb_temp{m}((i-1)*opts.angle_n+1:i*opts.angle_n));
end
dzdb_temp{m} = dzdbr;
end
% Un-steer the gradients by averaging
dzdf = getSteeredFilters(dzdfr,-opts.angle_n,opts.max_angle);
size_x = size(dzdx_temp{1});
size_x(5) = input_mode;
size_x(size_x==0) = 1;
dzdx = zeros(size_x,'like',x);
dzdb = zeros(size(dzdb_temp{1}),'like',x);
for m = 1:input_mode
dzdx(:,:,:,:,m) = dzdx_temp{m};
dzdb = dzdb + dzdb_temp{m};
end
y = dzdx;% / sqrt(opts.angle_n);
dzdb = dzdb(:);% / sqrt(opts.angle_n);% / input_mode;
if opts.angle_n > 1
dzdf = bsxfun(@times,dzdf,mask);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function fr = getSteeredFilters(f,angle_n,max_angle)
% wr = getRotatedFilters(w,alpha_n)
% Get alpha_n rotated versions of filters w
% f is a 4D array of 3D filters
% alpha_n >=1 is an integer, the number of steered versions
if angle_n < 0
angle_n = abs(angle_n);
inverse = true;
fr = zeros([size(f,1),size(f,2),size(f,3),size(f,4)/angle_n,size(f,5)],'like',f);
else
inverse = false;
fr = zeros([size(f,1),size(f,2),size(f,3),size(f,4)*angle_n,size(f,5)],'like',f);
end
d_alpha = max_angle/angle_n;
alphas = 0:d_alpha:max_angle;
alphas(end) = [];
for i = 1:numel(alphas)
if inverse
fr = fr + rotateVectorField(f(:,:,:,i:angle_n:end,:),-alphas(i));
else
fr(:,:,:,i:angle_n:end,:) = rotateVectorField(f,alphas(i));
end
end
end
|
github
|
dmarcosg/RotEqNet-master
|
vl_nnpool_ext.m
|
.m
|
RotEqNet-master/matlab/vl_nnpool_ext.m
| 7,800 |
utf_8
|
c1face47f04b27495af521b42d58ec6e
|
function y = vl_nnpool_ext(x,ext,pool,varargin)
% Check whether forward or backward
dzdy = [];
if nargin > 3
if ~ischar(varargin{1})
dzdy = varargin{1};
if numel(varargin) > 1
varargin = varargin(2:end);
else
varargin = [];
end
end
end
opts.pad = 0 ;
%opts.stride = 1 ;
if ~isempty(varargin)
opts = vl_argparse(opts, varargin);
end
pad = opts.pad;
if numel(pad) == 1
pad = [ceil(pad/2) floor(pad/2) ceil(pad/2) floor(pad/2)];
end
if numel(pad) == 2
pad = [ceil(pad(1)/2) floor(pad(1)/2) ceil(pad(2)/2) floor(pad(2)/2)];
end
if mod(size(x,1),pool) ~= 0
pad = pad + [ceil(mod(size(x,1),pool)/2), floor(mod(size(x,1),pool)/2),...
ceil(mod(size(x,1),pool)/2), floor(mod(size(x,1),pool)/2)];
end
ingpu = isa(x,'gpuArray');
if ingpu
x = gather(x);
ext = gather(ext);
dzdy = gather(dzdy);
end
if nargin < 3 || isempty(dzdy) % Forward
padded_ext = zeros(size(ext,1) + pad(1) + pad(2),size(ext,2) + pad(3) + pad(4),size(ext,3),size(ext,4),size(ext,5),'like',ext);
padded_ext(pad(1)+1:end - pad(2), pad(3) + 1:end - pad(4),:,:,:,:) = ext;
padded_x = zeros(size(x,1) + pad(1) + pad(2),size(x,2) + pad(3) + pad(4),size(x,3),size(x,4),size(x,5),'like',x);
padded_x(pad(1)+1:end - pad(2), pad(3) + 1:end - pad(4),:,:,:,:) = x;
[~,ind] = maxpool(padded_ext,pool);
y = getmax(padded_x,pool,ind);
%y = zeros(size(temp,1) + pad(1) + pad(2),size(temp,2) + pad(3) + pad(4),size(temp,3),size(temp,4),size(temp,5),'like',temp);
%y(pad(1)+1:end - pad(2), pad(3) + 1:end - pad(4),:,:,:,:) = temp;
else % Backward
padded_ext = zeros(size(ext,1) + pad(1) + pad(2),size(ext,2) + pad(3) + pad(4),size(ext,3),size(ext,4),size(ext,5),'like',ext);
padded_ext(pad(1)+1:end - pad(2), pad(3) + 1:end - pad(4),:,:,:,:) = ext;
[~,ind] = maxpool(padded_ext,pool);
y = maxpool_back(dzdy,pool,size(padded_ext),ind);
y = y(pad(1)+1:end - pad(2), pad(3) + 1:end - pad(4),:,:,:,:);
end
if ingpu
y = gpuArray(y);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [m,ind] = maxpool(x,pool)
if numel(pool) == 1
pool = [pool pool];
end
x_pad = -inf(ceil(size(x,1)/pool(1))*pool(1),ceil(size(x,2)/pool(2))*pool(2),size(x,3),size(x,4),'like',x);
x_pad(1:size(x,1),1:size(x,2),:,:) = x;
m = zeros((size(x_pad,1)/pool(1)),(size(x_pad,2)/pool(2)),size(x_pad,3),size(x_pad,4),'like',x_pad);
ind = zeros(size(m),'like',m);
col = my_im2col(x_pad,pool,'distinct');
[temp_m,temp_ind] = max(col);
m = reshape(temp_m,size(m,1),size(m,2),size(x_pad,3),size(x_pad,4));
ind = reshape(temp_ind,size(m,1),size(m,2),size(x_pad,3),size(x_pad,4));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = maxpool_back(m,pool,s,ind)
if numel(pool) == 1
pool = [pool pool];
end
col_size = prod(pool);
num_cols = size(m,1)*size(m,2);
col = zeros(col_size,num_cols,size(m,3),size(m,4),'like',m);
offset = (0:numel(ind)-1)*prod(pool);
%offset = reshape(offset,size(ind));
col(ind(:) + offset(:)) = m(:);
x = my_col2im(col,pool,s,'distinct');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [m] = getmax(x,pool,ind)
if numel(pool) == 1
pool = [pool pool];
end
x_pad = -inf(ceil(size(x,1)/pool(1))*pool(1),ceil(size(x,2)/pool(2))*pool(2),size(x,3),size(x,4),'like',x);
x_pad(1:size(x,1),1:size(x,2),:,:) = x;
m = zeros((size(x_pad,1)/pool(1)),(size(x_pad,2)/pool(2)),size(x_pad,3),size(x_pad,4),'like',x_pad);
col = my_im2col(x_pad,pool,'distinct');
offset = (0:numel(ind)-1)*prod(pool);
offset = reshape(offset,size(ind));
m = reshape(col(ind+offset),size(ind));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function col = my_im2col(im,p,mode)
s = size(im);
if numel(s) == 3
s = [s 1];
end
if numel(s) == 2
s = [s 1 1];
end
col = zeros(prod(p),ceil(s(1)/p(1))*ceil(s(2)/p(2)),s(3),s(4),'like',im);
init_patch = zeros(p(1),p(2),size(im,3),size(im,4),'like',im);
count = 1;
p1 = p(1);
p2 = p(2);
s1 = s(1);
s2 = s(2);
if isa(im,'gpuArray')
s1 = gpuArray(s1);
s2 = gpuArray(s2);
p1 = gpuArray(p1);
p2 = gpuArray(p2);
count = gpuArray(1);
one = gpuArray(1);
else
one = 1;
end
first_corners = repmat( (1:p(1):s(1))',1,s(2)/p(2));
first_corners = bsxfun(@plus,first_corners,0:p(2)*s(1):s(1)*s(2)-1);
first_corners = first_corners(:);
first_corners = bsxfun(@plus, first_corners, 0:s(1)*s(2):s(1)*s(2)*s(3)-1);
first_corners = first_corners(:);
first_corners = bsxfun(@plus, first_corners, 0:s(1)*s(2)*s(3):s(1)*s(2)*s(3)*s(4)-1);
first_corners = first_corners(:);
for j = 0:p(2)-1
for i = 0:p(1)-1
temp = im(first_corners + i + s(1)*j);
temp = reshape(temp,1,size(col,2),size(col,3),size(col,4));
col(count,:,:,:) = temp;
count = count + 1;
end
end
% for j_start = one:p2:s2-one
% for i_start = one:p1:s1-one
% temp = init_patch;
% temp2 = im(i_start:min(s1,i_start+p1-one),j_start:min(s2,j_start+p2-one),:,:);
% temp(one:size(temp2,1),one:size(temp2,2),:,:) = temp2;
% col(:,count,:,:) = reshape(temp,[],1,s(3),s(4));
% count = count + one;
% end
% end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function im = my_col2im(col,p,s,mode)
if numel(s) == 3
s = [s size(col,4)];
end
if numel(s) == 2
s = [s size(col,3) size(col,4)];
end
im = zeros(s,'like',col);
count = 1;
if isa(im,'gpuArray')
s = gpuArray(s);
p = gpuArray(p);
count = gpuArray(1);
end
first_corners = repmat( (1:p(1):s(1))',1,s(2)/p(2));
first_corners = bsxfun(@plus,first_corners,0:p(2)*s(1):s(1)*s(2)-1);
first_corners = first_corners(:);
first_corners = bsxfun(@plus, first_corners, 0:s(1)*s(2):s(1)*s(2)*s(3)-1);
first_corners = first_corners(:);
first_corners = bsxfun(@plus, first_corners, 0:s(1)*s(2)*s(3):s(1)*s(2)*s(3)*s(4)-1);
first_corners = first_corners(:);
for j = 0:p(2)-1
for i = 0:p(1)-1
temp = col(count,:,:,:);
im(first_corners + i + s(1)*j) = temp(:);
count = count + 1;
end
end
% for j_start = 1:p(2):s(2)-1
% for i_start = 1:p(1):s(1)-1
% temp = col(:,count,:,:);
% temp = reshape(temp,p(1),p(2),s(3),s(4));
% this_p = [min(s(1),i_start+p(1)-1)-i_start+1,min(s(2),j_start+p(2)-1)-j_start+1];
% im(i_start:min(s(1),i_start+p(1)-1),j_start:min(s(2),j_start+p(2)-1),:,:) = temp(1:this_p(1),1:this_p(2),:,:);
% count = count + 1;
% end
% end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [m,ind] = maxpool2(x,pool)
if numel(pool) == 1
pool = [pool pool];
end
%x_pad = zeros(size(x,1)+2*pad,size(x,2)+2*pad,size(x,3),size(x,4),'like',x);
m_temp = zeros(ceil(size(x,1)/pool(1)),size(x,2),size(x,3),size(x,4),'like',x);
ind_temp = zeros(ceil(size(x,1)/pool(1)),size(x,2),size(x,3),size(x,4),'like',x);
count = 1;
for i_start = 1:pool(1):size(x,1)-1
i_end = min(i_start+pool(1),size(x,1));
[m_temp(count,:,:,:),ind_temp(count,:,:,:)] = max(x(i_start:i_end,:,:,:),[],1);
ind_temp(count,:,:,:) = ind_temp(count,:,:,:) + i_start - 1;
count = count + 1;
end
m = zeros(ceil(size(x,1)/pool(1)),ceil(size(x,2)/pool(2)),size(x,3),size(x,4),'like',x);
ind1 = zeros(ceil(size(x,1)/pool(1)),ceil(size(x,2)/pool(2)),size(x,3),size(x,4),'like',x);
ind2 = zeros(ceil(size(x,1)/pool(1)),ceil(size(x,2)/pool(2)),size(x,3),size(x,4),'like',x);
count = 1;
for j_start = 1:pool(1):size(x,1)-1
j_end = min(j_start+pool(2),size(x,2));
[m(:,count,:,:),ind2(:,count,:,:)] = max(m_temp(:,j_start:j_end,:,:),[],2);
%ind2(:,count,:,:) = ind2(:,count,:,:) + j_start - 1;
count = count + 1;
end
end
|
github
|
startcode/qp-oases-master
|
make.m
|
.m
|
qp-oases-master/interfaces/simulink/make.m
| 8,453 |
utf_8
|
b56fed5a0b41150b8af75373612324c7
|
function [] = make( varargin )
%MAKE Compiles the Simulink interface of qpOASES.
%
%Type make to compile all interfaces that
% have been modified,
%type make clean to delete all compiled interfaces,
%type make clean all to first delete and then compile
% all interfaces,
%type make 'name' to compile only the interface with
% the given name (if it has been modified),
%type make 'opt' to compile all interfaces using the
% given compiler options.
%
%Copyright (C) 2013-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%%
%% This file is part of qpOASES.
%%
%% qpOASES -- An Implementation of the Online Active Set Strategy.
%% Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%% Christian Kirches et al. All rights reserved.
%%
%% qpOASES is free software; you can redistribute it and/or
%% modify it under the terms of the GNU Lesser General Public
%% License as published by the Free Software Foundation; either
%% version 2.1 of the License, or (at your option) any later version.
%%
%% qpOASES is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%% See the GNU Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with qpOASES; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
%%
%%
%% Filename: interfaces/simulink/make.m
%% Author: Hans Joachim Ferreau, Andreas Potschka, Christian Kirches
%% Version: 3.2
%% Date: 2007-2017
%%
%% consistency check
if ( exist( [pwd, '/make.m'],'file' ) == 0 )
error( ['ERROR (',mfilename '.m): Run this make script directly within the directory ', ...
'<qpOASES-inst-dir>/interfaces/simulink, please.'] );
end
if ( nargin > 2 )
error( ['ERROR (',mfilename '.m): At most two make arguments supported!'] );
else
[ doClean,fcnNames,userFlags ] = analyseMakeArguments( nargin,varargin );
end
%% define compiler settings
QPOASESPATH = '../../';
DEBUGFLAGS = ' ';
%DEBUGFLAGS = ' -g CXXDEBUGFLAGS=''$CXXDEBUGFLAGS -Wall -pedantic -Wshadow'' ';
IFLAGS = [ '-I. -I',QPOASESPATH,'include',' -I',QPOASESPATH,'src',' ' ];
CPPFLAGS = [ IFLAGS, DEBUGFLAGS, '-largeArrayDims -D__cpluplus -D__MATLAB__ -D__SINGLE_OBJECT__',' ' ];
defaultFlags = '-O '; %% -D__NO_COPYRIGHT__ -D__SUPPRESSANYOUTPUT__
if ( ispc == 0 )
CPPFLAGS = [ CPPFLAGS, '-DLINUX ',' ' ];
else
CPPFLAGS = [ CPPFLAGS, '-DWIN32 ',' ' ];
end
if ( isempty(userFlags) > 0 )
CPPFLAGS = [ CPPFLAGS, defaultFlags,' ' ];
else
CPPFLAGS = [ CPPFLAGS, userFlags,' ' ];
end
mexExt = eval('mexext');
%% ensure copyright notice is displayed
if ~isempty( strfind( CPPFLAGS,'-D__NO_COPYRIGHT__' ) )
printCopyrightNotice( );
end
%% clean if desired
if ( doClean > 0 )
eval( 'delete *.o;' );
eval( ['delete *.',mexExt,'*;'] );
disp( [ 'INFO (',mfilename '.m): Cleaned all compiled files.'] );
pause( 0.2 );
end
if ( ~isempty(userFlags) )
disp( [ 'INFO (',mfilename '.m): Compiling all files with user-defined compiler flags (''',userFlags,''')...'] );
end
%% call mex compiler
for ii=1:length(fcnNames)
cmd = [ 'mex -output ', fcnNames{ii}, ' ', CPPFLAGS, [fcnNames{ii},'.cpp'] ];
if ( exist( [fcnNames{ii},'.',mexExt],'file' ) == 0 )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
% check modification time of source/Make files and compiled mex file
cppFile = dir( [pwd,'/',fcnNames{ii},'.cpp'] );
cppFileTimestamp = getTimestamp( cppFile );
makeFile = dir( [pwd,'/make.m'] );
makeFileTimestamp = getTimestamp( makeFile );
mexFile = dir( [pwd,'/',fcnNames{ii},'.',mexExt] );
if ( isempty(mexFile) == 0 )
mexFileTimestamp = getTimestamp( mexFile );
else
mexFileTimestamp = 0;
end
if ( ( cppFileTimestamp >= mexFileTimestamp ) || ...
( makeFileTimestamp >= mexFileTimestamp ) )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' already exists.'] );
end
end
end
%% add qpOASES directory to path
path( path,pwd );
end
function [ doClean,fcnNames,userIFlags ] = analyseMakeArguments( nArgs,args )
doClean = 0;
fcnNames = [];
userIFlags = [];
switch ( nArgs )
case 1
if ( strcmp( args{1},'all' ) > 0 )
fcnNames = { 'qpOASES_QProblemB','qpOASES_QProblem','qpOASES_SQProblem' };
elseif ( strcmp( args{1},'qpOASES_QProblemB' ) > 0 )
fcnNames = { 'qpOASES_QProblemB' };
elseif ( strcmp( args{1},'qpOASES_QProblem' ) > 0 )
fcnNames = { 'qpOASES_QProblem' };
elseif ( strcmp( args{1},'qpOASES_SQProblem' ) > 0 )
fcnNames = { 'qpOASES_SQProblem' };
elseif ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
elseif ( strcmp( args{1}(1),'-' ) > 0 )
% make clean all with user-specified compiler flags
userIFlags = args{1};
doClean = 1;
fcnNames = { 'qpOASES_QProblemB','qpOASES_QProblem','qpOASES_SQProblem' };
else
error( ['ERROR (',mfilename '.m): Invalid first argument (''',args{1},''')!'] );
end
case 2
if ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
else
error( ['ERROR (',mfilename '.m): First argument must be ''clean'' if two arguments are provided!'] );
end
if ( strcmp( args{2},'all' ) > 0 )
fcnNames = { 'qpOASES_QProblemB','qpOASES_QProblem','qpOASES_SQProblem' };
elseif ( strcmp( args{2},'qpOASES_QProblemB' ) > 0 )
fcnNames = { 'qpOASES_QProblemB' };
elseif ( strcmp( args{2},'qpOASES_QProblem' ) > 0 )
fcnNames = { 'qpOASES_QProblem' };
elseif ( strcmp( args{2},'qpOASES_SQProblem' ) > 0 )
fcnNames = { 'qpOASES_SQProblem' };
else
error( ['ERROR (',mfilename '.m): Invalid second argument (''',args{2},''')!'] );
end
otherwise
doClean = 0;
fcnNames = { 'qpOASES_QProblemB','qpOASES_QProblem','qpOASES_SQProblem' };
userIFlags = [];
end
end
function [ timestamp ] = getTimestamp( dateString )
try
timestamp = dateString.datenum;
catch
timestamp = Inf;
end
end
function [ ] = printCopyrightNotice( )
disp( ' ' );
disp( 'qpOASES -- An Implementation of the Online Active Set Strategy.' );
disp( 'Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,' );
disp( 'Christian Kirches et al. All rights reserved.' );
disp( ' ' );
disp( 'qpOASES is distributed under the terms of the' );
disp( 'GNU Lesser General Public License 2.1 in the hope that it will be' );
disp( 'useful, but WITHOUT ANY WARRANTY; without even the implied warranty' );
disp( 'of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.' );
disp( 'See the GNU Lesser General Public License for more details.' );
disp( ' ' );
disp( ' ' );
end
%%
%% end of file
%%
|
github
|
startcode/qp-oases-master
|
qpOASES_options.m
|
.m
|
qp-oases-master/interfaces/octave/qpOASES_options.m
| 10,357 |
utf_8
|
719207ae527db13f4b22333e9550c579
|
%qpOASES -- An Implementation of the Online Active Set Strategy.
%Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%
%qpOASES is distributed under the terms of the
%GNU Lesser General Public License 2.1 in the hope that it will be
%useful, but WITHOUT ANY WARRANTY; without even the implied warranty
%of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%See the GNU Lesser General Public License for more details.
%
%---------------------------------------------------------------------------------
%
%Returns a struct containing values for all options to be used within qpOASES.
%
%Call
% options = qpOASES_options( 'default' );
% options = qpOASES_options( 'reliable' );
% options = qpOASES_options( 'MPC' );
%to obtain a set of default options or a pre-defined set of options tuned
%for reliable or fast QP solution, respectively.
%
%Call
% options = qpOASES_options( 'option1',value1,'option2',value2,... )
%to obtain a set of default options but with 'option1' set to value1 etc.
%
%Call
% options = qpOASES_options( oldOptions,'option1',value1,... )
%to obtain a copy of the options struct oldOptions but with 'option1' set
%to value1 etc.
%
%Call
% options = qpOASES_options( 'default', 'option1',value1,... )
% options = qpOASES_options( 'reliable','option1',value1,... )
% options = qpOASES_options( 'MPC', 'option1',value1,... )
%to obtain a set of default options or a pre-defined set of options tuned
%for reliable or fast QP solution, respectively, but with 'option1' set to
%value1 etc.
%
%
%qpOASES features the following options:
% maxIter - Maximum number of iterations (if set
% to -1, a value is chosen heuristically)
% maxCpuTime - Maximum CPU time in seconds (if set
% to -1, only iteration limit is used)
% printLevel - 0: no printed output,
% 1: only error messages are printed,
% 2: iterations and error messages are printed,
% 3: all available messages are printed.
%
% enableRamping - Enables (1) or disables (0) ramping.
% enableFarBounds - Enables (1) or disables (0) the use of
% far bounds.
% enableFlippingBounds - Enables (1) or disables (0) the use of
% flipping bounds.
% enableRegularisation - Enables (1) or disables (0) automatic
% Hessian regularisation.
% enableFullLITests - Enables (1) or disables (0) condition-hardened
% (but more expensive) LI test.
% enableNZCTests - Enables (1) or disables (0) nonzero curvature
% tests.
% enableDriftCorrection - Specifies the frequency of drift corrections:
% 0: turns them off,
% 1: uses them at each iteration etc.
% enableCholeskyRefactorisation - Specifies the frequency of a full re-
% factorisation of projected Hessian matrix:
% 0: turns them off,
% 1: uses them at each iteration etc.
% enableEqualities - Specifies whether equalities should be treated
% as always active (1) or not (0)
%
% terminationTolerance - Relative termination tolerance to stop homotopy.
% boundTolerance - If upper and lower bounds differ less than this
% tolerance, they are regarded equal, i.e. as
% equality constraint.
% boundRelaxation - Initial relaxation of bounds to start homotopy
% and initial value for far bounds.
% epsNum - Numerator tolerance for ratio tests.
% epsDen - Denominator tolerance for ratio tests.
% maxPrimalJump - Maximum allowed jump in primal variables in
% nonzero curvature tests.
% maxDualJump - Maximum allowed jump in dual variables in
% linear independence tests.
%
% initialRamping - Start value for ramping strategy.
% finalRamping - Final value for ramping strategy.
% initialFarBounds - Initial size for far bounds.
% growFarBounds - Factor to grow far bounds.
% initialStatusBounds - Initial status of bounds at first iteration:
% 0: all bounds inactive,
% -1: all bounds active at their lower bound,
% +1: all bounds active at their upper bound.
% epsFlipping - Tolerance of squared Cholesky diagonal factor
% which triggers flipping bound.
% numRegularisationSteps - Maximum number of successive regularisation steps.
% epsRegularisation - Scaling factor of identity matrix used for
% Hessian regularisation.
% numRefinementSteps - Maximum number of iterative refinement steps.
% epsIterRef - Early termination tolerance for iterative
% refinement.
% epsLITests - Tolerance for linear independence tests.
% epsNZCTests - Tolerance for nonzero curvature tests.
%
%
%See also QPOASES, QPOASES_SEQUENCE, QPOASES_AUXINPUT
%
%
%For additional information see the qpOASES User's Manual or
%visit http://www.qpOASES.org/.
%
%Please send remarks and questions to [email protected]!
function [ options ] = qpOASES_options( varargin )
firstIsStructOrScheme = 0;
if ( nargin == 0 )
options = qpOASES_default_options();
else
if ( isstruct( varargin{1} ) )
if ( mod( nargin,2 ) ~= 1 )
error('ERROR (qpOASES_options): Options must be specified in pairs!');
end
options = varargin{1};
firstIsStructOrScheme = 1;
else
if ( ischar( varargin{1} ) )
if ( mod( nargin,2 ) == 0 )
options = qpOASES_default_options();
else
if ( ( nargin > 1 ) && ( ischar( varargin{nargin} ) ) )
error('ERROR (qpOASES_options): Options must be specified in pairs!');
end
switch ( varargin{1} )
case 'default'
options = qpOASES_default_options();
case 'reliable'
options = qpOASES_reliable_options();
case {'MPC','mpc','fast'}
options = qpOASES_MPC_options();
otherwise
error( ['ERROR (qpOASES_options): Only the following option schemes are defined: ''default'', ''reliable'', ''MPC''!'] );
end
firstIsStructOrScheme = 1;
end
else
error('ERROR (qpOASES_options): First argument needs to be a string or an options struct!');
end
end
end
% set options to user-defined values
for i=(1+firstIsStructOrScheme):2:nargin
argName = varargin{i};
argValue = varargin{i+1};
if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) )
error('ERROR (qpOASES_options): Argmument no. %d has to be a non-empty string!',i );
end
if ( ( ischar(argValue) ) || ( ~isscalar( argValue ) ) )
error('ERROR (qpOASES_options): Argmument no. %d has to be a scalar constant!',i+1 );
end
if ( ~isfield( options,argName ) )
error('ERROR (qpOASES_options): Argmument no. %d is an invalid option!',i );
end
eval( ['options.',argName,' = ',num2str(argValue),';'] );
end
end
function [ options ] = qpOASES_default_options( )
% setup options struct with default values
options = struct( 'maxIter', -1, ...
'maxCpuTime', -1, ...
'printLevel', 1, ...
...
'enableRamping', 1, ...
'enableFarBounds', 1, ...
'enableFlippingBounds', 1, ...
'enableRegularisation', 0, ...
'enableFullLITests', 0, ...
'enableNZCTests', 1, ...
'enableDriftCorrection', 1, ...
'enableCholeskyRefactorisation', 0, ...
'enableEqualities', 0, ...
...
'terminationTolerance', 5.0e6*eps, ...
'boundTolerance', 1.0e6*eps, ...
'boundRelaxation', 1.0e4, ...
'epsNum', -1.0e3*eps, ...
'epsDen', 1.0e3*eps, ...
'maxPrimalJump', 1.0e8, ...
'maxDualJump', 1.0e8, ...
...
'initialRamping', 0.5, ...
'finalRamping', 1.0, ...
'initialFarBounds', 1.0e6, ...
'growFarBounds', 1.0e3, ...
'initialStatusBounds', -1, ...
'epsFlipping', 1.0e3*eps, ...
'numRegularisationSteps', 0, ...
'epsRegularisation', 1.0e3*eps, ...
'numRefinementSteps', 1, ...
'epsIterRef', 1.0e2*eps, ...
'epsLITests', 1.0e5*eps, ...
'epsNZCTests', 3.1e3*eps );
end
function [ options ] = qpOASES_reliable_options( )
% setup options struct with values for most reliable QP solution
options = qpOASES_default_options( );
options.enableFullLITests = 1;
options.enableCholeskyRefactorisation = 1;
options.numRefinementSteps = 2;
end
function [ options ] = qpOASES_MPC_options( )
% setup options struct with values for most reliable QP solution
options = qpOASES_default_options( );
options.enableRamping = 0;
options.enableFarBounds = 1;
options.enableFlippingBounds = 0;
options.enableRegularisation = 1;
options.enableNZCTests = 0;
options.enableDriftCorrection = 0;
options.enableEqualities = 1;
options.terminationTolerance = 1.0e9*eps;
options.initialStatusBounds = 0;
options.numRegularisationSteps = 1;
options.numRefinementSteps = 0;
end
|
github
|
startcode/qp-oases-master
|
make.m
|
.m
|
qp-oases-master/interfaces/octave/make.m
| 8,296 |
utf_8
|
2ab639ac67f632a68b41a91e0b666f74
|
function [] = make( varargin )
%MAKE Compiles the octave interface of qpOASES.
%
%Type make to compile all interfaces that
% have been modified,
%type make clean to delete all compiled interfaces,
%type make clean all to first delete and then compile
% all interfaces,
%type make 'name' to compile only the interface with
% the given name (if it has been modified),
%type make 'opt' to compile all interfaces using the
% given compiler options.
%
%Copyright (C) 2013-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%%
%% This file is part of qpOASES.
%%
%% qpOASES -- An Implementation of the Online Active Set Strategy.
%% Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%% Christian Kirches et al. All rights reserved.
%%
%% qpOASES is free software; you can redistribute it and/or
%% modify it under the terms of the GNU Lesser General Public
%% License as published by the Free Software Foundation; either
%% version 2.1 of the License, or (at your option) any later version.
%%
%% qpOASES is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%% See the GNU Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with qpOASES; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
%%
%%
%% Filename: interfaces/octave/make.m
%% Author: Hans Joachim Ferreau, Andreas Potschka, Christian Kirches
%% Version: 3.2
%% Date: 2007-2017
%%
%% consistency check
if ( exist( [pwd, '/make.m'],'file' ) == 0 )
error( ['ERROR (',mfilename '.m): Run this make script directly within the directory', ...
'<qpOASES-inst-dir>/interfaces/octave, please.'] );
end
if ( nargin > 2 )
error( ['ERROR (',mfilename '.m): At most two make arguments supported!'] );
else
[ doClean,fcnNames,userFlags ] = analyseMakeArguments( nargin,varargin );
end
%% define compiler settings
QPOASESPATH = '../../';
DEBUGFLAGS = ' ';
%DEBUGFLAGS = ' -g CXXDEBUGFLAGS=''$CXXDEBUGFLAGS -Wall -pedantic -Wshadow'' ';
IFLAGS = [ '-I. -I',QPOASESPATH,'include',' -I',QPOASESPATH,'src',' ' ];
CPPFLAGS = [ IFLAGS, DEBUGFLAGS, '-D__cpluplus -D__SINGLE_OBJECT__',' ' ]; %%removed: -largeArrayDims
defaultFlags = '-D__NO_COPYRIGHT__ '; %% -D__SUPPRESSANYOUTPUT__ %%removed: -O
if ( ispc == 0 )
CPPFLAGS = [ CPPFLAGS, '-DLINUX ',' ' ];
else
CPPFLAGS = [ CPPFLAGS, '-DWIN32 ',' ' ];
end
if ( isempty(userFlags) > 0 )
CPPFLAGS = [ CPPFLAGS, defaultFlags,' ' ];
else
CPPFLAGS = [ CPPFLAGS, userFlags,' ' ];
end
mexExt = mexext();
%% ensure copyright notice is displayed
if ~isempty( strfind( CPPFLAGS,'-D__NO_COPYRIGHT__' ) )
printCopyrightNotice( );
end
%% clean if desired
if ( doClean > 0 )
eval( 'delete *.o;' );
eval( ['delete *.',mexExt,'*;'] );
disp( [ 'INFO (',mfilename '.m): Cleaned all compiled files.'] );
pause( 0.2 );
end
if ( ~isempty(userFlags) )
disp( [ 'INFO (',mfilename '.m): Compiling all files with user-defined compiler flags (''',userFlags,''')...'] );
end
%% call mex compiler
for ii=1:length(fcnNames)
cmd = [ 'mkoctfile --mex --output ', fcnNames{ii}, '.', mexext(), ' ', CPPFLAGS, [fcnNames{ii},'.cpp'] ];
if ( exist( [fcnNames{ii},'.',mexExt],'file' ) == 0 )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
% check modification time of source/Make files and compiled mex file
cppFile = dir( [pwd,'/',fcnNames{ii},'.cpp'] );
cppFileTimestamp = getTimestamp( cppFile.date );
utilsFile = dir( [pwd,'/qpOASES_octave_utils.cpp'] );
utilsFileTimestamp = getTimestamp( utilsFile.date );
makeFile = dir( [pwd,'/make.m'] );
makeFileTimestamp = getTimestamp( makeFile.date );
mexFile = dir( [pwd,'/',fcnNames{ii},'.',mexExt] );
if ( isempty(mexFile) == 0 )
mexFileTimestamp = getTimestamp( mexFile.date );
else
mexFileTimestamp = 0;
end
if ( ( cppFileTimestamp >= mexFileTimestamp ) || ...
( utilsFileTimestamp >= mexFileTimestamp ) || ...
( makeFileTimestamp >= mexFileTimestamp ) )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' already exists.'] );
end
end
end
%% add qpOASES directory to path
path( path,pwd );
end
function [ doClean,fcnNames,userIFlags ] = analyseMakeArguments( nArgs,args )
doClean = 0;
fcnNames = [];
userIFlags = [];
switch ( nArgs )
case 1
if ( strcmp( args{1},'all' ) > 0 )
fcnNames = { 'qpOASES','qpOASES_sequence' };
elseif ( strcmp( args{1},'qpOASES' ) > 0 )
fcnNames = { 'qpOASES' };
elseif ( strcmp( args{1},'qpOASES_sequence' ) > 0 )
fcnNames = { 'qpOASES_sequence' };
elseif ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
elseif ( strcmp( args{1}(1),'-' ) > 0 )
% make clean all with user-specified compiler flags
userIFlags = args{1};
doClean = 1;
fcnNames = { 'qpOASES','qpOASES_sequence' };
else
error( ['ERROR (',mfilename '.m): Invalid first argument (''',args{1},''')!'] );
end
case 2
if ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
else
error( ['ERROR (',mfilename '.m): First argument must be ''clean'' if two arguments are provided!'] );
end
if ( strcmp( args{2},'all' ) > 0 )
fcnNames = { 'qpOASES','qpOASES_sequence' };
elseif ( strcmp( args{2},'qpOASES' ) > 0 )
fcnNames = { 'qpOASES' };
elseif ( strcmp( args{2},'qpOASES_sequence' ) > 0 )
fcnNames = { 'qpOASES_sequence' };
else
error( ['ERROR (',mfilename '.m): Invalid second argument (''',args{2},''')!'] );
end
otherwise
fcnNames = { 'qpOASES','qpOASES_sequence' };
end
end
function [ timestamp ] = getTimestamp( dateString )
try
timestamp = datenum( dateString );
catch
timestamp = Inf;
end
end
function [ ] = printCopyrightNotice( )
disp( ' ' );
disp( 'qpOASES -- An Implementation of the Online Active Set Strategy.' );
disp( 'Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,' );
disp( 'Christian Kirches et al. All rights reserved.' );
disp( ' ' );
disp( 'qpOASES is distributed under the terms of the' );
disp( 'GNU Lesser General Public License 2.1 in the hope that it will be' );
disp( 'useful, but WITHOUT ANY WARRANTY; without even the implied warranty' );
disp( 'of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.' );
disp( 'See the GNU Lesser General Public License for more details.' );
disp( ' ' );
disp( ' ' );
end
%%
%% end of file
%%
|
github
|
startcode/qp-oases-master
|
qpOASES_auxInput.m
|
.m
|
qp-oases-master/interfaces/octave/qpOASES_auxInput.m
| 4,436 |
utf_8
|
fcc9652ca47c9fe89d24f7dc500fcb49
|
%qpOASES -- An Implementation of the Online Active Set Strategy.
%Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%
%qpOASES is distributed under the terms of the
%GNU Lesser General Public License 2.1 in the hope that it will be
%useful, but WITHOUT ANY WARRANTY; without even the implied warranty
%of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%See the GNU Lesser General Public License for more details.
%
%---------------------------------------------------------------------------------
%
%Returns a struct containing all possible auxiliary inputs to be passed
%to qpOASES.
%
%Call
% auxInput = qpOASES_auxInput();
%to obtain a struct with all auxiliary inputs empty.
%
%Call
% auxInput = qpOASES_auxInput( 'input1',value1,'input2',value2,... )
%to obtain a struct with 'input1' set to value1 etc. and all remaining
%auxiliary inputs empty.
%
%Call
% auxInput = qpOASES_auxInput( oldInputs,'input1',value1,... )
%to obtain a copy of the options struct oldInputs but with 'input1' set to
%value1 etc.
%
%
%qpOASES features the following auxiliary inputs:
% hessianType - Provide information on Hessian matrix:
% 0: Hessian is zero matrix (i.e. LP formulation)
% 1: Hessian is identity matrix
% 2: Hessian is (strictly) positive definite
% 3: Hessian is positive definite on null space
% of active bounds/constraints
% 4: Hessian is positive semi-definite.
% 5: Hessian is indefinite
% Leave hessianType empty if Hessian type is unknown.
% x0 - Initial guess for optimal primal solution.
% guessedWorkingSetB - Initial guess for working set of bounds at
% optimal solution (nV elements or empty).
% guessedWorkingSetC - Initial guess for working set of constraints at
% optimal solution (nC elements or empty).
% The working sets needs to be encoded as follows:
% 1: bound/constraint at its upper bound
% 0: bound/constraint not at any bound
% -1: bound/constraint at its lower bound
% R - Cholesky factor of Hessian matrix (upper-triangular);
% only used if both guessedWorkingSets are empty
% and option initialStatusBounds is set to 0.
%
%
%See also QPOASES, QPOASES_SEQUENCE, QPOASES_OPTIONS
%
%
%For additional information see the qpOASES User's Manual or
%visit http://www.qpOASES.org/.
%
%Please send remarks and questions to [email protected]!
function [ auxInput ] = qpOASES_auxInput( varargin )
firstIsStruct = 0;
if ( nargin == 0 )
auxInput = qpOASES_emptyAuxInput();
else
if ( isstruct( varargin{1} ) )
if ( mod( nargin,2 ) ~= 1 )
error('ERROR (qpOASES_auxInput): Auxiliary inputs must be specified in pairs!');
end
auxInput = varargin{1};
firstIsStruct = 1;
else
if ( mod( nargin,2 ) ~= 0 )
error('ERROR (qpOASES_auxInput): Auxiliary inputs must be specified in pairs!');
end
auxInput = qpOASES_emptyAuxInput();
end
end
% set options to user-defined values
for i=(1+firstIsStruct):2:nargin
argName = varargin{i};
argValue = varargin{i+1};
if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d has to be a non-empty string!',i );
end
if ( ( ischar(argValue) ) || ( ~isnumeric( argValue ) ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d has to be a numerical constant!',i+1 );
end
if ( ~isfield( auxInput,argName ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d is not a valid auxiliary input!',i );
end
eval( ['auxInput.',argName,' = argValue;'] );
end
end
function [ auxInput ] = qpOASES_emptyAuxInput( )
% setup auxiliary input struct with all entries empty
auxInput = struct( 'hessianType', [], ...
'x0', [], ...
'guessedWorkingSetB', [], ...
'guessedWorkingSetC', [], ...
'R', [] ...
);
end
|
github
|
startcode/qp-oases-master
|
qpOASES_options.m
|
.m
|
qp-oases-master/interfaces/matlab/qpOASES_options.m
| 10,357 |
utf_8
|
719207ae527db13f4b22333e9550c579
|
%qpOASES -- An Implementation of the Online Active Set Strategy.
%Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%
%qpOASES is distributed under the terms of the
%GNU Lesser General Public License 2.1 in the hope that it will be
%useful, but WITHOUT ANY WARRANTY; without even the implied warranty
%of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%See the GNU Lesser General Public License for more details.
%
%---------------------------------------------------------------------------------
%
%Returns a struct containing values for all options to be used within qpOASES.
%
%Call
% options = qpOASES_options( 'default' );
% options = qpOASES_options( 'reliable' );
% options = qpOASES_options( 'MPC' );
%to obtain a set of default options or a pre-defined set of options tuned
%for reliable or fast QP solution, respectively.
%
%Call
% options = qpOASES_options( 'option1',value1,'option2',value2,... )
%to obtain a set of default options but with 'option1' set to value1 etc.
%
%Call
% options = qpOASES_options( oldOptions,'option1',value1,... )
%to obtain a copy of the options struct oldOptions but with 'option1' set
%to value1 etc.
%
%Call
% options = qpOASES_options( 'default', 'option1',value1,... )
% options = qpOASES_options( 'reliable','option1',value1,... )
% options = qpOASES_options( 'MPC', 'option1',value1,... )
%to obtain a set of default options or a pre-defined set of options tuned
%for reliable or fast QP solution, respectively, but with 'option1' set to
%value1 etc.
%
%
%qpOASES features the following options:
% maxIter - Maximum number of iterations (if set
% to -1, a value is chosen heuristically)
% maxCpuTime - Maximum CPU time in seconds (if set
% to -1, only iteration limit is used)
% printLevel - 0: no printed output,
% 1: only error messages are printed,
% 2: iterations and error messages are printed,
% 3: all available messages are printed.
%
% enableRamping - Enables (1) or disables (0) ramping.
% enableFarBounds - Enables (1) or disables (0) the use of
% far bounds.
% enableFlippingBounds - Enables (1) or disables (0) the use of
% flipping bounds.
% enableRegularisation - Enables (1) or disables (0) automatic
% Hessian regularisation.
% enableFullLITests - Enables (1) or disables (0) condition-hardened
% (but more expensive) LI test.
% enableNZCTests - Enables (1) or disables (0) nonzero curvature
% tests.
% enableDriftCorrection - Specifies the frequency of drift corrections:
% 0: turns them off,
% 1: uses them at each iteration etc.
% enableCholeskyRefactorisation - Specifies the frequency of a full re-
% factorisation of projected Hessian matrix:
% 0: turns them off,
% 1: uses them at each iteration etc.
% enableEqualities - Specifies whether equalities should be treated
% as always active (1) or not (0)
%
% terminationTolerance - Relative termination tolerance to stop homotopy.
% boundTolerance - If upper and lower bounds differ less than this
% tolerance, they are regarded equal, i.e. as
% equality constraint.
% boundRelaxation - Initial relaxation of bounds to start homotopy
% and initial value for far bounds.
% epsNum - Numerator tolerance for ratio tests.
% epsDen - Denominator tolerance for ratio tests.
% maxPrimalJump - Maximum allowed jump in primal variables in
% nonzero curvature tests.
% maxDualJump - Maximum allowed jump in dual variables in
% linear independence tests.
%
% initialRamping - Start value for ramping strategy.
% finalRamping - Final value for ramping strategy.
% initialFarBounds - Initial size for far bounds.
% growFarBounds - Factor to grow far bounds.
% initialStatusBounds - Initial status of bounds at first iteration:
% 0: all bounds inactive,
% -1: all bounds active at their lower bound,
% +1: all bounds active at their upper bound.
% epsFlipping - Tolerance of squared Cholesky diagonal factor
% which triggers flipping bound.
% numRegularisationSteps - Maximum number of successive regularisation steps.
% epsRegularisation - Scaling factor of identity matrix used for
% Hessian regularisation.
% numRefinementSteps - Maximum number of iterative refinement steps.
% epsIterRef - Early termination tolerance for iterative
% refinement.
% epsLITests - Tolerance for linear independence tests.
% epsNZCTests - Tolerance for nonzero curvature tests.
%
%
%See also QPOASES, QPOASES_SEQUENCE, QPOASES_AUXINPUT
%
%
%For additional information see the qpOASES User's Manual or
%visit http://www.qpOASES.org/.
%
%Please send remarks and questions to [email protected]!
function [ options ] = qpOASES_options( varargin )
firstIsStructOrScheme = 0;
if ( nargin == 0 )
options = qpOASES_default_options();
else
if ( isstruct( varargin{1} ) )
if ( mod( nargin,2 ) ~= 1 )
error('ERROR (qpOASES_options): Options must be specified in pairs!');
end
options = varargin{1};
firstIsStructOrScheme = 1;
else
if ( ischar( varargin{1} ) )
if ( mod( nargin,2 ) == 0 )
options = qpOASES_default_options();
else
if ( ( nargin > 1 ) && ( ischar( varargin{nargin} ) ) )
error('ERROR (qpOASES_options): Options must be specified in pairs!');
end
switch ( varargin{1} )
case 'default'
options = qpOASES_default_options();
case 'reliable'
options = qpOASES_reliable_options();
case {'MPC','mpc','fast'}
options = qpOASES_MPC_options();
otherwise
error( ['ERROR (qpOASES_options): Only the following option schemes are defined: ''default'', ''reliable'', ''MPC''!'] );
end
firstIsStructOrScheme = 1;
end
else
error('ERROR (qpOASES_options): First argument needs to be a string or an options struct!');
end
end
end
% set options to user-defined values
for i=(1+firstIsStructOrScheme):2:nargin
argName = varargin{i};
argValue = varargin{i+1};
if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) )
error('ERROR (qpOASES_options): Argmument no. %d has to be a non-empty string!',i );
end
if ( ( ischar(argValue) ) || ( ~isscalar( argValue ) ) )
error('ERROR (qpOASES_options): Argmument no. %d has to be a scalar constant!',i+1 );
end
if ( ~isfield( options,argName ) )
error('ERROR (qpOASES_options): Argmument no. %d is an invalid option!',i );
end
eval( ['options.',argName,' = ',num2str(argValue),';'] );
end
end
function [ options ] = qpOASES_default_options( )
% setup options struct with default values
options = struct( 'maxIter', -1, ...
'maxCpuTime', -1, ...
'printLevel', 1, ...
...
'enableRamping', 1, ...
'enableFarBounds', 1, ...
'enableFlippingBounds', 1, ...
'enableRegularisation', 0, ...
'enableFullLITests', 0, ...
'enableNZCTests', 1, ...
'enableDriftCorrection', 1, ...
'enableCholeskyRefactorisation', 0, ...
'enableEqualities', 0, ...
...
'terminationTolerance', 5.0e6*eps, ...
'boundTolerance', 1.0e6*eps, ...
'boundRelaxation', 1.0e4, ...
'epsNum', -1.0e3*eps, ...
'epsDen', 1.0e3*eps, ...
'maxPrimalJump', 1.0e8, ...
'maxDualJump', 1.0e8, ...
...
'initialRamping', 0.5, ...
'finalRamping', 1.0, ...
'initialFarBounds', 1.0e6, ...
'growFarBounds', 1.0e3, ...
'initialStatusBounds', -1, ...
'epsFlipping', 1.0e3*eps, ...
'numRegularisationSteps', 0, ...
'epsRegularisation', 1.0e3*eps, ...
'numRefinementSteps', 1, ...
'epsIterRef', 1.0e2*eps, ...
'epsLITests', 1.0e5*eps, ...
'epsNZCTests', 3.1e3*eps );
end
function [ options ] = qpOASES_reliable_options( )
% setup options struct with values for most reliable QP solution
options = qpOASES_default_options( );
options.enableFullLITests = 1;
options.enableCholeskyRefactorisation = 1;
options.numRefinementSteps = 2;
end
function [ options ] = qpOASES_MPC_options( )
% setup options struct with values for most reliable QP solution
options = qpOASES_default_options( );
options.enableRamping = 0;
options.enableFarBounds = 1;
options.enableFlippingBounds = 0;
options.enableRegularisation = 1;
options.enableNZCTests = 0;
options.enableDriftCorrection = 0;
options.enableEqualities = 1;
options.terminationTolerance = 1.0e9*eps;
options.initialStatusBounds = 0;
options.numRegularisationSteps = 1;
options.numRefinementSteps = 0;
end
|
github
|
startcode/qp-oases-master
|
make.m
|
.m
|
qp-oases-master/interfaces/matlab/make.m
| 8,997 |
utf_8
|
55ce9b55d80b98c042742e61a7372014
|
function [] = make( varargin )
%MAKE Compiles the Matlab interface of qpOASES.
%
%Type make to compile all interfaces that
% have been modified,
%type make clean to delete all compiled interfaces,
%type make clean all to first delete and then compile
% all interfaces,
%type make 'name' to compile only the interface with
% the given name (if it has been modified),
%type make 'opt' to compile all interfaces using the
% given compiler options.
%
%Copyright (C) 2013-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%%
%% This file is part of qpOASES.
%%
%% qpOASES -- An Implementation of the Online Active Set Strategy.
%% Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%% Christian Kirches et al. All rights reserved.
%%
%% qpOASES is free software; you can redistribute it and/or
%% modify it under the terms of the GNU Lesser General Public
%% License as published by the Free Software Foundation; either
%% version 2.1 of the License, or (at your option) any later version.
%%
%% qpOASES is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%% See the GNU Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with qpOASES; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
%%
%%
%% Filename: interfaces/matlab/make.m
%% Author: Hans Joachim Ferreau, Andreas Potschka, Christian Kirches
%% Version: 3.2
%% Date: 2007-2017
%%
%% consistency check
if ( exist( [pwd, '/make.m'],'file' ) == 0 )
error( ['ERROR (',mfilename '.m): Run this make script directly within the directory ', ...
'<qpOASES-inst-dir>/interfaces/matlab, please.'] );
end
if ( nargin > 2 )
error( ['ERROR (',mfilename '.m): At most two make arguments supported!'] );
else
[ doClean,fcnNames,userFlags ] = analyseMakeArguments( nargin,varargin );
end
%% define compiler settings
QPOASESPATH = '../../';
DEBUGFLAGS = ' ';
%DEBUGFLAGS = ' -v -g CXXDEBUGFLAGS=''$CXXDEBUGFLAGS -Wall -pedantic -Wshadow'' ';
IFLAGS = [ '-I. -I',QPOASESPATH,'include',' -I',QPOASESPATH,'src',' ' ];
CPPFLAGS = [ IFLAGS, DEBUGFLAGS, '-largeArrayDims -D__cpluplus -D__MATLAB__ -D__SINGLE_OBJECT__',' ' ];
defaultFlags = '-O -D__NO_COPYRIGHT__ '; %% -D__SUPPRESSANYOUTPUT__
if ( ispc() == 0 )
CPPFLAGS = [ CPPFLAGS, '-DLINUX -lmwblas',' ' ];
else
CPPFLAGS = [ CPPFLAGS, '-DWIN32',' ' ];
end
if ( isempty(userFlags) > 0 )
CPPFLAGS = [ CPPFLAGS, defaultFlags,' ' ];
else
CPPFLAGS = [ CPPFLAGS, userFlags,' ' ];
end
%% determine if MA57 is available for sparse linear algebra
isoctave = exist('OCTAVE_VERSION', 'builtin') ~= 0;
if isoctave
warning('Sparse linear algebra is currently not available for qpOASES in Octave. Passing sparse matrices works but will likely be slow.')
SPARSEFLAGS = '';
elseif verLessThan('matlab', '7.8')
warning('Sparse linear algebra is currently available for qpOASES only for Matlab versions 7.8 and later. Passing sparse matrices works but will likely be slow.')
SPARSEFLAGS = '';
else
if ( ispc() == 0 )
SPARSEFLAGS = '-largeArrayDims -D__USE_LONG_INTEGERS__ -D__USE_LONG_FINTS__ -DSOLVER_MA57 -lmwma57 ';
else
SPARSEFLAGS = '-largeArrayDims -D__USE_LONG_INTEGERS__ -D__USE_LONG_FINTS__ ';
end
end
mexExt = eval('mexext');
%% ensure copyright notice is displayed
if ~isempty( strfind( CPPFLAGS,'-D__NO_COPYRIGHT__' ) )
printCopyrightNotice( );
end
%% clean if desired
if ( doClean > 0 )
eval( 'delete *.o;' );
eval( ['delete *.',mexExt,'*;'] );
disp( [ 'INFO (',mfilename '.m): Cleaned all compiled files.'] );
pause( 0.2 );
end
if ( ~isempty(userFlags) )
disp( [ 'INFO (',mfilename '.m): Compiling all files with user-defined compiler flags (''',userFlags,''')...'] );
end
%% call mex compiler
for ii=1:length(fcnNames)
cmd = [ 'mex -output ', fcnNames{ii}, ' ', CPPFLAGS, SPARSEFLAGS, [fcnNames{ii},'.cpp'] ];
if ( exist( [fcnNames{ii},'.',mexExt],'file' ) == 0 )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
% check modification time of source/Make files and compiled mex file
cppFile = dir( [pwd,'/',fcnNames{ii},'.cpp'] );
cppFileTimestamp = getTimestamp( cppFile );
utilsFile = dir( [pwd,'/qpOASES_matlab_utils.cpp'] );
utilsFileTimestamp = getTimestamp( utilsFile );
makeFile = dir( [pwd,'/make.m'] );
makeFileTimestamp = getTimestamp( makeFile );
mexFile = dir( [pwd,'/',fcnNames{ii},'.',mexExt] );
if ( isempty(mexFile) == 0 )
mexFileTimestamp = getTimestamp( mexFile );
else
mexFileTimestamp = 0;
end
if ( ( cppFileTimestamp >= mexFileTimestamp ) || ...
( utilsFileTimestamp >= mexFileTimestamp ) || ...
( makeFileTimestamp >= mexFileTimestamp ) )
eval( cmd );
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] );
else
disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' already exists.'] );
end
end
end
%% add qpOASES directory to path
path( path,pwd );
end
function [ doClean,fcnNames,userIFlags ] = analyseMakeArguments( nArgs,args )
doClean = 0;
fcnNames = [];
userIFlags = [];
switch ( nArgs )
case 1
if ( strcmp( args{1},'all' ) > 0 )
fcnNames = { 'qpOASES','qpOASES_sequence' };
elseif ( strcmp( args{1},'qpOASES' ) > 0 )
fcnNames = { 'qpOASES' };
elseif ( strcmp( args{1},'qpOASES_sequence' ) > 0 )
fcnNames = { 'qpOASES_sequence' };
elseif ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
elseif ( strcmp( args{1}(1),'-' ) > 0 )
% make clean all with user-specified compiler flags
userIFlags = args{1};
doClean = 1;
fcnNames = { 'qpOASES','qpOASES_sequence' };
else
error( ['ERROR (',mfilename '.m): Invalid first argument (''',args{1},''')!'] );
end
case 2
if ( strcmp( args{1},'clean' ) > 0 )
doClean = 1;
else
error( ['ERROR (',mfilename '.m): First argument must be ''clean'' if two arguments are provided!'] );
end
if ( strcmp( args{2},'all' ) > 0 )
fcnNames = { 'qpOASES','qpOASES_sequence' };
elseif ( strcmp( args{2},'qpOASES' ) > 0 )
fcnNames = { 'qpOASES' };
elseif ( strcmp( args{2},'qpOASES_sequence' ) > 0 )
fcnNames = { 'qpOASES_sequence' };
else
error( ['ERROR (',mfilename '.m): Invalid second argument (''',args{2},''')!'] );
end
otherwise
fcnNames = { 'qpOASES','qpOASES_sequence' };
end
end
function [ timestamp ] = getTimestamp( dateString )
try
timestamp = dateString.datenum;
catch
timestamp = Inf;
end
end
function [ ] = printCopyrightNotice( )
disp( ' ' );
disp( 'qpOASES -- An Implementation of the Online Active Set Strategy.' );
disp( 'Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,' );
disp( 'Christian Kirches et al. All rights reserved.' );
disp( ' ' );
disp( 'qpOASES is distributed under the terms of the' );
disp( 'GNU Lesser General Public License 2.1 in the hope that it will be' );
disp( 'useful, but WITHOUT ANY WARRANTY; without even the implied warranty' );
disp( 'of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.' );
disp( 'See the GNU Lesser General Public License for more details.' );
disp( ' ' );
disp( ' ' );
end
%%
%% end of file
%%
|
github
|
startcode/qp-oases-master
|
qpOASES_auxInput.m
|
.m
|
qp-oases-master/interfaces/matlab/qpOASES_auxInput.m
| 4,436 |
utf_8
|
fcc9652ca47c9fe89d24f7dc500fcb49
|
%qpOASES -- An Implementation of the Online Active Set Strategy.
%Copyright (C) 2007-2017 by Hans Joachim Ferreau, Andreas Potschka,
%Christian Kirches et al. All rights reserved.
%
%qpOASES is distributed under the terms of the
%GNU Lesser General Public License 2.1 in the hope that it will be
%useful, but WITHOUT ANY WARRANTY; without even the implied warranty
%of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%See the GNU Lesser General Public License for more details.
%
%---------------------------------------------------------------------------------
%
%Returns a struct containing all possible auxiliary inputs to be passed
%to qpOASES.
%
%Call
% auxInput = qpOASES_auxInput();
%to obtain a struct with all auxiliary inputs empty.
%
%Call
% auxInput = qpOASES_auxInput( 'input1',value1,'input2',value2,... )
%to obtain a struct with 'input1' set to value1 etc. and all remaining
%auxiliary inputs empty.
%
%Call
% auxInput = qpOASES_auxInput( oldInputs,'input1',value1,... )
%to obtain a copy of the options struct oldInputs but with 'input1' set to
%value1 etc.
%
%
%qpOASES features the following auxiliary inputs:
% hessianType - Provide information on Hessian matrix:
% 0: Hessian is zero matrix (i.e. LP formulation)
% 1: Hessian is identity matrix
% 2: Hessian is (strictly) positive definite
% 3: Hessian is positive definite on null space
% of active bounds/constraints
% 4: Hessian is positive semi-definite.
% 5: Hessian is indefinite
% Leave hessianType empty if Hessian type is unknown.
% x0 - Initial guess for optimal primal solution.
% guessedWorkingSetB - Initial guess for working set of bounds at
% optimal solution (nV elements or empty).
% guessedWorkingSetC - Initial guess for working set of constraints at
% optimal solution (nC elements or empty).
% The working sets needs to be encoded as follows:
% 1: bound/constraint at its upper bound
% 0: bound/constraint not at any bound
% -1: bound/constraint at its lower bound
% R - Cholesky factor of Hessian matrix (upper-triangular);
% only used if both guessedWorkingSets are empty
% and option initialStatusBounds is set to 0.
%
%
%See also QPOASES, QPOASES_SEQUENCE, QPOASES_OPTIONS
%
%
%For additional information see the qpOASES User's Manual or
%visit http://www.qpOASES.org/.
%
%Please send remarks and questions to [email protected]!
function [ auxInput ] = qpOASES_auxInput( varargin )
firstIsStruct = 0;
if ( nargin == 0 )
auxInput = qpOASES_emptyAuxInput();
else
if ( isstruct( varargin{1} ) )
if ( mod( nargin,2 ) ~= 1 )
error('ERROR (qpOASES_auxInput): Auxiliary inputs must be specified in pairs!');
end
auxInput = varargin{1};
firstIsStruct = 1;
else
if ( mod( nargin,2 ) ~= 0 )
error('ERROR (qpOASES_auxInput): Auxiliary inputs must be specified in pairs!');
end
auxInput = qpOASES_emptyAuxInput();
end
end
% set options to user-defined values
for i=(1+firstIsStruct):2:nargin
argName = varargin{i};
argValue = varargin{i+1};
if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d has to be a non-empty string!',i );
end
if ( ( ischar(argValue) ) || ( ~isnumeric( argValue ) ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d has to be a numerical constant!',i+1 );
end
if ( ~isfield( auxInput,argName ) )
error('ERROR (qpOASES_auxInput): Argmument no. %d is not a valid auxiliary input!',i );
end
eval( ['auxInput.',argName,' = argValue;'] );
end
end
function [ auxInput ] = qpOASES_emptyAuxInput( )
% setup auxiliary input struct with all entries empty
auxInput = struct( 'hessianType', [], ...
'x0', [], ...
'guessedWorkingSetB', [], ...
'guessedWorkingSetC', [], ...
'R', [] ...
);
end
|
github
|
startcode/qp-oases-master
|
runAllTests.m
|
.m
|
qp-oases-master/testing/matlab/runAllTests.m
| 5,548 |
utf_8
|
bdff35e75080becaee269cf4f487d115
|
function [ successFlag ] = runAllTests( doPrint )
if ( nargin < 1 )
doPrint = 0;
end
successFlag = 1;
curWarnLevel = warning;
warning('off');
% add sub-folders to Matlab path
setupTestingPaths();
clc;
%% run interface tests
fprintf( 'Running qpOASES interface tests... ' )
successFlag = updateSuccessFlag( successFlag, runInterfaceTest( 10,20, doPrint,42 ) );
fprintf( 'Running qpOASES_sequence interface tests... ' )
successFlag = updateSuccessFlag( successFlag, runInterfaceSeqTest( 8,5, doPrint,42 ) );
%% run functional tests
fprintf( 'Running tests with random QPs having identity Hessian... ' )
successFlag = updateSuccessFlag( successFlag, runRandomIdHessian( 12,12, doPrint,4242 ) );
fprintf( 'Running tests with random QPs having zero Hessian... ' )
successFlag = updateSuccessFlag( successFlag, runRandomZeroHessian( 11,41, doPrint,4242 ) );
fprintf( 'Running qpOASES passing an empty Hessian matrix argument... ' )
successFlag = updateSuccessFlag( successFlag, runEmptyHessianTests( doPrint ) );
fprintf( 'Running alternativeX0 test... ' )
successFlag = updateSuccessFlag( successFlag, runAlternativeX0Test( 50,300,doPrint,4242 ) );
fprintf( 'Running testAPrioriKnownSeq1... ' )
successFlag = updateSuccessFlag( successFlag, runTestAPrioriKnownSeq1( doPrint ) );
fprintf( 'Running testSeq... ' )
successFlag = updateSuccessFlag( successFlag, runTestSeq( doPrint ) );
fprintf( 'Running testSparse... ' )
successFlag = updateSuccessFlag( successFlag, runTestSparse( doPrint ) );
fprintf( 'Running testSparse2... ' )
successFlag = updateSuccessFlag( successFlag, runTestSparse2( doPrint ) );
fprintf( 'Running testSparse3... ' )
successFlag = updateSuccessFlag( successFlag, runTestSparse3( doPrint ) );
fprintf( 'Running testSparse4... ' )
successFlag = updateSuccessFlag( successFlag, runTestSparse4( doPrint ) );
fprintf( 'Running simpleSpringExample... ' )
successFlag = updateSuccessFlag( successFlag, runSimpleSpringExample( doPrint ) );
fprintf( 'Running vanBarelsUnboundedQP... ' )
successFlag = updateSuccessFlag( successFlag, runVanBarelsUnboundedQP( doPrint ) );
fprintf( 'Running alexInfeas1... ' )
successFlag = updateSuccessFlag( successFlag, runAlexInfeas1( doPrint ) );
%fprintf( 'Running alexInfeas2... ' )
%successFlag = updateSuccessFlag( successFlag, runAlexInfeas2( doPrint ) );
%fprintf( 'Running QAP8... ' )
%successFlag = updateSuccessFlag( successFlag, runQAP( doPrint ) );
fprintf( 'Running testWorkingSetLI... ' )
successFlag = updateSuccessFlag( successFlag, runTestWorkingSetLI( doPrint ) );
fprintf( 'Running runExternalCholeskyTests... ' )
successFlag = updateSuccessFlag( successFlag, runExternalCholeskyTests( doPrint ) );
fprintf( 'Running EXAMPEL1... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkEXAMPLE1( 10,doPrint ) );
fprintf( 'Running EXAMPLE1A... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkEXAMPLE1A( 10,doPrint ) );
fprintf( 'Running EXAMPLE1B... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkEXAMPLE1B( 10,doPrint ) );
fprintf( 'Running CHAIN1... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkCHAIN1( 20,doPrint ) );
fprintf( 'Running CHAIN1A... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkCHAIN1A( 20,doPrint ) );
fprintf( 'Running CRANE1... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkCRANE1( 100,doPrint ) );
fprintf( 'Running CRANE2... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkCRANE2( 100,doPrint ) );
fprintf( 'Running CRANE3... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkCRANE3( 100,doPrint ) );
fprintf( 'Running EQUALITY1... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkEQUALITY1( 100,doPrint ) );
fprintf( 'Running EQUALITY2... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkEQUALITY2( 3200,doPrint ) );
%fprintf( 'Running IDHESSIAN1... ' );
%successFlag = updateSuccessFlag( successFlag, runBenchmarkIDHESSIAN1( 1200,doPrint ) );
fprintf( 'Running DIESEL... ' );
successFlag = updateSuccessFlag( successFlag, runBenchmarkDIESEL( 230,doPrint ) );
fprintf( 'Running QSHARE1B... ' )
successFlag = updateSuccessFlag( successFlag, runQSHARE1B( doPrint ) );
%% display results
disp( ' ' );
if ( successFlag == 0 )
disp( 'At least one test failed!' );
else
disp( 'All available tests passed successfully!' );
end
warning( curWarnLevel );
end
function [ newSuccessFlag ] = updateSuccessFlag( curSuccessFlag,curResult )
switch ( curResult )
case 0
newSuccessFlag = 0;
fprintf( 'failed!\n' );
case 1
newSuccessFlag = curSuccessFlag;
fprintf( 'passed!\n' );
case -1
newSuccessFlag = curSuccessFlag;
fprintf( 'problem data missing!\n' );
otherwise
error( 'Unknown success flag!' );
end
end
|
github
|
startcode/qp-oases-master
|
runInterfaceTest.m
|
.m
|
qp-oases-master/testing/matlab/tests/runInterfaceTest.m
| 16,774 |
utf_8
|
695fea461f4e440770b787dcafe361d2
|
function [ successFlag ] = runInterfaceTest( nV,nC, doPrint,seed )
if ( nargin < 4 )
seed = 42;
if ( nargin < 3 )
doPrint = 1;
if ( nargin < 2 )
nC = 10;
if ( nargin < 1 )
nV = 5;
end
end
end
end
successFlag = 1;
for isSparseH=0:1
for isSparseA=0:1
successFlag = runSeveralInterfaceTests( successFlag, nV,nC,isSparseH,isSparseA, doPrint,seed );
end
end
end
function [ successFLAG ] = runSeveralInterfaceTests( successFLAG, nV,nC, isSparseH,isSparseA, doPrint,seed )
%% test without or empty A matrix
for hasA=0:1
for hasLowerB=0:1
for hasUpperB=0:1
for hasOptions=0:2
for hasX0=0:1
for hasWS=0:2
if ( ( hasWS ~= 2 ) || ( hasA ~= 0 ) || ( hasOptions == 1 ) || ( hasX0 ~= 0 ) )
curSuccessFLAG = runSingleInterfaceTest( nV,0,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,0,0,hasOptions,hasX0,hasWS, doPrint,seed );
successFLAG = min( successFLAG,curSuccessFLAG );
end
end
end
end
end
end
end
%% test with non-empty A matrix
for hasLowerB=0:1
for hasUpperB=0:1
for hasLowerC=0:1
for hasUpperC=0:1
for hasOptions=0:2
for hasX0=0:1
for hasWS=0:2
curSuccessFLAG = runSingleInterfaceTest( nV,nC,1,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS, doPrint,seed );
successFLAG = min( successFLAG,curSuccessFLAG );
end
end
end
end
end
end
end
end
function [ successFLAG ] = runSingleInterfaceTest( nV,nC,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS, doPrint,seed )
successFLAG = 0;
qpData = generateExample( nV,nC, isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC, seed );
string = 'Testing qpOASES( H';
if ( isSparseH > 0 )
string = [string,'s,g'];
else
string = [string,'d,g'];
end
if ( nC > 0 )
if ( isSparseA > 0 )
string = [string,',As'];
else
string = [string,',Ad'];
end
else
if ( hasA > 0 )
string = [string,',[]'];
end
end
if ( hasLowerB > 0 )
string = [string,',lb'];
else
string = [string,',[]'];
end
if ( hasUpperB > 0 )
string = [string,',ub'];
else
string = [string,',[]'];
end
if ( hasLowerC > 0 )
string = [string,',lbA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
if ( hasUpperC > 0 )
string = [string,',ubA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
switch ( hasOptions )
case 1
string = [string,',opt'];
case 2
string = [string,',[] '];
case 0
if ( ( hasX0 > 0 ) || ( hasWS > 0 ) )
string = [string,',[] '];
end
end
switch ( hasX0 )
case 1
string = [string,',{x0'];
case 2
string = [string,',{[]'];
case 0
if ( hasWS > 0 )
string = [string,',{[]'];
end
end
switch ( hasWS )
case 1
string = [string,',WS}'];
case 2
string = [string,',[]}'];
end
string = [string,' )... '];
if ( doPrint > 0 )
%disp( string );
end
curSuccessFlag = callQpOases( qpData,hasA,hasOptions,hasX0,hasWS, 1 );
if ( curSuccessFlag > 0 )
string = [string,'pass!'];
successFLAG = 1;
else
string = [string,'fail!'];
end
if ( doPrint > 0 )
disp( string );
if ( curSuccessFlag == 0 )
pause;
end
end
end
function [ successFLAG ] = callQpOases( qpData,hasA,hasOptions,hasX0,hasWS, doPrint )
if ( nargin < 6 )
doPrint = 1;
end
TOL = 1e-15;
KKTTOL = 1e-6;
successFLAG = 0;
H = qpData.H;
g = qpData.g;
A = [qpData.Aeq;qpData.Ain];
lb = qpData.lb;
ub = qpData.ub;
lbA = [qpData.beq;qpData.lbA];
ubA = [qpData.beq;qpData.ubA];
[nV,dummy] = size(H); %#ok<NASGU>
[nC,dummy] = size(A); %#ok<NASGU>
if ( hasWS > 0 )
if ( hasWS == 1 )
wsB = 0 * ones( nV,1 );
wsC = 0 * ones( nC,1 );
else
wsB = [];
wsC = [];
end
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0,'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,options,auxInput ); %#ok<NASGU>
end
else
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,[],auxInput ); %#ok<NASGU>
end
end
else % hasX0 == 0
%auxInput = qpOASES_auxInput( 'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
auxInput = qpOASES_auxInput( 'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,options,auxInput ); %#ok<NASGU>
end
else
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,[],auxInput ); %#ok<NASGU>
end
end
end % hasX0
else % hasWS == 0
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0 );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,options,auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,options,auxInput ); %#ok<NASGU>
end
else
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,[],auxInput ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x2,f2 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,[],auxInput );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,[],auxInput ); %#ok<NASGU>
end
end
else % hasX0 == 0
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA,options ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub,options );
[ x2,f2 ] = qpOASES( H,g,lb,ub,options );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub,options );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub,options );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub,options );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub,options ); %#ok<NASGU>
end
else
if ( hasA > 0 )
[ x1 ] = qpOASES( H,g,A,lb,ub,lbA,ubA );
[ x2,f2 ] = qpOASES( H,g,A,lb,ub,lbA,ubA );
[ x3,f3,e3 ] = qpOASES( H,g,A,lb,ub,lbA,ubA );
[ x4,f4,e4,i4 ] = qpOASES( H,g,A,lb,ub,lbA,ubA );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,A,lb,ub,lbA,ubA );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,A,lb,ub,lbA,ubA ); %#ok<NASGU>
else
[ x1 ] = qpOASES( H,g,lb,ub );
[ x2,f2 ] = qpOASES( H,g,lb,ub );
[ x3,f3,e3 ] = qpOASES( H,g,lb,ub );
[ x4,f4,e4,i4 ] = qpOASES( H,g,lb,ub );
[ x5,f5,e5,i5,l5 ] = qpOASES( H,g,lb,ub );
[ x6,f6,e6,i6,l6,w6 ] = qpOASES( H,g,lb,ub ); %#ok<NASGU>
end
end
end % hasX0
end % hasWS
% check whether all calls lead to same optimal solution
% independent from output arguments
if ( ( norm(x1-x2) > TOL ) || ...
( norm(x1-x3) > TOL ) || ...
( norm(x1-x4) > TOL ) || ...
( norm(x1-x5) > TOL ) || ...
( norm(x1-x6) > TOL ) )
if ( doPrint > 0 )
disp('diff in x')
end
return;
end
if ( ( norm(f2-f3) > TOL ) || ...
( norm(f2-f4) > TOL ) || ...
( norm(f2-f5) > TOL ) || ...
( norm(f2-f6) > TOL ) )
if ( doPrint > 0 )
disp('diff in fval')
end
return;
end
if ( ( norm(e3-e4) > TOL ) || ...
( norm(e3-e5) > TOL ) || ...
( norm(e3-e6) > TOL ) )
if ( doPrint > 0 )
disp('diff in exitflag')
end
return;
end
if ( ( norm(i4-i5) > TOL ) || ...
( norm(i4-i6) > TOL ) )
if ( doPrint > 0 )
disp('diff in iter')
end
return;
end
if ( norm(l5-l6) > TOL )
if ( doPrint > 0 )
disp('diff in lambda')
end
return;
end
kktTol = getKktResidual( H,g,A,lb,ub,lbA,ubA, x6,l6 );
if ( ( kktTol <= KKTTOL ) && ( e6 >= 0 ) )
successFLAG = 1;
else
if ( doPrint > 0 )
disp( ['kkt error: ',num2str(kktTol)] )
end
end
end
|
github
|
startcode/qp-oases-master
|
runRandomZeroHessian.m
|
.m
|
qp-oases-master/testing/matlab/tests/runRandomZeroHessian.m
| 14,399 |
utf_8
|
62c1efb1adf03ca9009d830d211f3ef8
|
function [ successFlag ] = runRandomZeroHessian( nV,nC, doPrint,seed )
if ( nargin < 4 )
seed = 42;
if ( nargin < 3 )
doPrint = 1;
if ( nargin < 2 )
nC = 10;
if ( nargin < 1 )
nV = 5;
end
end
end
end
successFlag = 1;
for isSparseH=0:1
for isSparseA=0:1
successFlag = runSeveralIdSeqTests( successFlag, nV,nC,isSparseH,isSparseA, doPrint,seed );
end
end
end
function [ successFlag ] = runSeveralIdSeqTests( successFlag, nV,nC, isSparseH,isSparseA, doPrint,seed )
%% test without or empty A matrix
% {
for hasA=0:1
for changeMat=0:hasA % cannot change matrices if QProblemB object is instantiated
for hasOptions=1:1
for hasX0=0:2
for hasWS=0:2
curSuccessFLAG = runSingleIdSeqTest( nV,0,hasA,isSparseH,isSparseA, 1,1,0,0,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
%}
%% test with non-empty A matrix
for hasLowerC=0:1
for hasUpperC=0:1
for hasOptions=1:1
for hasX0=0:2
for hasWS=0:2
for changeMat=0:1
curSuccessFLAG = runSingleIdSeqTest( nV,nC,1,isSparseH,isSparseA, 1,1,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
end
end
function [ successFlag ] = runSingleIdSeqTest( nV,nC,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed )
successFlag = 0;
qpFeatures = setupQpFeaturesStruct( );
qpFeatures.nV = nV;
qpFeatures.nC = nC;
qpFeatures.isSparseH = isSparseH;
qpFeatures.isSparseA = isSparseA;
qpFeatures.hasLowerB = hasLowerB;
qpFeatures.hasUpperB = hasUpperB;
qpFeatures.hasLowerC = hasLowerC;
qpFeatures.hasUpperC = hasUpperC;
qpFeatures.hessianType = 3;
qpData1 = generateRandomQp( qpFeatures,seed );
qpData2 = generateRandomQp( qpFeatures,seed );
if ( changeMat == 0 )
string = 'Testing qpOASES_sequence( ''i/h/c'',0';
else
string = 'Testing qpOASES_sequence( ''i/m/c'',0';
end
if ( isSparseH > 0 )
string = [string,'s,g'];
else
string = [string,'d,g'];
end
if ( nC > 0 )
if ( isSparseA > 0 )
string = [string,',As'];
else
string = [string,',Ad'];
end
else
if ( hasA > 0 )
string = [string,',[]'];
end
end
if ( hasLowerB > 0 )
string = [string,',lb'];
else
string = [string,',[]'];
end
if ( hasUpperB > 0 )
string = [string,',ub'];
else
string = [string,',[]'];
end
if ( hasLowerC > 0 )
string = [string,',lbA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
if ( hasUpperC > 0 )
string = [string,',ubA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
switch ( hasOptions )
case 1
string = [string,',opt'];
case 2
string = [string,',[] '];
case 0
if ( ( hasX0 > 0 ) || ( hasWS > 0 ) )
string = [string,',[] '];
end
end
switch ( hasX0 )
case 1
string = [string,',{x0'];
case 2
string = [string,',{[]'];
case 0
if ( hasWS > 0 )
string = [string,',{[]'];
end
end
switch ( hasWS )
case 1
string = [string,',WS}'];
case 2
string = [string,',[]}'];
end
string = [string,' )... '];
if ( doPrint > 0 )
%disp( string );
end
%try
curSuccessFlag = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat,doPrint );
%catch
%curSuccessFlag = 0;
%end
if ( curSuccessFlag > 0 )
string = [string,'pass!'];
successFlag = 1;
else
string = [string,'fail!'];
end
if ( doPrint > 0 )
disp( string );
if ( curSuccessFlag == 0 )
%pause;
end
end
end
function [ successFlag ] = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat, doPrint )
if ( nargin < 8 )
doPrint = 1;
end
TOL = 1e-15;
KKTTOL = 1e-6;
successFlag = 0;
H1 = qpData1.H;
g1 = qpData1.g;
A1 = [qpData1.Aeq;qpData1.Ain];
lb1 = qpData1.lb;
ub1 = qpData1.ub;
lbA1 = [qpData1.beq;qpData1.lbA];
ubA1 = [qpData1.beq;qpData1.ubA];
H2 = qpData2.H;
g2 = qpData2.g;
A2 = [qpData2.Aeq;qpData2.Ain];
lb2 = qpData2.lb;
ub2 = qpData2.ub;
lbA2 = [qpData2.beq;qpData2.lbA];
ubA2 = [qpData2.beq;qpData2.ubA];
[nV,dummy] = size(H1);
[nC,dummy] = size(A1);
if ( hasWS > 0 )
if ( hasWS == 1 )
wsB = 0 * ones( nV,1 );
wsC = 0 * ones( nC,1 );
else
wsB = [];
wsC = [];
end
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0,'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options( 'fast' );
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
auxInput = qpOASES_auxInput( 'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options( 'fast' );
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,[] );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,[] );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
else % hasWS == 0
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0 );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options( 'fast' );
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options( 'fast' );
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1 );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1 );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
end % hasWS
kktTol1 = getKktResidual( H1,g1,A1,lb1,ub1,lbA1,ubA1, x1,l1 );
if ( changeMat > 0 )
kktTol2 = getKktResidual( H2,g2,A2,lb2,ub2,lbA2,ubA2, x2,l2 );
else
kktTol2 = getKktResidual( H1,g2,A1,lb2,ub2,lbA2,ubA2, x2,l2 );
end
if ( ( kktTol1 <= KKTTOL ) && ( e1 >= 0 ) && ( kktTol2 <= KKTTOL ) && ( e2 >= 0 ) )
successFlag = 1;
else
if ( doPrint > 0 )
disp( ['kkt error: ',num2str(kktTol1),'/',num2str(kktTol2)] )
end
end
end
|
github
|
startcode/qp-oases-master
|
runInterfaceSeqTest.m
|
.m
|
qp-oases-master/testing/matlab/tests/runInterfaceSeqTest.m
| 15,458 |
utf_8
|
7fd12067642b559d3dd08130be565119
|
function [ successFlag ] = runInterfaceSeqTest( nV,nC, doPrint,seed )
if ( nargin < 4 )
seed = 42;
if ( nargin < 3 )
doPrint = 1;
if ( nargin < 2 )
nC = 10;
if ( nargin < 1 )
nV = 5;
end
end
end
end
successFlag = 1;
for isSparseH=0:1
for isSparseA=0:1
successFlag = runSeveralInterfaceSeqTests( successFlag, nV,nC,isSparseH,isSparseA, doPrint,seed );
end
end
end
function [ successFlag ] = runSeveralInterfaceSeqTests( successFlag, nV,nC, isSparseH,isSparseA, doPrint,seed )
%% test without or empty A matrix
for hasA=0:1
for changeMat=0:hasA % cannot change matrices if QProblemB object is instantiated
for hasLowerB=0:1
for hasUpperB=0:1
for hasOptions=0:2
for hasX0=0:2
for hasWS=0:2
curSuccessFLAG = runSingleInterfaceSeqTest( nV,0,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,0,0,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
end
end
%% test with non-empty A matrix
for hasLowerB=0:1
for hasUpperB=0:1
for hasLowerC=0:1
for hasUpperC=0:1
for hasOptions=0:2
for hasX0=0:2
for hasWS=0:2
for changeMat=0:1
curSuccessFLAG = runSingleInterfaceSeqTest( nV,nC,1,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
end
end
end
end
function [ successFlag ] = runSingleInterfaceSeqTest( nV,nC,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed )
successFlag = 0;
qpData1 = generateExample( nV,nC, isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC, seed );
if ( changeMat > 0 )
qpData2 = generateExample( nV,nC, isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC, seed+1 );
else
qpData2 = generateExample( nV,nC, isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC, seed+1,qpData1.H,qpData1.Ain );
end
if ( changeMat == 0 )
string = 'Testing qpOASES_sequence( ''i/h/c'',H';
else
string = 'Testing qpOASES_sequence( ''i/m/c'',H';
end
if ( isSparseH > 0 )
string = [string,'s,g'];
else
string = [string,'d,g'];
end
if ( nC > 0 )
if ( isSparseA > 0 )
string = [string,',As'];
else
string = [string,',Ad'];
end
else
if ( hasA > 0 )
string = [string,',[]'];
end
end
if ( hasLowerB > 0 )
string = [string,',lb'];
else
string = [string,',[]'];
end
if ( hasUpperB > 0 )
string = [string,',ub'];
else
string = [string,',[]'];
end
if ( hasLowerC > 0 )
string = [string,',lbA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
if ( hasUpperC > 0 )
string = [string,',ubA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
switch ( hasOptions )
case 1
string = [string,',opt'];
case 2
string = [string,',[] '];
case 0
if ( ( hasX0 > 0 ) || ( hasWS > 0 ) )
string = [string,',[] '];
end
end
switch ( hasX0 )
case 1
string = [string,',{x0'];
case 2
string = [string,',{[]'];
case 0
if ( hasWS > 0 )
string = [string,',{[]'];
end
end
switch ( hasWS )
case 1
string = [string,',WS}'];
case 2
string = [string,',[]}'];
end
string = [string,' )... '];
if ( doPrint > 0 )
disp( string );
end
curSuccessFlag = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat );
if ( curSuccessFlag > 0 )
string = [string,'pass!'];
successFlag = 1;
else
string = [string,'fail!'];
end
if ( doPrint > 0 )
disp( string );
if ( curSuccessFlag == 0 )
pause(0.1);
end
end
end
function [ successFlag ] = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat, doPrint )
if ( nargin < 8 )
doPrint = 1;
end
%TOL = 1e-15;
KKTTOL = 1e-6;
successFlag = 0;
H1 = qpData1.H;
g1 = qpData1.g;
A1 = [qpData1.Aeq;qpData1.Ain];
lb1 = qpData1.lb;
ub1 = qpData1.ub;
lbA1 = [qpData1.beq;qpData1.lbA];
ubA1 = [qpData1.beq;qpData1.ubA];
if ( changeMat > 0 )
H2 = qpData2.H;
else
H2 = H1;
end
g2 = qpData2.g;
if ( changeMat > 0 )
A2 = [qpData2.Aeq;qpData2.Ain];
else
A2 = A1;
end
lb2 = qpData2.lb;
ub2 = qpData2.ub;
lbA2 = [qpData2.beq;qpData2.lbA];
ubA2 = [qpData2.beq;qpData2.ubA];
[nV,dummy] = size(H1); %#ok<NASGU>
[nC,dummy] = size(A1); %#ok<NASGU>
if ( hasWS > 0 )
if ( hasWS == 1 )
wsB = 0 * ones( nV,1 );
wsC = 0 * ones( nC,1 );
else
wsB = [];
wsC = [];
end
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0,'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
%auxInput = qpOASES_auxInput( 'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
auxInput = qpOASES_auxInput( 'guessedWorkingSetB',wsB );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,[] ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,[] ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
else % hasWS == 0
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0 );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1 ); %#ok<NASGU>
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 ); %#ok<NASGU>
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1 ); %#ok<NASGU>
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 ); %#ok<NASGU>
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
end % hasWS
kktTol1 = getKktResidual( H1,g1,A1,lb1,ub1,lbA1,ubA1, x1,l1 );
if ( changeMat > 0 )
kktTol2 = getKktResidual( H2,g2,A2,lb2,ub2,lbA2,ubA2, x2,l2 );
else
kktTol2 = getKktResidual( H1,g2,A1,lb2,ub2,lbA2,ubA2, x2,l2 );
end
if ( ( kktTol1 <= KKTTOL ) && ( e1 >= 0 ) && ( kktTol2 <= KKTTOL ) && ( e2 >= 0 ) )
successFlag = 1;
else
if ( doPrint > 0 )
if ( ( kktTol1 > KKTTOL ) || ( kktTol2 > KKTTOL ) )
disp( ['kkt error: ',num2str(kktTol1),'/',num2str(kktTol2)] )
else
disp('exitflag<0')
end
end
end
end
|
github
|
startcode/qp-oases-master
|
runRandomIdHessian.m
|
.m
|
qp-oases-master/testing/matlab/tests/runRandomIdHessian.m
| 14,687 |
utf_8
|
1bf0849e7175e73709bbae55057eeff5
|
function [ successFlag ] = runRandomIdHessian( nV,nC, doPrint,seed )
if ( nargin < 4 )
seed = 42;
if ( nargin < 3 )
doPrint = 1;
if ( nargin < 2 )
nC = 10;
if ( nargin < 1 )
nV = 5;
end
end
end
end
successFlag = 1;
for isSparseH=0:1
for isSparseA=0:1
successFlag = runSeveralIdSeqTests( successFlag, nV,nC,isSparseH,isSparseA, doPrint,seed );
end
end
end
function [ successFlag ] = runSeveralIdSeqTests( successFlag, nV,nC, isSparseH,isSparseA, doPrint,seed )
%% test without or empty A matrix
for hasA=0:1
for changeMat=0:hasA % cannot change matrices if QProblemB object is instantiated
for hasLowerB=0:1
for hasUpperB=0:1
for hasOptions=0:1
for hasX0=0:2
for hasWS=0:2
curSuccessFLAG = runSingleIdSeqTest( nV,0,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,0,0,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
end
end
%% test with non-empty A matrix
for hasLowerB=0:1
for hasUpperB=0:1
for hasLowerC=0:1
for hasUpperC=0:1
for hasOptions=0:1
for hasX0=0:2
for hasWS=0:2
for changeMat=0:1
curSuccessFLAG = runSingleIdSeqTest( nV,nC,1,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed );
successFlag = min( successFlag,curSuccessFLAG );
end
end
end
end
end
end
end
end
end
function [ successFlag ] = runSingleIdSeqTest( nV,nC,hasA,isSparseH,isSparseA, hasLowerB,hasUpperB,hasLowerC,hasUpperC,hasOptions,hasX0,hasWS,changeMat, doPrint,seed )
successFlag = 0;
qpFeatures = setupQpFeaturesStruct( );
qpFeatures.nV = nV;
qpFeatures.nC = nC;
qpFeatures.isSparseH = isSparseH;
qpFeatures.isSparseA = isSparseA;
qpFeatures.hasLowerB = hasLowerB;
qpFeatures.hasUpperB = hasUpperB;
qpFeatures.hasLowerC = hasLowerC;
qpFeatures.hasUpperC = hasUpperC;
qpFeatures.hessianType = 2;
qpData1 = generateRandomQp( qpFeatures,seed );
qpData2 = generateRandomQp( qpFeatures,seed );
if ( changeMat == 0 )
string = 'Testing qpOASES_sequence( ''i/h/c'',ID';
else
string = 'Testing qpOASES_sequence( ''i/m/c'',ID';
end
if ( isSparseH > 0 )
string = [string,'s,g'];
else
string = [string,'d,g'];
end
if ( nC > 0 )
if ( isSparseA > 0 )
string = [string,',As'];
else
string = [string,',Ad'];
end
else
if ( hasA > 0 )
string = [string,',[]'];
end
end
if ( hasLowerB > 0 )
string = [string,',lb'];
else
string = [string,',[]'];
end
if ( hasUpperB > 0 )
string = [string,',ub'];
else
string = [string,',[]'];
end
if ( hasLowerC > 0 )
string = [string,',lbA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
if ( hasUpperC > 0 )
string = [string,',ubA'];
else
if ( hasA > 0 )
string = [string,',[] '];
end
end
switch ( hasOptions )
case 1
string = [string,',opt'];
case 2
string = [string,',[] '];
case 0
if ( ( hasX0 > 0 ) || ( hasWS > 0 ) )
string = [string,',[] '];
end
end
switch ( hasX0 )
case 1
string = [string,',{x0'];
case 2
string = [string,',{[]'];
case 0
if ( hasWS > 0 )
string = [string,',{[]'];
end
end
switch ( hasWS )
case 1
string = [string,',WS}'];
case 2
string = [string,',[]}'];
end
string = [string,' )... '];
if ( doPrint > 0 )
%disp( string );
end
curSuccessFlag = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat,doPrint );
if ( curSuccessFlag > 0 )
string = [string,'pass!'];
successFlag = 1;
else
string = [string,'fail!'];
end
if ( doPrint > 0 )
disp( string );
if ( curSuccessFlag == 0 )
pause;
end
end
end
function [ successFlag ] = callQpOasesSeq( qpData1,qpData2,hasA,hasOptions,hasX0,hasWS,changeMat, doPrint )
if ( nargin < 8 )
doPrint = 1;
end
TOL = 1e-15;
KKTTOL = 1e-6;
successFlag = 0;
H1 = qpData1.H;
g1 = qpData1.g;
A1 = [qpData1.Aeq;qpData1.Ain];
lb1 = qpData1.lb;
ub1 = qpData1.ub;
lbA1 = [qpData1.beq;qpData1.lbA];
ubA1 = [qpData1.beq;qpData1.ubA];
H2 = qpData2.H;
g2 = qpData2.g;
A2 = [qpData2.Aeq;qpData2.Ain];
lb2 = qpData2.lb;
ub2 = qpData2.ub;
lbA2 = [qpData2.beq;qpData2.lbA];
ubA2 = [qpData2.beq;qpData2.ubA];
[nV,dummy] = size(H1);
[nC,dummy] = size(A1);
if ( hasWS > 0 )
if ( hasWS == 1 )
wsB = 0 * ones( nV,1 );
wsC = 0 * ones( nC,1 );
else
wsB = [];
wsC = [];
end
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0,'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
auxInput = qpOASES_auxInput( 'guessedWorkingSetB',wsB,'guessedWorkingSetC',wsC );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,[] );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,[] );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
else % hasWS == 0
if ( hasX0 > 0 )
if ( hasX0 == 1 )
x0 = -1e-3 * ones( nV,1 );
else
x0 = [];
end
auxInput = qpOASES_auxInput( 'x0',x0 );
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options,auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options,auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,[],auxInput );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,[],auxInput );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
else % hasX0 == 0
if ( hasOptions > 0 )
if ( hasOptions == 1 )
options = qpOASES_options();
else
options = [];
end
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1,options );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2,options );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2,options );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1,options );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,options );
qpOASES_sequence( 'c',QP );
end
else
if ( hasA > 0 )
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,A1,lb1,ub1,lbA1,ubA1 );
if ( changeMat > 0 )
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'm',QP,H2,g2,A2,lb2,ub2,lbA2,ubA2 );
else
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2,lbA2,ubA2 );
end
qpOASES_sequence( 'c',QP );
else
[ QP,x1,f1,e1,i1,l1,w1 ] = qpOASES_sequence( 'i',H1,g1,lb1,ub1 );
[ x2,f2,e2,i2,l2,w2 ] = qpOASES_sequence( 'h',QP,g2,lb2,ub2 );
qpOASES_sequence( 'c',QP );
end
end
end % hasX0
end % hasWS
kktTol1 = getKktResidual( H1,g1,A1,lb1,ub1,lbA1,ubA1, x1,l1 );
if ( changeMat > 0 )
kktTol2 = getKktResidual( H2,g2,A2,lb2,ub2,lbA2,ubA2, x2,l2 );
else
kktTol2 = getKktResidual( H1,g2,A1,lb2,ub2,lbA2,ubA2, x2,l2 );
end
if ( ( kktTol1 <= KKTTOL ) && ( e1 >= 0 ) && ( kktTol2 <= KKTTOL ) && ( e2 >= 0 ) )
successFlag = 1;
else
if ( doPrint > 0 )
disp( ['kkt error: ',num2str(kktTol1),'/',num2str(kktTol2)] )
end
end
end
|
github
|
startcode/qp-oases-master
|
isoctave.m
|
.m
|
qp-oases-master/testing/matlab/auxFiles/isoctave.m
| 508 |
utf_8
|
c857dec2b164c5835c0d5235cd7ad8f0
|
% ISOCTAVE True if the operating environment is octave.
% Usage: t=isoctave();
%
% Returns 1 if the operating environment is octave, otherwise
% 0 (Matlab)
%
% ---------------------------------------------------------------
function t=isoctave()
%ISOCTAVE True if the operating environment is octave.
% Usage: t=isoctave();
%
% Returns 1 if the operating environment is octave, otherwise
% 0 (Matlab)
if exist('OCTAVE_VERSION')
% Only Octave has this variable.
t=1;
else
t=0;
end;
|
github
|
c2jahnke/THB-Spline-FE-master
|
ImpointCurvePlot.m
|
.m
|
THB-Spline-FE-master/CurvePlot/ImpointCurvePlot.m
| 798 |
utf_8
|
eaab8eb10e3e833c1d6d4e8da4f5a4b5
|
function ImpointCurvePlot(n,sP,p,U,plotVector,Points)
% function to plot a curve with control points
C = zeros( sP , 2 );
for l = 1:sP
C(l,:) = CurvePoint(n,p,U,Points,plotVector(l));
end
plt_curve = plot(C(:,1),C(:,2),'k','LineWidth',1.2);
hold on;
xlabel('x');
ylabel('y');
Impoints = {};
for i = 1:n
Impoints{i} = impoint(gca, Points(i,1) , Points(i,2) );
addNewPositionCallback( Impoints{i} , @(newpos) updateCurvePlot(i,newpos) );
end
function updateCurvePlot( index , newpos )
Points(index,:) = newpos;
for k = 1:sP
C(k,:) = CurvePoint(n,p,U,Points,plotVector(k));
end
plt_curve.XData = C(:,1);
plt_curve.YData = C(:,2);
drawnow;
end
end
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
DeJong_f2.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/DeJong_f2.m
| 705 |
utf_8
|
f474c060e61ab63d089b22de5a3cdcd9
|
% DeJong_f2.m
% De Jong's f2 function, also called a Rosenbrock Variant
% This is a 2D only equation
%
% described by Clerc in ...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x,y) = 100*(x.^2 - y).^2 + (1-x).^2;
%
% input = 2 element row vector containing [x, y]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = DeJong_f2([1,2;3,4;5,6])
% note minimum =0 @ (1,1)
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=DeJong_f2(in)
x= in(:,1);
y= in(:,2);
out = 100*(x.^2 - y).^2 + (1-x).^2;
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
ackley.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/ackley.m
| 839 |
utf_8
|
f53febad1b1241ed2b82eb51990c494a
|
% ackley.m
% Ackley's function, from http://www.cs.vu.nl/~gusz/ecbook/slides/16
% and further shown at:
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% commonly used to test optimization/global minimization problems
%
% f(x)= [ 20 + e ...
% -20*exp(-0.2*sqrt((1/n)*sum(x.^2,2))) ...
% -exp((1/n)*sum(cos(2*pi*x),2))];
%
% dimension n = # of columns of input, x1, x2, ..., xn
% each row is processed independently,
% you can feed in matrices of timeXdim no prob
%
% example: cost = ackley([1,2,3;4,5,6])
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=ackley(in)
% dimension is # of columns of input, x1, x2, ..., xn
n=length(in(1,:));
x=in;
e=exp(1);
out = (20 + e ...
-20*exp(-0.2*sqrt((1/n).*sum(x.^2,2))) ...
-exp((1/n).*sum(cos(2*pi*x),2)));
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
f6_spiral_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/f6_spiral_dyn.m
| 842 |
utf_8
|
a68995830769a8c36f01a49a1b854227
|
% f6_spiral_dyn.m
% Schaffer's F6 function
% commonly used to test optimization/global minimization problems
%
% This version moves the minimum about a Fermat Spiral
% according to the equation: r = a*(theta^2)
% theta is a function of time and is checked internally (not an input)
% x_center = r*cos(theta)
% y_center = r*sin(theta)
%
% z = 0.5 ...
% +(sin^2(sqrt((x-x_center)^2+(y-y_center)^2))-0.5) ...
% /((1+0.01*((x-x_center)^2+(y-y_center)^2))^2)
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=f6_spiral_dyn(in)
% parse input
x = in(:,1);
y = in(:,2);
% find current minimum based on clock
[x_center,y_center]=spiral_dyn(1,.1); % this is in 'hiddenutils'
num = sin(sqrt((x-x_center).^2+(y-y_center).^2)).^2 - 0.5;
den = (1.0+0.01*((x-x_center).^2+(y-y_center).^2)).^2;
out = 0.5 + num./den;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
f6_linear_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/f6_linear_dyn.m
| 593 |
utf_8
|
ff08de37e8934d90aaf0da2cd9be2020
|
% f6_linear_dyn.m
% Schaffer's F6 function
% commonly used to test optimization/global minimization problems
%
% This version moves the minimum linearly along a 45 deg angle in x,y space
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=f6_linear_dyn(in)
% parse input
x = in(:,1);
y = in(:,2);
% find current minimum based on clock
offset = linear_dyn(.5); % this is in 'hiddenutils'
x_center = offset;
y_center = offset;
num = sin(sqrt((x-x_center).^2+(y-y_center).^2)).^2 - 0.5;
den = (1.0+0.01*((x-x_center).^2+(y-y_center).^2)).^2;
out = 0.5 + num./den;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
NDparabola.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/NDparabola.m
| 641 |
utf_8
|
85e34a0950db121bff8caeefcc737538
|
% NDparabola.m
% ND Parabola function (also called a Sphere function and DeJong's f1),
% described by Clerc...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x) = sum( x.^2 )
%
% x = N element row vector containing [x0, x1, ..., xN]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = NDparabola([1,2;5,6;0,-50])
% note: known minimum =0 @ all x = 0
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=NDparabola(in)
out = sum(in.^2, 2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
spiral_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/spiral_dyn.m
| 805 |
utf_8
|
9ed110a6f7dc7937e4f689a5a3b912ee
|
% spiral_dyn.m
% returns x,y position along an archimedean spiral of degree n
% based on cputime, first time it is called is start time
%
% based on: r = a*(theta^n)
%
% usage: [x_cnt,y_cnt] = spiral_dyn(n,a)
% i.e.,
% n = 2 (Fermat)
% = 1 (Archimedes)
% = -1 (Hyberbolic)
% = -2 (Lituus)
% Brian Birge
% Rev 1.1
% 8/23/04
function [x_cnt,y_cnt] = spiral_dyn(n,a)
% this keeps the same start time for each run of the calling function
% this will reset when any calling prog is re-saved or workspace is
% cleared
persistent tnot iter
% find starting time
if ~exist('tnot') | length(tnot)==0
tnot = cputime;
% iter = 0;
end
%iter = iter+10 ;
theta = cputime-tnot;
%theta = iter/10000;
r = a*(theta.^n);
x_cnt = r*cos(theta);
y_cnt = r*sin(theta);
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
alpine.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/alpine.m
| 617 |
utf_8
|
350e9ce69d84cc997f59ab6d77b6c4e5
|
% alpine.m
% ND Alpine function, described by Clerc...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x) = sum( abs(x.*sin(x) + 0.1.*x) )
%
% x = N element row vector containing [x0, x1, ..., xN]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = alpine([1,2;5,6;0,-50])
% note: known minimum =0 @ all x = 0
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=alpine(in)
out = sum(abs(in.*sin(in) + 0.1.*in),2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
Griewank.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/Griewank.m
| 1,175 |
utf_8
|
1922426be7c11651ad663dd929a16606
|
% Griewank.m
% Griewank function
% described by Clerc in ...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x) = sum((x-100).^2,2)./4000 - ...
% prod(cos((x-100)./(sqrt(repmat([1:N],length(x(:,1),1)))),2) ...
% +1
%
% x = N element row vector containing [x0, x1, ..., xN]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = Griewank([1,2;5,6;0,-50])
% note: known minimum =0 @ all x = 100
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=Griewank(in)
persistent d D tlen sqrtd
% this speeds routine up a lot, if called from PSO these won't change from
% call to call
Dx=length(in(1,:));
tlenx=length(in(:,1));
if isempty(D) | D~=Dx | tlen~=tlenx
D=Dx; % dimension of prob
tlen=tlenx; % how many separate states
d=repmat([1:D],tlen,1); % needed to vectorize this
sqrtd=sqrt(d);
end
% just follows from the referenced website/paper
term1 = sum([(in-100).^2],2)./4000;
term2 = prod( (cos( (in-100)./sqrtd )) ,2);
out = term1 - term2 + 1;
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
f6mod.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/f6mod.m
| 675 |
utf_8
|
35ebfbe0fff22261e101217b1604fe22
|
% f6mod.m
% Schaffer's F6 function
% commonly used to test optimization/global minimization problems
%
% This version is a modified form, just the sum of 5 f6 functions with
% different centers to look at local minimum issues
% normal f6=
% z = 0.5+ (sin^2(sqrt(x^2+y^2))-0.5)/((1+0.01*(x^2+y^2))^2)
function [out]=f6mod(in)
x=in(:,1);
y=in(:,2);
a=ones(size(x));
b=20;
xycntr=[0*a,0*a,-b*a,-b*a,-b*a,b*a,b*a,-b*a,b*a,b*a];
tmpout=0.*a;
for i=1:5
num=sin(sqrt( (x-xycntr(:,2*i-1)).^2 + (y-xycntr(:,2*i)).^2) ).^2 - 0.5;
den=(1.0+0.01*((x-xycntr(:,2*i-1)).^2+(y-xycntr(:,2*i)).^2)).^2;
tmpout=[tmpout, 0.5*a +num./den];
end
out=sum(tmpout,2)./5;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
linear_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/linear_dyn.m
| 724 |
utf_8
|
c630c42d5de136b31ca954328cde13d2
|
% linear_dyn.m
% returns an offset that can be added to data that increases linearly with
% time, based on cputime, first time it is called is start time
%
% equation is: offset = (cputime - tnot)*scalefactor
% where tnot = cputime at the first call
% scalefactor = value that slows or speeds up linear movement
%
% usage: [offset] = linear_dyn(scalefactor)
% Brian Birge
% Rev 1.0
% 8/23/04
function out = linear_dyn(sf)
% this keeps the same start time for each run of the calling function
% this will reset when any calling prog is re-saved or workspace is
% cleared
persistent tnot
% find starting time
if ~exist('tnot') | length(tnot)==0
tnot = cputime;
end
out = (cputime-tnot)*sf;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
Rastrigin.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/Rastrigin.m
| 500 |
utf_8
|
49633129edf0685033f0b4fc126a822c
|
% Rastrigin.m
% Rastrigin function
%
% used to test optimization/global minimization problems
%
% f(x) = sum([x.^2-10*cos(2*pi*x) + 10], 2);
%
% x = N element row vector containing [x0, x1, ..., xN]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = Rastrigin([1,2;5,6;0,-50])
% note: known minimum =0 @ all x = 0
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=Rastrigin(in)
cos_in = cos(2*pi*in);
out = sum((in.^2-10*cos_in + 10), 2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
f6.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/f6.m
| 299 |
utf_8
|
6e328b2ad0f76540e9c80d87b5ad06dc
|
% f6.m
% Schaffer's F6 function
% commonly used to test optimization/global minimization problems
%
% z = 0.5+ (sin^2(sqrt(x^2+y^2))-0.5)/((1+0.01*(x^2+y^2))^2)
function [out]=f6(in)
x=in(:,1);
y=in(:,2);
num=sin(sqrt(x.^2+y.^2)).^2 - 0.5;
den=(1.0+0.01*(x.^2+y.^2)).^2;
out=0.5 +num./den;
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
f6_bubbles_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/f6_bubbles_dyn.m
| 1,458 |
utf_8
|
00614b7d2beaf3ea99b48c5ccdd00063
|
% f6_bubbles_dyn.m
% 2 separate Schaffer's F6 functions, one with min at [-8,-8] and the
% other with min at [8,8]
% as time goes on, each bubbles magnitude cycles up and down,
% they are 180 deg out of phase with each other
%
% commonly used to test optimization/global minimization problems
function [out]=f6_bubbles_dyn(in)
persistent tnot
% find starting time
if ~exist('tnot') | length(tnot)==0
tnot = cputime;
end
time = cputime/10 - tnot;
% calculate offset for whole function
%[xc,yc]=spiral_dyn(1,.1);
xc = 0;
yc = xc;
% parse input
x = in(:,1) +xc;
y = in(:,2) +yc;
% bubble centers
x1 = -8;
y1 = x1;
x2 = 8;
y2 = x2;
% f6 #1 (bubble #1)
num = sin(sqrt((x-x1).^2+(y-y1).^2)).^2 - 0.5;
den = (1.0+0.01*((x-x1).^2+(y-y1).^2)).^2;
f6_1 = (0.5 + num./den).*abs(sin(time+pi/2));
% bubble #1 offset
num_ofs = sin(sqrt((10000-x1).^2+(10000-y1).^2)).^2 - 0.5;
den_ofs = (1.0+0.01*((10000-x1).^2+(10000-y1).^2)).^2;
f6_1_ofs = (0.5 + num_ofs./den_ofs).*abs(sin(time+pi/2));
% f6 #2 (bubble #2)
num = sin(sqrt((x-x2).^2+(y-y2).^2)).^2 - 0.5;
den = (1.0+0.01*((x-x2).^2+(y-y2).^2)).^2;
f6_2 = (0.5 + num./den).*abs(sin(time));
% bubble #2 offset
num_ofs = sin(sqrt((10000-x2).^2+(10000-y2).^2)).^2 - 0.5;
den_ofs = (1.0+0.01*((10000-x2).^2+(10000-y2).^2)).^2;
f6_2_ofs = (0.5 + num_ofs./den_ofs).*abs(sin(time));
% output & return
out = 2*((f6_1 + f6_2) - (f6_1_ofs + f6_2_ofs));
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
Rosenbrock.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/Rosenbrock.m
| 697 |
utf_8
|
9b342f29fa2367ba43883cb0b50432cb
|
% Rosenbrock.m
% Rosenbrock function
%
% described by Clerc in ...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x) = sum([ 100*(x(i+1) - x(i)^2)^2 + (x(i) -1)^2])
%
% x = N element row vector containing [x0, x1, ..., xN]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = Rosenbrock([1,2;5,6;0,-50])
% note: known minimum =0 @ all x = 1
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=Rosenbrock(in)
x0=in(:,1:end-1);
x1=in(:,2:end);
out = sum( (100*(x1-x0.^2).^2 + (x0-1).^2) , 2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
tripod.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/tripod.m
| 860 |
utf_8
|
9e3c6b8565897f712d6297c5e041ebef
|
% tripod.m
% 2D tripod function, described by Clerc...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x)= [ p(x2)*(1+p(x1)) ...
% + abs(x1 + 50*p(x2)*(1-2*p(x1)))...
% + abs(x2 + 50*(1-2*p(x2))) ];
%
% where p(u) = 1 for u >= 0
% = 0 else
%
% in = 2 element row vector containing [x1, x2]
% each row is processed independently,
% you can feed in matrices of timeX2 no prob
%
% example: cost = tripod([1,2;5,6;0,-50])
% note: known minimum =0 @ (0,-50)
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=tripod(in)
x1=in(:,1);
x2=in(:,2);
px1=((x1) >= 0);
px2=((x2) >= 0);
out= ( px2.*(1+px1) ...
+ abs(x1 + 50*px2.*(1-2*px1))...
+ abs(x2 + 50*(1-2.*px2)) );
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
Foxhole.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/Foxhole.m
| 1,232 |
utf_8
|
21a1c5dd5e44f43ef92759b2e174b59c
|
% Foxhole.m
% Foxhole function, 2D multi-minima function
%
% from: http://www.cs.rpi.edu/~hornda/pres/node10.html
%
% f(x) = 0.002 + sum([1/(j + sum( [x(i) - a(i,j)].^6 ) )])
%
% x = 2 element row vector containing [ x, y ]
% each row is processed independently,
% you can feed in matrices of timeX2 no prob
%
% example: cost = Foxhole([1,2;3,4])
% note: known minimum =0 @ (-32,-32) unless you change 'a' in the function
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=Foxhole(in)
x=in(:,1);
y=in(:,2);
% location of foxholes, you can change this, these are what DeJong used
% if you change 'em, a{1} and a{2} must each have same # of elements
a{1} = [...
-32 -16 0 16 32 ;...
-32 -16 0 16 32 ;...
-32 -16 0 16 32 ;...
-32 -16 0 16 32 ;...
-32 -16 0 16 32 ;...
];
a{2} = [...
-32 -32 -32 -32 -32 ;...
-16 -16 -16 -16 -16 ;...
0 0 0 0 0 ;...
16 16 16 16 16 ;...
32 32 32 32 32 ;...
];
term_sum=0;
for j=1:prod(size((a{1})))
ax=a{1} (j);
ay=a{2} (j);
term_num = (x - ax).^6 + (y - ay).^6;
term_sum=term_sum+ 1./(j+term_num);
end
out = .002 + term_sum;
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
pso_Trelea_vectorized.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/pso_Trelea_vectorized.m
| 22,526 |
utf_8
|
83cd4e518a70437a5b760d6cb5ceaa82
|
% pso_Trelea_vectorized.m
% a generic particle swarm optimizer
% to find the minimum or maximum of any
% MISO matlab function
%
% Implements Common, Trelea type 1 and 2, and Clerc's class 1". It will
% also automatically try to track to a changing environment (with varied
% success - BKB 3/18/05)
%
% This vectorized version removes the for loop associated with particle
% number. It also *requires* that the cost function have a single input
% that represents all dimensions of search (i.e., for a function that has 2
% inputs then make a wrapper that passes a matrix of ps x 2 as a single
% variable)
%
% Usage:
% [optOUT]=PSO(functname,D)
% or:
% [optOUT,tr,te]=...
% PSO(functname,D,mv,VarRange,minmax,PSOparams,plotfcn,PSOseedValue)
%
% Inputs:
% functname - string of matlab function to optimize
% D - # of inputs to the function (dimension of problem)
%
% Optional Inputs:
% mv - max particle velocity, either a scalar or a vector of length D
% (this allows each component to have it's own max velocity),
% default = 4, set if not input or input as NaN
%
% VarRange - matrix of ranges for each input variable,
% default -100 to 100, of form:
% [ min1 max1
% min2 max2
% ...
% minD maxD ]
%
% minmax = 0, funct minimized (default)
% = 1, funct maximized
% = 2, funct is targeted to P(12) (minimizes distance to errgoal)
% PSOparams - PSO parameters
% P(1) - Epochs between updating display, default = 100. if 0,
% no display
% P(2) - Maximum number of iterations (epochs) to train, default = 2000.
% P(3) - population size, default = 24
%
% P(4) - acceleration const 1 (local best influence), default = 2
% P(5) - acceleration const 2 (global best influence), default = 2
% P(6) - Initial inertia weight, default = 0.9
% P(7) - Final inertia weight, default = 0.4
% P(8) - Epoch when inertial weight at final value, default = 1500
% P(9)- minimum global error gradient,
% if abs(Gbest(i+1)-Gbest(i)) < gradient over
% certain length of epochs, terminate run, default = 1e-25
% P(10)- epochs before error gradient criterion terminates run,
% default = 150, if the SSE does not change over 250 epochs
% then exit
% P(11)- error goal, if NaN then unconstrained min or max, default=NaN
% P(12)- type flag (which kind of PSO to use)
% 0 = Common PSO w/intertia (default)
% 1,2 = Trelea types 1,2
% 3 = Clerc's Constricted PSO, Type 1"
% P(13)- PSOseed, default=0
% = 0 for initial positions all random
% = 1 for initial particles as user input
%
% plotfcn - optional name of plotting function, default 'goplotpso',
% make your own and put here
%
% PSOseedValue - initial particle position, depends on P(13), must be
% set if P(13) is 1 or 2, not used for P(13)=0, needs to
% be nXm where n<=ps, and m<=D
% If n<ps and/or m<D then remaining values are set random
% on Varrange
% Outputs:
% optOUT - optimal inputs and associated min/max output of function, of form:
% [ bestin1
% bestin2
% ...
% bestinD
% bestOUT ]
%
% Optional Outputs:
% tr - Gbest at every iteration, traces flight of swarm
% te - epochs to train, returned as a vector 1:endepoch
%
% Example: out=pso_Trelea_vectorized('f6',2)
% Brian Birge
% Rev 3.3
% 2/18/06
function [OUT,varargout]=pso_Trelea_vectorized(functname,D,varargin)
rand('state',sum(100*clock));
if nargin < 2
error('Not enough arguments.');
end
% PSO PARAMETERS
if nargin == 2 % only specified functname and D
VRmin=ones(D,1)*-100;
VRmax=ones(D,1)*100;
VR=[VRmin,VRmax];
minmax = 0;
P = [];
mv = 4;
plotfcn='goplotpso';
elseif nargin == 3 % specified functname, D, and mv
VRmin=ones(D,1)*-100;
VRmax=ones(D,1)*100;
VR=[VRmin,VRmax];
minmax = 0;
mv=varargin{1};
if isnan(mv)
mv=4;
end
P = [];
plotfcn='goplotpso';
elseif nargin == 4 % specified functname, D, mv, Varrange
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax = 0;
P = [];
plotfcn='goplotpso';
elseif nargin == 5 % Functname, D, mv, Varrange, and minmax
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = [];
plotfcn='goplotpso';
elseif nargin == 6 % Functname, D, mv, Varrange, minmax, and psoparams
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn='goplotpso';
elseif nargin == 7 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn = varargin{5};
elseif nargin == 8 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn, PSOseedValue
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn = varargin{5};
PSOseedValue = varargin{6};
else
error('Wrong # of input arguments.');
end
% sets up default pso params
Pdef = [100 2000 24 2 2 0.9 0.4 1500 1e-25 250 NaN 0 0];
Plen = length(P);
P = [P,Pdef(Plen+1:end)];
df = P(1);
me = P(2);
ps = P(3);
ac1 = P(4);
ac2 = P(5);
iw1 = P(6);
iw2 = P(7);
iwe = P(8);
ergrd = P(9);
ergrdep = P(10);
errgoal = P(11);
trelea = P(12);
PSOseed = P(13);
% used with trainpso, for neural net training
if strcmp(functname,'pso_neteval')
net = evalin('caller','net');
Pd = evalin('caller','Pd');
Tl = evalin('caller','Tl');
Ai = evalin('caller','Ai');
Q = evalin('caller','Q');
TS = evalin('caller','TS');
end
% error checking
if ((minmax==2) & isnan(errgoal))
error('minmax= 2, errgoal= NaN: choose an error goal or set minmax to 0 or 1');
end
if ( (PSOseed==1) & ~exist('PSOseedValue') )
error('PSOseed flag set but no PSOseedValue was input');
end
if exist('PSOseedValue')
tmpsz=size(PSOseedValue);
if D < tmpsz(2)
error('PSOseedValue column size must be D or less');
end
if ps < tmpsz(1)
error('PSOseedValue row length must be # of particles or less');
end
end
% set plotting flag
if (P(1))~=0
plotflg=1;
else
plotflg=0;
end
% preallocate variables for speed up
tr = ones(1,me)*NaN;
% take care of setting max velocity and position params here
if length(mv)==1
velmaskmin = -mv*ones(ps,D); % min vel, psXD matrix
velmaskmax = mv*ones(ps,D); % max vel
elseif length(mv)==D
velmaskmin = repmat(forcerow(-mv),ps,1); % min vel
velmaskmax = repmat(forcerow( mv),ps,1); % max vel
else
error('Max vel must be either a scalar or same length as prob dimension D');
end
posmaskmin = repmat(VR(1:D,1)',ps,1); % min pos, psXD matrix
posmaskmax = repmat(VR(1:D,2)',ps,1); % max pos
posmaskmeth = 3; % 3=bounce method (see comments below inside epoch loop)
% PLOTTING
message = sprintf('PSO: %%g/%g iterations, GBest = %%20.20g.\n',me);
% INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE
% initialize population of particles and their velocities at time zero,
% format of pos= (particle#, dimension)
% construct random population positions bounded by VR
pos(1:ps,1:D) = normmat(rand([ps,D]),VR',1);
if PSOseed == 1 % initial positions user input, see comments above
tmpsz = size(PSOseedValue);
pos(1:tmpsz(1),1:tmpsz(2)) = PSOseedValue;
end
% construct initial random velocities between -mv,mv
vel(1:ps,1:D) = normmat(rand([ps,D]),...
[forcecol(-mv),forcecol(mv)]',1);
% initial pbest positions vals
pbest = pos;
% VECTORIZE THIS, or at least vectorize cost funct call
out = feval(functname,pos); % returns column of cost values (1 for each particle)
%---------------------------
pbestval=out; % initially, pbest is same as pos
% assign initial gbest here also (gbest and gbestval)
if minmax==1
% this picks gbestval when we want to maximize the function
[gbestval,idx1] = max(pbestval);
elseif minmax==0
% this works for straight minimization
[gbestval,idx1] = min(pbestval);
elseif minmax==2
% this works when you know target but not direction you need to go
% good for a cost function that returns distance to target that can be either
% negative or positive (direction info)
[temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);
gbestval = pbestval(idx1);
end
% preallocate a variable to keep track of gbest for all iters
bestpos = zeros(me,D+1)*NaN;
gbest = pbest(idx1,:); % this is gbest position
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
%tr(1) = gbestval; % save for output
bestpos(1,1:D) = gbest;
% this part used for implementing Carlisle and Dozier's APSO idea
% slightly modified, this tracks the global best as the sentry whereas
% their's chooses a different point to act as sentry
% see "Tracking Changing Extremea with Adaptive Particle Swarm Optimizer",
% part of the WAC 2002 Proceedings, June 9-13, http://wacong.com
sentryval = gbestval;
sentry = gbest;
if (trelea == 3)
% calculate Clerc's constriction coefficient chi to use in his form
kappa = 1; % standard val = 1, change for more or less constriction
if ( (ac1+ac2) <=4 )
chi = kappa;
else
psi = ac1 + ac2;
chi_den = abs(2-psi-sqrt(psi^2 - 4*psi));
chi_num = 2*kappa;
chi = chi_num/chi_den;
end
end
% INITIALIZE END INITIALIZE END INITIALIZE END INITIALIZE END
rstflg = 0; % for dynamic environment checking
% start PSO iterative procedures
cnt = 0; % counter used for updating display according to df in the options
cnt2 = 0; % counter used for the stopping subroutine based on error convergence
iwt(1) = iw1;
for i=1:me % start epoch loop (iterations)
out = feval(functname,[pos;gbest]);
outbestval = out(end,:);
out = out(1:end-1,:);
tr(i+1) = gbestval; % keep track of global best val
te = i; % returns epoch number to calling program when done
bestpos(i,1:D+1) = [gbest,gbestval];
%assignin('base','bestpos',bestpos(i,1:D+1));
%------------------------------------------------------------------------
% this section does the plots during iterations
if plotflg==1
if (rem(i,df) == 0 ) | (i==me) | (i==1)
fprintf(message,i,gbestval);
cnt = cnt+1; % count how many times we display (useful for movies)
eval(plotfcn); % defined at top of script
end % end update display every df if statement
end % end plotflg if statement
% check for an error space that changes wrt time/iter
% threshold value that determines dynamic environment
% sees if the value of gbest changes more than some threshold value
% for the same location
chkdyn = 1;
rstflg = 0; % for dynamic environment checking
if chkdyn==1
threshld = 0.05; % percent current best is allowed to change, .05 = 5% etc
letiter = 5; % # of iterations before checking environment, leave at least 3 so PSO has time to converge
outorng = abs( 1- (outbestval/gbestval) ) >= threshld;
samepos = (max( sentry == gbest ));
if (outorng & samepos) & rem(i,letiter)==0
rstflg=1;
% disp('New Environment: reset pbest, gbest, and vel');
%% reset pbest and pbestval if warranted
% outpbestval = feval( functname,[pbest] );
% Poutorng = abs( 1-(outpbestval./pbestval) ) > threshld;
% pbestval = pbestval.*~Poutorng + outpbestval.*Poutorng;
% pbest = pbest.*repmat(~Poutorng,1,D) + pos.*repmat(Poutorng,1,D);
pbest = pos; % reset personal bests to current positions
pbestval = out;
vel = vel*10; % agitate particles a little (or a lot)
% recalculate best vals
if minmax == 1
[gbestval,idx1] = max(pbestval);
elseif minmax==0
[gbestval,idx1] = min(pbestval);
elseif minmax==2 % this section needs work
[temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);
gbestval = pbestval(idx1);
end
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end % end if outorng
sentryval = gbestval;
sentry = gbest;
end % end if chkdyn
% find particles where we have new pbest, depending on minmax choice
% then find gbest and gbestval
%[size(out),size(pbestval)]
if rstflg == 0
if minmax == 0
[tempi] = find(pbestval>=out); % new min pbestvals
pbestval(tempi,1) = out(tempi); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
[iterbestval,idx1] = min(pbestval);
if gbestval >= iterbestval
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
elseif minmax == 1
[tempi,dum] = find(pbestval<=out); % new max pbestvals
pbestval(tempi,1) = out(tempi,1); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
[iterbestval,idx1] = max(pbestval);
if gbestval <= iterbestval
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
elseif minmax == 2 % this won't work as it is, fix it later
egones = errgoal*ones(ps,1); % vector of errgoals
sqrerr2 = ((pbestval-egones).^2);
sqrerr1 = ((out-egones).^2);
[tempi,dum] = find(sqerr1 <= sqrerr2); % find particles closest to targ
pbestval(tempi,1) = out(tempi,1); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
sqrerr = ((pbestval-egones).^2); % need to do this to reflect new pbests
[temp,idx1] = min(sqrerr);
iterbestval = pbestval(idx1);
if (iterbestval-errgoal)^2 <= (gbestval-errgoal)^2
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
end
end
% % build a simple predictor 10th order, for gbest trajectory
% if i>500
% for dimcnt=1:D
% pred_coef = polyfit(i-250:i,(bestpos(i-250:i,dimcnt))',20);
% % pred_coef = polyfit(200:i,(bestpos(200:i,dimcnt))',20);
% gbest_pred(i,dimcnt) = polyval(pred_coef,i+1);
% end
% else
% gbest_pred(i,:) = zeros(size(gbest));
% end
%gbest_pred(i,:)=gbest;
%assignin('base','gbest_pred',gbest_pred);
% % convert to non-inertial frame
% gbestoffset = gbest - gbest_pred(i,:);
% gbest = gbest - gbestoffset;
% pos = pos + repmat(gbestoffset,ps,1);
% pbest = pbest + repmat(gbestoffset,ps,1);
%PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO
% get new velocities, positions (this is the heart of the PSO algorithm)
% each epoch get new set of random numbers
rannum1 = rand([ps,D]); % for Trelea and Clerc types
rannum2 = rand([ps,D]);
if trelea == 2
% from Trelea's paper, parameter set 2
vel = 0.729.*vel... % prev vel
+1.494.*rannum1.*(pbest-pos)... % independent
+1.494.*rannum2.*(repmat(gbest,ps,1)-pos); % social
elseif trelea == 1
% from Trelea's paper, parameter set 1
vel = 0.600.*vel... % prev vel
+1.700.*rannum1.*(pbest-pos)... % independent
+1.700.*rannum2.*(repmat(gbest,ps,1)-pos); % social
elseif trelea ==3
% Clerc's Type 1" PSO
vel = chi*(vel... % prev vel
+ac1.*rannum1.*(pbest-pos)... % independent
+ac2.*rannum2.*(repmat(gbest,ps,1)-pos)) ; % social
else
% common PSO algo with inertia wt
% get inertia weight, just a linear funct w.r.t. epoch parameter iwe
if i<=iwe
iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1;
else
iwt(i) = iw2;
end
% random number including acceleration constants
ac11 = rannum1.*ac1; % for common PSO w/inertia
ac22 = rannum2.*ac2;
vel = iwt(i).*vel... % prev vel
+ac11.*(pbest-pos)... % independent
+ac22.*(repmat(gbest,ps,1)-pos); % social
end
% limit velocities here using masking
vel = ( (vel <= velmaskmin).*velmaskmin ) + ( (vel > velmaskmin).*vel );
vel = ( (vel >= velmaskmax).*velmaskmax ) + ( (vel < velmaskmax).*vel );
% update new position (PSO algo)
pos = pos + vel;
% position masking, limits positions to desired search space
% method: 0) no position limiting, 1) saturation at limit,
% 2) wraparound at limit , 3) bounce off limit
minposmask_throwaway = pos <= posmaskmin; % these are psXD matrices
minposmask_keep = pos > posmaskmin;
maxposmask_throwaway = pos >= posmaskmax;
maxposmask_keep = pos < posmaskmax;
if posmaskmeth == 1
% this is the saturation method
pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos );
elseif posmaskmeth == 2
% this is the wraparound method
pos = ( minposmask_throwaway.*posmaskmax ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmin ) + ( maxposmask_keep.*pos );
elseif posmaskmeth == 3
% this is the bounce method, particles bounce off the boundaries with -vel
pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos );
vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway);
vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway);
else
% no change, this is the original Eberhart, Kennedy method,
% it lets the particles grow beyond bounds if psoparams (P)
% especially Vmax, aren't set correctly, see the literature
end
%PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO
% check for stopping criterion based on speed of convergence to desired
% error
tmp1 = abs(tr(i) - gbestval);
if tmp1 > ergrd
cnt2 = 0;
elseif tmp1 <= ergrd
cnt2 = cnt2+1;
if cnt2 >= ergrdep
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Solution likely, GBest hasn''t changed by at least ',...
num2str(ergrd),' for ',...
num2str(cnt2),' epochs.']);
eval(plotfcn);
end
break
end
end
% this stops if using constrained optimization and goal is reached
if ~isnan(errgoal)
if ((gbestval<=errgoal) & (minmax==0)) | ((gbestval>=errgoal) & (minmax==1))
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Error Goal reached, successful termination!']);
eval(plotfcn);
end
break
end
% this is stopping criterion for constrained from both sides
if minmax == 2
if ((tr(i)<errgoal) & (gbestval>=errgoal)) | ((tr(i)>errgoal) ...
& (gbestval <= errgoal))
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Error Goal reached, successful termination!']);
eval(plotfcn);
end
break
end
end % end if minmax==2
end % end ~isnan if
% % convert back to inertial frame
% pos = pos - repmat(gbestoffset,ps,1);
% pbest = pbest - repmat(gbestoffset,ps,1);
% gbest = gbest + gbestoffset;
end % end epoch loop
%% clear temp outputs
% evalin('base','clear temp_pso_out temp_te temp_tr;');
% output & return
OUT=[gbest';gbestval];
varargout{1}=[1:te];
varargout{2}=[tr(find(~isnan(tr)))];
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
DeJong_f4.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/DeJong_f4.m
| 971 |
utf_8
|
9df4774e7545c69c3ded2336203917ac
|
% DeJong_f4.m
% De Jong's f4 function, ND, no noise
%
% described by Clerc in ...
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% used to test optimization/global minimization problems
% in Clerc's "Semi-continuous challenge"
%
% f(x) = sum( [1:N].*(in.^4), 2)
%
% x = N element row vector containing [ x0, x1,..., xN ]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = DeJong_f4([1,2;3,4;5,6])
% note minimum =0 @ x= all zeros
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=DeJong_f4(in)
persistent D tlen d
% this speeds routine up a lot, if called from PSO these won't change from
% call to call (repmat is a cpu hog)
Dx=length(in(1,:));
tlenx=length(in(:,1));
if isempty(D) | D~=Dx | tlen~=tlenx
D=Dx; % dimension of prob
tlen=tlenx; % how many separate states
d=repmat([1:D],tlen,1); % needed to vectorize this
end
out = sum( d.*(in.^4), 2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
DeJong_f3.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/testfunctions/DeJong_f3.m
| 488 |
utf_8
|
60082b5c3e0231c66b32f383ab9aca68
|
% DeJong_f3.m
% De Jong's f3 function, ND, also called STEP
% from: http://www.cs.rpi.edu/~hornda/pres/node4.html
%
% f(x) = sum( floor(x) )
%
% x = N element row vector containing [ x0, x1,..., xN ]
% each row is processed independently,
% you can feed in matrices of timeXN no prob
%
% example: cost = DeJong_f3([1,2;3,4;5,6])
% note minimum @ x= -Inf or whatever lower bound you've chosen
% Brian Birge
% Rev 1.0
% 9/12/04
function [out]=DeJong_f3(in)
out = sum( floor(in) , 2);
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
spiral_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/PSOt/spiral_dyn.m
| 805 |
utf_8
|
9ed110a6f7dc7937e4f689a5a3b912ee
|
% spiral_dyn.m
% returns x,y position along an archimedean spiral of degree n
% based on cputime, first time it is called is start time
%
% based on: r = a*(theta^n)
%
% usage: [x_cnt,y_cnt] = spiral_dyn(n,a)
% i.e.,
% n = 2 (Fermat)
% = 1 (Archimedes)
% = -1 (Hyberbolic)
% = -2 (Lituus)
% Brian Birge
% Rev 1.1
% 8/23/04
function [x_cnt,y_cnt] = spiral_dyn(n,a)
% this keeps the same start time for each run of the calling function
% this will reset when any calling prog is re-saved or workspace is
% cleared
persistent tnot iter
% find starting time
if ~exist('tnot') | length(tnot)==0
tnot = cputime;
% iter = 0;
end
%iter = iter+10 ;
theta = cputime-tnot;
%theta = iter/10000;
r = a*(theta.^n);
x_cnt = r*cos(theta);
y_cnt = r*sin(theta);
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
linear_dyn.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/PSOt/linear_dyn.m
| 724 |
utf_8
|
c630c42d5de136b31ca954328cde13d2
|
% linear_dyn.m
% returns an offset that can be added to data that increases linearly with
% time, based on cputime, first time it is called is start time
%
% equation is: offset = (cputime - tnot)*scalefactor
% where tnot = cputime at the first call
% scalefactor = value that slows or speeds up linear movement
%
% usage: [offset] = linear_dyn(scalefactor)
% Brian Birge
% Rev 1.0
% 8/23/04
function out = linear_dyn(sf)
% this keeps the same start time for each run of the calling function
% this will reset when any calling prog is re-saved or workspace is
% cleared
persistent tnot
% find starting time
if ~exist('tnot') | length(tnot)==0
tnot = cputime;
end
out = (cputime-tnot)*sf;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
pso_Trelea_vectorized.m
|
.m
|
Mathematical-Model-Implementation-master/IntelligenceAlgorithm/chapter17 基于PSO工具箱的函数寻优算法/PSOt/pso_Trelea_vectorized.m
| 22,526 |
utf_8
|
83cd4e518a70437a5b760d6cb5ceaa82
|
% pso_Trelea_vectorized.m
% a generic particle swarm optimizer
% to find the minimum or maximum of any
% MISO matlab function
%
% Implements Common, Trelea type 1 and 2, and Clerc's class 1". It will
% also automatically try to track to a changing environment (with varied
% success - BKB 3/18/05)
%
% This vectorized version removes the for loop associated with particle
% number. It also *requires* that the cost function have a single input
% that represents all dimensions of search (i.e., for a function that has 2
% inputs then make a wrapper that passes a matrix of ps x 2 as a single
% variable)
%
% Usage:
% [optOUT]=PSO(functname,D)
% or:
% [optOUT,tr,te]=...
% PSO(functname,D,mv,VarRange,minmax,PSOparams,plotfcn,PSOseedValue)
%
% Inputs:
% functname - string of matlab function to optimize
% D - # of inputs to the function (dimension of problem)
%
% Optional Inputs:
% mv - max particle velocity, either a scalar or a vector of length D
% (this allows each component to have it's own max velocity),
% default = 4, set if not input or input as NaN
%
% VarRange - matrix of ranges for each input variable,
% default -100 to 100, of form:
% [ min1 max1
% min2 max2
% ...
% minD maxD ]
%
% minmax = 0, funct minimized (default)
% = 1, funct maximized
% = 2, funct is targeted to P(12) (minimizes distance to errgoal)
% PSOparams - PSO parameters
% P(1) - Epochs between updating display, default = 100. if 0,
% no display
% P(2) - Maximum number of iterations (epochs) to train, default = 2000.
% P(3) - population size, default = 24
%
% P(4) - acceleration const 1 (local best influence), default = 2
% P(5) - acceleration const 2 (global best influence), default = 2
% P(6) - Initial inertia weight, default = 0.9
% P(7) - Final inertia weight, default = 0.4
% P(8) - Epoch when inertial weight at final value, default = 1500
% P(9)- minimum global error gradient,
% if abs(Gbest(i+1)-Gbest(i)) < gradient over
% certain length of epochs, terminate run, default = 1e-25
% P(10)- epochs before error gradient criterion terminates run,
% default = 150, if the SSE does not change over 250 epochs
% then exit
% P(11)- error goal, if NaN then unconstrained min or max, default=NaN
% P(12)- type flag (which kind of PSO to use)
% 0 = Common PSO w/intertia (default)
% 1,2 = Trelea types 1,2
% 3 = Clerc's Constricted PSO, Type 1"
% P(13)- PSOseed, default=0
% = 0 for initial positions all random
% = 1 for initial particles as user input
%
% plotfcn - optional name of plotting function, default 'goplotpso',
% make your own and put here
%
% PSOseedValue - initial particle position, depends on P(13), must be
% set if P(13) is 1 or 2, not used for P(13)=0, needs to
% be nXm where n<=ps, and m<=D
% If n<ps and/or m<D then remaining values are set random
% on Varrange
% Outputs:
% optOUT - optimal inputs and associated min/max output of function, of form:
% [ bestin1
% bestin2
% ...
% bestinD
% bestOUT ]
%
% Optional Outputs:
% tr - Gbest at every iteration, traces flight of swarm
% te - epochs to train, returned as a vector 1:endepoch
%
% Example: out=pso_Trelea_vectorized('f6',2)
% Brian Birge
% Rev 3.3
% 2/18/06
function [OUT,varargout]=pso_Trelea_vectorized(functname,D,varargin)
rand('state',sum(100*clock));
if nargin < 2
error('Not enough arguments.');
end
% PSO PARAMETERS
if nargin == 2 % only specified functname and D
VRmin=ones(D,1)*-100;
VRmax=ones(D,1)*100;
VR=[VRmin,VRmax];
minmax = 0;
P = [];
mv = 4;
plotfcn='goplotpso';
elseif nargin == 3 % specified functname, D, and mv
VRmin=ones(D,1)*-100;
VRmax=ones(D,1)*100;
VR=[VRmin,VRmax];
minmax = 0;
mv=varargin{1};
if isnan(mv)
mv=4;
end
P = [];
plotfcn='goplotpso';
elseif nargin == 4 % specified functname, D, mv, Varrange
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax = 0;
P = [];
plotfcn='goplotpso';
elseif nargin == 5 % Functname, D, mv, Varrange, and minmax
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = [];
plotfcn='goplotpso';
elseif nargin == 6 % Functname, D, mv, Varrange, minmax, and psoparams
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn='goplotpso';
elseif nargin == 7 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn = varargin{5};
elseif nargin == 8 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn, PSOseedValue
mv=varargin{1};
if isnan(mv)
mv=4;
end
VR=varargin{2};
minmax=varargin{3};
P = varargin{4}; % psoparams
plotfcn = varargin{5};
PSOseedValue = varargin{6};
else
error('Wrong # of input arguments.');
end
% sets up default pso params
Pdef = [100 2000 24 2 2 0.9 0.4 1500 1e-25 250 NaN 0 0];
Plen = length(P);
P = [P,Pdef(Plen+1:end)];
df = P(1);
me = P(2);
ps = P(3);
ac1 = P(4);
ac2 = P(5);
iw1 = P(6);
iw2 = P(7);
iwe = P(8);
ergrd = P(9);
ergrdep = P(10);
errgoal = P(11);
trelea = P(12);
PSOseed = P(13);
% used with trainpso, for neural net training
if strcmp(functname,'pso_neteval')
net = evalin('caller','net');
Pd = evalin('caller','Pd');
Tl = evalin('caller','Tl');
Ai = evalin('caller','Ai');
Q = evalin('caller','Q');
TS = evalin('caller','TS');
end
% error checking
if ((minmax==2) & isnan(errgoal))
error('minmax= 2, errgoal= NaN: choose an error goal or set minmax to 0 or 1');
end
if ( (PSOseed==1) & ~exist('PSOseedValue') )
error('PSOseed flag set but no PSOseedValue was input');
end
if exist('PSOseedValue')
tmpsz=size(PSOseedValue);
if D < tmpsz(2)
error('PSOseedValue column size must be D or less');
end
if ps < tmpsz(1)
error('PSOseedValue row length must be # of particles or less');
end
end
% set plotting flag
if (P(1))~=0
plotflg=1;
else
plotflg=0;
end
% preallocate variables for speed up
tr = ones(1,me)*NaN;
% take care of setting max velocity and position params here
if length(mv)==1
velmaskmin = -mv*ones(ps,D); % min vel, psXD matrix
velmaskmax = mv*ones(ps,D); % max vel
elseif length(mv)==D
velmaskmin = repmat(forcerow(-mv),ps,1); % min vel
velmaskmax = repmat(forcerow( mv),ps,1); % max vel
else
error('Max vel must be either a scalar or same length as prob dimension D');
end
posmaskmin = repmat(VR(1:D,1)',ps,1); % min pos, psXD matrix
posmaskmax = repmat(VR(1:D,2)',ps,1); % max pos
posmaskmeth = 3; % 3=bounce method (see comments below inside epoch loop)
% PLOTTING
message = sprintf('PSO: %%g/%g iterations, GBest = %%20.20g.\n',me);
% INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE
% initialize population of particles and their velocities at time zero,
% format of pos= (particle#, dimension)
% construct random population positions bounded by VR
pos(1:ps,1:D) = normmat(rand([ps,D]),VR',1);
if PSOseed == 1 % initial positions user input, see comments above
tmpsz = size(PSOseedValue);
pos(1:tmpsz(1),1:tmpsz(2)) = PSOseedValue;
end
% construct initial random velocities between -mv,mv
vel(1:ps,1:D) = normmat(rand([ps,D]),...
[forcecol(-mv),forcecol(mv)]',1);
% initial pbest positions vals
pbest = pos;
% VECTORIZE THIS, or at least vectorize cost funct call
out = feval(functname,pos); % returns column of cost values (1 for each particle)
%---------------------------
pbestval=out; % initially, pbest is same as pos
% assign initial gbest here also (gbest and gbestval)
if minmax==1
% this picks gbestval when we want to maximize the function
[gbestval,idx1] = max(pbestval);
elseif minmax==0
% this works for straight minimization
[gbestval,idx1] = min(pbestval);
elseif minmax==2
% this works when you know target but not direction you need to go
% good for a cost function that returns distance to target that can be either
% negative or positive (direction info)
[temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);
gbestval = pbestval(idx1);
end
% preallocate a variable to keep track of gbest for all iters
bestpos = zeros(me,D+1)*NaN;
gbest = pbest(idx1,:); % this is gbest position
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
%tr(1) = gbestval; % save for output
bestpos(1,1:D) = gbest;
% this part used for implementing Carlisle and Dozier's APSO idea
% slightly modified, this tracks the global best as the sentry whereas
% their's chooses a different point to act as sentry
% see "Tracking Changing Extremea with Adaptive Particle Swarm Optimizer",
% part of the WAC 2002 Proceedings, June 9-13, http://wacong.com
sentryval = gbestval;
sentry = gbest;
if (trelea == 3)
% calculate Clerc's constriction coefficient chi to use in his form
kappa = 1; % standard val = 1, change for more or less constriction
if ( (ac1+ac2) <=4 )
chi = kappa;
else
psi = ac1 + ac2;
chi_den = abs(2-psi-sqrt(psi^2 - 4*psi));
chi_num = 2*kappa;
chi = chi_num/chi_den;
end
end
% INITIALIZE END INITIALIZE END INITIALIZE END INITIALIZE END
rstflg = 0; % for dynamic environment checking
% start PSO iterative procedures
cnt = 0; % counter used for updating display according to df in the options
cnt2 = 0; % counter used for the stopping subroutine based on error convergence
iwt(1) = iw1;
for i=1:me % start epoch loop (iterations)
out = feval(functname,[pos;gbest]);
outbestval = out(end,:);
out = out(1:end-1,:);
tr(i+1) = gbestval; % keep track of global best val
te = i; % returns epoch number to calling program when done
bestpos(i,1:D+1) = [gbest,gbestval];
%assignin('base','bestpos',bestpos(i,1:D+1));
%------------------------------------------------------------------------
% this section does the plots during iterations
if plotflg==1
if (rem(i,df) == 0 ) | (i==me) | (i==1)
fprintf(message,i,gbestval);
cnt = cnt+1; % count how many times we display (useful for movies)
eval(plotfcn); % defined at top of script
end % end update display every df if statement
end % end plotflg if statement
% check for an error space that changes wrt time/iter
% threshold value that determines dynamic environment
% sees if the value of gbest changes more than some threshold value
% for the same location
chkdyn = 1;
rstflg = 0; % for dynamic environment checking
if chkdyn==1
threshld = 0.05; % percent current best is allowed to change, .05 = 5% etc
letiter = 5; % # of iterations before checking environment, leave at least 3 so PSO has time to converge
outorng = abs( 1- (outbestval/gbestval) ) >= threshld;
samepos = (max( sentry == gbest ));
if (outorng & samepos) & rem(i,letiter)==0
rstflg=1;
% disp('New Environment: reset pbest, gbest, and vel');
%% reset pbest and pbestval if warranted
% outpbestval = feval( functname,[pbest] );
% Poutorng = abs( 1-(outpbestval./pbestval) ) > threshld;
% pbestval = pbestval.*~Poutorng + outpbestval.*Poutorng;
% pbest = pbest.*repmat(~Poutorng,1,D) + pos.*repmat(Poutorng,1,D);
pbest = pos; % reset personal bests to current positions
pbestval = out;
vel = vel*10; % agitate particles a little (or a lot)
% recalculate best vals
if minmax == 1
[gbestval,idx1] = max(pbestval);
elseif minmax==0
[gbestval,idx1] = min(pbestval);
elseif minmax==2 % this section needs work
[temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);
gbestval = pbestval(idx1);
end
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end % end if outorng
sentryval = gbestval;
sentry = gbest;
end % end if chkdyn
% find particles where we have new pbest, depending on minmax choice
% then find gbest and gbestval
%[size(out),size(pbestval)]
if rstflg == 0
if minmax == 0
[tempi] = find(pbestval>=out); % new min pbestvals
pbestval(tempi,1) = out(tempi); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
[iterbestval,idx1] = min(pbestval);
if gbestval >= iterbestval
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
elseif minmax == 1
[tempi,dum] = find(pbestval<=out); % new max pbestvals
pbestval(tempi,1) = out(tempi,1); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
[iterbestval,idx1] = max(pbestval);
if gbestval <= iterbestval
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
elseif minmax == 2 % this won't work as it is, fix it later
egones = errgoal*ones(ps,1); % vector of errgoals
sqrerr2 = ((pbestval-egones).^2);
sqrerr1 = ((out-egones).^2);
[tempi,dum] = find(sqerr1 <= sqrerr2); % find particles closest to targ
pbestval(tempi,1) = out(tempi,1); % update pbestvals
pbest(tempi,:) = pos(tempi,:); % update pbest positions
sqrerr = ((pbestval-egones).^2); % need to do this to reflect new pbests
[temp,idx1] = min(sqrerr);
iterbestval = pbestval(idx1);
if (iterbestval-errgoal)^2 <= (gbestval-errgoal)^2
gbestval = iterbestval;
gbest = pbest(idx1,:);
% used with trainpso, for neural net training
% assign gbest to net at each iteration, these interim assignments
% are for plotting mostly
if strcmp(functname,'pso_neteval')
net=setx(net,gbest);
end
end
end
end
% % build a simple predictor 10th order, for gbest trajectory
% if i>500
% for dimcnt=1:D
% pred_coef = polyfit(i-250:i,(bestpos(i-250:i,dimcnt))',20);
% % pred_coef = polyfit(200:i,(bestpos(200:i,dimcnt))',20);
% gbest_pred(i,dimcnt) = polyval(pred_coef,i+1);
% end
% else
% gbest_pred(i,:) = zeros(size(gbest));
% end
%gbest_pred(i,:)=gbest;
%assignin('base','gbest_pred',gbest_pred);
% % convert to non-inertial frame
% gbestoffset = gbest - gbest_pred(i,:);
% gbest = gbest - gbestoffset;
% pos = pos + repmat(gbestoffset,ps,1);
% pbest = pbest + repmat(gbestoffset,ps,1);
%PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO
% get new velocities, positions (this is the heart of the PSO algorithm)
% each epoch get new set of random numbers
rannum1 = rand([ps,D]); % for Trelea and Clerc types
rannum2 = rand([ps,D]);
if trelea == 2
% from Trelea's paper, parameter set 2
vel = 0.729.*vel... % prev vel
+1.494.*rannum1.*(pbest-pos)... % independent
+1.494.*rannum2.*(repmat(gbest,ps,1)-pos); % social
elseif trelea == 1
% from Trelea's paper, parameter set 1
vel = 0.600.*vel... % prev vel
+1.700.*rannum1.*(pbest-pos)... % independent
+1.700.*rannum2.*(repmat(gbest,ps,1)-pos); % social
elseif trelea ==3
% Clerc's Type 1" PSO
vel = chi*(vel... % prev vel
+ac1.*rannum1.*(pbest-pos)... % independent
+ac2.*rannum2.*(repmat(gbest,ps,1)-pos)) ; % social
else
% common PSO algo with inertia wt
% get inertia weight, just a linear funct w.r.t. epoch parameter iwe
if i<=iwe
iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1;
else
iwt(i) = iw2;
end
% random number including acceleration constants
ac11 = rannum1.*ac1; % for common PSO w/inertia
ac22 = rannum2.*ac2;
vel = iwt(i).*vel... % prev vel
+ac11.*(pbest-pos)... % independent
+ac22.*(repmat(gbest,ps,1)-pos); % social
end
% limit velocities here using masking
vel = ( (vel <= velmaskmin).*velmaskmin ) + ( (vel > velmaskmin).*vel );
vel = ( (vel >= velmaskmax).*velmaskmax ) + ( (vel < velmaskmax).*vel );
% update new position (PSO algo)
pos = pos + vel;
% position masking, limits positions to desired search space
% method: 0) no position limiting, 1) saturation at limit,
% 2) wraparound at limit , 3) bounce off limit
minposmask_throwaway = pos <= posmaskmin; % these are psXD matrices
minposmask_keep = pos > posmaskmin;
maxposmask_throwaway = pos >= posmaskmax;
maxposmask_keep = pos < posmaskmax;
if posmaskmeth == 1
% this is the saturation method
pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos );
elseif posmaskmeth == 2
% this is the wraparound method
pos = ( minposmask_throwaway.*posmaskmax ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmin ) + ( maxposmask_keep.*pos );
elseif posmaskmeth == 3
% this is the bounce method, particles bounce off the boundaries with -vel
pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos );
pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos );
vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway);
vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway);
else
% no change, this is the original Eberhart, Kennedy method,
% it lets the particles grow beyond bounds if psoparams (P)
% especially Vmax, aren't set correctly, see the literature
end
%PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO
% check for stopping criterion based on speed of convergence to desired
% error
tmp1 = abs(tr(i) - gbestval);
if tmp1 > ergrd
cnt2 = 0;
elseif tmp1 <= ergrd
cnt2 = cnt2+1;
if cnt2 >= ergrdep
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Solution likely, GBest hasn''t changed by at least ',...
num2str(ergrd),' for ',...
num2str(cnt2),' epochs.']);
eval(plotfcn);
end
break
end
end
% this stops if using constrained optimization and goal is reached
if ~isnan(errgoal)
if ((gbestval<=errgoal) & (minmax==0)) | ((gbestval>=errgoal) & (minmax==1))
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Error Goal reached, successful termination!']);
eval(plotfcn);
end
break
end
% this is stopping criterion for constrained from both sides
if minmax == 2
if ((tr(i)<errgoal) & (gbestval>=errgoal)) | ((tr(i)>errgoal) ...
& (gbestval <= errgoal))
if plotflg == 1
fprintf(message,i,gbestval);
disp(' ');
disp(['--> Error Goal reached, successful termination!']);
eval(plotfcn);
end
break
end
end % end if minmax==2
end % end ~isnan if
% % convert back to inertial frame
% pos = pos - repmat(gbestoffset,ps,1);
% pbest = pbest - repmat(gbestoffset,ps,1);
% gbest = gbest + gbestoffset;
end % end epoch loop
%% clear temp outputs
% evalin('base','clear temp_pso_out temp_te temp_tr;');
% output & return
OUT=[gbest';gbestval];
varargout{1}=[1:te];
varargout{2}=[tr(find(~isnan(tr)))];
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
distancematrix.m
|
.m
|
Mathematical-Model-Implementation-master/HeuristicAlgorithm/遗传算法/TSP(GA)/distancematrix.m
| 883 |
utf_8
|
1e2d36405073bd86e4af83903a01299b
|
function dis = distancematrix(city)
% DISTANCEMATRIX
% dis = DISTANCEMATRIX(city) return the distance matrix, dis(i,j) is the
% distance between city_i and city_j
numberofcities = length(city);
R = 6378.137; % The radius of the Earth
for i = 1:numberofcities
for j = i+1:numberofcities
dis(i,j) = distance(city(i).lat, city(i).long, ...
city(j).lat, city(j).long, R);
dis(j,i) = dis(i,j);
end
end
function d = distance(lat1, long1, lat2, long2, R)
% DISTANCE
% d = DISTANCE(lat1, long1, lat2, long2, R) compute distance between points
% on sphere with radians R.
%
% Latitude/Longitude Distance Calculation:
% http://www.mathforum.com/library/drmath/view/51711.html
y1 = lat1/180*pi; x1 = long1/180*pi;
y2 = lat2/180*pi; x2 = long2/180*pi;
dy = y1-y2; dx = x1-x2;
d = 2*R*asin(sqrt(sin(dy/2)^2+sin(dx/2)^2*cos(y1)*cos(y2)));
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
distancematrix.m
|
.m
|
Mathematical-Model-Implementation-master/HeuristicAlgorithm/模拟退火算法/TSP(SA)/distancematrix.m
| 883 |
utf_8
|
1e2d36405073bd86e4af83903a01299b
|
function dis = distancematrix(city)
% DISTANCEMATRIX
% dis = DISTANCEMATRIX(city) return the distance matrix, dis(i,j) is the
% distance between city_i and city_j
numberofcities = length(city);
R = 6378.137; % The radius of the Earth
for i = 1:numberofcities
for j = i+1:numberofcities
dis(i,j) = distance(city(i).lat, city(i).long, ...
city(j).lat, city(j).long, R);
dis(j,i) = dis(i,j);
end
end
function d = distance(lat1, long1, lat2, long2, R)
% DISTANCE
% d = DISTANCE(lat1, long1, lat2, long2, R) compute distance between points
% on sphere with radians R.
%
% Latitude/Longitude Distance Calculation:
% http://www.mathforum.com/library/drmath/view/51711.html
y1 = lat1/180*pi; x1 = long1/180*pi;
y2 = lat2/180*pi; x2 = long2/180*pi;
dy = y1-y2; dx = x1-x2;
d = 2*R*asin(sqrt(sin(dy/2)^2+sin(dx/2)^2*cos(y1)*cos(y2)));
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
grMinSpanTree.m
|
.m
|
Mathematical-Model-Implementation-master/GraphTheory/basic/grMinSpanTree.m
| 2,112 |
utf_8
|
56d552b6d33551eda5bc8d5d1fe22a3d
|
function nMST=grMinSpanTree(E)
% Function nMST=grMinSpanTree(E) solve
% the minimal spanning tree problem for a connected graph.
% Input parameter:
% E(m,2) or (m,3) - the edges of graph and their weight;
% 1st and 2nd elements of each row is numbers of vertexes;
% 3rd elements of each row is weight of edge;
% m - number of edges.
% If we set the array E(m,2), then all weights is 1.
% Output parameter:
% nMST(n-1,1) - the list of the numbers of edges included
% in the minimal (weighted) spanning tree in the including order.
% Uses the greedy algorithm.
% Author: Sergiy Iglin
% e-mail: [email protected]
% personal page: http://iglin.exponenta.ru
% ============= Input data validation ==================
if nargin<1,
error('There are no input data!')
end
[m,n,E] = grValidation(E); % E data validation
% ============= The data preparation ==================
En=[(1:m)',E]; % we add the numbers
En(:,2:3)=sort(En(:,2:3)')'; % edges on increase order
ln=find(En(:,2)==En(:,3)); % the loops numbers
En=En(setdiff([1:size(En,1)]',ln),:); % we delete the loops
[w,iw]=sort(En(:,4)); % sort by weight
Ens=En(iw,:); % sorted edges
% === We build the minimal spanning tree by the greedy algorithm ===
Emst=Ens(1,:); % 1st edge include to minimal spanning tree
Ens=Ens(2:end,:); % rested edges
while (size(Emst,1)<n-1)&(~isempty(Ens)),
Emst=[Emst;Ens(1,:)]; % we add next edge to spanning tree
Ens=Ens(2:end,:); % rested edges
if any((Emst(end,2)==Emst(1:end-1,2))&...
(Emst(end,3)==Emst(1:end-1,3))) | ...
IsCycle(Emst(:,2:3)), % the multiple edge or cycle
Emst=Emst(1:end-1,:); % we delete the last added edge
end
end
nMST=Emst(:,1); % numbers of edges
return
function ic=IsCycle(E); % true, if graph E have cycle
n=max(max(E)); % number of vertexes
A=zeros(n);
A((E(:,1)-1)*n+E(:,2))=1;
A=A+A'; % the connectivity matrix
p=sum(A); % the vertexes power
ic=false;
while any(p<=1), % we delete all tails
nc=find(p>1); % rested vertexes
if isempty(nc),
return
end
A=A(nc,nc); % new connectivity matrix
p=sum(A); % new powers
end
ic=true;
return
|
github
|
hliangzhao/Mathematical-Model-Implementation-master
|
grPlot.m
|
.m
|
Mathematical-Model-Implementation-master/GraphTheory/basic/grPlot.m
| 7,247 |
utf_8
|
f1fabec67aba7eda59ab08e1a77ffe2f
|
function h=grPlot(V,E,kind,vkind,ekind)
% Function h=grPlot(V,E,kind,vkind,ekind)
% draw the plot of the graph (digraph).
% Input parameters:
% V(n,2) or (n,3) - the coordinates of vertexes
% (1st column - x, 2nd - y) and, maybe, 3rd - the weights;
% n - number of vertexes.
% If V(n,2), we write labels: numbers of vertexes,
% if V(n,3), we write labels: the weights of vertexes.
% If V=[], use regular n-angle.
% E(m,2) or (m,3) - the edges of graph (arrows of digraph)
% and their weight; 1st and 2nd elements of each row
% is numbers of vertexes;
% 3rd elements of each row is weight of arrow;
% m - number of arrows.
% If E(m,2), we write labels: numbers of edges (arrows);
% if E(m,3), we write labels: weights of edges (arrows).
% For disconnected graph use E=[] or h=PlotGraph(V).
% kind - the kind of graph.
% kind = 'g' (to draw the graph) or 'd' (to draw digraph);
% (optional, 'g' default).
% vkind - kind of labels for vertexes (optional).
% ekind - kind of labels for edges or arrows (optional).
% For vkind and ekind use the format of function FPRINTF,
% for example, '%8.3f', '%14.10f' etc. Default value is '%d'.
% Use '' (empty string) for don't draw labels.
% Output parameter:
% h - handle of figure (optional).
% See also GPLOT.
% Author: Sergiy Iglin
% e-mail: [email protected]
% personal page: http://iglin.exponenta.ru
% Acknowledgements to Mr.Howard ([email protected])
% for testing of this algorithm.
% ============= Input data validation ==================
if nargin<1,
error('There are no input data!')
end
if (nargin==1) & isempty(V),
error('V is empty and E is not determined!')
end
if (nargin==2) & isempty(V) & isempty(E),
error('V and E are empty!')
end
if ~isempty(V),
if ~isnumeric(V),
error('The array V must be numeric!')
end
sv=size(V); % size of array V
if length(sv)~=2,
error('The array V must be 2D!')
end
if (sv(2)<2),
error('The array V must have 2 or 3 columns!'),
end
if nargin==1, % disconnected graph
E=[];
end
end
if ~isempty(E), % for connected graph
[m,n,newE]=grValidation(E);
we=min(3,size(E,2)); % 3 for weighed edges
E=newE;
if isempty(V), % regular n-angle
V=[cos(2*pi*[1:n]'/n) sin(2*pi*[1:n]'/n)];
sv=size(V); % size of array V
end
if n>sv(1),
error('Several vertexes is not determined!');
end
else
m=0;
end
% ============= Other arguments ==================
n=sv(1); % real number of vertexes
wv=min(3,sv(2)); % 3 for weighted vertexes
if nargin<3, % only 2 input parameters
kind1='g';
else
if isempty(kind),
kind='g';
kind1='g';
end
if ~ischar(kind),
error('The argument kind must be a string!')
else
kind1=lower(kind(1));
end
end
if nargin<4,
vkind1='%d';
else
if ~ischar(vkind),
error('The argument vkind must be a string!')
else
vkind1=lower(vkind);
end
end
if nargin<5,
ekind1='%d';
else
if ~ischar(ekind),
error('The argument ekind must be a string!')
else
ekind1=lower(ekind);
end
end
md=inf; % the minimal distance between vertexes
for k1=1:n-1,
for k2=k1+1:n,
md=min(md,sum((V(k1,:)-V(k2,:)).^2)^0.5);
end
end
if md<eps, % identical vertexes
error('The array V have identical rows!')
else
V(:,1:2)=V(:,1:2)/md; % normalization
end
r=0.1; % for multiple edges
tr=linspace(pi/4,3*pi/4);
xr=0.5-cos(tr)/2^0.5;
yr=(sin(tr)-2^0.5/2)/(1-2^0.5/2);
t=linspace(-pi/2,3*pi/2); % for loops
xc=0.1*cos(t);
yc=0.1*sin(t);
% we sort the edges
if ~isempty(E),
E=[zeros(m,1),[1:m]',E]; % 1st column for change, 2nd column is edge number
need2=find(E(:,4)<E(:,3)); % for replace v1<->v2
tmp=E(need2,3);
E(need2,3)=E(need2,4);
E(need2,4)=tmp;
E(need2,1)=1; % 1, if v1<->v2
[e1,ie1]=sort(E(:,3)); % sort by 1st vertex
E1=E(ie1,:);
for k2=E1(1,3):E1(end,3),
num2=find(E1(:,3)==k2);
if ~isempty(num2), % sort by 2nd vertex
E3=E1(num2,:);
[e3,ie3]=sort(E3(:,4));
E4=E3(ie3,:);
E1(num2,:)=E4;
end
end
ip=find(E1(:,3)==E1(:,4)); % we find loops
Ep=E1(ip,:); % loops
E2=E1(setdiff([1:m],ip),:); % edges without loops
end
% we paint the graph
hh=figure;
hold on
plot(V(:,1),V(:,2),'k.','MarkerSize',20)
axis equal
h1=get(gca); % handle of current figure
if ~isempty(vkind1), % labels of vertexes
for k=1:n,
if wv==3,
s=sprintf(vkind1,V(k,3));
else
s=sprintf(vkind1,k);
end
hhh=text(V(k,1)+0.05,V(k,2)-0.07,s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
% edges (arrows)
if ~isempty(E),
k=0;
m2=size(E2,1); % number of edges without loops
while k<m2,
k=k+1; % current edge
MyE=V(E2(k,3:4),1:2); % numbers of vertexes 1, 2
k1=1; % we find the multiple edges
if k<m2,
while all(E2(k,3:4)==E2(k+k1,3:4)),
k1=k1+1;
if k+k1>m2,
break;
end
end
end
ry=r*[1:k1];
ry=ry-mean(ry); % radius
l=norm(MyE(1,:)-MyE(2,:)); % lenght of line
dx=MyE(2,1)-MyE(1,1);
dy=MyE(2,2)-MyE(1,2);
alpha=atan2(dy,dx); % angle of rotation
cosa=cos(alpha);
sina=sin(alpha);
MyX=xr*l;
for k2=1:k1, % we draw the edges (arrows)
MyY=yr*ry(k2);
MyXg=MyX*cosa-MyY*sina+MyE(1,1);
MyYg=MyX*sina+MyY*cosa+MyE(1,2);
plot(MyXg,MyYg,'k-');
if kind1=='d', % digraph with arrows
if E2(k+k2-1,1)==1,
[xa,ya]=CreateArrow(MyXg(1:2),MyYg(1:2));
fill(xa,ya,'k');
else
[xa,ya]=CreateArrow(MyXg(end:-1:end-1),MyYg(end:-1:end-1));
fill(xa,ya,'k');
end
end
if ~isempty(ekind1), % labels of edges (arrows)
if we==3,
s=sprintf(ekind1,E2(k+k2-1,5));
else
s=sprintf(ekind1,E2(k+k2-1,2));
end
text(MyXg(length(MyXg)/2),MyYg(length(MyYg)/2),s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
k=k+k1-1;
end
% we draw the loops
k=0;
ml=size(Ep,1); % number of loops
while k<ml,
k=k+1; % current loop
MyV=V(Ep(k,3),1:2); % vertexes
k1=1; % we find the multiple loops
if k<ml,
while all(Ep(k,3:4)==Ep(k+k1,3:4)),
k1=k1+1;
if k+k1>ml,
break;
end
end
end
ry=[1:k1]+1; % radius
for k2=1:k1, % we draw the loop
MyX=xc*ry(k2)+MyV(1);
MyY=(yc+r)*ry(k2)+MyV(2);
plot(MyX,MyY,'k-');
if kind1=='d',
[xa,ya]=CreateArrow(MyX([1 10]),MyY([1 10]));
fill(xa,ya,'k');
end
if ~isempty(ekind1), % labels of edges (arrows)
if we==3,
s=sprintf(ekind1,Ep(k+k2-1,5));
else
s=sprintf(ekind1,Ep(k+k2-1,2));
end
hhh=text(MyX(length(MyX)/2),MyY(length(MyY)/2),s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
k=k+k1-1;
end
end
hold off
axis off
if nargout==1,
h=hh;
end
return
function [xa,ya]=CreateArrow(x,y)
% create arrow with length 0.1 with tip x(1), y(1)
% and direction from x(2), y(2)
xa1=[0 0.1 0.08 0.1 0]';
ya1=[0 0.03 0 -0.03 0]';
dx=diff(x);
dy=diff(y);
alpha=atan2(dy,dx); % angle of rotation
cosa=cos(alpha);
sina=sin(alpha);
xa=xa1*cosa-ya1*sina+x(1);
ya=xa1*sina+ya1*cosa+y(1);
return
|
github
|
avst34/nlp-master
|
loadData.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/loadData.m
| 3,566 |
utf_8
|
4df1832c9e035e29642054c26367c290
|
function data = loadData(model, params, pref, wordVectors, varargin)
%%%% default values %%%%
numvarargs = length(varargin);
if numvarargs > 2
error('loadData:TooManyInputs', ...
'requires at most 2 optional input');
end
if params.useExt && numvarargs ~= 2
error('loadData:TooFewInputs', ...
'if useExt=true, must have exactly 2 more inputs');
end
% set defaults for optional inputs
optargs = {'' ''};
% now put these defaults into the valuesToUse cell array,
% and overwrite the ones specified in varargin.
optargs(1:numvarargs) = varargin;
% Place optional args in memorable variable names
[vn wn] = optargs{:};
%%%%%%%%%%%%%%%%%%%%%%%%%
if model == 6
prepsFilename = [pref '.' 'preps'];
ppChildrenFilename = [pref '.' 'children'];
headsFilePref = [pref '.' 'heads'];
labelsFilename = [pref '.' 'labels'];
nheadsFilename = [pref '.' 'nheads'];
if params.useExt
headsPosfilename = [headsFilePref '.' 'pos'];
headsNextPosFilename = [headsFilePref '.' 'next.pos'];
if ~isfield(params, 'pos2idx') % create map pos2idx if not created already
data.pos2idx = loadPosMapFromFile(headsNextPosFilename);
else
data.pos2idx = params.pos2idx;
end
[heads, preps, ppChildren, labels, nheads, includeInd] = loadDataSingleWordPP(wordVectors, params.inputSize, params.maxNumHeads, ...
[headsFilePref '.words'], [prepsFilename '.words'], [ppChildrenFilename '.words'], ...
labelsFilename, nheadsFilename, params.scaleVectors, ...
params.useExt, headsPosfilename, headsNextPosFilename, data.pos2idx, vn, wn, params.language);
else
[heads, preps, ppChildren, labels, nheads, includeInd] = loadDataSingleWordPP(wordVectors, params.inputSize, params.maxNumHeads, ...
[headsFilePref '.words'], [prepsFilename '.words'], [ppChildrenFilename '.words'], ...
labelsFilename, nheadsFilename, params.scaleVectors, params.useExt);
end
data.heads = heads; data.preps = preps; data.ppChildren = ppChildren; ...
data.labels = labels; data.nheads = nheads; data.includeInd = includeInd;
if params.updateWordVectors
[wordVectorsMat, indHeadsToWordVectors, indPrepsToWordVectors, indChildrenToWordVectors, labels, nheads] = ...
loadDataSingleWordPPIndices(wordVectors, params.inputSize, params.maxNumHeads, ...
[headsFilePref '.words'], [prepsFilename '.words'], [ppChildrenFilename '.words'], ...
labelsFilename, nheadsFilename, params.scaleVectors);
data.indHeadsToWordVectors = indHeadsToWordVectors; data.indPrepsToWordVectors = indPrepsToWordVectors;
data.indChildrenToWordVectors = indChildrenToWordVectors; data.labels = labels; data.nheads = nheads;
data.wordVectorsMat = wordVectorsMat;
end
else
error('Error', ['unknown model ' num2str(model) ' in loadData()']);
end
end
function pos2idx = loadPosMapFromFile(headsNextPosFilename)
% load a map from pos to idx from a file with the pos for words following
% candidate heads
headNextPosLines = loadLinesFromFile(headsNextPosFilename);
pos2idx = containers.Map(); % map pos to idx
for i = 1:size(headNextPosLines, 1)
poses = regexp(headNextPosLines(i), '\s+', 'split');
poses = poses{1};
for j = 1:size(poses, 2)
pos = poses{j};
if ~isKey(pos2idx, pos)
pos2idx(pos) = pos2idx.Count+1;
end
end
end
end
|
github
|
avst34/nlp-master
|
saveParameters.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/saveParameters.m
| 1,511 |
utf_8
|
b8d196562c783d006af5c5637a90fed3
|
function saveParameters(model, theta, params, saveFile)
if model == 6
saveParametersHeadDist(theta, params, saveFile);
else
error('Error', ['Unknown model ' num2str(model) ' in saveParameters()']);
end
end
function saveParametersHeadDist(theta, params, saveFile)
numDistances = params.numDistances;
inputSize = params.inputSize + params.extDim; % extDim = 0 if not used
W = reshape(theta(1:2*inputSize*inputSize), inputSize, 2*inputSize);
Wdists = reshape(theta(2*inputSize*inputSize+1:(numDistances+1)*2*inputSize*inputSize), numDistances*inputSize, 2*inputSize);
b = theta((numDistances+1)*2*inputSize*inputSize+1:(numDistances+1)*2*inputSize*inputSize+inputSize);
bdists = theta((numDistances+1)*2*inputSize*inputSize+inputSize+1:(numDistances+1)*2*inputSize*inputSize+(numDistances+1)*inputSize);
w = theta((numDistances+1)*2*inputSize*inputSize+(numDistances+1)*inputSize+1:(numDistances+1)*2*inputSize*inputSize+(numDistances+1)*inputSize+inputSize);
if params.updateExt
ext = theta(end-params.extDim+1:end);
save(saveFile, 'W', 'Wdists', 'b', 'bdists', 'w', 'ext');
elseif params.updateWordVectors
wordVectorsVocabSize = params.vocabSize;
disp('Warning: saving word vectors as params is not up-to-date!');
wordVectors = reshape(theta(end-params.inputSize*wordVectorsVocabSize+1:end), params.inputSize, wordVectorsVocabSize);
save(saveFile, 'W', 'Wdists', 'b', 'bdists', 'w', 'wordVectors');
else
save(saveFile, 'W', 'Wdists', 'b', 'bdists', 'w');
end
end
|
github
|
avst34/nlp-master
|
functionCostGrad.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/functionCostGrad.m
| 2,380 |
utf_8
|
42b121b38683ac9aa8f922d8886c5c81
|
function [cost, grad] = functionCostGrad(theta, model, params, data)
if model == 6
[cost, grad] = SingleWordPPHeadDistCostDispatcher(theta, params, data);
else
error('Error', ['unknown model ' num2str(model) ' in functionCostGrad()']);
end
end
function [cost, grad] = SingleWordPPHeadDistCostDispatcher(theta, params, data)
if params.updateWordVectors
if params.useExt
prepsExt = data.preps(params.inputSize+1:end,:);
ppChildrenExt = data.ppChildren(params.inputSize+1:end,:);
headsExt = data.heads(params.inputSize+1:end,:,:);
[cost, grad] = SingleWordPPHeadDistDropoutUpdateWordVectorsExtCost(theta, ...
params.inputSize, params.extDim, params.beta, params.dropout, ...
params.maxNumHeads, data.labels, data.nheads, params.scaleVectors, ...
params.vocabSize, ...
data.indPrepsToWordVectors, data.indHeadsToWordVectors, data.indChildrenToWordVectors, ...
prepsExt, headsExt, ppChildrenExt);
else
[cost, grad] = SingleWordPPHeadDistDropoutUpdateWordVectorsCost(theta, ...
params.inputSize, params.beta, params.dropout, ...
params.maxNumHeads, data.labels, data.nheads, params.scaleVectors, ...
params.vocabSize, ...
data.indPrepsToWordVectors, data.indHeadsToWordVectors, data.indChildrenToWordVectors);
end
else
if params.updateExt
[cost, grad] = SingleWordPPHeadDistDropoutUpdateExtCost(theta, params.inputSize+params.extDim, params.extDim, ...
params.beta, params.dropout, ...
params.maxNumHeads, data.heads, data.preps, ...
data.ppChildren, data.labels, data.nheads, params.scaleVectors);
else
[cost, grad] = SingleWordPPHeadDistDropoutCost(theta, params.inputSize+params.extDim, ...
params.beta, params.dropout, ...
params.maxNumHeads, data.heads, data.preps, ...
data.ppChildren, data.labels, data.nheads, params.scaleVectors);
end
end
end
|
github
|
avst34/nlp-master
|
applyNonLinearity.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/applyNonLinearity.m
| 265 |
utf_8
|
a3ea8f80b368b381289a9c9009f02d57
|
function result = applyNonLinearity(x)
% result = 1 ./ (1 + exp(-x)); % sigmoid
result = tanh(x); % tanh
end
function invResult = applyInverseNonLinearity(x)
% invResult = log(x) - log(1-x); % sigmoid case
invResult = atanh(x); % tanh case
end
|
github
|
avst34/nlp-master
|
loadVerbnetWordnet.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/loadVerbnetWordnet.m
| 3,466 |
utf_8
|
dfdf794e13ef30fc292e9f1fb63a70b9
|
function [vn, wn] = loadVerbnetWordnet(vnDir, wnDir, language)
% load Verbnet and Wordnet from disk (prepared by Python scripts)
if strcmpi(language, 'english')
[vn, wn] = loadEnglishVerbnetWordnet([vnDir '/' 'verb2prep.txt'], [vnDir '/' 'verbalnoun2prep.txt'], ...
[vnDir '/' 'verb2class.txt'], [wnDir '/' 'word2tophypernym.txt']);
elseif strcmpi(language, 'arabic')
[vn, wn] = loadArabicVerbnetWordnet([vnDir '/' 'verb2prep.txt'], [vnDir '/' 'verb2class.txt'], ...
[wnDir '/' 'verb2tophypernym.txt'], [wnDir '/' 'noun2tophypernym.txt']);
else
disp(['Error: unknown language ' language]);
end
end
function [evn, ewn] = loadEnglishVerbnetWordnet(verbPrepFilename, verbClassFilename, ...
verbTopHypernymFilename, nounTopHypernymFilename)
% load English Verbnet and Wordnet
% verbnet
verbPrepLines = loadLinesFromFile(verbPrepFilename);
evn.verb2prep = getMapFromLines(verbPrepLines);
verbClassLines = loadLinesFromFile(verbClassFilename);
evn.verb2class = getMapFromLines(verbClassLines);
verbClasses = {}; values = evn.verb2class.values;
for i = 1:size(values, 2)
verbClasses = union(verbClasses, values{i});
end
evn.verbclass2idx = containers.Map(verbClasses, [1:size(verbClasses, 2)]);
% wordnet
% noun
nounTopHypernymLines = loadLinesFromFile(nounTopHypernymFilename);
ewn.noun2tophypernym = getMapFromLines(nounTopHypernymLines);
hypernyms = {}; values = ewn.noun2tophypernym.values;
for i = 1:length(values)
hypernyms = union(hypernyms, values{i});
end
ewn.nounhypernym2idx = containers.Map(hypernyms, [1:length(hypernyms)]);
% verb (not used for now)
verbTopHypernymLines = loadLinesFromFile(verbTopHypernymFilename);
ewn.verb2tophypernym = getMapFromLines(verbTopHypernymLines);
hypernyms = {}; values = ewn.verb2tophypernym.values;
for i = 1:size(values, 2)
hypernyms = union(hypernyms, values{i});
end
ewn.verbhypernym2idx = containers.Map(hypernyms, [1:size(hypernyms, 2)]);
end
function [avn, awn] = loadArabicVerbnetWordnet(verbPrepFilename, verbalnounPrepFilename, verbClassFilename, wordTopHypernymFilename)
% load Arabic Verbnet and Wordnet
% verbnet
verbPrepLines = loadLinesFromFile(verbPrepFilename);
avn.verb2prep = getMapFromLines(verbPrepLines);
verbalnounPrepLines = loadLinesFromFile(verbalnounPrepFilename);
avn.verbalnoun2prep = getMapFromLines(verbalnounPrepLines);
% verb classes (not used for now)
verbClassLines = loadLinesFromFile(verbClassFilename);
avn.verb2class = getMapFromLines(verbClassLines);
verbClasses = {}; values = avn.verb2class.values;
for i = 1:size(values, 2)
verbClasses = union(verbClasses, values{i});
end
avn.verbclass2idx = containers.Map(verbClasses, [1:size(verbClasses, 2)]);
% wordnet
wordTopHypernymLines = loadLinesFromFile(wordTopHypernymFilename);
awn.word2tophypernym = getMapFromLines(wordTopHypernymLines);
hypernyms = {}; values = awn.word2tophypernym.values;
for i = 1:size(values, 2)
hypernyms = union(hypernyms, values{i});
end
awn.hypernym2idx = containers.Map(hypernyms, [1:size(hypernyms, 2)]);
end
function m = getMapFromLines(lines)
m = containers.Map();
for i = 1:size(lines)
line = regexp(lines(i), '\s+', 'split');
line = line{1};
k = line{1};
if size(line, 2) > 1
vals = line(2:end);
else
vals = {};
end
m(k) = vals;
end
end
|
github
|
avst34/nlp-master
|
loadDataSingleWordPP.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/loadDataSingleWordPP.m
| 9,103 |
utf_8
|
f4d60f7b74808ed6aab5ce354b57df83
|
function [heads, preps, ppChildren, labels, nheads, includeInd] = loadDataSingleWordPP(wordVectors, ...
inputSize, maxNumHeads, ...
headWordsFilename, prepWordsFilename, ...
ppChildWordsFilename, labelsFilename, ...
nheadsFilename, scaleVectors, ...
useExt, varargin)
%%%% default values %%%%
numvarargs = length(varargin);
if numvarargs > 6
error('loadDataSingleWordPP:TooManyInputs', ...
'requires at most 6 optional input');
end
if useExt && numvarargs ~= 6
error('loadDataSingleWordPP:TooFewInputs', ...
'if useExt=true, must have exactly 6 more inputs');
end
% set defaults for optional inputs
optargs = {'' '' '' '' '' ''};
% now put these defaults into the valuesToUse cell array,
% and overwrite the ones specified in varargin.
optargs(1:numvarargs) = varargin;
% Place optional args in memorable variable names
[headsPosFilename headsNextPosFilename pos2idx vn wn, language] = optargs{:};
%%%%%%%%%%%%%%%%%%%%%%%%%
% wordVectors - Map of word string to vector
% useExt - if true, load extended vector dimensions
% pos2idx - map from pos to index (to be used in one-hot vector)
% load data for the model assuming preposition has only a single child
headLines = loadLinesFromFile(headWordsFilename);
prepWords = loadLinesFromFile(prepWordsFilename);
ppChildWords = loadLinesFromFile(ppChildWordsFilename);
extDim = 0;
if useExt
headPosLines = loadLinesFromFile(headsPosFilename);
headNextPosLines = loadLinesFromFile(headsNextPosFilename);
% extDim = 1 + pos2idx.Count + 1 + 1 + avn.verbclass2idx.Count + awn.hypernym2idx.Count; % head pos, next pos, verb-prep, verbalnoun-prep, verbclass, word hypernym %%% TODO add dims
% hypOffset = 1 + pos2idx.Count + 1 + 1 + avn.verbclass2idx.Count;
if strcmpi(language, 'arabic')
extDim = 2 + pos2idx.Count + 1 + 1 + wn.hypernym2idx.Count; % head pos, next pos, verb-prep, verbalnoun-prep, word hypernym
hypOffset = 2 + pos2idx.Count + 1 + 1;
elseif strcmpi(language, 'english')
extDim = 2 + pos2idx.Count + 1 + wn.nounhypernym2idx.Count; % head pos, next pos, verb-prep, noun hypernym
hypOffset = 2 + pos2idx.Count + 1;
end
end
datasize = size(headLines, 1);
if size(prepWords, 1) ~= datasize || size(ppChildWords, 1) ~= datasize
disp('Error: incompatible sizes')
end
preps = zeros(inputSize+extDim, datasize);
heads = zeros(inputSize+extDim, maxNumHeads, datasize);
ppChildren = zeros(inputSize+extDim, datasize);
includeInd = [];
for i = 1:datasize
prepWord = prepWords{i};
childWord = ppChildWords{i};
if isKey(wordVectors, prepWord) && isKey(wordVectors, childWord)
% only consider examples which have word vectors
headLine = headLines(i);
curHeadWords = regexp(headLine, '\s+', 'split');
curHeadWords = curHeadWords{1};
curHeads = zeros(inputSize+extDim, maxNumHeads);
numExistingHeads = size(curHeadWords,2);
if useExt
headPosLine = headPosLines(i);
curHeadPos = regexp(headPosLine, '\s+', 'split');
curHeadPos = str2double(curHeadPos{1});
headNextPosLine = headNextPosLines(i);
curHeadNextPos = regexp(headNextPosLine, '\s+', 'split');
curHeadNextPos = curHeadNextPos{1};
end
missingHeadVector = false;
for j = 1:numExistingHeads
curHeadWord = curHeadWords{j};
if isKey(wordVectors, curHeadWord)
curHead = wordVectors(curHeadWord);
if useExt
headExt = getHeadExt(j, curHeadPos, curHeadNextPos, ...
pos2idx, vn, wn, curHeadWord, prepWord, language);
if size(headExt, 2) < extDim
headExt = [headExt zeros(1, extDim-size(headExt, 2))];
end
curHead = [curHead headExt];
end
curHeads(:,j) = curHead;
else
missingHeadVector = true;
end
end
for j = numExistingHeads+1:maxNumHeads
curHeads(:,j) = zeros(inputSize+extDim,1);
end
if ~missingHeadVector
% all words (heads, preps, children) have vectors, so can add
includeInd = [includeInd; i];
prep = wordVectors(prepWord);
child = wordVectors(childWord);
if useExt
prepExt = getPrepExt(extDim);
prep = [prep prepExt];
childExt = getChildExt(extDim, wn, childWord, hypOffset, language);
child = [child childExt];
end
preps(:, i) = prep;
ppChildren(:, i) = child;
heads(:,:,i) = curHeads;
end
end
end
labels = load(labelsFilename);
nheads = load(nheadsFilename);
% take only included instances
labels = labels(includeInd);
nheads = nheads(includeInd);
preps = preps(:,includeInd);
ppChildren = ppChildren(:,includeInd);
heads = heads(:,:,includeInd);
% scale
preps = scaleVectors*preps;
heads = scaleVectors*heads;
ppChildren = scaleVectors*ppChildren;
end
function headExt = getHeadExt(j, curHeadPos, curHeadNextPos, pos2idx, vn, wn, curHeadWord, prepWord, language)
% get extended dimensions for head
headExt = [];
% pos
pos = curHeadPos(j);
posVec = [0 0];
if pos == 1; posVec(1) = 1; else posVec(2) = 1; end
headExt = [headExt posVec];
% next pos
nextPosVec = zeros(1, pos2idx.Count); % one hot vector
if j <= size(curHeadNextPos, 2)
nextPos = curHeadNextPos{j};
if isKey(pos2idx, nextPos)
nextPosVec(pos2idx(nextPos)) = 1;
end
end
headExt = [headExt nextPosVec];
% verb-prep
verbPrep = 0;
if pos == 1 && isKey(vn.verb2prep, curHeadWord)
if ismember(prepWord, vn.verb2prep(curHeadWord))
verbPrep = 1;
% else
% verbPrep = -1;
end
end
headExt = [headExt verbPrep];
if strcmpi(language, 'arabic')
% verbalnoun-prep
verbalnounPrep = 0;
if pos == -1 && isKey(vn.verbalnoun2prep, curHeadWord)
if ismember(prepWord, vn.verbalnoun2prep(curHeadWord))
verbalnounPrep = 1;
% else
% verbalnounPrep = -1;
end
end
headExt = [headExt verbalnounPrep];
end
% % verb class
% verbClassVec = zeros(1, vn.verbclass2idx.Count); % one-hot vector
% if pos == 1 && isKey(vn.verb2class, curHeadWord)
% curVerbClasses = vn.verb2class(curHeadWord);
% for c = 1:size(curVerbClasses, 2)
% verbClassVec(vn.verbclass2idx(curVerbClasses{c})) = 1;
% end
% end
% curHead = [curHead verbClassVec];
% head top hypernym
if strcmpi(language, 'arabic')
hypernymVec = zeros(1, wn.hypernym2idx.Count);
if isKey(wn.word2tophypernym, curHeadWord)
curWordHypernyms = wn.word2tophypernym(curHeadWord);
for h = 1:size(curWordHypernyms, 2)
hypernymVec(wn.hypernym2idx(curWordHypernyms{h})) = 1;
end
end
elseif strcmpi(language, 'english')
hypernymVec = zeros(1, wn.nounhypernym2idx.Count);
if pos == -1 && isKey(wn.noun2tophypernym, curHeadWord) % for now use only noun hypernyms
curWordHypernyms = wn.noun2tophypernym(curHeadWord);
for h = 1:size(curWordHypernyms, 2)
hypernymVec(wn.nounhypernym2idx(curWordHypernyms{h})) = 1;
end
end
end
headExt = [headExt hypernymVec];
end
function childExt = getChildExt(extDim, wn, childWord, hypOffset, language)
childExt = zeros(1, extDim);
if strcmpi(language, 'arabic')
if isKey(wn.word2tophypernym, childWord) % child top hypernym
curWordHypernyms = wn.word2tophypernym(childWord);
for h = 1:size(curWordHypernyms, 2)
childExt(hypOffset + wn.hypernym2idx(curWordHypernyms{h})) = 1;
end
end
elseif strcmpi(language, 'english')
if isKey(wn.noun2tophypernym, childWord) % child top hypernym
curWordHypernyms = wn.noun2tophypernym(childWord);
for h = 1:size(curWordHypernyms, 2)
childExt(hypOffset + wn.nounhypernym2idx(curWordHypernyms{h})) = 1;
end
end
end
end
function prepExt = getPrepExt(extDim)
% for now prepExt is just a zero vector
prepExt = zeros(1, extDim);
end
|
github
|
avst34/nlp-master
|
filterWordVectors.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/filterWordVectors.m
| 3,221 |
utf_8
|
9065ab66e8f71b6dcef413834b11a2a1
|
function filteredWordVectors = filterWordVectors(wordVectors, model, params, filenames)
disp('filtering word vectors based on train/test data');
disp(['wordVectors size before filtering: ' num2str(wordVectors.Count)]);
intrainWordVectors = filterWordVectorsFromData(wordVectors, model, params, filenames.trainFilePref);
intestWordVectors = filterWordVectorsFromData(wordVectors, model, params, filenames.testFilePref);
filteredWordVectors = mergeMaps(intrainWordVectors, intestWordVectors);
disp(['wordVectors size after filtering: ' num2str(filteredWordVectors.Count)]);
end
function filteredWordVectors = filterWordVectorsFromData(wordVectors, model, params, pref)
% store UNK vector before filtering
if params.useUnk
if ~isKey(wordVectors, 'UNK')
disp('WARNING: cannot useUnk when no UNK vector exists, resorting to zeros');
unkVec = zeros(params.inputSize);
else
unkVec = wordVectors('UNK');
end
end
if model == 1 || model == 2 || model == 5 || model == 6 || model == 7 || model == 10 || model == 12
prepsFilename = [pref '.' 'preps'];
ppChildrenFilename = [pref '.' 'children'];
headsFilePref = [pref '.' 'heads'];
filteredWordVectors = filterWordVectorsFromFile(wordVectors, [prepsFilename '.words']);
filteredWordVectors = mergeMaps(filteredWordVectors, filterWordVectorsFromFile(wordVectors, [ppChildrenFilename '.words']));
filteredWordVectors = mergeMaps(filteredWordVectors, filterWordVectorsFromHeadFile(wordVectors, [headsFilePref '.words']));
if model == 10 || model == 12
headsNextWordsFilename = [pref '.' 'heads.next.words'];
filteredWordVectors = mergeMaps(filteredWordVectors, filterWordVectorsFromHeadFile(wordVectors, headsNextWordsFilename));
end
else
disp(['Error: filtering word vectors not implemented for model ' num2str(model)]);
return;
end
% add UNK vector if necessary
if params.useUnk
filteredWordVectors('UNK') = unkVec;
end
end
function filteredWordVectors = filterWordVectorsFromFile(wordVectors, file)
words = loadLinesFromFile(file);
filteredWordVectors = containers.Map();
for i = 1:size(words, 1)
word = words{i};
if isKey(wordVectors, word) && ~isKey(filteredWordVectors, word)
filteredWordVectors(word) = wordVectors(word);
end
end
end
function filteredWordVectors = filterWordVectorsFromHeadFile(wordVectors, file)
headLines = loadLinesFromFile(file);
filteredWordVectors = containers.Map();
for i = 1:size(headLines, 1)
headLine = headLines(i);
curHeadWords = regexp(headLine, '\s+', 'split');
curHeadWords = curHeadWords{1};
numExistingHeads = size(curHeadWords,2);
for j = 1:numExistingHeads
curHeadWord = curHeadWords{j};
if isKey(wordVectors, curHeadWord) && ~isKey(filteredWordVectors, curHeadWord)
filteredWordVectors(curHeadWord) = wordVectors(curHeadWord);
end
end
end
end
function m = mergeMaps(m1, m2)
m = m1;
m2keys = m2.keys();
m2vals = m2.values();
for i = 1:m2.Count
k = m2keys{i};
v = m2vals{i};
if ~isKey(m, k)
m(k) = v;
end
end
end
|
github
|
avst34/nlp-master
|
initializeParameters.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/initializeParameters.m
| 1,892 |
utf_8
|
74b70c503762678519fc03716d5fa542
|
function theta = initializeParameters(params, model)
inputSize = double(params.inputSize+params.extDim); % add extended dimensions
scaleParam = params.scaleParam;
if model == 6
theta = initializeParametersHeadDist(inputSize, params.numDistances, scaleParam);
else
disp(['Error: unknown model ' num2str(model)]); % TODO change
end
if params.updateExt
ext = ones(params.extDim, 1);
theta = [theta(:); ext];
end
end
function theta = initializeParametersHeadDist(inputSize, varargin)
% Define different Ws for composing with heads at different distances,
% and another W for other compositions
%%%% default values %%%%
numvarargs = length(varargin);
if numvarargs > 2
error('initializeParametersHeadDist:TooManyInputs', ...
'requires at most 2 optional input');
end
% set defaults for optional inputs
optargs = {5 1};
% now put these defaults into the valuesToUse cell array,
% and overwrite the ones specified in varargin.
optargs(1:numvarargs) = varargin;
% Place optional args in memorable variable names
[numDistances scaleParam] = optargs{:};
%%%%%%%%%%%%%%%%%%%%%%%%%
% r = sqrt(6/(2*inputSize + inputSize));
r = 1/sqrt(inputSize*100);
% global W, b
W = 0.5*[eye(inputSize) eye(inputSize)] + (-r + 2*r.*rand(inputSize, 2*inputSize));
% W = 0.5*[eye(inputSize) eye(inputSize)] + (0.001 + 0.002.*rand(inputSize, 2*inputSize));
% b = 0.001 + 0.002.*rand(inputSize,1);
% b = 0.001*ones(inputSize, 1);
b = zeros(inputSize, 1);
Wdists = 0.5 * repmat(eye(inputSize), numDistances, 2) + (-r + 2*r.*rand(numDistances*inputSize, 2*inputSize));
bdists = zeros(numDistances*inputSize, 1);
% w
w = 0.5*(-1/sqrt(inputSize) + 2/sqrt(inputSize).*rand(inputSize,1)); %%% for now
% w = ones(inputSize, 1) + 0.001 + 0.002 .* rand(inputSize,1);
% w = 1e-3*rand(inputSize,1);
theta = [W(:); Wdists(:); b(:); bdists(:); w(:)];
theta = theta*scaleParam;
end
|
github
|
avst34/nlp-master
|
trainModel.m
|
.m
|
nlp-master/datasets/pp_attachement/boknilev/code/trainModel.m
| 5,365 |
utf_8
|
1b6fa3a315a9881cf0367c07b870d658
|
function opttheta = trainModel(theta, data, wordVectors, params, model, trainParams, filenames)
opttheta = theta;
datasize = size(data.heads, 3);
batchsize = trainParams.batchsize;
numBatches = floor(datasize/batchsize)+1;
iters = trainParams.iters; % iterations per batch
sumSquares = ones(size(theta));
if trainParams.usePretrainedSumSquares
disp('using pretrained sumSquares');
s = load(filenames.sumSquaresFile);
sumSquares = s.sumSquares;
end
% for updating with different learning rates
paramsSize = length(opttheta);
wordVectorsRange = (paramsSize-params.inputSize*wordVectors.Count+1:paramsSize);
otherParamsRange = (1:paramsSize-params.inputSize*wordVectors.Count);
bestTheta = opttheta;
[bestCost, bestGrad] = functionCostGrad(opttheta, model, params, data);
disp(['initial cost: ' num2str(bestCost)]);
tic;
for t = 1:trainParams.epochs
if ~trainParams.quiet
disp(['epoch ' num2str(t)]);
end
rp = randperm(datasize);
data = getDataSubind(data, model, rp, params);
for i = 1:numBatches
% startIdx = mod((i-1) * batchsize, datasize) + 1;
startIdx = (i-1)*batchsize + 1;
if startIdx > datasize
continue;
end
endIdx = min(startIdx + batchsize - 1, datasize);
% disp(['minibatch start: ' num2str(startIdx) ' end: ' num2str(endIdx)]);
curData = getDataSubind(data, model, startIdx:endIdx, params);
if strcmpi(trainParams.trainingMethod, 'adagrad')
for j = 1:iters
learningRate = trainParams.initLearningRate;
[cost, grad] = functionCostGrad(opttheta, model, params, curData);
if params.updateWordVectors && params.updateWordVectorsRate > 1
% if word vectors should be updated based on a different rate
% update other params
sumSquares(otherParamsRange) = sumSquares(otherParamsRange) + ...
grad(otherParamsRange).*grad(otherParamsRange);
opttheta(otherParamsRange) = opttheta(otherParamsRange) - ...
(learningRate * 1./sqrt(sumSquares(otherParamsRange)) .* grad(otherParamsRange));
% update word vectors
sumSquares(wordVectorsRange) = sumSquares(wordVectorsRange) ...
+ grad(wordVectorsRange).*grad(wordVectorsRange);
opttheta(wordVectorsRange) = opttheta(wordVectorsRange) - ...
(learningRate/params.updateWordVectorsRate * 1./sqrt(sumSquares(wordVectorsRange)) .* grad(wordVectorsRange));
else % word vectors updated the same as other parameters
sumSquares = sumSquares + grad.*grad;
opttheta = opttheta - (learningRate * 1./sqrt(sumSquares) .* grad);
end
end
else
disp(['Error: unknown optimization method ' trainParams.trainingMethod]);
disp('This version only supports adagrad optimization');
return;
end
% disp(['cost ' num2str(cost)]);
end % end batch loop
[totalCost, totalGrad] = functionCostGrad(opttheta, model, params, data);
if ~trainParams.quiet
disp(['total cost ' num2str(totalCost)]);
end
if totalCost < bestCost
bestTheta = opttheta;
bestCost = totalCost;
bestGrad = totalGrad;
end
end % end epoch loop
disp('training elapsed time:');
toc;
if trainParams.backpocket
opttheta = bestTheta;
cost = bestCost;
grad = bestGrad;
end
disp(['final cost ' num2str(cost)]);
% save parameters
saveParamsFile = filenames.saveParamsFile;
saveParameters(model, opttheta, params, saveParamsFile); % add extended dimensions
disp(['opt params saved to ' saveParamsFile]);
if params.updateWordVectors
vocabSize = wordVectors.Count;
updatedWordVectorsMat = reshape(opttheta(end-(params.inputSize*vocabSize)+1:end), params.inputSize, vocabSize);
updatedWordVectorsWords = wordVectors.keys;
saveUpdatedWordVectorsFile = filenames.saveUpdatedWordVectorsFile;
save(saveUpdatedWordVectorsFile, 'updatedWordVectorsWords', 'updatedWordVectorsMat');
disp(['word vectors saved to ' saveUpdatedWordVectorsFile]);
end
if strcmpi(trainParams.trainingMethod, 'adagrad')
saveSumSquaresFile = filenames.saveSumSquaresFile;
save(saveSumSquaresFile, 'sumSquares');
disp(['last sum of squares (adagrad) saved to ' saveSumSquaresFile]);
end
end
function indData = getDataSubind(data, model, ind, params)
% ind - index for subset of the data (can be all data with permuted indices)
indData.heads = data.heads(:,:,ind); indData.labels = data.labels(ind); indData.nheads = data.nheads(ind);
indData.includeInd = data.includeInd(ind);
if model == 6
indData.preps = data.preps(:,ind); indData.ppChildren = data.ppChildren(:,ind);
if params.updateWordVectors
indData.indPrepsToWordVectors = data.indPrepsToWordVectors(:,ind); indData.indHeadsToWordVectors = data.indHeadsToWordVectors(:,:,ind); indData.indChildrenToWordVectors = data.indChildrenToWordVectors(:,ind);
indData.wordVectorsMat = data.wordVectorsMat;
end
else % TODO change?
error('Error', ['unknown model ' num2str(model) ' in trainModel.m']);
end
end
|
github
|
phuselab/DANTE-master
|
MaximumLikelihoodEstimator.m
|
.m
|
DANTE-master/matlab/MaximumLikelihoodEstimator.m
| 404 |
utf_8
|
1eed500aaf9d695e0a4f7e77f7fe090a
|
% Finding an optimal estimate of the true emotion based on k evaluators and
% N speech samples tham minimizes the mean square error result in the
% Maximum Likelyhood Estimator (MLE)
function MLE = MaximumLikelihoodEstimator(matriceDati)
MLE = sum(transpose(matriceDati))/size(matriceDati, 2);
end
% Each of the evaluators is equally weighted and no a prior knowledge is
% taken into account.
|
github
|
phuselab/DANTE-master
|
main.m
|
.m
|
DANTE-master/matlab/main.m
| 1,510 |
utf_8
|
e69eadd07e2c434b046ab959016af967
|
dati1 = dlmread('../annotation/1/vid1_ogg/arousal.csv',';',1,4);
dati2 = dlmread('../annotation/2/vid1_ogg/arousal.csv',';',1,4);
dati3 = dlmread('../annotation/3/vid1_ogg/arousal.csv',';',1,4);
dati4 = dlmread('../annotation/6/vid1_ogg/arousal.csv',';',1,4);
dati5 = dlmread('../annotation/8/vid1_ogg/arousal.csv',';',1,4);
maxRow = max([size(dati1, 1) size(dati2, 1) size(dati3, 1) size(dati4, 1) size(dati5, 1)]);
dati1 = aggiustaDati(dati1, maxRow);
dati2 = aggiustaDati(dati2, maxRow);
dati3 = aggiustaDati(dati3, maxRow);
dati4 = aggiustaDati(dati4, maxRow);
dati5 = aggiustaDati(dati5, maxRow);
samplesMatrix = [dati1 dati2 dati3 dati4 dati5];
[row, K] = size(samplesMatrix); % K -> # Annotators
MLE = MaximumLikelihoodEstimator(samplesMatrix);
% To measure the agreement among the avaluators, the standard SD deviaton can
% be caluclated.
WV = WeightedVoting(samplesMatrix);
% Speech files with high SD value show low inter-evaluator agreement
% whereas low SD values show high inter-evaluator agreement.
EWE = EvaluatorWeightedEstimator(samplesMatrix, transpose(MLE));
subplot(4,1,1)
plot(samplesMatrix),
axis([1 row -1 1])
title('dati')
subplot(4,1,2)
plot(MLE),
axis([1 row -1 1])
title('Maximum Likelihood Estimator')
subplot(4,1,3)
plot(WV),
axis([1 row -1 1])
title('Mean Standard Deviation')
subplot(4,1,4)
plot(EWE)
axis([1 row -1 1])
title('Evaluator Weighted Esitmator')
function [dati]=aggiustaDati(dati, max)
for i=size(dati, 1):max-1
dati = [dati; 0];
end
end
|
github
|
EvgeniDubov/FEAST-master
|
FCBF.m
|
.m
|
FEAST-master/matlab/FCBF.m
| 1,521 |
utf_8
|
3264683aaf05a2b37369f50d37fed22b
|
function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
%function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
%
%Performs feature selection using the FCBF measure by Yu and Liu 2004.
%
%Instead of selecting a fixed number of features it provides a relevancy threshold and selects all
%features which score above that and are not redundant
%
% The license is in the LICENSE file.
numFeatures = size(featureMatrix,2);
classScore = zeros(numFeatures,1);
for i = 1:numFeatures
classScore(i) = SU(featureMatrix(:,i),classColumn);
end
[classScore indexScore] = sort(classScore,1,'descend');
indexScore = indexScore(classScore > threshold);
classScore = classScore(classScore > threshold);
if ~isempty(indexScore)
curPosition = 1;
else
curPosition = 0;
end
while curPosition <= length(indexScore)
j = curPosition + 1;
curFeature = indexScore(curPosition);
while j <= length(indexScore)
scoreij = SU(featureMatrix(:,curFeature),featureMatrix(:,indexScore(j)));
if scoreij > classScore(j)
indexScore(j) = [];
classScore(j) = [];
else
j = j + 1;
end
end
curPosition = curPosition + 1;
end
selectedFeatures = indexScore;
end
function [score] = SU(firstVector,secondVector)
%function [score] = SU(firstVector,secondVector)
%
%calculates SU = 2 * (I(X;Y)/(H(X) + H(Y)))
hX = h(firstVector);
hY = h(secondVector);
iXY = mi(firstVector,secondVector);
score = (2 * iXY) / (hX + hY);
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
Train_ANN.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/Train_ANN.m
| 2,652 |
utf_8
|
ee25a75d73d259bacea0b897899c1697
|
%Author: Iman Abdalla, April 2017.
function [cost_vec,Weights,predicted_train,output]=Train_ANN_is(lambda,iterations,Data,OutputNodes,W,S,Sh,L,alpha,bias,labels,S_vec)
Der=ones(size(W));
counter=2;
m=size(Data,1);
input=zeros(L,S+1);
output=zeros(size(Data,1),OutputNodes);
for ind2=1:iterations
waitbar(ind2/iterations)%max(max(Der))>accuracy
max(max(Der))
delta=zeros(S+1,L-1);
Delta=zeros(size(W));
cost=0;
counter=counter+1;
for n=1:size(Data,1)
%---------------------Forward Propagation--------------------------
input(1,:)=[bias Data(n,:)];
for l=2:L
if l==L
output(n,:)=logsig(W(end-OutputNodes+1:end,1:Sh+1)*input(L-1,1:S_vec(L-1)+1)')';
else
input(l,1:S_vec(l)+1)=[bias logsig(W(sum(S_vec(2:l-1))+1:sum(S_vec(2:l)),1:S_vec(l-1)+1)*input(l-1,1:S_vec(l-1)+1)')'];
end
end
%-------------------------Compute cost function--------------------
cost=cost-sum(log(output(n,:)).*labels(n,:)+log(1-output(n,:)).*(1-labels(n,:)))/m;
%------------------------Back Propagation--------------------------
%delta for the last layer L
deltaL= output(n,:)'-labels(n,:)';
Delta(end-OutputNodes+1:end,1:Sh+1)= Delta(end-OutputNodes+1:end,1:Sh+1)+(deltaL*input(L-1,1:S_vec(L-1)+1));
for back=L-1:-1:2
g=input(back,1:S_vec(back)+1).*(1-input(back,1:S_vec(back)+1));
if back==L-1
delta(1:S_vec(back)+1,back)=(W(end-OutputNodes+1:end,1:Sh+1)'*deltaL).*g';
else
delta(1:S_vec(back)+1,back)=(W(sum(S_vec(2:back))+1:sum(S_vec(2:back+1)),1:S_vec(back+1)+1)'*delta(2:S_vec(back+1)+1,back+1)).*g';
end
Delta(sum(S_vec(2:back-1))+1:sum(S_vec(2:back)),1:S_vec(back-1)+1)=Delta(sum(S_vec(2:back-1))+1:sum(S_vec(2:back)),1:S_vec(back-1)+1)+delta(2:S_vec(back)+1,back)*input(back-1,1:S_vec(back-1)+1);
end
end
%------------------------Compute Dervative-----------------------------
Der=Delta/m;
Der(:,2:end)=Der(:,2:end)+lambda/m*W(:,2:end); %add regularization term
% [grad_approx]=gradient_check2(Data,bias,W,S,L,eps,OutputNodes,labels,lambda,Sh,S_vec)
cost=cost+lambda/2/m*norm(W(:,2:end),'fro')^2 %before gradient descent step
cost_vec(counter)=cost;
%-----------------------------Gradient Descent-----------------------------
W_old=W;
W=W_old-alpha*Der;
end
Weights=W;
if OutputNodes>2
[~, predicted_train]=max(output,[],2);
else
predicted_train=round(output);
end
%[a predicted_train]=max(output,[],2);
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
Test_ANN.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/Test_ANN.m
| 875 |
utf_8
|
3786fe2f638ae1cb2a172cd522ce10b1
|
%Author: Iman Abdalla, April 2017.
function [Predictions,output]=Test_ANN(TestData,OutputNodes,W,S,L,bias,S_vec,Sh)
input=zeros(L,S+1);
output=zeros(size(TestData,1),OutputNodes);
for n=1:size(TestData,1)
% for n=1:10
%---------------------Forward Propagation--------------------------
%---------------------Forward Propagation--------------------------
input(1,:)=[bias TestData(n,:)];
for l=2:L
if l==L
output(n,:)=logsig(W(end-OutputNodes+1:end,1:Sh+1)*input(L-1,1:S_vec(L-1)+1)')';
else
input(l,1:S_vec(l)+1)=[bias logsig(W(sum(S_vec(2:l-1))+1:sum(S_vec(2:l)),1:S_vec(l-1)+1)*input(l-1,1:S_vec(l-1)+1)')'];
end
end
end
if OutputNodes>2
[~, Predictions]=max(output,[],2);
else
Predictions=round(output);
end
%[a Predictions]=max(output,[],2);
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
comp_combined_15class.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/comp_combined_15class.m
| 1,058 |
utf_8
|
0046c2449ffe6a860bb5546e4a5accb7
|
% For a test image, get combined feature vector.
function featurevec = comp_combined_15class(img)
%% load means of 2 class data
% load('X_cent.mat')
% load('X_gist.mat');
%
% %% standardize features (subtract mean and div by variance)
% disp('standardizing test examples');
% meanXggist = mean(X_gist)
% stdXgist = std(X_gist)
% meanXcent = mean(X_cent)
% stdXcent = std(X_cent)
% for i = 1:size(X_gist2,1)
% X_gist2(i,:) = (X_gist2(i,:) - meanXggist)./stdXgist;
% X_cent2(i,:) = (X_cent2(i,:) - meanXcent)./stdXcent;
% end
load('stats_15class.mat')
%% Get image stuff: - from open source code
clear param
param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale (from HF to LF)
param.numberBlocks = 4;
param.fc_prefilt = 4;
% Computing gist:
disp('gist...')
[gistfeatures, param] = LMgist(img, '', param);
disp('centrist...')
centristfeatures = centrist(img);
gistfeatures = (gistfeatures - meanXggist)./stdXgist;
centristfeatures = (centristfeatures - meanXcent)./stdXcent;
featurevec = [gistfeatures,centristfeatures];
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
comp_combined_2class.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/comp_combined_2class.m
| 1,068 |
utf_8
|
8e17e094772b8e50ddf394d7d24c1cfd
|
% For a test image, get combined feature vector.
function featurevec = comp_combined_2class(img)
%% load means of 2 class data
% load('X_cent2.mat');
% load('X_gist2.mat');
%
% %% standardize features (subtract mean and div by variance)
% disp('standardizing test examples');
% meanXggist = mean(X_gist2);
% stdXgist = std(X_gist2);
% meanXcent = mean(X_cent2);
% stdXcent = std(X_cent2);
% for i = 1:size(X_gist2,1)
% X_gist2(i,:) = (X_gist2(i,:) - meanXggist)./stdXgist;
% X_cent2(i,:) = (X_cent2(i,:) - meanXcent)./stdXcent;
% end
load('stats_2class.mat')
%% Get image stuff: - from OPEN SOURCE CODE
clear param
param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale (from HF to LF)
param.numberBlocks = 4;
param.fc_prefilt = 4;
% Computing gist:
disp('gist...')
[gistfeatures, param] = LMgist(img, '', param);
disp('centrist...')
centristfeatures = centrist(img);
gistfeatures = (gistfeatures - meanXggist)./stdXgist;
centristfeatures = (centristfeatures - meanXcent)./stdXcent;
featurevec = [gistfeatures,centristfeatures];
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
flatten.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/feature extraction/centrist/flatten.m
| 441 |
utf_8
|
2fbf5d34ed9644b3610e990b009d71e0
|
% Flatten a nested cell array, taken from
% http://groups.google.com/group/comp.soft-sys.matlab/browse_thread/thread/83e6ad0772bf68b8
function flatCell = flatten(cellArray)
flatCell{1} = []; %#ok<*AGROW>
for i=1:numel(cellArray)
if iscell(cellArray{i})
currentCell = flatten(cellArray{i});
[flatCell{end+1:end+length(currentCell)}] = deal(currentCell{:});
else
flatCell{end+1} = cellArray{i};
end
end
flatCell(1) = [];
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
searchGUI.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/feature extraction/centrist/searchGUI.m
| 3,547 |
utf_8
|
fa191382c94bd4fada86c548399b3381
|
function varargout = searchGUI(varargin)
% SEARCHGUI MATLAB code for searchGUI.fig
% SEARCHGUI, by itself, creates a new SEARCHGUI or raises the existing
% singleton*.
%
% H = SEARCHGUI returns the handle to a new SEARCHGUI or the handle to
% the existing singleton*.
%
% SEARCHGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SEARCHGUI.M with the given input arguments.
%
% SEARCHGUI('Property','Value',...) creates a new SEARCHGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before searchGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to searchGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help searchGUI
% Last Modified by GUIDE v2.5 24-Jun-2011 13:27:06
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @searchGUI_OpeningFcn, ...
'gui_OutputFcn', @searchGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% suppress unused function and variable warnings
%#ok<*DEFNU>
%#ok<*INUSL>
% --- Executes just before searchGUI is made visible.
function searchGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% Choose default command line output for searchGUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = searchGUI_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
% --- Executes on button press in findImagesButton.
function findImagesButton_Callback(hObject, eventdata, handles)
imagePath = getappdata(gcbf, 'imagePath');
directory = getappdata(gcbf, 'searchDir');
results = vertcat(imagePath, ...
findSimilarImages(imread(imagePath), ...
directory, ...
9));
scrollfig(results);
% --- Executes on button press in loadImageButton.
function loadImageButton_Callback(hObject, eventdata, handles)
[fileName, filePath] = uigetfile({supportedImageFormats, 'Images'; ...
'*', 'All files'}, ...
'Select an Image...');
if fileName ~= 0
imagePath = [filePath fileName];
setappdata(gcbf, 'imagePath', imagePath);
imshow(imread(imagePath), 'Parent', handles.imageAxes);
set(handles.findImagesButton, 'Enable', 'On');
end
% --- Executes on button press in changeSearchDirButton.
function changeSearchDirButton_Callback(hObject, eventdata, handles)
searchDir = uigetdir(get(handles.searchDirPath, 'String'));
if searchDir ~= 0
currentDir = pwd;
shortPath = cell2mat(strrep({ searchDir }, [ currentDir '/'], ''));
setappdata(gcbf, 'searchDir', searchDir);
set(handles.searchDirPath, 'String', shortPath);
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
LMgist.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/feature extraction/gist/LMgist.m
| 8,240 |
utf_8
|
bfdf40d00f3439f3864ce453bfce69d6
|
function [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST)
%
% [gist, param] = LMgist(D, HOMEIMAGES, param);
% [gist, param] = LMgist(filename, HOMEIMAGES, param);
% [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST);
%
% For a set of images:
% gist = LMgist(img, [], param);
%
% When calling LMgist with a fourth argument it will store the gists in a
% new folder structure mirroring the folder structure of the images. Then,
% when called again, if the gist files already exist, it will just read
% them without recomputing them:
%
% [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST);
% [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Modeling the shape of the scene: a holistic representation of the spatial envelope
% Aude Oliva, Antonio Torralba
% International Journal of Computer Vision, Vol. 42(3): 145-175, 2001.
if nargin==4
precomputed = 1;
% get list of folders and create non-existing ones
%listoffolders = {D(:).annotation.folder};
%for i = 1:length(D);
% f{i} = D(i).annotation.folder;
%end
%[categories,b,class] = unique(f);
else
precomputed = 0;
HOMEGIST = '';
end
% select type of input
if isstruct(D)
% [gist, param] = LMgist(D, HOMEIMAGES, param);
Nscenes = length(D);
typeD = 1;
end
if iscell(D)
% [gist, param] = LMgist(filename, HOMEIMAGES, param);
Nscenes = length(D);
typeD = 2;
end
if isnumeric(D)
% [gist, param] = LMgist(img, HOMEIMAGES, param);
Nscenes = size(D,4);
typeD = 3;
if ~isfield(param, 'imageSize')
param.imageSize = [size(D,1) size(D,2)];
end
end
param.boundaryExtension = 32; % number of pixels to pad
if nargin<3
% Default parameters
param.imageSize = 128;
param.orientationsPerScale = [8 8 8 8];
param.numberBlocks = 4;
param.fc_prefilt = 4;
param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension);
else
if ~isfield(param, 'G')
param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension);
end
end
% Precompute filter transfert functions (only need to do this once, unless
% image size is changes):
Nfeatures = size(param.G,3)*param.numberBlocks^2;
% Loop: Compute gist features for all scenes
gist = zeros([Nscenes Nfeatures], 'single');
for n = 1:Nscenes
g = [];
todo = 1;
% if gist has already been computed, just read the file
if precomputed==1
filegist = fullfile(HOMEGIST, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']);
if exist(filegist, 'file')
load(filegist, 'g');
todo = 0;
end
end
% otherwise compute gist
if todo==1
if Nscenes>1 disp([n Nscenes]); end
% load image
try
switch typeD
case 1
img = LMimread(D, n, HOMEIMAGES);
case 2
img = imread(fullfile(HOMEIMAGES, D{n}));
case 3
img = D(:,:,:,n);
end
catch
disp(D(n).annotation.folder)
disp(D(n).annotation.filename)
rethrow(lasterror)
end
% convert to gray scale
img = single(mean(img,3));
% resize and crop image to make it square
img = imresizecrop(img, param.imageSize, 'bilinear');
%img = imresize(img, param.imageSize, 'bilinear'); %jhhays
% scale intensities to be in the range [0 255]
img = img-min(img(:));
img = 255*img/max(img(:));
if Nscenes>1
imshow(uint8(img))
title(n)
end
% prefiltering: local contrast scaling
output = prefilt(img, param.fc_prefilt);
% get gist:
g = gistGabor(output, param);
% save gist if a HOMEGIST file is provided
if precomputed
mkdir(fullfile(HOMEGIST, D(n).annotation.folder))
save (filegist, 'g')
end
end
gist(n,:) = g;
drawnow
end
function output = prefilt(img, fc)
% ima = prefilt(img, fc);
% fc = 4 (default)
%
% Input images are double in the range [0, 255];
% You can also input a block of images [ncols nrows 3 Nimages]
%
% For color images, normalization is done by dividing by the local
% luminance variance.
if nargin == 1
fc = 4; % 4 cycles/image
end
w = 5;
s1 = fc/sqrt(log(2));
% Pad images to reduce boundary artifacts
img = log(img+1);
img = padarray(img, [w w], 'symmetric');
[sn, sm, c, N] = size(img);
n = max([sn sm]);
n = n + mod(n,2);
img = padarray(img, [n-sn n-sm], 'symmetric','post');
% Filter
[fx, fy] = meshgrid(-n/2:n/2-1);
gf = fftshift(exp(-(fx.^2+fy.^2)/(s1^2)));
gf = repmat(gf, [1 1 c N]);
% Whitening
output = img - real(ifft2(fft2(img).*gf));
clear img
% Local contrast normalization
localstd = repmat(sqrt(abs(ifft2(fft2(mean(output,3).^2).*gf(:,:,1,:)))), [1 1 c 1]);
output = output./(.2+localstd);
% Crop output to have same size than the input
output = output(w+1:sn-w, w+1:sm-w,:,:);
function g = gistGabor(img, param)
%
% Input:
% img = input image (it can be a block: [nrows, ncols, c, Nimages])
% param.w = number of windows (w*w)
% param.G = precomputed transfer functions
%
% Output:
% g: are the global features = [Nfeatures Nimages],
% Nfeatures = w*w*Nfilters*c
img = single(img);
w = param.numberBlocks;
G = param.G;
be = param.boundaryExtension;
if ndims(img)==2
c = 1;
N = 1;
[nrows ncols c] = size(img);
end
if ndims(img)==3
[nrows ncols c] = size(img);
N = c;
end
if ndims(img)==4
[nrows ncols c N] = size(img);
img = reshape(img, [nrows ncols c*N]);
N = c*N;
end
[ny nx Nfilters] = size(G);
W = w*w;
g = zeros([W*Nfilters N]);
% pad image
img = padarray(img, [be be], 'symmetric');
img = single(fft2(img));
k=0;
for n = 1:Nfilters
ig = abs(ifft2(img.*repmat(G(:,:,n), [1 1 N])));
ig = ig(be+1:ny-be, be+1:nx-be, :);
v = downN(ig, w);
g(k+1:k+W,:) = reshape(v, [W N]);
k = k + W;
drawnow
end
if c == 3
% If the input was a color image, then reshape 'g' so that one column
% is one images output:
g = reshape(g, [size(g,1)*3 size(g,2)/3]);
end
function y=downN(x, N)
%
% averaging over non-overlapping square image blocks
%
% Input
% x = [nrows ncols nchanels]
% Output
% y = [N N nchanels]
nx = fix(linspace(0,size(x,1),N+1));
ny = fix(linspace(0,size(x,2),N+1));
y = zeros(N, N, size(x,3));
for xx=1:N
for yy=1:N
v=mean(mean(x(nx(xx)+1:nx(xx+1), ny(yy)+1:ny(yy+1),:),1),2);
y(xx,yy,:)=v(:);
end
end
function G = createGabor(or, n)
%
% G = createGabor(numberOfOrientationsPerScale, n);
%
% Precomputes filter transfer functions. All computations are done on the
% Fourier domain.
%
% If you call this function without output arguments it will show the
% tiling of the Fourier domain.
%
% Input
% numberOfOrientationsPerScale = vector that contains the number of
% orientations at each scale (from HF to BF)
% n = imagesize = [nrows ncols]
%
% output
% G = transfer functions for a jet of gabor filters
Nscales = length(or);
Nfilters = sum(or);
if length(n) == 1
n = [n(1) n(1)];
end
l=0;
for i=1:Nscales
for j=1:or(i)
l=l+1;
param(l,:)=[.35 .3/(1.85^(i-1)) 16*or(i)^2/32^2 pi/(or(i))*(j-1)];
end
end
% Frequencies:
%[fx, fy] = meshgrid(-n/2:n/2-1);
[fx, fy] = meshgrid(-n(2)/2:n(2)/2-1, -n(1)/2:n(1)/2-1);
fr = fftshift(sqrt(fx.^2+fy.^2));
t = fftshift(angle(fx+sqrt(-1)*fy));
% Transfer functions:
G=zeros([n(1) n(2) Nfilters]);
for i=1:Nfilters
tr=t+param(i,4);
tr=tr+2*pi*(tr<-pi)-2*pi*(tr>pi);
G(:,:,i)=exp(-10*param(i,1)*(fr/n(2)/param(i,2)-1).^2-2*param(i,3)*pi*tr.^2);
end
if nargout == 0
figure
for i=1:Nfilters
contour(fx, fy, fftshift(G(:,:,i)),[1 .7 .6],'r');
hold on
end
axis('on')
axis('equal')
axis([-n(2)/2 n(2)/2 -n(1)/2 n(1)/2])
axis('ij')
xlabel('f_x (cycles per image)')
ylabel('f_y (cycles per image)')
grid on
end
|
github
|
kasimp93/Image-Classification-using-ML-and-Artificial-Neural-Networks-master
|
showGist.m
|
.m
|
Image-Classification-using-ML-and-Artificial-Neural-Networks-master/Final_Code/feature extraction/gist/showGist.m
| 1,954 |
utf_8
|
926839f0ab3e7182c10a1b52d06e5e31
|
function showGist(gist, param)
%
% Visualization of the gist descriptor
% showGist(gist, param)
%
% The plot is color coded, with one color per scale
%
% Example:
% img = zeros(256,256);
% img(64:128,64:128) = 255;
% gist = LMgist(img, '', param);
% showGist(gist, param)
[Nimages, Ndim] = size(gist);
nx = ceil(sqrt(Nimages)); ny = ceil(Nimages/nx);
Nblocks = param.numberBlocks;
Nfilters = sum(param.orientationsPerScale);
Nscales = length(param.orientationsPerScale);
C = hsv(Nscales);
colors = [];
for s = 1:Nscales
colors = [colors; repmat(C(s,:), [param.orientationsPerScale(s) 1])];
end
colors = colors';
[nrows ncols Nfilters] = size(param.G);
Nfeatures = Nblocks^2*Nfilters;
if Ndim~=Nfeatures
error('Missmatch between gist descriptors and the parameters');
end
G = param.G(1:2:end,1:2:end,:);
[nrows ncols Nfilters] = size(G);
G = G + flipdim(flipdim(G,1),2);
G = reshape(G, [ncols*nrows Nfilters]);
if Nimages>1
figure;
end
for j = 1:Nimages
g = reshape(gist(j,:), [Nblocks Nblocks Nfilters]);
g = permute(g,[2 1 3]);
g = reshape(g, [Nblocks*Nblocks Nfilters]);
for c = 1:3
mosaic(:,c,:) = G*(repmat(colors(c,:), [Nblocks^2 1]).*g)';
end
mosaic = reshape(mosaic, [nrows ncols 3 Nblocks*Nblocks]);
mosaic = fftshift(fftshift(mosaic,1),2);
mosaic = uint8(mosaic/max(mosaic(:))*255);
mosaic(1,:,:,:) = 255;
mosaic(end,:,:,:) = 255;
mosaic(:,1,:,:) = 255;
mosaic(:,end,:,:) = 255;
if Nimages>1
subplottight(ny,nx,j,0.01);
end
montage(mosaic, 'size', [Nblocks Nblocks])
end
function h=subplottight(Ny, Nx, j, margin)
% General utility function
%
% This function is like subplot but it removes the spacing between axes.
%
% subplottight(Ny, Nx, j)
if nargin <4
margin = 0;
end
j = j-1;
x = mod(j,Nx)/Nx;
y = (Ny-fix(j/Nx)-1)/Ny;
h=axes('position', [x+margin/Nx y+margin/Ny 1/Nx-2*margin/Nx 1/Ny-2*margin/Ny]);
|
github
|
GatorSense/MICI-master
|
evalFitness_softmax.m
|
.m
|
MICI-master/util/evalFitness_softmax.m
| 1,879 |
utf_8
|
6dd18d55aa4d0dbfa74fdaa03e96c2c2
|
function [fitness] = evalFitness_softmax(Labels, measure, nPntsBags, oneV, bag_row_ids, diffM,p)
% Evaluate the fitness a measure, similar to evalFitness_minmax() for
% classification but uses generalized mean (sometimes also named "softmax") model
%
% INPUT
% Labels - 1xNumTrainBags double - Training labels for each bag
% measure - measure to be evaluated after update
% nPntsBags - 1xNumTrainBags double - number of points in each bag
% bag_row_ids - the row indices of measure used for each bag
% diffM - Precompute differences for each bag
%
% OUTPUT
% fitness - the fitness value using min(sum(min((ci-d)^2))) for regression.
%
% Written by: X. Du 03/2018
%
p1 = p(1);
p2 = p(2);
singletonLoc = (nPntsBags == 1);
diffM_ns = diffM(~singletonLoc);
bag_row_ids_ns = bag_row_ids(~singletonLoc);
labels_ns = Labels(~singletonLoc);
oneV = oneV(~singletonLoc);
fitness = 0;
if sum(singletonLoc) %if there are singleton bags
diffM_s = vertcat(diffM{singletonLoc});
bag_row_ids_s = vertcat(bag_row_ids{singletonLoc});
labels_s = Labels(singletonLoc)';
%Compute CI for singleton bags
ci = sum(diffM_s.*horzcat(measure(bag_row_ids_s),ones(sum(singletonLoc),1)),2);
fitness_s = sum((ci - labels_s).^2);
fitness = fitness - fitness_s;
end
%Compute CI for non-singleton bags
for i = 1:length(diffM_ns)
ci = sum(diffM_ns{i}.*horzcat(measure(bag_row_ids_ns{i}), oneV{i}),2);
if(labels_ns(i) ~= 1) %negative bag label=0
fitness = fitness - (mean(ci.^(2*p1))).^(1/p1);
else
fitness = fitness - (mean((ci-1).^(2*p2))).^(1/p2);
end
end
% sanity check
if isinf(fitness) || ~isreal(fitness)
fitness = real(fitness);
if fitness == Inf
fitness = -10000000;
elseif fitness == -Inf
fitness = -10000000;
end
end
end
|
github
|
GatorSense/MICI-master
|
invcdf_TruncatedGaussian.m
|
.m
|
MICI-master/util/invcdf_TruncatedGaussian.m
| 1,199 |
utf_8
|
50a5c7959b4606c1f3d6d03e9a8d0f47
|
function [val] = invcdf_TruncatedGaussian(cdf,x_bar,sigma_bar,lowerBound,upperBound)
%stats_TruncatedGaussian - stats for a truncated gaussian distribution
% INPUT
% - cdf: evaluated at the values at cdf
% - x_bar,sigma_bar,lowerBound,upperBound: suppose X~N(mu,sigma^2) has a normal distribution and lies within
% the interval lowerBound<X<upperBound
% *The size of cdfTG and pdfTG is the common size of X, MU and SIGMA. A scalar input
% functions as a constant matrix of the same size as the other inputs.
% OUTPUT
% - val: the x corresponding to the cdf TG value
% Written by: X. Du 05/20/2015
term2 = (normcdf_my(upperBound,x_bar,sigma_bar) - normcdf_my(lowerBound,x_bar,sigma_bar));
const2 = cdf*term2 + normcdf_my(lowerBound,x_bar,sigma_bar);
const3 = const2*2-1;
inner_temp = erfinv(const3);
val = inner_temp*sqrt(2)*sigma_bar + x_bar;
end
function [p] = normcdf_my(x,mu,sigma)
% INOPUT
% - x: the x to compute the cdf value
% - mu: mean of the Gaussian distribution
% - sigma: sigma of the Gaussian distribution
% OUTPUT
% - val: the x corresponding to the cdf value
% based on MATLAB normcdf() function.
z = (x-mu) ./ sigma;
p = 0.5 * erfc(-z ./ sqrt(2));
end
|
github
|
GatorSense/MICI-master
|
evalInterval.m
|
.m
|
MICI-master/util/evalInterval.m
| 1,164 |
utf_8
|
036195d98abaadc9bc9fb2a9cec22289
|
function [subsetInterval] = evalInterval(measure,nSources,lowerindex,upperindex)
% Evaluate the valid interval width of a measure, then sort in descending order.
%
% INPUT
% measure - measure to be evaluated after update
% nSources - number of sources
% lowerindex - the cell that stores all the corresponding subsets (lower index) of measure elements
% upperindex - the cell that stores all the corresponding supersets (upper index) of measure elements
% OUTPUT
% subsetInterval - the valid interval widths for the measure elements,before sorting by value
%
% Written by: X. Du 03/2018
%
Nmeasure = 2^nSources-1 ; %total length of measure
lb = zeros(1,Nmeasure-1);
ub = zeros(1,Nmeasure-1);
for j = 1:nSources %singleton
lb(j) = 0; %lower bound
ub(j) = min(measure(upperindex{j})); %upper bound
end
for j = (nSources+1) : (Nmeasure-nSources-1)
lb(j) = max(measure(lowerindex{j})); %lower bound
ub(j) = min(measure(upperindex{j})); %upper bound
end
for j = (Nmeasure-nSources):(Nmeasure-1) %(nSources-1)- tuple
lb(j) = max(measure(lowerindex{j})); %lower bound
ub(j) = 1;%upper bound
end
subsetInterval = ub - lb;
end
|
github
|
GatorSense/MICI-master
|
quadLearnChoquetMeasure_3Source.m
|
.m
|
MICI-master/util/quadLearnChoquetMeasure_3Source.m
| 5,070 |
utf_8
|
5f6e52334705601a119498e6bf458adb
|
function g = quadLearnChoquetMeasure_3Source(H, Y)
% g = quadLearnChoquetMeasure(H, Y)
% This code only works with 3 sources
%
% Purpose: Learn the fuzzy measures of a choquet integral for fusing sources
% of information. Learning the measures is framed as the
% following quadratic programming problem:
%
%
% argmin { 0.5*g'Dg+gamma'*g }
% g
%
% s.t. 0 <= g <=1 and A*g <= b --> A*g - b <= 0
%
% Input: H = [n_samp x n_sources] Matrix: Support info. [0 1].
% Each row of H (denoted h) is the confidence from each source
% of the sample belonging to class 1.
% Y = [n_samp x 1] Row Vector: Binary desired output (1 = class 1, 0 = class 0.)
%
% Output: g - [2^n_sources - 2 x 1] Row vector: Learned fuzzy measures.
%
%%
% Extract Dimensions of the data.
[n_samp, n_sources] = size(H);
% Currently only designed for 3 sources...
if(n_sources ~=3)
error('This code is only meant for the fusion of three inputs');
end
%================== Compute Coefficients ==================================
% Z = [n_samp x 2^n_sources - 2] Matrix: Stores the change in
% values from different sources - h(x_i*) - h(x_i+1*)
% Each row (z) is a measure of the difference between each source
% for each sample. gamma(j) in the text.
Z = zeros(n_samp, 6);
for j = 1:n_samp
hx = H(j,:); % Pull a single sample's support info hx = [h{x1} h{x2} h{x3}]
[h_xsorted, sort_inds] = sort(hx, 'descend'); % Sort h(x_i) s.t. h(x_1*) > h(x_2*> ...
Z(j,sort_inds(1)) = h_xsorted(1) - h_xsorted(2); % Store h(x1*) - h(x2*)
g2 = GElement2(sort_inds); % Figure out which set combination corresponds to h(x2*)
Z(j,g2) = h_xsorted(2) - h_xsorted(3); % Store h(x2*) - h(x3*)
end
% D = [2^n_sources - 2 x 2^n_source - 2] Matrix: 2 * sum over all samples of z'*z, 2 is for scaling purposes.
D = zeros(6,6);
for j = 1:n_samp
D = D + Z(j,:)'*Z(j,:);
end
D = D*2;
% Compute Gamma over all samples.
G = zeros(6, 1);
for j = 1:n_samp
G = G + 2*(min(H(j,:))-Y(j))*Z(j,:)'; % Gamma = [2^n_sources-2 x 1] column vector: sum(2*(h(x_1*) - y)*z) over all samples.
end
%============ Setup Costraint Matrix ======================================
% Contraints follow the form:
%
% A*g <= b
%
% Monotinicity Constraint on g:
% g{xi} <= g{xi, xj} for any j, following from choquet set constraints.
%
% Compact binary representation of the following constraint.
% Assume: g = [g{x1} g{x2] g{x3] g{x1,x2} g{x1,x3} g{x2,x3}]
%
% g{x1} - g{x1,x2} <= 0 --> g{x1} <= g{x1,x2}
% g{x1} - g{x1,x3} <= 0 --> g{x1} <= g{x1,x3}
% g{x2} - g{x1,x2} <= 0 --> g{x2} <= g{x1,x2}
% g{x2} - g{x2,x3} <= 0 --> g{x2} <= g{x2,x3}
% g{x3} - g{x1,x3} <= 0 --> g{x3} <= g{x1,x3}
% g{x3} - g{x2,x3} <= 0 --> g{x3} <= g{x2,x3}
% 0 + g{x1,x2} <= 1 --> g{x1,x2} <= 1
% 0 + g{x1,x3} <= 1 --> g{x1,x3} <= 1
% 0 + g{x2,x3} <= 1 --> g{x2,x3} <= 1
% Set A:
% Singletons | Combinations
% g{x1}+g{x2]+g{x3]+g{x1,x2}+g{x1,x3}+g{x2,x3}
A = [1 0 0 -1 0 0; % g{x1} - g{x1,x2}
1 0 0 0 -1 0; % g{x1} - g{x1,x3}
0 1 0 -1 0 0; % g{x2} - g{x1,x2}
0 1 0 0 0 -1; % g{x2} - g{x2,x3}
0 0 1 0 -1 0; % g{x3} - g{x1,x3}
0 0 1 0 0 -1; % g{x3} - g{x2,x3}
0 0 0 1 0 0; % 0 + g{x1,x2}
0 0 0 0 1 0; % 0 + g{x1,x3}
0 0 0 0 0 1]; % 0 + g{x2,x3}
% Set b: Refer to comments above.
b = [0 0 0 0 0 0 1 1 1]';
% Use matlab built-in function for solving the quadratic problem.
%options = optimset('Algorithm', 'active-set');
g = quadprog(D, G, A, b, [], [], zeros(2^n_sources-2,1),ones(2^n_sources-2,1), []); %add upper and lower bounds of [0,1] - X. Du 01/13/2016
end
% Determine g{x2*} which density to use as the second weight. Can be thought of as
% picking the density which coresponds to the combination of sets which
% gives the most worth.
function element = GElement2(sort_inds)
if(sort_inds(1) == 1)
if(sort_inds(2) == 2)
element = 4; % Use g{x1, x2}
else
element = 5; % Use g{x1, x3}
end
elseif(sort_inds(1) == 2)
if(sort_inds(2) == 1)
element = 4; % Use g{x1, x2}
else
element = 6; % Use g{x2, x3}
end
elseif(sort_inds(1) == 3)
if(sort_inds(2) == 1)
element = 5; % Use g{x1, x3}
else
element = 6; % Use g{x2, x3}
end
end
end
|
github
|
GatorSense/MICI-master
|
quadLearnChoquetMeasure_5Source.m
|
.m
|
MICI-master/util/quadLearnChoquetMeasure_5Source.m
| 18,196 |
utf_8
|
f359c41388a5f67c036650506d60fd61
|
function g = quadLearnChoquetMeasure_5Source(H, Y)
% g = quadLearnChoquetMeasure(H, Y) for 5 sources
%
% Purpose: Learn the fuzzy measures of a choquet integral for fusing sources
% of information. Learning the measures is framed as the
% following quadratic programming problem:
%
%
% argmin { 0.5*g'Dg+gamma'*g }
% g
%
% s.t. 0 <= g <=1 and A*g <= b --> A*g - b <= 0
%
% Input: H = [n_samp x nSources] Matrix: Support info. [0 1].
% Each row of H (denoted h) is the confidence from each source
% of the sample belonging to class 1.
% Y = [n_samp x 1] Row Vector: Binary desired output (1 = class 1, 0 = class 0.)
%
% Output: g - [2^nSources - 2 x 1] Row vector: Learned fuzzy measures.
% Written by: X. Du 01/13/2016
%%
% Extract Dimensions of the data.
[nSample, nSources] = size(H);
% Currently only designed for 3 sources...
if(nSources ~=5)
error('This code is only meant for the fusion of five inputs');
end
%================== Compute Coefficients ==================================
% Z = [nSample x 2^nSources - 2] Matrix: Stores the change in
% values from different sources - h(x_i*) - h(x_i+1*)
% Each row (z) is a measure of the difference between each source
% for each sample. gamma(j) in the text.
Z = zeros(nSample, 2^nSources - 2);
for j = 1:nSample
hx = H(j,:); % Pull a single sample's support info hx = [h{x1} h{x2} h{x3}]
[h_xsorted, sort_inds] = sort(hx, 'descend'); % Sort h(x_i) s.t. h(x_1*) > h(x_2*> ...
Z(j,sort_inds(1)) = h_xsorted(1) - h_xsorted(2); % Store h(x1*) - h(x2*)
g2 = GElement2(sort_inds); % Figure out which set combination corresponds to h(x2*)
Z(j,g2) = h_xsorted(2) - h_xsorted(3); % Store h(x2*) - h(x3*)
g3 = GElement3(sort_inds);
Z(j,g3) = h_xsorted(3) - h_xsorted(4);
g4 = GElement4(sort_inds);
Z(j,g4) = h_xsorted(4) - h_xsorted(5);
end
% D = [2^nSources - 2 x 2^n_source - 2] Matrix: 2 * sum over all samples of z'*z, 2 is for scaling purposes.
D = zeros(2^nSources-2 ,2^nSources-2 );
for j = 1:nSample
D = D + Z(j,:)'*Z(j,:);
end
D = D*2;
% Compute Gamma over all samples.
Gamma = zeros(2^nSources-2, 1);
for j = 1:nSample
Gamma = Gamma + 2*(min(H(j,:))-Y(j))*Z(j,:)'; % Gamma = [2^nSources-2 x 1] column vector: sum(2*(h(x_1*) - y)*z) over all samples.
end
%============ Setup Costraint Matrix ======================================
% Contraints follow the form:
%
% A*g <= b
%
% Monotinicity Constraint on g:
% g{xi} <= g{xi, xj} for any j, following from choquet set constraints.
%
% Compact binary representation of the constraint.
% A total of nSources*(2^(nSources-1)-1) constraints (ref: J.M.Keller book chapter)
% Set A:
A = zeros(nSources*(2^(nSources-1)-1), 2^nSources-2);
numConstraints = size(A,1);
numMeasureElems = size(A,2); %number of measure elements with constraints (excluding empty 0 and all 1 sets)
%%%% last nSources rows, g_12..(n-1)<=1 constraints%%%%%%%
count = 0;
for i = (numConstraints-nSources+1) : numConstraints
count = count+1;
A(i,numMeasureElems-nSources+count) = 1;
end
%%%%# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...
A = [ 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_1<=g_12
1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_1<=g_13
1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_1<=g_14
1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_1<=g_15
0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_2<=g_12
0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_2<=g_23
0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_2<=g_24
0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_2<=g_25
0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_3<=g_13
0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_3<=g_23
0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_3<=g_34
0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_3<=g_35
0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_4<=g_14
0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_4<=g_24
0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_4<=g_34
0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_4<=g_45
0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_5<=g_15
0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_5<=g_25
0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_5<=g_35
0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_5<=g_45
%%%%# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_12<=g_123
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_12<=g_124
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0; %g_12<=g_125
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_13<=g_123
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0; %g_13<=g_134
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0; %g_13<=g_135
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_14<=g_124
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0; %g_14<=g_134
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0; %g_14<=g_145
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0; %g_15<=g_125
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0; %g_15<=g_135
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0; %g_15<=g_145
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_23<=g_123
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0; %g_23<=g_234
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0; %g_23<=g_235
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0; %g_24<=g_124
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0; %g_24<=g_234
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0; %g_24<=g_245
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0; %g_25<=g_125
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0; %g_25<=g_235
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0; %g_25<=g_245
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0; %g_34<=g_134
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0; %g_34<=g_234
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0; %g_34<=g_345
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0; %g_35<=g_135
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0; %g_35<=g_235
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0; %g_35<=g_345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0; %g_45<=g_145
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0; %g_45<=g_245
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0; %g_45<=g_345
%%%%# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0; %g_123<=g_1234
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0; %g_123<=g_1235
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0; %g_124<=g_1234
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0; %g_124<=g_1245
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0; %g_125<=g_1235
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0; %g_125<=g_1245
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0; %g_134<=g_1234
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0; %g_134<=g_1345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0; %g_135<=g_1235
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0; %g_135<=g_1345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0; %g_145<=g_1245
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0; %g_145<=g_1345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0; %g_234<=g_1234
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1; %g_234<=g_2345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0; %g_235<=g_1235
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1; %g_235<=g_2345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0; %g_245<=g_1245
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1; %g_245<=g_2345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0; %g_345<=g_1345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1; %g_345<=g_2345
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0; %g_1234<=1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0; %g_1235<=1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; %g_1245<=1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; %g_1345<=1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1; %g_2345<=1
];
% Set b: Refer to comments above.
b = zeros(nSources*(2^(nSources-1)-1),1);
b([end-nSources+1:end]) = 1; % the last tier constraints <=1
% Use matlab built-in function for solving the quadratic problem.
% options = optimset('Algorithm', 'active-set');
g = quadprog(D, Gamma, A, b, [], [], zeros(2^nSources-2,1),ones(2^nSources-2,1), []);
% options = optimset('Algorithm', 'interior-point-convex');
% options = optimset('Algorithm', 'trust-region-reflective');
% g = quadprog(D, Gamma, A, b, [], [], [], [], []);
end
% Determine g{x2*} which density to use as the second weight. Can be thought of as
% picking the density which coresponds to the combination of sets which
% gives the most worth.
function element = GElement2(sort_inds)
if ismember(sort_inds([1:2]),perms([1 2]),'rows') == 1
element = 6; % Use g{x1, x2}
end
if ismember(sort_inds([1:2]),perms([1 3]),'rows') == 1
element = 7; % Use g{x1, x3}
end
if ismember(sort_inds([1:2]),perms([1 4]),'rows') == 1
element = 8; % Use g{x1, x4}
end
if ismember(sort_inds([1:2]),perms([1 5]),'rows') == 1
element = 9; % Use g{x1, x5}
end
if ismember(sort_inds([1:2]),perms([2 3]),'rows') == 1
element = 10; % Use g{x2, x3}
end
if ismember(sort_inds([1:2]),perms([2 4]),'rows') == 1
element = 11; % Use g{x2, x4}
end
if ismember(sort_inds([1:2]),perms([2 5]),'rows') == 1
element = 12; % Use g{x2, x5}
end
if ismember(sort_inds([1:2]),perms([3 4]),'rows') == 1
element = 13; % Use g{x3, x4}
end
if ismember(sort_inds([1:2]),perms([3 5]),'rows') == 1
element = 14; % Use g{x3, x5}
end
if ismember(sort_inds([1:2]),perms([4 5]),'rows') == 1
element = 15; % Use g{x4, x5}
end
end
% Determine g{x2*} which density to use as the second weight. Can be thought of as
% picking the density which coresponds to the combination of sets which
% gives the most worth.
function element = GElement3(sort_inds)
if ismember(sort_inds([1:3]),perms([1 2 3]),'rows') == 1
element = 16; % Use g{x1, x2, x3}
end
if ismember(sort_inds([1:3]),perms([1 2 4]),'rows') == 1
element = 17; % Use g{x1, x2, x4}
end
if ismember(sort_inds([1:3]),perms([1 2 5]),'rows') == 1
element = 18; % Use g{x1, x2, x5}
end
if ismember(sort_inds([1:3]),perms([1 3 4]),'rows') == 1
element = 19; % Use g{x1, x3, x4}
end
if ismember(sort_inds([1:3]),perms([1 3 5]),'rows') == 1
element = 20; % Use g{x1, x3, x5}
end
if ismember(sort_inds([1:3]),perms([1 4 5]),'rows') == 1
element = 21; % Use g{x1, x4, x5}
end
if ismember(sort_inds([1:3]),perms([2 3 4]),'rows') == 1
element = 22; % Use g{x2, x3, x4}
end
if ismember(sort_inds([1:3]),perms([2 3 5]),'rows') == 1
element = 23; % Use g{x2, x3, x5}
end
if ismember(sort_inds([1:3]),perms([2 4 5]),'rows') == 1
element = 24; % Use g{x2, x4, x5}
end
if ismember(sort_inds([1:3]),perms([3 4 5]),'rows') == 1
element = 25; % Use g{x3, x4, x5}
end
end
function element = GElement4(sort_inds)
if ismember(sort_inds([1:4]),perms([1 2 3 4]),'rows') == 1
element = 26; % Use g{x1, x2, x3, x4}
end
if ismember(sort_inds([1:4]),perms([1 2 3 5]),'rows') == 1
element = 27; % Use g{x1, x2, x3, x5}
end
if ismember(sort_inds([1:4]),perms([1 2 4 5]),'rows') == 1
element = 28; % Use g{x1, x2, x4, x5}
end
if ismember(sort_inds([1:4]),perms([1 3 4 5]),'rows') == 1
element = 29; % Use g{x1, x3, x4, x5}
end
if ismember(sort_inds([1:4]),perms([2 3 4 5]),'rows') == 1
element = 30; % Use g{x2, x3, x4, x5}
end
end
|
github
|
GatorSense/MICI-master
|
quadLearnChoquetMeasure_4Source.m
|
.m
|
MICI-master/util/quadLearnChoquetMeasure_4Source.m
| 8,043 |
utf_8
|
e8c8141ac0b625ed7f9ec38f54b3186d
|
function g = quadLearnChoquetMeasure_4Source(H, Y)
% g = quadLearnChoquetMeasure(H, Y) for 4 sources
%
% Purpose: Learn the fuzzy measures of a choquet integral for fusing sources
% of information. Learning the measures is framed as the
% following quadratic programming problem:
%
%
% argmin { 0.5*g'Dg+gamma'*g }
% g
%
% s.t. 0 <= g <=1 and A*g <= b --> A*g - b <= 0
%
% Input: H = [n_samp x nSources] Matrix: Support info. [0 1].
% Each row of H (denoted h) is the confidence from each source
% of the sample belonging to class 1.
% Y = [n_samp x 1] Row Vector: Binary desired output (1 = class 1, 0 = class 0.)
%
% Output: g - [2^nSources - 2 x 1] Row vector: Learned fuzzy measures.
% Written by: X. Du 01/13/2016
%%
% Extract Dimensions of the data.
[nSample, nSources] = size(H);
% Currently only designed for 3 sources...
if(nSources ~=4)
error('This code is only meant for the fusion of four inputs');
end
%================== Compute Coefficients ==================================
% Z = [nSample x 2^nSources - 2] Matrix: Stores the change in
% values from different sources - h(x_i*) - h(x_i+1*)
% Each row (z) is a measure of the difference between each source
% for each sample. gamma(j) in the text.
Z = zeros(nSample, 2^nSources - 2);
for j = 1:nSample
hx = H(j,:); % Pull a single sample's support info hx = [h{x1} h{x2} h{x3}]
[h_xsorted, sort_inds] = sort(hx, 'descend'); % Sort h(x_i) s.t. h(x_1*) > h(x_2*> ...
Z(j,sort_inds(1)) = h_xsorted(1) - h_xsorted(2); % Store h(x1*) - h(x2*)
g2 = GElement2(sort_inds); % Figure out which set combination corresponds to h(x2*)
Z(j,g2) = h_xsorted(2) - h_xsorted(3); % Store h(x2*) - h(x3*)
g3 = GElement3(sort_inds);
Z(j,g3) = h_xsorted(3) - h_xsorted(4);
end
% D = [2^nSources - 2 x 2^n_source - 2] Matrix: 2 * sum over all samples of z'*z, 2 is for scaling purposes.
D = zeros(2^nSources-2 ,2^nSources-2 );
for j = 1:nSample
D = D + Z(j,:)'*Z(j,:);
end
D = D*2;
% Compute Gamma over all samples.
Gamma = zeros(2^nSources-2, 1);
for j = 1:nSample
Gamma = Gamma + 2*(min(H(j,:))-Y(j))*Z(j,:)'; % Gamma = [2^nSources-2 x 1] column vector: sum(2*(h(x_1*) - y)*z) over all samples.
end
%============ Setup Costraint Matrix ======================================
% Contraints follow the form:
%
% A*g <= b
%
% Monotinicity Constraint on g:
% g{xi} <= g{xi, xj} for any j, following from choquet set constraints.
%
% Compact binary representation of the constraint.
% A total of nSources*(2^(nSources-1)-1) constraints (ref: J.M.Keller book chapter)
% Set A:
A = zeros(nSources*(2^(nSources-1)-1), 2^nSources-2);
numConstraints = size(A,1);
numMeasureElems = size(A,2); %number of measure elements with constraints (excluding empty 0 and all 1 sets)
%%%% last nSources rows, g_12..(n-1)<=1 constraints%%%%%%%
count = 0;
for i = (numConstraints-nSources+1) : numConstraints
count = count+1;
A(i,numMeasureElems-nSources+count) = 1;
end
%%%%# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
A = [ 1 0 0 0 -1 0 0 0 0 0 0 0 0 0; %g_1<=g_12
1 0 0 0 0 -1 0 0 0 0 0 0 0 0 ; %g_1<=g_13
1 0 0 0 0 0 -1 0 0 0 0 0 0 0 ; %g_1<=g_14
0 1 0 0 -1 0 0 0 0 0 0 0 0 0 ; %g_2<=g_12
0 1 0 0 0 0 0 -1 0 0 0 0 0 0 ; %g_2<=g_23
0 1 0 0 0 0 0 0 -1 0 0 0 0 0 ; %g_2<=g_24
0 0 1 0 0 -1 0 0 0 0 0 0 0 0 ; %g_3<=g_13
0 0 1 0 0 0 0 -1 0 0 0 0 0 0 ; %g_3<=g_23
0 0 1 0 0 0 0 0 0 -1 0 0 0 0 ; %g_3<=g_34
0 0 0 1 0 0 -1 0 0 0 0 0 0 0 ; %g_4<=g_14
0 0 0 1 0 0 0 0 -1 0 0 0 0 0 ; %g_4<=g_24
0 0 0 1 0 0 0 0 0 -1 0 0 0 0 ; %g_4<=g_34
0 0 0 0 1 0 0 0 0 0 -1 0 0 0 ; %g_12<=g_123
0 0 0 0 1 0 0 0 0 0 0 -1 0 0 ; %g_12<=g_124
0 0 0 0 0 1 0 0 0 0 -1 0 0 0 ; %g_13<=g_123
0 0 0 0 0 1 0 0 0 0 0 0 -1 0 ; %g_13<=g_134
0 0 0 0 0 0 1 0 0 0 0 -1 0 0 ; %g_14<=g_124
0 0 0 0 0 0 1 0 0 0 0 0 -1 0 ; %g_14<=g_134
0 0 0 0 0 0 0 1 0 0 -1 0 0 0 ; %g_23<=g_123
0 0 0 0 0 0 0 1 0 0 0 0 0 -1 ; %g_23<=g_234
0 0 0 0 0 0 0 0 1 0 0 -1 0 0 ; %g_24<=g_124
0 0 0 0 0 0 0 0 1 0 0 0 0 -1 ; %g_24<=g_234
0 0 0 0 0 0 0 0 0 1 0 0 -1 0 ; %g_34<=g_134
0 0 0 0 0 0 0 0 0 1 0 0 0 -1 ; %g_34<=g_234
0 0 0 0 0 0 0 0 0 0 1 0 0 0 ; %g_123<=1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 ; %g_124<=1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 ; %g_134<=1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 ; %g_234<=1
];
% Set b: Refer to comments above.
b = zeros(nSources*(2^(nSources-1)-1),1);
b([end-nSources+1:end]) = 1; % the last tier constraints <=1
% Use matlab built-in function for solving the quadratic problem.
% options = optimset('Algorithm', 'active-set');
g = quadprog(D, Gamma, A, b, [], [], zeros(2^nSources-2,1),ones(2^nSources-2,1), []);
% options = optimset('Algorithm', 'interior-point-convex');
% options = optimset('Algorithm', 'trust-region-reflective');
% g = quadprog(D, Gamma, A, b, [], [], [], [], []);
end
% Determine g{x2*} which density to use as the second weight. Can be thought of as
% picking the density which coresponds to the combination of sets which
% gives the most worth.
function element = GElement2(sort_inds)
if(sort_inds(1) == 1)
if(sort_inds(2) == 2)
element = 5; % Use g{x1, x2}
elseif(sort_inds(2) == 3)
element = 6; % Use g{x1, x3}
elseif(sort_inds(2) == 4)
element = 7; % Use g{x1, x4}
end
elseif(sort_inds(1) == 2)
if(sort_inds(2) == 1)
element = 5; % Use g{x1, x2}
elseif(sort_inds(2) == 3)
element = 8; % Use g{x2, x3}
elseif(sort_inds(2) == 4)
element = 9; % Use g{x2, x4}
end
elseif(sort_inds(1) == 3)
if(sort_inds(2) == 1)
element = 6; % Use g{x1, x3}
elseif(sort_inds(2) == 2)
element = 8; % Use g{x2, x3}
elseif(sort_inds(2) == 4)
element = 10; % Use g{x3, x4}
end
elseif(sort_inds(1) == 4)
if(sort_inds(2) == 1)
element = 7; % Use g{x1, x4}
elseif(sort_inds(2) == 2)
element = 9; % Use g{x2, x4}
elseif(sort_inds(2) == 3)
element = 10; % Use g{x3, x4}
end
end
end
% Determine g{x2*} which density to use as the second weight. Can be thought of as
% picking the density which coresponds to the combination of sets which
% gives the most worth.
function element = GElement3(sort_inds)
if ismember(sort_inds([1:3]),perms([1 2 3]),'rows') == 1
element = 11; % Use g{x1, x2, x3}
end
if ismember(sort_inds([1:3]),perms([1 2 4]),'rows') == 1
element = 12; % Use g{x1, x2, x4}
end
if ismember(sort_inds([1:3]),perms([1 3 4]),'rows') == 1
element = 13; % Use g{x1, x3, x4}
end
if ismember(sort_inds([1:3]),perms([2 3 4]),'rows') == 1
element = 14; % Use g{x2, x3, x4}
end
end
|
github
|
GatorSense/MICI-master
|
evalFitness_minmax.m
|
.m
|
MICI-master/util/evalFitness_minmax.m
| 1,791 |
utf_8
|
458a4f32ed7c7c5cd2103d2f52d35897
|
function [fitness] = evalFitness_minmax(Labels, measure, nPntsBags, oneV, bag_row_ids, diffM)
% Evaluate the fitness a measure, using min( sum(max((ci-0)^2)) + sum(min(ci-1)^2) ) for classification.
% min-max model
%
% INPUT
% Labels - 1xNumTrainBags double - Training labels for each bag
% measure - measure to be evaluated after update
% nPntsBags - 1xNumTrainBags double - number of points in each bag
% bag_row_ids - the row indices of measure used for each bag
% diffM - Precompute differences for each bag
%
% OUTPUT
% fitness - the fitness value using min(sum(min((ci-d)^2))) for regression.
%
% Written by: X. Du 03/2018
%
singletonLoc = (nPntsBags == 1);
diffM_ns = diffM(~singletonLoc);
bag_row_ids_ns = bag_row_ids(~singletonLoc);
labels_ns = Labels(~singletonLoc);
oneV = oneV(~singletonLoc);
fitness = 0;
if sum(singletonLoc) %if there are singleton bags
diffM_s = vertcat(diffM{singletonLoc});
bag_row_ids_s = vertcat(bag_row_ids{singletonLoc});
labels_s = Labels(singletonLoc)';
%Compute CI for singleton bags
ci = sum(diffM_s.*horzcat(measure(bag_row_ids_s),ones(sum(singletonLoc),1)),2);
fitness_s = sum((ci - labels_s).^2);
fitness = fitness - fitness_s;
end
%Compute CI for non-singleton bags
for i = 1:length(diffM_ns)
ci = sum(diffM_ns{i}.*horzcat(measure(bag_row_ids_ns{i}), oneV{i}),2);
if(labels_ns(i) ~= 1) %negative bag label=0
fitness = fitness - max(ci.^2);
else
fitness = fitness - min((ci-1).^2);
end
end
% sanity check
if isinf(fitness) || ~isreal(fitness)
fitness = real(fitness);
if fitness == Inf
fitness = -10000000;
elseif fitness == -Inf
fitness = -10000000;
end
end
end
|
github
|
GatorSense/MICI-master
|
evalFitness_reg.m
|
.m
|
MICI-master/util/evalFitness_reg.m
| 1,700 |
utf_8
|
1d2c493a725df54f1f82c58428fd5a6a
|
function [fitness] = evalFitness_reg(Labels, measure, nPntsBags, oneV, bag_row_ids, diffM)
% Evaluate the fitness a measure, using min(sum(min((ci-d)^2))) for regression.
%
% INPUT
% Labels - 1xNumTrainBags double - Training labels for each bag
% measure - measure to be evaluated after update
% nPntsBags - 1xNumTrainBags double - number of points in each bag
% oneV - - marks where singletons are
% bag_row_ids - the row indices of measure used for each bag
% diffM - Precompute differences for each bag
%
% OUTPUT
% fitness - the fitness value using min(sum(min((ci-d)^2))) for regression.
%
% Written by: X. Du 03/2018
%
singletonLoc = (nPntsBags == 1);
fitness = 0;
if sum(singletonLoc) %if there are singleton bags
diffM_s = vertcat(diffM{singletonLoc});
bag_row_ids_s = vertcat(bag_row_ids{singletonLoc});
labels_s = Labels(singletonLoc)';
%Compute CI for singleton bags
ci = sum(diffM_s.*horzcat(measure(bag_row_ids_s),ones(sum(singletonLoc),1)),2);
fitness_s = sum((ci - labels_s).^2);
fitness = fitness - fitness_s;
end
diffM_ns = diffM(~singletonLoc);
bag_row_ids_ns = bag_row_ids(~singletonLoc);
labels_ns = Labels(~singletonLoc);
oneV = oneV(~singletonLoc);
%Compute CI for non-singleton bags
for i = 1:length(diffM_ns)
ci = sum(diffM_ns{i}.*horzcat(measure(bag_row_ids_ns{i}), oneV{i}),2);
fitness = fitness - min((ci-labels_ns(i)).^2);
end
% sanity check
if isinf(fitness) || ~isreal(fitness)
fitness = real(fitness);
if fitness == Inf
fitness = -10000000;
elseif fitness == -Inf
fitness = -10000000;
end
end
end
|
github
|
amoudgl/mosse-tracker-master
|
window2.m
|
.m
|
mosse-tracker-master/src/window2.m
| 1,476 |
utf_8
|
5d8ce11dc20f5afbafd1fb2bf2957add
|
% This function creates a 2 dimentional window for a sample image, it takes
% the dimension of the window and applies the 1D window function
% This is does NOT using a rotational symmetric method to generate a 2 window
%
% Disi A ---- May,16, 2013
% [N,M]=size(imgage);
% ---------------------------------------------------------------------
% w_type is defined by the following
% @bartlett - Bartlett window.
% @barthannwin - Modified Bartlett-Hanning window.
% @blackman - Blackman window.
% @blackmanharris - Minimum 4-term Blackman-Harris window.
% @bohmanwin - Bohman window.
% @chebwin - Chebyshev window.
% @flattopwin - Flat Top window.
% @gausswin - Gaussian window.
% @hamming - Hamming window.
% @hann - Hann window.
% @kaiser - Kaiser window.
% @nuttallwin - Nuttall defined minimum 4-term Blackman-Harris window.
% @parzenwin - Parzen (de la Valle-Poussin) window.
% @rectwin - Rectangular window.
% @taylorwin - Taylor window.
% @tukeywin - Tukey window.
% @triang - Triangular window.
%
% Example:
% To compute windowed 2D fFT
% [r,c]=size(img);
% w=window2(r,c,@hamming);
% fft2(img.*w);
function w=window2(N,M,w_func)
wc=window(w_func,N);
wr=window(w_func,M);
[maskr,maskc]=meshgrid(wr,wc);
%maskc=repmat(wc,1,M); Old version
%maskr=repmat(wr',N,1);
w=maskr.*maskc;
end
|
github
|
Davonter/openairinterface5g-master
|
gen_7_5_kHz.m
|
.m
|
openairinterface5g-master/openair1/PHY/MODULATION/gen_7_5_kHz.m
| 3,298 |
utf_8
|
a08e730b234a112cbf6aac5b44c3af8b
|
function [] = gen_7_5_kHz()
[s6_n2, s6_e2] = gen_sig(6);
[s15_n2, s15_e2] = gen_sig(15);
[s25_n2, s25_e2] = gen_sig(25);
[s50_n2, s50_e2] = gen_sig(50);
[s75_n2, s75_e2] = gen_sig(75);
[s100_n2, s100_e2] = gen_sig(100);
fd=fopen("kHz_7_5.h","w");
fprintf(fd,"s16 s6n_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s6_n2));
fprintf(fd,"%d,",s6_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s6_n2(end));
fprintf(fd,"s16 s6e_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s6_e2));
fprintf(fd,"%d,",s6_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s6_e2(end));
fprintf(fd,"s16 s15n_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s15_n2));
fprintf(fd,"%d,",s15_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s15_n2(end));
fprintf(fd,"s16 s15e_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s15_e2));
fprintf(fd,"%d,",s15_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s15_e2(end));
fprintf(fd,"s16 s25n_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s25_n2));
fprintf(fd,"%d,",s25_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s25_n2(end));
fprintf(fd,"s16 s25e_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s25_e2));
fprintf(fd,"%d,",s25_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s25_e2(end));
fprintf(fd,"s16 s50n_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s50_n2));
fprintf(fd,"%d,",s50_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s50_n2(end));
fprintf(fd,"s16 s50e_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s50_e2));
fprintf(fd,"%d,",s50_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s50_e2(end));
fprintf(fd,"s16 s75n_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s75_n2));
fprintf(fd,"%d,",s75_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s75_n2(end));
fprintf(fd,"s16 s75e_kHz_7_5[%d]__attribute__((aligned(16))) = {",length(s75_e2));
fprintf(fd,"%d,",s75_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s75_e2(end));
fprintf(fd,"s16 s100n_kHz_7_5[%d]__attribute__((aligned(16)))= {",length(s100_n2));
fprintf(fd,"%d,",s100_n2(1:(end-1)));
fprintf(fd,"%d};\n\n",s100_n2(end));
fprintf(fd,"s16 s100e_kHz_7_5[%d]__attribute__((aligned(16)))= {",length(s100_n2));
fprintf(fd,"%d,",s100_e2(1:(end-1)));
fprintf(fd,"%d};\n\n",s100_e2(end));
fclose(fd);
end
function [s_n2, s_e2] = gen_sig(RB)
% 20MHz BW
cp0 = 160;
cp = 144;
cpe = 512;
samplerate = 30.72e6;
ofdm_size = 2048;
len = 15360;
switch(RB)
case 6
ratio = 1/16;
case 15
ratio = 1/8;
case 25
ratio = 1/4;
case 50
ratio = 1/2;
case 75
ratio = 3/4;
case 100
ratio = 1;
otherwise
disp("Wrong Number of RB");
end
cp0 = cp0*ratio;
cp = cp*ratio;
cpe = cpe*ratio;
samplerate = samplerate*ratio;
ofdm_size = ofdm_size*ratio;
len = len*ratio;
s_n0 = floor(32767*exp(-sqrt(-1)*2*pi*(-cp0:ofdm_size-1)*7.5e3/samplerate));
s_n1 = floor(32767*exp(-sqrt(-1)*2*pi*(-cp:ofdm_size-1)*7.5e3/samplerate));
s_n = [s_n0 s_n1 s_n1 s_n1 s_n1 s_n1 s_n1];
s_n2 = zeros(1, 2*len);
s_n2(1:2:end) = real(s_n);
s_n2(2:2:end) = imag(s_n);
s_e = floor(32767*exp(-sqrt(-1)*2*pi*(-cpe:ofdm_size-1)*7.5e3/samplerate));
s_e = [s_e s_e s_e s_e s_e s_e];
s_e2 = zeros(1, 2*len);
s_e2(1:2:end) = real(s_e);
s_e2(2:2:end) = imag(s_e);
end
|
github
|
Davonter/openairinterface5g-master
|
f_tls_diag.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/f_tls_diag.m
| 1,272 |
utf_8
|
443132469284a3d4d0b38bd5fb7d0522
|
%
% PURPOSE : TLS solution for AX = B based on SVD assuming X is diagonal
%
% ARGUMENTS :
%
% A : observation of A
% B : observation of B
%
% OUTPUTS :
%
% X : TLS solution for X (Diagonal)
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-30-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - I. Markovsky and S. V. Huffel, “Overview of total least-squares methods,” Signal Processing, vol. 87, pp.
% 2283–2302, 2007
%
%**********************************************************************************************
function [X_est A_est B_est] = f_tls_diag(A,B)
d_N = size(A,2);
X_est = zeros(d_N);
A_est = zeros(size(A));
B_est = zeros(size(B));
err_est = zeros(d_N);
for d_n = 1:d_N
[X_est(d_n,d_n) A_est(:,d_n) B_est(:,d_n)] = f_tls_svd(A(:,d_n),B(:,d_n));
end
%method 2: LS solution
% for d_n = 1:d_N
% X_est(d_n,d_n) = (A(:,d_n).'*A(:,d_n))\A(:,d_n).'*B(:,d_n);
% end
|
github
|
Davonter/openairinterface5g-master
|
f_tls_ap.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/f_tls_ap.m
| 1,368 |
utf_8
|
223603e551ebede67ff13452e95097b1
|
%
% PURPOSE : TLS solution for AX = B based on alternative projection
%
% ARGUMENTS :
%
% A : observation of A
% B : observation of B
%
% OUTPUTS :
%
% X : TLS solution for X
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Mai-05-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - none.
%
%**********************************************************************************************
function [X_est A_est B_est] = f_tls_ap(A,B)
%** initlisation **
e_new = 0;
e_old = 1e14;
e_thr = 1e-5; %error threshold: what if the error cannot fall down under the error threshold
X_est = eye(size(A,2));
A_est = A;
%** alternative projection **
while(abs(e_new-e_old)>e_thr)
e_old = e_new;
% optimise X_est
X_est = (A_est'*A_est)\A_est'*B;
%optimise A_est
A_est = B*X_est'/(X_est*X_est');
e_new = norm(A_est*X_est-B)^2+norm(A_est-A)^2;
end
B_est = A_est*X_est;
end
|
github
|
Davonter/openairinterface5g-master
|
f_ofdm_rx.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/f_ofdm_rx.m
| 1,545 |
utf_8
|
ade01596524abbe660fc84064cbb4724
|
%
% PURPOSE : OFDM Receiver
%
% ARGUMENTS :
%
% m_sig_R : received signal with dimension ((d_N_FFT+d_N_CP)*d_N_ofdm) x d_N
% d_N_FFT : total carrier number
% d_N_CP : extented cyclic prefix
% d_N_OFDM : OFDM symbol number per frame
% v_active_rf : active RF antenna indicator
%
% OUTPUTS :
%
% m_sym_R : transmitted signal before IFFT with dimension d_N_f x d_N_ofdm x d_N_ant_act
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "genrandpskseq" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function m_sym_R = f_ofdm_rx(m_sig_R, d_N_FFT, d_N_CP, d_N_OFDM, v_active_rf)
d_N_ant_act = sum(v_active_rf);
m_sig_R_eff = m_sig_R(:,find(v_active_rf));
m_sig_R_f = reshape(m_sig_R_eff,(d_N_FFT+d_N_CP),d_N_OFDM,d_N_ant_act);
%** delete the CP **
m_sig_R_noCP = m_sig_R_f(d_N_CP+1:end,:,:);
%** fft **
m_sym_R_fft = 1/sqrt(d_N_FFT)*fft(m_sig_R_noCP,d_N_FFT,1);
%m_sym_R_fft = fft(m_sig_R_noCP,d_N_FFT,1);
m_sym_R = m_sym_R_fft([2:151 362:512],:,:);
end
|
github
|
Davonter/openairinterface5g-master
|
f_ch_est.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/f_ch_est.m
| 1,711 |
utf_8
|
f583032bb1c37167a7ff2a029a629de9
|
%
% PURPOSE : channel estimation using least square method
%
% ARGUMENTS :
%
% m_sym_T : transmitted symbol, d_N_f x d_N_ofdm x d_N_ant_act x d_N_meas
% m_sym_R : received symbol, d_N_f x d_N_ofdm x d_N_ant_act x d_N_meas
% d_N_meas : number of measurements
%
% OUTPUTS :
%
% m_H_est : estimation of sub-channels, d_N_antR x d_N_antT x d_N_f x d_N_meas
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "runmeas_full_duplex" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function m_H_est = f_ch_est(m_sym_T, m_sym_R)
%% ** initialisation **
[d_N_f,d_N_OFDM,d_N_antT,d_N_meas] = size(m_sym_T);
d_N_antR = size(m_sym_R,3);
m_H_est = zeros(d_N_antR,d_N_antT,d_N_f,d_N_meas);
%% ** estimate the subband channel for each measurement and antenna **
for d_n_meas = 1:d_N_meas
for d_n_f = 1:d_N_f
m_y = reshape(m_sym_R(d_n_f,:,:,d_n_meas),d_N_OFDM,d_N_antR).'; % squeeze: problem for antenna number = 1 case
m_s = reshape(m_sym_T(d_n_f,:,:,d_n_meas),d_N_OFDM,d_N_antT).';
m_H_est(:,:,d_n_f,d_n_meas) = m_y*m_s'/(m_s*m_s'); % LS channel estimation
end
end
end
|
github
|
Davonter/openairinterface5g-master
|
f_ofdm_tx.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/f_ofdm_tx.m
| 1,997 |
utf_8
|
042917cd72b493f1384cbc5fa2fa2de5
|
%
% PURPOSE : OFDM Transmitter
%
% ARGUMENTS :
%
% d_M : modulation order
% d_N_f : carrier number carrying data
% d_N_FFT : total carrier number
% d_N_CP : extented cyclic prefix
% d_N_OFDM : OFDM symbol number per frame
% v_active_rf : active RF antenna indicator
% d_amp : amplitude
%
% OUTPUTS :
%
% m_sym_T : transmitted signal before IFFT with dimension d_N_f x d_N_OFDM x d_N_ant_act
% m_sig_T : OFDM signal with dimension ((d_N_FFT+d_N_CP)*d_N_OFDM) x d_N_ant
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "genrandpskseq" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function [m_sym_T, m_sig_T] = f_ofdm_tx(d_M, d_N_f, d_N_FFT, d_N_CP, d_N_OFDM, v_active_rf, d_amp)
d_N_ant_act = sum(v_active_rf);
%** constellation table **
v_MPSK = exp(sqrt(-1)*([1:d_M]*2*pi/d_M+pi/d_M));
%** transmitted symbol **
%v_state = [1;2;3;4];
%rand("state",v_state);
m_sym_T = v_MPSK(ceil(rand(d_N_f, d_N_OFDM, d_N_ant_act)*d_M));
%** mapping useful data to favorable carriers **
m_sym_T_ext = zeros(d_N_FFT,d_N_OFDM,d_N_ant_act);
m_sym_T_ext(2:151,:,:) = m_sym_T(1:150,:,:);
m_sym_T_ext(362:512,:,:) = m_sym_T(151:301,:,:);
%** ifft **
m_sig_T_ = sqrt(d_N_FFT)*ifft(m_sym_T_ext,d_N_FFT,1);
%** add cyclic prefix **
m_sig_T_ = [m_sig_T_(end-d_N_CP+1:end,:,:); m_sig_T_];
d_L = (d_N_FFT+d_N_CP)*d_N_OFDM;
m_sig_T = floor(reshape(m_sig_T_,d_L,d_N_ant_act)*d_amp);
end
|
github
|
Davonter/openairinterface5g-master
|
f_ofdm_rx.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/v4_CH_EST/f_ofdm_rx.m
| 1,545 |
utf_8
|
798a54f027b266189ab1fdc57569dac1
|
%
% PURPOSE : OFDM Receiver
%
% ARGUMENTS :
%
% m_sig_R : received signal with dimension ((d_N_FFT+d_N_CP)*d_N_ofdm) x d_N
% d_N_FFT : total carrier number
% d_N_CP : extented cyclic prefix
% d_N_OFDM : OFDM symbol number per frame
% v_active_rf : active RF antenna indicator
%
% OUTPUTS :
%
% m_sym_R : transmitted signal before IFFT with dimension d_N_f x d_N_ofdm x d_N_ant_act
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "genrandpskseq" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function m_sym_R = f_ofdm_rx(m_sig_R, d_N_FFT, d_N_CP, d_N_OFDM, v_active_rf)
d_N_ant_act = sum(v_active_rf);
m_sig_R_eff = m_sig_R(:,find(v_active_rf));
m_sig_R_f = reshape(m_sig_R_eff,(d_N_FFT+d_N_CP),d_N_OFDM,d_N_ant_act);
%** delete the CP **
m_sig_R_noCP = m_sig_R_f(d_N_CP+1:end,:,:);
%** fft **
m_sym_R_fft = 1/sqrt(d_N_FFT)*fft(m_sig_R_noCP,d_N_FFT,1);
%m_sym_R_fft = fft(m_sig_R_noCP,d_N_FFT,1);
m_sym_R = m_sym_R_fft([363:512 2:151],:,:);
end
|
github
|
Davonter/openairinterface5g-master
|
f_ch_est.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/v4_CH_EST/f_ch_est.m
| 1,708 |
utf_8
|
ad1741afb57ea0bbc0da1f1f0d410ce6
|
% PURPOSE : channel estimation using least square method
%% ARGUMENTS :
%
% m_sym_T : transmitted symbol, d_N_f x d_N_ofdm x d_N_ant_act x d_N_meas
% m_sym_R : received symbol, d_N_f x d_N_ofdm x d_N_ant_act x d_N_meas
% d_N_meas : number of measurements
%
% OUTPUTS :
%
% m_H_est : estimation of sub-channels, d_N_antR x d_N_antT x d_N_f x d_N_meas
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "runmeas_full_duplex" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function m_H_est = f_ch_est(m_sym_T, m_sym_R)
%% ** initialisation **
[d_N_f,d_N_OFDM,d_N_antT,d_N_meas] = size(m_sym_T);
d_N_antR = size(m_sym_R,3);
m_H_est = zeros(d_N_antR,d_N_antT,d_N_f,d_N_meas);
%% ** estimate the subband channel for each measurement and antenna **
for d_n_meas = 1:d_N_meas
for d_n_f = 1:d_N_f
m_y = reshape(m_sym_R(d_n_f,:,:,d_n_meas),d_N_OFDM,d_N_antR).'; % squeeze: problem for antenna number = 1 case
m_s = reshape(m_sym_T(d_n_f,:,:,d_n_meas),d_N_OFDM,d_N_antT).';
m_H_est(:,:,d_n_f,d_n_meas) = m_y*m_s'/(m_s*m_s'); % LS channel estimation
end
end
end
|
github
|
Davonter/openairinterface5g-master
|
f_ofdm_tx.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/v4_CH_EST/f_ofdm_tx.m
| 1,997 |
utf_8
|
52b00cfe39a99e4f6d079fcc3cdad1f8
|
%
% PURPOSE : OFDM Transmitter
%
% ARGUMENTS :
%
% d_M : modulation order
% d_N_f : carrier number carrying data
% d_N_FFT : total carrier number
% d_N_CP : extented cyclic prefix
% d_N_OFDM : OFDM symbol number per frame
% v_active_rf : active RF antenna indicator
% d_amp : amplitude
%
% OUTPUTS :
%
% m_sym_T : transmitted signal before IFFT with dimension d_N_f x d_N_OFDM x d_N_ant_act
% m_sig_T : OFDM signal with dimension ((d_N_FFT+d_N_CP)*d_N_OFDM) x d_N_ant
%
%**********************************************************************************************
% EURECOM - All rights reserved
%
% AUTHOR : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date Name(s) Version Description
% ----------- ------------- ------- ------------------------------------------------------
% Apr-29-2014 X. JIANG 0.1 creation of code
%
% REFERENCES/NOTES/COMMENTS :
%
% - Based on the function "genrandpskseq" created by Mirsad Cirkic, Florian Kaltenberger.
%
%**********************************************************************************************
function [m_sym_T, m_sig_T] = f_ofdm_tx(d_M, d_N_f, d_N_FFT, d_N_CP, d_N_OFDM, v_active_rf, d_amp)
d_N_ant_act = sum(v_active_rf);
%** constellation table **
v_MPSK = exp(sqrt(-1)*([1:d_M]*2*pi/d_M+pi/d_M));
%** transmitted symbol **
%v_state = [1;2;3;4];
%rand("state",v_state);
m_sym_T = v_MPSK(ceil(rand(d_N_f, d_N_OFDM, d_N_ant_act)*d_M));
%** mapping useful data to favorable carriers **
m_sym_T_ext = zeros(d_N_FFT,d_N_OFDM,d_N_ant_act);
m_sym_T_ext(2:151,:,:) = m_sym_T(151:300,:,:);
m_sym_T_ext(363:512,:,:) = m_sym_T(1:150,:,:);
%** ifft **
m_sig_T_ = sqrt(d_N_FFT)*ifft(m_sym_T_ext,d_N_FFT,1);
%** add cyclic prefix **
m_sig_T_ = [m_sig_T_(end-d_N_CP+1:end,:,:); m_sig_T_];
d_L = (d_N_FFT+d_N_CP)*d_N_OFDM;
m_sig_T = floor(reshape(m_sig_T_,d_L,d_N_ant_act)*d_amp);
end
|
github
|
Davonter/openairinterface5g-master
|
genorthqpskseq.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/v0/genorthqpskseq.m
| 1,143 |
utf_8
|
330b0dc2a723aa7a373d8a0cd01fcabb
|
# % Author: Mirsad Cirkic
# % Organisation: Eurecom (and Linkoping University)
# % E-mail: [email protected]
function [carrierdata, s]=genorthqpskseq(Ns,N,amp)
if(N!=512*150)
error('The sequence length must be 76800.');
endif
s = zeros(N,Ns);
H=1; for k=1:log2(128) H=[H H; H -H]; end; H=H(:,1:120);
i=1; while(i<size(H,1)) h=H(i,:); inds=find(h*H'!=0); H(inds,:)=[]; H=[h; H]; i=i+1; end
Hc=H+sqrt(-1)*H;
if(sum(Hc*Hc'-240*eye(8))>0) error("The code is not orhtogonal\n"); endif
carrierdata=zeros(120,Ns*301);
inds=1:8;
ind=8;
for i=1:301
for k=1:Ns
carrierdata(:,i+(k-1)*301)=Hc(inds(ind),:)';
inds(ind)=[];
ind=ind-1;
if(ind==0)
inds=1:8;
ind=8;
endif
endfor
endfor
for k=1:Ns
frstgroup=(k-1)*301+[1:150]; # The first group of OFDM carriers
sndgroup=(k-1)*301+[151:301]; # The second group of OFDM carriers
for i=0:119
fblock=[0 carrierdata(i+1,frstgroup) zeros(1,210) carrierdata(i+1,sndgroup)];
ifblock=ifft(fblock,512)*sqrt(512);
block = [ifblock(end-127:end) ifblock]; # Cycl. prefix
s([1:640]+i*640,k)=floor(amp*block);
endfor
endfor
endfunction
|
github
|
Davonter/openairinterface5g-master
|
genrandpskseq.m
|
.m
|
openairinterface5g-master/targets/PROJECTS/TDDREC/v0/genrandpskseq.m
| 776 |
utf_8
|
5cb33d8e20311847ffaa652cf70a4865
|
% Author: Mirsad Cirkic
% Organisation: Eurecom (and Linkoping University)
% E-mail: [email protected]
function [carrierdata, s]=genrandpskseq(N,M,amp)
if(mod(N,640)~=0)
error('The sequence length must be divisible with 640.');
end
s = zeros(N,1);
MPSK=exp(sqrt(-1)*([1:M]*2*pi/M+pi/M));
% OFDM sequence with 512 FFT using randomly
% generated 4-QAM and 128 cyclic prefix
carrierdata=zeros(120,301);
for i=0:(N/640-1)
datablock=MPSK(ceil(rand(301,1)*M));
for j=1:301
carrierdata(i+1,j)=datablock(j);
end
fblock=[0 datablock(1:150) zeros(1,210) datablock(151:301)];
ifblock=ifft(fblock,512)*sqrt(512);;
% Adding cycl. prefix making the block of 640 elements
block = [ifblock(end-127:end) ifblock];
s([1:640]+i*640)=floor(amp*block);
end
end
|
github
|
Davonter/openairinterface5g-master
|
rfldec.m
|
.m
|
openairinterface5g-master/targets/ARCH/EXMIMO/USERSPACE/OCTAVE/rfldec.m
| 363 |
utf_8
|
24448e69682b1f6a6ea652c2426b08f7
|
## Decodes rf_local values: [ txi, txq, rxi, rxq ] = rfldec(rflocal)
## Author: Matthias Ihmig <ihmig@solstice>
## Created: 2012-12-05
function [ txi, txq, rxi, rxq ] = rfldec(rflocal)
txi = mod(floor( rflocal /1 ), 64)
txq = mod(floor( rflocal /64), 64)
rxi = mod(floor( rflocal /4096), 64)
rxq = mod(floor( rflocal /262144), 64)
endfunction
|
github
|
Davonter/openairinterface5g-master
|
rfl.m
|
.m
|
openairinterface5g-master/targets/ARCH/EXMIMO/USERSPACE/OCTAVE/rfl.m
| 225 |
utf_8
|
9ad201a94d01db3e65ecedb02252ca19
|
## Composes rf_local values: rfl(txi, txq, rxi, rxq)
## Author: Matthias Ihmig <ihmig@solstice>
## Created: 2012-12-05
function [ ret ] = rfl(txi, txq, rxi, rxq)
ret = txi + txq*2^6 + rxi*2^12 + rxq*2^18;
endfunction
|
github
|
metocean/pysmc-master
|
create_grid_smcbase.m
|
.m
|
pysmc-master/SMCPy/matlab/create_grid_smcbase.m
| 11,589 |
utf_8
|
aa1c3bf7514af29170217dbe658c50c0
|
% THIS IS AN EXAMPLE SCRIPT FOR GENERATING A GRID AND CAN BE USED
% AS A TEMPLATE FOR DESIGNING GRIDS
function []=create_grid_smcbase(id,latmin,latmax,lonmin,lonmax,dlat,dlon,ref_grid,boundary,IS_GLOBAL,LAKE_TOL,out_dir,testmode,fname_poly, shift_userpolys)
% 0. Initialization
% 0.a Path to directories
bin_dir = '/source/gridgen/noaa/bin'; % matlab scripts location
ref_dir = '/source/gridgen/noaa/reference_data'; % reference data location
% out_dir = './out/'; % output directory
% 0.b Design grid parameters
% fname_poly = '/source/gridgen/tests/glob05v5/user_polygons.flag'; % A file with switches for using user
% defined polygons. An example file
% has been provided with the reference
% data for an existing user defined
% polygon database. A switch of 0
% ignores the polygon while 1
% accounts for the polygon.
fname = id; % file name prefix
% Grid Definition
% Gridgen is designed to work with curvilinear and/or rectilinear grids. In
% both cases it expects a 2D array defining the Longititudes (x values) and
% Lattitudes (y values). For curvilinear grids the user will have to use
% alternative software to determine these arrays. For rectilinear grids
% these are determined by the grid domain and desired resolution as shown
% below
% NOTE : In gridgen we always define the longitudes in the 0 to 365 range as the
% boundary polygons have been defined in that range. It is fairly trivial to
% rearrange the grids to -180 to 180 range after they have been generated.
dx = str2num(dlon);
dy = str2num(dlat);
x1 = str2num(lonmin);
x2 = str2num(lonmax);
y1 = str2num(latmin);
y2 = str2num(latmax);
LAKE_TOL = str2num(LAKE_TOL);
IS_GLOBAL = str2num(IS_GLOBAL);
lon1d = [x1:dx:x2];
lat1d = [y1:dy:y2];
[lon,lat] = meshgrid(lon1d,lat1d);
%ref_grid = 'etopo1'; % reference grid source
% % etopo1 = Etopo1 grid
% % etopo2 = Etopo2 grid
%boundary = 'full'; % Option to determine which GSHHS
% % .mat file to load
% % full = full resolution
% % high = 0.2 km
% % inter = 1 lm
% % low = 5 km
% % coarse = 25 km
% 0.c Setting the paths for subroutines
addpath(bin_dir,'-END');
% 0.d Reading Input data
read_boundary = 1; % flag to determine if input boundary
% information needs to be read boundary
% data files can be significantly large
% and needs to be read only the first
% time. So when making multiple grids
% the flag can be set to 0 for subsequent
% grids. (Note : If the workspace is
% cleared the boundary data will have to
% be read again)
opt_poly = 0; % flag for reading the optional user
% defined polygons. Set to 0 if you do
% not wish to use this opt
if (~strcmp(fname_poly, '0') & (fname_poly ~= 0))
opt_poly = 1;
end;
%if (fname_poly ~= 0)
%opt_poly = 1;
%end;
obstr_scale = 100;
depth_scale = 1000;
if (nargin == 14)
shift_userpolys = 0
end;
testmode = str2num(testmode);
if (testmode == 1)
fprintf(1,'.........RUNNING IN TEST MODE..................\n');
fprintf(1,'.........(ignoring coastal polygons)..................\n');
end;
if (read_boundary == 1)
fprintf(1,'.........Reading Boundaries..................\n');
load([ref_dir,'/coastal_bound_',boundary,'.mat']);
N = length(bound);
Nu = 0;
if (opt_poly == 1)
[bound_user,Nu] = optional_bound(ref_dir,fname_poly, shift_userpolys);
end;
if (Nu == 0)
opt_poly = 0;
end;
end;
% 0.d Parameter values used in the software
DRY_VAL = 999999; % Depth value for dry cells (can change as desired)
MSL_LEV = 0.0; % Bathymetry level indicating wet / dry cells
% all bathymetry values below this level are
% considered wet
CUT_OFF = 0.1; % Proportion of base bathymetry cells that need to be
% wet for the target cell to be considered wet.
% NOTE : If you have accurate boundary polygons then it is better to have a low value for
% CUT_OFF which will make the target bathymetry cell wet even when there are only few
% wet cells in the base bathymetry. This will then be cleaned up by the polygons in
% the mask cleanup section. If on the other hand you do not inttend to use the
% polygons to define the coastal domains then you are better off using CUT_OFF = 0.5
LIM_VAL = 0.5; % Fraction of cell that has to be inside a polygon for
% cell to be marked dry;
OFFSET = max([dx dy]); % Additional buffer around the boundary to check if cell
% is crossing boundary. Should be set to largest grid res.
% LAKE_TOL = -1; % See documentation on remove_lake routine for possible
% values.
% IS_GLOBAL = 0; % Set to 1 for global grids
OBSTR_OFFSET = 1; % See documentation for create_obstr for details
% 1. Generate the grid
fprintf(1,'.........Creating Bathymetry..................\n');
depth = generate_grid(lon,lat,ref_dir,ref_grid,CUT_OFF,MSL_LEV,DRY_VAL);
if (testmode == 1)
fprintf(1,'.........Running in test mode, ignoring coastal polygons..................\n');
m = ones(size(depth));
m(depth == DRY_VAL) = 0;
if (opt_poly == 1)
lon_start = min(min(lon))-dx;
lon_end = max(max(lon))+dx;
lat_start = min(min(lat))-dy;
lat_end = max(max(lat))+dy;
coord = [lat_start lon_start lat_end lon_end];
[b_opt,N2] = compute_boundary(coord,bound_user);
if (N2 ~= 0)
fprintf(1,'...Applying user defined polygons..................\n');
m2 = clean_mask(lon,lat,m,b_opt,LIM_VAL,OFFSET);
else
m2 = m;
end;
end;
fprintf(1,'.........Separating Water Bodies..................\n');
fprintf(1,'Lake_tol being passed to remove_lake: %d\n', LAKE_TOL);
[m4,mask_map] = remove_lake(m2,LAKE_TOL,IS_GLOBAL);
sx1 = zeros(size(depth));
sy1 = zeros(size(depth));
write_ww3file([out_dir,'/',fname,'.mask_map_before_user'],m);
write_ww3file([out_dir,'/',fname,'.mask_map'],m2);
write_ww3file([out_dir,'/',fname,'.before_remove_lakes'],m);
write_ww3file([out_dir,'/',fname,'.after_remove_lakes'],m4);
else
% 2. Computing boundaries within the domain
fprintf(1,'.........Computing Boundaries..................\n');
% 2.a Set the domain big enough to include the cells along the edges of the grid
lon_start = min(min(lon))-dx;
lon_end = max(max(lon))+dx;
lat_start = min(min(lat))-dy;
lat_end = max(max(lat))+dy;
% 2.b Extract the boundaries from the GSHHS and the optional databases
% the subset of polygons within the grid domain are stored in b and b_opt
% for GSHHS and user defined polygons respectively
coord = [lat_start lon_start lat_end lon_end];
[b,N1] = compute_boundary(coord,bound);
if (opt_poly == 1)
fprintf(1,'...Applying user defined polygons..................\n');
[b_opt,N2] = compute_boundary(coord,bound_user);
end;
% 3. Set up Land - Sea Mask
% 3.a Set up initial land sea mask. The cells can either all be set to wet
% or to make the code more efficient the cells marked as dry in
% 'generate_grid' can be marked as dry cells
m = ones(size(depth));
m(depth == DRY_VAL) = 0;
% 3.b Split the larger GSHHS polygons for efficient computation of the
% land sea mask. This is an optional step but recomended as it
% significantly speeds up the computational time. Rule of thumb is to
% set the limit for splitting the polygons at least 4-5 times dx,dy
fprintf(1,'.........Splitting Boundaries..................\n');
if isstruct(b)
b_split = split_boundary(b,5*max([dx dy]));
% 3.c Get a better estimate of the land sea mask using the polygon data sets.
% (NOTE : This part will have to be commented out if cells above the
% MSL are being marked as wet, like in inundation studies)
fprintf(1,'.........Cleaning Mask..................\n');
% GSHHS Polygons. If 'split_boundary' routine is not used then replace
% b_split with b
m2 = clean_mask(lon,lat,m,b_split,LIM_VAL,OFFSET);
% Masking out regions defined by optional polygons
if (opt_poly == 1 && N2 ~= 0)
m3 = clean_mask(lon,lat,m2,b_opt,LIM_VAL,OFFSET);
else
m3 = m2;
end;
% 3.d Remove lakes and other minor water bodies
fprintf(1,'.........Separating Water Bodies..................\n');
[m4,mask_map] = remove_lake(m3,LAKE_TOL,IS_GLOBAL);
% 4. Generate sub - grid obstruction sets in x and y direction, based on
% the final land/sea mask and the coastal boundaries
fprintf(1,'.........Creating Obstructions..................\n');
[sx1,sy1] = create_obstr(lon,lat,b,m4,OBSTR_OFFSET,OBSTR_OFFSET);
% 5. Output to ascii files for WAVEWATCH III
else
fprintf(1,'.......No boundaries in domain..............\n');
m4 = m;
sx1 = zeros(size(depth));
sy1 = zeros(size(depth));
end;
end; % testmode check
d = round((depth)*depth_scale);
d1 = round((sx1)*obstr_scale);
d2 = round((sy1)*obstr_scale);
dlon=dx; dlat=dy;
save([out_dir,'/',fname '.mat'], 'dlon', 'dlat', 'lon', 'lat', 'depth', 'm3', 'm4',...
'mask_map', 'sx1', 'sy1');
% 6. Vizualization (this part can be commented out if resources are limited)
%figure(1);
%clf;
%loc = find(m4 == 0);
%d2 = depth;
%d2(loc) = NaN;
%pcolor(lon,lat,d2);
%shading interp;
%colorbar;
%title(['Bathymetry for ',fname],'fontsize',14);
%set(gca,'fontsize',14);
%clear d2;
%figure(2);
%clf;
%d2 = mask_map;
%loc2 = find(mask_map == -1);
%d2(loc2) = NaN;
%pcolor(lon,lat,d2);
%shading flat;
%colorbar;
%title(['Different water bodies for ',fname],'fontsize',14);
%set(gca,'fontsize',14);
%clear d2;
%
%figure(3);
%clf;
%pcolor(lon,lat,m4);
%shading flat;
%colorbar;
%title(['Final Land-Sea Mask ',fname],'fontsize',14);
%set(gca,'fontsize',14);
%figure(4);
%clf;
%d2 = sx1;
%d2(loc) = NaN;
%pcolor(lon,lat,d2);
%shading flat;
%colorbar;
%title(['Sx obstruction for ',fname],'fontsize',14);
%set(gca,'fontsize',14);
%clear d2;
%figure(5);
%clf;
%d2 = sy1;
%d2(loc) = NaN;
%pcolor(lon,lat,d2);
%shading flat;
%colorbar;
%title(['Sy obstruction for ',fname],'fontsize',14);
%set(gca,'fontsize',14);
%clear d2;
exit
end
% END OF SCRIPT
|
github
|
sophont01/fStackIID-master
|
smooth_d.m
|
.m
|
fStackIID-master/utils/smooth_d.m
| 688 |
utf_8
|
f82b36cb85b140dae43358166f5681b9
|
%smooth the depth map to eliminate outliers
function x=smooth_d(im,tmp,mask)
[m n d]=size(im);
depth=reshape(tmp,[],1);
feature=reshape(im,[],d)';
c=20;
lambda=0.02;
row=[1:m*(n-1);m+1:m*n];
[a b]=ndgrid(1:m-1,1:n);
tmp=sub2ind([m n],reshape(a,1,[]),reshape(b,1,[]));
row=[row [tmp;tmp+1]];
value=exp(-c*sum(abs(feature(:,row(1,:))-feature(:,row(2,:)))))+1e-6;
if(exist('mask','var')==1)
mask=reshape(1-double(mask),[],1);
value(find(mask(row(1,:))|mask(row(2,:))))=1e-3;
end
A=sparse(row(1,:),row(2,:),value,m*n,m*n);
A=A+A';
D=spdiags(sum(A,2),0,m*n,m*n);
L=D-A;
M=spdiags(double(depth>=0.00001),0,m*n,m*n);
x=(L+lambda*M)\(lambda*M*depth);
x=reshape(x,m,n);
end
|
github
|
sophont01/fStackIID-master
|
getVectors.m
|
.m
|
fStackIID-master/utils/getVectors.m
| 305 |
utf_8
|
3c948da1c7970d6eaf018498e9d38436
|
%compute the view vector at each pixel
function p=getVectors(m,n,fov)
if(~exist('fov','var'))
fov=60;
end
x=((1:n)-(n+1)/2)/(n/2)*tan(fov/2/180*pi);
y=-((1:m)-(m+1)/2)/(m/2)*tan(fov/2/180*pi)*(m/n);
p=zeros(m,n,3);
for i=1:m
p(i,:,2)=y(i);
end
for i=1:n
p(:,i,1)=x(i);
end
p(:,:,3)=-1;
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.