plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
jacksky64/imageProcessing-master
|
GUI_18.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_18.m
| 1,578 |
utf_8
|
5d1b116654e9c8c8c45890b3afb9fa45
|
function [] = GUI_18()
% Demonstrate the use of the buttondownfcn for an axes.
% Clicking on the axes creates a random line. Note that clicking on the
% line does the same thing. This must be accounted for in the coding
% below, or clicking on the line would do nothing. Right click to delete
% the line.
%
% An exercise would be to alter the code so that right clicking recreates
% the plot in another figure window. This could be done at least two
% different ways.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[200 200 200 200],...
'menubar','none',...
'numbertitle','off',...
'name','GUI_18',...
'resize','off');
S.ax = axes('units','pixels',...
'position',[30 30 160 160],...
'fontsize',8,...
'buttondownfcn',{@ax_bdfcn,S},...
'nextplot','replacechildren');
function [] = ax_bdfcn(varargin)
% buttondownfcn for axes.
[h,S] = varargin{[1,3]}; % Extract the calling handle and structure.
% We need to account for when the user clicks the line instead of the axes.
if ~strcmpi(get(h,'type'),'axes')
h = findobj('children',h); %
end
seltype = get(S.fh,'selectiontype'); % Right-or-left click?
switch seltype
case 'alt'
cla % Delete the line.
case 'normal'
ln = plot(h,sort(rand(1,10))); % Plot a new line.
set(ln,'buttondownfcn',{@ax_bdfcn,S})
otherwise
% Do something else for double-clicks, etc.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_35.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_35.m
| 4,421 |
utf_8
|
1f9c2d3cb5f59e45e51321458670ffdd
|
function [] = GUI_35()
% Demonstrate how to use toggle buttons to mimic tabbed panels.
% Creates a GUI with three toggle buttons which act as tabs. One of the
% tabs is not selectable until the user plots a random quartic by
% pressing the pushbutton at the bottom of the screen. The middle tab
% shows the result of fitting (with polyfit) a polynomial to the "unknown"
% quartic.
%
% Suggested exercise: Add another tab which contains help info for how to
% use the GUI.
%
%
% Author: Matt Fig
% Date: 7/15/2009
SCR = get(0,'Screensize'); % Get screensize.
S.fh = figure('numbertitle','off',...
'menubar','none',...
'units','pixels',...
'position',[SCR(3)/2-200 ,SCR(4)/2-200 , 400, 400],...
'name','GUI_35',...
'resize','off');
S.ax = axes('units','pixels',...
'position',[50 100 300 230]);
S.pb1 = uicontrol('style','pushbutton',...
'units','pixels',...
'position',[50 20 300 40],...
'string','Plot Random Quartic Polynomial',...
'fontsize',12);
% Toggles will act as the tabs.
S.tg(1) = uicontrol('style','toggle',...
'units','pixels',...
'position',[5 355 60 40],...
'string','PLOT',...
'val',1);
S.tg(2) = uicontrol('style','toggle',...
'units','pixels',...
'position',[65 355 60 40],...
'string','FIT',...
'value',0,...
'enable','off');
S.tg(3) = uicontrol('style','toggle',...
'units','pixels',...
'position',[125 355 60 40],...
'string','ABOUT',...
'value',0,...
'enable','on');
S.tx = uicontrol('style','text',...
'units','pixels',...
'position',[20 20 360 300],...
'visible','off',...
'string',{' ','This is a GUI with', 'fake tabs.',...
'Hope you enjoy.',' ',' ','Copyright:',...
'Matt Fig 2009'},...
'fontsize',20,'fontweight','bold');
W = {'style','edit','units','pixels','position'}; % Save some typing.
S.ed(5) = uicontrol(W{:},[50 100 300 30]);
S.ed(4) = uicontrol(W{:},[50 140 300 30]);
S.ed(3) = uicontrol(W{:},[50 180 300 30]);
S.ed(2) = uicontrol(W{:},[50 220 300 30]);
S.ed(1) = uicontrol(W{:},[50 260 300 30]);
% Set remaining properties.
set(S.pb1,'callback',{@pb_call,S}) % Set the callbacks.
set(S.tg(:),{'callback'},{{@tg_call,S}})
set(S.ed(:),'visible','off','fontsize',12,'fontweight','bold',...
'backgroundcolor',[1 1 1])
function [] = pb_call(varargin)
% Callback for pushbutton.
x = -10:.1:10; % For the plot.
plot(x,polyval(-5 + ceil(rand(1,5)*7),x)); % Plot some random quartic
set(varargin{3}.tg(2),'enable','on'); % Turn on 'Fit' tab.
function [] = tg_call(varargin)
% Callback for togglebuttons.
[h,S] = varargin{[1,3]}; % Get calling handle ans structure.
if get(h,'val')==0 % Here the Toggle is already pressed.
set(h,'val',1) % To keep the Tab-like functioning.
end
L = get(S.ax,'children'); % The line object.
% Each case of the switch has one toggle associated with it. When a toggle
% is selected the uicontrols which belong to it are made visible, and the
% others are made invisible. This way each toggle has, in effect, its own
% GUI. All uicontrols are part of the main GUI, some are simply hidden
% when each toggle is selected. This mimics the action of tabs.
switch h
case S.tg(1)
set(S.tg([2,3]),'val',0)
set([S.ax,S.pb1,L],{'visible'},{'on'})
set([S.ed(:);S.tx],{'visible'},{'off'})
case S.tg(2)
set(S.tg([1,3]),{'val'},{0})
set(S.ed(:),{'visible'},{'on'})
set([S.ax,S.pb1,L,S.tx],{'visible'},{'off'})
STR = 'The x^0 coefficient is: ';
p = round(polyfit(get(L,'xdata'),get(L,'ydata'),4));
for ii = 0:4
STR(7) = num2str(ii);
set(S.ed(5-ii),'str',[STR,num2str(p(5-ii))])
end
otherwise
set(S.tg([1,2]),{'val'},{0})
set(S.tx,'visible','on')
set([S.ax;S.pb1;L;S.ed(:)],{'visible'},{'off'})
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_14.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_14.m
| 1,965 |
utf_8
|
47c5253f9a3e32cb1d5d9ed19d2aff91
|
function [] = GUI_14()
% Demonstrate colored text in a listbox, & how extract user's choice.
% Creates a listbox which has words of different colors. When the
% pushbutton is pushed, the users choice is printed to the screen.
% Notice the use of the 'listboxtop' property in the callback.
% This does NOT work in version 6.5.
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 230 40],...
'menubar','none',...
'name','GUI_14',...
'numbertitle','off',...
'resize','off');
% We will get different colors by using HTML.
STR = {'<HTML><FONT COLOR="#66FF66">Green</FONT></HTML>',...
'<HTML><FONT COLOR="red">Red</FONT></HTML>',...
'<HTML><FONT COLOR="blue">Blue</FONT></HTML>',...
'<HTML><FONT COLOR="#FF00FF">Violet</FONT></HTML>',...
'<HTML><FONT COLOR="black">Black</FONT></HTML>',...
'<HTML><FONT COLOR="yellow">Yellow</FONT></HTML>'};
S.COL = {'Green','Red','Blue','Violet','Black','Yellow'}; % Lookup table.
S.ls = uicontrol('style','list',...
'units','pix',...
'position',[10 10 90 25],...
'string', STR,...
'fontsize',14);
S.pb = uicontrol('style','push',...
'units','pix',...
'posit',[120 10 100 25],...
'string', 'Print Choice',...
'fontsize',10,...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton. Displays user's choice at command line.
S = varargin{3}; % Get structure.
% If the 'value' property was used below, the user's choice might not show
% correctly if the selection was made with the arrows on the listbox.
L = get(S.ls,'listboxtop'); % Get the user's choice.
disp(['Your color choice is: ' S.COL{L}]) % Print to command line.
|
github
|
jacksky64/imageProcessing-master
|
GUI_24.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_24.m
| 2,382 |
utf_8
|
a24403d9b73017f965c99561a85505b5
|
function [] = GUI_24()
% Demonstrate how to get data from one GUI to another (data passing).
% Creates a GUI with an editbox and a pushbutton. When the user presses
% the pushbutton, another GUI pops up with an editbox. Whatever is in the
% editbox of the second GUI when the user hits return will be put into the
% edit box of the first GUI.
%
% Suggested exercise: Alter the code to have the new GUI display whatever
% text is in the editbox from the first GUI when the new GUI is created.
% Even more advanced: Alter the code so that two new GUIs cannot be
% launched simultaneously by pressing the pushbutton repeatedly.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[500 500 200 130],...
'menubar','none',...
'numbertitle','off',...
'name','GUI_24',...
'resize','off');
S.ed = uicontrol('style','edit',...
'units','pix',...
'position',[10 60 180 60],...
'string','Data');
S.pb = uicontrol('style','pushbutton',...
'units','pix',...
'position',[10 20 180 30],...
'string','Push to Get Data',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for GUI_24 pushbutton.
S = varargin{3}; % Get the structure.
f = figure('units','pixels',...
'menubar','none',...
'position',[750 510 200 100]); % Create a new GUI.
E = uicontrol('style','edit',...
'units','pixels',...
'position',[10 20 180 60],...
'string','Type something, press return.',...
'callback',{@E_call,varargin{3}});
uicontrol(E); % Allow user to simply hit return without typing anything.
% If user closes GUI_24, close new one as well because it will error when
% it tries to execute the callback otherwise.
set(S.fh,'deletefcn',{@fig_delet,f})
function [] = E_call(varargin)
% Callback for secondary GUI editbox.
S = varargin{3}; % Get the structure.
set(S.ed,'string',get(gcbo,'string')) % Set GUI_24 editbox string.
close(gcbf) % Close secondary GUI.
function [] = fig_delet(varargin)
% Executes when user closes GUI_24.
try
delete(varargin{3})
catch
% Do nothing.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_29.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_29.m
| 1,693 |
utf_8
|
577601b33f7fb91dd9b5df82ed2c1ea9
|
function [] = GUI_29()
% Demonstrate the use of a uicontrol to manipulate an axes from a GUI,
% and how to link two figures to close together.
% The slider here controls the extent of the x lims up to a certain point.
%
% Suggested exercise: Alter the code so that an axes handle could be passed
% in as an argument. Or a two-slider GUI could be made that controls both
% the x and y limits. Even more advanced: Allow the GUI to replot if the
% limits go beyond current data. This would require another input
% argument.
%
%
% Author: Matt Fig
% Date: 7/15/2009
% First create the figure and plot to manipulate with the slider.
x = 0:.1:100; % Some simple data. Notice the data goes beyond xlim.
f = figure; % This is the figure which has the axes to be controlled.
ax = axes; % This axes will be controlled.
plot(x,sin(x));
xlim([0,pi]); % Set the beginning x/y limits.
ylim([-1,1])
% Now create the other GUI
S.fh = figure('units','pixels',...
'position',[400 400 220 40],...
'menubar','none',...
'name','GUI_29',...
'numbertitle','off',...
'resize','off');
S.sl = uicontrol('style','slide',...
'unit','pixel',...
'position',[10 10 200 20],...
'min',1,'value',pi,'max',100,...
'callback',{@sl_call,ax},...
'deletefcn',{@delete,f});
set(f,'deletef',{@delete,S.fh}) % Closing one closes the other.
function [] = sl_call(varargin)
% Callback for the slider.
[h ax] = deal(varargin{[1;3]}); % Get the calling handle and structure.
set(ax,'xlim',[0 get(h,'val')],'ylim',[-1,1])
|
github
|
jacksky64/imageProcessing-master
|
GUI_28.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_28.m
| 2,253 |
utf_8
|
874f0e66c524f1f9599e157001065e7e
|
function [] = GUI_28()
% Demonstrate uicontextmenu for an axes click.
% Clicking on the axes plots a single point. After plotting as many points
% as desired, the user may click in the axes to access two options
% concerning the plotted points.
%
% Suggested exercise: Add another menu to the context menu which
% exports the current plot into another figure then clears the GUI axes for
% more playtime.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.ln = []; % This holds the handles to the points.
S.fh = figure('units','pixels',...
'position',[200 200 500 500],...
'menubar','none',...
'name','GUI_28',...
'numbertitle','off',...
'resize','off');
S.ax = axes('xlim',[0 1],'ylim',[0 1]);
title('Click to add points. Right click for options.','fontw','bold')
S.cm = uicontextmenu;
S.um(1) = uimenu(S.cm,...
'label','Delete Points',...
'Callback', {@um1_call,S});
S.um(2) = uimenu(S.cm,...
'label','Rand Colors',...
'Callback', {@um2_call,S});
set(S.ax,'buttondownfcn',{@ax_bdfcn,S},'uicontextmenu',S.cm)
function [] = ax_bdfcn(varargin)
% Serves as the buttondownfcn for the axes.
S = varargin{3}; % Get the structure.
seltype = get(S.fh,'selectiontype'); % Right-or-left click?
L = length(S.ln);
if strmatch(seltype,'normal')
p = get(S.ax, 'currentpoint'); % Get the position of the mouse.
S.ln(L+1) = line(p(1),p(3),'Marker','+'); % Make our plot.
set(S.ln(L+1),'uicontextmenu',S.cm) % So user can click a point too.
end
% Update structure.
set(S.ax,'ButtonDownFcn',{@ax_bdfcn,S})
set(S.um(:),{'callback'},{{@um1_call,S};{@um2_call,S}})
function [] = um1_call(varargin)
% Callback for uimenu to delete the points.
S = varargin{3}; % Get the structure.
delete(S.ln(:)); % Delete all the lines.
S.ln = []; % And reset the structure.
set(S.ax,'ButtonDownFcn',{@ax_bdfcn,S})
function [] = um2_call(varargin)
% Callback for uimenu to change the colors of the points.
S = varargin{3}; % Get the structure.
L = length(S.ln); % The number of points.
set(S.ln(:),{'color'},mat2cell(0+.75*rand(L,3),ones(1,L),3 )) % Color mat.
|
github
|
jacksky64/imageProcessing-master
|
UiMain.m
|
.m
|
imageProcessing-master/Matlab UI Examples/UiMain.m
| 7,463 |
utf_8
|
c3008a7b6fe35b399f8737898e26cc99
|
function varargout = UiMain(varargin)
% UIMAIN MATLAB code for UiMain.fig
% UIMAIN, by itself, creates a new UIMAIN or raises the existing
% singleton*.
%
% H = UIMAIN returns the handle to a new UIMAIN or the handle to
% the existing singleton*.
%
% UIMAIN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in UIMAIN.M with the given input arguments.
%
% UIMAIN('Property','Value',...) creates a new UIMAIN or raises
% the existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before UiMain_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to UiMain_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help UiMain
% Last Modified by GUIDE v2.5 08-Mar-2014 16:52:07
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @UiMain_OpeningFcn, ...
'gui_OutputFcn', @UiMain_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before UiMain is made visible.
function UiMain_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to UiMain (see VARARGIN)
% Choose default command line output for UiMain
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
h=uitoolbar(hObject);
uimenu(hObject);
initialize_gui(hObject, handles, false);
% UIWAIT makes UiMain wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = UiMain_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in calculate.
function calculate_Callback(hObject, eventdata, handles)
% hObject handle to calculate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
mass = handles.metricdata.samplePeriod;
set(handles.mass, 'String', mass);
% --- Executes on button press in reset.
function reset_Callback(hObject, eventdata, handles)
% hObject handle to reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
initialize_gui(gcbf, handles, true);
% --- Executes when selected object changed in unitgroup.
function unitgroup_SelectionChangeFcn(hObject, eventdata, handles)
% hObject handle to the selected object in unitgroup
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if (hObject == handles.english)
set(handles.text4, 'String', 'lb/cu.in');
set(handles.text5, 'String', 'cu.in');
set(handles.text6, 'String', 'lb');
else
set(handles.text4, 'String', 'kg/cu.m');
set(handles.text5, 'String', 'cu.m');
set(handles.text6, 'String', 'kg');
end
% --------------------------------------------------------------------
function initialize_gui(fig_handle, handles, isreset)
% If the metricdata field is present and the reset flag is false, it means
% we are we are just re-initializing a GUI by calling it from the cmd line
% while it is up. So, bail out as we dont want to reset the data.
if isfield(handles, 'metricdata') && ~isreset
return;
end
handles.metricdata.samplePeriod = 8;
% load GUI
set(handles.samplePeriod, 'String', handles.metricdata.samplePeriod);
set(handles.mass, 'String', 0);
set(handles.unitgroup, 'SelectedObject', handles.english);
set(handles.text4, 'String', 'us');
set(handles.text6, 'String', '#');
% Update handles structure
guidata(handles.figure1, handles);
function samplePeriod_Callback(hObject, eventdata, handles)
% hObject handle to samplePeriod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
samplePeriod = str2double(get(hObject, 'String'));
if isnan(samplePeriod)
set(hObject, 'String', 0);
errordlg('Input must be a number','Error');
end
% Save the new density value
handles.metricdata.samplePeriod = samplePeriod;
guidata(hObject,handles)
% --- Executes during object creation, after setting all properties.
function samplePeriod_CreateFcn(hObject, eventdata, handles)
% hObject handle to samplePeriod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --------------------------------------------------------------------
function userfn1_Callback(hObject, eventdata, handles)
% hObject handle to userfn1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function Untitled_2_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function Untitled_3_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function Untitled_4_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function Untitled_5_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
|
github
|
jacksky64/imageProcessing-master
|
GUI_27.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_27.m
| 2,495 |
utf_8
|
01b2f9b97ba9aa9827a2990eb59df25a
|
function [] = GUI_27()
% Demonstrate how to display the current location of the mouse in an axes.
% Run the GUI then move the cursor over the axes. The current location of
% the pointer in the axes will be displayed at the top of the plot, in axes
% units.
%
% Suggested exercise: Make this function to take an axes handle as an
% input argument, automatically detect the xlim and ylim, and show the
% pointer location in the title. Even more advanced: Detect when
% the axes already has a title. In that case don't overwrite the title,
% but launch another small GUI which displays the pointer location.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[560 528 560 420],...
'menubar','none',...
'name','GUI_27',...
'numbertitle','off',...
'resize','off');
% Now make a simple plot.
x = 0:.1:2*pi;
plot(x,sin(x))
S.ax = gca;
set(S.ax,'unit','pix','position',[40 40 480 340]);
axis([0 7 -1 1])
% Fill the structure with data.
S.XLM = get(S.ax,'xlim');
S.YLM = get(S.ax,'ylim');
S.AXP = get(S.ax,'pos');
S.DFX = diff(S.XLM);
S.DFY = diff(S.YLM);
S.tx(1) = uicontrol('style','tex',...
'unit','pix',...
'posit',[50 390 250 20],...
'backg',get(S.fh,'color'),...
'fontsize',14,'fontweight','bold',...
'string','Current Pointer Location:');
% This textbox will display the current position of the mouse.
S.tx(2) = uicontrol('style','tex',...
'unit','pix',...
'position',[310 390 120 20],...
'backg',get(S.fh,'color'),...
'fontsize',14,'fontweight','bold' );
set(S.fh,'windowbuttonmotionfcn',{@fh_wbmfcn,S}) % Set the motion detector.
function [] = fh_wbmfcn(varargin)
% WindowButtonMotionFcn for the figure.
S = varargin{3}; % Get the structure.
F = get(S.fh,'currentpoint'); % The current point w.r.t the figure.
% Figure out of the current point is over the axes or not -> logicals.
tf1 = S.AXP(1) <= F(1) && F(1) <= S.AXP(1) + S.AXP(3);
tf2 = S.AXP(2) <= F(2) && F(2) <= S.AXP(2) + S.AXP(4);
if tf1 && tf2
% Calculate the current point w.r.t. the axes.
Cx = S.XLM(1) + (F(1)-S.AXP(1)).*(S.DFX/S.AXP(3));
Cy = S.YLM(1) + (F(2)-S.AXP(2)).*(S.DFY/S.AXP(4));
set(S.tx(2),'str',num2str([Cx,Cy],2))
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_4.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_4.m
| 2,123 |
utf_8
|
32582b41a4cd6667c86782f8ff1bd51d
|
function [] = GUI_4()
% Demonstrate how to make a multiline editbox.
% Produces a GUI with an editbox on the left and a listbox on the right.
% The user is invited to enter text into the editbox, either hitting return
% at the end of each line or letting it wrap automatically. When the
% button is pushed, each line of text from the editbox is placed as an
% entry into the listbox. Notice the difference between how a wrapped line
% is treated and a returned line is treated in the lisbox.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[450 450 400 200],...
'menubar','none',...
'name','Verify Password.',...
'resize','off',...
'numbertitle','off',...
'name','GUI_4');
S.ed = uicontrol('style','edit',...
'units','pix',...
'position',[10 60 190 120],...
'min',0,'max',2,... % This is the key to multiline edits.
'string',{'Enter text here'; 'then push the button.'},...
'fontweight','bold',...
'horizontalalign','center',...
'fontsize',11);
S.ls = uicontrol('style','list',...
'units','pix',...
'position',[210 60 180 120],...
'backgroundcolor','w',...
'HorizontalAlign','left');
S.pb = uicontrol('style','push',...
'units','pix',...
'position',[10 10 380 40],...
'HorizontalAlign','left',...
'string','Transfer',...
'fontsize',14,'fontweight','bold',...
'callback',{@pb_call,S});
uicontrol(S.ed) % Give the editbox control.
function [] = pb_call(varargin)
% Callback for edit.
S = varargin{3};
% Get the string from the edit box. Note that since the editbox is a
% multiline editbox (max-min>2), the string returned is a cell array.
E = get(S.ed,'string');
set(S.ls,'string',E) % Now set the listbox string to the value in E.
|
github
|
jacksky64/imageProcessing-master
|
GUI_12.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_12.m
| 1,271 |
utf_8
|
5740de8d4611642251d43dd181967882
|
function [] = GUI_12()
% Demonstrate how to control the mouse pointer from a GUI.
% Just for fun, show how to manipulate the mouse pointer. To close the
% figure, use the regular window x in the upper right corner.
% Note, I have had reports that nothing happens when this is run on Mac
% computers.
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 160],...
'menubar','none',...
'name','GUI_12',...
'numbertitle','off',...
'resize','off');
S.UN = get(0,'units'); % We need to temporarily change this.
S.pb = uicontrol('style','push',...
'units','pix',...
'position',[20 30 260 100],...
'string', 'Push Me To Close Figure',...
'fontsize',12,'fontweight','bold',...
'callback',{@pb_call,S});
set(S.fh,'WindowButtonMotionFcn',{@fh_wbmf,S})
function [] = fh_wbmf(varargin)
S = varargin{3}; % Get the structure.
set(0,'units','normalized') % Temporary, see below.
% Move the mouse pointer to a random position.
set(0, 'PointerLocation', [rand rand])
set(0,'units',S.UN) % Undo change to user's system. Good courtesy.
|
github
|
jacksky64/imageProcessing-master
|
GUI_7.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_7.m
| 1,564 |
utf_8
|
69bec55c368307c5844df39b23ef47c6
|
function [] = GUI_7()
% Demonstrate how to store choice counters for multiple user choices.
% Creates a popup with two choices and a textbox to display the number of
% times each choice has been made.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 100],...
'menubar','none',...
'name','GUI_7',...
'numbertitle','off',...
'resize','off');
S.tx = uicontrol('style','tex',...
'unit','pix',...
'position',[10 15 280 20],...
'backgroundcolor',get(S.fh,'color'),...
'fontsize',12,'fontweight','bold',...
'string','OPTION 1: 0 OPTION 2: 0');
S.pp = uicontrol('style','pop',...
'unit','pix',...
'position',[10 60 280 20],...
'backgroundc',get(S.fh,'color'),...
'fontsize',12,'fontweight','bold',...
'string',{'option 1';'option 2'},'value',1);
S.CNT = [0 0]; % Holds the number of times each option has been called.
set(S.pp,'callback',{@pp_call,S}); % Set the callback.
function [] = pp_call(varargin)
% Callback for popupmenu.
S = varargin{3}; % Get the structure.
P = get(S.pp,'val'); % Get the users choice from the popup.
S.CNT(P) = S.CNT(P) + 1; % Increment the counter.
set(S.tx, 'string', sprintf('OPTION 1: %i OPTION 2: %i', S.CNT));
set(S.pp,'callback',{@pp_call,S}); % Save the new count.
|
github
|
jacksky64/imageProcessing-master
|
GUI_21.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_21.m
| 1,728 |
utf_8
|
21393eee213bf28e8eb3a5dfa563efe7
|
function [] = GUI_21()
% Demonstrate how to get selection from a popup to an edit box & vis versa.
% This is an expansion of GUI_20. Here we will enforce a specific list of
% choices so that any text the user enters into the editbox which is not a
% choice in the popup will be overwritten.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 110],...
'menubar','none',...
'name','GUI_21',...
'numbertitle','off',...
'resize','off');
S.pop = uicontrol('style','pop',...
'units','pixels',...
'position',[20 10 260 40],...
'string',{'one','two','three','four'});
S.ed = uicontrol('style','edit',...
'units','pix',...
'position',[20 60 260 30],...
'fontsize',16,...
'string','one');
set([S.pop,S.ed],{'callback'},{{@pop_call,S};{@ed_call,S}}); % Set callback
function [] = pop_call(varargin)
% Callback for the popup.
S = varargin{3}; % Get the structure.
P = get(S.pop,{'string','val'}); % Get the users choice.
set(S.ed,'string',P{1}{P{2}}); % Assign the user's choice to the edit.
function [] = ed_call(varargin)
% Callback for the edit.
S = varargin{3}; % Get the structure.
E = get(S.ed,'string'); % Get the string from the edit.
P = get(S.pop,{'string','value'}); % Get the users choice.
% Check if edit string is found in pop-up list.
tmp = strmatch(E,P{1});
if ~isempty(tmp)
set(S.pop,'value',tmp) % Set the pop-up to match the edit.
else
set(S.ed,'string',P{1}{P{2}}) % Set the edit to current pop-up.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_26.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_26.m
| 3,675 |
utf_8
|
be33aa9ec8e75f57511c587d1df4f065
|
function [] = GUI_26()
% Demonstrate how to make the choices in several popups mutually exclusive.
% Here we want three popups, with which the user can make three different
% choices from the same set of choices. We want the users choices to be
% made in any order. Once a certain value has been chosen through a popup,
% that value should disappear from the lists for the other popups. The
% user is allowed to change past choices, and popup lists will reflect
% this.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('unit','pix',...
'position',[400 400 300 120],...
'menub','no',...
'name','GUI_26',...
'numbertitle','off',...
'resize','off');
S.STR = {'alfa ';'beta';'gamma';'delta';'omega'}; % String for popups.
S.pp(1) = uicontrol('style','pop',...
'unit','pix',...
'position',[20 70 70 30],...
'string',S.STR);
S.pp(2) = uicontrol('style','pop',...
'unit','pix',...
'position',[110 70 70 30],...
'string',S.STR,...
'value',2);
S.pp(3) = uicontrol('style','pop',...
'unit','pix',...
'position',[210 70 70 30],...
'string',S.STR,...
'value',3);
S.pb = uicontrol('style','push',...
'unit','pix',...
'posit',[20 20 260 30],...
'string','Print Choices',...
'callback',{@pb_call,S});
S.CHC = [0 0 0]; % To keep track of when a choice has been made.
set(S.pp(:),'call',{@pp_call,S}); % All popups have the same callback.
function [] = pb_call(varargin)
% Callback for pushbutton, prints out the users choices.
S = varargin{3}; % Get the structure.
CHC = get(S.pp(:),{'string','value'});
fprintf('\n\t%s','Your choices are: ');
for ii = 1:3
fprintf(' %s,',deblank(CHC{ii,1}{CHC{ii,2}}))
end
fprintf('\b\n\n')
function [] = pp_call(varargin)
% Callback for popups.
[h,S] = varargin{[1,3]}; % Handle to cbo and structure.
N = ~ismember(S.pp,h); % The other 2 popup menus.
tmp = 1:3; % Instead of calling find twice, or setdiff, see next 2 lines.
idx = tmp(~N); % The index to the current popup menu.
idxo = tmp(N); % The indices into the other pops
S.CHC(idx) = 1; % Let the subsequent calls know this choice has been made.
CHC = get(h,{'string','value'}); % String and value of h.
CHC = CHC{1}{CHC{2}};
ho = S.pp(N); % Handles to the other two popups.
I = [1,2]; % Used in loop below.
for ii = I
s = get(ho(ii),{'string','value'}); % Get the iith other pop str,val.
s = s{1}{s{2}}; % The current string for the iith pop.
tmp = I(I~=ii); % Used to see if the other pop has made its choice.
Str = S.STR; % Get the master string.
Str(strmatch(CHC,Str)) = []; % Set this choice to null in master string.
nm = get(ho(tmp),{'string','value'}); % Get the other pop's info.
if S.CHC(idxo(tmp)) % The other-other pop has made a choice.
Str(strmatch(nm{1}{nm{2}},Str)) = []; % Set this choice to null.
end
if strcmp(s,CHC) % The iith pop had same as new h, move it.
for jj = 1:length(Str)
if ~strcmp(Str{jj},CHC)&&~strcmp(Str{jj},nm{1}{nm{2}})
nm = strmatch(Str{jj},Str);
break
end
end
else
nm = strmatch(s,Str); % Get the value for the iith pop.
end
set(ho(ii),'string',Str,'value',nm,'callb',{@pp_call,S}) % Assignments.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_31.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_31.m
| 3,576 |
utf_8
|
93ebb5ecf307eb46c48da9107cfa2c37
|
function [] = GUI_31()
% Demonstrate multiple uicontrol manipulations based on user choices.
% Creates a simple calculator which allows the user to make a choice of
% operations to use, as well as to enter numbers on which to operate.
% Notice that the static textbox will update to show which operation is
% current.
%
% Suggested exercise: Add more operations to the popup, and have the code
% detect a rational answer (as best as you can with floating point, there
% are many ways to do this, just pick some criteria). If the answer is
% not rational, change the '=' to '~' to mean, 'approximately equal to.'
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[400 400 300 130],...
'menubar','none',...
'name','GUI_31',...
'numbertitle','off',...
'resize','off');
COL = get(S.fh,'color');
S.pp = uicontrol('style','pop',...
'unit','pix',...
'position',[10 20 120 30],...
'string',{'Add';'Multiply';'Subtract';'Divide';'Power'});
S.ed(1) = uicontrol('style','edit',...
'unit','pix',...
'position',[10 90 70 30],...
'string','3');
S.tx(1) = uicontrol('style','text',...
'unit','pix',...
'position',[85 90 20 30],...
'string','+',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(2) = uicontrol('style','edit',...
'unit','pix',...
'position',[110 90 70 30],...
'string','2');
S.tx(2) = uicontrol('style','text',...
'unit','pix',...
'position',[185 90 20 30],...
'string','=',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(3) = uicontrol('style','edit',...
'unit','pix',...
'position',[220 90 70 30],...
'string','answer');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[160 20 120 30],...
'string','Calculate',...
'call',{@pb_call,S});
set(S.pp,'callback',{@pp_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton
S = varargin{3}; % Get the structure.
N = str2double(get(S.ed(1:2),'string')); % The numbers to operate on.
VL = get(S.pp,{'str','value'}); % Users choice from popup.
switch VL{1}{VL{2}} % Users string choice from popup.
case 'Add'
N = num2str(sum(N));
case 'Multiply'
N = num2str(prod(N));
case 'Subtract'
N = num2str(-diff(N));
case 'Divide'
N = num2str(N(1)/N(2));
case 'Power'
N = num2str(N(1).^N(2));
otherwise
end
set(S.ed(3),'str',N) ; % Set the 'answer' editbox to display result.
function [] = pp_call(varargin)
% Callback for pushbutton
S = varargin{3}; % Get the structure.
VL = get(S.pp,{'str','value'}); % Users choice from popup.
switch VL{1}{VL{2}}
case 'Add'
str = '+';
case 'Multiply'
str = 'x';
case 'Subtract'
str = '-';
case 'Divide'
str = '/';
case 'Power'
str = '^';
otherwise
end
set(S.tx(1),'string',str) % Change the textbox to display operation symb.
|
github
|
jacksky64/imageProcessing-master
|
GUI_13.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_13.m
| 1,730 |
utf_8
|
ebc363d98dd0c27fd9c73aadd9e13bb2
|
function [] = GUI_13()
% Demonstrate how to display & change a slider's position with an edit box.
% Slide the slider and it's position will be shown in the editbox.
% Enter a valid number in the editbox and the slider will be moved to that
% position. If the number entered is outside the range of the slider,
% the number will be reset.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 100],...
'menubar','none',...
'name','GUI_13',...
'numbertitle','off',...
'resize','off');
S.sl = uicontrol('style','slide',...
'unit','pix',...
'position',[20 10 260 30],...
'min',1,'max',100,'val',50);
S.ed = uicontrol('style','edit',...
'unit','pix',...
'position',[20 50 260 30],...
'fontsize',16,...
'string','50');
set([S.ed,S.sl],'call',{@ed_call,S}); % Shared Callback.
function [] = ed_call(varargin)
% Callback for the edit box and slider.
[h,S] = varargin{[1,3]}; % Get calling handle and structure.
switch h % Who called?
case S.ed
L = get(S.sl,{'min','max','value'}); % Get the slider's info.
E = str2double(get(h,'string')); % Numerical edit string.
if E >= L{1} && E <= L{2}
set(S.sl,'value',E) % E falls within range of slider.
else
set(h,'string',L{3}) % User tried to set slider out of range.
end
case S.sl
set(S.ed,'string',get(h,'value')) % Set edit to current slider.
otherwise
% Do nothing, or whatever.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_32.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_32.m
| 4,357 |
utf_8
|
42de6df214b8d88a186603d8aaef6257
|
function [] = GUI_32(str)
% Demonstrate how to get data from a GUI into the base workspace without
% "poofing" unawares. This is based on GUI_31. When called with a string
% argument, all of the operations performed by the user will be recorded
% and returned to the base workspace in a variable of the name given by the
% string. This happens when the GUI is closed. If no string argument is
% used, the data is not created in the base workspace.
%
% Example:
%
% GUI_32('Myops') % Call this then perform a few operations.
% % After closing the GUI, call:
% Myops % at the command line displays a record of operations.
%
% Suggested exercise: Alter the code so that the variable in the base
% workspace is created upon GUI initialization. Then update the data after
% every new operation.
%
%
% Author: Matt Fig
% Date: 7/15/2009
if nargin==0
str = []; % User called the GUI without and output name.
elseif ~ischar(str)
error('Only a string argument is valid. See help.')
elseif ~isvarname(str) % User passed something like: 0.?6#
error('String must be a valid variable name. See help.')
end
S.STR = str; % The name of the variable the user wishes to have in base.
S.CNT = 0; % The number of times user pressed the pushbutton.
S.CHC = []; % Holds the strings which represent the operations performed.
S.fh = figure('units','pixels',...
'position',[400 400 300 130],...
'menubar','none',...
'name','GUI_32',...
'numbertitle','off',...
'resize','off',...
'deletefcn',{@fig_del,S});
COL = get(S.fh,'color');
S.pp = uicontrol('style','pop',...
'unit','pix',...
'position',[10 20 120 30],...
'string',{'Add';'Multiply';'Subtract';'Divide';'Power'});
S.ed(1) = uicontrol('style','edit',...
'unit','pix',...
'position',[10 90 70 30],...
'string','3');
S.tx(1) = uicontrol('style','text',...
'unit','pix',...
'position',[85 90 20 30],...
'string','+',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(2) = uicontrol('style','edit',...
'unit','pix',...
'position',[110 90 70 30],...
'string','2');
S.tx(2) = uicontrol('style','text',...
'unit','pix',...
'position',[185 90 20 30],...
'string','=',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(3) = uicontrol('style','edit',...
'unit','pix',...
'position',[220 90 70 30],...
'string','answer');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[160 20 120 30],...
'string','Calculate');
set([S.pp,S.pb],'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton
S = varargin{3}; % Get the structure.
N = str2double(get(S.ed(1:2),'string')); % Numbers from edits to op. on.
VL = get(S.pp,{'str','value'}); % User's choice from popup.
% Now get the string updates and perform operations.
switch VL{1}{VL{2}} % User's string choice.
case 'Add'
A = sum(N);
str = '+';
case 'Multiply'
A = prod(N);
str = 'x';
case 'Subtract'
A = -diff(N);
str = '-';
case 'Divide'
A = N(1)/N(2);
str = '/';
case 'Power'
A = N(1).^N(2);
str = '^';
otherwise
end
set(S.tx(1),'string',str) % Set the operation display.
if varargin{1}==S.pb % This stuff we only need to do if button is pushed.
S.CNT = S.CNT + 1;
set(S.ed(3),'str',A)
S.CHC{S.CNT,1} = sprintf('%2.2f %s %2.2f %s %2.2f',N(1),str,N(2),'=',A);
set(S.pb,'callback',{@pb_call,S})
set(S.fh,'deletefcn',{@fig_del,S})
end
function [] = fig_del(varargin)
S = varargin{3};
if ~isempty(S.STR)
assignin('base',S.STR,S.CHC) % Assign the data to the base workspace.
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_33.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_33.m
| 4,321 |
utf_8
|
e186426586a4268ad76582e4859822c6
|
function [] = GUI_33()
% Demonstrate how to export data with context menu.
% Demonstrate how to get data from a GUI into the base workspace without
% "poofing" unawares. This is based on GUI_31. When user is ready to
% retrieve the data, simply right-click anywhere inside the figure to get
% to the context menu. User will be prompted to enter a variable name to
% which will be assigned the data in the base workspace.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.CNT = 0; % The number of times user pressed the pushbutton.
S.CHC = []; % Holds the strings which represent the operations performed.
S.fh = figure('units','pixels',...
'position',[400 400 300 130],...
'menubar','none',...
'name','GUI_33',...
'numbertitle','off',...
'resize','off');
COL = get(S.fh,'color');
S.pp = uicontrol('style','pop',...
'unit','pix',...
'position',[10 20 120 30],...
'string',{'Add';'Multiply';'Subtract';'Divide';'Power'});
S.ed(1) = uicontrol('style','edit',...
'unit','pix',...
'position',[10 90 70 30],...
'string','3');
S.tx(1) = uicontrol('style','text',...
'unit','pix',...
'position',[85 90 20 30],...
'string','+',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(2) = uicontrol('style','edit',...
'unit','pix',...
'position',[110 90 70 30],...
'string','2');
S.tx(2) = uicontrol('style','text',...
'unit','pix',...
'position',[185 90 20 30],...
'string','=',...
'fontsize',16,...
'backgroundcolor',COL);
S.ed(3) = uicontrol('style','edit',...
'unit','pix',...
'position',[220 90 70 30],...
'string','answer');
S.pb = uicontrol('style','push',...
'unit','pix',...
'position',[160 20 120 30],...
'string','Calculate');
S.cm = uicontextmenu;
S.um = uimenu(S.cm,...
'label','Export Data to Base',...
'Callback', {@um_call,S});
set([S.fh,S.pp,S.ed,S.tx,S.pb],'uicontextmenu',S.cm); % Assign contextmen.
set([S.pp,S.pb],'callback',{@pb_call,S}); % Assign callbacks.
function [] = pb_call(varargin)
% Callback for pushbutton
S = varargin{3}; % Get the structure.
N = str2double(get(S.ed(1:2),'string')); % The numbers to operate on.
VL = get(S.pp,{'str','value'}); % User's choice of operation.
% Now get the string updates and perform operations.
switch VL{1}{VL{2}} % User's string choice from popup.
case 'Add'
A = sum(N);
str = '+';
case 'Multiply'
A = prod(N);
str = 'x';
case 'Subtract'
A = -diff(N);
str = '-';
case 'Divide'
A = N(1)/N(2);
str = '/';
case 'Power'
A = N(1).^N(2);
str = '^';
otherwise
end
set(S.tx(1),'string',str) % Set the operation display.
if varargin{1}==S.pb % This stuff we only need to do if button is pushed.
S.CNT = S.CNT + 1;
set(S.ed(3),'str',A)
S.CHC{S.CNT,1} = sprintf('%2.2f %s %2.2f %s %2.2f',N(1),str,N(2),'=',A);
set(S.pb,'callback',{@pb_call,S})
set(S.um,'Callback', {@um_call,S});
end
function [] = um_call(varargin)
S = varargin{3}; % Get the structure.
% Create our input dialog box args.
prompt = 'Name of the variable to create?';
name = 'Enter a variable name.';
numlines = 1;
defaultanswer = {'MyData'};
var = '5t;-'; % An invalid variable name.
% Note that there should be an error check in here in case the user entered
% an invalid variable name.
while ~isvarname(var)
var = inputdlg(prompt,name,numlines,defaultanswer);
var = var{1};
end
assignin('base',var,S.CHC) % Assign the data to the base workspace.
% If one wanted, a msgbox could be added here to let the user know that the
% data is now available in the base workspace.
|
github
|
jacksky64/imageProcessing-master
|
GUI_22.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_22.m
| 1,928 |
utf_8
|
a5cb0a1c676409bd72fe711b9e4169cb
|
function [] = GUI_22()
% Demonstrate how to get selection from a popup to an edit box & vis versa.
% This is an expansion of GUI_20. Here we will not enforce a specific list
% of choices so that any text the user enters into the editbox will be
% added to the popup list if it is not already there.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 300 110],...
'menubar','none',...
'name','GUI_22',...
'numbertitle','off',...
'resize','off');
S.pop = uicontrol('style','pop',...
'units','pixels',...
'position',[20 10 260 40],...
'string',{'one','two','three','four'});
S.ed = uicontrol('style','edit',...
'units','pix',...
'position',[20 60 260 30],...
'fontsize',16,'string','one');
set([S.pop,S.ed],{'callback'},{{@pp_call,S};{@ed_call,S}});
function [] = pp_call(varargin)
% Callback for the popup.
S = varargin{3}; % Get the structure.
P = get(S.pop,{'string','val'}); % Get the users choice.
set(S.ed,'string',P{1}{P{2}}); % Assign the user's choice to the edit.
function [] = ed_call(varargin)
% Callback for the edit.
S = varargin{3}; % Get the structure.
E = get(S.ed,'string'); % Get the string from the edit.
P = get(S.pop,{'string','value'}); % Get the users choice.
% Check if edit string is found in pop-up list.
tmp = strmatch(E,P{1});
if ~isempty(tmp)
set(S.pop,'value',tmp) % Set the pop-up to match the edit.
else
% We could add the new element to the popup string at either the top or
% the bottom. Both methods are shown below. Only uncomment one of
% these at a time!
set(S.pop,'string',{P{1}{:},E},'value',length(P{1})+1) % Bottom
% set(S.pop,'string',{E,P{1}{:}},'value',1) % Top
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_3.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_3.m
| 1,541 |
utf_8
|
d3fd0091e8f1cf8142980cd48db68289
|
function [] = GUI_3()
% Demonstrate how to hide a uicontrol from the user.
% Creates a textbox and a checkbox. The state of the checkbox determines
% whether or not the textbox is visible.
%
%
% Author: Matt Fig
% Date: 7/15/2009
S.fh = figure('units','pixels',...
'position',[300 300 200 130],...
'menubar','none',...
'name','GUI_3',...
'numbertitle','off',...
'resize','off');
S.tx = uicontrol('style','text',...
'unit','pix',...
'position',[10 70 180 40],...
'string','Hello',...
'backgroundcolor','r',...
'fontsize',23);
S.ch = uicontrol('style','check',...
'unit','pix',...
'position',[10 20 180 35],...
'string',' Check2hide',...
'fontsize',14);
set(S.ch,'callback',{@ch_call,S}) % Set callback.
function [] = ch_call(varargin)
% Callback for pushbutton.
S = varargin{3}; % Get the structure.
switch get(S.tx,'visible')
case 'on' % The text is visible, make it invisible.
set(S.ch,'string',' Uncheck2show');
set(S.tx,'visible','off')
case 'off' % The text is invisible, make it visible.
set(S.ch,'string',' Check2hide');
set(S.tx,'visible','on')
otherwise % This should never happen!
disp('Matlab entered the twilight zone, aborting.')
close(S.fh)
quit
end
|
github
|
jacksky64/imageProcessing-master
|
GUI_25.m
|
.m
|
imageProcessing-master/Matlab UI Examples/GUI_25.m
| 3,018 |
utf_8
|
1b008e30b7eb2b222dd92dc3b2e5c22f
|
function [] = GUI_25()
% Demonstrate how to make an image loader.
% Creates a GUI which looks for files with the extention .jpg in the
% current directory. A listbox is populated with the names of all such
% files, and is empty if none exist in the current directory. When the
% pushbutton is activated, the current selection in the listbox is read
% into a variable in the base workspace. The name of the variable will
% have a timestamp so as to minimize the chances of overwriting another
% variable. For example, say the selected image file is called Mypic.jpg
% The base workspace variable will be Mypic_10_05_21 if the pushbutton was
% pushed as 10:05:21 according to the system clock.
%
% Suggested exercise: Modify the code so that the user could pass in
% the extention of the image file-type which they wished to load. In the
% callback section, there should be some kind of check for indexed
% images, and appropriate action taken. Further: modify this file so that
% the user can pass in a directory name within which to search, or add a
% browse button to the GUI.
%
%
%
% Author: Matt Fig
% Date: 7/15/2009
D = dir('*.jpg'); % or jpeg or whatever.
S.NAM = {D(:).name}; % Store the name of all items returned in D.
S.fh = figure('units','pixels',...
'position',[450 450 400 200],...
'menubar','none',...
'name','Verify Password.',...
'resize','off',...
'numbertitle','off',...
'name','GUI_25');
S.ls = uicontrol('style','list',...
'units','pix',...
'position',[10 60 380 120],...
'backgroundcolor','w',...
'string',S.NAM,...
'HorizontalAlign','left');
S.pb = uicontrol('style','push',...
'units','pix',...
'position',[10 10 380 40],...
'backgroundcolor','w',...
'HorizontalAlign','left',...
'string','Load Image',...
'fontsize',14,'fontweight','bold',...
'callback',{@pb_call,S});
function [] = pb_call(varargin)
% Callback for pushbutton.
S = varargin{3};
L = get(S.ls,{'string';'value'}); % Get the editbox string
try
L = L{1}{L{2}}; % Give it a name for the base workspace.
X = imread(L); % Read the image.
% Next we will append a timestamp to the variable name so that we
% minimize the chances of overwriting a variable in the base
% workspace. There are many other ways to handle this, so feel free to
% experiment with alternatives.
str = [L(1:end-4),'_',strrep(datestr(now,'HH:MM:SS'),':','_')];
assignin('base',str,X) % Create the variable in the base workspace.
catch
% Also more could be done here as far as returning what kind of error,
% or offereing other suggestions to the user, etc.
fprintf('\t\t%s\n','No file selected, or read error.')
end
|
github
|
jacksky64/imageProcessing-master
|
image_compare_tool.m
|
.m
|
imageProcessing-master/imagecompare/image_compare_tool.m
| 1,897 |
utf_8
|
d5ce0339bf9a468a84b11ece78f99394
|
function image_compare_tool(left_image, right_image)
% Create the figure
hFig = figure('Toolbar','none',...
'Menubar','none',...
'Name','Image Compare Tool',...
'NumberTitle','off',...
'IntegerHandle','off');
% Display left image
subplot(121)
hImL = imshow(left_image);
% Display right image
subplot(122)
hImR = imshow(right_image);
% Create a scroll panel for left image
hSpL = imscrollpanel(hFig,hImL);
set(hSpL,'Units','normalized',...
'Position',[0 0.1 .5 0.9])
% Create scroll panel for right image
hSpR = imscrollpanel(hFig,hImR);
set(hSpR,'Units','normalized',...
'Position',[0.5 0.1 .5 0.9])
% Add a Magnification box
hMagBox = immagbox(hFig,hImL);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])
% Add a pixel info
hl = impixelinfo(hFig,hImL);
set(hl,'Position',[20 20 200 pos(4)])
hr = impixelinfo(hFig,hImR);
set(hr,'Position',[220 20 200 pos(4)])
%% Add an Overview tool
imoverview(hImL)
%% Get APIs from the scroll panels
apiL = iptgetapi(hSpL);
apiR = iptgetapi(hSpR);
%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apiL.setVisibleLocation(apiR.getVisibleLocation())
% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback(apiR.setMagnification);
% When magnification changes on right scroll panel,
% tell left scroll panel
apiR.addNewMagnificationCallback(apiL.setMagnification);
% When location changes on left scroll panel,
% tell right scroll panel
apiL.addNewLocationCallback(apiR.setVisibleLocation);
% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisibleLocation);
hf1=imcontrast(hImL);
hf2=imcontrast(hImR);
|
github
|
jacksky64/imageProcessing-master
|
GaborFilterDesighnNik.m
|
.m
|
imageProcessing-master/gaborFilterDesign/GaborFilterDesighnNik.m
| 34,966 |
utf_8
|
9f7447b4806b3da2d5248db380c94a09
|
function varargout = GaborFilterDesighnNik(varargin)
%%
%function varargout = GaborFilterDesighnNik(varargin)
%
% Functional purpose: I've made this GUI for a couple of students, which were learning the Gabor Filtering, and had hard
% time to understand the sunbject. This helped them to get some intuition about what Gabor Filtering is, what are it's
% benefits and what are it's uses. This GUI allowes you to play with Gabor filters in order to understand this important
% topic. The user may define a Gabor Filter with all possible parameters, and to filter an image he wishes to. He then
% can see the filtered image, in spatial and frewquncy domain, it's phase and amplitude (as it's unreal signal). The
% filtered can beviewed in spatioal/frequncy domain, and it can be saved for future use.
%
% Input arguments: None. (Actually GUI settings defned by user).
%
% Output Arguments: None
%
% Issues & Comments: None
%
% Author and Date: Nikolay Skarbnik 7/07/2008.
%%
% GABORFILTERDESIGHNNIK M-file for GaborFilterDesighnNik.fig
% GABORFILTERDESIGHNNIK, by itself, creates a new GABORFILTERDESIGHNNIK or raises the existing
% singleton*.
%
% H = GABORFILTERDESIGHNNIK returns the handle to a new GABORFILTERDESIGHNNIK or the handle to
% the existing singleton*.
%
% GABORFILTERDESIGHNNIK('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GABORFILTERDESIGHNNIK.M with the given input arguments.
%
% GABORFILTERDESIGHNNIK('Property','Value',...) creates a new GABORFILTERDESIGHNNIK or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GaborFilterDesighnNik_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GaborFilterDesighnNik_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help GaborFilterDesighnNik
% Last Modified by GUIDE v2.5 15-Mar-2011 23:05:01
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GaborFilterDesighnNik_OpeningFcn, ...
'gui_OutputFcn', @GaborFilterDesighnNik_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before GaborFilterDesighnNik is made visible.
function GaborFilterDesighnNik_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GaborFilterDesighnNik (see VARARGIN)
% Choose default command line output for GaborFilterDesighnNik
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% This sets up the initial plot - only do when we are invisible
% so window can get raised using GaborFilterDesighnNik.
if strcmp(get(hObject,'Visible'),'off')
imagesc(peaks(200));
text(100,20,'Gabor filter visual GUI','FontSize',28,'FontName','Castellar','HorizontalAlignment','center','FontWeight','Bold');
Str_array={' Dear user, please do the following:','1) Define the filter, by changing the Mother Gabor parameters',...
' or, by loading a previoly saved filter',' (you can view your filter in both time and frequency domains)',...
'2) Load an image','3) Finally, apply the filter','4) Using the "Show" and "Filtered Image" ',...
' button combination you can see the resulting image... '};
text(10,80,Str_array,'FontSize',20,'FontName','Kartika');
text(20,180,'\copyright Nikolay S.','FontSize',14,'HorizontalAlignment','center');
end
% UIWAIT makes GaborFilterDesighnNik wait for user response (see UIRESUME)
% uiwait(handles.GaborFiltGUINik);
% --- Outputs from this function are returned to the command line.
function varargout = GaborFilterDesighnNik_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --------------------------------------------------------------------
function FileMenu_Callback(hObject, eventdata, handles)
% hObject handle to FileMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function OpenMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to OpenMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
file = uigetfile('*.fig');
if ~isequal(file, 0)
open(file);
end
% --------------------------------------------------------------------
function PrintMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to PrintMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
printdlg(handles.GaborFiltGUINik)
% --------------------------------------------------------------------
function CloseMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to CloseMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
selection = questdlg(['Close ' get(handles.GaborFiltGUINik,'Name') '?'],...
['Close ' get(handles.GaborFiltGUINik,'Name') '...'],...
'Yes','No','Yes');
if strcmp(selection,'No')
return;
end
delete(handles.GaborFiltGUINik)
% --- Executes on selection change in Graph_type_popup.
function Graph_type_popup_Callback(hObject, eventdata, handles)
% hObject handle to Graph_type_popup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns Graph_type_popup contents as cell array
% contents{get(hObject,'Value')} returns selected item from Graph_type_popup
n=get(handles.N_edit,'Value') ;
x=linspace(get(handles.X_min_edit,'Value'),get(handles.X_max_edit,'Value'),n);
y=linspace(get(handles.Y_min_edit,'Value'),get(handles.Y_max_edit,'Value'),n);
G=real(handles.FilterData); %real(get(hObject,'UserData'));
if (get(handles.Frequency_radiobutton,'Value'))
G=abs(fftshift(fft2(G)));
end
if (get(handles.Hold_on_checkbox,'Value'))
hold on;
else
hold off;
end
switch (get(handles.Graph_type_popup,'Value'))
case (1)
imagesc(x,y,G);
case (2)
mesh(x,y,G);
case (3)
surf(x,y,G);
end
% --- Executes during object creation, after setting all properties.
function Graph_type_popup_CreateFcn(hObject, eventdata, handles)
% hObject handle to Graph_type_popup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
set(hObject, 'String', {'imagesc', 'mesh', 'surf'});
function N_edit_Callback(hObject, eventdata, handles)
% hObject handle to N_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of N_edit as text
% str2double(get(hObject,'String')) returns contents of N_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function N_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to N_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function X_min_edit_Callback(hObject, eventdata, handles)
% hObject handle to X_min_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of X_min_edit as text
% str2double(get(hObject,'String')) returns contents of X_min_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function X_min_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to X_min_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function X_max_edit_Callback(hObject, eventdata, handles)
% hObject handle to X_max_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of X_max_edit as text
% str2double(get(hObject,'String')) returns contents of X_max_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function X_max_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to X_max_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Y_min_edit_Callback(hObject, eventdata, handles)
% hObject handle to Y_min_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Y_min_edit as text
% str2double(get(hObject,'String')) returns contents of Y_min_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Y_min_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Y_min_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Y_max_edit_Callback(hObject, eventdata, handles)
% hObject handle to Y_max_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Y_max_edit as text
% str2double(get(hObject,'String')) returns contents of Y_max_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Y_max_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Y_max_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Frequency_edit_Callback(hObject, eventdata, handles)
% hObject handle to Frequency_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Frequency_edit as text
% str2double(get(hObject,'String')) returns contents of Frequency_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Frequency_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Frequency_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Rotation_Angle_edit_Callback(hObject, eventdata, handles)
% hObject handle to Rotation_Angle_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Rotation_Angle_edit as text
% str2double(get(hObject,'String')) returns contents of Rotation_Angle_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Rotation_Angle_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Rotation_Angle_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Sigma_x_edit_Callback(hObject, eventdata, handles)
% hObject handle to Sigma_x_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Sigma_x_edit as text
% str2double(get(hObject,'String')) returns contents of Sigma_x_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Sigma_x_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Sigma_x_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Sigma_y_edit_Callback(hObject, eventdata, handles)
% hObject handle to Sigma_y_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Sigma_y_edit as text
% str2double(get(hObject,'String')) returns contents of Sigma_y_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Sigma_y_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Sigma_y_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes1
set(hObject,'FontSize',1e-3);
function Phase_shift_edit_Callback(hObject, eventdata, handles)
% hObject handle to Phase_shift_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Phase_shift_edit as text
% str2double(get(hObject,'String')) returns contents of Phase_shift_edit as a double
parameter_changed(hObject)
% --- Executes during object creation, after setting all properties.
function Phase_shift_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to Phase_shift_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in Time_radiobutton.
function Time_radiobutton_Callback(hObject, eventdata, handles)
% hObject handle to Time_radiobutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of Time_radiobutton
eventdata='datachanged';
Graph_type_popup_Callback(handles.Graph_type_popup, eventdata, handles)
% --- Executes on button press in Frequency_radiobutton.
function Frequency_radiobutton_Callback(hObject, eventdata, handles)
% hObject handle to Frequency_radiobutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of Frequency_radiobutton
eventdata='datachanged';
Graph_type_popup_Callback(handles.Graph_type_popup, eventdata, handles)
function parameter_changed(hObject)
set(hObject,'Value',str2double(get(hObject,'String'))); % "edit" object value, is the numeric value of the string.
handles=guidata(hObject);
n=get(handles.N_edit,'Value') ;
Sigma_x=get(handles.Sigma_x_edit,'Value') ;
Sigma_y=get(handles.Sigma_y_edit,'Value') ;
x=linspace(get(handles.X_min_edit,'Value'),get(handles.X_max_edit,'Value'),n);
y=linspace(get(handles.Y_min_edit,'Value'),get(handles.Y_max_edit,'Value'),n);
% set(handles.axes1,'XLim',[x(1), x(end)]);
% set(handles.axes1,'YLim',[y(1), y(end)]);
axis([x(1), x(end), y(1), y(end)]);
F=get(handles.Frequency_edit,'Value') ; % modulation freq
Theta= get(handles.Rotation_Angle_edit,'Value')*pi/180;
Phase_shift=get(handles.Phase_shift_edit,'Value');
% [x_rot,y_rot]=my_rotate(x,y,Theta);
[X,Y]=meshgrid(x,y);
X_rot=X*cos(Theta)+Y*sin(Theta);
Y_rot=-X*sin(Theta)+Y*cos(Theta);
GaussianMat=1/(2*pi*Sigma_x*Sigma_y)*exp((-((X_rot)/Sigma_x).^2-((Y_rot)/Sigma_y).^2)/2);%exp((-(X_rot)/(Sigma_x)^2-(Y_rot)/(Sigma_y)^2)/2);
% GaussianMat=myGaussian(x_rot, Sigma_x)'*myGaussian(y_rot, Sigma_y);
% FreqModulation=zeros(size(GaussianMat));
%
% for n=1:length(y)
% for m=1:length(x)
% FreqModulation(n,m)=exp(j*F*2*pi*(x(m)*cos(Theta)+y(n)*sin(Theta)));
% end
% end
FreqModulation=exp(j*(F*2*pi*X_rot+Phase_shift));
% FreqModulation=exp(2*pi*i*F*repmat(x_rot,length(y_rot),1));%'*ones(size(x_rot));
% FreqModulation=exp(2*pi*i*F*x_rot)'*exp(2*pi*i*F*y_rot+Phase_shift); %repmat(exp(2*i*pi*F*x),m,1);
GaborFilter=GaussianMat.*FreqModulation;
handles.FilterData=GaborFilter; % Save the resulting Gabor filter
%set(handles.Graph_type_popup,'UserData',GaborFilter);
guidata(hObject,handles);
eventdata='datachanged';
Graph_type_popup_Callback(handles.Graph_type_popup, eventdata, handles)
function G=myGaussian(x, sigma,mean)
if nargin<3
mean=0;
if nargin<2
sigma=1;
end
end
G=1/(2*pi)*exp(-((x-mean)/sigma).^2/2);
function [x_rot,y_rot]=my_rotate(x,y,Theta)
%function [x_rot,y_rot]=my_rotate(x,y,Theta)
% Rotates X and Y by agle Theta (Theta is given in rad)
x_rot=x*cos(Theta)+y*sin(Theta);
y_rot=-x*sin(Theta)+y*cos(Theta);
function error_accured(handles, error_String)
% function error_accured(handles, error_String)
% the function desplays an error string on the GUI screen, once an error
% accures.
set (handles.ErrorText,'String',error_String);
set (handles.ErrorPanel,'Visible','On');%set ([handles.ErrorText, handles.ErrorOffButton],'Visible','On');
% --- Executes on button press in Hold_on_checkbox.
function Hold_on_checkbox_Callback(hObject, eventdata, handles)
% hObject handle to Hold_on_checkbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of Hold_on_checkbox
% --- Executes on button press in LoadButton.
function LoadButton_Callback(hObject, eventdata, handles)
% hObject handle to LoadButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles=guidata(hObject);
switch (get(handles.FileTypeMenu,'Value'))
case(1) %('Image')
FilterSpec={'*.jpg;*.jpeg;*.gif;*.bmp;*.png;*.tiff','Image Files (*.jpg;*.jpeg;*.gif;*.bmp;*.png;*.tiff)'};
DialogTitle='Select an Image file';
case(2) %('Filter')
FilterSpec='*.mat';
DialogTitle='Select a previolsy saved Filter file';
case(3) %('Filtered Image')
FilterSpec='*.mat';
DialogTitle='Select a previolsy saved Filtered Image file';
end
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,DialogTitle);
if isequal(FileName,0)
error_accured(handles, 'No such file exists. Choose a file.')
if strcmpi(get(handles.ApplyFilterButton,'Enable'),'On')
set(handles.ApplyFilterButton,'Enable','Off');
end
else
set(handles.FilePathEdit,'String',PathName);
set(handles.FileNameEdit,'String',FileName);
if strcmpi(get(handles.ApplyFilterButton,'Enable'),'Off')
set(handles.ApplyFilterButton,'Enable','On');
end
end
switch (get(handles.FileTypeMenu,'Value'))
case(1) %('Image')
ImageDataTmp=imread([PathName,FileName]);
if (size(ImageDataTmp,3)==3) %work with Gray iamges only!!!
ImageDataTmp=rgb2gray(ImageDataTmp);
end
handles.ImageData=double(ImageDataTmp);
case(2) %('Filter')
FilterDataTmp=load([PathName,FileName]);
handles.FilterData=FilterDataTmp.tmp;
case{3,4} %('Filtered Image')
FilteredImageDataTmp=load([PathName,FileName]);
handles.FilteredImageData=FilteredImageDataTmp.tmp;
end
guidata(hObject,handles);
% --- Executes on button press in SaveButton.
function SaveButton_Callback(hObject, eventdata, handles)
% hObject handle to SaveButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
FileName=get(handles.FileNameEdit,'String');
PathName=get(handles.FilePathEdit,'String');
if isempty(strfind(FileName,'.mat'))
% Error, trying to save .mat output in a non *.mat file!!!
error_accured(handles, 'Attempt to save .mat output in a non *.mat file!!!')
end
tmp=[];
switch (get(handles.FileTypeMenu,'Value'))
case(1) %('Image')
%Do nothing here. Saving the image is obsolite at this point
case(2) %('Filter')
tmp=handles.FilterData;
case{3,4} %('Filtered Image')
tmp=handles.FilteredImageData;
end
if ~isempty(tmp) save([PathName,FileName],'tmp'); end;
function FilePathEdit_Callback(hObject, eventdata, handles)
% hObject handle to FilePathEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of FilePathEdit as text
% str2double(get(hObject,'String')) returns contents of FilePathEdit as a double
% --- Executes during object creation, after setting all properties.
function FilePathEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to FilePathEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function FileNameEdit_Callback(hObject, eventdata, handles)
% hObject handle to FileNameEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of FileNameEdit as text
% str2double(get(hObject,'String')) returns contents of FileNameEdit as a double
% --- Executes during object creation, after setting all properties.
function FileNameEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to FileNameEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in FileTypeMenu.
function FileTypeMenu_Callback(hObject, eventdata, handles)
% hObject handle to FileTypeMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns FileTypeMenu contents as cell array
% contents{get(hObject,'Value')} returns selected item from FileTypeMenu
% --- Executes during object creation, after setting all properties.
function FileTypeMenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to FileTypeMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ShowButton.
function ShowButton_Callback(hObject, eventdata, handles)
% hObject handle to ShowButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if (get(handles.NewFigCheckBox,'Value'))
figure; % if checkbox is on, plot graph in a new window
% title(['Image of ', get(handles.FileTypeMenu,'String')]);
% hold on;
end
switch (get(handles.FileTypeMenu,'Value'))
case(1) %('Image')
imshow(uint8(handles.ImageData));
% if (get(handles.Frequency_radiobutton,'Value'))
% image(abs(fft2(handles.ImageData)));
% else
% imshow(uint8(handles.ImageData));
% end
case(2) %('Filter')
eventdata='Show Button was pressed';
Graph_type_popup_Callback(hObject, eventdata, handles)
case(3) %('Filtered ImageAmplitude')
if isempty(handles.FilteredImageData)
eventdata='Filtered Image data is needed';
ApplyFilterButton_Callback(hObject, eventdata, handles);
% guidata(hObject,handles);
% handles=guidata(hObject); % update handle structure
end
% if (get(handles.Frequency_radiobutton,'Value'))
% image(abs(fft2(handles.FilteredImageData)));
% else
% imshow(uint8(real(handles.FilteredImageData))); % Showing only real part of filtered image
% end
imshow(Scale2Uint(abs(handles.FilteredImageData))); % Showing only absolute value of the filtered image
case(4) %('Filtered Image Phaze')
if isempty(handles.FilteredImageData)
eventdata='Filtered Image data is needed';
ApplyFilterButton_Callback(hObject, eventdata, handles);
end
% imshow(uint8(angle(handles.FilteredImageData))); % Showing only real part of filtered image
scalled_amp=Scale2Uint(abs(handles.FilteredImageData));
scalled_phase=Scale2Uint(angle(handles.FilteredImageData));
% ind=scalled_amp==0;
% scalled_phase(ind)=0;%set phase for low amplitudes to zero
scalled_phase(scalled_amp<1)=0;%set phase for low amplitudes to zero
imshow(scalled_phase); % Showing the angle value of the filtered image
case(5) %('Laplasina(Filtered Image Phaze)')
if isempty(handles.FilteredImageData)
eventdata='Filtered Image data is needed';
ApplyFilterButton_Callback(hObject, eventdata, handles);
end
% imshow(uint8(angle(handles.FilteredImageData))); % Showing only real part of filtered image
imshow(Scale2Uint(del2(angle(handles.FilteredImageData)))); % Showing the angle value of the filtered image
case(6) %('Gaussian(Filtered Image Phaze)')
if isempty(handles.FilteredImageData)
eventdata='Filtered Image data is needed';
ApplyFilterButton_Callback(hObject, eventdata, handles);
end
% imshow(uint8(angle(handles.FilteredImageData))); % Showing only real part of filtered image
imshow(Scale2Uint(gradient(angle(handles.FilteredImageData)))); % Showing the angle value of the filtered image
end
if (get(handles.NewFigCheckBox,'Value'))
temp_str_arr=get(handles.FileTypeMenu,'String');
temp_str=temp_str_arr(get(handles.FileTypeMenu,'Value'));
title(temp_str,'FontSize',18);
end
% --- Executes on button press in ApplyFilterButton.
function ApplyFilterButton_Callback(hObject, eventdata, handles)
% hObject handle to ApplyFilterButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles=guidata(hObject);
if isempty(handles.ImageData)
error_accured(handles, 'No Image file loaded');
end
set(handles.GaborFiltGUINik,'Pointer','watch'); drawnow;
% uiwait(handles.GaborFiltGUINik);
if size(handles.ImageData,3)==3
handles.FilteredImageData=[];
for i=1:3
handles.FilteredImageData(:,:,i)=filter2(handles.FilterData,handles.ImageData(:,:,i),'same');
end
else
handles.FilteredImageData=filter2(handles.FilterData,handles.ImageData,'same');%conv2(handles.FilterData,handles.ImageData);
end
set(handles.GaborFiltGUINik,'Pointer','arrow');drawnow;
guidata(hObject,handles);
% --- Executes during object creation, after setting all properties.
function GaborFiltGUINik_CreateFcn(hObject, eventdata, handles)
% hObject handle to GaborFiltGUINik (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
handles=guidata(hObject);
home; % scrole screen up
fprintf('\n\n %s \n\n','(NikolayS) Gabor Filter generation and application GUI started ');
handles.ImageData=[]; % Init vriables, so isempty function can be applied to them.
handles.FilterData=[];
handles.FilteredImageData=[];
guidata(hObject,handles);
% --- Executes on button press in ErrorOffButton.
function ErrorOffButton_Callback(hObject, eventdata, handles)
% hObject handle to ErrorOffButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%set ([handles.ErrorText, handles.ErrorOffButton],'Visible','Off');
set (handles.ErrorPanel,'Visible','Off');
% --- Executes on button press in NewFigCheckBox.
function NewFigCheckBox_Callback(hObject, eventdata, handles)
% hObject handle to NewFigCheckBox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of NewFigCheckBox
% --------------------------------------------------------------------
function AboutMenu_Callback(hObject, eventdata, handles)
% hObject handle to AboutMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
web('GaborFilterDesighnNikAbout.htm');
% --------------------------------------------------------------------
function HelpMenu_Callback(hObject, eventdata, handles)
% hObject handle to HelpMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
web('GaborFilterDesighnNikHelp.htm');
%% Servise sub functions
function scaled_mat=Scale2Uint(temp) % rescale data to be in margins of UINT8[0-255]
temp=double(temp);
temp_min=min(temp(:));
temp_max=max(temp(:));
temp=temp-temp_min;
temp=255*temp/(temp_max-temp_min);
scaled_mat=uint8(temp);
|
github
|
jacksky64/imageProcessing-master
|
smoothn.m
|
.m
|
imageProcessing-master/smoothn/smoothn.m
| 26,704 |
utf_8
|
f99199dd381890addc2512f2f23899cc
|
function [z,s,exitflag] = smoothn(varargin)
%SMOOTHN Robust spline smoothing for 1-D to N-D data.
% SMOOTHN provides a fast, automatized and robust discretized spline
% smoothing for data of arbitrary dimension.
%
% Z = SMOOTHN(Y) automatically smoothes the uniformly-sampled array Y. Y
% can be any N-D noisy array (time series, images, 3D data,...). Non
% finite data (NaN or Inf) are treated as missing values.
%
% Z = SMOOTHN(Y,S) smoothes the array Y using the smoothing parameter S.
% S must be a real positive scalar. The larger S is, the smoother the
% output will be. If the smoothing parameter S is omitted (see previous
% option) or empty (i.e. S = []), it is automatically determined by
% minimizing the generalized cross-validation (GCV) score.
%
% Z = SMOOTHN(Y,W) or Z = SMOOTHN(Y,W,S) smoothes Y using a weighting
% array W of positive values, that must have the same size as Y. Note
% that a nil weight corresponds to a missing value.
%
% If you want to smooth a vector field or multicomponent data, Y must be
% a cell array. For example, if you need to smooth a 3-D vectorial flow
% (Vx,Vy,Vz), use Y = {Vx,Vy,Vz}. The output Z is also a cell array which
% contains the smoothed components. See examples 5 to 8 below.
%
% [Z,S] = SMOOTHN(...) also returns the calculated value for the
% smoothness parameter S so that you can fine-tune the smoothing
% subsequently if needed.
%
% 1) Robust smoothing
% -------------------
% Z = SMOOTHN(...,'robust') carries out a robust smoothing that minimizes
% the influence of outlying data.
%
% An iteration process is used with the 'ROBUST' option, or in the
% presence of weighted and/or missing values. Z = SMOOTHN(...,OPTIONS)
% smoothes with the termination parameters specified in the structure
% OPTIONS. OPTIONS is a structure of optional parameters that change the
% default smoothing properties. It must be last input argument.
% ---
% The structure OPTIONS can contain the following fields:
% -----------------
% OPTIONS.TolZ: Termination tolerance on Z (default = 1e-3),
% OPTIONS.TolZ must be in ]0,1[
% OPTIONS.MaxIter: Maximum number of iterations allowed
% (default = 100)
% OPTIONS.Initial: Initial value for the iterative process
% (default = original data, Y)
% OPTIONS.Weight: Weight function for robust smoothing:
% 'bisquare' (default), 'talworth' or 'cauchy'
% -----------------
%
% [Z,S,EXITFLAG] = SMOOTHN(...) returns a boolean value EXITFLAG that
% describes the exit condition of SMOOTHN:
% 1 SMOOTHN converged.
% 0 Maximum number of iterations was reached.
%
% 2) Different spacing increments
% -------------------------------
% SMOOTHN, by default, assumes that the spacing increments are constant
% and equal in all the directions (i.e. dx = dy = dz = ...). If the
% increments differ from one direction to the other, use the following
% field in OPTIONS:
% OPTIONS.Spacing' = [d1 d2 d3...],
% where dI represents the spacing between points in the Ith dimension.
%
% Important note: d1 is the spacing increment for the first
% non-singleton dimension (i.e. the vertical direction for matrices).
%
% 3) References (please refer to the two following papers)
% -------------
% 1) Garcia D, Robust smoothing of gridded data in one and higher
% dimensions with missing values. Computational Statistics & Data
% Analysis, 2010;54:1167-1178.
% <a
% href="matlab:web('http://www.biomecardio.com/pageshtm/publi/csda10.pdf')">PDF download</a>
% 2) Garcia D, A fast all-in-one method for automated post-processing of
% PIV data. Exp Fluids, 2011;50:1247-1259.
% <a
% href="matlab:web('http://www.biomecardio.com/pageshtm/publi/media11.pdf')">PDF download</a>
%
% Examples:
% --------
% %--- Example #1: smooth a curve ---
% x = linspace(0,100,2^8);
% y = cos(x/10)+(x/50).^2 + randn(size(x))/10;
% y([70 75 80]) = [5.5 5 6];
% z = smoothn(y); % Regular smoothing
% zr = smoothn(y,'robust'); % Robust smoothing
% subplot(121), plot(x,y,'r.',x,z,'k','LineWidth',2)
% axis square, title('Regular smoothing')
% subplot(122), plot(x,y,'r.',x,zr,'k','LineWidth',2)
% axis square, title('Robust smoothing')
%
% %--- Example #2: smooth a surface ---
% xp = 0:.02:1;
% [x,y] = meshgrid(xp);
% f = exp(x+y) + sin((x-2*y)*3);
% fn = f + randn(size(f))*0.5;
% fs = smoothn(fn);
% subplot(121), surf(xp,xp,fn), zlim([0 8]), axis square
% subplot(122), surf(xp,xp,fs), zlim([0 8]), axis square
%
% %--- Example #3: smooth an image with missing data ---
% n = 256;
% y0 = peaks(n);
% y = y0 + randn(size(y0))*2;
% I = randperm(n^2);
% y(I(1:n^2*0.5)) = NaN; % lose 1/2 of data
% y(40:90,140:190) = NaN; % create a hole
% z = smoothn(y); % smooth data
% subplot(2,2,1:2), imagesc(y), axis equal off
% title('Noisy corrupt data')
% subplot(223), imagesc(z), axis equal off
% title('Recovered data ...')
% subplot(224), imagesc(y0), axis equal off
% title('... compared with the actual data')
%
% %--- Example #4: smooth volumetric data ---
% [x,y,z] = meshgrid(-2:.2:2);
% xslice = [-0.8,1]; yslice = 2; zslice = [-2,0];
% vn = x.*exp(-x.^2-y.^2-z.^2) + randn(size(x))*0.06;
% subplot(121), slice(x,y,z,vn,xslice,yslice,zslice,'cubic')
% title('Noisy data')
% v = smoothn(vn);
% subplot(122), slice(x,y,z,v,xslice,yslice,zslice,'cubic')
% title('Smoothed data')
%
% %--- Example #5: smooth a cardioid ---
% t = linspace(0,2*pi,1000);
% x = 2*cos(t).*(1-cos(t)) + randn(size(t))*0.1;
% y = 2*sin(t).*(1-cos(t)) + randn(size(t))*0.1;
% z = smoothn({x,y});
% plot(x,y,'r.',z{1},z{2},'k','linewidth',2)
% axis equal tight
%
% %--- Example #6: smooth a 3-D parametric curve ---
% t = linspace(0,6*pi,1000);
% x = sin(t) + 0.1*randn(size(t));
% y = cos(t) + 0.1*randn(size(t));
% z = t + 0.1*randn(size(t));
% u = smoothn({x,y,z});
% plot3(x,y,z,'r.',u{1},u{2},u{3},'k','linewidth',2)
% axis tight square
%
% %--- Example #7: smooth a 2-D vector field ---
% [x,y] = meshgrid(linspace(0,1,24));
% Vx = cos(2*pi*x+pi/2).*cos(2*pi*y);
% Vy = sin(2*pi*x+pi/2).*sin(2*pi*y);
% Vx = Vx + sqrt(0.05)*randn(24,24); % adding Gaussian noise
% Vy = Vy + sqrt(0.05)*randn(24,24); % adding Gaussian noise
% I = randperm(numel(Vx));
% Vx(I(1:30)) = (rand(30,1)-0.5)*5; % adding outliers
% Vy(I(1:30)) = (rand(30,1)-0.5)*5; % adding outliers
% Vx(I(31:60)) = NaN; % missing values
% Vy(I(31:60)) = NaN; % missing values
% Vs = smoothn({Vx,Vy},'robust'); % automatic smoothing
% subplot(121), quiver(x,y,Vx,Vy,2.5), axis square
% title('Noisy velocity field')
% subplot(122), quiver(x,y,Vs{1},Vs{2}), axis square
% title('Smoothed velocity field')
%
% %--- Example #8: smooth a 3-D vector field ---
% load wind % original 3-D flow
% % -- Create noisy data
% % Gaussian noise
% un = u + randn(size(u))*8;
% vn = v + randn(size(v))*8;
% wn = w + randn(size(w))*8;
% % Add some outliers
% I = randperm(numel(u)) < numel(u)*0.025;
% un(I) = (rand(1,nnz(I))-0.5)*200;
% vn(I) = (rand(1,nnz(I))-0.5)*200;
% wn(I) = (rand(1,nnz(I))-0.5)*200;
% % -- Visualize the noisy flow (see CONEPLOT documentation)
% figure, title('Noisy 3-D vectorial flow')
% xmin = min(x(:)); xmax = max(x(:));
% ymin = min(y(:)); ymax = max(y(:));
% zmin = min(z(:));
% daspect([2,2,1])
% xrange = linspace(xmin,xmax,8);
% yrange = linspace(ymin,ymax,8);
% zrange = 3:4:15;
% [cx cy cz] = meshgrid(xrange,yrange,zrange);
% k = 0.1;
% hcones = coneplot(x,y,z,un*k,vn*k,wn*k,cx,cy,cz,0);
% set(hcones,'FaceColor','red','EdgeColor','none')
% hold on
% wind_speed = sqrt(un.^2 + vn.^2 + wn.^2);
% hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
% set(hsurfaces,'FaceColor','interp','EdgeColor','none')
% hold off
% axis tight; view(30,40); axis off
% camproj perspective; camzoom(1.5)
% camlight right; lighting phong
% set(hsurfaces,'AmbientStrength',.6)
% set(hcones,'DiffuseStrength',.8)
% % -- Smooth the noisy flow
% Vs = smoothn({un,vn,wn},'robust');
% % -- Display the result
% figure, title('3-D flow smoothed by SMOOTHN')
% daspect([2,2,1])
% hcones = coneplot(x,y,z,Vs{1}*k,Vs{2}*k,Vs{3}*k,cx,cy,cz,0);
% set(hcones,'FaceColor','red','EdgeColor','none')
% hold on
% wind_speed = sqrt(Vs{1}.^2 + Vs{2}.^2 + Vs{3}.^2);
% hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
% set(hsurfaces,'FaceColor','interp','EdgeColor','none')
% hold off
% axis tight; view(30,40); axis off
% camproj perspective; camzoom(1.5)
% camlight right; lighting phong
% set(hsurfaces,'AmbientStrength',.6)
% set(hcones,'DiffuseStrength',.8)
%
% See also SMOOTH1Q, DCTN, IDCTN.
%
% -- Damien Garcia -- 2009/03, revised 2014/02
% website: <a
% href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a>
%% Check input arguments
error(nargchk(1,5,nargin));
OPTIONS = struct;
NArgIn = nargin;
if isstruct(varargin{end}) % SMOOTHN(...,OPTIONS)
OPTIONS = varargin{end};
NArgIn = NArgIn-1;
end
idx = cellfun(@ischar,varargin);
if any(idx) % SMOOTHN(...,'robust',...)
assert(sum(idx)==1 && strcmpi(varargin{idx},'robust'),...
'Wrong syntax. Read the help text for instructions.')
isrobust = true;
assert(find(idx)==NArgIn,...
'Wrong syntax. Read the help text for instructions.')
NArgIn = NArgIn-1;
else
isrobust = false;
end
%% Test & prepare the variables
%---
% y = array to be smoothed
y = varargin{1};
if ~iscell(y), y = {y}; end
sizy = size(y{1});
ny = numel(y); % number of y components
for i = 1:ny
assert(isequal(sizy,size(y{i})),...
'Data arrays in Y must have the same size.')
y{i} = double(y{i});
end
noe = prod(sizy); % number of elements
if noe==1, z = y{1}; s = []; exitflag = true; return, end
%---
% Smoothness parameter and weights
W = ones(sizy);
s = [];
if NArgIn==2
if isempty(varargin{2}) || isscalar(varargin{2}) % smoothn(y,s)
s = varargin{2}; % smoothness parameter
else % smoothn(y,W)
W = varargin{2}; % weight array
end
elseif NArgIn==3 % smoothn(y,W,s)
W = varargin{2}; % weight array
s = varargin{3}; % smoothness parameter
end
assert(isnumeric(W),'W must be a numeric array')
assert(isnumeric(s),'S must be a numeric scalar')
assert(isequal(size(W),sizy),...
'Arrays for data and weights (Y and W) must have same size.')
assert(isempty(s) || (isscalar(s) && s>0),...
'The smoothing parameter S must be a scalar >0')
%---
% Field names in the structure OPTIONS
OptionNames = fieldnames(OPTIONS);
idx = ismember(OptionNames,...
{'TolZ','MaxIter','Initial','Weight','Spacing','Order'});
assert(all(idx),...
['''' OptionNames{find(~idx,1)} ''' is not a valid field name for OPTIONS.'])
%---
% "Maximal number of iterations" criterion
if ~ismember('MaxIter',OptionNames)
OPTIONS.MaxIter = 100; % default value for MaxIter
end
assert(isnumeric(OPTIONS.MaxIter) && isscalar(OPTIONS.MaxIter) &&...
OPTIONS.MaxIter>=1 && OPTIONS.MaxIter==round(OPTIONS.MaxIter),...
'OPTIONS.MaxIter must be an integer >=1')
%---
% "Tolerance on smoothed output" criterion
if ~ismember('TolZ',OptionNames)
OPTIONS.TolZ = 1e-3; % default value for TolZ
end
assert(isnumeric(OPTIONS.TolZ) && isscalar(OPTIONS.TolZ) &&...
OPTIONS.TolZ>0 && OPTIONS.TolZ<1,'OPTIONS.TolZ must be in ]0,1[')
%---
% "Initial Guess" criterion
if ~ismember('Initial',OptionNames)
isinitial = false;
else
isinitial = true;
z0 = OPTIONS.Initial;
if ~iscell(z0), z0 = {z0}; end
nz0 = numel(z0); % number of y components
assert(nz0==ny,...
'OPTIONS.Initial must contain a valid initial guess for Z')
for i = 1:nz0
assert(isequal(sizy,size(z0{i})),...
'OPTIONS.Initial must contain a valid initial guess for Z')
z0{i} = double(z0{i});
end
end
%---
% "Weight function" criterion (for robust smoothing)
if ~ismember('Weight',OptionNames)
OPTIONS.Weight = 'bisquare'; % default weighting function
else
assert(ischar(OPTIONS.Weight),...
'A valid weight function (OPTIONS.Weight) must be chosen')
assert(any(ismember(lower(OPTIONS.Weight),...
{'bisquare','talworth','cauchy'})),...
'The weight function must be ''bisquare'', ''cauchy'' or '' talworth''.')
end
%---
% "Order" criterion (by default m = 2)
% Note: m = 0 is of course not recommended!
if ~ismember('Order',OptionNames)
m = 2; % order
else
m = OPTIONS.Order;
if ~ismember(m,0:2);
error('MATLAB:smoothn:IncorrectOrder',...
'The order (OPTIONS.order) must be 0, 1 or 2.')
end
end
%---
% "Spacing" criterion
d = ndims(y{1});
if ~ismember('Spacing',OptionNames)
dI = ones(1,d); % spacing increment
else
dI = OPTIONS.Spacing;
assert(isnumeric(dI) && length(dI)==d,...
'A valid spacing (OPTIONS.Spacing) must be chosen')
end
dI = dI/max(dI);
%---
% Weights. Zero weights are assigned to not finite values (Inf or NaN),
% (Inf/NaN values = missing data).
IsFinite = isfinite(y{1});
for i = 2:ny, IsFinite = IsFinite & isfinite(y{i}); end
nof = nnz(IsFinite); % number of finite elements
W = W.*IsFinite;
assert(all(W(:)>=0),'Weights must all be >=0')
W = W/max(W(:));
%---
% Weighted or missing data?
isweighted = any(W(:)<1);
%---
% Automatic smoothing?
isauto = isempty(s);
%% Create the Lambda tensor
%---
% Lambda contains the eingenvalues of the difference matrix used in this
% penalized least squares process (see CSDA paper for details)
d = ndims(y{1});
Lambda = zeros(sizy);
for i = 1:d
siz0 = ones(1,d);
siz0(i) = sizy(i);
Lambda = bsxfun(@plus,Lambda,...
(2-2*cos(pi*(reshape(1:sizy(i),siz0)-1)/sizy(i)))/dI(i)^2);
end
if ~isauto, Gamma = 1./(1+s*Lambda.^m); end
%% Upper and lower bound for the smoothness parameter
% The average leverage (h) is by definition in [0 1]. Weak smoothing occurs
% if h is close to 1, while over-smoothing appears when h is near 0. Upper
% and lower bounds for h are given to avoid under- or over-smoothing. See
% equation relating h to the smoothness parameter for m = 2 (Equation #12
% in the referenced CSDA paper).
N = sum(sizy~=1); % tensor rank of the y-array
hMin = 1e-6; hMax = 0.99;
if m==0 % Not recommended. For mathematical purpose only.
sMinBnd = 1/hMax^(1/N)-1;
sMaxBnd = 1/hMin^(1/N)-1;
elseif m==1
sMinBnd = (1/hMax^(2/N)-1)/4;
sMaxBnd = (1/hMin^(2/N)-1)/4;
elseif m==2
sMinBnd = (((1+sqrt(1+8*hMax^(2/N)))/4/hMax^(2/N))^2-1)/16;
sMaxBnd = (((1+sqrt(1+8*hMin^(2/N)))/4/hMin^(2/N))^2-1)/16;
end
%% Initialize before iterating
%---
Wtot = W;
%--- Initial conditions for z
if isweighted
%--- With weighted/missing data
% An initial guess is provided to ensure faster convergence. For that
% purpose, a nearest neighbor interpolation followed by a coarse
% smoothing are performed.
%---
if isinitial % an initial guess (z0) has been already given
z = z0;
else
z = InitialGuess(y,IsFinite);
end
else
z = cell(size(y));
for i = 1:ny, z{i} = zeros(sizy); end
end
%---
z0 = z;
for i = 1:ny
y{i}(~IsFinite) = 0; % arbitrary values for missing y-data
end
%---
tol = 1;
RobustIterativeProcess = true;
RobustStep = 1;
nit = 0;
DCTy = cell(1,ny);
vec = @(x) x(:);
%--- Error on p. Smoothness parameter s = 10^p
errp = 0.1;
opt = optimset('TolX',errp);
%--- Relaxation factor RF: to speedup convergence
RF = 1 + 0.75*isweighted;
%% Main iterative process
%---
while RobustIterativeProcess
%--- "amount" of weights (see the function GCVscore)
aow = sum(Wtot(:))/noe; % 0 < aow <= 1
%---
while tol>OPTIONS.TolZ && nit<OPTIONS.MaxIter
nit = nit+1;
for i = 1:ny
DCTy{i} = dctn(Wtot.*(y{i}-z{i})+z{i});
end
if isauto && ~rem(log2(nit),1)
%---
% The generalized cross-validation (GCV) method is used.
% We seek the smoothing parameter S that minimizes the GCV
% score i.e. S = Argmin(GCVscore).
% Because this process is time-consuming, it is performed from
% time to time (when the step number - nit - is a power of 2)
%---
fminbnd(@gcv,log10(sMinBnd),log10(sMaxBnd),opt);
end
for i = 1:ny
z{i} = RF*idctn(Gamma.*DCTy{i}) + (1-RF)*z{i};
end
% if no weighted/missing data => tol=0 (no iteration)
tol = isweighted*norm(vec([z0{:}]-[z{:}]))/norm(vec([z{:}]));
z0 = z; % re-initialization
end
exitflag = nit<OPTIONS.MaxIter;
if isrobust %-- Robust Smoothing: iteratively re-weighted process
%--- average leverage
h = 1;
for k = 1:N
if m==0 % not recommended - only for numerical purpose
h0 = 1/(1+s/dI(k)^(2^m));
elseif m==1
h0 = 1/sqrt(1+4*s/dI(k)^(2^m));
elseif m==2
h0 = sqrt(1+16*s/dI(k)^(2^m));
h0 = sqrt(1+h0)/sqrt(2)/h0;
else
error('m must be 0, 1 or 2.')
end
h = h*h0;
end
%--- take robust weights into account
Wtot = W.*RobustWeights(y,z,IsFinite,h,OPTIONS.Weight);
%--- re-initialize for another iterative weighted process
isweighted = true; tol = 1; nit = 0;
%---
RobustStep = RobustStep+1;
RobustIterativeProcess = RobustStep<4; % 3 robust steps are enough.
else
RobustIterativeProcess = false; % stop the whole process
end
end
%% Warning messages
%---
if isauto
if abs(log10(s)-log10(sMinBnd))<errp
warning('MATLAB:smoothn:SLowerBound',...
['S = ' num2str(s,'%.3e') ': the lower bound for S ',...
'has been reached. Put S as an input variable if required.'])
elseif abs(log10(s)-log10(sMaxBnd))<errp
warning('MATLAB:smoothn:SUpperBound',...
['S = ' num2str(s,'%.3e') ': the upper bound for S ',...
'has been reached. Put S as an input variable if required.'])
end
end
if nargout<3 && ~exitflag
warning('MATLAB:smoothn:MaxIter',...
['Maximum number of iterations (' int2str(OPTIONS.MaxIter) ') has been exceeded. ',...
'Increase MaxIter option (OPTIONS.MaxIter) or decrease TolZ (OPTIONS.TolZ) value.'])
end
if numel(z)==1, z = z{:}; end
%% GCV score
%---
function GCVscore = gcv(p)
% Search the smoothing parameter s that minimizes the GCV score
%---
s = 10^p;
Gamma = 1./(1+s*Lambda.^m);
%--- RSS = Residual sum-of-squares
RSS = 0;
if aow>0.9 % aow = 1 means that all of the data are equally weighted
% very much faster: does not require any inverse DCT
for kk = 1:ny
RSS = RSS + norm(DCTy{kk}(:).*(Gamma(:)-1))^2;
end
else
% take account of the weights to calculate RSS:
for kk = 1:ny
yhat = idctn(Gamma.*DCTy{kk});
RSS = RSS + norm(sqrt(Wtot(IsFinite)).*...
(y{kk}(IsFinite)-yhat(IsFinite)))^2;
end
end
%---
TrH = sum(Gamma(:));
GCVscore = RSS/nof/(1-TrH/noe)^2;
end
end
function W = RobustWeights(y,z,I,h,wstr)
% One seeks the weights for robust smoothing...
ABS = @(x) sqrt(sum(abs(x).^2,2));
r = cellfun(@minus,y,z,'UniformOutput',0); % residuals
r = cellfun(@(x) x(:),r,'UniformOutput',0);
rI = cell2mat(cellfun(@(x) x(I),r,'UniformOutput',0));
MMED = median(rI); % marginal median
AD = ABS(bsxfun(@minus,rI,MMED)); % absolute deviation
MAD = median(AD); % median absolute deviation
%-- Studentized residuals
u = ABS(cell2mat(r))/(1.4826*MAD)/sqrt(1-h);
u = reshape(u,size(I));
switch lower(wstr)
case 'cauchy'
c = 2.385; W = 1./(1+(u/c).^2); % Cauchy weights
case 'talworth'
c = 2.795; W = u<c; % Talworth weights
case 'bisquare'
c = 4.685; W = (1-(u/c).^2).^2.*((u/c)<1); % bisquare weights
otherwise
error('MATLAB:smoothn:IncorrectWeights',...
'A valid weighting function must be chosen')
end
W(isnan(W)) = 0;
% NOTE:
% ----
% The RobustWeights subfunction looks complicated since we work with cell
% arrays. For better clarity, here is how it would look like without the
% use of cells. Much more readable, isn't it?
%
% function W = RobustWeights(y,z,I,h)
% % weights for robust smoothing.
% r = y-z; % residuals
% MAD = median(abs(r(I)-median(r(I)))); % median absolute deviation
% u = abs(r/(1.4826*MAD)/sqrt(1-h)); % studentized residuals
% c = 4.685; W = (1-(u/c).^2).^2.*((u/c)<1); % bisquare weights
% W(isnan(W)) = 0;
% end
end
%% Initial Guess with weighted/missing data
function z = InitialGuess(y,I)
ny = numel(y);
%-- nearest neighbor interpolation (in case of missing values)
if any(~I(:))
z = cell(size(y));
if license('test','image_toolbox')
for i = 1:ny
[z{i},L] = bwdist(I);
z{i} = y{i};
z{i}(~I) = y{i}(L(~I));
end
else
% If BWDIST does not exist, NaN values are all replaced with the
% same scalar. The initial guess is not optimal and a warning
% message thus appears.
z = y;
for i = 1:ny
z{i}(~I) = mean(y{i}(I));
end
warning('MATLAB:smoothn:InitialGuess',...
['BWDIST (Image Processing Toolbox) does not exist. ',...
'The initial guess may not be optimal; additional',...
' iterations can thus be required to ensure complete',...
' convergence. Increase ''MaxIter'' criterion if necessary.'])
end
else
z = y;
end
%-- coarse fast smoothing using one-tenth of the DCT coefficients
siz = size(z{1});
z = cellfun(@(x) dctn(x),z,'UniformOutput',0);
for k = 1:ndims(z{1})
for i = 1:ny
z{i}(ceil(siz(k)/10)+1:end,:) = 0;
z{i} = reshape(z{i},circshift(siz,[0 1-k]));
z{i} = shiftdim(z{i},1);
end
end
z = cellfun(@(x) idctn(x),z,'UniformOutput',0);
end
%% DCTN
function y = dctn(y)
%DCTN N-D discrete cosine transform.
% Y = DCTN(X) returns the discrete cosine transform of X. The array Y is
% the same size as X and contains the discrete cosine transform
% coefficients. This transform can be inverted using IDCTN.
%
% Reference
% ---------
% Narasimha M. et al, On the computation of the discrete cosine
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
%
% Example
% -------
% RGB = imread('autumn.tif');
% I = rgb2gray(RGB);
% J = dctn(I);
% imshow(log(abs(J)),[]), colormap(jet), colorbar
%
% The commands below set values less than magnitude 10 in the DCT matrix
% to zero, then reconstruct the image using the inverse DCT.
%
% J(abs(J)<10) = 0;
% K = idctn(J);
% figure, imshow(I)
% figure, imshow(K,[0 255])
%
% -- Damien Garcia -- 2008/06, revised 2011/11
% -- www.BiomeCardio.com --
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1, y = y.'; end
end
% Weighting vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- DCT algorithm ---
if ~isreal(y)
y = complex(dctn(real(y)),dctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = y([1:2:n 2*floor(n/2):-2:2],:);
y = reshape(y,n,[]);
y = y*sqrt(2*n);
y = ifft(y,[],1);
y = bsxfun(@times,y,w{dim});
y = real(y);
y(1,:) = y(1,:)/sqrt(2);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
%% IDCTN
function y = idctn(y)
%IDCTN N-D inverse discrete cosine transform.
% X = IDCTN(Y) inverts the N-D DCT transform, returning the original
% array if Y was obtained using Y = DCTN(X).
%
% Reference
% ---------
% Narasimha M. et al, On the computation of the discrete cosine
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
%
% Example
% -------
% RGB = imread('autumn.tif');
% I = rgb2gray(RGB);
% J = dctn(I);
% imshow(log(abs(J)),[]), colormap(jet), colorbar
%
% The commands below set values less than magnitude 10 in the DCT matrix
% to zero, then reconstruct the image using the inverse DCT.
%
% J(abs(J)<10) = 0;
% K = idctn(J);
% figure, imshow(I)
% figure, imshow(K,[0 255])
%
% See also DCTN, IDSTN, IDCT, IDCT2, IDCT3.
%
% -- Damien Garcia -- 2009/04, revised 2011/11
% -- www.BiomeCardio.com --
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1
y = y.';
end
end
% Weighing vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- IDCT algorithm ---
if ~isreal(y)
y = complex(idctn(real(y)),idctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = reshape(y,n,[]);
y = bsxfun(@times,y,w{dim});
y(1,:) = y(1,:)/sqrt(2);
y = ifft(y,[],1);
y = real(y*sqrt(2*n));
I = (1:n)*0.5+0.5;
I(2:2:end) = n-I(1:2:end-1)+1;
y = y(I,:);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
|
github
|
jayinai/pva-faster-rcnn-master
|
voc_eval.m
|
.m
|
pva-faster-rcnn-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
| 1,332 |
utf_8
|
3ee1d5373b091ae4ab79d26ab657c962
|
function res = voc_eval(path, comp_id, test_set, output_dir)
VOCopts = get_voc_opts(path);
VOCopts.testset = test_set;
for i = 1:length(VOCopts.classes)
cls = VOCopts.classes{i};
res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir);
end
fprintf('\n~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Results:\n');
aps = [res(:).ap]';
fprintf('%.1f\n', aps * 100);
fprintf('%.1f\n', mean(aps) * 100);
fprintf('~~~~~~~~~~~~~~~~~~~~\n');
function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir)
test_set = VOCopts.testset;
year = VOCopts.dataset(4:end);
addpath(fullfile(VOCopts.datadir, 'VOCcode'));
res_fn = sprintf(VOCopts.detrespath, comp_id, cls);
recall = [];
prec = [];
ap = 0;
ap_auc = 0;
do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test');
if do_eval
% Bug in VOCevaldet requires that tic has been called first
tic;
[recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true);
ap_auc = xVOCap(recall, prec);
% force plot limits
ylim([0 1]);
xlim([0 1]);
print(gcf, '-djpeg', '-r0', ...
[output_dir '/' cls '_pr.jpg']);
end
fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc);
res.recall = recall;
res.prec = prec;
res.ap = ap;
res.ap_auc = ap_auc;
save([output_dir '/' cls '_pr.mat'], ...
'res', 'recall', 'prec', 'ap', 'ap_auc');
rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
|
github
|
OpenDataCyprus/dland-master
|
savejson.m
|
.m
|
dland-master/supporting_scripts/matlab-tools/jsonlab-1.2/jsonlab/savejson.m
| 18,983 |
utf_8
|
2f510ad749556cadd303786e2549f30a
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id$
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array,
% class instance).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.SingletArray [0|1]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.SingletCell [1|0]: if 1, always enclose a cell with "[]"
% even it has only one element; if 0, brackets
% are ignored when a cell has only 1 element.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('filename',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
if(isfield(opt,'norowbracket'))
warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)');
if(~isfield(opt,'singletarray'))
opt.singletarray=not(opt.norowbracket);
end
end
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ...
iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
filename=jsonopt('FileName','',opt);
if(~isempty(filename))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(filename, 'wb');
fwrite(fid,json);
else
fid = fopen(filename, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
elseif(isobject(item))
txt=matlabobject2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt={};
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
bracketlevel=~jsonopt('singletcell',1,varargin{:});
if(len>bracketlevel)
if(~isempty(name))
txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; name='';
else
txt={padding0, '[', nl};
end
elseif(len==0)
if(~isempty(name))
txt={padding0, '"' checkname(name,varargin{:}) '": []'}; name='';
else
txt={padding0, '[]'};
end
end
for i=1:dim(1)
if(dim(1)>1)
txt(end+1:end+3)={padding2,'[',nl};
end
for j=1:dim(2)
txt{end+1}=obj2json(name,item{i,j},level+(dim(1)>1)+(len>bracketlevel),varargin{:});
if(j<dim(2))
txt(end+1:end+2)={',' nl};
end
end
if(dim(1)>1)
txt(end+1:end+3)={nl,padding2,']'};
end
if(i<dim(1))
txt(end+1:end+2)={',' nl};
end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>bracketlevel)
txt(end+1:end+3)={nl,padding0,']'};
end
txt = sprintf('%s',txt{:});
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt={};
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0));
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+forcearray);
nl=ws.newline;
if(isempty(item))
if(~isempty(name))
txt={padding0, '"', checkname(name,varargin{:}),'": []'};
else
txt={padding0, '[]'};
end
return;
end
if(~isempty(name))
if(forcearray)
txt={padding0, '"', checkname(name,varargin{:}),'": [', nl};
end
else
if(forcearray)
txt={padding0, '[', nl};
end
end
for j=1:dim(2)
if(dim(1)>1)
txt(end+1:end+3)={padding2,'[',nl};
end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1 && ~forcearray)
txt(end+1:end+5)={padding1, '"', checkname(name,varargin{:}),'": {', nl};
else
txt(end+1:end+3)={padding1, '{', nl};
end
if(~isempty(names))
for e=1:length(names)
txt{end+1}=obj2json(names{e},item(i,j).(names{e}),...
level+(dim(1)>1)+1+forcearray,varargin{:});
if(e<length(names))
txt{end+1}=',';
end
txt{end+1}=nl;
end
end
txt(end+1:end+2)={padding1,'}'};
if(i<dim(1))
txt(end+1:end+2)={',' nl};
end
end
if(dim(1)>1)
txt(end+1:end+3)={nl,padding2,']'};
end
if(j<dim(2))
txt(end+1:end+2)={',' nl};
end
end
if(forcearray)
txt(end+1:end+3)={nl,padding0,']'};
end
txt = sprintf('%s',txt{:});
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt={};
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1)
txt={padding1, '"', checkname(name,varargin{:}),'": [', nl};
end
else
if(len>1)
txt={padding1, '[', nl};
end
end
for e=1:len
val=escapejsonstring(item(e,:));
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name))
obj=['"',val,'"'];
end
txt(end+1:end+2)={padding1, obj};
else
txt(end+1:end+4)={padding0,'"',val,'"'};
end
if(e==len)
sep='';
end
txt{end+1}=sep;
end
if(len>1)
txt(end+1:end+3)={nl,padding1,']'};
end
txt = sprintf('%s',txt{:});
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
(isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matlabobject2json(name,item,level,varargin)
if numel(item) == 0 %empty object
st = struct();
else
% "st = struct(item);" would produce an inmutable warning, because it
% make the protected and private properties visible. Instead we get the
% visible properties
propertynames = properties(item);
for p = 1:numel(propertynames)
for o = numel(item):-1:1 % aray of objects
st(o).(propertynames{p}) = item(o).(propertynames{p});
end
end
end
txt=struct2json(name,st,level,varargin{:});
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos))
return;
end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8)
isoct=0;
end
end
if(isoct)
escapechars={'\\','\"','\/','\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\$1');
else
escapechars={'\\','\"','\/','\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\\$1');
end
|
github
|
OpenDataCyprus/dland-master
|
loadjson.m
|
.m
|
dland-master/supporting_scripts/matlab-tools/jsonlab-1.2/jsonlab/loadjson.m
| 16,145 |
ibm852
|
7582071c5bd7f5e5f74806ce191a9078
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id$
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once'))
string=fname;
elseif(exist(fname,'file'))
try
string = fileread(fname);
catch
try
string = urlread(['file://',fname]);
catch
string = urlread(['file://',fullfile(pwd,fname)]);
end
end
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
object.(valid_field(str))=val;
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
if(isstruct(object))
object=struct2jdata(object);
end
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=-1;
if(isfield(varargin{1},'progressbar_'))
pbar=varargin{1}.progressbar_;
end
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ismatrix(object))
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
pos=skip_whitespace(pos,inStr,len);
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
pos=skip_whitespace(pos,inStr,len);
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
pos=skip_whitespace(pos,inStr,len);
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function newpos=skip_whitespace(pos,inStr,len)
newpos=pos;
while newpos <= len && isspace(inStr(newpos))
newpos = newpos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str);
switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos);
keyboard;
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr isoct
currstr=inStr(pos:min(pos+30,end));
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
if(isfield(varargin{1},'progressbar_'))
waitbar(pos/len,varargin{1}.progressbar_,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' )))
return;
end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos))
return;
end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r))
e1r=bpos(pos);
end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l))
e1l=bpos(pos);
end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
OpenDataCyprus/dland-master
|
loadubjson.m
|
.m
|
dland-master/supporting_scripts/matlab-tools/jsonlab-1.2/jsonlab/loadubjson.m
| 13,300 |
utf_8
|
b15e959f758c5c2efa2711aa79c443fc
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id$
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
% opt.NameIsString [0|1]: for UBJSON Specification Draft 8 or
% earlier versions (JSONLab 1.0 final or earlier),
% the "name" tag is treated as a string. To load
% these UBJSON data, you need to manually set this
% flag to 1.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
if(jsonopt('NameIsString',0,varargin{:}))
str = parseStr(varargin{:});
else
str = parse_name(varargin{:});
end
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
object.(valid_field(str))=val;
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
if(isstruct(object))
object=struct2jdata(object);
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data, adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object, adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object, adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ismatrix(object))
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parse_name(varargin)
global pos inStr
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of name');
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' )))
return;
end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos))
return;
end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r))
e1r=bpos(pos);
end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l))
e1l=bpos(pos);
end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
OpenDataCyprus/dland-master
|
saveubjson.m
|
.m
|
dland-master/supporting_scripts/matlab-tools/jsonlab-1.2/jsonlab/saveubjson.m
| 17,723 |
utf_8
|
3414421172c05225dfbd4a9c8c76e6b3
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id$
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array,
% class instance)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.SingletArray [0|1]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.SingletCell [1|0]: if 1, always enclose a cell with "[]"
% even it has only one element; if 0, brackets
% are ignored when a cell has only 1 element.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('filename',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
if(isfield(opt,'norowbracket'))
warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)');
if(~isfield(opt,'singletarray'))
opt.singletarray=not(opt.norowbracket);
end
end
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ...
iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
filename=jsonopt('FileName','',opt);
if(~isempty(filename))
fid = fopen(filename, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
elseif(isobject(item))
txt=matlabobject2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
bracketlevel=~jsonopt('singletcell',1,varargin{:});
len=numel(item); % let's handle 1D cell first
if(len>bracketlevel)
if(~isempty(name))
txt=[N_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[N_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1)
txt=[txt '['];
end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>bracketlevel),varargin{:})];
end
if(dim(1)>1)
txt=[txt ']'];
end
end
if(len>bracketlevel)
txt=[txt ']'];
end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0));
if(~isempty(name))
if(forcearray)
txt=[N_(checkname(name,varargin{:})) '['];
end
else
if(forcearray)
txt='[';
end
end
for j=1:dim(2)
if(dim(1)>1)
txt=[txt '['];
end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1 && ~forcearray)
txt=[txt N_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},item(i,j).(names{e}),...
level+(dim(1)>1)+1+forcearray,varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1)
txt=[txt ']'];
end
end
if(forcearray)
txt=[txt ']'];
end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1)
txt=[N_(checkname(name,varargin{:})) '['];
end
else
if(len>1)
txt='[';
end
end
for e=1:len
val=item(e,:);
if(len==1)
obj=[N_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name))
obj=['',S_(val),''];
end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1)
txt=[txt ']'];
end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
(isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[N_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[N_(checkname(name,varargin{:})),'{',N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[N_(checkname(name,varargin{:})) numtxt];
else
txt=[N_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,N_('_ArrayIsComplex_'),'T'];
end
txt=[txt,N_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,N_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,N_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,N_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,N_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,N_('_ArrayIsComplex_'),'T'];
txt=[txt,N_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matlabobject2ubjson(name,item,level,varargin)
if numel(item) == 0 %empty object
st = struct();
else
% "st = struct(item);" would produce an inmutable warning, because it
% make the protected and private properties visible. Instead we get the
% visible properties
propertynames = properties(item);
for p = 1:numel(propertynames)
for o = numel(item):-1:1 % aray of objects
st(o).(propertynames{p}) = item(o).(propertynames{p});
end
end
end
txt=struct2ubjson(name,st,level,varargin{:});
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(id~=0))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(id~=0);
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos))
return;
end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=N_(str)
val=[I_(int32(length(str))) str];
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
jacoxu/2016NLPCC_Stance_Detection-master
|
LGE.m
|
.m
|
2016NLPCC_Stance_Detection-master/code/LSA_and_LPI_and_LE_matlab/LPI/LGE.m
| 8,862 |
utf_8
|
d32a983d6516d8bc40b016ed26d59a7e
|
function [eigvector, eigvalue] = LGE(W, D, options, data)
% LGE: Linear Graph Embedding
%
% [eigvector, eigvalue] = LGE(W, D, options, data)
%
% Input:
% data - data matrix. Each row vector of data is a
% sample vector.
% W - Affinity graph matrix.
% D - Constraint graph matrix.
% LGE solves the optimization problem of
% a* = argmax (a'data'WXa)/(a'data'DXa)
% Default: D = I
%
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% ReducedDim - The dimensionality of the reduced
% subspace. If 0, all the dimensions
% will be kept. Default is 30.
%
% Regu - 1: regularized solution,
% a* = argmax (a'X'WXa)/(a'X'DXa+ReguAlpha*I)
% 0: solve the sinularity problem by SVD (PCA)
% Default: 0
%
% ReguAlpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - 'Ridge': Tikhonov regularization
% 'Custom': User provided
% regularization matrix
% Default: 'Ridge'
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is 'Custom'. nFea is
% the feature number of data
% matrix
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1, the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
%
% Output:
% eigvector - Each column is an embedding function, for a new
% sample vector (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of the eigen-problem.
% elapse - Time spent on different steps
%
%
%
% Examples:
%
% See also LPP, NPE, IsoProjection, LSDA.
%
%
%Reference:
%
% 1. Deng Cai, Xiaofei He, Jiawei Han, "Spectral Regression for Efficient
% Regularized Subspace Learning", IEEE International Conference on
% Computer Vision (ICCV), Rio de Janeiro, Brazil, Oct. 2007.
%
% 2. Deng Cai, Xiaofei He, Yuxiao Hu, Jiawei Han, and Thomas Huang,
% "Learning a Spatially Smooth Subspace for Face Recognition", CVPR'2007
%
% 3. Deng Cai, Xiaofei He, Jiawei Han, "Spectral Regression: A Unified
% Subspace Learning Framework for Content-Based Image Retrieval", ACM
% Multimedia 2007, Augsburg, Germany, Sep. 2007.
%
% 4. Deng Cai, "Spectral Regression: A Regression Framework for
% Efficient Regularized Subspace Learning", PhD Thesis, Department of
% Computer Science, UIUC, 2009.
%
% version 3.0 --Dec/2011
% version 2.1 --June/2007
% version 2.0 --May/2007
% version 1.0 --Sep/2006
%
% Written by Deng Cai (dengcai AT gmail.com)
%
MAX_MATRIX_SIZE = 1600; % You can change this number according your machine computational power
EIGVECTOR_RATIO = 0.1; % You can change this number according your machine computational power
if (~exist('options','var'))
options = [];
end
ReducedDim = 30;
if isfield(options,'ReducedDim')
ReducedDim = options.ReducedDim;
end
if ~isfield(options,'Regu') || ~options.Regu
bPCA = 1;
if ~isfield(options,'PCARatio')
options.PCARatio = 1;
end
else
bPCA = 0;
if ~isfield(options,'ReguType')
options.ReguType = 'Ridge';
end
if ~isfield(options,'ReguAlpha')
options.ReguAlpha = 0.1;
end
end
bD = 1;
if ~exist('D','var') || isempty(D)
bD = 0;
end
[nSmp,nFea] = size(data);
if size(W,1) ~= nSmp
error('W and data mismatch!');
end
if bD && (size(D,1) ~= nSmp)
error('D and data mismatch!');
end
bChol = 0;
if bPCA && (nSmp > nFea) && (options.PCARatio >= 1)
if bD
DPrime = data'*D*data;
else
DPrime = data'*data;
end
DPrime = full(DPrime);
DPrime = max(DPrime,DPrime');
[R,p] = chol(DPrime);
if p == 0
bPCA = 0;
bChol = 1;
end
end
%======================================
% SVD
%======================================
if bPCA
[U, S, V] = mySVD(data);
[U, S, V]=CutonRatio(U,S,V,options);
eigvalue_PCA = full(diag(S));
if bD
data = U*S;
eigvector_PCA = V;
DPrime = data'*D*data;
DPrime = max(DPrime,DPrime');
else
data = U;
eigvector_PCA = V*spdiags(eigvalue_PCA.^-1,0,length(eigvalue_PCA),length(eigvalue_PCA));
end
else
if ~bChol
if bD
DPrime = data'*D*data;
else
DPrime = data'*data;
end
switch lower(options.ReguType)
case {lower('Ridge')}
if options.ReguAlpha > 0
for i=1:size(DPrime,1)
DPrime(i,i) = DPrime(i,i) + options.ReguAlpha;
end
end
case {lower('Tensor')}
if options.ReguAlpha > 0
DPrime = DPrime + options.ReguAlpha*options.regularizerR;
end
case {lower('Custom')}
if options.ReguAlpha > 0
DPrime = DPrime + options.ReguAlpha*options.regularizerR;
end
otherwise
error('ReguType does not exist!');
end
DPrime = max(DPrime,DPrime');
end
end
WPrime = data'*W*data;
WPrime = max(WPrime,WPrime');
%======================================
% Generalized Eigen
%======================================
dimMatrix = size(WPrime,2);
if ReducedDim > dimMatrix
ReducedDim = dimMatrix;
end
if isfield(options,'bEigs')
bEigs = options.bEigs;
else
if (dimMatrix > MAX_MATRIX_SIZE) && (ReducedDim < dimMatrix*EIGVECTOR_RATIO)
bEigs = 1;
else
bEigs = 0;
end
end
if bEigs
%disp('use eigs to speed up!');
option = struct('disp',0);
if bPCA && ~bD
[eigvector, eigvalue] = eigs(WPrime,ReducedDim,'la',option);
else
if bChol
option.cholB = 1;
[eigvector, eigvalue] = eigs(WPrime,R,ReducedDim,'la',option);
else
[eigvector, eigvalue] = eigs(WPrime,DPrime,ReducedDim,'la',option);
end
end
eigvalue = diag(eigvalue);
else
if bPCA && ~bD
[eigvector, eigvalue] = eig(WPrime);
else
[eigvector, eigvalue] = eig(WPrime,DPrime);
end
eigvalue = diag(eigvalue);
[junk, index] = sort(-eigvalue);
eigvalue = eigvalue(index);
eigvector = eigvector(:,index);
if ReducedDim < size(eigvector,2)
eigvector = eigvector(:, 1:ReducedDim);
eigvalue = eigvalue(1:ReducedDim);
end
end
if bPCA
eigvector = eigvector_PCA*eigvector;
end
for i = 1:size(eigvector,2)
eigvector(:,i) = eigvector(:,i)./norm(eigvector(:,i));
end
function [U, S, V]=CutonRatio(U,S,V,options)
if ~isfield(options, 'PCARatio')
options.PCARatio = 1;
end
eigvalue_PCA = full(diag(S));
if options.PCARatio > 1
idx = options.PCARatio;
if idx < length(eigvalue_PCA)
U = U(:,1:idx);
V = V(:,1:idx);
S = S(1:idx,1:idx);
end
elseif options.PCARatio < 1
sumEig = sum(eigvalue_PCA);
sumEig = sumEig*options.PCARatio;
sumNow = 0;
for idx = 1:length(eigvalue_PCA)
sumNow = sumNow + eigvalue_PCA(idx);
if sumNow >= sumEig
break;
end
end
U = U(:,1:idx);
V = V(:,1:idx);
S = S(1:idx,1:idx);
end
|
github
|
martinarielhartmann/mirtooloct-master
|
SetGain.m
|
.m
|
mirtooloct-master/AuditoryToolbox/SetGain.m
| 316 |
utf_8
|
ee1086fa88ad33019c0d5f97fbe4fc80
|
% filter = SetGain(filter, desired, f, fs)
% Set the gain of a filter (1x5 vector) to any desired gain
% at any desired frequency (f).
% (c) 1998 Interval Research Corporation
function filter = SetGain(filter, desired, f, fs)
oldGain = 10^(FreqResp(filter, f, fs)/20);
filter(1:3) = filter(1:3)*desired/oldGain;
|
github
|
martinarielhartmann/mirtooloct-master
|
FreqResp.m
|
.m
|
mirtooloct-master/AuditoryToolbox/FreqResp.m
| 358 |
utf_8
|
126f81f4aebfed2dcb78c606fdf26621
|
% mag = FreqResp(filter, f, fs)
% Find the frequency response (in dB) of a filter (1x5 vector) at
% frequency f and sampling rate fs.
% (c) 1998 Interval Research Corporation
function mag=FreqResp(filter,f,fs)
cf = exp(i*2*pi*f/fs);
mag = (filter(3) + filter(2)*cf + filter(1)*cf.^2) ./ ...
(filter(5) + filter(4)*cf + cf.^2);
mag = 20*log10(abs(mag));
|
github
|
martinarielhartmann/mirtooloct-master
|
SecondOrderFilter.m
|
.m
|
mirtooloct-master/AuditoryToolbox/SecondOrderFilter.m
| 401 |
utf_8
|
d07f8051e149ab98df3ca36bc12a0ab6
|
% filter = SecondOrderFilter(f, q, fs)
% Design a second order digital filter with a center frequency of
% f, filter quality of q, and digital sampling rate of fs (Hz).
% (c) 1998 Interval Research Corporation
function filts = SecondOrderFilter(f,q,fs)
cft = f'/fs;
rho = exp(- pi * cft ./ q');
theta = 2 * pi * cft .* sqrt(1-1 ./(4*q'.^2));
filts = [ ones(size(rho)) -2*rho.*cos(theta) rho.^2 ];
|
github
|
martinarielhartmann/mirtooloct-master
|
test_auditory.m
|
.m
|
mirtooloct-master/AuditoryToolbox/test_auditory.m
| 8,929 |
utf_8
|
37ff5eae38fd9f5b0a042b478a00d417
|
function test_auditory(test)
% function test_auditory(test)
% Test each of the functions in the Auditory Toolbox. The single argument
% is a string, containing the word 'all' or the name of one routine from the
% toolbox. This routine defaults to running all tests. There is a pause after
% each plot, so be sure to hit the return key so the testing can proceed.
%
% (c) 1998 Interval Research Corporation
if nargin < 1
test = 'all';
end
if strcmp(test,'agc') | strcmp(test,'all')
disp('agc test');
set_window_size(200, 150);
agc(ones(1,20), [.5;.5])
plot(agc(ones(1,30), [.8; .5])); pause;
plot(agc(ones(1,30),[.4;.5])); pause;
plot(agc(ones(1,30),[.4;.1])); pause;
end
if strcmp(test,'CorrelogramArray') | strcmp(test,'all')
disp('CorrelogramArray test');
u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
soundsc(u,16000)
coch=LyonPassiveEar(u,16000,1,4,.25);
width = 256;
cor=CorrelogramArray(coch,16000,16,width);
[pixels frames] = size(cor);
colormap(1-gray);
for j=1:frames
imagesc(reshape(cor(:,j),pixels/width,width));
drawnow;
end
end
if strcmp(test,'CorrelogramFrame') | strcmp(test,'all')
disp('CorrelogramFrame test');
for j=20:-1:1
c(j,:) = max(0,sin((1:256)/256*(21-j)*3*2*pi));
end
picture=CorrelogramFrame(c,128,1,256);
imagesc(picture)
colormap(1-gray)
end
if strcmp(test,'CorrelogramMovie') | strcmp(test,'all')
disp('CorrelogramMovie test');
u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
soundsc(u,16000)
coch=LyonPassiveEar(u,16000,1,4,.25);
mov=CorrelogramMovie(coch,16000,16,256);
movie(mov,-10,16)
end
if strcmp(test,'CorrelogramPitch') | strcmp(test,'all')
disp('CorrelogramPitch test');
u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
cor=CorrelogramArray(u,22254,50,256);
p=CorrelogramPitch(cor,256,22254);
plot(p)
axis([0 45 110 130]); pause;
coch=LyonPassiveEar(u,22254,1,4,.5);
cor=CorrelogramArray(coch,22254,50,256);
p=CorrelogramPitch(cor,256,22254);
plot(p)
axis([0 45 110 130]); pause;
u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
n=randn([1 20000]).*(1:20000)/20000;
un=u+n/4;
coch=LyonPassiveEar(un,22254,1,4,.5);
cor=CorrelogramArray(coch,22254,50,256);
[pitch sal]=CorrelogramPitch(cor,256,22254,100,200);
plot(pitch); pause
plot(sal); pause
end
if strcmp(test,'DesignLyonFilters') | strcmp(test,'all')
disp('DesignLyonFilters test');
filts=DesignLyonFilters(16000);
size(filts)
filts(1:5,:)
resp=soscascade([1 zeros(1,255)],filts);
freqResp=20*log10(abs(fft(resp(1:5:88,:)')));
freqScale=(0:255)/256*16000;
semilogx(freqScale(1:128),freqResp(1:128,:))
axis([100 10000 -60 20]); pause;
end
if strcmp(test,'EpsilonFromTauFS') | strcmp(test,'all')
disp('EpsilonFromTauFS test');
eps=EpsilonFromTauFS(5,1)
filter(1, [1 eps-1],[1 zeros(1,9)])
sosfilters([1 zeros(1,9)],[1 0 0 eps-1 0])
end
if strcmp(test,'ERBSpace') | strcmp(test,'all')
set_window_size(250, 150);
disp('ERBSpace test')
plot(ERBSpace)
end
if strcmp(test,'FMPoints') | strcmp(test,'all')
disp('FMPoints test');
u=MakeVowel(20000,FMPoints(20000,120), 22050,'u');
soundsc(u/max(u), 22050)
end
if strcmp(test,'FreqResp') | strcmp(test,'all')
disp('FreqResp test');
filts=DesignLyonFilters(16000);
f=10:10:7990;
resp=FreqResp(filts(2, :), f, 16000);
semilogx(f,resp);
axis([100 10000 -50 20]);
end
if strcmp(test,'LyonPassiveEar') | strcmp(test,'all')
disp('LyonPassiveEar test');
is=LyonPassiveEar([1 zeros(1,255)],16000,1);
imagesc(min(is, 0.0004)); pause
s=sin((0:2041)/20000*2*pi*1000);
ys=LyonPassiveEar(s,20000,20);
imagesc(ys/max(max(ys))); pause;
tap = wavread('tapestry.wav');
coch=LyonPassiveEar(tap,16000,100);
imagesc(coch/max(max(coch))); pause;
end
if strcmp(test,'MakeERBFilters') | strcmp(test,'all')
disp('MakeERBFilters test');
fcoefs = MakeERBFilters(16000,10,100);
y = ERBFilterBank([1 zeros(1,511)], fcoefs);
resp = 20*log10(abs(fft(y')));
freqScale = (0:511)/512*16000;
semilogx(freqScale(1:255),resp(1:255,:));
axis([100 16000 -60 0])
xlabel('Frequency (Hz)');
ylabel('Filter Response (dB)'); pause;
tap = wavread('tapestry.wav');
fcoefs=MakeERBFilters(16000,40,100);
coch=ERBFilterBank(tap, fcoefs);
for j=1:size(coch,1)
c=max(coch(j,:),0);
c=filter([1],[1 -.99],c);
coch(j,:)=c;
end
imagesc(coch);
end
if strcmp(test,'MakeVowel') | strcmp(test,'all')
disp('MakeVowel test');
vowels=[MakeVowel(10000,100,16000,'a') ...
MakeVowel(10000,100,16000,'i') ...
MakeVowel(10000,100,16000,'u')];
soundsc(vowels,16000);
vowels=[MakeVowel(1000,100,16000,'a')...
MakeVowel(1000,100,16000,'i') ...
MakeVowel(1000,100,16000,'u')];
s=spectrogram(vowels,256,2,2);
imagesc(s); pause
end
if strcmp(test,'MeddisHairCell') | strcmp(test,'all')
disp('MeddisHairCell test');
tone=sin((0:4999)/20000*2*pi*1000);
s=[zeros(1,5000) ...
tone*10^(40/20-1.35) zeros(1,5000) ...
tone*10^(45/20-1.35) zeros(1,5000) ...
tone*10^(50/20-1.35) zeros(1,5000) ...
tone*10^(55/20-1.35) zeros(1,5000) ...
tone*10^(60/20-1.35) zeros(1,5000) ...
tone*10^(65/20-1.35) zeros(1,5000) ...
tone*10^(70/20-1.35) zeros(1,5000) ...
tone*10^(75/20-1.35) zeros(1,5000) ...
tone*10^(80/20-1.35)];
y=MeddisHairCell(s,20000);
plot((1:90000)/20000,y(1:90000)); pause
end
if strcmp(test,'mfcc') | strcmp(test,'all')
disp('mfcc test');
set_window_size(348, 188);
tap = wavread('tapestry.wav');
[ceps,freqresp,fb,fbrecon,freqrecon] = mfcc(tap,16000,100);
imagesc(ceps);
colormap(1-gray); pause
imagesc(flipud(freqresp)); pause
imagesc(flipud(fb)); pause
imagesc(flipud(fbrecon)); pause
imagesc(flipud(freqrecon)); pause
end
if strcmp(test,'proclpc') | strcmp(test,'all')
disp('proclpc test');
set_window_size(348, 188);
[tap sr]= wavread('tapestry.wav');
lpc_spec(tap,sr,13); pause
lpc_spec(tap,sr,26); pause
end
if strcmp(test,'rasta') | strcmp(test,'all')
disp('rasta test');
tap = wavread('tapestry.wav');
[ceps,freqresp,fb,fbrecon,freqrecon] = mfcc(tap,16000,100);
rastaout = rasta(ceps,100);
mfccDCTMatrix = 1/sqrt(40/2)*cos((0:(13-1))' * ...
(2*(0:(40-1))+1) * pi/2/40);
mfccDCTMatrix(1,:) = mfccDCTMatrix(1,:)*sqrt(2)/2;
rastarecon = 0*fbrecon;
for i=1:size(rastaout,2)
rastarecon(:,i) = mfccDCTMatrix' * rastaout(:,i);
end
imagesc(flipud(rastarecon));
end
if strcmp(test,'SecondOrderFilter') | strcmp(test,'all')
disp('SecondOrderFilter test');
f=10:10:7990;
sos=SecondOrderFilter(3000,5,16000)
filt=[1 0 0 sos(2:3)]
semilogx(f,FreqResp(filt,f,16000)); pause
filt=[sos 0 0]
semilogx(f,FreqResp(filt,f,16000)); pause
sos=SecondOrderFilter(3000,2,16000)
filt=[sos 0 0]
semilogx(f,FreqResp(filt,f,16000)); pause
end
if strcmp(test,'SeneffEar') | strcmp(test,'all')
disp('SeneffEar test');
s=[zeros(1,160) sin(2000*2*pi/16000*(1:1120))];
y=SeneffEar(s,16000,15); pause;
tap = wavread('tapestry.wav');
hc=SeneffEar(tap,16000);
for j=1:40
c=hc(j,:);
c=filter([1],[1, -.99],c);
h(j,:)=c(1:100:50381);
end
clf; imagesc(h); pause;
end
if strcmp(test,'SetGain') | strcmp(test,'all')
disp('SetGain test');
filts=DesignLyonFilters(16000);
filt=filts(42,:)
f=10:10:7990;
semilogx(f,FreqResp(filt,f,16000)); pause;
newFilt = SetGain(filt, 10, 1960, 16000);
semilogx(f, FreqResp(newFilt, f, 16000)); pause
end
if strcmp(test,'soscascade') | strcmp(test,'all')
disp('soscascade test');
soscascade([1 0 0 0 0],[1 0 0 -.9 0;1 1 0 0 0])
end
if strcmp(test,'sosfilters') | strcmp(test,'all')
disp('sosfilters test');
sosfilters([1 0 0 0 0 0],[1 0 0 -.9 0;1 0 0 -.8 0])
sosfilters([1 0 0 0 0 0;2 0 0 0 0 0], ...
[1 0 0 -.9 0;1 0 0 -.8 0])
sosfilters([1 0 0 0 0 0;2 0 0 0 0 0],[1 0 0 -.9 0])
end
if strcmp(test,'spectrogram') | strcmp(test,'all')
disp('spectrogram test');
tap = wavread('tapestry.wav');
spec=spectrogram(tap,64,2,1);
imagesc(spec); pause;
end
if strcmp(test,'synlpc') | strcmp(test,'all')
disp('synlpc test');
[tap sr] = wavread('tapestry.wav');
[aCoeff,resid,pitch,G,parcor,stream] = proclpc(tap,sr,13);
syntap = synlpc(aCoeff, stream, sr, G);;
soundsc(syntap,16000);
[aCoeff,resid,pitch,G,parcor,stream] = proclpc(tap,sr,13);
stream=randn(size(stream));
syntap = synlpc(aCoeff, stream, sr, G);;
soundsc(syntap,16000);
end
if strcmp(test,'WhiteVowel') | strcmp(test,'all')
disp('WhiteVowel test');
[tap sr] = wavread('tapestry.wav');
whitetap = WhiteVowel(tap,16000,13,1000);
soundsc(whitetap, 16000);
end
function lpc_spec(tap,sr,L)
[aCoeff,resid,pitch,G,parcor,stream] = proclpc(tap,sr,L);
cft=0:(1/255):1;
spec = zeros(128, size(aCoeff,2));
for nframe=1:size(aCoeff,2)
gain=20*log10(G(nframe)) * 0;
for index=1:size(aCoeff,1)
gain = gain + aCoeff(index,nframe)*exp(-i*2*pi*cft).^index;
end
gain = abs(1./gain);
spec(:,nframe) = 20*log10(gain(1:128))';
end
imagesc(flipud(spec));
function set_window_size(width, height)
cursize = get(gcf, 'position');
cursize(3) = width+1;
cursize(4) = height+1;
set(gcf, 'position', cursize);
|
github
|
martinarielhartmann/mirtooloct-master
|
CorrelogramFrame.m
|
.m
|
mirtooloct-master/AuditoryToolbox/CorrelogramFrame.m
| 1,672 |
utf_8
|
f5b29d74df1508458ae5f23c6cfda1b8
|
% pic = CorrelogramFrame(data, picWidth, start, winLen)
% Compute one frame of a correlogram. The input data is a
% two-dimensional array of cochlear data, each row representing
% firing probabilities from one cochlear channel. The output
% picture is a two dimensional array of width "picWidth".
%
% The correlogram is computed with autocorrelation using
% data from the input array. For each channel, the data from
% is extracted starting at column "start" and extending for
% "winLength" time steps.
% (c) 1998 Interval Research Corporation
function pic = CorrelogramFrame(data, picWidth, start, winLen)
if nargin < 2
disp('Syntax: pic=CorrelogramFrame(data, picWidth[, start, len])');
return
end
if nargin < 3
start = 1;
end
if nargin < 4
[channels, winLen] = size(data);
end
[channels, dataLen] = size(data);
start = max(1, start);
last = min(dataLen, start+winLen-1);
pic = zeros(channels, picWidth);
fftSize = 2^(nextpow2(max(picWidth, winLen))+1);
% disp(['CorrelogramFrame fftSize is ' int2str(fftSize)]);
a = .54;
b = -.46;
wr = sqrt(64/256);
phi = pi/winLen;
ws = 2*wr/sqrt(4*a*a+2*b*b)*(a + b*cos(2*pi*(0:winLen-1)/winLen + phi));
for i=1:channels
f = zeros(1, fftSize);
% d = zeros(1, winLen);
% d(1:(last-start+1)) = data(i,start:last) .* ws(1:(last-start+1));
% f(1:(winLen/2)) = d(winLen/2+1:winLen);
% f(fftSize-(winLen/2)+1:fftSize) = d(1:min(length(d),winLen/2));
f(1:(last-start+1)) = data(i,start:last) .* ws(1:(last-start+1));
f = fft(f);
f = ifft(f.*conj(f));
pic(i,:) = real(f(1:picWidth));
if pic(i,1) > pic(i,2) & pic(i,1) > pic(i,3)
pic(i,:) = pic(i,:)/sqrt(pic(i,1));
else
pic(i,:) = zeros(1,picWidth);
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mfcc.m
|
.m
|
mirtooloct-master/AuditoryToolbox/mfcc.m
| 6,320 |
utf_8
|
e2a5640478ad49e3a283d3d1115bbf04
|
% mfcc - Mel frequency cepstrum coefficient analysis.
% [ceps,freqresp,fb,fbrecon,freqrecon] = ...
% mfcc(input, samplingRate, [frameRate])
% Find the cepstral coefficients (ceps) corresponding to the
% input. Four other quantities are optionally returned that
% represent:
% the detailed fft magnitude (freqresp) used in MFCC calculation,
% the mel-scale filter bank output (fb)
% the filter bank output by inverting the cepstrals with a cosine
% transform (fbrecon),
% the smooth frequency response by interpolating the fb reconstruction
% (freqrecon)
% -- Malcolm Slaney, August 1993
% Modified a bit to make testing an algorithm easier... 4/15/94
% Fixed Cosine Transform (indices of cos() were swapped) - 5/26/95
% Added optional frameRate argument - 6/8/95
% Added proper filterbank reconstruction using inverse DCT - 10/27/95
% Added filterbank inversion to reconstruct spectrum - 11/1/95
% (c) 1998 Interval Research Corporation
function [ceps,freqresp,fb,fbrecon,freqrecon] = ...
mfcc(input, samplingRate, frameRate)
global mfccDCTMatrix mfccFilterWeights
[r c] = size(input);
if (r > c)
input=input';
end
% Filter bank parameters
lowestFrequency = 133.3333;
linearFilters = 13;
linearSpacing = 66.66666666;
logFilters = 27;
logSpacing = 1.0711703;
fftSize = 512;
cepstralCoefficients = 13;
windowSize = 400;
windowSize = 256; % Standard says 400, but 256 makes more sense
% Really should be a function of the sample
% rate (and the lowestFrequency) and the
% frame rate.
if (nargin < 2) samplingRate = 16000; end;
if (nargin < 3) frameRate = 100; end;
% Keep this around for later....
totalFilters = linearFilters + logFilters;
% Now figure the band edges. Interesting frequencies are spaced
% by linearSpacing for a while, then go logarithmic. First figure
% all the interesting frequencies. Lower, center, and upper band
% edges are all consequtive interesting frequencies.
freqs = lowestFrequency + (0:linearFilters-1)*linearSpacing;
freqs(linearFilters+1:totalFilters+2) = ...
freqs(linearFilters) * logSpacing.^(1:logFilters+2);
lower = freqs(1:totalFilters);
center = freqs(2:totalFilters+1);
upper = freqs(3:totalFilters+2);
% We now want to combine FFT bins so that each filter has unit
% weight, assuming a triangular weighting function. First figure
% out the height of the triangle, then we can figure out each
% frequencies contribution
mfccFilterWeights = zeros(totalFilters,fftSize);
triangleHeight = 2./(upper-lower);
fftFreqs = (0:fftSize-1)/fftSize*samplingRate;
for chan=1:totalFilters
mfccFilterWeights(chan,:) = ...
(fftFreqs > lower(chan) & fftFreqs <= center(chan)).* ...
triangleHeight(chan).*(fftFreqs-lower(chan))/(center(chan)-lower(chan)) + ...
(fftFreqs > center(chan) & fftFreqs < upper(chan)).* ...
triangleHeight(chan).*(upper(chan)-fftFreqs)/(upper(chan)-center(chan));
end
%semilogx(fftFreqs,mfccFilterWeights')
%axis([lower(1) upper(totalFilters) 0 max(max(mfccFilterWeights))])
hamWindow = 0.54 - 0.46*cos(2*pi*(0:windowSize-1)/windowSize);
if 0 % Window it like ComplexSpectrum
windowStep = samplingRate/frameRate;
a = .54;
b = -.46;
wr = sqrt(windowStep/windowSize);
phi = pi/windowSize;
hamWindow = 2*wr/sqrt(4*a*a+2*b*b)* ...
(a + b*cos(2*pi*(0:windowSize-1)/windowSize + phi));
end
% Figure out Discrete Cosine Transform. We want a matrix
% dct(i,j) which is totalFilters x cepstralCoefficients in size.
% The i,j component is given by
% cos( i * (j+0.5)/totalFilters pi )
% where we have assumed that i and j start at 0.
mfccDCTMatrix = 1/sqrt(totalFilters/2)*cos((0:(cepstralCoefficients-1))' * ...
(2*(0:(totalFilters-1))+1) * pi/2/totalFilters);
mfccDCTMatrix(1,:) = mfccDCTMatrix(1,:) * sqrt(2)/2;
%imagesc(mfccDCTMatrix);
% Filter the input with the preemphasis filter. Also figure how
% many columns of data we will end up with.
if 1
preEmphasized = filter([1 -.97], 1, input);
else
preEmphasized = input;
end
windowStep = samplingRate/frameRate;
cols = fix((length(input)-windowSize)/windowStep);
% Allocate all the space we need for the output arrays.
ceps = zeros(cepstralCoefficients, cols);
if (nargout > 1) freqresp = zeros(fftSize/2, cols); end;
if (nargout > 2) fb = zeros(totalFilters, cols); end;
% Invert the filter bank center frequencies. For each FFT bin
% we want to know the exact position in the filter bank to find
% the original frequency response. The next block of code finds the
% integer and fractional sampling positions.
if (nargout > 4)
fr = (0:(fftSize/2-1))'/(fftSize/2)*samplingRate/2;
j = 1;
for i=1:(fftSize/2)
if fr(i) > center(j+1)
j = j + 1;
end
if j > totalFilters-1
j = totalFilters-1;
end
fr(i) = min(totalFilters-.0001, ...
max(1,j + (fr(i)-center(j))/(center(j+1)-center(j))));
end
fri = fix(fr);
frac = fr - fri;
freqrecon = zeros(fftSize/2, cols);
end
% Ok, now let's do the processing. For each chunk of data:
% * Window the data with a hamming window,
% * Shift it into FFT order,
% * Find the magnitude of the fft,
% * Convert the fft data into filter bank outputs,
% * Find the log base 10,
% * Find the cosine transform to reduce dimensionality.
for start=0:cols-1
first = start*windowStep + 1;
last = first + windowSize-1;
fftData = zeros(1,fftSize);
fftData(1:windowSize) = preEmphasized(first:last).*hamWindow;
fftMag = abs(fft(fftData));
earMag = log10(mfccFilterWeights * fftMag');
ceps(:,start+1) = mfccDCTMatrix * earMag;
if (nargout > 1) freqresp(:,start+1) = fftMag(1:fftSize/2)'; end;
if (nargout > 2) fb(:,start+1) = earMag; end
if (nargout > 3)
fbrecon(:,start+1) = ...
mfccDCTMatrix(1:cepstralCoefficients,:)' * ...
ceps(:,start+1);
end
if (nargout > 4)
f10 = 10.^fbrecon(:,start+1);
freqrecon(:,start+1) = samplingRate/fftSize * ...
(f10(fri).*(1-frac) + f10(fri+1).*frac);
end
end
% OK, just to check things, let's also reconstruct the original FB
% output. We do this by multiplying the cepstral data by the transpose
% of the original DCT matrix. This all works because we were careful to
% scale the DCT matrix so it was orthonormal.
if 1 & (nargout > 3)
fbrecon = mfccDCTMatrix(1:cepstralCoefficients,:)' * ceps;
% imagesc(mt(:,1:cepstralCoefficients)*mfccDCTMatrix);
end;
|
github
|
martinarielhartmann/mirtooloct-master
|
WhiteVowel.m
|
.m
|
mirtooloct-master/AuditoryToolbox/WhiteVowel.m
| 2,857 |
utf_8
|
0fc089b7af863423555a4e18c36ece15
|
function [output,aCoeff] = WhiteVowel(data,sr,L,pos)
% function [output,aCoeff] = WhiteVowel(data,sr,L,pos)
%
% Speech is often described as having spectral peaks or formants which
% identify the phonetic signal. An interesting experiment, first proposed by
% XXX, filters a speech signal to remove all the formant information at one
% time during the speech. If there are no formant peaks, how can the speech
% be understood? It turns out that processing, much like RASTA, means that
% relative changes in spectrum are the most important, thus the speech signal
% is understood because the formant transitions carry the information. This
% gives speech an important transparency due
%
% This function takes a speech signal (data) with a given sampling rate (sr).
% It then finds the L-order LPC filter that describes the speech at the given
% position (pos ms). The entire speech signal is then filtered with the
% inverse of the LPC filter, effectively turning the speech spectrum at the
% given time white (flat).
% Chris Pal, Interval, May 1997
% (c) 1998 Interval Research Corporation
fr = 20; fs = 30; preemp = .9378; % LPC defaults
[row col] = size(data);
if col==1 data=data'; end
nframe = 0;
msfr = round(sr/1000*fr);
msfs = round(sr/1000*fs);
duration = length(data);
msoverlap = msfs - msfr;
frameNumber = floor(pos/1000*sr/msfr);
frameStart = round(pos/1000*sr - msfs/2);
frameData = data(frameStart:(frameStart+msfs-1));
aCoeff = proclpc(frameData, sr, L, fr, fs, preemp);
% Calculate the filter response
% by evaluating the z-transform
spec=lpc_spec(aCoeff);
subplot(2,3,1);
plot(spec);
title('LPC Spectral Slice');
ylabel('Original')
% Now do the actual whitening filter
output = filter(aCoeff,1,data)';
frameData = output(frameStart:(frameStart+msfs-1));
bCoeff = proclpc(frameData, sr, L, fr, fs, preemp);
spec=lpc_spec(bCoeff);
subplot(2,3,4);
plot(spec);
ylabel('Whitened'); xlabel('FFT Bin');
% 256-DFT
origSpec = 20*log10(abs(specgram(data,512,sr,msfs,msoverlap)));
subplot(2,3,2),imagesc(origSpec); axis xy; colormap(1-gray);
title('Spectrogram');
synSpec = 20*log10(abs(specgram(output,512,sr,msfs,msoverlap)));
subplot(2,3,5),imagesc(synSpec); axis xy; colormap(1-gray);
xlabel('Frame #');
origloc = origSpec(:,frameNumber); origloc=origloc-max(origloc);origmin=min(origloc);
subplot(2,3,3),plot(origloc),title('Spectrogram'),
axis([1 length(origloc) origmin 0]);
filloc = synSpec(:,frameNumber); filloc=filloc-max(filloc);
subplot(2,3,6),plot(filloc);ylabel('db');
axis([1 length(origloc) origmin 0]);
xlabel('FFT Bin');
function spec=lpc_spec(aCoeff)
gain=0;
cft=0:(1/255):1;
for index=1:size(aCoeff,1)
gain = gain + aCoeff(index)*exp(-i*2*pi*cft).^index;
end
gain = abs(1./gain);
spec = 20*log10(gain(1:128))';
|
github
|
martinarielhartmann/mirtooloct-master
|
DesignLyonFilters.m
|
.m
|
mirtooloct-master/AuditoryToolbox/DesignLyonFilters.m
| 3,715 |
utf_8
|
d1cdd19256fb6f4bf37de7636ad0f226
|
% [filters, freqs] = DesignLyonFilters(fs,EarQ,StepFactor)
% Design the cascade of second order filters and the front filters
% (outer/middle and compensator) needed for Lyon's Passive Short Wave
% (Second Order Sections) cochlear model. The variables used here come
% from Apple ATG Technical Report #13 titled "Lyon's Cochlear Model".
%
% Most of the parameters are hardwired into this m-function. The user
% settable parameters are the digital sampling rate, the basic Q of the
% each stage (usually 8 or 4), and the spacing factor between channels
% (usually .25 and .125, respectively.)
%
% The result is returned as rows of second order filters; three coefficients
% for the numerator and two for the denomiator. The coefficients are
% [A0 A1 A2 B1 B2]..........................(Malcolm 1 Feb. 1993)
%
% (c) 1998 Interval Research Corporation
function [filters, CenterFreqs, gains] = DesignLyonFilters(fs,EarQ,StepFactor)
if nargin < 2
EarQ = 8;
end
if nargin < 3
StepFactor=EarQ/32;
end
Eb = 1000.0;
EarZeroOffset = 1.5;
EarSharpness = 5.0;
EarPremphCorner = 300;
% Find top frequency, allowing space for first cascade filter.
topf = fs/2.0;
topf = topf - (sqrt(topf^2+Eb^2)/EarQ*StepFactor*EarZeroOffset)+ ...
sqrt(topf^2+Eb^2)/EarQ*StepFactor;
% Find place where CascadePoleQ < .5
lowf = Eb/sqrt(4*EarQ^2-1);
NumberOfChannels = floor((EarQ*(-log(lowf + sqrt(lowf^2 + Eb^2)) + ...
log(topf + sqrt(Eb^2 + topf^2))))/StepFactor);
% Now make an array of CenterFreqs..... This expression was derived by
% Mathematica by integrating 1/EarBandwidth(cf) and solving for f as a
% function of channel number.
cn = 1:NumberOfChannels;
CenterFreqs = (-((exp((cn*StepFactor)/EarQ)*Eb^2)/ ...
(topf + sqrt(Eb^2 + topf^2))) + ...
(topf + sqrt(Eb^2 + topf^2))./exp((cn*StepFactor)/EarQ))/2;
% OK, now we can figure out the parameters of each stage filter.
EarBandwidth = sqrt(CenterFreqs.^2+Eb^2)/EarQ;
CascadeZeroCF = CenterFreqs + EarBandwidth * StepFactor * EarZeroOffset;
CascadeZeroQ = EarSharpness*CascadeZeroCF./EarBandwidth;
CascadePoleCF = CenterFreqs;
CascadePoleQ = CenterFreqs./EarBandwidth;
% Now lets find some filters.... first the zeros then the poles
zerofilts = SecondOrderFilter(CascadeZeroCF, CascadeZeroQ, fs);
polefilts = SecondOrderFilter(CascadePoleCF, CascadePoleQ, fs);
filters = [zerofilts polefilts(:,2:3)];
% Now we can set the DC gain of each stage.
dcgain(2:NumberOfChannels)=CenterFreqs(1:NumberOfChannels-1)./ ...
CenterFreqs(2:NumberOfChannels);
dcgain(1) = dcgain(2);
for i=1:NumberOfChannels
filters(i,:) = SetGain(filters(i,:), dcgain(i), 0, fs);
end
% Finally, let's design the front filters.
front(1,:) = SetGain([0 1 -exp(-2*pi*EarPremphCorner/fs) 0 0], 1, fs/4, fs);
topPoles = SecondOrderFilter(topf,CascadePoleQ(1), fs);
front(2,:) = SetGain([1 0 -1 topPoles(2:3)], 1, fs/4, fs);
% Now, put them all together.
filters = [front; filters];
if nargout > 2
% Compute the gains needed so that everything is flat
% when we do the filter inversion.
[channels, width] = size(filters);
len = length(CenterFreqs);
clear cfs2;
cfs2(1) = fs/2;
cfs2(1:2:2*len) = CenterFreqs;
cfs2(2:2:2*len-1) = (CenterFreqs(1:len-1) + CenterFreqs(2:len))/2;
% cfs2 = CenterFreqs;
resp = zeros(length(cfs2), channels);
for i=1:channels
resp(:,i) = FreqResp(filters(i,:), cfs2, fs)';
end
% Each column vector of resp contains one channel's response
% across all frequencies (in dB).
cumresp = cumsum(resp')';
% cumresp now contains the total gain at output of i'th channel at
% frequency f
a=10.^(cumresp(:,3:channels)/20);
a = a.* a; % Have to go through each filter twice.
gains = [0; 0; a \ ones(length(cfs2),1)];
end
|
github
|
martinarielhartmann/mirtooloct-master
|
SeneffEarSetup.m
|
.m
|
mirtooloct-master/AuditoryToolbox/SeneffEarSetup.m
| 8,431 |
utf_8
|
c6d0292c56280a4d247f48c023187c6f
|
function [SeneffPreemphasis, SeneffFilterBank, SeneffForward, SeneffBackward] ...
= SeneffEarSetup(fs)
% This m-function is based on data from the following paper:
% Benjamin D. Bryant and John D. Gowdy, "Simulation of Stages
% I and II of Seneff's Auditory Model (SAM) Using Matlab", and
% published in the Proceedings of the 1993 Matlab User's Group
% Conference.
% Thanks to Benjamin Bryant for supplying us with his filter
% coefficients and the initial organization of this implementation.
% (c) 1998 Interval Research Corporation
% Set the following variable to a non-zero value to see a summary
% of the filter bank's behaviour.
plotTests = 0;
% The following values were taken from Figure 2 of Bryant's paper.
PreemphasisRTheta = [0.86 3.1148863;0.99 0; 0.5 0; 0.95 3.14159];
% The following values were taken from Table 1 of Bryant's paper.
% They represent the cascade zeros (R-z and Theta-z), and the
% second order poles (radius and theta) and zeros (radius and theta/2).
%
% R-z Theta-z Radius Theta R-z2
FilterBankRTheta = [
0 3.14159 0.740055 2.633909 0.8
0.86 2.997077 0.753637 2.178169 0.8
0.86 2.879267 0.775569 1.856744 0.8
0.86 2.761458 0.798336 1.617919 0.8
0.86 2.643648 0.819169 1.433496 0.8
0.86 2.525839 0.837158 1.286795 0.8
0.8 2.964876 0.852598 1.167321 0.8
0.86 2.408029 0.865429 1.068141 0.8
0.86 2.29022 0.876208 0.984489 0.8
0.86 2.17241 0.885329 0.912985 0.8
0.86 2.054601 0.893116 0.851162 0.8
0.86 1.936791 0.899823 0.797179 0.8
0.8 2.788161 0.906118 0.749633 0.8
0.86 1.818981 0.911236 0.70744 0.8
0.86 1.701172 0.915747 0.669742 0.8
0.86 1.583362 0.919753 0.635858 0.8
0.86 1.465552 0.923335 0.605237 0.8
0.86 1.347743 0.926565 0.57743 0.8
0.8 2.611447 0.929914 0.552065 0.8
0.86 1.229933 0.932576 0.528834 0.8
0.86 1.112123 0.944589 0.487783 0.75
0.86 0.994314 0.957206 0.452645 0.660714
0.86 0.876504 0.956548 0.42223 0.672143
0.86 0.758694 0.956653 0.395644 0.682143
0.8 2.434732 0.956518 0.372208 0.690966
0.86 0.640885 0.956676 0.351393 0.69881
0.86 0.523075 0.956741 0.316044 0.712143
0.8 2.258018 0.956481 0.287157 0.723052
0.8 2.081304 0.956445 0.263108 0.732143
0.8 1.904589 0.956481 0.242776 0.739835
0.86 0.405265 0.958259 0.217558 0.749384
0.8 1.727875 0.963083 0.197086 0.757143
0.8 1.55116 0.969757 0.175115 0.769048
0.8 1.374446 0.97003 0.153697 0.780662
0.8 1.197732 0.970382 0.134026 0.791337
0.8 1.021017 0.970721 0.118819 0.799596
0.8 1.5 0.970985 0.106711 0.8
0.8 1.2 0.971222 0.096843 0.8
0.8 1 0.97144 0.088645 0.8
0.8 0.9 0.971645 0.081727 0.8];
% Let's plot the cascade zero locations and the locations of the
% pole and zeros in the resonator.
if plotTests
clf;
subplot(3,3,1);
plot(FilterBankRTheta(:,1).*exp(i*FilterBankRTheta(:,2)))
axis([-1 1 0 1])
title('Cascade Zero Locations')
subplot(3,3,2);
plot([FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4)) ...
FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2)],'+')
title('Resonator Pole/Zero')
drawnow;
end
% Convert r-theta form, first into a list of roots, then a polynomial
roots=exp(i*PreemphasisRTheta(:,2)).*PreemphasisRTheta(:,1);
SeneffPreemphasis=real(poly([roots;conj(roots)]));
% Plot the preemphasis filter response, if desired
if plotTests
subplot(3,3,3);
freqScale=(0:255)/256*8000;
freqresp = FreqResp(SeneffPreemphasis,[1], freqScale, 16000);
semilogx(freqScale,freqresp)
title('Preemphasis Response');
axis([100 10000 -60 20])
drawnow;
end
% Now figure out the second order sections that make up the main
% filter bank cascade. We put the zeros into the numerator (b's)
% and there are no poles. Just to keep things simpler, we adjust
% the gain of each filter to keep it unity gain at DC.
[channels,width] = size(FilterBankRTheta);
roots=exp(i*FilterBankRTheta(:,2)).*FilterBankRTheta(:,1);
SeneffFilterBank = zeros(channels,5);
for j=1:channels
SeneffFilterBank(j,1:3) = poly([roots(j) conj(roots(j))]);
SeneffFilterBank(j,1:3) = SeneffFilterBank(j,1:3)/sum(SeneffFilterBank(j,1:3));
end
% Plot the cascade zero responses, if desired.
if plotTests
subplot(3,3,4);
y=soscascade([1 zeros(1,511)],SeneffFilterBank);
freqresp=20*log10(abs(fft(y(1:5:40,:)')));
freqScale=(0:511)/512*16000;
semilogx(freqScale(1:256),freqresp(1:256,:))
axis([100 10000 -150 0]);
title('Cascade Response');
drawnow;
end
% Now figure out the resonating filters. Each of these resonators
% is a double pole-zero pair.
zlocs = FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2);
plocs = FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4));
SeneffForward = zeros(5,channels);
SeneffBackward = zeros(5,channels);
for j=1:channels
SeneffForward(:,j) = real(poly([zlocs(j) conj(zlocs(j)) ...
zlocs(j) conj(zlocs(j))]))';
SeneffBackward(:,j) = real(poly([plocs(j) conj(plocs(j)) ...
plocs(j) conj(plocs(j))]))';
end
% Now plot the frequency response of just the resonating filters.
% These are all bandpass filters.
if plotTests
subplot(3,3,5);
impulse = [1 zeros(1,255)];
y=zeros(256,channels);
for j=1:40
y(:,j) = filter(SeneffForward(:,j),SeneffBackward(:,j),impulse)';
end
freqresp=20*log10(abs(fft(y(:,1:5:40))));
freqScale=(0:255)/256*16000;
semilogx(freqScale(1:128),freqresp(1:128,:))
axis([100 10000 -30 40]);
title('Resonators Response')
drawnow;
end
% The plot below shows the overall response of the preemphasis filters
% along with the just-designed cascade of zeros.
if plotTests
subplot(3,3,6);
impulse = [1 zeros(1,511)];
y=soscascade(filter(SeneffPreemphasis, [1], impulse), ...
SeneffFilterBank);
freqresp=20*log10(abs(fft(y(1:5:40,:)')));
freqScale=(0:511)/512*16000;
semilogx(freqScale(1:256),freqresp(1:256,:))
axis([100 10000 -100 25]);
title('Preemphasis+Cascade');
drawnow;
end
% Now we need to normalize the gain of each channel. We run an impulse
% through the preemphasis filter, and then through the cascade of zeros.
% Finally, we run it through each of the resonator filters.
impulse = [1 zeros(1,255)];
y=soscascade(filter(SeneffPreemphasis, [1], impulse), ...
SeneffFilterBank);
for j=1:channels
y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:));
end
% Now we have impulse responses from each filter. We can find the FFT
% and then find the gain peak. We divide each forward polynomial by the
% maximum gain (to normalize) and then multiply by the desired low
% frequency roll-off. The Bryant paper says that the last 24 channels
% should be cut at 6dB per octave and that this occurs at 1600 Hz, but
% it looks to me like the gain change happens at 3200 Hz.
freqresp=abs(fft(y'));
gain = ones(1,channels)./max(freqresp);
cfs = FilterBankRTheta(:,4)/pi*fs/2;
rolloff = min(cfs/1600,1);
for j=1:channels
SeneffForward(:,j)=SeneffForward(:,j)*gain(j)*rolloff(j);
end
% All Done. The figure below should match Figure 3 of Bryant's paper.
if plotTests
subplot(3,3,8);
impulse = [1 zeros(1,511)];
y=soscascade(filter(SeneffPreemphasis, [1], impulse), ...
SeneffFilterBank);
for j=1:channels
y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:));
end
freqresp=20*log10(abs(fft(y(1:5:40,:)')));
freqScale=(0:511)/512*16000;
plot(freqScale(1:256),freqresp(1:256,:))
axis([100 10000 -120 0]);
title('Magnitude Response vs. Linear Frequency');
drawnow;
end
function mag=FreqResp(b,a,f,fs)
cf = exp(i*2*pi*f/fs);
num = 0;
for i=1:length(b)
num = num + b(end-i+1)*cf.^i;
end
denom = 0;
for i=1:length(a)
denom = denom + a(end-i+1)*cf.^i;
end
mag = 20*log10(abs(num./denom));
|
github
|
martinarielhartmann/mirtooloct-master
|
mirdecreaseslope.m
|
.m
|
mirtooloct-master/MIRToolbox/mirdecreaseslope.m
| 3,058 |
utf_8
|
920edc53acc219af8f32e695e16db0c3
|
function varargout = mirdecreaseslope(orig,varargin)
% a = mirattackslope(x) estimates the average slope of each note attack.
% Values are expressed in the same scale than the original signal,
% but normalised by time in seconds.
% Optional arguments:
% a = mirattackslope(x,m) specifies a method for slope computation.
% Possible values:
% m = 'Diff': ratio between the magnitude difference at the
% beginning and the ending of the attack period, and the
% corresponding time difference.
% m = 'Gauss': average of the slope, weighted by a gaussian
% curve that emphasizes values at the middle of the attack
% period. (similar to Peeters 2004).
% mirattackslope(...,'Contrast',c) specifies the 'Contrast' parameter
% used in mironsets for event detection through peak picking.
% Same default value as in mironsets.
% mirattackslope(...,'Single') only selects one attack phase in the
% signal (or in each segment).
%
% Peeters. G. (2004). A large set of audio features for sound description
% (similarity and classification) in the CUIDADO project. version 1.0
meth.type = 'String';
meth.choice = {'Diff','Gauss'};
meth.default = 'Diff';
option.meth = meth;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = NaN;
option.cthr = cthr;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
option.single = single;
log.key = 'LogOnset';
log.type = 'Boolean';
log.default = 0;
option.log = log;
minlog.key = 'MinLog';
minlog.type = 'Integer';
minlog.default = 0;
option.minlog = minlog;
specif.option = option;
varargout = mirfunction(@mirdecreaseslope,orig,varargin,nargout,specif,@init,@main);
function [o type] = init(x,option)
o = mironsets(x,'Release','Contrast',option.cthr,'Single',option.single,...
'Log',option.log,'MinLog',option.minlog,...
'Filter','Normal','AcrossSegments');
type = mirtype(x);
function sl = main(o,option,postoption)
if iscell(o)
o = o{1};
end
pr = get(o,'ReleasePos');
pru = get(o,'ReleasePosUnit');
sr = get(o,'Sampling');
d = get(o,'Data');
sl = mircompute(@algo,pr,pru,d,option.meth,sr);
fp = mircompute(@frampose,pru);
sl = mirscalar(o,'Data',sl,'FramePos',fp,'Title','Decrease Slope');
sl = {sl,o};
function fp = frampose(pr)
if isempty(pr)
fp = [];
return
end
pr = pr{1};
fp = pr;
function sl = algo(pr,pru,d,meth,sr)
if isempty(pr)
sl = [];
return
end
pr = pr{1};
pru = pru{1};
sl = zeros(1,length(pr));
for i = 1:size(pr,2)
switch meth
case 'Diff'
sl(i) = (d(pr(1,i))-d(pr(2,i)))/(pru(2,i)-pru(1,i));
case 'Gauss'
l = pr(2,i)-pr(1,i);
h = ceil(l/2);
gauss = exp(-(1-h:l-h).^2/(l/4)^2);
dat = -diff(d(pr(1,i):pr(2,i))).*gauss';
sl(i) = mean(dat)*sr;
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirattackslope.m
|
.m
|
mirtooloct-master/MIRToolbox/mirattackslope.m
| 3,344 |
utf_8
|
c1ae3e613ee78509e576de00df491848
|
function varargout = mirattackslope(orig,varargin)
% a = mirattackslope(x) estimates the average slope of each note attack.
% Values are expressed in the same scale than the original signal,
% but normalised by time in seconds.
% Optional arguments:
% a = mirattackslope(x,m) specifies a method for slope computation.
% Possible values:
% m = 'Diff': ratio between the magnitude difference at the
% beginning and the ending of the attack period, and the
% corresponding time difference.
% m = 'Gauss': average of the slope, weighted by a gaussian
% curve that emphasizes values at the middle of the attack
% period. (similar to Peeters 2004).
% mirattackslope(...,'Contrast',c) specifies the 'Contrast' parameter
% used in mironsets for event detection through peak picking.
% Same default value as in mironsets.
% mirattackslope(...,'Single') only selects one attack phase in the
% signal (or in each segment).
%
% Peeters. G. (2004). A large set of audio features for sound description
% (similarity and classification) in the CUIDADO project. version 1.0
meth.type = 'String';
meth.choice = {'Diff','Gauss'};
meth.default = 'Diff';
option.meth = meth;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = NaN;
option.cthr = cthr;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
option.single = single;
log.key = 'LogOnset';
log.type = 'Boolean';
log.default = 0;
option.log = log;
minlog.key = 'MinLog';
minlog.type = 'Integer';
minlog.default = 0;
option.minlog = minlog;
envmeth.type = 'String';
envmeth.choice = {'Filter','Spectro'};
envmeth.default = 'Filter';
option.envmeth = envmeth;
specif.option = option;
varargout = mirfunction(@mirattackslope,orig,varargin,nargout,specif,@init,@main);
function [o type] = init(x,option)
o = mironsets(x,'Attack','Contrast',option.cthr,'Single',option.single,...
'Log',option.log,'MinLog',option.minlog,...
option.envmeth,'Normal','AcrossSegments');
type = mirtype(x);
function sl = main(o,option,postoption)
if iscell(o)
o = o{1};
end
po = get(o,'PeakPos');
pa = get(o,'AttackPos');
pou = get(o,'PeakPosUnit');
pau = get(o,'AttackPosUnit');
sr = get(o,'Sampling');
d = get(o,'Data');
sl = mircompute(@algo,po,pa,pou,pau,d,option.meth,sr);
fp = mircompute(@frampose,pau,pou);
sl = mirscalar(o,'Data',sl,'FramePos',fp,'Title','Attack Slope');
sl = {sl,o};
function fp = frampose(pa,po)
if isempty(pa)
fp = [];
return
end
pa = sort(pa{1});
po = sort(po{1});
fp = [pa(:)';po(:)'];
function sl = algo(po,pa,pou,pau,d,meth,sr)
if isempty(pa)
sl = [];
return
end
pa = sort(pa{1});
po = sort(po{1});
pau = sort(pau{1});
pou = sort(pou{1});
sl = zeros(1,length(pa));
for i = 1:length(pa)
switch meth
case 'Diff'
sl(i) = (d(po(i))-d(pa(i)))/(pou(i)-pau(i));
case 'Gauss'
l = po(i)-pa(i);
h = ceil(l/2);
gauss = exp(-(1-h:l-h).^2/(l/4)^2);
dat = diff(d(pa(i):po(i))).*gauss';
sl(i) = mean(dat)*sr;
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirinharmonicity.m
|
.m
|
mirtooloct-master/MIRToolbox/mirinharmonicity.m
| 4,045 |
utf_8
|
0694141a4a821cbd7da88eb33ab9691d
|
function varargout = mirinharmonicity(orig,varargin)
% ih = mirinharmonicity(x) estimates the inharmonicity of x, i.e., the
% amount of partials that are not multiples of the fundamental
% frequency.
% x can be either an audio file, a miraudio or a mirspectrum object.
% WARNING: This function presupposes that there is only one fundamental
% frequency.
% Optional argument:
% mirinharmonicity(...,'f0',f) bases the computation of the
% inharmonicity on the fundamental frequency indicated by f.
% Default value: f = mirpitch(...,'Mono')
% [ih,s] = mirinharmonicity(x) also displays the spectrum used for the
% computation of the inharmonicity.
% [ih,s,p] = mirinharmonicity(x) also displays the result of the
% estimation of the fundamental frequency.
f0.key = 'f0';
f0.default = [];
option.f0 = f0;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [.1 .125];
option.frame = frame;
specif.option = option;
varargout = mirfunction(@mirinharmonicity,orig,varargin,nargout,specif,@init,@main);
function [i type] = init(x,option)
if isamir(x,'miraudio')
if option.frame.length.val
s = mirspectrum(x,'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
else
s = mirspectrum(x);
end
else
s = x;
end
if isempty(option.f0)
if option.frame.length.val
p = mirpitch(x,'Mono','Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
else
p = mirpitch(x,'Mono');
end
else
p = option.f0;
end
i = {s,p};
type = {'mirscalar','mirspectrum','mirscalar'};
function ih = main(x,option,postoption)
if isa(x{2},'mirdesign')
x = x{1};
end
s = x{1};
p = x{2};
if iscell(p)
p = p{1};
end
m = get(s,'Magnitude');
f = get(s,'Frequency');
fp1 = get(s,'FramePos');
if isnumeric(p)
pf = {{{p}}};
else
pf = get(p,'Data');
fp2 = get(p,'FramePos');
end
v = cell(1,length(m));
for h = 1:length(m)
v{h} = cell(1,length(m{h}));
for i = 1:length(m{h})
mi = m{h}{i};
fi = f{h}{i};
pfi = pf{h}{i};
v{h}{i} = zeros(1,size(mi,2),size(mi,3));
if not(size(mi,2) == size(pfi,2))
beg = find(fp2{h}{i}(1,:) == fp1{h}{i}(1,1));
if isempty(beg) || (beg + size(mi,2)-1 > size(pfi,2))
error('ERROR IN MIRINHARMONICITY: The ''f0'' argument should have the same frame decomposition than the main input.');
end
pfi = pfi(:,beg:beg+size(mi,2)-1);
end
for j = 1:size(mi,3)
for k = 1:size(mi,2)
mk = mi(:,k,j);
fk = fi(:,k,j);
pfk = pfi(:,k);
if isempty(pfk{1})
v{h}{i}(1,k,j) = NaN;
else
r = fk/pfk{1}(1);
rr = 2*abs(r-round(r));
if isempty(rr)
v{h}{i}(1,k,j) = NaN;
else
v{h}{i}(1,k,j) = sum(rr.*mk) / sum(mk);
end
end
end
end
end
end
ih = mirscalar(s,'Data',v,'Title','Inharmonicity');
if isa(p,'mirdata')
ih = {ih s p};
else
ih = {ih s};
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirplay.m
|
.m
|
mirtooloct-master/MIRToolbox/mirplay.m
| 7,791 |
utf_8
|
c1b6dfd6436bb3a647097f575c478056
|
function varargout = mirplay(a,varargin)
% mirplay(a) plays audio signal, envelope, or pitches.
% If a is an envelope, what is actually played is a white noise of
% same envelope.
% If a is a mirpitch object, pitches are played using sinusoids.
% Optional arguments:
% mirplay(...,'Channel',i) plays the channel(s) of rank(s) indicated by
% the array i.
% mirplay(...,'Segment',k) plays the segment(s) of rank(s) indicated by
% the array k.
% mirplay(...,'Sequence',l) plays the sequence(s) of rank(s) indicated
% by the array l.
% mirplay(...,'Increasing',d) plays the sequences in increasing order
% of d, which could be either an array or a mirscalar data.
% mirplay(...,'Decreasing',d) plays the sequences in decreasing order
% of d, which could be either an array or a mirscalar data.
% mirplay(...,'Every',s) plays every s sequence, where s is a number
% indicating the step between sequences.
% mirplay(...,'Burst',0) toggles off the burst sound between
% segments.
% Example: mirplay(mirenvelope('Folder'),...
% 'increasing', mirrms('Folder'),...
% 'every',5)
ch.key = 'Channel';
ch.type = 'Integer';
ch.default = 0;
option.ch = ch;
sg.key = 'Segment';
sg.type = 'Integer';
sg.default = 0;
option.sg = sg;
se.key = 'Sequence';
se.type = 'Integer';
se.default = 0;
option.se = se;
inc.key = 'Increasing';
inc.type = 'MIRtb';
option.inc = inc;
dec.key = 'Decreasing';
dec.type = 'MIRtb';
option.dec = dec;
every.key = 'Every';
every.type = 'Integer';
option.every = every;
burst.key = 'Burst';
burst.type = 'Boolean';
burst.default = 0; %1;
option.burst = burst;
specif.option = option;
specif.eachchunk = 'Normal';
varargout = mirfunction(@mirplay,a,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = '';
function noargout = main(a,option,postoption)
if iscell(a)
a = a{1};
end
d = get(a,'Data');
if isa(a,'mirpitch')
amp = get(a,'Amplitude');
end
f = get(a,'Sampling');
n = get(a,'Name');
c = get(a,'Channels');
fp = get(a,'FramePos');
t = get(a,'Title');
if not(option.se)
if length(d)>1
if isfield(option,'inc')
[unused order] = sort(mirgetdata(option.inc));
elseif isfield(option,'dec')
[unused order] = sort(mirgetdata(option.dec),'descend');
else
order = 1:length(d);
end
if isfield(option,'every')
order = order(1:option.every:end);
end
else
order = 1;
end
else
order = option.se;
end
if not(isempty(order))
for k = order(:)'
if isamir(a,'miraudio')
display(['Playing file: ' n{k}])
else
display(['Playing ',t,' related to file: ' n{k}])
end
dk = d{k};
if not(iscell(dk))
dk = {dk};
end
if option.ch
if isempty(c{k})
chk = option.ch;
else
[unused unused chk] = intersect(option.ch,c{k});
end
else
chk = 1:size(dk{1},3);
end
if isempty(chk)
display('No channel to play.');
end
for l = chk
if chk(end)>1
display([' Playing channel #' num2str(l)]);
end
if option.sg
sgk = option.sg(find(option.sg<=length(dk)));
else
sgk = 1:length(dk);
end
for i = sgk
if sgk(end)>1
display([' Playing segment #' num2str(i)])
end
di = dk{i};
if isa(a,'miraudio')
for j = 1:size(di,2)
tic
pl = audioplayer(di(:,j,l),f{k});
playblocking(pl);
% We should scale, in order to avoid clipping
% (when reading AIF files for instance).
% But global scaling across segments, to avoid
% problem with silent segments.
idealtime = size(di,1)/f{k};
practime = toc;
if practime < idealtime
pause(idealtime-practime)
end
end
else
synth = zeros(1,ceil((fp{k}{i}(end)-fp{k}{i}(1))*44100)+1);
if isa(a,'mirpitch')
stp = get(a,'Start');
transcribed = ~(isempty(stp) || isempty(stp{k}) ...
|| isempty(stp{k}{i}));
else
transcribed = 0;
end
if transcribed
stp = get(a,'Start');
enp = get(a,'End');
mep = get(a,'Mean');
stp = stp{k}{i}{1};
enp = enp{k}{i}{1};
mep = mep{k}{i}{1};
for j = 1:length(mep)
fj = 2^(mep(j)/1200);
k1 = floor((fp{k}{i}(1,stp(j))-fp{k}{i}(1))*44100)+1;
k2 = floor((fp{k}{i}(2,enp(j))-fp{k}{i}(1))*44100)+1;
ampj = ones(1,k2-k1+1);
synth(k1:k2) = synth(k1:k2) ...
+ sum(ampj.*sin(2*pi*fj*(0:k2-k1)/44100),1) ...
.*hann(k2-k1+1)';
end
else
if isa(a,'mirpitch')
ampi = amp{k}{i};
end
for j = 1:size(di,2)
if iscell(di)
dj = di{j};
else
dj = di(:,j);
end
dj(isnan(dj)) = 0;
if isa(a,'mirpitch')
ampj = zeros(size(dj));
if iscell(ampi)
ampj(1:size(ampi{j})) = ampi{j};
else
ampj(1:size(ampi(:,j))) = ampi(:,j);
end
end
if not(isempty(dj))
k1 = floor((fp{k}{i}(1,j)-fp{k}{i}(1))*44100)+1;
k2 = floor((fp{k}{i}(2,j)-fp{k}{i}(1))*44100)+1;
if isa(a,'mirpitch')
ampj = repmat(ampj,1,k2-k1+1);
else
ampj = ones(size(dj),k2-k1+1);
end
synth(k1:k2) = synth(k1:k2) ...
+ sum(ampj.*sin(2*pi*dj*(0:k2-k1)/44100),1) ...
.*hann(k2-k1+1)';
end
end
end
pl = audioplayer(synth,44100);
playblocking(pl);
end
if option.burst && sgk(end)>1
pl = audioplayer(rand(1,10),8192);
playblocking(pl);
end
end
end
end
end
noargout = {};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirpeaks.m
|
.m
|
mirtooloct-master/MIRToolbox/mirpeaks.m
| 59,750 |
utf_8
|
4a36bc7f0d4dad5116030909c0f65dca
|
function varargout = mirpeaks(orig,varargin)
% p = mirpeaks(x) detect peaks in x.
% Optional argument:
% mirpeaks(...,'Total',m): only the m highest peaks are selected.
% If m=Inf, no limitation of number of peaks.
% Default value: m = Inf
% mirpeaks(...,'Order',o): specifies the ordering of the peaks.
% Possible values for o:
% 'Amplitude': orders the peaks from highest to lowest
% (Default choice.)
% 'Abscissa': orders the peaks along the abscissa axis.
% mirpeaks(...,'Contrast',cthr): a threshold value. A given local
% maximum will be considered as a peak if the difference of
% amplitude with respect to both the previous and successive
% local minima (when they exist) is higher than the threshold
% cthr. This distance is expressed with respect to the
% total amplitude of x: a distance of 1, for instance, is
% equivalent to the distance between the maximum and the minimum
% of x.
% Default value: cthr = 0.1
% mirpeaks(...,'SelectFirst',fthr): If the 'Contrast' selection has
% been chosen, this additional option specifies that when one
% peak has to be chosen out of two candidates, and if the
% difference of their amplitude is below the threshold fthr,
% then the most ancien one is selected.
% Option toggled off by default:
% Default value if toggled on: fthr = cthr/2
% mirpeaks(...,'Threshold',thr): a threshold value.
% A given local maximum will be considered as a peak if its
% normalized amplitude is higher than this threshold.
% A given local minimum will be considered as a valley if its
% normalized amplitude is lower than this threshold.
% The normalized amplitude can have value between 0 (the minimum
% of the signal in each frame) and 1 (the maximum in each
% frame).
% Default value: thr=0 for peaks thr = 1 for valleys
% mirpeaks(...,'Interpol',i): estimates more precisely the peak
% position and amplitude using interpolation. Performed only on
% data with numerical abscissae axis.
% Possible value for i:
% '', 'no', 'off', 0: no interpolation
% 'Quadratic': quadratic interpolation. (default value).
% mirpeaks(...,'Valleys'): detect valleys instead of peaks.
% mirpeaks(...,'Reso',r): removes peaks whose abscissa distance to
% one or several higher peaks is lower than a given threshold.
% Possible value for the threshold r:
% 'SemiTone': ratio between the two peak positions equal to
% 2^(1/12)
% a numerical value : difference between the two peak
% positions equal to that value
% When two peaks are distant by an interval lower than the
% resolution, the highest of them is selected by default.
% mirpeaks(...,'Reso',r,'First') specifies on the contrary that
% the first of them is selected by default.
% When a peak p1 is too close to another higher peak p2, p1 is
% removed even if p2 is removed as well. If you want to
% filter out p1 only if p2 remains in the end, add the option
% 'Loose'.
% mirpeaks(...,'Reso',r,'Loose') specifies instead that
% mirpeaks(...,'Nearest',t,s): takes the peak nearest a given abscisse
% values t. The distance is computed either on a linear scale
% (s = 'Lin') or logarithmic scale (s = 'Log'). In this case,
% only one peak is extracted.
% mirpeaks(...,'Pref',c,std): indicates a region of preference for
% the peak picking, centered on the abscisse value c, with a
% standard deviation of std.
% mirpeaks(...,'NoBegin'): does not consider the first sample as a
% possible peak candidate.
% mirpeaks(...,'NoEnd'): does not consider the last sample as a possible
% peak candidate.
% mirpeaks(...,'Normalize',n): specifies whether frames are
% normalized globally or individually.
% Possible value for n:
% 'Global': normalizes the whole frames altogether from 0 to
% 1 (default choice).
% 'Local': normalizes each frame from 0 to 1.
% mirpeaks(...,'Extract'): extracts from the initial curves all the
% positive continuous segments (or "curve portions") where peaks
% are located.
% mirpeaks(...,'Only'): keeps from the original curve only the data
% corresponding to the peaks, and zeroes the remaining data.
% mirpeaks(...,'Track',t): tracks temporal continuities of peaks. If
% a value t is specified, the variation between successive peaks
% is tolerated up to t samples.
% mirpeaks(...,'CollapseTrack',ct): collapses tracks into one single
% track, and remove small track transitions, of length shorter
% than ct samples. Default value: ct = 7
m.key = 'Total';
m.type = 'Integer';
m.default = Inf;
option.m = m;
nobegin.key = 'NoBegin';
nobegin.type = 'Boolean';
nobegin.default = 0;
option.nobegin = nobegin;
noend.key = 'NoEnd';
noend.type = 'Boolean';
noend.default = 0;
option.noend = noend;
order.key = 'Order';
order.type = 'String';
order.choice = {'Amplitude','Abscissa'};
order.default = 'Amplitude';
option.order = order;
chro.key = 'Chrono'; % obsolete, corresponds to 'Order','Abscissa'
chro.type = 'Boolean';
chro.default = 0;
option.chro = chro;
ranked.key = 'Ranked'; % obsolete, corresponds to 'Order','Amplitude'
ranked.type = 'Boolean';
ranked.default = 0;
option.ranked = ranked;
vall.key = 'Valleys';
vall.type = 'Boolean';
vall.default = 0;
option.vall = vall;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .1;
option.cthr = cthr;
first.key = 'SelectFirst';
first.type = 'Integer';
first.default = 0;
first.keydefault = NaN;
option.first = first;
thr.key = 'Threshold';
thr.type = 'Integer';
thr.default = NaN;
option.thr = thr;
smthr.key = 'MatrixThreshold'; % to be documented in version 1.3
smthr.type = 'Integer';
smthr.default = NaN;
option.smthr = smthr;
graph.key = 'Graph';
graph.type = 'Integer';
graph.default = 0;
graph.keydefault = 1; %.25;
option.graph = graph;
interpol.key = 'Interpol';
interpol.type = 'String';
interpol.default = 'Quadratic';
interpol.keydefault = 'Quadratic';
option.interpol = interpol;
reso.key = 'Reso';
%reso.type = 'String';
%reso.choice = {0,'SemiTone'};
reso.default = 0;
option.reso = reso;
resofirst.key = 'First';
resofirst.type = 'Boolean';
resofirst.default = 0;
option.resofirst = resofirst;
resoloose.key = 'Loose';
resoloose.type = 'Boolean';
resoloose.default = 0;
option.resoloose = resoloose;
c.key = 'Pref';
c.type = 'Integer';
c.number = 2;
c.default = [0 0];
option.c = c;
near.key = 'Nearest';
near.type = 'Integer';
near.default = NaN;
option.near = near;
logsc.type = 'String';
logsc.choice = {'Lin','Log',0};
logsc.default = 'Lin';
option.logsc = logsc;
normal.key = 'Normalize';
normal.type = 'String';
normal.choice = {'Local','Global'};
normal.default = 'Global';
option.normal = normal;
extract.key = 'Extract';
extract.type = 'Boolean';
extract.default = 0;
option.extract = extract;
only.key = 'Only';
only.type = 'Boolean';
only.default = 0;
option.only = only;
delta.key = 'Track';
delta.type = 'Integer';
delta.default = 0;
delta.keydefault = Inf;
option.delta = delta;
harmo.key = 'Harmonic';
harmo.type = 'Integer';
harmo.default = 0;
harmo.keydefault = Inf;
option.harmo = harmo;
mem.key = 'TrackMem';
mem.type = 'Integer';
mem.default = 0;
mem.keydefault = Inf;
option.mem = mem;
fuse.key = 'Fuse';
fuse.type = 'Boolean';
fuse.default = 0;
option.fuse = fuse;
shorttrackthresh.key = 'CollapseTracks';
shorttrackthresh.type = 'Integer';
shorttrackthresh.default = 0;
shorttrackthresh.keydefault = 7;
option.shorttrackthresh = shorttrackthresh;
scan.key = 'ScanForward'; % specific to mironsets(..., 'Klapuri99')
scan.default = [];
option.scan = scan;
specif.option = option;
varargout = mirfunction(@mirpeaks,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(x);
function p = main(x,option,postoption)
if iscell(x)
x = x{1};
end
if option.chro
option.order = 'Abscissa';
elseif option.ranked
option.order = 'Amplitude';
end
if not(isnan(option.near)) && option.m == 1
option.m = Inf;
end
x = purgedata(x);
if option.m <= 0
p = x;
return
end
d = get(x,'Data');
sr = get(x,'Sampling');
cha = 0; % Indicates when it is possible to represent as a curve along the
% Z-axis (channels) instead of the X-axis (initial abscissa).
if isnan(option.first)
option.first = option.cthr / 2;
end
if isa(x,'mirscalar')
t = get(x,'FramePos');
for i = 1:length(d)
for j = 1:length(d{i})
d{i}{j} = d{i}{j}';
if size(t{i},1) == 1
t{i}{j} = t{i}{j}(1,:,:)';
else
t{i}{j} = (t{i}{j}(1,:,:)+t{i}{j}(2,:,:))'/2;
end
end
end
elseif isa(x,'mirsimatrix')
t = get(x,'FramePos');
for i = 1:length(t)
for j = 1:length(t{i})
t{i}{j} = repmat((t{i}{j}(1,:,:)+t{i}{j}(2,:,:))'/2,...
[1 size(d{i}{j},2) 1]);
end
end
elseif isa(x,'mirhisto')
error('ERROR IN MIRPEAKS: peaks of histogram not considered yet.');
else
for i = 1:length(d)
for j = 1:length(d{i})
if iscell(d{i})
dij = d{i}{j};
if ~cha && j == 1 && size(dij,3) > 1 && size(dij,1) == 1
cha = 1;
end
if cha && j > 1 && size(dij,1) > 1
cha = -1;
end
end
end
for j = 1:length(d{i})
if iscell(d{i})
dij = d{i}{j};
if cha == 1
if iscell(dij)
for k = 1:size(dij,2)
d{i}{j}{k} = reshape(dij{k},size(dij{k},2),size(dij{k},3));
d{i}{j}{k} = d{i}{j}{k}';
end
else
d{i}{j} = reshape(dij,size(dij,2),size(dij,3));
d{i}{j} = d{i}{j}';
end
end
end
end
end
if cha == 1
t = get(x,'Channels');
else
t = get(x,'Pos');
end
end
interpol = get(x,'Interpolable') && not(isempty(option.interpol)) && ...
((isnumeric(option.interpol) && option.interpol) || ...
(ischar(option.interpol) && not(strcmpi(option.interpol,'No')) && ...
not(strcmpi(option.interpol,'Off'))));
pp = cell(1,length(d));
pv = cell(1,length(d));
pm = cell(1,length(d));
ppp = cell(1,length(d));
ppv = cell(1,length(d));
tp = cell(1,length(d));
if interpol
tpp = cell(1,length(d));
tpv = cell(1,length(d));
end
tv = cell(1,length(d));
if isnan(option.thr)
option.thr = 0;
else
if option.vall
option.thr = 1-option.thr;
end
end
%if isnan(option.lthr)
% option.lthr = 1;
%else
% if option.vall
% option.lthr = 1-option.lthr;
% end
%end
if isnan(option.smthr)
option.smthr = option.thr - .2;
end
if not(isempty(option.scan))
pscan = get(option.scan,'PeakPos');
end
for i = 1:length(d) % For each audio file,...
di = d{i};
if cha == 1
ti = t; %sure ?
else
ti = t{i};
end
if not(iscell(di))
di = {di};
if isa(x,'mirchromagram') && not(cha)
ti = {ti};
end
end
if option.vall
for h = 1:length(di)
di{h} = -di{h};
end
end
if strcmpi(option.normal,'Global')
% Normalizing across segments
madi = zeros(1,length(di));
midi = zeros(1,length(di));
for h = 1:length(di)
madi(h) = max(max(max(max(di{h},[],1),[],2),[],3),[],4);
midi(h) = min(min(min(min(di{h},[],1),[],2),[],3),[],4);
end
mad = max(madi);
mid = min(midi);
end
for h = 1:length(di) % For each segment,...
dhu = di{h}; % This copy of the data is kept untransformed and used for output.
dht = dhu; % This copy of the data will be transformed (normalization, etc.)
[nl0 nc np nd0] = size(dhu);
if cha == 1
if iscell(ti)
%% problem here!!!
ti = ti{i}; %%%%%it seems that sometimes we need to use instead ti{i}(:);
end
th = repmat(ti,[1,nc,np,nd0]);
else
th = ti{h};
if iscell(th) % Non-numerical abscissae are transformed into numerical ones.
th = repmat((1:size(th,1))',[1,nc,np]);
else
if 0 %size(th,2) == 1 && nc>1
error('Problematic case. New code below to be used.');
th = repmat(th,[1,nc,1]);
end
if size(th,3)<np
th = repmat(th,[1,1,np]);
end
end
end
if strcmpi(option.normal,'Global')
% Normalizing across segments
dht = (dht - repmat(mid,[nl0 nc np nd0]))./...
repmat(mad-mid,[nl0 nc np nd0]);
end
if option.c % If a prefered region is specified, the data is amplified accordingly
dht = dht.*exp(-(th-option.c(1)).^2/2/option.c(2)^2)...
/option.c(2)/sqrt(2*pi)/2;
end
% Now the data is rescaled. the minimum is set to 0
% and the maximum to 1.
state = warning('query','MATLAB:divideByZero');
warning('off','MATLAB:divideByZero');
for l = 1:nd0
[unused lowc] = find(max(dht(:,:,:,l))<option.thr);
dht(:,lowc,1,l) = 0;
end
if strcmpi(option.normal,'Local')
% Normalizing each frame separately:
dht = (dht-repmat(min(min(dht,[],1),[],4),[nl0 1 1 nd0]))./...
repmat(max(max(dht,[],1),[],4)...
-min(min(dht,[],1),[],4),[nl0 1 1 nd0]);
end
warning(state.state,'MATLAB:divideByZero');
szth = size(th);
szth(1) = 1;
if option.nobegin
dht = [Inf(1,nc,np,nd0);dht];
% This infinite value at the beginning
% prevents the selection of the first sample of data
dhu = [Inf(1,nc,np,nd0);dhu];
th = [NaN(szth);th];
else
dht = [-Inf(1,nc,np,nd0);dht];
% This infinite negative value at the beginning
% ensures the selection of the first sample of data
dhu = [-Inf(1,nc,np,nd0);dhu];
th = [NaN(szth);th];
end
if option.noend
dht = [dht;Inf(1,nc,np,nd0)];
% idem for the last sample of data
dhu = [dhu;Inf(1,nc,np,nd0)];
th = [th;NaN(szth)];
else
dht = [dht;-Inf(1,nc,np,nd0)];
dhu = [dhu;-Inf(1,nc,np,nd0)];
th = [th;NaN(szth)];
end
nl0 = nl0+2;
% Rearrange the 4th dimension (if used) into the 1st one.
nl = nl0*nd0;
dht4 = zeros(nl,nc,np);
dhu4 = zeros(nl,nc,np);
th2 = zeros(size(th));
for l = 1:nd0
dhu4((l-1)*nl0+(1:nl0)',:,:) = dhu(:,:,:,l);
dht4((l-1)*nl0+(1:nl0)',:,:) = dht(:,:,:,l);
th2((l-1)*nl0+(1:nl0)',:,:) = th(:,:,:);
end
dht = dht4;
dhu = dhu4;
th = th2; % The X-abscissa
ddh = diff(dht);
% Let's find the local maxima
for l = 1:np
dl = dht(2:end-1,:,l);
for k = 1:nc
dk = dl(:,k);
mx{1,k,l} = find(and(and(dk >= option.cthr, ...
dk >= option.thr),...
... dk <= option.lthr)),
and(ddh(1:(end-1),k,l) > 0, ...
ddh(2:end,k,l) <= 0)))+1;
end
end
if option.cthr
for l = 1:np
for k = 1:nc
finalmxk = [];
mxk = mx{1,k,l};
if not(isempty(mxk))
wait = 0;
if length(mxk)>5000
wait = waitbar(0,['Selecting peaks... (0 out of 0)']);
end
%if option.m < Inf
% [unused,idx] = sort(dh(mxk,k,l),'descend'); % The peaks are sorted in decreasing order
% mxk = mxk(sort(idx(1:option.m)));
%end
j = 1; % Scans the peaks from begin to end.
mxkj = mxk(j); % The current peak
jj = j+1;
bufmin = Inf;
bufmax = dht(mxkj,k,l);
oldbufmin = min(dht(1:mxk(1)-1,k,l));
while jj <= length(mxk)
if isa(wait,'matlab.ui.Figure') && not(mod(jj,5000))
waitbar(jj/length(mxk),wait,['Selecting peaks... (',num2str(length(finalmxk)),' out of ',num2str(jj),')']);
end
bufmin = min(bufmin, ...
min(dht(mxk(jj-1)+1:mxk(jj)-1,k,l)));
if bufmax - bufmin < option.cthr
% There is no contrastive notch
if dht(mxk(jj),k,l) > bufmax && ...
(dht(mxk(jj),k,l) - bufmax > option.first ...
|| (bufmax - oldbufmin < option.cthr))
% If the new peak is significantly
% higher than the previous one,
% The peak is transfered to the new
% position
j = jj;
mxkj = mxk(j); % The current peak
bufmax = dht(mxkj,k,l);
oldbufmin = min(oldbufmin,bufmin);
bufmin = Inf;
elseif dht(mxk(jj),k,l) - bufmax <= option.first
bufmax = max(bufmax,dht(mxk(jj),k,l));
oldbufmin = min(oldbufmin,bufmin);
end
else
% There is a contrastive notch
if bufmax - oldbufmin < option.cthr
% But the previous peak candidate
% is too weak and therefore
% discarded
oldbufmin = min(oldbufmin,bufmin);
else
% The previous peak candidate is OK
% and therefore stored
finalmxk(end+1) = mxkj;
oldbufmin = bufmin;
end
bufmax = dht(mxk(jj),k,l);
j = jj;
mxkj = mxk(j); % The current peak
bufmin = Inf;
end
jj = jj+1;
end
if bufmax - oldbufmin >= option.cthr && ...
bufmax - min(dht(mxk(j)+1:end,k,l)) >= option.cthr
% The last peak candidate is OK and stored
finalmxk(end+1) = mxk(j);
end
if isa(wait,'matlab.ui.Figure')
waitbar(1,wait);
close(wait);
drawnow
end
end
mx{1,k,l} = finalmxk;
end
end
end
if not(isempty(option.scan)) % 'ScanForward' option, used for 'Klapuri99' in mironsets
for l = 1:np
for k = 1:nc
pscankl = pscan{i}{h}{1,k,l}; % scan seed positions
mxkl = [];
lp = length(pscankl); % number of peaks
for jj = 1:lp % for each peak
fmx = find(mx{1,k,l}>pscankl(jj),1);
% position of the next max following the
% current seed
fmx = mx{1,k,l}(fmx);
if jj<lp && (isempty(fmx) || fmx>=pscankl(jj+1))
[unused fmx] = max(dht(pscankl(jj):...
pscankl(jj+1)-1,k,l));
fmx = fmx+pscankl(jj)-1;
elseif jj==lp && isempty(fmx)
[unused fmx] = max(dht(pscankl(jj):end,k,l));
fmx = fmx+pscankl(jj)-1;
end
mxkl = [mxkl fmx];
end
mx{1,k,l} = mxkl;
end
end
end
if not(isequal(option.reso,0)) % Removing peaks too close to higher peaks
if ischar(option.reso) && strcmpi(option.reso,'SemiTone')
compar = @semitone_compar;
elseif isnumeric(option.reso)
compar = @dist_compar;
end
for l = 1:np
for k = 1:nc
[unused ind] = sort(dht(mx{1,k,l}),'descend');
mxlk = mx{1,k,l}(ind);
del = [];
j = 1;
while j < length(mxlk)
jj = j+1;
while jj <= length(mxlk)
if compar(th(mxlk(jj),k,l),th(mxlk(j),k,l),...
option.reso)
if option.resoloose
mxlk(jj) = [];
jj = jj-1;
elseif option.resofirst && mxlk(j)>mxlk(jj)
del = [del j];
else
del = [del jj];
end
end
jj = jj+1;
end
j = j+1;
end
if ~option.resoloose
mxlk(del) = [];
end
mx{1,k,l} = mxlk;
end
end
end
if not(isnan(option.near)) % Finding a peak nearest a given prefered location
for l = 1:np
for k = 1:nc
mxlk = mx{1,k,l};
if strcmp(option.logsc,'Log')
[M I] = min(abs(log(th(mxlk,k,l)/option.near)));
else
[M I] = min(abs(th(mxlk,k,l)-option.near));
end
mx{1,k,l} = mxlk(I);
end
end
end
if option.harmo
tp{i}{h} = cell(1,np);
%if interpol
tpp{i}{h} = cell(1,np);
tpv{i}{h} = cell(1,np);
%end
for l = 1:np
mxl = NaN(1,nc);
txl = NaN(1,nc);
myl = zeros(1,nc);
segm = 0;
for k = 1:nc
mxk = mx{1,k,l};
txk = th(mxk,k);
myk = dht(mxk,k);
if isempty(mxk)
continue
end
[maxk idx] = max(myk);
if 0 %maxk < .7
continue
end
if idx > 1
if k > 1 && ~isempty(find(txl(:,k-1)))
[unused r] = min(abs(txk(idx)-txl(:,k-1)));
if r > 1
[unused ik] = min(abs(txk(idx)/r - th(:,k)));
if dht(ik,k) / maxk > .8
mxl(1,k) = ik;
txl(1,k) = th(ik,k);
myl(1,k) = dht(ik,k);
idx = 0;
end
end
end
if idx
idxr = [];
for n = 1:idx-1
if 0 %myk(n)/myk(idx) < .9
continue
end
harmo = mod(txk(idx)/txk(n),1);
if round(txk(idx)/txk(n)) > 1 && ...
(harmo <.25 || harmo > .75)
idxr(end+1) = n;
end
end
if ~isempty(idxr)
[unused best] = max(myl(idxr));
idx = idxr(best);
end
end
end
%idx = find(myk>.7);
%if isempty(idx)
% continue
%end
%if k == 1
% idx = idx(1);
%else
% [unused c] = min(abs(txk(idx)-txl(1,k-1)));
% idx = idx(c);
%end
if idx
if ~segm
segm = k;
elseif 0
dist = abs(txk - txl(1,k-1));
[unused idx2] = min(dist);
if idx2 ~= idx
mat = max(txk(idx2),txl(1,k-1));
mit = min(txk(idx2),txl(1,k-1));
if mat/mit<1.025
idx = idx2;
end
end
mat = max(txl(1,k-1),txk(idx));
mit = min(txl(1,k-1),txk(idx));
if mat/mit > 1.2
if k - segm < 2
mxl(:,segm:k-1) = NaN;
txl(:,segm:k-1) = NaN;
myl(:,segm:k-1) = 0;
end
segm = k;
end
end
%ser = cell(1,length(mxk));
%for n1 = 1:length(mxk)
% ser{n1} = 1;
% for n2 = n1+1:length(mxk)
% harmo = mod(txk(n2)/txk(n1),1);
% rk = round(txk(n2)/txk(n1));
% if rk > 1 && ~ismember(rk,ser{n1}) && ...
% harmo <.2 || harmo > .8
% ser{n1}(end+1) = rk;
% end
% end
%end
%ser;
mxl(1,k) = mxk(idx)-1;
txl(1,k) = txk(idx);
myl(1,k) = myk(idx);
end
for n = 1:length(mxk)
if mxk(n) <= mxl(1,k)
continue
end
harmo = mod(txk(n)/txl(1,k),1);
rk = round(txk(n)/txl(1,k));
if ((size(mxl,1) < rk || myk(n) > myl(rk,k)) && ...
harmo <.25 || harmo > .75) && ...
rk <= option.harmo
if rk > size(mxl,1)
mxl(size(mxl)+1:rk,:) = NaN;
txl(size(mxl)+1:rk,:) = NaN;
myl(size(mxl)+1:rk,:) = 0;
end
mxl(rk,k) = mxk(n);
txl(rk,k) = txk(n);
myl(rk,k) = myk(n);
end
end
if size(myl,1) > 2 && myl(2,k) == NaN
mxl(:,k) = NaN;
txl(:,k) = NaN;
myl(:,k) = NaN;
end
end
tp{i}{h}{l} = mxl;
tpp{i}{h}{l} = txl;
tv{i}{h}{l} = myl;
tpv{i}{h}{l} = myl;
end
elseif option.delta % Peak tracking
tp{i}{h} = cell(1,np);
if interpol
tpp{i}{h} = cell(1,np);
tpv{i}{h} = cell(1,np);
end
for l = 1:np
% mxl will be the resulting track position matrix
% and myl the related track amplitude
% In the first frame, tracks can be identified to peaks.
mxl = mx{1,1,l}(:)-1;
myl = dht(mx{1,1,l}(:),k,l);
% To each peak is associated the related track ID
tr2 = 1:length(mx{1,1,l});
grvy = []; % The graveyard.
wait = 0;
if nc-1>500
wait = waitbar(0,['Tracking peaks...']);
end
for k = 1:nc-1
% For each successive frame...
if not(isempty(grvy))
old = find(grvy(:,2) == k-option.mem-1);
grvy(old,:) = [];
end
if wait && not(mod(k,100))
waitbar(k/(nc-1),wait);
end
mxk1 = mx{1,k,l}; % w^k
mxk2 = mx{1,k+1,l}; % w^{k+1}
thk1 = th(mxk1,k,l);
thk2 = th(mxk2,k,l);
matched = zeros(size(thk2));
myk2 = dht(mx{1,k+1,l},k,l); % amplitude
tr1 = tr2;
tr2 = NaN(1,length(mxk2));
mxl(:,k+1) = mxl(:,k);
if isempty(thk1) || isempty(thk2)
%% IS THIS TEST NECESSARY??
myl(:,k+1) = 0;
else
for n = 1:length(mxk1)
% Let's check each track.
tr = tr1(n); % Current track.
if not(isnan(tr))
% track currently active
% Step 1 in Mc Aulay & Quatieri
[int m] = min(abs(thk2-thk1(n)));
% Finding w^{k+1} closest to current w^k
if isinf(int) || int > option.delta
% all w^{k+1} outside matching interval:
% partial becomes inactive
mxl(tr,k+1) = mxl(tr,k);
myl(tr,k+1) = 0;
grvy = [grvy; tr k]; % added to the graveyard
else
[best mm] = min(abs(thk2(m)-th(mxk1,k,l)));
% the mmth peak in frame k is the closest to w^{k+1}
% Let's first test whether candidate
% match w^{k+1} is particularly closed to an inactive track. (Lartillot)
if isempty(grvy)
testprev = 0;
else
[best2 mm2] = min(abs(thk2(m)-th(mxl(grvy(:,1),k),k,l)));
if best2 < best
oldk = grvy(mm2,2);
if mxl(tr,oldk)
oldt1 = th(mxl(grvy(mm2,1),oldk),oldk,l);
oldt2 = th(mxl(tr,oldk),oldk,l);
dif1 = abs(oldt1-thk2(m));
dif2 = abs(oldt2-thk2(m));
if dif1 < dif2
testprev = 1;
end
else
testprev = 1;
end
else
testprev = 0;
end
end
if testprev
% Yes, candidate match w^{k+1} is particularly closed to an inactive track. (Lartillot)
otr = grvy(mm2,1);
mxl(otr,k+1) = mxk2(m)-1;
myl(otr,k+1) = myk2(m);
tr2(m) = otr;
thk2(m) = Inf; % selected w^{k+1} is eliminated from further consideration
matched(m) = 1;
grvy(mm2,:) = [];
else
% Step 2 in Mc Aulay & Quatieri
if option.fuse || mm == n
% candidate match w^{k+1} is not closer to any remaining w^k:
% definite match
mxl(tr,k+1) = mxk2(m)-1;
myl(tr,k+1) = myk2(m);
tr2(m) = tr;
matched(m) = 1;
if ~option.fuse
thk1(n) = -Inf; % selected w^k is eliminated from further consideration
thk2(m) = Inf; % selected w^{k+1} is eliminated as well
end
if not(isempty(grvy))
zz = find ((mxl(grvy(:,1),k) >= mxl(tr,k) & ...
mxl(grvy(:,1),k) <= mxl(tr,k+1)) | ...
(mxl(grvy(:,1),k) <= mxl(tr,k) & ...
mxl(grvy(:,1),k) >= mxl(tr,k+1)));
grvy(zz,:) = [];
end
end
if ~option.fuse && mm ~= n
% candidate match w^{k+1} is closer to another w^k
% let's look at adjacent lower w^{k+1}...
[int mmm] = min(abs(thk2(1:m)-thk1(n)));
if int > best || ... % New condition added (Lartillot 16.4.2010)
isinf(int) || ... % Conditions proposed in Mc Aulay & Quatieri (all w^{k+1} below matching interval)
int > option.delta
% no other suitable candidate match w^{k+1} found
% partial becomes inactive
mxl(tr,k+1) = mxl(tr,k);
myl(tr,k+1) = 0;
grvy = [grvy; tr k]; % added to the graveyard
else
% definite match
mxl(tr,k+1) = mxk2(mmm)-1;
myl(tr,k+1) = myk2(mmm);
tr2(mmm) = tr;
thk1(n) = -Inf; % selected w^k is eliminated from further consideration
thk2(mmm) = Inf; % selected w^{k+1} is eliminated as well
matched(mmm) = 1;
if not(isempty(grvy))
zz = find ((mxl(grvy(:,1),k) >= mxl(tr,k) & ...
mxl(grvy(:,1),k) <= mxl(tr,k+1)) | ...
(mxl(grvy(:,1),k) <= mxl(tr,k) & ...
mxl(grvy(:,1),k) >= mxl(tr,k+1)));
grvy(zz,:) = [];
end
end
end
end
end
end
end
end
% Step 3 in Mc Aulay & Quatieri
for m = 1:length(mxk2)
if ~matched(m)
% unmatched w^{k+1}
if isempty(grvy)
int = [];
else
% Let's try to reuse an inactive track from the
% graveyard (Lartillot).
[int z] = min(abs(th(mxl(grvy(:,1),k+1)+1,k,l)-thk2(m)));
end
if isempty(int) || int > option.delta ...
|| int > min(abs(th(mxl(:,k+1)+1,k,l)-thk2(m)))
% No suitable inactive track.
% birth of a new partial (Mc Aulay &
% Quatieri)
mxl = [mxl;zeros(1,k+1)];
tr = size(mxl,1);
mxl(tr,k) = mxk2(m)-1;
else
% Suitable inactive track found, turned active. (Lartillot)
tr = grvy(z,1);
grvy(z,:) = [];
end
mxl(tr,k+1) = mxk2(m)-1;
myl(tr,k+1) = myk2(m);
tr2(m) = tr;
end
end
end
if wait
waitbar(1,wait);
close(wait);
drawnow
end
if size(mxl,1) > option.m
tot = sum(myl,2);
[tot ix] = sort(tot,'descend');
mxl(ix(option.m+1:end),:) = [];
myl(ix(option.m+1:end),:) = [];
end
mxl(:,not(max(myl))) = 0;
if option.shorttrackthresh
[myl bestrack] = max(myl,[],1);
mxl = mxl(bestrack + (0:size(mxl,2)-1)*size(mxl,1));
changes = find(not(bestrack(1:end-1) == bestrack(2:end)))+1;
if not(isempty(changes))
lengths = diff([1 changes nc+1]);
shorts = find(lengths < option.shorttrackthresh);
for k = 1:length(shorts)
if shorts(k) == 1
k1 = 1;
else
k1 = changes(shorts(k)-1);
end
k2 = k1 + lengths(shorts(k)) -1;
myl(1,k1:k2) = 0;
mxl(1,k1:k2) = 0;
end
end
end
tp{i}{h}{l} = mxl;
tv{i}{h}{l} = myl;
if interpol
tpv{i}{h}{l} = zeros(size(mxl));
tpp{i}{h}{l} = zeros(size(mxl));
for k = 1:size(mxl,2)
for j = 1:size(mxl,1)
if myl(j,k)
mj = mxl(j,k);
if mj>2 && mj<size(dhu,1)-1
% More precise peak position
y0 = dhu(mj,k,l);
ym = dhu(mj-1,k,l);
yp = dhu(mj+1,k,l);
p = (yp-ym)/(2*(2*y0-yp-ym));
tpv{i}{h}{l}(j,k) = y0 - 0.25*(ym-yp)*p;
if p >= 0
tpp{i}{h}{l}(j,k) = (1-p)*th(mj,k,l)+p*th(mj+1,k,l);
elseif p < 0
tpp{i}{h}{l}(j,k) = (1+p)*th(mj,k,l)-p*th(mj-1,k,l);
end
elseif mj
tpv{i}{h}{l}(j,k) = dhu(mj,k,l);
tpp{i}{h}{l}(j,k) = th(mj,k,l);
end
else
tpv{i}{h}{l}(j,k) = 0;
tpp{i}{h}{l}(j,k) = NaN;
end
end
end
end
end
end
if isa(x,'mirsimatrix') && option.graph
% Finding the best branch inside a graph constructed out of a
% similarity matrix
g{i}{h} = cell(1,nc,np);
% Branch info related to each peak
br{i}{h} = {};
% Info related to each branch
scog{i}{h} = cell(1,nc,np);
% Score related to each peak
scob{i}{h} = [];
% Score related to each branch
for l = 1:np
wait = waitbar(0,['Creating peaks graph...']);
for k = 1:nc
g{i}{h}{1,k,l} = cell(size(mx{1,k,l}));
scog{i}{h}{1,k,l} = zeros(size(mx{1,k,l}));
if wait && not(mod(k,50))
waitbar(k/(nc-1),wait);
end
mxk = mx{1,k,l}; % Peaks in current frame
for j = k-1:-1:max(1,k-10) % Recent frames
mxj = mx{1,j,l}; % Peaks in one recent frame
for kk = 1:length(mxk)
mxkk = mxk(kk); % For each of current peaks
if mxkk < 10
continue
end
for jj = 1:length(mxj)
mxjj = mxj(jj); % For each of recent peaks
sco = k-j - abs(mxkk-mxjj);
% Crossprogression from recent to
% current peak
if sco >= 0
% Negative crossprogression excluded
dist = 0;
% The distance between recent and
% current peak is the sum of all the
% simatrix values when joining the two
% peaks with a straight line.
for m = j:k
% Each point in that straight line.
mxm = mxjj + (mxkk-mxjj)*(m-j)/(k-j);
if mxm == floor(mxm)
dist = dist + 1-dht(mxm,m,l);
else
dhm0 = dht(floor(mxm),m,l);
dhm1 = dht(ceil(mxm),m,l);
dist = dist + 1-...
(dhm0 + ...
(dhm1-dhm0)*(mxm-floor(mxm)));
end
if dist > option.graph
break
end
end
if dist < option.graph
% If the distance between recent
% and current peak is not too high,
% a new edge is formed between the
% peaks, and added to the graph.
gj = g{i}{h}{1,j,l}{jj};
% Branch information associated
% with recent peak
gk = g{i}{h}{1,k,l}{kk};
% Branch information associated
% with current peak
if isempty(gk) || ...
sco > scog{i}{h}{1,k,l}(kk)
% Current peak branch to be updated
if isempty(gj)
% New branch starting
% from scratch
newsco = sco;
scob{i}{h}(end+1) = newsco;
bid = length(scob{i}{h});
g{i}{h}{1,j,l}{jj} = ...
[k kk bid newsco];
br{i}{h}{bid} = [j jj;k kk];
else
newsco = scog{i}{h}{1,j,l}(jj)+sco;
if length(gj) == 1
% Recent peak not
% associated with other
% branch
% -> Branch extension
bid = gj;
g{i}{h}{1,j,l}{jj} = ...
[k kk bid newsco];
br{i}{h}{bid}(end+1,:) = [k kk];
else
% Recent peak already
% associated with other
% branch
% -> Branch fusion
bid = length(scob{i}{h})+1;
g{i}{h}{1,j,l}{jj} = ...
[k kk bid newsco; gj];
other = br{i}{h}{gj(1,3)};
% Other branch
% info
% Let's copy its
% prefix to the new
% branch:
other(other(:,1)>j,:) = [];
br{i}{h}{bid} = [other;k kk];
end
scob{i}{h}(bid) = newsco;
end
g{i}{h}{1,k,l}{kk} = bid;
% New peak associated with
% branch
scog{i}{h}{1,k,l}(kk) = newsco;
end
end
end
end
end
end
end
[scob{i}{h} IX] = sort(scob{i}{h},'descend');
if length(IX) > option.m
scob{i}{h} = scob{i}{h}(1:option.m);
IX = IX(1:option.m);
end
% Branch are ordered from best score to lowest
br{i}{h} = br{i}{h}(IX);
if wait
waitbar(1,wait);
close(wait);
drawnow
end
end
end
if ~option.graph
for l = 1:np % Orders the peaks and select the best ones
for k = 1:nc
mxk = mx{1,k,l};
if length(mxk) > option.m
[unused,idx] = sort(dht(mxk,k,l),'descend');
idx = idx(1:option.m);
elseif strcmpi(option.order,'Amplitude')
[unused,idx] = sort(dht(mxk,k,l),'descend');
else
idx = 1:length(dht(mxk,k,l));
end
if strcmpi(option.order,'Abscissa')
mx{1,k,l} = sort(mxk(idx));
elseif strcmpi(option.order,'Amplitude')
mx{1,k,l} = mxk(idx);
end
end
end
end
if option.extract % Extracting the positive part of the curve containing the peaks
if isa(x,'mirtemporal')
filn = floor(sr{i}/25);
else
filn = 10;
end
if filn>1 && size(dhu,1)>5
filn = min(filn,floor(size(dhu,1)/3));
fild = filtfilt(ones(1,filn)/2,1,dhu(2:end-1,:,:))/filn/2;
else
fild = dhu(2:end-1,:,:);
end
fild = [zeros(1,size(fild,2),size(fild,3));diff(fild)];
for l = 1:np
for k = 1:nc
idx = 1:size(dht,1);
mxlk = sort(mx{1,k,l}-1);
for j = 1:length(mxlk)
if fild(mxlk(j),k,l) < 0
bef0 = find(fild(1:mxlk(j)-1,k,l)>=0);
if isempty(bef0)
bef0 = [];
end
else
bef0 = mxlk(j)-1;
end
if isempty(bef0)
bef = 0;
else
bef = find(fild(1:bef0(end),k,l)<=0);
if isempty(bef)
bef = 0;
end
end
if j>1 && bef(end)<aft(1)+2
idx(mxlk(j-1):mxlk(j)) = 0;
[unused btw] = min(dhu(mxlk(j-1)+1:mxlk(j)+1,k,l));
btw = btw+mxlk(j-1);
idx(btw-2:btw+2) = btw-2:btw+2;
bef = btw+2;
end
if fild(mxlk(j),k,l) > 0
aft0 = find(fild(mxlk(j)+1:end,k,l)<=0)+mxlk(j);
if isempty(aft0)
aft0 = [];
end
else
aft0 = mxlk(j)+1;
end
if isempty(aft0)
aft = size(d{i}{h},1)+1;
else
aft = find(fild(aft0(1):end,k,l)>=0)+mxlk(j);
if isempty(aft)
aft = size(d{i}{h},1)+1;
end
end
idx(bef(end)+3:aft(1)-3) = 0;
end
idx = idx(find(idx));
dhu(idx,k,l) = NaN;
end
end
end
if option.vall
dhu = -dhu;
end
mmx = cell(1,nc,np);
mmy = cell(1,nc,np);
mmv = cell(1,nc,np);
for l = 1:np
for k = 1:nc
mmx{1,k,l} = mod(mx{1,k,l}(:,:,1),nl0)-1;
mmy{1,k,l} = ceil(mx{1,k,l}/nl0);
mmv{1,k,l} = dhu(mx{1,k,l}(:,:,1),k,l);
end
end
pp{i}{h} = mmx;
pm{i}{h} = mmy;
pv{i}{h} = mmv;
if not(interpol)
ppp{i}{h} = {};
ppv{i}{h} = {};
else % Interpolate to find the more exact peak positions
pih = cell(1,nc,np);
vih = cell(1,nc,np);
for l = 1:np
for k = 1:nc
mxlk = mx{1,k,l};
vih{1,k,l} = zeros(length(mxlk),1);
pih{1,k,l} = zeros(length(mxlk),1);
for j = 1:length(mxlk)
mj = mxlk(j); % Current values
if strcmpi(option.interpol,'quadratic')
if mj>2 && mj<size(dhu,1)-1
% More precise peak position
y0 = dhu(mj,k,l);
ym = dhu(mj-1,k,l);
yp = dhu(mj+1,k,l);
p = (yp-ym)/(2*(2*y0-yp-ym));
vih(1,k,l).(num2str(j)) = y0 - 0.25*(ym-yp)*p;
if p >= 0
pih(1,k,l).(num2str(j)) = (1-p)*th(mj,k,l)+p*th(mj+1,k,l);
elseif p < 0
pih(1,k,l).(num2str(j)) = (1+p)*th(mj,k,l)-p*th(mj-1,k,l);
end
else
vih(1,k,l).(num2str(j)) = dhu(mj,k,l);
pih(1,k,l).(num2str(j)) = th(mj,k,l);
end
end
end
end
end
ppp{i}{h} = pih;
ppv{i}{h} = vih;
end
if not(iscell(d{i})) % for chromagram
d{i} = dhu(2:end-1,:,:,:);
else
if cha == 1
d{i}{h} = zeros(1,size(dhu,2),size(dhu,1)-2);
for k = 1:size(dhu,2)
d{i}{h}(1,k,:) = dhu(2:end-1,k);
end
else
d{i}{h} = dhu(2:end-1,:,:,:);
end
end
if option.only
dih = zeros(size(d{i}{h}));
for l = 1:np
for k = 1:nc
dih(pp{i}{h}{1,k,l},k,l) = ...
d{i}{h}(pp{i}{h}{1,k,l},k,l);
end
end
d{i}{h} = dih;
end
end
end
p = set(x,'PeakPos',pp,'PeakVal',pv,'PeakMode',pm);
if interpol
p = set(p,'PeakPrecisePos',ppp,'PeakPreciseVal',ppv);
end
if option.extract
p = set(p,'Data',d);
end
empty = cell(1,length(d));
if option.only
p = set(p,'Data',d,'PeakPos',empty,'PeakVal',empty,'PeakMode',empty);
end
if option.harmo || option.delta
p = set(p,'TrackPos',tp,'TrackVal',tv);
if interpol
p = set(p,'TrackPrecisePos',tpp,'TrackPreciseVal',tpv);
end
end
if isa(x,'mirsimatrix') && option.graph
p = set(p,'Graph',g,'Branch',br);
end
function y = semitone_compar(p1,p2,thres)
y = max(p1,p2)/min(p1,p2) < 2^(1/12);
function y = dist_compar(p1,p2,thres)
y = abs(p1-p2) < thres;
|
github
|
martinarielhartmann/mirtooloct-master
|
mirroughness.m
|
.m
|
mirtooloct-master/MIRToolbox/mirroughness.m
| 4,303 |
utf_8
|
16c3687ea66082d446f11b615c72a443
|
function varargout = mirroughness(x,varargin)
% r = mirroughness(x) calculates the roughness, or sensory dissonance,
% due to beating phenomenon between close frequency peaks.
% The frequency components are supposed to remain sufficiently
% constant throughout each frame of each audio file.
% r = mirroughness(...,'Contrast',c) specifies the contrast parameter
% used for peak picking (cf. mirpeaks).
% Default value: c = .01
% [r,s] = mirroughness(x) also displays the spectrum and its peaks, used
% for the computation of roughness.
% Optional arguments:
% Method used:
% mirroughness(...,'Sethares') (default): based on the summation
% of roughness between all pairs of sines (obtained through
% spectral peak-picking).
% mirroughness(...,'Min'): Variant of the Sethares model
% where the summation is weighted by the minimum
% amplitude of each pair of sines, instead of the product
% of their amplitudes.
% mirroughness(...,'Vassilakis'): variant of 'Sethares' model
% with a more complex weighting (Vassilakis, 2001, Eq. 6.23).
meth.type = 'String';
meth.choice = {'Sethares','Vassilakis'};
meth.default = 'Sethares';
option.meth = meth;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .01;
option.cthr = cthr;
omin.key = 'Min';
omin.type = 'Boolean';
omin.default = 0;
option.min = omin;
normal.key = 'Normal';
normal.type = 'Boolean';
normal.default = 0;
option.normal = normal;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [.05 .5];
option.frame = frame;
specif.option = option;
specif.defaultframelength = .05;
specif.defaultframehop = .5;
varargout = mirfunction(@mirroughness,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'miraudio') && not(isframed(x))
x = mirframenow(x,option);
end
x = mirspectrum(x);
if not(haspeaks(x))
x = mirpeaks(x,'Contrast',option.cthr);
end
type = {'mirscalar','mirspectrum'};
function r = main(p,option,postoption)
if iscell(p)
p = p{1};
end
if strcmpi(option.meth,'Sethares') || strcmpi(option.meth,'Vassilakis')
pf = get(p,'PeakPosUnit');
pv = get(p,'PeakVal');
if option.normal
d = get(p,'Data');
end
rg = cell(1,length(pf));
for h = 1:length(pf)
rg{h} = cell(1,length(pf{h}));
for i = 1:length(pf{h})
pfi = pf{h}{i};
pvi = pv{h}{i};
rg{h}{i} = zeros(1,length(pfi));
for k = 1:size(pfi,3)
for j = 1:size(pfi,2)
pfj = pfi{1,j,k}';
pvj = pvi{1,j,k};
f1 = repmat(pfj,[1 length(pfj)]);
f2 = repmat(pfj',[length(pfj) 1]);
v1 = repmat(pvj,[1 length(pvj)]);
v2 = repmat(pvj',[length(pvj) 1]);
rj = plomp(f1,f2);
if option.min
v12 = min(v1,v2);
else
v12 = v1.*v2;
end
if strcmpi(option.meth,'Sethares')
rj = v12.*rj;
elseif strcmpi(option.meth,'Vassilakis')
rj = (v1.*v2).^.1.*.5.*(2*v2./(v1+v2)).^3.11.*rj;
end
rg{h}{i}(1,j,k) = sum(sum(rj));
if option.normal
rg{h}{i}(1,j,k) = rg{h}{i}(1,j,k) ...
/ sum(d{h}{i}(:,j,k).^2);
.../ sum(sum(triu(v1.*v2,1)));
end
end
end
end
end
else
end
r = mirscalar(p,'Data',rg,'Title','Roughness');
r = {r,p};
function pd = plomp(f1, f2)
% returns the dissonance of two pure tones at frequencies f1 & f2 Hz
% according to the Plomp-Levelt curve (see Sethares)
b1 = 3.51;
b2 = 5.75;
xstar = .24;
s1 = .0207;
s2 = 18.96;
s = tril(xstar ./ (s1 * min(f1,f2) + s2 ));
pd = exp(-b1*s.*abs(f2-f1)) - exp(-b2*s.*abs(f2-f1));
|
github
|
martinarielhartmann/mirtooloct-master
|
mirfluctuation.m
|
.m
|
mirtooloct-master/MIRToolbox/mirfluctuation.m
| 4,524 |
utf_8
|
bceb1ff305659e1156a294910325c9ab
|
function varargout = mirfluctuation(orig,varargin)
% f = mirfluctuation(x) calculates the fluctuation strength, indicating
% the rhythmic periodicities along the different channels.
% Optional arguments:
% mirfluctuation(...,'MinRes',mr) specifies the minimal frequency
% resolution of the resulting spectral decomposition, in Hz.
% Default: mr = .01 Hz
% mirfluctuation(...,'Summary') returns the summary of the
% fluctuation, i.e., the summation along the critical bands.
% mirfluctuation(..., 'InnerFrame', l, r) specifies the spectrogram
% frame length l (in second), and, optionally, the frame rate r
% (in Hertz), with by default a frame length of 23 ms and a frame
% rate of 80 Hz.
% mirfluctuation(..., 'Frame', l, r) computes fluctuation using a
% window moving along the spectrogram, whose length l (in second)
% and frame rate r (in Hertz) can be specified as well, with by
% default a frame length of 1 s and a frame rate of 10 Hz.
%
% E. Pampalk, A. Rauber, D. Merkl, "Content-based Organization and
% Visualization of Music Archives",
sum.key = 'Summary';
sum.type = 'Boolean';
sum.default = 0;
option.sum = sum;
mr.key = 'MinRes';
mr.type = 'Integer';
mr.default = .01;
option.mr = mr;
max.key = 'Max';
max.type = 'Integer';
max.default = 10;
option.max = max;
band.type = 'String';
band.choice = {'Mel','Bark'};
band.default = 'Bark';
option.band = band;
inframe.key = 'InnerFrame';
inframe.type = 'Integer';
inframe.number = 2;
inframe.default = [.023 80];
option.inframe = inframe;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [1 10];
option.frame = frame;
specif.option = option;
specif.nochunk = 1;
varargout = mirfunction(@mirfluctuation,orig,varargin,nargout,specif,@init,@main);
function [s type] = init(x,option)
if iscell(x)
x = x{1};
end
if option.inframe(2) < option.max * 2
option.inframe(2) = option.max * 2;
end
if isamir(x,'miraudio') && not(isframed(x))
x = mirframe(x,option.inframe(1),'s',option.inframe(2),'Hz');
end
s = mirspectrum(x,'Power','Terhardt',option.band,'dB','Mask');
type = 'mirspectrum';
function f = main(x,option,postoption)
d = get(x,'Data');
fp = get(x,'FramePos');
fl = option.frame.length.val;
fh = option.frame.hop.val;
if ~fl
f = mirspectrum(x,'AlongBands','Max',option.max,...
'Window',0,'NormalLength',...
'Resonance','Fluctuation','MinRes',option.mr);
else
vb = mirverbose;
mirverbose(0);
df = cell(1,length(d));
fp2 = cell(1,length(d));
p2 = cell(1,length(d));
for i = 1:length(d)
df{i} = cell(1,length(d{i}));
fp2{i} = cell(1,length(d{i}));
for j = 1:length(d{i})
dur = fp{i}{j}(1,end) - fp{i}{j}(1,1);
srj = size(d{i}{j},2) / dur; % Inner frame rate
flj = round(fl * srj);
% Outer frame length in number of inner frames
fhj = srj / fh; % Outer hop factor in number of inner frames
n = floor((dur - fl) * fh ) + 1; % Number of outer frames
fp2{i}{j} = zeros(2,n);
for k = 1:n % For each outer frame, ...
st = round( (k-1) * fhj) + 1;
stend = st + flj - 1;
dk = d{i}{j}(:,st:stend,:);
fpk = fp{i}{j}(:,st:stend);
x2 = set(x,'Data',{{dk}},'FramePos',{{fpk}});
fk = mirspectrum(x2,'AlongBands','Max',10,'Window',0,...
'NormalLength',...
'Resonance','Fluctuation',...
'MinRes',option.mr);
dfk = mirgetdata(fk);
if k == 1
df{i}{j} = zeros(size(dfk,1),n,size(dfk,3));
end
df{i}{j}(:,k,:) = dfk;
fp2{i}{j}(:,k) = [fpk(1);fpk(end)];
end
p = get(fk,'Pos');
p2{i}{j} = repmat(p{1}{1},[1 n 1]);
end
end
f = set(fk,'Data',df,'FramePos',fp2,'Pos',p2);
mirverbose(vb);
end
if option.sum
f = mirsummary(f);
end
f = set(f,'Title','Fluctuation');
|
github
|
martinarielhartmann/mirtooloct-master
|
mirstd.m
|
.m
|
mirtooloct-master/MIRToolbox/mirstd.m
| 2,348 |
utf_8
|
bd448049bf264e4092658cccfabdf692
|
function varargout = mirstd(f,varargin)
% m = mirstd(f) returns the standard deviation along frames of the feature f
%
% f can be a structure array composed of features. In this case,
% m will be structured the same way.
if isa(f,'mirstruct')
data = get(f,'Data');
for fi = 1:length(data)
data{fi} = mirstd(data{fi});
end
varargout = {set(f,'Data',data)};
elseif isstruct(f)
fields = fieldnames(f);
for i = 1:length(fields)
field = fields{i};
stat.(field) = mirstd(f.(field));
end
varargout = {stat};
else
normdiff.key = 'NormDiff';
normdiff.type = 'Boolean';
normdiff.default = 0;
specif.option.normdiff = normdiff;
specif.nochunk = 1;
varargout = mirfunction(@mirstd,f,varargin,nargout,specif,@init,@main);
end
function [x type] = init(x,option)
type = '';
function m = main(f,option,postoption)
if iscell(f)
f = f{1};
end
if isa(f,'mirhisto')
warning('WARNING IN MIRSTD: histograms are not taken into consideration yet.')
m = struct;
return
end
fp = get(f,'FramePos');
ti = get(f,'Title');
d = get(f,'Data');
l = length(d);
for i = 1:l
if iscell(d{i})
if length(d{i}) > 1
error('ERROR IN MIRSTD: segmented data not accepted yet.');
else
dd = d{i}{1};
end
else
dd = d{i};
end
if iscell(dd)
m{i} = {zeros(1,length(dd))};
for j = 1:length(dd)
m{i}{1}(j) = std(dd{j});
end
elseif size(dd,2) < 2
nonan = find(not(isnan(dd)));
dn = dd(nonan);
if option.normdiff
m{i}{1} = norm(diff(dn,2));
else
m{i}{1} = std(dn,0,2);
end
else
dd = mean(dd,4);
m{i} = {NaN(size(dd,1),1,size(dd,3))};
for k = 1:size(dd,1)
for l = 1:size(dd,3)
dk = dd(k,:,l);
nonan = find(not(isnan(dk)));
if not(isempty(nonan))
dn = dk(nonan);
if option.normdiff
m{i}{1}(k,1,l) = norm(diff(dn,2));
else
m{i}{1}(k,1,l) = std(dn,0,2);
end
end
end
end
end
end
m = mirscalar(f,'Data',m,'Title',['Standard deviation of ',ti]);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirfeatures.m
|
.m
|
mirtooloct-master/MIRToolbox/mirfeatures.m
| 4,420 |
utf_8
|
66e50462e85b091a22d7aafb3a72c400
|
function r = mirfeatures(x,varargin)
% f = mirfeatures(x) computes a large set of features from one or several
% audio files. x can be either the name of an audio file, or the
% 'Folder' keyword.
% mirfeatures(...,'Stat') returns the statistics of the features instead
% of the complete features themselves.
% mirfeatures(...,'Segment',t) segments the audio sequence at the
% temporal positions indicated in the array t (in s.), and analyzes
% each segment separately.
%(not available yet)
% mirfeatures(...,'Filterbank',nc) computes the analysis on each channel
% of a filterbank decomposition.
% Default value: nc = 5
% mirfeatures(...,'Frame',...)
% mirfeatures(...,'Normal')
% mirfeatures(...,'Sampling',s)
% miraudio options (Extract, ...)
[stat,nchan,segm,feat] = scanargin(varargin);
if isa(x,'miraudio') || isa(x,'mirdesign')
a = miraudio(x,'Normal'); % normalize with respect to RMS energy
% in order to consider timbre independently of
% energy
else
a = miraudio('Design','Normal');
end
if not(isempty(segm))
a = mirsegment(a,segm);
end
% DYNAMICS
% --------
r.dynamics.rms = mirrms(a,'Frame');
% Perceived dynamics: spectral slope?
% RHYTHM
% ------
r.fluctuation = mirstruct;
r.fluctuation.tmp.f = mirfluctuation(a,'Summary');
r.fluctuation.peak = mirpeaks(r.fluctuation.tmp.f,'Total',1);%only one?
r.fluctuation.centroid = mircentroid(r.fluctuation.tmp.f);
r.rhythm = mirstruct;
r.rhythm.tmp.onsets = mironsets(a);
%r.rhythm.eventdensity = ...
r.rhythm.tempo = mirtempo(r.rhythm.tmp.onsets,'Frame');
%r.rhythm.pulseclarity = mirpulseclarity(r.tmp.onsets,'Frame');
% Should use the second output of mirtempo.
attacks = mironsets(r.rhythm.tmp.onsets,'Attacks');
r.rhythm.attack.time = mirattacktime(attacks);
r.rhythm.attack.slope = mirattackslope(attacks);
% TIMBRE
% ------
f = mirframe(a,.05,.5);
r.spectral = mirstruct;
r.spectral.tmp.s = mirspectrum(f);
%pitch = mirpitch(a,'Frame',.05,.5);
r.spectral.centroid = mircentroid(r.spectral.tmp.s);
r.spectral.brightness = mirbrightness(r.spectral.tmp.s);
r.spectral.spread = mirspread(r.spectral.tmp.s);
r.spectral.skewness = mirskewness(r.spectral.tmp.s);
r.spectral.kurtosis = mirkurtosis(r.spectral.tmp.s);
r.spectral.rolloff95 = mirrolloff(r.spectral.tmp.s,'Threshold',95);
r.spectral.rolloff85 = mirrolloff(r.spectral.tmp.s,'Threshold',85);
r.spectral.spectentropy = mirentropy(r.spectral.tmp.s);
r.spectral.flatness = mirflatness(r.spectral.tmp.s);
r.spectral.roughness = mirroughness(r.spectral.tmp.s);
r.spectral.irregularity = mirregularity(r.spectral.tmp.s);
%r.spectral.inharmonicity = mirinharmonicity(r.spectral.tmp.s,'f0',pitch);
r.spectral.mfcc = mirmfcc(r.spectral.tmp.s);
r.spectral.dmfcc = mirmfcc(r.spectral.mfcc,'Delta');
r.spectral.ddmfcc = mirmfcc(r.spectral.dmfcc,'Delta');
r.timbre.zerocross = mirzerocross(f);
r.timbre.lowenergy = mirlowenergy(f);
r.timbre.spectralflux = mirflux(f);
% PITCH
% -----
r.tonal = mirstruct;
r.tonal.tmp.chromagram = mirchromagram(a,'Frame','Wrap',0,'Pitch',0);
r.tonal.chromagram.peak = mirpeaks(r.tonal.tmp.chromagram,'Total',1);
r.tonal.chromagram.centroid = mircentroid(r.tonal.tmp.chromagram);
% TONALITY/HARMONY
% ----------------
keystrengths = mirkeystrength(r.tonal.tmp.chromagram);
[k r.tonal.keyclarity] = mirkey(keystrengths,'Total',1);
%r.tonal.keyclarity = k{2};
r.tonal.mode = mirmode(keystrengths);
r.tonal.hcdf = mirhcdf(r.tonal.tmp.chromagram);
if stat
r = mirstat(r);
% SHOULD COMPUTE STAT OF CURVES FROM FRAMED_DECOMPOSED HIGH FEATURES
end
if not(isa(x,'miraudio')) && not(isa(x,'mirdesign'))
r = mireval(r,x);
end
function [stat,nchan,segm,feat] = scanargin(v)
stat = 0;
nchan = 1;
segm = [];
feat = {};
i = 1;
while i <= length(v)
arg = v{i};
if ischar(arg) && strcmpi(arg,'Filterbank')
i = i+1;
if i <= length(v)
nchan = v{i};
else
nchan = 10;
end
elseif ischar(arg) && strcmpi(arg,'Stat')
i = i+1;
if i <= length(v)
stat = v{i};
else
stat = 1;
end
elseif ischar(arg) && strcmpi(arg,'Segment')
i = i+1;
if i <= length(v)
segm = v{i};
else
segm = 1;
end
else
feat{end+1} = arg;
end
i = i+1;
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirfunction.m
|
.m
|
mirtooloct-master/MIRToolbox/mirfunction.m
| 7,438 |
utf_8
|
022bac1efaf28f4badabfaa0eb4ba0a8
|
function o = mirfunction(method,x,varg,nout,specif,init,main)
% Meta function called by all MIRtoolbox functions.
% Integrates the function into the general flowchart
% and eventually launches the "mireval" evaluation process.
% Here are the successive steps in the following code:
% - If the input is an audio filename, instantiates a new design flowchart.
% - Reads all the options specified by the user.
% - Performs the 'init' part of the MIRtoolbox function:
% - If the input is a design flowchart,
% add the 'init' part in the flowchart.
% - If the input is some MIRtoolbox data,
% execute the 'init' part on that data.
% - Performs the 'main' part of the MIRtoolbox function.
if isempty(x)
o = {{},{},{}};
return
end
if ischar(x) || ...
(iscell(x) && ischar(x{1})) % The input is a file name.
% Starting point of the design process
design_init = 1;
filename = x;
if strcmpi(func2str(method),'miraudio')
postoption = {};
else
postoption.mono = 1;
end
orig = mirdesign(@miraudio,'Design',{varg},postoption,struct,'miraudio');
% Implicitly, the audio file needs to be loaded first.
elseif isnumeric(x) && ~isequal(method,@mirsimatrix)
mirerror(func2str(method),'The input should be a file name or a MIRtoolbox object.');
else
design_init = 0;
orig = x;
end
% Reads all the options specified by the user.
[orig during after] = miroptions(method,orig,specif,varg);
% Performs the 'init' part of the MIRtoolbox function.
if isa(orig,'mirdesign')
if not(get(orig,'Eval'))
% Top-down construction of the general design flowchart
if isstruct(during) && isfield(during,'frame') && ...
isstruct(during.frame) && during.frame.auto
% 'Frame' option:
% Automatic insertion of the mirframe step in the design
orig = mirframe(orig,during.frame.length.val,...
during.frame.length.unit,...
during.frame.hop.val,...
during.frame.hop.unit,...
during.frame.phase.val,...
during.frame.phase.unit,...
during.frame.phase.atend);
end
% The 'init' part of the function can be integrated into the design
% flowchart. This leads to a top-down construction of the
% flowchart.
% Automatic development of the implicit prerequisites,
% with management of the data types throughout the design process.
[orig type] = init(orig,during);
o = mirdesign(method,orig,during,after,specif,type);
if design_init && ...
not(ischar(filename) && strcmpi(filename,'Design'))
% Now the design flowchart has been completed created.
% If the 'Design' keyword not used,
% the function is immediately evaluated
o = mireval(o,filename,nout);
else
o = returndesign(o,nout);
end
if not(iscell(o))
o = {o};
end
return
else
% During the top-down traversal of the flowchart (evaleach), at the
% beginning of the evaluation process.
if not(isempty(get(orig,'TmpFile'))) && get(orig,'ChunkDecomposed')
orig = evaleach(orig);
if iscell(orig)
orig = orig{1};
end
x = orig;
else
[orig x] = evaleach(orig);
end
if not(isequal(method,@nthoutput))
if iscell(orig)
orig = orig{1};
end
if isempty(get(orig,'InterChunk'))
orig = set(orig,'InterChunk',get(x,'InterChunk'));
end
end
end
else
design = 0;
if iscell(orig)
i = 0;
while i<length(orig) && not(design)
i = i+1;
if isa(orig{i},'mirdesign')
design = i;
end
end
end
if design
% For function with multiple inputs
if design == 1 && not(get(orig{1},'Eval'))
% Progressive construction of the general design
[orig type] = init(orig,during);
o = mirdesign(method,orig,during,after,specif,type);
o = set(o,'Size',get(orig{1},'Size'));
o = returndesign(o,nout);
return
else
% Evaluation of the design.
% First top-down initiation (evaleach), then bottom-up process.
for io = 1:length(orig)
if isa(orig{io},'mirdesign')
o = evaleach(orig{io});
if iscell(o)
o = o{:};
end
orig{io} = o;
end
end
end
elseif not(isempty(init)) && not(isempty(during))
if isstruct(during) && isfield(during,'frame') && ...
isstruct(during.frame) && during.frame.auto
orig = mirframe(orig,during.frame.length,...
during.frame.hop,...
during.frame.phase);
end
% The input of the function is not a design flowchart, which
% the 'init' part of the function could be integrated into.
% (cf. previous call of 'init' in this script).
% For that reason, the 'init' part of the function needs to be
% evaluated now.
orig = init(orig,during);
end
end
% Performs the 'main' part of the MIRtoolbox function.
if not(iscell(orig) && not(ischar(orig{1}))) && ...
not(isa(orig,'mirdesign') || isa(orig,'mirdata'))
o = {orig};
return
end
filenamearg = orig;
if iscell(filenamearg) && not(ischar(filenamearg{1}))
filenamearg = filenamearg{1};
end
if iscell(filenamearg) && not(ischar(filenamearg{1}))
filenamearg = filenamearg{1};
end
filename = get(filenamearg,'Name');
if not(isempty(during)) && mirverbose
if length(filename) == 1
disp(['Computing ',func2str(method),' related to ',filename{1},'...'])
else
disp(['Computing ',func2str(method),' for all audio files ...'])
end
end
if iscell(x)
x1 = x{1};
else
x1 = x;
end
if not(iscell(orig) || isnumeric(x))
orig = set(orig,'Index',get(x1,'Index'));
end
if iscell(orig)
o = main(orig,during,after);
else
d = get(orig,'Data');
if isamir(orig,'miraudio') && ...
length(d) == 1 && length(d{1}) == 1 && isempty(d{1}{1})
% To solve a problem when MP3read returns empty chunk.
% Warning: it should not be a cell, because for instance nthoutput can have first input empty...
o = orig;
else
o = main(orig,during,after);
end
end
if not(iscell(o) && length(o)>1) || (isa(x,'mirdesign') && get(x,'Eval'))
o = {o x};
elseif iscell(x) && isa(x{1},'mirdesign') && get(x{1},'Eval')
o = {o x};
elseif not(isempty(varg)) && isstruct(varg{1}) ...
&& not(iscell(o) && iscell(o{1}))
% When the function was called by mireval, the output should be packed
% into one single cell array (in order to be send back to calling
% routines).
o = {o};
end
function o = returndesign(i,nout)
o = cell(1,nout);
o{1} = i;
for k = 2:nout
o{k} = nthoutput(i,k);
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirframe.m
|
.m
|
mirtooloct-master/MIRToolbox/mirframe.m
| 13,483 |
utf_8
|
67e4955e693f53ac79b5e4520b3d7198
|
function [f x] = mirframe(x,varargin)
% f = mirframe(x) creates the frame decomposition of the audio signal x.
% (x can be a file name as well.)
% Optional arguments:
% mirframe(x,'Length',w,wu):
% w is the length of the window in seconds (default: .05 seconds)
% u is the unit, either
% 's' (seconds, default unit)
% or 'sp' (number of samples)
% mirframe(x,'Hop',h,hu):
% h is the hop factor, or distance between successive frames
% (default: half overlapping: each frame begins at the middle
% of the previous frame)
% u is the unit, either
% '/1' (ratio with respect to the frame length, default unit)
% '%' (ratio as percentage)
% 's' (seconds)
% 'sp' (number of samples)
% or 'Hz' (hertz), i.e., number of frames per second: the
% exactness of the frame rate is ensured and may cause a
% slight fluctuation of the elementary hop distances.
% These arguments can also be written as follows:
% mirframe(x,w,wu,h,hu)
% (where some of these parameters can be omitted).
if isempty(x)
f = {};
return
end
if iscell(x)
x = x{1};
end
if nargin == 0
f = miraudio;
elseif isa(x,'mirdesign')
if not(get(x,'Eval'))
% During bottom-up construction of the general design
para = scanargin(varargin);
type = get(x,'Type');
f = mirdesign(@mirframe,x,para,{},struct,type);
fl = get(x,'FrameLength');
fh = get(x,'FrameHop');
fp = get(x,'FramePhase');
flu = get(x,'FrameLengthUnit');
fhu = get(x,'FrameHopUnit');
fpu = get(x,'FramePhaseUnit');
fpe = get(x,'FramePhaseAtEnd');
if fl
f = set(f,'FrameLength',fl,'FrameLengthUnit',flu,...
'FrameHop',fh,'FrameHopUnit',fhu,...
'FramePhase',fp,'FramePhaseUnit',fpu,...
'FramePhaseAtEnd',fpe);
else
f = set(f,'FrameLength',para.wlength.val,...
'FrameLengthUnit',para.wlength.unit,...
'FrameHop',para.hop.val,...
'FrameHopUnit',para.hop.unit,...
'FramePhase',para.phase.val,...
'FramePhaseUnit',para.phase.unit,...
'FramePhaseAtEnd',fpe);
end
f = set(f,'FrameEval',1,...
'SeparateChannels',get(x,'SeparateChannels'));
if not(isamir(x,'miraudio'))
f = set(f,'NoChunk',1);
end
else
% During top-down evaluation initiation
if isstruct(varargin{1}) && isfield(varargin{1},'struct')
tmp = varargin{1}.struct;
x = set(x,'Struct',tmp);
varargin{1} = rmfield(varargin{1},'struct');
end
e = evaleach(x);
if iscell(e)
e = e{1};
end
if isempty(mirgetdata(e))
f = e;
else
sc = get(x,'Scale');
if ~isempty(sc)
varargin{1}.wlength.val = varargin{1}.wlength.val(sc);
if length(varargin{1}.hop.val)>1
varargin{1}.hop.val = varargin{1}.hop.val(sc);
end
end
if get(x,'ChunkDecomposed')
varargin{1}.phase.val = 0;
% The phase has already been taken into account in the
% chunk decomposition.
end
f = mirframe(e,varargin{:});
end
end
elseif isa(x,'mirdata')
if isframed(x)
warning('WARNING IN MIRFRAME: The input data is already decomposed into frames. No more frame decomposition.');
f = x;
else
x = purgedata(x);
dx = get(x,'Data');
if isa(x,'mirtemporal')
dt = get(x,'Time');
else
dt = get(x,'FramePos');
end
sf = get(x,'Sampling');
para = scanargin(varargin);
dx2 = cell(1,length(dx)); % magnitude in framed structure
dt2 = cell(1,length(dx)); % time positions in framed structure
fp = cell(1,length(dx)); % frame positions
l2 = cell(1,length(dx));
fr = cell(1,length(dx));
for k = 1:length(dx) % For each audio file, ...
dxk = dx{k};
dtk = dt{k};
if strcmpi(para.wlength.unit,'s')
l = para.wlength.val*sf{k};
elseif strcmpi(para.wlength.unit,'sp')
l = para.wlength.val;
end
if strcmpi(para.hop.unit,'/1')
h = para.hop.val*l;
fr{k} = sf{k}/h;
elseif strcmpi(para.hop.unit,'%')
h = para.hop.val*l*.01;
fr{k} = sf{k}/h;
elseif strcmpi(para.hop.unit,'s')
h = para.hop.val*sf{k};
fr{k} = 1/para.hop.val;
elseif strcmpi(para.hop.unit,'sp')
h = para.hop.val;
fr{k} = sf{k}/h;
elseif strcmpi(para.hop.unit,'Hz')
h = sf{k}/para.hop.val;
fr{k} = para.hop.val;
end
if para.phase.atend
p = mod(-l,h);
else
p = 0;
end
if strcmpi(para.phase.unit,'s')
p = p + para.phase.val*sf{k};
elseif strcmpi(para.phase.unit,'sp')
p = p + para.phase.val;
elseif strcmpi(para.phase.unit,'/1')
p = p + para.phase.val*h;
elseif strcmpi(para.phase.unit,'%')
p = p + para.phase.val*h*.01;
end
l = floor(l);
dx2k = cell(1,length(dxk));
dt2k = cell(1,length(dxk));
fpk = cell(1,length(dxk));
l2k = cell(1,length(dxk));
if size(l)==1
for j = 1:length(dxk) % For each segment, ...
dxj = dxk{j};
dtj = dtk{j};
if not(isa(x,'mirtemporal'))
dxj = dxj';
dtj = dtj(1,:)';
end
n = floor((size(dxj,1)-l-p)/h)+1; % Number of frames
dx2j = zeros(l,n,size(dxj,3));
dt2j = zeros(l,n);
fpj = zeros(2,n);
if n < 1
disp('Frame length longer than total sequence size. No frame decomposition.');
dx2j = dxj(:,1,:);
dt2j = dtj;
if isempty(dtj)
fpk = [];
else
fpj = [dtj(1) ; dtj(end)];
end
else
for i = 1:n % For each frame, ...
st = floor((i-1)*h+p+1);
stend = st+l-1;
dx2j(:,i,:) = dxj(st:stend,1,:);
dt2j(:,i) = dtj(st:stend);
fpj(:,i) = [dtj(st) dtj(stend)];
end
end
dx2k{j} = dx2j;
dt2k{j} = dt2j;
fpk{j} = fpj;
l2k{j} = l;
end
dx2{k} = dx2k;
dt2{k} = dt2k;
fp{k} = fpk;
l2{k} = l2k;
else % Multi-scale version
if size(h) == 1
h = repmat(h,size(l));
end
for j = 1:length(l) % For each scale, ...
dxj = dxk{1};
dtj = dtk{1};
if not(isa(x,'mirtemporal'))
dxj = dxj';
dtj = dtj(1,:)';
end
n = floor((size(dxj,1)-l(j)-p)/h(j))+1; % Number of frames
dx2j = zeros(l(j),n,size(dxj,3));
dt2j = zeros(l(j),n);
fpj = zeros(2,n);
if n < 1
disp('Frame length longer than total sequence size. No frame decomposition.');
dx2j = dxj(:,1,:);
dt2j = dtj;
fpj = [dtj(1) ; dtj(end)];
else
for i = 1:n % For each frame, ...
st = floor((i-1)*h(j)+p+1);
stend = st+l(j)-1;
dx2j(:,i,:) = dxj(st:stend,1,:);
dt2j(:,i) = dtj(st:stend);
fpj(:,i) = [dtj(st) dtj(stend)];
end
end
dx2k{j} = dx2j;
dt2k{j} = dt2j;
fpk{j} = fpj;
l2k{j} = l(j);
end
dx2{k} = dx2k;
dt2{k} = dt2k;
fp{k} = fpk;
l2{k} = l2k;
end
end
if isa(x,'mirtemporal')
f = set(x,'Time',dt2,'Data',dx2,...
'FramePos',fp,'FrameRate',fr,'Length',l2);
else
f = mirtemporal([],'Time',dt2,'Data',dx2,...
'FramePos',fp,'FrameRate',fr,...
'Sampling',get(x,'Sampling'),'Name',get(x,'Name'),...
'Label',get(x,'Label'),'Channels',get(x,'Channels'),...
'Centered',0,'Length',l2,'Title',get(x,'Title'));
end
end
else
f = mirframe(miraudio(x),varargin{:});
end
function para = scanargin(v)
if not(isempty(v)) && isstruct(v{1})
if length(v) == 1
para = v{1};
else
para.wlength = v{1};
para.hop = v{2};
para.phase = v{3};
end
return
end
para.wlength.val = 0.05;
para.wlength.unit = 's';
para.hop.val = 0.5;
para.hop.unit = '/1';
para.phase.val = 0;
para.phase.unit = '/1';
para.phase.atend = 0;
nv = length(v);
i = 1;
j = 1;
while i <= nv
arg = v{i};
if strcmpi(arg,'WinLength') || strcmpi(arg,'Length')
if i < nv && isnumeric(v{i+1})
i = i+1;
j = 0;
para.wlength.val = v{i};
else
error('ERROR IN MIRFRAME: Incorrect use of Length option. See help mirframe.');
end
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp'))
i = i+1;
para.wlength.unit = v{i};
end
elseif strcmpi(arg,'Hop')
if i < nv && isnumeric(v{i+1})
i = i+1;
j = 0;
para.hop.val = v{i};
else
error('ERROR IN MIRFRAME: Incorrect use of Hop option. See help mirframe.');
end
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'%') || strcmpi(v{i+1},'/1') || ...
strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp') || ...
strcmpi(v{i+1},'Hz'))
i = i+1;
para.hop.unit = v{i};
end
elseif strcmpi(arg,'Phase')
if i < nv && isnumeric(v{i+1})
i = i+1;
j = 0;
para.phase.val = v{i};
else
error('ERROR IN MIRFRAME: Incorrect use of Phase option. See help mirframe.');
end
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'%') || strcmpi(v{i+1},'/1') || ...
strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp'))
i = i+1;
para.phase.unit = v{i};
end
if i < nv && ischar(v{i+1}) && strcmpi(v{i+1},'AtEnd')
i = i+1;
para.phase.atend = 'AtEnd';
end
elseif isnumeric(arg)
switch j
case 1
j = 2;
para.wlength.val = arg;
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp'))
i = i+1;
para.wlength.unit = v{i};
end
case 2
j = 3;
para.hop.val = arg;
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'%') || strcmpi(v{i+1},'/1') || ...
strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp') || ...
strcmpi(v{i+1},'Hz'))
i = i+1;
para.hop.unit = v{i};
end
case 3
j = 4;
para.phase.val = arg;
if i < nv && ischar(v{i+1}) && ...
(strcmpi(v{i+1},'%') || strcmpi(v{i+1},'/1') || ...
strcmpi(v{i+1},'s') || strcmpi(v{i+1},'sp'))
i = i+1;
para.phase.unit = v{i};
end
if i < nv && ischar(v{i+1}) && strcmpi(v{i+1},'AtEnd')
i = i+1;
para.phase.atend = 'AtEnd';
elseif i < nv && isnumeric(v{i+1}) && ~v{i+1}
i = i+1;
para.phase.atend = 0;
end
otherwise
error('ERROR IN MIRFRAME: Syntax error. See help mirframe.');
end
elseif not(isempty(arg))
error('ERROR IN MIRFRAME: Syntax error. See help mirframe.');
end
i = i+1;
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirexport.m
|
.m
|
mirtooloct-master/MIRToolbox/mirexport.m
| 11,415 |
utf_8
|
cd8a7963e667f6bc41be6b8f306c8882
|
function m = mirexport(f,varargin)
% mirexport(filename,...) exports statistical information related to
% diverse data into a text file called filename.
% mirexport('Workspace',...) instead directly output the statistical
% information in a structure array saved in the Matlab workspace.
% This structure contains three fields:
% filenames: the name of the original audio files,
% types: the name of the features,
% data: the data.
% The exported data should be related to the same initial audio file
% or the same ordered set of audio files.
% The data listed after the first arguments can be:
% - any feature computed in MIRtoolbox.
% What will be exported is the statistical description of the
% feature (using the mirstat function)
% - any structure array of such features.
% Such as the ouput of the mirstat function.
% - any cell array of such features.
% - the name of a text file.
% The text file is imported with the Matlab importdata command.
% Each line of the file should contains a fixed number of data
% delimited by tabulations. The first line, or 'header',
% indicates the name of each of these columns.
% The file format of the output can be either:
% - a text file.
% It follows the same text file representation as for the input
% text files. The first column of the matrix indicates the name
% of the audio files. The text file can be opened in Matlab,
% or in a spreadsheet program, such as Microsoft Excel, where the
% data matrix can be automatically reconstructed.
% - an attribute-relation file.
% It follows the ARFF standard, used in particular in the WEKA
% data mining environment.
stored.data = {};
stored.textdata = {};
stored.name = {};
narg = nargin;
if strcmpi(f,'Workspace')
format = 'Workspace';
elseif length(f)>4 && strcmpi(f(end-4:end),'.arff')
format = 'ARFF';
else
format = 'Matrix';
end
v = ver('MIRtoolbox');
title = ['MIRtoolbox' v.Version];
class = {};
add = 0;
raw = 0;
for v = 2:narg
argv = varargin{v-1};
if isa(argv,'mirdesign')
mirerror('MIREXPORT','You can only export features that have been already evaluated (using mireval).');
end
if ischar(argv)
if strcmpi(argv,'Matrix')
format = 'Matrix';
elseif strcmpi(argv,'ARFF')
format = 'ARFF';
elseif strcmpi(argv,'#add')
add = 1;
elseif strcmpi(argv,'Raw')
raw = 1;
end
end
end
for v = 2:narg
argv = varargin{v-1};
if ischar(argv)
if ~strcmpi(argv,'Matrix') && ~strcmpi(argv,'ARFF') && ...
~strcmpi(argv,'#add') && ~strcmpi(argv,'Raw')
imported = importdata(argv,'\t',1);
imported.name = {};
[stored class] = integrate(stored,imported,raw);
end
elseif isstruct(argv) && isfield(argv,'data')
new.data = argv.data;
new.textdata = argv.fields;
new.name = {};
[stored class] = integrate(stored,new,raw);
else
new.data = argv;
new.textdata = '';
new.name = {};
[stored class] = integrate(stored,new,raw);
end
end
switch format
case 'Matrix'
matrixformat(stored,f,title,add,raw);
m = 1;
case 'ARFF'
classes = {};
for i = 1:length(class)
if isempty(strcmp(class{i},classes)) || not(max(strcmp(class{i},classes)))
classes{end+1} = class{i};
end
end
ARFFformat(stored,f,title,class,classes,add);
m = 1;
case 'Workspace'
m = variableformat(stored,f,title);
end
%%
function [stored class] = integrate(stored,new,raw,class)
if nargin<4
class = {};
end
% Input information
data = new.data;
textdata = new.textdata;
if isfield(new,'name')
name = new.name;
else
name = {};
end
% Input information after processing
newdata = {};
newtextdata = {};
newname = {};
if isstruct(data)
if isfield(data,'Class')
class = data.Class;
data = rmfield(data,'Class');
end
if isfield(data,'FileNames')
name = data.FileNames;
data = rmfield(data,'FileNames');
end
fields = fieldnames(data);
nfields = length(fields);
for w = 1:nfields
% Field information
field = fields{w};
newfield.data = data.(field);
if isempty(textdata)
newfield.textdata = field;
else
newfield.textdata = strcat(textdata,'_',field);
end
% Processing of the field
[n class] = integrate({},newfield,raw,class);
% Concatenation of the results
newdata = {newdata{:} n.data{:}};
newtextdata = {newtextdata{:} n.textdata{:}};
newname = checkname(newname,name);
end
elseif isa(data,'mirdata')
if raw
newinput.data = mirgetdata(data);
else
newinput.data = mirstat(data);
end
if isfield(newinput.data,'FileNames')
newinput.data = rmfield(newinput.data,'FileNames');
end
title = get(data,'Title');
newinput.textdata = [textdata '_' title(find(not(isspace(title))))];
[n class] = integrate({},newinput,raw,class);
newdata = n.data;
newtextdata = n.textdata;
newname = get(data,'Name');
elseif iscell(textdata)
% Input comes from importdata
nvar = size(data,2);
newdata = cell(1,nvar);
newtextdata = cell(1,nvar);
for i = 1:nvar
newdata{i} = data(:,i);
newtextdata{i} = textdata{i};
end
newname = {};
elseif iscell(data)
for i = 1:length(data)
if not(isempty(data{i}))
% Element information
newelement.data = data{i};
newelement.textdata = [textdata num2str(i)];
% Processing of the element
[n class] = integrate({},newelement,raw,class);
% Concatenation of the results
newdata = {newdata{:} n.data{:}};
newtextdata = {newtextdata{:} n.textdata{:}};
newname = checkname(newname,n.name);
end
end
elseif size(data,4)>1
% Input is vector
for w = 1:size(data,4)
% Bin information
bin.data = data(:,:,:,w);
if isempty(textdata)
bin.textdata = num2str(w);
else
bin.textdata = strcat(textdata,'_',num2str(w));
end
% Processing of the bin
[n class] = integrate({},bin,raw,class);
% Concatenation of the results
newdata = {newdata{:} n.data{:}};
newtextdata = {newtextdata{:} n.textdata{:}};
end
elseif size(data,3)>1
% Input is vector
for w = 1:size(data,3)
% Bin information
bin.data = data(:,:,w,:);
if isempty(textdata)
bin.textdata = num2str(w);
else
bin.textdata = strcat(textdata,'_',num2str(w));
end
% Processing of the bin
[n class] = integrate({},bin,raw,class);
% Concatenation of the results
newdata = {newdata{:} n.data{:}};
newtextdata = {newtextdata{:} n.textdata{:}};
end
elseif size(data,1)>1 && size(data,1)<=50
% Input is vector
for w = 1:size(data,1)
% Bin information
bin.data = data(w,:,:,:);
if isempty(textdata)
bin.textdata = num2str(w);
else
bin.textdata = strcat(textdata,'_',num2str(w));
end
% Processing of the bin
[n class] = integrate({},bin,raw,class);
% Concatenation of the results
newdata = {newdata{:} n.data{:}};
newtextdata = {newtextdata{:} n.textdata{:}};
end
else
if size(data,1)>1
data = mean(data);
end
newdata = {data};
newtextdata = {textdata};
newname = {};
end
if isempty(stored)
stored.data = newdata;
stored.textdata = newtextdata;
stored.name = newname;
else
stored.data = {stored.data{:} newdata{:}};
stored.textdata = {stored.textdata{:} newtextdata{:}};
if isempty(stored.name)
stored.name = newname;
else
stored.name = checkname(newname,stored.name);
end
end
function m = matrixformat(data,filename,title,add,raw)
named = ~isempty(data.name);
if raw
rawl = 0;
for i = 1:length(data.data)
rawl = max(rawl,length(data.data{i}));
end
end
if named && ~raw
if not(add)
m(1,:) = {title,data.textdata{:}};
end
for i = 1:length(data.name)
m{i+~add,1} = data.name{i};
end
elseif not(add)
m(1,:) = {data.textdata{:}};
end
for i = 1:length(data.data)
m((1:length(data.data{i}))+~add,i+named) = num2cell(data.data{i});
if raw
for j =length(data.data{i})+1:rawl
m{j+~add,i+named} = NaN;
end
end
end
if add
fid = fopen(filename,'at');
else
fid = fopen(filename,'wt');
end
for i = 1:size(m,1)
for j = 1:size(m,2)
if ischar(m{i,j})
fprintf(fid,'%s\t', m{i,j}(find(not(m{i,j} == ' '))));
else
if iscell(m{i,j}) % Problem with key strength pos to be solved
fprintf(fid,'%f\t', m{i,j}{1});
else
fprintf(fid,'%f\t', m{i,j});
end
end
end
fprintf(fid,'\n');
end
fclose(fid);
disp(['Data exported to file ',filename,'.']);
function ARFFformat(data,filename,title,class,classes,add)
if add
fid = fopen(filename,'at');
else
fid = fopen(filename,'wt');
fprintf(fid,['%% Attribution-Relation File automatically generated using ',title,'\n\n']);
fprintf(fid,'@RELATION %s\n\n',title);
for i = 1:length(data.textdata)
fprintf(fid,'@ATTRIBUTE %s NUMERIC\n',data.textdata{i});
end
if not(isempty(class))
fprintf(fid,'@ATTRIBUTE class {');
for i = 1:length(classes)
if i>1
fprintf(fid,',');
end
fprintf(fid,'%s',classes{i});
end
fprintf(fid,'}\n');
end
fprintf(fid,'\n@DATA\n');
fid2 = fopen([filename(1:end-5) '.filenames.txt'],'wt');
for i = 1:length(data.name)
fprintf(fid2,'%s\n',data.name{i});
end
fclose(fid2);
end
try
data = cell2mat(data.data(:))';
catch
error('ERROR IN MIREXPORT: Are you sure all the data to be exported relate to the same ordered list of audio files?');
end
for i = 1:size(data,1)
fprintf(fid,'%d ',data(i,:));
if not(isempty(class))
fprintf(fid,'%s',class{i});
end
fprintf(fid,'\n');
end
fclose(fid);
disp(['Data exported to file ',filename,'.']);
function m = variableformat(data,filename,title)
m.types = data.textdata;
m.filenames = data.name;
for i = 1:length(data.data)
m.data{i} = data.data{i};
end
function name = checkname(newname,name)
if not(isempty(newname)) && not(isempty(name))
if length(newname) == length(name)
for i = 1:length(name)
if not(strcmp(name{i},newname{i}))
error('ERROR IN MIREXPORT: All the input are not associated to the same audio files (or the same ordering of these files.');
end
end
else
error('ERROR IN MIREXPORT: All the input are not associated to the same audio files.');
end
elseif isempty(name)
name = newname;
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirrms.m
|
.m
|
mirtooloct-master/MIRToolbox/mirrms.m
| 1,741 |
utf_8
|
6e4442b73eeb6ed66bad3386b9f1059a
|
function varargout = mirrms(x,varargin)
% e = mirrms(x) calculates the root mean square energy.
% Optional arguments:
% mirrms(...,'Frame') computes the temporal evolution of the energy.
notchunking.type = 'Boolean';
notchunking.when = 'After';
notchunking.default = 1;
option.notchunking = notchunking;
median.key = 'Median';
median.type = 'Boolean';
median.default = 0;
option.median = median;
warning.key = 'Warning';
warning.type = 'Boolean';
warning.default = 1;
option.warning = warning;
specif.option = option;
specif.defaultframelength = 0.05;
specif.defaultframehop = 0.5;
specif.combinechunk = 'Sum';
varargout = mirfunction(@mirrms,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = 'mirscalar';
function x = main(x,option,postoption)
if iscell(x)
x = x{1};
end
if ~isempty(option) && option.median
method = @median;
else
method = @mean;
end
if ~isamir(x,'mirscalar')
if option.warning && ~isamir(x,'miraudio')
warning(['Do you really intend to apply MIRRMS on a ',class(x),'?']);
end
d = get(x,'Data');
v = mircompute(@algo,d,method);
x = mirscalar(x,'Data',v,'Title','RMS energy');
end
if isstruct(postoption) && isfield(postoption,'notchunking') ...
&& postoption.notchunking
x = after(x);
end
function e = algo(d,method)
nc = size(d,2);
nch = size(d,3);
e = zeros(1,nc,nch);
for i = 1:nch
for j = 1:nc
dj = d(:,j,i).^2;
e(1,j,i) = method(dj);
end
end
function x = after(x)
v = mircompute(@afternorm,get(x,'Data'),get(x,'Length'));
x = set(x,'Data',v);
function d = afternorm(d,l)
d = sqrt(d);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirpulseclarity.m
|
.m
|
mirtooloct-master/MIRToolbox/mirpulseclarity.m
| 14,197 |
utf_8
|
73a2c53e476d619b3a505e7bb4bf038b
|
function varargout = mirpulseclarity(orig,varargin)
% r = mirpulseclarity(x) estimates the rhythmic clarity, indicating the
% strength of the beats estimated by the mirtempo function.
% Optional arguments:
% mirpulseclarity(...,s): specifies a strategy for pulse clarity
% estimation.
% Possible values: 'MaxAutocor' (default), 'MinAutocor',
% 'KurtosisAutocor', MeanPeaksAutocor', 'EntropyAutocor',
% 'InterfAutocor', 'TempoAutocor', 'ExtremEnvelop',
% 'Attack', 'Articulation'
% mirpulseclarity(...,'Frame',l,h): orders a frame decomposition of
% the audio input of window length l (in seconds) and hop factor
% h, expressed relatively to the window length.
% Default values: l = 5 seconds and h = .1
% Onset detection strategies: 'Envelope' (default), 'DiffEnvelope',
% 'SpectralFlux', 'Pitch'.
% Options related to the autocorrelation computation can be specified
% as well: 'Min', 'Max', 'Resonance', 'Enhanced'
% Options related to the tempo estimation can be specified here
% as well: 'Sum', 'Total', 'Contrast'.
% cf. User's Manual for more details.
% [r,a] = mirpulseclarity(x) also returns the beat autocorrelation.
model.key = 'Model';
model.type = 'Integer';
model.default = 0;
option.model = model;
stratg.type = 'String';
stratg.choice = {'MaxAutocor','MinAutocor','MeanPeaksAutocor',...
'KurtosisAutocor','EntropyAutocor',...
'InterfAutocor','TempoAutocor','ExtremEnvelop',...
'Attack','Articulation'}; ...,'AttackDiff'
stratg.default = 'MaxAutocor';
option.stratg = stratg;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.keydefault = [5 .1];
frame.default = [0 0];
option.frame = frame;
%% options related to mironsets:
fea.type = 'String';
fea.choice = {'Envelope','DiffEnvelope','SpectralFlux','Pitch'};
fea.default = 'Envelope';
option.fea = fea;
%% options related to 'Envelope':
envmeth.key = 'Method';
envmeth.type = 'String';
envmeth.choice = {'Filter','Spectro'};
envmeth.default = 'Spectro';
option.envmeth = envmeth;
%% options related to 'Filter':
ftype.key = 'FilterType';
ftype.type = 'String';
ftype.choice = {'IIR','HalfHann'};
ftype.default = 'IIR';
option.ftype = ftype;
fb.key = 'Filterbank';
fb.type = 'Integer';
fb.default = 20;
option.fb = fb;
fbtype.key = 'FilterbankType';
fbtype.type = 'String';
fbtype.choice = {'Gammatone','Scheirer','Klapuri'};
fbtype.default = 'Scheirer';
option.fbtype = fbtype;
%% options related to 'Spectro':
band.type = 'String';
band.choice = {'Freq','Mel','Bark','Cents'};
band.default = 'Freq';
option.band = band;
diffhwr.key = 'HalfwaveDiff';
diffhwr.type = 'Integer';
diffhwr.default = 0;
diffhwr.keydefault = 1;
option.diffhwr = diffhwr;
lambda.key = 'Lambda';
lambda.type = 'Integer';
lambda.default = 1;
option.lambda = lambda;
aver.key = 'Smooth';
aver.type = 'Integer';
aver.default = 0;
aver.keydefault = 30;
option.aver = aver;
oplog.key = 'Log';
oplog.type = 'Boolean';
oplog.default = 0;
option.log = oplog;
mu.key = 'Mu';
mu.type = 'Integer';
mu.default = 100;
option.mu = mu;
%% options related to 'SpectralFlux'
inc.key = 'Inc';
inc.type = 'Boolean';
inc.default = 1;
option.inc = inc;
median.key = 'Median';
median.type = 'Integer';
median.number = 2;
median.default = [0 0]; % Not same default as in mirtempo
option.median = median;
hw.key = 'Halfwave';
hw.type = 'Boolean';
hw.default = 0; %NaN; %0; % Not same default as in mirtempo
option.hw = hw;
%% options related to mirattackslope
slope.type = 'String';
slope.choice = {'Diff','Gauss'};
slope.default = 'Diff';
option.slope = slope;
%% options related to mirautocor:
enh.key = 'Enhanced';
enh.type = 'Integers';
enh.default = [];
enh.keydefault = 2:10;
option.enh = enh;
r.key = 'Resonance';
r.type = 'String';
r.choice = {'ToiviainenSnyder','vonNoorden',0,'off','no'};
r.default = 'ToiviainenSnyder';
option.r = r;
mi.key = 'Min';
mi.type = 'Integer';
mi.default = 40;
option.mi = mi;
ma.key = 'Max';
ma.type = 'Integer';
ma.default = 200;
option.ma = ma;
%% options related to mirtempo:
sum.key = 'Sum';
sum.type = 'String';
sum.choice = {'Before','After','Adjacent'};
sum.default = 'Before';
option.sum = sum;
m.key = 'Total';
m.type = 'Integer';
m.default = 1;
option.m = m;
thr.key = 'Contrast';
thr.type = 'Integer';
thr.default = 0.01; % Not same default as in mirtempo
option.thr = thr;
specif.option = option;
varargout = mirfunction(@mirpulseclarity,orig,varargin,nargout,specif,@init,@main);
%% Initialisation
function [x type] = init(x,option)
%if isframed(x)
% warning('WARNING IN MIRPULSECLARITY: The input should not be already decomposed into frames.');
% disp(['Suggestion: Use the ''Frame'' option instead.'])
%end
if iscell(x)
x = x{1};
end
if isamir(x,'mirautocor')
type = {'mirscalar','mirautocor'};
elseif length(option.model) > 1
a = x;
type = {'mirscalar'};
for m = 1:length(option.model)
if option.frame.length.val
y = mirpulseclarity(a,'Model',option.model(m),...
'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit);
else
y = mirpulseclarity(a,'Model',option.model(m));
end
if m == 1
x = y;
else
x = x + y;
end
end
else
if option.model
switch option.model
case 1
case 2
option.envmeth = 'Filter';
option.fbtype = 'Gammatone';
option.mu = 0;
option.r = 0;
option.lambda = .8;
option.sum = 'After';
end
end
if length(option.stratg)>7 && strcmpi(option.stratg(end-6:end),'Autocor')
if (strcmpi(option.stratg,'MaxAutocor') || ...
strcmpi(option.stratg,'MinAutocor') || ...
strcmpi(option.stratg,'EntropyAutocor'))
option.m = 0;
end
if strcmpi(option.stratg,'MinAutocor')
option.enh = 0;
end
if option.frame.length.val
[t,x] = mirtempo(x,option.fea,'Method',option.envmeth,...
option.band,...
'Sum',option.sum,'Enhanced',option.enh,...
'Resonance',option.r,'Smooth',option.aver,...
'HalfwaveDiff',option.diffhwr,...
'Lambda',option.lambda,...
'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
'FilterbankType',option.fbtype,...
'FilterType',option.ftype,...
'Filterbank',option.fb,'Mu',option.mu,...
'Log',option.log,...
'Inc',option.inc,'Halfwave',option.hw,...
'Median',option.median(1),option.median(2),...
'Min',option.mi,'Max',option.ma,...
'Total',option.m,'Contrast',option.thr);
else
[t,x] = mirtempo(x,option.fea,'Method',option.envmeth,...
option.band,...
'Sum',option.sum,'Enhanced',option.enh,...
'Resonance',option.r,'Smooth',option.aver,...
'HalfwaveDiff',option.diffhwr,...
'Lambda',option.lambda,...
'FilterbankType',option.fbtype,...
'FilterType',option.ftype,...
'Filterbank',option.fb,'Mu',option.mu,...
'Log',option.log,...
'Inc',option.inc,'Halfwave',option.hw,...
'Median',option.median(1),option.median(2),...
'Min',option.mi,'Max',option.ma,...
'Total',option.m,'Contrast',option.thr);
end
type = {'mirscalar','mirautocor'};
elseif strcmpi(option.stratg,'ExtremEnvelop')
x = mironsets(x,'Filterbank',option.fb);
type = {'mirscalar','mirenvelope'};
elseif strcmpi(option.stratg,'Attack')
x = mirattackslope(x,option.slope);
type = {'mirscalar','mirenvelope'};
% elseif strcmpi(option.stratg,'AttackDiff')
% type = {'mirscalar','mirenvelope'};
elseif strcmpi(option.stratg,'Articulation')
x = mirlowenergy(x,'ASR');
type = {'mirscalar','mirscalar'};
else
type = {'mirscalar','miraudio'};
end
end
%% Main function
function o = main(a,option,postoption)
if option.model == 2
option.stratg = 'InterfAutocor';
end
if isa(a,'mirscalar') && not(strcmpi(option.stratg,'Attack')) % not very nice test... to improve.
o = {a};
return
end
if option.m == 1 && ...
(strcmpi(option.stratg,'InterfAutocor') || ...
strcmpi(option.stratg,'MeanPeaksAutocor'))
option.m = Inf;
end
if iscell(a)
a = a{1};
end
if strcmpi(option.stratg,'MaxAutocor')
d = get(a,'Data');
rc = mircompute(@max,d);
elseif strcmpi(option.stratg,'MinAutocor')
d = get(a,'Data');
rc = mircompute(@minusmin,d);
elseif strcmpi(option.stratg,'MeanPeaksAutocor')
m = get(a,'PeakVal');
rc = mircompute(@meanpeaks,m);
elseif strcmpi(option.stratg,'KurtosisAutocor')
a = mirpeaks(a,'Extract','Total',option.m,'NoBegin','NoEnd');
k = mirkurtosis(a);
%d = get(k,'Data');
%rc = mircompute(@meanpeaks,d);
rc = mirmean(k);
elseif strcmpi(option.stratg,'EntropyAutocor')
rc = mirentropy(a);
elseif strcmpi(option.stratg,'InterfAutocor')
a = mirpeaks(a,'Total',option.m,'NoBegin','NoEnd');
m = get(a,'PeakVal');
p = get(a,'PeakPosUnit');
rc = mircompute(@interf,m,p);
elseif strcmpi(option.stratg,'TempoAutocor')
a = mirpeaks(a,'Total',1,'NoBegin','NoEnd');
p = get(a,'PeakPosUnit');
rc = mircompute(@tempo,p);
elseif strcmpi(option.stratg,'ExtremEnvelop')
a = mirenvelope(a,'Normal');
p = mirpeaks(a,'Order','Abscissa');
p = get(p,'PeakPreciseVal');
n = mirpeaks(a,'Valleys','Order','Abscissa');
n = get(n,'PeakPreciseVal');
rc = mircompute(@shape,p,n);
elseif strcmpi(option.stratg,'Attack')
rc = mirmean(a);
%elseif strcmpi(option.stratg,'AttackDiff')
% a = mirpeaks(a);
% m = get(a,'PeakVal');
% rc = mircompute(@meanpeaks,m);
elseif strcmpi(option.stratg,'Articulation')
rc = a;
end
if iscell(rc)
pc = mirscalar(a,'Data',rc,'Title','Pulse clarity');
else
pc = set(rc,'Title',['Pulse clarity (',get(rc,'Title'),')']);
end
if option.model
switch option.model
case 1
alpha = 0;
beta = 2.2015;
lambda = .1;
case 2
alpha = 0;
beta = 3.5982;
lambda = 1.87;
end
if not(lambda == 0)
pc = (pc+alpha)^lambda * beta;
else
pc = log(pc+alpha) * beta;
end
title = ['Pulse clarity (Model ',num2str(option.model),')'];
pc = set(pc,'Title',title);
end
o = {pc a};
%% Routines
function r = shape(p,n)
p = p{1};
n = n{1};
if length(p)>length(n)
d = sum(p(1:end-1) - n) + sum(p(2:end) - n);
r = d/(2*length(n));
elseif length(p)<length(n)
d = sum(p - n(1:end-1)) + sum(p - n(2:end));
r = d/(2*length(p));
else
d = sum(p(2:end) - n(1:end-1)) + sum(p(1:end-1) - n(2:end));
r = d/(2*(length(p)-1));
end
function rc = minusmin(ac)
rc = -min(ac);
function rc = meanpeaks(ac)
rc = zeros(1,length(ac));
for j = 1:length(ac)
if isempty(ac{j})
rc(j) = NaN;
else
rc(j) = mean(ac{j});
end
end
function rc = interf(mk,pk)
rc = zeros(size(mk));
for j = 1:size(mk,3)
for i = 1:size(mk,2)
pij = pk{1,i,j};
mij = mk{1,i,j};
if isempty(pij)
rc(1,i,j) = 0;
else
high = max(pij(2:end),pij(1));
low = min(pij(2:end),pij(1));
quo = rem(high,low)./low;
nomult = quo>.15 & quo<.85;
fij = mij(2:end)/mij(1) .*nomult;
fij(fij<0) = 0;
rc(1,i,j) = exp(-sum(fij)/4); % Pulsations that are not in integer ratio
% with dominant pulse decrease clarity
end
end
end
function rc = tempo(pk)
rc = zeros(size(pk));
for j = 1:size(pk,3)
for i = 1:size(pk,2)
pij = pk{1,i,j};
if isempty(pij)
rc(1,i,j) = 0;
else
rc(1,i,j) = exp(-pij(1)/4)/exp(-.33/4); % Fast dominant pulse
% increases clarity
end
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirflatness.m
|
.m
|
mirtooloct-master/MIRToolbox/mirflatness.m
| 2,139 |
utf_8
|
afd526e25826dda99d62b918bd5d0a27
|
function varargout = mirflatness(orig,varargin)
% f = mirflatness(x) calculates the flatness of x, which can be either:
% - a spectrum (spectral flatness),
% - an envelope (temporal flatness), or
% - any histogram.
minrms.key = 'MinRMS';
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .01;
option.minrms = minrms;
specif.option = option;
varargout = mirfunction(@mirflatness,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirenvelope') || isamir(x,'mirhisto'))
x = mirspectrum(x);
end
type = 'mirscalar';
function f = main(x,option,postoption)
if iscell(x)
x = x{1};
end
m = get(x,'Data');
y = cell(1,length(m));
for h = 1:length(m)
if not(iscell(m{h})) % for histograms
m{h} = {m{h}'};
end
y{h} = cell(1,length(m{h}));
for i = 1:length(m{h})
mm = m{h}{i};
nl = size(mm,1);
ari = mean(mm);
geo = (prod(mm.^(1/nl)));
divideByZero = warning('query','MATLAB:divideByZero');
logZero = warning('query','MATLAB:log:logOfZero');
warning('off','MATLAB:divideByZero');
warning('off','MATLAB:log:logOfZero');
y{h}{i} = ...10*log10(
geo./ari;%);
warning(divideByZero.state,'MATLAB:divideByZero');
warning(logZero.state,'MATLAB:log:logOfZero');
nany = find(isinf(y{h}{i}));
y{h}{i}(nany) = zeros(size(nany));
end
end
if isa(x,'mirenvelope')
t = 'Temporal flatness';
elseif isa(x,'mirspectrum')
t = 'Spectral flatness';
else
t = ['Flatness of ',get(x,'Title')];
end
f = mirscalar(x,'Data',y,'Title',t,'Unit','');
if isstruct(postoption) && strcmpi(get(x,'Title'),'Spectrum') && ...
isfield(postoption,'minrms') && postoption.minrms
f = after(x,f,postoption.minrms);
end
function f = after(x,f,minrms)
r = mirrms(x,'Warning',0);
v = mircompute(@trim,get(f,'Data'),get(r,'Data'),minrms);
f = set(f,'Data',v);
function d = trim(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d(pos(i)) = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirhcdf.m
|
.m
|
mirtooloct-master/MIRToolbox/mirhcdf.m
| 756 |
utf_8
|
83f037cac2a2562fb1a64b60f5826078
|
function varargout = mirhcdf(orig,varargin)
% df = mirhcdf(x) calculates the Harmonic Change Detection Function
% related to x.
%
% C. A. Harte and M. B. Sandler, Detecting harmonic change in musical
% audio, in Proceedings of Audio and Music Computing for Multimedia
% Workshop, Santa Barbara, CA, 2006.
specif.defaultframelength = .743;
specif.defaultframehop = .1;
varargout = mirfunction(@mirhcdf,orig,varargin,nargout,specif,@init,@main);
function [df type] = init(orig,option)
if isamir(orig,'mirscalar')
df = orig;
else
if isframed(orig)
tc = mirtonalcentroid(orig);
else
tc = mirtonalcentroid(orig,'Frame');
end
df = mirflux(tc);
end
type = 'mirscalar';
function df = main(df,option,postoption)
|
github
|
martinarielhartmann/mirtooloct-master
|
mirrolloff.m
|
.m
|
mirtooloct-master/MIRToolbox/mirrolloff.m
| 2,405 |
utf_8
|
969a183f15d02c00dfb987d1237ec4b9
|
function varargout = mirrolloff(x,varargin)
% r = mirrolloff(s) calculates the spectral roll-off in Hz.
% Optional arguments:
% r = mirrolloff(s,'Threshold',p) specifies the energy threshold in
% percentage. (Default: .85)
% p can be either a value between 0 and 1. But if p exceeds 1, it
% is understood as a percentage, i.e. between 1 and 100.
% In other words, r is the frequency under which p percents
% of the spectral energy is distributed.
%
% Typical values for the energy threshold:
% 85% in G. Tzanetakis, P. Cook. Musical genre classification of audio
% signals. IEEE Tr. Speech and Audio Processing, 10(5),293-302, 2002.
% 95% in T. Pohle, E. Pampalk, G. Widmer. Evaluation of Frequently
% Used Audio Features for Classification of Music Into Perceptual
% Categories, ?
p.key = 'Threshold';
p.type = 'Integer';
p.default = 85;
option.p = p;
minrms.key = 'MinRMS';
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .005;
option.minrms = minrms;
specif.option = option;
varargout = mirfunction(@mirrolloff,x,varargin,nargout,specif,@init,@main);
function [s type] = init(x,option)
s = mirspectrum(x);
type = 'mirscalar';
function r = main(s,option,postoption)
if iscell(s)
s = s{1};
end
m = get(s,'Magnitude');
f = get(s,'Frequency');
if option.p>1
option.p = option.p/100;
end
v = mircompute(@algo,m,f,option.p);
r = mirscalar(s,'Data',v,'Title','Rolloff','Unit','Hz.');
if isstruct(postoption)
r = after(s,r,postoption.minrms);
end
function v = algo(m,f,p)
cs = cumsum(m); % accumulation of spectrum energy
thr = cs(end,:,:)*p; % threshold corresponding to the rolloff point
v = zeros(1,size(cs,2),size(cs,3));
for l = 1:size(cs,3)
for k = 1:size(cs,2)
fthr = find(cs(:,k,l) >= thr(1,k,l),1); % find the location of the threshold
if isempty(fthr)
v(1,k,l) = NaN;
else
v(1,k,l) = f(fthr);
end
end
end
function r = after(s,r,minrms)
v = get(r,'Data');
if minrms
rms = mirrms(s,'Warning',0);
v = mircompute(@trimrms,v,get(rms,'Data'),minrms);
end
r = set(r,'Data',v);
function d = trimrms(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d(pos(i)) = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
mp3write.m
|
.m
|
mirtooloct-master/MIRToolbox/mp3write.m
| 4,870 |
utf_8
|
ed9f8770422e95bc286ccb1f58acfe92
|
function mp3write(D,SR,NBITS,FILE,OPTIONS)
% MP3WRITE Write MP3 file by use of external binary
% MP3WRITE(Y,FS,NBITS,FILE) writes waveform data Y to mp3-encoded
% file FILE at sampling rate FS using bitdepth NBITS.
% The syntax exactly mirrors WAVWRITE. NBITS must be 16.
% MP3WRITE(Y,FS,FILE) assumes NBITS is 16
% MP3WRITE(Y,FILE) further assumes FS = 8000.
%
% MP3WRITE(..., OPTIONS) specifies additional compression control
% options as a string passed directly to the lame encoder
% program; default is '--quiet -h' for high-quality model.
%
% Example:
% To convert a wav file to mp3 (assuming the sample rate is
% supported):
% [Y,FS] = wavread('piano.wav');
% mp3write(Y,FS,'piano.mp3');
% To force lame to use 160 kbps (instead of default 128 kbps)
% with the default filename extension (mp3):
% mp3write(Y,FS,'piano','--quiet -h -b 160');
%
% Note: The actual mp3 encoding is done by an external binary,
% lame, which is available for multiple platforms. Usable
% binaries are available from:
% http://labrosa.ee.columbia.edu/matlab/mp3read.html
%
% Note: MP3WRITE will use the mex file popenw, if available, to
% open a pipe to the lame encoder. Otherwise, it will have to
% write a large temporary file, then execute lame on that file.
% popenw is available at:
% http://labrosa.ee.columbia.edu/matlab/popenrw.html
% This is a nice way to save large audio files as the
% incremental output of your code, but you'll have to adapt the
% central loop of this function (rather than using it directly).
%
% See also: mp3read, wavwrite, popenw.
% 2005-11-10 Original version
% 2007-02-04 Modified to exactly match wavwrite syntax, and to
% automatically find architecture-dependent binaries.
% 2007-07-26 Writing of stereo files via tmp file fixed (thx Yu-ching Lin)
%
% $Header: /Users/dpwe/matlab/columbiafns/RCS/mp3write.m,v 1.2 2007/07/26 15:09:16 dpwe Exp $
% find our baseline directory
[path] = fileparts(which('mp3write'));
% %%%%% Directory for temporary file (if needed)
% % Try to read from environment, or use /tmp if it exists, or use CWD
tmpdir = getenv('TMPDIR');
if isempty(tmpdir) || exist(tmpdir,'file')==0
tmpdir = '/tmp';
end
if exist(tmpdir,'file')==0
tmpdir = '';
end
% ensure it exists
%if length(tmpdir) > 0 && exist(tmpdir,'file')==0
% mkdir(tmpdir);
%end
%%%%%% Command to delete temporary file (if needed)
rmcmd = 'rm';
%%%%%% Location of the binary - attempt to choose automatically
%%%%%% (or edit to be hard-coded for your installation)
ext = lower(computer);
if ispc
ext = 'exe';
rmcmd = 'del';
end
lame = fullfile(path,['lame.',ext]);
%%%% Process input arguments
% Do we have NBITS?
mynargin = nargin;
if ischar(NBITS)
% NBITS is a string i.e. it's actually the filename
if mynargin > 3
OPTIONS = FILE;
end
FILE = NBITS;
NBITS = 16;
% it's as if NBITS had been specified...
mynargin = mynargin + 1;
end
if mynargin < 5
OPTIONS = '--quiet -h'; % -h means high-quality psych model
end
[nr, nc] = size(D);
if nc < nr
D = D';
[nr, nc] = size(D);
end
% Now rows are channels, cols are time frames (so interleaving is right)
%%%%% add extension if none (like wavread)
[path,file,ext] = fileparts(FILE);
if isempty(ext)
FILE = [FILE, '.mp3'];
end
nchan = nr;
nfrm = nc;
if nchan == 1
monostring = ' -m m';
else
monostring = '';
end
lameopts = [' ', OPTIONS, monostring, ' '];
%if exist('popenw') == 3
if length(which('popenw')) > 0
% We have the writable stream process extensions
cmd = ['"',lame,'"', lameopts, '-r -s ',num2str(SR),' - "',FILE,'"'];
p = popenw(cmd);
if p < 0
error(['Error running popen(',cmd,')']);
end
% We feed the audio to the encoder in blocks of <blksize> frames.
% By adapting this loop, you can create your own code to
% write a single, large, MP3 file one part at a time.
blksiz = 10000;
nrem = nfrm;
base = 0;
while nrem > 0
thistime = min(nrem, blksiz);
done = popenw(p,32767*D(:,base+(1:thistime)),'int16be');
nrem = nrem - thistime;
base = base + thistime;
%disp(['done=',num2str(done)]);
end
% Close pipe
popenw(p,[]);
else
disp('Warning: popenw not available, writing temporary file');
tmpfile = fullfile(tmpdir,['tmp',num2str(round(1000*rand(1))),'.wav']);
wavwrite(D',SR,tmpfile);
cmd = ['"',lame,'"', lameopts, '"',tmpfile, '" "', FILE, '"'];
mysystem(cmd);
% Delete tmp file
mysystem([rmcmd, ' "', tmpfile,'"']);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function w = mysystem(cmd)
% Run system command; report error; strip all but last line
[s,w] = system(cmd);
if s ~= 0
error(['unable to execute ',cmd,' (',w,')']);
end
% Keep just final line
w = w((1+max([0,findstr(w,10)])):end);
% Debug
%disp([cmd,' -> ','*',w,'*']);
|
github
|
martinarielhartmann/mirtooloct-master
|
aiffread.m
|
.m
|
mirtooloct-master/MIRToolbox/aiffread.m
| 20,801 |
utf_8
|
9f46fe07573112dfe1958161a768a9c9
|
function [data,Fs,nBits,formChunk] = aiffread(filePath,indexRange)
%AIFFREAD Read AIFF (Audio Interchange File Format) sound file.
% Y = AIFFREAD(FILE) reads an AIFF file specified by the string FILE,
% returning the sampled data in Y. The ".aif" extension is appended if no
% extension is given.
%
% [Y,FS,NBITS,CHUNKDATA] = AIFFREAD(FILE) returns the sample rate (FS) in
% Hertz, the number of bits per sample (NBITS) used to encode the data in
% the file, and a complete structure of the chunk data (CHUNKDATA)
% contained in the AIFF file (minus the actual audio data returned in Y).
% See below for a description of CHUNKDATA.
%
% [...] = AIFFREAD(FILE,N) returns only the first N samples from each
% channel in the file.
%
% [...] = AIFFREAD(FILE,[N1 N2]) returns only samples N1 through N2 from
% each channel in the file.
%
% [SIZ,...] = AIFFREAD(FILE,'size') returns the size of the audio data
% contained in the file in place of the actual audio data, where
% SIZ = [nSampleFrames nChannels].
%
%-NOTES--------------------------------------------------------------------
%
% A note on compressed files:
%
% Both AIFF and AIFC/AIFF-C (compressed) file types can be read by
% AIFFREAD, but the data returned for AIFC/AIFF-C files will be the
% raw, compressed data (i.e. AIFFREAD loads the data from the file
% without modification). Currently, since there are many compression
% formats, it is the responsibility of the user to uncompress the
% sound data using parameters defined in the COMM chunk (contained in
% the returned CHUNKDATA structure). When loading AIFC/AIFF-C files,
% any optional numerical subranges are ignored and the entire set of
% compressed data is returned as a column vector of signed bytes
% (INT8 type).
%
% A note on the CHUNKDATA structure:
%
% The CHUNKDATA structure has the following fields:
%
% -'chunkID': The 4-character ID for the chunk. This will always be
% the string 'FORM'.
% -'chunkSize': The size (in bytes) of the remaining data in the
% file.
% -'formType': A 4-character string for the file type that should
% be either 'AIFF' or 'AIFC'.
% -'chunkArray': An array of structures, one entry for every chunk
% that is in the file (not counting this parent FORM
% chunk). The fields of this structure are:
% -'chunkID': The 4-character ID for the chunk.
% -'chunkSize': The size (in bytes) of the
% remaining data in the chunk.
% -'chunkData': A structure of data for the
% chunk. The form of this data for
% a given chunkID can be found at
% the links given below for the
% file format standards.
%
% The data portion of certain chunks may not have a clearly defined
% format, or that format may be dependent on the implementation or
% application that will be using the data. In such cases, the data
% returned for that chunk in the CHUNKDATA structure will be in a raw
% format (vectors of signed or unsigned 8-bit integers) and it will be
% up to the user/application to parse and format this data correctly.
% The following is a list of such AIFF/AIFF-C chunks:
%
% -Audio Recording Chunk (chunkID = 'AESD'): The chunkData
% structure has one field 'aesChannelStatusData' that stores a
% column vector of 24 8-bit unsigned integers.
% -Application Specific Chunk (chunkID = 'APPL'): The chunkData
% structure has two fields. 'applicationSignature' stores a
% 4-character string identifying the application. 'data' stores a
% column vector of 8-bit signed integers.
% -MIDI Data Chunk (chunkID = 'MIDI'): The chunkData structure has
% one field 'midiData' that stores a column vector of 8-bit
% unsigned integers.
% -Sound Accelerator (SAXEL) Chunk (chunkID = 'SAXL'): There is no
% finalized format for Saxel chunks, so the chunkData structure
% follows the draft format given in Appendix D of the AIFF-C
% standard.
%
% Description for the AIFF standard can be found here:
%
% http://muratnkonar.com/aiff/index.html
%
% Descriptions for the AIFC/AIFF-C standard can be found here:
%
% http://www.cnpbagwell.com/aiff-c.txt
% http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/...
% AIFF-C.9.26.91.pdf
% Author: Ken Eaton
% Last modified: 3/17/09
%--------------------------------------------------------------------------
% Initializations:
aiffChunkPrecedence = {'COMM' 'SSND' 'MARK' 'INST' 'COMT' 'NAME' ...
'AUTH' '[c] ' 'ANNO' 'AESD' 'MIDI' 'APPL'};
aiffChunkLimits = [1 1 1 1 1 1 1 1 inf 1 inf inf];
aifcChunkPrecedence = {'FVER' 'COMM' 'INST' 'SAXL' 'COMT' 'MARK' ...
'SSND' 'NAME' 'AUTH' '[c] ' 'ANNO' 'AESD' ...
'MIDI' 'APPL'};
aifcChunkLimits = [1 1 1 inf 1 1 1 1 1 1 inf 1 inf inf];
fid = -1;
% Check the number of input arguments:
switch nargin,
case 0,
error(error_message('notEnoughInputs'));
case 1,
indexRange = [1 inf];
end
% Check the file name input argument:
if ~ischar(filePath),
error(error_message('badArgumentType','File name','char'));
end
[filePath,fileName,fileExtension] = fileparts(filePath);
if isempty(fileExtension),
fileExtension = '.aif';
end
if ~any(strcmpi(fileExtension,{'.aif' '.afc' '.aiff' '.aifc'})),
error(error_message('unknownExtension',fileExtension));
end
% Check the optional input argument:
if isnumeric(indexRange), % Numeric range specification
indexRange = double(indexRange);
nRange = numel(indexRange);
if (nRange > 2) || any(indexRange < 1) || any(isnan(indexRange)),
error(error_message('badIndexValue'));
end
indexRange = [ones(nRange ~= 2) round(indexRange) inf(nRange == 0)];
elseif ischar(indexRange), % Specification for returning just the size
if ~strncmpi(indexRange,'size',numel(indexRange)),
error(error_message('invalidString'));
end
indexRange = [];
else % Invalid input
error(error_message('badArgumentType','Optional argument',...
'numeric or char'));
end
% Check that the file exists and can be opened:
fid = fopen(fullfile(filePath,[fileName fileExtension]),'r','b');
if fid == -1,
error(error_message('invalidFile',[fileName fileExtension]));
end
% Initialize formChunk structure:
formChunk = struct('chunkID',[],'chunkSize',[],'formType',[],...
'chunkArray',[]);
% Read FORM chunk data:
formChunk.chunkID = read_text(fid,4);
if ~strcmp(formChunk.chunkID,'FORM'),
error(error_message('invalidFileFormat',fileExtension));
end
formChunk.chunkSize = fread(fid,1,'int32');
formType = read_text(fid,4);
if ~any(strcmp(formType,{'AIFF' 'AIFC'})),
error(error_message('invalidFileFormat',fileExtension));
end
formChunk.formType = formType;
% Since the order of chunks is not guaranteed, first skip through the
% file and read just the chunkIDs and chunkSizes:
iChunk = 0;
chunkIDArray = {};
chunkSizeArray = {};
chunkDataIndex = [];
nextChunkID = read_text(fid,4);
while ~feof(fid),
iChunk = iChunk+1;
chunkIDArray{iChunk} = nextChunkID;
chunkSize = fread(fid,1,'int32');
chunkSizeArray{iChunk} = chunkSize;
chunkDataIndex(iChunk) = ftell(fid);
fseek(fid,chunkSize+rem(chunkSize,2),'cof');
nextChunkID = read_text(fid,4);
end
% Check for the presence of required chunks:
if ~ismember('COMM',chunkIDArray),
error(error_message('missingChunk','COMM',formType));
end
if strcmp(formType,'AIFC') && ~ismember('FVER',chunkIDArray),
error(error_message('missingChunk','FVER',formType));
end
% Check for unknown chunks and order chunks based on chunk precedence:
if strcmp(formType,'AIFF'),
[isChunk,orderIndex] = ismember(chunkIDArray,aiffChunkPrecedence);
else
[isChunk,orderIndex] = ismember(chunkIDArray,aifcChunkPrecedence);
end
if ~all(isChunk),
unknownChunks = [chunkIDArray(~isChunk); ...
repmat({', '},1,sum(~isChunk)-1) {'.'}];
orderIndex = orderIndex(isChunk);
chunkIDArray = chunkIDArray(isChunk);
chunkSizeArray = chunkSizeArray(isChunk);
chunkDataIndex = chunkDataIndex(isChunk);
warning('aiffread:unknownChunk',...
['The following chunk IDs are unknown for an ' formType ...
' file and will be ignored: ' unknownChunks{:}]);
end
[index,orderIndex] = sort(orderIndex);
chunkIDArray = chunkIDArray(orderIndex);
chunkSizeArray = chunkSizeArray(orderIndex);
chunkDataIndex = chunkDataIndex(orderIndex);
% Check for chunks that should not appear more than once:
index = unique(index(diff(index) < 1));
if strcmp(formType,'AIFF'),
repeatChunks = aiffChunkPrecedence(aiffChunkLimits(index) == 1);
else
repeatChunks = aifcChunkPrecedence(aifcChunkLimits(index) == 1);
end
if ~isempty(repeatChunks),
repeatChunks = [repeatChunks; ...
repmat({', '},1,numel(repeatChunks)-1) {'.'}];
error(error_message('repeatChunk',formType,[repeatChunks{:}]));
end
% Initialize chunkArray data:
formChunk.chunkArray = struct('chunkID',chunkIDArray,...
'chunkSize',chunkSizeArray,...
'chunkData',[]);
% Read the data for each chunk:
for iChunk = 1:numel(chunkIDArray),
chunkData = [];
fseek(fid,chunkDataIndex(iChunk),'bof');
switch chunkIDArray{iChunk},
case '[c] ', % Copyright Chunk
chunkData.text = read_text(fid,chunkSizeArray{iChunk});
case 'AESD', % Audio Recording Chunk
chunkData.aesChannelStatusData = ...
fread(fid,[chunkSizeArray{iChunk} 1],'*uint8');
case 'ANNO', % Annotation Chunk
chunkData.text = read_text(fid,chunkSizeArray{iChunk});
case 'APPL', % Application Specific Chunk
chunkData.applicationSignature = read_text(fid,4);
chunkData.data = fread(fid,[chunkSizeArray{iChunk}-4 1],'*int8');
case 'AUTH', % Author Chunk
chunkData.text = read_text(fid,chunkSizeArray{iChunk});
case 'COMM', % Common Chunk
nChannels = fread(fid,1,'int16');
chunkData.nChannels = nChannels;
nSampleFrames = fread(fid,1,'uint32');
if (nSampleFrames > 0) && ~ismember('SSND',chunkIDArray),
error(error_message('missingChunk','SSND',formType));
end
chunkData.nSampleFrames = nSampleFrames;
nBits = fread(fid,1,'int16');
chunkData.sampleSize = nBits;
exponent = fread(fid,1,'uint16');
highMantissa = fread(fid,1,'uint32');
lowMantissa = fread(fid,1,'uint32');
Fs = extended2double(exponent,highMantissa,lowMantissa);
chunkData.sampleRate = Fs;
if strcmp(formType,'AIFF'),
compressionType = 'NONE';
else
compressionType = read_text(fid,4);
chunkData.compressionType = compressionType;
chunkData.compressionName = read_pstring(fid);
end
case 'COMT', % Comments Chunk
nComments = fread(fid,1,'uint16');
chunkData.nComments = nComments;
chunkData.commentArray = struct('timeStamp',cell(nComments,1),...
'marker',[],'count',[],'text',[]);
for iComment = 1:nComments,
chunkData.commentArray(iComment) = read_comment(fid);
end
case 'FVER', % Format Version Chunk (AIFC/AIFF-C only)
timeStamp = fread(fid,1,'uint32');
if timeStamp ~= 2726318400,
warning('aiffread:unknownVersion',...
['File contains an unrecognized version of the ' ...
'AIFC/AIFF-C standard.']);
end
chunkData.timeStamp = timeStamp;
case 'INST', % Instrument Chunk
chunkData.baseNote = fread(fid,1,'int8');
chunkData.detune = fread(fid,1,'int8');
chunkData.lowNote = fread(fid,1,'int8');
chunkData.highNote = fread(fid,1,'int8');
chunkData.lowVelocity = fread(fid,1,'int8');
chunkData.highVelocity = fread(fid,1,'int8');
chunkData.gain = fread(fid,1,'int16');
chunkData.sustainLoop = read_loop(fid);
chunkData.releaseLoop = read_loop(fid);
case 'MARK', % Marker Chunk
nMarkers = fread(fid,1,'uint16');
chunkData.nMarkers = nMarkers;
chunkData.markerArray = struct('id',cell(nMarkers,1),...
'position',[],'markerName',[]);
for iMarker = 1:nMarkers,
chunkData.markerArray(iMarker) = read_marker(fid);
end
markerIDs = [chunkData.markerArray.id];
if any(markerIDs < 1) || (numel(unique(markerIDs)) < nMarkers),
warning('aiffread:invalidMarkers',...
'Invalid or repeated marker IDs were detected.');
end
case 'MIDI', % MIDI Data Chunk
chunkData.midiData = fread(fid,[chunkSizeArray{iChunk} 1],...
'*uint8');
case 'NAME', % Name Chunk
chunkData.text = read_text(fid,chunkSizeArray{iChunk});
case 'SAXL', % Sound Accelerator (SAXEL) Chunk (AIFC/AIFF-C only)
nSaxels = fread(fid,1,'uint16');
chunkData.nSaxels = nSaxels;
chunkData.saxelArray = struct('id',cell(nSaxels,1),'size',[],...
'saxelData',[]);
for iSaxel = 1:nSaxels,
chunkData.saxelArray(iSaxel) = read_saxel(fid);
end
case 'SSND', % Sound Data Chunk
nBytes = ceil(nBits/8);
chunkData.offset = fread(fid,1,'uint32');
chunkData.blockSize = fread(fid,1,'uint32');
if isempty(indexRange),
data = [nSampleFrames nChannels];
elseif strcmp(compressionType,'NONE'),
if (chunkSizeArray{iChunk}-8 ~= nChannels*nSampleFrames*nBytes),
error(error_message('sizeMismatch'));
end
fseek(fid,nBytes*nChannels*(indexRange(1)-1),'cof');
nRead = min(indexRange(2),nSampleFrames)-indexRange(1)+1;
data = fread(fid,[nChannels nRead],['*bit' int2str(nBytes*8)]).';
if nBits < nBytes*8,
data = data./(2^(nBytes*8-nBits));
end
else
data = fread(fid,[chunkSizeArray{iChunk}-8 1],'*int8');
end
end
formChunk.chunkArray(iChunk).chunkData = chunkData;
end
% Close the file:
fclose(fid);
%~~~Begin nested functions~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%------------------------------------------------------------------------
function errorStruct = error_message(errorCode,varargin)
%
% Initialize an error message (and close open files, if necessary).
%
%------------------------------------------------------------------------
% Close open files, if necessary:
if ~isempty(fopen(fid)),
fclose(fid);
end
% Initialize error message text:
switch errorCode,
case 'badArgumentType',
errorText = [varargin{1} ' should be of type ' varargin{2} '.'];
case 'badIndexValue',
errorText = ['Index range must be specified as a scalar or ' ...
'2-element vector of positive, non-zero, non-NaN ' ...
'values.'];
case 'invalidFile',
errorText = ['Could not open file ''' varargin{1} '''.'];
case 'invalidFileFormat',
errorText = ['Not a valid ' varargin{1} ' file.'];
case 'invalidString',
errorText = '''size'' is the only valid string argument.';
case 'missingChunk',
errorText = ['''' varargin{1} ''' chunk is required for a ' ...
varargin{2} ' file.'];
case 'notEnoughInputs',
errorText = 'Not enough input arguments.';
case 'repeatChunk',
errorText = ['The following chunk IDs should not appear more ' ...
'than once in an ' varargin{1} ' file: ' varargin{2}];
case 'sizeMismatch',
errorText = 'Data size mismatch between COMM and SSND chunks.';
case 'unknownExtension',
errorText = ['Unknown file extension ''' varargin{1} '''.'];
end
% Create error structure:
errorStruct = struct('message',errorText,...
'identifier',['aiffread:' errorCode]);
end
%~~~End nested functions~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
end
%~~~Begin subfunctions~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%--------------------------------------------------------------------------
function value = extended2double(exponent,highMantissa,lowMantissa)
%
% Converts an 80-bit extended floating-point type to a double.
%
%--------------------------------------------------------------------------
signBit = bitand(exponent,32768);
exponent = bitand(exponent,32767);
highMantissa = bitand(highMantissa,4294967295);
lowMantissa = bitand(lowMantissa,4294967295);
if (exponent == 0) && (highMantissa == 0) && (lowMantissa == 0),
value = 0;
elseif exponent == 32767,
if (highMantissa > 0) || (lowMantissa > 0),
value = nan;
else
value = inf;
end
else
value = highMantissa*2^(exponent-16414)+lowMantissa*2^(exponent-16446);
end
if signBit,
value = -value;
end
end
%--------------------------------------------------------------------------
function commentStruct = read_comment(fid)
%
% Reads a structure of comment data from a file.
%
%--------------------------------------------------------------------------
commentStruct = struct('timeStamp',fread(fid,1,'uint32'),...
'marker',fread(fid,1,'int16'),...
'count',[],'text',[]);
charCount = fread(fid,1,'uint16');
commentStruct.count = charCount;
commentStruct.text = read_text(fid,charCount);
end
%--------------------------------------------------------------------------
function loopStruct = read_loop(fid)
%
% Reads a structure of loop data from a file.
%
%--------------------------------------------------------------------------
loopStruct = struct('playMode',fread(fid,1,'int16'),...
'beginLoop',fread(fid,1,'int16'),...
'endLoop',fread(fid,1,'int16'));
end
%--------------------------------------------------------------------------
function markerStruct = read_marker(fid)
%
% Reads a structure of marker data from a file.
%
%--------------------------------------------------------------------------
markerStruct = struct('id',fread(fid,1,'int16'),...
'position',fread(fid,1,'uint32'),...
'markerName',read_pstring(fid));
end
%--------------------------------------------------------------------------
function pascalString = read_pstring(fid)
%
% Reads a Pascal-style string from a file, and afterwards shifts the file
% pointer ahead by one byte if necessary to make the total number of bytes
% read an even number.
%
%--------------------------------------------------------------------------
charCount = fread(fid,1,'uint8');
pascalString = fread(fid,[1 charCount],'int8=>char');
if rem(charCount+1,2),
fseek(fid,1,'cof');
end
end
%--------------------------------------------------------------------------
function saxelStruct = read_saxel(fid)
%
% Reads a structure of saxel data from a file.
%
%--------------------------------------------------------------------------
saxelStruct = struct('id',fread(fid,1,'int16'),'size',[],'saxelData',[]);
saxelBytes = fread(fid,1,'uint16');
saxelStruct.size = saxelBytes;
saxelStruct.saxelData = fread(fid,[saxelBytes 1],'*int8');
if rem(saxelBytes,2),
fseek(fid,1,'cof');
end
end
%--------------------------------------------------------------------------
function textString = read_text(fid,charCount)
%
% Reads ASCII text from a file, and afterwards shifts the file pointer
% ahead by one byte if necessary to make the total number of bytes read an
% even number.
%
%--------------------------------------------------------------------------
textString = fread(fid,[1 charCount],'int8=>char');
if rem(charCount,2),
fseek(fid,1,'cof');
end
end
%~~~End subfunctions~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
github
|
martinarielhartmann/mirtooloct-master
|
mireval.m
|
.m
|
mirtooloct-master/MIRToolbox/mireval.m
| 11,804 |
utf_8
|
4eacc02021f6cd564db73d97187f9875
|
function v = mireval(d,file,single,export)
% mireval(d,filename) applies the mirdesign object d to the audio file
% named filename.
% mireval(d,'Folder') applied the mirdesign object to each audio files in
% the current directory.
% mireval(d,'Folders') applied the mirdesign object recursively to the
% subfolders.
% Optional argument: mireval(...,'Single') only keeps the first
% output when several output are returned for a given mirdesign
% object.
% mireval performs the actual evaluation of the design flowchart.
% If 'Folder' is used, the evaluation is carried out for each audio file
% successively.
% If d is a structure or a cell array, evaluate each component
% separately.
% The evaluation starts with a top-down traversal of the design flowchart
% (evaleach).
if not(ischar(file) || (iscell(file) && ischar(file{1})))
error('ERROR IN MIREVAL: the second input should be a file name or ''Folder''')
end
if nargin<3
single = [];
end
if nargin<4
export = [];
end
% First, let's look at the content of the file(s): size, sampling rate,
% etc.
w = []; % Array containing the index positions of the starting and ending dates.
s = getsize(d);
ch = 1;
if ~iscell(file) && (strcmpi(file,'Folder') || strcmpi(file,'Folders'))
[l w sr lg a] = evalfolder('',s,0,[],[],[],{},strcmpi(file,'Folders'));
if l == 0
disp('No sound file detected in this folder.')
end
elseif iscell(file) || (length(file)>3 && strcmpi(file(end-3:end),'.txt'))
if iscell(file)
a = file;
else
a = importdata(file);
end
l = length(a);
w = zeros(2,l);
sr = zeros(1,l);
lg = zeros(1,l);
for i = 1:l
[di,tpi,fpi,fi,lg(i)] = mirread([],a{i},0,0,0);
if not(isempty(s))
interval = s(1:2);
if s(3)
interval = round(interval*fi)+1;
end
if s(4) == 1
interval = interval+round(di/2);
elseif s(4) == 2
interval = interval+di;
end
w(:,i) = min(max(interval,1),di);
else
w(:,i) = [1;di];
end
if getsampling(d)
sr(i) = getsampling(d);
else
sr(i) = fi;
end
end
else
l = 1;
[d1,tp1,fp1,f1,lg,b,n,ch] = mirread([],file,0,0,0);
if length(s)>1
interval = s(1:2)';
if s(3)
interval = round(interval*f1)+1;
end
if s(4) == 1
interval = interval+round(d1/2);
elseif s(4) == 2
interval = interval+d1;
end
if d1 < interval(2)
warning('WARNING IN MIRAUDIO: The temporal region to be extracted exceeds the temporal extent of the whole audio file.');
end
w = min(max(interval,1),d1);
else
w = [1;d1];
end
if isa(d,'mirdesign') && getsampling(d)
sr = getsampling(d);
else
sr = f1;
end
a = {file};
end
if not(l)
v = [];
return
end
order = 1:l;
if isa(d,'mirdesign') && isequal(get(d,'Method'),@mirplay)
op = get(d,'Option');
if isfield(op,'inc')
if not(isnumeric(op.inc))
op.inc = mirgetdata(op.inc);
end
[unused order] = sort(op.inc);
elseif isfield(op,'dec')
if not(isnumeric(op.inc))
op.inc = mirgetdata(op.inc);
end
[unused order] = sort(op.dec,'descend');
end
if isfield(op,'every')
order = order(1:op.every:end);
end
order = order(:)';
end
parallel = 0;
if mirparallel
try
if mirparallel == 1 || mirparallel == Inf
matlabpool;
else
matlabpool(mirparallel);
end
parallel = 1;
catch
warning('mirparallel cannot open matlabpool because it is already used.');
end
end
if parallel
% The evaluation is carried out for each audio file successively
% (or in parallel).
y = mirevalparallel(d,a,sr,lg,w,single,ch,export);
isstat = 0;
else
% The evaluation is carried out for each audio file successively.
y = cell(1,l);
isstat = isfield(d,'Stat');
for i = 1:length(order)
f = order(i);
if l > 1
fprintf('\n')
display(['*** File # ',num2str(i),'/',num2str(l),': ',a{f}]);
end
if mirverbose
tic
end
yf = mirevalaudiofile(d,a{f},sr(f),lg(f),w(:,f),{},0,f,single,'',ch);
if mirverbose
toc
end
y{f} = yf;
if (mirtemporary && length(order)>1) || not(isempty(export))
if 0 % Private use.
ff = find(a{f} == '/');
if isempty(ff)
ff = 0;
else
ff = ff(end);
end
listing = dir([a{f}(1:ff),'Fabien''s annotations/',...
a{f}(ff+1:end-4),'*']);
an = importdata([a{f}(1:ff),'Fabien''s annotations/',...
listing.name]);
dt1 = mirgetdata(yf.t1);
ok1 = find(dt1 > an*.96 & dt1 < an*1.04);
if isempty(ok1)
ok1 = 0;
end
dt2 = mirgetdata(yf.t2);
ok2 = find(dt2 > an*.96 & dt2 < an*1.04);
if isempty(ok2)
ok2 = 0;
end
if isempty(export)
export = 'mirtemporary.txt';
end
if strncmpi(export,'Separately',10)
filename = a{f};
%filename(filename == '/') = '.';
%filename = ['Backup/' filename];
filename = [filename export(11:end)];
%if i == 1
% mkdir('Backup');
%end
mirexport(filename,yf);
elseif i==1
mirexport([export,'1'],ok1,an,yf.t1);
mirexport([export,'2'],ok2,an,yf.t2);
else
mirexport([export,'1'],ok1,an,yf.t1,'#add');
mirexport([export,'2'],ok2,an,yf.t2,'#add');
end
else
if isempty(export)
export = 'mirtemporary.txt';
end
if strncmpi(export,'Separately',10)
filename = a{f};
filename(filename == '/') = '.';
filename = ['Backup/' filename export(11:end)];
if i == 1
mkdir('Backup');
end
mirexport(filename,yf);
elseif i==1
mirexport(export,yf);
else
mirexport(export,yf,'#add');
end
end
end
clear yf
end
end
v = combineaudiofile(a,isstat,y{:});
function c = combineaudiofile(filename,isstat,varargin) % Combine output from several audio files into one single
c = varargin{1}; % The (series of) input(s) related to the first audio file
if isempty(c)
return
end
if isstruct(c)
for j = 1:length(varargin)
if j == 1
fields = fieldnames(varargin{1});
else
fields = union(fields,fieldnames(varargin{j}));
end
end
for i = 1:length(fields)
field = fields{i};
v = {};
for j = 1:length(varargin)
if isfield(varargin{j},field)
v{j} = varargin{j}.(field);
else
v{j} = NaN;
end
end
c.(field) = combineaudiofile('',isstat,v{:});
if strcmp(field,'Class')
c.Class = c.Class{1};
end
end
if not(isempty(filename)) && isstat
c.FileNames = filename;
end
return
end
if ischar(c)
c = varargin;
return
end
if (not(iscell(c)) && not(isa(c,'mirdata')))
for j = 1:length(varargin)
if j == 1
lv = size(varargin{j},1);
else
lv = max(lv,size(varargin{j},1));
end
end
c = NaN(lv,length(varargin));
for i = 1:length(varargin)
if not(isempty(varargin{i}))
c(1:length(varargin{i}),i) = varargin{i};
end
end
return
end
if (iscell(c) && not(isa(c{1},'mirdata')))
for i = 1:length(c)
v = cell(1,nargin-2);
for j = 1:nargin-2
v{j} = varargin{j}{i};
end
c{i} = combineaudiofile(filename,isstat,v{:});
end
return
end
if not(iscell(c))
c = {c};
end
nv = length(c); % The number of input variables for each different audio file
for j = 1:nv % Combine files for each different input variable
v = varargin;
for i = 1:length(varargin)
if iscell(v{i})
v{i} = v{i}{j};
end
end
if not(isempty(v)) && not(isempty(v{1}))
c{j} = combine(v{:});
end
end
function s = getsize(d)
if isa(d,'mirstruct')
d = get(d,'Data');
if isempty(d)
error('ERROR in MIREVAL: Your mirstruct object does not have any field (besides tmp).');
s = 0;
else
s = getsize(d{1});
end
elseif isstruct(d)
fields = fieldnames(d);
s = getsize(d.(fields{1}));
elseif iscell(d)
s = getsize(d{1});
else
s = get(d,'Size'); % Starting and ending dates in seconds.
end
function d2 = sortnames(d,d2,n)
if length(n) == 1
d2(end+1) = d(1);
return
end
first = zeros(1,length(n));
for i = 1:length(n)
if isempty(n{i})
first(i) = -Inf;
else
ni = n{i}{1};
if ischar(ni)
first(i) = ni-10058;
else
first(i) = ni;
end
end
end
[o i] = sort(first);
n = {n{i}};
d = d(i);
i = 0;
while i<length(n)
i = i+1;
if isempty(n{i})
d2(end+1) = d(i);
else
dmp = (d(i));
tmp = {n{i}(2:end)};
while i+1<=length(n) && n{i+1}{1} == n{i}{1};
i = i+1;
dmp(end+1) = d(i);
tmp{end+1} = n{i}(2:end);
end
d2 = sortnames(dmp,d2,tmp);
end
end
function [l w sr lg a] = evalfolder(path,s,l,w,sr,lg,a,folders)
if not(isempty(path))
path = [path '/'];
end
dd = dir;
dn = {dd.name};
nn = cell(1,length(dn)); % Modified file names
for i = 1:length(dn) % Each file name is considered
j = 0;
while j<length(dn{i}) % Each successive character is modified if necessary
j = j+1;
tmp = dn{i}(j) - '0';
if tmp>=0 && tmp<=9
while j+1<length(dn{i}) && dn{i}(j+1)>='0' && dn{i}(j+1)<='9'
j = j+1;
tmp = tmp*10 + (dn{i}(j)-'0');
end
else
tmp = dn{i}(j);
end
nn{i}{end+1} = tmp;
end
end
dd = sortnames(dd,[],nn);
for i = 1:length(dd);
nf = dd(i).name;
if folders && dd(i).isdir
if not(strcmp(nf(1),'.'))
cd(dd(i).name)
[l w sr lg a] = evalfolder([path nf],s,l,w,sr,lg,a,1);
cd ..
end
else
[di,tpi,fpi,fi,li,bi,ni] = mirread([],nf,0,1,0);
if not(isempty(ni))
l = l+1;
if not(isempty(s))
interval = s(1:2);
if s(3)
interval = round(interval*fi)+1;
end
if s(4) == 1
interval = interval+round(di/2);
elseif s(4) == 2
interval = interval+di;
end
w(:,l) = min(max(interval,1),di);
else
w(:,l) = [1;di];
end
sr(l) = fi;
lg(l) = li;
a{l} = [path ni];
end
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmode.m
|
.m
|
mirtooloct-master/MIRToolbox/mirmode.m
| 1,291 |
utf_8
|
0b956b8a46df510afed36b5b138ecdb2
|
function varargout = mirmode(x,varargin)
% m = mirmode(a) estimates the mode. A value of 0 indicates a complete
% incertainty, whereas a positive value indicates a dominance of
% major mode and a negative value indicates a dominance of minor mode.
% Optional arguments:
% mirmode(a,s) specifies a strategy.
% Possible values for s: 'Sum', 'Best'(default)
stra.type = 'String';
stra.default = 'Best';
stra.choice = {'Best','Sum','Major','SumBest'};
option.stra = stra;
specif.option = option;
specif.defaultframelength = 1;
specif.defaultframehop = .5;
varargout = mirfunction(@mirmode,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirkeystrength'))
x = mirkeystrength(x);
end
type = 'mirscalar';
function o = main(s,option,postoption)
if iscell(s)
s = s{1};
end
m = get(s,'Data');
v = mircompute(str2func(['algo' lower(option.stra)]),m);
b = mirscalar(s,'Data',v,'Title','Mode');
o = {b,s};
function v = algosum(m)
v = sum(abs(m(:,:,:,1) - m(:,:,:,2)));
function v = algobest(m)
v = max(m(:,:,:,1)) - max(m(:,:,:,2));
function v = algosumbest(m)
m = max(.5,m)-.5;
v = sum(m(:,:,:,1)) - sum(m(:,:,:,2));
function v = algomajor(m)
m = max(.5,m)-.5;
v = sum(m(:,:,1));
|
github
|
martinarielhartmann/mirtooloct-master
|
mirstat.m
|
.m
|
mirtooloct-master/MIRToolbox/mirstat.m
| 8,336 |
utf_8
|
b095df8141f86e3ba1f19c9a49f92ef4
|
function varargout = mirstat(f,varargin)
% stat = mirstat(f) returns basic statistics of the feature f as a
% structure array stat such that:
% stat.Mean is the mean of the feature;
% stat.Std is the standard deviation;
% stat.Slope is the linear slope of the curve;
% stat.PeriodFreq is the frequency (in Hz) of the main periodicity;
% stat.PeriodAmp is the normalized amplitude of the main periodicity;
% stat.PeriodEntropy is the entropy of the periodicity curve.
% The main periodicity and periodicity curve are evaluated through the
% computation of the autocorrelation sequence related to f.
%
% f can be itself a structure array composed of features. In this case,
% stat will be structured the same way.
%
% mirstat does not work for multi-channels objects.
if isa(f,'mirstruct')
varargout = {set(f,'Stat',1)};
elseif isstruct(f)
if isdesign(f)
f.Stat = 1;
varargout = {f};
else
fields = fieldnames(f);
for i = 1:length(fields)
field = fields{i};
ff = f.(field);
if iscell(ff) && isa(ff{1},'mirdata')
ff = ff{1};
end
if isa(ff,'mirdata')
if i == 1
la = get(ff,'Label');
if not(isempty(la) || isempty(la{1}))
stat.Class = la;
end
end
ff = set(ff,'Label','');
end
stat.(field) = mirstat(ff,'FileNames',0);
end
if isempty(varargin)
f0 = f;
while isstruct(f0)
fields = fieldnames(f0);
f0 = f0.(fields{1});
end
if iscell(f0)
f0 = f0{1};
end
stat.FileNames = get(f0,'Name');
end
varargout = {stat};
end
elseif iscell(f)
if 0 %ischar(f{1})
varargout = {f};
else
res = zeros(length(f),1);
for i = 1:length(f)
res(i) = mirstat(f{i});
end
varargout = {res};
end
elseif isnumeric(f)
f(isnan(f)) = [];
varargout = {mean(f)};
else
alongfiles.key = 'AlongFiles';
alongfiles.type = 'Boolean';
alongfiles.default = 0;
option.alongfiles = alongfiles;
filenames.key = 'FileNames';
filenames.type = 'Boolean';
filenames.default = 1;
option.filenames = filenames;
specif.option = option;
specif.nochunk = 1;
varargout = mirfunction(@mirstat,f,varargin,nargout,specif,@init,@main);
end
function [x type] = init(x,option)
type = '';
function stat = main(f,option,postoption)
if iscell(f)
f = f{1};
end
if isa(f,'mirhisto')
warning('WARNING IN MIRSTAT: histograms are not taken into consideration yet.')
stat = struct;
return
end
fp = get(f,'FramePos');
if haspeaks(f)
ppp = get(f,'PeakPrecisePos');
if not(isempty(ppp)) && not(isempty(ppp{1}))
stat = addstat(struct,ppp,fp,'PeakPos');
stat = addstat(stat,get(f,'PeakPreciseVal'),fp,'PeakMag');
else
if isa(f,'mirkeystrength') || (isa(f,'mirchromagram') && get(f,'Wrap'))
stat = struct; % This needs to be defined using some kind of circular statistics..
else
stat = addstat(struct,get(f,'PeakPosUnit'),fp,'PeakPos');
end
stat = addstat(stat,get(f,'PeakVal'),fp,'PeakMag');
end
else
stat = addstat(struct,get(f,'Data'),fp,'',option.alongfiles,...
get(f,'Name'),get(f,'Label'));
end
if option.filenames
stat.FileNames = get(f,'Name');
end
function stat = addstat(stat,d,fp,field,alongfiles,filename,labels)
l = length(d);
if nargin<5
alongfiles = 0;
end
if nargin<7
labels = {};
end
if not(alongfiles) || l == 1
anyframe = 0;
for i = 1:l
if not(iscell(d{i}))
d{i} = {d{i}};
end
for k = 1:length(d{i})
dd = d{i}{k};
if iscell(dd)
if length(dd)>1
anyframe = 1;
end
dn = cell2array(dd);
[m{i}{k},s{i}{k},sl{i}{k},pa{i}{k},pf{i}{k},pe{i}{k}] ...
= computestat(dn,fp{i}{k});
elseif size(dd,2) < 2
nonan = find(not(isnan(dd)));
dn = dd(nonan);
if isempty(dn)
m{i}{k} = NaN;
else
m{i}{k} = mean(dn,2);
end
s{i}{k} = NaN;
sl{i}{k} = NaN;
pa{i}{k} = NaN;
pf{i}{k} = NaN;
pe{i}{k} = NaN;
else
anyframe = 1;
s1 = size(dd,1);
s3 = size(dd,3);
dd = mean(dd,4); %mean(dd,3),4);
m{i}{k} = NaN(s1,1,s3);
s{i}{k} = NaN(s1,1,s3);
sl{i}{k} = NaN(s1,1,s3);
pa{i}{k} = NaN(s1,1,s3);
pf{i}{k} = NaN(s1,1,s3);
pe{i}{k} = NaN(s1,1,s3);
for h = 1:s3
for j = 1:s1
[m{i}{k}(j,1,h),s{i}{k}(j,1,h),sl{i}{k}(j,1,h),...
pa{i}{k}(j,1,h),pf{i}{k}(j,1,h),pe{i}{k}(j,1,h)] = ...
computestat(dd(j,:,h),fp{i}{k});
end
end
end
end
end
if anyframe
fields = {'Mean','Std','Slope','PeriodFreq','PeriodAmp','PeriodEntropy'};
stats = {m,s,sl,pf,pa,pe};
else
fields = {'Mean'};
stats = {m};
end
for i = 1:length(stats)
data = stats{i};
data = uncell(data,NaN);
stat.(strcat(field,fields{i})) = data;
end
else
if iscell(d{1}{1})
slash = strfind(filename{1},'/');
nbfolders = 1;
infolder = 0;
foldername{1} = filename{1}(1:slash(end)-1);
for i = 1:length(d)
slash = strfind(filename{i},'/');
if not(strcmpi(filename{i}(1:slash(end)-1),foldername))
nbfolders = nbfolders + 1;
infolder = 0;
foldername{nbfolders} = filename{i}(1:slash(end)-1);
end
infolder = infolder+1;
dd{nbfolders}(infolder,:) = cell2array(d{i}{1});
end
for i = 1:length(dd)
figure
plot(dd{i}')
stat.Mean{i} = mean(dd{i});
stat.Std{i} = std(dd{i});
end
end
end
if not(isempty(labels) || isempty(labels{1}))
stat.Class = labels;
end
function dn = cell2array(dd)
dn = zeros(1,length(dd));
for j = 1:length(dd)
if isempty(dd{j})
dn(j) = NaN;
else
dn(j) = dd{j}(1);
end
end
function [m,s,sl,pa,pf,pe] = computestat(d,fp)
m = NaN;
s = NaN;
sl = NaN;
pa = NaN;
pf = NaN;
pe = NaN;
diffp = fp(1,2:end) - fp(1,1:end-1);
if isempty(diffp) || sum(round((diffp(2:end)-diffp(1:end-1))*1000))
% Not regular sampling (in mirattacktime for instance)
framesampling = NaN;
else
framesampling = fp(1,2)-fp(1,1);
end
nonan = find(not(isnan(d)));
if not(isempty(nonan))
dn = d(nonan);
m = mean(dn,2);
s = std(dn,0,2);
if not(isnan(s))
if s
dk = (dn-m)/s;
tk = linspace(0,1,size(d,2));
sl = dk(:)'/tk(nonan);
elseif size(s,2) == 1
s = NaN;
end
end
if length(dn)>1
cor = xcorr(dn',dn','coeff');
cor = cor(ceil(length(cor)/2):end);
% let's zero the first descending slope of the
% autocorrelation function
firstmin = find(cor(2:end)>cor(1:end-1));
if not(isempty(firstmin) || isnan(framesampling))
cor2 = cor;
cor2(1:firstmin(1)) = 0;
[pa,pfk] = max(cor2);
if pfk > 1
pf = 1/(pfk-1)/framesampling;
end
end
cor = abs(cor);
cor = cor/sum(cor);
pe = -sum(cor.*log(cor+1e-12))./log(length(cor));
end
end
function b = isdesign(f)
if iscell(f)
f = f{1};
end
if isa(f,'mirdesign') || isa(f,'mirstruct')
b = 1;
elseif isa(f,'mirdata') || not(isstruct(f))
b = 0;
else
fields = fieldnames(f);
b = isdesign(f.(fields{1}));
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirlength.m
|
.m
|
mirtooloct-master/MIRToolbox/mirlength.m
| 1,393 |
utf_8
|
21e35d00ed2dbfaa0e4a83a2165a1f2f
|
function varargout = mirlength(orig,varargin)
% mirlength(x) indicates the temporal length of x.
% If x is decomposed into frames,
% mirlength(x) indicates the frame length, whereas
% mirlength(x,'Global') indicates the total temporal spanning of the
% frame decomposition.
% Optional argument:
% mirlength(...,'Unit',u) indicates the length unit.
% Possible values:
% u = 'Second': duration in seconds (Default).
% u = 'Sample': length in number of samples.
unit.key = 'Unit';
unit.type = 'String';
unit.choice = {'Second','Sample'};
unit.default = 'Second';
option.unit = unit;
specif.option = option;
varargout = mirfunction(@mirlength,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = 'mirscalar';
function z = main(a,option,postoption)
if iscell(a)
a = a{1};
end
d = get(a,'Data');
f = get(a,'Sampling');
v = cell(1,length(d));
for h = 1:length(d)
v{h} = cell(1,length(d{h}));
for i = 1:length(d{h})
di = d{h}{i};
v{h}{i} = size(d{h}{i},1);
if strcmp(option.unit,'Second')
v{h}{i} = v{h}{i}/f{h};
end
end
end
z = mirscalar(a,'Data',v,'Title','Temporal length');
if strcmp(option.unit,'Second')
z = set(z,'Unit','s.');
else
z = set(z,'Unit','samples.');
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirzerocross.m
|
.m
|
mirtooloct-master/MIRToolbox/mirzerocross.m
| 2,298 |
utf_8
|
26d2924ca563e0f4eac9d3f2b5793858
|
function varargout = mirzerocross(orig,varargin)
% mirzeroscross(x) computes the sign-changes rate along the signal x,
% i.e., how many time the waveform crosses the X-axis. When applied on
% an audio waveform, gives a notion of noise.
% Optional argument:
% mirzerocross(...,'Per',p) precises the temporal reference for the
% rate computation.
% Possible values:
% p = 'Second': number of sign-changes per second (Default).
% p = 'Sample': number of sign-changes divided by the total
% number of samples.
% The 'Second' option returns a result equal to the one returned
% by the 'Sample' option multiplied by the sampling rate.
% mirzerocross(...,'Dir',d) precises the definition of sign change.
% Possible values:
% d = 'One': number of sign-changes from negative to positive
% only (or, equivalently, from positive to negative only).
% (Default)
% d = 'Both': number of sign-changes in both ways.
% The 'Both' option returns a result equal to twice the one
% returned by the 'One' option.
per.key = 'Per';
per.type = 'String';
per.choice = {'Second','Sample'};
per.default = 'Second';
option.per = per;
dir.key = 'Dir';
dir.type = 'String';
dir.choice = {'One','Both'};
dir.default = 'One';
option.dir = dir;
specif.option = option;
varargout = mirfunction(@mirzerocross,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata'))
x = miraudio(x);
end
type = 'mirscalar';
function z = main(a,option,postoption)
if iscell(a)
a = a{1};
end
d = get(a,'Data');
f = get(a,'Sampling');
v = cell(1,length(d));
for h = 1:length(d)
v{h} = cell(1,length(d{h}));
for i = 1:length(d{h})
di = d{h}{i};
nl = size(di,1);
zc = sum( di(2:end,:,:).*di(1:(end-1),:,:) < 0 ) /nl;
if strcmp(option.per,'Second')
zc = zc*f{h};
end
if strcmp(option.dir,'One')
zc = zc/2;
end
v{h}{i} = zc;
end
end
z = mirscalar(a,'Data',v,'Title','Zero-crossing rate');
|
github
|
martinarielhartmann/mirtooloct-master
|
mp3read.m
|
.m
|
mirtooloct-master/MIRToolbox/mp3read.m
| 12,209 |
utf_8
|
b0b052ee491ef354631f3eaad6bbc0f7
|
function [Y,FS,NBITS,OPTS] = mp3read(FILE,N,MONO,DOWNSAMP,DELAY)
% MP3READ Read MP3 audio file via use of external binaries.
% Y = MP3READ(FILE) reads an mp3-encoded audio file into the
% vector Y just like wavread reads a wav-encoded file (one channel
% per column). Extension ".mp3" is added if FILE has none.
% Also accepts other formats of wavread, such as
% Y = MP3READ(FILE,N) to read just the first N sample frames (N
% scalar), or the frames from N(1) to N(2) if N is a two-element vector.
% Y = MP3READ(FILE,FMT) or Y = mp3read(FILE,N,FMT)
% with FMT as 'native' returns int16 samples instead of doubles;
% FMT can be 'double' for default behavior (to exactly mirror the
% syntax of wavread).
%
% [Y,FS,NBITS,OPTS] = MP3READ(FILE...) returns extra information:
% FS is the sampling rate, NBITS is the bit depth (always 16),
% OPTS.fmt is a format info string; OPTS has multiple other
% fields, see WAVREAD.
%
% SIZ = MP3READ(FILE,'size') returns the size of the audio data contained
% in the file in place of the actual audio data, returning the
% 2-element vector SIZ=[samples channels].
%
% [Y...] = MP3READ(FILE,N,MONO,DOWNSAMP,DELAY) extends the
% WAVREAD syntax to allow access to special features of the
% mpg123 engine: MONO = 1 forces output to be mono (by
% averaging stereo channels); DOWNSAMP = 2 or 4 downsamples by
% a factor of 2 or 4 (thus FS returns as 22050 or 11025
% respectively for a 44 kHz mp3 file);
% To accommodate a bug in mpg123-0.59, DELAY controls how many
% "warm up" samples to drop at the start of the file; the
% default value of 2257 makes an mp3write/mp3read loop for a 44
% kHz mp3 file be as close as possible to being temporally
% aligned; specify as 0 to prevent discard of initial samples.
% For later versions of mpg123 (e.g. 1.9.0) this is not needed;
% a flag in mp3read.m makes the default DELAY zero in this case.
%
% [Y...] = MP3READ(URL...) uses the built-in network
% functionality of mpg123 to read an MP3 file across the
% network. URL must be of the form 'http://...' or
% 'ftp://...'. 'size' and OPTS are not available in this mode.
%
% Example:
% To read an mp3 file as doubles at its original width and sampling rate:
% [Y,FS] = mp3read('piano.mp3');
% To read the first 1 second of the same file, downsampled by a
% factor of 4, cast to mono, using the default filename
% extension:
% [Y,FS4] = mp3read('piano', FS/4, 1, 4);
%
% Note: Because the mp3 format encodes samples in blocks of 26 ms (at
% 44 kHz), and because of the "warm up" period of the encoder,
% the file length may not be exactly what you expect, depending
% on your version of mpg123 (recent versions fix warmup).
%
% Note: requires external binaries mpg123 and mp3info; you
% can find binaries for several platforms at:
% http://labrosa.ee.columbia.edu/matlab/mp3read.html
%
% See also mp3write, wavread.
% $Header: /Users/dpwe/matlab/columbiafns/RCS/mp3read.m,v 1.6 2009/12/08 16:35:23 dpwe Exp dpwe $
% 2003-07-20 [email protected] This version calls mpg123.
% 2004-08-31 Fixed to read whole files correctly
% 2004-09-08 Uses mp3info to get info about mp3 files too
% 2004-09-18 Reports all mp3info fields in OPTS.fmt; handles MPG2LSF sizes
% + added MONO, DOWNSAMP flags, changed default behavior.
% 2005-09-28 Fixed bug reading full-rate stereo as 1ch (thx [email protected])
% 2006-09-17 Chop off initial 2257 sample delay (for 44.1 kHz mp3)
% so read-write loop doesn't get progressively delayed.
% You can suppress this with a 5th argument of 0.
% 2007-02-04 Added support for FMT argument to match wavread
% Added automatic selection of binary etc. to allow it
% to work cross-platform without editing prior to
% submitting to Matlab File Exchange
% 2007-07-23 Tweaks to 'size' mode so it exactly agrees with read data.
% 2009-03-15 Added fixes so 'http://...' file URLs will work.
% 2009-03-26 Added filename length check to http: test (thx fabricio guzman)
% find our baseline directory
path = fileparts(which('mp3read'));
% %%%%% Directory for temporary file (if needed)
% % Try to read from environment, or use /tmp if it exists, or use CWD
tmpdir = getenv('TMPDIR');
if isempty(tmpdir) || exist(tmpdir,'file')==0
tmpdir = '/tmp';
end
if exist(tmpdir,'file')==0
tmpdir = '';
end
% ensure it exists
%if length(tmpdir) > 0 && exist(tmpdir,'file')==0
% mkdir(tmpdir);
%end
%%%%%% Command to delete temporary file (if needed)
rmcmd = 'rm';
%%%%%% Location of the binaries - attempt to choose automatically
%%%%%% (or edit to be hard-coded for your installation)
ext = lower(computer);
if ispc
ext = 'exe';
rmcmd = 'del';
end
% mpg123-0.59 inserts silence at the start of decoded files, which
% we compensate. However, this is fixed in mpg123-1.9.0, so
% make this flag 1 only if you have mpg123-0.5.9
MPG123059 = 0;
mpg123 = '/usr/local/bin/mpg123'; %%%PJH
%%%mpg123 = fullfile(path,['mpg123.',ext]);
mp3info = '/usr/local/bin/mp3info'; %%%PJH
%%%mp3info = fullfile(path,['mp3info.',ext]);
%%%%% Check for network mode
if length(FILE) > 6 && (strcmp(lower(FILE(1:7)),'http://') == 1 ...
|| strcmp(lower(FILE(1:6)),'ftp://'))
% mp3info not available over network
OVERNET = 1;
else
OVERNET = 0;
end
%%%%% Process input arguments
if nargin < 2
N = 0;
end
% Check for FMT spec (per wavread)
FMT = 'double';
if ischar(N)
FMT = lower(N);
N = 0;
end
if length(N) == 1
% Specified N was upper limit
N = [1 N];
end
if nargin < 3
forcemono = 0;
else
% Check for 3rd arg as FMT
if ischar(MONO)
FMT = lower(MONO);
MONO = 0;
end
forcemono = (MONO ~= 0);
end
if nargin < 4
downsamp = 1;
else
downsamp = DOWNSAMP;
end
if downsamp ~= 1 && downsamp ~= 2 && downsamp ~= 4
error('DOWNSAMP can only be 1, 2, or 4');
end
% process DELAY option (nargin 5) after we've read the SR
if strcmp(FMT,'native') == 0 && strcmp(FMT,'double') == 0 && ...
strcmp(FMT,'size') == 0
error(['FMT must be ''native'' or ''double'' (or ''size''), not ''',FMT,'''']);
end
%%%%%% Constants
NBITS=16;
%%%%% add extension if none (like wavread)
[path,file,ext] = fileparts(FILE);
if isempty(ext)
FILE = [FILE, '.mp3'];
end
if ~OVERNET
%%%%%% Probe file to find format, size, etc. using "mp3info" utility
cmd = ['"',mp3info, '" -r m -p "%Q %u %b %r %v * %C %e %E %L %O %o %p" "', FILE,'"'];
% Q = samprate, u = #frames, b = #badframes (needed to get right answer from %u)
% r = bitrate, v = mpeg version (1/2/2.5)
% C = Copyright, e = emph, E = CRC, L = layer, O = orig, o = mono, p = pad
w = mysystem(cmd);
% Break into numerical and ascii parts by finding the delimiter we put in
starpos = findstr(w,'*');
nums = str2num(w(1:(starpos - 2)));
strs = tokenize(w((starpos+2):end));
SR = nums(1);
nframes = nums(2);
nchans = 2 - strcmp(strs{6}, 'mono');
layer = length(strs{4});
bitrate = nums(4)*1000;
mpgv = nums(5);
% Figure samples per frame, after
% http://board.mp3-tech.org/view.php3?bn=agora_mp3techorg&key=1019510889
if layer == 1
smpspfrm = 384;
elseif SR < 32000 && layer ==3
smpspfrm = 576;
if mpgv == 1
error('SR < 32000 but mpeg version = 1');
end
else
smpspfrm = 1152;
end
OPTS.fmt.mpgBitrate = bitrate;
OPTS.fmt.mpgVersion = mpgv;
% fields from wavread's OPTS
OPTS.fmt.nAvgBytesPerSec = bitrate/8;
OPTS.fmt.nSamplesPerSec = SR;
OPTS.fmt.nChannels = nchans;
OPTS.fmt.nBlockAlign = smpspfrm/SR*bitrate/8;
OPTS.fmt.nBitsPerSample = NBITS;
OPTS.fmt.mpgNFrames = nframes;
OPTS.fmt.mpgCopyright = strs{1};
OPTS.fmt.mpgEmphasis = strs{2};
OPTS.fmt.mpgCRC = strs{3};
OPTS.fmt.mpgLayer = strs{4};
OPTS.fmt.mpgOriginal = strs{5};
OPTS.fmt.mpgChanmode = strs{6};
OPTS.fmt.mpgPad = strs{7};
OPTS.fmt.mpgSampsPerFrame = smpspfrm;
else
% OVERNET mode
OPTS = [];
% guesses
smpspfrm = 1152;
SR = 44100;
nframes = 0;
end
if SR == 16000 && downsamp == 4
error('mpg123 will not downsample 16 kHz files by 4 (only 2)');
end
% process or set delay
if nargin < 5
if MPG123059
mpg123delay44kHz = 2257; % empirical delay of lame/mpg123 loop
mpg123delay16kHz = 1105; % empirical delay of lame/mpg123 loop for 16 kHz sampling
if SR == 16000
rawdelay = mpg123delay16kHz;
else
rawdelay = mpg123delay44kHz; % until we know better
end
delay = round(rawdelay/downsamp);
else
% seems like predelay is fixed in mpg123-1.9.0
delay = 0;
end
else
delay = DELAY;
end
if downsamp == 1
downsampstr = '';
else
downsampstr = [' -',num2str(downsamp)];
end
FS = SR/downsamp;
if forcemono == 1
nchans = 1;
chansstr = ' -m';
else
chansstr = '';
end
% Size-reading version
if strcmp(FMT,'size') == 1
Y = [floor(smpspfrm*nframes/downsamp)-delay, nchans];
else
% Temporary file to use
tmpfile = fullfile(tmpdir, ['tmp',num2str(round(1000*rand(1))),'.wav']);
skipx = 0;
skipblks = 0;
skipstr = '';
sttfrm = N(1)-1;
% chop off transcoding delay?
%sttfrm = sttfrm + delay; % empirically measured
% no, we want to *decode* those samples, then drop them
% so delay gets added to skipx instead
if sttfrm > 0
skipblks = floor(sttfrm*downsamp/smpspfrm);
skipx = sttfrm - (skipblks*smpspfrm/downsamp);
skipstr = [' -k ', num2str(skipblks)];
end
skipx = skipx + delay;
lenstr = '';
endfrm = -1;
decblk = 0;
if length(N) > 1
endfrm = N(2);
if endfrm > sttfrm
decblk = ceil((endfrm+delay)*downsamp/smpspfrm) - skipblks + 10;
% we read 10 extra blks (+10) to cover the case where up to 10 bad
% blocks are included in the part we are trying to read (it happened)
lenstr = [' -n ', num2str(decblk)];
% This generates a spurious "Warn: requested..." if reading right
% to the last sample by index (or bad blks), but no matter.
end
end
% Run the decode
cmd=['"',mpg123,'"', downsampstr, chansstr, skipstr, lenstr, ...
' -q -w "', tmpfile,'" "',FILE,'"'];
%w =
mysystem(cmd);
% Load the data
Y = wavread(tmpfile);
% % pad delay on to end, just in case
% Y = [Y; zeros(delay,size(Y,2))];
% % no, the saved file is just longer
if decblk > 0 && length(Y) < decblk*smpspfrm/downsamp
% This will happen if the selected block range includes >1 bad block
disp(['Warn: requested ', num2str(decblk*smpspfrm/downsamp),' frames, returned ',num2str(length(Y))]);
end
% Delete tmp file
mysystem([rmcmd,' "', tmpfile,'"']);
% debug
% disp(['sttfrm=',num2str(sttfrm),' endfrm=',num2str(endfrm),' skipx=',num2str(skipx),' delay=',num2str(delay),' len=',num2str(length(Y))]);
% Select the desired part
if skipx+endfrm-sttfrm > length(Y)
endfrm = length(Y)+sttfrm-skipx;
end
disp(['PJH: mp3read.m: 01']);
fflush(stdout);
if endfrm > sttfrm
disp(['PJH: mp3read.m: 02, CRAP!']);
fflush(stdout);
Y = Y(skipx+(1:(endfrm-sttfrm)),:);
elseif skipx > 0
disp(['PJH: mp3read.m: 03, CRAP!']);
fflush(stdout);
Y = Y((skipx+1):end,:);
end
% Convert to int if format = 'native'
if strcmp(FMT,'native')
disp(['PJH: mp3read.m: 04, native']);
fflush(stdout);
Y = int16((2^15)*Y);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function w = mysystem(cmd)
% Run system command; report error; strip all but last line
[s,w] = system(cmd);
if s ~= 0
error(['unable to execute ',cmd,' (',w,')']);
end
% Keep just final line
w = w((1+max([0,findstr(w,10)])):end);
% Debug
%disp([cmd,' -> ','*',w,'*']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function a = tokenize(s,t)
% Break space-separated string into cell array of strings.
% Optional second arg gives alternate separator (default ' ')
% 2004-09-18 [email protected]
if nargin < 2; t = ' '; end
a = [];
p = 1;
n = 1;
l = length(s);
nss = findstr([s(p:end),t],t);
for ns = nss
% Skip initial spaces (separators)
if ns == p
p = p+1;
else
if p <= l
a{n} = s(p:(ns-1));
n = n+1;
p = ns+1;
end
end
end
|
github
|
martinarielhartmann/mirtooloct-master
|
convolve2.m
|
.m
|
mirtooloct-master/MIRToolbox/convolve2.m
| 7,776 |
utf_8
|
3946f147a02830e1954206f3fd2e961b
|
function y = convolve2(x, m, shape, tol)
%CONVOLVE2 Two dimensional convolution.
% Y = CONVOLVE2(X, M) performs the 2-D convolution of matrices X and
% M. If [mx,nx] = size(X) and [mm,nm] = size(M), then size(Y) =
% [mx+mm-1,nx+nm-1]. Values near the boundaries of the output array are
% calculated as if X was surrounded by a border of zero values.
%
% Y = CONVOLVE2(X, M, SHAPE) where SHAPE is a string returns a
% subsection of the 2-D convolution with size specified by SHAPE:
%
% 'full' - (default) returns the full 2-D convolution,
% 'same' - returns the central part of the convolution
% that is the same size as A (using zero padding),
% 'valid' - returns only those parts of the convolution
% that are computed without the zero-padded
% edges, size(Y) = [mx-mm+1,nx-nm+1] when
% size(X) > size(M),
% 'wrap' - as for 'same' except that instead of using
% zero-padding the input A is taken to wrap round as
% on a toroid.
% 'reflect' - as for 'same' except that instead of using
% zero-padding the input A is taken to be reflected
% at its boundaries.
%
% CONVOLVE2 is fastest when mx > mm and nx > nm - i.e. the first
% argument is the input and the second is the mask.
%
% If the rank of the mask M is low, CONVOLVE2 will decompose it into a
% sum of outer product masks, each of which is applied efficiently as
% convolution with a row vector and a column vector, by calling CONV2.
% The function will often be faster than CONV2 or FILTER2 (in some
% cases much faster) and will produce the same results as CONV2 to
% within a small tolerance.
%
% Y = CONVOLVE2(... , TOL) where TOL is a number in the range 0.0 to
% 1.0 computes the convolution using a reduced-rank approximation to
% M, provided this will speed up the computation. TOL limits the
% relative sum-squared error in the effective mask; that is, if the
% effective mask is E, the error is controlled such that
%
% sum(sum( (M-E) .* (M-E) ))
% -------------------------- <= TOL
% sum(sum( M .* M ))
%
% See also CONV2, FILTER2.
% David Young, Department of Informatics, University of Sussex, February 2002,
% revised January 2005.
% Deal with optional arguments
error(nargchk(2,4,nargin));
if nargin < 3
shape = 'full'; % shape default as for CONV2
tol = 0;
elseif nargin < 4
if isnumeric(shape)
tol = shape;
shape = 'full';
else
tol = 0;
end
end;
% Set up to do the wrap & reflect operations, not handled by conv2
if strcmp(shape, 'wrap')
x = wraparound(x, m);
shape = 'valid';
elseif strcmp(shape, 'reflect')
x = reflectborders(x, m);
shape = 'valid';
end
% do the convolution itself
y = doconv(x, m, shape, tol);
%-----------------------------------------------------------------------
function y = doconv(x, m, shape, tol);
% Carry out convolution
[mx, nx] = size(x);
[mm, nm] = size(m);
% If the mask is bigger than the input, or it is 1-D already,
% just let CONV2 handle it.
if mm > mx | nm > nx | mm == 1 | nm == 1
y = conv2(x, m, shape);
else
% Get svd of mask
if mm < nm; m = m'; end % svd(..,0) wants m > n
[u,s,v] = svd(m, 0);
s = diag(s);
rank = trank(m, s, tol);
if rank*(mm+nm) < mm*nm % take advantage of low rank
if mm < nm; t = u; u = v; v = t; end % reverse earlier transpose
vp = v';
% For some reason, CONV2(H,C,X) is very slow, so use the normal call
y = conv2(conv2(x, u(:,1)*s(1), shape), vp(1,:), shape);
for r = 2:rank
y = y + conv2(conv2(x, u(:,r)*s(r), shape), vp(r,:), shape);
end
else
if mm < nm; m = m'; end % reverse earlier transpose
y = conv2(x, m, shape);
end
end
%-----------------------------------------------------------------------
function r = trank(m, s, tol)
% Approximate rank function - returns rank of matrix that fits given
% matrix to within given relative rms error. Expects original matrix
% and vector of singular values.
if tol < 0 | tol > 1
error('Tolerance must be in range 0 to 1');
end
if tol == 0 % return estimate of actual rank
tol = length(m) * max(s) * eps;
r = sum(s > tol);
else
ss = s .* s;
t = (1 - tol) * sum(ss);
r = 0;
sm = 0;
while sm < t
r = r + 1;
sm = sm + ss(r);
end
end
%-----------------------------------------------------------------------
function y = wraparound(x, m)
% Extend x so as to wrap around on both axes, sufficient to allow a
% "valid" convolution with m to return the cyclical convolution.
% We assume mask origin near centre of mask for compatibility with
% "same" option.
[mx, nx] = size(x);
[mm, nm] = size(m);
if mm > mx | nm > nx
error('Mask does not fit inside array')
end
mo = floor((1+mm)/2); no = floor((1+nm)/2); % reflected mask origin
ml = mo-1; nl = no-1; % mask left/above origin
mr = mm-mo; nr = nm-no; % mask right/below origin
me = mx-ml+1; ne = nx-nl+1; % reflected margin in input
mt = mx+ml; nt = nx+nl; % top of image in output
my = mx+mm-1; ny = nx+nm-1; % output size
y = zeros(my, ny);
y(mo:mt, no:nt) = x; % central region
if ml > 0
y(1:ml, no:nt) = x(me:mx, :); % top side
if nl > 0
y(1:ml, 1:nl) = x(me:mx, ne:nx); % top left corner
end
if nr > 0
y(1:ml, nt+1:ny) = x(me:mx, 1:nr); % top right corner
end
end
if mr > 0
y(mt+1:my, no:nt) = x(1:mr, :); % bottom side
if nl > 0
y(mt+1:my, 1:nl) = x(1:mr, ne:nx); % bottom left corner
end
if nr > 0
y(mt+1:my, nt+1:ny) = x(1:mr, 1:nr); % bottom right corner
end
end
if nl > 0
y(mo:mt, 1:nl) = x(:, ne:nx); % left side
end
if nr > 0
y(mo:mt, nt+1:ny) = x(:, 1:nr); % right side
end
%-----------------------------------------------------------------------
function y = reflectborders(x, m)
% Extend x so as to reflect at each boundary, sufficient to allow a
% "valid" convolution with m to return a matrix the same size as
% the orginal.
% We assume mask origin near centre of mask for compatibility with
% "same" option.
[mx, nx] = size(x);
[mm, nm] = size(m);
if mm > mx | nm > nx
error('Mask does not fit inside array')
end
mo = floor((1+mm)/2); no = floor((1+nm)/2); % reflected mask origin
ml = mo-1; nl = no-1; % mask left/above origin
mr = mm-mo; nr = nm-no; % mask right/below origin
me = mx-mr+1; ne = nx-nr+1; % translated margin in input
mt = mx+ml; nt = nx+nl; % top/right of image in output
my = mx+mm-1; ny = nx+nm-1; % output size
y = zeros(my, ny);
y(mo:mt, no:nt) = x; % central region
if ml > 0
y(1:ml, no:nt) = x(ml:-1:1, :); % top side
if nl > 0
y(1:ml, 1:nl) = x(ml:-1:1, nl:-1:1); % top left corner
end
if nr > 0
y(1:ml, nt+1:ny) = x(ml:-1:1, nx:-1:ne); % top right corner
end
end
if mr > 0
y(mt+1:my, no:nt) = x(mx:-1:me, :); % bottom side
if nl > 0
y(mt+1:my, 1:nl) = x(mx:-1:me, nl:-1:1); % bottom left corner
end
if nr > 0
y(mt+1:my, nt+1:ny) = x(mx:-1:me, nx:-1:ne); % bottom right corner
end
end
if nl > 0
y(mo:mt, 1:nl) = x(:, nl:-1:1); % left side
end
if nr > 0
y(mo:mt, nt+1:ny) = x(:, nx:-1:ne); % right side
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirkurtosis.m
|
.m
|
mirtooloct-master/MIRToolbox/mirkurtosis.m
| 1,110 |
utf_8
|
a1f7b0edb45216089fdc8d17f29fa799
|
function varargout = mirkurtosis(orig,varargin)
% k = mirkurtosis(x) calculates the kurtosis of x, indicating whether
% the curve is peaked or flat relative to a normal distribution.
% x can be either:
% - a spectrum (spectral kurtosis),
% - an envelope (temporal kurtosis), or
% - any histogram.
varargout = mirfunction(@mirkurtosis,orig,varargin,nargout,struct,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata')) || isamir(x,'miraudio')
x = mirspectrum(x);
end
type = 'mirscalar';
function k = main(x,option,postoption)
if iscell(x)
x = x{1};
end
y = peaksegments(@kurtosis,get(x,'Data'),...
get(x,'Pos'),...
get(mircentroid(x,'MaxEntropy',0),'Data'),...
get(mirspread(x),'Data'));
if isa(x,'mirspectrum')
t = 'Spectral kurtosis';
elseif isa(x,'mirenvelope')
t = 'Temporal kurtosis';
else
t = ['Kurtosis of ',get(x,'Title')];
end
k = mirscalar(x,'Data',y,'Title',t,'Unit','');
function k = kurtosis(d,p,c,s)
k = sum((p-c).^4.*(d/sum(d))) ./ s.^4;
|
github
|
martinarielhartmann/mirtooloct-master
|
mirflux.m
|
.m
|
mirtooloct-master/MIRToolbox/mirflux.m
| 14,091 |
utf_8
|
9718f5621e82c5f247eeea63a085f39f
|
function varargout = mirflux(orig,varargin)
% f = mirflux(x) measures distance between successive frames.
% First argument:
% If x is a spectrum, this corresponds to spectral flux.
% But the flux of any other data can be computed as well.
% If x is an audio file or audio signal, the spectral flux is
% computed by default.
% Optional arguments:
% f = mirflux(x,'Frame',...) specifies the frame parameters, if x is
% not already decomposed into frames. Default values are frame
% length of .2 seconds and hop factor of 1.3.
% f = mirflux(x,'Dist',d) specifies the distance between
% successive frames: (IF 'COMPLEX': DISTANCE = 'CITY' ALWAYS)
% d = 'Euclidian': Euclidian distance (Default)
% d = 'City': City-block distance
% d = 'Cosine': Cosine distance (or normalized correlation)
% f = mirflux(...,'Inc'): Only positive difference between frames are
% summed, in order to focus on increase of energy solely.
% f = mirflux(...,'Complex'), for spectral flux, combines use of
% energy and phase information (Bello et al, 2004).
% f = mirflux(...,'Halfwave'): performs a half-wave rectification on
% the result.
% f = mirflux(...,'Median',l,C): removes small spurious peaks by
% subtracting to the result its median filtering. The median
% filter computes the point-wise median inside a window of length
% l (in seconds), that includes a same number of previous and
% next samples. C is a scaling factor whose purpose is to
% artificially rise the curve slightly above the steady state of
% the signal. If no parameters are given, the default values are:
% l = 0.2 s. and C = 1.3
% f = mirflux(...,'Median',l,C,'Halfwave'): The scaled median
% filtering is designed to be succeeded by the half-wave
% rectification process in order to select peaks above the
% dynamic threshold calculated with the help of the median
% filter. The resulting signal is called "detection function"
% (Alonso, David, Richard, 2004). To ensure accurate detection,
% the length l of the median filter must be longer than the
% average width of the peaks of the detection function.
%
% (Bello et al, 2004) Juan P. Bello, Chris Duxbury, Mike Davies, and Mark
% Sandler, On the Use of Phase and Energy for Musical Onset Detection in
% the Complex Domain, IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 6,
% JUNE 2004
dist.key = 'Dist';
dist.type = 'String';
dist.default = 'Euclidean';
option.dist = dist;
inc.key = 'Inc';
inc.type = 'Boolean';
inc.default = 0;
option.inc = inc;
bs.key = 'BackSmooth';
bs.type = 'String';
bs.choice = {'Goto','Lartillot'};
bs.default = '';
bs.keydefault = 'Goto';%'Lartillot';%'Goto';%
option.bs = bs;
complex.key = 'Complex';
complex.type = 'Boolean';
complex.default = 0;
option.complex = complex;
gap.key = 'Gaps';
gap.type = 'Integer';
gap.default = 0;
gap.keydefault = .2;
option.gap = gap;
sb.key = 'SubBand';
sb.type = 'String';
sb.choice = {'Gammatone','2Channels','Manual'};
sb.default = '';
sb.keydefault = 'Manual';
option.sb = sb;
h.key = 'Halfwave';
h.type = 'Boolean';
h.default = 0;
h.when = 'After';
option.h = h;
median.key = 'Median';
median.type = 'Integer';
median.number = 2;
median.default = [0 0];
median.keydefault = [.2 1.3];
median.when = 'After';
option.median = median;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [.05 .5];
option.frame = frame;
specif.option = option;
varargout = mirfunction(@mirflux,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if ~isempty(option.sb)
if strcmpi(option.sb,'Manual')
x = mirfilterbank(x,'Manual',[-Inf 50*2.^(0:1:8) Inf],'Order',2);
else
x = mirfilterbank(x,option.sb);
end
end
if isamir(x,'miraudio')
if isframed(x)
x = mirspectrum(x);
else
x = mirspectrum(x,'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
end
end
if isa(x,'mirdesign')
if strcmpi(option.bs,'Goto')
x = set(x,'Overlap',2);
else
x = set(x,'Overlap',1);
end
end
type = 'mirscalar';
function f = main(s,option,postoption)
if iscell(s)
s = s{1};
end
t = get(s,'Title');
if isa(s,'mirscalar') && ...
(strcmp(t,'Harmonic Change Detection Function') || ...
(length(t)>4 && strcmp(t(end-3:end),'flux')) || ...
(length(t)>5 && strcmp(t(end-4:end-1),'flux')))
if not(isempty(postoption))
f = modif(s,postoption);
end
else
if isa(s,'mirspectrum')
t = 'Spectral';
end
m = get(s,'Data');
if option.complex
if not(isa(s,'mirspectrum'))
error('ERROR IN MIRFLUX: ''Complex'' option only defined for spectral flux.');
end
ph = get(s,'Phase');
end
param.complex = option.complex;
param.inc = option.inc;
fp = get(s,'FramePos');
if strcmp(t,'Tonal centroid')
t = 'Harmonic Change Detection Function';
else
t = [t,' flux'];
end
%disp(['Computing ' t '...'])
ff = cell(1,length(m));
newsr = cell(1,length(m));
dist = str2func(option.dist);
if option.bs
[tmp s] = gettmp(s);
end
for h = 1:length(m)
ff{h} = cell(1,length(m{h}));
if not(iscell(m{h}))
m{h} = {m{h}};
end
for i = 1:length(m{h})
mi = m{h}{i};
if size(mi,3) > 1 && size(mi,1) == 1
mi = reshape(mi,size(mi,2),size(mi,3))';
end
if strcmpi(option.bs,'Lartillot')
mi = mi + 120; %- min(min(min(mi)));
end
if option.complex
phi = ph{h}{i};
end
fpi = fp{h}{i};
nc = size(mi,2);
np = size(mi,3);
if nc == 1
warning('WARNING IN MIRFLUX: Flux can only be computed on signal decomposed into frames.');
ff{h}{i} = [];
else
if option.complex
fl = zeros(1,nc-2,np);
for k = 1:np
d = diff(phi(:,:,k),2,2);
d = d/(2*pi) - round(d/(2*pi));
g = sqrt(mi(:,3:end,k).^2 + mi(:,2:(end-1),k).^2 ...
- 2.*mi(:,3:end,k)...
.*mi(:,2:(end-1),k)...
.*cos(d));
fl(1,:,k) = sum(g);
end
fp{h}{i} = fpi(:,3:end);
else
if strcmpi(option.bs,'Goto')
limit = nc-2;
else
limit = nc-1;
end
fl = zeros(1,limit,np);
if option.gap
mimi = min(min(mi));
mi = (mi - mimi)/(max(max(mi)) - mimi);
end
for k = 1:np
if option.gap
for j = 1:nc-1
fl(1,j,k) = detectgap(mi(:,j,k),...
mi(:,j+1,k),...
option.gap);
end
elseif ~isempty(option.bs)
p = get(s,'Pos');
res = diff(p{1}{1}(1:2));
if strcmpi(option.bs,'Goto')
l = round(43/res);
else
l = round(17/res);
end
memo = 4;%; 50;
if isempty(tmp)
tmp = -Inf(size(mi,1),memo-1,np);
end
mi = [tmp mi];
mi2 = mi;
if 0
bk = zeros(size(mi));
bs = zeros(size(mi));
end
for j = 1:limit
mj = mi(:,j+memo-1,k);
mj2 = zeros(length(mj)-l,l-1);
for j2 = 1:l-1
mj2(:,j2) = mj(j2:j2+length(mj)-l-1);
end
mj(1+floor(l/2):end-ceil(l/2)) = max(mj2,[],2); ...
%max(mj(1:end-l),mj(1+l:end));
mi2(:,j+memo-1,k) = mj;
if strcmpi(option.bs,'Goto')
back = max(mj,mi(:,j+memo-2,k));
else
back = max(mi2(:,j:j+memo-1,k),[],2);
end
if 0
bk(:,j+1) = back;
fbs = find(mi(:,j+memo,k) > back);
bs(fbs,j+1) = mi(fbs,j+memo,k);
end
if strcmpi(option.bs,'Goto')
forth = mi(:,j+memo+1,k);
forth(1+floor(l/2):end-ceil(l/2)) = ...
min(forth(1:end-l),forth(1+l:end));
fl(1,j,k) = Goto(back,mi(:,j+memo,k),forth,mi(:,j+memo+1,k));
else
fl(1,j,k) = dist(back,mi(:,j+memo,k));
end
if 0
figure%(1)
%hold off
plot(mi2(:,j+memo-1,k))
hold on
plot(back,'r')
plot(mi(:,j+memo,k),'k')
%figure(2)
%plot(mean(fp{h}{i}(:,1:j)),fl(1,1:j,k))
%drawnow
end
end
elseif option.inc
for j = 1:nc-1
back = mi(:,j,k);
fl(1,j,k) = dist(back,mi(:,j+1,k),1);
end
else
for j = 1:nc-1
fl(1,j,k) = pdist(mi(:,[j j+1],k)',...
option.dist);
end
end
end
end
if option.complex || strcmpi(option.bs,'Goto')
fp{h}{i} = fpi(:,2:end-1);
else
fp{h}{i} = fpi(:,2:end);
end
ff{h}{i} = fl;
end
end
if size(fpi,2)<2
newsr{h} = 0;
else
newsr{h} = 1/(fpi(1,2)-fpi(1,1));
end
end
f = mirscalar(s,'Data',ff,'FramePos',fp,'Sampling',newsr,...
'Title',t,'Parameter',param);
if not(isequal(postoption,struct))
f = modif(f,postoption);
end
if ~isempty(option.bs) && nc > 1
tmp = mi2(:,max(1,end-memo+1):end-1,k);
f = settmp(f,tmp);
end
end
function f = modif(f,option)
fl = get(f,'Data');
r = get(f,'Sampling');
for h = 1:length(fl)
for i = 1:length(fl{h})
fli = fl{h}{i};
nc = size(fli,2);
np = size(fli,3);
if option.median(1)
ffi = zeros(1,nc,np);
lr = round(option.median(1)*r{i});
for k = 1:np
for j = 1:nc
ffi(:,j,k) = fli(:,j,k) - ...
option.median(2) * median(fli(:,max(1,j-lr):min(nc-1,j+lr),k));
end
end
fli = ffi;
end
if option.h
fli = hwr(fli);
end
fl{h}{i} = fli;
end
end
f = set(f,'Data',fl);
function y = Euclidean(mi,mj,inc)
if inc
y = sqrt(sum(max(0,(mj-mi)).^2));
else
y = sqrt(sum((mj-mi).^2));
end
function y = City(mi,mj,inc)
if inc
y = sum(max(0,(mj-mi)));
else
y = sum(abs(mj-mi));
end
function y = Gate(mi,mj,inc)
y = sum(mj .* (mj>mi)); %max?
%y = sum(max(mj-mi,0));
function y = Goto(mi,mj,mk,mk2)
%y = sum(max(mj,mk2) .* (mj>mi).* (mk>mi));
y = sum( (max(mj,mk2) - mi) .* (mj>mi).* (mk>mi));
%function y = NewGate(mi,mj,inc)
%N = 9;
%M = zeros(length(mi)-N+1,N);
%for i = 1:N
% M(:,i) = mi(i:end-(N-i));
%end
%mj0 = mj(ceil(N/2):end-floor(N/2));
%y = abs(repmat(mj0,[1 N]) - M);
%y = min(y,[],2);
%y = sum(y); %.*mj0);
function d = Cosine(r,s,inc) % inc does not work here!
nr = sqrt(r'*r);
ns = sqrt(s'*s);
if or(nr == 0, ns == 0);
d = 1;
else
d = 1 - r'*s/nr/ns;
end
function d = detectgap(mi,mj,thr)
d = length(find(abs(mi-mj)>thr)) / length(mi);
|
github
|
martinarielhartmann/mirtooloct-master
|
isamir.m
|
.m
|
mirtooloct-master/MIRToolbox/isamir.m
| 1,010 |
utf_8
|
9284a4ea4a0c048ce4ff9e16c746bbcc
|
function b = isamir(x,class)
if isempty(x) || isnumeric(x)
b = 0;
return
end
if iscell(x)
x = x{1};
end
if isa(x,class)
b = 1;
return
elseif ischar(x) && strcmpi(class,'miraudio')
b = 1;
return
elseif not(isa(x,'mirdesign'))
b = 0;
return
end
type = get(x,'Type');
if iscell(type)
type = type{1};
end
types = lineage(type);
b = 0;
i = 0;
while not(b) && i<length(types)
i = i+1;
if strcmpi(types(i),class)
b = 1;
end
end
function types = lineage(class)
switch class
case {'miraudio','mirenvelope'}
parent = 'mirtemporal';
case {'mirautocor','mircepstrum','mirchromagram','mirhisto',...
'mirkeysom','mirkeystrength','mirmatrix','mirmfcc',...
'mirscalar','mirsimatrix','mirspectrum',...
'mirtemporal','mirtonalcentroid'}
parent = 'mirdata';
otherwise
parent = '';
end
if isempty(parent)
types = {class};
else
parents = lineage(parent);
types = {class parents{:}};
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirskewness.m
|
.m
|
mirtooloct-master/MIRToolbox/mirskewness.m
| 1,074 |
utf_8
|
364ec04fe20b324d19216272e36dbe4e
|
function varargout = mirskewness(orig,varargin)
% s = skewness(x) calculates the skewness of x, showing the (lack of)
% symmetry of the curve.
% x can be either:
% - a spectrum (spectral skewness),
% - an envelope (temporal skewness), or
% - any histogram.
varargout = mirfunction(@mirskewness,orig,varargin,nargout,struct,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata')) || isamir(x,'miraudio')
x = mirspectrum(x);
end
type = 'mirscalar';
function s = main(x,option,postoption)
if iscell(x)
x = x{1};
end
y = peaksegments(@skewness,get(x,'Data'),...
get(x,'Pos'),...
get(mircentroid(x,'MaxEntropy',0),'Data'),...
get(mirspread(x),'Data'));
if isa(x,'mirspectrum')
t = 'Spectral skewness';
elseif isa(x,'mirenvelope')
t = 'Temporal skewness';
else
t = ['Skewness of ',get(x,'Title')];
end
s = mirscalar(x,'Data',y,'Title',t,'Unit','');
function s = skewness(d,p,c,sp)
s = sum((p-c).^3.* (d/sum(d)) ) ./ sp.^3;
|
github
|
martinarielhartmann/mirtooloct-master
|
mirattackleap.m
|
.m
|
mirtooloct-master/MIRToolbox/mirattackleap.m
| 1,995 |
utf_8
|
e307b35dab8a2b6e3325a4d18ab9a86c
|
function varargout = mirattackleap(orig,varargin)
% a = mirattackleap(x) estimates the leap of each note attack.
% Values are expressed in the same scale than the original signal.
% Optional arguments:
% mirattackleap(...,'Contrast',c) specifies the 'Contrast' parameter
% used in mironsets for event detection through peak picking.
% Same default value as in mironsets.
% mirattackleap(...,'Single') only selects one attack phase in the signal
% (or in each segment).
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = NaN;
option.cthr = cthr;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
option.single = single;
log.key = 'LogOnset';
log.type = 'Boolean';
log.default = 0;
option.log = log;
minlog.key = 'MinLog';
minlog.type = 'Integer';
minlog.default = 0;
option.minlog = minlog;
specif.option = option;
varargout = mirfunction(@mirattackleap,orig,varargin,nargout,specif,@init,@main);
function [o type] = init(x,option)
o = mironsets(x,'Attack','Contrast',option.cthr,'Single',option.single,...
'Log',option.log,'MinLog',option.minlog,...
'Filter','Normal','AcrossSegments');
type = mirtype(x);
function sl = main(o,option,postoption)
if iscell(o)
o = o{1};
end
po = get(o,'PeakPos');
pa = get(o,'AttackPos');
pou = get(o,'PeakPosUnit');
pau = get(o,'AttackPosUnit');
d = get(o,'Data');
sl = mircompute(@algo,po,pa,d);
fp = mircompute(@frampose,pau,pou);
sl = mirscalar(o,'Data',sl,'FramePos',fp,'Title','Attack Leap');
sl = {sl,o};
function fp = frampose(pa,po)
if isempty(pa)
fp = [];
return
end
pa = sort(pa{1});
po = sort(po{1});
fp = [pa(:)';po(:)'];
function lp = algo(po,pa,d)
if isempty(pa)
lp = [];
return
end
pa = sort(pa{1});
po = sort(po{1});
lp = zeros(1,length(pa));
for i = 1:length(pa)
lp(i) = (d(po(i))-d(pa(i)));
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirfilterbank.m
|
.m
|
mirtooloct-master/MIRToolbox/mirfilterbank.m
| 13,869 |
utf_8
|
6dabae33d58255019308b5808ca8d34f
|
function varargout = mirfilterbank(orig,varargin)
% b = mirfilterbank(x) performs a filterbank decomposition of an audio
% waveform.
% Optional arguments:
% mirfilterbank(...,t) selects a type of filterbank.
% Possible values:
% t = 'Gammatone' (default for audio files).
% Requires the Auditory Toolbox.
% mirfilterbank(...,'Lowest',f): lowest frequency in Hz
% (default: 50)
% t = '2Channels' proposed in (Tolonen & Karjalainen, 2000)
% mirfilterbank(...,'NbChannels',N), or simply filterbank(x,N):
% specifies the number of channels in the bank.
% (default: N = 10)
% mirfilterbank(...,'Channel',c) only output the channels whose
% ranks are indicated in the array c.
% (default: c = (1:N))
% mirfilterbank(...,'Manual',f) specifies a set of low-pass, band-
% pass and high-pass eliptic filters (Scheirer, 1998).
% The series of cut-off frequencies as to be specified
% as next parameter f.
% If this series of frequencies f begins with -Inf,
% the first filter is low-pass.
% If this series of frequencies f ends with Inf,
% the last filter is high-pass.
% mirfilterbank(...,'Order',o) specifies the order of the filter.
% (Default: o = 4) (Scheirer, 1998)
% mirfilterbank(...,'Hop',h) specifies the degree of spectral
% overlapping between successive channels.
% If h = 1 (default value), the filters are non-overlapping.
% If h = 2, the filters are half-overlapping.
% If h = 3, the spectral hop factor between successive
% filters is a third of the whole frequency region, etc.
% mirfilterbank(...,p) specifies predefined filterbanks, all
% implemented using elliptic filters, by default of order 4.
% Possible values:
% p = 'Mel' (mel-scale)
% p = 'Bark' (bark-scale)
% p = 'Scheirer' proposed in (Scheirer, 1998) corresponds to
% 'Manual',[-Inf 200 400 800 1600 3200 Inf]
% p = 'Klapuri' proposed in (Klapuri, 1999) corresponds to
% 'Manual',44*[2.^ ([ 0:2, ( 9+(0:17) )/3 ]) ]
nCh.key = 'NbChannels';
nCh.type = 'Integer';
nCh.default = 10;
option.nCh = nCh;
Ch.key = {'Channel','Channels'};
Ch.type = 'Integer';
Ch.default = 0;
option.Ch = Ch;
lowF.key = 'Lowest';
lowF.type = 'Integer';
lowF.default = 50;
option.lowF = lowF;
freq.key = 'Manual';
freq.type = 'Integer';
freq.default = NaN;
option.freq = freq;
overlap.key = 'Hop';
overlap.type = 'Boolean';
overlap.default = 1;
option.overlap = overlap;
filtertype.type = 'String';
filtertype.choice = {'Gammatone','2Channels',0};
filtertype.default = 'Gammatone';
option.filtertype = filtertype;
filterorder.key = 'Order';
filterorder.type = 'Integer';
filterorder.default = 4;
option.filterorder = filterorder;
presel.type = 'String';
presel.choice = {'Scheirer','Klapuri','Mel','Bark'};
presel.default = '';
option.presel = presel;
specif.option = option;
specif.eachchunk = @eachchunk;
specif.combinechunk = @combinechunk;
varargout = mirfunction(@mirfilterbank,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = 'miraudio';
function b = main(x,option,postoption)
if iscell(x)
x = x{1};
end
if ~isamir(x,'miraudio')
mirerror('MIRFILTERBANK','The input should be an audio waveform.');
end
f = get(x,'Sampling');
if strcmpi(option.presel,'Scheirer')
option.freq = [-Inf 200 400 800 1600 3200 Inf];
elseif strcmpi(option.presel,'Klapuri')
option.freq = 44*[2.^([0:2,(9+(0:17))/3])];
elseif strcmpi(option.presel,'Mel')
lowestFrequency = 133.3333;
linearFilters = 13;
linearSpacing = 66.66666666;
logFilters = 27;
logSpacing = 1.0711703;
totalFilters = linearFilters + logFilters;
cepstralCoefficients = 13;
option.freq = lowestFrequency + (0:linearFilters-1)*linearSpacing;
option.freq(linearFilters+1:totalFilters+2) = ...
option.freq(linearFilters) * logSpacing.^(1:logFilters+2);
option.overlap = 2;
elseif strcmpi(option.presel,'Bark')
option.freq = [10 20 30 40 51 63 77 92 108 127 148 172 200 232 ...
270 315 370 440 530 640 770 950 1200 1550]*10; %% Hz
end
if not(isnan(option.freq))
option.filtertype = 'Manual';
end
d = get(x,'Data');
if size(d{1}{1},3) > 1
warning('WARNING IN MIRFILTERBANK: The input data is already decomposed into channels. No more channel decomposition.');
if option.Ch
cx = get(x,'Channels');
db = cell(1,length(d));
for k = 1:length(d)
db{k} = cell(1,length(d{k}));
for l = 1:length(d{k})
for i = 1:length(option.Ch)
db{k}{l}(:,:,i) = d{k}{l}(:,:,find(cx{k} == option.Ch(i)));
end
end
end
b = set(x,'Data',db,'Channels',option.Ch);
else
b = x;
end
else
i = 1;
while i <= length(d)
if size(d{i}{1},2) > 1
warning('WARNING IN MIRFILTERBANK: The frame decomposition should be performed after the filterbank decomposition.');
disp(['Suggestion: Use the ' char(34) 'Frame' char(34) ' option available to some of the MIRtoolbox functions.'])
break
end
i = i+1;
end
nCh = option.nCh;
Ch = option.Ch;
[tmp x] = gettmp(x);
output = cell(1,length(d));
nch = cell(1,length(d));
for i = 1:length(d)
if isempty(tmp)
%% Determination of the filterbank specifications
if strcmpi(option.filtertype,'Gammatone')
if not(Ch)
Ch = 1:nCh;
end
Hd = ERBFilters(f{i},nCh,Ch,option.lowF);
nch{i} = Ch;
elseif strcmpi(option.filtertype,'2Channels')
if not(Ch)
Ch = 1:2;
end
[bl,al] = butter(4,[70 1000]/f{i}*2);
if ismember(1,Ch)
Hd{1} = dfilt.df2t(bl,al);
k = 2;
else
k = 1;
end
if ismember(2,Ch)
if f{i} < 20000
[bh,ah] = butter(2,1000/f{i}*2,'high');
else
[bh,ah] = butter(2,[1000 10000]/f{i}*2);
end
Hd{k} = {dfilt.df2t(bl,al),...
@(x) max(x,0),...
dfilt.df2t(bh,ah)};
end
nch{i} = Ch;
elseif strcmpi(option.filtertype,'Manual')
freqi = option.freq;
j = 1;
while j <= length(freqi)
if not(isinf(freqi(j))) && freqi(j)>f{i}/2
if j == length(freqi)
freqi(j) = Inf;
else
freqi(j) = [];
j = j-1;
end
end
j = j+1;
end
step = option.overlap;
for j = 1:length(freqi)-step
if isinf(freqi(j))
[z{j},p{j},k{j}] = ellip(option.filterorder,3,40,...
freqi(j+step)/f{i}*2);
elseif isinf(freqi(j+step))
[z{j},p{j},k{j}] = ellip(option.filterorder,3,40,...
freqi(j)/f{i}*2,'high');
else
[z{j},p{j},k{j}] = ellip(option.filterorder,3,40,...
freqi([j j+step])/f{i}*2);
end
end
for j = 1:length(z)
[sos,g] = zp2sos(z{j},p{j},k{j});
Hd{j} = dfilt.df2tsos(sos,g);
end
nch{i} = 1:length(freqi)-step;
end
if length(d) == 1
for k = 1:length(Hd)
Hdk = Hd{k};
if ~iscell(Hdk)
Hdk = {Hdk};
end
for h = 1:length(Hdk)
if ~isa(Hdk{h},'function_handle')
Hdk{h}.PersistentMemory = true;
end
end
end
end
elseif i == 1
Hd = tmp;
end
output{i} = cell(1,length(d{i}));
for j = 1:length(d{i})
for k = 1:length(Hd)
dk = d{i}{j};
Hdk = Hd{k};
if ~iscell(Hdk)
Hdk = {Hdk};
end
for h = 1:length(Hdk)
if isa(Hdk{h},'function_handle')
dk = Hdk{h}(dk);
else
dk = Hdk{h}.filter(dk);
end
end
output{i}{j}(:,:,k) = dk;
end
end
end
b = set(x,'Data',output,'Channels',nch);
b = settmp(b,Hd);
end
%%
function Hd=ERBFilters(fs,numChannels,chans,lowFreq)
% This function computes the filter coefficients for a bank of
% Gammatone filters. These filters were defined by Patterson and
% Holdworth for simulating the cochlea.
% The transfer function of these four second order filters share the same
% denominator (poles) but have different numerators (zeros).
% The filter bank contains "numChannels" channels that extend from
% half the sampling rate (fs) to "lowFreq".
% Note this implementation fixes a problem in the original code by
% computing four separate second order filters. This avoids a big
% problem with round off errors in cases of very small cfs (100Hz) and
% large sample rates (44kHz). The problem is caused by roundoff error
% when a number of poles are combined, all very close to the unit
% circle. Small errors in the eigth order coefficient, are multiplied
% when the eigth root is taken to give the pole location. These small
% errors lead to poles outside the unit circle and instability. Thanks
% to Julius Smith for leading me to the proper explanation.
% Code taken from Auditory Toolbox and optimized.
% (Malcolm Slaney, August 1993, (c) 1998 Interval Research Corporation)
T = 1/fs;
EarQ = 9.26449; % Glasberg and Moore Parameters
minBW = 24.7;
%%
% Computes an array of numChannels frequencies uniformly spaced between
% fs/2 and lowFreq on an ERB scale.
%
% For a definition of ERB, see Moore, B. C. J., and Glasberg, B. R. (1983).
% "Suggested formulae for calculating auditory-filter bandwidths and
% excitation patterns," J. Acoust. Soc. Am. 74, 750-753.
%
% Derived from Apple TR #35, "An
% Efficient Implementation of the Patterson-Holdsworth Cochlear
% Filter Bank." See pages 33-34.
cf = -(EarQ*minBW) + exp((1:numChannels)'*(-log(fs/2 + EarQ*minBW) + ...
log(lowFreq + EarQ*minBW))/numChannels) * (fs/2 + EarQ*minBW);
%%
ERB = ((cf/EarQ) + minBW);
B=1.019*2*pi*ERB;
A0 = T;
A2 = 0;
B0 = 1;
B1 = -2*cos(2*cf*pi*T)./exp(B*T);
B2 = exp(-2*B*T);
A11 = -(2*T*cos(2*cf*pi*T)./exp(B*T) + 2*sqrt(3+2^1.5)*T*sin(2*cf*pi*T)./ ...
exp(B*T))/2;
A12 = -(2*T*cos(2*cf*pi*T)./exp(B*T) - 2*sqrt(3+2^1.5)*T*sin(2*cf*pi*T)./ ...
exp(B*T))/2;
A13 = -(2*T*cos(2*cf*pi*T)./exp(B*T) + 2*sqrt(3-2^1.5)*T*sin(2*cf*pi*T)./ ...
exp(B*T))/2;
A14 = -(2*T*cos(2*cf*pi*T)./exp(B*T) - 2*sqrt(3-2^1.5)*T*sin(2*cf*pi*T)./ ...
exp(B*T))/2;
gain = abs((-2*exp(4i*cf*pi*T)*T + ...
2*exp(-(B*T) + 2i*cf*pi*T).*T.* ...
(cos(2*cf*pi*T) - sqrt(3 - 2^(3/2))* ...
sin(2*cf*pi*T))) .* ...
(-2*exp(4i*cf*pi*T)*T + ...
2*exp(-(B*T) + 2i*cf*pi*T).*T.* ...
(cos(2*cf*pi*T) + sqrt(3 - 2^(3/2)) * ...
sin(2*cf*pi*T))).* ...
(-2*exp(4i*cf*pi*T)*T + ...
2*exp(-(B*T) + 2i*cf*pi*T).*T.* ...
(cos(2*cf*pi*T) - ...
sqrt(3 + 2^(3/2))*sin(2*cf*pi*T))) .* ...
(-2*exp(4i*cf*pi*T)*T + 2*exp(-(B*T) + 2i*cf*pi*T).*T.* ...
(cos(2*cf*pi*T) + sqrt(3 + 2^(3/2))*sin(2*cf*pi*T))) ./ ...
(-2 ./ exp(2*B*T) - 2*exp(4i*cf*pi*T) + ...
2*(1 + exp(4i*cf*pi*T))./exp(B*T)).^4);
allfilts = ones(length(cf),1);
A0 = A0*allfilts;
A2 = A2*allfilts;
B0 = B0*allfilts;
for i = 1:length(chans)
chan = length(gain)-chans(i)+1; % Revert the channels order
aa1 = [A0(chan)/gain(chan) A11(chan)/gain(chan) A2(chan)/gain(chan)];
bb1 = [B0(chan) B1(chan) B2(chan)];
aa2 = [A0(chan) A12(chan) A2(chan)];
bb2 = [B0(chan) B1(chan) B2(chan)];
aa3 = [A0(chan) A13(chan) A2(chan)];
bb3 = [B0(chan) B1(chan) B2(chan)];
aa4 = [A0(chan) A14(chan) A2(chan)];
bb4 = [B0(chan) B1(chan) B2(chan)];
Hd{i} = {dfilt.df2t(aa1,bb1);dfilt.df2t(aa2,bb2);...
dfilt.df2t(aa3,bb3);dfilt.df2t(aa4,bb4)};
end
%%
function [y orig] = eachchunk(orig,option,missing)
y = mirfilterbank(orig,option);
function y = combinechunk(old,new)
doo = get(old,'Data');
to = get(old,'Time');
dn = get(new,'Data');
tn = get(new,'Time');
y = set(old,'Data',{{[doo{1}{1};dn{1}{1}]}},...
'Time',{{[to{1}{1};tn{1}{1}]}});
|
github
|
martinarielhartmann/mirtooloct-master
|
mirharmonicity.m
|
.m
|
mirtooloct-master/MIRToolbox/mirharmonicity.m
| 2,940 |
utf_8
|
ba5a2677382e4fe554d91904f000d2d3
|
function varargout = mirharmonicity(orig,varargin)
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [.1 .025];
option.frame = frame;
specif.option = option;
varargout = mirfunction(@mirharmonicity,orig,varargin,nargout,specif,@init,@main);
function [i type] = init(x,option)
if isamir(x,'miraudio')
if option.frame.length.val
s = mirspectrum(x,'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
else
s = mirspectrum(x);
end
else
s = x;
end
p = mirpeaks(s,'Harmonic',20,'Contrast',.01);
i = {s,p};
type = {'mirscalar','mirscalar','mirscalar','mirspectrum'};
function h = main(x,option,postoption)
s = x{1};
p = x{2};
if iscell(p)
p = p{1};
end
m = get(s,'Magnitude');
f = get(s,'Frequency');
pf = get(p,'TrackPos');
he = cell(1,length(m));
ie = cell(1,length(m));
hi = cell(1,length(m));
for h = 1:length(m)
he{h} = cell(1,length(m{h}));
ie{h} = cell(1,length(m{h}));
hi{h} = cell(1,length(m{h}));
for i = 1:length(m{h})
mi = m{h}{i};
fi = f{h}{i};
pfi = pf{h}{i}{1};
he{h}{i} = zeros(1,size(mi,2),size(mi,3));
ie{h}{i} = zeros(1,size(mi,2),size(mi,3));
hi{h}{i} = zeros(1,size(mi,2),size(mi,3));
for j = 1:size(mi,3)
for k = 1:size(mi,2)
mk = mi(:,k,j);
fk = fi(:,k,j);
pfk = sort(pfi(:,k));
z = zeros(2,length(pfk));
for l = 1:length(pfk)
if isnan(pfk(l))
continue
end
f1 = find(diff(mk(pfk(l):-1:1)) >= 0,1);
f2 = find(diff(mk(pfk(l):end)) >= 0,1);
z(1,l) = pfk(l) - f1 + 1;
z(2,l) = pfk(l) + f2 - 1;
end
z(:,~z(1,:)) = [];
hark = 0;
inhk = sum(mk(1:z(1)-1).^2);
for l = 1:size(z)-1
hark = hark + sum(mk(z(1,l):z(2,l)).^2);
inhk = inhk + sum(mk(z(2,l)+1:z(1,l+1)-1).^2);
end
inhk = inhk + sum(mk(z(end)+1:end).^2);
he{h}{i}(1,k,j) = hark;
ie{h}{i}(1,k,j) = inhk;
hi{h}{i}(1,k,j) = hark / (hark + inhk);
end
end
end
end
he = mirscalar(s,'Data',he,'Title','Harmonic Energy');
ie = mirscalar(s,'Data',ie,'Title','Inharmonic Energy');
hi = mirscalar(s,'Data',hi,'Title','Harmonicity');
h = {hi he ie p};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirread2014.m
|
.m
|
mirtooloct-master/MIRToolbox/mirread2014.m
| 5,612 |
utf_8
|
0834239f85502c1063d7246164c71cd0
|
function [d,tp,fp,f,l,b,n,ch] = mirread2014(extract,orig,load,folder,verbose)
% Read the audio file ORIG, at temporal position indicated by EXTRACT. If
% EXTRACT is empty, all the audio file is loaded.
% If LOAD is set to 0, just the meta-data is collected, and the actual
% audio data is not taken into consideration. If it is set to 1, the
% data are loaded from the current directory. If LOAD is a string, it
% is considered as the path of the directory.
% If FOLDER is set to 1, no error is returned if an audio file cannot be
% loaded.
% Output:
% D is the audio signal,
% TP are the temporal positions,
% FP are the two extreme temporal positions (used for frame positions),
% F is the sampling rate,
% L is the duration in seconds,
% B is the resolution in number of bits,
% N is the file name.
% CH are the channel index.
if nargin < 5
verbose = 0;
end
d = {};
f = {};
l = {};
b = {};
tp = {};
fp = {};
n = {};
ch = {};
if strcmp(orig,'.') || strcmp(orig,'..')
return
end
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@audioread,orig,load,verbose,folder);
catch
if folder
return
end
warning('Did you specify the file extension? This will be required in future versions of Matlab.');
warning('off','MATLAB:audiovideo:wavread:functionToBeRemoved');
warning('off','MATLAB:audiovideo:auread:functionToBeRemoved');
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@wavread,orig,load,verbose,folder);
catch
err.wav = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@auread,orig,load,verbose,folder);
catch
err.au = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@mp3read,orig,load,verbose,folder);
catch
err.mp3 = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@aiffread,orig,load,verbose,folder);
catch
err.aiff = lasterr;
if length(orig)>4 && strcmpi(orig(end-3:end),'.bdf')
try
[d,f,l,b,tp,fp,n,ch] = audioreader(extract,@bdfread,orig,load,verbose,folder);
catch
if not(strcmp(err.wav(1:11),'Error using') && folder)
misread(orig, err);
end
end
else
if not(strcmp(err.wav(1:11),'Error using') && folder)
misread(orig, err);
end
end
end
end
end
end
end
function [d,f,l,b,tp,fp,n,ch] = audioreader(extract,reader,file,load,verbose,folder)
n = file;
if folder
file = ['./',file];
end
if load
if isempty(extract)
if isequal(reader,@audioread)
[s,f] = audioread(file);
i = audioinfo(file);
if isfield(i,'BitsPerSample')
b = i.BitsPerSample;
elseif isfield(i,'BitRate')
b = i.BitRate;
else
b = NaN;
end
else
[s,f,b] = reader(file);
end
else
if isequal(reader,@audioread)
i = audioinfo(file);
f = i.SampleRate;
if isfield(i,'BitsPerSample')
b = i.BitsPerSample;
elseif isfield(i,'BitRate')
b = i.BitRate;
else
b = NaN;
end
s = audioread(file,extract(1:2));
else
[unused,f,b] = reader(file,1);
s = reader(file,extract(1:2));
end
if length(extract) > 2
s = s(:,extract(3));
end
end
if verbose
disp([file,' loaded.']);
end
d{1} = reshape(s,size(s,1),1,size(s,2)); %channels along dim 3
ch = 1:size(s,2);
if isempty(extract)
tp{1} = (0:size(s,1)-1)'/f;
else
tp{1} = (extract(1)-1+(0:size(s,1)-1))'/f;
end
l{1} = (size(s,1)-1)/f;
if isempty(s)
fp{1} = 0;
else
fp{1} = tp{1}([1 end]);
end
else
if isequal(reader,@audioread)
i = audioinfo(file);
d = i.TotalSamples;
f = i.SampleRate;
if isfield(i,'BitsPerSample')
b = i.BitsPerSample;
elseif isfield(i,'BitRate')
b = i.BitRate;
else
b = NaN;
end
ch = i.NumChannels;
else
if isequal(reader,@mp3read)
[dsize,f,b] = reader(file,'size');
else
[unused,f,b] = reader(file,1);
dsize = reader(file,'size');
end
d = dsize(1);
ch = dsize(2);
end
l = d/f;
tp = {};
fp = {};
end
function [y,fs,nbits] = bdfread(file,check)
DAT = openbdf(file);
NRec = DAT.Head.NRec;
if not(length(check)==2)
b = readbdf(DAT,1);
y = length(b.Record(43,:)) * NRec;
else
y = [];
if mirwaitbar
handle = waitbar(0,'Loading BDF channel...');
else
handle = 0;
end
for i = 1:NRec
b = readbdf(DAT,i);
y = [y;b.Record(43,:)'];
if handle
waitbar(i/NRec,handle);
end
end
if handle
delete(handle)
end
end
fs = DAT.Head.SampleRate(43);
nbits = NaN;
function misread(file,err)
display('Here are the error message returned by each reader:');
display(err.wav);
display(err.au);
display(err.mp3);
display(err.aiff);
mirerror('MIRREAD',['Cannot open file ',file]);
|
github
|
martinarielhartmann/mirtooloct-master
|
pluscell.m
|
.m
|
mirtooloct-master/MIRToolbox/pluscell.m
| 271 |
utf_8
|
4b18198163a886e445d0b3b1f88a2f50
|
function varargout = pluscell(x,varargin)
specif.combinechunk = 'Average';
varargout = mirfunction(@pluscell,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(a{1});
function y = main(x,option,postoption)
y = plus(x{1},x{2});
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmedian.m
|
.m
|
mirtooloct-master/MIRToolbox/mirmedian.m
| 2,776 |
utf_8
|
28428cd9fc147e21412168f1a226c8c1
|
function varargout = mirmedian(f,varargin)
% m = mirmedian(f) returns the median along frames of the feature f
%
% f can be a structure array composed of features. In this case,
% m will be structured the same way.
if isa(f,'mirstruct')
data = get(f,'Data');
for fi = 1:length(data)
data{fi} = mirmedian(data{fi});
end
varargout = {set(f,'Data',data)};
elseif isstruct(f)
fields = fieldnames(f);
for i = 1:length(fields)
field = fields{i};
stat.(field) = mirmedian(f.(field));
end
varargout = {stat};
else
specif.nochunk = 1;
varargout = mirfunction(@mirmedian,f,varargin,nargout,specif,@init,@main);
end
function [x type] = init(x,option)
type = '';
function m = main(f,option,postoption)
if iscell(f)
f = f{1};
end
if isa(f,'mirhisto')
warning('WARNING IN MIRmedian: histograms are not taken into consideration yet.')
m = struct;
return
end
fp = get(f,'FramePos');
ti = get(f,'Title');
if 0 %get(f,'Peaks')
if not(isempty(get(f,'PeakPrecisePos')))
stat = addstat(struct,get(f,'PeakPrecisePos'),fp,'PeakPos');
stat = addstat(stat,get(f,'PeakPreciseVal'),fp,'PeakMag');
else
stat = addstat(struct,get(f,'PeakPosUnit'),fp,'PeakPos');
stat = addstat(stat,get(f,'PeakVal'),fp,'PeakMag');
end
else
d = get(f,'Data');
end
l = length(d);
m = cell(1,l);
for i = 1:l
dd = d{i};
if iscell(dd)
m{i} = cell(1,length(dd));
fpi = cell(1,length(dd));
for j = 1:length(dd)
ddj = dd{j};
if iscell(ddj)
ddj = uncell(ddj);
end
for k = 1:size(ddj,1)
ddk = ddj(k,:);
ddk(isnan(ddk)) = [];
m{i}{j}(k,1) = median(ddk,2);
end
fpi{j} = [fp{i}{j}(1);fp{i}{j}(end)];
end
fp{i} = fpi;
elseif size(dd,2) < 2
nonan = find(not(isnan(dd)));
dn = dd(nonan);
m{i}{1} = median(dn,2);
else
%diffp = fp{i}{1}(1,2:end) - fp{i}{1}(1,1:end-1);
%if round((diffp(2:end)-diffp(1:end-1))*1000)
% Not regular sampling (in mirattacktime for instance)
% framesampling = NaN;
%else
% framesampling = fp{i}{1}(1,2)-fp{i}{1}(1,1);
%end
dd = median(dd,4);
m{i} = {NaN(size(dd,1),1,size(dd,3))};
for k = 1:size(dd,1)
for l = 1:size(dd,3)
dk = dd(k,:,l);
nonan = find(not(isnan(dk)));
if not(isempty(nonan))
dn = dk(nonan);
m{i}{1}(k,1,l) = median(dn,2);
end
end
end
end
end
m = mirscalar(f,'Data',m,'Title',['Median of ',ti],'FramePos',fp);
|
github
|
martinarielhartmann/mirtooloct-master
|
mtimescell.m
|
.m
|
mirtooloct-master/MIRToolbox/mtimescell.m
| 277 |
utf_8
|
77d174f26c270bf0a8697dec0f49668e
|
function varargout = mtimescell(x,varargin)
specif.combinechunk = 'Average';
varargout = mirfunction(@mtimescell,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(x{1});
function y = main(x,option,postoption)
y = mtimes(x{1},x{2});
|
github
|
martinarielhartmann/mirtooloct-master
|
maxcell.m
|
.m
|
mirtooloct-master/MIRToolbox/maxcell.m
| 268 |
utf_8
|
95ea81e59ab86695378063af0e68208a
|
function varargout = maxcell(x,varargin)
specif.combinechunk = 'Average';
varargout = mirfunction(@maxcell,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(a{1});
function y = main(x,option,postoption)
y = max(x{1},x{2});
|
github
|
martinarielhartmann/mirtooloct-master
|
mirbeatspectrum.m
|
.m
|
mirtooloct-master/MIRToolbox/mirbeatspectrum.m
| 2,388 |
utf_8
|
64687e175e19c6e8b154c4fe557e190c
|
function varargout = mirbeatspectrum(orig,varargin)
% n = mirbeatspectrum(m) evaluates the beat spectrum.
% [n,m] = mirbeatspectrum(m) also return the similarity matrix on which
% the estimation is made.
% Optional argument:
% mirbeatspectrum(...,s) specifies the estimation method.
% Possible values:
% s = 'Diag', summing simply along the diagonals of the matrix.
% s = 'Autocor', based on the autocorrelation of the matrix.
% mirbeatspectrum(...,'Distance',f) specifies the name of a dissimilarity
% distance function, from those proposed in the Statistics Toolbox
% (help pdist).
% default value: f = 'cosine'
% J. Foote, M. Cooper, U. Nam, "Audio Retrieval by Rhythmic Similarity",
% ISMIR 2002.
dist.key = 'Distance';
dist.type = 'String';
dist.default = 'cosine';
option.dist = dist;
meth.type = 'String';
meth.choice = {'Diag','Autocor'};
meth.default = 'Autocor';
option.meth = meth;
specif.option = option;
varargout = mirfunction(@mirbeatspectrum,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirscalar'))
if isamir(x,'miraudio')
x = mirmfcc(x,'frame',.025,'s',.01,'s','Rank',8:30);
end
x = mirsimatrix(x,'Distance',option.dist,'Similarity');
end
type = 'mirscalar';
function y = main(orig,option,postoption)
if iscell(orig)
orig = orig{1};
end
fp = get(orig,'FramePos');
if not(isa(orig,'mirscalar'))
s = get(orig,'Data');
total = cell(1,length(s));
for k = 1:length(s)
for h = 1:length(s{k})
maxfp = find(fp{k}{h}(2,:)>4,1);
if isempty(maxfp)
maxfp = Inf;
else
fp{k}{h}(:,maxfp+1:end) = [];
end
l = min(length(s{k}{h}),maxfp);
total{k}{h} = zeros(1,l);
if strcmpi(option.meth,'Diag')
for i = 1:l
total{k}{h}(i) = mean(diag(s{k}{h},i-1));
end
else
for i = 1:l
total{k}{h}(i) = mean(mean(s{k}{h}(:,1:l-i+1).*s{k}{h}(:,i:l)));
end
end
end
end
else
total = get(orig,'Data');
end
n = mirscalar(orig,'Data',total,'FramePos',fp,'Title','Beat Spectrum');
y = {n orig};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirsegment.m
|
.m
|
mirtooloct-master/MIRToolbox/mirsegment.m
| 19,232 |
utf_8
|
1f3a212fffc5cc7346fe3f2283271b8c
|
function [f,p,m,fe] = mirsegment(x,varargin)
% f = mirsegment(a) segments an audio signal. It can also be the name of an
% audio file or 'Folder', for the analysis of the audio files in the
% current folder. The segmentation of audio signal already decomposed
% into frames is not available for the moment.
% f = mirsegment(...,'Novelty') segments using a self-similarity matrix
% (Foote & Cooper, 2003) (by default)
% f = mirsegment(...,feature) bases the segmentation strategy on a
% specific feature.
% 'Spectrum': from FFT spectrum (by default)
% 'MFCC': from MFCCs
% 'Keystrength': from the key strength profile
% 'AutocorPitch': from the autocorrelation function computed as
% for pitch extraction.
% The option related to this feature extraction can be specified.
% Example: mirsegment(...,'Spectrum','Window','bartlett')
% mirsegment(...,'MFCC','Rank',1:10)
% mirsegment(...,'Keystrength','Weight',.5)
% These feature need to be frame-based, in order to appreciate their
% temporal evolution. Therefore, the audio signal x is first
% decomposed into frames. This decomposition can be controled
% using the 'Frame' keyword.
% The options available for the chosen strategies can be specified
% directly as options of the segment function.
% Example: mirsegment(a,'Novelty','KernelSize',10)
% f = mirsegment(...,'HCDF') segments using the Harmonic Change Detection
% Function (Harte & Sandler, 2006)
% f = mirsegment(...,'RMS') segments at positions of long silences. A
% frame decomposed RMS is computed using mirrms (with default
% options), and segments are selected from temporal positions
% where the RMS rises to a given 'On' threshold, until temporal
% positions where the RMS drops back to a given 'Off' threshold.
% f = mirsegment(...,'Off',t1) specifies the RMS 'Off' threshold.
% Default value: t1 = .01
% f = mirsegment(...,'On',t2) specifies the RMS 'On' threshold.
% Default value: t2 = .02
%
% f = mirsegment(a,s) segments a using the results of a segmentation
% analysis s. s can be for instance:
% - the peaks detected on an analysis of the audio
% - the results of mirpeaks('Segment').
%
% f = mirsegment(a,v) where v is an array of numbers, segments a using
% the temporal positions specified in v (in s.)
%
% Foote, J. & Cooper, M. (2003). Media Segmentation using Self-Similarity
% Decomposition,. In Proc. SPIE Storage and Retrieval for Multimedia
% Databases, Vol. 5021, pp. 167-75.
% Harte, C. A. & Sandler, M. B. (2006). Detecting harmonic change in
% musical audio, in Proceedings of Audio and Music Computing for
% Multimedia Workshop, Santa Barbara, CA.
% [f,p] = mirsegment(...) also displays the analysis produced by the chosen
% strategy.
% For 'Novelty', p is the novelty curve.
% For 'HCDF', p is the Harmonic Change Detection Function.
% [f,p,m] = mirsegment(...) also displays the preliminary analysis
% undertaken in the chosen strategy.
% For 'Novelty', m is the similarity matrix.
% For 'HCDF', m is the tonal centroid.
% [f,p,m,fe] = mirsegment(...) also displays the temporal evolution of the
% feature used for the analysis.
% f = mirsegment(...,'Novelty')
mfc.key = {'Rank','MFCC'};
mfc.type = 'Integers';
mfc.default = 0;
mfc.keydefault = 1:13;
option.mfc = mfc;
K.key = 'KernelSize';
K.type = 'Integer';
K.default = 128;
option.K = K;
distance.key = 'Distance';
distance.type = 'String';
distance.default = 'cosine';
option.distance = distance;
measure.key = {'Measure','Similarity'};
measure.type = 'String';
measure.default = 'exponential';
option.measure = measure;
tot.key = 'Total';
tot.type = 'Integer';
tot.default = Inf;
option.tot = tot;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .1;
option.cthr = cthr;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [3 .1];
option.frame = frame;
ana.type = 'String';
ana.choice = {'Spectrum','Keystrength','AutocorPitch','Pitch'};
ana.default = 0;
option.ana = ana;
% f = mirsegment(...,'Spectrum')
band.choice = {'Mel','Bark','Freq'};
band.type = 'String';
band.default = 'Freq';
option.band = band;
mi.key = 'Min';
mi.type = 'Integer';
mi.default = 0;
option.mi = mi;
ma.key = 'Max';
ma.type = 'Integer';
ma.default = 0;
option.ma = ma;
norm.key = 'Normal';
norm.type = 'Boolean';
norm.default = 0;
option.norm = norm;
win.key = 'Window';
win.type = 'String';
win.default = 'hamming';
option.win = win;
% f = mirsegment(...,'Silence')
throff.key = 'Off';
throff.type = 'Integer';
throff.default = .01;
option.throff = throff;
thron.key = 'On';
thron.type = 'Integer';
thron.default = .02;
option.thron = thron;
strat.choice = {'Novelty','HCDF','RMS','Silence'}; % should remain as last field
strat.default = 'Novelty';
strat.position = 2;
option.strat = strat;
specif.option = option;
p = {};
m = {};
fe = {};
if isempty(x)
f = {};
return
end
if isa(x,'mirdesign')
if not(get(x,'Eval'))
% During bottom-up construction of the general design
[unused option] = miroptions(@mirframe,x,specif,varargin);
type = get(x,'Type');
f = mirdesign(@mirsegment,x,option,{},struct,type);
sg = get(x,'Segment');
if not(isempty(sg))
f = set(f,'Segment',sg);
else
f = set(f,'Segment',option.strat);
end
else
% During top-down evaluation initiation
f = evaleach(x);
if iscell(f)
f = f{1};
end
p = x;
end
elseif isa(x,'mirdata')
[unused option] = miroptions(@mirframe,x,specif,varargin);
if ischar(option.strat)
dx = get(x,'Data');
if strcmpi(option.strat,'Novelty')
if not(option.frame.length.val)
if strcmpi(option.ana,'Keystrength')
option.frame.length.val = .5;
option.frame.hop.val = .2;
elseif strcmpi(option.ana,'AutocorPitch') ...
|| strcmpi(option.ana,'Pitch')
option.frame.length.val = .05;
option.frame.hop.val = .01;
else
option.frame.length.val = .05;
option.frame.hop.val = 1;
end
end
fr = mirframenow(x,option);
if not(isequal(option.mfc,0))
fe = mirmfcc(fr,'Rank',option.mfc);
elseif strcmpi(option.ana,'Spectrum')
fe = mirspectrum(fr,'Min',option.mi,'Max',option.ma,...
'Normal',option.norm,option.band,...
'Window',option.win);
elseif strcmpi(option.ana,'Keystrength')
fe = mirkeystrength(fr);
elseif strcmpi(option.ana,'AutocorPitch') ...
|| strcmpi(option.ana,'Pitch')
[unused,fe] = mirpitch(x,'Frame');
else
fe = fr;
end
[n m] = mirnovelty(fe,'Distance',option.distance,...
'Measure',option.measure,...
'KernelSize',option.K);
p = mirpeaks(n,'Total',option.tot,...
'Contrast',option.cthr,...
'Chrono','NoBegin','NoEnd');
elseif strcmpi(option.strat,'HCDF')
if not(option.frame.length.val)
option.frame.length.val = .743;
option.frame.hop.val = 1/8;
end
fr = mirframenow(x,option);
%[df m fe] = mirhcdf(fr);
df = mirhcdf(fr);
p = mirpeaks(df);
elseif strcmpi(option.strat,'RMS')
if not(option.frame.length.val)
option.frame.length.val = .05;
option.frame.hop.val = .5;
end
fr = mirframenow(x,option);
df = mirrms(fr);
fp = get(df,'FramePos');
p = mircompute(@findsilenceRMS,df,fp,option.throff,option.thron);
elseif strcmpi(option.strat,'Silence')
o = mironsets(x,'Normal','AcrossSegments');
t = get(o,'Pos');
p = mircompute(@findsilenceenvelope,o,t,3,.3,2);
end
f = mirsegment(x,p);
else
dx = get(x,'Data');
dt = get(x,'Time');
de = [];
if isa(option.strat,'mirpitch')
ds = get(option.strat,'Start');
de = get(option.strat,'End');
fp = get(option.strat,'FramePos');
elseif isa(option.strat,'mirscalar')
ds = get(option.strat,'PeakPos');
fp = get(option.strat,'FramePos');
elseif isa(option.strat,'mirdata')
ds = get(option.strat,'AttackPos');
if isempty(ds) || isempty(ds{1})
ds = get(option.strat,'PeakPos');
end
xx = get(option.strat,'Pos');
else
ds = option.strat;
fp = cell(1,length(dx));
end
st = cell(1,length(dx));
sx = cell(1,length(dx));
cl = cell(1,length(dx));
l = cell(1,length(dx));
for k = 1:length(dx)
dxk = dx{k}; % values in kth audio file
dtk = dt{k}; % time positions in kth audio file
dek = [];
if isa(option.strat,'mirdata')
dsk = ds{k}{1}; % segmentation times in kth audio file
if ~isempty(de)
dek = de{k}{1};
end
elseif iscell(ds)
dsk = ds{k};
elseif size(ds,2) == length(dx)
dsk = {ds(:,k)};
else
dsk = ds;
end
if length(dxk) == 1
fsk = []; % the structured array of segmentation times
% is flatten
else
fsk = cell(1,length(dxk));
end
for j = 1:length(dsk)
dej = [];
if iscell(dsk) %isa(option.strat,'mirdata')
dsj = dsk{j}; % segmentation times in jth segment
if ~isempty(dek)
dej = dek{j};
end
else
dsj = dsk;
end
if not(iscell(dsj))
dsj = {dsj};
if ~isempty(dek)
dej = {dej};
end
end
for m = 1:length(dsj)
% segmentation times in mth bank channel
if isa(option.strat,'mirscalar')
dsm = fp{k}{m}(1,dsj{m});
if ~isempty(dej)
dem = fp{k}{m}(2,dej{m});
end
elseif isa(option.strat,'mirdata')
dsm = xx{k}{m}(dsj{m});
else
dsm = dsj{m};
end
if iscell(dsm)
dsm = dsm{1};
if iscell(dsm)
dsm = dsm{1};
end
end
if size(dsm,1)>1 && size(dsm,2)>1
mirerror('MIRSEGMENT',...
'Segmentation matrix is not of required size.');
end
dsm(dsm <= dtk{j}(1)) = [];
dsm(dsm >= dtk{j}(end)) = [];
if ~isempty(dek)
dem(dem <= dtk{j}(1)) = [];
dem(dem >= dtk{j}(end)) = [];
end
% It is presupposed here that the segmentations times
% for a given channel are not decomposed per frames,
% because the segmentation of the frame decomposition
% is something that does not seem very clear.
% Practically, the peak picking for instance is based
% therefore on a frame analysis (such as novelty), and
% segmentation are inferred between these frames...
if length(dxk) == 1
fsk = [fsk dsm];
end
end
if length(dxk)>1
fsk{j} = sort(dsm);
end
end
if length(dxk) == 1
fsk = sort(fsk); % Here is the chronological ordering
end
if isempty(fsk)
ffsk = {[dtk{1}(1);dtk{end}(end)]};
sxk = {dxk{1}};
stk = {dtk{1}};
lk = {dtk{end}(end)-dtk{1}(1)};
n = 1;
fpsk = ffsk;
elseif ~isempty(de)
ffsk = cell(1,length(fsk));
for h = 1:length(fsk)
ffsk{h} = [fsk(h);dem(h)];
end
n = length(ffsk);
crd = zeros(2,n); % the sample positions of the
% segmentations in the channel
for i = 1:n
crd(1,i) = find(dtk{1} >= ffsk{i}(1),1);
crd(2,i) = find(dtk{1} >= ffsk{i}(2),1);
end
sxk = cell(1,n); % each cell contains a segment
stk = cell(1,n); % each cell contains
% the corresponding time positions
lk = cell(1,n); % each cell containing the segment length
for i = 1:n
sxk{i} = dxk{1}(crd(1,i):crd(2,i),1,:);
stk{i} = dtk{1}(crd(1,i):crd(2,i));
lk{i} = size(stk{i},1);
end
fpsk = ffsk;
elseif length(dxk) == 1
% Input audio is not already segmented
ffsk = cell(1,length(fsk)+1);
ffsk{1} = [dtk{1}(1);fsk(1)];
for h = 1:length(fsk)-1
ffsk{h+1} = [fsk(h);fsk(h+1)];
end
ffsk{end} = [fsk(end);dtk{end}(end)];
n = length(ffsk);
crd = zeros(1,n+1); % the sample positions of the
% segmentations in the channel
crd0 = 0;
for i = 1:n
crd0 = crd0 + find(dtk{1}(crd0+1:end)>=ffsk{i}(1),1);
crd(i) = crd0;
end
crd(n+1) = size(dxk{1},1)+1;
sxk = cell(1,n); % each cell contains a segment
stk = cell(1,n); % each cell contains
% the corresponding time positions
lk = cell(1,n); % each cell containing the segment length
for i = 1:n
sxk{i} = dxk{1}(crd(i):crd(i+1)-1,1,:);
stk{i} = dtk{1}(crd(i):crd(i+1)-1);
lk{i} = size(stk{i},1);
end
fpsk = ffsk;
else
sxk = {};
stk = {};
fpsk = {};
lk = {};
n = 0;
for i = 1:length(dxk)
if isempty(fsk{i})
fpsk{end+1} = [dtk{i}(1);dtk{i}(end)];
sxk{end+1} = dxk{i};
stk{end+1} = dtk{i};
lk{end+1} = dtk{i}(end)-dtk{i}(1);
n = n+1;
else
ffsk = cell(1,length(fsk{i})+1);
ffsk{1} = [dtk{i}(1);fsk{i}(1)];
for h = 1:length(fsk{i})-1
ffsk{h+1} = [fsk{i}(h);fsk{i}(h+1)];
end
ffsk{end} = [fsk{i}(end);dtk{i}(end)];
ni = length(ffsk);
crd = zeros(1,ni+1); % the sample positions of the
% segmentations in the channel
crd0 = 0;
for j = 1:ni
crd0 = crd0 + find(dtk{i}(crd0+1:end)>=ffsk{j}(1),1);
crd(j) = crd0;
end
crd(ni+1) = size(dxk{i},1)+1;
for j = 1:ni
sxk{end+1} = dxk{i}(crd(j):crd(j+1)-1,1,:);
stk{end+1} = dtk{i}(crd(j):crd(j+1)-1);
lk{end+1} = size(stk{end},1);
fpsk{end+1} = ffsk{j};
end
n = n+ni;
end
end
end
sx{k} = sxk;
st{k} = stk;
fp{k} = fpsk;
l{k} = lk;
cl{k} = 1:n;
end
f = set(x,'Data',sx,'Time',st,'FramePos',fp,...
'Length',l,'Clusters',cl);
p = strat;
m = {};
fe = {};
end
else
[f p] = mirsegment(miraudio(x),varargin{:});
end
function p = findsilenceRMS(d,fp,throff,thron)
d = [0 d 0];
begseg = find(d(1:end-1)<thron & d(2:end)>=thron);
nseg = length(begseg);
endseg = zeros(1,nseg);
removed = [];
for i = 1:nseg
endseg(i) = begseg(i) + find(d(begseg(i)+1:end)<=throff, 1)-1;
if i>1 && endseg(i) == endseg(i-1)
removed = [removed i];
end
end
begseg(removed) = [];
%endseg(removed) = [];
%endseg(end) = min(endseg(end),length(d)+1);
p = fp(1,begseg); %; fp(2,endseg-1)];
function p = findsilenceenvelope(d,t,l,thr1,thr2)
high = 0;
p = [];
i = 1;
while i <= length(d)
if d(i) > high
high = d(i);
elseif d(i) < high*thr1 && i <= length(d)-l
pi = find(d(i+1:end) > high*thr1,1);
if isempty(pi)
break
end
low = min(d(i:i+pi));
if high-low < .02
break
end
i = i+pi;
if pi < l
break
end
pi = find(d(i:end) > low*thr2,1);
if isempty(pi)
break
end
i = i+pi-1;
p(end+1) = t(i);
high = d(i);
end
i = i+1;
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mircentroid.m
|
.m
|
mirtooloct-master/MIRToolbox/mircentroid.m
| 3,220 |
utf_8
|
a86a35685785ce380a1e68dc10219b92
|
function varargout = mircentroid(x,varargin)
% c = mircentroid(x) calculates the centroid (or center of gravity) of x.
% x can be either:
% - a spectrum (spectral centroid),
% - an envelope (temporal centroid)
% - a histogram,
% - or any data. Only the positive ordinates of the data are taken
% into consideration.
% c = mircentroid(x,'Peaks') calculates the centroid of the peaks only.
% Beauchamp 1982 version?
peaks.key = 'Peaks';
peaks.type = 'String';
peaks.choice = {0,'NoInterpol','Interpol'};
peaks.default = 0;
peaks.keydefault = 'NoInterpol';
option.peaks = peaks;
minrms.key = 'MinRMS'; % Should we change this?
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .005;
option.minrms = minrms;
maxentropy.key = 'MaxEntropy';
maxentropy.when = 'After';
maxentropy.type = 'Numerical';
maxentropy.default = .95;
option.maxentropy = maxentropy;
specif.option = option;
varargout = mirfunction(@mircentroid,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata')) || isamir(x,'miraudio')
x = mirspectrum(x);
end
type = 'mirscalar';
function c = main(x,option,postoption)
if iscell(x)
x = x{1};
end
if option.peaks
if strcmpi(option.peaks,'Interpol')
pt = get(x,'PeakPrecisePos');
pv = get(x,'PeakPreciseVal');
else
pt = get(x,'PeakPos');
pv = get(x,'PeakVal');
end
cx = cell(1,length(pt));
for h = 1:length(pt)
cx{h} = cell(1,length(pt{h}));
for i = 1:length(pt{h})
pti = pt{h}{i};
pvi = pv{h}{i};
%if isempty(pti)
nfr = size(pti,2);
nbd = size(pti,3);
ci = zeros(1,nfr,nbd);
for j = 1:nfr
for k = 1:nbd
ptk = pti{1,j,k};
pvk = pvi{1,j,k};
sk = sum(pvk);
ci(1,j,k) = sum(ptk.*pvk) ./ sk;
end
end
cx{h}{i} = ci;
end
end
else
cx = peaksegments(@centroid,get(x,'Data'),get(x,'Pos'));
end
if isa(x,'mirspectrum')
t = 'Spectral centroid';
elseif isa(x,'mirenvelope')
t = 'Temporal centroid';
else
t = ['centroid of ',get(x,'Title')];
end
c = mirscalar(x,'Data',cx,'Title',t);
if isstruct(postoption)
c = after(x,c,postoption.minrms,postoption.maxentropy);
end
function c = centroid(d,p)
c = (p'*d) ./ sum(d);
function c = after(x,c,minrms,maxentropy)
v = get(c,'Data');
if minrms && strcmpi(get(x,'Title'),'Spectrum')
r = mirrms(x,'Warning',0);
v = mircompute(@trimrms,v,get(r,'Data'),minrms);
end
if maxentropy && maxentropy < 1
h = mirentropy(x,'MinRMS',minrms);
v = mircompute(@trimentropy,v,get(h,'Data'),maxentropy);
end
c = set(c,'Data',v);
function d = trimrms(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d{pos(i)} = NaN;
% Adding warning messages?
end
d = {d};
function d = trimentropy(d,r,minentropy)
pos = find(r>minentropy);
for i = 1:length(pos)
d{pos(i)} = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirbrightness.m
|
.m
|
mirtooloct-master/MIRToolbox/mirbrightness.m
| 2,411 |
utf_8
|
e606c2a0139812150d9ca8ad065f1149
|
function varargout = mirbrightness(x,varargin)
% b = mirbrightness(s) calculates the spectral brightness, i.e. the amount
% of spectral energy corresponding to frequencies higher than a given
% cut-off threshold.
% Optional arguments:
% b = mirbrightness(s,'CutOff',f) specifies the frequency cut-off
% threshold in Hz.
% Default value: f = 1500 Hz.
%
% Typical values for the frequency cut-off threshold:
% 3000 Hz in Juslin 2000, p. 1802.
% 1000 Hz and 500 Hz in Laukka, Juslin and Bresin 2005.
%
% Juslin, P. N. (2000). Cue utilization in communication of emotion in
% music performance: relating performance to perception. Journal of
% Experimental Psychology: Human Perception and Performance, 26(6), 1797?813.
% Laukka, P., Juslin, P. N., and Bresin, R. (2005). A dimensional approach
% to vocal expression of emotion. Cognition and Emotion, 19, 633?653.
cutoff.key = 'CutOff';
cutoff.type = 'Integer';
cutoff.default = 1500;
option.cutoff = cutoff;
minrms.key = 'MinRMS';
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .005;
option.minrms = minrms;
specif.option = option;
specif.defaultframelength = .05;
specif.defaultframehop = .5;
varargout = mirfunction(@mirbrightness,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirspectrum'))
x = mirspectrum(x);
end
type = 'mirscalar';
function b = main(s,option,postoption)
if iscell(s)
s = s{1};
end
m = get(s,'Magnitude');
f = get(s,'Frequency');
w = warning('query','MATLAB:divideByZero');
warning('off','MATLAB:divideByZero');
v = mircompute(@algo,m,f,option.cutoff);
warning(w.state,'MATLAB:divideByZero');
b = mirscalar(s,'Data',v,'Title','Brightness');
if isstruct(postoption)
b = after(s,b,postoption.minrms);
end
function v = algo(m,f,k)
if not(any(max(f)>k))
warning('WARNING in MIRBRIGHTNESS: Frequency range of the spectrum too low for the estimation of brightness.');
end
sm = sum(m);
v = sum(m(f(:,1,1) > k,:,:)) ./ sm;
function b = after(s,b,minrms)
v = get(b,'Data');
if minrms
r = mirrms(s,'Warning',0);
v = mircompute(@trimrms,v,get(r,'Data'),minrms);
end
b = set(b,'Data',v);
function d = trimrms(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d(pos(i)) = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
nthoutput.m
|
.m
|
mirtooloct-master/MIRToolbox/nthoutput.m
| 440 |
utf_8
|
319f756e43e6a02e1cf1c3868c4da5be
|
function varargout = nthoutput(orig,varargin)
nth.type = 'Integer';
nth.default = 1;
nth.position = 2;
option.nth = nth;
specif.option = option;
varargout = mirfunction(@nthoutput,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(x);
if iscell(type)
type = type{option.nth};
end
function y = main(x,option,postoption)
y = x{option.nth};
%y = x{1}{option.nth};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmap.m
|
.m
|
mirtooloct-master/MIRToolbox/mirmap.m
| 9,257 |
utf_8
|
e2f934119eadec0f16f594bc8b212468
|
function res = mirmap(predics_ref,ratings_ref,dist,alpha,delta)
% mirmap(predictors_file, ratings_file) performs a statistical mapping
% between ratings associated to a set of audio recordings, and a set of
% variables computed for the same set of audio recordings. It might be
% useful in particular when the set of predictors is large and diverse.
if nargin<3
dist = 'lse';
end
if nargin<4
alpha = 1;
end
if nargin<5
delta = .00001;
end
crosscor_thres = .6;
dist = str2func(dist);
try
predics = import(predics_ref);
catch err
mirerror('MIRMAP',['Cannot load properly the predictors file ' ...
prefics_ref '. Check MIRtoolbox User''s Manual']);
end
try
ratings = import(ratings_ref);
catch err
display(err.message)
mirerror('MIRMAP',['Cannot load properly the ratings file ' ...
ratings_ref '. Check MIRtoolbox User''s Manual']);
end
predics = normalize(predics,dist,alpha,delta,'predictions',predics_ref);
if isempty(predics.data)
res = [];
return
end
ratings = normalize(ratings,dist,alpha,delta,'ratings',ratings_ref);
res = map(predics,ratings,crosscor_thres);
%%
function output = import(ref)
output.data = [];
output.fields = {};
output.normal = [];
if not(iscell(ref))
ref = {ref};
end
for i = 1:length(ref)
if not(iscell(ref{i}))
ref{i} = {ref{i}};
end
if ischar(ref{i}{1})
for j = 1:length(ref{i})
importj = importdata(ref{i}{j});
if not(isstruct(importj))
imp = importj;
importj = struct;
importj.data = imp;
for k = 1:size(imp,2)
importj.textdata{k} = [ref{i}{j},'_',num2str(k)];
end
end
if j == 1
import = importj;
else
[c ia ib] = intersect(import.textdata(1,2:end),...
importj.textdata(1,2:end));
import.textdata = [import.textdata(:,[1 ia+1]);...
importj.textdata(2:end,[1 ib+1])];
import.data = [import.data(:,ia);importj.data(:,[1 ib+1])];
end
end
output.data = [output.data import.data];
nbfields = size(import.data,2);
field = import.textdata(1,:);
field = field(end-nbfields+1 : end);
output.fields = [output.fields field];
else
output.data = [output.data ref{i}{1}];
for j = 1:size(ref{i},2)
output.fields = [output.fields num2str(j)];
end
end
end
ndata = size(output.data,2);
output.normal = NaN(1,ndata);
warning('off','stats:lillietest:OutOfRangeP');
for i = 1:ndata
data = output.data(:,i);
data = data(~isnan(data));
if length(data) < 4
output.normal(i) = 0;
else
output.normal(i) = ~lillietest(data);
end
end
%%
function res = map(predics,ratings,crosscor_thres)
nbrates = size(ratings.data,2);
nbpreds = size(predics.data,2);
res.normal.cor = NaN(nbpreds,nbrates);
res.normal.pval = NaN(nbpreds,nbrates);
res.significant = cell(nbrates,1);
for j = 1:nbrates
figure
set(gca,'YDir','reverse')
hold on
select = []; % list of selected features
for i = 1:nbpreds
if ~predics.normal(i)
res.normal.cor(i,j) = NaN;
continue
end
[R P] = corrcoef(predics.data(:,i),ratings.data(:,j),...
'rows','pairwise');
res.normal.pval(i,j) = P(2);
if P(2)<.05 % statistically significant
select(end+1) = i; % included into the list of selected features
res.normal.cor(i,j) = R(2);
else
res.normal.cor(i,j) = NaN;
end
end
%res.inter(:,:,j) = corrcoef(predics.data,'rows','pairwise');
[unused index] = sort(abs(res.normal.cor(select,j)),'descend');
index = select(index);
res.significant{j}.cor = res.normal.cor(index,j);
res.significant{j}.pval = res.normal.pval(index,j);
res.significant{j}.inter = corrcoef(predics.data(:,index),'rows','pairwise');
%res.inter(index,index,j);
res.significant{j}.fields = {predics.fields{index}};
res.significant{j}.alpha = predics.alpha(index);
res.significant{j}.lambda = predics.lambda(index);
k = 0;
corfields = {};
corbest = [];
for i = 1:length(select)
inter = max(abs(res.significant{j}.inter(1:i-1,i)));
if i == 1 || inter < crosscor_thres
% Features sufficiently independent to the better scoring ones
% are selected
k = k+1;
if i == 1
own = 1;
else
own = 1-inter;
end
col = res.significant{j}.pval(i);
x1 = min(0,res.significant{j}.cor(i));
y1 = k-own/2;
x2 = x1+abs(res.significant{j}.cor(i));
y2 = k+own/2;
pcolor([x1 x1;x2 x2],[y1 y2;y1 y2],[col col;col col])
corbest = [corbest i];
corfields = [corfields res.significant{j}.fields{i}];
i
res.significant{j}.fields{i}
res.significant{j}.cor(i)
inter
end
end
set(gca,'YTick',1:k,'YTickLabel',corfields)%,...
% 'Position',[.4 .11 .5 .815])
colorbar
grid on
title(['Correlation with rating ',ratings.fields{j}])
predata = standardize(predics.data(:,index(corbest))); %% to be put out of the loop
res.best{j}.index = corbest;
res.best{j}.fields = {res.significant{j}.fields{corbest}};
res.best{j}.alpha = res.significant{j}.alpha(corbest);
res.best{j}.lambda = res.significant{j}.lambda(corbest);
if isempty(select)
close
elseif length(corbest)>1
display('****************************************')
display(['Regression for rating ',ratings.fields{j}])
ratej = standardize(ratings.data(:,j));
stepwisefit(predata,ratej,'maxiter',10);
[b,se,pval,inmodel,stats,nextstep,history] ...
= stepwisefit(predata,ratej,'maxiter',10,'scale','on');
res.best{j}.fields{find(inmodel)}
%stepwise(predata,ratej,[]);%,.001,.001);
pause
end
end
function x = standardize(x)
%mx = mean(x);
%x = x-repmat(mx,[size(x,1) 1]);
%sx = std(x);
%sx(sx==0) = 1;
%x = x./repmat(sx,[size(x,1) 1]);
%%
function output = normalize(input,dist,alpha,delta,txt,filename)
fields = input.fields;
nbfields = length(fields);
output = input;
h = waitbar(0,['Normalizing ',txt]);
for i = 1:nbfields
waitbar((i-1)/nbfields,h,['Normalizing ',txt,fields{i}]);
d = input.data(:,i);
if length(d(~isnan(d)))>3 && ~input.normal(i)
%figure(1)
%hist(d,round(7.5*log(size(d,1))));
%figure(2)
%normplot(d)
[output.data(:,i) output.alpha(i) output.lambda(i)] = ...
boxcox_search(d,dist,alpha,delta);
%figure(3)
%hist(output.data(:,i),round(7.5*log(size(d,1))));
output.normal(i) = ~lillietest(output.data(:,i),.01);
%figure(4)
%normplot(data(:,i))
end
end
display('Excluded:')
output.fields{~output.normal}
display('..')
output.data(:,~output.normal) = [];
output.fields(~output.normal) = [];
output.normal(~output.normal) = [];
if max(~output.normal)
output.alpha(~output.normal) = [];
output.lambda(~output.normal) = [];
end
%if strcmpi(filename(end-3:end),'.txt')
% filename = filename(1:end-4);
%end
%filename = [filename '.mir.txt'];
%mirexport(filename,output);
close(h);
function [y resalpha lambda] = boxcox_search(x,dist,alpha,delta)
if nargin<2
dist = @lse;
end
if nargin<3
alpha = 0;
end
lambda = -10:.01:10;
if min(x)<0
x = x-min(x);
resalpha = -min(x);
else
resalpha = 0;
end
y = boxcox_transf(x,lambda);
[y lambda d] = optimize(y,lambda,dist,x);
%y = y(~isnan(y));
while lillietest(y,.01) && alpha > delta
yp = boxcox_transf(x+alpha,lambda);
%plot(alpha,lse(yp,lambda,x))
if dist(yp,lambda,x)<d
x = x+alpha;
resalpha = resalpha + alpha;
y = yp;
alpha = alpha*.999;
d = dist(y,lambda,x);
else
minalpha = min(alpha,min(x)); % to avoid negative values
yn = boxcox_transf(x - minalpha,lambda);
%plot(alpha,lse(yn,lambda,x))
if dist(yn,lambda,x)<d
x = minalpha;
resalpha = resalpha - minalpha;
y = yn;
alpha = alpha*.999;
d = dist(y,lambda,x);
else
alpha = alpha/2;
end
end
end
%plot(lambda,dist(y,lambda,x),'.r')
function y = boxcox_transf(x,lambda)
lambda0 = find(~lambda);
if min(x)<0
x = x-min(x);
end
x = repmat(x,[1 length(lambda)]);
lambda = repmat(lambda,[size(x,1) 1]);
y = (x.^lambda-1)./lambda;
y(:,lambda0) = log(x(:,lambda0));
function [z,lambda,d] = optimize(y,lambda,dist,x)
[d index] = min(dist(y,lambda,x));
lambda = lambda(index);
z = y(:,index);
function d = lse(y,lambda,x)
d = skewness(y).^2 + (kurtosis(y)-3).^2/4; % equation used in Jarque-Bera test
%plot(lambda,d,'.')
function d = mle(y,lambda,x)
d = -size(y,1)/2*log(var(y))+(lambda-1)*sum(log(x));
|
github
|
martinarielhartmann/mirtooloct-master
|
mirsum.m
|
.m
|
mirtooloct-master/MIRToolbox/mirsum.m
| 5,221 |
utf_8
|
c32347b96fc7dde3df06fc81737c6298
|
function varargout = mirsum(orig,varargin)
% s = mirsum(f) sums the channels together
%
% Optional arguments:
% mirsum(f,'Centered') centers the resulting envelope.
% mirsum(f,'Mean') divides the summation by the number of channels.
% mirsum(f,'Weights')...
c.key = 'Centered';
c.type = 'Boolean';
c.default = 0;
c.when = 'After';
option.c = c;
m.key = 'Mean';
m.type = 'Boolean';
m.default = 0;
m.when = 'After';
option.m = m;
adj.key = 'Adjacent';
adj.type = 'Integer';
adj.default = 1;
option.adj = adj;
weights.key = 'Weights';
weights.type = 'Integer';
weights.default = [];
option.weights = weights;
specif.option = option;
if isamir(orig,'mirtemporal')
specif.eachchunk = @eachtemporalchunk;
specif.combinechunk = 'Concat'; %@combinetemporalchunk;
else
specif.combinechunk = @combinechunk;
end
varargout = mirfunction(@mirsum,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = mirtype(x);
function s = main(x,option,postoption)
x = purgedata(x);
if iscell(x)
x = x{1};
end
d = get(x,'Data');
pp = get(x,'PeakPos');
pv = get(x,'PeakVal');
pm = get(x,'PeakMode');
p = get(x,'Pos');
sc = cell(1,length(d));
spp = cell(1,length(d));
spv = cell(1,length(d));
spm = cell(1,length(d));
for h = 1:length(d)
dh = d{h};
sch = cell(1,length(dh));
spph = cell(1,length(dh));
spvh = cell(1,length(dh));
spmh = cell(1,length(dh));
for i = 1:length(dh)
% Summation of signal
s3 = size(dh{i},3);
if not(isempty(option.weights))
weights = reshape(option.weights,1,1,length(option.weights));
if length(weights)~=s3
%warning('WARNING in MIRSUM..');
weights = weights(1,1,1:s3);
end
dh{i} = dh{i}.*repmat(weights,[size(dh{i},1),size(dh{i},2),1]);
end
if option.adj < 2
sch{i} = sum(dh{i},3);
else
m0 = option.adj;
nc1 = size(dh{i},3);
nc2 = ceil(nc1/m0);
sch{i} = zeros(size(dh{i},1),size(dh{i},2),nc2);
for j = 1:nc2
sch{i}(:,:,j) = sum(dh{i}(:,:,(j-1)*m0+1:min(j*m0,nc1))...
,3);
end
end
% Summation of peaks
if not(isempty(pp)) && not(isempty(pp{1}))
ppi = pp{h}{i};
pvi = pv{h}{i};
pmi = pm{h}{i};
nfr = size(ppi,2);
nbd = size(ppi,3);
sppi = cell(1,nfr,1);
spvi = cell(1,nfr,1);
spmi = cell(1,nfr,1);
for j = 1:nfr
sppj = [];
spvj = [];
spmj = [];
for k = 1:nbd
ppk = ppi{1,j,k};
pvk = pvi{1,j,k};
pmk = pmi{1,j,k};
for l = 1:length(ppk)
fp = find(ppk(l) == sppj);
if fp
spvj(fp) = spvj(fp) + pvk(l);
else
sppj(end+1) = ppk(l);
spvj(end+1) = pvk(l);
spmj(end+1) = pmk(l);
end
end
end
sppi{1,j,1} = sppj;
spvi{1,j,1} = spvj;
spmi{1,j,1} = spmj;
end
spph{i} = sppi;
spvh{i} = spvi;
spmh{i} = spmi;
else
spph{i} = [];
spvh{i} = [];
spmh{i} = [];
end
if not(isempty(p)) && not(isempty(p{h}))
p{h}{i} = p{h}{i}(:,:,1);
end
end
sc{h} = sch;
spp{h} = spph;
spv{h} = spvh;
spm{h} = spmh;
end
s = set(x,'Data',sc,'Pos',p,'PeakPos',spp,'PeakVal',spv,'PeakMode',spm);
if not(isempty(postoption))
s = post(s,postoption);
end
function s = post(s,option)
if option.c
d = get(s,'Data');
for k = 1:length(d)
for i = 1:length(d{k})
d{k}{i} = center_(d{k}{i});
end
end
s = set(s,'Data',d);
end
if option.m
d = get(s,'Data');
ch = get(s,'Channels');
if not(isempty(ch))
for k = 1:length(d)
for i = 1:length(d{k})
d{k}{i} = d{k}{i}/length(ch{k});
end
ch{k} = [1];
end
s = set(s,'Data',d,'Channels',ch);
end
end
function [y orig] = eachtemporalchunk(orig,option,missing)
[y orig] = mirsum(orig,option);
%function y = combinetemporalchunk(old,new)
%do = get(old,'Data');
%to = get(old,'Time');
%dn = get(new,'Data');
%tn = get(new,'Time');
%y = set(old,'Data',{{[do{1}{1};dn{1}{1}]}},...
% 'Time',{{[to{1}{1};tn{1}{1}]}});
%
function y = combinechunk(old,new)
if isa(old,'mirspectrum')
warning('WARNING IN MIRSUM: not yet fully generalized to mirspectrum')
end
doo = get(old,'Data');
doo = doo{1}{1};
dn = get(new,'Data');
dn = dn{1}{1};
if length(dn) < length(doo)
dn(length(doo),:,:) = 0; % Zero-padding
end
y = set(old,'ChunkData',doo+dn);
|
github
|
martinarielhartmann/mirtooloct-master
|
mironsets.m
|
.m
|
mirtooloct-master/MIRToolbox/mironsets.m
| 33,222 |
utf_8
|
5f4967930b6c3ac6998051ef4af37132
|
function varargout = mironsets(x,varargin)
% o = mironsets(x) shows a temporal curve where peaks relate to the
% position of note onset times, and estimates those note onset
% positions.
% Optional arguments:
% mironsets(...,f) selects the strategy for the computation of the
% onset detection function.
% f = 'Envelope': Envelope of the audio signal. (Default choice).
% With two methods for envelope extraction:
% mironsets(...,'Spectro') (Default):
% mironsets(...,'SpectroFrame',fl,fh) species the frame
% length fl (in s.) and the hop factor fh (as a value
% between 0 and 1)
% Default values: fl = .1 s., fh = .1
% the frequency reassigment method can be specified:
% 'Freq' (default), 'Mel', 'Bark' or 'Cents' (cf. mirspectrum).
% mironsets(...,'Filter'):
% mironsets(...,'Filterbank',nc) specifies a preliminary
% filterbank decomposition into nc channels. If nc = 0,
% no decomposition is performed.
% Default value: 40.
% mironsets(...,'FilterbankType',ft) specifies the type of
% filterbank (see mirfilterbank).
% Default value: 'Gammatone';
% Options associated to the mirenvelope function can be
% passed here as well (see help mirenvelope):
% 'FilterType','Tau','PreDecim'
% mironsets(...,'Sum','no') does not sum back the channels at
% the end of the computation. The resulting onset curve
% remains therefore decomposed into several channels.
% Options associated to the mirenvelope function can be
% passed here as well (see help mirenvelope):
% 'HalfwaveCenter','Diff','HalfwaveDiff','Center',
% 'Smooth', 'Sampling','Log','Power','Lambda',
% ,'PostDecim','UpSample'
% f = 'SpectralFlux': Spectral flux of the audio signal.
% Options associated to the mirflux function can be
% passed here as well (see help mirflux):
% 'Inc' (toggled on by default here),
% 'Halfwave' (toggled on by default here),
% 'Complex' (toggled off by default),
% 'Median' (toggled on by default here)
% f = 'Emerge': is an improved version of the 'SpectralFlux'
% method that is able to detect more notes and in the same
% time ignore the spectral variation produced by vibrato.
%%%%
% When the 'Emerge' method is used for academic research, please cite the
% following publication:
% Lartillot, O., Cereghetti, D., Eliard, K., Trost, W. J., Rappaz, M.-A.,
% Grandjean, D., "Estimating tempo and metrical features by tracking
% the whole metrical hierarchy", 3rd International Conference on
% Music & Emotion, Jyv?skyl?, 2013.
%%%%
% f = 'Pitch ':computes a frame-decomposed autocorrelation function ,
% of same default characteristics than those returned
% by mirpitch, with however a range of frequencies set by
% the following options:
% 'Min' (set by default to 30 Hz),
% 'Max' (set by default to 1000 Hz),
% and subsequently computes the novelty curve of the
% resulting similatrix matrix.
% Option associated to the mirnovelty function can be
% passed here as well (see help mirnovelty):
% 'KernelSize' (set by default to 32 samples)
% mironsets(...,'Detect',d) toggles on or off the onset detection,
% which is based on the onset detection function.
% (By default toggled on.)
% Option associated to the mirpeaks function can be specified as
% well:
% 'Contrast' with default value c = .01
% 'Threshold' with default value t = 0
% 'Single' detects only the highest peak.
% mironsets(...,'Attack') (or 'Attacks') detects attack phases.
% mironsets(...,'Release') (or 'Releases') detects release phases.
% mironsets(...,'Frame',...) decomposes into frames, with default frame
% length 3 seconds and hop factor .1
% Preselected onset detection models:
% mironsets(...,'Scheirer') corresponds to (Scheirer, 1998):
% mironsets(...,'FilterBankType','Scheirer',...
% 'FilterType','HalfHann','Sampling',200,...
% 'HalfWaveDiff','Sum',0,'Detect',0)
% mironsets(...,'Klapuri99') corresponds to most of (Klapuri, 1999).
%% options related to 'Envelope':
env.key = 'Envelope';
env.type = 'Boolean';
env.default = NaN;
option.env = env;
envmethod.key = 'Method'; % optional
envmethod.type = 'Boolean';
option.envmethod = envmethod;
envmeth.type = 'String';
envmeth.choice = {'Filter','Spectro'};
envmeth.default = 'Spectro';
option.envmeth = envmeth;
%% options related to 'Filter':
filter.key = 'FilterType';
filter.type = 'String';
filter.choice = {'IIR','HalfHann','Butter'};
filter.default = 'IIR';
option.filter = filter;
tau.key = 'Tau';
tau.type = 'Integer';
tau.default = .02;
option.tau = tau;
fb.key = {'Filterbank','NbChannels'};
fb.type = 'Integer';
fb.default = 40;
option.fb = fb;
filtertype.key = 'FilterbankType';
filtertype.type = 'String';
%filtertype.choice = {'Gammatone','2Channels','Scheirer','Klapuri'};
filtertype.default = 'Gammatone';
option.filtertype = filtertype;
decim.key = {'Decim','PreDecim'};
decim.type = 'Integer';
decim.default = 0;
option.decim = decim;
hilb.key = {'Hilbert'};
hilb.type = 'Boolean';
hilb.default = 0;
option.hilb = hilb;
%% options related to 'Spectro':
band.type = 'String';
band.choice = {'Freq','Mel','Bark','Cents'};
band.default = 'Freq';
option.band = band;
specframe.key = 'SpectroFrame';
specframe.type = 'Integer';
specframe.number = 2;
specframe.default = [.1 .1];
option.specframe = specframe;
powerspectrum.key = 'PowerSpectrum';
powerspectrum.type = 'Boolean';
powerspectrum.default = 1;
option.powerspectrum = powerspectrum;
timesmooth.key = 'TimeSmooth';
timesmooth.type = 'Boolean';
timesmooth.default = 0;
timesmooth.keydefault = 10;
option.timesmooth = timesmooth;
terhardt.key = 'Terhardt';
terhardt.type = 'Boolean';
terhardt.default = 0;
option.terhardt = terhardt;
sum.key = 'Sum';
sum.type = 'Boolean';
sum.default = 1;
option.sum = sum;
chwr.key = 'HalfwaveCenter';
chwr.type = 'Boolean';
chwr.default = 0;
chwr.when = 'After';
option.chwr = chwr;
mu.key = 'Mu';
mu.type = 'Integer';
mu.default = 0;
mu.keydefault = 100;
option.mu = mu;
oplog.key = 'Log';
oplog.type = 'Boolean';
oplog.default = 0;
oplog.when = 'After';
option.log = oplog;
minlog.key = 'MinLog';
minlog.type = 'Integer';
minlog.default = 0;
minlog.when = 'After';
option.minlog = minlog;
oppow.key = 'Power';
oppow.type = 'Boolean';
oppow.default = 0;
oppow.when = 'After';
option.power = oppow;
diffenv.key = 'DiffEnvelope'; % obsolete, replaced by 'Diff'
diffenv.type = 'Boolean';
diffenv.default = 0;
option.diffenv = diffenv;
diff.key = 'Diff';
diff.type = 'Integer';
diff.default = 0;
diff.keydefault = 1;
diff.when = 'After';
option.diff = diff;
diffhwr.key = 'HalfwaveDiff';
diffhwr.type = 'Integer';
diffhwr.default = 0;
diffhwr.keydefault = 1;
diffhwr.when = 'After';
option.diffhwr = diffhwr;
lambda.key = 'Lambda';
lambda.type = 'Integer';
lambda.default = 1;
lambda.when = 'After';
option.lambda = lambda;
c.key = 'Center';
c.type = 'Boolean';
c.default = 0;
c.when = 'After';
option.c = c;
aver.key = 'Smooth';
aver.type = 'Integer';
aver.default = 0;
aver.keydefault = 30;
aver.when = 'After';
option.aver = aver;
ds.key = {'Down','PostDecim'};
ds.type = 'Integer';
if isamir(x,'mirenvelope')
ds.default = 1;
else
ds.default = NaN;
end
ds.when = 'After';
ds.chunkcombine = 'During';
option.ds = ds;
sampling.key = 'Sampling';
sampling.type = 'Integer';
sampling.default = 0;
sampling.when = 'After';
option.sampling = sampling;
up.key = {'UpSample'};
up.type = 'Integer';
up.default = 0;
up.keydefault = 2;
option.up = up;
normal.key = 'Normal';
normal.type = 'String';
normal.choice = {0,1,'AcrossSegments'};
normal.default = 1;
normal.when = 'After';
option.normal = normal;
%% options related to 'SpectralFlux'
flux.key = 'SpectralFlux';
flux.type = 'Boolean';
flux.default = 0;
option.flux = flux;
complex.key = 'Complex';
complex.type = 'Boolean';
complex.when = 'Both';
complex.default = 0;
option.complex = complex;
inc.key = 'Inc';
inc.type = 'Boolean';
inc.default = 1;
option.inc = inc;
median.key = 'Median';
median.type = 'Integer';
median.number = 2;
median.default = [.2 1.3];
median.when = 'After';
option.median = median;
hw.key = 'Halfwave';
hw.type = 'Boolean';
hw.default = 1;
hw.when = 'After';
option.hw = hw;
%% options related to 'Pitch':
pitch.key = 'Pitch';
pitch.type = 'Boolean';
pitch.default = 0;
option.pitch = pitch;
min.key = 'Min';
min.type = 'Integer';
min.default = 30;
option.min = min;
max.key = 'Max';
max.type = 'Integer';
max.default = 1000;
option.max = max;
novelty.key = 'Novelty';
novelty.type = 'Boolean';
novelty.default = 0;
option.novelty = novelty;
kernelsize.key = 'KernelSize';
kernelsize.type = 'Integer';
kernelsize.default = 0;
option.kernelsize = kernelsize;
%% options related to 'Emerge':
sgate.key = {'SmoothGate','Emerge'};
sgate.type = 'String';
sgate.choice = {'Goto','Lartillot'};
sgate.default = '';
sgate.keydefault = 'Lartillot';
sgate.when = 'Both';
option.sgate = sgate;
minres.key = 'MinRes';
minres.type = 'Integer';
minres.default = 10;
option.minres = minres;
%%
nomodif.key = 'NoModif';
nomodif.type = 'Boolean';
nomodif.default = 0;
option.nomodif = nomodif;
%% options related to event detection
detect.key = 'Detect';
detect.type = 'String';
detect.choice = {'Peaks','Valleys',0,'no','off'};
detect.default = 'Peaks';
detect.keydefault = 'Peaks';
detect.when = 'After';
option.detect = detect;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = NaN;
cthr.when = 'After';
option.cthr = cthr;
thr.key = 'Threshold';
thr.type = 'Integer';
thr.default = 0;
thr.when = 'After';
option.thr = thr;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
single.when = 'After';
option.single = single;
attack.key = {'Attack','Attacks'};
attack.type = 'Boolean';
attack.default = 0;
attack.when = 'After';
option.attack = attack;
release.key = {'Release','Releases'};
release.type = 'String';
release.choice = {'Olivier','Valeri',0,'no','off'};
release.default = 0;
release.keydefault = 'Olivier';
release.when = 'After';
option.release = release;
%% preselection
presel.choice = {'Scheirer','Klapuri99'};
presel.type = 'String';
presel.default = 0;
option.presel = presel;
%% 'Frame' option
frame.key = 'Frame';
frame.type = 'Integer';
frame.when = 'After';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [3 .1];
option.frame = frame;
specif.option = option;
specif.eachchunk = 'Normal';
specif.combinechunk = 'Concat';
specif.extensive = 1;
specif.title = 'Onset curve'; %used for miroptions
varargout = mirfunction(@mironsets,x,varargin,nargout,specif,@init,@main);
%% INIT
function [y type] = init(x,option)
if iscell(x)
x = x{1};
end
if option.nomodif
y = x;
return
end
if ischar(option.presel)
if strcmpi(option.presel,'Scheirer')
option.filtertype = 'Scheirer';
option.filter = 'HalfHann';
option.envmeth = 'Filter';
elseif strcmpi(option.presel,'Klapuri99')
option.filtertype = 'Klapuri';
option.filter = 'HalfHann';
option.envmeth = 'Filter';
option.decim = 180;
option.mu = 100;
end
end
if option.diffenv
option.env = 1;
end
if isnan(option.env)
if option.flux || option.pitch || option.novelty || ...
~isempty(option.sgate)
option.env = 0;
else
option.env = 1;
end
end
if ~option.kernelsize
if option.pitch
option.kernelsize = 32;
elseif option.novelty
option.kernelsize = 64;
end
end
if isamir(x,'miraudio')
y = [];
if option.env
if strcmpi(option.envmeth,'Filter') && option.fb>1
fb = mirfilterbank(x,option.filtertype,'NbChannels',option.fb);
else
fb = x;
end
y = mirenvelope(fb,option.envmeth,option.band,...
'Frame',option.specframe(1),option.specframe(2),...
'FilterType',option.filter,...
'Hilbert',option.hilb,...
'Tau',option.tau,'UpSample',option.up,...
'PreDecim',option.decim,'PostDecim',0,...
'Mu',option.mu,...
'PowerSpectrum',option.powerspectrum,...
'TimeSmooth',option.timesmooth,...
'Terhardt',option.terhardt);
end
if option.flux
z = mirflux(x,'Inc',option.inc,'Complex',option.complex); %,'Dist','City'); %%%%%%%%%%%%%%%%%???
if isempty(y)
y = z;
else
y = y+z;
end
end
if option.pitch
[unused ac] = mirpitch(x,'Frame','Min',option.min,'Max',option.max);
z = mirnovelty(ac,'KernelSize',option.kernelsize);
if isempty(y)
y = z;
else
y = y+z;
end
elseif option.novelty
s = mirspectrum(x,'max',1000,'Frame',.05,.2,'MinRes',3,'dB');
%c = mircepstrum(x,'Frame',.05,.2);
%[p ac] = mirpitch(x,'Frame');
z = mirnovelty(s,'KernelSize',option.kernelsize,... 'Flux',...
...'Distance','Euclidean',...
'Similarity','oneminus');
if isempty(y)
y = z;
else
y = y+z;
end
elseif ~isempty(option.sgate)
if strcmpi(option.sgate,'Goto')
x = miraudio(x,'Sampling',22050);
y = mirspectrum(x,'Frame',.04644,.25);
else
y = mirspectrum(x,'Frame',.05,.2,....
'MinRes',option.minres,'dB','max',5000);
if option.minres < 1 && isa(y,'mirdesign')
y = set(y,'ChunkSizeFactor',get(x,'ChunkSizeFactor')*5); %20/option.minres);
end
end
y = mirflux(y,'Inc','BackSmooth',option.sgate,'Dist','Gate');
%% other ideas
%y = mircepstrum(x,'min',50,'Hz','max',600,'Hz','Frame',.05,.2);
%y = mirnovelty(y);%,'Width',1000);
%y = mirsimatrix(y,'Width',1000); %'Distance','NewGate'
%y = mirpeaks(y,'Contrast',.1,'Threshold',.3);
%y = mirautocor(x,'Freq','max',5000,'Hz','Frame',.05,.2);
end
elseif (option.pitch && not(isamir(x,'mirscalar'))) ...
|| isamir(x,'mirsimatrix')
y = mirnovelty(x,'KernelSize',option.kernelsize);
elseif isamir(x,'mirscalar') || isamir(x,'mirenvelope') || ...
(isamir(x,'mirspectrum') && ~isempty(option.sgate))
y = x;
else
y = mirflux(x,'Inc',option.inc,'Complex',option.complex); %Not used...
end
type = 'mirenvelope';
%% MAIN
function o = main(o,option,postoption)
if not(isempty(option)) && ischar(option.presel)
if strcmpi(option.presel,'Scheirer')
postoption.sampling = 200;
postoption.diffhwr = 1;
option.sum = 0;
postoption.detect = 0;
elseif strcmpi(option.presel,'Klapuri99')
postoption.diffhwr = 1;
option.sum = 0;
postoption.ds = 0;
o2 = o;
end
end
if iscell(o)
o = o{1};
end
if not(isempty(option)) && option.diffenv
postoption.diff = 1;
end
if isa(o,'mirenvelope')
if isfield(postoption,'sampling') && postoption.sampling
o = mirenvelope(o,'Sampling',postoption.sampling);
elseif isfield(postoption,'ds')
if isnan(postoption.ds)
if option.decim || strcmpi(option.envmeth,'Spectro')
postoption.ds = 0;
else
postoption.ds = 16;
end
end
if postoption.ds
o = mirenvelope(o,'Down',postoption.ds);
end
end
end
if isfield(postoption,'cthr')
if isa(o,'mirenvelope')
if postoption.power
o = mirenvelope(o,'Power');
end
if postoption.diff
o = mirenvelope(o,'Diff',postoption.diff,...
'Lambda',postoption.lambda,...
'Complex',postoption.complex);
end
if postoption.diffhwr
o = mirenvelope(o,'HalfwaveDiff',postoption.diffhwr,...
'Lambda',postoption.lambda,...
'Complex',postoption.complex);
end
if postoption.aver
o = mirenvelope(o,'Smooth',postoption.aver);
end
if postoption.chwr
o = mirenvelope(o,'HalfwaveCenter');
end
elseif isa(o,'mirscalar') && strcmp(get(o,'Title'),'Spectral flux') && ...
isempty(postoption.sgate)
if postoption.median
o = mirflux(o,'Median',postoption.median(1),postoption.median(2),...
'Halfwave',postoption.hw);
else
o = mirflux(o,'Halfwave',postoption.hw);
end
elseif isa(o,'mirscalar') && strcmp(get(o,'Title'),'Novelty')
if postoption.diff
o = mirenvelope(o,'Diff',postoption.diff,...
'Lambda',postoption.lambda,...
'Complex',postoption.complex);
end
end
end
if isa(o,'mirspectrum')
[tmp o] = gettmp(o);
d = get(o,'Data');
[doo tmp] = mircompute(@newonset,d,tmp);
o = mirscalar(o,'Data',doo,'Title','Onset curve');
o = settmp(o,tmp);
%elseif isa(o,'mircepstrum')
% pp = get(o,'PeakPosUnit');
% pv = get(o,'PeakVal');
% do = mircompute(@cepstronset,pp,pv);
% o = mirscalar(o,'Data',do,'Title','Onset curve');
end
if isfield(option,'sum') && option.sum
o = mirsum(o,'Adjacent',option.sum);
end
if isa(o,'mirenvelope') && isfield(postoption,'normal') && ...
~isequal(postoption.normal,0) && ~get(o,'Log')
o = mirenvelope(o,'Normal',postoption.normal);
end
if isa(o,'mirenvelope') && isfield(postoption,'log') && postoption.log
o = mirenvelope(o,'Log');
end
if isfield(option,'presel') && ...
ischar(option.presel) && strcmpi(option.presel,'Klapuri99')
% o, already computed, corresponds to mirenvelope(o,'Mu','HalfwaveDiff');
% o is the relative distance function W in (Klapuri, 99);
o2 = mirenvelope(o2,'HalfwaveDiff');
% o2 is the absolute distance function D in (Klapuri, 99);
p = mirpeaks(o,'Contrast',.2,'Chrono');
p2 = mirpeaks(o2,'ScanForward',p,'Chrono');
o = combinepeaks(p,p2,.05);
clear o2 p p2
filtfreq = 44*[2.^ ([ 0:2, ( 9+(0:17) )/3 ]) ];% Center frequencies of bands
o = mirsum(o,'Weights',(filtfreq(1:end-1)+filtfreq(2:end))/2);
o = mirenvelope(o,'Smooth',12);
end
if isfield(postoption,'detect')
if postoption.c || ~isempty(postoption.sgate)
o = mirenvelope(o,'Center');
end
if isa(o,'mirenvelope') && postoption.minlog
o = mirenvelope(o,'MinLog',postoption.minlog);
end
end
o = mirframenow(o,postoption);
if isfield(postoption,'detect') && ischar(postoption.detect)
if isnan(postoption.cthr) || not(postoption.cthr)
if ischar(postoption.detect) || postoption.detect
postoption.cthr = .01;
end
elseif postoption.cthr
if not(ischar(postoption.detect) || postoption.detect)
postoption.detect = 'Peaks';
end
end
if postoption.single
total = 1;
noend = 0;
else
total = Inf;
noend = 1;
end
if strcmpi(postoption.detect,'Peaks')
o = mirpeaks(o,'Total',total,'SelectFirst',0,...
'Threshold',postoption.thr,'Contrast',postoption.cthr,...
'Order','Abscissa','NoBegin','NoEnd',noend);
elseif strcmpi(postoption.detect,'Valleys')
o = mirpeaks(o,'Total',total,'SelectFirst',0,...
'Threshold',postoption.thr,'Contrast',postoption.cthr,...
'Valleys','Order','Abscissa','NoBegin','NoEnd',noend);
end
nop = cell(size(get(o,'Data')));
o = set(o,'AttackPos',nop,'ReleasePos',nop);
end
if (isfield(postoption,'attack') && not(isequal(postoption.attack,0))) || ...
(isfield(postoption,'release') && not(isequal(postoption.release,0)))
pp = get(o,'PeakPos');
pv = get(o,'PeakVal');
pm = get(o,'PeakMode');
ppp = get(o,'PeakPrecisePos');
ppv = get(o,'PeakPreciseVal');
d = get(o,'Data');
if postoption.attack
v = mirpeaks(o,'Total',Inf,'SelectFirst',0,...
'Contrast',postoption.cthr,...
'Valleys','Order','Abscissa','NoEnd');
st = get(v,'PeakPos');
[st pp] = mircompute(@startattack,d,pp,st);
%[st pp pv pm ppp ppv] = mircompute(@startattack,d,pp,pv,pm,ppp,ppv);
else
st = {{{}}};
end
if ischar(postoption.release) && ~strcmpi(postoption.release,'No') ...
&& ~strcmpi(postoption.release,'Off')
v = mirpeaks(o,'Total',Inf,'SelectFirst',0,...
'Contrast',postoption.cthr,'Threshold',.7,...
'Valleys','Order','Abscissa','NoBegin');
rl = get(v,'PeakPos');
rl = mircompute(@endrelease,d,pp,rl);
%[rl pp pv pm ppp ppv st] = mircompute(@endrelease,d,pp,pv,pm,ppp,ppv,st,postoption.release);
o = set(o,'ReleasePos',rl);
end
o = set(o,'AttackPos',st,'PeakPos',pp,'PeakVal',pv,'PeakMode',pm,...
'PeakPrecisePos',ppp,'PeakPreciseVal',ppv);
end
title = get(o,'Title');
if not(length(title)>11 && strcmp(title(1:11),'Onset curve'))
o = set(o,'Title',['Onset curve (',title,')']);
end
function [doo tmp] = newonset(d,tmp)
d = d - max(max(max(d)));
doo = zeros(1,size(d,2));
if isempty(tmp)
activ = [];
inactiv = [];
old = [];
else
activ = tmp.activ;
inactiv = tmp.inactiv;
old = tmp.old;
end
for i = 1:size(d,2)
dd = diff(d(:,i));
new = find(dd(1:end-1) > 0 & dd(2:end) < 0) + 1;
oldnew = [new d(new,i)];
if ~isempty(old)
maj = find(d(new,i) > -20);
while ~isempty(maj)
[min_o best_o] = min(abs(old(:,1) - new(maj(1))));
min_a = Inf;
for k = 1:length(activ)
da = abs(activ(k).idx(end) - new(maj(1)));
if da < min_a
min_a = da;
best_a = k;
end
end
if min_a == min_o
activ(best_a).idx(end+1) = new(maj(1));
activ(best_a).mag(end+1) = d(new(maj(1)),i);
activ(best_a).tim(end+1) = i;
if length(activ(best_a).idx) < 10
doo(i) = doo(i) + d(new(maj(1)),i) + 20;
end
elseif old(best_o,2) < -20
found = 0;
for k = 1:length(inactiv)
if inactiv(k).idx(end) == old(best_o,1)
activ(end+1) = inactiv(k);
inactiv(k) = [];
activ(end).idx(end+1) = new(maj(1));
activ(end).mag(end+1) = d(new(maj(1)),i);
activ(end).tim(end+1) = i;
if length(activ(end).idx) < 10
doo(i) = doo(i) + d(new(maj(1)),i) + 20;
end
found = 1;
break
end
end
if ~found
activ(end+1).idx = new(maj(1));
activ(end).mag = d(new(maj(1)),i);
activ(end).tim = i;
doo(i) = doo(i) + d(new(maj(1)),i) + 20;
end
end
new(maj(1)) = [];
maj(1) = [];
maj = maj - 1;
end
j = 1;
while j <= length(inactiv)
if isempty(new)
inactiv(j:end) = [];
break
end
[unused best_i] = min(abs(new - inactiv(j).idx(end)));
if unused < 100
inactiv(j).idx(end+1) = new(best_i);
inactiv(j).mag(end+1) = d(new(best_i));
inactiv(j).tim(end+1) = i;
j = j+1;
else
inactiv(j) = [];
end
new(best_i) = [];
end
j = 1;
while j <= length(activ)
if activ(j).tim(end) < i
if isempty(new)
activ(j) = [];
continue
end
if isempty(inactiv)
inactiv = activ(j);
else
inactiv(end+1) = activ(j);
end
activ(j) = [];
[unused best_i] = min(abs(new - inactiv(end).idx(end)));
inactiv(end).idx(end+1) = new(best_i);
inactiv(end).mag(end+1) = d(new(best_i));
inactiv(end).tim(end+1) = i;
new(best_i) = [];
else
j = j+1;
end
end
end
old = oldnew;
end
tmp.activ = activ;
tmp.inactiv = inactiv;
tmp.old = old;
function doo = oldnewonset(d)
tc = 10;
dy = 2;
doo = NaN(1,size(d,2));
for i = 1:size(d,2)
doo(i) = 0;
for j = dy+1:size(d,1)-dy
ddj = d(j,i) - max(max(d(j+(-dy:+dy),i-1:-1:max(i-tc,1))));
if ddj > 0
doo(i) = doo(i) + ddj;
end
end
end
doo
function [st pp] = startattack(d,pp,st) %pv,pm,ppp,ppv)
pp = sort(pp{1});
if isempty(pp)
st = {{} {}};
return
end
st = st{1};
if ~isempty(st) && st(1)>pp(1)
dd = diff(d,1,1); % d'
p = find(dd((pp(1)-1)-1:-1:1)<=0,1);
if isempty(p)
st0 = 1;
else
st0 = ((pp(1)-1)-p)+1;
end
st = [st0 st];
end
if length(st)>length(pp)
st = st(1:length(pp));
else
pp = pp(1:length(st));
end
%thres = .015;
for i = 1:length(st)
dd = diff(d(st(i):pp(i)));
[mad mdd] = max(dd);
f2 = find(dd(mdd+1:end)<mad/5,1);
if ~isempty(f2)
pp(i) = st(i) + mdd + f2 - 1;
end
f1 = find(dd(mdd-1:-1:1)<mad/5,1);
if ~isempty(f1)
st(i) = st(i) + mdd - f1;
end
%sti = find(dd > max(dd)/3,1);
%ppi = find(dd(end:-1:1) > max(dd)/3,1);
%st(i) = st(i) + sti - 1;
%pp(i) = pp(i) - ppi + 1;
end
st = {{st} {pp}};
return
%%
pv = pv{1};
pm = pm{1};
ppp = ppp{1};
ppv = ppv{1};
st = zeros(size(pp));
i = 1;
dd = diff(d,1,1); % d'
ddd = diff(dd,1,1); % d''
dddd = diff(ddd,1,1); % d'''
while i<=length(pp)
% Start attack is identified to previous valley in d.
p = find(dd((pp(i)-1)-1:-1:1)<0,1);
if isempty(p)
st(i) = 1;
else
st(i) = ((pp(i)-1)-p)+1;
if i>1 && st(i-1)==st(i)
if d(pp(i))>d(pp(i-1))
del = i-1;
else
del = i;
end
st(del) = [];
pp(del) = [];
pv(del) = [];
pm(del) = [];
ppp(del) = [];
ppv(del) = [];
i = i-1;
end
end
% Start attack is identified to previous peak in d''.
%p = find(dddd((pp(i)-1)-1:-1:1)<0,1); % previous decreasing d''
%if isempty(p)
% st(i) = 1;
%else
% n = find(dddd((pp(i)-1)-p-1:-1:1)>0,1); % previous increasing d''
% if isempty(n)
% st(i) = 1;
% else
% st(i) = ((pp(i)-1)-p-(n-1))+1;
% end
% if i>1 && st(i-1)==st(i)
% if d(pp(i))>d(pp(i-1))
% del = i-1;
% else
% del = i;
% end
% st(del) = [];
% pp(del) = [];
% pv(del) = [];
% pm(del) = [];
% ppp(del) = [];
% ppv(del) = [];
% i = i-1;
% end
%end
i = i+1;
end
st = {{st} {pp} {pv} {pm} {ppp} {ppv}};
function [rt pp] = endrelease(d,pp,rt) %pv,pm,ppp,ppv,rt,meth)
pp = sort(pp{1});
if isempty(pp)
rt = {{} {}};
return
end
rt = rt{1};
if ~isempty(rt) && rt(end)<pp(end)
dd = diff(d,1,1); % d'
p = find(dd((pp(end)+1)-1:end)>=0,1);
if isempty(p)
rte = length(d);
else
rte = ((pp(end)+1)+p)+1;
end
rt = [rt rte];
end
%thres = .015;
for i = 1:length(rt)
dd = diff(d(rt(i):-1:pp(i)));
[mad mdd] = max(dd);
ed = find(dd(mdd+1:end)<mad/5,1);
if ~isempty(ed)
pp(i) = rt(i) - mdd - ed - 1;
end
pp(i + find(pp(i+1:end) <= rt(i))) = [];
end
rt = {{[pp;rt]}};
return
%%
pv = pv{1};
pm = pm{1};
ppp = ppp{1};
ppv = ppv{1};
if not(isempty(st))
st = st{1};
end
rt = zeros(size(pp));
i = 1;
dd = diff(d,1,1); % d'
ddd = diff(dd,1,1); % d''
dddd = diff(ddd,1,1); % d'''
while i<=length(pp)
if strcmpi(meth,'Olivier')
% Release attack is identified to next (sufficiently positive) peak
% in d''.
l = find(ddd((pp(i)-1):end)<min(ddd)/100,1);
% next d'' sufficiently negative
if isempty(l)
rt(i) = length(d);
else
p = find(ddd((pp(i)-1)+(l-1)+1:end)>max(ddd)/100,1); % next increasing d''
if isempty(p)
rt(i) = length(d);
else
n = find(dddd((pp(i)-1)+(l-1)+p+1:end)<0,1); % next decreasing d''
if isempty(n)
rt(i) = length(d);
else
rt(i) = ((pp(i)-1)+(l-1)+p+n)+1;
end
end
end
elseif strcmpi(meth,'Valeri')
p = find(dd((pp(i)-1)+1:end)>min(dd)/100,1); % find point nearest to min(dd)/100 from current peak.
if isempty(p)
rt(i) = length(d);
elseif p<=3 %that means if p is less than 3 points away from the peak then it can not be considered as the end point of release.
%Assumption is that the whole DSR(decay sustain release) section can not be shorter than 30 ms (sampling rate is 100 Hz), also, no successive note can be nearer than 30ms.
rt(i) = pp(i)+3;
else
rt(i) = (pp(i)-1)+(p-1);
end
end
if i>1 && rt(i-1)==rt(i)
if d(pp(i))>d(pp(i-1))
del = i-1;
else
del = i;
end
rt(del) = [];
pp(del) = [];
pv(del) = [];
pm(del) = [];
ppp(del) = [];
ppv(del) = [];
if not(isempty(st))
st(del) = [];
end
i = i-1;
end
i = i+1;
end
rt = {{rt} {pp} {pv} {pm} {ppp} {ppv} {st}};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirspread.m
|
.m
|
mirtooloct-master/MIRToolbox/mirspread.m
| 1,555 |
utf_8
|
28dd29263e34084b9b2f6fb8048a491b
|
function varargout = mirspread(orig,varargin)
% S = mirspread(x) calculates the spread of x, which can be either:
% - a spectrum (spectral spread),
% - an envelope (temporal spread), or
% - any histogram.
minrms.key = 'MinRMS';
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .01;
option.minrms = minrms;
specif.option = option;
varargout = mirfunction(@mirspread,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata')) || isamir(x,'miraudio')
x = mirspectrum(x);
end
type = 'mirscalar';
function S = main(x,option,postoption)
if iscell(x)
x = x{1};
end
y = peaksegments(@spread,get(x,'Data'),...
get(x,'Pos'),...
get(mircentroid(x,'MaxEntropy',0),'Data'));
if isa(x,'mirspectrum')
t = 'Spectral spread';
elseif isa(x,'mirenvelope')
t = 'Temporal spread';
else
t = ['Spread of ',get(x,'Title')];
end
S = mirscalar(x,'Data',y,'Title',t);
if isstruct(postoption) && strcmpi(get(x,'Title'),'Spectrum') && ...
isfield(postoption,'minrms') && postoption.minrms
S = after(x,S,postoption.minrms);
end
function s = spread(d,p,c)
s = sqrt( sum((p-c).^2 .* (d/sum(d)) ) );
function S = after(x,S,minrms)
r = mirrms(x,'Warning',0);
v = mircompute(@trim,get(S,'Data'),get(r,'Data'),minrms);
S = set(S,'Data',v);
function d = trim(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d{pos(i)} = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirevalaudiofile.m
|
.m
|
mirtooloct-master/MIRToolbox/mirevalaudiofile.m
| 3,801 |
utf_8
|
c09f3cb5a3481874003dc3510acecedf
|
function v = mirevalaudiofile(d,file,sampling,lg,size,struc,istmp,index,single,name,ch)
% Now let's perform the analysis (or analyses) on the different files.
% If d is a structure or a cell array, evaluate each component
% separately.
if isstruct(d)
v = struct;
if istmp
struc.tmp = struct;
end
isstat = isfield(d,'Stat');
if isstat
d = rmfield(d,'Stat');
end
fields = fieldnames(d);
for fi = 1:length(fields)
fieldname = fields{fi};
field = d.(fieldname);
display(['*******',fieldname,'******']);
if isstat
if isa(field,'mirstruct')
field = set(field,'Stat',1);
elseif isa(field,'mirdesign')
field = mirstat(field,'FileNames',0);
else
field.Stat = 1;
end
end
res = mirevalaudiofile(field,file,sampling,lg,size,struc,istmp,index,...
single,fieldname,ch);
if not(isempty(single)) && not(isequal(single,0)) && ...
iscell(res) && isa(field,'mirdesign')
res = res{1};
end
v.(fieldname) = res;
if istmp
struc.tmp.(fieldname) = res;
end
if fi == 1
if isfield(res,'Class')
v.Class = res.Class;
v.(fieldname) = rmfield(res,'Class');
end
end
end
if isfield(v,'tmp')
v = rmfield(v,'tmp');
end
elseif iscell(d)
l = length(d);
v = cell(1,l);
for j = 1:l
v{j} = mirevalaudiofile(d{j},file,sampling,lg,size,struc,istmp,index,...
single,[name,num2str(j)],ch);
end
elseif isa(d,'mirstruct') && isempty(get(d,'Argin'))
mirerror('MIRSTRUCT','You should always use tmp fields when using mirstruct. Else, just use struct.');
elseif get(d,'SeparateChannels')
v = cell(1,ch);
for i = 1:ch
d = set(d,'File',file,'Sampling',sampling,'Length',lg,'Size',size,...
'Eval',1,'Index',index,'Struct',struc,'Channel',i);
% For that particular file or this particular feature, let's begin the
% actual evaluation process.
v{i} = evaleach(d,single,name);
% evaleach performs a top-down traversal of the design flowchart.
end
v = combinechannels(v);
else
d = set(d,'File',file,'Sampling',sampling,'Length',lg,'Size',size,...
'Eval',1,'Index',index,'Struct',struc);
dl = get(d,'FrameLength');
if length(dl)>1
v = cell(1,length(dl));
for i = 1:length(dl)
d = set(d,'Scale',i);
v{i} = evaleach(d,single,name);
end
v = combinescales(v);
else
% For that particular file or this particular feature, let's begin the
% actual evaluation process.
v = evaleach(d,single,name);
% evaleach performs a top-down traversal of the design flowchart.
end
end
function y = combinechannels(c)
y = c{1};
v = get(y,'Data');
for h = 2:length(c)
d = get(c{h},'Data');
for i = 1:length(d)
if isa(y,'mirmidi')
d{i}(:,3) = h;
v{i} = sortrows([v{i};d{i}]);
else
for j = 1:length(d{i})
v{i}{j}(:,:,h) = d{i}{j};
end
end
end
end
y = set(y,'Data',v);
function y = combinescales(s)
y = s{1};
fp = get(y{1},'FramePos');
fp = fp{1};
for j = 1:length(y)
v = get(y{j},'Data');
for h = 2:length(s)
d = get(s{h}{j},'Data');
for i = 1:length(d)
v{i}{h} = d{i}{1};
end
if j == 1
fph = get(s{h}{j},'FramePos');
fp{h} = fph{1}{1};
end
end
y{j} = set(y{j},'Data',v,'FramePos',{fp});
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mirread.m
|
.m
|
mirtooloct-master/MIRToolbox/mirread.m
| 4,072 |
utf_8
|
ed5bcdb732a2c0efcfddd1c0f256ce5d
|
function [d,tp,fp,f,l,b,n,ch] = mirread(extract,orig,load,folder,verbose)
% Read the audio file ORIG, at temporal position indicated by EXTRACT. If
% EXTRACT is empty, all the audio file is loaded.
% If LOAD is set to 0, just the meta-data is collected, and the actual
% audio data is not taken into consideration. If it is set to 1, the
% data are loaded from the current directory. If LOAD is a string, it
% is considered as the path of the directory.
% If FOLDER is set to 1, no error is returned if an audio file cannot be
% loaded.
% Output:
% D is the audio signal,
% TP are the temporal positions,
% FP are the two extreme temporal positions (used for frame positions),
% F is the sampling rate,
% L is the duration in seconds,
% B is the resolution in number of bits,
% N is the file name.
% CH are the channel index.
if nargin < 5
verbose = 0;
end
%p = ver('MATLAB');
%if str2num(p.Version) >= 8.3
% [d,tp,fp,f,l,b,n,ch] = mirread2014(extract,orig,load,folder,verbose);
% return
%end
d = {};
f = {};
l = {};
b = {};
tp = {};
fp = {};
n = {};
ch = {};
try
[d,f,l,b,tp,fp,n,ch] = audioread(extract,@wavread,orig,load,verbose,folder);
catch
err.wav = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioread(extract,@auread,orig,load,verbose,folder);
catch
err.au = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioread(extract,@mp3read,orig,load,verbose,folder);
catch
err.mp3 = lasterr;
try
[d,f,l,b,tp,fp,n,ch] = audioread(extract,@aiffread,orig,load,verbose,folder);
catch
err.aiff = lasterr;
if length(orig)>4 && strcmpi(orig(end-3:end),'.bdf')
try
[d,f,l,b,tp,fp,n,ch] = audioread(extract,@bdfread,orig,load,verbose,folder);
catch
if not(strcmp(err.wav(1:11),'Error using') && folder)
misread(orig, err);
end
end
else
if not(strcmp(err.wav(1:11),'Error using') && folder)
misread(orig, err);
end
end
end
end
end
end
function [d,f,l,b,tp,fp,n,ch] = audioread(extract,reader,file,load,verbose,folder)
n = file;
if folder
file = ['./',file];
end
if load
if isempty(extract)
[s,f,b] = reader(file);
else
[unused,f,b] = reader(file,1);
s = reader(file,extract(1:2));
if length(extract) > 2
s = s(:,extract(3));
end
end
if verbose
disp([file,' loaded.']);
end
d{1} = reshape(s,size(s,1),1,size(s,2)); %channels along dim 3
ch = 1:size(s,2);
if isempty(extract)
tp{1} = (0:size(s,1)-1)'/f;
else
tp{1} = (extract(1)-1+(0:size(s,1)-1))'/f;
end
l{1} = (size(s,1)-1)/f;
if isempty(s)
fp{1} = 0;
else
fp{1} = tp{1}([1 end]);
end
else
if isequal(reader,@mp3read)
[dsize,f,b] = reader(file,'size');
else
[unused,f,b] = reader(file,1);
dsize = reader(file,'size');
end
d = dsize(1);
l = d/f;
tp = {};
fp = {};
ch = dsize(2);
end
function [y,fs,nbits] = bdfread(file,check)
DAT = openbdf(file);
NRec = DAT.Head.NRec;
if not(length(check)==2)
b = readbdf(DAT,1);
y = length(b.Record(43,:)) * NRec;
else
y = [];
if mirwaitbar
handle = waitbar(0,'Loading BDF channel...');
else
handle = 0;
end
for i = 1:NRec
b = readbdf(DAT,i);
y = [y;b.Record(43,:)'];
if handle
waitbar(i/NRec,handle);
end
end
if handle
delete(handle)
end
end
fs = DAT.Head.SampleRate(43);
nbits = NaN;
function misread(file,err)
display('Here are the error message returned by each reader:');
display(err.wav);
display(err.au);
display(err.mp3);
display(err.aiff);
mirerror('MIRREAD',['Cannot open file ',file]);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirregularity.m
|
.m
|
mirtooloct-master/MIRToolbox/mirregularity.m
| 3,324 |
utf_8
|
70fbd83568c0298bdb4eb4e09a40f8c2
|
function varargout = mirregularity(orig,varargin)
% i = mirregularity(x) calculates the irregularity of a spectrum, i.e.,
% the degree of variation of the successive peaks of the spectrum.
% Specification of the definition of irregularity:
% mirregularity(...,'Jensen') is based on (Jensen, 1999),
% where the irregularity is the sum of the square of the
% difference in amplitude between adjoining partials.
% (Default approach)
% mirregularity(...,'Krimphoff') is based on (Krimphoff et al., 1994),
% where the irregularity is the sum of the amplitude minus the
% mean of the preceding, same and next amplitude.
% If the input x is not already a spectrum with peak extracted, the peak
% picking is performed prior to the calculation of the irregularity.
% In this case the 'Contrast' parameter used in mirpeaks can be
% modified, and is set by default to .1.
%
% [Krimphoff et al. 1994] J. Krimphoff, S. McAdams, S. Winsberg,
% Caracterisation du timbre des sons complexes. II Analyses
% acoustiques et quantification psychophysique. Journal de Physique
% IV, Colloque C5, Vol. 4. 1994.
% [Jensen, 1999] K. Jensen, Timbre Models of Musical Sounds, Ph.D.
% dissertation, University of Copenhagen, Rapport Nr. 99/7.
meth.type = 'String';
meth.default = 'Jensen';
meth.choice = {'Jensen','Krimphoff'};
option.meth = meth;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .01;
option.cthr = cthr;
specif.option = option;
varargout = mirfunction(@mirregularity,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if not(isamir(x,'mirdata')) || isamir(x,'miraudio')
x = mirspectrum(x);
end
if not(haspeaks(x))
x = mirpeaks(x,'Reso','SemiTone','Contrast',option.cthr); %% FIND BETTER
end
type = 'mirscalar';
function o = main(x,option,postoption)
if iscell(x)
x = x{1};
end
m = get(x,'PeakVal');
p = get(x,'PeakPos');
y = cell(1,length(m));
for h = 1:length(m)
y{h} = cell(1,length(m{h}));
for k = 1:length(m{h})
y{h}{k} = zeros(size(m{h}{k}));
for j = 1:size(m{h}{k},3)
for l = 1:size(m{h}{k},2)
state = warning('query','MATLAB:divideByZero');
warning('off','MATLAB:divideByZero');
mm = m{h}{k}{1,l,j};
pp = p{h}{k}{1,l,j};
[pp oo] = sort(pp); % Sort peaks in ascending order of x abscissae.
mm = mm(oo);
if strcmpi(option.meth,'Jensen')
y{h}{k}(1,l,j) = sum((mm(2:end,:)-mm(1:end-1,:)).^2)...
./sum(mm.^2);
elseif strcmpi(option.meth,'Krimphoff')
avrg = filter(ones(3,1),1,mm)/3;
y{h}{k}(1,l,j) = log10(sum(abs(mm(2:end-1,:)-avrg(3:end))));
end
warning(state.state,'MATLAB:divideByZero');
if isnan(y{h}{k}(1,l,j))
y{h}{k}(1,l,j) = 0;
end
end
end
end
end
if isa(x,'mirspectrum')
t = 'Spectral irregularity';
else
t = ['Irregularity of ',get(x,'Title')];;
end
i = mirscalar(x,'Data',y,'Title',t);
o = {i,x};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirduration.m
|
.m
|
mirtooloct-master/MIRToolbox/mirduration.m
| 2,222 |
utf_8
|
8e5afd3732c22e6a8810ac31d3a9464e
|
function varargout = mirduration(orig,varargin)
% a = mirduration(x) estimates the duration of each note.
% Optional arguments:
% mirduration(...,'Contrast',c) specifies the 'Contrast' parameter
% used in mironsets for event detection through peak picking.
% Same default value as in mironsets.
% mirduration(...,'Single') only selects one attack and release phase in
% sthe ignal (or in each segment).
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .3;
option.cthr = cthr;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
option.single = single;
log.key = 'LogOnset';
log.type = 'Boolean';
log.default = 0;
option.log = log;
minlog.key = 'MinLog';
minlog.type = 'Integer';
minlog.default = 0;
option.minlog = minlog;
specif.option = option;
varargout = mirfunction(@mirduration,orig,varargin,nargout,specif,@init,@main);
function [o type] = init(x,option)
o = mironsets(x,'Attack','Release','Contrast',option.cthr,'Single',option.single,...
'Log',option.log,'MinLog',option.minlog,...
'Filter','Normal','AcrossSegments');
type = mirtype(x);
function du = main(o,option,postoption)
if iscell(o)
o = o{1};
end
pa = get(o,'AttackPos');
pr = get(o,'ReleasePos');
d = get(o,'Data');
t = get(o,'Pos');
[sl fp] = mircompute(@algo,pa,pr,d,t);
%fp = mircompute(@frampose,pru);
du = mirscalar(o,'Data',sl,'FramePos',fp,'Title','Duration');
du = {du,o};
function fp = frampose(pr)
if isempty(pr)
fp = [];
return
end
pr = pr{1};
fp = pr;
function [du fp] = algo(pa,pr,d,t)
if isempty(pa)
du = [];
fp = [];
return
end
pa = pa{1};
pr = pr{1};
du = zeros(1,length(pa));
fp = zeros(2,length(pa));
for i = 1:length(pa)
[mv mp] = max(d(pa(i):pr(2,i)));
mp = pa(i) + mp - 1;
f1 = find(d(mp:-1:1) < mv * .4,1);
if isempty(f1)
t1 = t(pa(i));
else
t1 = t(mp - f1);
end
f2 = find(d(mp:pr(2,i)) < mv * .4,1);
if isempty(f2)
t2 = t(pr(2,i));
else
t2 = t(mp + f2);
end
du(i) = t2 - t1;
fp(:,i) = [t1;t2];
end
|
github
|
martinarielhartmann/mirtooloct-master
|
mireventdensity.m
|
.m
|
mirtooloct-master/MIRToolbox/mireventdensity.m
| 3,309 |
utf_8
|
6c96ecdc4004805119c526b5425c5e3b
|
function varargout = mireventdensity(x,varargin)
% e = mireventdensity(x) estimate the mean frequency of events (i.e., how
% many note onsets per second) in the temporal data x.
% Optional arguments: Option1, Option2
% Tuomas Eerola, 14.08.2008
%
normal.type = 'String';
normal.choice = {'Option1','Option2'};
normal.default = 'Option1';
option.normal = normal;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [0 0];
frame.keydefault = [10 1];
option.frame = frame;
specif.option = option;
%specif.eachchunk = 'Normal';
specif.combinechunk = {'Average','Concat'};
specif.nochunk = 1;
varargout = mirfunction(@mireventdensity,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'mirenvelope')
if ~isframed(x) && option.frame.length.val
x = mirframe(x,option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
end
else
if option.frame.length.val
x = mironsets(x, 'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit,...
option.frame.phase.val,...
option.frame.phase.unit,...
option.frame.phase.atend);
else
x = mironsets(x);
end
end
type = 'mirscalar';
function e = main(o,option,postoption)
if iscell(o)
o = o{1};
end
sr = get(o,'Sampling');
p = mirpeaks(o); %%%%<<<<<<< MORE OPTIONS HERE
% And what is peaks already computed? p = o?
pv = get(p,'PeakVal');
v = mircompute(@algo,pv,o,option,sr);
e = mirscalar(o,'Data',v,'Title','Event density','Unit','per second');
e = {e o};
function e = algo(pv,o,option,sr)
nc = size(o,2);
nch = size(o,3);
e = zeros(1,nc,nch);
% for i = 1:nch
% for j = 1:nc
% if option.root
% e(1,j,i) = norm(d(:,j,i));
% else
% disp('do the calc...')
% % e(1,j,i) = d(:,j,i)'*d(:,j,i);
% %tmp = mironsets(d,'Filterbank',10,'Contrast',0.1); % Change by TE, was only FB=20, no other params
% e2 = mirpeaks(e)
% [o1,o2] = mirgetdata(e);
% e(1,j,i) = length(o2)/mirgetdata(mirlength(d));
% end
% end
% end
for i = 1:nch
for j = 1:nc
e(1,j,i) = length(pv{1,j,i});
if strcmpi(option.normal,'Option1')
e(1,j,i) = e(1,j,i) *sr/size(o,1);
elseif strcmpi(option.normal,'Option2')
pvs = pv{1};
high_pvs = length(find(mean(pvs)>pvs));
e(1,j,i) = high_pvs(1,j,i) *sr/size(o,1); % only those which are larger than mean
end
end
end
%function [y orig] = eachchunk(orig,option,missing,postchunk)
%y = mireventdensity(orig,option);
%function y = combinechunk(old,new)
%do = mirgetdata(old);
%dn = mirgetdata(new);
%y = set(old,'ChunkData',do+dn);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirentropy.m
|
.m
|
mirtooloct-master/MIRToolbox/mirentropy.m
| 2,342 |
utf_8
|
cdbe494a127b13af646739742ce96e90
|
function varargout = mirentropy(x,varargin)
% h = mirentropy(a) calculates the relative entropy of a.
% (Cf. User's Manual.)
% mirentropy(..., ?Center?) centers the input data before
% transforming it into a probability distribution.
center.key = 'Center';
center.type = 'Boolean';
center.default = 0;
option.center = center;
minrms.key = 'MinRMS';
minrms.when = 'After';
minrms.type = 'Numerical';
minrms.default = .005;
option.minrms = minrms;
specif.option = option;
varargout = mirfunction(@mirentropy,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'miraudio')
x = mirspectrum(x);
end
type = 'mirscalar';
function h = main(x,option,postoption)
if iscell(x)
x = x{1};
end
m = get(x,'Data');
v = cell(1,length(m));
for h = 1:length(m)
mh = m{h};
if ~iscell(mh)
mh = {mh};
end
v{h} = cell(1,length(mh));
for k = 1:length(mh)
mk = mh{k};
mn = mk;
if isa(x,'mirhisto') || isa(x,'mirscalar')
mn = mn';
end
if option.center
mn = center_(mn);
end
% Negative data is trimmed:
mn(mn<0) = 0;
% Data is normalized such that the sum is equal to 1.
mn = mn./repmat(sum(mn)+repmat(1e-12,...
[1 size(mn,2) size(mn,3) size(mn,4)]),...
[size(mn,1) 1 1 1]);
% Actual computation of entropy
v{h}{k} = -sum(mn.*log(mn + 1e-12))./log(size(mn,1));
if isa(x,'mirhisto') || isa(x,'mirscalar')
v{h}{k} = v{h}{k}';
end
end
end
t = ['Entropy of ',get(x,'Title')];
h = mirscalar(x,'Data',v,'Title',t);
if (isa(x,'miraudio') || ...
(isa(x,'mirspectrum') && strcmpi(get(x,'Title'),'Spectrum')) || ...
isa(x,'mircepstrum')) && ...
isstruct(postoption) && ...
isfield(postoption,'minrms') && postoption.minrms
h = after(x,h,postoption.minrms);
end
function h = after(x,h,minrms)
r = mirrms(x,'Warning',0);
v = mircompute(@trim,get(h,'Data'),get(r,'Data'),minrms);
h = set(h,'Data',v);
function d = trim(d,r,minrms)
r = r/max(max(r));
pos = find(r<minrms);
for i = 1:length(pos)
d(pos(i)) = NaN;
end
d = {d};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirauditory.m
|
.m
|
mirtooloct-master/MIRToolbox/mirauditory.m
| 770 |
utf_8
|
9e222a34c1f8d97aef449166d6e18b78
|
function varargout = mirauditory(x,varargin)
% Produces the output based on an auditory modelling, of the signal x,
% using a gammatone filterbank.
% Optional argument:
% mirtempo(...,'Filterbank',b) indicates the number of channels in
% the filterbank decomposition.
% Default value: b = 40.
fb.key = 'Filterbank';
fb.type = 'Integer';
fb.default = 40;
option.fb = fb;
specif.option = option;
varargout = mirfunction(@mirauditory,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'miraudio')
x = mirfilterbank(x,'NbChannels',option.fb);
x = mirenvelope(x,'Center','Diff','Halfwave','Center');
end
type = 'mirenvelope';
function x = main(x,option,postoption)
|
github
|
martinarielhartmann/mirtooloct-master
|
mirlowenergy.m
|
.m
|
mirtooloct-master/MIRToolbox/mirlowenergy.m
| 2,548 |
utf_8
|
ab6f593caf368195ea6bd30902781123
|
function varargout = mirlowenergy(x,varargin)
% p = mirlowenergy(f) computes the percentage of frames showing a RMS
% energy that is lower than a given threshold.
% For instance, for a musical excerpt with some very loud frames and
% lots of silent frames, we would get a high low-energy rate.
% Optional argument:
% mirlowenergy(...,'Threshold',t) expressed as a ratio to the average
% energy over the frames.
% Default value: t = 1
% mirlowenergy(...,'Frame',l,h) specifies the use of frames of
% length l seconds and a hop rate h.
% Default values: l = .05 s, h = .5
% mirlowenergy(...,'Root',0) uses mean square instead of root mean
% square
% mirlowenergy(...,'ASR') computes the Average Silence Ratio, which
% corresponds in fact to a RMS without the square-root, and a default
% threshold set to t = .5
% [p,e] = mirlowenergy(...) also returns the RMS energy curve.
asr.key = 'ASR';
asr.type = 'Boolean';
asr.default = 0;
option.asr = asr;
thr.key = 'Threshold';
thr.type = 'Integer';
thr.default = NaN;
option.thr = thr;
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
frame.default = [.05 .5];
option.frame = frame;
specif.option = option;
specif.combinechunk = {'Average',@nothing};
specif.extensive = 1;
varargout = mirfunction(@mirlowenergy,x,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'miraudio')
if isframed(x)
x = mirrms(x);
else
x = mirrms(x,'Frame',option.frame.length.val,option.frame.length.unit,...
option.frame.hop.val,option.frame.hop.unit,...
option.frame.phase.val,option.frame.phase.unit,...
option.frame.phase.atend);
end
end
type = 'mirscalar';
function e = main(r,option,postoption)
if iscell(r)
r = r{1};
end
if isnan(option.thr)
if option.asr
option.thr = .5;
else
option.thr = 1;
end
end
v = mircompute(@algo,get(r,'Data'),option.thr,option.asr);
fp = mircompute(@noframe,get(r,'FramePos'));
e = mirscalar(r,'Data',v,'Title','Low energy','Unit','/1','FramePos',fp);
e = {e,r};
function v = algo(d,thr,asr)
if asr
d = d.^2;
end
v = sum(d < repmat(thr*mean(d,2),[1 size(d,2) 1]));
v = v / size(d,2);
function fp = noframe(fp)
fp = [fp(1);fp(end)];
function y = nothing(old,new)
y = old;
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmean.m
|
.m
|
mirtooloct-master/MIRToolbox/mirmean.m
| 2,762 |
utf_8
|
6ba3411721923cf88292d17bf0aa2c30
|
function varargout = mirmean(f,varargin)
% m = mirmean(f) returns the mean along frames of the feature f
%
% f can be a structure array composed of features. In this case,
% m will be structured the same way.
if isa(f,'mirstruct')
data = get(f,'Data');
for fi = 1:length(data)
data{fi} = mirmean(data{fi});
end
varargout = {set(f,'Data',data)};
elseif isstruct(f)
fields = fieldnames(f);
for i = 1:length(fields)
field = fields{i};
stat.(field) = mirmean(f.(field));
end
varargout = {stat};
else
specif.nochunk = 1;
varargout = mirfunction(@mirmean,f,varargin,nargout,specif,@init,@main);
end
function [x type] = init(x,option)
type = '';
function m = main(f,option,postoption)
if iscell(f)
f = f{1};
end
if isa(f,'mirhisto')
warning('WARNING IN MIRMEAN: histograms are not taken into consideration yet.')
m = struct;
return
end
fp = get(f,'FramePos');
ti = get(f,'Title');
if 0 %get(f,'Peaks')
if not(isempty(get(f,'PeakPrecisePos')))
stat = addstat(struct,get(f,'PeakPrecisePos'),fp,'PeakPos');
stat = addstat(stat,get(f,'PeakPreciseVal'),fp,'PeakMag');
else
stat = addstat(struct,get(f,'PeakPosUnit'),fp,'PeakPos');
stat = addstat(stat,get(f,'PeakVal'),fp,'PeakMag');
end
else
d = get(f,'Data');
end
l = length(d);
m = cell(1,l);
for i = 1:l
dd = d{i};
if iscell(dd)
m{i} = cell(1,length(dd));
fpi = cell(1,length(dd));
for j = 1:length(dd)
m{i}{j} = zeros(size(dd{j},1),1,size(dd{j},3));
for h = 1:size(dd{j},3)
for k = 1:size(dd{j},1)
dk = dd{j}(k,:,h);
m{i}{j}(k,1,h) = mean(dk(not(isnan(dk))));
end
end
fpi{j} = [fp{i}{j}(1);fp{i}{j}(end)];
end
fp{i} = fpi;
elseif size(dd,2) < 2
nonan = find(not(isnan(dd)));
dn = dd(nonan);
m{i}{1} = mean(dn,2);
else
%diffp = fp{i}{1}(1,2:end) - fp{i}{1}(1,1:end-1);
%if round((diffp(2:end)-diffp(1:end-1))*1000)
% Not regular sampling (in mirattacktime for instance)
% framesampling = NaN;
%else
% framesampling = fp{i}{1}(1,2)-fp{i}{1}(1,1);
%end
dd = mean(dd,4);
m{i} = {NaN(size(dd,1),1,size(dd,3))};
for k = 1:size(dd,1)
for l = 1:size(dd,3)
dk = dd(k,:,l);
nonan = find(not(isnan(dk)));
if not(isempty(nonan))
dn = dk(nonan);
m{i}{1}(k,1,l) = mean(dn,2);
end
end
end
end
end
m = mirscalar(f,'Data',m,'Title',['Average of ',ti],'FramePos',fp);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirattacks.m
|
.m
|
mirtooloct-master/MIRToolbox/mirattacks.m
| 613 |
utf_8
|
3ca968e23cc9edf7dec8557116e3993e
|
function varargout = mirattacks(orig,varargin)
% Obsolete function, replaced by mironsets(...,'Attacks',...)
aver.key = 'Smooth';
aver.type = 'Integer';
aver.default = 20;
option.aver = aver;
single.key = 'Single';
single.type = 'Boolean';
single.default = 0;
option.single = single;
specif.option = option;
varargout = mirfunction(@mirattacks,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
x = mironsets(x,'Attack',option.aver,'Single',option.single);
type = mirtype(x);
function a = main(a,option,postoption)
|
github
|
martinarielhartmann/mirtooloct-master
|
mirkey.m
|
.m
|
mirtooloct-master/MIRToolbox/mirkey.m
| 1,998 |
utf_8
|
5fe99cbe0e09716f81aedf4ef572a1a1
|
function varargout = mirkey(orig,varargin)
% k = mirkey(x) estimates the key.
% Optional argument:
% mirkey(...,'Total',m) selects not only the most probable key, but
% the m most probable keys.
% The other parameter 'Contrast' related to mirpeaks can be specified
% here (see help mirchromagram).
% The optional parameters 'Weight' and 'Triangle' related to
% mirchromagram can be specified here (see help mirchromagram).
% [k,ks] = mirkey(...) also returns the key clarity, corresponding here
% to the key strength associated to the best candidate.
% [k,ks,ksc] = mirkey(...) also displays the key strength curve used for
% the key estimation and shows in particular the peaks corresponding
% to the selected key(s).
tot.key = 'Total';
tot.type = 'Integer';
tot.default = 1;
option.tot = tot;
thr.key = 'Contrast';
thr.type = 'Integer';
thr.default = .1;
option.thr = thr;
wth.key = 'Weight';
wth.type = 'Integer';
wth.default = .5;
option.wth = wth;
tri.key = 'Triangle';
tri.type = 'Boolean';
tri.default = 0;
option.tri = tri;
specif.option = option;
specif.defaultframelength = 1;
specif.defaultframehop = .5;
varargout = mirfunction(@mirkey,orig,varargin,nargout,specif,@init,@main);
function [p type] = init(x,option)
if not(isamir(x,'mirkeystrength'))
x = mirkeystrength(x,'Weight',option.wth,'Triangle',option.tri);
end
p = mirpeaks(x,'Total',option.tot,'Contrast',option.thr);
type = {'mirscalar','mirscalar','mirkeystrength'};
function k = main(p,option,postoption)
if iscell(p)
p = p{1};
end
pc = get(p,'PeakPos');
pv = get(p,'PeakMaxVal');
pm = get(p,'PeakMode');
k = mirscalar(p,'Data',pc,'Mode',pm,'Title','Key',...
'Legend',{'C','C#','D','D#','E','F','F#','G','G#','A','A#','B'});
m = mirscalar(p,'Data',pv,'Title','Key clarity','MultiData',{});
k = {k m p};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmfcc.m
|
.m
|
mirtooloct-master/MIRToolbox/@mirmfcc/mirmfcc.m
| 5,499 |
utf_8
|
9235c66ed6553be6f816a0f4e08074f4
|
function varargout = mirmfcc(orig,varargin)
% c = mirmfcc(a) finds the Mel frequency cepstral coefficients (ceps),
% a numerical description of the spectrum envelope.
%
% Requires the Auditory Toolbox.
%
% Optional arguments:
% c = mirmfcc(...,'Rank',N) computes the coefficients of rank(s) N
% (default: N = 1:13). Beware that the coefficient related to the
% average energy is by convention here of rank 0. This zero value
% can be included to the array N as well.
% If a is a frame decomposition, the temporal evolution of the MFCC,
% along the successive frames, is returned. In this case, a second
% option is available:
% mirmfcc(...,'Delta',d) performs d temporal differentiations of
% the coefficients, also called delta-MFCC (for d = 1) or
% delta-delta-MFCC (for d = 2).
% mirmfcc(...,'Delta') corresponds to mirmfcc(...,'Delta',1)
% Optional arguments related to the delta computation:
% mirmfcc(...,'Radius',r) specifies, for each frame, the number of
% successive and previous neighbouring frames taken into
% consideration for the least-square approximation.
% Usually 1 or 2.
% Default value: 2.
nbbands.key = 'Bands';
nbbands.type = 'Integer';
nbbands.default = 40;
option.nbbands = nbbands;
rank.key = 'Rank';
rank.type = 'Integer';
rank.default = 1:13;
option.rank = rank;
delta.key = 'Delta';
delta.type = 'Integer';
delta.default = 0;
delta.keydefault = 1;
option.delta = delta;
radius.key = 'Radius';
radius.type = 'Integer';
radius.default = 2;
option.radius = radius;
specif.option = option;
varargout = mirfunction(@mirmfcc,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if isamir(x,'miraudio') || isamir(x,'mirspectrum')
x = mirspectrum(x,'Mel','log','Bands',option.nbbands);
end
type = 'mirmfcc';
function c = main(orig,option,postoption)
if iscell(orig)
orig = orig{1};
end
if isa(orig,'mirmfcc')
c = orig;
if option.rank
magn = get(c,'Data');
rank = get(c,'Rank');
for h = 1:length(magn)
for k = 1:length(magn{h})
m = magn{h}{k};
r = rank{h}{k};
r1 = r(:,1,1);
range = find(ismember(r1,option.rank));
magn{h}{k} = m(range,:,:);
rank{h}{k} = r(range,:,:);
end
end
c = set(c,'Data',magn,'Rank',rank);
end
c = modif(c,option);
else
c.delta = 0;
%disp('Computing Mel frequency cepstral coefficients...');
e = get(orig,'Magnitude');
% The following is largely based on the source code from Auditory Toolbox
% (A part that I could not call directly from MIRtoolbox)
% (Malcolm Slaney, August 1993, (c) 1998 Interval Research Corporation)
try
MakeERBFilters(1,1,1); % Just to be sure that the Auditory Toolbox is installed
catch
error(['ERROR IN MIRFILTERBANK: Auditory Toolbox needs to be installed.']);
end
dc = cell(1,length(e));
rk = cell(1,length(e));
for h = 1:length(e)
dc{h} = cell(1,length(e{h}));
rk{h} = cell(1,length(e{h}));
for i = 1:length(e{h})
ei = e{h}{i};
totalFilters = size(ei,3); %Number of mel bands.
% Figure out Discrete Cosine Transform. We want a matrix
% dct(i,j) which is totalFilters x cepstralCoefficients in size.
% The i,j component is given by
% cos( i * (j+0.5)/totalFilters pi )
% where we have assumed that i and j start at 0.
mfccDCTMatrix = 1/sqrt(totalFilters/2)*...
cos(option.rank' * ...
(2*(0:(totalFilters-1))+1) * ...
pi/2/totalFilters);
rank0 = find(option.rank == 0);
mfccDCTMatrix(rank0,:) = mfccDCTMatrix(rank0,:) * sqrt(2)/2;
ceps = zeros(size(mfccDCTMatrix,1),size(ei,2));
for j = 1:size(ei,2)
ceps(:,j) = mfccDCTMatrix * permute(ei(1,j,:),[3 1 2]);
end
dc{h}{i} = ceps;
rk{h}{i} = repmat(option.rank(:),[1 size(ceps,2) size(ceps,3)]);
end
end
c = class(c,'mirmfcc',mirdata(orig));
c = purgedata(c);
c = set(c,'Title','MFCC','Abs','coefficient ranks','Ord','magnitude',...
'Data',dc,'Rank',rk);
c = modif(c,option);
end
c = {c orig};
function c = modif(c,option)
d = get(c,'Data');
fp = get(c,'FramePos');
t = get(c,'Title');
if option.delta
M = option.radius;
for k = 1:option.delta
for h = 1:length(d)
for i = 1:length(d{h})
nc = size(d{h}{i},2)-2*M;
di = zeros(size(d{h}{i},1),nc);
for j = 1:M
di = di + j * (d{h}{i}(:,M+j+(1:nc)) ...
- d{h}{i}(:,M-j+(1:nc)));
end
di = di / 2 / sum((1:M).^2); % MULTIPLY BY 2 INSTEAD OF SQUARE FOR NORMALIZATION ?
d{h}{i} = di;
fp{h}{i} = fp{h}{i}(:,M+1:end-M);
end
end
t = ['Delta-',t];
end
end
c = set(c,'Data',d,'FramePos',fp,'Delta',get(c,'Delta')+option.delta,...
'Title',t);
|
github
|
martinarielhartmann/mirtooloct-master
|
mirkeysom.m
|
.m
|
mirtooloct-master/MIRToolbox/@mirkeysom/mirkeysom.m
| 2,211 |
utf_8
|
fb4c7b52a6cc328421592d39e5568220
|
function varargout = mirkeysom(orig,varargin)
% ks = mirkeysom(x) projects a chromagram on a self-organizing map.
% Creates a pseudocolor map showing the projection of chromagram onto a
% self-organizing map trained with the Krumhansl-Kessler profiles (modified
% for chromagrams). Colors correspond to Pearson correlation values.
% References:
% Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling
% real-time responses to music: the dynamics of tonality induction.
% Perception, 32(6), 741-766.
% Krumhansl, C. L., & Toiviainen, P. (2001) Tonal cognition.
% In R. J. Zatorre & I. Peretz (Eds.), The Biological Foundations of Music.
% Annals of the New York Academy of Sciences.
% filename.key = 'File';
% filename.type = 'String';
% filename.default = 0;
% option.filename = filename;
specif.option = struct;
specif.defaultframelength = 1;
specif.defaultframehop = .5;
varargout = mirfunction(@mirkeysom,orig,varargin,nargout,specif,@init,@main);
function [c type] = init(orig,option)
c = mirchromagram(orig,'Normal');
type = 'mirkeysom';
function s = main(c,option,postoption)
if iscell(c)
c = c{1};
end
load keysomaudiodata;
m = get(c,'Magnitude');
disp('Projecting the chromagram to a self-organizing map...')
z = cell(1,length(m));
p = cell(1,length(m));
for i = 1:length(m)
mi = m{i};
if not(iscell(mi))
mi = {mi};
end
zi = cell(1,length(mi));
pi = cell(1,length(mi));
for j = 1:length(mi)
mj = mi{j};
zj = zeros(24,size(mj,2),size(mj,3),36);
pi{j} = zeros(24,size(mj,2),size(mj,3),36);
for k = 1:size(mj,2)
for l = 1:size(mj,3)
for kk=1:36
for ll=1:24
tmp = corr([mj(:,k,l) somw(:,kk,ll)]);
zj(ll,k,l,kk) = tmp(1,2);
end
end
end
end
zi{j} = zj;
end
z{i} = zi;
p{i} = pi;
end
s = class(struct,'mirkeysom',mirdata(c));
s = purgedata(s);
s = set(s,'Title','Key SOM','Abs','','Ord','','Weight',z,'Pos',p);
%if option.filename
% mov = display(s,option.filename);
%else
% mov = display(s);
%end
%s = {s,mov};
|
github
|
martinarielhartmann/mirtooloct-master
|
mirmetre.m
|
.m
|
mirtooloct-master/MIRToolbox/@mirmetre/mirmetre.m
| 52,481 |
utf_8
|
1cb56ac02c3f2268bafcc13f3b2a073a
|
function varargout = mirmetre(orig,varargin)
% m = mirmetre(x) provides a detailed description of the hierarchical
% metrical structure by detecting periodicities from the onset
% detection curve and tracking a broad set of metrical levels.
%
% When mirmetre is used for academic research, please cite the following
% publication:
% Lartillot, O., Cereghetti, D., Eliard, K., Trost, W. J., Rappaz, M.-A.,
% Grandjean, D., "Estimating tempo and metrical features by tracking
% the whole metrical hierarchy", 3rd International Conference on
% Music & Emotion, Jyv?skyl?, 2013.
%
% Optional arguments:
% mirmetre(...,'Frame',l,h) orders a frame decomposition of window
% length l (in seconds) and hop factor h, expressed relatively to
% the window length. For instance h = 1 indicates no overlap.
% Default values: l = 5 seconds and h = .05
% mirmetre(..., ?Min?, mi) indicates the lowest periodicity taken
% into consideration, expressed in bpm. Default value: 24 bpm.
% mirmetre(..., ?Max?, ma) specifies the highest periodicity taken
% into consideration, expressed in bpm. Default value: Inf,
% meaning that no limit is set a priori on the highest
% periodicity.
% mirmetre(..., ?Contrast?, c) specifies the contrast factor for the
% peak picking. Default value: c = 0.05.
% mirmetre(..., ?Threshold?, c) specifies the contrast factor for the
% peak picking. Default value: c = 0.
%
% [m,p] = mirmetre(...) also displays the autocorrelation function
% leading to the tempo estimation, and shows in particular the
% peaks corresponding to the tempo values.
frame.key = 'Frame';
frame.type = 'Integer';
frame.number = 2;
%frame.default = [0 0];
frame.default = [5 .05];
option.frame = frame;
minres.key = 'MinRes';
minres.type = 'Integer';
minres.default = 10; %.1;
option.minres = minres;
thr.key = 'Threshold';
thr.type = 'Integer';
thr.default = 0;
option.thr = thr;
cthr.key = 'Contrast';
cthr.type = 'Integer';
cthr.default = .05;
option.cthr = cthr;
mi.key = 'Min';
mi.type = 'Integer';
mi.default = 24;
option.mi = mi;
ma.key = 'Max';
ma.type = 'Integer';
ma.default = 1000; %500
option.ma = ma;
tol.key = 'Tolerance';
tol.type = 'Integer';
tol.default = .2;
option.tol = tol;
goto.key = {'Goto'};
goto.type = 'Boolean';
goto.default = 0;
option.goto = goto;
specif.option = option;
varargout = mirfunction(@mirmetre,orig,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
if iscell(x)
x = x{1};
end
if isamir(x,'mirmetre')
return
end
if ~isamir(x,'mirautocor')
if isamir(x,'mirenvelope')
x = mironsets(x,'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit);
else
if option.goto
sg = 'Goto';
else
sg = 'Lartillot';
end
x = mironsets(x,'SmoothGate',sg,'MinRes',option.minres,...
'Detect',0,...
'Frame',option.frame.length.val,...
option.frame.length.unit,...
option.frame.hop.val,...
option.frame.hop.unit);
end
end
x = mirautocor(x,'Min',60/option.ma,'Max',60/option.mi * 2,...
'NormalWindow',0);
x = mirpeaks(x,'Total',Inf,...
'Threshold',option.thr,'Contrast',option.cthr,...
'NoBegin','NoEnd',...
'Normalize','Local','Order','Amplitude');
type = 'mirmetre';
function m = main(p,option,postoption)
if iscell(p)
p = p{1};
end
if isamir(p,'mirscalar')
m = modif(m,postoption);
m = {t};
return
end
pt = get(p,'PeakPrecisePos');
meters = cell(1,length(pt));
globpms = cell(1,length(pt));
d = get(p,'Data');
pp = get(p,'Pos');
ppp = get(p,'PeakPos');
pv = get(p,'PeakVal');
for j = 1:length(pt)
for k = 1:length(pt{j})
ptk = pt{j}{k};
for h = 1:size(ptk,3)
mipv = +Inf;
mapv = -Inf;
for l = 1:length(pv{j}{k})
if min(pv{j}{k}{l}) < mipv
mipv = min(pv{j}{k}{l});
end
if max(pv{j}{k}{l}) > mapv
mapv = max(pv{j}{k}{l});
end
end
mk = {};
activestruct = []; %% Obsolete, activestruct can be entirely removed.
globpm = [];
for l = 1:size(ptk,2) % For each successive frame
%if ~mod(l,100)
% l
%end
ptl = getbpm(p,ptk{1,l,h}); % Peaks
bpms = cell(1,length(mk));
for i2 = 1:length(mk)
bpms{i2} = [mk{i2}.lastbpm];
end
foundk = zeros(1,length(mk));
active = zeros(1,length(mk));
new = 0; %zeros(1,length(mk));
foundomin = zeros(1,length(mk));
ampli = d{j}{k}(:,l,h);
pos = ppp{j}{k}{l};
%%
for i = 1:length(ptl) % For each peak
if ptl(i) < option.mi
continue
end
if ~find(pos > pos(i)*1.95 & pos < pos(i)*2.05)
continue
end
ptli = ptl(i);
delta1 = find(ampli(pos(i)+1:end) < 0,1);
if isempty(delta1)
delta1 = length(ampli) - pos(i);
end
delta2 = find(ampli(pos(i)-1:-1:1) < 0,1);
if isempty(delta2)
delta2 = pos(i) - 1;
end
ptli1 = getbpm(p,pp{j}{k}(pos(i)+delta1,l));
ptli2 = getbpm(p,pp{j}{k}(pos(i)-delta2,l));
%thri = (1-(pv{j}{k}{l}(i) - mipv)/(mapv - mipv))^2/10 ...
% + .1;
score = ampli(pos(i));
found = zeros(1,length(mk)); % Is peak in metrical hierarchies?
dist = inf(1,length(mk));
indx = nan(1,length(mk));
i2 = 1;
while i2 <= length(mk) % For each metrical hierarchy
if ~activestruct(i2) || ...
~mk{i2}(1).active || isempty(bpms{i2})
i2 = i2+1;
continue
end
globpmi2 = globpm(i2,end);
bpm2 = repmat(globpmi2, [1 length(mk{i2})])...
./ [mk{i2}.lvl];
dist1 = abs(60/ptli - 60./bpm2);
dist2 = dist1;
if 0 % This short-cut has been toggled off, why?
for i3 = 1:length(mk{i2})
if isempty(mk{i2}(i3).function)
dist1(i3) = NaN;
end
end
[disti1 indx1] = min(dist1);
if disti1 < thri && ...
abs(log2(ptli / bpm2(indx1))) < .2
dist(i2) = disti1;
indx(i2) = indx1;
i2 = i2+1;
new = 0;
continue
end
end
[disti2 indx2] = min(dist2);
dist3 = NaN(1,length(mk{i2}));
for i3 = 1:length(mk{i2})
if mk{i2}(i3).timidx(end) == l
dist3(i3) = NaN; %unnecessary
continue
end
t3 = find(mk{i2}(i3).timidx == l-1); %simplify
if ~isempty(t3)
dist3(i3) = abs(60/ptli - ...
60./mk{i2}(i3).bpms(t3));
end
end
[disti3 indx3] = min(dist3);
if disti3 < disti2
dist(i2) = disti3;
indx(i2) = indx3;
else
dist(i2) = disti2;
indx(i2) = indx2;
end
if ~foundk(i2)
if abs(log2(ptli / bpm2(indx(i2)))) > .2 %.1
dist(i2) = Inf;
indx(i2) = 0;
new = 1; % New hierarchy (?)
i2 = i2+1;
continue
else
new = 0;
end
end
i2 = i2+1;
end
[unused order] = sort(dist);
for i2 = order
if ~activestruct(i2)
continue
end
%if foundk(i2)
% thri2 = thri;
%else
% thri2 = min(thri,.1);
%end
thri2 = .07; %.01; %.07;
if isnan(dist(i2)) || dist(i2) > thri2
continue
end
% Continuing an existing metrical level.
if mk{i2}(indx(i2)).timidx(end) ~= l
% Metrical level not extended yet.
mk{i2}(indx(i2)).timidx(end+1) = l;
mk{i2}(indx(i2)).bpms(end+1) = ptl(i);
mk{i2}(indx(i2)).lastbpm = ptli;
mk{i2}(indx(i2)).score(end+1) = ...
d{j}{k}(ppp{j}{k}{1,l,h}(i),l,h);
if foundk(i2)
active(i2) = 1;
else
% Metrical hierarchy not extended yet.
if isempty(mk{i2}(indx(i2)).function)
if isempty(find(foundk,1)) && ...
mk{i2}(indx(i2)).score(end) > .15 %.3 %.15
i3 = find([mk{i2}.lvl] == ...
mk{i2}(indx(i2)).ref,1);
if ~isempty(mk{i2}(i3).function)
mk{i2}(indx(i2)).function = ...
[mk{i2}(indx(i2)).reldiv; ...
mk{i2}(indx(i2)).ref];
end
end
else
active(i2) = 1;
end
foundk(i2) = 1;
end
if ~foundomin(i2) && ...
~isempty(mk{i2}(indx(i2)).function)
% Global BPM determined using only the most
% dominant level.
foundomin(i2) = 1;
globpm(i2,l) = ptli * mk{i2}(indx(i2)).lvl;
for i3 = 1:size(globpm,1)
if globpm(i3,l) == 0
globpm(i3,l) = globpm(i3,l-1);
end
end
end
end
found(i2) = foundk(i2);
end
i2 = 1;
while i2 <= length(mk)
if ~activestruct(i2)
globpm(i2,l) = NaN;
for i3 = 1:size(globpm,1)
if globpm(i3,l) == 0
globpm(i3,l) = globpm(i3,l-1);
end
end
i2 = i2+1;
continue
end
%if found(i2)%%%%%%%%%%%%%%%%%%%%%%%%
% i2 = i2+1;
% continue
%end
if ~mk{i2}(1).active
i2 = i2+1;
continue
end
[unused ord] = sort(bpms{i2});
orbpms = bpms{i2}(ord);
fo = find(orbpms > ptli, 1);
if isempty(fo)
fo = size(orbpms,2)+1;
end
% Stored levels slower than candidate
slower = [];
i3 = fo-1;
err = Inf;
while i3 > 0
if l - mk{i2}(ord(i3)).timidx(end) > 10 || ...
...mk{i2}(ord(i3)).score(end) < .1 || ... %%%%% To toggle off sometimes? (cf. level 1/6 in the paper)
~isempty(mk{i2}(ord(i3)).complex)
i3 = i3-1;
continue
end
if mk{i2}(ord(i3)).reldiv > 0 && ...
isempty(mk{i2}(ord(i3)).function)
i3 = i3-1;
continue
end
bpm3 = globpm(i2,end) / mk{i2}(ord(i3)).lvl;
if 0 %abs(60/ptli - 60/bpm3) > dist(i2) %%%%% To toggle off sometimes? (cf. level 1/6 in the paper)
i3 = i3-1;
continue
end
rdiv = round(ptli / bpm3);
if rdiv == 1
i3 = i3-1;
continue
end
lvl = mk{i2}(ord(i3)).lvl / rdiv;
if ~isempty(find(lvl == [mk{i2}.lvl],1))
i3 = i3-1;
continue
end
if rdiv == 0 || rdiv > 8 || ...
abs(60/ptli - ...
60/(globpm(i2,end) / lvl))...
> dist(i2)
i3 = i3-1;
continue
end
%if 1 %~foundk(i2)
div = ptli ./ bpm3;
%else
% div = [ptli2; ptli1] ./ bpm3;
%end
%if floor(div(1)) ~= floor(div(2))
% newerr = 0;
%else
newerr = min(mod(div,1),1-mod(div,1));
%end
if ~foundk(i2)
thr = .02;
else
thr = option.tol;
end
if newerr > thr
i3 = i3-1;
continue
end
%if 0 && ~isempty(find([mk{i2}.lvl] > lvl & ...
% [mk{i2}.lvl] < mk{i2}(ord(i3)).lvl))
% i3 = i3-1;
% continue
%end
% Candidate level can be
% integrated in this metrical
% hierarchy
if newerr < err
if isempty(slower)
slower.ref = ord(i3);
slower.lvl = lvl;
slower.bpm = orbpms(i3);
slower.score = mk{i2}(ord(i3)).score(end);
slower.rdiv = rdiv;
rptli1 = orbpms(i3) * (rdiv - .4);
if ptli1 < rptli1
ptli1 = rptli1;
end
rptli2 = orbpms(i3) * (rdiv + .4);
if ptli2 > rptli2
ptli2 = rptli2;
end
%ptli = mean([ptli1,ptli2]);
err = newerr;
%break
elseif mk{i2}(ord(i3)).lvl / rdiv ...
~= slower.lvl
slower.ref = ord(i3);
slower.lvl = lvl;
slower.rdiv = rdiv;
%slower = [];
%break
end
end
i3 = i3 - 1;
end
% Stored levels faster than candidate
faster = [];
if ~found(i2)
i3 = fo;
err = Inf;
while i3 <= length(orbpms)
if l - mk{i2}(ord(i3)).timidx(end) > 10 || ...
~isempty(mk{i2}(ord(i3)).complex)
i3 = i3+1;
continue
end
%if ...~foundk(i2) &&
% isempty(mk{i2}(ord(i3)).function)
% i3 = i3+1;
% continue
%end
bpm3 = globpm(i2,end) / mk{i2}(ord(i3)).lvl;
%if ~foundk(i2)
div = bpm3 ./ [ptli ptli];
%else
% div = bpm3 ./ [ptli2;ptli1];
%end
rdiv = round(bpm3 / ptli);
if rdiv == 1
i3 = i3+1;
continue
end
lvl = mk{i2}(ord(i3)).lvl * rdiv;
if ~isempty(find(lvl == [mk{i2}.lvl],1))
i3 = i3+1;
continue
end
if rdiv <= 1 || ...
abs(60/ptli - ...
60/(globpm(i2,end) / lvl)) ...
> dist(i2)
i3 = i3+1;
continue
end
if floor(div(1)) < floor(div(2))
newerr = 0;
else
newerr = min(min(mod(div,1)),...
min(1-mod(div,1)));
end
if ~foundk(i2)
thr = .1; %.01;
else
thr = option.tol;
end
if newerr < thr
% Candidate level can be
% integrated in this metrical
% hierarchy
if newerr < err
if isempty(faster)
faster.ref = ord(i3);
faster.lvl = lvl;
faster.bpm = orbpms(i3);
faster.score = mk{i2}(ord(i3)).score(end);
faster.rdiv = rdiv;
rptli1 = orbpms(i3) / (rdiv + .4);
if ptli1 < rptli1
ptli1 = rptli1;
end
rptli2 = orbpms(i3) / (rdiv - .4);
if ptli2 > rptli2
ptli2 = rptli2;
end
%ptli = mean([ptli1,ptli2]);
err = newerr;
%break
elseif mk{i2}(ord(i3)).lvl * rdiv ...
~= faster.lvl
faster.ref = ord(i3);
faster.lvl = lvl;
faster.rdiv = rdiv;
%faster = [];
%break
end
end
end
i3 = i3 + 1;
end
end
if isempty(slower) && isempty(faster)
i2 = i2 + 1;
continue
elseif isempty(slower)
lvl = faster.lvl;
rdiv = faster.rdiv;
reldiv = rdiv;
ref = faster.ref;
elseif isempty(faster)
lvl = slower.lvl;
rdiv = slower.rdiv;
reldiv = -rdiv;
ref = slower.ref;
elseif slower.score < faster.score
lvl = faster.lvl;
rdiv = faster.rdiv;
reldiv = rdiv;
ref = faster.ref;
else
lvl = slower.lvl;
rdiv = slower.rdiv;
reldiv = -rdiv;
ref = slower.ref;
end
active(i2) = 1;
found(i2) = 1;
new = 0;
l0 = find(lvl == [mk{i2}.lvl]);
if isempty(l0)
% New metrical level
mk{i2}(end+1).lvl = lvl;
if isempty(mk{i2}(ref).function)
mk{i2}(end).function = [];
else
same = find(mk{i2}(ref).function(1,:)...
*reldiv < 0);
saillant = 0; %isempty(same);
for i3 = 1:length(same)
refdiv = mk{i2}(ref)...
.function(1,same(i3));
otherlvl = mk{i2}(ref)...
.function(2,same(i3));
other = find([mk{i2}.lvl] ...
== otherlvl);
if abs(reldiv) < abs(refdiv)
intradiv = abs(refdiv/reldiv);
if round(intradiv) ~= intradiv
continue
end
if ~isempty(mk{i2}(other).function)
otherfunction = ...
find(mk{i2}(other).function(1,:)...
== refdiv);
if ~isempty(otherfunction)
mk{i2}(ref)...
.function(:,same(i3)) = ...
[-reldiv; lvl];
mk{i2}(other).function(:,otherfunction)...
= [intradiv; lvl];
end
end
mk{i2}(end).function = ...
[reldiv,-intradiv; ...
mk{i2}(ref).lvl,...
mk{i2}(other).lvl];
saillant = 2;
break
elseif mk{i2}(other).timidx(end)...
~= l || ...
mk{i2}(other).score(end)...
< ampli(pos(i))
saillant = 1;
end
end
if saillant == 1
mk{i2}(end).function = ...
[reldiv; mk{i2}(ref).lvl];
mk{i2}(ref).function(:,end+1) = ...
[-reldiv; lvl];
elseif saillant == 0
mk{i2}(end).function = [];
end
end
mk{i2}(end).lastbpm = ptli;
mk{i2}(end).bpms = ptl(i);
mk{i2}(end).timidx = l;
mk{i2}(end).score = ampli(pos(i));
mk{i2}(end).ref = mk{i2}(ref).lvl;
mk{i2}(end).reldiv = reldiv;
if abs(reldiv) == 5 || abs(reldiv) > 6
mk{i2}(end).complex = 1;
end
if reldiv < 0 && ~isempty(mk{i2}(ref).element)
mk{i2}(ref).element = [];
mk{i2}(end).element = 1;
end
coord = [i2 length(mk{i2})];
bpms{i2}(end+1) = ptli;
else
dist0 = abs(mean([mk{i2}(l0).lastbpm]) - ptl(i));
[unused md] = min(dist0);
if mk{i2}(l0(md)).timidx(end) < l
mk{i2}(l0(md)).lastbpm = ptli;
mk{i2}(l0(md)).bpms(end+1) = ptl(i);
mk{i2}(l0(md)).score(end+1) = ampli(pos(i));
mk{i2}(l0(md)).timidx(end+1) = l;
elseif score > mk{i2}(l0(md)).score
mk{i2}(l0(md)).lastbpm = ptli;
mk{i2}(l0(md)).bpms(end) = ptl(i);
mk{i2}(l0(md)).score(end) = ampli(pos(i));
end
coord = [i2 l0(md)];
end
if ~foundk(i2)
foundk(i2) = 1;
globpm(i2,l) = ptli * mk{i2}(coord(2)).lvl;
for i3 = 1:size(globpm,1)-1
if globpm(i3,l) == 0
globpm(i3,l) = globpm(i3,l-1);
end
end
end
i2 = i2 + 1;
end
if i == 1 && (new || ...
~isempty(find(found == -1)) || ...
isempty(find(found))) && ...
d{j}{k}(ppp{j}{k}{1,l,h}(i),l,h) > .1 %.15)
% New metrical hierarchy
mk{end+1}.lvl = 1;
mk{end}.function = [0;1];
mk{end}.lastbpm = ptli;
mk{end}.bpms = ptl(i);
mk{end}.timidx = l;
mk{end}.score = ...
d{j}{k}(ppp{j}{k}{1,l,h}(i),l,h);
mk{end}.globpms = [];
mk{end}.locked = 0;
mk{end}.active = 1;
mk{end}.ref = [];
mk{end}.element = 1;
mk{end}.reldiv = 0;
mk{end}.complex = [];
%found(end+1) = 1;
bpms{end+1} = ptli;
foundk(end+1) = 1;
globpm(end+1,1:l) = NaN(1,l);
globpm(end,l) = ptli;
for i3 = 1:size(globpm,1)-1
if globpm(i3,l) == 0
globpm(i3,l) = globpm(i3,l-1);
end
end
%coord = [length(bpms),1];
%found = abs(found);
foundk = abs(foundk);
active(end+1) = 1;
%new(end+1) = 0;
foundomin(end+1) = 1;
activestruct(end+1) = 1;
end
end
%activestruct(~foundomin) = 0;
%%
for i = 1:length(mk)
%if ~activestruct(i) || ~mk{i}(1).active
% globpm(i,l) = NaN;
% for i2 = 1:length(mk{i})
% if mk{i}(i2).timidx(end) == l
% mk{i}(i2).globpms(end+1) = globpm(i,l) ...
% / mk{i}(i2).lvl;
% end
% end
% continue
%end
%% Should we reactivate that test?
%if ~mk{i}(1).active
% continue
%end
%%
for i2 = 1:length(mk{i})
if isempty(mk{i}(i2).function) || ...
mk{i}(i2).timidx(end) < l
continue
end
if isempty(mk{i}(i2).ref)
continue
end
ref = find([mk{i}.lvl] == mk{i}(i2).ref);
if isempty(ref)
continue
end
if isempty(mk{i}(ref).function) || ...
(mk{i}(ref).timidx(end) == l && ...
mk{i}(ref).score(end) > mk{i}(i2).score(end))
continue
end
reldiv = mk{i}(i2).reldiv;
same = find(mk{i}(ref).function(1,:) * reldiv < 0);
for i3 = 1:length(same)
refdiv = mk{i}(ref).function(1,same(i3));
otherlvl = mk{i}(ref).function(2,same(i3));
other = find([mk{i}.lvl] == otherlvl);
if isempty(other) || ...
isempty(mk{i}(other).function) || ...
abs(reldiv) >= abs(refdiv)
continue
end
intradiv = abs(refdiv/reldiv);
otherfunction = ...
find(mk{i}(other).function(1,:)...
== -refdiv,1);
if isempty(otherfunction)
continue
end
if round(intradiv) == intradiv
mk{i}(ref)...
.function(:,same(i3)) = ...
[-reldiv; mk{i}(i2).lvl];
mk{i}(other).function(:,otherfunction)...
= [intradiv; mk{i}(i2).lvl];
mk{i}(i2).function = ...
[reldiv,-intradiv; ...
mk{i}(ref).lvl, mk{i}(other).lvl];
break
elseif mk{i}(other).timidx(end) ~= l || ...
mk{i}(other).score(end)...
< mk{i}(i2).score(end)
mk{i}(i2).function = ...
[reldiv; mk{i}(ref).lvl];
mk{i}(ref).function(:,end+1) = ...
[-reldiv; mk{i}(i2).lvl];
mk{i}(other).function(:,otherfunction) = [];
break
end
end
end
if l == 1 || isnan(globpm(i,l-1)) || ~globpm(i,l-1)
glo = 0;
sco = 0;
for i2 = 1:length(mk{i})
if mk{i}(i2).timidx(end) == l && ...
~isempty(mk{i}(i2).function)
sco2 = mk{i}(i2).score(end);
ind = mk{i}(i2).bpms(end) * mk{i}(i2).lvl;
glo = glo + ind * sco2;
sco = sco + sco2;
end
end
globpm(i,l) = glo / sco;
else
glog = log2(globpm(i,l-1));
glodif = 0;
sco = 0;
mindif = Inf;
for i2 = 1:length(mk{i})
if mk{i}(i2).timidx(end) == l && ...
~isempty(mk{i}(i2).function) && ...
mk{i}(i2).score(end) > 0
%mk{i}(i2).bpms(end) > 30
globpm2 = mk{i}(i2).bpms(end) ...
* mk{i}(i2).lvl;
dif = glog - log2(globpm2);
sco2 = mk{i}(i2).score(end) / abs(dif);
glodif = glodif + dif * sco2;
sco = sco + sco2;
if abs(dif) < abs(mindif)
mindif = dif;
end
end
end
if glodif
glodif = glodif / sco;
end
if abs(glodif) > abs(mindif)
if glodif * mindif < 0
glodif = 0;
else
glodif = mindif;
end
end
if abs(glodif) > .05
glodif = .05 * sign(glodif);
end
globpm(i,l) = globpm(i,l-1) / 2^glodif;
end
for i2 = 1:length(mk{i})
if mk{i}(i2).timidx(end) == l
mk{i}(i2).globpms(end+1) = globpm(i,l) ...
/ mk{i}(i2).lvl;
end
end
end
%%
%if 1 %~isempty(find(active,1))
inactive = find(~active);
for i = 1:length(inactive)
mk{inactive(i)}(1).active = 0;
end
%end
%%
i = 1;
while i < length(mk)
i = i + 1;
if mk{i}(1).locked
continue
end
if ~mk{i}(1).active || ~activestruct(i)
continue
end
score1 = 0;
for i3 = 1:length(mk{i})
if mk{i}(i3).element
nbpms1a = globpm(i,l)/ mk{i}(i3).lvl;
nbpms1b = mk{i}(i3).lastbpm;
element1 = i3;
%lvl1 = mk{i}(i3).lvl;
end
if mk{i}(i3).score(end) > score1
score1 = mk{i}(i3).score(end);
end
end
i3 = 1;
while i3 < i
if ~mk{i3}(1).active
i3 = i3 + 1;
continue
end
included = 0;
score2 = 0;
for i2 = 1:length(mk{i3})
if ~isempty(mk{i3}(i2).element) || ...
~isempty(mk{i3}(i2).function)
nbpms2a = globpm(i3,l)/ mk{i3}(i2).lvl;
nbpms2b = mk{i3}(i2).lastbpm;
%lvl2 = mk{i3}(i2).lvl;
if abs(60/nbpms1a - 60./nbpms2a) < .01 || ...
0 %abs(60/nbpms1b - 60./nbpms2b) < .01
included = i2;
element2 = i2;
end
end
if mk{i3}(i2).score(end) > score2
score2 = mk{i3}(i2).score(end);
end
end
if included
if score1 > score2
majo = [i element1];
mino = i3;
if length(mk{i3}(1).timidx) > 1
mk{i3}(1).active = 0;
i3 = i3 + 1;
break;
end
else
majo = [i3 element2];
mino = i;
if length(mk{i}(1).timidx) > 1
mk{i}(1).active = 0;
i3 = i3 + 1;
break;
end
end
for i2 = 1:length(mk{mino})
div = round(mk{majo(1)}(majo(2)).lastbpm ...
/ mk{mino}(i2).lastbpm);
lvl = div * mk{majo(1)}(majo(2)).lvl;
i5 = find(lvl == [mk{majo(1)}.lvl],1);
if isempty(i5)
mk{majo(1)}(end+1).lvl = lvl;
mk{majo(1)}(end).lastbpm = mk{mino}(i2).lastbpm;
mk{majo(1)}(end).bpms = mk{mino}(i2).bpms;
mk{majo(1)}(end).globpms = ...
globpm(majo(1), mk{mino}(i2).timidx)...
/ lvl;
mk{majo(1)}(end).timidx = mk{mino}(i2).timidx;
mk{majo(1)}(end).score = mk{mino}(i2).score;
mk{majo(1)}(end).ref = mk{majo(1)}(majo(2)).lvl;
mk{majo(1)}(end).reldiv = div;
bpms{majo(1)}(end+1) = mk{mino}(i2).lastbpm;
end
end
if score1 > score2
mk(i) = mk(i3);
globpm(i) = globpm(i3);
bpms(i) = bpms(i3);
end
mk(i) = [];
globpm(i,:) = [];
bpms(i) = [];
active(i) = [];
%new(i) = [];
i = i - 1;
break
end
i3 = i3 + 1;
end
%for i3 = 1:0 length(mk)
% if i == i3 || ~mk{i3}(1).active
% continue
% end
% included = 0;
% for i2 = 1:length(mk{i})
% if isempty(mk{i}(i2).function)
% continue
% end
%
% nbpms1 = globpm(i,l)/ mk{i}(i2).lvl;
% nbpms2 = repmat(globpm(i3,l),[1,size(mk{i3},2)])...
% ./ [mk{i3}.lvl];
% for i4 = 1:length(mk{i3})
% if mk{i3}(i4).timidx(end) < l %|| ...
% %isempty(mk{i3}(i4).function)
% nbpms2(i4) = NaN;
% end
% end
% dist = abs(60/nbpms1 - 60./nbpms2);
% i4 = find(dist<.01,1);
% if ~isempty(i4)
% if isempty(mk{i3}(i4).function)
% continue
% mk{i}(1).locked = i3;
% end
%
% included = 1;
% ratio = mk{i3}(i4).lvl / mk{i}(i2).lvl;
% for i4 = 1:length(mk{i})
% lvl = mk{i}(i4).lvl * ratio;
% i5 = find(lvl == [mk{i3}.lvl],1);
% if isempty(i5)
% mk{i3}(end+1).lvl = lvl;
% mk{i3}(end).lastbpm = mk{i}(i4).lastbpm;
% mk{i3}(end).bpms = mk{i}(i4).bpms;
% mk{i3}(end).globpms = globpm(i,mk{i}(i4).timidx) ...
% / mk{i}(i4).lvl;
% mk{i3}(end).timidx = mk{i}(i4).timidx;
% mk{i3}(end).score = mk{i}(i4).score;
% mk{i3}(end).ref = mk{i}(i4).ref * ratio;
% mk{i3}(end).reldiv = mk{i}(i4).reldiv;
% bpms{i3}(end+1) = mk{i}(i4).lastbpm;
% else
% new.timidx = [];
% new.bpms = [];
% new.globpms = [];
% new.score = [];
% for it = 1:l
% t2 = find(mk{i3}(i5).timidx...
% == it);
% t1 = find(mk{i}(i4).timidx...
% == it);
% if isempty(t1)
% if ~isempty(t2)
% new.timidx(end+1) = it;
% new.bpms(end+1) = ...
% mk{i3}(i5).bpms(t2);
% new.globpms(end+1) = ...
% mk{i3}(i5).globpms(t2);
% new.score(end+1) = ...
% mk{i3}(i5).score(t2);
% end
% else
% if isempty(t2) || ...
% mk{i3}(i5).score(t2) < ...
% mk{i}(i4).score(t1)
% test = 1;
% for i6 = 1:length(mk{i3})
% t3 = find(mk{i3}(i6).timidx == it);
% if ~isempty(t3) && ...
% abs(60./mk{i3}(i6).bpms(t3) ...
% - 60./mk{i}(i4).bpms(t1)) ...
% < .01
% test = 0;
% break
% end
% end
% else
% test = 0;
% end
% if test
% new.timidx(end+1) = it;
% new.bpms(end+1) = ...
% mk{i}(i4).bpms(t1);
% new.globpms(end+1) = ...
% mk{i}(i4).globpms(t1);
% new.score(end+1) = ...
% mk{i}(i4).score(t1);
% elseif ~isempty(t2)
% new.timidx(end+1) = it;
% new.bpms(end+1) = ...
% mk{i3}(i5).bpms(t2);
% new.globpms(end+1) = ...
% mk{i3}(i5).globpms(t2);
% new.score(end+1) = ...
% mk{i3}(i5).score(t2);
% end
% end
% end
% mk{i3}(i5).timidx = new.timidx;
% mk{i3}(i5).bpms = new.bpms;
% mk{i3}(i5).globpms = new.globpms;
% mk{i3}(i5).score = new.score;
% end
% end
% end
% end
% if included
% % meters{i} is completely included into
% % meters{i2}
% mk(i) = [];
% globpm(i,:) = [];
% i = i - 1;
% break
% end
%end
end
end
end
meters{j}{k} = mk;
globpms{j}{k} = globpm;
end
end
dm = purgedata(p);
m.autocor = dm;
m.globpm = globpms;
dm = set(dm,'Data',meters);
m = class(m,'mirmetre',mirdata(dm));
function bpm = getbpm(p,ptl)
if isa(p,'mirautocor') && not(get(p,'FreqDomain'))
bpm = 60./ptl;
else
bpm = ptl*60;
end
|
github
|
martinarielhartmann/mirtooloct-master
|
get.m
|
.m
|
mirtooloct-master/MIRToolbox/@mirdesign/get.m
| 4,242 |
utf_8
|
83638fe1ced39af50e3243751684b616
|
function varargout = get(a,varargin)
% GET Get properties from the MIRdesign object and return the value
if ischar(varargin{1})
switch varargin{1}
case 'Method'
varargout = {a.method};
return
case 'File'
varargout = {a.file};
return
case 'FrameLength'
if isstruct(a.frame)
varargout = {a.frame.length.val};
else
varargout = {[]};
end
return
case 'FrameHop'
if isstruct(a.frame)
varargout = {a.frame.hop.val};
else
varargout = {[]};
end
return
case 'FramePhase'
if isstruct(a.frame)
varargout = {a.frame.phase.val};
else
varargout = {[]};
end
return
case 'FrameLengthUnit'
if isstruct(a.frame)
varargout = {a.frame.length.unit};
else
varargout = {[]};
end
return
case 'FrameHopUnit'
if isstruct(a.frame)
varargout = {a.frame.hop.unit};
else
varargout = {[]};
end
return
case 'FramePhaseUnit'
if isstruct(a.frame)
varargout = {a.frame.phase.unit};
else
varargout = {[]};
end
return
case 'FramePhaseAtEnd'
if isstruct(a.frame)
varargout = {a.frame.phase.atend};
else
varargout = {[]};
end
return
case 'FrameDontChunk'
if isstruct(a.frame)
varargout = {a.frame.dontchunk};
else
varargout = {[]};
end
return
case 'Segment'
varargout = {a.segment};
return
case 'ChunkDecomposed'
varargout = {a.chunkdecomposed};
return
case 'Size'
varargout = {a.size};
return
case 'Type'
varargout = {a.type};
return
case 'Chunk'
varargout = {a.chunk};
return
case 'Eval'
varargout = {a.eval};
return
case 'Argin'
varargout = {a.argin};
return
case 'VarArgin'
varargout = {a.varargin};
return
case 'Specif'
varargout = {a.specif};
return
case 'InterChunk'
varargout = {a.interchunk};
return
case 'AcrossChunks'
varargout = {a.acrosschunks};
return
case 'Option'
varargout = {a.option};
return
case 'PostOption'
varargout = {a.postoption};
return
case 'NoChunk'
varargout = {a.nochunk};
return
case 'Ready'
varargout = {a.ready};
return
case 'Struct'
varargout = {a.struct};
return
case 'Stored'
varargout = {a.stored};
return
case 'Index'
varargout = {a.index};
return
case 'TmpFile'
varargout = {a.tmpfile};
return
case 'TmpOf'
varargout = {a.tmpof};
return
case 'Ascending'
varargout = {a.ascending};
return
case 'SeparateChannels'
varargout = {a.separate};
return
case 'Channel'
varargout = {a.channel};
return
case 'Scale'
varargout = {a.scale};
return
case 'ChunkSizeFactor'
varargout = {a.chunksizefactor};
return
end
end
prop.type = 'String';
prop.position = 2;
prop.default = '';
option.prop = prop;
specif.option = option;
varargout = mirfunction(@get,a,varargin,nargout,specif,@init,@main);
function [x type] = init(x,option)
type = '';
function val = main(a,option,postoption)
val = get(a,option.prop);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.