plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
jacksky64/imageProcessing-master
|
filter_gauss_1D.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/filter_gauss_1D.m
| 1,137 |
utf_8
|
94a453b82dcdeba67bd886e042d552d9
|
% 1D Gaussian filter.
%
% Equivalent to (but faster then):
% f = fspecial('Gaussian',[2*r+1,1],sigma);
% f = filter_gauss_nD( 2*r+1, r+1, sigma^2 );
%
% USAGE
% f = filter_gauss_1D( r, sigma, [show] )
%
% INPUTS
% r - filter size=2r+1, if r=[] -> r=ceil(2.25*sigma)
% sigma - standard deviation of filter
% show - [0] figure to use for optional display
%
% OUTPUTS
% f - 1D Gaussian filter
%
% EXAMPLE
% f1 = filter_gauss_1D( 10, 2, 1 );
% f2 = filter_gauss_nD( 21, [], 2^2, 2);
%
% See also FILTER_BINOMIAL_1D, FILTER_GAUSS_ND, FSPECIAL
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function f = filter_gauss_1D( r, sigma, show )
if( nargin<3 || isempty(show) ); show=0; end
if( isempty(r) ); r = ceil(sigma*2.25); end
if( mod(r,1)~=0 ); error( 'r must be an integer'); end
% compute filter
x = -r:r;
f = exp(-(x.*x)/(2*sigma*sigma))';
f(f<eps*max(f(:))*10) = 0;
sumf = sum(f(:)); if(sumf~=0); f = f/sumf; end
% display
if(show); filter_visualize_1D( f, show ); end
|
github
|
jacksky64/imageProcessing-master
|
clfEcoc.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/clfEcoc.m
| 1,493 |
utf_8
|
e77e1b4fd5469ed39f47dd6ed15f130f
|
function clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets)
% Wrapper for ecoc that makes ecoc compatible with nfoldxval.
%
% Requires the SVM toolbox by Anton Schwaighofer.
%
% USAGE
% clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets)
%
% INPUTS
% p - data dimension
% clfInit - binary classifier init (see nfoldxval)
% clfparams - binary classifier parameters (see nfoldxval)
% nclasses - num of classes (currently 3<=nclasses<=7 suppored)
% use01targets - see ecoc
%
% OUTPUTS
% clf - see ecoc
%
% EXAMPLE
%
% See also ECOC, NFOLDXVAL, CLFECOCCODE
%
% Piotr's Image&Video Toolbox Version 2.0
% Copyright 2008 Piotr Dollar. [pdollar-at-caltech.edu]
% Please email me if you find bugs, or have suggestions or questions!
% Licensed under the Lesser GPL [see external/lgpl.txt]
if( nclasses<3 || nclasses>7 )
error( 'currently only works if 3<=nclasses<=7'); end;
if( nargin<5 || isempty(use01targets)); use01targets=0; end;
% create code (limited for now)
[C,nbits] = clfEcocCode( nclasses );
clf = ecoc(nclasses, nbits, C, use01targets ); % didn't use to pass use01?
clf.verbosity = 0; % don't diplay output
% initialize and temporarily store binary learner
clf.templearner = feval( clfInit, p, clfparams{:} );
% ecoctrain2 is custom version of ecoctrain
clf.funTrain = @clfEcocTrain;
clf.funFwd = @ecocfwd;
function clf = clfEcocTrain( clf, varargin )
clf = ecoctrain( clf, clf.templearner, varargin{:} );
|
github
|
jacksky64/imageProcessing-master
|
getargs.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/getargs.m
| 3,455 |
utf_8
|
de2bab917fa6b9ba3099f1c6b6d68cf0
|
% Utility to process parameter name/value pairs.
%
% DEPRECATED -- ONLY USED BY KMEANS2? SHOULD BE REMOVED.
% USE GETPARAMDEFAULTS INSTEAD.
%
% Based on code fromt Matlab Statistics Toolobox's "private/statgetargs.m"
%
% [EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...)
% accepts a cell array PNAMES of valid parameter names, a cell array DFLTS
% of default values for the parameters named in PNAMES, and additional
% parameter name/value pairs. Returns parameter values A,B,... in the same
% order as the names in PNAMES. Outputs corresponding to entries in PNAMES
% that are not specified in the name/value pairs are set to the
% corresponding value from DFLTS. If nargout is equal to length(PNAMES)+1,
% then unrecognized name/value pairs are an error. If nargout is equal to
% length(PNAMES)+2, then all unrecognized name/value pairs are returned in
% a single cell array following any other outputs.
%
% EMSG is empty if the arguments are valid, or the text of an error message
% if an error occurs. GETARGS does not actually throw any errors, but
% rather returns an error message so that the caller may throw the error.
% Outputs will be partially processed after an error occurs.
%
% USAGE
% [emsg,varargout]=getargs(pnames,dflts,varargin)
%
% INPUTS
% pnames - cell of valid parameter names
% dflts - cell of default parameter values
% varargin - list of proposed name / value pairs
%
% OUTPUTS
% emsg - error msg - '' if no error
% varargout - list of assigned name / value pairs
%
% EXAMPLE
% pnames = {'color' 'linestyle', 'linewidth'}; dflts = { 'r','_','1'};
% v = {'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'};
% [emsg,color,linestyle,linewidth,unrec] = getargs(pnames,dflts,v{:}) % ok
% [emsg,color,linestyle,linewidth] = getargs(pnames,dflts,v{:}) % err
%
% See also GETPARAMDEFAULTS
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function [emsg,varargout]=getargs(pnames,dflts,varargin)
wid = sprintf('Images:%s:obsoleteFunction',mfilename);
warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n It will be ' ...
'removed in the next version of the toolbox.'],upper(mfilename));
% We always create (nparams+1) outputs:
% one for emsg
% nparams varargs for values corresponding to names in pnames
% If they ask for one more (nargout == nparams+2), it's for unrecognized
% names/values
emsg = '';
nparams = length(pnames);
varargout = dflts;
unrecog = {};
nargs = length(varargin);
% Must have name/value pairs
if mod(nargs,2)~=0
emsg = sprintf('Wrong number of arguments.');
else
% Process name/value pairs
for j=1:2:nargs
pname = varargin{j};
if ~ischar(pname)
emsg = sprintf('Parameter name must be text.');
break;
end
i = strmatch(lower(pname),lower(pnames));
if isempty(i)
% if they've asked to get back unrecognized names/values, add this
% one to the list
if nargout > nparams+1
unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}};
% otherwise, it's an error
else
emsg = sprintf('Invalid parameter name: %s.',pname);
break;
end
elseif length(i)>1
emsg = sprintf('Ambiguous parameter name: %s.',pname);
break;
else
varargout{i} = varargin{j+1};
end
end
end
varargout{nparams+1} = unrecog;
|
github
|
jacksky64/imageProcessing-master
|
normxcorrn_fg.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/normxcorrn_fg.m
| 2,699 |
utf_8
|
e65c38d97efb3a624e0fa94a97f75eb6
|
% Normalized n-dimensional cross-correlation with a mask.
%
% Similar to normxcorrn, except takes an additional argument that specifies
% a figure ground mask for the T. That is T_fg must be of the same
% dimensions as T, with each entry being 0 or 1, where zero specifies
% regions to ignore (the ground) and 1 specifies interesting regions (the
% figure). Essentially T_fg specifies regions in T that are interesting
% and should be taken into account when doing normalized cross correlation.
% This allows for templates of arbitrary shape, and not just squares.
%
% Note: this function is approximately 3 times slower then normxcorr2
% because it cannot use the trick of precomputing sums.
%
% USAGE
% C = normxcorrn_fg( T, T_fg, A, [shape] )
%
% INPUTS
% T - template to correlate to each window in A
% T_fg - figure/ground mask for the template
% A - matrix to correlate T to
% shape - ['full'] 'valid', 'full', or 'same', see convn_fast help
%
% OUTPUTS
% C - correlation matrix
%
% EXAMPLE
% A=rand(50); B=rand(11); Bfg=ones(11);
% C1=normxcorrn_fg(B,Bfg,A); C2=normxcorr2(B,A);
% figure(1); im(C1); figure(2); im(C2);
% figure(3); im(abs(C1-C2));
%
% See also NORMXCORRN
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function C = normxcorrn_fg( T, T_fg, A, shape )
if( nargin <4 || isempty(shape)); shape='full'; end;
if( ndims(T)~=ndims(A) || ndims(T)~=ndims(T_fg) )
error('TEMPALTE, T_fg, and A must have same number of dimensions'); end;
if( any(size(T)~=size(T_fg)))
error('TEMPALTE and T_fg must have same dimensions'); end;
if( ~all(T_fg==0 | T_fg==1))
error('T_fg may have only entries either 0 or 1'); end;
nkeep = sum(T_fg(:));
if( nkeep==0); error('T_fg must have some nonzero values'); end;
% center T on 0 and normalize magnitued to 1, excluding ground
% T= (T-T_av) / ||(T-T_av)||
T(T_fg==0)=0;
T = T - sum(T(:)) / nkeep;
T(T_fg==0)=0;
T = T / norm( T(:) );
% flip for convn_fast purposes
for d=1:ndims(T); T = flipdim(T,d); end;
for d=1:ndims(T_fg); T_fg = flipdim(T_fg,d); end;
% get average over each window over A
A_av = convn_fast( A, T_fg/nkeep, shape );
% get magnitude over each window over A "mag(WA-WAav)"
% We can rewrite the above as "sqrt(SUM(WAi^2)-n*WAav^2)". so:
A_mag = convn_fast( A.*A, T_fg, shape ) - nkeep * A_av .* A_av;
A_mag = sqrt(A_mag); A_mag(A_mag<.000001)=1; %removes divide by 0 error
% finally get C. in each image window, we will now do:
% "dot(T,(WA-WAav)) / mag(WA-WAav)"
C = convn_fast(A,T,shape) - A_av*sum(T(:));
C = C ./ A_mag;
|
github
|
jacksky64/imageProcessing-master
|
makemovie.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/makemovie.m
| 1,266 |
utf_8
|
9a03d9a5227c4eaa86520f206ce283e7
|
% [3D] Used to convert a stack of T images into a movie.
%
% To display same data statically use montage.
%
% USAGE
% M = makemovies( IS )
%
% INPUTS
% IS - MxNxT or MxNx1xT or MxNx3xT array of movies.
%
% OUTPUTS
% M - resulting movie
%
% EXAMPLE
% load( 'images.mat' );
% M = makemovie( videos(:,:,:,1) );
% movie( M );
%
% See also MONTAGE2, MAKEMOVIES, PLAYMOVIE, CELL2ARRAY, FEVALARRAYS,
% IMMOVIE, MOVIE2AVI
% Piotr's Image&Video Toolbox Version NEW
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function M = makemovie( IS )
% get images format (if image stack is MxNxT convert to MxNx1xT)
if (ndims(IS)==3); IS = permute(IS, [1,2,4,3] ); end
siz = size(IS); nch = siz(3); nd = ndims(IS);
if ( nd~=4 ); error('unsupported dimension of IS'); end
if( nch~=1 && nch~=3 ); error('illegal image stack format'); end;
% normalize for maximum contrast
if( isa(IS,'double') ); IS = IS - min(IS(:)); IS = IS / max(IS(:)); end
% make movie
for i=1:siz(4)
Ii=IS(:,:,:,i);
if( nch==1 ); [Ii,Mi] = gray2ind( Ii ); else Mi=[]; end
if i==1
M=repmat(im2frame( Ii, Mi ),[1,siz(4)]);
else
M(i) = im2frame( Ii, Mi );
end
end
|
github
|
jacksky64/imageProcessing-master
|
localsum_block.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/localsum_block.m
| 815 |
utf_8
|
1216b03a3bd44ff1fc3256de16a2f1c6
|
% Calculates the sum in non-overlapping blocks of I of size dims.
%
% Similar to localsum except gets sum in non-overlapping windows.
% Equivalent to doing localsum, and then subsampling (except more
% efficient).
%
% USAGE
% I = localsum_block( I, dims )
%
% INPUTS
% I - matrix to compute sum over
% dims - size of volume to compute sum over
%
% OUTPUTS
% I - resulting array
%
% EXAMPLE
% load trees; I=ind2gray(X,map);
% I2 = localsum_block( I, 11 );
% figure(1); im(I); figure(2); im(I2);
%
% See also LOCALSUM
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function I = localsum_block( I, dims )
I = nlfiltblock_sep( I, dims, @rnlfiltblock_sum );
|
github
|
jacksky64/imageProcessing-master
|
imrotate2.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/imrotate2.m
| 1,326 |
utf_8
|
bb2ff6c3138ce5f53154d58d7ebc4f31
|
% Custom version of imrotate that demonstrates use of apply_homography.
%
% Works exactly the same as imrotate. For usage see imrotate.
%
% USAGE
% IR = imrotate2( I, angle, [method], [bbox] )
%
% INPUTS
% I - 2D image [converted to double]
% angle - angle to rotate in degrees
% method - ['linear'] 'nearest', 'linear', 'spline', 'cubic'
% bbox - ['loose'] 'loose' or 'crop'
%
% OUTPUTS
% IR - rotated image
%
% EXAMPLE
% load trees;
% tic; X1 = imrotate( X, 55, 'bicubic' ); toc,
% tic; X2 = imrotate2( X, 55, 'bicubic' ); toc
% clf; subplot(2,2,1); im(X); subplot(2,2,2); im(X1-X2);
% subplot(2,2,3); im(X1); subplot(2,2,4); im(X2);
%
% See also IMROTATE
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function IR = imrotate2( I, angle, method, bbox )
if( ~isa( I, 'double' ) ); I = double(I); end
if( nargin<3 || isempty(method)); method='linear'; end
if( nargin<4 || isempty(bbox) ); bbox='loose'; end
if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end
% convert arguments for apply_homography
angle_rads = angle /180 * pi;
R = rotationMatrix( angle_rads );
H = [R [0;0]; 0 0 1];
IR = apply_homography( I, H, method, bbox );
|
github
|
jacksky64/imageProcessing-master
|
imSubsResize.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/imSubsResize.m
| 1,338 |
utf_8
|
cd7dedf790c015adfb1f2d620e9ed82f
|
% Resizes subs by resizVals.
%
% Resizes subs in subs/vals image representation by resizVals.
%
% This essentially replaces each sub by sub.*resizVals. The only subtlety
% is that in images the leftmost sub value is .5, so for example when
% resizing by a factor of 2, the first pixel is replaced by 2 pixels and so
% location 1 in the original image goes to location 1.5 in the second
% image, NOT 2. It may be necessary to round the values afterward.
%
% USAGE
% subs = imSubsResize( subs, resizVals, [zeroPnt] )
%
% INPUTS
% subs - subscripts of point locations (n x d)
% resizVals - k element vector of shrinking factors
% zeroPnt - [.5] See comment above.
%
% OUTPUTS
% subs - transformed subscripts of point locations (n x d)
%
% EXAMPLE
% subs = imSubsResize( [1 1; 2 2], [2 2] )
%
%
% See also IMSUBSTOARRAY
% Piotr's Image&Video Toolbox Version NEW
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function subs = imSubsResize( subs, resizVals, zeroPnt )
if( nargin<3 || isempty(zeroPnt) ); zeroPnt=.5; end
[n d] = size(subs);
[resizVals,er] = checkNumArgs( resizVals, [1 d], -1, 2 ); error(er);
% transform subs
resizVals = repmat( resizVals, [n, 1] );
subs = (subs - zeroPnt) .* resizVals + zeroPnt;
|
github
|
jacksky64/imageProcessing-master
|
imtranslate.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/imtranslate.m
| 1,183 |
utf_8
|
054727fb31c105414b655c0f938b6ced
|
% Translate an image to subpixel accuracy.
%
% Note that for subplixel accuracy cannot use nearest neighbor interp.
%
% USAGE
% IR = imtranslate( I, dx, dy, [method], [bbox] )
%
% INPUTS
% I - 2D image [converted to double]
% dx - x translation (right)
% dy - y translation (up)
% method - ['linear'] 'nearest', 'linear', 'spline', 'cubic'
% bbox - ['loose'] 'loose' or 'crop'
%
% OUTPUTS
% IR - translated image
%
% EXAMPLE
% load trees;
% XT = imtranslate(X,0,1.5,'bicubic','crop');
% figure(1); im(X,[0 255]); figure(2); im(XT,[0 255]);
%
% See also IMROTATE2
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function IR = imtranslate( I, dx, dy, method, bbox )
if( ~isa( I, 'double' ) ); I = double(I); end
if( nargin<4 || isempty(method)); method='linear'; end
if( nargin<5 || isempty(bbox) ); bbox='loose'; end
if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end
% convert arguments for apply_homography
H = [eye(2) [dy; dx]; 0 0 1];
IR = apply_homography( I, H, method, bbox );
|
github
|
jacksky64/imageProcessing-master
|
randperm2.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/randperm2.m
| 1,398 |
utf_8
|
5007722f3d5f5ba7c0f83f32ef8a3a2c
|
% Returns a random permutation of integers.
%
% randperm2(n) is a random permutation of the integers from 1 to n. For
% example, randperm2(6) might be [2 4 5 6 1 3]. randperm2(n,k) is only
% returns the first k elements of the permuation, so for example
% randperm2(6) might be [2 4]. This is a faster version of randperm.m if
% only need first k<<n elements of the random permutation. Also uses less
% random bits (only k). Note that this is an implementation O(k), versus
% the matlab implementation which is O(nlogn), however, in practice it is
% often slower for k=n because it uses a loop.
%
% USAGE
% p = randperm2( n, k )
%
% INPUTS
% n - permute 1:n
% k - keep only first k outputs
%
% OUTPUTS
% p - k length vector of permutations
%
% EXAMPLE
% randperm2(10,5)
%
% See also RANDPERM
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function p = randperm2( n, k )
wid = sprintf('Images:%s:obsoleteFunction',mfilename);
warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n RANDSAMPLE is its '...
'recommended replacement.'],upper(mfilename));
p = randsample( n, k );
%if (nargin<2); k=n; else k = min(k,n); end
% p = 1:n;
% for i=1:k
% r = i + floor( (n-i+1)*rand );
% t = p(r); p(r) = p(i); p(i) = t;
% end
% p = p(1:k);
|
github
|
jacksky64/imageProcessing-master
|
apply_homography.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/apply_homography.m
| 3,582 |
utf_8
|
9c3ed72d35b1145f41114e6e6135b44f
|
% Applies the homography defined by H on the image I.
%
% Takes the center of the image as the origin, not the top left corner.
% Also, the coordinate system is row/ column format, so H must be also.
%
% The bounding box of the image is set by the BBOX argument, a string that
% can be 'loose' (default) or 'crop'. When BBOX is 'loose', IR includes the
% whole transformed image, which generally is larger than I. When BBOX is
% 'crop' IR is cropped to include only the central portion of the
% transformed image and is the same size as I. Preserves I's type.
%
% USAGE
% IR = apply_homography( I, H, [method], [bbox], [show] )
%
% INPUTS
% I - input black and white image (2D double or unint8 array)
% H - 3x3 nonsingular homography matrix
% method - ['linear'] for interp2 'nearest','linear','spline','cubic'
% bbox - ['loose'] see above for meaning of bbox 'loose','crop')
% show - [0] figure to use for optional display
%
% OUTPUTS
% IR - result of applying H to I.
%
% EXAMPLE
% load trees; I=X;
% R = rotationMatrix( pi/4 ); T = [1; 3]; H = [R T; 0 0 1];
% IR = apply_homography( I, H, [], 'crop', 1 );
%
% See also TEXTURE_MAP, IMROTATE2
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function IR = apply_homography( I, H, method, bbox, show )
if( ndims(I)~=2 ); error('I must a MxN array'); end;
if(any(size(H)~=[3 3])); error('H must be 3 by 3'); end;
if(rank(H)~=3); error('H must be full rank.'); end;
if( nargin<3 || isempty(method)); method='linear'; end;
if( nargin<4 || isempty(bbox)); bbox='loose'; end;
if( nargin<5 || isempty(show)); show=0; end;
classname = class( I );
if(~strcmp(classname,'double')); I = double(I); end
I = padarray(I,[3,3],eps,'both');
siz = size(I);
% set origin to be center of image
rstart = (-siz(1)+1)/2; rend = (siz(1)-1)/2;
cstart = (-siz(2)+1)/2; cend = (siz(2)-1)/2;
% If 'bbox' then get bounds of resulting image. To do this project the
% original points accoring to the homography and see the bounds. Note
% that since a homography maps a quadrilateral to a quadrilateral only
% need to look at where the bounds of the quadrilateral are mapped to.
% If 'same' then simply use the original image bounds.
if (strcmp(bbox,'loose'))
pr = H * [rstart rend rstart rend; cstart cstart cend cend; 1 1 1 1];
row_dest = pr(1,:) ./ pr(3,:); col_dest = pr(2,:) ./ pr(3,:);
minr = floor(min(row_dest(:))); maxr = ceil(max(row_dest(:)));
minc = floor(min(col_dest(:))); maxc = ceil(max(col_dest(:)));
elseif (strcmp(bbox,'crop'))
minr = rstart; maxr = rend;
minc = cstart; maxc = cend;
else
error('illegal value for bbox');
end;
mrows = maxr-minr+1;
ncols = maxc-minc+1;
% apply inverse homography on meshgrid in destination image
[col_dest_grid,row_dest_grid] = meshgrid( minc:maxc, minr:maxr );
pr = inv(H) * [row_dest_grid(:)'; col_dest_grid(:)'; ones(1,mrows*ncols)];
row_sample_locs = pr(1,:) ./ pr(3,:) + (siz(1)+1)/2;
row_sample_locs = reshape(row_sample_locs,mrows,ncols);
col_sample_locs = pr(2,:) ./ pr(3,:) + (siz(2)+1)/2;
col_sample_locs = reshape(col_sample_locs,mrows,ncols);
% now texture map results
IR = interp2( I, col_sample_locs, row_sample_locs, method );
IR(isnan(IR)) = 0;
IR = arraycrop2dims( IR, size(IR)-6 ); %undo extra padding
if(~strcmp(classname,'double')); IR=feval(classname,IR ); end
% optionally show
if ( show)
I = arraycrop2dims( I, size(IR)-2 );
figure(show); clf; im(I);
figure(show+1); clf; im(IR);
end
|
github
|
jacksky64/imageProcessing-master
|
pca_apply.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/pca_apply.m
| 2,427 |
utf_8
|
0831befb6057f8502bc492227455019a
|
% Companion function to pca.
%
% Use pca to retrieve the principal components U and the mean mu from a
% set fo vectors X1 via [U,mu,vars] = pca(X1). Then given a new
% vector x, use y = pca_apply( x, U, mu, vars, k ) to get the first k
% coefficients of x in the space spanned by the columns of U. See pca for
% general information.
%
% This may prove useful:
% siz = size(X); k = 100;
% Uim = reshape( U(:,1:k), [ siz(1:end-1) k ] );
%
% USAGE
% [ Yk, Xhat, avsq, avsqOrig ] = pca_apply( X, U, mu, vars, k )
%
% INPUTS
% X - array for which to get PCA coefficients
% U - [returned by pca] -- see pca
% mu - [returned by pca] -- see pca
% vars - [returned by pca] -- see pca
% k - number of principal coordinates to approximate X with
%
% OUTPUTS
% Yk - first k coordinates of X in column space of U
% Xhat - approximation of X corresponding to Yk
% avsq - measure of squared error normalized to fall between [0,1]
%
% EXAMPLE
%
% See also PCA, PCA_VISUALIZE
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function [Yk,Xhat,avsq,avsqOrig] = pca_apply(X,U,mu,vars,k) %#ok<INUSL>
siz = size(X); nd = ndims(X); [N,r] = size(U);
if(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end
inds = {':'}; inds = inds(:,ones(1,nd-1));
d= prod(siz(1:end-1));
% some error checking
if(d~=N); error('incorrect size for X or U'); end
if(isa(X,'uint8')); X = double(X); end
if( k>r )
warning(['Only ' int2str(r) '<k comp. available.']); %#ok<WNTAG>
k=r;
end
% subtract mean, then flatten X
Xorig = X;
murep = mu( inds{:}, ones(1,siz(end)));
X = X - murep;
X = reshape(X, d, [] );
% Find Yk, the first k coefficients of X in the new basis
k = min( r, k );
Uk = U(:,1:k);
Yk = Uk' * X;
% calculate Xhat - the approx of X using the first k princ components
if( nargout>1 )
Xhat = Uk * Yk;
Xhat = reshape( Xhat, siz );
Xhat = Xhat + murep;
end
% caclulate average value of (Xhat-Xorig).^2 compared to average value
% of X.^2, where X is Xorig without the mean. This is equivalent to
% what fraction of the variance is captured by Xhat.
if( nargout>2 )
avsq = Xhat - Xorig;
avsq = dot(avsq(:),avsq(:));
avsqOrig = dot(X(:),X(:));
if (nargout==3)
avsq = avsq / avsqOrig;
end
end
|
github
|
jacksky64/imageProcessing-master
|
mode2.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/deprecated/mode2.m
| 731 |
utf_8
|
5c9321ef4b610b4f4a2d43902a68838e
|
% Returns the mode of a vector.
%
% Was mode not part of Matlab before?
%
% USAGE
% y = mode2( x )
%
% INPUTS
% x - vector of integers
%
% OUTPUTS
% y - mode
%
% EXAMPLE
% x = randint2( 1, 10, [1 3] )
% mode(x), mode2( x )
%
% See also MODE
% Piotr's Image&Video Toolbox Version 1.5
% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu
% Please email me if you find bugs, or have suggestions or questions!
function y = mode2( x )
wid = sprintf('Images:%s:obsoleteFunction',mfilename);
warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n MODE is its '...
'recommended replacement.'],upper(mfilename));
y = mode( x );
% [b,i,j] = unique(x);
% [ mval, ind ] = max(hist(j,length(b)));
% y = b(ind);
|
github
|
jacksky64/imageProcessing-master
|
savefig.m
|
.m
|
imageProcessing-master/piotr/toolbox/external/other/savefig.m
| 13,459 |
utf_8
|
2b8463f9b01ceb743e440d8fb5755829
|
function savefig(fname, varargin)
% Usage: savefig(filename, fighdl, options)
%
% Saves a pdf, eps, png, jpeg, and/or tiff of the contents of the fighandle's (or current) figure.
% It saves an eps of the figure and the uses Ghostscript to convert to the other formats.
% The result is a cropped, clean picture. There are options for using rgb or cmyk colours,
% or grayscale. You can also choose the resolution.
%
% The advantage of savefig is that there is very little empty space around the figure in the
% resulting files, you can export to more than one format at once, and Ghostscript generates
% trouble-free files.
%
% If you find any errors, please let me know! (peder at axensten dot se)
%
% filename: File name without suffix.
%
% fighdl: (default: gcf) Integer handle to figure.
%
% options: (default: '-r300', '-lossless', '-rgb') You can define your own
% defaults in a global variable savefig_defaults, if you want to, i.e.
% savefig_defaults= {'-r200','-gray'};.
% 'eps': Output in Encapsulated Post Script (no preview yet).
% 'pdf': Output in (Adobe) Portable Document Format.
% 'png': Output in Portable Network Graphics.
% 'jpeg': Output in Joint Photographic Experts Group format.
% 'tiff': Output in Tagged Image File Format (no compression: huge files!).
% '-rgb': Output in rgb colours.
% '-cmyk': Output in cmyk colours (not yet 'png' or 'jpeg' -- '-rgb' is used).
% '-gray': Output in grayscale (not yet 'eps' -- '-rgb' is used).
% '-fonts': Include fonts in eps or pdf. Includes only the subset needed.
% '-lossless': Use lossless compression, works on most formats. same as '-c0', below.
% '-c<float>': Set compression for non-indexed bitmaps in PDFs -
% 0: lossless; 0.1: high quality; 0.5: medium; 1: high compression.
% '-r<integer>': Set resolution.
% '-crop': Removes points and line segments outside the viewing area -- permanently.
% Only use this on figures where many points and/or line segments are outside
% the area zoomed in to. This option will result in smaller vector files (has no
% effect on pixel files).
% '-dbg': Displays gs command line(s).
%
% EXAMPLE:
% savefig('nicefig', 'pdf', 'jpeg', '-cmyk', '-c0.1', '-r250');
% Saves the current figure to nicefig.pdf and nicefig.png, both in cmyk and at 250 dpi,
% with high quality lossy compression.
%
% REQUIREMENT: Ghostscript. Version 8.57 works, probably older versions too, but '-dEPSCrop'
% must be supported. I think version 7.32 or newer is ok.
%
% HISTORY:
% Version 1.0, 2006-04-20.
% Version 1.1, 2006-04-27:
% - No 'epstopdf' stuff anymore! Using '-dEPSCrop' option in gs instead!
% Version 1.2, 2006-05-02:
% - Added a '-dbg' option (see options, above).
% - Now looks for a global variable 'savefig_defaults' (see options, above).
% - More detailed Ghostscript options (user will not really notice).
% - Warns when there is no device for a file-type/color-model combination.
% Version 1.3, 2006-06-06:
% - Added a check to see if there actually is a figure handle.
% - Now works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too).
% - Now compatible with Ghostscript 8.54, released 2006-06-01.
% Version 1.4, 2006-07-20:
% - Added an option '-soft' that enables anti-aliasing on pixel graphics (on by default).
% - Added an option '-hard' that don't do anti-aliasing on pixel graphics.
% Version 1.5, 2006-07-27:
% - Fixed a bug when calling with a figure handle argument.
% Version 1.6, 2006-07-28:
% - Added a crop option, see above.
% Version 1.7, 2007-03-31:
% - Fixed bug: calling print with invalid renderer value '-none'.
% - Removed GhostScript argument '-dUseCIEColor' as it sometimes discoloured things.
% Version 1.8, 2008-01-03:
% - Added MacIntel: 'MACI'.
% - Added 64bit PC (I think, can't test it myself).
% - Added option '-nointerpolate' (use it to prevent blurring of pixelated).
% - Removed '-hard' and '-soft'. Use '-nointerpolate' for '-hard', default for '-soft'.
% - Fixed the gs 8.57 warning on UseCIEColor (it's now set).
% - Added '-gray' for pdf, but gs 8.56 or newer is needed.
% - Added '-gray' and '-cmyk' for eps, but you a fairly recent gs might be needed.
% Version 1.9, 2008-07-27:
% - Added lossless compression, see option '-lossless', above. Works on most formats.
% - Added lossy compression, see options '-c<float>...', above. Works on 'pdf'.
% Thanks to Olly Woodford for idea and implementation!
% - Removed option '-nointerpolate' -- now savefig never interpolates.
% - Fixed a few small bugs and removed some mlint comments.
% Version 2.0, 2008-11-07:
% - Added the possibility to include fonts into eps or pdf.
%
% TO DO: (Need Ghostscript support for these, so don't expect anything soon...)
% - svg output.
% - '-cmyk' for 'jpeg' and 'png'.
% - Preview in 'eps'.
% - Embedded vector fonts, not bitmap, in 'eps'.
%
% Copyright (C) Peder Axensten (peder at axensten dot se), 2006.
% KEYWORDS: eps, pdf, jpg, jpeg, png, tiff, eps2pdf, epstopdf, ghostscript
%
% INSPIRATION: eps2pdf (5782), eps2xxx (6858)
%
% REQUIREMENTS: Works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
op_dbg= false; % Default value.
% Compression
compr= [' -dUseFlateCompression=true -dLZWEncodePages=true -dCompatibilityLevel=1.6' ...
' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false ' ...
' -dColorImageFilter=%s -dGrayImageFilter=%s']; % Compression.
lossless= sprintf (compr, '/FlateEncode', '/FlateEncode');
lossy= sprintf (compr, '/DCTEncode', '/DCTEncode' );
lossy= [lossy ' -c ".setpdfwrite << /ColorImageDict << /QFactor %g ' ...
'/Blend 1 /HSample [%s] /VSample [%s] >> >> setdistillerparams"'];
% Create gs command.
cmdEnd= ' -sDEVICE=%s -sOutputFile="%s"'; % Essential.
epsCmd= '';
epsCmd= [epsCmd ' -dSubsetFonts=true -dNOPLATFONTS']; % Future support?
epsCmd= [epsCmd ' -dUseCIEColor=true -dColorConversionStrategy=/UseDeviceIndependentColor'];
epsCmd= [epsCmd ' -dProcessColorModel=/%s']; % Color conversion.
pdfCmd= [epsCmd ' -dAntiAliasColorImages=false' cmdEnd];
epsCmd= [epsCmd cmdEnd];
% Get file name.
if((nargin < 1) || isempty(fname) || ~ischar(fname)) % Check file name.
error('No file name specified.');
end
[pathstr, namestr] = fileparts(fname);
if(isempty(pathstr)), fname= fullfile(cd, namestr); end
% Get handle.
fighdl= get(0, 'CurrentFigure'); % See gcf. % Get figure handle.
if((nargin >= 2) && (numel(varargin{1}) == 1) && isnumeric(varargin{1}))
fighdl= varargin{1};
varargin= {varargin{2:end}};
end
if(isempty(fighdl)), error('There is no figure to save!?'); end
set(fighdl, 'Units', 'centimeters') % Set paper stuff.
sz= get(fighdl, 'Position');
sz(1:2)= 0;
set(fighdl, 'PaperUnits', 'centimeters', 'PaperSize', sz(3:4), 'PaperPosition', sz);
% Set up the various devices.
% Those commented out are not yet supported by gs (nor by savefig).
% pdf-cmyk works due to the Matlab '-cmyk' export being carried over from eps to pdf.
device.eps.rgb= sprintf(epsCmd, 'DeviceRGB', 'epswrite', [fname '.eps']);
device.jpeg.rgb= sprintf(cmdEnd, 'jpeg', [fname '.jpeg']);
% device.jpeg.cmyk= sprintf(cmdEnd, 'jpegcmyk', [fname '.jpeg']);
device.jpeg.gray= sprintf(cmdEnd, 'jpeggray', [fname '.jpeg']);
device.pdf.rgb= sprintf(pdfCmd, 'DeviceRGB', 'pdfwrite', [fname '.pdf']);
device.pdf.cmyk= sprintf(pdfCmd, 'DeviceCMYK', 'pdfwrite', [fname '.pdf']);
device.pdf.gray= sprintf(pdfCmd, 'DeviceGray', 'pdfwrite', [fname '.pdf']);
device.png.rgb= sprintf(cmdEnd, 'png16m', [fname '.png']);
% device.png.cmyk= sprintf(cmdEnd, 'png???', [fname '.png']);
device.png.gray= sprintf(cmdEnd, 'pnggray', [fname '.png']);
device.tiff.rgb= sprintf(cmdEnd, 'tiff24nc', [fname '.tiff']);
device.tiff.cmyk= sprintf(cmdEnd, 'tiff32nc', [fname '.tiff']);
device.tiff.gray= sprintf(cmdEnd, 'tiffgray', [fname '.tiff']);
% Get options.
global savefig_defaults; % Add global defaults.
if( iscellstr(savefig_defaults)), varargin= {savefig_defaults{:}, varargin{:}};
elseif(ischar(savefig_defaults)), varargin= {savefig_defaults, varargin{:}};
end
varargin= {'-r300', '-lossless', '-rgb', varargin{:}}; % Add defaults.
res= '';
types= {};
fonts= 'false';
crop= false;
for n= 1:length(varargin) % Read options.
if(ischar(varargin{n}))
switch(lower(varargin{n}))
case {'eps','jpeg','pdf','png','tiff'}, types{end+1}= lower(varargin{n});
case '-rgb', color= 'rgb'; deps= {'-depsc2'};
case '-cmyk', color= 'cmyk'; deps= {'-depsc2', '-cmyk'};
case '-gray', color= 'gray'; deps= {'-deps2'};
case '-fonts', fonts= 'true';
case '-lossless', comp= 0;
case '-crop', crop= true;
case '-dbg', op_dbg= true;
otherwise
if(regexp(varargin{n}, '^\-r[0-9]+$')), res= varargin{n};
elseif(regexp(varargin{n}, '^\-c[0-9.]+$')), comp= str2double(varargin{n}(3:end));
else warning('pax:savefig:inputError', 'Unknown option in argument: ''%s''.', varargin{n});
end
end
else
warning('pax:savefig:inputError', 'Wrong type of argument: ''%s''.', class(varargin{n}));
end
end
types= unique(types);
if(isempty(types)), error('No output format given.'); end
if (comp == 0) % Lossless compression
gsCompr= lossless;
elseif (comp <= 0.1) % High quality lossy
gsCompr= sprintf(lossy, comp, '1 1 1 1', '1 1 1 1');
else % Normal lossy
gsCompr= sprintf(lossy, comp, '2 1 1 2', '2 1 1 2');
end
% Generate the gs command.
switch(computer) % Get gs command.
case {'MAC','MACI'}, gs= '/usr/local/bin/gs';
case {'PCWIN'}, gs= 'gswin32c.exe';
case {'PCWIN64'}, gs= 'gswin64c.exe';
otherwise, gs= 'gs';
end
gs= [gs ' -q -dNOPAUSE -dBATCH -dEPSCrop']; % Essential.
gs= [gs ' -dPDFSETTINGS=/prepress -dEmbedAllFonts=' fonts]; % Must be first?
gs= [gs ' -dUseFlateCompression=true']; % Useful stuff.
gs= [gs ' -dAutoRotatePages=/None']; % Probably good.
gs= [gs ' -dHaveTrueTypes']; % Probably good.
gs= [gs ' ' res]; % Add resolution to cmd.
if(crop && ismember(types, {'eps', 'pdf'})) % Crop the figure.
fighdl= do_crop(fighdl);
end
% Output eps from Matlab.
renderer= ['-' lower(get(fighdl, 'Renderer'))]; % Use same as in figure.
if(strcmpi(renderer, '-none')), renderer= '-painters'; end % We need a valid renderer.
deps = [deps '-loose']; % added by PPD seems to help w cropping in matlab 2014b :(
print(fighdl, deps{:}, '-noui', renderer, res, [fname '-temp']); % Output the eps.
% Convert to other formats.
for n= 1:length(types) % Output them.
if(isfield(device.(types{n}), color))
cmd= device.(types{n}).(color); % Colour model exists.
else
cmd= device.(types{n}).rgb; % Use alternative.
if(~strcmp(types{n}, 'eps')) % It works anyways for eps (VERY SHAKY!).
warning('pax:savefig:deviceError', ...
'No device for %s using %s. Using rgb instead.', types{n}, color);
end
end
cmp= lossless;
if (strcmp(types{n}, 'pdf')), cmp= gsCompr; end % Lossy compr only for pdf.
if (strcmp(types{n}, 'eps')), cmp= ''; end % eps can't use lossless.
cmd= sprintf('%s %s %s -f "%s-temp.eps"', gs, cmd, cmp, fname);% Add up.
status= system(cmd); % Run Ghostscript.
if (op_dbg || status), display (cmd), end
end
delete([fname '-temp.eps']); % Clean up.
end
function fig= do_crop(fig)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Remove line segments that are outside the view.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
haxes= findobj(fig, 'Type', 'axes', '-and', 'Tag', '');
for n=1:length(haxes)
xl= get(haxes(n), 'XLim');
yl= get(haxes(n), 'YLim');
lines= findobj(haxes(n), 'Type', 'line');
for m=1:length(lines)
x= get(lines(m), 'XData');
y= get(lines(m), 'YData');
inx= (xl(1) <= x) & (x <= xl(2)); % Within the x borders.
iny= (yl(1) <= y) & (y <= yl(2)); % Within the y borders.
keep= inx & iny; % Within the box.
if(~strcmp(get(lines(m), 'LineStyle'), 'none'))
crossx= ((x(1:end-1) < xl(1)) & (xl(1) < x(2:end))) ... % Crossing border x1.
| ((x(1:end-1) < xl(2)) & (xl(2) < x(2:end))) ... % Crossing border x2.
| ((x(1:end-1) > xl(1)) & (xl(1) > x(2:end))) ... % Crossing border x1.
| ((x(1:end-1) > xl(2)) & (xl(2) > x(2:end))); % Crossing border x2.
crossy= ((y(1:end-1) < yl(1)) & (yl(1) < y(2:end))) ... % Crossing border y1.
| ((y(1:end-1) < yl(2)) & (yl(2) < y(2:end))) ... % Crossing border y2.
| ((y(1:end-1) > yl(1)) & (yl(1) > y(2:end))) ... % Crossing border y1.
| ((y(1:end-1) > yl(2)) & (yl(2) > y(2:end))); % Crossing border y2.
crossp= [( (crossx & iny(1:end-1) & iny(2:end)) ... % Crossing a x border within y limits.
| (crossy & inx(1:end-1) & inx(2:end)) ... % Crossing a y border within x limits.
| crossx & crossy ... % Crossing a x and a y border (corner).
), false ...
];
crossp(2:end)= crossp(2:end) | crossp(1:end-1); % Add line segment's secont end point.
keep= keep | crossp;
end
set(lines(m), 'XData', x(keep))
set(lines(m), 'YData', y(keep))
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
dirSynch.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/dirSynch.m
| 4,570 |
utf_8
|
d288299d31d15f1804183206d0aa0227
|
function dirSynch( root1, root2, showOnly, flag, ignDate )
% Synchronize two directory trees (or show differences between them).
%
% If a file or directory 'name' is found in both tree1 and tree2:
% 1) if 'name' is a file in both the pair is considered the same if they
% have identical size and identical datestamp (or if ignDate=1).
% 2) if 'name' is a directory in both the dirs are searched recursively.
% 3) if 'name' is a dir in root1 and a file in root2 (or vice-versa)
% synchronization cannot proceed (an error is thrown).
% If 'name' is found only in root1 or root2 it's a difference between them.
%
% The parameter flag controls how synchronization occurs:
% flag==0: neither tree1 nor tree2 has preference (newer file is kept)
% flag==1: tree2 is altered to reflect tree1 (tree1 is unchanged)
% flag==2: tree1 is altered to reflect tree2 (tree2 is unchanged)
% Run with showOnly=1 and different values of flag to see its effect.
%
% By default showOnly==1. If showOnly, displays a list of actions that need
% to be performed in order to synchronize the two directory trees, but does
% not actually perform the actions. It is highly recommended to run
% dirSynch first with showOnly=1 before running it with showOnly=0.
%
% USAGE
% dirSynch( root1, root2, [showOnly], [flag], [ignDate] )
%
% INPUTS
% root1 - root directory of tree1
% root2 - root directory of tree2
% showOnly - [1] show but do NOT perform actions
% flag - [0] 0: synchronize; 1: set root2=root1; 2: set root1==root2
% ignDate - [0] if true considers two files same even if have diff dates
%
% OUTPUTS
% dirSynch( 'c:\toolbox', 'c:\toolbox-old', 1 )
%
% EXAMPLE
%
% See also
%
% Piotr's Computer Vision Matlab Toolbox Version 2.10
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if(nargin<3 || isempty(showOnly)), showOnly=1; end;
if(nargin<4 || isempty(flag)), flag=0; end;
if(nargin<5 || isempty(ignDate)), ignDate=0; end;
% get differences between root1/root2 and loop over them
D = dirDiff( root1, root2, ignDate );
roots={root1,root2}; ticId = ticStatus;
for i=1:length(D)
% get action
if( flag==1 )
if( D(i).in1 ), act=1; src1=1; else act=0; src1=2; end
elseif( flag==2 )
if( D(i).in2 ), act=1; src1=2; else act=0; src1=1; end
else
act=1;
if(D(i).in1 && D(i).in2)
if( D(i).new1 ), src1=1; else src1=2; end
else
if( D(i).in1 ), src1=1; else src1=2; end
end
end
src2=mod(src1,2)+1;
% perform action
if( act==1 )
if( showOnly )
disp(['COPY ' int2str(src1) '->' int2str(src2) ': ' D(i).name]);
else
copyfile( [roots{src1} D(i).name], [roots{src2} D(i).name], 'f' );
end;
else
if( showOnly )
disp(['DEL in ' int2str(src1) ': ' D(i).name]);
else
fName = [roots{src1} D(i).name];
if(D(i).isdir), rmdir(fName,'s'); else delete(fName); end
end
end
if(~showOnly), tocStatus( ticId, i/length(D) ); end;
end
end
function D = dirDiff( root1, root2, ignDate )
% get differences from root1 to root2
D1 = dirDiff1( root1, root2, ignDate, '/' );
% get differences from root2 to root1
D2 = dirDiff1( root2, root1, ignDate, '/' );
% remove duplicates (arbitrarily from D2)
D2=D2(~([D2.in1] & [D2.in2]));
% swap 1 and 2 in D2
for i=1:length(D2),
D2(i).in1=0; D2(i).in2=1; D2(i).new1=~D2(i).new1;
end
% merge
D = [D1 D2];
end
function D = dirDiff1( root1, root2, ignDate, subdir )
if(root1(end)~='/'), root1(end+1)='/'; end
if(root2(end)~='/'), root2(end+1)='/'; end
if(subdir(end)~='/'), subdir(end+1)='/'; end
fs1=dir([root1 subdir]); fs2=dir([root2 subdir]);
D=struct('name',0,'isdir',0,'in1',0,'in2',0,'new1',0);
D=repmat(D,[1 length(fs1)]); n=0; names2={fs2.name}; Dsub=[];
for i1=1:length( fs1 )
name=fs1(i1).name; isdir=fs1(i1).isdir;
if( any(strcmp(name,{'.','..'})) ), continue; end;
i2 = find(strcmp(name,names2));
if(~isempty(i2) && isdir)
% cannot handle this condition
if(~fs2(i2).isdir), disp([root1 subdir name]); assert(false); end;
% recurse and record possible differences
Dsub=[Dsub dirDiff1(root1,root2,ignDate,[subdir name])]; %#ok<AGROW>
elseif( ~isempty(i2) && fs1(i1).bytes==fs2(i2).bytes && ...
(ignDate || fs1(i1).datenum==fs2(i2).datenum))
% nothing to do - files are same
continue;
else
% record differences
n=n+1;
D(n).name=[subdir name]; D(n).isdir=isdir;
D(n).in1=1; D(n).in2=~isempty(i2);
D(n).new1 = ~D(n).in2 || (fs1(i1).datenum>fs2(i2).datenum);
end
end
D = [D(1:n) Dsub];
end
|
github
|
jacksky64/imageProcessing-master
|
plotRoc.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/plotRoc.m
| 5,212 |
utf_8
|
008f9c63073c6400c4960e9e213c47e5
|
function [h,miss,stds] = plotRoc( D, varargin )
% Function for display of rocs (receiver operator characteristic curves).
%
% Display roc curves. Consistent usage ensures uniform look for rocs. The
% input D should have n rows, each of which is of the form:
% D = [falsePosRate truePosRate]
% D is generated, for example, by scanning a detection threshold over n
% values from 0 (so first entry is [1 1]) to 1 (so last entry is [0 0]).
% Alternatively D can be a cell vector of rocs, in which case an average
% ROC will be shown with error bars. Plots missRate (which is just 1 minus
% the truePosRate) on the y-axis versus the falsePosRate on the x-axis.
%
% USAGE
% [h,miss,stds] = plotRoc( D, prm )
%
% INPUTS
% D - [nx2] n data points along roc [falsePosRate truePosRate]
% typically ranges from [1 1] to [0 0] (or may be reversed)
% prm - [] param struct
% .color - ['g'] color for curve
% .lineSt - ['-'] linestyle (see LineSpec)
% .lineWd - [4] curve width
% .logx - [0] use logarithmic scale for x-axis
% .logy - [0] use logarithmic scale for y-axis
% .marker - [''] marker type (see LineSpec)
% .mrkrSiz - [12] marker size
% .nMarker - [5] number of markers (regularly spaced) to display
% .lims - [0 1 0 1] axes limits
% .smooth - [0] if T compute lower envelop of roc to smooth staircase
% .fpTarget - [] return miss rates at given fp values (and draw lines)
% .xLbl - ['false positive rate'] label for x-axis
% .yLbl - ['miss rate'] label for y-axis
%
% OUTPUTS
% h - plot handle for use in legend only
% miss - average miss rates at fpTarget reference values
% stds - standard deviation of miss rates at fpTarget reference values
%
% EXAMPLE
% k=2; x=0:.0001:1; data1 = [1-x; (1-x.^k).^(1/k)]';
% k=3; x=0:.0001:1; data2 = [1-x; (1-x.^k).^(1/k)]';
% hs(1)=plotRoc(data1,struct('color','g','marker','s'));
% hs(2)=plotRoc(data2,struct('color','b','lineSt','--'));
% legend( hs, {'roc1','roc2'} ); xlabel('fp'); ylabel('fn');
%
% See also
%
% Piotr's Computer Vision Matlab Toolbox Version 3.02
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
% get params
[color,lineSt,lineWd,logx,logy,marker,mrkrSiz,nMarker,lims,smooth, ...
fpTarget,xLbl,yLbl] = getPrmDflt( varargin, {'color' 'g' 'lineSt' '-' ...
'lineWd' 4 'logx' 0 'logy' 0 'marker' '' 'mrkrSiz' 12 'nMarker' 5 ...
'lims' [] 'smooth' 0 'fpTarget' [] 'xLbl' 'false positive rate' ...
'yLbl' 'miss rate' } );
if( isempty(lims) ); lims=[logx*1e-5 1 logy*1e-5 1]; end
% ensure descending fp rate, change to miss rate, optionally 'nicefy' roc
if(~iscell(D)), D={D}; end; nD=length(D);
for j=1:nD, assert(size(D{j},2)==2); end
for j=1:nD, if(D{j}(1,2)<D{j}(end,2)), D{j}=flipud(D{j}); end; end
for j=1:nD, D{j}(:,2)=1-D{j}(:,2); assert(all(D{j}(:,2)>=0)); end
if(smooth), for j=1:nD, D{j}=smoothRoc(D{j}); end; end
% plot: (1) h for legend only, (2) markers, (3) error bars, (4) roc curves
hold on; axis(lims); xlabel(xLbl); ylabel(yLbl);
prmMrkr = {'MarkerSize',mrkrSiz,'MarkerFaceColor',color};
prmClr={'Color',color}; prmPlot = [prmClr,{'LineWidth',lineWd}];
h = plot( 2, 0, [lineSt marker], prmMrkr{:}, prmPlot{:} ); %(1)
DQ = quantizeRocs( D, nMarker, logx, lims ); DQm=mean(DQ,3);
if(~isempty(marker))
plot(DQm(:,1),DQm(:,2),marker,prmClr{:},prmMrkr{:} ); end %(2)
if(nD>1), DQs=std(DQ,0,3);
errorbar(DQm(:,1),DQm(:,2),DQs(:,2),'.',prmClr{:}); end %(3)
if(nD==1), DQ=D{1}; else DQ=quantizeRocs(D,100,logx,lims); end
DQm = mean(DQ,3); plot( DQm(:,1), DQm(:,2), lineSt, prmPlot{:} ); %(4)
% plot line at given fp rate
m=length(fpTarget); miss=zeros(1,m); stds=miss;
if( m>0 )
assert( min(DQm(:,1))<=min(fpTarget) ); DQs=std(DQ,0,3);
for i=1:m, j=find(DQm(:,1)<=fpTarget(i)); j=j(1);
miss(i)=DQm(j,2); stds(i)=DQs(j,2); end
fp=min(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]);
fp=max(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]);
end
% set log axes
if( logx==1 )
ticks=10.^(-8:8);
set(gca,'XScale','log','XTick',ticks);
end
if( logy==1 )
ticks=[.001 .002 .005 .01 .02 .05 .1 .2 .5 1];
set(gca,'YScale','log','YTick',ticks);
end
if( logx==1 || logy==1 ), grid on;
set(gca,'XMinorGrid','off','XMinorTic','off');
set(gca,'YMinorGrid','off','YMinorTic','off');
end
end
function DQ = quantizeRocs( Ds, nPnts, logx, lims )
% estimate miss rate at each target fp rate
nD=length(Ds); DQ=zeros(nPnts,2,nD);
if(logx==1), fps=logspace(log10(lims(1)),log10(lims(2)),nPnts);
else fps=linspace(lims(1),lims(2),nPnts); end; fps=flipud(fps');
for j=1:nD, D=[Ds{j}; 0 1]; k=1; fp=D(k,1);
for i=1:nPnts
while( k<size(D,1) && fp>=fps(i) ), k=k+1; fp=D(k,1); end
k0=max(k-1,1); fp0=D(k0,1); assert(fp0>=fp);
if(fp0==fp), r=.5; else r=(fps(i)-fp)/(fp0-fp); end
DQ(i,1,j)=fps(i); DQ(i,2,j)=r*D(k0,2)+(1-r)*D(k,2);
end
end
end
function D1 = smoothRoc( D )
D1 = zeros(size(D));
n = size(D,1); cnt=0;
for i=1:n
isAnkle = (i==1) || (i==n);
if( ~isAnkle )
dP=D1(cnt,:); dC=D(i,:); dN=D(i+1,:);
isAnkle = (dC(1)~=dP(1)) && (dC(2)~=dN(2));
end
if(isAnkle); cnt=cnt+1; D1(cnt,:)=D(i,:); end
end
D1=D1(1:cnt,:);
end
|
github
|
jacksky64/imageProcessing-master
|
simpleCache.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/simpleCache.m
| 4,098 |
utf_8
|
92df86b0b7e919c9a26388e598e4d370
|
function varargout = simpleCache( op, cache, varargin )
% A simple cache that can be used to store results of computations.
%
% Can save and retrieve arbitrary values using a vector (includnig char
% vectors) as a key. Especially useful if a function must perform heavy
% computation but is often called with the same inputs (for which it will
% give the same outputs). Note that the current implementation does a
% linear search for the key (a more refined implementation would use a hash
% table), so it is not meant for large scale usage.
%
% To use inside a function, make the cache persistent:
% persistent cache; if( isempty(cache) ) cache=simpleCache('init'); end;
% The following line, when placed inside a function, means the cache will
% stay in memory until the matlab environment changes. For an example
% usage see maskGaussians.
%
% USAGE - 'init': initialize a cache object
% cache = simpleCache('init');
%
% USAGE - 'put': put something in cache. key must be a numeric vector
% cache = simpleCache( 'put', cache, key, val );
%
% USAGE - 'get': retrieve from cache. found==1 if obj was found
% [found,val] = simpleCache( 'get', cache, key );
%
% USAGE - 'remove': free key
% [cache,found] = simpleCache( 'remove', cache, key );
%
% INPUTS
% op - 'init', 'put', 'get', 'remove'
% cache - the cache object being operated on
% varargin - see USAGE above
%
% OUTPUTS
% varargout - see USAGE above
%
% EXAMPLE
% cache = simpleCache('init');
% hellokey=rand(1,3); worldkey=rand(1,11);
% cache = simpleCache( 'put', cache, hellokey, 'hello' );
% cache = simpleCache( 'put', cache, worldkey, 'world' );
% [f,v]=simpleCache( 'get', cache, hellokey ); disp(v);
% [f,v]=simpleCache( 'get', cache, worldkey ); disp(v);
%
% See also PERSISTENT, MASKGAUSSIANS
%
% Piotr's Computer Vision Matlab Toolbox Version 2.61
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
switch op
case 'init' % init a cache
cacheSiz = 8;
cache.freeinds = 1:cacheSiz;
cache.keyns = -ones(1,cacheSiz);
cache.keys = cell(1,cacheSiz);
cache.vals = cell(1,cacheSiz);
varargout = {cache};
case 'put' % a put operation
key=varargin{1}; val=varargin{2};
cache = cacheput( cache, key, val );
varargout = {cache};
case 'get' % a get operation
key=varargin{1};
[ind,val] = cacheget( cache, key );
found = ind>0;
varargout = {found,val};
case 'remove' % a remove operation
key=varargin{1};
[cache,found] = cacheremove( cache, key );
varargout = {cache,found};
otherwise
error('Unknown cache operation: %s',op);
end
end
function cache = cachegrow( cache )
% double cache size
cacheSiz = length( cache.keyns );
if( cacheSiz>64 ) % warn if getting big
warning(['doubling cache size to: ' int2str2(cacheSiz*2)]);%#ok<WNTAG>
end
cache.freeinds = [cache.freeinds (cacheSiz+1):(2*cacheSiz)];
cache.keyns = [cache.keyns -ones(1,cacheSiz)];
cache.keys = [cache.keys cell(1,cacheSiz)];
cache.vals = [cache.vals cell(1,cacheSiz)];
end
function cache = cacheput( cache, key, val )
% put something into the cache
% get location to place
ind = cacheget( cache, key ); % see if already in cache
if( ind==-1 )
if( isempty( cache.freeinds ) )
cache = cachegrow( cache ); %grow cache
end
ind = cache.freeinds(1); % get new cache loc
cache.freeinds = cache.freeinds(2:end);
end
% now simply place in ind
cache.keyns(ind) = length(key);
cache.keys{ind} = key;
cache.vals{ind} = val;
end
function [ind,val] = cacheget( cache, key )
% get cache element, or fail
cacheSiz = length( cache.keyns );
keyn = length( key );
for i=1:cacheSiz
if(keyn==cache.keyns(i) && all(key==cache.keys{i}))
val = cache.vals{i}; ind = i; return; end
end
ind=-1; val=-1;
end
function [cache,found] = cacheremove( cache, key )
% get cache element, or fail
ind = cacheget( cache, key );
found = ind>0;
if( found )
cache.freeinds = [ind cache.freeinds];
cache.keyns(ind) = -1;
cache.keys{ind} = [];
cache.vals{ind} = [];
end
end
|
github
|
jacksky64/imageProcessing-master
|
tpsInterpolate.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/tpsInterpolate.m
| 1,646 |
utf_8
|
d3bd3a26d048f32cfdc17884ccae6d8c
|
function [xsR,ysR] = tpsInterpolate( warp, xs, ys, show )
% Apply warp (obtained by tpsGetWarp) to a set of new points.
%
% USAGE
% [xsR,ysR] = tpsInterpolate( warp, xs, ys, [show] )
%
% INPUTS
% warp - [see tpsGetWarp] bookstein warping parameters
% xs, ys - points to apply warp to
% show - [1] will display results in figure(show)
%
% OUTPUTS
% xsR, ysR - result of warp applied to xs, ys
%
% EXAMPLE
%
% See also TPSGETWARP
%
% Piotr's Computer Vision Matlab Toolbox Version 2.0
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if( nargin<4 || isempty(show)); show = 1; end
wx = warp.wx; affinex = warp.affinex;
wy = warp.wy; affiney = warp.affiney;
xsS = warp.xsS; ysS = warp.ysS;
xsD = warp.xsD; ysD = warp.ysD;
% interpolate points (xs,ys)
xsR = f( wx, affinex, xsS, ysS, xs(:)', ys(:)' );
ysR = f( wy, affiney, xsS, ysS, xs(:)', ys(:)' );
% optionally show points (xsR, ysR)
if( show )
figure(show);
subplot(2,1,1); plot( xs, ys, '.', 'color', [0 0 1] );
hold('on'); plot( xsS, ysS, '+' ); hold('off');
subplot(2,1,2); plot( xsR, ysR, '.' );
hold('on'); plot( xsD, ysD, '+' ); hold('off');
end
function zs = f( w, aff, xsS, ysS, xs, ys )
% find f(x,y) for xs and ys given W and original points
n = size(w,1); ns = size(xs,2);
delXs = xs'*ones(1,n) - ones(ns,1)*xsS;
delYs = ys'*ones(1,n) - ones(ns,1)*ysS;
distSq = (delXs .* delXs + delYs .* delYs);
distSq = distSq + eye(size(distSq)) + eps;
U = distSq .* log( distSq ); U( isnan(U) )=0;
zs = aff(1)*ones(ns,1)+aff(2)*xs'+aff(3)*ys';
zs = zs + sum((U.*(ones(ns,1)*w')),2);
|
github
|
jacksky64/imageProcessing-master
|
checkNumArgs.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/checkNumArgs.m
| 3,796 |
utf_8
|
726c125c7dc994c4989c0e53ad4be747
|
function [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag )
% Helper utility for checking numeric vector arguments.
%
% Runs a number of tests on the numeric array x. Tests to see if x has all
% integer values, all positive values, and so on, depending on the values
% for intFlag and signFlag. Also tests to see if the size of x matches siz
% (unless siz==[]). If x is a scalar, x is converted to a array simply by
% creating a matrix of size siz with x in each entry. This is why the
% function returns x. siz=M is equivalent to siz=[M M]. If x does not
% satisfy some criteria, an error message is returned in er. If x satisfied
% all the criteria er=''. Note that error('') has no effect, so can use:
% [ x, er ] = checkNumArgs( x, ... ); error(er);
% which will throw an error only if something was wrong with x.
%
% USAGE
% [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag )
%
% INPUTS
% x - numeric array
% siz - []: does not test size of x
% - [if not []]: intended size for x
% intFlag - -1: no need for integer x
% 0: error if non integer x
% 1: error if non odd integers
% 2: error if non even integers
% signFlag - -2: entires of x must be strictly negative
% -1: entires of x must be negative
% 0: no contstraints on sign of entries in x
% 1: entires of x must be positive
% 2: entires of x must be strictly positive
%
% OUTPUTS
% x - if x was a scalar it may have been replicated into a matrix
% er - contains error msg if anything was wrong with x
%
% EXAMPLE
% a=1; [a, er]=checkNumArgs( a, [1 3], 2, 0 ); a, error(er)
%
% See also NARGCHK
%
% Piotr's Computer Vision Matlab Toolbox Version 2.0
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
xname = inputname(1); er='';
if( isempty(siz) ); siz = size(x); end;
if( length(siz)==1 ); siz=[siz siz]; end;
% first check that x is numeric
if( ~isnumeric(x) ); er = [xname ' not numeric']; return; end;
% if x is a scalar, simply replicate it.
xorig = x; if( length(x)==1); x = x(ones(siz)); end;
% regardless, must have same number of x as n
if( length(siz)~=ndims(x) || ~all(size(x)==siz) )
er = ['has size = [' num2str(size(x)) '], '];
er = [er 'which is not the required size of [' num2str(siz) ']'];
er = createErrMsg( xname, xorig, er ); return;
end
% check that x are the right type of integers (unless intFlag==-1)
switch intFlag
case 0
if( ~all(mod(x,1)==0))
er = 'must have integer entries';
er = createErrMsg( xname, xorig, er); return;
end;
case 1
if( ~all(mod(x,2)==1))
er = 'must have odd integer entries';
er = createErrMsg( xname, xorig, er); return;
end;
case 2
if( ~all(mod(x,2)==0))
er = 'must have even integer entries';
er = createErrMsg( xname, xorig, er ); return;
end;
end;
% check sign of entries in x (unless signFlag==0)
switch signFlag
case -2
if( ~all(x<0))
er = 'must have strictly negative entries';
er = createErrMsg( xname, xorig, er ); return;
end;
case -1
if( ~all(x<=0))
er = 'must have negative entries';
er = createErrMsg( xname, xorig, er ); return;
end;
case 1
if( ~all(x>=0))
er = 'must have positive entries';
er = createErrMsg( xname, xorig, er ); return;
end;
case 2
if( ~all(x>0))
er = 'must have strictly positive entries';
er = createErrMsg( xname, xorig, er ); return;
end
end
function er = createErrMsg( xname, x, er )
if(numel(x)<10)
er = ['Numeric input argument ' xname '=[' num2str(x) '] ' er '.'];
else
er = ['Numeric input argument ' xname ' ' er '.'];
end
|
github
|
jacksky64/imageProcessing-master
|
fevalDistr.m
|
.m
|
imageProcessing-master/piotr/toolbox/matlab/fevalDistr.m
| 11,227 |
utf_8
|
7e4d5077ef3d7a891b2847cb858a2c6c
|
function [out,res] = fevalDistr( funNm, jobs, varargin )
% Wrapper for embarrassingly parallel function evaluation.
%
% Runs "r=feval(funNm,jobs{i}{:})" for each job in a parallel manner. jobs
% should be a cell array of length nJob and each job should be a cell array
% of parameters to pass to funNm. funNm must be a function in the path and
% must return a single value (which may be a dummy value if funNm writes
% results to disk). Different forms of parallelization are supported
% depending on the hardware and Matlab toolboxes available. The type of
% parallelization is determined by the parameter 'type' described below.
%
% type='LOCAL': jobs are executed using a simple "for" loop. This implies
% no parallelization and is the default fallback option.
%
% type='PARFOR': jobs are executed using a "parfor" loop. This option is
% only available if the Matlab *Parallel Computing Toolbox* is installed.
% Make sure to setup Matlab workers first using "matlabpool open".
%
% type='DISTR': jobs are executed on the Caltech cluster. Distributed
% queuing system must be installed separately. Currently this option is
% only supported on the Caltech cluster but could easily be installed on
% any Linux cluster as it requires only SSH and a shared filesystem.
% Parameter pLaunch is used for controller('launchQueue',pLaunch{:}) and
% determines cluster machines used (e.g. pLaunch={48,401:408}).
%
% type='COMPILED': jobs are executed locally in parallel by first compiling
% an executable and then running it in background. This option requires the
% *Matlab Compiler* to be installed (but does NOT require the Parallel
% Computing Toolbox). Compiling can take 1-10 minutes, so use this option
% only for large jobs. (On Linux alter startup.m by calling addpath() only
% if ~isdeployed, otherwise will get error about "CTF" after compiling).
% Note that relative paths will not work after compiling so all paths used
% by funNm must be absolute paths.
%
% type='WINHPC': jobs are executed on a Windows HPC Server 2008 cluster.
% Similar to type='COMPILED', except after compiling, the executable is
% queued to the HPC cluster where all computation occurs. This option
% likewise requires the *Matlab Compiler*. Paths to data, etc., must be
% absolute paths and available from HPC cluster. Parameter pLaunch must
% have two fields 'scheduler' and 'shareDir' that define the HPC Server.
% Extra parameters in pLaunch add finer control, see fedWinhpc for details.
% For example, at MSR one possible cluster is defined by scheduler =
% 'MSR-L25-DEV21' and shareDir = '\\msr-arrays\scratch\msr-pool\L25-dev21'.
% Note call to 'job submit' from Matlab will hang unless pwd is saved
% (simply call 'job submit' from cmd prompt and enter pwd).
%
% USAGE
% [out,res] = fevalDistr( funNm, jobs, [varargin] )
%
% INPUTS
% funNm - name of function that will process jobs
% jobs - [1xnJob] cell array of parameters for each job
% varargin - additional params (struct or name/value pairs)
% .type - ['local'], 'parfor', 'distr', 'compiled', 'winhpc'
% .pLaunch - [] extra params for type='distr' or type='winhpc'
% .group - [1] send jobs in batches (only relevant if type='distr')
%
% OUTPUTS
% out - 1 if jobs completed successfully
% res - [1xnJob] cell array containing results of each job
%
% EXAMPLE
% % Note: in this case parallel versions are slower since conv2 is so fast
% n=16; jobs=cell(1,n); for i=1:n, jobs{i}={rand(500),ones(25)}; end
% tic, [out,J1] = fevalDistr('conv2',jobs,'type','local'); toc,
% tic, [out,J2] = fevalDistr('conv2',jobs,'type','parfor'); toc,
% tic, [out,J3] = fevalDistr('conv2',jobs,'type','compiled'); toc
% [isequal(J1,J2), isequal(J1,J3)], figure(1); montage2(cell2array(J1))
%
% See also matlabpool mcc
%
% Piotr's Computer Vision Matlab Toolbox Version 3.26
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
dfs={'type','local','pLaunch',[],'group',1};
[type,pLaunch,group]=getPrmDflt(varargin,dfs,1); store=(nargout==2);
if(isempty(jobs)), res=cell(1,0); out=1; return; end
switch lower(type)
case 'local', [out,res]=fedLocal(funNm,jobs,store);
case 'parfor', [out,res]=fedParfor(funNm,jobs,store);
case 'distr', [out,res]=fedDistr(funNm,jobs,pLaunch,group,store);
case 'compiled', [out,res]=fedCompiled(funNm,jobs,store);
case 'winhpc', [out,res]=fedWinhpc(funNm,jobs,pLaunch,store);
otherwise, error('unkown type: ''%s''',type);
end
end
function [out,res] = fedLocal( funNm, jobs, store )
% Run jobs locally using for loop.
nJob=length(jobs); res=cell(1,nJob); out=1;
tid=ticStatus('collecting jobs');
for i=1:nJob, r=feval(funNm,jobs{i}{:});
if(store), res{i}=r; end; tocStatus(tid,i/nJob); end
end
function [out,res] = fedParfor( funNm, jobs, store )
% Run jobs locally using parfor loop.
nJob=length(jobs); res=cell(1,nJob); out=1;
parfor i=1:nJob, r=feval(funNm,jobs{i}{:});
if(store), res{i}=r; end; end
end
function [out,res] = fedDistr( funNm, jobs, pLaunch, group, store )
% Run jobs using Linux queuing system.
if(~exist('controller.m','file'))
msg='distributed queuing not installed, switching to type=''local''.';
warning(msg); [out,res]=fedLocal(funNm,jobs,store); return; %#ok<WNTAG>
end
nJob=length(jobs); res=cell(1,nJob); controller('launchQueue',pLaunch{:});
if( group>1 )
nJobGrp=ceil(nJob/group); jobsGrp=cell(1,nJobGrp); k=0;
for i=1:nJobGrp, k1=min(nJob,k+group);
jobsGrp{i}={funNm,jobs(k+1:k1),'type','local'}; k=k1; end
nJob=nJobGrp; jobs=jobsGrp; funNm='fevalDistr';
end
jids=controller('jobsAdd',nJob,funNm,jobs); k=0;
fprintf('Sent %i jobs...\n',nJob); tid=ticStatus('collecting jobs');
while( 1 )
jids1=controller('jobProbe',jids);
if(isempty(jids1)), pause(.1); continue; end
jid=jids1(1); [r,err]=controller('jobRecv',jid);
if(~isempty(err)), disp('ABORTING'); out=0; break; end
k=k+1; if(store), res{jid==jids}=r; end
tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end
end; controller('closeQueue');
end
function [out,res] = fedCompiled( funNm, jobs, store )
% Run jobs locally in background in parallel using compiled code.
nJob=length(jobs); res=cell(1,nJob); tDir=jobSetup('.',funNm,'',{});
cmd=[tDir 'fevalDistrDisk ' funNm ' ' tDir ' ']; i=0; k=0;
Q=feature('numCores'); q=0; tid=ticStatus('collecting jobs');
while( 1 )
% launch jobs until queue is full (q==Q) or all jobs launched (i==nJob)
while(q<Q && i<nJob), q=q+1; i=i+1; jobSave(tDir,jobs{i},i);
if(ispc), system2(['start /B /min ' cmd int2str2(i,10)],0);
else system2([cmd int2str2(i,10) ' &'],0); end
end
% collect completed jobs (k1 of them), release queue slots
done=jobFileIds(tDir,'done'); k1=length(done); k=k+k1; q=q-k1;
for i1=done, res{i1}=jobLoad(tDir,i1,store); end
pause(1); tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end
end
for i=1:10, try rmdir(tDir,'s'); break; catch,pause(1),end; end %#ok<CTCH>
end
function [out,res] = fedWinhpc( funNm, jobs, pLaunch, store )
% Run jobs using Windows HPC Server.
nJob=length(jobs); res=cell(1,nJob);
dfs={'shareDir','REQ','scheduler','REQ','executable','fevalDistrDisk',...
'mccOptions',{},'coresPerTask',1,'minCores',1024,'priority',2000};
p = getPrmDflt(pLaunch,dfs,1);
tDir = jobSetup(p.shareDir,funNm,p.executable,p.mccOptions);
for i=1:nJob, jobSave(tDir,jobs{i},i); end
hpcSubmit(funNm,1:nJob,tDir,p); k=0;
ticId=ticStatus('collecting jobs');
while( 1 )
done=jobFileIds(tDir,'done'); k=k+length(done);
for i1=done, res{i1}=jobLoad(tDir,i1,store); end
pause(5); tocStatus(ticId,k/nJob); if(k==nJob), out=1; break; end
end
for i=1:10, try rmdir(tDir,'s'); break; catch,pause(5),end; end %#ok<CTCH>
end
function tids = hpcSubmit( funNm, ids, tDir, pLaunch )
% Helper: send jobs w given ids to HPC cluster.
n=length(ids); tids=cell(1,n); if(n==0), return; end;
scheduler=[' /scheduler:' pLaunch.scheduler ' '];
m=system2(['cluscfg view' scheduler],0);
minCores=(hpcParse(m,'total number of nodes',1) - ...
hpcParse(m,'Unreachable nodes',1) - 1)*8;
minCores=min([minCores pLaunch.minCores n*pLaunch.coresPerTask]);
m=system2(['job new /numcores:' int2str(minCores) '-*' scheduler ...
'/priority:' int2str(pLaunch.priority)],1);
jid=hpcParse(m,'created job, id',0);
s=min(ids); e=max(ids); p=n>1 && isequal(ids,s:e);
if(p), jid1=[jid '.1']; else jid1=jid; end
for i=1:n, tids{i}=[jid1 '.' int2str(i)]; end
cmd0=''; if(p), cmd0=['/parametric:' int2str(s) '-' int2str(e)]; end
cmd=@(id) ['job add ' jid scheduler '/workdir:' tDir ' /numcores:' ...
int2str(pLaunch.coresPerTask) ' ' cmd0 ' /stdout:stdout' id ...
'.txt ' pLaunch.executable ' ' funNm ' ' tDir ' ' id];
if(p), ids1='*'; n=1; else ids1=int2str2(ids); end
if(n==1), ids1={ids1}; end; for i=1:n, system2(cmd(ids1{i}),1); end
system2(['job submit /id:' jid scheduler],1); disp(repmat(' ',1,80));
end
function v = hpcParse( msg, key, tonum )
% Helper: extract val corresponding to key in hpc msg.
t=regexp(msg,': |\n','split'); t=strtrim(t(1:floor(length(t)/2)*2));
keys=t(1:2:end); vals=t(2:2:end); j=find(strcmpi(key,keys));
if(isempty(j)), error('key ''%s'' not found in:\n %s',key,msg); end
v=vals{j}; if(tonum==0), return; elseif(isempty(v)), v=0; return; end
if(tonum==1), v=str2double(v); return; end
v=regexp(v,' ','split'); v=str2double(regexp(v{1},':','split'));
if(numel(v)==4), v(5)=0; end; v=((v(1)*24+v(2))*60+v(3))*60+v(4)+v(5)/1000;
end
function tDir = jobSetup( rtDir, funNm, executable, mccOptions )
% Helper: prepare by setting up temporary dir and compiling funNm
t=clock; t=mod(t(end),1); t=round((t+rand)/2*1e15);
tDir=[rtDir filesep sprintf('fevalDistr-%015i',t) filesep]; mkdir(tDir);
if(~isempty(executable) && exist(executable,'file'))
fprintf('Reusing compiled executable...\n'); copyfile(executable,tDir);
else
t=clock; fprintf('Compiling (this may take a while)...\n');
[~,f,e]=fileparts(executable); if(isempty(f)), f='fevalDistrDisk'; end
mcc('-m','fevalDistrDisk','-d',tDir,'-o',f,'-a',funNm,mccOptions{:});
t=etime(clock,t); fprintf('Compile complete (%.1f seconds).\n',t);
if(~isempty(executable)), copyfile([tDir filesep f e],executable); end
end
end
function ids = jobFileIds( tDir, type )
% Helper: get list of job files ids on disk of given type
fs=dir([tDir '*-' type '*']); fs={fs.name}; n=length(fs);
ids=zeros(1,n); for i=1:n, ids(i)=str2double(fs{i}(1:10)); end
end
function jobSave( tDir, job, ind ) %#ok<INUSL>
% Helper: save job to temporary file for use with fevalDistrDisk()
save([tDir int2str2(ind,10) '-in'],'job');
end
function r = jobLoad( tDir, ind, store )
% Helper: load job and delete temporary files from fevalDistrDisk()
f=[tDir int2str2(ind,10)];
if(store), r=load([f '-out']); r=r.r; else r=[]; end
fs={[f '-done'],[f '-in.mat'],[f '-out.mat']};
delete(fs{:}); pause(.1);
for i=1:3, k=0; while(exist(fs{i},'file')==2) %#ok<ALIGN>
warning('Waiting to delete %s.',fs{i}); %#ok<WNTAG>
delete(fs{i}); pause(5); k=k+1; if(k>12), break; end;
end; end
end
function msg = system2( cmd, show )
% Helper: wraps system() call
if(show), disp(cmd); end
[status,msg]=system(cmd); msg=msg(1:end-1);
if(status), error(msg); end
if(show), disp(msg); end
end
|
github
|
jacksky64/imageProcessing-master
|
medfilt1m.m
|
.m
|
imageProcessing-master/piotr/toolbox/filters/medfilt1m.m
| 2,998 |
utf_8
|
a3733d27c60efefd57ada9d83ccbaa3d
|
function y = medfilt1m( x, r, z )
% One-dimensional adaptive median filtering with missing values.
%
% Applies a width s=2*r+1 one-dimensional median filter to vector x, which
% may contain missing values (elements equal to z). If x contains no
% missing values, y(j) is set to the median of x(j-r:j+r). If x contains
% missing values, y(j) is set to the median of x(j-R:j+R), where R is the
% smallest radius such that sum(valid(x(j-R:j+R)))>=s, i.e. the number of
% valid values in the window is at least s (a value x is valid x~=z). Note
% that the radius R is adaptive and can vary as a function of j.
%
% This function uses a modified version of medfilt1.m from Matlab's 'Signal
% Processing Toolbox'. Note that if x contains no missing values,
% medfilt1m(x) and medfilt1(x) are identical execpt at boundary regions.
%
% USAGE
% y = medfilt1m( x, r, [z] )
%
% INPUTS
% x - [nx1] length n vector with possible missing entries
% r - filter radius
% z - [NaN] element that represents missing entries
%
% OUTPUTS
% y - [nx1] filtered vector x
%
% EXAMPLE
% x=repmat((1:4)',1,5)'; x=x(:)'; x0=x;
% n=length(x); x(rand(n,1)>.8)=NaN;
% y = medfilt1m(x,2); [x0; x; y; x0-y]
%
% See also MODEFILT1, MEDFILT1
%
% Piotr's Computer Vision Matlab Toolbox Version 2.35
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
% apply medfilt1 (standard median filter) to valid locations in x
if(nargin<3 || isempty(z)), z=NaN; end; x=x(:)'; n=length(x);
if(isnan(z)), valid=~isnan(x); else valid=x~=z; end; v=sum(valid);
if(v==0), y=repmat(z,1,n); return; end
if(v<2*r+1), y=repmat(median(x(valid)),1,n); return; end
y=medfilt1(x(valid),2*r+1);
% get radius R needed at each location j to span s=2r+1 valid values
% get start (a) and end (b) locations and map back to location in y
C=[0 cumsum(valid)]; s=2*r+1; R=find(C==s); R=R(1)-2; pos=zeros(1,n);
for j=1:n, R0=R;
R=R0-1; a=max(1,j-R); b=min(n,j+R);
if(C(b+1)-C(a)<s), R=R0; a=max(1,j-R); b=min(n,j+R);
if(C(b+1)-C(a)<s), R=R0+1; a=max(1,j-R); b=min(n,j+R); end
end
pos(j)=(C(b+1)+C(a+1))/2;
end
y=y(floor(pos));
end
function y = medfilt1( x, s )
% standard median filter (copied from medfilt1.m)
n=length(x); r=floor(s/2); indr=(0:s-1)'; indc=1:n;
ind=indc(ones(1,s),1:n)+indr(:,ones(1,n));
x0=x(ones(r,1))*0; X=[x0'; x'; x0'];
X=reshape(X(ind),s,n); y=median(X,1);
end
% function y = medfilt1( x, s )
% % standard median filter (slow)
% % get unique values in x
% [vals,disc,inds]=unique(x); m=length(vals); n=length(x);
% if(m>256), warning('x takes on large number of diff vals'); end %#ok<WNTAG>
% % create quantized representation [H(i,j)==1 iff x(j)==vals(i)]
% H=zeros(m,n); H(sub2ind2([m,n],[inds; 1:n]'))=1;
% % create histogram [H(i,j) is count of x(j-r:j+r)==vals(i)]
% H=localSum(H,[0 s],'same');
% % compute median for each j and map inds back to original vals
% [disc,inds]=max(cumsum(H,1)>s/2,[],1); y=vals(inds);
% end
|
github
|
jacksky64/imageProcessing-master
|
FbMake.m
|
.m
|
imageProcessing-master/piotr/toolbox/filters/FbMake.m
| 6,692 |
utf_8
|
b625c1461a61485af27e490333350b4b
|
function FB = FbMake( dim, flag, show )
% Various 1D/2D/3D filterbanks (hardcoded).
%
% USAGE
% FB = FbMake( dim, flag, [show] )
%
% INPUTS
% dim - dimension
% flag - controls type of filterbank to create
% - if d==1
% 1: gabor filter bank for spatiotemporal stuff
% - if d==2
% 1: filter bank from Serge Belongie
% 2: 1st/2nd order DooG filters. Similar to Gabor filterbank.
% 3: similar to Laptev&Lindberg ICPR04
% 4: decent seperable steerable? filterbank
% 5: berkeley filterbank for textons papers
% 6: symmetric DOOG filters
% - if d==3
% 1: decent seperable steerable filterbank
% show - [0] figure to use for optional display
%
% OUTPUTS
%
% EXAMPLE
% FB = FbMake( 2, 1, 1 );
%
% See also FBAPPLY2D
%
% Piotr's Computer Vision Matlab Toolbox Version 2.0
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if( nargin<3 || isempty(show) ); show=0; end
% create FB
switch dim
case 1
FB = FbMake1D( flag );
case 2
FB = FbMake2D( flag );
case 3
FB = FbMake3d( flag );
otherwise
error( 'dim must be 1 2 or 3');
end
% display
FbVisualize( FB, show );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function FB = FbMake1D( flag )
switch flag
case 1 %%% gabor filter bank for spatiotemporal stuff
omegas = 1 ./ [3 4 5 7.5 11];
sigmas = [3 4 5 7.5 11];
FB = FbMakegabor1D( 15, sigmas, omegas );
otherwise
error('none created.');
end
function FB = FbMakegabor1D( r, sigmas, omegas )
for i=1:length(omegas)
[feven,fodd]=filterGabor1d(r,sigmas(i),omegas(i));
if( i==1 ); FB=repmat(feven,[2*length(omegas) 1]); end
FB(i*2-1,:)=feven; FB(i*2,:)=fodd;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function FB = FbMake2D( flag )
switch flag
case 1 %%% filter bank from Berkeley / Serge Belongie
r=15;
FB = FbMakegabor( r, 6, 3, 3, sqrt(2) );
FB2 = FbMakeDOG( r, .6, 2.8, 4);
FB = cat(3, FB, FB2);
%FB = FB(:,:,1:2:36); %include only even symmetric filters
%FB = FB(:,:,2:2:36); %include only odd symmetric filters
case 2 %%% 1st/2nd order DooG filters. Similar to Gabor filterbank.
FB = FbMakeDooG( 15, 6, 3, 5, .5) ;
case 3 %%% similar to Laptev&Lindberg ICPR04
% Wierd filterbank of Gaussian derivatives at various scales
% Higher order filters probably not useful.
r = 9; dims=[2*r+1 2*r+1];
sigs = [.5 1 1.5 3]; % sigs = [1,1.5,2];
derivs = [];
%derivs = [ derivs; 0 0 ]; % 0th order
%derivs = [ derivs; 1 0; 0 1 ]; % first order
%derivs = [ derivs; 2 0; 0 2; 1 1 ]; % 2nd order
%derivs = [ derivs; 3 0; 0 3; 1 2; 2 1 ]; % 3rd order
%derivs = [ derivs; 4 0; 0 4; 1 3; 3 1; 2 2 ]; % 4th order
derivs = [ derivs; 0 1; 0 2; 0 3; 0 4; 0 5]; % 0n order
derivs = [ derivs; 1 0; 2 0; 3 0; 4 0; 5 0]; % n0 order
cnt=1; nderivs = size(derivs,1);
for s=1:length(sigs)
for i=1:nderivs
dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 );
if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end
FB(:,:,cnt) = dG; cnt=cnt+1;
%dG = filterDoog( dims, [sigs(s)*3 sigs(s)], derivs(i,:), 0 );
%FB(:,:,cnt) = dG; cnt=cnt+1;
%dG = filterDoog( dims, [sigs(s) sigs(s)*3], derivs(i,:), 0 );
%FB(:,:,cnt) = dG; cnt=cnt+1;
end
end
case 4 % decent seperable steerable? filterbank
r = 9; dims=[2*r+1 2*r+1];
sigs = [.5 1.5 3];
derivs = [1 0; 0 1; 2 0; 0 2];
cnt=1; nderivs = size(derivs,1);
for s=1:length(sigs)
for i=1:nderivs
dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 );
if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end
FB(:,:,cnt) = dG; cnt=cnt+1;
end
end
FB2 = FbMakeDOG( r, .6, 2.8, 4);
FB = cat(3, FB, FB2);
case 5 %%% berkeley filterbank for textons papers
FB = FbMakegabor( 7, 6, 1, 2, 2 );
case 6 %%% symmetric DOOG filters
FB = FbMakeDooGSym( 4, 2, [.5 1] );
otherwise
error('none created.');
end
function FB = FbMakegabor( r, nOrient, nScales, lambda, sigma )
% multi-scale even/odd gabor filters. Adapted from code by Serge Belongie.
cnt=1;
for m=1:nScales
for n=1:nOrient
[F1,F2]=filterGabor2d(r,sigma^m,lambda,180*(n-1)/nOrient);
if(m==1 && n==1); FB=repmat(F1,[1 1 nScales*nOrient*2]); end
FB(:,:,cnt)=F1; cnt=cnt+1; FB(:,:,cnt)=F2; cnt=cnt+1;
end
end
function FB = FbMakeDooGSym( r, nOrient, sigs )
% Adds symmetric DooG filters. These are similar to gabor filters.
cnt=1; dims=[2*r+1 2*r+1];
for s=1:length(sigs)
Fodd = -filterDoog( dims, [sigs(s) sigs(s)], [1 0], 0 );
Feven = filterDoog( dims, [sigs(s) sigs(s)], [2 0], 0 );
if(s==1); FB=repmat(Fodd,[1 1 length(sigs)*nOrient*2]); end
for n=1:nOrient
theta = 180*(n-1)/nOrient;
FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1;
FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1;
end
end
function FB = FbMakeDooG( r, nOrient, nScales, lambda, sigma )
% 1st/2nd order DooG filters. Similar to Gabor filterbank.
% Defaults: nOrient=6, nScales=3, lambda=5, sigma=.5,
cnt=1; dims=[2*r+1 2*r+1];
for m=1:nScales
sigma = sigma * m^.7;
Fodd = -filterDoog( dims, [sigma lambda*sigma^.6], [1,0], 0 );
Feven = filterDoog( dims, [sigma lambda*sigma^.6], [2,0], 0 );
if(m==1); FB=repmat(Fodd,[1 1 nScales*nOrient*2]); end
for n=1:nOrient
theta = 180*(n-1)/nOrient;
FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1;
FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1;
end
end
function FB = FbMakeDOG( r, sigmaStr, sigmaEnd, n )
% adds a serires of difference of Gaussian filters.
sigs = sigmaStr:(sigmaEnd-sigmaStr)/(n-1):sigmaEnd;
for s=1:length(sigs)
FB(:,:,s) = filterDog2d(r,sigs(s),2); %#ok<AGROW>
if( s==1 ); FB=repmat(FB,[1 1 length(sigs)]); end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function FB = FbMake3d( flag )
switch flag
case 1 % decent seperable steerable filterbank
r = 25; dims=[2*r+1 2*r+1 2*r+1];
sigs = [.5 1.5 3];
derivs = [0 0 1; 0 1 0; 1 0 0; 0 0 2; 0 2 0; 2 0 0];
cnt=1; nderivs = size(derivs,1);
for s=1:length(sigs)
for i=1:nderivs
dG = filterDoog( dims, repmat(sigs(s),[1 3]), derivs(i,:), 0 );
if(s==1 && i==1); FB=repmat(dG,[1 1 1 nderivs*length(sigs)]); end
FB(:,:,:,cnt) = dG; cnt=cnt+1;
end
end
otherwise
error('none created.');
end
|
github
|
jacksky64/imageProcessing-master
|
mhd_read_volume.m
|
.m
|
imageProcessing-master/matlab_elastix/code/mhd_read_volume.m
| 2,646 |
utf_8
|
b4ec0a486a54b723e63226bfcf7494a9
|
function V = mhd_read_volume(info)
% Function for reading the volume of a Insight Meta-Image (.mhd, .mhd) file
%
% volume = tk_read_volume(file-header)
%
% examples:
% 1: info = mhd_read_header()
% V = mhd_read_volume(info);
% imshow(squeeze(V(:,:,round(end/2))),[]);
%
% 2: V = mhd_read_volume('test.mhd');
if(~isstruct(info)), info=mhd_read_header(info); end
switch(lower(info.DataFile))
case 'local'
otherwise
% Seperate file
info.Filename=fullfile(fileparts(info.Filename),info.DataFile);
end
% Open file
switch(info.ByteOrder(1))
case ('true')
fid=fopen(info.Filename','rb','ieee-be');
otherwise
fid=fopen(info.Filename','rb','ieee-le');
end
switch(lower(info.DataFile))
case 'local'
% Skip header
fseek(fid,info.HeaderSize,'bof');
otherwise
fseek(fid,0,'bof');
end
datasize=prod(info.Dimensions)*info.BitDepth/8;
switch(info.CompressedData(1))
case 'f'
% Read the Data
switch(info.DataType)
case 'char'
V = int8(fread(fid,datasize,'char'));
case 'uchar'
V = uint8(fread(fid,datasize,'uchar'));
case 'short'
V = int16(fread(fid,datasize,'short'));
case 'ushort'
V = uint16(fread(fid,datasize,'ushort'));
case 'int'
V = int32(fread(fid,datasize,'int'));
case 'uint'
V = uint32(fread(fid,datasize,'uint'));
case 'float'
V = single(fread(fid,datasize,'float'));
case 'double'
V = double(fread(fid,datasize,'double'));
end
case 't'
switch(info.DataType)
case 'char', DataType='int8';
case 'uchar', DataType='uint8';
case 'short', DataType='int16';
case 'ushort', DataType='uint16';
case 'int', DataType='int32';
case 'uint', DataType='uint32';
case 'float', DataType='single';
case 'double', DataType='double';
end
Z = fread(fid,inf,'uchar=>uint8');
V = zlib_decompress(Z,DataType);
end
fclose(fid);
V = reshape(V,info.Dimensions);
function M = zlib_decompress(Z,DataType)
import com.mathworks.mlwidgets.io.InterruptibleStreamCopier
a=java.io.ByteArrayInputStream(Z);
b=java.util.zip.InflaterInputStream(a);
isc = InterruptibleStreamCopier.getInterruptibleStreamCopier;
c = java.io.ByteArrayOutputStream;
isc.copyStream(b,c);
M=typecast(c.toByteArray,DataType);
|
github
|
jacksky64/imageProcessing-master
|
example_invert.m
|
.m
|
imageProcessing-master/matlab_elastix/MelastiX_examples/invert_transform/example_invert.m
| 1,976 |
utf_8
|
27a15a8293fb85504bed3384cfc4886b
|
function example_invert
% This example shows how to invert a transform.
% We load a fixed image and a distorted version of it, the moving image.
% Landmarks are defined in the moving image space and overlaid on the moving image.
% The goal is to overlay these points on the fixed image.
% Achieving this goal requires calculating the inverse transform.
%
% This approach is useful in scenarios where you have a single reference
% image and multiple sample images that you want to register to the one
% reference image. If these sample images are associated with landmarks,
% you can overlay the landmarks from the different sample images into a common
% reference space.
help(mfilename)
fprintf('\nStep One:\nLoad images and points.\n')
tmpDir = fullfile(tempdir,'dog_registration');
params = {'params_0.txt','params_1.txt'};
fixed = imread('../transformix/uma.tiff');
moving = imread('../transformix/uma_distorted.tiff');
pointsInMovingSpace = csvread('points_on_deformed_dog.csv'); %read sparse points
clf
subplot(2,2,1)
showImage(fixed,'Fixed image')
subplot(2,2,2)
showImage(moving,'Moving image with sparse points')
hold on
plot(pointsInMovingSpace(:,1),pointsInMovingSpace(:,2),'g.')
hold off
drawnow
fprintf('\nStep Two:\nRegistering moving image to fixed image with elastix...\n')
elastix(moving,fixed,tmpDir,params)
registered_dog = mhd_read(fullfile(tmpDir,'result.1.mhd'));
subplot(2,2,3)
showImage(registered_dog,'Registered moving image')
drawnow
fprintf('\nStep Three:\nInverting the transform...\n')
inverted = invertElastixTransform(tmpDir);
fprintf('\nStep Four:\nUsing transformix to apply inverted transform to sparse points in moving space...\n')
subplot(2,2,4)
showImage(fixed,'Fixed image with inverse transformed points')
drawnow
REG=transformix(pointsInMovingSpace,inverted);
hold on
plot(REG.OutputPoint(:,1),REG.OutputPoint(:,2),'g.')
hold off
function showImage(im,thisTitle)
imagesc(im)
axis equal off
title(thisTitle)
|
github
|
jacksky64/imageProcessing-master
|
RUN_ALL.m
|
.m
|
imageProcessing-master/matlab_elastix/MelastiX_examples/elastix/RUN_ALL.m
| 277 |
utf_8
|
c80336424b937464c219ad82e07d73a3
|
function RUN_ALL
str = ' ====> PRESS RETURN <==== ';
example_2D_affine_nSpatialSamples
disp(str), pause
example_2D_affine_alpha
disp(str), pause
example_2D_warping
disp(str), pause
example_2D_affineThenWarping
disp(str), pause
example_2D_affineThenWarping_withParams
|
github
|
jacksky64/imageProcessing-master
|
example_2D_affine_alpha.m
|
.m
|
imageProcessing-master/matlab_elastix/MelastiX_examples/elastix/example_2D_affine_alpha.m
| 1,253 |
utf_8
|
afae938a8945690eabab520f6723dd18
|
function varargout=example_2D_affine_alpha
% Shows the effect of changing alpha given a fixed number of spatial samples
% and iterations. Here we choose relatively low
% numbers for the iterations and spatial samples. Affine-transformed moving image.
fprintf('\n=====================\nRunning %s\n\n',mfilename)
help(mfilename)
%Load the data
load lena
%Plot original data
clf
colormap gray
subplot(2,3,1)
imagesc(lena), axis off equal
title('Original')
%apply an affine transform
tform = affine2d([1 0 0; .35 1 0; 0 0 1]);
lenaTrans=imwarp(lena,tform);
subplot(2,3,2)
imagesc(lenaTrans), axis off
title('Transformed')
drawnow
p.Transform='AffineTransform';
p.MaximumNumberOfIterations=400;
p.NumberOfSpatialSamples=300;
alphas=[0.2, 0.3, 0.4, 0.6];
ind=3;
for thisAlpha=alphas
p.SP_alpha=thisAlpha;
runExampleLena(lenaTrans,lena,p,ind)
ind=ind+1;
end
function runExampleLena(lenaTrans,lena,p,ind)
tic
fprintf('\nStarting registration\n')
paramsReporter(p)
reg=elastix(lenaTrans,lena,[],'elastix_default.yml','paramstruct',p);
fprintf('Finished registration in %d seconds\n', round(toc))
subplot(2,3,ind)
imagesc(reg), axis off equal
title(sprintf('CORRECTED: alpha=%0.1f',p.SP_alpha))
set(gca,'Clim',[0,255])
drawnow
|
github
|
jacksky64/imageProcessing-master
|
example_2D_affine_nSpatialSamples.m
|
.m
|
imageProcessing-master/matlab_elastix/MelastiX_examples/elastix/example_2D_affine_nSpatialSamples.m
| 1,279 |
utf_8
|
40b6d6511fa402790a963e20194ee275
|
function example_2D_affine_nSpatialSamples
% Shows the effect of changing the number of spatial samples with a
% fixed number of iterations. Uses the suggested value for alpha.
% Here we choose relatively low numbers for the iterations and spatial
% samples. Affine-transformed moving image.
help(mfilename)
%Load the data
load lena
%Plot original data
clf
colormap gray
subplot(2,3,1)
imagesc(lena), axis off equal
title('Original')
%apply an affine transform
tform = affine2d([1 0 0; .35 1 0; 0 0 1]);
lenaTrans=imwarp(lena,tform);
subplot(2,3,2)
imagesc(lenaTrans), axis off
title('Transformed')
drawnow
p.Transform='AffineTransform';
p.MaximumNumberOfIterations=1.5E3;
p.SP_alpha=0.6; %The recomended value
nSamples=[50,100,200,500];
ind=3;
for theseNSamples=nSamples
p.NumberOfSpatialSamples=theseNSamples;
runExampleLena(lenaTrans,lena,p,ind)
ind=ind+1;
end
function runExampleLena(lenaTrans,lena,p,ind)
tic
fprintf('\nStarting registration\n')
paramsReporter(p)
reg=elastix(lenaTrans,lena,[],'elastix_default.yml','paramstruct',p);
fprintf('Finished registration in %d seconds\n', round(toc))
subplot(2,3,ind)
imagesc(reg), axis off equal
title(sprintf('CORRECTED: %d samples',p.NumberOfSpatialSamples))
drawnow
set(gca,'Clim',[0,255])
|
github
|
jacksky64/imageProcessing-master
|
RUN_ALL.m
|
.m
|
imageProcessing-master/matlab_elastix/MelastiX_examples/transformix/RUN_ALL.m
| 261 |
utf_8
|
5bac13dff3aba8815f16fb5c849b0332
|
function RUN_ALL
applyLenaTransform2Dog
disp('PRESS RETURN')
pause
%Note: the parameter files are slightly different here so you don't get quite the same image back
applyLenaTransform2Dog_withParams
disp('PRESS RETURN')
pause
transformSparsePoints_forward
|
github
|
jacksky64/imageProcessing-master
|
wfb2rec.m
|
.m
|
imageProcessing-master/contourlet_toolbox/wfb2rec.m
| 1,419 |
utf_8
|
a8eb98892d022925b472758e34d4640d
|
function x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g)
% WFB2REC 2-D Wavelet Filter Bank Decomposition
%
% x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g)
%
% Input:
% x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands
% h, g: lowpass analysis and synthesis wavelet filters
%
% Output:
% x: reconstructed image
% Make sure filter in a row vector
h = h(:)';
g = g(:)';
g0 = g;
len_g0 = length(g0);
ext_g0 = floor((len_g0 - 1) / 2);
% Highpass synthesis filter: G1(z) = -z H0(-z)
len_g1 = length(h);
c = floor((len_g1 + 1) / 2);
g1 = (-1) * h .* (-1) .^ ([1:len_g1] - c);
ext_g1 = len_g1 - (c + 1);
% Get the output image size
[height, width] = size(x_LL);
x_B = zeros(height * 2, width);
x_B(1:2:end, :) = x_LL;
% Column-wise filtering
x_L = rowfiltering(x_B', g0, ext_g0)';
x_B(1:2:end, :) = x_LH;
x_L = x_L + rowfiltering(x_B', g1, ext_g1)';
x_B(1:2:end, :) = x_HL;
x_H = rowfiltering(x_B', g0, ext_g0)';
x_B(1:2:end, :) = x_HH;
x_H = x_H + rowfiltering(x_B', g1, ext_g1)';
% Row-wise filtering
x_B = zeros(2*height, 2*width);
x_B(:, 1:2:end) = x_L;
x = rowfiltering(x_B, g0, ext_g0);
x_B(:, 1:2:end) = x_H;
x = x + rowfiltering(x_B, g1, ext_g1);
% Internal function: Row-wise filtering with border handling
function y = rowfiltering(x, f, ext1)
ext2 = length(f) - ext1 - 1;
x = [x(:, end-ext1+1:end) x x(:, 1:ext2)];
y = conv2(x, f, 'valid');
|
github
|
jacksky64/imageProcessing-master
|
wfb2dec.m
|
.m
|
imageProcessing-master/contourlet_toolbox/wfb2dec.m
| 1,359 |
utf_8
|
cf0a7abcc9abae631039550460b07a48
|
function [x_LL, x_LH, x_HL, x_HH] = wfb2dec(x, h, g)
% WFB2DEC 2-D Wavelet Filter Bank Decomposition
%
% y = wfb2dec(x, h, g)
%
% Input:
% x: input image
% h, g: lowpass analysis and synthesis wavelet filters
%
% Output:
% x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands
% Make sure filter in a row vector
h = h(:)';
g = g(:)';
h0 = h;
len_h0 = length(h0);
ext_h0 = floor(len_h0 / 2);
% Highpass analysis filter: H1(z) = -z^(-1) G0(-z)
len_h1 = length(g);
c = floor((len_h1 + 1) / 2);
% Shift the center of the filter by 1 if its length is even.
if mod(len_h1, 2) == 0
c = c + 1;
end
h1 = - g .* (-1).^([1:len_h1] - c);
ext_h1 = len_h1 - c + 1;
% Row-wise filtering
x_L = rowfiltering(x, h0, ext_h0);
x_L = x_L(:, 1:2:end);
x_H = rowfiltering(x, h1, ext_h1);
x_H = x_H(:, 1:2:end);
% Column-wise filtering
x_LL = rowfiltering(x_L', h0, ext_h0)';
x_LL = x_LL(1:2:end, :);
x_LH = rowfiltering(x_L', h1, ext_h1)';
x_LH = x_LH(1:2:end, :);
x_HL = rowfiltering(x_H', h0, ext_h0)';
x_HL = x_HL(1:2:end, :);
x_HH = rowfiltering(x_H', h1, ext_h1)';
x_HH = x_HH(1:2:end, :);
% Internal function: Row-wise filtering with border handling
function y = rowfiltering(x, f, ext1)
ext2 = length(f) - ext1 - 1;
x = [x(:, end-ext1+1:end) x x(:, 1:ext2)];
y = conv2(x, f, 'valid');
|
github
|
jacksky64/imageProcessing-master
|
extend2.m
|
.m
|
imageProcessing-master/contourlet_toolbox/extend2.m
| 1,861 |
utf_8
|
40bc6d67909280efd214bb2536a4a46f
|
function y = extend2(x, ru, rd, cl, cr, extmod)
% EXTEND2 2D extension
%
% y = extend2(x, ru, rd, cl, cr, extmod)
%
% Input:
% x: input image
% ru, rd: amount of extension, up and down, for rows
% cl, cr: amount of extension, left and rigth, for column
% extmod: extension mode. The valid modes are:
% 'per': periodized extension (both direction)
% 'qper_row': quincunx periodized extension in row
% 'qper_col': quincunx periodized extension in column
%
% Output:
% y: extended image
%
% Note:
% Extension modes 'qper_row' and 'qper_col' are used multilevel
% quincunx filter banks, assuming the original image is periodic in
% both directions. For example:
% [y0, y1] = fbdec(x, h0, h1, 'q', '1r', 'per');
% [y00, y01] = fbdec(y0, h0, h1, 'q', '2c', 'qper_col');
% [y10, y11] = fbdec(y1, h0, h1, 'q', '2c', 'qper_col');
%
% See also: FBDEC
[rx, cx] = size(x);
switch extmod
case 'per'
I = getPerIndices(rx, ru, rd);
y = x(I, :);
I = getPerIndices(cx, cl, cr);
y = y(:, I);
case 'qper_row'
rx2 = round(rx / 2);
y = [[x(rx2+1:rx, cx-cl+1:cx); x(1:rx2, cx-cl+1:cx)], x, ...
[x(rx2+1:rx, 1:cr); x(1:rx2, 1:cr)]];
I = getPerIndices(rx, ru, rd);
y = y(I, :);
case 'qper_col'
cx2 = round(cx / 2);
y = [x(rx-ru+1:rx, cx2+1:cx), x(rx-ru+1:rx, 1:cx2); x; ...
x(1:rd, cx2+1:cx), x(1:rd, 1:cx2)];
I = getPerIndices(cx, cl, cr);
y = y(:, I);
otherwise
error('Invalid input for EXTMOD')
end
%----------------------------------------------------------------------------%
% Internal Function(s)
%----------------------------------------------------------------------------%
function I = getPerIndices(lx, lb, le)
I = [lx-lb+1:lx , 1:lx , 1:le];
if (lx < lb) | (lx < le)
I = mod(I, lx);
I(I==0) = lx;
end
|
github
|
jacksky64/imageProcessing-master
|
phantom3dAniso.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Test_data/Shepp_logan/phantom3dAniso.m
| 9,551 |
utf_8
|
036a548fce8cb3deec7807cf87f39f45
|
function [p,ellipse]=phantom3dAniso(varargin)
%PHANTOM3D Three-dimensional analogue of MATLAB Shepp-Logan phantom
% P = PHANTOM3D(DEF,N) generates a 3D head phantom that can
% be used to test 3-D reconstruction algorithms.
%
% DEF is a string that specifies the type of head phantom to generate.
% Valid values are:
%
% 'Shepp-Logan' A test image used widely by researchers in
% tomography
% 'Modified Shepp-Logan' (default) A variant of the Shepp-Logan phantom
% in which the contrast is improved for better
% visual perception.
% 'yu-ye-wang' Another version of the modified Shepp-Logan
% phantom from "Katsevich-Type Algorithms for
% Variable Radius Spiral Cone-BeamCT"
%
% N specifies the 3D grid size of P
% If N is a scalar, P will have isotropic size [N, N, N]
% If N is a 3-vector, P will have size [N(1) N(2) N(3)]
% If you omit the argument, N defaults to [64 64 64].
%
% P = PHANTOM3D(E,N) generates a user-defined phantom, where each row
% of the matrix E specifies an ellipsoid in the image. E has ten columns,
% with each column containing a different parameter for the ellipsoids:
%
% Column 1: A the additive intensity value of the ellipsoid
% Column 2: a the length of the x semi-axis of the ellipsoid
% Column 3: b the length of the y semi-axis of the ellipsoid
% Column 4: c the length of the z semi-axis of the ellipsoid
% Column 5: x0 the x-coordinate of the center of the ellipsoid
% Column 6: y0 the y-coordinate of the center of the ellipsoid
% Column 7: z0 the z-coordinate of the center of the ellipsoid
% Column 8: phi phi Euler angle (in degrees) (rotation about z-axis)
% Column 9: theta theta Euler angle (in degrees) (rotation about x-axis)
% Column 10: psi psi Euler angle (in degrees) (rotation about z-axis)
%
% For purposes of generating the phantom, the domains for the x-, y-, and
% z-axes span [-1,1]. Columns 2 through 7 must be specified in terms
% of this range.
%
% [P,E] = PHANTOM3D(...) returns the matrix E used to generate the phantom.
%
% Class Support
% -------------
% All inputs must be of class double. All outputs are of class double.
%
% Remarks
% -------
% For any given voxel in the output image, the voxel's value is equal to the
% sum of the additive intensity values of all ellipsoids that the voxel is a
% part of. If a voxel is not part of any ellipsoid, its value is 0.
%
% The additive intensity value A for an ellipsoid can be positive or negative;
% if it is negative, the ellipsoid will be darker than the surrounding pixels.
% Note that, depending on the values of A, some voxels may have values outside
% the range [0,1].
%
% Example
% -------
% ph = phantom3d(128);
% figure, imshow(squeeze(ph(64,:,:)))
%
% Copyright 2005 Matthias Christian Schabel (matthias @ stanfordalumni . org)
% University of Utah Department of Radiology
% Utah Center for Advanced Imaging Research
% 729 Arapeen Drive
% Salt Lake City, UT 84108-1218
%
% This code is released under the Gnu Public License (GPL). For more information,
% see : http://www.gnu.org/copyleft/gpl.html
%
% Portions of this code are based on phantom.m, copyrighted by the Mathworks
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Modification May 25, 2015, by Patrick J. Bolan, University of Minnesota
% Added support for anisotropic phantom sizes: the phantom size can now be
% a vector.
%
[ellipse,n] = parse_inputs(varargin{:});
nx = n(1); ny = n(2); nz = n(3);
p = zeros([nx ny nz]);
rngx = ( (0:nx-1)-(nx-1)/2 ) / ((nx-1)/2);
rngy = ( (0:ny-1)-(ny-1)/2 ) / ((ny-1)/2);
rngz = ( (0:nz-1)-(nz-1)/2 ) / ((nz-1)/2);
% PJB: Note the swap of the x and y with meshgrid parameters.
%[x,y,z] = meshgrid(rngx,rngy,rngz);
[x,y,z] = meshgrid(rngy,rngx,rngz);
coord = [flatten(x); flatten(y); flatten(z)];
p = flatten(p);
for k = 1:size(ellipse,1)
A = ellipse(k,1); % Amplitude change for this ellipsoid
asq = ellipse(k,2)^2; % a^2
bsq = ellipse(k,3)^2; % b^2
csq = ellipse(k,4)^2; % c^2
x0 = ellipse(k,5); % x offset
y0 = ellipse(k,6); % y offset
z0 = ellipse(k,7); % z offset
phi = ellipse(k,8)*pi/180; % first Euler angle in radians
theta = ellipse(k,9)*pi/180; % second Euler angle in radians
psi = ellipse(k,10)*pi/180; % third Euler angle in radians
cphi = cos(phi);
sphi = sin(phi);
ctheta = cos(theta);
stheta = sin(theta);
cpsi = cos(psi);
spsi = sin(psi);
% Euler rotation matrix
alpha = [cpsi*cphi-ctheta*sphi*spsi cpsi*sphi+ctheta*cphi*spsi spsi*stheta;
-spsi*cphi-ctheta*sphi*cpsi -spsi*sphi+ctheta*cphi*cpsi cpsi*stheta;
stheta*sphi -stheta*cphi ctheta];
% rotated ellipsoid coordinates
coordp = alpha*coord;
idx = find((coordp(1,:)-x0).^2./asq + (coordp(2,:)-y0).^2./bsq + (coordp(3,:)-z0).^2./csq <= 1);
p(idx) = p(idx) + A;
end
%p = reshape(p,[nx ny nz]);
p = reshape(p, [nx ny nz]);
return;
function out = flatten(in)
out = reshape(in,[1 numel(in)]);
return;
function [e,n] = parse_inputs(varargin)
% e is the m-by-10 array which defines ellipsoids
% n is a 3-vector with the size of the phantom brain image, [nx ny nz]
n = [64 64 64]; % The default size
e = [];
defaults = {'shepp-logan', 'modified shepp-logan', 'yu-ye-wang'};
for i=1:nargin
if ischar(varargin{i}) % Look for a default phantom
def = varargin{i};
idx = strcmpi(def, defaults);
if isempty(idx)
eid = sprintf('Images:%s:unknownPhantom',mfilename);
msg = 'Unknown default phantom selected.';
error(eid,'%s',msg);
end
switch defaults{idx}
case 'shepp-logan'
e = shepp_logan;
case 'modified shepp-logan'
e = modified_shepp_logan;
case 'yu-ye-wang'
e = yu_ye_wang;
end
elseif numel(varargin{i})==1
n = [varargin{i} varargin{i} varargin{i}]; % a scalar is the image size
elseif numel(varargin{i})==3
siz = varargin{i};
n = [siz(1) siz(2) siz(3)]; % 3 integers specify image dimensions
elseif ndims(varargin{i})==2 && size(varargin{i},2)==10
e = varargin{i}; % user specified phantom
else
eid = sprintf('Images:%s:invalidInputArgs',mfilename);
msg = 'Invalid input arguments.';
error(eid,'%s',msg);
end
end
% ellipse is not yet defined
if isempty(e)
e = modified_shepp_logan;
end
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default head phantoms: %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function e = shepp_logan
e = modified_shepp_logan;
e(:,1) = [1 -.98 -.02 -.02 .01 .01 .01 .01 .01 .01];
return;
function e = modified_shepp_logan
%
% This head phantom is the same as the Shepp-Logan except
% the intensities are changed to yield higher contrast in
% the image. Taken from Toft, 199-200.
%
% A a b c x0 y0 z0 phi theta psi
% -----------------------------------------------------------------
e = [ 1 .6900 .920 .810 0 0 0 0 0 0
-.8 .6624 .874 .780 0 -.0184 0 0 0 0
-.2 .1100 .310 .220 .22 0 0 -18 0 10
-.2 .1600 .410 .280 -.22 0 0 18 0 10
.1 .2100 .250 .410 0 .35 -.15 0 0 0
.1 .0460 .046 .050 0 .1 .25 0 0 0
.1 .0460 .046 .050 0 -.1 .25 0 0 0
.1 .0460 .023 .050 -.08 -.605 0 0 0 0
.1 .0230 .023 .020 0 -.606 0 0 0 0
.1 .0230 .046 .020 .06 -.605 0 0 0 0 ];
return;
function e = yu_ye_wang
%
% Yu H, Ye Y, Wang G, Katsevich-Type Algorithms for Variable Radius Spiral Cone-Beam CT
%
% A a b c x0 y0 z0 phi theta psi
% -----------------------------------------------------------------
e = [ 1 .6900 .920 .900 0 0 0 0 0 0
-.8 .6624 .874 .880 0 0 0 0 0 0
-.2 .4100 .160 .210 -.22 0 -.25 108 0 0
-.2 .3100 .110 .220 .22 0 -.25 72 0 0
.2 .2100 .250 .500 0 .35 -.25 0 0 0
.2 .0460 .046 .046 0 .1 -.25 0 0 0
.1 .0460 .023 .020 -.08 -.65 -.25 0 0 0
.1 .0460 .023 .020 .06 -.65 -.25 90 0 0
.2 .0560 .040 .100 .06 -.105 .625 90 0 0
-.2 .0560 .056 .100 0 .100 .625 0 0 0 ];
return;
|
github
|
jacksky64/imageProcessing-master
|
plotgeometry.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Utilities/plotgeometry.m
| 2,673 |
utf_8
|
d2f582a908d999c8a1ed7960aabd9b7c
|
function h=plotgeometry(geo,angle)
%PLOTGEOMETRY(GEO,ANGLE) plots a simplified version of the CBCT geometry with the
% given geomerty GEO and angle ANGLE. If angle is nnot Give, 0 will be chosen.
%
% h=PLOTGEOMETRY(...) will return the figure handle
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
if nargin<2
angle=0;
end
angle=angle*180/pi;
%% Figure stuff
h=figure('Name','Cone Beam Compute Tomography geometry');
hold on
title('Current CBCT geometry, in scale')
xlabel('X');
ylabel('Y');
zlabel('Z');
set(gcf, 'color', [1 1 1])
%% CUBE/Image
drawCube(geo.offOrigin,geo.sVoxel,'k',0.05,0);
%% Detector
drawCube([-geo.DSD+geo.DSO; geo.offDetector],[1; geo.sDetector],'r',1,angle)
plotCircle3D([0 0 0],-geo.DSD+geo.DSO);
%% source
p=plot3(geo.DSO,0,0,'.','MarkerSize',30);
rotate(p,[0 0 1],angle,[0 0 0]);
plotCircle3D([0 0 0],geo.DSO);
%% Arrows.
arrow=geo.sVoxel;
%XYZ arrows
try
arrow3d([0 arrow(1)],[0 0],[0 0],.90,5,15,'r');
arrow3d([0 0],[0 arrow(2)],[0 0],.90,5,15,'b');
arrow3d([0 0],[0 0],[0 arrow(3)],.90,5,15,'g');
catch e
error('CBCT:plotgeometry:Arrow','arrow3D not found, make sure its added to the path');
end
%UV arrows
%%
axis equal;
view(128,26)
% grid on
% axis off;
end
function drawCube( origin, size,color,alpha,a)
% From
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/235581
x=([0 1 1 0 0 0;1 1 0 0 1 1;1 1 0 0 1 1;0 1 1 0 0 0]-0.5)*size(1)+origin(1);
y=([0 0 1 1 0 0;0 1 1 0 0 0;0 1 1 0 1 1;0 0 1 1 1 1]-0.5)*size(2)+origin(2);
z=([0 0 0 0 0 1;0 0 0 0 0 1;1 1 1 1 0 1;1 1 1 1 0 1]-0.5)*size(3)+origin(3);
for i=1:6
h=patch(x(:,i),y(:,i),z(:,i),color);
set(h,'facealpha',alpha)
rotate(h,[0 0 1],a,[0 0 0]);
end
end
function plotCircle3D(center,radius)
theta=0:0.1:2*pi;
v=null([0 0 1]);
points=repmat(center',1,size(theta,2))+radius*(v(:,1)*cos(theta)+v(:,2)*sin(theta));
plot3(points(1,:),points(2,:),points(3,:),'k-.');
end
|
github
|
jacksky64/imageProcessing-master
|
gradientTVnorm.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Utilities/gradientTVnorm.m
| 3,706 |
utf_8
|
f5ee0ee596c4040081cdc6897a9f6175
|
function [ tvgrad ] = gradientTVnorm(f,type)
%GRADIENTTVNORM Computes the gradient of the TV-norm fucntional
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
if strcmp(type,'central')
warning('It seems that central does not give correct results. Please consider using back or forward')
tvgrad= gradientTVnormCentral(f);
return;
end
if strcmp(type,'backward')
tvgrad= gradientTVnormBackward(f);
return;
end
if strcmp(type,'forward')
tvgrad= gradientTVnormForward(f);
return;
end
error('Undefined type of gradient. Check spelling');
end
%% Backward differences
function tvg=gradientTVnormBackward(f)
Gx=diff(f,1,1);
Gy=diff(f,1,2);
Gz=diff(f,1,3);
tvg=zeros(size(f));
clear f
% these are not defined, but we will define them just for indexing
% readability. They shoudl never be used.
Gx=cat(1,zeros(size(Gx(1,:,:))),Gx);
Gy=cat(2,zeros(size(Gy(:,1,:))),Gy);
Gz=cat(3,zeros(size(Gz(:,:,1))),Gz);
nrm=safenorm(Gx,Gy,Gz);
tvg(1:end,1:end,1:end)= tvg(1:end,1:end,1:end)+(Gx(1:end,1:end,1:end)+Gy(1:end,1:end,1:end)+Gz(1:end,1:end,1:end))./nrm(1:end,1:end,1:end);
tvg(2:end-1,:,:)=tvg(2:end-1,:,:)-Gx([2:end-1]+1,:,:)./nrm([2:end-1]+1,:,:);
tvg(:,2:end-1,:)=tvg(:,2:end-1,:)-Gy(:,[2:end-1]+1,:)./nrm(:,[2:end-1]+1,:);
tvg(:,:,2:end-1)=tvg(:,:,2:end-1)-Gz(:,:,[2:end-1]+1)./nrm(:,:,[2:end-1]+1);
end
%% Forward differences
function tvg=gradientTVnormForward(f)
Gx=diff(f,1,1);
Gy=diff(f,1,2);
Gz=diff(f,1,3);
tvg=zeros(size(f));
clear f
% these are not defined, but we will define them just for indexing
% readability. They shoudl never be used.
Gx=cat(1,Gx,zeros(size(Gx(end,:,:))));
Gy=cat(2,Gy,zeros(size(Gy(:,end,:))));
Gz=cat(3,Gz,zeros(size(Gz(:,:,end))));
nrm=safenorm(Gx,Gy,Gz);
tvg(1:end-1,1:end-1,1:end-1)=tvg(1:end-1,1:end-1,1:end-1)-(Gx(1:end-1,1:end-1,1:end-1)+Gy(1:end-1,1:end-1,1:end-1)+Gz(1:end-1,1:end-1,1:end-1))./nrm(1:end-1,1:end-1,1:end-1);
tvg(2:end-1,:,:)=tvg(2:end-1,:,:)+Gx([2:end-1]-1,:,:)./nrm([2:end-1]-1,:,:);
tvg(:,2:end-1,:)=tvg(:,2:end-1,:)+Gy(:,[2:end-1]-1,:)./nrm(:,[2:end-1]-1,:);
tvg(:,:,2:end-1)=tvg(:,:,2:end-1)+Gz(:,:,[2:end-1]-1)./nrm(:,:,[2:end-1]-1);
end
%% Central differences
% Doesnt accound for edges of the image!!!
% https://math.stackexchange.com/questions/1612017/gradient-of-the-tv-norm-of-an-image
function tvg=gradientTVnormCentral(f)
[Gx,Gy,Gz]=gradient(f);
tvg=zeros(size(Gx));
nrm=safenorm(Gx,Gy,Gz);
tvg(2:end,:,:) = tvg(2:end,:,:) + Gx(1:end-1,:,:)./nrm(1:end-1,:,:);
tvg(1:end-1,:,:) = tvg(1:end-1,:,:) - Gx(2:end,:,:) ./nrm(2:end,:,:);
tvg(:,2:end,:) = tvg(:,2:end,:) + Gy(:,1:end-1,:)./nrm(:,1:end-1,:);
tvg(:,1:end-1,:) = tvg(:,1:end-1,:) - Gy(:,2:end,:) ./nrm(:,2:end,:);
tvg(:,:,2:end) = tvg(:,:,2:end) + Gz(:,:,1:end-1)./nrm(:,:,1:end-1);
tvg(:,:,1:end-1) = tvg(:,:,1:end-1) - Gz(:,:,2:end) ./nrm(:,:,2:end);
tvg = tvg/2;
end
%% Utils
function nrm=safenorm(Gx,Gy,Gz)
nrm=sqrt(Gx.^2+Gy.^2+Gz.^2)+0.00000001;
nrm(nrm==0)=1;
end
|
github
|
jacksky64/imageProcessing-master
|
filtering.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Utilities/filtering.m
| 2,822 |
utf_8
|
c1ba4fc67ad21176c4870f7bb4043653
|
function [ proj ] = filtering(proj,geo,alpha)
%FILTERING Summary of this function goes here
% Detailed explanation goes here
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
% and
% https://www.mathworks.com/matlabcentral/fileexchange/view_license?file_info_id=35548
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Kyungsang Kim, modified by Ander Biguri
%--------------------------------------------------------------------------
filt_len = max(64,2^nextpow2(2*geo.nDetector(1)));
[ramp_kernel] = ramp_flat(filt_len);
d = 1; % cut off (0~1)
[filt] = Filter(geo.filter, ramp_kernel, filt_len, d);
filt = repmat(filt',[1 geo.nDetector(2)]);
for ii=1:length(alpha)
fproj = (zeros(filt_len,geo.nDetector(2),'single'));
fproj(filt_len/2-geo.nDetector(1)/2+1:filt_len/2+geo.nDetector(1)/2,:) = proj(:,:,ii);
fproj = fft(fproj);
fproj = fproj.*filt;
fproj = (real(ifft(fproj)));
proj(:,:,ii) = fproj(end/2-geo.nDetector(1)/2+1:end/2+geo.nDetector(1)/2,:)/2/geo.dDetector(1)*(2*pi/ length(alpha) )/2*(geo.DSD/geo.DSO);
end
proj=permute(proj,[2 1 3]);
end
function [h, nn] = ramp_flat(n)
nn = [-(n/2):(n/2-1)]';
h = zeros(size(nn),'single');
h(n/2+1) = 1 / 4;
odd = mod(nn,2) == 1;
h(odd) = -1 ./ (pi * nn(odd)).^2;
end
function [filt] = Filter(filter, kernel, order, d)
f_kernel = abs(fft(kernel))*2;
filt = f_kernel(1:order/2+1)';
w = 2*pi*(0:size(filt,2)-1)/order; % frequency axis up to Nyquist
switch lower(filter)
case 'ram-lak'
% Do nothing
case 'shepp-logan'
% be careful not to divide by 0:
filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d)));
case 'cosine'
filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d));
case 'hamming'
filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d));
case 'hann'
filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2;
otherwise
disp(filter);
error('Invalid filter selected.');
end
filt(w>pi*d) = 0; % Crop the frequency response
filt = [filt , filt(end-1:-1:2)]; % Symmetry of the filter
return
end
|
github
|
jacksky64/imageProcessing-master
|
read_mhd.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Third_party_tools/readMHD/read_mhd.m
| 6,151 |
utf_8
|
12ac2204991d25ed251aac90e2dd41f9
|
function [img info]=read_mhd(filename)
% This function is based upon "read_mhd" function from the package
% ReadData3D_version1 from the matlab exchange.
% Copyright (c) 2010, Dirk-Jan Kroon
% [image info ] = read_mhd(filename)
info = mhareadheader(filename);
[path name extension] = fileparts(filename);
if (isfield(info,'ElementNumberOfChannels'))
ndims = str2num(info.ElementNumberOfChannels);
else
ndims = 1;
end
img = ImageType();
if (ndims == 1)
data = read_raw([ path filesep info.DataFile ], info.Dimensions,info.DataType,'native',0,ndims);
img=ImageType(size(data),info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.data = data;
elseif (ndims == 3)
clear img;
[datax datay dataz] = read_raw([ path filesep info.DataFile], info.Dimensions,info.DataType,'native',0,ndims);
img = VectorImageType(size(datax),info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.datax = datax; clear datax;
img.datay=datay; clear datay;
img.dataz = dataz; clear dataz;
img.data = img.datax.^2+img.datay.^2+img.dataz.^2;
end
end
function [rawData rdy rdz] =read_raw(filename,imSize,type,endian,skip,ndims)
% Reads a raw file
% Inputs: filename, image size, image type, byte ordering, skip
% If you are using an offset to access another slice of the volume image
% be sure to multiply your skip value by the number of bytes of the
% type (ie. float is 4 bytes).
% Inputs: filename, image size, pixel type, endian, number of values to
% skip.
% Output: image
rdy=[];
rdz=[];
fid = fopen(filename,'rb',endian);
if (fid < 0)
display(['Filename ' filename ' does not exist']);
rawData = -1;
else
if (ndims == 1)
status = fseek(fid,skip,'bof');
if status == 0
rawData = fread(fid,prod(imSize),type);
fclose(fid);
rawData = reshape(rawData,imSize);
else
rawData = status;
end
else
%disp('Vector Image');
status = fseek(fid,skip,'bof');
if status == 0
r = fread(fid,prod(imSize)*3,type);
fclose(fid);
if length(imSize) == 3
% slices = length(r)/imSize(1)/imSize(2)/3;% 3 for vx, vy, vz
% imSize(3) = slices;
% imSize(4) = 3;
im_size=[ 3 imSize([1 2 3]) ];
elseif length(imSize) == 4
im_size=[3 imSize([1 2 3 4]) ];
end
r = reshape(r,im_size);
else
r = status;
end
if length(imSize) == 3
rawData=squeeze(r(1,:,:,:));
rdy=squeeze(r(2,:,:,:));
rdz=squeeze(r(3,:,:,:));
elseif length(imSize) == 4
rawData=squeeze(r(1,:,:,:,:));
rdy=squeeze(r(2,:,:,:,:));
rdz=squeeze(r(3,:,:,:,:));
end
end
end
end
function info =mhareadheader(filename)
% Function for reading the header of a Insight Meta-Image (.mha,.mhd) file
%
% info = mha_read_header(filename);
%
% examples:
% 1, info=mha_read_header()
% 2, info=mha_read_header('volume.mha');
info = [];
if(exist('filename','var')==0)
[filename, pathname] = uigetfile('*.mha', 'Read mha-file');
filename = [pathname filename];
end
fid=fopen(filename,'rb');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
info.Filename=filename;
info.Format='MHA';
info.CompressedData='false';
readelementdatafile=false;
while(~readelementdatafile)
str=fgetl(fid);
s=find(str=='=',1,'first');
if(~isempty(s))
type=str(1:s-1);
data=str(s+1:end);
while(type(end)==' '); type=type(1:end-1); end
while(data(1)==' '); data=data(2:end); end
else
type=''; data=str;
end
switch(lower(type))
case 'ndims'
info.NumberOfDimensions=sscanf(data, '%d')';
case 'dimsize'
info.Dimensions=sscanf(data, '%d')';
case 'elementspacing'
info.PixelDimensions=sscanf(data, '%lf')';
case 'elementsize'
info.ElementSize=sscanf(data, '%lf')';
if(~isfield(info,'PixelDimensions'))
info.PixelDimensions=info.ElementSize;
end
case 'elementbyteordermsb'
info.ByteOrder=lower(data);
case 'anatomicalorientation'
info.AnatomicalOrientation=data;
case 'centerofrotation'
info.CenterOfRotation=sscanf(data, '%lf')';
case 'offset'
info.Offset=sscanf(data, '%lf')';
case 'binarydata'
info.BinaryData=lower(data);
case 'compresseddatasize'
info.CompressedDataSize=sscanf(data, '%d')';
case 'objecttype',
info.ObjectType=lower(data);
case 'transformmatrix'
info.TransformMatrix=sscanf(data, '%lf')';
case 'compresseddata';
info.CompressedData=lower(data);
case 'binarydatabyteordermsb'
info.ByteOrder=lower(data);
case 'elementdatafile'
info.DataFile=data;
readelementdatafile=true;
case 'elementtype'
info.DataType=lower(data(5:end));
case 'headersize'
val=sscanf(data, '%d')';
if(val(1)>0), info.HeaderSize=val(1); end
otherwise
info.(type)=data;
end
end
switch(info.DataType)
case 'char', info.BitDepth=8;
case 'uchar', info.BitDepth=8;
case 'short', info.BitDepth=16;
case 'ushort', info.BitDepth=16;
case 'int', info.BitDepth=32;
case 'uint', info.BitDepth=32;
case 'float', info.BitDepth=32;
case 'double', info.BitDepth=64;
otherwise, info.BitDepth=0;
end
if(~isfield(info,'HeaderSize'))
info.HeaderSize=ftell(fid);
end
fclose(fid);
end
|
github
|
jacksky64/imageProcessing-master
|
secs2hms.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Third_party_tools/sec2hours/secs2hms.m
| 1,080 |
utf_8
|
8e95082e182b573d2719d1a2ff66f315
|
%SECS2HMS - converts a time in seconds to a string giving the time in hours, minutes and second
%Usage TIMESTRING = SECS2HMS(TIME)]);
%Example 1: >> secs2hms(7261)
%>> ans = 2 hours, 1 min, 1.0 sec
%Example 2: >> tic; pause(61); disp(['program took ' secs2hms(toc)]);
%>> program took 1 min, 1.0 secs
function time_string=secs2hms(time_in_secs)
time_string='';
nhours = 0;
nmins = 0;
if time_in_secs >= 3600
nhours = floor(time_in_secs/3600);
if nhours > 1
hour_string = ' hours, ';
else
hour_string = ' hour, ';
end
time_string = [num2str(nhours) hour_string];
end
if time_in_secs >= 60
nmins = floor((time_in_secs - 3600*nhours)/60);
if nmins > 1
minute_string = ' mins, ';
else
minute_string = ' min, ';
end
time_string = [time_string num2str(nmins) minute_string];
end
nsecs = time_in_secs - 3600*nhours - 60*nmins;
time_string = [time_string sprintf('%2.1f', nsecs) ' secs'];
end
|
github
|
jacksky64/imageProcessing-master
|
SIRT.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/SIRT.m
| 10,299 |
utf_8
|
bf9a3cfb8b29671c442d63bfb4d7c8d6
|
function [res,errorL2,qualMeasOut]=SIRT(proj,geo,angles,niter,varargin)
% SIRT_CBCT solves Cone Beam CT image reconstruction using Oriented Subsets
% Simultaneous Algebraic Reconxtruction Techique algorithm
%
% SIRT_CBCT(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% SIRT_CBCT(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter. Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.95
%
% 'Init': Describes diferent initialization techniques.
% 'none' : Initializes the image to zeros (default)
% 'FDK' : intializes image to FDK reconstrucition
% 'multigrid': Initializes image by solving the problem in
% small scale and increasing it when relative
% convergence is reached.
% 'image' : Initialization using a user specified
% image. Not recomended unless you really
% know what you are doing.
% 'InitImg' an image for the 'image' initialization. Avoid.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
% 'QualMeas' Asks the algorithm for a set of quality measurement
% parameters. Input should contain a cell array of desired
% quality measurement names. Example: {'CC','RMSE','MSSIM'}
% These will be computed in each iteration.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
%% Deal with input parameters
[lambda,res,lamdbared,verbose,QualMeasOpts]=parse_inputs(proj,geo,angles,varargin);
measurequality=~isempty(QualMeasOpts);
if nargout>1
computeL2=true;
else
computeL2=false;
end
errorL2=[];
%% initialize stuff
%% Create weigthing matrices
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
clear geoaux;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
V=single(sum(V,3));
else
V=ones([geo.nVoxel(1:2).'],'single')*length(angles);
end
clear A x y dx dz;
%% Iterate
errorL2=[];
% TODO : Add options for Stopping criteria
for ii=1:niter
if (ii==1 && verbose==1);tic;end
% If quality is going to be measured, then we need to save previous image
% THIS TAKES MEMORY!
if measurequality
res_prev=res;
end
% --------- Memory expensive-----------
% proj_err=proj-Ax(res,geo,angles); % (b-Ax)
% weighted_err=W.*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,angles); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./V,backprj); % V * At * W^-1 * (b-Ax)
% res=res+lambda*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
% ------------------------------------
% --------- Memory cheap(er)-----------
res=res+lambda*bsxfun(@times,1./V,Atb(W.*(proj-Ax(res,geo,angles)),geo,angles)); % x= x + lambda * V * At * W^-1 * (b-Ax)
% ------------------------------------
res(res<0)=0;
% If quality is being measured
if measurequality
% HERE GOES
qualMeasOut(:,ii)=Measure_Quality(res_prev,res,QualMeasOpts);
end
if computeL2
errornow=im3Dnorm(proj-Ax(res,geo,angles),'L2'); % Compute error norm2 of b-Ax
% If the error is not minimized.
if ii~=1 && errornow>errorL2(end)
if verbose
disp(['Convergence criteria met, exiting on iteration number:', num2str(ii)]);
end
return;
end
errorL2=[errorL2 errornow];
end
lambda=lambda*lamdbared;
if (ii==1 && verbose==1);
expected_time=toc*niter;
disp('SIRT');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function initres=init_multigrid(proj,geo,alpha)
finalsize=geo.nVoxel;
% start with 64
geo.nVoxel=[64;64;64];
geo.dVoxel=geo.sVoxel./geo.nVoxel;
if any(finalsize<geo.nVoxel)
initres=zeros(finalsize');
return;
end
niter=100;
initres=zeros(geo.nVoxel');
while ~isequal(geo.nVoxel,finalsize)
% solve subsampled grid
initres=SIRT(proj,geo,alpha,niter,'Init','image','InitImg',initres,'Verbose',0);
% Get new dims.
geo.nVoxel=geo.nVoxel*2;
geo.nVoxel(geo.nVoxel>finalsize)=finalsize(geo.nVoxel>finalsize);
geo.dVoxel=geo.sVoxel./geo.nVoxel;
% Upsample!
% (hopefully computer has enough memory............)
[y, x, z]=ndgrid(linspace(1,size(initres,1),geo.nVoxel(1)),...
linspace(1,size(initres,2),geo.nVoxel(2)),...
linspace(1,size(initres,3),geo.nVoxel(3)));
initres=interp3(initres,x,y,z);
clear x y z
end
end
function [lambda,res,lamdbared,verbose,QualMeasOpts]=parse_inputs(proj,geo,alpha,argin)
opts= {'lambda','Init','InitImg','Verbose','lambdaRed','QualMeas'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:SIRT:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extranc value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
switch opt
% % % % % % % Verbose
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% % % % % % % hyperparameter, LAMBDA
case 'lambda'
if default
lambda=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SIRT:InvalidInput','Invalid lambda')
end
lambda=val;
end
case 'lambdaRed'
if default
lamdbared=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SIRT:InvalidInput','Invalid lambda')
end
lamdbared=val;
end
case 'Init'
res=[];
if default || strcmp(val,'none')
res=zeros(geo.nVoxel','single');
continue;
end
if strcmp(val,'FDK')
res=FDK_CBCT(proj,geo,alpha);
continue;
end
if strcmp(val,'multigrid')
res=init_multigrid(proj,geo,alpha);
continue;
end
if strcmp(val,'image')
initwithimage=1;
continue;
end
if isempty(res)
error('CBCT:SIRT:InvalidInput','Invalid Init option')
end
% % % % % % % ERROR
case 'InitImg'
if default
continue;
end
if exist('initwithimage','var');
if isequal(size(val),geo.nVoxel');
res=single(val);
else
error('CBCT:SIRT:InvalidInput','Invalid image for initialization');
end
end
case 'QualMeas'
if default
QualMeasOpts={};
else
if iscellstr(val)
QualMeasOpts=val;
else
error('CBCT:SIRT:InvalidInput','Invalid quality measurement parameters');
end
end
otherwise
error('CBCT:SIRT:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in SIRT()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
OS_SART.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/OS_SART.m
| 13,009 |
utf_8
|
40c86c320744ac6e9d1cdebebeffc810
|
function [res,errorL2,qualMeasOut]=OS_SART(proj,geo,angles,niter,varargin)
% OS_SART_CBCT solves Cone Beam CT image reconstruction using Oriented Subsets
% Simultaneous Algebraic Reconxtruction Techique algorithm
%
% OS_SART_CBCT(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% OS_SART_CBCT(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
% 'BlockSize': Sets the projection block size used simultaneously. If
% BlockSize = 1 OS-SART becomes SART and if BlockSize = length(alpha)
% then OS-SART becomes SIRT. Default is 20.
%
% 'lambda': Sets the value of the hyperparameter. Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.95
%
% 'Init': Describes diferent initialization techniques.
% 'none' : Initializes the image to zeros (default)
% 'FDK' : intializes image to FDK reconstrucition
% 'multigrid': Initializes image by solving the problem in
% small scale and increasing it when relative
% convergence is reached.
% 'image' : Initialization using a user specified
% image. Not recomended unless you really
% know what you are doing.
% 'InitImg' an image for the 'image' initialization. Aviod.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
% 'QualMeas' Asks the algorithm for a set of quality measurement
% parameters. Input should contain a cell array of desired
% quality measurement names. Example: {'CC','RMSE','MSSIM'}
% These will be computed in each iteration.
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%
% OUTPUTS:
%
% [img] will output the reconstructed image
% [img,errorL2] will output the L2 norm of the residual
% (the function being minimized)
% [img,errorL2,qualMeas] will output the quality measurements asked
% by the input 'QualMeas'
%
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
%% Deal with input parameters
[blocksize,lambda,res,lamdbared,verbose,QualMeasOpts,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
measurequality=~isempty(QualMeasOpts);
if nargout>1
computeL2=true;
else
computeL2=false;
end
%% weigth matrices
% first order the projection angles
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
V=single(V);
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
%% Iterate
errorL2=[];
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
% TODO : Add options for Stopping criteria
for ii=1:niter
% If verbose, time the algorithm
if (ii==1 && verbose==1);tic;end
% If quality is going to be measured, then we need to save previous image
% THIS TAKES MEMORY!
if measurequality
res_prev=res;
end
for jj=1:length(alphablocks);
% Get offsets
if size(offOrigin,2)==length(angles)
geo.offOrigin=offOrigin(:,orig_index{jj});
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,orig_index{jj});
end
%proj is data: b=Ax
%res= initial image is zero (default)
% proj_err=proj(:,:,orig_index{jj})-Ax(res,geo,alphablocks{jj},'interpolated'); % (b-Ax)
% weighted_err=W(:,:,orig_index{jj}).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,alphablocks{jj},'FDK'); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./sum(V(:,:,orig_index{jj}),3),backprj); % V * At * W^-1 * (b-Ax)
% res=res+lambda*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
res=res+lambda* bsxfun(@times,1./sum(V(:,:,orig_index{jj}),3),Atb(W(:,:,orig_index{jj}).*(proj(:,:,orig_index{jj})-Ax(res,geo,alphablocks{jj})),geo,alphablocks{jj}));
% Non-negativity constrain
res(res<0)=0;
end
% If quality is being measured
if measurequality
%Can save quality measure for every iteration here
%See if some image quality measure should be used for every
%iteration?
qualMeasOut(:,ii)=Measure_Quality(res_prev,res,QualMeasOpts);
end
% reduce hyperparameter
lambda=lambda*lamdbared;
if computeL2
% Compute error norm2 of b-Ax
geo.offOrigin=offOrigin;
geo.offDetector=offDetector;
errornow=im3Dnorm(proj-Ax(res,geo,angles,'ray-voxel'),'L2');
% If the error is not minimized
if ii~=1 && errornow>errorL2(end) % This 1.1 is for multigrid, we need to focus to only that case
if verbose
disp(['Convergence criteria met, exiting on iteration number:', num2str(ii)]);
end
return;
end
% Store Error
errorL2=[errorL2 errornow];
end
% If timing was asked
if ii==1 && verbose==1
expected_time=toc*(niter-1);
expected_duration=toc*(niter);
disp('OS-SART');
disp(['Expected duration : ',secs2hms(expected_duration)]);
disp(['Expected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function initres=init_multigrid(proj,geo,alpha)
finalsize=geo.nVoxel;
% start with 64
geo.nVoxel=[64;64;64];
geo.dVoxel=geo.sVoxel./geo.nVoxel;
if any(finalsize<geo.nVoxel)
initres=zeros(finalsize');
return;
end
niter=100;
nblock=20;
initres=zeros(geo.nVoxel');
while ~isequal(geo.nVoxel,finalsize)
% solve subsampled grid
initres=OS_SART(proj,geo,alpha,niter,'BlockSize',nblock,'Init','image','InitImg',initres,'Verbose',0);
% Get new dims.
geo.nVoxel=geo.nVoxel*2;
geo.nVoxel(geo.nVoxel>finalsize)=finalsize(geo.nVoxel>finalsize);
geo.dVoxel=geo.sVoxel./geo.nVoxel;
% Upsample!
% (hopefully computer has enough memory............)
[y, x, z]=ndgrid(linspace(1,size(initres,1),geo.nVoxel(1)),...
linspace(1,size(initres,2),geo.nVoxel(2)),...
linspace(1,size(initres,3),geo.nVoxel(3)));
initres=interp3(initres,x,y,z);
clear x y z
end
end
%% Parse inputs
function [block_size,lambda,res,lamdbared,verbose,QualMeasOpts,OrderStrategy]=parse_inputs(proj,geo,alpha,argin)
opts= {'BlockSize','lambda','Init','InitImg','Verbose','lambdaRed','QualMeas','OrderStrategy'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:OS-SART:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extranc value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
switch opt
% % % % % % % Verbose
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% % % % % % % hyperparameter, LAMBDA
case 'lambda'
if default
lambda=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid lambda')
end
lambda=val;
end
case 'lambdaRed'
if default
lamdbared=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid lambda')
end
lamdbared=val;
end
case 'BlockSize'
if default
block_size=20;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid BlockSize')
end
block_size=val;
end
case 'Init'
res=[];
if default || strcmp(val,'none')
res=zeros(geo.nVoxel','single');
continue;
end
if strcmp(val,'FDK')
res=FDK_CBCT(proj,geo,alpha);
continue;
end
if strcmp(val,'multigrid')
res=init_multigrid(proj,geo,alpha);
continue;
end
if strcmp(val,'image')
initwithimage=1;
continue;
end
if isempty(res)
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid Init option')
end
% % % % % % % ERROR
case 'InitImg'
if default
continue;
end
if exist('initwithimage','var');
if isequal(size(val),geo.nVoxel');
res=single(val);
else
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid image for initialization');
end
end
case 'QualMeas'
if default
QualMeasOpts={};
else
if iscellstr(val)
QualMeasOpts=val;
else
error('CBCT:OS_SART_CBCT:InvalidInput','Invalid quality measurement parameters');
end
end
case 'OrderStrategy'
if default
OrderStrategy='angularDistance';
else
OrderStrategy=val;
end
otherwise
error('CBCT:OS_SART_CBCT:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in OS_SART_CBCT()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
OSC_TV.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/OSC_TV.m
| 12,828 |
utf_8
|
4d5cae328b50056fad216452c9f0f202
|
function [ fres ] = OSC_TV(proj,geo,angles,maxiter,varargin)
%ASD_POCS Solves the ASD_POCS total variation constrained image in 3D
% tomography.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter for the SART iterations.
% Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.99
%
% 'TViter': Defines the amount of TV iterations performed per SART
% iteration. Default is 20
%
% 'alpha': Defines the TV hyperparameter. default is 0.002
%
% 'alpha_red': Defines the reduction rate of the TV hyperparameter
%
% 'Ratio': The maximum allowed image/TV update ration. If the TV
% update changes the image more than this, the parameter
% will be reduced.default is 0.95
% 'maxL2err' Maximum L2 error to accept an image as valid. This
% parameter is crucial for the algorithm, determines at
% what point an image should not be updated further.
% Default is 20% of the FDK L2 norm.
% 'BlockSize': Sets the projection block size used simultaneously. If
% BlockSize = 1 OS-SART becomes SART and if BlockSize = length(alpha)
% then OS-SART becomes SIRT. Default is 20.
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
%% parse inputs
[beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,blocksize,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
%% Create weigthing matrices for the SART step
% the reason we do this, instead of calling the SART fucntion is not to
% recompute the weigths every ASD-POCS iteration, thus effectively doubling
% the computational time
% first order the projection angles
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
% initialize image.
f=zeros(geo.nVoxel','single');
stop_criteria=0;
iter=0;
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
while ~stop_criteria %POCS
f0=f;
if (iter==0 && verbose==1);tic;end
iter=iter+1;
for jj=1:length(alphablocks);
% Get offsets
if size(offOrigin,2)==length(angles)
geo.offOrigin=offOrigin(:,orig_index{jj});
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,orig_index{jj});
end
%proj is data: b=Ax
%res= initial image is zero (default)
% proj_err=proj(:,:,orig_index{jj})-Ax(f,geo,alphablocks{jj},'interpolated'); % (b-Ax)
% weighted_err=W(:,:,orig_index{jj}).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,alphablocks{jj},'FDK'); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./sum(V(:,:,orig_index{jj}),3),backprj); % V * At * W^-1 * (b-Ax)
% f=f+beta*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
f=f+beta* bsxfun(@times,1./sum(V(:,:,orig_index{jj}),3),Atb(W(:,:,orig_index{jj}).*(proj(:,:,orig_index{jj})-Ax(f,geo,alphablocks{jj})),geo,alphablocks{jj}));
% Non-negativity constrain
f(f<0)=0;
end
geo.offDetector=offDetector;
geo.offOrigin=offOrigin;
% Save copy of image.
fres=f;
% compute L2 error of actual image. Ax-b
g=Ax(f,geo,angles);
dd=im3Dnorm(g-proj,'L2');
% compute change in the image after last SART iteration
dp_vec=(f-f0);
dp=im3Dnorm(dp_vec,'L2');
if iter==1
dtvg=alpha*dp;
end
f0=f;
% TV MINIMIZATION
% =========================================================================
% Call GPU to minimize TV
f=minimizeTV(f0,dtvg,ng); % This is the MATLAB CODE, the functions are sill in the library, but CUDA is used nowadays
% for ii=1:ng
% % Steepest descend of TV norm
% tv(ng*(iter-1)+ii)=im3Dnorm(f,'TV','forward');
% df=gradientTVnorm(f,'forward');
% df=df./im3Dnorm(df,'L2');
% f=f-dtvg.*df;
% end
% update parameters
% ==========================================================================
% compute change by TV min
dg_vec=(f-f0);
dg=im3Dnorm(dg_vec,'L2');
% if change in TV is bigger than the change in SART AND image error is still bigger than acceptable
if dg>rmax*dp && dd>epsilon
dtvg=dtvg*alpha_red;
end
% reduce SART step
beta=beta*beta_red;
% Check convergence criteria
% ==========================================================================
c=dot(dg_vec(:),dp_vec(:))/(norm(dg_vec(:),2)*norm(dp_vec(:),2));
if (c<-0.99 && dd<=epsilon) || beta<0.005|| iter>maxiter
if verbose
disp(['Stopping criteria met']);
disp([' c = ' num2str(c)]);
disp([' beta = ' num2str(beta)]);
disp([' iter = ' num2str(iter)]);
end
stop_criteria=true;
end
if (iter==1 && verbose==1);
expected_time=toc*maxiter;
disp('OSC-TV');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function [beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,block_size,OrderStrategy]=parse_inputs(proj,geo,angles,argin)
opts= {'lambda','lambda_red','TViter','Verbose','alpha','alpha_red','Ratio','maxL2err','BlockSize','OrderStrategy','BlockSize'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:OSC_TV:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extract value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
% parse inputs
switch opt
% Verbose
% =========================================================================
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% Lambda
% =========================================================================
% Its called beta in OSC_TV
case 'lambda'
if default
beta=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OSC_TV:InvalidInput','Invalid lambda')
end
beta=val;
end
% Lambda reduction
% =========================================================================
case 'lambda_red'
if default
beta_red=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OSC_TV:InvalidInput','Invalid lambda')
end
beta_red=val;
end
% Number of iterations of TV
% =========================================================================
case 'TViter'
if default
ng=20;
else
ng=val;
end
% TV hyperparameter
% =========================================================================
case 'alpha'
if default
alpha=0.002; % 0.2
else
alpha=val;
end
% TV hyperparameter redution
% =========================================================================
case 'alpha_red'
if default
alpha_red=0.95;
else
alpha_red=val;
end
% Maximum update ratio
% =========================================================================
case 'Ratio'
if default
rmax=0.95;
else
rmax=val;
end
% Maximum L2 error to have a "good image"
% =========================================================================
case 'maxL2err'
if default
epsilon=im3Dnorm(FDK(proj,geo,angles))*0.2; %heuristic
else
epsilon=val;
end
% Block size for OS-SART
% =========================================================================
case 'BlockSize'
if default
block_size=20;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:OSC_TV:InvalidInput','Invalid BlockSize')
end
block_size=val;
end
% Order strategy
% =========================================================================
case 'OrderStrategy'
if default
OrderStrategy='angularDistance';
else
OrderStrategy=val;
end
otherwise
error('CBCT:OSC_TV:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in OSC_TV()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
SART.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/SART.m
| 11,488 |
utf_8
|
6e4d467e70f1d2bc45e9c1f69c247dad
|
function [res,errorL2,qualMeasOut]=SART(proj,geo,angles,niter,varargin)
% SART_CBCT solves Cone Beam CT image reconstruction using Oriented Subsets
% Simultaneous Algebraic Reconxtruction Techique algorithm
%
% SART(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% SART_CBCT(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter. Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.99
%
% 'Init': Describes diferent initialization techniques.
% 'none' : Initializes the image to zeros (default)
% 'FDK' : intializes image to FDK reconstrucition
% 'multigrid': Initializes image by solving the problem in
% small scale and increasing it when relative
% convergence is reached.
% 'image' : Initialization using a user specified
% image. Not recomended unless you really
% know what you are doing.
% 'InitImg' an image for the 'image' initialization. Aviod.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
% 'QualMeas' Asks the algorithm for a set of quality measurement
% parameters. Input should contain a cell array of desired
% quality measurement names. Example: {'CC','RMSE','MSSIM'}
% These will be computed in each iteration.
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
%% Deal with input parameters
blocksize=1;
[lambda,res,lamdbared,verbose,QualMeasOpts,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
measurequality=~isempty(QualMeasOpts);
if nargout>1
computeL2=true;
else
computeL2=false;
end
errorL2=[];
% reorder angles
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
angles=cell2mat(alphablocks);
index_angles=cell2mat(orig_index);
%% Create weigthing matrices
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
V=single(V);
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
%% Iterate
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
% TODO : Add options for Stopping criteria
for ii=1:niter
if (ii==1 && verbose==1);tic;end
% If quality is going to be measured, then we need to save previous image
% THIS TAKES MEMORY!
if measurequality
res_prev=res;
end
for jj=1:length(angles);
if size(offOrigin,2)==length(angles)
geo.offOrigin=offOrigin(:,index_angles(jj));
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,index_angles(jj));
end
% --------- Memory expensive----------- % and does not include angle reordering!!!
% proj_err=proj(:,:,jj)-Ax(res,geo,angles(jj)); % (b-Ax)
% weighted_err=W(:,:,jj).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,angles(jj)); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./V(:,:,jj),backprj); % V * At * W^-1 * (b-Ax)
% res=res+lambda*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
%------------------------------------
%--------- Memory cheap(er)-----------
res=res+lambda* bsxfun(@times,1./V(:,:,jj),Atb(W(:,:,jj).*(proj(:,:,index_angles(jj))-Ax(res,geo,angles(jj))),geo,angles(jj)));
res(res<0)=0;
end
% If quality is being measured
if measurequality
% HERE GOES
qualMeasOut(:,ii)=Measure_Quality(res,res_prev,QualMeasOpts);
end
lambda=lambda*lamdbared;
if computeL2
geo.offOrigin=offOrigin;
geo.offDetector=offDetector;
errornow=im3Dnorm(proj(:,:,index_angles)-Ax(res,geo,angles),'L2'); % Compute error norm2 of b-Ax
% If the error is not minimized.
if ii~=1 && errornow>errorL2(end)
if verbose
disp(['Convergence criteria met, exiting on iteration number:', num2str(ii)]);
end
return;
end
errorL2=[errorL2 errornow];
end
if (ii==1 && verbose==1);
expected_time=toc*niter;
disp('SART');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function initres=init_multigrid(proj,geo,alpha)
finalsize=geo.nVoxel;
% start with 64
geo.nVoxel=[64;64;64];
geo.dVoxel=geo.sVoxel./geo.nVoxel;
if any(finalsize<geo.nVoxel)
initres=zeros(finalsize');
return;
end
niter=100;
initres=zeros(geo.nVoxel');
while ~isequal(geo.nVoxel,finalsize)
% solve subsampled grid
initres=SART(proj,geo,alpha,niter,'Init','image','InitImg',initres,'Verbose',0);
% Get new dims.
geo.nVoxel=geo.nVoxel*2;
geo.nVoxel(geo.nVoxel>finalsize)=finalsize(geo.nVoxel>finalsize);
geo.dVoxel=geo.sVoxel./geo.nVoxel;
% Upsample!
% (hopefully computer has enough memory............)
[y, x, z]=ndgrid(linspace(1,size(initres,1),geo.nVoxel(1)),...
linspace(1,size(initres,2),geo.nVoxel(2)),...
linspace(1,size(initres,3),geo.nVoxel(3)));
initres=interp3(initres,x,y,z);
clear x y z
end
end
function [lambda,res,lamdbared,verbose,QualMeasOpts,OrderStrategy]=parse_inputs(proj,geo,alpha,argin)
opts= {'lambda','Init','InitImg','Verbose','lambdaRed','QualMeas','OrderStrategy'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:SART:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extranc value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
switch opt
% % % % % % % Verbose
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% % % % % % % hyperparameter, LAMBDA
case 'lambda'
if default
lambda=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SART:InvalidInput','Invalid lambda')
end
lambda=val;
end
case 'lambdaRed'
if default
lamdbared=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SART:InvalidInput','Invalid lambda')
end
lamdbared=val;
end
case 'Init'
res=[];
if default || strcmp(val,'none')
res=zeros(geo.nVoxel','single');
continue;
end
if strcmp(val,'FDK')
res=FDK_CBCT(proj,geo,alpha);
continue;
end
if strcmp(val,'multigrid')
res=init_multigrid(proj,geo,alpha);
continue;
end
if strcmp(val,'image')
initwithimage=1;
continue;
end
if isempty(res)
error('CBCT:SART:InvalidInput','Invalid Init option')
end
% % % % % % % ERROR
case 'InitImg'
if default
continue;
end
if exist('initwithimage','var');
if isequal(size(val),geo.nVoxel');
res=single(val);
else
error('CBCT:SART:InvalidInput','Invalid image for initialization');
end
end
case 'QualMeas'
if default
QualMeasOpts={};
else
if iscellstr(val)
QualMeasOpts=val;
else
error('CBCT:SART:InvalidInput','Invalid quality measurement parameters');
end
end
case 'OrderStrategy'
if default
OrderStrategy='random';
else
OrderStrategy=val;
end
otherwise
error('CBCT:SART:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in SART()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
ASD_POCS.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/ASD_POCS.m
| 12,069 |
utf_8
|
c3ad62ba6412de2953c29a4e1cf7c6c2
|
function [ fres ] = ASD_POCS(proj,geo,angles,maxiter,varargin)
%ASD_POCS Solves the ASD_POCS total variation constrained image in 3D
% tomography.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter for the SART iterations.
% Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.99
%
% 'TViter': Defines the amount of TV iterations performed per SART
% iteration. Default is 20
%
% 'alpha': Defines the TV hyperparameter. default is 0.002
%
% 'alpha_red': Defines the reduction rate of the TV hyperparameter
%
% 'Ratio': The maximum allowed image/TV update ration. If the TV
% update changes the image more than this, the parameter
% will be reduced.default is 0.95
% 'maxL2err' Maximum L2 error to accept an image as valid. This
% parameter is crucial for the algorithm, determines at
% what point an image should not be updated further.
% Default is 20% of the FDK L2 norm.
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
%
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri and Manasavee Lohvithee
%--------------------------------------------------------------------------
%% parse inputs
blocksize=1;
[beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
angles=cell2mat(alphablocks);
index_angles=cell2mat(orig_index);
%% Create weigthing matrices for the SART step
% the reason we do this, instead of calling the SART fucntion is not to
% recompute the weigths every ASD-POCS iteration, thus effectively doubling
% the computational time
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
% initialize image.
f=zeros(geo.nVoxel','single');
%%
stop_criteria=0;
iter=0;
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
while ~stop_criteria %POCS
f0=f;
if (iter==0 && verbose==1);tic;end
iter=iter+1;
for jj=1:length(angles);
if size(offOrigin,2)==length(angles)
geo.OffOrigin=offOrigin(:,jj);
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,jj);
end
% proj_err=proj(:,:,jj)-Ax(f,geo,angles(jj)); % (b-Ax)
% weighted_err=W(:,:,jj).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,angles(jj)); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./V(:,:,jj),backprj); % V * At * W^-1 * (b-Ax)
% f=f+beta*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
% Enforce positivity
f=f+beta* bsxfun(@times,1./V(:,:,jj),Atb(W(:,:,jj).*(proj(:,:,index_angles(jj))-Ax(f,geo,angles(jj))),geo,angles(jj)));
f(f<0)=0;
end
geo.offDetector=offDetector;
geo.offOrigin=offOrigin;
% Save copy of image.
fres=f;
% compute L2 error of actual image. Ax-b
g=Ax(f,geo,angles);
dd=im3Dnorm(g-proj(:,:,index_angles),'L2');
% compute change in the image after last SART iteration
dp_vec=(f-f0);
dp=im3Dnorm(dp_vec,'L2');
if iter==1
dtvg=alpha*dp;
%Convert the steepest-descent step-size from a fraction of a
%step-size to an absolute image distance on the first iteration.
end
f0=f;
% TV MINIMIZATION
% =========================================================================
% Call GPU to minimize TV
f=minimizeTV(f0,dtvg,ng); % This is the MATLAB CODE, the functions are sill in the library, but CUDA is used nowadays
% for ii=1:ng
% % Steepest descend of TV norm
% tv(ng*(iter-1)+ii)=im3Dnorm(f,'TV','forward');
% df=weighted_gradientTVnorm2(f,0.002);
% df=df./im3Dnorm(df,'L2');
% f=f-dtvg.*df;
% end
% update parameters
% ==========================================================================
% compute change by TV min
dg_vec=(f-f0);
dg=im3Dnorm(dg_vec,'L2');
% if change in TV is bigger than the change in SART AND image error is still bigger than acceptable
if dg>rmax*dp && dd>epsilon
dtvg=dtvg*alpha_red;
end
% reduce SART step
beta=beta*beta_red;
% Check convergence criteria
% ==========================================================================
%Define c_alpha as in equation 21 in the journal
c=dot(dg_vec(:),dp_vec(:))/(norm(dg_vec(:),2)*norm(dp_vec(:),2));
%This c is examined to see if it is close to -1.0
if (c<-0.99 && dd<=epsilon) || beta<0.005|| iter>maxiter
if verbose
disp(['Stopping criteria met']);
disp([' c = ' num2str(c)]);
disp([' beta = ' num2str(beta)]);
disp([' iter = ' num2str(iter)]);
end
stop_criteria=true;
end
if (iter==1 && verbose==1);
expected_time=toc*maxiter;
disp('ADS-POCS');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function [beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,OrderStrategy]=parse_inputs(proj,geo,angles,argin)
opts= {'lambda','lambda_red','TViter','Verbose','alpha','alpha_red','Ratio','maxL2err','OrderStrategy'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:ASD_POCS:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extract value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
% parse inputs
switch opt
% Verbose
% =========================================================================
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% Lambda
% =========================================================================
% Its called beta in ASD-POCS
case 'lambda'
if default
beta=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:ASD_POCS:InvalidInput','Invalid lambda')
end
beta=val;
end
% Lambda reduction
% =========================================================================
case 'lambda_red'
if default
beta_red=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:ASD_POCS:InvalidInput','Invalid lambda')
end
beta_red=val;
end
% Number of iterations of TV
% =========================================================================
case 'TViter'
if default
ng=20;
else
ng=val;
end
% TV hyperparameter
% =========================================================================
case 'alpha'
if default
alpha=0.002; % 0.2
else
alpha=val;
end
% TV hyperparameter redution
% =========================================================================
case 'alpha_red'
if default
alpha_red=0.95;
else
alpha_red=val;
end
% Maximum update ratio
% =========================================================================
case 'Ratio'
if default
rmax=0.95;
else
rmax=val;
end
% Maximum L2 error to have a "good image"
% =========================================================================
case 'maxL2err'
if default
epsilon=im3Dnorm(FDK(proj,geo,angles))*0.2; %heuristic
else
epsilon=val;
end
case 'OrderStrategy'
if default
OrderStrategy='random';
else
OrderStrategy=val;
end
otherwise
error('CBCT:ASD_POCS:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in ASD_POCS()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
B_ASD_POCS_beta.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/B_ASD_POCS_beta.m
| 13,313 |
utf_8
|
69808cbf82a42a1282377cd14fb2e6ec
|
function [ fres ] = B_ASD_POCS_beta(proj,geo,angles,maxiter,varargin)
% B_ASD_POCS_beta Solves the ASD_POCS total variation constrained image in 3D
% tomography using bregman iteration for the data.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% ASD_POCS(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter for the SART iterations.
% Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.99
%
% 'TViter': Defines the amount of TV iterations performed per SART
% iteration. Default is 20
%
% 'alpha': Defines the TV hyperparameter. default is 0.002
%
% 'alpha_red': Defines the reduction rate of the TV hyperparameter
%
% 'Ratio': The maximum allowed image/TV update ration. If the TV
% update changes the image more than this, the parameter
% will be reduced.default is 0.95
% 'maxL2err' Maximum L2 error to accept an image as valid. This
% parameter is crucial for the algorithm, determines at
% what point an image should not be updated further.
% Default is 20% of the FDK L2 norm.
%
% 'beta' hyperparameter controling the Bragman update. default=1
%
% 'beta_red' reduction of the beta hyperparameter. default =0.75
%
% 'bregman_iter' amount of global bregman iterations. This will define
% how often the bregman iteration is executed. It has to
% be smaller than the number of iterations.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
%
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
% http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=5874264
%% parse inputs
blocksize=1;
[beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,bregman,bregman_red,bregman_iter,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
angles=cell2mat(alphablocks);
index_angles=cell2mat(orig_index);
%% Create weigthing matrices for the SART step
% the reason we do this, instead of calling the SART fucntion is not to
% recompute the weigths every ASD-POCS iteration, thus effectively doubling
% the computational time
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
% initialize image.
f=zeros(geo.nVoxel','single');
stop_criteria=0;
iter=0;
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
while ~stop_criteria %POCS
f0=f;
if (iter==0 && verbose==1);tic;end
iter=iter+1;
for jj=1:length(angles);
if size(offOrigin,2)==length(angles)
geo.OffOrigin=offOrigin(:,jj);
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,jj);
end
% proj_err=proj(:,:,jj)-Ax(f,geo,angles(jj)); % (b-Ax)
% weighted_err=W(:,:,jj).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,angles(jj)); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./V(:,:,jj),backprj); % V * At * W^-1 * (b-Ax)
% f=f+beta*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
f=f+beta* bsxfun(@times,1./V(:,:,jj),Atb(W(:,:,jj).*(proj(:,:,index_angles(jj))-Ax(f,geo,angles(jj))),geo,angles(jj)));
% Enforce positivity
f(f<0)=0;
end
geo.offDetector=offDetector;
geo.offOrigin=offOrigin;
% Save copy of image.
fres=f;
% compute L2 error of actual image. Ax-b
g=Ax(f,geo,angles);
dd=im3Dnorm(g-proj(:,:,index_angles),'L2');
% compute change in the image after last SART iteration
dp_vec=(f-f0);
dp=im3Dnorm(dp_vec,'L2');
if iter==1
dtvg=alpha*dp;
end
f0=f;
% TV MINIMIZATION
% =========================================================================
% Call GPU to minimize TV
f=minimizeTV(f0,dtvg,ng); % This is the MATLAB CODE, the functions are sill in the library, but CUDA is used nowadays
% for ii=1:ng
% % Steepest descend of TV norm
% tv(ng*(iter-1)+ii)=im3Dnorm(f,'TV','forward');
% df=gradientTVnorm(f,'forward');
% df=df./im3Dnorm(df,'L2');
% f=f-dtvg.*df;
% end
% update parameters
% ==========================================================================
% compute change by TV min
dg_vec=(f-f0);
dg=im3Dnorm(dg_vec,'L2');
% if change in TV is bigger than the change in SART AND image error is still bigger than acceptable
if dg>rmax*dp && dd>epsilon
dtvg=dtvg*alpha_red;
end
% reduce SART step
beta=beta*beta_red;
% Check convergence criteria
% ==========================================================================
c=dot(dg_vec(:),dp_vec(:))/(norm(dg_vec(:),2)*norm(dp_vec(:),2));
if (c<-0.99 && dd<=epsilon) || beta<0.005|| iter>maxiter
if verbose
disp(['Stopping criteria met']);
disp([' c = ' num2str(c)]);
disp([' beta = ' num2str(beta)]);
disp([' iter = ' num2str(iter)]);
end
stop_criteria=true;
end
if ~mod(iter,bregman_iter)
proj=proj+bregman*(proj(:,:,index_angles)-Ax(f,geo,angles));
bregman=bregman*bregman_red;
end
if (iter==1 && verbose==1);
expected_time=toc*maxiter;
disp('B-ADS-POCS-beta');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function [beta,beta_red,ng,verbose,alpha,alpha_red,rmax,epsilon,bregman,bregman_red,bregman_iter,OrderStrategy]=parse_inputs(proj,geo,angles,argin)
opts= {'lambda','lambda_red','TViter','Verbose','alpha','alpha_red','Ratio','maxL2err','beta','beta_red','bregman_iter','OrderStrategy'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:ASD_POCS:InvalidInput','Invalid number of inputs')
end
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extract value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
% parse inputs
switch opt
% Verbose
% =========================================================================
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% Lambda
% =========================================================================
% Its called beta in ASD-POCS
case 'lambda'
if default
beta=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:ASD_POCS:InvalidInput','Invalid lambda')
end
beta=val;
end
% Lambda reduction
% =========================================================================
case 'lambda_red'
if default
beta_red=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:ASD_POCS:InvalidInput','Invalid lambda')
end
beta_red=val;
end
% Number of iterations of TV
% =========================================================================
case 'TViter'
if default
ng=20;
else
ng=val;
end
% TV hyperparameter
% =========================================================================
case 'alpha'
if default
alpha=0.002; % 0.2
else
alpha=val;
end
% TV hyperparameter redution
% =========================================================================
case 'alpha_red'
if default
alpha_red=0.95;
else
alpha_red=val;
end
% Maximum update ratio
% =========================================================================
case 'Ratio'
if default
rmax=0.95;
else
rmax=val;
end
% Maximum L2 error to have a "good image"
% =========================================================================
case 'maxL2err'
if default
epsilon=im3Dnorm(FDK(proj,geo,angles))*0.2; %heuristic
else
epsilon=val;
end
% TV bregman hyperparameter
% =========================================================================
case 'beta'
if default
bregman=1;
else
bregman=val;
end
% TV bregman hyperparameter redution
% =========================================================================
case 'beta_red'
if default
bregman_red=0.75;
else
bregman_red=val;
end
case 'bregman_iter'
if default
bregman_iter=5;
else
bregman_iter=val;
end
case 'OrderStrategy'
if default
OrderStrategy='random';
else
OrderStrategy=val;
end
otherwise
error('CBCT:B_ASD_POCS_beta:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in ASD_POCS()']);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
SART_TV.m
|
.m
|
imageProcessing-master/cone beam/CERN-TIGRE-v1.1.3-2-g2ee570e/CERN-TIGRE-2ee570e/Algorithms/SART_TV.m
| 11,882 |
utf_8
|
ff74dbf3c25b8132a01c45b319c25a85
|
function [res,errorL2,qualMeasOut]=SART_TV(proj,geo,angles,niter,varargin)
% SART_TV solves Cone Beam CT image reconstruction using Oriented Subsets
% Simultaneous Algebraic Reconxtruction Techique algorithm
%
% SART_TV(PROJ,GEO,ALPHA,NITER) solves the reconstruction problem
% using the projection data PROJ taken over ALPHA angles, corresponding
% to the geometry descrived in GEO, using NITER iterations.
%
% SART_TV(PROJ,GEO,ALPHA,NITER,OPT,VAL,...) uses options and values for solving. The
% possible options in OPT are:
%
%
% 'lambda': Sets the value of the hyperparameter. Default is 1
%
% 'lambdared': Reduction of lambda.Every iteration
% lambda=lambdared*lambda. Default is 0.99
%
% 'Init': Describes diferent initialization techniques.
% 'none' : Initializes the image to zeros (default)
% 'FDK' : intializes image to FDK reconstrucition
% 'multigrid': Initializes image by solving the problem in
% small scale and increasing it when relative
% convergence is reached.
% 'image' : Initialization using a user specified
% image. Not recomended unless you really
% know what you are doing.
% 'InitImg' an image for the 'image' initialization. Aviod.
%
% 'TViter' amoutn of iteration in theTV step. Default 50
%
% 'TVlambda' hyperparameter in TV iteration. IT gives the ratio of
% importance of the image vs the minimum total variation.
% default is 15. Lower means more TV denoising.
%
% 'Verbose' 1 or 0. Default is 1. Gives information about the
% progress of the algorithm.
%
% 'QualMeas' Asks the algorithm for a set of quality measurement
% parameters. Input should contain a cell array of desired
% quality measurement names. Example: {'CC','RMSE','MSSIM'}
% These will be computed in each iteration.
% 'OrderStrategy' Chooses the subset ordering strategy. Options are
% 'ordered' :uses them in the input order, but divided
% 'random' : orders them randomply
% 'angularDistance': chooses the next subset with the
% biggest angular distance with the ones used.
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% This file is part of the TIGRE Toolbox
%
% Copyright (c) 2015, University of Bath and
% CERN-European Organization for Nuclear Research
% All rights reserved.
%
% License: Open Source under BSD.
% See the full license at
% https://github.com/CERN/TIGRE/license.txt
%
% Contact: [email protected]
% Codes: https://github.com/CERN/TIGRE/
% Coded by: Ander Biguri
%--------------------------------------------------------------------------
%% Deal with input parameters
[lambda,res,lamdbared,verbose,QualMeasOpts,TViter,TVlambda,OrderStrategy]=parse_inputs(proj,geo,angles,varargin);
measurequality=~isempty(QualMeasOpts);
if nargout>1
computeL2=true;
else
computeL2=false;
end
errorL2=[];
blocksize=1;
[alphablocks,orig_index]=order_subsets(angles,blocksize,OrderStrategy);
angles=cell2mat(alphablocks);
index_angles=cell2mat(orig_index);
%% Create weigthing matrices
% Projection weigth, W
geoaux=geo;
geoaux.sVoxel(3)=max(geo.sDetector(2),geo.sVoxel(3)); % make sure lines are not cropped. One is for when image is bigger than detector and viceversa
geoaux.nVoxel=[2,2,2]'; % accurate enough?
geoaux.dVoxel=geoaux.sVoxel./geoaux.nVoxel;
W=Ax(ones(geoaux.nVoxel','single'),geoaux,angles,'ray-voxel'); %
W(W<min(geo.dVoxel)/4)=Inf;
W=1./W;
% Back-Projection weigth, V
if ~isfield(geo,'mode')||~strcmp(geo.mode,'parallel')
[x,y]=meshgrid(geo.sVoxel(1)/2-geo.dVoxel(1)/2+geo.offOrigin(1):-geo.dVoxel(1):-geo.sVoxel(1)/2+geo.dVoxel(1)/2+geo.offOrigin(1),...
-geo.sVoxel(2)/2+geo.dVoxel(2)/2+geo.offOrigin(2): geo.dVoxel(2): geo.sVoxel(2)/2-geo.dVoxel(2)/2+geo.offOrigin(2));
A = permute(angles+pi/2, [1 3 2]);
V = (geo.DSO ./ (geo.DSO + bsxfun(@times, y, sin(-A)) - bsxfun(@times, x, cos(-A)))).^2;
else
V=ones([geo.nVoxel(1:2).',length(angles)],'single');
end
clear A x y dx dz;
%% Iterate
offOrigin=geo.offOrigin;
offDetector=geo.offDetector;
% TODO : Add options for Stopping criteria
for ii=1:niter
if (ii==1 && verbose==1);tic;end
% If quality is going to be measured, then we need to save previous image
% THIS TAKES MEMORY!
if measurequality
res_prev=res;
end
for jj=1:length(angles);
if size(offOrigin,2)==length(angles)
geo.OffOrigin=offOrigin(:,jj);
end
if size(offDetector,2)==length(angles)
geo.offDetector=offDetector(:,jj);
end
% proj_err=proj(:,:,jj)-Ax(res,geo,angles(jj)); % (b-Ax)
% weighted_err=W(:,:,jj).*proj_err; % W^-1 * (b-Ax)
% backprj=Atb(weighted_err,geo,angles(jj)); % At * W^-1 * (b-Ax)
% weigth_backprj=bsxfun(@times,1./V(:,:,jj),backprj); % V * At * W^-1 * (b-Ax)
% res=res+lambda*weigth_backprj; % x= x + lambda * V * At * W^-1 * (b-Ax)
res=res+lambda* bsxfun(@times,1./V(:,:,jj),Atb(W(:,:,jj).*(proj(:,:,index_angles(jj))-Ax(res,geo,angles(jj))),geo,angles(jj)));
res(res<0)=0;
end
% If quality is being measured
if measurequality
% HERE GOES
qualMeasOut(:,ii)=Measure_Quality(res,res_prev,QualMeasOpts);
end
lambda=lambda*lamdbared;
% TV denoising
res=im3DDenoise(res,'TV',TViter,TVlambda);
if computeL2
geo.offOrigin=offOrigin;
geo.offDetector=offDetector;
errornow=im3Dnorm(proj(:,:,index_angles)-Ax(res,geo,angles),'L2'); % Compute error norm2 of b-Ax
% If the error is not minimized.
if ii~=1 && errornow>errorL2(end)
if verbose
disp(['Convergence criteria met, exiting on iteration number:', num2str(ii)]);
end
return;
end
errorL2=[errorL2 errornow];
end
if (ii==1 && verbose==1);
expected_time=toc*niter;
disp('SART_TV');
disp(['Expected duration : ',secs2hms(expected_time)]);
disp(['Exected finish time: ',datestr(datetime('now')+seconds(expected_time))]);
disp('');
end
end
end
function initres=init_multigrid(proj,geo,alpha,TViter,TVlambda)
finalsize=geo.nVoxel;
% start with 64
geo.nVoxel=[64;64;64];
geo.dVoxel=geo.sVoxel./geo.nVoxel;
if any(finalsize<geo.nVoxel)
initres=zeros(finalsize');
return;
end
niter=100;
initres=zeros(geo.nVoxel','single');
while ~isequal(geo.nVoxel,finalsize)
% solve subsampled grid
initres=SART_TV(proj,geo,alpha,niter,'Init','image','InitImg',initres,'Verbose',0,'TViter',TViter,'TVlambda',TVlambda);
% Get new dims.
geo.nVoxel=geo.nVoxel*2;
geo.nVoxel(geo.nVoxel>finalsize)=finalsize(geo.nVoxel>finalsize);
geo.dVoxel=geo.sVoxel./geo.nVoxel;
% Upsample!
% (hopefully computer has enough memory............)
[y, x, z]=ndgrid(linspace(1,size(initres,1),geo.nVoxel(1)),...
linspace(1,size(initres,2),geo.nVoxel(2)),...
linspace(1,size(initres,3),geo.nVoxel(3)));
initres=interp3(initres,x,y,z);
clear x y z
end
end
function [lambda,res,lamdbared,verbose,QualMeasOpts,TViter,TVlambda,OrderStrategy]=parse_inputs(proj,geo,alpha,argin)
opts= {'lambda','Init','InitImg','Verbose','lambdaRed','QualMeas','TViter','TVlambda','OrderStrategy'};
defaults=ones(length(opts),1);
% Check inputs
nVarargs = length(argin);
if mod(nVarargs,2)
error('CBCT:SART:InvalidInput','Invalid number of inputs')
end
multigrid=false;
% check if option has been passed as input
for ii=1:2:nVarargs
ind=find(ismember(opts,argin{ii}));
if ~isempty(ind)
defaults(ind)=0;
end
end
for ii=1:length(opts)
opt=opts{ii};
default=defaults(ii);
% if one option isnot default, then extranc value from input
if default==0
ind=double.empty(0,1);jj=1;
while isempty(ind)
ind=find(isequal(opt,argin{jj}));
jj=jj+1;
end
val=argin{jj};
end
switch opt
% % % % % % % Verbose
case 'Verbose'
if default
verbose=1;
else
verbose=val;
end
if ~is2014bOrNewer
warning('Verbose mode not available for older versions than MATLAB R2014b');
verbose=false;
end
% % % % % % % hyperparameter, LAMBDA
case 'lambda'
if default
lambda=1;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SART:InvalidInput','Invalid lambda')
end
lambda=val;
end
case 'lambdaRed'
if default
lamdbared=0.99;
else
if length(val)>1 || ~isnumeric( val)
error('CBCT:SART:InvalidInput','Invalid lambda')
end
lamdbared=val;
end
case 'Init'
res=[];
if default || strcmp(val,'none')
res=zeros(geo.nVoxel','single');
continue;
end
if strcmp(val,'multigrid')
multigrid=true;
continue;
end
if strcmp(val,'image')
initwithimage=1;
continue;
end
if isempty(res)
error('CBCT:SART:InvalidInput','Invalid Init option')
end
% % % % % % % ERROR
case 'InitImg'
if default
continue;
end
if exist('initwithimage','var');
if isequal(size(val),geo.nVoxel');
res=single(val);
else
error('CBCT:SART:InvalidInput','Invalid image for initialization');
end
end
case 'QualMeas'
if default
QualMeasOpts={};
else
if iscellstr(val)
QualMeasOpts=val;
else
error('CBCT:SART:InvalidInput','Invalid quality measurement parameters');
end
end
case 'TViter'
if default
TViter=50;
else
TViter=val;
end
case 'TVlambda'
if default
TVlambda=50;
else
TVlambda=val;
end
case 'OrderStrategy'
if default
OrderStrategy='random';
else
OrderStrategy=val;
end
otherwise
error('CBCT:SART:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in SART()']);
end
end
if multigrid; res=init_multigrid(proj,geo,alpha,TViter,TVlambda);end;
end
|
github
|
jacksky64/imageProcessing-master
|
filtering.m
|
.m
|
imageProcessing-master/cone beam/CBCT_Kyungsang_matlab_Feb2015/bin/filtering.m
| 2,320 |
utf_8
|
5fb94b13622703c07659af861f665663
|
function [ proj ] = filtering(proj,param )
%FILTERING Summary of this function goes here
% Detailed explanation goes here
us = ((-param.nu/2+0.5):1:(param.nu/2-0.5))*param.du + param.off_u;
vs = ((-param.nv/2+0.5):1:(param.nv/2-0.5))*param.dv + param.off_v;
[uu,vv] = meshgrid(us,vs);
w = (param.DSD)./sqrt((param.DSD)^2+uu.^2 + vv.^2);
for i=1:param.nProj
proj(:,:,i) = proj(:,:,i).*w';
end
if param.parker == 1
proj = ParkerWeight(proj,param);
end
filt_len = max(64,2^nextpow2(2*param.nu));
[ramp_kernel] = ramp_flat(filt_len);
d = 1; % cut off (0~1)
[filt] = Filter(param.filter, ramp_kernel, filt_len, d);
filt = repmat(filt',[1 param.nv]);
for i=1:param.nProj
fproj = (zeros(filt_len,param.nv,'single'));
fproj(filt_len/2-param.nu/2+1:filt_len/2+param.nu/2,:) = proj(:,:,i);
fproj = fft(fproj);
fproj = fproj.*filt;
fproj = (real(ifft(fproj)));
if param.parker == 1
proj(:,:,i) = fproj(end/2-param.nu/2+1:end/2+param.nu/2,:)/2/param.du*(2*pi/(180/param.dang))/2*(param.DSD/param.DSO);
else
proj(:,:,i) = fproj(end/2-param.nu/2+1:end/2+param.nu/2,:)/2/param.du*(2*pi/param.nProj)/2*(param.DSD/param.DSO);
end
end
end
function [h, nn] = ramp_flat(n)
nn = [-(n/2):(n/2-1)]';
h = zeros(size(nn),'single');
h(n/2+1) = 1 / 4;
odd = mod(nn,2) == 1;
h(odd) = -1 ./ (pi * nn(odd)).^2;
end
function [filt] = Filter(filter, kernel, order, d)
f_kernel = abs(fft(kernel))*2;
filt = f_kernel(1:order/2+1)';
w = 2*pi*(0:size(filt,2)-1)/order; % frequency axis up to Nyquist
switch lower(filter)
case 'ram-lak'
% Do nothing
case 'shepp-logan'
% be careful not to divide by 0:
filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d)));
case 'cosine'
filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d));
case 'hamming'
filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d));
case 'hann'
filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2;
otherwise
filter
error('Invalid filter selected.');
end
filt(w>pi*d) = 0; % Crop the frequency response
filt = [filt , filt(end-1:-1:2)]; % Symmetry of the filter
return
end
|
github
|
jacksky64/imageProcessing-master
|
llf.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/llf.m
| 1,583 |
utf_8
|
7a14718e491c75a5df4d50397b210a26
|
% Perform the local laplacian filter using the function
% f(x,ref)=x+fact*(I-ref)*exp(-(I-ref)²/(2*sigma²))
% Perform the local laplacian filter using any function
% This script implements edge-aware detail and tone manipulation as
% described in :
% Fast and Robust Pyramid-based Image Processing.
% Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Frédo Durand.
% MIT technical report, November 2011
% INPUT
% I : input greyscale image
% r : a function handle to the remaping function
% N : number discretisation values of the intensity
%
% OUTPUT
% F : filtered image
% [email protected] Sept 2012
function [F]=llf(I,sigma,fact,N)
[height width]=size(I);
n_levels=ceil(log(min(height,width))-log(2))+2;
discretisation=linspace(0,1,N);
discretisation_step=discretisation(2);
input_gaussian_pyr=gaussian_pyramid(I,n_levels);
output_laplace_pyr=laplacian_pyramid(I,n_levels);
output_laplace_pyr{n_levels}=input_gaussian_pyr{n_levels};
for ref=discretisation
I_remap=fact*(I-ref).*exp(-(I-ref).*(I-ref)./(2*sigma*sigma));
temp_laplace_pyr=laplacian_pyramid(I_remap,n_levels);
for level=1:n_levels-1
output_laplace_pyr{level}=output_laplace_pyr{level}+...
(abs(input_gaussian_pyr{level}-ref)<discretisation_step).*...
temp_laplace_pyr{level}.*...
(1-abs(input_gaussian_pyr{level}-ref)/discretisation_step);
end
end
F=reconstruct_laplacian_pyramid(output_laplace_pyr);
|
github
|
jacksky64/imageProcessing-master
|
remapping_function.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/remapping_function.m
| 193 |
utf_8
|
39f4e6083a03bed8b5fed18c4b63f877
|
%This is just a toy example!
function y=remapping_function(x)
% y=(x-0.1).*(x>0.1)+(x+0.1).*(x<-0.1); %smoothing
y=3.*x.*(abs(x)<0.1)+(x+0.2).*(x>0.1)+(x-0.2).*(x<-0.1); %enhancement
end
|
github
|
jacksky64/imageProcessing-master
|
reconstruct_laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/reconstruct_laplacian_pyramid.m
| 1,074 |
utf_8
|
7ba1435cc8f4ff0d1428d1179e7cd9ea
|
% Reconstruction of image from Laplacian pyramid
%
% Arguments:
% pyramid 'pyr', as generated by function 'laplacian_pyramid'
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function R = reconstruct_laplacian_pyramid(pyr,subwindow)
r = size(pyr{1},1);
c = size(pyr{1},2);
nlev = length(pyr);
subwindow_all = zeros(nlev,4);
if ~exist('subwindow','var')
subwindow_all(1,:) = [1 r 1 c];
else
subwindow_all(1,:) = subwindow;
end
for lev = 2:nlev
subwindow_all(lev,:) = child_window(subwindow_all(lev-1,:));
end
% start with low pass residual
R = pyr{nlev};
filter = pyramid_filter;
for lev = nlev-1 : -1 : 1
% upsample, and add to current level
R = pyr{lev} + upsample(R,filter,subwindow_all(lev,:));
end
|
github
|
jacksky64/imageProcessing-master
|
laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/laplacian_pyramid.m
| 1,251 |
utf_8
|
8d160a39954ea8ac8ef42ee22d0f8181
|
% Contruction of Laplacian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function pyr = laplacian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% recursively build pyramid
pyr = cell(nlev,1);
filter = pyramid_filter;
J = I;
for l = 1:nlev - 1
% apply low pass filter, and downsample
[I,subwindow_child] = downsample(J,filter,subwindow);
% in each level, store difference between image and upsampled low pass version
pyr{l} = J - upsample(I,filter,subwindow);
J = I; % continue with low pass image
subwindow = subwindow_child;
end
pyr{nlev} = J; % the coarest level contains the residual low pass image
|
github
|
jacksky64/imageProcessing-master
|
llf_general.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/llf_general.m
| 1,278 |
utf_8
|
7d132e2ca02f40f77332200e3a4e5f48
|
% Perform the local laplacian filter using any function
% INPUT
% I : input greyscale image
% r : a function handle to the remaping function
% N : number discretisation values of the intensity
%
% OUTPUT
% F : filtered image
% [email protected] Sept 2012
function [F]=llf_general(I,r,N)
[height width]=size(I);
n_levels=ceil(log(min(height,width))-log(2))+2;
discretisation=linspace(0,1,N);
discretisation_step=discretisation(2);
input_gaussian_pyr=gaussian_pyramid(I,n_levels);
output_laplace_pyr=laplacian_pyramid(I,n_levels);
output_laplace_pyr{n_levels}=input_gaussian_pyr{n_levels};
for level=1:n_levels-1
output_laplace_pyr{level}=zeros(size(output_laplace_pyr{level}));
end
for ref=discretisation
I_remap=r(I-ref);
temp_laplace_pyr=laplacian_pyramid(I_remap,n_levels);
for level=1:n_levels-1
output_laplace_pyr{level}=output_laplace_pyr{level}+...
(abs(input_gaussian_pyr{level}-ref)<discretisation_step).*...
temp_laplace_pyr{level}.*...
(1-abs(input_gaussian_pyr{level}-ref)/discretisation_step);
end
end
F=reconstruct_laplacian_pyramid(output_laplace_pyr);
|
github
|
jacksky64/imageProcessing-master
|
gaussian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/gaussian_pyramid.m
| 785 |
utf_8
|
c37904c322f0ffcdfb042808f7b58b42
|
% Construction of Gaussian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
function pyr = gaussian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% start by copying the image to the finest level
pyr = cell(nlev,1);
pyr{1} = I;
% recursively downsample the image
filter = pyramid_filter;
for l = 2:nlev
I = downsample(I,filter,subwindow);
pyr{l} = I;
end
|
github
|
jacksky64/imageProcessing-master
|
pyramid_filter.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/pyramid_filter.m
| 415 |
utf_8
|
6bdb380bd8a557e8170203e732d1f7df
|
% This is a 2D separable low pass filter for constructing Gaussian and
% Laplacian pyramids, built from a 1D 5-tap low pass filter.
%
% [email protected], August 2007
% [email protected], March 2011 [imfilter faster with 2D filter]
%
function f = pyramid_filter()
f = [.05, .25, .4, .25, .05]; % original [Burt and Adelson, 1983]
%f = [.0625, .25, .375, .25, .0625]; % binom-5
f = f'*f;
end
|
github
|
jacksky64/imageProcessing-master
|
downsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/downsample.m
| 1,235 |
utf_8
|
aae6c458109d70f4c77f2465e543c4bf
|
% Downsampling procedure.
%
% Arguments:
% 'I': image
% downsampling filter 'filter', should be a 2D separable filter.
% 'border_mode' should be 'circular', 'symmetric', or 'replicate'. See 'imfilter'.
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function [R,subwindow_child] = downsample(I, filter, subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
subwindow_child = child_window(subwindow);
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% low pass, convolve with 2D separable filter
R = imfilter(I,filter);
% reweight, brute force weights from 1's in valid image positions
Z = imfilter(ones(size(I)),filter);
R = R./Z;
otherwise
% low pass, convolve with 2D separable filter
R = imfilter(I,filter,border_mode);
end
% decimate
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
R = R(1+reven:2:r, 1+ceven:2:c, :);
end
|
github
|
jacksky64/imageProcessing-master
|
upsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer_original/upsample.m
| 1,504 |
utf_8
|
3e8cf7f9ffd5675cc72aaa396f478ffe
|
% Upsampling procedure.
%
% Argments:
% 'I': image
% 'filter': 2D separable upsampling filter
% parent subwindow indices 'subwindow', given as [r1 r2 c1 c2]
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function R = upsample(I, filter, subwindow)
% increase size to match dimensions of the parent subwindow,
% about 2x in each dimension
r = subwindow(2) - subwindow(1) + 1;
c = subwindow(4) - subwindow(3) + 1;
k = size(I,3);
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% interpolate, convolve with 2D separable filter
R = zeros(r,c,k);
R(1+reven:2:r, 1+ceven:2:c, :) = I;
R = imfilter(R,filter);
% reweight, brute force weights from 1's in valid image positions
Z = zeros(r,c,k);
Z(1+reven:2:r, 1+ceven:2:c, :) = 1;
Z = imfilter(Z,filter);
R = R./Z;
otherwise
% increase resolution
I = padarray(I,[1 1 0],'replicate'); % pad the image with a 1-pixel border
R = zeros(r+4,c+4,k);
R(1+reven:2:end, 1+ceven:2:end, :) = 4*I;
% interpolate, convolve with 2D separable filter
R = imfilter(R,filter,border_mode);
% remove the border
R = R(3:end-2, 3:end-2, :);
end
end
|
github
|
jacksky64/imageProcessing-master
|
llf.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/llf.m
| 1,656 |
utf_8
|
93f40bcebe4ecb248415b493e2c9e2ac
|
% Perform the local laplacian filter using the function
% f(x,ref)=x+fact*(I-ref)*exp(-(I-ref)²/(2*sigma²))
% Perform the local laplacian filter using any function
% This script implements edge-aware detail and tone manipulation as
% described in :
% Fast and Robust Pyramid-based Image Processing.
% Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Frédo Durand.
% MIT technical report, November 2011
% INPUT
% I : input greyscale image
% r : a function handle to the remaping function
% N : number discretisation values of the intensity
%
% OUTPUT
% F : filtered image
% LP : fitered laplacian pyramid
% [email protected] Sept 2012
function [F, LP]=llf(I,sigma,fact,N)
if numel(fact) < N
fact(end:N)=fact(end);
end
[height, width]=size(I);
n_levels=ceil(log(min(height,width))-log(2))+2;
discretisation=linspace(0,1,N);
discretisation_step=discretisation(2);
input_gaussian_pyr=gaussian_pyramid(I,n_levels);
LP=laplacian_pyramid(I,n_levels);
LP{n_levels}=input_gaussian_pyr{n_levels};
pFact=1;
for ref=discretisation
I_remap=fact(pFact)*(I-ref).*exp(-(I-ref).*(I-ref)./(2*sigma*sigma));
pFact = pFact+1;
temp_laplace_pyr=laplacian_pyramid(I_remap,n_levels);
for level=1:n_levels-1
LP{level}=LP{level}+...
(abs(input_gaussian_pyr{level}-ref)<discretisation_step).*...
temp_laplace_pyr{level}.*...
(1-abs(input_gaussian_pyr{level}-ref)/discretisation_step);
end
end
F=reconstruct_laplacian_pyramid(LP);
|
github
|
jacksky64/imageProcessing-master
|
remapping_function.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/remapping_function.m
| 193 |
utf_8
|
39f4e6083a03bed8b5fed18c4b63f877
|
%This is just a toy example!
function y=remapping_function(x)
% y=(x-0.1).*(x>0.1)+(x+0.1).*(x<-0.1); %smoothing
y=3.*x.*(abs(x)<0.1)+(x+0.2).*(x>0.1)+(x-0.2).*(x<-0.1); %enhancement
end
|
github
|
jacksky64/imageProcessing-master
|
reconstruct_laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/reconstruct_laplacian_pyramid.m
| 1,074 |
utf_8
|
7ba1435cc8f4ff0d1428d1179e7cd9ea
|
% Reconstruction of image from Laplacian pyramid
%
% Arguments:
% pyramid 'pyr', as generated by function 'laplacian_pyramid'
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function R = reconstruct_laplacian_pyramid(pyr,subwindow)
r = size(pyr{1},1);
c = size(pyr{1},2);
nlev = length(pyr);
subwindow_all = zeros(nlev,4);
if ~exist('subwindow','var')
subwindow_all(1,:) = [1 r 1 c];
else
subwindow_all(1,:) = subwindow;
end
for lev = 2:nlev
subwindow_all(lev,:) = child_window(subwindow_all(lev-1,:));
end
% start with low pass residual
R = pyr{nlev};
filter = pyramid_filter;
for lev = nlev-1 : -1 : 1
% upsample, and add to current level
R = pyr{lev} + upsample(R,filter,subwindow_all(lev,:));
end
|
github
|
jacksky64/imageProcessing-master
|
laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/laplacian_pyramid.m
| 1,251 |
utf_8
|
8d160a39954ea8ac8ef42ee22d0f8181
|
% Contruction of Laplacian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function pyr = laplacian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% recursively build pyramid
pyr = cell(nlev,1);
filter = pyramid_filter;
J = I;
for l = 1:nlev - 1
% apply low pass filter, and downsample
[I,subwindow_child] = downsample(J,filter,subwindow);
% in each level, store difference between image and upsampled low pass version
pyr{l} = J - upsample(I,filter,subwindow);
J = I; % continue with low pass image
subwindow = subwindow_child;
end
pyr{nlev} = J; % the coarest level contains the residual low pass image
|
github
|
jacksky64/imageProcessing-master
|
llf_general.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/llf_general.m
| 1,278 |
utf_8
|
7d132e2ca02f40f77332200e3a4e5f48
|
% Perform the local laplacian filter using any function
% INPUT
% I : input greyscale image
% r : a function handle to the remaping function
% N : number discretisation values of the intensity
%
% OUTPUT
% F : filtered image
% [email protected] Sept 2012
function [F]=llf_general(I,r,N)
[height width]=size(I);
n_levels=ceil(log(min(height,width))-log(2))+2;
discretisation=linspace(0,1,N);
discretisation_step=discretisation(2);
input_gaussian_pyr=gaussian_pyramid(I,n_levels);
output_laplace_pyr=laplacian_pyramid(I,n_levels);
output_laplace_pyr{n_levels}=input_gaussian_pyr{n_levels};
for level=1:n_levels-1
output_laplace_pyr{level}=zeros(size(output_laplace_pyr{level}));
end
for ref=discretisation
I_remap=r(I-ref);
temp_laplace_pyr=laplacian_pyramid(I_remap,n_levels);
for level=1:n_levels-1
output_laplace_pyr{level}=output_laplace_pyr{level}+...
(abs(input_gaussian_pyr{level}-ref)<discretisation_step).*...
temp_laplace_pyr{level}.*...
(1-abs(input_gaussian_pyr{level}-ref)/discretisation_step);
end
end
F=reconstruct_laplacian_pyramid(output_laplace_pyr);
|
github
|
jacksky64/imageProcessing-master
|
gaussian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/gaussian_pyramid.m
| 785 |
utf_8
|
c37904c322f0ffcdfb042808f7b58b42
|
% Construction of Gaussian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
function pyr = gaussian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% start by copying the image to the finest level
pyr = cell(nlev,1);
pyr{1} = I;
% recursively downsample the image
filter = pyramid_filter;
for l = 2:nlev
I = downsample(I,filter,subwindow);
pyr{l} = I;
end
|
github
|
jacksky64/imageProcessing-master
|
pyramid_filter.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/pyramid_filter.m
| 415 |
utf_8
|
6bdb380bd8a557e8170203e732d1f7df
|
% This is a 2D separable low pass filter for constructing Gaussian and
% Laplacian pyramids, built from a 1D 5-tap low pass filter.
%
% [email protected], August 2007
% [email protected], March 2011 [imfilter faster with 2D filter]
%
function f = pyramid_filter()
f = [.05, .25, .4, .25, .05]; % original [Burt and Adelson, 1983]
%f = [.0625, .25, .375, .25, .0625]; % binom-5
f = f'*f;
end
|
github
|
jacksky64/imageProcessing-master
|
downsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/downsample.m
| 1,235 |
utf_8
|
aae6c458109d70f4c77f2465e543c4bf
|
% Downsampling procedure.
%
% Arguments:
% 'I': image
% downsampling filter 'filter', should be a 2D separable filter.
% 'border_mode' should be 'circular', 'symmetric', or 'replicate'. See 'imfilter'.
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function [R,subwindow_child] = downsample(I, filter, subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
subwindow_child = child_window(subwindow);
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% low pass, convolve with 2D separable filter
R = imfilter(I,filter);
% reweight, brute force weights from 1's in valid image positions
Z = imfilter(ones(size(I)),filter);
R = R./Z;
otherwise
% low pass, convolve with 2D separable filter
R = imfilter(I,filter,border_mode);
end
% decimate
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
R = R(1+reven:2:r, 1+ceven:2:c, :);
end
|
github
|
jacksky64/imageProcessing-master
|
upsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/fast_llf_and_style_transfer/upsample.m
| 1,504 |
utf_8
|
3e8cf7f9ffd5675cc72aaa396f478ffe
|
% Upsampling procedure.
%
% Argments:
% 'I': image
% 'filter': 2D separable upsampling filter
% parent subwindow indices 'subwindow', given as [r1 r2 c1 c2]
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function R = upsample(I, filter, subwindow)
% increase size to match dimensions of the parent subwindow,
% about 2x in each dimension
r = subwindow(2) - subwindow(1) + 1;
c = subwindow(4) - subwindow(3) + 1;
k = size(I,3);
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% interpolate, convolve with 2D separable filter
R = zeros(r,c,k);
R(1+reven:2:r, 1+ceven:2:c, :) = I;
R = imfilter(R,filter);
% reweight, brute force weights from 1's in valid image positions
Z = zeros(r,c,k);
Z(1+reven:2:r, 1+ceven:2:c, :) = 1;
Z = imfilter(Z,filter);
R = R./Z;
otherwise
% increase resolution
I = padarray(I,[1 1 0],'replicate'); % pad the image with a 1-pixel border
R = zeros(r+4,c+4,k);
R(1+reven:2:end, 1+ceven:2:end, :) = 4*I;
% interpolate, convolve with 2D separable filter
R = imfilter(R,filter,border_mode);
% remove the border
R = R(3:end-2, 3:end-2, :);
end
end
|
github
|
jacksky64/imageProcessing-master
|
reconstruct_laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/reconstruct_laplacian_pyramid.m
| 1,074 |
utf_8
|
7ba1435cc8f4ff0d1428d1179e7cd9ea
|
% Reconstruction of image from Laplacian pyramid
%
% Arguments:
% pyramid 'pyr', as generated by function 'laplacian_pyramid'
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function R = reconstruct_laplacian_pyramid(pyr,subwindow)
r = size(pyr{1},1);
c = size(pyr{1},2);
nlev = length(pyr);
subwindow_all = zeros(nlev,4);
if ~exist('subwindow','var')
subwindow_all(1,:) = [1 r 1 c];
else
subwindow_all(1,:) = subwindow;
end
for lev = 2:nlev
subwindow_all(lev,:) = child_window(subwindow_all(lev-1,:));
end
% start with low pass residual
R = pyr{nlev};
filter = pyramid_filter;
for lev = nlev-1 : -1 : 1
% upsample, and add to current level
R = pyr{lev} + upsample(R,filter,subwindow_all(lev,:));
end
|
github
|
jacksky64/imageProcessing-master
|
laplacian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/laplacian_pyramid.m
| 1,251 |
utf_8
|
8d160a39954ea8ac8ef42ee22d0f8181
|
% Contruction of Laplacian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
%
% More information:
% 'The Laplacian Pyramid as a Compact Image Code'
% Burt, P., and Adelson, E. H.,
% IEEE Transactions on Communication, COM-31:532-540 (1983).
%
function pyr = laplacian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% recursively build pyramid
pyr = cell(nlev,1);
filter = pyramid_filter;
J = I;
for l = 1:nlev - 1
% apply low pass filter, and downsample
[I,subwindow_child] = downsample(J,filter,subwindow);
% in each level, store difference between image and upsampled low pass version
pyr{l} = J - upsample(I,filter,subwindow);
J = I; % continue with low pass image
subwindow = subwindow_child;
end
pyr{nlev} = J; % the coarest level contains the residual low pass image
|
github
|
jacksky64/imageProcessing-master
|
gaussian_pyramid.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/gaussian_pyramid.m
| 785 |
utf_8
|
c37904c322f0ffcdfb042808f7b58b42
|
% Construction of Gaussian pyramid
%
% Arguments:
% image 'I'
% 'nlev', number of levels in the pyramid (optional)
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [modified to handle subwindows]
%
function pyr = gaussian_pyramid(I,nlev,subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
if ~exist('nlev','var')
nlev = numlevels([r c]); % build highest possible pyramid
end
% start by copying the image to the finest level
pyr = cell(nlev,1);
pyr{1} = I;
% recursively downsample the image
filter = pyramid_filter;
for l = 2:nlev
I = downsample(I,filter,subwindow);
pyr{l} = I;
end
|
github
|
jacksky64/imageProcessing-master
|
pyramid_filter.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/pyramid_filter.m
| 415 |
utf_8
|
6bdb380bd8a557e8170203e732d1f7df
|
% This is a 2D separable low pass filter for constructing Gaussian and
% Laplacian pyramids, built from a 1D 5-tap low pass filter.
%
% [email protected], August 2007
% [email protected], March 2011 [imfilter faster with 2D filter]
%
function f = pyramid_filter()
f = [.05, .25, .4, .25, .05]; % original [Burt and Adelson, 1983]
%f = [.0625, .25, .375, .25, .0625]; % binom-5
f = f'*f;
end
|
github
|
jacksky64/imageProcessing-master
|
downsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/downsample.m
| 1,253 |
utf_8
|
bac9552fb0054bf7db559b84985e8700
|
% Downsampling procedure.
%
% Arguments:
% 'I': image
% downsampling filter 'filter', should be a 2D separable filter.
% 'border_mode' should be 'circular', 'symmetric', or 'replicate'. See 'imfilter'.
% subwindow indices 'subwindow', given as [r1 r2 c1 c2] (optional)
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function [R,subwindow_child] = downsample(I, filter, subwindow)
r = size(I,1);
c = size(I,2);
if ~exist('subwindow','var')
subwindow = [1 r 1 c];
end
subwindow_child = child_window(subwindow);
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% low pass, convolve with 2D separable filter
R = imfilter(I,filter);
% reweight, brute force weights from 1's in valid image positions
Z = imfilter(ones(size(I)),filter);
R = R./Z;
otherwise
% low pass, convolve with 2D separable filter
R = imfilter(I,filter,border_mode);
end
R(isnan(R))=0;
% decimate
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
R = R(1+reven:2:r, 1+ceven:2:c, :);
end
|
github
|
jacksky64/imageProcessing-master
|
lapfilter_core.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/lapfilter_core.m
| 3,509 |
utf_8
|
38e746962e3577fcd0c4f1ad92623cdb
|
% Laplacian Filtering
% - public Matlab implementation for reproducibility
% - about 30x slower than our single-thread C++ version
%
% This script implements the core image processing algorithm
% described in Paris, Hasinoff, and Kautz, "Local Laplacian Filters:
% Edge-aware Image Processing with a Laplacian Pyramid", ACM
% Transactions on Graphics (Proc. SIGGRAPH 2011), 30(4), 2011.
%
% Processes an input image using a general pointwise remapping function
% r(I,g0) in a pyramid-based way. Its running time is O(N log N), where
% N is the number of pixels.
%
% Most of the code is bookkeeping to isolate the subpyramid contributing
% to a particular Laplacian coefficient. See below for a 14-line naive
% O(N^2) implementation that gives identical results.
%
% Arguments:
% image 'I'
% pixel-wise remapping function 'r', expects arguments r(I,g0)
%
% [email protected], March 2011
%
function R = lapfilter_core(I,r)
G = gaussian_pyramid(I); % compute input Gaussian pyramid
% build up the result, one Laplacian coefficient at a time
L = laplacian_pyramid(zeros(size(I))); % allocate space for result
tic;
for lev0 = 1:length(L)-1
hw = 3*2^lev0 - 2; % half-width of full-res footprint (conservative)
fprintf('level %d (%dx%d), footprint %dx%d ... 0%',lev0,size(G{lev0},1),size(G{lev0},2),min(2*hw+1,size(I,1)),min(2*hw+1,size(I,2)));
for y0 = 1:size(G{lev0},1)
for x0 = 1:size(G{lev0},2)
% coords in full-res image corresponding to (lev0,y0,x0)
yf = (y0-1)*2^(lev0-1) + 1;
xf = (x0-1)*2^(lev0-1) + 1;
% subwindow in full-res image needed to evaluate (lev0,y0,x0) in result
yrng = [max(1,yf-hw) min(size(I,1),yf+hw)];
xrng = [max(1,xf-hw) min(size(I,2),xf+hw)];
Isub = I(yrng(1):yrng(2),xrng(1):xrng(2),:);
% use the corresponding Gaussian pyramid coefficient to remap
% the full-res subwindow
g0 = G{lev0}(y0,x0,:);
Iremap = r(Isub,g0);
% compute Laplacian pyramid for remapped subwindow
Lremap = laplacian_pyramid(Iremap,lev0+1,[yrng xrng]);
% bookkeeping to compute index of (lev0,y0,x0) within the
% subwindow, at full-res and at current pyramid level
yfc = yf - yrng(1) + 1;
xfc = xf - xrng(1) + 1;
yfclev0 = floor((yfc-1)/2^(lev0-1)) + 1;
xfclev0 = floor((xfc-1)/2^(lev0-1)) + 1;
% set coefficient in result based on the corresponding
% coefficient in the remapped pyramid
L{lev0}(y0,x0,:) = Lremap{lev0}(yfclev0,xfclev0,:);
end
fprintf('\b\b\b\b%3d%%',floor(y0/size(G{lev0},1)*100));
end
fprintf('\n');
end
L{end} = G{end}; % residual not affected
R = reconstruct_laplacian_pyramid(L); % collapse result Laplacian pyramid
toc;
end
%% naive O(N^2) version for reference
%
% G = gaussian_pyramid(I);
% L = laplacian_pyramid(zeros(size(I)));
% for lev0 = 1:length(L)-1
% for y0 = 1:size(G{lev0},1)
% for x0 = 1:size(G{lev0},2)
% g0 = G{lev0}(y0,x0,:);
% Iremap = r(I,g0);
% Lremap = laplacian_pyramid(Iremap,lev0+1);
% L{lev0}(y0,x0,:) = Lremap{lev0}(y0,x0,:);
% end
% end
% end
% L{end} = G{end};
% R = reconstruct_laplacian_pyramid(L);
|
github
|
jacksky64/imageProcessing-master
|
upsample.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/upsample.m
| 1,504 |
utf_8
|
3e8cf7f9ffd5675cc72aaa396f478ffe
|
% Upsampling procedure.
%
% Argments:
% 'I': image
% 'filter': 2D separable upsampling filter
% parent subwindow indices 'subwindow', given as [r1 r2 c1 c2]
%
% [email protected], August 2007
% [email protected], March 2011 [handle subwindows, reweighted boundaries]
%
function R = upsample(I, filter, subwindow)
% increase size to match dimensions of the parent subwindow,
% about 2x in each dimension
r = subwindow(2) - subwindow(1) + 1;
c = subwindow(4) - subwindow(3) + 1;
k = size(I,3);
reven = mod(subwindow(1),2)==0;
ceven = mod(subwindow(3),2)==0;
border_mode = 'reweighted';
%border_mode = 'symmetric';
switch border_mode
case 'reweighted'
% interpolate, convolve with 2D separable filter
R = zeros(r,c,k);
R(1+reven:2:r, 1+ceven:2:c, :) = I;
R = imfilter(R,filter);
% reweight, brute force weights from 1's in valid image positions
Z = zeros(r,c,k);
Z(1+reven:2:r, 1+ceven:2:c, :) = 1;
Z = imfilter(Z,filter);
R = R./Z;
otherwise
% increase resolution
I = padarray(I,[1 1 0],'replicate'); % pad the image with a 1-pixel border
R = zeros(r+4,c+4,k);
R(1+reven:2:end, 1+ceven:2:end, :) = 4*I;
% interpolate, convolve with 2D separable filter
R = imfilter(R,filter,border_mode);
% remove the border
R = R(3:end-2, 3:end-2, :);
end
end
|
github
|
jacksky64/imageProcessing-master
|
lapfilter.m
|
.m
|
imageProcessing-master/HDR/local laplacian filter/LocalLaplacianFilter/lapfilter.m
| 4,599 |
utf_8
|
f47f1f7e8da1a593eb0236c448e11fd1
|
% Laplacian Filtering
% - public Matlab implementation for reproducibility
% - about 30x slower than our single-thread C++ version
%
% This script implements edge-aware detail and tone manipulation as
% described in Paris, Hasinoff, and Kautz, "Local Laplacian Filters:
% Edge-aware Image Processing with a Laplacian Pyramid", ACM
% Transactions on Graphics (Proc. SIGGRAPH 2011), 30(4), 2011.
%
% This is a wrapper around the core algorithm (see lapfilter_core.m).
% It defines the remapping function, the color treatment, the processing
% domain (linear or log), and it implements simple postprocessing
% for our tone mapping results.
%
% Arguments:
% image 'I'
% pixel-wise remapping parameters 'sigma_r', 'alpha', 'beta'
% remapping method for color images 'colorRemapping' ['rgb' or 'lum']
% processing domain 'domain' ['lin' or 'log']
%
% [email protected], April 2011
%
function R = lapfilter(I,sigma_r,alpha,beta,colorRemapping,domain)
% interpret the input arguments
if size(I,3)==1
I = repmat(I,[1 1 3]);
end
if strcmp(domain,'log')
sigma_r = log(sigma_r);
end
% detail remapping function
noise_level = 0.01;
function out = fd(d)
out = d.^alpha;
if alpha<1
tau = smooth_step(noise_level,2*noise_level,d*sigma_r);
out = tau.*out + (1-tau).*d;
end
end
% edge remapping function
function out = fe(a)
out = beta*a;
end
% define the overall pixel-wise remapping function r, using
% the threshold sigma_r for edge-detail separation
switch colorRemapping
case 'rgb'
% process pixels as vectors in RGB color space
r = @(i,g0)(r_color(i,g0,sigma_r,@fd,@fe));
case 'lum'
% save RGB color ratios for later, process the luminance
IY = luminance(I);
Iratio = I ./ repmat(IY+eps,[1 1 3]);
I = IY;
r = @(i,g0)(r_gray(i,g0,sigma_r,@fd,@fe));
otherwise
error('invalid color remapping');
end
% define the processing domain
switch domain
case 'lin',
to_domain = @(I) I;
from_domain = @(R) R;
case 'log',
to_domain = @(I) log(I + eps);
from_domain = @(R) exp(R) - eps;
otherwise
error('invalid domain');
end
% call the core Laplacian filtering algorithm
if alpha==1 && beta==1
R = I;
else
I = to_domain(I);
R = lapfilter_core(I,r);
R = from_domain(R);
end
% postprocessing
if strcmp(domain,'log') && beta<=1
% for tone mapping, remap middle 99% of intensities to
% fixed dynamic range using a gamma curve
DR_desired = 100;
prc_clip = 0.5;
RY = luminance(R);
Rmax_clip = prctile(RY(:),100-prc_clip);
Rmin_clip = prctile(RY(:),prc_clip);
DR_clip = Rmax_clip/Rmin_clip;
exponent = log(DR_desired)/log(DR_clip);
R = max(0,R/Rmax_clip) .^ exponent;
end
if strcmp(colorRemapping,'lum')
% if working with luminance, reintroduce color ratios
R = repmat(R,[1 1 3]) .* Iratio;
end
% clip out of bounds intensities
R = max(0,R);
if beta<=1
R = min(1,R);
end
if strcmp(domain,'log') && beta<=1
% for tone mapping, gamma correct linear intensities for display
gamma_val = 2.2;
R = R.^(1/gamma_val);
end
%% helper functions
% smooth step edge between (xmin,0) and (xmax,1)
function y = smooth_step(xmin,xmax,x)
y = (x - xmin)/(xmax - xmin);
y = max(0,min(1,y));
y = y.^2.*(y-2).^2;
end
% convert RGB to grayscale intensity
function Y = luminance(I)
switch size(I,3),
case 1, Y = I;
case 3, Y = (20*I(:,:,1) + 40*I(:,:,2) + I(:,:,3))/61;
end
end
% color remapping function
function inew = r_color(i,g0,sigma_r,fd,fe)
g0 = repmat(g0,[size(i,1) size(i,2) 1]);
dnrm = sqrt(sum((i-g0).^2,3));
unit = (i-g0)./repmat(eps + dnrm,[1 1 3]);
% detail and edge processing
rd = g0 + unit.*repmat(sigma_r*fd(dnrm/sigma_r),[1 1 3]);
re = g0 + unit.*repmat((fe(dnrm - sigma_r) + sigma_r),[1 1 3]);
% edge-detail separation based on sigma_r threshold
isedge = repmat(dnrm > sigma_r,[1 1 3]);
inew = ~isedge.*rd + isedge.*re;
end
% grayscale remapping function
function inew = r_gray(i,g0,sigma_r,fd,fe)
dnrm = abs(i-g0);
dsgn = sign(i-g0);
% detail and edge processing
rd = g0 + dsgn*sigma_r.*fd(dnrm/sigma_r);
re = g0 + dsgn.*(fe(dnrm - sigma_r) + sigma_r);
% edge-detail separation based on sigma_r threshold
isedge = dnrm > sigma_r;
inew = ~isedge.*rd + isedge.*re;
end
end
|
github
|
jacksky64/imageProcessing-master
|
reinhardLocal.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/reinhardLocal.m
| 4,460 |
utf_8
|
7bbe7ca37665d87e90fd7d181174b877
|
% Implements the Reinhard local tonemapping operator
%
% parameters:
% hdr: high dynamic range radiance map, a matrix of size rows * columns * 3
% luminance map: the corresponding lumiance map of the hdr image
%
%
%
function [ ldrPic, luminanceCompressed, v, v1Final, sm ] = reinhardLocal( hdr, saturation, eps, phi )
fprintf('Computing luminance map\n');
luminanceMap = makeLuminanceMap(hdr);
alpha = 1 / (2*sqrt(2));
key = 0.18;
v1 = zeros(size(luminanceMap,1), size(luminanceMap,2), 8);
v = zeros(size(luminanceMap,1), size(luminanceMap,2), 8);
% compute nine gaussian filtered version of the hdr luminance map, such
% that we can compute eight differences. Each image gets filtered by a
% standard gaussian filter, each time with sigma 1.6 times higher than
% the sigma of the predecessor.
for scale=1:(8+1)
%s = exp(sigma0 + ((scale) / range) * (sigma1 - sigma0)) * 8
s = 1.6 ^ (scale-1);
sigma = alpha * s;
% dicretize gaussian filter to a fixed size kernel.
% a radius of 2*sigma should keep the error low enough...
kernelRadius = ceil(2*sigma);
kernelSize = 2*kernelRadius+1;
gaussKernelHorizontal = fspecial('gaussian', [kernelSize 1], sigma);
v1(:,:,scale) = conv2(luminanceMap, gaussKernelHorizontal, 'same');
gaussKernelVertical = fspecial('gaussian', [1 kernelSize], sigma);
v1(:,:,scale) = conv2(v1(:,:,scale), gaussKernelVertical, 'same');
end
for i = 1:8
v(:,:,i) = abs((v1(:,:,i)) - v1(:,:,i+1)) ./ ((2^phi)*key / (s^2) + v1(:,:,i));
end
sm = zeros(size(v,1), size(v,2));
for i=1:size(v,1)
for j=1:size(v,2)
for scale=1:size(v,3)
% choose the biggest possible neighbourhood where v(i,j,scale)
% is still smaller than a certain epsilon.
% Note that we need to choose that neighbourhood which is
% as big as possible but all smaller neighbourhoods also
% fulfill v(i,j,scale) < eps !!!
if v(i,j,scale) > eps
% if we already have a high contrast change in the
% first scale we can only use that one
if (scale == 1)
sm(i,j) = 1;
end
% if we have a contrast change bigger than epsilon, we
% know that in scale scale-1 the contrast change was
% smaller than epsilon and use that one
if (scale > 1)
sm(i,j) = scale-1;
end
break;
end
end
end
end
% all areas in the pic that have very small variations and therefore in
% any scale no contrast change > epsilon will not have been found in
% the loop above.
% We manually need to assign them the biggest possible scale.
idx = find(sm == 0);
sm(idx) = 8;
v1Final = zeros(size(v,1), size(v,2));
% build the local luminance map with luminance values taken
% from the neighbourhoods with appropriate scale
for x=1:size(v1,1)
for y=1:size(v1,2)
v1Final(x,y) = v1(x,y,sm(x,y));
end
end
% TODO: try local scaling with a/key as in the global operator.
% But compute key for each chosen neighbourhood!
%numPixels = size(hdr,1) * size(hdr,2);
%delta = 0.0001;
%key = exp((1/numPixels)*(sum(sum(log(v1Final + delta)))))
%scaledLuminance = v1Final * (a/key);
%luminanceCompressed = (luminanceMap* (a/key)) ./ (1 + scaledLuminance);
% Do the actual tonemapping
luminanceCompressed = luminanceMap ./ (1 + v1Final);
% re-apply color according to Fattals paper "Gradient Domain High Dynamic
% Range Compression"
% (hdr(:,:,i) ./ luminance) MUST be between 0 an 1!!!!
% ...but hdr often contains bigger values than luminance!!!???
% so the resulting ldr pic needs to be clamped
ldrPic = ((hdr ./ luminanceMap) .^ saturation) .* luminanceCompressed;
% clamp ldrPic to 1
indices = find(ldrPic > 1);
ldrPic(indices) = 1;
|
github
|
jacksky64/imageProcessing-master
|
readDir.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/readDir.m
| 1,328 |
utf_8
|
06fe56520890b71da5d858f608656ce5
|
% Creates a list of all pictures and their exposure values in a certain directory.
%
% Note that the directory must only contain images wich are named according to the
% naming conventions, otherwise this function fails.
%
% Filename naming conventions:
% The filename of a picture must contain two numbers specifying the
% exposure time of that picture. The first number specifies the nominator,
% the second one the denominator. E.g. "image_1_15.jpg" specifies that this
% image has been taken with an exposure of 1/15 second.
function [filenames, exposures, numExposures] = readDir(dirName)
filelist = dir(dirName);
for i = 3:size(filelist,1)
filenames{i-2} = strcat(dirName,filelist(i).name);
end
i = 1;
for filename = filenames
filename = filename{1};
[s f] = regexp(filename, '(\d+)');
nominator = filename(s(1):f(1));
denominator = filename(s(2):f(2));
exposure = str2num(nominator) / str2num(denominator);
exposures(i) = exposure;
i = i + 1;
end
% sort ascending by exposure
[exposures indices] = sort(exposures);
filenames = filenames(indices);
% then inverse to get descending sort order
exposures = exposures(end:-1:1);
filenames = filenames(end:-1:1);
numExposures = size(filenames,2);
|
github
|
jacksky64/imageProcessing-master
|
hdr.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/hdr.m
| 3,360 |
utf_8
|
5114bac202a4a9b6c79d02a9dc67b0e2
|
% Generates a hdr radiance map from a set of pictures
%
% parameters:
% filenames: a list of filenames containing the differently exposed
% pictures used to make a hdr from
% gRed: camera response function for the red color channel
% gGreen: camera response function for the green color channel
% gBlue: camera response function for the blue color channel
function [ hdr ] = hdr( filenames, gRed, gGreen, gBlue, w, dt )
numExposures = size(filenames,2);
% read the first image to get the width and height information
image = imread(filenames{1});
% pre-allocate resulting hdr image
hdr = zeros(size(image));
sum = zeros(size(image));
for i=1:numExposures
fprintf('Adding picture %i of %i \n', i, numExposures);
image = double(imread(filenames{i}));
wij = w(image + 1);
sum = sum + wij;
m(:,:,1) = (gRed(image(:,:,1) + 1) - dt(1,i));
m(:,:,2) = (gGreen(image(:,:,2) + 1) - dt(1,i));
m(:,:,3) = (gBlue(image(:,:,3) + 1) - dt(1,i));
% If a pixel is saturated, its information and
% that gathered from all prior pictures with longer exposure times is unreliable. Thus
% we ignore its influence on the weighted sum (influence of the
% same pixel from prior pics with longer exposure time ignored as
% well)
saturatedPixels = ones(size(image));
saturatedPixelsRed = find(image(:,:,1) == 255);
saturatedPixelsGreen = find(image(:,:,2) == 255);
saturatedPixelsBlue = find(image(:,:,3) == 255);
% Mark the saturated pixels from a certain channel in *all three*
% channels
dim = size(image,1) * size(image,2);
saturatedPixels(saturatedPixelsRed) = 0;
saturatedPixels(saturatedPixelsRed + dim) = 0;
saturatedPixels(saturatedPixelsRed + 2*dim) = 0;
saturatedPixels(saturatedPixelsGreen) = 0;
saturatedPixels(saturatedPixelsGreen + dim) = 0;
saturatedPixels(saturatedPixelsGreen + 2*dim) = 0;
saturatedPixels(saturatedPixelsBlue) = 0;
saturatedPixels(saturatedPixelsBlue + dim) = 0;
saturatedPixels(saturatedPixelsBlue + 2*dim) = 0;
% add the weighted sum of the current pic to the resulting hdr radiance map
hdr = hdr + (wij .* m);
% remove saturated pixels from the radiance map and the sum (saturated pixels
% are zero in the saturatedPixels matrix, all others are one)
hdr = hdr .* saturatedPixels;
sum = sum .* saturatedPixels;
end
% For those pixels that even in the picture with the smallest exposure time still are
% saturated we approximate the radiance only from that picture instead
% of taking the weighted sum
saturatedPixelIndices = find(hdr == 0);
% Don't multiply with the weights since they are zero for saturated
% pixels. m contains the logRadiance value from the last pic, that one
% with the longest exposure time.
hdr(saturatedPixelIndices) = m(saturatedPixelIndices);
% Fix the sum for those pixels to avoid division by zero
sum(saturatedPixelIndices) = 1;
% normalize
hdr = hdr ./ sum;
hdr = exp(hdr);
|
github
|
jacksky64/imageProcessing-master
|
gsolve.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/gsolve.m
| 1,641 |
utf_8
|
6444d430ac03c9277ae2c108e8557bc5
|
% gsolve.m - Solve for imaging system response function
%
% Code taken from Paul Debevec's SIGGRAPH'97 paper "Recovering High Dynamic Range
% Radiance Maps from Photographs"
%
%
% Given a set of pixel values observed for several pixels in several
% images with different exposure times, this function returns the
% imaging system's response function g as well as the log film irradiance
% values for the observed pixels.
%
% Assumes:
%
% Zmin = 0
% Zmax = 255
%
% Arguments:
%
% Z(i,j) is the pixel values of pixel location number i in image j
% B(j) is the log delta t, or log shutter speed, for image j
% l is lamdba, the constant that determines the amount of smoothness
% w(z) is the weighting function value for pixel value z
%
% Returns:
%
% g(z) is the log exposure corresponding to pixel value z
% lE(i) is the log film irradiance at pixel location i
%
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
%% Include the data-fitting equations
k = 1;
for i=1:size(Z,1)
for j=1:size(Z,2)
wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij;
A(k,n+i) = -wij;
b(k,1) = wij * B(i,j);
k=k+1;
end
end
%% Fix the curve by setting its middle value to 0
A(k,129) = 1;
k=k+1;
%% Include the smoothness equations
for i=1:n-2
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;
end
%% Solve the system using SVD
x = A\b;
g = x(1:n);
lE = x(n+1:size(x,1));
|
github
|
jacksky64/imageProcessing-master
|
makeImageMatrix.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/makeImageMatrix.m
| 1,571 |
utf_8
|
69b3db861855ce87ae5f3348385683ba
|
% Takes relevant samples from the images for use in gsolve.m
%
%
function [ zRed, zGreen, zBlue, sampleIndices ] = makeImageMatrix( filenames, numPixels )
% determine the number of differently exposed images
numExposures = size(filenames,2);
% Create the vector of sample indices
% We need N(P-1) > (Zmax - Zmin)
% Assuming the maximum (Zmax - Zmin) = 255,
% N = (255 * 2) / (P-1) clearly fulfills this requirement
numSamples = ceil(255*2 / (numExposures - 1)) * 2;
% create a random sampling matrix, telling us which
% pixels of the original image we want to sample
% using ceil fits the indices into the range [1,numPixels+1],
% i.e. exactly the range of indices of zInput
step = numPixels / numSamples;
sampleIndices = floor((1:step:numPixels));
sampleIndices = sampleIndices';
% allocate resulting matrices
zRed = zeros(numSamples, numExposures);
zGreen = zeros(numSamples, numExposures);
zBlue = zeros(numSamples, numExposures);
for i=1:numExposures
% read the nth image
fprintf('Reading image number %i...', i);
image = imread(filenames{i});
fprintf('sampling.\n');
% sample the image for each color channel
[zRedTemp, zGreenTemp, zBlueTemp] = sample(image, sampleIndices);
% build the resulting, small image consisting
% of samples of the original image
zRed(:,i) = zRedTemp;
zGreen(:,i) = zGreenTemp;
zBlue(:,i) = zBlueTemp;
end
|
github
|
jacksky64/imageProcessing-master
|
reinhardGlobal.m
|
.m
|
imageProcessing-master/HDR/reinhardToneMapping/reinhardGlobal.m
| 1,697 |
utf_8
|
f00242ba0ee5d065648147f23c09c89f
|
% Implements the Reinhard global tonemapping operator.
%
% parameters:
% hdr: a rows * cols * 3 matrix representing a hdr radiance map
%
% a: defines the desired brightness level of the resulting tonemapped
% picture. Lower values generate darker pictures, higher values brighter
% pictures. Use values like 0.18, 0.36 or 0.72 for bright pictures, 0.09,
% 0.045, ... for darker pictures.
%
% saturation: a value between 0 and 1 defining the desired saturation of
% the resulting tonemapped image
%
function [ ldrPic, ldrLuminanceMap ] = reinhardGlobal( hdr, a, saturation)
fprintf('Computing luminance map\n');
luminanceMap = makeLuminanceMap(hdr);
numPixels = size(hdr,1) * size(hdr,2);
% small delta to avoid taking log(0) when encountering black pixels in the
% luminance map
delta = 0.0001;
% compute the key of the image, a measure of the
% average logarithmic luminance, i.e. the subjective brightness of the image a human
% would approximateley perceive
key = exp((1/numPixels)*(sum(sum(log(luminanceMap + delta)))));
% scale to desired brightness level as defined by the user
scaledLuminance = luminanceMap * (a/key);
% all values are now mapped to the range [0,1]
ldrLuminanceMap = scaledLuminance ./ (scaledLuminance + 1);
ldrPic = zeros(size(hdr));
% re-apply color according to Fattals paper "Gradient Domain High Dynamic
% Range Compression"
% (hdr(:,:,i) ./ luminance) MUST be between 0 an 1!!!!
% ...but hdr often contains bigger values than luminance!!!???
% so the resulting ldr pic needs to be clamped
ldrPic = ((hdr ./ luminanceMap) .^ saturation) .* ldrLuminanceMap;
% clamp ldrPic to 1
indices = find(ldrPic > 1);
ldrPic(indices) = 1;
|
github
|
jacksky64/imageProcessing-master
|
buildSFpyrLevs_o.m
|
.m
|
imageProcessing-master/HDR/hdr_code/buildSFpyrLevs_o.m
| 3,137 |
utf_8
|
c6bf7bf51213e2a73c88aa27ca2fce88
|
% [pyr,pind] =
% buildSFpyrLevs_o(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands,ncycs,angleCyc
% s,ifSave,curScale);
%
% Recursive function for constructing levels of a steerable pyramid. This
% is called by buildSFpyr, and is not usually called directly.
% Eero Simoncelli, 5/97. modified by Yuanzhen Li, 5/05, to incorporate
% spatial and orientation oversampling.
% Then the pyramid is really really oversampled.
function [pyr,pind] = buildSFpyrLevs_o(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands,ncycs,angleCycs,ifSave,curScale);
if nargin < 10
ifSave = 0;
curScale = 0;
% current scale, determining the index of the band to be saved
end
% oversampled steerable pyramids
if (ht <= 0)
lo0 = ifft2(ifftshift(lodft));
pyr = real(lo0(:));
pind = size(lo0);
else
bands = zeros(prod(size(lodft)), nbands);
bind = zeros(nbands,2);
% log_rad = log_rad + 1;
Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave.
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
%% Thanks to Patrick Teo for writing this out :)
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
angle_increment = pi/nbands/angleCycs;
for b = 1:nbands
angle_start = Xcosn(1)+pi*(b-1)/nbands;
for jj = 1:angleCycs
anglemask = pointOp(angle, Ycosn, angle_start+(jj-1)*angle_increment, Xcosn(2)-Xcosn(1));
banddft = ((-sqrt(-1))^(nbands-1)) .* lodft .* anglemask .* himask;
band = ifft2(ifftshift(banddft));
if ifSave == 0
bands(:,(b-1)*angleCycs+jj) = real(band(:));
else
bands_here = real(band(:));
band_ind = (curScale-1)*nbands*angleCycs + (b-1)*angleCycs + jj + 1;
band_name = sprintf('band_%04d.dat', band_ind);
fp = fopen(band_name, 'w');
fwrite(fp, size(band), 'int32');
fwrite(fp, bands_here, 'float32');
fclose(fp);
bands = [];
end
bind((b-1)*angleCycs+jj,:) = size(band);
end
end
dims = size(lodft);
ctr = ceil((dims+0.5)/2);
lodims = ceil((dims-0.5)/(2^ncycs));
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
log_rad_ctr = log_rad(lostart(1):loend(1),lostart(2):loend(2));
log_rad = zeros(dims);
log_rad(lostart(1):loend(1),lostart(2):loend(2)) = log_rad_ctr;
% angle = angle(lostart(1):loend(1),lostart(2):loend(2));
% angle = imresize(angle, dims, 'bicubic');
% lodft = lodft(lostart(1):loend(1),lostart(2):loend(2));
% lodft = imresize(lodft, dims, 'bicubic');
YIrcos = abs(sqrt(1.0 - Yrcos.^2));
lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
lodft = lomask .* lodft;
[npyr,nind] = buildSFpyrLevs_o(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands, ncycs+1, angleCycs, ifSave, curScale+1);
pyr = [bands(:); npyr];
pind = [bind; nind];
end
|
github
|
jacksky64/imageProcessing-master
|
reconSFpyrLevs_o.m
|
.m
|
imageProcessing-master/HDR/hdr_code/reconSFpyrLevs_o.m
| 3,430 |
utf_8
|
70b5721fdf388e97921f5322cd23403e
|
% resdft =
% reconSFpyrLevs_o(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,ifSave,band_in
% d,levs,bands,ncycs,angleCycs);
%
% Recursive function for reconstructing levels of a steerable pyramid
% representation. This is called by reconSFpyr, and is not usually
% called directly.
% Eero Simoncelli, 5/97. modified by Yuanzhen Li, 5/05, to incorporate
% spatial and orientation oversampling.
% Then the pyramid is really really oversampled.
function resdft = reconSFpyrLevs_o(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,ifSave,band_ind,levs,bands,ncycs,angleCycs);
lo_ind = nbands*angleCycs+1;;
dims = pind(1,:);
ctr = ceil((dims+0.5)/2);
% log_rad = log_rad + 1;
Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave.
if any(levs > 1)
lodims = ceil((dims-0.5)/(2^((ncycs))));
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
nlog_rad_ctr = log_rad(lostart(1):loend(1),lostart(2):loend(2));
nlog_rad = zeros(dims);
nlog_rad(lostart(1):loend(1),lostart(2):loend(2)) = nlog_rad_ctr;
nangle = angle;
% nangle = angle(lostart(1):loend(1),lostart(2):loend(2));
if (size(pind,1) > lo_ind)
if ifSave == 0
nresdft = reconSFpyrLevs_o( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)),...
pind(lo_ind:size(pind,1),:), ...
log_rad, Xrcos, Yrcos, nangle, nbands, ifSave, band_ind+angleCycs*nbands, levs-1, bands, ncycs+1, angleCycs);
else
nresdft = reconSFpyrLevs_o( pyr,...
pind(lo_ind:size(pind,1),:), ...
log_rad, Xrcos, Yrcos, nangle, nbands, ifSave, band_ind+angleCycs*nbands, levs-1, bands, ncycs+1, angleCycs);
end
else
if ifSave == 0
nresdft = fftshift(fft2(pyrBand(pyr,pind,lo_ind)));
else
nresdft = fftshift(fft2(pyrBand(pyr,pind,1)));
end
end
YIrcos = sqrt(abs(1.0 - Yrcos.^2));
lomask = pointOp(nlog_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
% lomask = zeros(dims);
% lomask(lostart(1):loend(1),lostart(2):loend(2)) = lomask_ctr;
resdft = zeros(dims);
resdft = nresdft .* lomask;
else
resdft = zeros(dims);
end
if any(levs == 1)
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1),0);
angle_increment = pi/nbands/angleCycs;
ind = 1;
for b = 1:nbands
if any(bands == b)
angle_start = Xcosn(1)+pi*(b-1)/nbands;
for jj = 1:angleCycs
anglemask = pointOp(angle,Ycosn,angle_start+(jj-1)*angle_increment,Xcosn(2)-Xcosn(1));
if ifSave == 0
band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2));
else
band_name = sprintf('band_%04d.dat', band_ind);
fp = fopen(band_name, 'r');
sz = fread(fp, 2, 'int32');
band = fread(fp, sz', 'float32');
fclose(fp);
band_ind = band_ind+1;
end
banddft = fftshift(fft2(band));
resdft = resdft + (sqrt(-1))^(nbands-1) * banddft.*anglemask.*himask/angleCycs;
ind = ind + prod(dims);
end
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
modulateFlip.m
|
.m
|
imageProcessing-master/HDR/hdr_code/modulateFlip.m
| 461 |
utf_8
|
92f12f8068fcf49b9863851f106a5aa3
|
% [HFILT] = modulateFlipShift(LFILT)
%
% QMF/Wavelet highpass filter construction: modulate by (-1)^n,
% reverse order (and shift by one, which is handled by the convolution
% routines). This is an extension of the original definition of QMF's
% (e.g., see Simoncelli90).
% Eero Simoncelli, 7/96.
function [hfilt] = modulateFlipShift(lfilt)
lfilt = lfilt(:);
sz = size(lfilt,1);
sz2 = ceil(sz/2);
ind = [sz:-1:1]';
hfilt = lfilt(ind) .* (-1).^(ind-sz2);
|
github
|
jacksky64/imageProcessing-master
|
gradient_guidedfilter.m
|
.m
|
imageProcessing-master/gradientGuidedFilter/gradient_guidedfilter.m
| 2,466 |
utf_8
|
47bb2aa5ef4702d96d8d32ce34aa3731
|
function q = gradient_guidedfilter(I, p, eps)
% GUIDEDFILTER O(1) time implementation of guided filter.
%
% - guidance image: I (should be a gray-scale/single channel image)
% - filtering input image: p (should be a gray-scale/single channel image)
% - regularization parameter: eps
r=16;
[hei, wid] = size(I);
N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary pixels.
mean_I = boxfilter(I, r) ./ N;
mean_p = boxfilter(p, r) ./ N;
mean_Ip = boxfilter(I.*p, r) ./ N;
cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local patch.
mean_II = boxfilter(I.*I, r) ./ N;
var_I = mean_II - mean_I .* mean_I;
%weight
epsilon=(0.001*(max(p(:))-min(p(:))))^2;
r1=1;
N1 = boxfilter(ones(hei, wid), r1); % the size of each local patch; N=(2r+1)^2 except for boundary pixels.
mean_I1 = boxfilter(I, r1) ./ N1;
mean_II1 = boxfilter(I.*I, r1) ./ N1;
var_I1 = mean_II1 - mean_I1 .* mean_I1;
chi_I=sqrt(abs(var_I1.*var_I));
weight=(chi_I+epsilon)/(mean(chi_I(:))+epsilon);
gamma = (4/(mean(chi_I(:))-min(chi_I(:))))*(chi_I-mean(chi_I(:)));
gamma = 1 - 1./(1 + exp(gamma));
%result
a = (cov_Ip + (eps./weight).*gamma) ./ (var_I + (eps./weight));
b = mean_p - a .* mean_I;
mean_a = boxfilter(a, r) ./ N;
mean_b = boxfilter(b, r) ./ N;
q = mean_a .* I + mean_b;
end
function imDst = boxfilter(imSrc, r)
% BOXFILTER O(1) time box filtering using cumulative sum
%
% - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));
% - Running time independent of r;
% - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);
% - But much faster.
[hei, wid] = size(imSrc);
imDst = zeros(size(imSrc));
%cumulative sum over Y axis
imCum = cumsum(imSrc, 1);
%difference over Y axis
imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);
%cumulative sum over X axis
imCum = cumsum(imDst, 2);
%difference over X axis
imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end
|
github
|
jacksky64/imageProcessing-master
|
NLMF.m
|
.m
|
imageProcessing-master/nlmeans/NLMF.m
| 8,859 |
utf_8
|
5102383567c3b678cd4b448e84668b79
|
function J=NLMF(I,Options)
% This function NLMF performs Non-Local Means noise filtering of
% 2D grey/color or 3D image data. The function is partly c-coded for
% cpu efficient filtering.
%
% Principle NL-Mean filter:
% A local pixel region (patch) around a pixel is compared to patches
% of pixels in the neighbourhood. The centerpixels of the patches are
% averaged depending on the quadratic pixel distance between the patches.
%
% Function:
%
% J = NLMF( I, Options);
%
% inputs,
% I : 2D grey/color or 3D image data, of type Single or Double
% in range [0..1]
% Options : Struct with options
%
% outputs,
% J : The NL-means filtered image or image volume
%
% options,
% Options.kernelratio : Radius of local Patch (default 3)
% Options.windowratio : Radius of neighbourhood search window (default 3)
% Options.filterstrength : Strength of the NLMF filtering (default 0.05)
% Options.blocksize : The image is split in sub-blocks for efficienter
% memory usage, (default 2D: 150, default 3D: 32);
% Options.nThreads : Number of CPU Threads used default (2);
% Options.verbose : When set to true display information (default false)
%
% Beta Options:
% Options.enablepca : Do PCA on the patches to reduce amount of
% calculations (default false)
% Options.pcaskip : To reduce amount of PCA calculations the data for PCA
% is first reduced with V(:,1:pcaskip:end) (default 10)
% Options.pcane : Number of eigenvectors used (default 25)
%
% Literature:
% - Non local filter proposed for A. Buades, B. Coll and J.M. Morel
% "A non-local algorithm for image denoising"
% - Basic Matlab implementation of Jose Vicente Manjon-Herrera
%
%
% First Compile c-code!!!!, with :
% mex vectors_nlmeans_single.c -v
% mex image2vectors_single.c -v
% mex vectors_nlmeans_double.c -v
% mex image2vectors_double.c -v
%
% Example 2D greyscale,
% I=im2double(imread('moon.tif'));
% Options.kernelratio=4;
% Options.windowratio=4;
% Options.verbose=true;
% J=NLMF(I,Options);
% figure,
% subplot(1,2,1),imshow(I); title('Noisy image')
% subplot(1,2,2),imshow(J); title('NL-means image');
%
% Example 2D color,
% I=im2double(imread('lena.jpg'));
% I=imnoise(I,'gaussian',0.01);
% Options.kernelratio=4;
% Options.windowratio=4;
% Options.verbose=true;
% Options.filterstrength=0.1;
% J=NLMF(I,Options);
% figure,
% subplot(1,2,1),imshow(I); title('Noisy image')
% subplot(1,2,2),imshow(J); title('NL-means image');
%
% Example 3D,
% load('mri');
% D=squeeze(D); D=single(D); D=D./max(D(:));
% Options.verbose=true;
% Options.blocksize=45;
% V=NLMF(D,Options);
% figure,
% subplot(1,2,1),imshow(imresize(D(:,:,3),5),[]); title('Noisy slice')
% subplot(1,2,2),imshow(imresize(V(:,:,3),5),[]); title('NL-means slice')
%
% See also NLMF2Dtree.
%
% Function is written by D.Kroon University of Twente (April 2010)
if((min(I(:))<0)||(max(I(:))>1)),
warning('NLMF:inputs','Preferable data range [0..1]');
end
if((~isa(I,'double'))&&(~isa(I,'single')))
error('NLMF:inputs','Input data must be single or double');
end
is2D=size(I,3)<4;
% Process inputs
defaultoptions=struct('kernelratio',3,'windowratio',3,'filterstrength',0.05,'blocksize',150,'nThreads',2,'verbose',false,'enablepca',false,'pcaskip',10,'pcane',25);
if(is2D), defaultoptions.blocksize=150; else defaultoptions.blocksize=32; end
if(~exist('Options','var')), Options=defaultoptions;
else
tags = fieldnames(defaultoptions);
for i=1:length(tags), if(~isfield(Options,tags{i})), Options.(tags{i})=defaultoptions.(tags{i}); end, end
if(length(tags)~=length(fieldnames(Options))),
warning('NLMF:unknownoption','unknown options found');
end
end
kernelratio=round(Options.kernelratio);
windowratio=round(Options.windowratio);
filterstrength=Options.filterstrength;
blocksize=round(Options.blocksize);
nThreads=round(Options.nThreads);
verbose=Options.verbose;
enablepca=Options.enablepca;
pcaskip=round(Options.pcaskip);
pcane=round(Options.pcane);
if(is2D)
Ipad = padarray(I,[kernelratio+windowratio kernelratio+windowratio],'symmetric'); %,
else
Ipad = padarray(I,[kernelratio+windowratio kernelratio+windowratio kernelratio+windowratio],'symmetric'); %,
end
% Separate the image into smaller blocks, for less memory usage
% and efficient cpu-cache usage.
block=makeBlocks(kernelratio,windowratio, blocksize, I, Ipad, is2D);
tic; erms='***';
J=zeros(size(I),class(Ipad));
for i=1:length(block);
if(verbose)
disp(['Processing Block ' num2str(i) ' of ' num2str(length(block)) ' estimated time remaining ' erms]);
end
if(is2D)
Iblock=Ipad(block(i).x1:block(i).x2,block(i).y1:block(i).y2,:);
else
Iblock=Ipad(block(i).x1:block(i).x2,block(i).y1:block(i).y2,block(i).z1:block(i).z2);
end
if(isa(Ipad,'double'))
% Get the local patches of every pixel-coordinate in the block
V=image2vectors_double(double(Iblock),double(kernelratio),double(nThreads));
else
V=image2vectors_single(single(Iblock),single(kernelratio),single(nThreads));
end
if(enablepca)
% Do PCA on the block
[Evalues, Evectors, x_mean]=PCA(V(:,1:pcaskip:end),pcane);
% Project the block to the reduced PCA feature space
V = Evectors'*(V-repmat(x_mean,1,size(V,2)));
end
% Do NL-means on the vectors in the block
if(isa(Ipad,'double'))
Iblock_filtered=vectors_nlmeans_double(double(Iblock),double(V),double(kernelratio),double(windowratio),double(filterstrength),double(nThreads));
else
Iblock_filtered=vectors_nlmeans_single(single(Iblock),single(V),single(kernelratio),single(windowratio),single(filterstrength),single(nThreads));
end
if(is2D)
J(block(i).x3:block(i).x4,block(i).y3:block(i).y4,:)=Iblock_filtered;
else
J(block(i).x3:block(i).x4,block(i).y3:block(i).y4,block(i).z3:block(i).z4)=Iblock_filtered;
end
if(verbose)
t=toc; erm=(t/i)*(length(block)-i); erms=num2str(erm);
end
end
toc;
function block=makeBlocks(kernelratio,windowratio,blocksize, I,Ipad, is2D)
block=struct;
i=0;
blocksize_real=blocksize-(kernelratio+windowratio)*2;
if(is2D)
for y1=1:blocksize_real:size(Ipad,2)
for x1=1:blocksize_real:size(Ipad,1)
x2=x1+blocksize-1; y2=y1+blocksize-1;
x2=max(min(x2,size(Ipad,1)),1);
y2=max(min(y2,size(Ipad,2)),1);
x3=x1; y3=y1;
x4=min(x1+blocksize_real-1,size(I,1));
y4=min(y1+blocksize_real-1,size(I,2));
if((x4>=x3)&&(y4>=y3))
i=i+1;
block(i).x1=x1; block(i).y1=y1; block(i).x2=x2; block(i).y2=y2;
block(i).x3=x3; block(i).y3=y3; block(i).x4=x4; block(i).y4=y4;
end
end
end
else
for z1=1:blocksize_real:size(Ipad,3)
for y1=1:blocksize_real:size(Ipad,2)
for x1=1:blocksize_real:size(Ipad,1)
x2=x1+blocksize-1; y2=y1+blocksize-1; z2=z1+blocksize-1;
x2=max(min(x2,size(Ipad,1)),1);
y2=max(min(y2,size(Ipad,2)),1);
z2=max(min(z2,size(Ipad,3)),1);
x3=x1; y3=y1; z3=z1;
x4=min(x1+blocksize_real-1,size(I,1));
y4=min(y1+blocksize_real-1,size(I,2));
z4=min(z1+blocksize_real-1,size(I,3));
if((x4>=x3)&&(y4>=y3)&&(z4>=z3))
i=i+1;
block(i).x1=x1; block(i).y1=y1; block(i).z1=z1;
block(i).x2=x2; block(i).y2=y2; block(i).z2=z2;
block(i).x3=x3; block(i).y3=y3; block(i).z3=z3;
block(i).x4=x4; block(i).y4=y4; block(i).z4=z4;
end
end
end
end
end
function [Evalues, Evectors, x_mean]=PCA(x,ne)
% PCA using Single Value Decomposition
% Obtaining mean vector, eigenvectors and eigenvalues
%
% [Evalues, Evectors, x_mean]=PCA(x,ne);
%
% inputs,
% X : M x N matrix with M the trainingvector length and N the number
% of training data sets
% ne : Max number of eigenvalues
% outputs,
% Evalues : The eigen values of the data
% Evector : The eigen vectors of the data
% x_mean : The mean training vector
%
s=size(x,2);
% Calculate the mean
x_mean=sum(x,2)/s;
% Substract the mean
x2=(x-repmat(x_mean,1,s))/ sqrt(s-1);
% Do the SVD
[U2,S2] = svds(x2,ne,'L',struct('tol',1e-4));
Evalues=diag(S2).^2;
Evectors=U2;
|
github
|
jacksky64/imageProcessing-master
|
circ_kuipertest.m
|
.m
|
imageProcessing-master/CircularStatistics/circ_kuipertest.m
| 3,076 |
utf_8
|
17975f8427b61f430b01b39bea0a0b92
|
function [pval, k, K] = circ_kuipertest(alpha1, alpha2, res, vis_on)
% [pval, k, K] = circ_kuipertest(sample1, sample2, res, vis_on)
%
% The Kuiper two-sample test tests whether the two samples differ
% significantly.The difference can be in any property, such as mean
% location and dispersion. It is a circular analogue of the
% Kolmogorov-Smirnov test.
%
% H0: The two distributions are identical.
% HA: The two distributions are different.
%
% Input:
% alpha1 fist sample (in radians)
% alpha2 second sample (in radians)
% res resolution at which the cdf is evaluated
% vis_on display graph
%
% Output:
% pval p-value; the smallest of .10, .05, .02, .01, .005, .002,
% .001, for which the test statistic is still higher
% than the respective critical value. this is due to
% the use of tabulated values. if p>.1, pval is set to 1.
% k test statistic
% K critical value
%
% References:
% Batschelet, 1980, p. 112
%
% Circular Statistics Toolbox for Matlab
% Update 2012
% By Marc J. Velasco and Philipp Berens, 2009
% [email protected]
if nargin < 3
res = 100;
end
if nargin < 4
vis_on = 0;
end
n = length(alpha1(:));
m = length(alpha2(:));
% create cdfs of both samples
[phis1 cdf1 phiplot1 cdfplot1] = circ_samplecdf(alpha1, res);
[foo, cdf2 phiplot2 cdfplot2] = circ_samplecdf(alpha2, res); %#ok<ASGLU>
% maximal difference between sample cdfs
[dplus, gdpi] = max([0 cdf1-cdf2]);
[dminus, gdmi] = max([0 cdf2-cdf1]);
% calculate k-statistic
k = n * m * (dplus + dminus);
% find p-value
[pval K] = kuiperlookup(min(n,m),k/sqrt(n*m*(n+m)));
K = K * sqrt(n*m*(n+m));
% visualize
if vis_on
figure
plot(phiplot1, cdfplot1, 'b', phiplot2, cdfplot2, 'r');
hold on
plot([phis1(gdpi-1), phis1(gdpi-1)], [cdf1(gdpi-1) cdf2(gdpi-1)], 'o:g');
plot([phis1(gdmi-1), phis1(gdmi-1)], [cdf1(gdmi-1) cdf2(gdmi-1)], 'o:g');
hold off
set(gca, 'XLim', [0, 2*pi]);
set(gca, 'YLim', [0, 1.1]);
xlabel('Circular Location')
ylabel('Sample CDF')
title('CircStat: Kuiper test')
h = legend('Sample 1', 'Sample 2', 'Location', 'Southeast');
set(h,'box','off')
set(gca, 'XTick', pi*(0:.25:2))
set(gca, 'XTickLabel', {'0', '', '', '', 'pi', '', '', '', '2pi'})
end
end
function [p K] = kuiperlookup(n, k)
load kuipertable.mat;
alpha = [.10, .05, .02, .01, .005, .002, .001];
nn = ktable(:,1); %#ok<NODEF>
% find correct row of the table
[easy row] = ismember(n, nn);
if ~easy
% find closest value if no entry is present)
row = length(nn) - sum(n<nn);
if row == 0
error('N too small.');
else
warning('N=%d not found in table, using closest N=%d present.',n,nn(row)) %#ok<WNTAG>
end
end
% find minimal p-value and test-statistic
idx = find(ktable(row,2:end)<k,1,'last');
if ~isempty(idx)
p = alpha(idx);
else
p = 1;
end
K = ktable(row,idx+1);
end
|
github
|
jacksky64/imageProcessing-master
|
circ_clust.m
|
.m
|
imageProcessing-master/CircularStatistics/circ_clust.m
| 3,346 |
utf_8
|
09f16d972b35b7b7b55b361710748587
|
function [cid, alpha, mu] = circ_clust(alpha, numclust, disp)
%
% [cid, alpha, mu] = circClust(alpha, numclust, disp)
% Performs a simple agglomerative clustering of angular data.
%
% Input:
% alpha sample of angles
% numclust number of clusters desired, default: 2
% disp show plot at each step, default: false
%
% Output:
% cid cluster id for each entry of alpha
% alpha sorted angles, matched with cid
% mu mean direction of angles in each cluster
%
% Run without any input arguments for demo mode.
%
% Circular Statistics Toolbox for Matlab
% By Marc J. Velasco and Philipp Berens, 2009
% [email protected]
% Distributed under Open Source BSD License
if nargin < 2, numclust = 5; end;
if nargin < 3, disp = 0; end
if nargin < 1
% demo mode
n = 20;
alpha = 2*pi*rand(n,1)-pi;
numclust = 4;
disp = 1;
end;
n = length(alpha);
if n < numclust, error('Not enough data for clusters.'), end
% prepare data
cid = (1:n)';
% main clustering loop
num_unique = length(unique(cid));
num_clusters_wanted = numclust;
while(num_unique > num_clusters_wanted)
% find centroid means...
% calculate the means for each putative cluster
mu = NaN(n,1);
for j=1:n
if sum(cid==j)>0
mu(j) = circ_mean(alpha(cid==j)');
end
end
% find distance between centroids...
mudist = abs(circ_dist2(mu));
% find closest pair of clusters/datapoints
mindist = min(mudist(tril(ones(size(mudist)),-1)==1));
[row, col] = find(mudist==mindist);
% update cluster id's
cid(cid==max(row)) = min(col);
% update stop criteria
num_unique = length(unique(cid));
end
% renumber cluster ids (so cids [1 3 7 10] => [1 2 3 4]
cid2 = cid;
uniquecids = unique(cid);
for j=1:length(uniquecids)
cid(cid2==uniquecids(j)) = j;
end
% compute final cluster means
mu = NaN(num_unique,1);
r = NaN(num_unique,1);
for j=1:num_unique
if sum(cid==j)>0
mu(j) = circ_mean(alpha(cid==j)');
r(j) = circ_r(alpha(cid==j)');
end
end
if disp
% plot output
z2 = exp(1i*alpha);
plotColor(real(z2), imag(z2), cid, 2)
zmu = r.*exp(1i*mu);
plotColor(real(zmu), imag(zmu), 1:num_unique, 2, '*', 10, 1)
axis square
set(gca, 'XLim', [-1, 1]);
set(gca, 'YLim', [-1, 1]);
end
function plotColor(x, y, c, varargin)
% FUNCTION plotColor(x, y, c, [figurenum], [pstring], [markersize], [overlay_tf]);
% plots a scatter plot for x, y, using color values in c (c should be
% categorical info), with c same size as x and y;
% fourth argument can be figure#, otherwise, uses figure(1);
%
% colors should be positive integes
% copyright (c) 2009 Marc J. Velasco
if nargin < 4
figurenum = 1;
else
figurenum = varargin{1};
end
if nargin < 5
pstring = '.';
else
pstring = varargin{2};
end
if nargin < 6
ms = 10;
else
ms = varargin{3};
end
if nargin < 7
overlay = 0;
else
overlay = varargin{4};
end
csmall = unique(c);
figure(figurenum);
if ~overlay, close(figurenum); end
figure(figurenum);
colors={'y', 'b', 'r', 'g', 'c', 'k', 'm'};
hold on;
for j=1:length(csmall);
ci = (c == csmall(j));
plot(x(ci), y(ci), strcat(pstring, colors{mod(j, length(colors))+1}), 'MarkerSize', ms);
end
if ~overlay, hold off; end
figure(figurenum)
|
github
|
jacksky64/imageProcessing-master
|
circ_raotest.m
|
.m
|
imageProcessing-master/CircularStatistics/circ_raotest.m
| 4,132 |
utf_8
|
a088b9d557b94032992d192ef76b8fd4
|
function [p U UC] = circ_raotest(alpha)
% [p U UC] = circ_raotest(alpha)
% Calculates Rao's spacing test by comparing distances between points on
% a circle to those expected from a uniform distribution.
%
% H0: Data is distributed uniformly around the circle.
% H1: Data is not uniformly distributed around the circle.
%
% Alternative to the Rayleigh test and the Omnibus test. Less powerful
% than the Rayleigh test when the distribution is unimodal on a global
% scale but uniform locally.
%
% Due to the complexity of the distributioin of the test statistic, we
% resort to the tables published by
% Russell, Gerald S. and Levitin, Daniel J.(1995)
% 'An expanded table of probability values for rao's spacing test'
% Communications in Statistics - Simulation and Computation
% Therefore the reported p-value is the smallest alpha level at which the
% test would still be significant. If the test is not significant at the
% alpha=0.1 level, we return the critical value for alpha = 0.05 and p =
% 0.5.
%
% Input:
% alpha sample of angles
%
% Output:
% p smallest p-value at which test would be significant
% U computed value of the test-statistic u
% UC critical value of the test statistic at sig-level
%
%
% References:
% Batschelet, 1981, Sec 4.6
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% [email protected]
alpha = alpha(:);
% for the purpose of the test, convert to angles
alpha = circ_rad2ang(alpha);
n = length(alpha);
alpha = sort(alpha);
% compute test statistic
U = 0;
lambda = 360/n;
for j = 1:n-1
ti = alpha(j+1) - alpha(j);
U = U + abs(ti - lambda);
end
tn = (360 - alpha(n) + alpha(1));
U = U + abs(tn-lambda);
U = (1/2)*U;
% get critical value from table
[p UC] = getVal(n,U);
function [p UC] = getVal(N, U)
% Table II from Russel and Levitin, 1995
alpha = [0.001, .01, .05, .10];
table = [ 4 247.32, 221.14, 186.45, 168.02;
5 245.19, 211.93, 183.44, 168.66;
6 236.81, 206.79, 180.65, 166.30;
7 229.46, 202.55, 177.83, 165.05;
8 224.41, 198.46, 175.68, 163.56;
9 219.52, 195.27, 173.68, 162.36;
10 215.44, 192.37, 171.98, 161.23;
11 211.87, 189.88, 170.45, 160.24;
12 208.69, 187.66, 169.09, 159.33;
13 205.87, 185.68, 167.87, 158.50;
14 203.33, 183.90, 166.76, 157.75;
15 201.04, 182.28, 165.75, 157.06;
16 198.96, 180.81, 164.83, 156.43;
17 197.05, 179.46, 163.98, 155.84;
18 195.29, 178.22, 163.20, 155.29;
19 193.67, 177.08, 162.47, 154.78;
20 192.17, 176.01, 161.79, 154.31;
21 190.78, 175.02, 161.16, 153.86;
22 189.47, 174.10, 160.56, 153.44;
23 188.25, 173.23, 160.01, 153.05;
24 187.11, 172.41, 159.48, 152.68;
25 186.03, 171.64, 158.99, 152.32;
26 185.01, 170.92, 158.52, 151.99;
27 184.05, 170.23, 158.07, 151.67;
28 183.14, 169.58, 157.65, 151.37;
29 182.28, 168.96, 157.25, 151.08;
30 181.45, 168.38, 156.87, 150.80;
35 177.88, 165.81, 155.19, 149.59;
40 174.99, 163.73, 153.82, 148.60;
45 172.58, 162.00, 152.68, 147.76;
50 170.54, 160.53, 151.70, 147.05;
75 163.60, 155.49, 148.34, 144.56;
100 159.45, 152.46, 146.29, 143.03;
150 154.51, 148.84, 143.83, 141.18;
200 151.56, 146.67, 142.35, 140.06;
300 148.06, 144.09, 140.57, 138.71;
400 145.96, 142.54, 139.50, 137.89;
500 144.54, 141.48, 138.77, 137.33;
600 143.48, 140.70, 138.23, 136.91;
700 142.66, 140.09, 137.80, 136.59;
800 142.00, 139.60, 137.46, 136.33;
900 141.45, 139.19, 137.18, 136.11;
1000 140.99, 138.84, 136.94, 135.92 ];
ridx = find(table(:,1)>=N,1);
cidx = find(table(ridx,2:end)<U,1);
if ~isempty(cidx)
UC = table(ridx,cidx+1);
p = alpha(cidx);
else
UC = table(ridx,end-1);
p = .5;
end
|
github
|
jacksky64/imageProcessing-master
|
circ_cmtest.m
|
.m
|
imageProcessing-master/CircularStatistics/circ_cmtest.m
| 2,127 |
utf_8
|
b8057e2fbbbaef56584aa347fe5c81cd
|
function [pval med P] = circ_cmtest(varargin)
%
% [pval, med, P] = circ_cmtest(alpha, idx)
% [pval, med, P] = circ_cmtest(alpha1, alpha2)
% Non parametric multi-sample test for equal medians. Similar to a
% Kruskal-Wallis test for linear data.
%
% H0: the s populations have equal medians
% HA: the s populations have unequal medians
%
% Input:
% alpha angles in radians
% idx indicates which population the respective angle in alpha
% comes from, 1:s
%
% Output:
% pval p-value of the common median multi-sample test. Discard H0 if
% pval is small.
% med best estimate of shared population median if H0 is not
% discarded at the 0.05 level and NaN otherwise.
% P test statistic of the common median test.
%
%
% PHB 7/19/2009
%
% References:
% Fisher NI, 1995
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% [email protected] - www.kyb.mpg.de/~berens/circStat.html
[alpha, idx] = processInput(varargin{:});
% number of groups
u = unique(idx);
s = length(u);
% number of samples
N = length(idx);
% total median
med = circ_median(alpha);
% compute relevant quantitites
n = zeros(s,1); m = n;
for t=1:s
pidx = idx == u(t);
n(t) = sum(pidx);
d = circ_dist(alpha(pidx),med);
m(t) = sum(d<0);
end
if any(n<10)
warning('Test not applicable. Sample size in at least one group to small.') %#ok<WNTAG>
end
M = sum(m);
P = (N^2/(M*(N-M))) * sum(m.^2 ./ n) - N*M/(N-M);
pval = 1 - chi2cdf(P,s-1);
if pval < 0.05
med = NaN;
end
function [alpha, idx] = processInput(varargin)
if nargin==2 && sum(abs(round(varargin{2})-varargin{2}))>1e-5
alpha1 = varargin{1}(:);
alpha2 = varargin{2}(:);
alpha = [alpha1; alpha2];
idx = [ones(size(alpha1)); 2*ones(size(alpha2))];
elseif nargin==2
alpha = varargin{1}(:);
idx = varargin{2}(:);
if ~(size(idx,1)==size(alpha,1))
error('Input dimensions do not match.')
end
else
error('Invalid use of circ_wwtest. Type help circ_wwtest.')
end
|
github
|
jacksky64/imageProcessing-master
|
circ_wwtest.m
|
.m
|
imageProcessing-master/CircularStatistics/circ_wwtest.m
| 4,669 |
utf_8
|
2fa4cad8c08ca9d37b358392c2a3fa99
|
function [pval table] = circ_wwtest(varargin)
% [pval, table] = circ_wwtest(alpha, idx, [w])
% [pval, table] = circ_wwtest(alpha1, alpha2, [w1, w2])
% Parametric Watson-Williams multi-sample test for equal means. Can be
% used as a one-way ANOVA test for circular data.
%
% H0: the s populations have equal means
% HA: the s populations have unequal means
%
% Note:
% Use with binned data is only advisable if binning is finer than 10 deg.
% In this case, alpha is assumed to correspond
% to bin centers.
%
% The Watson-Williams two-sample test assumes underlying von-Mises
% distributrions. All groups are assumed to have a common concentration
% parameter k.
%
% Input:
% alpha angles in radians
% idx indicates which population the respective angle in alpha
% comes from, 1:s
% [w number of incidences in case of binned angle data]
%
% Output:
% pval p-value of the Watson-Williams multi-sample test. Discard H0 if
% pval is small.
% table cell array containg the ANOVA table
%
% PHB 3/19/2009
%
% References:
% Biostatistical Analysis, J. H. Zar
%
% Circular Statistics Toolbox for Matlab
% Update 2012
% By Philipp Berens, 2009
% [email protected] - www.kyb.mpg.de/~berens/circStat.html
[alpha, idx, w] = processInput(varargin{:});
% number of groups
u = unique(idx);
s = length(u);
% number of samples
n = sum(w);
% compute relevant quantitites
pn = zeros(s,1); pr = pn;
for t=1:s
pidx = idx == u(t);
pn(t) = sum(pidx.*w);
pr(t) = circ_r(alpha(pidx),w(pidx));
end
r = circ_r(alpha,w);
rw = sum(pn.*pr)/n;
% make sure assumptions are satisfied
checkAssumption(rw,mean(pn))
% test statistic
kk = circ_kappa(rw);
beta = 1+3/(8*kk); % correction factor
A = sum(pr.*pn) - r*n;
B = n - sum(pr.*pn);
F = beta * (n-s) * A / (s-1) / B;
pval = 1 - fcdf(F,s-1,n-s);
na = nargout;
if na < 2
printTable;
end
prepareOutput;
function printTable
fprintf('\nANALYSIS OF VARIANCE TABLE (WATSON-WILLIAMS TEST)\n\n');
fprintf('%s\t\t\t\t%s\t%s\t\t%s\t\t%s\t\t\t%s\n', ' ' ,'d.f.', 'SS', 'MS', 'F', 'P-Value');
fprintf('--------------------------------------------------------------------\n');
fprintf('%s\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', 'Columns', s-1 , A, A/(s-1), F, pval);
fprintf('%s\t\t%u\t\t%.2f\t%.2f\n', 'Residual ', n-s, B, B/(n-s));
fprintf('--------------------------------------------------------------------\n');
fprintf('%s\t\t%u\t\t%.2f', 'Total ',n-1,A+B);
fprintf('\n\n')
end
function prepareOutput
if na > 1
table = {'Source','d.f.','SS','MS','F','P-Value'; ...
'Columns', s-1 , A, A/(s-1), F, pval; ...
'Residual ', n-s, B, B/(n-s), [], []; ...
'Total',n-1,A+B,[],[],[]};
end
end
end
function checkAssumption(rw,n)
if n >= 11 && rw<.45
warning('Test not applicable. Average resultant vector length < 0.45.') %#ok<WNTAG>
elseif n<11 && n>=7 && rw<.5
warning('Test not applicable. Average number of samples per population 6 < x < 11 and average resultant vector length < 0.5.') %#ok<WNTAG>
elseif n>=5 && n<7 && rw<.55
warning('Test not applicable. Average number of samples per population 4 < x < 7 and average resultant vector length < 0.55.') %#ok<WNTAG>
elseif n < 5
warning('Test not applicable. Average number of samples per population < 5.') %#ok<WNTAG>
end
end
function [alpha, idx, w] = processInput(varargin)
if nargin == 4
alpha1 = varargin{1}(:);
alpha2 = varargin{2}(:);
w1 = varargin{3}(:);
w2 = varargin{4}(:);
alpha = [alpha1; alpha2];
idx = [ones(size(alpha1)); ones(size(alpha2))];
w = [w1; w2];
elseif nargin==2 && sum(abs(round(varargin{2})-varargin{2}))>1e-5
alpha1 = varargin{1}(:);
alpha2 = varargin{2}(:);
alpha = [alpha1; alpha2];
idx = [ones(size(alpha1)); 2*ones(size(alpha2))];
w = ones(size(alpha));
elseif nargin==2
alpha = varargin{1}(:);
idx = varargin{2}(:);
if ~(size(idx,1)==size(alpha,1))
error('Input dimensions do not match.')
end
w = ones(size(alpha));
elseif nargin==3
alpha = varargin{1}(:);
idx = varargin{2}(:);
w = varargin{3}(:);
if ~(size(idx,1)==size(alpha,1))
error('Input dimensions do not match.')
end
if ~(size(w,1)==size(alpha,1))
error('Input dimensions do not match.')
end
else
error('Invalid use of circ_wwtest. Type help circ_wwtest.')
end
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_16.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_16.m
| 3,364 |
utf_8
|
0ade8fba8eb8747a729134b3667dbc45
|
function [] = GUI_16()
% Demonstrate display & change a slider's position & limits with edit boxes
% This is an extension of GUI_13. Slide the slider and it's position will
% be shown in the editbox. Enter a valid number in the editbox and the
% slider will be moved to that position. If the number entered is outside
% the range of the slider, the number will be reset. The range of the
% slider will be shown in two editboxes on either side of the slider. The
% user may change the range of the slider, as long as valid entries are
% made.
%
% Suggested exercise: Notice that any number (>min) is acceptable for the
% max range number, and that when max is chosen such that max < value,
% value is set equal to max. Modify the code to restrict max>=value. Do
% similarly for the min.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 390 100],...
'menubar','none',...
'name','GUI_16',...
'numbertitle','off',...
'resize','off');
S.sl = uicontrol('style','slide',...
'unit','pix',...
'position',[60 10 270 30],...
'min',1,'max',100,'val',50);
S.ed(1) = uicontrol('style','edit',...
'unit','pix',...
'position',[10 10 40 30],...
'fontsize',12,...
'string','1'); % Displays the min.
S.ed(2) = uicontrol('style','edit',...
'unit','pix',...
'position',[60 50 270 30],...
'fontsize',16,...
'string','50'); % Displays the value.
S.ed(3) = uicontrol('style','edit',...
'unit','pix',...
'position',[340 10 40 30],...
'fontsize',12,...
'string','100'); % Displays the max.
set([S.ed(:);S.sl],'call',{@sl_call,S}); % Shared Callback.
function [] = sl_call(varargin)
% Callback for the edit box and slider.
[h,S] = varargin{[1,3]}; % Get calling handle and structure.
SL = get(S.sl,{'min','value','max'}); % Get the slider's info.
E = str2double(get(h,'string')); % Numerical edit string.
switch h % Who called?
case S.ed(1)
if E <= SL{2}
set(S.sl,'min',E) % E is less than current value.
elseif E < SL{3}
set(S.sl,'val',E,'min',E) % E is less than max value.
set(S.ed(2),'string',E) % Set the current display.
else
set(h,'string',SL{1}) % Reset the value.
end
case S.ed(2)
if E >= SL{1} && E <= SL{3}
set(S.sl,'value',E) % E falls within range of slider.
else
set(h,'string',SL{2}) % User tried to set slider out of range.
end
case S.ed(3)
if E >= SL{2}
set(S.sl,'max',E) % E is less than current value.
elseif E > SL{1}
set(S.sl,'val',E,'max',E) % E is less than max value.
set(S.ed(2),'string',E) % Set the current display.
else
set(h,'string',SL{3}) % Reset the value.
end
case S.sl
set(S.ed(2),'string',SL{2}) % Set edit to current slider.
otherwise
% Do nothing
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_20.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_20.m
| 1,133 |
utf_8
|
baa2b98b80f0e2394082510ae7521e56
|
function [] = GUI_20()
% Demonstrate how to get the chosen string from a popup.
% Creates a popup and an editbox. When the user selects a choice from the
% popup, this choice will appear in the editbox.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 110],...
'menubar','none',...
'name','GUI_20',...
'numbertitle','off',...
'resize','off');
S.pp = uicontrol('style','pop',...
'units','pixels',...
'position',[20 10 260 40],...
'string',{'one','two','three','four'});
S.ed = uicontrol('style','edit',...
'units','pix',...
'position',[20 60 260 30],...
'fontsize',16,'string','one');
set(S.pp,'callback',{@pp_call,S}); % Set the callback.
function [] = pp_call(varargin)
% Callback for the popup.
S = varargin{3}; % Get the structure.
P = get(S.pp,{'string','val'}); % Get the user's choice.
set(S.ed,'string',P{1}{P{2}}); % Assign the user's choice to the edit.
|
github
|
jacksky64/imageProcessing-master
|
GUI_38.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_38.m
| 3,702 |
utf_8
|
44078247e33ee9a9b11606f99d9272d3
|
function [] = GUI_38()
% Demonstrate bringing the focus to the figure after callback using JAVA.
% This is an extension of GUI_5. In this case we have both a keypressfcn
% and a buttonpressfcn for the figure. Here the word Keypress is printed
% to the command window when a key is pressed while the figure has focus.
% Likewise the word ButtonDown is printed to the command window when the
% mouse is pressed in an area of the figure which is not over a uicontrol.
% When the GUI is first created, the figure has focus, so pressing a key
% triggers the keypressfcn of the figure. After pushing the pushbutton,
% however, the uicontrol takes focus. In order to make it so the user does
% not have to click in the figure window to give focus back to the figure,
% we simulate a mouseclick in the figure at the end of the callback for the
% pushbutton. In some versions of MATLAB we could do a similar thing
% without calling JAVA, but here we use JAVA for the sake of using JAVA.
% Note that we must write the buttondownfcn for the figure such that the
% JAVA mouseclick doesn't trigger it.
%
% The JAVA code is taken from a newsgroup post by Jan Simon.
% See Yair Altman's website for many more examples.
%
% Author: Matt Fig
% Date: 7/15/2009
S.TF = true;
S.ja = java.awt.Robot; % Define the java AWT object.
S.fh = figure('units','pixels',...
'position',[300 300 300 100],...
'menubar','none',...
'name','GUI_38',...
'numbertitle','off',...
'resize','off');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[20 10 260 30],...
'string','Deleter');
S.tx = uicontrol('style','text',...
'unit','pix',...
'position',[20 50 260 30],...
'fontsize',16,...
'string','DeleteMe');
set(S.pb,'callback',{@pb_call,S})
set(S.fh,'keypressfcn',{@fh_kpfcn},'buttondownfcn',{@fh_bdfcn,S})
function [] = pb_call(varargin)
% Callback for the pushbutton.
S = varargin{3}; % Get the structure.
T = get(S.tx,'string'); % Get the current string.
if isempty(T)
set(S.pb,'backgroundcolor',[1 .5 .5],'string','Nothing to Delete!')
else
set(S.tx,'str',T(1:end-1)); % Delete the last character in string.
end
pos = get(S.fh, 'Position'); % User might have moved figure.
pointpos = get(0,'pointerlocation'); % Current pointer location.
set(0, 'PointerLocation', [pos(1),pos(2)]); % Put pointer at corner of figure.
% Now we simulate a mouseclick on the figure using the JAVA.
S.TF = false; % This tells the fh_bdfcn that it was JAVA clicking.
set(S.fh,'buttondownfcn',{@fh_bdfcn,S}) % Update with the new S.TF
S.ja.mousePress(java.awt.event.InputEvent.BUTTON1_MASK); % Click down
S.ja.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK); % Let up.
set(0,'pointerlocation',pointpos); % Put the pointer back.
pause(.025) % drawnow does NOT work here.
S.TF = true; % So that the user's clicks in figure will work.
set(S.fh,'buttondownfcn',{@fh_bdfcn,S}) % Update the structure.
function [] = fh_kpfcn(varargin)
% Keypressfcn for figure.
disp(' Keypress') % Just so we know that it is working.
function [] = fh_bdfcn(varargin)
% ButtonDownFcn for figure.
S = varargin{3};
if S.TF
% We use the If Statement because we don't want the buttondownfcn to
% execute when the button was pushed by JAVA. All code for the
% function should go into here except the structure extraction.
disp(' ButtonDown') % Just so we know that it is working.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_1.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_1.m
| 1,627 |
utf_8
|
5bb190e41e18f3b455ed103f75ae8309
|
function [] = GUI_1()
% Demonstrate how to delete an entry from a uicontrol string.
% Creates a listbox with some strings in it and a pushbutton. When user
% pushes the pushbutton, the selected entry in the listbox will be deleted.
%
% Suggested exercise: Modify the GUI so when the user deletes a certain
% string, the 'value' property is set to the previous string instead of to
% the first string.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[500 500 200 260],...
'menubar','none',...
'name','GUI_1',...
'numbertitle','off',...
'resize','off');
S.ls = uicontrol('style','list',...
'unit','pix',...
'position',[10 60 180 180],...
'min',0,'max',2,...
'fontsize',14,...
'string',{'one';'two';'three';'four'});
S.pb = uicontrol('style','push',...
'units','pix',...
'position',[10 10 180 40],...
'fontsize',14,...
'string','Delete String',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton, deletes one line from listbox.
S = varargin{3}; % Get the structure.
L = get(S.ls,{'string','value'}); % Get the users choice.
% We need to make sure we don't try to assign an empty string.
if ~isempty(L{1})
L{1}(L{2}(:)) = []; % Delete the selected strings.
set(S.ls,'string',L{1},'val',1) % Set the new string.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_2.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_2.m
| 1,937 |
utf_8
|
ccbe19a7085c9e755fea1e8abe3dbc88
|
function [] = GUI_2()
% Demonstrate how to add a new entry to a uicontrol string.
% Creates a listbox with some strings in it, an editbox and a pushbutton.
% User types some text into the editbox, then pushes the pushbutton. The
% user's text will be added to the top of the listbox.
%
% Suggested exercise: Modify the code so that hitting return after a
% string is typed performs the same task as pushing the pushbutton.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[500 500 200 300],...
'menubar','none',...
'name','GUI_2',...
'numbertitle','off',...
'resize','off');
S.ls = uicontrol('style','list',...
'unit','pix',...
'position',[10 110 180 180],...
'min',0,'max',2,...
'fontsize',14,...
'string',{'one';'two';'three';'four'});
S.ed = uicontrol('style','edit',...
'unit','pix',...
'position',[10 60 180 30],...
'fontsize',14,...
'string','New String');
S.pb = uicontrol('style','push',...
'units','pix',...
'position',[10 10 180 40],...
'fontsize',14,...
'string','Add String',...
'callback',{@ed_call,S});
function [] = ed_call(varargin)
% Callback for pushbutton, adds new string from edit box.
S = varargin{3}; % Get the structure.
oldstr = get(S.ls,'string'); % The string as it is now.
addstr = {get(S.ed,'string')}; % The string to add to the stack.
% The order of the args to cat puts the new string either on top or bottom.
set(S.ls,'str',{addstr{:},oldstr{:}}); % Put the new string on top -OR-
% set(S.ls,'str',{oldstr{:},addstr{:}}); % Put the new string on bottom.
|
github
|
jacksky64/imageProcessing-master
|
GUI_6.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_6.m
| 1,609 |
utf_8
|
a92f49a5c1519b7de8b0a8f74c5895e9
|
function [] = GUI_6()
% Demonstrate how to update one uicontrol with data from others.
% Creates two radiobuttons and a pushbutton. The pushbutton, when clicked
% shows which radio button (or both or none) is currently selected. See
% GUI_8 for similar radiobuttongroup GUI.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[400 400 120 100],...
'menubar','none',...
'name','GUI_6',...
'numbertitle','off',...
'resize','off');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[10 10 100 20],...
'string','None Selected',...
'tooltip','Push to find out which radio button is selected');
S.rd(1) = uicontrol('style','rad',...
'unit','pix',...
'position',[10 40 100 20],...
'string',' Button A');
S.rd(2) = uicontrol('style','rad',...
'unit','pix',...
'position',[10 70 100 20],...
'string',' Button B');
set(S.pb,'callback',{@pb_call,S}); % Set the callback, pass hands.
function [] = pb_call(varargin)
% Callback for pushbutton.
S = varargin{3}; % Get structure.
R = [get(S.rd(1),'val'), get(S.rd(2),'val')]; % Get state of radios.
str = 'Both selected'; % Default string.
if R(1)==1 && R(2)==0
str = 'A selected';
elseif R(1)==0 && R(2)==1
str = 'B selected';
elseif ~any(R)
str = 'None selected';
end
set(S.pb,'string',str)
|
github
|
jacksky64/imageProcessing-master
|
GUI_9.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_9.m
| 1,832 |
utf_8
|
049a8148696cd0dd87ab8010f5120f23
|
function [] = GUI_9()
% Demonstrate one way to let the user know a process is running.
% Creates a pushbutton which, when pushed, simulates some process running
% in the background and lets the user know this is happening by a text and
% color change. When the process is finished, the button returns to
% normal. CAREFULLY READ THE COMMENTS BELOW IF YOU PLAN ON USING THIS
% METHOD IN ONE OF YOUR GUIs.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 200 100],...
'menubar','none',...
'name','GUI_9',...
'numbertitle','off',...
'resize','off');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[20 20 160 60],...
'string','Push Me',...
'callback',{@pb_call},...
'backgroundc',[0.94 .94 .94],...
'busyaction','cancel',...% So multiple pushes don't stack.
'interrupt','off');
function [] = pb_call(varargin)
% Callback for pushbutton.
h = varargin{1}; % Get the caller's handle.
col = get(h,'backg'); % Get the background color of the figure.
set(h,'str','RUNNING...','backg',[1 .6 .6]) % Change color of button.
% The pause (or drawnow) is necessary to make button changes appear.
% To see what this means, try doing this with the pause commented out.
pause(.01) % FLUSH the event queue, drawnow would work too.
% Here is where you put whatever function calls or processes that the
% pushbutton is supposed to activate.
% Next we simulate some running process. Here just sort a vector.
A = rand(3000000,1);
A = sort(A); %#ok
set(h,'str','Push Me','backg',col) % Now reset the button features.
|
github
|
jacksky64/imageProcessing-master
|
GUI_15.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_15.m
| 1,799 |
utf_8
|
db5ef0ce111da9a90faa1acc1583df6e
|
function [] = GUI_15()
% Demonstrate an edit text which has copyable but unchangeable text.
% Also creates a pushbutton which will print the contents of the
% editbox to the command line.
%
% Suggested exercise: Notice that the text can be cut (as well as copied).
% Alter the keypressfcn to eliminate this.
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 400 120],...
'menubar','none',...
'name','GUI_15',...
'numbertitle','off',...
'resize','off');
S.ed = uicontrol('style','edit',...
'unit','pix',...
'position',[30 70 340 30],...
'string','This text can be copied but not changed');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[30 30 340 30],...
'string','Print to screen');
set([S.ed,S.pb],{'callback'},{{@ed_call,S};{@pb_call,S}}) % Set callbacks.
set(S.ed,'keypressfcn',{@ed_kpfcn,S}) % set keypressfcn.
function [] = pb_call(varargin)
% callback for pushbutton
S = varargin{3}; % Get the structure.
disp(get(S.ed,'string')) % Print to the command line.
function [] = ed_call(varargin)
% Callback for edit
S = varargin{3}; % Get the structure.
set (S.ed,'string','This text can be copied but not changed');
function [] = ed_kpfcn(varargin)
% Keypressfcn for edit
[K,S] = varargin{[2 3]};
if isempty(K.Modifier)
uicontrol(S.pb)
set (S.ed,'string','This text can be copied but not changed');
elseif ~strcmp(K.Key,'c') && ~strcmp(K.Modifier{1},'control')
uicontrol(S.pb)
set (S.ed,'string','This text can be copied but not changed');
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_19.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_19.m
| 2,094 |
utf_8
|
586a4c51186bd7847e7c5f59c893935f
|
function [] = GUI_19()
% Demonstrate how to keep track of the number of times an action is taken
% and the number of arguments passed. Here pressing both buttons
% calls the same function (pb2_call), but pushing button one calls pb2_call
% from it's own callback. Thus the number of arguments received in
% pb2_call is different depending on how it is called. Pushing either
% button prints to the command window both the total number of button
% pushes and the number of input arguments used in the latest call.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.CNT = 0; % This keeps track of how many times the buttons are pushed.
S.fh = figure('units','pixels',...
'position',[500 500 200 50],...
'menubar','none',...
'numbertitle','off',...
'name','GUI_19',...
'resize','off');
S.pb(1) = uicontrol('style','push',...
'units','pixels',...
'position',[10 10 85 30],...
'fontsize',14,...
'string','PUSH_1');
S.pb(2) = uicontrol('style','push',...
'units','pixels',...
'position',[105 10 85 30],...
'fonts',14,...
'str','PUSH_2');
set(S.pb(:),{'callback'},{{@pb1_call,S};{@pb2_call,S}}) % Set callbacks.
function [] = pb1_call(varargin)
% Callback for the button labeled PUSH_1.
[h,S] = varargin{[1,3]}; % Extract the calling handle and structure.
pb2_call(h,S) % call the other button's callback.
function [] = pb2_call(varargin)
% Callback for PUSH_2, and the function that pb1_call calls.
N = numel(varargin);
Ns = num2str(N-1); % String representation used with fprintf
S = varargin{N}; % Extract the structure.
S.CNT = S.CNT + 1; % The call counter.
fprintf('\t\t%s%i\n','Call number: ',S.CNT)
fprintf('\t\t%s%i%s\n',['PUSH_',Ns,' called me with : '],N,' arguments.')
% Now we need to make sure that the new value of CNT is available.
set(S.pb(:),{'callback'},{{@pb1_call,S};{@pb2_call,S}})
|
github
|
jacksky64/imageProcessing-master
|
GUI_8.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_8.m
| 2,634 |
utf_8
|
1f3059cf182891a1acc2715a22c78418
|
function [] = GUI_8()
% Demonstrate how to tell which button in a uibuttongroup is selected.
% Similar to GUI_6 except that a uibuttongroup which enforces exclusivity
% is used.
%
% Suggested exercise: Make the editbox change the selected radiobutton.
% Be sure to check that user input is valid.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 250 200],...
'menubar','none',...
'name','GUI_8',...
'numbertitle','off',...
'resize','off');
S.bg = uibuttongroup('units','pix',...
'pos',[20 100 210 90]);
S.rd(1) = uicontrol(S.bg,...
'style','rad',...
'unit','pix',...
'position',[20 50 70 30],...
'string','Radio 1');
S.rd(2) = uicontrol(S.bg,...
'style','rad',...
'unit','pix',...
'position',[20 10 70 30],...
'string','Radio 2');
S.rd(3) = uicontrol(S.bg,...
'style','rad',...
'unit','pix',...
'position',[120 50 70 30],...
'string','Radio 3');
S.rd(4) = uicontrol(S.bg,...
'style','rad',...
'unit','pix',...
'position',[120 10 70 30],...
'string','Radio 4');
S.ed = uicontrol('style','edit',...
'unit','pix',...
'position',[100 60 50 30],...
'string','1');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[75 20 100 30],...
'string','Get Current Radio',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton.
S = varargin{3}; % Get the structure.
% Instead of switch, we could use num2str on:
% find(get(S.bg,'selectedobject')==S.rd) (or similar)
% Note the use of findobj. This is because of a BUG in MATLAB, whereby if
% the user selects the same button twice, the selectedobject property will
% not work correctly.
switch findobj(get(S.bg,'selectedobject'))
case S.rd(1)
set(S.ed,'string','1') % Set the editbox string.
case S.rd(2)
set(S.ed,'string','2')
case S.rd(3)
set(S.ed,'string','3')
case S.rd(4)
set(S.ed,'string','4')
otherwise
set(S.ed,'string','None!') % Very unlikely I think.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_5.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_5.m
| 1,525 |
utf_8
|
4ee2461f9de603988c188da542d2e991
|
function [] = GUI_5()
% Demonstrate how to use a pushbutton to delete bits of string and how to
% let the user know that their actions are futile. After the string is
% deleted completely, the user is informed that there is nothing left to
% delete if the delete button is pressed again. A color change accompanies
% this announcement.
%
% Suggested exercise: Add a counter to S that starts incrementing when the
% warning is given. If the user clicks again, close the GUI.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 100],...
'menubar','none',...
'name','GUI_5',...
'numbertitle','off',...
'resize','off');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[20 10 260 30],...
'string','Deleter');
S.tx = uicontrol('style','text',...
'unit','pix',...
'position',[20 50 260 30],...
'fontsize',16,...
'string','DeleteMe');
set(S.pb,'callback',{@pb_call,S}) % Set the callback for pushbutton.
function [] = pb_call(varargin)
% Callback for the pushbutton.
S = varargin{3}; % Get the structure.
T = get(S.tx,'string'); % Get the current string.
if isempty(T)
set(S.pb,'backgroundcolor',[1 .5 .5],'string','Nothing to Delete!')
else
set(S.tx,'str',T(1:end-1)); % Delete the last character in string.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_23.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_23.m
| 2,040 |
utf_8
|
ac3bb7697141c7d263c367f5cde8a1dd
|
function [] = GUI_23()
% Demonstrate finding which figure was current before callback execution.
% Usage:
%
% Call GUI_23, then create several plots, for example:
%
% GUI_23
% x = 0:.1:10;
% figure;plot(x,x);figure;plot(x,x.^2);figure;plot(x,x.^3)
%
% Now click on whichever of the figures needs a title.
% Enter the title in the GUI_23 editbox, then push the button.
% Clicking on a different figure will make it receive the next title.
% GUI_23 can also be called AFTER the figures have been created.
%
% If no figure exists, one will be created with the title found in the edit
% box.
%
% Suggested exercise: Alter the code so that an xlabel and ylabel
% also are added. This could be done by making 2 more edits, and having
% the pushbutton use the information from all 3 edits to do the job.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[500 500 350 50],...
'menubar','none',...
'numbertitle','off',...
'name','GUI_23',...
'resize','off');
S.ed = uicontrol('style','edit',...
'units','pixels',...
'position',[10 10 220 30],...
'fontsize',14,...
'string','Enter Title');
S.pb = uicontrol('style','push',...
'units','pixels',...
'position',[240 10 100 30],...
'fonts',14,...
'str','Insert Title',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for the button labeled PUSH_1.
S = varargin{3}; % Get the structure.
AX = findobj('type','axes'); % Look for existing axes objects.
if isempty(AX)
% The GUI could popup a message box saying, "No axes to title!" or
% something similar, then return from here.
figure
AX = axes;
end
title(AX(1),get(S.ed,'string')) % The first one in the list was current!
|
github
|
jacksky64/imageProcessing-master
|
GUI_10.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_10.m
| 1,516 |
utf_8
|
991bcbe0ca314951ec2fd784f8592d1e
|
function [] = GUI_10()
% Demonstrate how to make an image visible or invisible by pushbutton.
% Pushing the pushbutton makes the image appear and disappear to the user.
% Many people have trouble with this because just setting the axes property
% does not do the job.
%
%
% Author: Matt Fig
% Date: 1/15/2010
S.fh = figure('units','pixels',...
'position',[200 200 200 200],...
'menubar','none',...
'numbertitle','off',...
'name','GUI_10',...
'resize','off');
S.ax = axes('units','pixels',...
'position',[30 50 160 140]);
S.im = load('clown'); % This is a built-in ML example.
S.R = image(S.im.X); % Display the image on S.ax.
colormap(S.im.map); % Set the figure's colormap.
set(S.ax,'xtick',[],'ytick',[]) % Get rid of ticks.
S.pb = uicontrol('style','push',...
'units','pixels',...
'position',[10 10 180 30],...
'fontsize',14,...
'string','INVISIBLE/VISIBLE',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for the pushbutton.
S = varargin{3}; % Get the structure.
switch get(S.R,'visible')
case 'on'
st = 'off';
case 'off'
st = 'on';
otherwise
close(S.fh) % It would be very strange to end up here.
error('An unknown error occured in the callback')
end
set([S.R,S.ax],'visible',st) % Set BOTH the image and axis visibility.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.