plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
OrangeOwlSolutions/Optimization-master
|
MultistartOptimizer.m
|
.m
|
Optimization-master/MultiStart/MultistartOptimizer.m
| 5,599 |
utf_8
|
fab1b5344dfe90fe389808aee837a3f8
|
% --- costfunctional Cost functional to be optimized
function [GlobalOptimum OptFuncVal] = MultistartOptimizer(minvalues, maxvalues, N, gammap, maxiter, maxiterlocal, options, Constrained, costfunctional)
% --- N Number of sampling points introduced at each iteration
% --- gammap Percentage of the sampling points excluded at each iteration
% --- maxiter Maximum number of allowed multistart iterations
% --- maxiter Maximum number of allowed iterations for local optimization
Mopt = length(minvalues); % --- Number of optimization variables
SamplingPoints = cell(Mopt); % --- Current population of sampling points
LocalMinima = cell(Mopt); % --- Found local minima
Func_val = []; % --- Functional values corresponding to the sampling points
Func_val_min = []; % --- Functional values corresponding to the local minima
flag = 0; % --- Exit flag
iter = 1; % --- Iteration counter
FoundMinima = 0; % --- Number of local minima
temp = zeros(1, Mopt); % --- Temporary array
% --- Calculation of the prefactor needed for the computation of the critical distance
rho = 5; % --- Relevant to the calculation of the critical distance
prefactor_rk = 1;
for k=1:Mopt
prefactor_rk = prefactor_rk * (maxvalues(k) - minvalues(k));
end
prefactor_rk = (1/sqrt(pi)) * (gamma(1+Mopt/2) * prefactor_rk * rho)^(1/Mopt);
options.MaxIter = maxiterlocal;
%%%%%%%%%%%%%%
% ITERATIONS %
%%%%%%%%%%%%%%
while ((flag == 0) && iter <= maxiter)
% --- Introduce sampling points uniformly distributed in the search space
for k=1:Mopt
SamplingPoints{k} = [SamplingPoints{k} (maxvalues(k)-minvalues(k))*rand(1,N)+minvalues(k)];
end
% --- Calculate the functional values corresponding to the sampling points
Func_val = zeros(1, length(SamplingPoints{1}));
for p=1:length(SamplingPoints{1}),
for q=1:Mopt,
temp(q) = SamplingPoints{q}(p);
end
Func_val(p) = costfunctional(temp);
end
% --- Calculate the critical distance
rk = prefactor_rk * (log(iter*N)/(iter*N))^(1/Mopt);
% --- Sorts the functional values and the sampling points accordingly
[Func_val,indices]=sort(Func_val);
for k=1:Mopt
SamplingPoints{k} = SamplingPoints{k}(indices);
end
% --- Determines the sampling points whose functional values are lower than gammap times the maximum functional value
count=1;
while (Func_val(count) <= gammap*Func_val(length(Func_val)));
count=count+1;
end
count=count-1;
% --- Explores all the current members of the population
for pp=1:count,
% --- Calculates the distance of the pp-th sampling point to all the other sampling points
distance = zeros(size(SamplingPoints{1}));
for k=1:Mopt
distance = distance + (SamplingPoints{k}(pp) - SamplingPoints{k}).^2;
end
distance = sqrt(distance);
% --- Filters the sampling points for which there exist at least one other sampling point spaced for less than rk and having a lower functional value
indices = find((distance <= rk) & (Func_val < Func_val(pp)));
if (sum(indices) == 0)
for q=1:Mopt,
temp(q) = SamplingPoints{q}(pp);
end
if (Constrained == 1)
[xstar,Func_val_opt]=fmincon(costfunctional,temp,[],[],[],[],minvalues,maxvalues,[],options);
else
[xstar,Func_val_opt]=fminunc(costfunctional,temp,options);
end
% --- If the iteration is the first one, then adds the found minimum
if (iter==1)
for q=1:Mopt,
LocalMinima{q} = [LocalMinima{q} xstar(q)];
end
Func_val_min=[Func_val_min Func_val_opt];
% --- Updates the number of found local minima
FoundMinima = FoundMinima + 1;
else
% --- Here iter > 1
% --- Calculates the distance between the found minimum and all the other minima
distance = 0.;
for k=1:Mopt
distance = distance + (SamplingPoints{k}(pp) - SamplingPoints{k}).^2;
end
distance = sqrt(distance);
% --- If the minimum has not been previously found, it is added to the local minima pool
if ((sum(find(distance == 0 ))==0))
for q=1:Mopt,
LocalMinima{q}(pp) = [LocalMinima{q}(pp) xstar(q)];
end
Func_val_min=[Func_val_min Func_val_opt];
% --- Updates the number of found local minima
FoundMinima = FoundMinima + 1;
end
end
end
end
iter=iter + 1;
% --- Exit condition
ExpectedCoveredUnknownSpace = (count - FoundMinima - 1) * (count + FoundMinima) / (count * (count - 1));
ExpectedNumberLocalMinima = FoundMinima * (count - 1) / (count - FoundMinima - 2);
flag = (ExpectedNumberLocalMinima < FoundMinima + 0.499) && ExpectedCoveredUnknownSpace >= 0.995;
end
% --- Retrieving the global optimizer
[OptFuncVal, index] = min(Func_val_min);
for q=1:Mopt,
GlobalOptimum(q) = SamplingPoints{q}(index);
end
|
github
|
kerkphil/CSL_unbalanced_growth-master
|
LinApp_FindSS.m
|
.m
|
CSL_unbalanced_growth-master/MATLAB code/LinApp_FindSS.m
| 1,699 |
utf_8
|
813e3554b8851b881ecedc0dc6bb89b6
|
function XYbar = LinApp_FindSS(funcname,param,guessXY,Zbar,nx,ny)
% Version 1.0, written by Kerk Phillips, April 2014
%
% Finds the steady state for a DSGE model numerically
%
% This function takes the following inputs:
% funcname - is the name of the function which generates a column vector
% from ny+nx dynamic equations.
% The ny eqyations to be linearized into the form below in the first
% ny rows.
% A X(t) + B X(t-1) + C Y(t) + D Z(t) = 0
% The function must be written so as to evaluate to zero for all rows
% in the steady state.
% param is a vector of parameter values to be passed to funcname.
% guessXY - guess for the steady state vslues of X and Y
% Zbar - 1-by-nz vector of Z steady state values
% nx - number of X variables
% ny - number of Y variables
%
% This function outputs the following:
% XYbar 1-by-(nx+ny) vector of X and Y steady state values, with the X
% values in positions 1 - nx and an the Y values in nx+1 - nx+ny.
%
% Copyright: K. Phillips. Feel free to copy, modify and use at your own
% risk. However, you are not allowed to sell this software or otherwise
% impinge on its free distribution.
% create anonlymous function
f = @(XYbar) steady(XYbar, Zbar, funcname, param, nx, ny);
% set options for solver
options = optimoptions(@fsolve,'Display','iter',...
'MaxIterations',100000,...
'MaxFunctionEvaluations',1000000,...
'FunctionTolerance',1.0e-5);
% use fsolve
XYbar = fsolve(f,guessXY,options);
end
function out = steady(XYbar, Zbar, funcname, param, nx, ny)
Xbar = XYbar(1:nx);
Ybar = XYbar(1+nx:nx+ny);
in = [Xbar; Xbar; Xbar; Ybar; Ybar; Zbar; Zbar];
out = funcname(in,param);
end
|
github
|
cgershen/prog-master
|
The_Game_of_Life_Resendiz_Georgina.m
|
.m
|
prog-master/tareas/20180816-GameOfLife/The_Game_of_Life_Resendiz_Georgina.m
| 51,190 |
utf_8
|
e1e6669e4d81fc81026c8d73789ce858
|
function varargout = The_Game_of_Life_Resendiz_Georgina(varargin)
% The_Game_of_Life_Resendiz_Georgina MATLAB code for The_Game_of_Life_Resendiz_Georgina.fig
% The_Game_of_Life_Resendiz_Georgina, by itself, creates a new The_Game_of_Life_Resendiz_Georgina or raises the existing
% singleton*.
%
% H = The_Game_of_Life_Resendiz_Georgina returns the handle to a new The_Game_of_Life_Resendiz_Georgina or the handle to
% the existing singleton*.
%
% The_Game_of_Life_Resendiz_Georgina('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in The_Game_of_Life_Resendiz_Georgina.M with the given input arguments.
%
% The_Game_of_Life_Resendiz_Georgina('Property','Value',...) creates a new The_Game_of_Life_Resendiz_Georgina or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before The_Game_of_Life_Resendiz_Georgina_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to The_Game_of_Life_Resendiz_Georgina_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help The_Game_of_Life_Resendiz_Georgina
% Last Modified by GUIDE v2.5 15-Aug-2018 21:22:10
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @The_Game_of_Life_Resendiz_Georgina_OpeningFcn, ...
'gui_OutputFcn', @The_Game_of_Life_Resendiz_Georgina_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before The_Game_of_Life_Resendiz_Georgina is made visible.
function The_Game_of_Life_Resendiz_Georgina_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to The_Game_of_Life_Resendiz_Georgina (see VARARGIN)
% Choose default command line output for The_Game_of_Life_Resendiz_Georgina
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes The_Game_of_Life_Resendiz_Georgina wait for user response (see UIRESUME)
% uiwait(handles.figure1);
%Variables
condition=1; %condition for generations
handles.condition=condition;
guidata(hObject, handles);
condition1=0; %condition1 for function draw
handles.condition=condition1;
guidata(hObject, handles);
j=100; %Number of generations
handles.j=j;
guidata(hObject, handles);
k=1; %Total Number of generations
handles.k=k;
guidata(hObject, handles);
image1=[];%To show the image in the matrix
handles.image1=image1;
guidata(hObject, handles);
A=[]; %Actual Matrix
handles.A=A;
guidata(hObject, handles);
B=[]; %Future Matrix
handles.B=B;
guidata(hObject, handles);
r=10; %Size of matrix
handles.r=r;
guidata(hObject, handles);
speed=20; %Speed
handles.speed=speed;
guidata(hObject, handles);
sigma1=2; %Sigma 1
handles.sigma1=sigma1;
guidata(hObject, handles);
sigma2=3; %Sigma 2
handles.sigma2=sigma2;
guidata(hObject, handles);
sigma3=3; %Sigma 3
handles.sigma3=sigma3;
guidata(hObject, handles);
cell_status_1=0; %Cell Status 1
handles.cell_status_1=cell_status_1;
guidata(hObject, handles);
cell_status_2=1; %Cell Status 2
handles.cell_status_2=cell_status_2;
guidata(hObject, handles);
cell_status_3=1; %Cell Status 3
handles.cell_status_3=cell_status_3;
guidata(hObject, handles);
cell_status_4=0; %Cell Status 5
handles.cell_status_4=cell_status_4;
guidata(hObject, handles);
density=0.5; %Density
handles.density=density;
guidata(hObject, handles);
%Initial random matrix
handles.r=str2double(get(handles.size_of_matrix_edit,'String')); %Obtein size of matrix
U=rand(handles.r,handles.r); %Obtein random matrix, with values between 0 and 1
p=0.5;%Density
handles.A=(U<p); %Obtein the Matrix of only 0's and 1's
axes(handles.matrix_axes);
handles.image1=imshow(handles.A); %Show matrix A in matrix_axes
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
handles.B=handles.A; % Copy matrix 'A' to matrix 'B'
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = The_Game_of_Life_Resendiz_Georgina_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in start_stop_togglebutton.
function start_stop_togglebutton_Callback(hObject, eventdata, handles)
% hObject handle to start_stop_togglebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sum_neighbors=0;
total_generations=handles.j;
handles.k=0;
if strcmp(get(handles.start_stop_togglebutton, 'String'),'START'); % Togglebutton "START" comparison
set(handles.start_stop_togglebutton,'String','STOP'); % Change string to "STOP"
%Enable-off elements
set(handles.size_of_matrix_edit,'Enable','off');
set(handles.num_generations_edit,'Enable','off');
set(handles.random_matrix_togglebutton,'Enable','off');
set(handles.clear_matrix_pushbutton,'Enable','off');
set(handles.draw_living_cells_togglebutton,'Enable','off');
set(handles.pattern_templates_menu,'Enable','off');
set(handles.recognize_pushbutton,'Enable','off');
set(handles.density_slider,'Enable','off');
set(handles.change_rules_togglebutton,'Enable','off');
set(handles.num_generations_edit,'String',0);
pause(0.5);
guidata(hObject, handles);
while handles.k<=total_generations && get(handles.start_stop_togglebutton,'Value')==1
for x=0:handles.r-1
for y=0:handles.r-1
%Sum of all neighbors
sum_neighbors=handles.A(rem(x-1+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x-1+handles.r,handles.r)+1,rem(y+handles.r,handles.r)+1)+handles.A(rem(x-1+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1)+handles.A(rem(x+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1);
if handles.A(x+1,y+1)==1 %Living cell
if sum_neighbors<handles.sigma1 || sum_neighbors>handles.sigma2 % 2 or 3 living cells around
handles.B(x+1,y+1)=handles.cell_status_1; % Cell dies
else
handles.B(x+1,y+1)=handles.cell_status_2; % Cell remains living
end
else %Dead Cell
if sum_neighbors==handles.sigma3 % 3 living cells
handles.B(x+1,y+1)=handles.cell_status_3; % Cell lives
else
handles.B(x+1,y+1)=handles.cell_status_4; % Cell remains dead
end
end
guidata(hObject, handles);
end
end
handles.A=handles.B; %Copy matrix B to A
guidata(hObject, handles); %Update handles structure
handles.image1=imshow(handles.A);
guidata(hObject, handles); %Update handles structure
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));
set(handles.num_generations_edit,'String',handles.k);
guidata(hObject, handles); %Update handles structure
refreshdata;
drawnow;
pause(1/get(handles.speed_slider,'Value')); %Speed between 1s-0.00002s
handles.k=handles.k+1; %Increase by 1 to reach the total number of generations
guidata(hObject, handles);
end
if handles.k==total_generations+1
set(handles.start_stop_togglebutton,'String','START');%Change string to "START"
%Enable-on elements
set(handles.start_stop_togglebutton,'Value',0);
set(handles.size_of_matrix_edit,'Enable','on');
set(handles.num_generations_edit,'Enable','on');
set(handles.random_matrix_togglebutton,'Enable','on');
set(handles.clear_matrix_pushbutton,'Enable','on');
set(handles.draw_living_cells_togglebutton,'Enable','on');
set(handles.speed_slider,'Enable','on');
handles.k=1;
guidata(hObject, handles);
end
else
set(handles.start_stop_togglebutton,'String','START'); %Change string to "START"
guidata(hObject, handles);
%Enable-on elements
set(handles.num_generations_edit,'String',handles.j);
set(handles.size_of_matrix_edit,'Enable','on');
set(handles.num_generations_edit,'Enable','on');
set(handles.random_matrix_togglebutton,'Enable','on');
set(handles.clear_matrix_pushbutton,'Enable','on');
set(handles.draw_living_cells_togglebutton,'Enable','on');
set(handles.pattern_templates_menu,'Enable','on');
set(handles.recognize_pushbutton,'Enable','on');
set(handles.density_slider,'Enable','on');
set(handles.change_rules_togglebutton,'Enable','on');
guidata(hObject, handles);
end
% --- Executes on slider movement.
function speed_slider_Callback(hObject, eventdata, handles)
% hObject handle to speed_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=get(handles.speed_slider,'Value'); %Obtein value of speed_slider
handles.speed=1/s; %Convert obteined value between 1 - 100, to speed 1 to 2x10-5
set(handles.text9,'String',handles.speed);
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function speed_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to speed_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on button press in random_matrix_togglebutton.
function random_matrix_togglebutton_Callback(hObject, eventdata, handles)
% hObject handle to random_matrix_togglebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if strcmp(get(handles.random_matrix_togglebutton, 'String'),'Random Matrix');%Togglebutton, String Random Matrix
set(handles.random_matrix_togglebutton,'String','Done');
set(handles.density_slider,'Enable','on');
set(handles.clear_matrix_pushbutton,'Enable','off');
set(handles.draw_living_cells_togglebutton,'Enable','off');
set(handles.pattern_templates_menu,'Enable','off');
%Generate Random Matrix
while get(handles.random_matrix_togglebutton,'Value')==1
handles.r=str2double(get(handles.size_of_matrix_edit,'String')); %Obtein size of matrix
U=rand(handles.r,handles.r); %Obtein random matrix, with values between 0 and 1
handles.A=(U<=get(handles.density_slider,'Value')); %Obtein the Matrix of only 0's and 1's
guidata(hObject, handles);
handles.image1=imshow(handles.A); %Show matrix A in matrix_axes
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
handles.B=handles.A; % Copy matrix 'A' to matrix 'B'
guidata(hObject, handles);
pause(2);
end
else
set(handles.random_matrix_togglebutton,'String','Random Matrix');%Togglebutton, string "Random Matrix"
set(handles.draw_living_cells_togglebutton,'Enable','on');
set(handles.clear_matrix_pushbutton,'Enable','on');
set(handles.density_slider,'Enable','off');
set(handles.pattern_templates_menu,'Enable','on');
end
guidata(hObject, handles);
% --- Executes on button press in clear_matrix_pushbutton.
function clear_matrix_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to clear_matrix_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
guidata(hObject, handles);
%Clear matrix (zeros matrix)
handles.r=str2double(get(handles.size_of_matrix_edit,'String')); %Obtein size of matrix
handles.A=zeros(handles.r,handles.r); %Obtein zeros matrix
handles.image1=imshow(handles.A); %Show matrix A in matrix_axes
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
handles.B=handles.A;%Copy matrix 'A' to matrix 'B'
guidata(hObject, handles);
% --- Executes on button press in draw_living_cells_togglebutton.
function draw_living_cells_togglebutton_Callback(hObject, eventdata, handles)
% hObject handle to draw_living_cells_togglebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Draw Living Cells
guidata(hObject, handles);
imshow(handles.B);
if strcmp(get(handles.draw_living_cells_togglebutton, 'String'),'Draw Living Cells'); %Togglebutton 'Draw Living Cells'
set(handles.draw_living_cells_togglebutton,'String','Done');
set(handles.random_matrix_togglebutton,'Enable','off');
set(handles.clear_matrix_pushbutton,'Enable','off');
[x, y]=ginput(1); %To draw in the matrix
x=round(x);
y=round(y);
handles.B(y,x)=1;
guidata(hObject, handles);
imshow(handles.B);
handles.A=handles.B;
guidata(hObject, handles);
imshow(handles.A);
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
else
set(handles.draw_living_cells_togglebutton,'String','Draw Living Cells');
set(handles.random_matrix_togglebutton,'Enable','on');
set(handles.clear_matrix_pushbutton,'Enable','on');
end
guidata(hObject, handles);
function num_generations_edit_Callback(hObject, eventdata, handles)
% hObject handle to num_generations_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of num_generations_edit as text
% str2double(get(hObject,'String')) returns contents of num_generations_edit as a double
%Number of Generations
num_generations=get(handles.num_generations_edit,'String');
%Size Limits between 0 and 10000 (only positive integer numbers)
if (str2double(num_generations)<0)||(str2double(num_generations)>10000)||(str2double(num_generations)~=round(str2double(num_generations)))||(isempty(str2num(num_generations))) %Limit to positive integers
errordlg('Please type a positive integer number (<10000).','Error')
set(handles.num_generations_edit,'String',handles.j);
else
handles.j=str2double(get(handles.num_generations_edit,'String'));%Set value of handles.num_generations_edit to handles.j
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function num_generations_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to num_generations_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function size_of_matrix_edit_Callback(hObject, eventdata, handles)
% hObject handle to size_of_matrix_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of size_of_matrix_edit as text
% str2double(get(hObject,'String')) returns contents of size_of_matrix_edit as a double
size_of_matrix=get(handles.size_of_matrix_edit,'String');
%Size Limits between 1 and 10000 (only positive integer numbers)
if (str2double(size_of_matrix)<1)||(str2double(size_of_matrix)>10000)||(str2double(size_of_matrix)~=round(str2double(size_of_matrix)))||(isempty(str2num(size_of_matrix))) %Limit to positive integers
errordlg('Please type a positive integer number (>0 && <=10000).','Error')
set(handles.size_of_matrix_edit,'String',handles.r);
else %Show the random matrix with a valid size
handles.r=str2double(size_of_matrix); %Obtein size of matrix
U=rand(handles.r,handles.r); %Obtein random matrix, with values between 0 and 1
p=0.5;%Density
handles.A=(U<p); %Obtein the Matrix of only 0's and 1's
axes(handles.matrix_axes); %Use matrix_axes to show matrix
handles.image1=imshow(handles.A); %Show matrix A
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
handles.B=handles.A; % Copy matrix 'A' to matrix 'B'
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function size_of_matrix_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to size_of_matrix_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in generate_graph_pushbutton.
function generate_graph_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to generate_graph_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in exit_pushbutton.
function exit_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to exit_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
answer=questdlg('Do you want to quit "The Game of Life"?','The Game of Life'); %Exit the game
if strcmp(answer,'Yes')
%Clear the command window
clc;
%Clear the variables
clearStr='clear all';
evalin('base',clearStr);
%Delete the figure
delete(handles.figure1);
end
function num_living_cells_edit_Callback(hObject, eventdata, handles)
% hObject handle to num_living_cells_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of num_living_cells_edit as text
% str2double(get(hObject,'String')) returns contents of num_living_cells_edit as a double
% --- Executes during object creation, after setting all properties.
function num_living_cells_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to num_living_cells_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% % --- Executes on button press in save_changes_pushbutton.
% function save_changes_pushbutton_Callback(hObject, eventdata, handles)
% % hObject handle to save_changes_pushbutton (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
%
%
% % --- Executes on button press in cancel_pushbutton.
% function cancel_pushbutton_Callback(hObject, eventdata, handles)
% % hObject handle to cancel_pushbutton (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
% --- Executes on selection change in pattern_templates_menu.
function pattern_templates_menu_Callback(hObject, eventdata, handles)
% hObject handle to pattern_templates_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns pattern_templates_menu contents as cell array
% contents{get(hObject,'Value')} returns selected item from pattern_templates_menu
%Pattern Templates
set(handles.size_of_matrix_edit,'Enable','off');
guidata(hObject, handles);
menu=get(hObject,'String');
a=get(hObject,'Value');
option=menu(a);
switch cell2mat(option)
case '1. Still Lifes'
handles.r=15;
set(handles.size_of_matrix_edit,'String','15');
handles.j=str2double(get(handles.num_generations_edit,'String'));
guidata(hObject, handles);
handles.A=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,1,1,0,0,0,1,1,0,0,0,1,1,0,0;
0,1,1,0,0,1,0,0,1,0,0,1,0,1,0;
0,0,0,0,0,0,1,1,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,1,1,0,0,0,0,0,0,1,0,0;
0,0,0,1,0,0,1,0,0,0,0,1,0,1,0;
0,0,0,0,1,0,1,0,0,0,0,0,1,0,0;
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
case '2. Oscillators'
handles.r=30;
set(handles.size_of_matrix_edit,'String','30');
guidata(hObject, handles);
handles.A=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
case '3. Spaceships'
handles.r=30;
set(handles.size_of_matrix_edit,'String','30');
guidata(hObject, handles);
handles.A=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
case '4. Methuselahs'
handles.r=30;
set(handles.size_of_matrix_edit,'String','30');
guidata(hObject, handles);
handles.A=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
case '5. Guns'
handles.r=40;
set(handles.size_of_matrix_edit,'String','40');
guidata(hObject, handles);
handles.A=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0;
0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
case '6. Pattern for recognizing'
handles.r=4;
set(handles.size_of_matrix_edit,'String','4');
handles.j=str2double(get(handles.num_generations_edit,'String'));
guidata(hObject, handles);
handles.A=[0,0,0,0;
0,1,1,0;
0,1,1,0
0,0,0,0];
end
axes(handles.matrix_axes);
handles.image1=imshow(handles.A); %Show matrix A in matrix_axes
set(handles.num_living_cells_edit,'String',num2str(sum(sum(handles.A))));% Sum of all living cells (1's in matrix A)
handles.B=handles.A; % Copy matrix 'A' to matrix 'B'
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function pattern_templates_menu_CreateFcn(hObject, eventdata, handles)
% hObject handle to pattern_templates_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sigma1_edit_Callback(hObject, eventdata, handles)
% hObject handle to sigma1_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sigma1_edit as text
% str2double(get(hObject,'String')) returns contents of sigma1_edit as a double
%Value sigma 1
sigma1=get(handles.sigma1_edit,'String');
if (str2double(sigma1)<0)||(str2double(sigma1)>8)||(str2double(sigma1)~=round(str2double(sigma1)))||(isempty(str2num(sigma1))) %Limit to positive integers
errordlg('Please type a positive integer number (<=8).','Error')
set(handles.sigma1_edit,'String',2);
else
handles.sigma1=str2double(get(handles.sigma1_edit,'String'));
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function sigma1_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to sigma1_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sigma2_edit_Callback(hObject, eventdata, handles)
% hObject handle to sigma2_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sigma2_edit as text
%Value sigma 2
sigma2=get(handles.sigma2_edit,'String');
if (str2double(sigma2)<0)||(str2double(sigma2)>8)||(str2double(sigma2)~=round(str2double(sigma2)))||(isempty(str2num(sigma2))) %Limit to positive integers
errordlg('Please type a positive integer number (<=8).','Error')
set(handles.sigma2_edit,'String',3);
else
handles.sigma2=str2double(get(handles.sigma2_edit,'String'));
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function sigma2_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to sigma2_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sigma3_edit_Callback(hObject, eventdata, handles)
% hObject handle to sigma3_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sigma3_edit as text
% str2double(get(hObject,'String')) returns contents of sigma3_edit as a double
%Value sigma3
sigma3=get(handles.sigma3_edit,'String');
if (str2double(sigma3)<0)||(str2double(sigma3)>8)||(str2double(sigma3)~=round(str2double(sigma3)))||(isempty(str2num(sigma3))) %Limit to positive integers
errordlg('Please type a positive integer number (<=8).','Error')
set(handles.sigma3_edit,'String',3);
else
handles.sigma3=str2double(get(handles.sigma3_edit,'String'));
end
guidata(hObject, handles); %Actualizar valores A y B
% --- Executes during object creation, after setting all properties.
function sigma3_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to sigma3_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in change_rules_togglebutton.
function change_rules_togglebutton_Callback(hObject, eventdata, handles)
% hObject handle to change_rules_togglebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if strcmp(get(handles.change_rules_togglebutton, 'String'),'Change Rules'); %Togglebutton string "Change Rules"
set(handles.change_rules_togglebutton,'String','Done');%Change String to "Done"
%Enable-on elements
set(handles.sigma1_edit,'Enable','on');
set(handles.sigma2_edit,'Enable','on');
set(handles.sigma3_edit,'Enable','on');
set(handles.cell_status_1_edit,'Enable','on');
set(handles.cell_status_2_edit,'Enable','on');
else
set(handles.change_rules_togglebutton,'String','Change Rules');%Change String to "Change Rules"
%Enable-off elements
set(handles.sigma1_edit,'Enable','off');
set(handles.sigma2_edit,'Enable','off');
set(handles.sigma3_edit,'Enable','off');
set(handles.cell_status_1_edit,'Enable','off');
set(handles.cell_status_2_edit,'Enable','off');
end
guidata(hObject, handles);
function cell_status_1_edit_Callback(hObject, eventdata, handles)
% hObject handle to cell_status_1_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of cell_status_1_edit as text
% str2double(get(hObject,'String')) returns contents of cell_status_1_edit as a double
%Cell status 1
cell_status_1=get(handles.cell_status_1_edit,'String');
if (str2double(cell_status_1)<0)||(str2double(cell_status_1)>1)||(str2double(cell_status_1)~=round(str2double(cell_status_1)))||(isempty(str2num(cell_status_1))) %Limit to positive integers
errordlg('Please type only 0 (Cell dies) or 1 (Cell lives).','Error')
set(handles.cell_status_1_edit,'String',0);
handles.cell_status_1==0;
else
handles.cell_status_1=str2double(get(handles.cell_status_1_edit,'String'));
if handles.cell_status_1==0
set(handles.cell_status_1_text,'String','Cell dies');
handles.cell_status_2=1;
else
set(handles.cell_status_1_text,'String','Cell lives');
handles.cell_status_2=0;
end
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function cell_status_1_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to cell_status_1_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function cell_status_2_edit_Callback(hObject, eventdata, handles)
% hObject handle to cell_status_2_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of cell_status_2_edit as text
% str2double(get(hObject,'String')) returns contents of cell_status_2_edit as a double
%Cell status 2
cell_status_2=get(handles.cell_status_2_edit,'String');
if (str2double(cell_status_2)<0)||(str2double(cell_status_2)>1)||(str2double(cell_status_2)~=round(str2double(cell_status_2)))||(isempty(str2num(cell_status_2))) %Limit to positive integers
errordlg('Please type only 0 (Cell dies) or 1 (Cell lives).','Error')
set(handles.cell_status_2_edit,'String',1);
handles.cell_status_3==1;
else
handles.cell_status_3=str2double(get(handles.cell_status_2_edit,'String'));
if handles.cell_status_3==0
set(handles.cell_status_2_text,'String','Cell dies');
handles.cell_status_4=1;
else
set(handles.cell_status_2_text,'String','Cell lives');
handles.cell_status_4=0;
end
end
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function cell_status_2_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to cell_status_2_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on slider movement.
function density_slider_Callback(hObject, eventdata, handles)
% hObject handle to density_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% set(handles.density_slider,'Enable','off');
d=get(handles.density_slider,'Value'); %Obtein value of density_slider
handles.density=d;
set(handles.density_slider_text,'String',handles.density);
guidata(hObject, handles);
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function density_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to density_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function still_lifes_edit_Callback(hObject, eventdata, handles)
% hObject handle to still_lifes_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of still_lifes_edit as text
% str2double(get(hObject,'String')) returns contents of still_lifes_edit as a double
% --- Executes during object creation, after setting all properties.
function still_lifes_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to still_lifes_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function oscillators_edit_Callback(hObject, eventdata, handles)
% hObject handle to oscillators_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of oscillators_edit as text
% str2double(get(hObject,'String')) returns contents of oscillators_edit as a double
% --- Executes during object creation, after setting all properties.
function oscillators_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to oscillators_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in recognize_pushbutton.
function recognize_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to recognize_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Recognition Still Lifes Patter Algorithm
sum_neighbors=0;
sum_still_life_pattern=0; %Count until 4 times, 3 neighbors
num_still_life_patterns=0;
for x=0:handles.r-1
for y=0:handles.r-1
%Sum of all neighbors
sum_neighbors=handles.A(rem(x-1+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x-1+handles.r,handles.r)+1,rem(y+handles.r,handles.r)+1)+handles.A(rem(x-1+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1)+handles.A(rem(x+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y-1+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y+handles.r,handles.r)+1)+handles.A(rem(x+1+handles.r,handles.r)+1,rem(y+1+handles.r,handles.r)+1);
disp(sum_neighbors);
if sum_neighbors==3
sum_still_life_pattern=sum_still_life_pattern+1;
if sum_still_life_pattern==4;
num_still_life_patterns=num_still_life_patterns+1;
set(handles.still_lifes_edit,'String',num_still_life_patterns);
guidata(hObject, handles);
end
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
solveup.m
|
.m
|
Channel_DNS-master/DisMethod/SteadyWall/Matlab/solveup.m
| 1,914 |
utf_8
|
2c3b967830e026bcabc34bf4346e9695
|
global u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh;
function [u, v, w, p, pgx, pgz] = solveup(u, v, w, p, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
[du, dv, dw] = getvel(u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
dp = getpre(du, dv, dw, p, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
[u, v, w, p, pgx, pgz] = updateup(du, dv, dw, dp, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
end
function [du, dv, dw] = getvel(u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
du = getu(u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
dv = getv(du, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
dw = getw(du, dv, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
[du, dv, dw] = finish_vel(du, dv, dw, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
du = du + u;
dv = dv + v;
dw = dw + w;
end
function du = getu(u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
r1 = form_r1(u, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
du = solve_du(u, v, w, r1, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
end
function dv = getv(du, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
r2 = form_r2(du, v, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
dv = solve_dv(du, v, w, r2, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
end
function dw = getw(du, dv, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
r3 = form_r3(du, dv, w, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
dw = solve_dw(du, dv, w, r3, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh);
end
function [du, dv, dw] = finish_vel(du, dv, dw, pgx, pgz, dx, dy, dz, h, dy2dy, dy2h, dydy, dyh)
%finish dv
for k = 1:n3
km = mod(k-2, n3) + 1;
kp = mod(k, n3) + 1;
for j = 2:n2
for i = 1:n1
v1 = (v(i, j, km) + v(i, j, k)) / 2;
v2 = (v(i, j, kp) + v(i, j, k)) / 2;
w1 = (dw(i, j+1, k) * dy(
|
github
|
fxie2/Channel_DNS-master
|
ode2_solve.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/ode2_solve.m
| 3,485 |
utf_8
|
07235bfa79d490e3b682cf11f7b05046
|
%% Channel DNS Subfunction - ode2_solve
%% Purpose
% Solve the 2nd order diffential equation in the form:
% f"(y) - k*f(y) = s(y) , y in [-1, 1]
% with first kind boundary condition:
% f(-1) = A, f(1) = B
% or with second kind boundary condition:
% f'(-1) = A, f'(1) = B
%% Method
% Use Chebyshev transform to solve the equation.
% Let
%
% f(y) = sum fp*Tp(y) , p=0:P
% s(y) = sum sp*Tp(y) , p=0:P
%
% The main equation can be written as
%
% k*c_p-2 * f_p-2 k * e_p+2 k * e_p+4 * f_p+2
% ---------------- - (1 + ------------ )*f_p + -------------------
% 4*p*(p-1) 2*(p^2-1) 4*p*(p+1)
%
% c_p-2 * s_p-2 e_p+2 * s_p e_p+4 * s_p+2
% = -( ---------------- - ------------- + --------------- )
% 4*p*(p-1) 2*(p^2-1) 4*p*(p+1)
% (by Gottlib & Orszag, 1977)
% ( e_p = 1 for p<=P, e_p = 0 for p>P)
% and for boundary conditions
% 1st kind:
% sum (-1)^p * fp = A , p=0:P
% sum fp = B , p=0:P
% 2nd kind:
% sum (-1)^p * fp' = A , p=0:P
% sum fp' = B , p=0:P
% cp*fp' = 2 * sum k*fk , k=p+1:P
%% Parameters
% Input parameters:
% k ------------------------- the k factor
% s ------------------------- the right term
% boundary_type ------------- 1 for 1st, 2 for 2nd.
% boundary_conditions ------- [A, B] 2 boundary values for (-1, +1)
% input_type ---------------- 's' for spectral, 'p' for physical
% output_type --------------- 's' for spectral, 'p' for physical
% Output parameter:
% f ------------------------- the solution
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Code
function f = ode2_solve(k, s, boundary_type, boundary_conditons, input_type, output_type)
P = length(s) - 1;
if input_type == 'p'
sp = FCT(s, 1);
else
sp = s;
end
%form the index array
i = zeros(5*P - 3, 1);
p = zeros(5*P - 3, 1);
v = zeros(5*P - 3, 1);
n = 1;
for iter = 1:P-3
i(n:n+2) = iter*ones(1,3);
p(n:n+2) = [0,2,4] + iter*ones(1,3);
v(n) = k / (4*(iter + 1)*iter);
v(n+1) = -(1 + k / (2*((iter+1)^2 - 1)));
v(n+2) = k / (4*(iter+1)*(iter+2));
n = n + 3;
end
v(1) = k / 4;
i(n:n+3) = [P-2,P-2,P-1,P-1];
p(n:n+3) = [P-2,P,P-1,P+1];
v(n) = k/(4*(P-1)*(P-2));
v(n+1) = -1;
v(n+2) = k/(4*P*(P-1));
v(n+3) = -1;
i(3*P-4:4*P-4) = P*ones(1,P+1);
i(4*P-3:5*P-3) = (P+1)*ones(1,P+1);
p(3*P-4:4*P-4) = [1:P+1];
p(4*P-3:5*P-3) = [1:P+1];
if boundary_type == 1
v(3*P-4:4*P-4) = (-1).^[0:P];
v(4*P-3:5*P-3) = ones(1,P+1);
elseif boundary_type == 2
v(3*P-4:4*P-4) = -[0:P].^2.*(-1).^[0:P];
v(4*P-3:5*P-3) = [0:P].^2;
else
disp('boundary type error!');
end
M = sparse(i,p,v);
b = zeros(P+1,1);
b(1) = -(sp(1)/4 - sp(3)/6 + sp(5)/24);
for iter = 2:P-5
pp = iter + 1;
b(iter) = -(sp(pp-2+1)/(4*pp*(pp-1)) - sp(pp+1)/(2*(pp^2 - 1)) + sp(pp+3)/(4*pp*(pp+1)));
end
b(P-4) = -(sp(P-4)/(4*(P-3)*(P-4)) - sp(P-2)/(2*((P-3)^2 - 1)));
b(P-3) = -(sp(P-3)/(4*(P-2)*(P-3)) - sp(P-1)/(2*((P-2)^2 - 1)));
b(P-2) = -sp(P-2)/(4*(P-1)*(P-2));
b(P-1) = -sp(P-1)/(4*(P-1)*P);
b(P) = boundary_conditons(1);
b(P+1) = boundary_conditons(2);
if abs(k) <= eps() && boundary_type == 2
temp_ans = zeros(P+1,1);
temp_ans(2:P+1) = M(2:P+1,2:P+1)\b(2:P+1);
else
temp_ans = M\b;
end
if output_type == 'p'
f = FCT(temp_ans,-1);
else
f = temp_ans;
end
end
|
github
|
fxie2/Channel_DNS-master
|
getphi.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/getphi.m
| 198 |
utf_8
|
f204c79c0ab8c7d08407cc9142721436
|
%% Channel DNS Subfunction - getphi
%% Purpose
% Calculate the phi term
%% Code
function [phix, phiy, phiz, phit] = getphi(nx, nz, alpha, beta, Ax, kx,...
cx, phi0x, Az, kz, cz, phi0z, t)
end
|
github
|
fxie2/Channel_DNS-master
|
global_trans.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/global_trans.m
| 1,320 |
utf_8
|
223c90b63c4450c51f17f3d33ed1bcff
|
%% Channel DNS Subfunction - global_trans
%% Purpose
% Transform between physical space and spectral space
%% Parameters
% Input parameters:
% u ------------------------ spectral or physical data
% direction ---------------- 1 for p -> s, -1 for s -> p
% Output parameter:
% w ------------------------ physical or spectral result
%% Author
% Written by Luohao Wang on 2015-9-13
% Contact : [email protected]
%% Code
function w = global_trans(u, direction)
[nx, ny, nz] = size(u);
w = zeros(size(u));
if direction == 1
for iter_y = 1:ny
temp = reshape(u(:,iter_y,:), nx, nz);
temp = fft(temp);
temp = fftshift(temp, 1);
temp = fft(temp.');
temp = fftshift(temp, 1);
w(:,iter_y,:) = temp.';
end
for iter_x = 1:nx
for iter_z = 1:nz
w(iter_x,:,iter_z) = FCT(w(iter_x,:,iter_z), 1);
end
end
elseif direction == -1
for iter_x = 1:nx
for iter_z = 1:nz
w(iter_x,:,iter_z) = FCT(u(iter_x,:,iter_z), -1);
end
end
for iter_y = 1:ny
temp = reshape(w(:,iter_y,:), nx, nz);
temp = ifftshift(temp, 1);
temp = ifft(temp).';
temp = ifftshift(temp,1);
temp = ifft(temp).';
w(:,iter_y,:) = temp;
end
w = real(w);
end
end
|
github
|
fxie2/Channel_DNS-master
|
Gterm.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/Gterm.m
| 941 |
utf_8
|
bfcd84f4dde4cf3f98ff4c5762a5ecc6
|
%% Channel DNS Subfunction - Gterm
%% Purpose
% Calculate the G term in Pressure step
%% Parameters
% Input parameters:
% fy -------------------------- lamb-y term
% us, vs, ws ------------------ velocity term
% alpha, beta ----------------- wave number
% re -------------------------- reynold number
% Output parameter
% G --------------------------- G term
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function G = Gterm(fy, us, vs, ws, alpha, beta, re)
rot_x = globe_partial(ws, 'y', 0) - globe_partial(vs, 'z', beta);
rot_z = globe_partial(vs, 'x', alpha) - globe_partial(us, 'y', 0);
G = fy;
[nx, ~, nz] = size(fy);
i = complex(0,1);
parfor iter_x = 1:nx
for iter_z = 1:nz
G(iter_x,:,iter_z) = G(iter_x,:,iter_z) + (i*alpha*(iter_x-1-nx/2)*rot_z(iter_x,:,iter_z)...
- i*beta*(iter_z-1-nz/2)*rot_x(iter_x,:,iter_z)) / re;
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
correct.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/correct.m
| 3,132 |
utf_8
|
8299ea20b644cf25bb88c8811cd0628b
|
%% Channel DNS Subfunction - Correct
%% Purpose
% Calculate the pressure and velocity correct field
%% Method
% The correct pressure field satisfies:
%
% laplace P_c+ = 0
% P_c+(y=1) = 1, P_c+(y=-1) = 0 (Selected)
%
% laplace P_c- = 0
% P_c-(y=1) = 0, P_c-(y=-1) = 1
%
% And the correct velocity field satisfies:
%
% laplace V_c+ - V_c+ / niu*dt = 1/niu * P_c+
% V_c+(y = -1 and 1) = 0 (Selected)
%
% laplace V_c- - V_c- / niu*dt = 1/niu * P_c-
% V_c-(y = -1 and 1) = 0
%
% Considering the symmetry of P_c+ and P_c-, V_c+ and V_c-,
% we only need to compute one pair of the equations. In this
% function, the first pair of equations are solved.
%% Parameters
% Input parameters:
% nx ----------------------- node number in x
% ny ----------------------- node number in y
% nz ----------------------- node number in z
% alpha -------------------- wave number in x
% beta --------------------- wave number in z
% re ----------------------- reynold number
% dt ----------------------- time space
% Output parameters:
% pc ----------------------- correct pressure field
% uc ----------------------- correct u-velocity field
% vc ----------------------- correct v-velocity field
% wc ----------------------- correct w-velocity field
% M ------------------------ correct matrix in physical
% Note : All output parameters are in spectral space
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Code
function [pc, uc, vc, wc, M] = correct(nx, ny, nz, alpha, beta, re, dt)
pc = zeros(nx, ny, nz);
uc = zeros(nx, ny, nz);
vc = zeros(nx, ny, nz);
wc = zeros(nx, ny, nz);
M = zeros(nx, nz, 2, 2);
s = zeros(1, ny);
gamma0 = 11/6;
%Pressure correct
for iter_x = 0:nx-1
for iter_z = 0:nz-1
k = alpha^2*(iter_x - nx/2)^2 + beta^2*(iter_z - nz/2)^2;
pc(iter_x+1,:,iter_z+1) = ode2_solve(k, s, 1, [0,1], 'p', 's');
end
end
%Velocity correct
d_p_dx = globe_partial(pc, 'x', alpha);
d_p_dy = globe_partial(pc, 'y', 0);
d_p_dz = globe_partial(pc, 'z', beta);
for iter_x = 0:nx-1
for iter_z = 0:nz-1
uc(iter_x+1,:,iter_z+1) = ode2_solve(gamma0/dt, d_p_dx(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
vc(iter_x+1,:,iter_z+1) = ode2_solve(gamma0/dt, d_p_dy(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
wc(iter_x+1,:,iter_z+1) = ode2_solve(gamma0/dt, d_p_dz(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
end
end
uc = re * uc;
vc = re * vc;
wc = re * wc;
%form correct matrix
div_V = globe_partial(uc, 'x', alpha) + globe_partial(vc, 'y', 0) ...
+ globe_partial(wc, 'z', beta);
div_V = y_trans(div_V, -1);
for iter_x = 1:nx
for iter_z = 1:nz
M(iter_x, iter_z, 1, 1) = div_V(iter_x, 1, iter_z);
M(iter_x, iter_z, 1, 2) = div_V(iter_x, ny, iter_z);
M(iter_x, iter_z, 2, 1) = div_V(iter_x, ny, iter_z);
M(iter_x, iter_z, 2, 2) = div_V(iter_x, 1, iter_z);
end
end
%transform to physical space
pc = y_trans(pc, -1);
uc = y_trans(uc, -1);
vc = y_trans(vc, -1);
wc = y_trans(wc, -1);
end
|
github
|
fxie2/Channel_DNS-master
|
partial.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/partial.m
| 1,054 |
utf_8
|
b51691935828ded1c7bd1f4b70a1543b
|
%% Channel DNS Subfunction - partial
%% Purpose
% Calculate the partial derivative in spectral space
%% Parameters
% Input parameters:
% f ------------------------- input data in spectral space
% direction ----------------- 'x' for d_dx, and so is others
% parameter ----------------- alpha for 'x', beta for 'z',
% nothing for 'y'
%% Author
% Written by Luohao Wang on 2015-9-11
% Contact : [email protected]
%% Code
function d = partial(f, direction, parameter)
len = length(f);
if direction == 'x' %now parameter == alpha
d = complex(0,1)*parameter.*(-len/2:len/2-1).*f;
elseif direction == 'z' %now parameter == beta
d = complex(0,1)*parameter.*(-len/2:len/2-1).*f;
elseif direction == 'y' %now parameter is useless, can be anything
P = len - 1;
[~,N] = size(f);
if N == 1
f = transpose(f);
end
d = zeros(size(f));
d(1) = sum((1:2:P).*f((1:2:P)+1));
for p = 2:P
d(p) = 2*sum((p:2:P).*f((p:2:P)+1));
end
if N == 1
d = transpose(d);
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
globe_partial.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/globe_partial.m
| 1,021 |
utf_8
|
0a9e12cca4a4256d24243d88813e50f9
|
%% Channel DNS Subfunction - globe_partial
%% Purpose
% Calculate the parital derivative of the hole field
%% Parameters
% Input parameters:
% f ------------------------- spectral data in 3-D
% direction ----------------- 'x' for d_dx, and so on
% parameter ----------------- alpha for 'x', beta for 'z', nothing for
% 'y'
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function df = globe_partial(f, direction, parameter)
[nx, ~, nz] = size(f);
df = zeros(size(f));
if direction == 'x'
for iter_x = 0:nx-1
df(iter_x+1,:,:) = complex(0,1).*parameter.*f(iter_x+1,:,:).*(iter_x - nx/2);
end
elseif direction == 'z'
for iter_z = 0:nz-1
df(:,:,iter_z+1) = complex(0,1).*parameter.*f(:,:,iter_z+1).*(iter_z - nz/2);
end
elseif direction == 'y'
for iter_x = 1:nx
for iter_z = 1:nz
df(iter_x,:,iter_z) = partial(f(iter_x,:,iter_z), 'y', 0);
end
end
else
disp('direction error');
end
end
|
github
|
fxie2/Channel_DNS-master
|
initialize.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/initialize.m
| 762 |
utf_8
|
5201f72699bd17b93a2f32b35f527d85
|
%% Channel DNS Subfunction - initialize
%% Purpose
% Initialize the fluid field at the start time
%% Parameters
% nx, ny, nz ----------------------------- mesh size
% alpha, beta ---------------------------- wave number in x and z
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function [p, u, v, w] = initialize(nx, ny, nz, alpha, dpdx)
p = zeros(nx, ny, nz);
u = zeros(nx, ny, nz);
v = zeros(nx, ny, nz);
w = zeros(nx, ny, nz);
%Use theoretical Poiseuille flow field to initialize
%Velocity initialize
for iter_y = 1:ny
y = cos((iter_y-1)*pi/(ny-1));
u(:, iter_y, :) = 1 - y^2;
end
%Pressure initialize
for iter_x = 2:nx
p(iter_x,:,:) = p(iter_x-1,:,:) - dpdx*2*pi/alpha/nx;
end
end
|
github
|
fxie2/Channel_DNS-master
|
lamb.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/lamb.m
| 824 |
utf_8
|
50918fd8bcceff06447f45d84c8ed52a
|
%% Channel DNS Subfunction - lamb
%% Purpose
% Calculate the lamb term F = V X w.
%% Parameters
% Input parameters:
% us , vs, ws ------------------------- spectral velocity in 3-D
% alpha, beta ------------------------- wave number in x and z
% Output parameters:
% fx, fy, fz -------------------------- convective term in spectral
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function [fx, fy, fz] = lamb(us, vs, ws, alpha, beta)
rot_x = globe_partial(ws, 'y', 0) - globe_partial(vs, 'z', beta);
rot_y = globe_partial(us, 'z', beta) - globe_partial(ws, 'x', alpha);
rot_z = globe_partial(vs, 'x', alpha) - globe_partial(us, 'y', 0);
fx = fcl(vs, rot_z) - fcl(ws, rot_y);
fy = fcl(ws, rot_x) - fcl(us, rot_z);
fz = fcl(us, rot_y) - fcl(vs, rot_x);
end
|
github
|
fxie2/Channel_DNS-master
|
wallmove.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/wallmove.m
| 2,073 |
utf_8
|
b961d4f3acb681353aa595816e5ce1aa
|
%% Channel DNS Subfunction - wallmove
%% Purpose
% Generate physical shape of both upper and lower wall
% with form:
%
% etau(x,z,t) = sum Ax_n*sin(kx_n*x - cx_n*t + phi0x_n)
% sum Az_n*sin(kz_n*z - cz_n*t + phi0z_n), n = 1,2,...
%
% etad(x,z,t) has the same form.
%% Parameters
% Input parameters:
% nx, nz ---------------------------- node number in x, z
% alpha, beta ----------------------- wave number in x, z
% Ax, Az ---------------------------- wave amptitude
% kx, kz ---------------------------- wall wave number
% cx, cz ---------------------------- wall wave phase spead
% phi0x, phi0z ---------------------- wall wave initial phase
% Output parameters:
% etau, etad ------------------------ physical wall movement
%% Author
% Written by Luohao Wang on 2015-9-28
% Contact : [email protected]
%% Code
function [etau, etad] = wallmove(nx, nz, alpha, beta, Ax, kx, cx, phi0x, ...
Az, kz, cz, phi0z, t)
x = linspace(0, 2*pi/alpha, nx+1);
x = x(1:nx);
z = linspace(0, 2*pi/beta, nz+1);
z = z(1:nz);
etau = zeros(nx, nz);
etad = zeros(nx, nz);
[len1, len2] = size(Ax);
[len3, len4] = size(Az);
if (len1 ~= 4 || len3 ~= 4)
disp('Dimension error for A in wallmove function!');
else
%calculate in x direction
for iter_z = 1:nz
for iter_wave = 1:len2
etau(:,iter_z) = etau(:,iter_z) + Ax(iter_wave, 1)*...
sin(kx(iter_wave, 1)*x - cx(iter_wave, 1)*t + phi0x(iter_wave, 1));
etad(:,iter_z) = etad(:,iter_z) + Ax(iter_wave, 2)*...
sin(kx(iter_wave, 2)*x - cx(iter_wave, 2)*t + phi0x(iter_wave, 2));
end
end
%calculate in z direction
for iter_x = 1:nx
for iter_wave = 1:len4
etau(iter_x,:) = etau(iter_x,:) + Az(iter_wave, 1)*...
sin(kz(iter_wave, 1)*z - cz(iter_wave, 1)*t + phi0z(iter_wave, 1));
etad(iter_x,:) = etad(iter_x,:) + Az(iter_wave, 2)*...
sin(kz(iter_wave, 2)*z - cz(iter_wave, 1)*t + phi0z(iter_wave, 1));
end
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
fcl.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/fcl.m
| 2,248 |
utf_8
|
9b2c970ce79cf19b19812669babe5139
|
%% Channel DNS Subfunction - fcl
%% Purpose
% Compute u_i*v_i in spectral space using FFT instead of convolution
%% Method
% See 3/2 rule
%% Parameters
% Input parameters:
% u, v ------------------------ spectral data in 3-D for convolution
% Output parameter:
% w --------------------------- spectral result in 3-D
%% Attention
% For 3-D reason, we cannot directly perform fft2 or ifft2 on the slice
% like u(:,iter,:) which will lead to dimension error. So we have to use
% a temporary matrix to store the slice, mannuly do twice fft and
% fftshift, and return the result to the initial slice.
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function w = fcl(u, v)
[nx, ny, nz] = size(u);
U_trans_y = zeros(size(u));
V_trans_y = zeros(size(v));
for iter_x = 0:nx-1
for iter_z = 0:nz-1
U_trans_y(iter_x+1,:,iter_z+1) = FCT(u(iter_x+1,:,iter_z+1),-1);
V_trans_y(iter_x+1,:,iter_z+1) = FCT(v(iter_x+1,:,iter_z+1),-1);
end
end
U_extend = zeros(nx/2*3, ny, nz/2*3);
V_extend = zeros(nx/2*3, ny, nz/2*3);
U_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz) = U_trans_y;
V_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz) = V_trans_y;
U_real = zeros(size(U_extend));
V_real = zeros(size(V_extend));
for iter_y = 0:ny-1
temp = reshape(U_extend(:,iter_y+1,:), nx/2*3, nz/2*3);
temp = ifftshift(temp,1);
temp = ifft(temp).';
temp = ifftshift(temp,1);
temp = ifft(temp).';
U_real(:,iter_y+1,:) = temp;
temp = reshape(V_extend(:,iter_y+1,:), nx/2*3, nz/2*3);
temp = ifftshift(temp,1);
temp = ifft(temp).';
temp = ifftshift(temp,1);
temp = ifft(temp).';
V_real(:,iter_y+1,:) = temp; %temp here is only for coefficient shift
end
W_real = U_real.*V_real;
W_extend = zeros(size(U_extend));
for iter_y = 0:ny-1
temp = reshape(W_real(:,iter_y+1,:), nx/2*3, nz/2*3);
temp = fft(temp);
temp = fftshift(temp,1).';
temp = fft(temp);
temp = fftshift(temp,1).';
W_extend(:,iter_y+1,:) = temp;
end
W_trans_y = W_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz);
w = zeros(size(u));
for iter_x = 0:nx-1
for iter_z = 0:nz-1
w(iter_x+1,:,iter_z+1) = FCT(W_trans_y(iter_x+1,:,iter_z+1),1);
end
end
w = 9/4*w;
end
|
github
|
fxie2/Channel_DNS-master
|
FCT.m
|
.m
|
Channel_DNS-master/SpcMethod/MoveWall/Matlab/FCT.m
| 2,444 |
utf_8
|
86deacb16830af48ce9e19167ec1a22b
|
%% Fast Chebyshev Transform
%% Introduction
% This function is used to transform a series of data from
% physical space into spectral space (or inverse), which is
% useful in solving boundary problems by spectral method.
%% Theory
% Suppose we have a series of data, {f_k}, k = 0,1,2,...,N,
% which is generated from a function f(x) on Chebyshev-
% Gauss-Lobatto Nodes x=cos(k*pi/N). Let T_k(x) be the k-th
% Chebyshev polynomial, which is cos(k * arccos(x)). Now
% we can expand f(x) as Chebyshev series,
%
% f(x) = sum a_m * T_m(x), m = 0:N
%
% Since T_m(x_k) = cos(m*n*pi/N), we can get
%
% f_k = sum a_m * cos(m*n*pi/N), m = 0:N
%
% Observing this formula, we can discover its relationship
% with DFT. To make this clear, we construct a new sequence,
% which is {f_0, f_1, ... , f_N , f_N-1, ... , f_2}, and perform
% 2N IDFT on it, we get
%
% f_k = sum a_m * exp(2*pi*i * m*k/2*N), m = 0:2N
%
% Since f_k = f_2N-k, we get
%
% sum a_m * i * sin(2*pi * m*k/2*N) = 0, m = 0:2N
%
% This indicates that the IDFT above only contains real part.
% And we get
%
% f_k = sum a_m * cos(pi*m*n/N), m = 0:2N
%
% Note that exp(2*pi*i * m*(2N-k)/2N) = exp(2*pi*i * (2N-m)*k/2N),
% we can get a_m = a_2N-m. So that
%
% f_k = a_0 + sum 2*a_m*cos(m*k*pi/N) + a_N*cos(N*k*pi/N),
% m = 1:N-1
% and we now get the answer for the formal problem.
%% Parameters
% A ---------------- Input data in coloum
% B ---------------- Output data in coloum
% direction -------- 1 for physical -> spectral
% -1 for spectral -> physical
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Acknowledgement
% Inspired by fcgltran by Greg von Winckel, fixed a few bugs.
% Website : http://www.mathworks.com/matlabcentral/fileexchange/4591-fast-chebyshev-transform--1d-
%% Code
function B = FCT(A, direction)
[N,~] = size(A);
if N == 1
B = transpose(FCT(transpose(A), direction));
else
if direction == 1 % physical -> spectral
F=ifft([A(1:N,:);A(N-1:-1:2,:)]);
B=([F(1,:); 2*F(2:(N-1),:); F(N,:)]);
elseif direction == -1 % physical -> spectral
F=fft([A(1,:);A(2:N-1,:)/2;A(N,:);A(N-1:-1:2,:)/2]);
B=(F(1:N,:));
else
disp('Direction identifier can only be -1 or 1! Please check your program.');
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
ode2_solve.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/ode2_solve.m
| 3,689 |
utf_8
|
ba5e7b3b7cc1e99fabbee3a08fb4dce1
|
%% Channel DNS Subfunction - ode2_solve
%% Purpose
% Solve the 2nd order diffential equation in the form:
% f"(y) - k*f(y) = s(y) , y in [-1, 1]
% with first kind boundary condition:
% f(-1) = A, f(1) = B
% or with second kind boundary condition:
% f'(-1) = A, f'(1) = B
%% Method
% Use Chebyshev transform to solve the equation.
% Let
%
% f(y) = sum fp*Tp(y) , p=0:P
% s(y) = sum sp*Tp(y) , p=0:P
%
% The main equation can be written as
%
% k*c_p-2 * f_p-2 k * e_p+2 k * e_p+4 * f_p+2
% ---------------- - (1 + ------------ )*f_p + -------------------
% 4*p*(p-1) 2*(p^2-1) 4*p*(p+1)
%
% c_p-2 * s_p-2 e_p+2 * s_p e_p+4 * s_p+2
% = -( ---------------- - ------------- + --------------- )
% 4*p*(p-1) 2*(p^2-1) 4*p*(p+1)
% (by Gottlib & Orszag, 1977)
% ( e_p = 1 for p<=P, e_p = 0 for p>P)
% and for boundary conditions
% 1st kind:
% sum (-1)^p * fp = A , p=0:P
% sum fp = B , p=0:P
% 2nd kind:
% sum (-1)^p * fp' = A , p=0:P
% sum fp' = B , p=0:P
% cp*fp' = 2 * sum k*fk , k=p+1:P
%% Parameters
% Input parameters:
% k ------------------------- the k factor
% s ------------------------- the right term
% boundary_type ------------- 1 for 1st, 2 for 2nd.
% boundary_conditions ------- [A, B] 2 boundary values for (-1, +1)
% input_type ---------------- 's' for spectral, 'p' for physical
% output_type --------------- 's' for spectral, 'p' for physical
% Output parameter:
% f ------------------------- the solution
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Code
function f = ode2_solve(k, s, boundary_type, boundary_conditons, input_type, output_type)
P = length(s) - 1;
if input_type == 'p'
sp = FCT(s, 1);
else
sp = s;
end
%form the index array
i = zeros(5*P - 3, 1);
p = zeros(5*P - 3, 1);
v = zeros(5*P - 3, 1);
n = 1;
for iter = 1:P-5
i(n:n+2) = iter*ones(1,3);
p(n:n+2) = [0,2,4] + iter*ones(1,3);
v(n) = k / (4*(iter + 1)*iter);
v(n+1) = -(1 + k / (2*((iter+1)^2 - 1)));
v(n+2) = k / (4*(iter+1)*(iter+2));
n = n + 3;
end
for iter = P-4:P-3
i(n:n+2) = iter*ones(1,3);
p(n:n+2) = [0,2,4] + iter*ones(1,3);
v(n) = k / (4*(iter + 1)*iter);
v(n+1) = -(1 + k / (2*((iter+1)^2 - 1)));
v(n+2) = 0;
n = n + 3;
end
v(1) = k / 4;
i(n:n+3) = [P-2,P-2,P-1,P-1];
p(n:n+3) = [P-2,P,P-1,P+1];
v(n) = k/(4*(P-1)*(P-2));
v(n+1) = -1;
v(n+2) = k/(4*P*(P-1));
v(n+3) = -1;
i(3*P-4:4*P-4) = P*ones(1,P+1);
i(4*P-3:5*P-3) = (P+1)*ones(1,P+1);
p(3*P-4:4*P-4) = 1:P+1;
p(4*P-3:5*P-3) = 1:P+1;
if boundary_type == 1
v(3*P-4:4*P-4) = (-1).^(0:P);
v(4*P-3:5*P-3) = ones(1,P+1);
elseif boundary_type == 2
v(3*P-4:4*P-4) = -(0:P).^2.*(-1).^(0:P);
v(4*P-3:5*P-3) = (0:P).^2;
else
disp('boundary type error!');
end
M = sparse(i,p,v);
b = zeros(P+1,1);
b(1) = -(sp(1)/4 - sp(3)/6 + sp(5)/24);
for iter = 2:P-5
pp = iter + 1;
b(iter) = -(sp(pp-2+1)/(4*pp*(pp-1)) - sp(pp+1)/(2*(pp^2 - 1)) + sp(pp+3)/(4*pp*(pp+1)));
end
b(P-4) = -(sp(P-4)/(4*(P-3)*(P-4)) - sp(P-2)/(2*((P-3)^2 - 1)));
b(P-3) = -(sp(P-3)/(4*(P-2)*(P-3)) - sp(P-1)/(2*((P-2)^2 - 1)));
b(P-2) = -sp(P-2)/(4*(P-1)*(P-2));
b(P-1) = -sp(P-1)/(4*(P-1)*P);
b(P) = boundary_conditons(1);
b(P+1) = boundary_conditons(2);
if abs(k) <= eps() && boundary_type == 2
temp_ans = zeros(P+1,1);
temp_ans(2:P+1) = M(2:P+1,2:P+1)\b(2:P+1);
else
temp_ans = M\b;
end
if output_type == 'p'
f = FCT(temp_ans,-1);
else
f = temp_ans;
end
end
|
github
|
fxie2/Channel_DNS-master
|
global_trans.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/global_trans.m
| 1,476 |
utf_8
|
c2edfd66d6832abd467b2fe915955e21
|
%% Channel DNS Subfunction - global_trans
%% Purpose
% Transform between physical space and spectral space
%% Parameters
% Input parameters:
% u ------------------------ spectral or physical data
% direction ---------------- 1 for p -> s, -1 for s -> p
% Output parameter:
% w ------------------------ physical or spectral result
%% Author
% Written by Luohao Wang on 2015-9-13
% Contact : [email protected]
%% Code
function w = global_trans(u, direction)
[nx, ny, nz] = size(u);
w = zeros(size(u));
if direction == 1
for iter_y = 1:ny
temp = reshape(u(:,iter_y,:), nx, nz);
% temp = fft(temp);
% temp = fftshift(temp, 1);
% temp = fft(temp.');
% temp = fftshift(temp, 1);
% w(:,iter_y,:) = temp.';
temp = fftshift(fft2(temp));
w(:,iter_y,:) = temp;
end
for iter_x = 1:nx
for iter_z = 1:nz
w(iter_x,:,iter_z) = FCT(w(iter_x,:,iter_z), 1);
end
end
elseif direction == -1
for iter_x = 1:nx
for iter_z = 1:nz
w(iter_x,:,iter_z) = FCT(u(iter_x,:,iter_z), -1);
end
end
for iter_y = 1:ny
temp = reshape(w(:,iter_y,:), nx, nz);
% temp = ifftshift(temp, 1);
% temp = ifft(temp).';
% temp = ifftshift(temp,1);
% temp = ifft(temp).';
% w(:,iter_y,:) = temp;
temp = ifft2(ifftshift(temp));
w(:,iter_y,:) = temp;
end
w = real(w);
end
end
|
github
|
fxie2/Channel_DNS-master
|
Gterm.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/Gterm.m
| 941 |
utf_8
|
bfcd84f4dde4cf3f98ff4c5762a5ecc6
|
%% Channel DNS Subfunction - Gterm
%% Purpose
% Calculate the G term in Pressure step
%% Parameters
% Input parameters:
% fy -------------------------- lamb-y term
% us, vs, ws ------------------ velocity term
% alpha, beta ----------------- wave number
% re -------------------------- reynold number
% Output parameter
% G --------------------------- G term
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function G = Gterm(fy, us, vs, ws, alpha, beta, re)
rot_x = globe_partial(ws, 'y', 0) - globe_partial(vs, 'z', beta);
rot_z = globe_partial(vs, 'x', alpha) - globe_partial(us, 'y', 0);
G = fy;
[nx, ~, nz] = size(fy);
i = complex(0,1);
parfor iter_x = 1:nx
for iter_z = 1:nz
G(iter_x,:,iter_z) = G(iter_x,:,iter_z) + (i*alpha*(iter_x-1-nx/2)*rot_z(iter_x,:,iter_z)...
- i*beta*(iter_z-1-nz/2)*rot_x(iter_x,:,iter_z)) / re;
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
correct.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/correct.m
| 3,172 |
utf_8
|
5448b3d830a487cfe2874f301c895edc
|
%% Channel DNS Subfunction - Correct
%% Purpose
% Calculate the pressure and velocity correct field
%% Method
% The correct pressure field satisfies:
%
% laplace P_c+ = 0
% P_c+(y=1) = 1, P_c+(y=-1) = 0 (Selected)
%
% laplace P_c- = 0
% P_c-(y=1) = 0, P_c-(y=-1) = 1
%
% And the correct velocity field satisfies:
%
% laplace V_c+ - V_c+ / niu*dt = 1/niu * P_c+
% V_c+(y = -1 and 1) = 0 (Selected)
%
% laplace V_c- - V_c- / niu*dt = 1/niu * P_c-
% V_c-(y = -1 and 1) = 0
%
% Considering the symmetry of P_c+ and P_c-, V_c+ and V_c-,
% we only need to compute one pair of the equations. In this
% function, the first pair of equations are solved.
%% Parameters
% Input parameters:
% nx ----------------------- node number in x
% ny ----------------------- node number in y
% nz ----------------------- node number in z
% alpha -------------------- wave number in x
% beta --------------------- wave number in z
% re ----------------------- reynold number
% dt ----------------------- time space
% Output parameters:
% pc ----------------------- correct pressure field
% uc ----------------------- correct u-velocity field
% vc ----------------------- correct v-velocity field
% wc ----------------------- correct w-velocity field
% M ------------------------ correct matrix in physical
% Note : All output parameters are in spectral space
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Code
function [pc, uc, vc, wc, M] = correct(nx, ny, nz, alpha, beta, re, dt)
pc = zeros(nx, ny, nz);
uc = zeros(nx, ny, nz);
vc = zeros(nx, ny, nz);
wc = zeros(nx, ny, nz);
M = zeros(nx, nz, 2, 2);
s = zeros(1, ny);
gamma0 = 11/6;
%Pressure correct
for iter_x = 0:nx-1
for iter_z = 0:nz-1
k = alpha^2*(iter_x - nx/2)^2 + beta^2*(iter_z - nz/2)^2;
pc(iter_x+1,:,iter_z+1) = ode2_solve(k, s, 1, [0,1], 'p', 's');
end
end
%Velocity correct
d_p_dx = globe_partial(pc, 'x', alpha);
d_p_dy = globe_partial(pc, 'y', 0);
d_p_dz = globe_partial(pc, 'z', beta);
for iter_x = 0:nx-1
for iter_z = 0:nz-1
k = re*gamma0/dt + alpha^2*(iter_x - nx/2)^2 + beta^2*(iter_z - nz/2)^2;
uc(iter_x+1,:,iter_z+1) = ode2_solve(k, re * d_p_dx(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
vc(iter_x+1,:,iter_z+1) = ode2_solve(k, re * d_p_dy(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
wc(iter_x+1,:,iter_z+1) = ode2_solve(k, re * d_p_dz(iter_x+1,:,iter_z+1), 1, [0,0], 's', 's');
end
end
%form correct matrix
div_V = globe_partial(uc, 'x', alpha) + globe_partial(vc, 'y', 0) ...
+ globe_partial(wc, 'z', beta);
div_V = y_trans(div_V, -1);
for iter_x = 1:nx
for iter_z = 1:nz
M(iter_x, iter_z, 1, 1) = div_V(iter_x, 1, iter_z);
M(iter_x, iter_z, 1, 2) = div_V(iter_x, ny, iter_z);
M(iter_x, iter_z, 2, 1) = div_V(iter_x, ny, iter_z);
M(iter_x, iter_z, 2, 2) = div_V(iter_x, 1, iter_z);
end
end
% %transform to physical space
% pc = y_trans(pc, -1);
% uc = y_trans(uc, -1);
% vc = y_trans(vc, -1);
% wc = y_trans(wc, -1);
end
|
github
|
fxie2/Channel_DNS-master
|
partial.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/partial.m
| 1,054 |
utf_8
|
b51691935828ded1c7bd1f4b70a1543b
|
%% Channel DNS Subfunction - partial
%% Purpose
% Calculate the partial derivative in spectral space
%% Parameters
% Input parameters:
% f ------------------------- input data in spectral space
% direction ----------------- 'x' for d_dx, and so is others
% parameter ----------------- alpha for 'x', beta for 'z',
% nothing for 'y'
%% Author
% Written by Luohao Wang on 2015-9-11
% Contact : [email protected]
%% Code
function d = partial(f, direction, parameter)
len = length(f);
if direction == 'x' %now parameter == alpha
d = complex(0,1)*parameter.*(-len/2:len/2-1).*f;
elseif direction == 'z' %now parameter == beta
d = complex(0,1)*parameter.*(-len/2:len/2-1).*f;
elseif direction == 'y' %now parameter is useless, can be anything
P = len - 1;
[~,N] = size(f);
if N == 1
f = transpose(f);
end
d = zeros(size(f));
d(1) = sum((1:2:P).*f((1:2:P)+1));
for p = 2:P
d(p) = 2*sum((p:2:P).*f((p:2:P)+1));
end
if N == 1
d = transpose(d);
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
dpdx_correct.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/dpdx_correct.m
| 1,174 |
utf_8
|
92b0138e9e1ba91082d0bfcbf390c997
|
%% Channel DNS Subroutine - dpdx_correct
%% Puporse
% Correct the gradient of pressure according to the constant mass flow
% boundary condition
%% Method
% Treat dpdx as the function of mass flow rate, use secant method to find
% the sloution
%% Code
function dpdx = dpdx_correct(u, dpdx_u, u_hist, dpdx_hist, q_set, beta)
[nx, ny, nz] = size(u);
u_p = global_trans(u, -1);
u_hist_p = global_trans(u_hist, -1);
u_diff = u_p(nx, :, :) - u_hist_p(nx, :, :);
u_diff = reshape(u_diff, ny, nz);
if ~(max(max(abs(u_diff))) >= 1e-6 && abs(dpdx_u-dpdx_hist) > eps())
dpdx = dpdx_u;
else
dz = 2*pi/beta/nz;
q_u = 0;
q_hist = 0;
for iter_z = 1:nz
u_ys_temp = reshape(FCT(u_p(nx, :, iter_z), 1), 1, ny);
u_hist_ys_temp = reshape(FCT(u_hist_p(nx, :, iter_z), 1), 1, ny);
for iter_y = 1:2:ny
n = iter_y - 1;
q_u = q_u + u_ys_temp(iter_y) * 2 / (1-n^2) * dz;
q_hist = q_hist + u_hist_ys_temp(iter_y) * 2 / (1-n^2) * dz;
end
end
if abs(q_u - q_hist) <= 1e-6
dpdx = dpdx_u;
else
dpdx = dpdx_u + (q_set - q_u) * (dpdx_u - dpdx_hist) / (q_u - q_hist);
end
end
end
|
github
|
fxie2/Channel_DNS-master
|
globe_partial.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/globe_partial.m
| 1,021 |
utf_8
|
0a9e12cca4a4256d24243d88813e50f9
|
%% Channel DNS Subfunction - globe_partial
%% Purpose
% Calculate the parital derivative of the hole field
%% Parameters
% Input parameters:
% f ------------------------- spectral data in 3-D
% direction ----------------- 'x' for d_dx, and so on
% parameter ----------------- alpha for 'x', beta for 'z', nothing for
% 'y'
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function df = globe_partial(f, direction, parameter)
[nx, ~, nz] = size(f);
df = zeros(size(f));
if direction == 'x'
for iter_x = 0:nx-1
df(iter_x+1,:,:) = complex(0,1).*parameter.*f(iter_x+1,:,:).*(iter_x - nx/2);
end
elseif direction == 'z'
for iter_z = 0:nz-1
df(:,:,iter_z+1) = complex(0,1).*parameter.*f(:,:,iter_z+1).*(iter_z - nz/2);
end
elseif direction == 'y'
for iter_x = 1:nx
for iter_z = 1:nz
df(iter_x,:,iter_z) = partial(f(iter_x,:,iter_z), 'y', 0);
end
end
else
disp('direction error');
end
end
|
github
|
fxie2/Channel_DNS-master
|
initialize.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/initialize.m
| 762 |
utf_8
|
5201f72699bd17b93a2f32b35f527d85
|
%% Channel DNS Subfunction - initialize
%% Purpose
% Initialize the fluid field at the start time
%% Parameters
% nx, ny, nz ----------------------------- mesh size
% alpha, beta ---------------------------- wave number in x and z
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function [p, u, v, w] = initialize(nx, ny, nz, alpha, dpdx)
p = zeros(nx, ny, nz);
u = zeros(nx, ny, nz);
v = zeros(nx, ny, nz);
w = zeros(nx, ny, nz);
%Use theoretical Poiseuille flow field to initialize
%Velocity initialize
for iter_y = 1:ny
y = cos((iter_y-1)*pi/(ny-1));
u(:, iter_y, :) = 1 - y^2;
end
%Pressure initialize
for iter_x = 2:nx
p(iter_x,:,:) = p(iter_x-1,:,:) - dpdx*2*pi/alpha/nx;
end
end
|
github
|
fxie2/Channel_DNS-master
|
lamb.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/lamb.m
| 824 |
utf_8
|
50918fd8bcceff06447f45d84c8ed52a
|
%% Channel DNS Subfunction - lamb
%% Purpose
% Calculate the lamb term F = V X w.
%% Parameters
% Input parameters:
% us , vs, ws ------------------------- spectral velocity in 3-D
% alpha, beta ------------------------- wave number in x and z
% Output parameters:
% fx, fy, fz -------------------------- convective term in spectral
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function [fx, fy, fz] = lamb(us, vs, ws, alpha, beta)
rot_x = globe_partial(ws, 'y', 0) - globe_partial(vs, 'z', beta);
rot_y = globe_partial(us, 'z', beta) - globe_partial(ws, 'x', alpha);
rot_z = globe_partial(vs, 'x', alpha) - globe_partial(us, 'y', 0);
fx = fcl(vs, rot_z) - fcl(ws, rot_y);
fy = fcl(ws, rot_x) - fcl(us, rot_z);
fz = fcl(us, rot_y) - fcl(vs, rot_x);
end
|
github
|
fxie2/Channel_DNS-master
|
fcl.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/fcl.m
| 2,372 |
utf_8
|
42f6311dd63f57c3781427680d1fd651
|
%% Channel DNS Subfunction - fcl
%% Purpose
% Compute u_i*v_i in spectral space using FFT instead of convolution
%% Method
% See 3/2 rule
%% Parameters
% Input parameters:
% u, v ------------------------ spectral data in 3-D for convolution
% Output parameter:
% w --------------------------- spectral result in 3-D
%% Attention
% For 3-D reason, we cannot directly perform fft2 or ifft2 on the slice
% like u(:,iter,:) which will lead to dimension error. So we have to use
% a temporary matrix to store the slice, mannuly do twice fft and
% fftshift, and return the result to the initial slice.
%% Author
% Written by Luohao Wang on 2015-9-12
% Contact : [email protected]
%% Code
function w = fcl(u, v)
[nx, ny, nz] = size(u);
U_trans_y = zeros(size(u));
V_trans_y = zeros(size(v));
for iter_x = 0:nx-1
for iter_z = 0:nz-1
U_trans_y(iter_x+1,:,iter_z+1) = FCT(u(iter_x+1,:,iter_z+1),-1);
V_trans_y(iter_x+1,:,iter_z+1) = FCT(v(iter_x+1,:,iter_z+1),-1);
end
end
U_extend = zeros(nx/2*3, ny, nz/2*3);
V_extend = zeros(nx/2*3, ny, nz/2*3);
U_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz) = U_trans_y;
V_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz) = V_trans_y;
U_real = zeros(size(U_extend));
V_real = zeros(size(V_extend));
for iter_y = 0:ny-1
temp = reshape(U_extend(:,iter_y+1,:), nx/2*3, nz/2*3);
% temp = ifftshift(temp,1);
% temp = ifft(temp).';
% temp = ifftshift(temp,1);
% temp = ifft(temp).';
temp = ifft(ifftshift(temp));
U_real(:,iter_y+1,:) = temp;
temp = reshape(V_extend(:,iter_y+1,:), nx/2*3, nz/2*3);
% temp = ifftshift(temp,1);
% temp = ifft(temp).';
% temp = ifftshift(temp,1);
% temp = ifft(temp).';
temp = ifft(ifftshift(temp));
V_real(:,iter_y+1,:) = temp; %temp here is only for coefficient shift
end
W_real = U_real.*V_real;
W_extend = zeros(size(U_extend));
for iter_y = 0:ny-1
temp = reshape(W_real(:,iter_y+1,:), nx/2*3, nz/2*3);
% temp = fft(temp);
% temp = fftshift(temp,1).';
% temp = fft(temp);
% temp = fftshift(temp,1).';
temp = fftshift(fft(temp));
W_extend(:,iter_y+1,:) = temp;
end
W_trans_y = W_extend(nx/4+1:nx/4+nx,:,nz/4+1:nz/4+nz);
w = zeros(size(u));
for iter_x = 0:nx-1
for iter_z = 0:nz-1
w(iter_x+1,:,iter_z+1) = FCT(W_trans_y(iter_x+1,:,iter_z+1),1);
end
end
w = 9/4*w;
end
|
github
|
fxie2/Channel_DNS-master
|
FCT.m
|
.m
|
Channel_DNS-master/SpcMethod/SteadyWall/Matlab/FCT.m
| 2,444 |
utf_8
|
86deacb16830af48ce9e19167ec1a22b
|
%% Fast Chebyshev Transform
%% Introduction
% This function is used to transform a series of data from
% physical space into spectral space (or inverse), which is
% useful in solving boundary problems by spectral method.
%% Theory
% Suppose we have a series of data, {f_k}, k = 0,1,2,...,N,
% which is generated from a function f(x) on Chebyshev-
% Gauss-Lobatto Nodes x=cos(k*pi/N). Let T_k(x) be the k-th
% Chebyshev polynomial, which is cos(k * arccos(x)). Now
% we can expand f(x) as Chebyshev series,
%
% f(x) = sum a_m * T_m(x), m = 0:N
%
% Since T_m(x_k) = cos(m*n*pi/N), we can get
%
% f_k = sum a_m * cos(m*n*pi/N), m = 0:N
%
% Observing this formula, we can discover its relationship
% with DFT. To make this clear, we construct a new sequence,
% which is {f_0, f_1, ... , f_N , f_N-1, ... , f_2}, and perform
% 2N IDFT on it, we get
%
% f_k = sum a_m * exp(2*pi*i * m*k/2*N), m = 0:2N
%
% Since f_k = f_2N-k, we get
%
% sum a_m * i * sin(2*pi * m*k/2*N) = 0, m = 0:2N
%
% This indicates that the IDFT above only contains real part.
% And we get
%
% f_k = sum a_m * cos(pi*m*n/N), m = 0:2N
%
% Note that exp(2*pi*i * m*(2N-k)/2N) = exp(2*pi*i * (2N-m)*k/2N),
% we can get a_m = a_2N-m. So that
%
% f_k = a_0 + sum 2*a_m*cos(m*k*pi/N) + a_N*cos(N*k*pi/N),
% m = 1:N-1
% and we now get the answer for the formal problem.
%% Parameters
% A ---------------- Input data in coloum
% B ---------------- Output data in coloum
% direction -------- 1 for physical -> spectral
% -1 for spectral -> physical
%% Author
% Written by Luohao Wang on 2015-9-10
% Contact : [email protected]
%% Acknowledgement
% Inspired by fcgltran by Greg von Winckel, fixed a few bugs.
% Website : http://www.mathworks.com/matlabcentral/fileexchange/4591-fast-chebyshev-transform--1d-
%% Code
function B = FCT(A, direction)
[N,~] = size(A);
if N == 1
B = transpose(FCT(transpose(A), direction));
else
if direction == 1 % physical -> spectral
F=ifft([A(1:N,:);A(N-1:-1:2,:)]);
B=([F(1,:); 2*F(2:(N-1),:); F(N,:)]);
elseif direction == -1 % physical -> spectral
F=fft([A(1,:);A(2:N-1,:)/2;A(N,:);A(N-1:-1:2,:)/2]);
B=(F(1:N,:));
else
disp('Direction identifier can only be -1 or 1! Please check your program.');
end
end
end
|
github
|
zhangyaonju/SCOPE-master
|
leafangles.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/leafangles.m
| 2,171 |
utf_8
|
f75c20fd775190446a1b01537666fe9b
|
function [lidf]= leafangles(a,b)
% Subroutine FluorSail_dladgen
% Version 2.3
% For more information look to page 128 of "theory of radiative transfer models applied in optical remote sensing of
% vegetation canopies"
%
% FluorSail for Matlab
% FluorSail is created by Wout Verhoef,
% National Aerospace Laboratory (NLR)
% Present e-mail: [email protected]
%
% This code was created by Joris Timmermans,
% International institute for Geo-Information Science and Earth Observation. (ITC)
% Email: [email protected]
%
%% main function
F = zeros(1,13);
for i=1:8
theta = i*10; % theta_l = 10:80
F(i) = dcum(a,b,theta); % F(theta)
end
for i=9:12
theta = 80 + (i-8)*2; % theta_l = 82:88
F(i) = dcum(a,b,theta); % F(theta)
end
for i=13:13 % theta_l = 90:90
F(i) = 1; % F(theta)
end
lidf = zeros(13,1);
for i=13:-1:2
lidf(i) = F(i) - F(i-1); % lidf = dF/dtheta;
end
lidf(1) = F(1); % Boundary condition
%% SubRoutines
function [F] = dcum(a,b,theta)
rd = pi/180; % Geometrical constant
if a>1
F = 1 - cos(theta*rd);
else
eps = 1e-8;
delx = 1;
x = 2*rd *theta;
theta2 = x;
%
while max(delx > eps)
y = a*sin(x) + 0.5*b*sin(2*x);
dx = 0.5*(y - x + theta2);
x = x + dx;
delx= abs(dx);
end
F = (2*y + theta2)/pi; % Cumulative leaf inclination density function
%pag 139 thesis says: F = 2*(y+p)/pi.
%Since theta2=theta*2 (in rad), this makes F=(2*y + 2*theta)/pi
end
|
github
|
zhangyaonju/SCOPE-master
|
resistances.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/resistances.m
| 7,021 |
utf_8
|
d6ca3e4e301c369a6c4d0c7ca8630dd1
|
function [resist_out] = resistances(resist_in)
%
% function resistances calculates aerodynamic and boundary resistances
% for soil and vegetation
%
% Date: 01 Feb 2008
% Authors: Anne Verhoef ([email protected])
% Christiaan van der Tol ([email protected])
% Joris Timmermans ([email protected])
% Source: Wallace and Verhoef (2000) 'Modelling interactions in
% mixed-plant communities: light, water and carbon dioxide', in: Bruce
% Marshall, Jeremy A. Roberts (ed), 'Leaf Development and Canopy Growth',
% Sheffield Academic Press, UK. ISBN 0849397693
%
% ustar: Tennekes, H. (1973) 'The logaritmic wind profile', J.
% Atmospheric Science, 30, 234-238
% Psih: Paulson, C.A. (1970), The mathematical
% representation of wind speed and temperature in the
% unstable atmospheric surface layer. J. Applied Meteorol. 9,
% 857-861
%
% Note: Equation numbers refer to equation numbers in Wallace and Verhoef (2000)
%
% Usage:
% [resist_out] = resistances(resist_in)
%
% The input and output are structures. These structures are further
% specified in a readme file.
%
% Input:
% resist_in aerodynamic resistance parameters and wind speed
%
% The strucutre resist_in contains the following elements:
% u = windspeed
% L = stability
% LAI = Leaf Area Index
% rbs = Boundary Resistance of soil [s m-1]
% rss = Surface resistance of soil for vapour transport [s m-1]
% rwc = Within canopy Aerodynamic Resistance canopy [s m-1]
% z0m = Roughness lenght for momentum for the vegetation [m]
% d = Displacement height (Zero plane) [m]
% z = Measurement height [m]
% h = Vegetation height [m]
%
% Output:
% resist_out aeorodynamic resistances
%
% The strucutre resist_out contains the following elements:
% ustar = Friction velocity [m s-1]
% raa = Aerodynamic resistance above the canopy [s m-1]
% rawc = Total resistance within the canopy (canopy) [s m-1]
% raws = Total resistance within the canopy (soil) [s m-1]
% rai = Aerodynamic resistance in inertial sublayer [s m-1]
% rar = Aerodynamic resistance in roughness sublayer [s m-1]
% rac = Aerodynamic resistance in canopy layer (above z0+d) [s m-1]
% rbc = Boundary layer resistance (canopy) [s m-1]
% rwc = Aerodynamic Resistance within canopy(canopy)(Update)[s m-1]
% rbs = Boundary layer resistance (soil) (Update) [s m-1]
% rws = Aerodynamic resistance within canopy(soil) [s m-1]
% rss = Surface resistance vapour transport(soil)(Update) [s m-1]
% uz0 = windspeed at z0 [m s-1]
% Kh = Diffusivity for heat [m2s-1]
%% parameters
global constants
kappa = constants. kappa;
Cd = resist_in.Cd;
u = resist_in.u;
L = resist_in.L;
LAI = resist_in.LAI;
rbs = resist_in.rbs;
%rss = resist_in.rss;
rwc = resist_in.rwc;
z0m = resist_in.zo;
d = resist_in.d;
z = resist_in.z;
h = resist_in.hc;
w = resist_in.w;
% derived parameters
%zr: top of roughness sublayer, bottom of intertial sublayer
zr = 2.5*h; % [m]
%n: dimensionless wind extinction coefficient W&V Eq 33
n = Cd*LAI/(2*kappa^2); % []
%% stability correction for non-neutral conditions
%neu = find(L >= -.001 & L <= .001);
unst = find(L < -4);
st = find(L > 4E3);
% stability correction functions, friction velocity and Kh=Km=Kv
pm_z = psim(z -d,L,unst,st);
ph_z = psih(z -d,L,unst,st);
pm_h = psim(h -d,L,unst,st);
%ph_h = psih(h -d,L,unst,st);
ph_zr = psih(zr-d,L,unst,st).*(z>=zr) + ph_z.*(z<zr);
phs_zr = phstar(zr,zr,d,L,st,unst);
phs_h = phstar(h ,zr,d,L,st,unst);
ustar = max(.001,kappa*u./(log((z-d)/z0m) - pm_z));% W&V Eq 30
Kh = kappa*ustar*(zr-d); % W&V Eq 35
resist_out.Kh(unst) = kappa*ustar(unst)*(zr-d).*(1-16*(h-d)./L(unst)).^.5;% W&V Eq 35
resist_out.Kh(st) = kappa*ustar(st) *(zr-d).*(1+ 5*(h-d)./L(st) ).^-1;% W&V Eq 35
%% wind speed at height h and z0m
uh = max(ustar/kappa .* (log((h-d)/z0m) - pm_h ),.01);
uz0 = uh*exp(n*((z0m+d)/h-1)); % W&V Eq 32
%% resistances
resist_out.uz0 = uz0;
resist_out.ustar = ustar;
rai = (z>zr).*(1./(kappa*ustar).*(log((z-d) /(zr-d)) - ph_z + ph_zr));% W&V Eq 41
rar = 1./(kappa*ustar).*((zr-h)/(zr-d)) - phs_zr + phs_h;% W&V Eq 39
rac = h*sinh(n)./(n*Kh)*(log((exp(n)-1)/(exp(n)+1)) - log((exp(n*(z0m+ d )/h)-1)/(exp(n*(z0m +d )/h)+1))); % W&V Eq 42
rws = h*sinh(n)./(n*Kh)*(log((exp(n*(z0m+d)/h)-1)/(exp(n*(z0m+d)/h)+1)) - log((exp(n*(.01 )/h)-1)/(exp(n*(.01 )/h)+1))); % W&V Eq 43
rbc = 70/LAI * sqrt(w./uz0); % W&V Eq 31, but slightly different
resist_out.rai = rai;
resist_out.rar = rar;
resist_out.rac = rac;
resist_out.rws = rws;
resist_out.rbc = rbc;
raa = rai + rar + rac;
rawc = rwc + rbc;
raws = rws + rbs;
resist_out.raa = raa; % aerodynamic resistance above the canopy W&V Figure 8.6
resist_out.rawc = rawc; % aerodynamic resistance within the canopy (canopy)
resist_out.raws = raws; % aerodynamic resistance within the canopy (soil)
resist_out.raa = min(4E2,raa); % to prevent unrealistically high resistances
resist_out.rawc = min(4E2,rawc); % to prevent unrealistically high resistances
resist_out.raws = min(4E2,raws); % to prevent unrealistically high resistances
return
%% subfunction pm for stability correction (eg. Paulson, 1970)
function pm = psim(z,L,unst,st)
x = (1-16*z./L(unst)).^(1/4);
pm = zeros(size(L));
pm(unst) = 2*log((1+x)/2)+log((1+x.^2)/2) -2*atan(x)+pi/2; % unstable
pm(st) = -5*z./L(st); % stable
return
%% subfunction ph for stability correction (eg. Paulson, 1970)
function ph = psih(z,L,unst,st)
x = (1-16*z./L(unst)).^(1/4);
ph = zeros(size(L));
ph(unst) = 2*log((1+x.^2)/2); % unstable
ph(st) = -5*z./L(st); % stable
return
%% subfunction ph for stability correction (eg. Paulson, 1970)
function phs = phstar(z,zR,d,L,st,unst)
x = (1-16*z./L(unst)).^0.25;
phs = zeros(size(L));
phs(unst) = (z-d)/(zR-d)*(x.^2-1)./(x.^2+1);
phs(st) = -5*z./L(st);
return
|
github
|
zhangyaonju/SCOPE-master
|
biochemical.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/biochemical.m
| 10,627 |
utf_8
|
e0b5410e1075fd373aa45f0ef7de85f1
|
function biochem_out = biochemical(biochem_in)
%
% Date: 21 Sep 2012
% Update: 20 Feb 2013
% Update: Aug 2013: correction of L171: Ci = Ci*1e6 ./ p .* 1E3;
%
% Authors: Joe Berry and Christiaan van der Tol, contributions of others.
% Sources:
% Farquhar et al. 1980, Collatz et al (1991, 1992).
%
% This function calculates:
% - stomatal resistance of a leaf or needle (s m-1)
% - photosynthesis of a leaf or needle (umol m-2 s-1)
% - fluorescence of a leaf or needle (fraction of fluor. in the dark)
%
% Usage:
% biochem_out = biochemical(biochem_in)
% the function was tested for Matlab 7.2.0.232 (R2006a)
%
% Calculates net assimilation rate A, fluorescence F using biochemical model
%
% Input (units are important):
% structure 'biochem_in' with the following elements:
% Fluorescence_model integer with
% 0: with sustained quenching after drought, as in Lee et al. (2013)
% 1: calibrated for cotton data set: no drought
% Cs % [umol m-3] initial estimate of conc. of CO2 in the
% ...bounary layer of the leaf
% Q % [umol photons m-2 s-1]net radiation, PAR
% T % [oC or K] leaf temperature
% eb % [hPa] intial estimate of the vapour pressure in leaf boundary layer
% O % [mmol m-3] concentration of O2 (in the boundary
% ...layer, but no problem to use ambient)
% p % [hPa] air pressure
% Vcmo % [umol/m2/s] maximum carboxylation capacity
% m % [] Ball-Berry coefficient 'm' for stomatal regulation
% Type % [] text parameter, either 'C3' for C3 or any
% ...other text for C4
% tempcor % [] boolean (0 or 1) whether or not
% ...temperature correction to Vcmax has to be applied.
% Tsparams % [],[],[K],[K],[K] vector of 5 temperature correction
% parameters, look in spreadsheet of PFTs. Only if tempcor=1, otherwise use
% dummy values
% Rdparam % [] respiration as fraction of Vcmax
% stressfactor [] optional input: stress factor to reduce Vcmax (for
% example soil moisture, leaf age). Default value = 1.
%
% Note: always use the prescribed units. Temperature can be either oC or K
% Note: input can be single numbers, vectors, or n-dimensional
% matrices
%
% Output:
% structure 'biochem_out' with the following elements:
% A % [umol/m2/s] net assimilation rate of the leaves
% Cs % [umol/m3] CO2 concentration in the boundary layer
% eta0 % [] fluorescence as fraction of dark
% ...adapted (fs/fo)
% rcw % [s m-1] stomatal resistance
% qE % [] non photochemical quenching
% fs % [] fluorescence as fraction of PAR
% Ci % [umol/m3] internal CO2 concentration
% Kn % [] rate constant for excess heat
% fo % [] dark adapted fluorescence (fraction of aPAR)
% fm % [] light saturated fluorescence (fraction of aPAR)
% qQ % [] photochemical quenching
% Vcmax % [umol/m2/s] carboxylation capacity after
% ... temperature correction
%% input
Rdparam = biochem_in.Rdparam; %[umol/m2/s] dark respiration rate at 25 oC as fraction of Vcmax
Tparams = biochem_in.Tparams; %[] temperature sensitivities of Vcmax, etc (dummy values of applTcorr was selected above)
Cs = biochem_in.Cs;
Q = biochem_in.Q;
T = biochem_in.T;
eb = biochem_in.eb;
O = biochem_in.O;
p = biochem_in.p;
Vcmo = biochem_in.Vcmo;
m = biochem_in.m;
Type = biochem_in.Type;
tempcor = biochem_in.tempcor;
stressfactor = biochem_in.stressfactor;
model_choice = biochem_in.Fluorescence_model;
T = T+273.15*(T<100); % convert temperatures to K if not already
rhoa = 1.2047; % [kg m-3] specific mass of air
Mair = 28.96; % [g mol-1] molecular mass of dry air
%% parameters (at optimum temperature)
Kcopt = 350; % [ubar] kinetic coefficient for CO2 (Von Caemmerer and Furbank, 1999)
Koopt = 450; % [mbar] kinetic coeeficient for O2 (Von Caemmerer and Furbank, 1999)
Kf = 0.05; % [] rate constant for fluorescence
%Kd = 0.95; % [] rate constant for thermal deactivation at Fm
Kp = 4.0; % [] rate constant for photochemisty
kpopt = Vcmo/56*1E6; % [] PEPcase rate constant for C02, used here: Collatz et al: Vcmo = 39 umol m-1 s-1; kp = 0.7 mol m-1 s-1.
if isfield(biochem_in,'atheta')
atheta = biochem_in.atheta;
else
atheta = 0.8;
end
if biochem_in.Fluorescence_model==0
% default drought values:
Knparams = [5.01, 1.93, 10];
else
% default general values (cotton dataset)
Knparams = [2.48, 2.83, 0.114];
end
%% temperature definitions
Tref = 25+273.15; % [K] absolute temperature at 25 oC
slti = Tparams(1);
%shti = Tparams(2);
Thl = Tparams(3);
%Thh = Tparams(4);
Trdm = Tparams(5);
%% convert all to bar
Cs = Cs * 1e-6 .* p .*1E-3;
O = O * 1e-3 .* p .*1E-3 * ~strcmp('C4',Type); % forced to be zero for C4 vegetation (this is a trick to prevent oxygenase)
Kcopt = Kcopt * 1e-6;
Koopt = Koopt * 1e-3;
%% temperature corrections
qt = 0.1 * (T-Tref) * tempcor;
%TH = 1 + tempcor* exp(shti .* (T -Thh));
TH = 1 + tempcor* exp((-220E3+703*T)./(8.314*T));
TL = 1 + tempcor* exp(slti .* (Thl -T));
Kc = Kcopt * 2.1.^qt;
Ko = Koopt * 1.2.^qt;
kp = kpopt.* 1.8.^qt;
Kd = max(0.0301*(T-273.15)+ 0.0773,0.8738);
Rd = Rdparam * Vcmo .* 1.8.^qt ./(1+exp(1.3*(T-Trdm)));
switch Type
case 'C3'
Vcmax = Vcmo .* 2.1.^qt ./TH * stressfactor;
otherwise
Vcmax = Vcmo .* 2.1.^qt ./(TL.*TH) * stressfactor;
end
spfy = 2600 * 0.75 .^qt; % This is, in theory, Vcmax/Vomax.*Ko./Kc, but used as a separate parameter
%% calculation of potential electron transport rate
po0 = Kp./(Kf+Kd+Kp); % dark photochemistry fraction (Genty et al., 1989)
Je = 0.5*po0 .* Q; % electron transport rate
%% calculation of the intersection of enzyme and light limited curves
% this is the original Farquhar model
gam = 0.5 ./spfy .*O; %[bar] compensation point [bar]
%% calculation of internal CO2 concentration, photosynthesis
RH = eb./satvap(T-273.15);
% a = 5;
% D0 = 5;
% gs0 = 1E-6;
switch Type
case 'C3'
Ci = max(.3*Cs,Cs.*(1-1./(m.*RH)));
Vc = Vcmax.*(Ci-gam)./((Kc .* (1+O./Ko)) + Ci);
Vs = Vcmo/2 .* 1.8.^qt; %
effcon = 0.2;
otherwise %C4
%if biochem_in.A == -999
Ci = max(.1*Cs,Cs.*(1-1./(m.*RH)));
%else
% gs = gs0 + a*max(0,biochem_in.A)./((Cs-gam) .* (1+(1-RH).*satvap(T-273.15)./D0));
% Ci = Cs - biochem_in.A./gs;
%end
Vc = Vcmax;
Vs = kp.*Ci;
effcon = 0.17; % Berry and Farquhar (1978): 1/0.167
end
Ve = Je.*(Ci-gam)./(Ci+2*gam) .* effcon;
[a1,a2] = abc(atheta,-(Vc+Ve),Vc.*Ve);
V = min(a1,a2).*(Ci>gam) + max(a1,a2).*(Ci<=gam);
[a1,a2] = abc(0.98,-(V+Vs),V.*Vs);
Ag = min(a1,a2);
A = Ag - Rd;
Ja = Ag ./((Ci-gam)./(Ci+2*gam))./effcon; % actual electron transport rate
rcw = 0.625*(Cs-Ci)./A *rhoa/Mair*1E3 * 1e6 ./ p .* 1E3;
rcw(A<=0) = 0.625*1E6;
%% fluorescence (Replace this part by Magnani or other model if needed
ps = po0.*Ja./Je; % this is the photochemical yield
ps(isnan(ps)) = 0.8;
[eta,qE,qQ,fs,fo,fm,fo0,fm0,Kn] = Fluorescencemodel(ps,Kp,Kf,Kd,Knparams);
Kpa = ps./fs*Kf;
%% convert back to ppm
Ci = Ci*1e6 ./ p .* 1E3;
%% Collect outputs
biochem_out.A = A;
biochem_out.Ci = Ci;
biochem_out.eta = eta;
biochem_out.rcw = rcw;
biochem_out.qE = qE;
biochem_out.fs = fs;
biochem_out.Kn = Kn;
biochem_out.fo0 = fo0;
biochem_out.fm0 = fm0;
biochem_out.fo = fo;
biochem_out.fm = fm;
biochem_out.qQ = qQ;
biochem_out.Vcmax = Vcmax;
biochem_out.Kp = Kpa;
biochem_out.ps = ps;
biochem_out.Ja = Ja;
biochem_in.A = A;
return;
%%% end of function biochemical
%% abc formula
function [x2,x1] = abc(a,b,c)
if a == 0
x1 = -c./b;
x2 = x1;
else
x1 = (-b+sqrt(b.^2-4.*a.*c))./(2.*a);
x2 = (-b-sqrt(b.^2-4.*a.*c))./(2.*a);
end
return;
%%% end of abc formula
function [eta,qE,qQ,fs,fo,fm,fo0,fm0,Kn] = Fluorescencemodel(ps,Kp,Kf,Kd,Knparams)
po0 = Kp./(Kf+Kd+Kp); % dark photochemistry fraction (Genty et al., 1989)
x = 1-ps./po0 ; % degree of light saturation
Kno = Knparams(1);
alpha = Knparams(2);
beta = Knparams(3);
% using exp(-beta) expands the interesting region between 0-1
%beta = exp(-beta);
x_alpha = x.^alpha; % this is the most expensive operation in this fn; doing it twice almost doubles the time spent here (MATLAB 2013b doesn't optimize the duplicate code)
Kn = Kno * (1+beta).* x_alpha./(beta + x_alpha);
fo0 = Kf./(Kf+Kp+Kd); % dark adapted fluorescence yield Fo
fo = Kf./(Kf+Kp+Kd+Kn); % dark adapted fluorescence yield Fo
fm = Kf./(Kf +Kd+Kn); % light adapted fluorescence yield Fm
fm0 = Kf./(Kf +Kd); % light adapted fluorescence yield Fm
fs = fm.*(1-ps);
eta = fs./fo0;
qQ = 1-(fs-fo)./(fm-fo); % photochemical quenching
qE = 1-(fm-fo)./(fm0-fo0); % non-photochemical quenching
eta = (1+5)/5*eta-1/5;
return
|
github
|
zhangyaonju/SCOPE-master
|
progressbar.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/progressbar.m
| 11,767 |
utf_8
|
06705e480618e134da62478338e8251c
|
function progressbar(varargin)
% Description:
% progressbar() provides an indication of the progress of some task using
% graphics and text. Calling progressbar repeatedly will update the figure and
% automatically estimate the amount of time remaining.
% This implementation of progressbar is intended to be extremely simple to use
% while providing a high quality user experience.
%
% Features:
% - Can add progressbar to existing m-files with a single line of code.
% - Supports multiple bars in one figure to show progress of nested loops.
% - Optional labels on bars.
% - Figure closes automatically when task is complete.
% - Only one figure can exist so old figures don't clutter the desktop.
% - Remaining time estimate is accurate even if the figure gets closed.
% - Minimal execution time. Won't slow down code.
% - Randomized color. When a programmer gets bored...
%
% Example Function Calls For Single Bar Usage:
% progressbar % Initialize/reset
% progressbar(0) % Initialize/reset
% progressbar('Label') % Initialize/reset and label the bar
% progressbar(0.5) % Update
% progressbar(1) % Close
%
% Example Function Calls For Multi Bar Usage:
% progressbar(0, 0) % Initialize/reset two bars
% progressbar('A', '') % Initialize/reset two bars with one label
% progressbar('', 'B') % Initialize/reset two bars with one label
% progressbar('A', 'B') % Initialize/reset two bars with two labels
% progressbar(0.3) % Update 1st bar
% progressbar(0.3, []) % Update 1st bar
% progressbar([], 0.3) % Update 2nd bar
% progressbar(0.7, 0.9) % Update both bars
% progressbar(1) % Close
% progressbar(1, []) % Close
% progressbar(1, 0.4) % Close
%
% Notes:
% For best results, call progressbar with all zero (or all string) inputs
% before any processing. This sets the proper starting time reference to
% calculate time remaining.
% Bar color is choosen randomly when the figure is created or reset. Clicking
% the bar will cause a random color change.
%
% Demos:
% % Single bar
% m = 500;
% progressbar % Init single bar
% for i = 1:m
% pause(0.01) % Do something important
% progressbar(i/m) % Update progress bar
% end
%
% % Simple multi bar (update one bar at a time)
% m = 4;
% n = 3;
% p = 100;
% progressbar(0,0,0) % Init 3 bars
% for i = 1:m
% progressbar([],0) % Reset 2nd bar
% for j = 1:n
% progressbar([],[],0) % Reset 3rd bar
% for k = 1:p
% pause(0.01) % Do something important
% progressbar([],[],k/p) % Update 3rd bar
% end
% progressbar([],j/n) % Update 2nd bar
% end
% progressbar(i/m) % Update 1st bar
% end
%
% % Fancy multi bar (use labels and update all bars at once)
% m = 4;
% n = 3;
% p = 100;
% progressbar('Monte Carlo Trials','Simulation','Component') % Init 3 bars
% for i = 1:m
% for j = 1:n
% for k = 1:p
% pause(0.01) % Do something important
% % Update all bars
% frac3 = k/p;
% frac2 = ((j-1) + frac3) / n;
% frac1 = ((i-1) + frac2) / m;
% progressbar(frac1, frac2, frac3)
% end
% end
% end
%
% Author:
% Steve Hoelzer
%
% Revisions:
% 2002-Feb-27 Created function
% 2002-Mar-19 Updated title text order
% 2002-Apr-11 Use floor instead of round for percentdone
% 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m)
% 2002-Jun-19 Choose random patch color when a new figure is created
% 2002-Jun-24 Click on bar or axes to choose new random color
% 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0
% 2002-Jun-28 Remove extraText var, add position var
% 2002-Jul-18 fractiondone input is optional
% 2002-Jul-19 Allow position to specify screen coordinates
% 2002-Jul-22 Clear vars used in color change callback routine
% 2002-Jul-29 Position input is always specified in pixels
% 2002-Sep-09 Change order of title bar text
% 2003-Jun-13 Change 'min' to 'm' because of built in function 'min'
% 2003-Sep-08 Use callback for changing color instead of string
% 2003-Sep-10 Use persistent vars for speed, modify titlebarstr
% 2003-Sep-25 Correct titlebarstr for 0% case
% 2003-Nov-25 Clear all persistent vars when percentdone = 100
% 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100
% 2004-Jan-27 Handle incorrect position input
% 2004-Feb-16 Minimum time interval between updates
% 2004-Apr-01 Cleaner process of enforcing minimum time interval
% 2004-Oct-08 Seperate function for timeleftstr, expand to include days
% 2004-Oct-20 Efficient if-else structure for sec2timestr
% 2006-Sep-11 Width is a multiple of height (don't stretch on widescreens)
% 2010-Sep-21 Major overhaul to support multiple bars and add labels
%
persistent progfig progdata lastupdate
% Get inputs
if nargin > 0
input = varargin;
ninput = nargin;
else
% If no inputs, init with a single bar
input = {0};
ninput = 1;
end
% If task completed, close figure and clear vars, then exit
if input{1} == 1
if ishandle(progfig)
delete(progfig) % Close progress bar
end
clear progfig progdata lastupdate % Clear persistent vars
drawnow
return
end
% Init reset flag
resetflag = false;
% Set reset flag if first input is a string
if ischar(input{1})
resetflag = true;
end
% Set reset flag if all inputs are zero
if input{1} == 0
% If the quick check above passes, need to check all inputs
if all([input{:}] == 0) && (length([input{:}]) == ninput)
resetflag = true;
end
end
% Set reset flag if more inputs than bars
if ninput > length(progdata)
resetflag = true;
end
% If reset needed, close figure and forget old data
if resetflag
if ishandle(progfig)
delete(progfig) % Close progress bar
end
progfig = [];
progdata = []; % Forget obsolete data
end
% Create new progress bar if needed
if ishandle(progfig)
else % This strange if-else works when progfig is empty (~ishandle() does not)
% Define figure size and axes padding for the single bar case
height = 0.03;
width = height * 8;
hpad = 0.02;
vpad = 0.25;
% Figure out how many bars to draw
nbars = max(ninput, length(progdata));
% Adjust figure size and axes padding for number of bars
heightfactor = (1 - vpad) * nbars + vpad;
height = height * heightfactor;
vpad = vpad / heightfactor;
% Initialize progress bar figure
left = (1 - width) / 2;
bottom = (1 - height) / 2;
progfig = figure(...
'Units', 'normalized',...
'Position', [left bottom width height],...
'NumberTitle', 'off',...
'Resize', 'off',...
'MenuBar', 'none' );
% Initialize axes, patch, and text for each bar
left = hpad;
width = 1 - 2*hpad;
vpadtotal = vpad * (nbars + 1);
height = (1 - vpadtotal) / nbars;
for ndx = 1:nbars
% Create axes, patch, and text
bottom = vpad + (vpad + height) * (nbars - ndx);
progdata(ndx).progaxes = axes( ...
'Position', [left bottom width height], ...
'XLim', [0 1], ...
'YLim', [0 1], ...
'Box', 'on', ...
'ytick', [], ...
'xtick', [] );
progdata(ndx).progpatch = patch( ...
'XData', [0 0 0 0], ...
'YData', [0 0 1 1] );
progdata(ndx).progtext = text(0.99, 0.5, '', ...
'HorizontalAlignment', 'Right', ...
'FontUnits', 'Normalized', ...
'FontSize', 0.7 );
progdata(ndx).proglabel = text(0.01, 0.5, '', ...
'HorizontalAlignment', 'Left', ...
'FontUnits', 'Normalized', ...
'FontSize', 0.7 );
if ischar(input{ndx})
set(progdata(ndx).proglabel, 'String', input{ndx})
input{ndx} = 0;
end
% Set callbacks to change color on mouse click
set(progdata(ndx).progaxes, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).progpatch, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).progtext, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).proglabel, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
% Pick a random color for this patch
changecolor([], [], progdata(ndx).progpatch)
% Set starting time reference
if ~isfield(progdata(ndx), 'starttime') || isempty(progdata(ndx).starttime)
progdata(ndx).starttime = clock;
end
end
% Set time of last update to ensure a redraw
lastupdate = clock - 1;
end
% Process inputs and update state of progdata
for ndx = 1:ninput
if ~isempty(input{ndx})
progdata(ndx).fractiondone = input{ndx};
progdata(ndx).clock = clock;
end
end
% Enforce a minimum time interval between graphics updates
myclock = clock;
if abs(myclock(6) - lastupdate(6)) < 0.01 % Could use etime() but this is faster
return
end
% Update progress patch
for ndx = 1:length(progdata)
set(progdata(ndx).progpatch, 'XData', ...
[0, progdata(ndx).fractiondone, progdata(ndx).fractiondone, 0])
end
% Update progress text if there is more than one bar
if length(progdata) > 1
for ndx = 1:length(progdata)
set(progdata(ndx).progtext, 'String', ...
sprintf('%1d%%', floor(100*progdata(ndx).fractiondone)))
end
end
% Update progress figure title bar
if progdata(1).fractiondone > 0
runtime = etime(progdata(1).clock, progdata(1).starttime);
timeleft = runtime / progdata(1).fractiondone - runtime;
timeleftstr = sec2timestr(timeleft);
titlebarstr = sprintf('%2d%% %s remaining', ...
floor(100*progdata(1).fractiondone), timeleftstr);
else
titlebarstr = ' 0%';
end
set(progfig, 'Name', titlebarstr)
% Force redraw to show changes
drawnow
% Record time of this update
lastupdate = clock;
% ------------------------------------------------------------------------------
function changecolor(h, e, progpatch) %#ok<INUSL>
% Change the color of the progress bar patch
% Prevent color from being too dark or too light
colormin = 1.5;
colormax = 2.8;
thiscolor = rand(1, 3);
while (sum(thiscolor) < colormin) || (sum(thiscolor) > colormax)
thiscolor = rand(1, 3);
end
set(progpatch, 'FaceColor', thiscolor)
% ------------------------------------------------------------------------------
function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.
% Convert seconds to other units
w = floor(sec/604800); % Weeks
sec = sec - w*604800;
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds
% Create time string
if w > 0
if w > 9
timestr = sprintf('%d week', w);
else
timestr = sprintf('%d week, %d day', w, d);
end
elseif d > 0
if d > 9
timestr = sprintf('%d day', d);
else
timestr = sprintf('%d day, %d hr', d, h);
end
elseif h > 0
if h > 9
timestr = sprintf('%d hr', h);
else
timestr = sprintf('%d hr, %d min', h, m);
end
elseif m > 0
if m > 9
timestr = sprintf('%d min', m);
else
timestr = sprintf('%d min, %d sec', m, s);
end
else
timestr = sprintf('%d sec', s);
end
|
github
|
zhangyaonju/SCOPE-master
|
biochemical_MD12.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/biochemical_MD12.m
| 25,299 |
utf_8
|
88ceb939a207d7f9a5771afca4788999
|
function biochem_out = biochemical_MD12(biochem_in)
%[A,Ci,eta] = biochemical_VCM(Cs,Q,T,eb,O,p,Vcmo,m,Type,Rdparam,stress,Tyear,beta,qLs,NPQs)
% Date: 21 Sep 2012
% Update: 28 Jun 2013 Adaptation for use of Farquhar model of C3 photosynthesis (Farquhar et al 1980)
% 18 Jul 2013 Inclusion of von Caemmerer model of C4 photosynthesis (von Caemmerer 2000, 2013)
% 15 Aug 2013 Modified computation of CO2-limited electron transport in C4 species for consistency with light-limited value
% 22 Oct 2013 Included effect of qLs on Jmax and electron transport; value of kNPQs re-scaled in input as NPQs
%
% Authors: Federico Magnani, with contributions from Christiaan van der Tol
%
% This function calculates:
% - CO2 concentration in intercellular spaces (umol/mol == ppmv)
% - leaf net photosynthesis (umol/m2/s) of C3 or C4 species
% - fluorescence yield of a leaf (fraction of reference fluorescence yield in dark-adapted and un-stressed leaf)
%
% Usage:
% function [A,Cs,eb,f,rcw] = biochemical(C,Cs,Q,T,ea,eb,O,p,Vcmo,gcparam,Type,tempcor,ra,Tparams,Rdparam,stressfactor,Tyear,beta,qLs,NPQs)
% the function was tested for Matlab 7.2.0.232 (R2006a)
%
% Input (units are important; when not otherwise specified, mol refers to mol C):
% Cs % [umol/mol] CO2 concentration at leaf surface
% Q % [uE/m2/s] photochemically active radiation absorbed by the leaf
% T % [oC or K] leaf temperature
% eb % [hPa] vapour pressure in leaf boundary layer
% O % [mmol/mol] ambient O2 concentration
% p % [Pa] air pressure
% Vcmo % [umol/m2/s] maximum carboxylation capacity
% m % [mol/mol] Ball-Berry coefficient 'm' for stomatal regulation
% Type % [] text parameter, either 'C3' for C3 or any other text for C4
% Rdparam % [mol/mol] respiration at reference temperature as fraction of Vcmax
% stress % [] optional input: stress factor to reduce Vcmax (for example soil moisture, leaf age). Default value = 1 (no stress).
% Tyear % [oC] mean annual temperature
% beta % [] fraction of photons partitioned to PSII (0.507 for C3, 0.4 for C4; Yin et al. 2006; Yin and Struik 2012)
% qLs % [] fraction of functional reaction centres (Porcar-Castell 2011)
% NPQs % [s-1] rate constant of sustained thermal dissipation, normalized to (kf+kD) (=kNPQs'; Porcar-Castell 2011)
%
% Note: always use the prescribed units. Temperature can be either oC or K
% Note: input can be single numbers, vectors, or n-dimensional matrices
% Note: For consistency reasons, in C4 photosynthesis electron transport rates under CO2-limited conditions are computed by inverting the equation
% applied for light-limited conditions(Ubierna et al 2013). A discontinuity would result when computing J from ATP requirements of Vp and Vco, as a
% fixed electron transport partitioning is assumed for light-limited conditions
%
% Output:
% A % [umol/m2/s] net assimilation rate of the leaves
% Ci % [umol/mol] CO2 concentration in intercellular spaces (assumed to be the same as at carboxylation sites in C3 species)
% eta % [] amplification factor to be applied to PSII fluorescence yield spectrum
% relative to the dark-adapted, un-stressed yield calculated with either Fluspect or FluorMODleaf
%---------------------------------------------------------------------------------------------------------
%% Start
p=biochem_in.p.*1e2;
m=biochem_in.m;
O=biochem_in.O;
Type=biochem_in.Type;
Tyear=biochem_in.Tyear;
beta=biochem_in.beta;
qLs=biochem_in.qLs;
NPQs=biochem_in.NPQs;
stress=biochem_in.stressfactor;
Cs=biochem_in.Cs;
Q=biochem_in.Q;
T=biochem_in.T;
eb=biochem_in.eb;
Vcmo=biochem_in.Vcmo;
Rdparam=biochem_in.Rdparam;
%% Global and site-specific constants
R = 8.31; % [J/K/mol] universal gas constant
%---------------------------------------------------------------------------------------------------------
%% Unit conversion and computation of environmental variables
T = T+273.15*(T<100); % [K] convert temperatures to K if not already
RH = eb./satvap(T-273.15); % [] relative humidity (decimal)
Cs = Cs .* p .*1E-11; % [bar] 1E-6 to convert from ppm to fraction, 1E-5 to convert from Pa to bar
O = O .* p .*1E-08; % [bar] 1E-3 to convert from mmol/mol to fraction, 1E-5 to convert from Pa to bar
%---------------------------------------------------------------------------------------------------------
%% Define photosynthetic parameters (at reference temperature)
SCOOP = 2862.; % [mol/mol] Relative Rubisco specificity for CO2 vs O2 at ref temp (Cousins et al. 2010)
Rdopt = Rdparam * Vcmo; % [umol/m2/s] dark respiration at ref temperature from correlation with Vcmo
switch Type
case 'C3' % C3 species
Jmo = Vcmo * 2.68; % [umol/m2/s] potential e-transport at ref temp from correlation with Vcmo (Leuning 1997)
otherwise % C4 species
Jmo = Vcmo * 40/6; % [umole-/m2/s] maximum electron transport rate (ratio as in von Caemmerer 2000)
Vpmo = Vcmo * 2.33; % [umol/m2/s] maximum PEP carboxylase activity (Yin et al. 2011)
Vpr = 80; % [umol/m2/s] PEP regeneration rate, constant (von Caemmerer 2000)
gbs = (0.0207*Vcmo+0.4806)*1000.; % [umol/m2/s] bundle sheath conductance to CO2 (Yin et al. 2011)
x = 0.4; % [] partitioning of electron transport to mesophyll (von Caemmerer 2013)
alpha = 0; % [] bundle sheath PSII activity (=0 in maize/sorghum; >=0.5 in other cases; von Caemmerer 2000)
end
%---------------------------------------------------------------------------------------------------------
%% Parameters for temperature corrections
TREF = 25+273.15; % [K] reference temperature for photosynthetic processes
HARD = 46.39; % [kJ/mol] activation energy of Rd
CRD = 1000.*HARD/(R*TREF); % [] scaling factor in RD response to temperature
HAGSTAR = 37.83; % [kJ/mol] activation energy of Gamma_star
CGSTAR = 1000.*HAGSTAR/(R*TREF); % [] scaling factor in GSTAR response to temperature
switch Type
case 'C3' % C3 species
HAJ = 49.88; % [kJ/mol] activation energy of Jm (Kattge & Knorr 2007)
HDJ = 200; % [kJ/mol] deactivation energy of Jm (Kattge & Knorr 2007)
DELTASJ = (-0.75*Tyear+660)/1000; % [kJ/mol/K] entropy term for J (Kattge and Knorr 2007)
HAVCM = 71.51; % [kJ/mol] activation energy of Vcm (Kattge and Knorr 2007)
HDVC = 200; % [kJ/mol] deactivation energy of Vcm (Kattge & Knorr 2007)
DELTASVC= (-1.07*Tyear+668)/1000; % [kJ/mol/K] entropy term for Vcmax (Kattge and Knorr 2007)
KCOP = 404.9; % [umol/mol] Michaelis-Menten constant for CO2 at ref temp (Bernacchi et al 2001)
HAKC = 79.43; % [kJ/mol] activation energy of Kc (Bernacchi et al 2001)
KOOP = 278.4; % [mmol/mol] Michaelis-Menten constant for O2 at ref temp (Bernacchi et al 2001)
HAKO = 36.38; % [kJ/mol] activation energy of Ko (Bernacchi et al 2001)
otherwise % C4 species (values can be different as noted by von Caemmerer 2000)
HAJ = 77.9; % [kJ/mol] activation energy of Jm (Massad et al 2007)
HDJ = 191.9; % [kJ/mol] deactivation energy of Jm (Massad et al 2007)
DELTASJ = 0.627; % [kJ/mol/K] entropy term for Jm (Massad et al 2007). No data available on acclimation to temperature.
HAVCM = 67.29; % [kJ/mol] activation energy of Vcm (Massad et al 2007)
HDVC = 144.57; % [kJ/mol] deactivation energy of Vcm (Massad et al 2007)
DELTASVC= 0.472; % [kJ/mol/K] entropy term for Vcm (Massad et al 2007). No data available on acclimation to temperature.
HAVPM = 70.37; % [kJ/mol] activation energy of Vpm (Massad et al 2007)
HDVP = 117.93; % [kJ/mol] deactivation energy of Vpm (Massad et al 2007)
DELTASVP= 0.376; % [kJ/mol/K] entropy term for Vpm (Massad et al 2007). No data available on acclimation to temperature.
KCOP = 944.; % [umol/mol] Michaelis-Menten constant for CO2 at ref temp (Chen et al 1994; Massad et al 2007)
Q10KC = 2.1; % [] Q10 for temperature response of Kc (Chen et al 1994; Massad et al 2007)
KOOP = 633.; % [mmol/mol] Michaelis-Menten constant for O2 at ref temp (Chen et al 1994; Massad et al 2007)
Q10KO = 1.2; % [] Q10 for temperature response of Ko (Chen et al 1994; Massad et al 2007)
KPOP = 82.; % [umol/mol] Michaelis-Menten constant of PEP carboxylase at ref temp (Chen et al 1994; Massad et al 2007)
Q10KP = 2.1; % [] Q10 for temperature response of Kp (Chen et al 1994; Massad et al 2007)
end
%---------------------------------------------------------------------------------------------------------
%% Corrections for effects of temperature and non-stomatal limitations
dum1 = R./1000.*T; % [kJ/mol]
dum2 = R./1000.*TREF; % [kJ/mol]
Rd = Rdopt.*exp(CRD-HARD./dum1); % [umol/m2/s] mitochondrial respiration rates adjusted for temperature (Bernacchi et al. 2001)
SCO = SCOOP./exp(CGSTAR-HAGSTAR./dum1); % [] Rubisco specificity for CO2 adjusted for temperature (Bernacchi et al. 2001)
Jmax = Jmo .* exp(HAJ.*(T-TREF)./(TREF*dum1));
Jmax = Jmax.*(1.+exp((TREF*DELTASJ-HDJ)./dum2));
Jmax = Jmax./(1.+exp((T.*DELTASJ-HDJ)./dum1)); % [umol e-/m2/s] max electron transport rate at leaf temperature (Kattge and Knorr 2007; Massad et al. 2007)
Vcmax = Vcmo .* exp(HAVCM.*(T-TREF)./(TREF*dum1));
Vcmax = Vcmax.*(1+exp((TREF*DELTASVC-HDVC)/dum2));
Vcmax = Vcmax./(1+exp((T.*DELTASVC-HDVC)./dum1)); % [umol/m2/s] max carboxylation rate at leaf temperature (Kattge and Knorr 2007; Massad et al. 2007)
switch Type
case 'C3' % C3 species
CKC = 1000.*HAKC/(R*TREF); % [] scaling factor in KC response to temperature
Kc = KCOP.*exp(CKC-HAKC./dum1).*1e-11.*p; % [bar] Michaelis constant of carboxylation adjusted for temperature (Bernacchi et al. 2001)
CKO = 1000.*HAKO/(R*TREF); % [] scaling factor in KO response to temperature
Ko = KOOP.*exp(CKO-HAKO./dum1).*1e-8.*p; % [bar] Michaelis constant of oxygenation adjusted for temperature (Bernacchi et al. 2001)
otherwise % C4 species
Vpmax = Vpmo .* exp(HAVPM.*(T-TREF)./(TREF*dum1));
Vpmax = Vpmax.*(1+exp((TREF*DELTASVP-HDVP)/dum2));
Vpmax = Vpmax./(1+exp((T.*DELTASVP-HDVP)./dum1));% [umol/m2/s] max carboxylation rate at leaf temperature (Massad et al. 2007)
Kc = KCOP.*Q10KC .^ ((T-TREF)/10.)*1e-11*p; % [bar] Michaelis constant of carboxylation temperature corrected (Chen et al 1994; Massad et al 2007)
Ko = KOOP.*Q10KO .^ ((T-TREF)/10.)*1e-8*p; % [bar] Michaelis constant of oxygenation temperature corrected (Chen et al 1994; Massad et al 2007)
Kp = KPOP.*Q10KP .^ ((T-TREF)/10.)*1e-11*p; % [bar] Michaelis constant of PEP carboxyl temperature corrected (Chen et al 1994; Massad et al 2007)
end
%---------------------------------------------------------------------------------------------------------
%% Define electron transport and fluorescence parameters
kf = 3.E7; % [s-1] rate constant for fluorescence
kD = 1.E8; % [s-1] rate constant for thermal deactivation at Fm
kd = 1.95E8; % [s-1] rate constant of energy dissipation in closed RCs (for theta=0.7 under un-stressed conditions)
po0max = 0.88; % [mol e-/E] maximum PSII quantum yield, dark-acclimated in the absence of stress (Pfundel 1998)
kPSII = (kD+kf) * po0max/(1.-po0max); % [s-1] rate constant for photochemisty (Genty et al. 1989)
fo0 = kf./(kf+kPSII+kD); % [E/E] reference dark-adapted PSII fluorescence yield under un-stressed conditions
kps = kPSII * qLs; % [s-1] rate constant for photochemisty under stressed conditions (Porcar-Castell 2011)
kNPQs = NPQs * (kf+kD); % [s-1] rate constant of sustained thermal dissipation (Porcar-Castell 2011)
kds = kd * qLs;
kDs = kD + kNPQs;
Jms = Jmax * qLs; % [umol e-/m2/s] potential e-transport rate reduced for PSII photodamage
po0 = kps ./(kps+kf+kDs); % [mol e-/E] maximum PSII quantum yield, dark-acclimated in the presence of stress
THETA = (kps-kds)./(kps+kf+kDs); % [] convexity factor in J response to PAR
%---------------------------------------------------------------------------------------------------------
%% Calculation of electron transport rate
Q2 = beta * Q * po0;
J = (Q2+Jms-sqrt((Q2+Jms).^2-4*THETA.*Q2.*Jms))./(2*THETA); % [umol e-/m2/s] electron transport rate under light-limiting conditions
%---------------------------------------------------------------------------------------------------------
%% Calculation of net photosynthesis
switch Type
case 'C3' % C3 species, based on Farquhar model (Farquhar et al. 1980)
GSTAR = 0.5*O./SCO; % [bar] CO2 compensation point in the absence of mitochondrial respiration
Ci = max(GSTAR,Cs.*(1-1.6./(m.*RH*stress)));
% [bar] intercellular CO2 concentration from Ball-Berry model (Ball et al. 1987)
Cc = Ci; % [bar] CO2 concentration at carboxylation sites (neglecting mesophyll resistance)
Wc = Vcmax .* Cc ./ (Cc + Kc .* (1+O./Ko)); % [umol/m2/s] RuBP-limited carboxylation
Wj = J.*Cc ./ (4.5*Cc + 10.5*GSTAR); % [umol/m2/s] electr transp-limited carboxyl
W = min(Wc,Wj); % [umol/m2/s] carboxylation rate
Ag = (1 - GSTAR./Cc) .*W; % [umol/m2/s] gross photosynthesis rate
A = Ag - Rd; % [umol/m2/s] net photosynthesis rate
Ja = J.*W ./Wj; % [umole-/m2/s] actual linear electron transport rate
otherwise % C4 species, based on von Caemmerer model (von Caemmerer 2000)
Ci = max(9.9e-6*(p*1e-5),Cs.*(1-1.6./(m.*RH*stress)));
% [bar] intercellular CO2 concentration from Ball-Berry model (Ball et al. 1987)
Cm = Ci; % [bar] mesophyll CO2 concentration (neglecting mesophyll resistance)
Rs = 0.5 .* Rd; % [umol/m2/s] bundle sheath mitochondrial respiration (von Caemmerer 2000)
Rm = Rs; % [umol/m2/s] mesophyll mitochondrial respiration
gam = 0.5./SCO; % [] half the reciprocal of Rubisco specificity for CO2
Vpc = Vpmax .* Cm./(Cm+Kp); % [umol/m2/s] PEP carboxylation rate under limiting CO2 (saturating PEP)
Vp = min(Vpc,Vpr); % [umol/m2/s] PEP carboxylation rate
% Complete model proposed by von Caemmerer (2000)
dum1 = alpha/0.047; % dummy variables, to reduce computation time
dum2 = Kc./Ko;
dum3 = Vp-Rm+gbs.*Cm;
dum4 = Vcmax-Rd;
dum5 = gbs.*Kc.*(1+O./Ko);
dum6 = gam.*Vcmax;
dum7 = x*J./2. - Rm + gbs.*Cm;
dum8 = (1.-x).*J./3.;
dum9 = dum8 - Rd;
dum10 = dum8 + Rd * 7/3;
a = 1. - dum1 .* dum2;
b = -(dum3+dum4+dum5+dum1.*(dum6+Rd.*dum2));
c = dum4.*dum3-dum6.*gbs*O+Rd.*dum5;
Ac = (-b - sqrt(b.^2-4.*a.*c))./(2.*a); % [umol/m2/s] CO2-limited net photosynthesis
a = 1.- 7./3.*gam.*dum1;
b = -(dum7+dum9 + gbs.*gam.*O.*7./3. + dum1.*gam.*dum10);
c = dum7.*dum9 - gbs.*gam.*O.*dum10;
Aj = (-b - sqrt(b.^2-4.*a.*c))./(2.*a); % [umol/m2/s] light-limited net photosynthesis (assuming that an obligatory Q cycle operates)
A = min(Ac,Aj); % [umol/m2/s] net photosynthesis
Ja = J; % [umole-/m2/s] actual electron transport rate, CO2-limited
if any(A==Ac) %IPL 03/09/2013
ind=A==Ac;
a(ind) = x.*(1-x)./6./A(ind);
b(ind) = (1-x)/3.*(gbs(ind)./A(ind).*(Cm(ind)-Rm(ind)./gbs(ind)-gam(ind).*O)-1-alpha.*gam(ind)./0.047)-x./2.*(1.+Rd(ind)./A(ind));
c(ind) = (1+Rd(ind)./A(ind)).*(Rm(ind)-gbs(ind).*Cm(ind)-7.*gbs(ind).*gam(ind).*O./3)+(Rd(ind)+A(ind)).*(1-7.*alpha.*gam(ind)./3./0.047);
Ja(ind) = (-b(ind) + sqrt(b(ind).^2-4.*a(ind).*c(ind)))./(2.*a(ind)); % [umole-/m2/s] actual electron transport rate, CO2-limited
end
% Simplified model (von Caemmerer 2000), should be chosen ONLY if computation times are excessive
% dum3 = Vp-Rm+gbs*Cm;
% dum4 = Vcmax-Rd;
% dum7 = x*J./2. - Rm + gbs*Cm;
% dum8 = (1.-x)*J./3.;
% dum9 = dum8 - Rd;
%
% Ac = min(dum3,dum4); % [umol/m2/s] light saturated CO2 assimilation rate
% Aj = min(dum7,dum9); % [umol/m2/s] light-limited CO2 assimilation rate
%
% A = min(Ac,Aj); % [umol/m2/s] net photosynthesis rate
% Ja = J .* A./ Aj; % [umole-/m2/s] actual electron transport rate (simple empirical formulation based on results)
end
%---------------------------------------------------------------------------------------------------------
%% Calculation of PSII quantum yield and fluorescence
ps = Ja ./(beta.*Q); % [mol e-/E] PSII photochemical quantum yield
[fs] = MD12(ps,Ja,Jms,kps,kf,kds,kDs); % [E/E] PSII fluorescence yield
eta = fs./fo0; % [] scaled PSII fluorescence yield
%% JP add
rhoa = 1.2047; % [kg m-3] specific mass of air
Mair = 28.96; % [g mol-1] molecular mass of dry air
rcw = 0.625*(Cs-Ci)./A *rhoa/Mair*1E3 * 1e6 ./ p .* 1E5;
rcw(A<=0) = 0.625*1E6;
%% convert back to ppm
Ci = Ci*1e6 ./ p .* 1E5;
%%
biochem_out.A = A;
biochem_out.Ci = Ci;
biochem_out.ps = ps;
biochem_out.eta = eta;
biochem_out.fs = fs;
biochem_out.rcw = rcw;
biochem_out.qE = rcw*NaN; % dummy output, to be consistent with SCOPE
return;
%%% end of function biochemical
%---------------------------------------------------------------------------------------------------------
%% MD12 algorithm for the computation of fluorescence yield
function [fs] = MD12(ps,Ja,Jms,kps,kf,kds,kDs)
fs1 = ps .* (kf./kps) ./ (1. - Ja./Jms); % [E/E] PSII fluorescence yield under CO2-limited conditions
par1 = kps./(kps-kds); % [E/E] empirical parameter in the relationship under light-limited conditions
par2 = par1.* (kf+kDs+kds)./kf; % [E/E] empirical parameter in the relationship under light-limited conditions
fs2 = (par1-ps)./par2; % [E/E] PSII fluorescence yield under light-limited conditions
fs = min(fs1,fs2); % [E/E] PSII fluorescence yield
% Sources:
% Ball J. T., I. E. Woodrow and J. A. Berry. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis
% under different environmental conditions. In: Progress in Photosynthesis Research (Ed. J. Biggens), p. 221-224, The Netherlands:Martinus Nijhoff.
% Bernacchi C.J., E.L. Singsaas, C. Pimentel, A.R. Portis and S.P. Long (2001) Improved temperature response functions for models of Rubisco-limited
% photosynthesis. Plant Cell Envir 24:253-259.
% Bernacchi C.J., C. Pimentel and S.P. Long (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis.
% Plant Cell Envir 26 (9):1419-1430.
% Chen D.X., M.B. Coughenour, A.K. Knapp, and C.E. Owensby (1994) Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2.
% Ecol.Model. 73:63-80, 1994.
% Cousins A.B., O. Ghannoum, S. von Caemmerer, and M.R. Badger (2010) Simultaneous determination of Rubisco carboxylase and oxygenase kinetic parameters
% in Triticum aestivum and Zea mays using membrane inlet mass spectrometry. Plant Cell Envir 33:444-452.
% Farquhar G.D., S. von Caemmerer and J.A. Berry (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90.
% Genty B., J.-M. Briantais and N. R. Baker (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of
% chlorophyll fluorescence. Biochimica et Biophysica Acta 990:87-92.
% Kattge J. and W. Knorr (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species.
% Plant Cell Envir 30:1176-1190.
% Leuning R. (1997) Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax.
% J.Exp.Bot. 48 (307):345-347.
% Massad R.S., A. Tuzet and O. Bethenod (2007) The effect of temperature on C4-type leaf photosynthesis parameters. Plant Cell Envir 30:1191-1204.
% Pfundel E. (1998) Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research 56:185-195.
% Porcar-Castell A. (2011) A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris.
% Physiol.Plant. 143:139-153.
% von Caemmerer S. (2000) Biochemical Models of Leaf Photosynthesis, Canberra:CSIRO Publishing.
% von Caemmerer S. (2013) Steady-state models of photosynthesis. Plant Cell Envir, in press.
% Yin X., Z. Sun, P.C. Struik, P.E.L. van der Putten, W. van Ieperen and J. Harbinson (2011) Using a biochemical C4 photosynthesis model and combined
% gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content.
% Plant Cell Envir 34:2183-2199.
%
|
github
|
zhangyaonju/SCOPE-master
|
RTMt_sb_new.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/RTMt_sb_new.m
| 10,022 |
utf_8
|
c94416960d57cf938cdf22c7fe8686c3
|
function [rad] = RTMt_sb(spectral,rad,soil,leafopt,canopy,gap,angles,Tcu,Tch,Tsu,Tsh,obsdir)
% function 'RTMt_sb' calculates total outgoing radiation in hemispherical
% direction and total absorbed radiation per leaf and soil component.
% Radiation is integrated over the whole thermal spectrum with
% Stefan-Boltzman's equation. This function is a simplified version of
% 'RTMt_planck', and is less time consuming since it does not do the
% calculation for each wavelength separately.
%
% Authors: Wout Verhoef and Christiaan van der Tol ([email protected])
% date: 5 Nov 2007
% update: 13 Nov 2007
% 16 Nov 2007 CvdT improved calculation of net radiation
% 27 Mar 2008 JT added directional calculation of radiation
% 24 Apr 2008 JT Introduced dx as thickness of layer (see parameters)
% 31 Oct 2008 JT introduced optional directional calculation
% 31 Oct 2008 JT changed initialisation of F1 and F2 -> zeros
% 07 Nov 2008 CvdT changed layout
% 16 Mar 2009 CvdT removed Tbright calculation
% Feb 2013 WV introduces structures for version 1.40
%
% Table of contents of the function
% 0 preparations
% 0.0 globals
% 0.1 initialisations
% 0.2 parameters
% 0.3 geometric factors of Observer
% 0.4 geometric factors associated with extinction and scattering
% 0.5 geometric factors to be used later with rho and tau
% 0.6 fo for all leaf angle/azumith classes
% 1 calculation of upward and downward fluxes
% 2 total net fluxes
% Appendix A. Stefan-Boltzmann
%
% usage:
% [rad] = RTMt_sb(options,spectral,rad,soil,leafopt,canopy,gap,angles,Tcu,Tch,Tsu,Tsh)
%
% Most input and output are structures. These structures are further
% specified in a readme file. The temperatures Tcu, Tch, Tsu and Tsh are
% variables.
%
% Input:
% options calculation options
% spectral information about wavelengths and resolutions
% rad a large number of radiative fluxes: spectrally distributed
% and integrated, and canopy radiative transfer coefficients
% soil soil properties
% leafopt leaf optical properties
% canopy canopy properties (such as LAI and height)
% gap probabilities of direct light penetration and viewing
% angles viewing and observation angles
% Tcu Temperature of sunlit leaves (oC), [13x36x60]
% Tch Temperature of shaded leaves (oC), [13x36x60]
% Tsu Temperature of sunlit soil (oC), [1]
% Tsh Temperature of shaded soil (oC), [1]
%
% Output:
% rad a large number of radiative fluxes: spectrally distributed
% and integrated, and canopy radiative transfer coefficients.
% Here, thermal fluxes are added
%% 0.0 globals
global constants
%% 0.1 parameters
IT = find(spectral.wlS == 10000); % Take 10 microns as representative wavelength for the thermal
deg2rad = constants.deg2rad;
nl = canopy.nlayers;
lidf = canopy.lidf;
litab = canopy.litab;
lazitab = canopy.lazitab;
nlazi = length(lazitab);
nlinc = length(litab);
nlori = nlinc * nlazi;
tto = angles.tto;
psi = angles.psi;
Ps = gap.Ps;
K = gap.K;
layers = 1:nl;
rho = leafopt.refl(IT); % [nwl] Leaf/needle reflection
tau = leafopt.tran(IT); % [nwl] Leaf/needle transmission
rs = soil.refl(IT); % [nwl] Soil reflectance
epsc = 1-rho-tau; % [nwl] Emissivity vegetation
epss = 1-rs; % [nwl] Emissivity soil
crit = max(1E-2); % [1] Desired minimum accuracy
LAI = canopy.LAI;
dx = 1/nl;
iLAI = LAI*dx;
%% 0.2 initialiations
Rnhc = zeros(nl,1); % [nl]
Rnuc = zeros(size(Tcu)); % [13,36,nl]
%% 0.3 geometric factors of observer
if obsdir
cos_tto = cos(tto*deg2rad); % [1] cos observation angle
sin_tto = sin(tto*deg2rad); % [1] sin observation angle
end
%% 0.4 geometric factors associated with extinction and scattering
cos_ttl = cos(litab*deg2rad);
if obsdir
sin_ttl = sin(litab*deg2rad);
cos_ttlo= cos((lazitab-psi)*deg2rad);
end
bfli = cos_ttl.^2;
bf = bfli'*lidf;
%% 0.5 geometric factors to be used later with rho and tau, f1 f2 of pag 304:
ddb = 0.5*(1+bf); % f1^2 + f2^2
ddf = 0.5*(1-bf); % 2*f1*f2
if obsdir
dob = 0.5*(K+bf); % fo*f1
dof = 0.5*(K-bf); % fo*f1
end
%% 0.6 fo for all leaf angle/azumith classes
if obsdir
Co = cos_ttl*cos_tto; % [nli] pag 305
So = sin_ttl*sin_tto; % [nli] pag 305
cos_deltao = Co*ones(1,nlazi) + So*cos_ttlo;% [nli, nlazi] projection of leaves in in direction of sun (pag 125-126)
fo = cos_deltao/abs(cos_tto);% [nli, nlazi] leaf area projection factors in direction of observation
end
%% 1. calculation of upward and downward fluxes pag 305
sigb = ddb*rho + ddf*tau; % [nwlt] Diffuse backscatter scattering coefficient
sigf = ddf*rho + ddb*tau; % [nwlt] Diffuse forward scattering coefficient
if obsdir
vb = dob*rho + dof*tau; % [nwlt] Directional backscatter scattering coefficient for diffuse incidence
vf = dof*rho + dob*tau; % [nwlt] Directional forward scattering coefficient for diffuse incidence
end
a = 1-sigf; % [nwlt] Attenuation
m = sqrt(a*a-sigb*sigb);% [nwlt]
rinf = (a-m)/sigb; % [nwlt] Reflection coefficient for infinite thick canopy
rinf2 = rinf*rinf; % [nwlt]
fHs = (1-rinf2)*(1-rs)/(1-rinf*rs);
fHc = iLAI*m*(1-rinf);
fbottom = (rs-rinf)/(1-rs*rinf);
%1.1 radiance by components
Hcsu3 = Stefan_Boltzmann(Tcu);% Radiance by sunlit leaves
Hcsh = Stefan_Boltzmann(Tch);% Radiance by shaded leaves
Hssu = Stefan_Boltzmann(Tsu);% Radiance by sunlit soil
Hssh = Stefan_Boltzmann(Tsh);% Radiance by shaded soil
% 1.2 radiance by leaf layers Hv and by soil Hs (modified by JAK 2015-01)
v1 = repmat( 1/size(Hcsu3, 2), 1, size(Hcsu3, 2)); % vector for computing the mean
Hcsu2 = reshape(Hcsu3, size(Hcsu3, 1), []); % create a block matrix from the 3D array
Hcsu = (v1 * reshape(Hcsu2'*lidf, size(Hcsu3, 2), []))'; % compute column means for each level
Hc = Hcsu.*Ps(1:nl) + Hcsh.*(1-Ps(1:nl)); % hemispherical emittance by leaf layers
Hs = Hssu.*Ps(nl+1) + Hssh.*(1-Ps(nl+1)); % hemispherical emittance by soil surface
% 1.3 Diffuse radiation
cont = 1; % continue iteration (1:yes, 0:no)
counter = 0; % number of iterations
F1 = zeros(nl+1,1);
F2 = zeros(nl+1,1);
F1top = 0;
while cont
F1topn = -rinf*F2(1);
F1(1) = F1topn;
for j = 1:nl
F1(j+1) = F1(j)*(1-m*iLAI)+ fHc*Hc(j);
end
F2(nl+1) = fbottom*F1(nl+1) + fHs*Hs;
for j = nl:-1:1
F2(j) = F2(j+1)*(1-m*iLAI) + fHc*Hc(j);
end
cont = abs(F1topn-F1top)>crit;
F1top = F1topn;
counter = counter + 1;
end
Emin = (F1+rinf*F2)/(1-rinf2);
Eplu = (F2+rinf*F1)/(1-rinf2);
% 1.4 Directional radiation
if obsdir
piLo1 = iLAI*epsc*K*Hcsh'*(gap.Po(1:nl)-gap.Pso(1:nl)); % directional emitted radation by shaded leaves
% JAK 2015-01: replaced earlier loop by this: all-at-once with more efficient mean
absfo_rep = repmat(abs(fo), 1, nl);
piLo2 = iLAI*epsc*(v1 * reshape( (Hcsu2.*absfo_rep)'*lidf, size(Hcsu3, 2), []))'.*gap.Pso(1:nl); % compute column means for each level
% WV 2015-03: Alternative without using repmat
%Qso = (gap.Pso(layers)+gap.Pso(layers+1))/2
%out = Qso * reshape(absfo,1,nlori);
%piLo2 = iLAI*epsc * mean(reshape(out .* reshape(Hcsu3,nl,nlori),nl,nlinc,nlazi),3) * lidf;
piLo3 = iLAI*((vb*Emin(1:nl) + vf*Eplu(1:nl))'*gap.Po(1:nl)); % directional scattered radiation by vegetation for diffuse incidence
piLo4 = epss*Hssh*(gap.Po(nl+1)-gap.Pso(nl+1)); % directional emitted radiation by shaded soil
piLo5 = epss*Hssu*gap.Pso(nl+1); % directional emitted radiation by sunlit soil
piLo6 = rs*Emin(nl+1)*gap.Po(nl+1); % directional scattered radiation by soil for diffuse incidence [1]
piLot = piLo1 + sum(piLo2) + piLo3 + piLo4 + piLo5 + piLo6;
else
piLot = NaN;
end
Lot = piLot/pi;
%% 2. total net fluxes
% net radiation per component, in W m-2 (leaf or soil surface)
for j = 1:nl
Rnuc(:,:,j) = (Emin(j) + Eplu(j+1) - 2*Hcsu3(:,:,j))*epsc; % sunlit leaf
Rnhc(j) = (Emin(j) + Eplu(j+1) - 2*Hcsh(j))*epsc; % shaded leaf
end
Rnus = (Emin(nl+1) - Hssu)*epss; % sunlit soil
Rnhs = (Emin(nl+1) - Hssh)*epss; % shaded soil
%% 3. Write the output to the rad structure
rad.Emint = Emin;
rad.Eplut = Eplu;
rad.Eoutte = Eplu(1);
rad.Lot = Lot;
rad.Rnuct = Rnuc;
rad.Rnhct = Rnhc;
rad.Rnust = Rnus;
rad.Rnhst = Rnhs;
return
%% Appendix A. Stefan-Boltzmann
function H = Stefan_Boltzmann(T_C)
global constants;
C2K = constants.C2K;
sigmaSB = constants.sigmaSB;
H = sigmaSB*(T_C + C2K).^4;
return
|
github
|
zhangyaonju/SCOPE-master
|
RTMo.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/RTMo.m
| 29,666 |
utf_8
|
d59333054d811ca125ec7398fca68705
|
function [rad,gap,profiles] = RTMo(spectral,atmo,soil,leafopt,canopy,angles,meteo,rad,options)
%% function RTMo
% calculates the spectra of hemisperical and directional observed visible
% and thermal radiation (fluxes E and radiances L), as well as the single
% and bi-directional gap probabilities
%
% the function does not require any non-standard Matlab functions. No
% changes to the code have to be made to operate the function for a
% particular canopy. All necessary parameters and variables are input or
% global and need to be specified elsewhere.
%
% Authors: Wout Verhoef ([email protected])
% Christiaan van der Tol ([email protected])
% Joris Timmermans ([email protected])
%
% updates: 10 Sep 2007 (CvdT) - calculation of Rn
% 5 Nov 2007 - included observation direction
% 12 Nov 2007 - included abs. PAR spectrum output
% - improved calculation efficiency
% 13 Nov 2007 - written readme lines
% 11 Feb 2008 (WV&JT) - changed Volscat
% (JT) - small change in calculation Po,Ps,Pso
% - introduced parameter 'lazitab'
% - changed nomenclature
% - Appendix IV: cosine rule
% 04 Aug 2008 (JT) - Corrections for Hotspot effect in the probabilities
% 05 Nov 2008 (CvdT) - Changed layout
% 04 Jan 2011 (JT & CvdT) - Included Pso function (Appendix IV)
% - removed the analytical function (for checking)
% 02 Oct 2012 (CvdT) - included incident PAR in output
%
% Jan/Feb 2013 (WV) - Major revision towards SCOPE version 1.40:
% - Parameters passed using structures
% - Improved interface with MODTRAN atmospheric data
% - Now also calculates 4-stream
% reflectances rso, rdo, rsd and rdd
% analytically
% Apri 2013 (CvT) - improvements in variable names
% and descriptions
%
% Table of contents of the function
%
% 0. Preparations
% 0.1 parameters
% 0.2 initialisations
% 1. Geometric quantities
% 1.1 general geometric quantities
% 1.2 geometric factors associated with extinction and scattering
% 1.3 geometric factors to be used later with rho and tau
% 1.4 solar irradiance factor for all leaf orientations
% 1.5 probabilities Ps, Po, Pso
% 2. Calculation of upward and downward fluxes
% 3. Outgoing fluxes, hemispherical and in viewing direction, spectrum
% 4. Net fluxes, spectral and total, and incoming fluxes
% A1 functions J1 and J2 (introduced for stable solutions)
% A2 function volscat
% A3 function e2phot
% A4 function Pso
%
% references:
%{1} Verhoef (1998), 'Theory of radiative transfer models applied in
% optical remote sensing of vegetation canopies'. PhD Thesis Univ. Wageninegn
%{2} Verhoef, W., Jia, L., Xiao, Q. and Su, Z. (2007) Unified optical -
% thermal four - stream radiative transfer theory for homogeneous
% vegetation canopies. IEEE Transactions on geoscience and remote
% sensing, 45,6.
%{3} Verhoef (1985), 'Earth Observation Modeling based on Layer Scattering
% Matrices', Remote sensing of Environment, 17:167-175
%
% Usage:
% function [rad,gap,profiles] = RTMo(spectral,atmo,soil,leafopt,canopy,angles,meteo,rad,options)
%
% The input and output are structures. These structures are further
% specified in a readme file.
%
% Input:
% spectral information about wavelengths and resolutions
% atmo MODTRAN atmospheric parameters
% soil soil properties
% leafopt leaf optical properties
% canopy canopy properties (such as LAI and height)
% angles viewing and observation angles
% meteo has the meteorological variables. Is only used to correct
% the total irradiance if a specific value is provided
% instead of the usual Modtran output.
% rad initialization of the structure of the output 'rad'
% options simulation options. Here, the option
% 'calc_vert_profiles' is used, a boolean that tells whether
% or not to output data of 60 layers separately.
%
% Output:
% gap probabilities of direct light penetration and viewing
% rad a large number of radiative fluxes: spectrally distributed
% and integrated, and canopy radiative transfer coefficients.
% profiles vertical profiles of radiation variables such as absorbed
% PAR.
%% 0. Preparations
deg2rad = pi/180;
wl = spectral.wlS'; % SCOPE wavelengths as a column-vector
nwl = length(wl);
wlP = spectral.wlP;
wlT = spectral.wlT;
wlPAR = spectral.wlPAR'; % PAR wavelength range
minPAR = min(wlPAR);
maxPAR = max(wlPAR);
Ipar = find(wl>=minPAR & wl<=maxPAR); % Indices for PAR wavelenghts within wl
tts = angles.tts; % solar zenith angle
tto = angles.tto; % observer zenith angle
psi = angles.psi; % relative azimuth anglee
nl = canopy.nlayers; % number of canopy layers (60)
litab = canopy.litab; % SAIL leaf inclibation angles
lazitab = canopy.lazitab; % leaf azimuth angles relative to the sun
nli = canopy.nlincl; % numler of leaf inclinations (13)
nlazi = canopy.nlazi; % number of azimuth angles (36)
LAI = canopy.LAI; % leaf area index
lidf = canopy.lidf; % leaf inclination distribution function
x = canopy.x; % all levels except for the top
dx = 1/nl;
kChlrel = leafopt.kChlrel;
rho = leafopt.refl; % [nwl] leaf/needle reflection
tau = leafopt.tran; % [nwl] leaf/needle transmission
rs = soil.refl; % [nwl,nsoils] soil reflectance spectra
epsc = 1-rho-tau; % [nwl] emissivity of leaves
epss = 1-rs; % [nwl] emissivity of soil
iLAI = LAI/nl; % [1] LAI of elementary layer
xl = [0; x]; % [nl+1] all levels + soil
% 0.2 initialisations (allocation of memory)
Rndif = zeros(nl,1); % [nl+1] abs. diffuse rad soil+veg
[Pdif,Pndif,Pndif_Cab,Rndif_PAR] = deal(zeros(nl,1)); % [nl] incident and net PAR veg
[Emin_,Eplu_] = deal(zeros(nl+1,nwl)); % [nl+1,nwl] up and down diff. rad.
[Rndif_] = zeros(nl,nwl); % [nl,nwl] abs diff and PAR veg.
[Pndif_,Pndif_Cab_,Rndif_PAR_] = deal(zeros(nl,length(Ipar)));
[Puc,Rnuc,Pnuc,Pnuc_Cab,Rnuc_PAR] = deal(zeros(nli,nlazi,nl)); % [nli,nlazi,nl] inc and net rad and PAR sunlit
%% 1.0 Geometric quantities
% 1.1 general geometric quantities
% these variables are scalars
cos_tts = cos(tts*deg2rad); % cos solar angle
tan_tto = tan(tto*deg2rad); % tan observation angle
cos_tto = cos(tto*deg2rad); % cos observation angle
sin_tts = sin(tts*deg2rad); % sin solar angle
tan_tts = tan(tts*deg2rad); % tan observation angle
psi = abs(psi-360*round(psi/360)); % (to ensure that volscatt is symmetric for psi=90 and psi=270)
dso = sqrt(tan_tts.^2 + tan_tto.^2 - 2*tan_tts.*tan_tto.*cos(psi*deg2rad));
% 1.2 geometric factors associated with extinction and scattering
[chi_s,chi_o,frho,ftau]=volscat(tts,tto,psi,litab); % volume scattering
cos_ttlo = cos(lazitab*deg2rad); % [1,36] cos leaf azimuth angles
cos_ttli = cos(litab*deg2rad); % [13] cos leaf angles
sin_ttli = sin(litab*deg2rad); % [13] sinus leaf angles
ksli = chi_s./cos_tts; % [13] p306{1} extinction coefficient in direction of sun per leaf angle
koli = chi_o./cos_tto; % [13] p307{1} extinction coefficient in direction of observer per leaf angle
sobli = frho*pi/(cos_tts*cos_tto); % [13] pag 309{1} area scattering coefficient fractions
sofli = ftau*pi/(cos_tts*cos_tto); % [13] pag 309{1}
bfli = cos_ttli.^2; % [13]
%integration over angles (using a vector inproduct) -> scalars
k = ksli'*lidf; % pag 306{1} extinction coefficient in direction of sun.
K = koli'*lidf; % pag 307{1} extinction coefficient in direction of observer
bf = bfli'*lidf; %
sob = sobli'*lidf; % weight of specular2directional back scatter coefficient
sof = sofli'*lidf; % weight of specular2directional forward scatter coefficient
% 1.3 geometric factors to be used later with rho and tau, f1 f2 of pag 304:
% these variables are scalars
sdb = 0.5*(k+bf); % fs*f1
sdf = 0.5*(k-bf); % fs*f2 weight of specular2diffuse foward scatter coefficient
ddb = 0.5*(1+bf); % f1^2+f2^2 weight of diffuse2diffuse back scatter coefficient
ddf = 0.5*(1-bf); % 2*f1*f2 weight of diffuse2diffuse forward scatter coefficient
dob = 0.5*(K+bf); % fo*f1 weight of diffuse2directional back scatter coefficient
dof = 0.5*(K-bf); % fo*f2 weight of diffuse2directional forward scatter coefficient
% 1.4 solar irradiance factor for all leaf orientations
Cs = cos_ttli*cos_tts; % [nli] pag 305 modified by Joris
Ss = sin_ttli*sin_tts; % [nli] pag 305 modified by Joris
cos_deltas = Cs*ones(1,nlazi) + Ss*cos_ttlo; % [nli,nlazi]
fs = abs(cos_deltas/cos_tts); % [nli,nlazi] pag 305
% 1.5 probabilities Ps, Po, Pso
Ps = exp(k*xl*LAI); % [nl+1] p154{1} probability of viewing a leaf in solar dir
Po = exp(K*xl*LAI); % [nl+1] p154{1} probability of viewing a leaf in observation dir
Ps(1:nl) = Ps(1:nl) *(1-exp(-k*LAI*dx))/(k*LAI*dx); % Correct Ps/Po for finite dx
Po(1:nl) = Po(1:nl) *(1-exp(-K*LAI*dx))/(K*LAI*dx); % Correct Ps/Po for finite dx
q = canopy.hot;
Pso = zeros(size(Po));
for j=1:length(xl)
Pso(j,:)= quad(@(y)Psofunction(K,k,LAI,q,dso,y),xl(j)-dx,xl(j))/dx; %#ok<FREMO>
end
Pso(Pso>Po)= min([Po(Pso>Po),Ps(Pso>Po)],[],2); %takes care of rounding error
Pso(Pso>Ps)= min([Po(Pso>Ps),Ps(Pso>Ps)],[],2); %takes care of rounding error
gap.Pso = Pso;
%% 2. Calculation of upward and downward fluxes
% the following are vectors with lenght nwl
sigb = ddb*rho + ddf*tau; % [nwl] sigmab, p305{1} diffuse backscatter scattering coefficient for diffuse incidence
sigf = ddf*rho + ddb*tau; % [nwl] sigmaf, p305{1} diffuse forward scattering coefficient for forward incidence
sb = sdb*rho + sdf*tau; % [nwl] sb, p305{1} diffuse backscatter scattering coefficient for specular incidence
sf = sdf*rho + sdb*tau; % [nwl] sf, p305{1} diffuse forward scattering coefficient for specular incidence
vb = dob*rho + dof*tau; % [nwl] vb, p305{1} directional backscatter scattering coefficient for diffuse incidence
vf = dof*rho + dob*tau; % [nwl] vf, p305{1} directional forward scattering coefficient for diffuse incidence
w = sob*rho + sof*tau; % [nwl] w, p309{1} bidirectional scattering coefficent (directional-directional)
a = 1-sigf; % [nwl] attenuation
m = sqrt(a.^2-sigb.^2); % [nwl]
rinf = (a-m)./sigb; % [nwl]
rinf2 = rinf.*rinf; % [nwl]
% direct solar radiation
J1k = calcJ1(-1, m,k,LAI); % [nwl]
J2k = calcJ2( 0, m,k,LAI); % [nwl]
J1K = calcJ1(-1, m,K,LAI); % [nwl] % added for calculation of rdo
J2K = calcJ2( 0, m,K,LAI); % [nwl] % added for calculation of rdo
e1 = exp(-m*LAI); % [nwl]
e2 = e1.^2; % [nwl]
re = rinf.*e1; % [nwl]
denom = 1-rinf2.*e2; % [nwl]
s1 = sf+rinf.*sb;
s2 = sf.*rinf+sb;
v1 = vf+rinf.*vb;
v2 = vf.*rinf+vb;
Pss = s1.*J1k; % [nwl]
Qss = s2.*J2k; % [nwl]
Poo = v1.*J1K; % (nwl) % added for calculation of rdo
Qoo = v2.*J2K; % [nwl] % added for calculation of rdo
tau_ss = exp(-k*LAI); % [1]
tau_oo = exp(-K*LAI); % [1]
Z = (1 - tau_ss * tau_oo)/(K + k); % needed for analytic rso
tau_dd = (1-rinf2).*e1 ./denom; % [nwl]
rho_dd = rinf.*(1-e2) ./denom; % [nwl]
tau_sd = (Pss-re.*Qss) ./denom; % [nwl]
tau_do = (Poo-re.*Qoo) ./denom; % [nwl]
rho_sd = (Qss-re.*Pss) ./denom; % [nwl]
rho_do = (Qoo-re.*Poo) ./denom; % (nwl)
T1 = v2.*s1.*(Z-J1k*tau_oo)./(K+m)+v1.*s2.*(Z-J1K*tau_ss)./(k+m);
T2 = -(Qoo.*rho_sd+Poo.*tau_sd).*rinf;
rho_sod = (T1+T2)./(1-rinf2);
rho_sos = w * sum(Pso(1:nl))*iLAI;
rho_so = rho_sod + rho_sos;
Pso2w = Pso(nl+1);
% Analytical rso following SAIL
rso = rho_so + rs * Pso2w ...
+ ((tau_sd+tau_ss*rs.*rho_dd)*tau_oo+(tau_sd+tau_ss).*tau_do) ...
.*rs./denom;
% Extract MODTRAN atmosphere parameters at the SCOPE wavelengths
t1 = atmo.M(:,1);
t3 = atmo.M(:,2);
t4 = atmo.M(:,3);
t5 = atmo.M(:,4);
t12 = atmo.M(:,5);
t16 = atmo.M(:,6);
% radiation fluxes, downward and upward (these all have dimenstion [nwl]
% first calculate hemispherical reflectances rsd and rdd according to SAIL
% these are assumed for the reflectance of the surroundings
% rdo is computed with SAIL as well
denom = 1-rs.*rho_dd;
% SAIL analytical reflectances
rsd = rho_sd + (tau_ss + tau_sd).*rs.*tau_dd./denom;
rdd = rho_dd + tau_dd.*rs.*tau_dd./denom;
rdo = rho_do + (tau_oo + tau_do).*rs.*tau_dd./denom;
% assume Fd of surroundings = 0 for the momemnt
% initial guess of temperature of surroundings from Ta;
Fd = zeros(nwl,1);
Ls = Planck(wl,atmo.Ta+273.15);
% Solar and sky irradiance using 6 atmosperic functions
%keyboard
Esun_ = pi*t1.*t4;
Esky_ = pi./(1-t3.*rdd).*(t1.*(t5+t12.*rsd)+Fd+(1-rdd).*Ls.*t3+t16);
% fractional contributions of Esun and Esky to total incident radiation in
% optical and thermal parts of the spectrum
[fEsuno,fEskyo,fEsunt,fEskyt] = deal(0*Esun_); %initialization
J_o = wl<3000; %find optical spectrum
Esunto = 0.001 * Sint(Esun_(J_o),wl(J_o)); %Calculate optical sun fluxes (by Integration), including conversion mW >> W
Eskyto = 0.001 * Sint(Esky_(J_o),wl(J_o)); %Calculate optical sun fluxes (by Integration)
Etoto = Esunto + Eskyto; %Calculate total fluxes
fEsuno(J_o) = Esun_(J_o)/Etoto; %fraction of contribution of Sun fluxes to total light
fEskyo(J_o) = Esky_(J_o)/Etoto; %fraction of contribution of Sky fluxes to total light
J_t = wl>=3000; %find thermal spectrum
Esuntt = 0.001 * Sint(Esun_(J_t),wl(J_t)); %Themal solar fluxes
Eskytt = 0.001 * Sint(Esky_(J_t),wl(J_t)); %Thermal Sky fluxes
Etott = Eskytt + Esuntt; %Total
fEsunt(J_t) = Esun_(J_t)/Etott; %fraction from Esun
fEskyt(J_t) = Esky_(J_t)/Etott; %fraction from Esky
if meteo.Rin ~= -999
Esun_(J_o) = fEsuno(J_o)*meteo.Rin;
Esky_(J_o) = fEskyo(J_o)*meteo.Rin;
Esun_(J_t) = fEsunt(J_t)*meteo.Rli;
Esky_(J_t) = fEskyt(J_t)*meteo.Rli;
end
Eplu_1 = rs.*((tau_ss+tau_sd).*Esun_+tau_dd.*Esky_)./denom;
Eplu0 = rho_sd.*Esun_ + rho_dd.*Esky_ + tau_dd.*Eplu_1;
Emin_1 = tau_sd.*Esun_ + tau_dd.*Esky_ + rho_dd.*Eplu_1;
delta1 = Esky_ - rinf.*Eplu0;
delta2 = Eplu_1 - rinf.*Emin_1;
% calculation of the fluxes in the canopy
for i = 1:nwl
J1kx = calcJ1(xl,m(i),k,LAI); % [nl]
J2kx = calcJ2(xl,m(i),k,LAI); % [nl]
F1 = Esun_(i)*J1kx*(sf(i)+rinf(i)*sb(i)) + delta1(i)*exp( m(i)*LAI*xl); %[nl]
F2 = Esun_(i)*J2kx*(sb(i)+rinf(i)*sf(i)) + delta2(i)*exp(-m(i)*LAI*(xl+1)); %[nl]
Emin_(:,i) = (F1+rinf(i)*F2)/(1-rinf2(i));% [nl,nwl]
Eplu_(:,i) = (F2+rinf(i)*F1)/(1-rinf2(i));% [nl,nwl]
end
% Incident and absorbed solar radiation
Psun = 0.001 * Sint(e2phot(wlPAR*1E-9,Esun_(Ipar)),wlPAR); % Incident solar PAR in PAR units
Asun = 0.001 * Sint(Esun_.*epsc,wl); % Total absorbed solar radiation
Pnsun = 0.001 * Sint(e2phot(wlPAR*1E-9,Esun_(Ipar).*epsc(Ipar)),wlPAR); % Absorbed solar radiation in PAR range in moles m-2 s-1
Rnsun_PAR = 0.001 * Sint(Esun_(Ipar).*epsc(Ipar),wlPAR);
Pnsun_Cab = 0.001 * Sint(e2phot(wlPAR*1E-9,kChlrel(Ipar).*Esun_(Ipar).*epsc(Ipar)),wlPAR);
% Absorbed solar radiation by Cab in PAR range in moles m-2 s-1
%% 3. outgoing fluxes, hemispherical and in viewing direction, spectrum
% (CvdT 071105: compared with analytical solution: is OK)
% hemispherical, spectral
Eout_ = Eplu_(1,:)'; % [nwl]
% in viewing direction, spectral
piLoc_ = (vb.*(Emin_(1:nl,:)'*Po(1:nl)) +...
vf.*(Eplu_(1:nl,:)'*Po(1:nl)) +...
w.*Esun_*sum(Pso(1:nl)))*iLAI;
piLos_ = rs.*Emin_(nl+1,:)'*Po(nl+1) + rs.*Esun_*Pso(nl+1);
piLo_ = piLoc_ + piLos_; % [nwl]
Lo_ = piLo_/pi;
% up and down and hemispherical out, cumulative over wavelenght
IwlP = spectral.IwlP;
IwlT = spectral.IwlT;
Eouto = 0.001 * Sint(Eout_(IwlP),wlP); % [1] hemispherical out, in optical range (W m-2)
Eoutt = 0.001 * Sint(Eout_(IwlT),wlT); % [1] hemispherical out, in thermal range (W m-2)
%% 4. net fluxes, spectral and total, and incoming fluxes
% incident PAR at the top of canopy, spectral and spectrally integrated
P_ = e2phot(wl(Ipar)*1E-9,(Esun_(Ipar)+Esky_(Ipar)));
P = .001 * Sint(P_,wlPAR);
% total direct radiation (incident and net) per leaf area (W m-2 leaf)
Pdir = fs * Psun; % [13 x 36] incident
Rndir = fs * Asun; % [13 x 36] net
Pndir = fs * Pnsun; % [13 x 36] net PAR
Pndir_Cab = fs * Pnsun_Cab; % [13 x 36] net PAR Cab
Rndir_PAR = fs * Rnsun_PAR; % [13 x 36] net PAR energy units
% canopy layers, diffuse radiation
for j = 1:nl
% diffuse incident radiation for the present layer 'j' (mW m-2 um-1)
E_ = .5*(Emin_(j,:) + Emin_(j+1,:)+ Eplu_(j,:)+ Eplu_(j+1,:));
% incident PAR flux, integrated over all wavelengths (moles m-2 s-1)
Pdif(j) = .001 * Sint(e2phot(wlPAR*1E-9,E_(Ipar)'),wlPAR); % [nl] , including conversion mW >> W
% net radiation (mW m-2 um-1) and net PAR (moles m-2 s-1 um-1), per wavelength
Rndif_(j,:) = E_.*epsc'; % [nl,nwl] Net (absorbed) radiation by leaves
Pndif_(j,:) = .001 *(e2phot(wlPAR*1E-9, Rndif_(j,Ipar)'))'; % [nl,nwl] Net (absorbed) as PAR photons
Pndif_Cab_(j,:) = .001 *(e2phot(wlPAR*1E-9, kChlrel(Ipar).*Rndif_(j,Ipar)'))'; % [nl,nwl] Net (absorbed) as PAR photons by Cab
Rndif_PAR_(j,:) = Rndif_(j,Ipar); % [nl,nwlPAR] Net (absorbed) as PAR energy
% net radiation (W m-2) and net PAR (moles m-2 s-1), integrated over all wavelengths
Rndif(j) = .001 * Sint(Rndif_(j,:),wl); % [nl] Full spectrum net diffuse flux
Pndif(j) = Sint(Pndif_(j,Ipar),wlPAR); % [nl] Absorbed PAR
Pndif_Cab(j) = Sint(Pndif_Cab_(j,Ipar),wlPAR); % [nl] Absorbed PAR by Cab integrated
Rndif_PAR(j) = .001 * Sint(Rndif_PAR_(j,Ipar),wlPAR); % [nl] Absorbed PAR by Cab integrated
end
% soil layer, direct and diffuse radiation
Rndirsoil = .001 * Sint(Esun_.*epss,wl); % [1] Absorbed solar flux by the soil
Rndifsoil = .001 * Sint(Emin_(nl+1,:).*epss',wl); % [1] Absorbed diffuse downward flux by the soil (W m-2)
% net (n) radiation R and net PAR P per component: sunlit (u), shaded (h) soil(s) and canopy (c),
% [W m-2 leaf or soil surface um-1]
Rnhc = Rndif; % [nl] shaded leaves or needles
Pnhc = Pndif; % [nl] shaded leaves or needles
Pnhc_Cab = Pndif_Cab; % [nl] shaded leaves or needles
Rnhc_PAR = Rndif_PAR; % [nl] shaded leaves or needles
for j = 1:nl
Puc(:,:,j) = Pdir + Pdif(j); % [13,36,nl] Total fluxes on sunlit leaves or needles
Rnuc(:,:,j) = Rndir + Rndif(j); % [13,36,nl] Total fluxes on sunlit leaves or needles
Pnuc(:,:,j) = Pndir + Pndif(j); % [13,36,nl] Total fluxes on sunlit leaves or needles
Pnuc_Cab(:,:,j) = Pndir_Cab + Pndif_Cab(j);% [13,36,nl] Total fluxes on sunlit leaves or needles
Rnuc_PAR(:,:,j) = Rndir_PAR + Rndif_PAR(j);% [13,36,nl] Total fluxes on sunlit leaves or needles
end
Rnhs = Rndifsoil; % [1] shaded soil
Rnus = Rndifsoil + Rndirsoil; % [1] sunlit soil
%%
if options.calc_vert_profiles
[Pnu1d ] = meanleaf(canopy,Pnuc, 'angles'); % [nli,nlo,nl] mean net radiation sunlit leaves
[Pnu1d_Cab ] = meanleaf(canopy,Pnuc_Cab, 'angles'); % [nli,nlo,nl] mean net radiation sunlit leaves
profiles.Pn1d = ((1-Ps(1:nl)).*Pnhc + Ps(1:nl).*(Pnu1d)); %[nl] mean photos leaves, per layer
profiles.Pn1d_Cab = ((1-Ps(1:nl)).*Pnhc_Cab + Ps(1:nl).*(Pnu1d_Cab)); %[nl] mean photos leaves, per layer
else
profiles = struct;
end
%% place output in structure rad
gap.k = k;
gap.K = K;
gap.Ps = Ps;
gap.Po = Po;
rad.rsd = rsd;
rad.rdd = rdd;
rad.rdo = rdo;
rad.rso = rso;
rad.vb = vb;
rad.vf = vf;
rad.Esun_ = Esun_; % [2162x1 double] incident solar spectrum (mW m-2 um-1)
rad.Esky_ = Esky_; % [2162x1 double] incident sky spectrum (mW m-2 um-1)
rad.inPAR = P; % [1 double] incident spectrally integrated PAR (moles m-2 s-1)
rad.fEsuno = fEsuno; % [2162x1 double] normalized spectrum of direct light (optical)
rad.fEskyo = fEskyo; % [2162x1 double] normalized spectrum of diffuse light (optical)
rad.fEsunt = fEsunt; % [2162x1 double] normalized spectrum of direct light (thermal)
rad.fEskyt = fEskyt; % [2162x1 double] normalized spectrum of diffuse light (thermal)
rad.Eplu_ = Eplu_; % [61x2162 double] upward diffuse radiation in the canopy (mW m-2 um-1)
rad.Emin_ = Emin_; % [61x2162 double] downward diffuse radiation in the canopy (mW m-2 um-1)
rad.Lo_ = Lo_; % [2162x1 double] TOC radiance in observation direction (mW m-2 um-1 sr-1)
rad.Eout_ = Eout_; % [2162x1 double] TOC upward radiation (mW m-2 um-1)
rad.Eouto = Eouto; % [1 double] TOC spectrally integrated upward optical ratiation (W m-2)
rad.Eoutt = Eoutt; % [1 double] TOC spectrally integrated upward thermal ratiation (W m-2)
rad.Rnhs = Rnhs; % [1 double] net radiation (W m-2) of shaded soil
rad.Rnus = Rnus; % [1 double] net radiation (W m-2) of sunlit soil
rad.Rnhc = Rnhc; % [60x1 double] net radiation (W m-2) of shaded leaves
rad.Rnuc = Rnuc; % [13x36x60 double] net radiation (W m-2) of sunlit leaves
rad.Pnh = Pnhc; % [60x1 double] net PAR (moles m-2 s-1) of shaded leaves
rad.Pnu = Pnuc; % [13x36x60 double] net PAR (moles m-2 s-1) of sunlit leaves
rad.Pnh_Cab = Pnhc_Cab; % [60x1 double] net PAR absorbed by Cab (moles m-2 s-1) of shaded leaves
rad.Pnu_Cab = Pnuc_Cab; % [13x36x60 double] net PAR absorbed by Cab (moles m-2 s-1) of sunlit leaves
rad.Rnh_PAR = Rnhc_PAR; % [60x1 double] net PAR absorbed by Cab (moles m-2 s-1) of shaded leaves
rad.Rnu_PAR = Rnuc_PAR; % [13x36x60 double] net PAR absorbed (W m-2) of sunlit
rad.Etoto = Etoto;
%% APPENDIX I functions J1 and J2 (introduced for numerically stable solutions)
function J1 = calcJ1(x,m,k,LAI)
if abs(m-k)>1E-3;
J1 = (exp(m*LAI*x)-exp(k*LAI*x))./(k-m);
else
J1 = -.5*(exp(m*LAI*x)+exp(k*LAI*x))*LAI.*x.*(1-1/12*(k-m).^2*LAI^2.*x.^2);
end
return
function J2 = calcJ2(x,m,k,LAI)
J2 = (exp(k*LAI*x)-exp(-k*LAI)*exp(-m*LAI*(1+x)))./(k+m);
return;
%% APPENDIX II function volscat
function [chi_s,chi_o,frho,ftau] = volscat(tts,tto,psi,ttli)
%Volscatt version 2.
%created by W. Verhoef
%edited by Joris Timmermans to matlab nomenclature.
% date: 11 February 2008
%tts [1] Sun zenith angle in degrees
%tto [1] Observation zenith angle in degrees
%psi [1] Difference of azimuth angle between solar and viewing position
%ttli [ttli] leaf inclination array
deg2rad = pi/180;
nli = length(ttli);
psi_rad = psi*deg2rad*ones(nli,1);
cos_psi = cos(psi*deg2rad); % cosine of relative azimuth angle
cos_ttli = cos(ttli*deg2rad); % cosine of normal of upperside of leaf
sin_ttli = sin(ttli*deg2rad); % sine of normal of upperside of leaf
cos_tts = cos(tts*deg2rad); % cosine of sun zenith angle
sin_tts = sin(tts*deg2rad); % sine of sun zenith angle
cos_tto = cos(tto*deg2rad); % cosine of observer zenith angle
sin_tto = sin(tto*deg2rad); % sine of observer zenith angle
Cs = cos_ttli*cos_tts; % p305{1}
Ss = sin_ttli*sin_tts; % p305{1}
Co = cos_ttli*cos_tto; % p305{1}
So = sin_ttli*sin_tto; % p305{1}
As = max([Ss,Cs],[],2);
Ao = max([So,Co],[],2);
bts = acos(-Cs./As); % p305{1}
bto = acos(-Co./Ao); % p305{2}
chi_o = 2/pi*((bto-pi/2).*Co + sin(bto).*So);
chi_s = 2/pi*((bts-pi/2).*Cs + sin(bts).*Ss);
delta1 = abs(bts-bto); % p308{1}
delta2 = pi-abs(bts + bto - pi); % p308{1}
Tot = psi_rad + delta1 + delta2; % pag 130{1}
bt1 = min([psi_rad,delta1],[],2);
bt3 = max([psi_rad,delta2],[],2);
bt2 = Tot - bt1 - bt3;
T1 = 2.*Cs.*Co + Ss.*So.*cos_psi;
T2 = sin(bt2).*(2*As.*Ao + Ss.*So.*cos(bt1).*cos(bt3));
Jmin = ( bt2).*T1 - T2;
Jplus = (pi-bt2).*T1 + T2;
frho = Jplus/(2*pi^2);
ftau = -Jmin /(2*pi^2);
% pag.309 wl-> pag 135{1}
frho = max([zeros(nli,1),frho],[],2);
ftau = max([zeros(nli,1),ftau],[],2);
return
%% APPENDIX III function e2phot
function molphotons = e2phot(lambda,E)
%molphotons = e2phot(lambda,E) calculates the number of moles of photons
%corresponding to E Joules of energy of wavelength lambda (m)
global constants;
A = constants.A;
e = ephoton(lambda);
photons = E./e;
molphotons = photons./A;
return;
function E = ephoton(lambda)
%E = phot2e(lambda) calculates the energy content (J) of 1 photon of
%wavelength lambda (m)
global constants;
h = constants.h; % [J s] Planck's constant
c = constants.c; % [m s-1] speed of light
E = h*c./lambda; % [J] energy of 1 photon
return;
%% APPENDIX IV function Pso
function pso = Psofunction(K,k,LAI,q,dso,xl)
if dso~=0
alf = (dso/q) *2/(k+K);
pso = exp((K+k)*LAI*xl + sqrt(K*k)*LAI/(alf )*(1-exp(xl*(alf ))));% [nl+1] factor for correlation of Ps and Po
else
pso = exp((K+k)*LAI*xl - sqrt(K*k)*LAI*xl);% [nl+1] factor for correlation of Ps and Po
end
|
github
|
zhangyaonju/SCOPE-master
|
fluspect_bcar.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/fluspect_bcar.m
| 9,764 |
utf_8
|
1d6d75758809d255fcab68e39cfc66f0
|
function [leafopt] = fluspect_bcar(spectral,leafbio,optipar)
%
% Fluspect simulated reflectance, transmittance and fluorescence of leaves
% Copyright (C) 2015 Wout Verhoef and Christiaan van der Tol
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% function [leafopt] = fluspect(spectral,leafbio,optipar)
% calculates reflectance and transmittance spectra of a leaf using FLUSPECT,
% plus four excitation-fluorescence matrices
%
% Authors: Wout Verhoef, Christiaan van der Tol ([email protected]), Joris Timmermans,
% Date: 2007
% Update from PROSPECT to FLUSPECT: January 2011 (CvdT)
%
% Nov 2012 (CvdT) Output EF-matrices separately for PSI and PSII
% 31 Jan 2013 (WV) Adapt to SCOPE v_1.40, using structures for I/O
% 30 May 2013 (WV) Repair bug in s for non-conservative scattering
% 24 Nov 2013 (WV) Simplified doubling routine
% 25 Nov 2013 (WV) Restored piece of code that takes final refl and
% tran outputs as a basis for the doubling routine
% 03 Dec 2013 (WV) Major upgrade. Border interfaces are removed before
% the fluorescence calculation and later added again
% 23 Dec 2013 (WV) Correct a problem with N = 1 when calculating k
% and s; a test on a = Inf was included
% 01 Apr 2014 (WV) Add carotenoid concentration (Cca and Kca)
%
% usage:
% [leafopt] = fluspect_b(spectral,leafbio,optipar)
%
% inputs:
% Cab = leafbio.Cab;
% Cca = leafbio.Cca;
% Cw = leafbio.Cw;
% Cdm = leafbio.Cdm;
% Cs = leafbio.Cs;
% N = leafbio.N;
% fqe = leafbio.fqe;
%
% nr = optipar.nr;
% Kdm = optipar.Kdm;
% Kab = optipar.Kab;
% Kca = optipar.Kca;
% Kw = optipar.Kw;
% Ks = optipar.Ks;
% phiI = optipar.phiI;
% phiII = optipar.phiII;
%
% outputs:
% refl reflectance
% tran transmittance
% Mb backward scattering fluorescence matrix, I for PSI and II for PSII
% Mf forward scattering fluorescence matrix, I for PSI and II for PSII
%% parameters
% fixed parameters for the fluorescence module
ndub = 15; % number of doublings applied
% Fluspect parameters
Cab = leafbio.Cab;
Cca = leafbio.Cca;
Cw = leafbio.Cw;
Cdm = leafbio.Cdm;
Cs = leafbio.Cs;
N = leafbio.N;
fqe = leafbio.fqe;
nr = optipar.nr;
Kdm = optipar.Kdm;
Kab = optipar.Kab;
Kca = optipar.Kca;
Kw = optipar.Kw;
Ks = optipar.Ks;
phiI = optipar.phiI;
phiII = optipar.phiII;
%% PROSPECT calculations
Kall = (Cab*Kab + Cca*Kca + Cdm*Kdm + Cw*Kw + Cs*Ks)/N; % Compact leaf layer
j = find(Kall>0); % Non-conservative scattering (normal case)
t1 = (1-Kall).*exp(-Kall);
t2 = Kall.^2.*expint(Kall);
tau = ones(size(t1));
tau(j) = t1(j)+t2(j);
kChlrel = zeros(size(t1));
kChlrel(j) = Cab*Kab(j)./(Kall(j)*N);
talf = calctav(59,nr);
ralf = 1-talf;
t12 = calctav(90,nr);
r12 = 1-t12;
t21 = t12./(nr.^2);
r21 = 1-t21;
% top surface side
denom = 1-r21.*r21.*tau.^2;
Ta = talf.*tau.*t21./denom;
Ra = ralf+r21.*tau.*Ta;
% bottom surface side
t = t12.*tau.*t21./denom;
r = r12+r21.*tau.*t;
% Stokes equations to compute properties of next N-1 layers (N real)
% Normal case
D = sqrt((1+r+t).*(1+r-t).*(1-r+t).*(1-r-t));
rq = r.^2;
tq = t.^2;
a = (1+rq-tq+D)./(2*r);
b = (1-rq+tq+D)./(2*t);
bNm1 = b.^(N-1); %
bN2 = bNm1.^2;
a2 = a.^2;
denom = a2.*bN2-1;
Rsub = a.*(bN2-1)./denom;
Tsub = bNm1.*(a2-1)./denom;
% Case of zero absorption
j = find(r+t >= 1);
Tsub(j) = t(j)./(t(j)+(1-t(j))*(N-1));
Rsub(j) = 1-Tsub(j);
% Reflectance and transmittance of the leaf: combine top layer with next N-1 layers
denom = 1-Rsub.*r;
tran = Ta.*Tsub./denom;
refl = Ra+Ta.*Rsub.*t./denom;
leafopt.refl = refl;
leafopt.tran = tran;
leafopt.kChlrel = kChlrel;
% From here a new path is taken: The doubling method used to calculate
% fluoresence is now only applied to the part of the leaf where absorption
% takes place, that is, the part exclusive of the leaf-air interfaces. The
% reflectance (rho) and transmittance (tau) of this part of the leaf are
% now determined by "subtracting" the interfaces
Rb = (refl-ralf)./(talf.*t21+(refl-ralf).*r21); % Remove the top interface
Z = tran.*(1-Rb.*r21)./(talf.*t21); % Derive Z from the transmittance
rho = (Rb-r21.*Z.^2)./(1-(r21.*Z).^2); % Reflectance and transmittance
tau = (1-Rb.*r21)./(1-(r21.*Z).^2).*Z; % of the leaf mesophyll layer
t = tau;
r = max(rho,0); % Avoid negative r
% Derive Kubelka-Munk s and k
I_rt = (r+t)<1;
D(I_rt) = sqrt((1 + r(I_rt) + t(I_rt)) .* ...
(1 + r(I_rt) - t(I_rt)) .* ...
(1 - r(I_rt) + t(I_rt)) .* ...
(1 - r(I_rt) - t(I_rt)));
a(I_rt) = (1 + r(I_rt).^2 - t(I_rt).^2 + D(I_rt)) ./ (2*r(I_rt));
b(I_rt) = (1 - r(I_rt).^2 + t(I_rt).^2 + D(I_rt)) ./ (2*t(I_rt));
a(~I_rt) = 1;
b(~I_rt) = 1;
s = r./t;
I_a = (a>1 & a~=Inf);
s(I_a) = 2.*a(I_a) ./ (a(I_a).^2 - 1) .* log(b(I_a));
k = log(b);
k(I_a) = (a(I_a)-1) ./ (a(I_a)+1) .* log(b(I_a));
kChl = kChlrel .* k;
%% Fluorescence of the leaf mesophyll layer
if fqe > 0
wle = spectral.wlE'; % excitation wavelengths, transpose to column
wlf = spectral.wlF'; % fluorescence wavelengths, transpose to column
wlp = spectral.wlP; % PROSPECT wavelengths, kept as a row vector
minwle = min(wle);
maxwle = max(wle);
minwlf = min(wlf);
maxwlf = max(wlf);
% indices of wle and wlf within wlp
Iwle = find(wlp>=minwle & wlp<=maxwle);
Iwlf = find(wlp>=minwlf & wlp<=maxwlf);
eps = 2^(-ndub);
% initialisations
te = 1-(k(Iwle)+s(Iwle)) * eps;
tf = 1-(k(Iwlf)+s(Iwlf)) * eps;
re = s(Iwle) * eps;
rf = s(Iwlf) * eps;
sigmoid = 1./(1+exp(-wlf/10)*exp(wle'/10)); % matrix computed as an outproduct
% Other factor .5 deleted, since these are the complete efficiencies
% for either PSI or PSII, not a linear combination
[MfI, MbI] = deal(fqe(1) * ((.5*phiI( Iwlf))*eps) * kChl(Iwle)'.*sigmoid);
[MfII, MbII] = deal(fqe(2) * ((.5*phiII(Iwlf))*eps) * kChl(Iwle)'.*sigmoid);
Ih = ones(1,length(te)); % row of ones
Iv = ones(length(tf),1); % column of ones
% Doubling routine
for i = 1:ndub
xe = te./(1-re.*re); ten = te.*xe; ren = re.*(1+ten);
xf = tf./(1-rf.*rf); tfn = tf.*xf; rfn = rf.*(1+tfn);
A11 = xf*Ih + Iv*xe'; A12 = (xf*xe').*(rf*Ih + Iv*re');
A21 = 1+(xf*xe').*(1+rf*re'); A22 = (xf.*rf)*Ih+Iv*(xe.*re)';
MfnI = MfI .* A11 + MbI .* A12;
MbnI = MbI .* A21 + MfI .* A22;
MfnII = MfII .* A11 + MbII .* A12;
MbnII = MbII .* A21 + MfII .* A22;
te = ten; re = ren; tf = tfn; rf = rfn;
MfI = MfnI; MbI = MbnI; MfII = MfnII; MbII = MbnII;
end
% Here we add the leaf-air interfaces again for obtaining the final
% leaf level fluorescences.
g1 = MbI; g2 = MbII; f1 = MfI; f2 = MfII;
Rb = rho + tau.^2.*r21./(1-rho.*r21);
Xe = Iv * (talf(Iwle)./(1-r21(Iwle).*Rb(Iwle)))';
Xf = t21(Iwlf)./(1-r21(Iwlf).*Rb(Iwlf)) * Ih;
Ye = Iv * (tau(Iwle).*r21(Iwle)./(1-rho(Iwle).*r21(Iwle)))';
Yf = tau(Iwlf).*r21(Iwlf)./(1-rho(Iwlf).*r21(Iwlf)) * Ih;
A = Xe .* (1 + Ye.*Yf) .* Xf;
B = Xe .* (Ye + Yf) .* Xf;
g1n = A .* g1 + B .* f1;
f1n = A .* f1 + B .* g1;
g2n = A .* g2 + B .* f2;
f2n = A .* f2 + B .* g2;
leafopt.MbI = g1n;
leafopt.MbII = g2n;
leafopt.MfI = f1n;
leafopt.MfII = f2n;
end
return;
function tav = calctav(alfa,nr)
rd = pi/180;
n2 = nr.^2;
np = n2+1;
nm = n2-1;
a = (nr+1).*(nr+1)/2;
k = -(n2-1).*(n2-1)/4;
sa = sin(alfa.*rd);
b1 = (alfa~=90)*sqrt((sa.^2-np/2).*(sa.^2-np/2)+k);
b2 = sa.^2-np/2;
b = b1-b2;
b3 = b.^3;
a3 = a.^3;
ts = (k.^2./(6*b3)+k./b-b/2)-(k.^2./(6*a3)+k./a-a/2);
tp1 = -2*n2.*(b-a)./(np.^2);
tp2 = -2*n2.*np.*log(b./a)./(nm.^2);
tp3 = n2.*(1./b-1./a)/2;
tp4 = 16*n2.^2.*(n2.^2+1).*log((2*np.*b-nm.^2)./(2*np.*a-nm.^2))./(np.^3.*nm.^2);
tp5 = 16*n2.^3.*(1./(2*np.*b-nm.^2)-1./(2*np.*a-nm.^2))./(np.^3);
tp = tp1+tp2+tp3+tp4+tp5;
tav = (ts+tp)./(2*sa.^2);
return;
|
github
|
zhangyaonju/SCOPE-master
|
RTMt_sb.m
|
.m
|
SCOPE-master/SCOPE_v1.xx/code/RTMt_sb.m
| 9,905 |
utf_8
|
0e51dfe6983199e3edb940a3be235f1f
|
function [rad] = RTMt_sb(spectral,rad,soil,leafopt,canopy,gap,angles,Tcu,Tch,Tsu,Tsh,obsdir)
% function 'RTMt_sb' calculates total outgoing radiation in hemispherical
% direction and total absorbed radiation per leaf and soil component.
% Radiation is integrated over the whole thermal spectrum with
% Stefan-Boltzman's equation. This function is a simplified version of
% 'RTMt_planck', and is less time consuming since it does not do the
% calculation for each wavelength separately.
%
% Authors: Wout Verhoef and Christiaan van der Tol ([email protected])
% date: 5 Nov 2007
% update: 13 Nov 2007
% 16 Nov 2007 CvdT improved calculation of net radiation
% 27 Mar 2008 JT added directional calculation of radiation
% 24 Apr 2008 JT Introduced dx as thickness of layer (see parameters)
% 31 Oct 2008 JT introduced optional directional calculation
% 31 Oct 2008 JT changed initialisation of F1 and F2 -> zeros
% 07 Nov 2008 CvdT changed layout
% 16 Mar 2009 CvdT removed Tbright calculation
% Feb 2013 WV introduces structures for version 1.40
%
% Table of contents of the function
% 0 preparations
% 0.0 globals
% 0.1 initialisations
% 0.2 parameters
% 0.3 geometric factors of Observer
% 0.4 geometric factors associated with extinction and scattering
% 0.5 geometric factors to be used later with rho and tau
% 0.6 fo for all leaf angle/azumith classes
% 1 calculation of upward and downward fluxes
% 2 total net fluxes
% Appendix A. Stefan-Boltzmann
%
% usage:
% [rad] = RTMt_sb(options,spectral,rad,soil,leafopt,canopy,gap,angles,Tcu,Tch,Tsu,Tsh)
%
% Most input and output are structures. These structures are further
% specified in a readme file. The temperatures Tcu, Tch, Tsu and Tsh are
% variables.
%
% Input:
% options calculation options
% spectral information about wavelengths and resolutions
% rad a large number of radiative fluxes: spectrally distributed
% and integrated, and canopy radiative transfer coefficients
% soil soil properties
% leafopt leaf optical properties
% canopy canopy properties (such as LAI and height)
% gap probabilities of direct light penetration and viewing
% angles viewing and observation angles
% Tcu Temperature of sunlit leaves (oC), [13x36x60]
% Tch Temperature of shaded leaves (oC), [13x36x60]
% Tsu Temperature of sunlit soil (oC), [1]
% Tsh Temperature of shaded soil (oC), [1]
%
% Output:
% rad a large number of radiative fluxes: spectrally distributed
% and integrated, and canopy radiative transfer coefficients.
% Here, thermal fluxes are added
%% 0.0 globals
global constants
%% 0.1 parameters
IT = find(spectral.wlS == 10000); % Take 10 microns as representative wavelength for the thermal
deg2rad = constants.deg2rad;
nl = canopy.nlayers;
lidf = canopy.lidf;
litab = canopy.litab;
lazitab = canopy.lazitab;
nlazi = length(lazitab);
tto = angles.tto;
psi = angles.psi;
Ps = gap.Ps;
K = gap.K;
rho = leafopt.refl(IT); % [nwl] Leaf/needle reflection
tau = leafopt.tran(IT); % [nwl] Leaf/needle transmission
rs = soil.refl(IT); % [nwl] Soil reflectance
epsc = 1-rho-tau; % [nwl] Emissivity vegetation
epss = 1-rs; % [nwl] Emissivity soil
crit = max(1E-2); % [1] Desired minimum accuracy
LAI = canopy.LAI;
dx = 1/nl;
iLAI = LAI*dx;
%% 0.2 initialiations
Rnhc = zeros(nl,1); % [nl]
Rnuc = zeros(size(Tcu)); % [13,36,nl]
%% 0.3 geometric factors of observer
if obsdir
cos_tto = cos(tto*deg2rad); % [1] cos observation angle
sin_tto = sin(tto*deg2rad); % [1] sin observation angle
end
%% 0.4 geometric factors associated with extinction and scattering
cos_ttl = cos(litab*deg2rad);
if obsdir
sin_ttl = sin(litab*deg2rad);
cos_ttlo= cos((lazitab-psi)*deg2rad);
end
bfli = cos_ttl.^2;
bf = bfli'*lidf;
%% 0.5 geometric factors to be used later with rho and tau, f1 f2 of pag 304:
ddb = 0.5*(1+bf); % f1^2 + f2^2
ddf = 0.5*(1-bf); % 2*f1*f2
if obsdir
dob = 0.5*(K+bf); % fo*f1
dof = 0.5*(K-bf); % fo*f1
end
%% 0.6 fo for all leaf angle/azumith classes
if obsdir
Co = cos_ttl*cos_tto; % [nli] pag 305
So = sin_ttl*sin_tto; % [nli] pag 305
cos_deltao = Co*ones(1,nlazi) + So*cos_ttlo;% [nli, nlazi] projection of leaves in in direction of sun (pag 125-126)
fo = cos_deltao/abs(cos_tto);% [nli, nlazi] leaf area projection factors in direction of observation
end
%% 1. calculation of upward and downward fluxes pag 305
sigb = ddb*rho + ddf*tau; % [nwlt] Diffuse backscatter scattering coefficient
sigf = ddf*rho + ddb*tau; % [nwlt] Diffuse forward scattering coefficient
if obsdir
vb = dob*rho + dof*tau; % [nwlt] Directional backscatter scattering coefficient for diffuse incidence
vf = dof*rho + dob*tau; % [nwlt] Directional forward scattering coefficient for diffuse incidence
end
a = 1-sigf; % [nwlt] Attenuation
m = sqrt(a*a-sigb*sigb);% [nwlt]
rinf = (a-m)/sigb; % [nwlt] Reflection coefficient for infinite thick canopy
rinf2 = rinf*rinf; % [nwlt]
fHs = (1-rinf2)*(1-rs)/(1-rinf*rs);
fHc = iLAI*m*(1-rinf);
fbottom = (rs-rinf)/(1-rs*rinf);
%1.1 radiance by components
Hcsu3 = Stefan_Boltzmann(Tcu);% Radiance by sunlit leaves
Hcsh = Stefan_Boltzmann(Tch);% Radiance by shaded leaves
Hssu = Stefan_Boltzmann(Tsu);% Radiance by sunlit soil
Hssh = Stefan_Boltzmann(Tsh);% Radiance by shaded soil
% 1.2 radiance by leaf layers Hv and by soil Hs (modified by JAK 2015-01)
v1 = repmat( 1/size(Hcsu3, 2), 1, size(Hcsu3, 2)); % vector for computing the mean
Hcsu2 = reshape(Hcsu3, size(Hcsu3, 1), []); % create a block matrix from the 3D array
Hcsu = (v1 * reshape(Hcsu2'*lidf, size(Hcsu3, 2), []))'; % compute column means for each level
Hc = Hcsu.*Ps(1:nl) + Hcsh.*(1-Ps(1:nl)); % hemispherical emittance by leaf layers
Hs = Hssu.*Ps(nl+1) + Hssh.*(1-Ps(nl+1)); % hemispherical emittance by soil surface
% 1.3 Diffuse radiation
cont = 1; % continue iteration (1:yes, 0:no)
counter = 0; % number of iterations
F1 = zeros(nl+1,1);
F2 = zeros(nl+1,1);
F1top = 0;
while cont
F1topn = -rinf*F2(1);
F1(1) = F1topn;
for j = 1:nl
F1(j+1) = F1(j)*(1-m*iLAI)+ fHc*Hc(j);
end
F2(nl+1) = fbottom*F1(nl+1) + fHs*Hs;
for j = nl:-1:1
F2(j) = F2(j+1)*(1-m*iLAI) + fHc*Hc(j);
end
cont = abs(F1topn-F1top)>crit;
F1top = F1topn;
counter = counter + 1;
end
Emin = (F1+rinf*F2)/(1-rinf2);
Eplu = (F2+rinf*F1)/(1-rinf2);
% 1.4 Directional radiation
if obsdir
piLo1 = iLAI*epsc*K*Hcsh'*(gap.Po(1:nl)-gap.Pso(1:nl)); % directional emitted radation by shaded leaves
% JAK 2015-01: replaced earlier loop by this: all-at-once with more efficient mean
absfo_rep = repmat(abs(fo), 1, nl);
piLo2 = iLAI*epsc*(v1 * reshape( (Hcsu2.*absfo_rep)'*lidf, size(Hcsu3, 2), []))'.*gap.Pso(1:nl); % compute column means for each level
piLo3 = iLAI*((vb*Emin(1:nl) + vf*Eplu(1:nl))'*gap.Po(1:nl)); % directional scattered radiation by vegetation for diffuse incidence
piLo4 = epss*Hssh*(gap.Po(nl+1)-gap.Pso(nl+1)); % directional emitted radiation by shaded soil
piLo5 = epss*Hssu*gap.Pso(nl+1); % directional emitted radiation by sunlit soil
piLo6 = rs*Emin(nl+1)*gap.Po(nl+1); % directional scattered radiation by soil for diffuse incidence [1]
piLot = piLo1 + sum(piLo2) + piLo3 + piLo4 + piLo5 + piLo6;
else
piLot = NaN;
end
Lot = piLot/pi;
%% 2. total net fluxes
% net radiation per component, in W m-2 (leaf or soil surface)
for j = 1:nl
Rnuc(:,:,j) = (Emin(j) + Eplu(j+1) - 2*Hcsu3(:,:,j))*epsc; % sunlit leaf
Rnhc(j) = (Emin(j) + Eplu(j+1) - 2*Hcsh(j))*epsc; % shaded leaf
end
Rnus = (Emin(nl+1) - Hssu)*epss; % sunlit soil
Rnhs = (Emin(nl+1) - Hssh)*epss; % shaded soil
%% 3. Write the output to the rad structure
rad.Emint = Emin;
rad.Eplut = Eplu;
rad.Eoutte = Eplu(1)-Emin(1); % 1)
rad.Lot = Lot;
rad.Rnuct = Rnuc;
rad.Rnhct = Rnhc;
rad.Rnust = Rnus;
rad.Rnhst = Rnhs;
return
% 1) CvdT, 11 December 2015.
% We subtract Emin(1), because ALL incident (thermal) radiation from Modtran
% has been taken care of in RTMo. Not ideal but otherwise radiation budget will not close!
%% Appendix A. Stefan-Boltzmann
function H = Stefan_Boltzmann(T_C)
global constants;
C2K = constants.C2K;
sigmaSB = constants.sigmaSB;
H = sigmaSB*(T_C + C2K).^4;
return
|
github
|
kekedan/py-faster-rcnn-master
|
voc_eval.m
|
.m
|
py-faster-rcnn-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
| 1,332 |
utf_8
|
3ee1d5373b091ae4ab79d26ab657c962
|
function res = voc_eval(path, comp_id, test_set, output_dir)
VOCopts = get_voc_opts(path);
VOCopts.testset = test_set;
for i = 1:length(VOCopts.classes)
cls = VOCopts.classes{i};
res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir);
end
fprintf('\n~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Results:\n');
aps = [res(:).ap]';
fprintf('%.1f\n', aps * 100);
fprintf('%.1f\n', mean(aps) * 100);
fprintf('~~~~~~~~~~~~~~~~~~~~\n');
function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir)
test_set = VOCopts.testset;
year = VOCopts.dataset(4:end);
addpath(fullfile(VOCopts.datadir, 'VOCcode'));
res_fn = sprintf(VOCopts.detrespath, comp_id, cls);
recall = [];
prec = [];
ap = 0;
ap_auc = 0;
do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test');
if do_eval
% Bug in VOCevaldet requires that tic has been called first
tic;
[recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true);
ap_auc = xVOCap(recall, prec);
% force plot limits
ylim([0 1]);
xlim([0 1]);
print(gcf, '-djpeg', '-r0', ...
[output_dir '/' cls '_pr.jpg']);
end
fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc);
res.recall = recall;
res.prec = prec;
res.ap = ap;
res.ap_auc = ap_auc;
save([output_dir '/' cls '_pr.mat'], ...
'res', 'recall', 'prec', 'ap', 'ap_auc');
rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
|
github
|
zhusz/ECCV16-CBN-master
|
CBN_ghosting.m
|
.m
|
ECCV16-CBN-master/examples/sr1/demo/CBN_ghosting.m
| 3,072 |
utf_8
|
f31a2af9822c312ec152101f63cb3686
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function h4 = CBN_ghosting(h,GPU_ID)
if ~exist('GPU_ID','var'), GPU_ID = 7; end;
m = size(h,4);
% Just for the ease of the experiment for observing the ghosting effect,
% Manually set the high-frequency prior landmarks locations.
p = [11.7099, 11.812, 12.4488, 13.5524, 15.6061, 18.8625, 22.8716, 27.3944, 32.591, 37.7481, 42.3443, 46.4694, 49.8047, 51.9137, 52.9999, 53.5848, 53.7569, 15.4211, 18.1077, 21.7398, 25.4283, 28.8021, 35.7989, 39.4334, 43.1652, 46.8272, 49.4612, 32.4113, 32.3929, 32.3807, 32.3787, 28.1896, 30.2286, 32.3746, 34.5657, 36.5215, 19.6982, 21.948, 24.6818, 26.9798, 24.5285, 21.8254, 37.8434, 40.2426, 42.9485, 45.141, 43.1603, 40.5138, 24.1604, 27.2379, 30.2926, 32.3403, 34.6496, 37.7598, 40.8131, 37.8955, 34.8776, 32.4057, 30.1365, 27.1037, 25.4566, 30.2745, 32.3615, 34.6973, 39.4974, 34.7303, 32.3606, 30.2246, 16.2201, 17.5625, 18.9026, 20.2924, 21.7211, 23.1504, 24.562, 25.9647, 27.3898, 28.2615, 35.9095, 37.0789, 38.5015, 39.9131, 41.3352, 42.7763, 44.2302, 45.6613, 47.043, 48.3918, 28.5817, 27.8596, 27.1131, 26.641, 26.9166, 28.0125, 29.4254, 30.891, 32.3927, 33.8932, 35.3687, 36.7902, 37.9183, 38.236, 37.7933, 37.0303, 36.2445, 19.9826, 25.5522, 31.1174, 36.5607, 41.6184, 46.042, 49.8705, 53.0223, 53.9377, 53.0025, 49.8577, 46.0565, 41.6205, 36.48, 30.965, 25.432, 19.8795, 15.4859, 13.199, 12.6895, 13.33, 14.8494, 14.6765, 13.1625, 12.587, 13.2098, 15.4515, 18.9545, 22.6331, 26.2839, 30.0236, 32.2715, 33.0945, 33.7957, 33.0886, 32.3359, 19.3822, 18.025, 18.1263, 19.9469, 20.4122, 20.3884, 19.9243, 18.0718, 18.0437, 19.3926, 20.3373, 20.394, 38.9289, 37.6628, 37.0739, 37.622, 37.0966, 37.7141, 38.8737, 42.1129, 43.5173, 43.7886, 43.551, 42.176, 39.1391, 38.9409, 39.1456, 38.9256, 39.1055, 40.6596, 40.9484, 40.7003, 15.8098, 15.5638, 15.1933, 15.0084, 15.0327, 15.2109, 15.4851, 15.8025, 15.9892, 15.2132, 15.371, 15.9711, 15.7772, 15.4554, 15.1629, 14.9577, 14.8859, 15.0118, 15.3371, 15.6087, 26.158, 27.3996, 28.7326, 30.1677, 31.5994, 32.562, 33.0918, 33.4283, 33.561, 33.4342, 33.1228, 32.6239, 31.6943, 30.2748, 28.8443, 27.5203, 26.146];
p = repmat(p, [m 1]);
mask1 = pt2mask(p / 2, 32, 1);
input1 = reshape(imresize(h, 2), [32 32 1 m]);
h1 = batchForwardPDS('../',GPU_ID,{input1,mask1},'sr1','D432','jnt_24fnc','210000'); h1 = h1{1};
input2 = cat(3,reshape(imresize(h1, 2), [64 64 1 m]),reshape(imresize(input1, 2), [64 64 1 m]));
mask2 = pt2mask(p, 64, 3);
h2 = batchForwardPDS('../',GPU_ID,{input2,mask2},'sr1','D464_3B','jnt_12fnc', '230000'); h2 = h2{1};
mask3 = pt2mask(p * 2, 128, 5);
input3 = reshape(imresize(h2, 2), [128 128 1 m]);
h3 = batchForwardPDS('../',GPU_ID,{input3,mask3},'sr1','D4128_5C','msk_12fnc','1530000'); h3 = h3{1};
mask4 = pt2mask(p * 4, 256, 7);
input4 = reshape(imresize(h3, 2), [256 256 1 m]);
h4 = batchForwardPDS('../',GPU_ID,{input4,mask4},'sr1','D4256_7C','msk_12fnc','70000',1,16); h4 = h4{1};
end
|
github
|
zhusz/ECCV16-CBN-master
|
pt2mask.m
|
.m
|
ECCV16-CBN-master/examples/sr1/demo/pt2mask.m
| 1,203 |
utf_8
|
02de869f693f30cf9c39271364628a26
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function mask = pt2mask(ePnow, win_size_now, sq_half_size)
edge_idx = {18:22, 69:78, 23:27, 79:88, ...
37:40, [37 42 41 40], 43:46, [43 48 47 46], ...
89:105, ...
49:55, 61:65, [61 68 67 66 65], [49 60:-1:55], ...
1:17};
mask = zeros([win_size_now, win_size_now, length(edge_idx), size(ePnow,1)], 'single');
for j = 1:length(edge_idx)
edge_sparse = selectPoses(ePnow, edge_idx{j});
nj = size(edge_sparse, 2) / 2;
parfor i = 1:size(ePnow,1)
mask_ij = false(win_size_now,win_size_now);
sx = edge_sparse(i,1:nj);
sy = edge_sparse(i,1+nj:2*nj);
x = interp1(1:nj,sx,1:0.02:nj,'cubic'); x = round(x);
y = interp1(1:nj,sy,1:0.02:nj,'cubic'); y = round(y);
assert(length(x) == length(y));
for k = 1:length(x)
mask_ij(max(1, y(k)-sq_half_size) : min(win_size_now, y(k)+sq_half_size), ...
max(1, x(k)-sq_half_size) : min(win_size_now, x(k)+sq_half_size)) = true;
end;
mask(:,:,j,i) = mask_ij;
end;
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
CBN.m
|
.m
|
ECCV16-CBN-master/examples/sr1/demo/CBN.m
| 3,283 |
utf_8
|
4cd0f555847053f948646e8fc09bdfb5
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function h4 = CBN(h,GPU_ID)
if ~exist('GPU_ID','var'), GPU_ID = 7; end;
win_size_top = 256;
ref_simple_face = win_size_top * [([0.4 0.6 0.412 0.588]-0.15)/0.7, ...
([0.3 0.3 0.52 0.52]-0.1)/0.7];
m = size(h,4);
assert(m > 1); % Have problems if m == 1, in funcction batchForward the
% blob might be squeezed out and hard to identify the number of samples.
% If you really want to test only one image, repeat it twice.
h = reshape(imresize(h, 2), [32 32 1 m]);
h = batchForwardPDS('../',GPU_ID,{h},'sr1','D432','ndc_24fnc','1000000'); h = h{1};
h = reshape(imresize(h, 2), [64 64 1 m]);
h = batchForwardPDS('../',GPU_ID,{h},'sr1','D464','ndc_12fnc','1000000'); h = h{1};
p = batchForwardPDS('../',GPU_ID,{h(5:50,10:55,:,:)},'sr1','D80','pnt_222','1100000');
p = p{1}' * 46;
p(:,1:5) = p(:,1:5) + 9;
p(:,6:10) = p(:,6:10) + 4;
p = p * 4;
h = reshape(imresize(h, 4), [256 256 1 m]);
T = getTransToSpecific(selectPoses(p, [1 2 4 5]), ref_simple_face);
parfor i = 1:m
h(:,:,:,i) = imtransform(h(:,:,:,i), T(i), 'bicubic', 'XData', [1 win_size_top], ...
'YData', [1 win_size_top], 'XYScale', 1);
end;
h0 = reshape(imresize(h, 16 / 256), [16 16 1 m]);
h1 = reshape(imresize(h0, 2), [32 32 1 m]);
h1 = batchForwardPDS('../',GPU_ID,{h1},'sr1','D432','ndc_24fnc','1000000'); h1 = h1{1};
h2 = reshape(imresize(h1, 2), [64 64 1 m]);
h2 = batchForwardPDS('../',GPU_ID,{h2},'sr1','D464','ndc_12fnc','1000000'); h2 = h2{1};
p = batchForwardPDS('../',GPU_ID,{h2(5:56,7:58,1,:)},'sr1','D81','pnt_222','2860000'); p = p{1};
p = p' * 52;
p(:,1:size(p,2)/2) = p(:,1:size(p,2)/2) + 6;
p(:,1+size(p,2)/2:end) = p(:,1+size(p,2)/2:end) + 4;
p1 = p;
mask1 = pt2mask(p1 / 2, 32, 1);
input1 = reshape(imresize(h0, 2), [32 32 1 m]);
h1 = batchForwardPDS('../',GPU_ID,{input1,mask1},'sr1','D432','jnt_24fnc','210000'); h1 = h1{1};
input2 = cat(3,reshape(imresize(h1, 2), [64 64 1 m]),reshape(imresize(input1, 2), [64 64 1 m]));
h2 = batchForwardPDS('../',GPU_ID,{input2},'sr1','D464_3B','ndc_12fnc','1000000'); h2 = h2{1};
p = batchForwardPDS('../',GPU_ID,{h2(5:56,7:58,1,:)},'sr1','D82','pnt_222','1000000'); p = p{1};
p = p' * 52;
p(:,1:size(p,2)/2) = p(:,1:size(p,2)/2) + 6;
p(:,1+size(p,2)/2:end) = p(:,1+size(p,2)/2:end) + 4;
p2 = p;
mask2 = pt2mask(p2, 64, 3);
h2 = batchForwardPDS('../',GPU_ID,{input2,mask2},'sr1','D464_3B','jnt_12fnc', '230000'); h2 = h2{1};
input3 = reshape(imresize(h2, 2), [128 128 1 m]);
h3 = batchForwardPDS('../',GPU_ID,{input3},'sr1','D4128_5C','ndc_12fnc','740000'); h3 = h3{1};
p = batchForwardPDS('../',GPU_ID,{h3(9:112,13:116,:,:)},'sr1','D83','pnt_222','2000000'); p = p{1};
p = p' * 104;
p(:,1:size(p,2)/2) = p(:,1:size(p,2)/2) + 12;
p(:,1+size(p,2)/2:end) = p(:,1+size(p,2)/2:end) + 8;
p3 = p;
mask3 = pt2mask(p3 * 1, 128, 5);
input3 = reshape(imresize(h2, 2), [128 128 1 m]);
h3 = batchForwardPDS('../',GPU_ID,{input3,mask3},'sr1','D4128_5C','msk_12fnc','1530000'); h3 = h3{1};
mask4 = pt2mask(p3 * 2, 256, 7);
input4 = reshape(imresize(h3, 2), [256 256 1 m]);
h4 = batchForwardPDS('../',GPU_ID,{input4,mask4},'sr1','D4256_7C','msk_12fnc','70000',1,16); h4 = h4{1};
end
|
github
|
zhusz/ECCV16-CBN-master
|
frameworkForward.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/frameworkForward.m
| 1,221 |
utf_8
|
d55dc0e882f297fccdfccbccd2456bfa
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [outer] = frameworkForward(directory,P,D,S,iter,inter,input_indexing_dim,b,verbose,GPU_device)
% Directory should contain the P folder
% Directory should end with a /
% All P/D/S/iter should be string rather than cell structure or number
assert(directory(end) == '/');
if ~exist('verbose','var'), verbose = 0; end;
L = length(inter);
if ~exist('input_indexing_dim','var') || isempty(input_indexing_dim)
input_indexing_dim = zeros(L,1);
end
if ~exist('b','var') || isempty(b)
b = 64; % Only accept GPU mode. if net is in CPU then you must be insane to use this function. Directly use net.foward outside!!
end;
if ~exist('GPU_device','var') || isempty('GPU_device')
GPU_device = 0;
end;
caffe.reset_all();
caffe.set_mode_gpu();
caffe.set_device(GPU_device);
net = caffe.Net([directory P '/' D '/' S '/network-' P '-' D '-' S '-deploy.prototxt'],...
[directory P '/Model/m-' P '-' D '-' S '/' P '-' D '-' S '_iter_' iter '.caffemodel'],...
'test');
outer = batchForward(net, inter, input_indexing_dim, b, verbose);
end
|
github
|
zhusz/ECCV16-CBN-master
|
batchForward.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/batchForward.m
| 3,189 |
utf_8
|
fbe6f5b321262854e27bfbbef531f28c
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [outer,whole_blob_firstBatch] = batchForward(net, inter, input_indexing_dim,b,verbose)
% If some input object is not splitted by sample index, you should put a -1 (or any other negative value into input_indexing_dim)
% When input_indexing_dim is noted with 0, it indicates it uses the default last dim as the indexing dim)
% Note we only care about the output of the network here.
% Typically, if you want to watch the data blobs you only need to watch the first batch and observe it via our second output or outside this function by yourself
% If you really want to see the blob of one typically layer throughout all the data, you can modify the deploy prototxt and add that layer as another output blob. (Here we note you can really add additional free layer in the deploy prototxt regardless whether the origianl model has been trained)
% (insert a dummy concat layer at the bottom of the deploy prototxt)
if ~exist('verbose','var'), verbose = 0; end;
L = length(inter);
if ~exist('input_indexing_dim','var') || isempty(input_indexing_dim)
input_indexing_dim = zeros(L,1);
end
for i = 1:L
if input_indexing_dim(i) == 0
input_indexing_dim(i) = ndims(inter{i});
end;
end
assert(all(input_indexing_dim > 0));
first_dim = find(input_indexing_dim > 0, 1, 'first');
m = size(inter{first_dim},input_indexing_dim(first_dim));
for i = first_dim:L
if input_indexing_dim(i) > 0
assert(m == size(inter{i},input_indexing_dim(i)));
end;
end;
if ~exist('b','var') || isempty(b)
b = 64; % Only accept GPU mode. if net is in CPU then you must be insane to use this function. Directly use net.foward outside!!
end;
s = ceil(m / b);
for i = 1:s
if mod(i,verbose) == 0, fprintf('Batch forward processing Batch %d / %d.\n', i, s); end;
now = inter;
dim_extract_index = (i-1)*b+1 : min(m, i*b);
if length(dim_extract_index) == b
dim_extract_index_throwin = dim_extract_index;
else
dim_extract_index_throwin = [dim_extract_index ones(1,b-length(dim_extract_index))];
end;
for j = 1:L
if input_indexing_dim(j) > 0
now{j} = getMatAccordingToDim(now{j}, input_indexing_dim(j), dim_extract_index_throwin);
end;
end;
temp_out = net.forward(now);
if i == 1
outer = cell(length(temp_out), 1);
for j = length(outer):-1:1
output_indexing_dim(j) = ndims(temp_out{j}); % for now like this
assert(size(temp_out{j},output_indexing_dim(j)) == b);
sz = size(temp_out{j});
sz(output_indexing_dim(j)) = m;
outer{j} = zeros(sz);
end;
if nargout == 2
whole_blob_firstBatch = getNet(net);
end;
end;
for j = 1:length(temp_out)
temp_out{j} = getMatAccordingToDim(temp_out{j},output_indexing_dim(j),1:length(dim_extract_index));
eval(['outer{j}' setMatAccordingToDim_str(ndims(outer{j}), output_indexing_dim(j),{dim_extract_index}) ...
' = temp_out{j};']);
end;
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getWeight.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/getWeight.m
| 739 |
utf_8
|
7ece356cd27c1174c902d940ab694d3f
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
% Assumes path to matcaffe has been included
function m = getWeight(net)
n_layer = length(net.layer_names);
m.layer = cell(n_layer, 2);
m.layer_names = net.layer_names;
m.layer_sizes = cell(n_layer,3);
for i = 1:length(net.layer_names)
m.layer_sizes{i,3} = cell2mat(net.layer_names(i));
for j = 1:length(net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params)
m.layer{i,j} = net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params(j).get_data();
m.layer_sizes{i,j} = size(m.layer{i,j});
end;
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
batchForwardPDS.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/batchForwardPDS.m
| 852 |
utf_8
|
8a87d7f370145e4404db482421ca060e
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function output = batchForwardPDS(Proot, GPU_ID, input, P, D, S, iter, verbose, batch_size)
if ~exist('batch_size','var'), batch_size = 64; end;
if ~exist('verbose', 'var'), verbose = 1; end;
if verbose
fprintf('BatchForwardPDS for %s, %s, %s, %s begins!\n', P, D, S, iter);
end;
caffe.reset_all();
caffe.set_mode_gpu();
caffe.set_device(GPU_ID);
net = caffe.Net([Proot D '/' S '/network-' P '-' D '-' S '-deploy.prototxt'],...
[Proot 'Model/m-' P '-' D '-' S '/' P '-' D '-' S '_iter_' iter '.caffemodel'],...
'test');
if verbose
tic; output = batchForward(net, input, [], batch_size); toc;
else
output = batchForward(net, input, [], batch_size);
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getNetB.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/getNetB.m
| 1,555 |
utf_8
|
cf658576946e34b255212883b2e43862
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
% Assumes path to matcaffe has been included
function m = getNetB(net)
n_layer = length(net.layer_names);
n_blob = length(net.blob_names);
m.layer = cell(n_layer, 2);
m.blob = cell(n_blob, 1);
m.L = cell(n_layer,1);
m.F = cell(n_blob,1);
m.layer_names = net.layer_names;
m.blob_names = net.blob_names;
m.layer_sizes = cell(n_layer,3);
m.blob_sizes = cell(n_blob,2);
for i = 1:length(net.layer_names)
m.layer_sizes{i,3} = cell2mat(net.layer_names(i));
for j = 1:length(net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params)
m.layer{i,j} = net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params(j).get_diff();
m.layer_sizes{i,j} = size(m.layer{i,j});
end;
if length(net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params) == 2
n_nextLayerChannel = size(m.layer{i,2},1); assert(1 == size(m.layer{i,2},2));
m.L{i} = [reshape(m.layer{i,1},[length(m.layer{i,1}(:))/n_nextLayerChannel, n_nextLayerChannel])' m.layer{i,2}];
end;
end;
for i = 1:length(net.blob_names)
m.blob{i} = net.blob_vec(net.name2blob_index(cell2mat(net.blob_names(i)))).get_diff();
m.blob_sizes{i,1} = size(m.blob{i});
m.blob_sizes{i,2} = cell2mat(net.blob_names(i));
n_sample = m.blob_sizes{i,1}(end);
m.F{i} = reshape(m.blob{i}, [length(m.blob{i}(:)) / n_sample, n_sample]);
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getNet.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/getNet.m
| 1,554 |
utf_8
|
95ee41bd63574285fdc9560d895e26fe
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
% Assumes path to matcaffe has been included
function m = getNet(net)
n_layer = length(net.layer_names);
n_blob = length(net.blob_names);
m.layer = cell(n_layer, 2);
m.blob = cell(n_blob, 1);
m.L = cell(n_layer,1);
m.F = cell(n_blob,1);
m.layer_names = net.layer_names;
m.blob_names = net.blob_names;
m.layer_sizes = cell(n_layer,3);
m.blob_sizes = cell(n_blob,2);
for i = 1:length(net.layer_names)
m.layer_sizes{i,3} = cell2mat(net.layer_names(i));
for j = 1:length(net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params)
m.layer{i,j} = net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params(j).get_data();
m.layer_sizes{i,j} = size(m.layer{i,j});
end;
if length(net.layer_vec(net.name2layer_index(cell2mat(net.layer_names(i)))).params) == 2
n_nextLayerChannel = size(m.layer{i,2},1); assert(1 == size(m.layer{i,2},2));
m.L{i} = [reshape(m.layer{i,1},[length(m.layer{i,1}(:))/n_nextLayerChannel, n_nextLayerChannel])' m.layer{i,2}];
end;
end;
for i = 1:length(net.blob_names)
m.blob{i} = net.blob_vec(net.name2blob_index(cell2mat(net.blob_names(i)))).get_data();
m.blob_sizes{i,1} = size(m.blob{i});
m.blob_sizes{i,2} = cell2mat(net.blob_names(i));
n_sample = m.blob_sizes{i,1}(end);
m.F{i} = reshape(m.blob{i}, [length(m.blob{i}(:)) / n_sample, n_sample]);
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
createH5DataTrain.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/createH5DataTrain.m
| 4,585 |
utf_8
|
7c4d83febfd40735c267f7ffa4e56dd5
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function createH5DataTrain(confirm_current_project)
directory = pwd;
directory_split = strsplit(directory, '/');
P = directory_split{end-1};
D = directory_split{end};
% ====================================================== %
assert(strcmp(P,confirm_current_project)); % in case you are operating in a wrong dir
% The current directory should be in the D one
% load(['Mat/' D '_info_root.mat'], 'batch_sample_tot','var_name','testing_sample_tot');
load(['Mat/' D '_info_root.mat'], 'H5Info');
var_name = H5Info.var_name;
batch_sample_tot = H5Info.batch_sample_tot;
training_sample_tot = H5Info.training_sample_tot;
var_name = sort(var_name);
datum_name = var_name;
for i = 1:length(datum_name), datum_name{i} = ['/' datum_name{i}]; end;
datum = cell(length(datum_name),1);
for i = 1:length(var_name)
eval(['load(''Mat/' D '_train1.mat'', ''' var_name{i} ''');']);
eval(['datum{i} = ' var_name{i} ';']);
eval(['clear ' var_name{i} ';']);
end;
M = training_sample_tot;
chunksz = 64;
verbose = 1;
setName = 'train';
% ====================================================== %
data_root = ['../Data/d-' D '/'];
data_root_forPrint = ['examples/' P '/Data/d-' D '/'];
mkdir(data_root);
h5_count = 0;
datum_size = cell(length(datum),1);
for i = 1:length(datum), datum_size{i} = size(datum{i}); disp(datum_size{i}); end;
fid = fopen([data_root P '-' D '-' setName '.txt'],'w');
for batch = 1: ceil(M / chunksz)
if batch == 1 || accumulated_h5_size >= batch_sample_tot % NEEDS MODIFYING!!!
h5_count = h5_count + 1;
h5_fn = [P '-' D '-' setName '-' num2str(h5_count) '.h5'];
fprintf(fid,'%s\n',[data_root_forPrint h5_fn]);
create_new_h5file(data_root, h5_fn,datum_name,datum_size,chunksz);
accumulated_h5_size = 0;
datum = cell(length(datum_name),1);
for i = 1:length(var_name)
eval(['load(''Mat/' D '_train' num2str(h5_count) '.mat'', ''' var_name{i} ''');']);
eval(['datum{i} = ' var_name{i} ';']);
eval(['clear ' var_name{i} ';']);
end;
end;
current_sample_ID = (batch-1) * chunksz;
% Note current_sample_ID always refers to the input data
% If we change to a new HDF5 file, the current_sample_ID does NOT go
% back to 1!!!
for i = 1:length(datum)
% batch_datum = getMatAccordingToDim(datum{i},ndims(datum{i}),...
% current_sample_ID+1:min(current_sample_ID+chunksz, M));
batch_datum = getMatAccordingToDim(datum{i},ndims(datum{i}),...
current_sample_ID+1-batch_sample_tot*(h5_count-1): ...
min(current_sample_ID+chunksz, M)-batch_sample_tot*(h5_count-1));
accumulated_h5_size = writeToHDF5(data_root, h5_fn, batch_datum, datum_name{i}, i);
if accumulated_h5_size >= batch_sample_tot % can comment these assertion later
a = batch_datum(:,:,:,end); a = a(:);
b = datum{i}(:,:,:,end); b = b(:);
% if i < 3, disp([a(1:10) b(1:10)]); end;
assert(all(a(:) == b(:)));
end;
end;
%FUNCTION OF CREATEH5 SHOULD BE SEPARATED!!!
if verbose
fprintf('Finished Batch ID = %d in the h5 file ID = %d.\n', batch, h5_count);
end;
end;
fclose(fid);
end
function create_new_h5file(data_root, h5_fn,datum_name,datum_size,chunksz)
if exist([data_root h5_fn], 'file')
delete([data_root h5_fn]);
warning(['H5 file ' h5_fn ' has existed!']);
end;
len = length(datum_name); assert(len == length(datum_size));
for i = 1:len
h5create([data_root h5_fn],datum_name{i},[datum_size{i}(1:end-1) Inf],...
'Datatype', 'single', 'ChunkSize', [datum_size{i}(1:end-1) chunksz]);
end;
end
function accumulated_h5_size = writeToHDF5(data_root, h5_fn, batch_datum, batch_datum_name, datum_ID)
info = h5info([data_root h5_fn]);
equalAssert(ndims(batch_datum),length(info.Datasets(datum_ID).Dataspace.Size));
for i = 1:ndims(batch_datum)-1
equalAssert(size(batch_datum,i),info.Datasets(datum_ID).Dataspace.Size(i));
end;
startLoc = ones(1,ndims(batch_datum));
startLoc(end) = info.Datasets(datum_ID).Dataspace.Size(end) + 1;
h5write([data_root h5_fn], batch_datum_name, single(batch_datum), startLoc, size(batch_datum));
info = h5info([data_root h5_fn]);
accumulated_h5_size = info.Datasets(datum_ID).Dataspace.Size(end);
end
|
github
|
zhusz/ECCV16-CBN-master
|
genXPrototype.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/genXPrototype.m
| 18,115 |
utf_8
|
1ca9a774838fbaaa97cb2382950ff37d
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function genXPrototype(GPU_ID)
% By-product: calculated network feature map size
% Printed onto the screen
% Important variable:
% p: project name
% s: structure name of one perticular design (aka name of the folder)
% a: training data set
% b: test data set
% o: learning rate
% Solver characters:
% Oa: Standard training of full training set with base lr = 0.0001
% Na/Pa: 10 times larger/smaller base lr solver
% Ob: Training on small training set b. (Force error reduction)
% Nb/Pb: Similar
% Oc: Training exluding val set or other special training set.
% Nc/Pc: Similar
assert(logical(exist('GPU_ID','var')));
delete('./*.prototxt');
% 1. Basic info getting and model storing folder setting up
directory = pwd;
directory(directory=='\') = '/';
d_split = strsplit(directory,'/');
S = d_split{end};
D = d_split{end-1};
P = d_split{end-2};
% 2. Get traintest and deploy prototxt (network structure)
% Print layer map size info
fid = fopen('xset.txt','r');
fn_traintest = ['network-' P '-' D '-' S '.prototxt'];
fn_deploy = ['network-' P '-' D '-' S '-deploy.prototxt'];
fid_traintest = fopen(fn_traintest,'w');
fid_deploy = fopen(fn_deploy,'w');
test_blob_tot = str2double(fgetl(fid));
test_blob = cell(test_blob_tot, 1);
for i = 1:test_blob_tot, test_blob{i} = str2num(fgetl(fid)); end;
fprintf(fid_traintest, ['name: "' P '-' D '-' S '"\n']);
fprintf(fid_deploy, ['name: "' P '-' D '-' S '"\n']);
line = fgetl(fid);
while (length(line) ~= 1 || line(1) ~= '.')
writeLayer(fid_traintest,line,0,P,D,S,GPU_ID);
writeLayer(fid_deploy,line,1,P,D,S,GPU_ID,test_blob);
line = fgetl(fid);
end;
fclose(fid_traintest);
fclose(fid_deploy);
% 3. Gen solver prototxt
series = GF(fid);
lrO = GF(fid);
test_iter = GF(fid);
test_interval = GF(fid);
momentum = GF(fid);
weight_decay = GF(fid);
display = GF(fid);
max_iter = GF(fid);
snapshot = GF(fid);
iter_size = GF(fid);
for ch = series
fid_solver = fopen(['solver-' P '-' D '-' S '-' ch '.prototxt'],'w');
PI(fid_solver, ['net: "examples/' P '/' D '/' S '/network-' P '-' D '-' S '.prototxt"']);
PI(fid_solver, ['test_iter: ' num2str(test_iter)]);
PI(fid_solver, ['test_interval: ' num2str(test_interval)]);
PI(fid_solver, ['base_lr: ' num2str((10 ^ ('O' - ch)) * lrO)]);
PI(fid_solver, ['momentum: ' num2str(momentum)]);
PI(fid_solver, ['weight_decay: ' num2str(weight_decay)]);
PI(fid_solver, ['lr_policy: "fixed"']); %#ok<NBRAK>
PI(fid_solver, ['display: ' num2str(display)]);
PI(fid_solver, ['max_iter: ' num2str(max_iter)]);
PI(fid_solver, ['snapshot: ' num2str(snapshot)]);
PI(fid_solver, ['snapshot_prefix: "examples/' P '/Model/m-' P '-' D '-' S '/' P '-' D '-' S '"']);
PI(fid_solver, ['iter_size: 1']);
fprintf(fid_solver, 'device_id : [%d', GPU_ID(1));
for j = 2:length(GPU_ID), fprintf(fid_solver, ',%d', GPU_ID(j));end;
fprintf(fid_solver, ']\n');
fclose(fid_solver);
end;
% 4. Generate sample shell
fid_sh = fopen(['new_xtrain.sh'],'w');
PI(fid_sh, '#!/usr/bin/env sh');
PI(fid_sh, '');
PI(fid_sh, ['GOOGLE_LOG_DIR=examples/' P '/' D '/' S '/log \']);
PI(fid_sh, ['mpirun -np ' num2str(length(GPU_ID)) ' \'], 4);
fprintf(fid_sh, [' ./build/install/bin/caffe train --solver=examples/' P '/' D '/' S '/solver-' P '-' D '-' S '-' series(1) '.prototxt']);
%PI(fid_sh, ['#-snapshot=examples/' P '/Model/m-' P '-' D '-' S '/' P '-' D '-' S '_iter_110000.solverstate'], 4);
% resuming or finetuning
st = fgetl(fid);
while (st(1) == '#'), st = fgetl(fid); end;
id = find(st=='#',1,'first'); if ~isempty(id), st = st(1:id-1);end;
st = strsplit(st, ' ');
rf_flag = st{1};
disp({P,D,S});
disp(st);
if ~(length(rf_flag) == 1 || rf_flag(1) == '.' || strcmp(rf_flag, 'NONE'))
switch rf_flag
case 'RESUME'
assert(length(st) == 2);
resume_iter = str2double(st{2});
assert(~isnan(resume_iter));
fprintf(fid_sh, [' \\\n -snapshot=examples/' P '/Model/m-' P '-' D '-' S '/' P '-' D '-' S '_iter_' num2str(resume_iter) '.solverstate']);
case 'FINETUNE'
finetune_tot = GF(fid);
finetune = cell(finetune_tot, 4);
for i = 1:finetune_tot
st = fgetl(fid);
id = find(st == '#', 1, 'first');
if ~isempty(id), st = st(1:id-1); end;
st = strsplit(st, ' ');
assert(length(st) == 4); assert(~isnan(str2double(st{4})));
for j = 1:4, finetune{i,j} = st{j}; end;
end;
disp(finetune);
fprintf(fid_sh, [' \\\n -weights=']);
for i = 1:finetune_tot
if i > 1, fprintf(fid_sh, ','); end;
fprintf(fid_sh, ['examples/' finetune{i,1} '/Model/m-' finetune{i,1} '-' finetune{i,2} '-' finetune{i,3} '/' finetune{i,1} '-' finetune{i,2} '-' finetune{i,3} '_iter_' finetune{i,4} '.caffemodel']);
end;
otherwise
error('The rf_flag can only be one of: 1) NONE; 2) RESUME; 3) FINETUNE');
end;
end;
fclose(fid_sh);
fclose(fid);
warning off all;
mkdir('log');
mkdir('../../Model/',['m-' P '-' D '-' S]);
warning on all;
end
% ========================= Layer Writing =========================== %
function writeLayer(fid, line, flag, P, D, S, GPU_ID, test_blob)
% fid refers to fid_traintest or fid_deploy globally.
% layer_name CONVOLUTION | bottom top xxx
% flag == 0: writes on traintest, flag == 1: writes on deploy
if line(1) == '#', return; end;
e = strsplit(line);
tot = length(e);
while isempty(e{tot}), tot = tot - 1; end;
e = e(1:tot);
if strcmp(e{1},'`') && flag == 1, return; end;
if strcmp(e{1},'`') && flag == 0, e = e(2:end); end;
switch e{2}
case 'HDF5DATA'
% name TYPE | PHASE setName batchSize inputTot top1 top2 ...
if flag == 0 % only effective for traintest prototxt
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'],2);
PI(fid, ['type: "HDF5Data"'],2);
for i = 7:tot, PI(fid, ['top: "' e{i} '"'],2);end;
PI(fid, ['include: { phase: ' e{3} ' }'],2);
PI(fid, 'hdf5_data_param {',2);
PI(fid, ['source: "examples/' P '/Data/d-' D '/' P '-' D '-' e{4} '.txt"'],4);
bs = 2^(ceil(log2(str2double(e{5}) / length(GPU_ID)))); % Cauculate the batchsize
if bs < 1, bs = 1; end;
PI(fid, ['batch_size: ' num2str(bs)],4);
PI(fid, '}', 2);
PI(fid, '}');
elseif flag == 1 && strcmp(e{3},'TEST') % only effective for deploy prototxt
inputTot = str2double(e{6});
assert(inputTot == length(test_blob));
for i = 7:6+inputTot
PI(fid, ['input: "' e{i} '"']);
PI(fid, ['input_dim: ' num2str(test_blob{i-6}(1))]);
PI(fid, ['input_dim: ' num2str(test_blob{i-6}(2))]);
PI(fid, ['input_dim: ' num2str(test_blob{i-6}(3))]);
PI(fid, ['input_dim: ' num2str(test_blob{i-6}(4))]);
end;
PI(fid, 'force_backward: true');
end;
case 'CONVRELUS'
% name TYPE | bot top kernel_size stride pad output w_lr b_lr num_of_conv
assert(length(e) == 11);
assert(str2double(e{11}) <= 1e6);
for i = 1:str2double(e{11})
layer_append = sprintf('_%06d', i);
layer_append_prev = sprintf('_%06d', i-1);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '_conv' layer_append '"'], 2);
PI(fid, 'type: "Convolution"', 2);
if i == 1
PI(fid, ['bottom: "' e{3} '"'], 2);
else
PI(fid, ['bottom: "' e{1} '_conv' layer_append_prev '"'], 2);
end;
if i == str2double(e{11})
PI(fid, ['top: "' e{4} '"'], 2);
else
PI(fid, ['top: "' e{1} '_conv' layer_append '"'], 2);
end;
PI(fid, 'param {',2);
PI(fid, ['lr_mult: ' num2str(e{9})], 4);
PI(fid, 'decay_mult: 1', 4);
PI(fid, '}', 2);
PI(fid, 'param {',2);
PI(fid, ['lr_mult: ' num2str(e{10})], 4);
PI(fid, 'decay_mult: 0', 4);
PI(fid, '}', 2);
PI(fid, 'convolution_param {', 2);
PI(fid, ['num_output: ' num2str(e{8})], 4);
PI(fid, ['pad: ' num2str(e{7})], 4);
PI(fid, ['kernel_size: ' num2str(e{5})], 4);
PI(fid, ['stride: ' num2str(e{6})], 4);
PI(fid, 'weight_filler {', 4);
PI(fid, 'type: "xavier"', 6);
PI(fid, '}', 4);
PI(fid, 'bias_filler {', 4);
PI(fid, 'type: "constant"', 6);
PI(fid, 'value: 0', 6);
PI(fid, '}', 4);
PI(fid, '}', 2);
PI(fid, '}');
if i == str2double(e{11}), break; end;
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '_relu' layer_append '"'], 2);
PI(fid, ['type: "ReLU"'], 2);
PI(fid, ['bottom: "' e{1} '_conv' layer_append '"'], 2);
PI(fid, ['top: "' e{1} '_conv' layer_append '"'], 2);
PI(fid, '}');
end;
case 'CONVOLUTION'
% name TYPE | bot top kernel_size stride pad output w_lr b_lr
assert(length(e) == 10);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "Convolution"', 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, 'param {',2);
PI(fid, ['lr_mult: ' num2str(e{9})], 4);
PI(fid, 'decay_mult: 1', 4);
PI(fid, '}', 2);
PI(fid, 'param {',2);
PI(fid, ['lr_mult: ' num2str(e{10})], 4);
PI(fid, 'decay_mult: 0', 4);
PI(fid, '}', 2);
PI(fid, 'convolution_param {', 2);
PI(fid, ['num_output: ' num2str(e{8})], 4);
PI(fid, ['pad: ' num2str(e{7})], 4);
PI(fid, ['kernel_size: ' num2str(e{5})], 4);
PI(fid, ['stride: ' num2str(e{6})], 4);
PI(fid, 'weight_filler {', 4);
PI(fid, 'type: "xavier"', 6);
PI(fid, '}', 4);
PI(fid, 'bias_filler {', 4);
PI(fid, 'type: "constant"', 6);
PI(fid, 'value: 0', 6);
PI(fid, '}', 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'POOLING'
% name TYPE | bot top POOLING_METHOD kernel_size stride
% No learning params
assert(length(e) == 7);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "Pooling"', 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, 'pooling_param {', 2);
PI(fid, ['pool: ' e{5}], 4);
PI(fid, ['kernel_size: ' num2str(e{6})], 4);
PI(fid, ['stride: ' num2str(e{7})], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'INNER_PRODUCT'
% name TYPE | bot top output w_lr b_lr
assert(length(e) == 7);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "InnerProduct"', 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, 'param {', 2);
PI(fid, ['lr_mult: ' num2str(e{6})], 4);
PI(fid, 'decay_mult: 1', 4);
PI(fid, '}', 2);
PI(fid, 'param {', 2);
PI(fid, ['lr_mult: ' num2str(e{7})], 4);
PI(fid, 'decay_mult: 0', 4);
PI(fid, '}', 2);
PI(fid, 'inner_product_param {', 2);
PI(fid, ['num_output: ' num2str(e{5})], 4);
PI(fid, 'weight_filler {', 4);
PI(fid, 'type: "xavier"', 6);
PI(fid, '}', 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'BN' % ONLY VALID FOR XIONGSHEN AND TONGSHEN'S CAFFE
% name TYPE | bot top lr_w lr_b
assert(length(e) == 6);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "BN"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
for j = 1:2
PI(fid, 'param {', 2);
PI(fid, ['lr_mult: ' e{4+j}], 4);
PI(fid, 'decay_mult: 0', 4);
PI(fid, '}', 2);
end;
PI(fid, 'bn_param {', 2);
PI(fid, 'slope_filler {', 4);
PI(fid, 'type: "constant"', 6);
PI(fid, 'value: 1', 6);
PI(fid, '}', 4);
PI(fid, 'bias_filler {', 4);
PI(fid, 'type: "constant"', 6);
PI(fid, 'value: 0', 6);
PI(fid, '}', 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'CONCAT'
% name TYPE | bot1 bot2 ... top 0/1
assert(length(e) >= 6);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "Concat"'], 2);
for i = 3:length(e)-2
PI(fid, ['bottom: "' e{i} '"'], 2);
end;
PI(fid, ['top: "' e{end-1} '"'], 2);
PI(fid, ['concat_param {'], 2);
assert(~isnan(str2double(e{end})));
PI(fid, ['axis: ' e{end}], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'ELTWISE'
% name TYPE | bot1 bot2 top SUM/PROD/MAX
assert(length(e) == 6);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "Eltwise"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['bottom: "' e{4} '"'], 2);
PI(fid, ['top: "' e{5} '"'], 2);
PI(fid, ['eltwise_param {'], 2);
PI(fid, ['operation: ' e{6}], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'TILE'
% name TYPE | bot top axis tiles
assert(length(e) == 6);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "Tile"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, ['tile_param {'], 2);
for i = 5:6, assert(~isnan(str2double(e{i}))); end;
PI(fid, ['axis: ' e{5}], 4);
PI(fid, ['tiles: ' e{6}], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'POWER'
% name TYPE | bot top power scaling shift
assert(length(e) == 7);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "Power"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, ['power_param {'], 2);
for i = 5:7, assert(~isnan(str2double(e{i}))); end;
PI(fid, ['power: ' e{5}], 4);
PI(fid, ['scale: ' e{6}], 4);
PI(fid, ['shift: ' e{7}], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'RELU'
% name TYPE | bot top
assert(length(e) == 4);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "ReLU"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, '}');
case 'TANH'
% name TYPE | bot top
assert(length(e) == 4);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, ['type: "TanH"'], 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, '}');
case 'DROPOUT'
assert(length(e) == 5);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "Dropout"', 2);
PI(fid, ['bottom: "' e{3} '"'], 2);
PI(fid, ['top: "' e{4} '"'], 2);
PI(fid, 'dropout_param {', 2);
PI(fid, ['dropout_ratio: ' num2str(e{5})], 4);
PI(fid, '}', 2);
PI(fid, '}');
case 'EUCLIDEAN_LOSS'
% name TYPE | bot1 bot2 top loss_weight
% if flag == 0 % only when writing on training prototxt can do this
assert(length(e) == 6);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "EuclideanLoss"', 2);
for i = 3:4, PI(fid, ['bottom: "' e{i} '"'], 2);end;
PI(fid, ['top: "' e{5} '"'], 2);
PI(fid, ['loss_weight: ' num2str(e{6})], 2);
PI(fid, '}');
% end;
case 'SMOOTHL1_LOSS' % PROVIDED BY JINWEI
% name TYPE | bot1 bot2 top loss_weight threshold margin
% if flag == 0 % only when writing on training prototxt can do this
assert(legnth(e) == 8);
PI(fid, 'layer {');
PI(fid, ['name: "' e{1} '"'], 2);
PI(fid, 'type: "SmoothL1Loss"', 2);
for i = 3:4, PI(fid, ['bottom: "' e{i} '"'], 2);end;
PI(fid, ['top: "' e{5} '"'], 2);
PI(fid, ['loss_weight: ' num2str(e{6})], 2);
PI(fid, 'smooth_l1_loss_param {', 2);
PI(fid, ['threshold: ' num2str(e{7})], 4);
PI(fid, ['margin: ' num2str(e{8})], 4);
PI(fid, '}', 2);
PI(fid, '}');
% end;
otherwise
error('Haven'' t implementation such type of layer!');
end;
end
% =================================================================== %
% ============================== Utility ============================ %
% Print Indentation and return
function PI(fid, str, indent)
if nargin >= 3
for i = 1:indent, fprintf(fid, ' '); end;
end;
fprintf(fid, '%s\n', str);
end
% Get first element from the line of reading file
function ele = GF(fid)
str = fgetl(fid);
e = strsplit(str, ' ');
if ~isnan(str2double(e{1}))
ele = str2double(e{1});
else
ele = e{1};
end;
end
% =================================================================== %
|
github
|
zhusz/ECCV16-CBN-master
|
createH5DataTest.m
|
.m
|
ECCV16-CBN-master/codes/caffe_exetension/createH5DataTest.m
| 3,805 |
utf_8
|
9e43ef196726df7b3d4f5a2689a721e5
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function createH5DataTest(confirm_current_project)
directory = pwd;
directory_split = strsplit(directory, '/');
P = directory_split{end-1};
D = directory_split{end};
% ====================================================== %
assert(strcmp(P,confirm_current_project)); % in case you are operating in a wrong dir
% The current directory should be in the D one
% load(['Mat/' D '_info_root.mat'], 'batch_sample_tot','var_name','testing_sample_tot');
load(['Mat/' D '_info_root.mat'], 'H5Info');
var_name = H5Info.var_name;
batch_sample_tot = H5Info.batch_sample_tot;
testing_sample_tot = H5Info.testing_sample_tot;
var_name = sort(var_name);
datum_name = var_name;
for i = 1:length(datum_name), datum_name{i} = ['/' datum_name{i}]; end;
datum = cell(length(datum_name),1);
for i = 1:length(var_name)
eval(['load(''Mat/' D '_test.mat'', ''' var_name{i} ''');']);
eval(['datum{i} = ' var_name{i} ';']);
eval(['clear ' var_name{i} ';']);
end;
M = testing_sample_tot;
chunksz = 64;
verbose = 1;
setName = 'test';
clear var_name testing_sample_tot;
% ====================================================== %
data_root = ['../Data/d-' D '/'];
data_root_forPrint = ['examples/' P '/Data/d-' D '/'];
mkdir(data_root);
h5_count = 0;
datum_size = cell(length(datum),1);
for i = 1:length(datum), datum_size{i} = size(datum{i}); disp(datum_size{i}); end;
fid = fopen([data_root P '-' D '-' setName '.txt'],'w');
for batch = 1: ceil(M / chunksz)
if batch == 1 || accumulated_h5_size >= batch_sample_tot % NEEDS MODIFYING!!!
h5_count = h5_count + 1;
h5_fn = [P '-' D '-' setName '-' num2str(h5_count) '.h5'];
fprintf(fid,'%s\n',[data_root_forPrint h5_fn]);
create_new_h5file(data_root, h5_fn,datum_name,datum_size,chunksz);
accumulated_h5_size = 0;
end;
current_sample_ID = (batch-1) * chunksz;
% Note current_sample_ID always refers to the input data
% If we change to a new HDF5 file, the current_sample_ID does NOT go
% back to 1!!!
for i = 1:length(datum)
batch_datum = getMatAccordingToDim(datum{i},ndims(datum{i}),...
current_sample_ID+1:min(current_sample_ID+chunksz, M));
accumulated_h5_size = writeToHDF5(data_root, h5_fn, batch_datum, datum_name{i}, i);
end;
%FUNCTION OF CREATEH5 SHOULD BE SEPARATED!!!
if verbose
fprintf('Finished Batch ID = %d in the h5 file ID = %d.\n', batch, h5_count);
end;
end;
fclose(fid);
end
function create_new_h5file(data_root, h5_fn,datum_name,datum_size,chunksz)
if exist([data_root h5_fn], 'file')
delete([data_root h5_fn]);
warning(['H5 file ' h5_fn ' has existed!']);
end;
len = length(datum_name); assert(len == length(datum_size));
for i = 1:len
h5create([data_root h5_fn],datum_name{i},[datum_size{i}(1:end-1) Inf],...
'Datatype', 'single', 'ChunkSize', [datum_size{i}(1:end-1) chunksz]);
end;
end
function accumulated_h5_size = writeToHDF5(data_root, h5_fn, batch_datum, batch_datum_name, datum_ID)
info = h5info([data_root h5_fn]);
equalAssert(ndims(batch_datum),length(info.Datasets(datum_ID).Dataspace.Size));
for i = 1:ndims(batch_datum)-1
equalAssert(size(batch_datum,i),info.Datasets(datum_ID).Dataspace.Size(i));
end;
startLoc = ones(1,ndims(batch_datum));
startLoc(end) = info.Datasets(datum_ID).Dataspace.Size(end) + 1;
h5write([data_root h5_fn], batch_datum_name, single(batch_datum), startLoc, size(batch_datum));
info = h5info([data_root h5_fn]);
accumulated_h5_size = info.Datasets(datum_ID).Dataspace.Size(end);
end
|
github
|
zhusz/ECCV16-CBN-master
|
transImagesFwd.m
|
.m
|
ECCV16-CBN-master/codes/trans/transImagesFwd.m
| 1,270 |
utf_8
|
403aab76fe2a698286babee06323f9e3
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function newImages = transImagesFwd(oldImages,T,rows,cols)
%newImages = transImagesFwd(oldImages)
% images are all cell array.
m = length(oldImages);
if m~=length(T),error('size(oldImages,1) must equal to length(T)!');end;
if 0 % (m<100) || (matlabpool('size')==0)
newImages = arrayfun(@(i)imtransform(oldImages{i},T(i),'XData',...
[1 cols],'YData',[1 rows],'XYScale',1),1:m,'UniformOutput',false);
if (m>=100)
warning('Please launch matlabpool to speed up your program!');
end
else
newImages = cell(m,1);
parfor i = 1:m
img = imtransform(oldImages{i},T(i),'XData',...
[1 cols],'YData',[1 rows], 'XYScale', 1);
if size(img,1) ~= rows || size(img,2) ~= cols
error('Now it is not allowed to imresize after imtransform!');
newImages{i} = imresize(img, [rows, cols]);
else
newImages{i} = img;
end;
end
end
for i = 1:m, if size(newImages{i},1)~=rows || size(newImages{i},2)~=cols, newImages{i} = imresize(newImages{i},[rows,cols]);end;end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransToSpecific.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransToSpecific.m
| 930 |
utf_8
|
03340d5afae78b851f1934b4f6763ec7
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransToSpecific(pose,specific)
%T = getTransToSpecific(pose,specific)
% T: m*1 t_concord
% pose: m*2n
% specific: 1*2n
n = size(pose,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
m = size(pose,1);
assert(size(specific,1)==1);
assert(size(specific,2)==2*n);
specific = reshape(specific,n,2);
if (m<100) || (matlabpool('size')==0)
T = arrayfun(@(i)cp2tform(reshape(pose(i,:),n,2),specific,'nonreflective similarity'),1:m);
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
T = cell(m,1);
parfor i = 1:m
T{i} = cp2tform(reshape(pose(i,:),n,2),specific,'nonreflective similarity');
end
T = cell2mat(T);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransToMean.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransToMean.m
| 988 |
utf_8
|
2cb374e914c957d9f6d787a10e36d217
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransToMean(pose)
% T = getTransToMean(pose)
% produce trans to project poese onto mean pose
% size(pose) = [m,2n], each row must in the format of X1...Xn,Y1...Yn.
% T is a array containing n structures. Each one is the trans for one
% sample.
n = size(pose,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
m = size(pose,1);
meanPose = reshape(mean(pose,1),n,2);
if (m<100) || (matlabpool('size')==0)
T = arrayfun(@(i)cp2tform(reshape(pose(i,:),n,2),meanPose,'nonreflective similarity'),1:m);
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
T = cell(m,1);
parfor i = 1:m
T{i} = cp2tform(reshape(pose(i,:),n,2),meanPose,'nonreflective similarity');
end
T = cell2mat(T);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransPair.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransPair.m
| 905 |
utf_8
|
074d64eb279affb07157a1f702c5464e
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransPair(pose1,pose2)
%T = getTransPair(pose1,pose2)
% T: m*1 t_concord
% pose1: m*2n
% pose2: m*2n
n = size(pose1,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
m = size(pose1,1);
assert(size(pose2,1)==m);
assert(size(pose2,2)==2*n);
if (m<100) || (matlabpool('size')==0)
T = arrayfun(@(i)cp2tform(reshape(pose1(i,:),n,2),reshape(pose2(i,:),n,2),'nonreflective similarity'),1:m);
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
T = cell(m,1);
parfor i = 1:m
T{i} = cp2tform(reshape(pose1(i,:),n,2),reshape(pose2(i,:),n,2),'nonreflective similarity');
end
T = cell2mat(T);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransViaXY.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransViaXY.m
| 550 |
utf_8
|
f41ee5ea1902c2edd08473f8a9d72730
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransViaXY(XY,win_size)
%T = getTransViaXY(scaling_vector,win_size)
% T: m*1 t_concord
% XY: m*2
m = size(XY,1);
assert(size(XY,2) == 2);
pose_src = zeros(m,4);
parfor i = 1:m
pose_src(i,4) = norm(XY(i,:));
end;
pose_src = pose_src + win_size / 2;
pose_dst = pose_src + XY(:,[1 1 2 2]);
T = getTransPair(pose_src,pose_dst);
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransViaRotateGivenCenter.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransViaRotateGivenCenter.m
| 1,235 |
utf_8
|
be1f610a94138e6c0c932fb87f257fd0
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransViaRotateGivenCenter(theta_vector,center,rotatorLength)
%T = getTransViaRotateGivenCenter(theta_vector,win_size)
% T: m*1 t_concord
% theta_vector: m*1 in degree! Make sure abs(theta)<180
% center: 1*2 indicates the x-y coordinates of rotation center
% rotatorLength: scalar, length of the ratator. Set this variable to
% avoid numerical problems.
warning('This function might get non-affine tform');
assert(size(theta_vector,1)==1 || size(theta_vector,2)==1);
assert(size(center,1)==1 || size(theta_vector,2)==1);
assert(length(center)==2);
assert(length(rotatorLength)==1);
theta_vector = theta_vector(:);
assert(all(abs(theta_vector) < 180));
pose_src = zeros(length(theta_vector),4);
pose_src(:,[1 3]) = repmat(center(:)',length(theta_vector),1);
pose_src(:,2) = center(1) + rotatorLength * cosd(theta_vector);
pose_src(:,4) = center(2) + rotatorLength * sind(theta_vector);
pose_dst = [center(1) center(1)+rotatorLength center(2) center(2)];
T = getTransToSpecific(pose_src,pose_dst);
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransViaMerge.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransViaMerge.m
| 906 |
utf_8
|
d3cd898a298d90a1dc849d8511bd6e00
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransViaMerge(win_size,varargin)
% T = getTransViaMerge(win_size,T1,T2,...)
% y = T(x) = T_nargin(...(T2(T1(x))))
% T-s can only be similarity transform: rotate, scale, translate x/y
% Note T-s must have strict order: rotate > scale > translate
% rotate and scale only support: based on the center of patch (same win_size).
% otherwise, don't feel suprised to see this function fuck you.
m = length(varargin{1});
n = length(varargin);
for i = 2:n
assert(m == length(varargin{i}));
end;
x_old = repmat([win_size/2,win_size/2,win_size/2,win_size/2-win_size/3],m,1);
x = transPoseFwd(x_old,varargin{1});
for i = 2:n
x = transPoseFwd(x,varargin{i});
end;
T = getTransPair(x_old,x);
end
|
github
|
zhusz/ECCV16-CBN-master
|
transPoseRigidTurbulent.m
|
.m
|
ECCV16-CBN-master/codes/trans/transPoseRigidTurbulent.m
| 1,691 |
utf_8
|
3ad20b33786a8f3a7cf35cf319902823
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [newCurrentPose,testShift] = transPoseRigidTurbulent(themeA,win_size,turb_coeff,currentPose,targetPose,errorL,errorS,maxIter)
% Please note 'turb_coeff' is defined as follows:
% (errorL - errorS) * turb_coeff = (errorNew - errorS)
% All error means L2 error.
errorNewTarget = errorS + (errorL-errorS)*turb_coeff;
testShift = 1;
upper = inf;
inffer = -inf;
step = 0.2;
m_sample = size(currentPose,1); % min(size(currentPose,1),1000);
for i = 1:maxIter
ra = randperm(size(currentPose,1));
ra = ra(1:m_sample);
expOldCurrentPose = currentPose(ra,:);
Tshift = getTransShift(win_size,testShift,m_sample);
expNewCurrentPose = transPoseFwd(expOldCurrentPose,Tshift);
errorNew = mean(calcErrors(expNewCurrentPose,targetPose(ra,:)) ./ calcEyesDist(themeA,targetPose(ra,:)));
if errorNew < errorNewTarget
if testShift > inffer
inffer = testShift;
end;
if upper == inf
testShift = testShift + step;
else
testShift = (upper+inffer)/2;
end;
else
if testShift < upper
upper = testShift;
end;
if inffer == -inf
testShift = testShift - step;
else
testShift = (upper+inffer)/2;
end;
end;
% testShift
end;
fprintf('The best testShift is %f.\n',testShift);
Tshift = getTransShift(win_size,testShift,size(currentPose,1));
newCurrentPose = transPoseFwd(currentPose,Tshift);
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransViaScaling.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransViaScaling.m
| 863 |
utf_8
|
544591f1eb14509860b0fc393ca2c16b
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransViaScaling(scaling_vector,win_size)
%T = getTransViaScaling(scaling_vector,win_size)
% T: m*1 t_concord
% scaling_vector: m*1 around 1 (Don't arbitrarily large or small!)
% win_size: scalar. Note the image must be square!
assert(size(scaling_vector,1)==1 || size(scaling_vector,2)==1);
scaling_vector = scaling_vector(:);
win_cent = win_size / 2;
win_del = win_cent * 2 / 3;
pose_dst = zeros(length(scaling_vector),4);
pose_dst(:,[1 3 4]) = win_cent;
pose_dst(:,2) = win_cent + win_del * scaling_vector;
pose_src = repmat([win_cent win_cent+win_del win_cent win_cent],size(scaling_vector,1),1);
T = getTransPair(pose_src,pose_dst);
end
|
github
|
zhusz/ECCV16-CBN-master
|
transPoseFwd.m
|
.m
|
ECCV16-CBN-master/codes/trans/transPoseFwd.m
| 1,218 |
utf_8
|
eb1853ef17684bba523cf027a8285335
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function newPose = transPoseFwd(oldPose,T)
% newPose = transPoseFwd(oldPose,T)
% produce new pose according to oldPose and T
% size(oldPose) = [m,2n], each row must in the format of X1...Xn,Y1...Yn.
% T is a array containing n structures. Each one is the trans for one
% sample.
% newPose has the same size as oldPose.
m = size(oldPose,1);
if length(T)~=m,error('length(T) must be the same as size(oldPose,1)!');end;
n = size(oldPose,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
ind_nan = find(isnan(oldPose));
oldPose(ind_nan) = 0;
if (m<100) || (matlabpool('size')==0)
newPose = arrayfun(@(i)reshape(tformfwd(T(i),reshape(oldPose(i,:),n,2)),1,2*n),1:m,'UniformOutput',false);
newPose = cell2mat(newPose(:));
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
newPose = zeros(size(oldPose));
parfor i = 1:m
newPose(i,:) = reshape(tformfwd(T(i),reshape(oldPose(i,:),n,2)),1,2*n);
end
end
newPose(ind_nan) = NaN;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransViaRotate.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransViaRotate.m
| 923 |
utf_8
|
9d8a11b78871350dc1b808e37c61d728
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransViaRotate(theta_vector,win_size)
%T = getTransViaRotate(theta_vector,win_size)
% T: m*1 t_concord
% theta_vector: m*1 in degree! Make sure abs(theta)<180
% win_size: scalar. Note the image must be square!
warning('This function might get non-affine tform');
assert(size(theta_vector,1)==1 || size(theta_vector,2)==1);
theta_vector = theta_vector(:);
win_cent = win_size / 2;
win_del = win_cent * 2 / 3;
pose_src = zeros(length(theta_vector),4);
pose_src(:,[1 3]) = win_cent;
pose_src(:,2) = win_cent + win_del * cosd(theta_vector);
pose_src(:,4) = win_cent + win_del * sind(theta_vector);
pose_dst = [win_cent win_cent+win_del win_cent win_cent];
T = getTransToSpecific(pose_src,pose_dst);
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransRandomCross.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransRandomCross.m
| 1,175 |
utf_8
|
7fb2c466057c830574d5c8df1cd841cd
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransRandomCross(pose)
% T = getTransRandomCross(pose)
% produce trans to project poese onto randomly selected another pose
% size(pose) = [m,2n], each row must in the format of X1...Xn,Y1...Yn.
% T is a array containing n structures. Each one is the trans for one
% sample.
n = size(pose,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
m = size(pose,1);
pr = randi(m,m,1);
I = find(pr-[1:m]'==0);
while ~isempty(I)
pr(I) = randi(m,length(I),1);
I = find(pr-[1:m]'==0);
end
if (m<100) || (matlabpool('size')==0)
T = arrayfun(@(i)cp2tform(reshape(pose(i,:),n,2),reshape(pose(pr(i),:),n,2),'nonreflective similarity'),1:m);
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
T = cell(m,1);
newPose = pose(pr,:);
parfor i = 1:m
T{i} = cp2tform(reshape(pose(i,:),n,2),reshape(newPose(i,:),n,2),'nonreflective similarity');
end
T = cell2mat(T);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransPairRegardingNaN.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransPairRegardingNaN.m
| 827 |
utf_8
|
6c4302099433bd3b5a70427bedb91c8d
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransPairRegardingNaN(pose1,pose2)
%T = getTransPair(pose1,pose2)
% T: m*1 t_concord
% pose1: m*2n
% pose2: m*2n
n = size(pose1,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
m = size(pose1,1);
assert(size(pose2,1)==m);
assert(size(pose2,2)==2*n);
T = cell(m,1);
parfor i = 1:m
pose1I = pose1(i,:);
pose2I = pose2(i,:);
idx = intersect(find(~isnan(pose1I(1:n))),find(~isnan(pose2I(1:n))));
T{i} = cp2tform(reshape(pose1I([idx idx+n]),length(idx),2),...
reshape(pose2I([idx idx+n]),length(idx),2),...
'nonreflective similarity');
end
T = cell2mat(T);
end
|
github
|
zhusz/ECCV16-CBN-master
|
transPoseInv.m
|
.m
|
ECCV16-CBN-master/codes/trans/transPoseInv.m
| 1,218 |
utf_8
|
1455a7d757d552480df16bb04986cec3
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function newPose = transPoseInv(oldPose,T)
% newPose = transPoseInv(oldPose,T)
% produce new pose according to oldPose and T
% size(oldPose) = [m,2n], each row must in the format of X1...Xn,Y1...Yn.
% T is a array containing n structures. Each one is the trans for one
% sample.
% newPose has the same size as oldPose.
m = size(oldPose,1);
if length(T)~=m,error('length(T) must be the same as size(oldPose,1)!');end;
n = size(oldPose,2);
if mod(n,2),error('size(pose,2) is odd!');end
n = n / 2;
ind_nan = find(isnan(oldPose));
oldPose(ind_nan) = 0;
if (m<100) || (matlabpool('size')==0)
newPose = arrayfun(@(i)reshape(tforminv(T(i),reshape(oldPose(i,:),n,2)),1,2*n),1:m,'UniformOutput',false);
newPose = cell2mat(newPose(:));
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
newPose = zeros(size(oldPose));
parfor i = 1:m
newPose(i,:) = reshape(tforminv(T(i),reshape(oldPose(i,:),n,2)),1,2*n);
end
end
newPose(ind_nan) = NaN;
end
|
github
|
zhusz/ECCV16-CBN-master
|
getTransShift.m
|
.m
|
ECCV16-CBN-master/codes/trans/getTransShift.m
| 1,224 |
utf_8
|
93cb76a68896c019a072c3e5ff4db56e
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function T = getTransShift(win_size,shift,m)
%T = getTransShift(win_size,shift,m)
% return Ta with size m*1
centric = floor([win_size / 2, win_size / 2]);
side = centric + [100,0];
assert(max(side)<win_size);
centric = repmat(centric,m,1);
side = repmat(side,m,1);
move1_theta = rand(m,1)*360;
move1_r = shift * randn(m,1);
move1_shift = [move1_r.*cosd(move1_theta) move1_r.*sind(move1_theta)];
m_centric = centric + move1_shift;
move2_tao = shift * randn(m,1);
m_side = side + move1_shift;
m_side(:,2) = m_side(:,2) + move2_tao;
if (m<100) || (matlabpool('size')==0)
T = arrayfun(@(i)cp2tform(...
[centric(i,:);side(i,:)],...
[m_centric(i,:);m_side(i,:)],...
'nonreflective similarity'),1:m);
if m>=100
warning('Please launch matlabpool to speed up your program!');
end
else
T = cell(m,1);
parfor i = 1:m
T{i} = cp2tform([centric(i,:);side(i,:)],[m_centric(i,:);m_side(i,:)],'nonreflective similarity');
end
T = cell2mat(T);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
selectPoses.m
|
.m
|
ECCV16-CBN-master/codes/toolbox_face_alignment/selectPoses.m
| 344 |
utf_8
|
2f35b1cf3e822201de1c0458e6c27780
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [selectedPose,ind] = selectPoses(pose,sub,d)
if nargin<3
d = 2;
end;
ind = selectPosesIdx(size(pose,2),sub,d);
selectedPose = pose(:,ind);
end
|
github
|
zhusz/ECCV16-CBN-master
|
selectPosesIdx.m
|
.m
|
ECCV16-CBN-master/codes/toolbox_face_alignment/selectPosesIdx.m
| 375 |
utf_8
|
63aca49a8acf67eb352992faa67d8d96
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function ind = selectPosesIdx(len,sub,d)
if nargin<3
d = 2;
end
assert(mod(len,d)==0);
gap = len/d;
ind = [];
sub = sub(:)';
for i = 1:d
ind = [ind sub + (i-1)*gap];
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
raRandPerm.m
|
.m
|
ECCV16-CBN-master/codes/extension/raRandPerm.m
| 357 |
utf_8
|
945e4384372d2aa3727c2c9d9c823e4d
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function ra = raRandPerm(n,k)
% K can be larger than N
times = ceil(k/n);
ra = zeros(n,times);
for i = 1:times,ra(:,i) = randperm(n)';end;
ra = ra(:)';
ra = ra(1:k);
end
|
github
|
zhusz/ECCV16-CBN-master
|
setMatAccordingToDim_str.m
|
.m
|
ECCV16-CBN-master/codes/extension/setMatAccordingToDim_str.m
| 829 |
utf_8
|
5e8a9e050f9b8d5e24395ef931ec107d
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function s = setMatAccordingToDim_str(dim_tot, dim_ID, dim_index)
% output example: (:,:,[1 2 3 4], [2 3 5],:,[3])
% Outside you need to use eval to do this.
% Here dim_ID can be multiple as long as length(dim_ID) == length(dim_index), the former is array and latter is cell strcture
% Remember dim_index must be a cell strcture whose length is identical to
% the array dimID!!!
assert(length(dim_ID) == length(dim_index));
s = '(';
for i = 1:dim_tot
h = find(dim_ID == i);
assert(length(h) <= 1);
if isempty(h)
s = [s ':,'];
else
k = dim_index{h}(:)';
s = [s '[' num2str(k) '],'];
end;
end;
s(end) = ')';
end
|
github
|
zhusz/ECCV16-CBN-master
|
equalAssert.m
|
.m
|
ECCV16-CBN-master/codes/extension/equalAssert.m
| 1,123 |
utf_8
|
6ebec5bf05aad6b71d95f9d5c5eaaae3
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function equalAssert(A,B,mode,epsilon)
if ~exist('mode','var')
mode = 0;
end;
switch mode
case 0 % double accurate scalar input
assert(length(A) == 1 && length(B) == 1, 'Not numerical scalar real number input!');
assert(A==B, ['EqualAssert (mode two accurate scalars) failed!, [' num2str(A) ' | ' num2str(B) '].']);
case 1 % double numerical scalar input
assert(length(A) == 1 && length(B) == 1, 'Not numerical scalar real number input!');
if ~exist('epsilon','var'), epsilon = 0.0001; end;
assert(abs(A-B) < epsilon, ...
['EqualAssert (mode two numerical scalars) failed!, [' num2str(A) ' | ' num2str(B) '].']);
case 2 % double strings input
assert(ischar(A) && ischar(B), 'Not char input!');
assert(strcmp(A,B), ['EqualAssert (mode two strings) failed! [' A ' | ' B '].']);
otherwise
error('What mode is this?');
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
swap.m
|
.m
|
ECCV16-CBN-master/codes/extension/swap.m
| 226 |
utf_8
|
9d889f79e9f350cee4a4c2bf3a688bc6
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [A,B] = swap(A,B)
T = A;
A = B;
B = T;
end
|
github
|
zhusz/ECCV16-CBN-master
|
minInMat.m
|
.m
|
ECCV16-CBN-master/codes/extension/minInMat.m
| 283 |
utf_8
|
fc9b0b8ad44696ebced17418e2b645d3
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [v,i,j] = minInMat(A)
assert(ndims(A) <= 2);
[v,id] = min(A, [], 1);
[v,j] = min(v);
i = id(j);
end
|
github
|
zhusz/ECCV16-CBN-master
|
indexingData.m
|
.m
|
ECCV16-CBN-master/codes/extension/indexingData.m
| 640 |
utf_8
|
16ac4a91a8d1d0e87761c25c1e7c3408
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function varargout = indexingData(varargin)
%varargout = indexingData(ind,varargin)
% every element in varargin will be extracted according to ind(index),
% and the relative output will be sent to varargout.
% PLEASE NOTE indexing only refer to the 1st dimension!
varargout = cell(1,nargin-1);
ind = varargin{1};
for i = 2:nargin
k = varargin{i};
if size(k,1) == 1
k = k';
end
varargout{i-1} = k(ind,:);
end
end
|
github
|
zhusz/ECCV16-CBN-master
|
getMatAccordingToDim.m
|
.m
|
ECCV16-CBN-master/codes/extension/getMatAccordingToDim.m
| 648 |
utf_8
|
242e8bc2c6a05c1f8d48ab4bb373713a
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function data_out = getMatAccordingToDim(data_in, dim_ID, dim_index) %#ok<STOUT>
nd = ndims(data_in);
assert(length(dim_ID) == 1 && dim_ID <= nd);
dim_index = dim_index(:)';
assert(max(dim_index) <= size(data_in, dim_ID));
st = [];
for i = 1:dim_ID-1
st = [st ':, ']; %#ok<AGROW>
end;
st = [st '[' num2str(dim_index) '], '];
for i = dim_ID+1: nd
st = [st ':, ']; %#ok<AGROW>
end;
st = st(1:end-2);
eval(['data_out = data_in(' st ');']);
end
|
github
|
zhusz/ECCV16-CBN-master
|
isIn_str.m
|
.m
|
ECCV16-CBN-master/codes/extension/isIn_str.m
| 741 |
utf_8
|
e60520abf0c9da63c397e7850c9019c0
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function [TF,TF_idx] = isIn_str(ele,s)
%TF = isIn_str(ele,s)
% judge if ele is in the set s. return 0 or 1.
% if ele is an array TF will also be an array.
% all input are in cell form of strings
% TF = arrayfun(@(x)isempty(find(x==s,1)),ele);
% TF = 1-TF;
ele = ele(:); s = s(:);
TF = NaN * zeros(length(ele),1);
TF_idx = TF;
for i = 1:length(ele)
id = find(cellfun(@(x)strcmp(x,ele{i}),s));
if isempty(id)
TF(i) = 0;
TF_idx(i) = 0;
else
assert(length(id) == 1);
TF(i) = 1;
TF_idx(i) = id;
end;
end;
end
|
github
|
zhusz/ECCV16-CBN-master
|
isIn.m
|
.m
|
ECCV16-CBN-master/codes/extension/isIn.m
| 391 |
utf_8
|
02eec0695dfd9451cef67290ae729315
|
% Codes for ECCV-16 work `Deep Cascaded Bi-Network for Face Hallucination'
% Any question please contact Shizhan Zhu: [email protected]
% Released on August 19, 2016
function TF = isIn(ele,s)
%TF = isIn(ele,s)
% judge if ele is in the set s. return 0 or 1.
% if ele is an array TF will also be an array.
TF = arrayfun(@(x)isempty(find(x==s,1)),ele);
TF = 1-TF;
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
MultiDayAnalysisProcess.m
|
.m
|
SpectrumLearning-master/MultiDayAnalysisProcess.m
| 1,325 |
utf_8
|
7881ab86c43542c5be879bca35f5415b
|
%Analsis Multi-day data
%Author: Zhu Gengyu
%Date: 2016/7/18
function MultiDayAnalysisProcess()
%Analyz channel state
Parameters.MaxSlotNum = 2000;
Parameters.MaxChannelNum = 6000;
Parameters.ExtremSize = 0.05;
Parameters.SingalThershold = 30; %dB
%load original several-day-all-timeslot data data
StartF = 1710; StopF = 1740;
%StartF = 60; StopF = 137;
filename = sprintf('MultiLevel_%s_%s.mat', num2str(StartF),num2str(StopF));
if exist(filename,'file') ~= 2
error('*.mat file do not exist!');
end
load(filename); %vari- AllTimeSlots
% StartItem=(80-60)/0.025; StopItem=(110-60)/0.025;
% TmpLevel=MultiLevel.ByDay{1,1}.level(:,StartItem:StopItem);
TmpLevel=MultiLevel.ByDay{1,1}.level(:,1:800); %1710
csvwrite('DayLevel.csv',TmpLevel);
Res = CalcChannelState(TmpLevel,Parameters);
figure(1);
%Demostrate channel state
%contoutf(Res);
%show the channel state
StartF = MultiLevel.Info.StartFreq;
StopF = MultiLevel.Info.StopFreq;
StepF = MultiLevel.Info.StepFreq;
figure(1);
[slotnum,freqnum] = size(TmpLevel);
Freq = StartF:StepF:(StopF-StepF);
Freq=Freq(1:800);
%Freq=Freq(StartItem:StopItem);
Time = 1:slotnum;
WaterFallPlot(Freq,Time,Res.Occupancy);
csvwrite('DayChannelState.csv',Res.Occupancy);
%culster according to channel
%BandCluster(AllTimeSlots,StartF,StopF);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
BandCluster.m
|
.m
|
SpectrumLearning-master/BandCluster.m
| 858 |
utf_8
|
4c5e780ac7e69c64aff71d9ffe8bc463
|
%Culster data according to divided channel
%Author: Zhu Gengyu
%Date: 2016/8/17
function BandLevel = BandCluster(Level, StartF, StopF)
% 1710+0.2*(n-511) downlink
[slots,freqs] = size(Level);
%ratio = 0.2/0.025;
%banditem = 1:ratio:freqs;
bandindex = 1;
count = 0;
BandLevel = zeros(slots,floor(freqs/8));
%for i = 1:slots
%for j= 1:freqs
i=1; j=1;
while(i<slots)
while (j < freqs)
if(mod(j,8)==1)||j~=1
BandLevel(i,bandindex) = BandLevel(i,bandindex) +Level(i,j);
count = count + 1;
else
BandLevel(i,bandindex) = BandLevel(i,bandindex)/count;
count = 0;
bandindex = bandindex + 1;
end
i = i+1;
j = j+1;
end
end
figure(1);
[t,f] = size(BandLevel);
WaterFallPlot(f,t,BandLevel);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
MultiDayDataSave.m
|
.m
|
SpectrumLearning-master/MultiDayDataSave.m
| 1,315 |
utf_8
|
b8d635bf1beca44e07b05881a68bd4cd
|
%Save multi-day data into .mat file
%Author: Zhu Gengyu
%Date: 2016/7/19
function MultiDayDataSave()
clear;
clc;
%Path = 'E:\\tmpData\\825-960\\%s\\02';
%Path ='D:\\Code\\Matlab\\SpectrumLearning\\Data\\OriginData\\1710-1960\\%s\\02';
% StartF = 1710;
% StopF = 1740;
Path ='D:\\Code\\Matlab\\SpectrumLearning\\Data\\OriginData\\60-137\\%s\\02';
StartF=60;
StopF=137;
StepF = 0.025;
%DayArray = {'20151216','20151217','20151218','20151219','20151220','20151221','20151222'};
DayArray = {'20151217'};
%Read data day by day if the "Path" exist locally
[MultiLevel] = MultiDaySpectrumReader(Path,DayArray,StartF,StopF)
%Save Data
% tmpname = '%s_%s.mat';
% filename = sprintf(tmpname,num2str(StartF),num2str(StopF));
% if exist(filename,'file') ~= 2
% error('*.mat file do not exist!');
% end
% load(filename);
%save all level data in allLevel and clear reducant variable
MultiLevel.Info.StartFreq = StartF;
MultiLevel.Info.StopFreq = StopF;
MultiLevel.Info.StepFreq = StepF;
cur_time = fix(clock);
time_str = sprintf('%.4d-%.2d-%.2d:%.2d:%.2d:%.2d:%.2d',cur_time(1),cur_time(2),cur_time(3),cur_time(4),cur_time(5),cur_time(6));
MultiLevel.Info.BuildTime = time_str;
filename = sprintf('MultiLevel_%s_%s.mat', num2str(StartF),num2str(StopF));
save(filename,'MultiLevel');
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
HMMAnalyz.m
|
.m
|
SpectrumLearning-master/HMMAnalyz.m
| 264 |
utf_8
|
e4373db7276009a068ce13995df9d68c
|
%Author: Zhu Gengyu
%Date: 2016/8/17
%Propose: Analyz Time State Evolution
function [Res] = HMMAnalyz()
TRANS = [.9 .1; .05 .95;];
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];
[seq,states] = hmmgenerate(1000,TRANS,EMIS);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
WaterFallPlot.m
|
.m
|
SpectrumLearning-master/WaterFallPlot.m
| 341 |
utf_8
|
8d8ddfdc834d4a973e9e9199f50ff547
|
%Plot a Freq-Time waterfall with color
%Author: Zhu Gengyu
%Date: 2016/7/12
function WaterFallPlot(FreqRange,TimeRange,TimeLevel)
[Time,Freq] = size(TimeLevel);
if Time ~= length(TimeRange) || Freq ~= length(FreqRange)
error('The input data set did not match!!');
return;
end
imagesc(FreqRange,TimeRange,TimeLevel);
colorbar;
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
SpectrumReader.m
|
.m
|
SpectrumLearning-master/SpectrumReader.m
| 1,007 |
utf_8
|
05360833f1b6887d13bda1cb67ab0b49
|
%Read Spectrum Data from a signal day
%Author: Zhu Gengyu
%Data: 2016/7/11
function [Level]=SpectrumReader(Path, StartF, StopF, StepF)
SelItem1 = (StartF-2010)/StepF+1;
SelItem2 = (StopF-2010)/StepF+1;
%Get all Filenames belongs to a specific station
dirinfo = dir(Path);
%AbsoPath = [Path,'\\%s']; %strcat
%Loop for all File
index = 1;
for k = 1:length(dirinfo)
thisdir = dirinfo(k).name;
%Concate the two path
%Filename = Path + '\'+ thisdir; %sprintf(AbsoPath,thisdir);
Filename = [Path,'\',thisdir];
if exist(Filename,'file') == 2
%Test: if the filepath is accessible
tmpLevel = ArgusReader(Filename,2010,2150);
Level{index} = tmpLevel;
index = index + 1;
end
end
end
%Read all data sets from an argus file
function [LevelData]= ArgusReader(Path,StartF,StopF)
jump_distance = 36+0;
len = (StopF-StartF)/0.025;
fid = fopen(Path);
fseek(fid,jump_distance,'bof');
LevelData = fread(fid,len,'integer*2=>int16',6);
fclose(fid);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
Readme.m
|
.m
|
SpectrumLearning-master/Readme.m
| 1,147 |
utf_8
|
ede3f0e31d2dc01fe8299705064c4320
|
%
function Readme()
disp('This research aim at applying mechine learning principle to tackle massive radio-frequency data');
disp('Author: Zhu Gengyu');
disp('Data 2016/7/11');
disp('And this is the bynow plans');
disp('Step 1: Read Spectrum Data; (1)Should be time-saving and well-structed')
disp('Step 2: Save Specific Part of Spectrum by Time Slots; (1)Save the Data in .mat. (2)Corr ratio aalysis');
disp('Step 3: Invese-FFT on Spectrum to obtain I/Q; (1)Seems impossible');
disp('Step 4: Frequenct Pattern mining; (1)A Example(unfinished)');
disp('Step 5: Calculate the channel state;(1) According to the real signal channel assignment of GSM900 DL');
disp('Step 6: Seperate the file-read process and anlysis process');
disp('Step 7: Calculate the Service Congestion Rate(SCR)');
disp('Step 8: Calculate the Channel vacancy duration(CVD)');
disp('Step 9: Analyze the CVD distribution, calculate the fit significance(R^2) (1)Find a well fit model(exponential-like)');
disp('Step 10: Applying the first-order Markov chain in one-timeslot CVD prediction.');
disp('Step 11: Dickey-Fuller(ACF) test');
disp('Step 12: Hang on');
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
CDFplot.m
|
.m
|
SpectrumLearning-master/CDFplot.m
| 387 |
utf_8
|
6eac4766b77ceb46fb46fc87639afe82
|
%Calculate cdf of different distributions
%Author: Shirley
%Date: 2016/9/8
function []=CDFplot()
pd = makedist('Normal');
r = random(pd,[80,1]);
p = cdf('Normal',r,1,4);
cdfplot(p);
% pd = makedist('Poisson',lambda);
% p = cdf('Poisson',0:4,1:5);
% X = 1:200;
% Y = logncdf(X,4.5,0.1);
% func = @(fit,xdata)logncdf(xdata,fit(1),fit(2));
% fit = lsqcurvefit(func,[4 0.3],X,Y)
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
ChannelStateClassify.m
|
.m
|
SpectrumLearning-master/ChannelStateClassify.m
| 126 |
utf_8
|
3c2643a553173cfeaf79b02992e2e80a
|
%Classify Channel
%Author: Zhu Gengyu
%Date: 2016/7/20
function ClassifyRes = ChannelStateClassify(ChannelStatecell)
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
RealChannelState.m
|
.m
|
SpectrumLearning-master/RealChannelState.m
| 405 |
utf_8
|
15c7df02a3a78154a2830006d578fefe
|
%Analysis real channel according to start, stop and increment of
%specific service
%Author: Zhu Gengyu
%Date: 2016/7/21
%Data Format:
%InputPara.StartF;
%InputPara.StopF;
%InputPara.FirstCenterBand
%InputPara.ChannelNum
%InputPara.BandWidth
function [Result] = RealChannelState(RawData,InputPara)
if(nargin < 2)||(isempty(RawChannelState))
error('Not Enough Input Data!!!');
return;
end
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
ShepardIterpolation.m
|
.m
|
SpectrumLearning-master/ShepardIterpolation.m
| 874 |
utf_8
|
6b8a5755c36551eb97b50e60118ab3ed
|
%Construct Spectrum map using grid interpolation in 2D
%Author: Shirley
%Date: 2016/9/8
function ShepardIterpolation()
%[Xq, Yq, Vq] = griddata(X,Y,V, xq, yq,v4);
% Interpolate a 2D scattered data set over a uniform grid
xy = -2.5 + 5*gallery('uniformdata',[200 2],0);
x = xy(:,1); y = xy(:,2);
v = x.*exp(-x.^2-y.^2);
[xq,yq] = meshgrid(-2:.2:2, -2:.2:2);
vq = griddata(x,y,v,xq,yq,'v4');
mesh(xq,yq,vq), hold on, plot3(x,y,v,'o'), hold off
%
% Example 2:
% Interpolate a 3D data set over a grid in the x-y (z=0) plane
% xyz = -1 + 2*gallery('uniformdata',[5000 3],0);
% x = xyz(:,1); y = xyz(:,2); z = xyz(:,3);
% v = x.^2 + y.^2 + z.^2;
% d = -0.8:0.05:0.8;
% [xq,yq,zq] = meshgrid(d,d,0);
% vq = griddata(x,y,z,v,xq,yq,zq);
% surf(xq,yq,vq);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
CvdAnalysis.m
|
.m
|
SpectrumLearning-master/CvdAnalysis.m
| 334 |
utf_8
|
9c6e232eb2d7fcef98875a8634ae483a
|
%Abstract partial CVD for analysis
%Author: Zhu Gengyu
%Date: 2016/8/13
function CvdAnalysis(StartF,StopF)
if exist('CVD.mat','file') ~= 2 || exist('AllTimeSlotinOne.mat','file') ~= 2
return error('*.mat file do not exist!');
end
load('CVD.mat');
load('AllTimeSlotinOne.mat','file') ;
StartItem = (StartF-)
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
CalculateCVD.m
|
.m
|
SpectrumLearning-master/CalculateCVD.m
| 1,518 |
utf_8
|
9be38f10d76902fd941bd710d6fd6fd2
|
%Calculate Channel Vacancy Duration through Channel State
%Author: Zhu Gengyu
%Date: 2016/7/20
function [Result]=CalculateCVD(ChannelState)
CS = ChannelState;
[Time,Channel] = size(CS);
if (Time < 20)||(Channel < 2)
error('Insufficient Input Data !!!');
return;
end
%set a variable to preserve CVD data
CVD = cell(1,Channel);
%for each channel, recongize the continuous '0' items
%This is an excellent method in solve the problem
for i = 1:Channel
%select specific line according to channels
a = CS(:,i);
temp = [];
result = {};
%obtain a bool-state of a (equal to '1' or not)
%tmpCVD = zeros(Time);
%if all items in the series equal '0', skip the calculation
if(Time ~= find(a))
while(~isempty(a))
if a(1)~=0
if(~isempty(temp))
%if temp is empty, then it have no value last time
result = [result,{temp}];
end
%if temp have value, means it is a 0 this time
temp = [];
flag = 0;
else
%a(1) equals 0
temp = [temp,a(1)];
%a vacancy means at least 5 mins duration
flag = 1;
end
a(1) = [];
end
else
result{1} = length(a);
end
%calculate the number of results or "vacancy period"
for k = 1:length(result)
%how many vacancy periods a channel have
tmpCVD(k) = length(result{k});
end
%all "vacancy period" belongs to a specific channel
CVD{1,i} = tmpCVD;
end
Result.ChannelNum = Channel;
Result.TimeSlot = Time;
Result.CVDcell = CVD;
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
MultiDaySpectrumReader.m
|
.m
|
SpectrumLearning-master/MultiDaySpectrumReader.m
| 2,597 |
utf_8
|
9447f6563c48f1c4d17cdfb5b05bbc7b
|
%Read Out Spectrum Data from several days (one station)
%Author: Zhu Gengyu
%Date: 2016/7/18
%Path format: 'Y:\\20-3000\\%s\\03' DayArray should be string
%Level.Info: Device, Lon, Lat, Status, FileNum Level.Data: Time[time,stringlen], level[time,freq]
function [MultiLevel] = MultiDaySpectrumReader(Path,DayArray,StartFreq,StopFreq)
Maxsize = 1000;
%index for the time slot num
datasize = 1;
%declear Level container
%Level.Info=0; %Device, Lon, Lat
Data.time='';
Data.level=0;
Info.DeviceId=0;
Info.Longitude=0;
Info.Latitude=0;
Info.Status=0;
Info.FileNum=0;
for i = 1:length(DayArray)
Day = DayArray{i};
%get the file path for a specific day
DayPath = sprintf(Path,Day);
%find all files in the path
dirinfo = dir(DayPath);
index = 1;
%Loop for all files within the path
for k = 1:length(dirinfo)
%point to this-file
thisdir = dirinfo(k).name;
%get the path for this-file
filename = [DayPath,'\',thisdir];
%check if this-file really exist
if exist(filename,'file') == 2
%Read out data from a *.argus file
[Info,Data]=ArgusReader(filename,StartFreq,StopFreq,Info,Data);
%tmpLevel.SampleTime=floor(str2num(thisdir(1:12)));
Data.time(Info.FileNum,1:12)=thisdir(1:12);
%Count the accessed data
datasize = datasize + 1;
index = index + 1;
if(index > Maxsize)
%abortion if the data set is too large
delete Info, Data ;
break;
end
end
end
%Combine the newly read data and existed data in Level
MultiLevel.ByDay{i}=Data;
end
%presever other information
MultiLevel.Info=Info;
end
%Read all data sets from an argus file
function [Info,Data]=ArgusReader(Path,StartF,StopF,Info,Data)
len = (StopF-StartF)/0.025;
fid = fopen(Path);
jump_distance = 0;
fseek(fid,jump_distance,'bof');
Info.FileNum=Info.FileNum+1;
if Info.Status==0
Info.DeviceId=fread(fid,1,'integer*4=>int32');
Info.Longitude= fread(fid,1,'float=>float');
Info.Latitude=fread(fid,1,'float=>float');
Info.Status=1; %aleard assign device information
end
% jump_distance = 36+0; %+0: min level; +2: mean level; +4: max level
% fseek(fid,jump_distance,'bof');
% LevelData.MinLevel = fread(fid,len,'integer*2=>int16',6);
% jump_distance = 36+2;
% fseek(fid,jump_distance,'bof');
% LevelData.MeanLevel= fread(fid,len,'integer*2=>int16',6);
jump_distance = 36+4;
fseek(fid,jump_distance,'bof');
%LevelData.MaxLevel= fread(fid,len,'integer*2=>int16',6);
Data.level(Info.FileNum, 1:len)= fread(fid,len,'integer*2=>int16',6);
fclose(fid);
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
DistriAnalysis.m
|
.m
|
SpectrumLearning-master/DistriAnalysis.m
| 588 |
utf_8
|
53526d47c2a44a36dd422a27e972de09
|
%Distribution analysis
%Author: Zhu Gengyu
%Date: 2016/7/14
function [DistriModel] = DistriAnalysis(Level)
if length(Level)== 0
error('No Input Data!!!');
return;
end
%calculate the stage num in hist, no more than 100
Stage = length(Level)/10;
if Stage > 100
Stage = 100;
end
%hist display
H = hist(Level,Stage);
%calcule the sample distribution
cdf = zeros(1,length(H));
for k = 1:length(H)
cdf(k) = sum(H(1:k));
end
%save calculate results
DistriModel.Cdf = cdf;
DistriModel.Hist = H;
DistriModel.Len = length(Level);
DistriModel.StageNum = Stage;
end
|
github
|
KevinLoudi/SpectrumLearning-master
|
BP_ANN_Forecast.m
|
.m
|
SpectrumLearning-master/Examine/Neural Network Implementation/BP_ANN_Forecast.m
| 729 |
utf_8
|
d700d638e039742a1db848f5847b3924
|
%Implementation of BP-ANN in analysis
%Author: Zhu Gengyu
%Date: 2016/9/17
function BP_ANN_Forecast()
load DayChannelState.csv;
OrigData=DayChannelState;
clear DayChannelState;
%randomly select a channel
SelData=OrigData(135, :);
T=length(SelData); tao=4;
rowsz=tao; colsz=T-tao;
%input data-set matrix
data=zeros(rowsz,colsz);
for i=1:colsz
for j=1:rowsz
data(i,j)=SelData(tao-j+i);
end
end
%output data-set matrix
oudata=zeros(T-tao-1,1);
oudata=SelData(tao+1:T);
%BP-ANN
net=newff(data,oudata,20);
net=train(net,data,oudata);
outputs=net(data);
errors=outputs-oudata;
perf=perform(net,outputs,oudata);
end
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_upw_MOD2_f2_2.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_upw_MOD2_f2_2.m
| 7,593 |
utf_8
|
744afc3d3405319ddc02f81b6b57ba8b
|
% write_lpf_MOD
% 11/17/16
function write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY)
% % =========== TO RUN AS SCRIPT ===========================================
% clear all, close all, fclose all;
% % - directories
% % MODFLOW input files
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% % MODFLOW output files
% GSFLOW_outdir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/';
%
% % infile_pre = 'test1lay';
% % NLAY = 1;
% % DZ = 10; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% infile_pre = 'test2lay';
% NLAY = 2;
% DZ = [50; 50]; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% GIS_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
%
% % for various files: ba6, dis, uzf, lpf
% surfz_fil = [GIS_indir, 'topo.asc'];
% % for various files: ba6, uzf
% mask_fil = [GIS_indir, 'basinmask_dischargept.asc'];
%
% % for sfr
% reach_fil = [GIS_indir, 'reach_data.txt'];
% segment_fil_all = cell(3,1);
% segment_fil_all{1} = [GIS_indir, 'segment_data_4A_INFORMATION.txt'];
% segment_fil_all{2} = [GIS_indir, 'segment_data_4B_UPSTREAM.txt'];
% segment_fil_all{3} = [GIS_indir, 'segment_data_4C_DOWNSTREAM.txt'];
buffer_fil = '/home/leila/GSFLOW_Jan_2016/GSFLOW_test2_24thJan/simdir/30yrmelt/Data/GIS/segments_buffer2.asc';
% % ====================================================================
% - write to this file
% GSFLOW_dir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% lpf_file = 'test.lpf';
lpf_file = [infile_pre, '.upw'];
slashstr = '/';
% - domain dimensions, maybe already in surfz_fil and botm_fil{}?
% NLAY = 2;
% surfz_fil = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/topo.asc';
fid = fopen(surfz_fil, 'r');
D = textscan(fid, '%s %f', 6);
NSEW = D{2}(1:4);
NROW = D{2}(5);
NCOL = D{2}(6);
% - space discretization
DELR = (NSEW(3)-NSEW(4))/NCOL; % width of column [m]
DELC = (NSEW(1)-NSEW(2))/NROW; % height of row [m]
% - set TOP to surface elevation [m]
D = textscan(fid, '%f');
fclose(fid);
fprintf('Done reading...\n');
TOP = reshape(D{1}, NCOL, NROW)'; % NROW x NCOL
% get buffer info
fid = fopen(buffer_fil, 'r');
D = textscan(fid, '%s %f', 6);
NSEW = D{2}(1:4);
NROW = D{2}(5);
NCOL = D{2}(6);
D = textscan(fid, '%f');
buffer = reshape(D{1}, NCOL, NROW)'; % NROW x NCOL
fclose(fid);
% -- Base hydcond, Ss (all layers), and Sy (top layer only) on data from files
% (temp place-holder)
hydcond = ones(NROW,NCOL,NLAY)*2; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
% hydcond(:,:,2) = 0.5; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
% hydcond(:,:,2) = 0.1; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
hydcond(:,:,1) = 0.1; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
% hydcond(:,:,1) = 0.01; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
hydcond(:,:,2) = 0.01; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
Ss = ones(NROW,NCOL,NLAY)* 2e-6; % constant 2e-6 /m for Sagehen
Sy = ones(NROW,NCOL,NLAY)*0.15; % 0.08-0.15 in Sagehen (lower Sy under ridges for volcanic rocks)
WETDRY = Sy; % = Sy in Sagehen (lower Sy under ridges for volcanic rocks)
% % use buffer (and elev?)
% K = buffer; % 0: very far from stream, 5: farthest from stream in buffer, 1: closest to stream
% K(buffer==0) = 0.04; % very far from streams
% K(buffer==0 & TOP>5000) = 0.03; % very far from streams
% K(buffer>=1) = 0.5; % close to streams
% K(buffer>=2) = 0.4;
% K(buffer>=3) = 0.3;
% K(buffer>=4) = 0.15;
% K(buffer==5) = 0.08; % farthest from stream and high
% hydcond(:,:,1) = K;
% hydcond(:,:,2) = 0.01;
% use buffer (and elev?)
K = buffer; % 0: very far from stream, 5: farthest from stream in buffer, 1: closest to stream
K(buffer==0) = 0.04; % very far from streams
K(buffer==0 & TOP>5000) = 0.03; % very far from streams
% K(buffer>=1) = 0.5; % close to streams
K(buffer>=1) = 0.25; % close to streams
K(buffer>=2) = 0.15;
K(buffer>=3) = 0.08;
K(buffer>=4) = 0.08;
K(buffer==5) = 0.08; % farthest from stream and high
hydcond(:,:,1) = K;
hydcond(:,:,2) = 0.01;
% -- assumed input values
flow_filunit = 34; % make sure this matches namefile!!
hdry = 1e30; % head assigned to dry cells
nplpf = 0; % number of LPF parameters (if >0, key words would follow)
laytyp = zeros(NLAY,1); laytyp(1) = 1; % flag, top>0: "covertible", rest=0: "confined"
layave = zeros(NLAY,1); % flag, layave=1: harmonic mean for interblock transmissivity
chani = ones(NLAY,1); % flag, chani=1: constant horiz anisotropy mult factor (for each layer)
layvka = zeros(NLAY,1); % flag, layvka=0: vka is vert K; >0 is vertK/horK ratio
VKA = hydcond;
laywet = zeros(NLAY,1); laywet(1)=1; % flag, 1: wetting on for top convertible cells, 0: off for confined
fl_Tr = 1; % flag, 1 for at least 1 transient stress period (for Ss and Sy)
%Comment these three out to turn .lpf to .upw
% WETFCT = 1.001; % 1.001 for Sagehen, wetting (convert dry cells to wet)
% IWETIT = 4; % number itermations for wetting
% IHDWET = 0; % wetting scheme, 0: equation 5-32A is used: h = BOT + WETFCT (hn - BOT)
%% ------------------------------------------------------------------------
fmt1 = repmat('%2d ', 1, NLAY);
fil_lpf_0 = [GSFLOW_indir, slashstr, lpf_file];
fid = fopen(fil_lpf_0, 'wt');
fprintf(fid, '# LPF package inputs\n');
fprintf(fid, '%d %g %d ILPFCB,HDRY,NPLPF\n', flow_filunit, hdry, nplpf);
fprintf(fid, [fmt1, ' LAYTYP\n'], laytyp);
fprintf(fid, [fmt1, ' LAYAVE\n'], layave);
fprintf(fid, [fmt1, ' CHANI \n'], chani);
fprintf(fid, [fmt1, ' LAYVKA\n'], layvka);
fprintf(fid, [fmt1, ' LAYWET\n'], laywet);
% if ~isempty(find(laywet,1))
% fprintf(fid, '%g %d %d WETFCT, IWETIT, IHDWET\n', WETFCT, IWETIT, IHDWET);
% end
% -- Write HKSAT and Ss, Sy (if Tr) in .lpf file
format0 = [repmat(' %4.2f ', 1, NCOL), '\n'];
format1 = [repmat(' %4.2e ', 1, NCOL), '\n'];
% loop thru layers (different entry for each layer)
for lay = 1: NLAY
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 HY layer %d\n', lay); % horizontal hyd cond
fprintf(fid, format1, hydcond(:,:,lay)');
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 VKA layer %d\n', lay); % vertical hyd cond
fprintf(fid, format1, VKA(:,:,lay)');
if fl_Tr
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 Ss layer %d\n', lay);
fprintf(fid, format1, Ss(:,:,lay)');
if laytyp(lay) > 0 % convertible, i.e. unconfined
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 Sy layer %d\n', lay);
fprintf(fid, format1, Sy(:,:,lay)');
if laywet(lay) > 0
% fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 WETDRY layer %d\n', lay);
% fprintf(fid, format0, WETDRY(:,:,lay)');
fprintf(fid, 'CONSTANT 2.000E-6 (FREE) 0 SPECIFIC STORAGE FOR LAYER %d\n', lay);
fprintf(fid, format0, WETDRY(:,:,lay)');
end
end
end
end
fprintf(fid, '\n');
fclose(fid);
figure
for ilay = 1:NLAY
subplot(2,2,double(ilay))
X = hydcond(:,:,ilay);
m = X(X>0); m = min(m(:));
imagesc(X), %caxis([m*0.9, max(X(:))]),
cm = colormap;
% cm(1,:) = [1 1 1];
caxis([0 max(X(:))])
colormap(cm);
colorbar
title(['hydcond', num2str(ilay)]);
end
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_nam_MOD_f.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_nam_MOD_f.m
| 2,050 |
utf_8
|
786f4b54902ff3101173f4faa44a238f
|
% write_nam_MOD
% 11/20/16
function write_nam_MOD_f(GSFLOW_indir, GSFLOW_outdir, infile_pre)
% clear all, close all, fclose all;
% % - directories
% % MODFLOW input files
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW';
% % MODFLOW output files
% GSFLOW_outdir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/';
% - write to this file (within indir)
fil_nam = [infile_pre, '.nam'];
slashstr = '/';
% all assumed to be in GSFLOW_dir
fil_ba6 = [infile_pre, '.ba6'];
fil_lpf = [infile_pre, '.lpf'];
fil_pcg = [infile_pre, '.pcg'];
fil_oc = [infile_pre, '.oc'];
fil_dis = [infile_pre, '.dis'];
fil_uzf = [infile_pre, '.uzf'];
fil_sfr = [infile_pre, '.sfr'];
%% ------------------------------------------------------------------------
% -- .nam file with full paths
% fil_nam_0 = fullfile(MODtest_dir0, fil_nam);
fil_nam_0 = [GSFLOW_indir, slashstr, fil_nam];
fid = fopen(fil_nam_0, 'wt');
fprintf(fid, 'LIST 7 %s \n', [GSFLOW_outdir, slashstr, 'test.lst']); % MODFLOW output file
fprintf(fid, 'BAS6 8 %s \n', [GSFLOW_indir, slashstr, fil_ba6]);
fprintf(fid, 'LPF 11 %s \n', [GSFLOW_indir, slashstr, fil_lpf]);
fprintf(fid, 'PCG 19 %s \n', [GSFLOW_indir, slashstr, fil_pcg]);
fprintf(fid, 'OC 22 %s \n', [GSFLOW_indir, slashstr, fil_oc]);
fprintf(fid, 'DIS 10 %s \n', [GSFLOW_indir, slashstr, fil_dis]);
fprintf(fid, 'UZF 12 %s \n', [GSFLOW_indir, slashstr, fil_uzf]);
fprintf(fid, 'SFR 13 %s \n', [GSFLOW_indir, slashstr, fil_sfr]);
fprintf(fid, 'DATA(BINARY) 34 %s \n', fullfile(GSFLOW_outdir, 'test.bud')); % MODFLOW LPF output file, make sure 34 is unit listed in lpf file!!
fprintf(fid, 'DATA(BINARY) 51 %s \n', [GSFLOW_outdir, slashstr, 'testhead.dat']); % MODFLOW output file
fprintf(fid, 'DATA(BINARY) 61 %s \n', [GSFLOW_outdir, slashstr, 'uzf.dat']); % MODFLOW output file
fprintf(fid, 'DATA 52 %s \n', [GSFLOW_outdir, slashstr, 'ibound.dat']); % MODFLOW output file
fclose(fid);
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
make_sfr2_f_bu.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/make_sfr2_f_bu.m
| 16,998 |
utf_8
|
0ad0153cb953fb0dc4dfac073cf5d6b4
|
% make_sfr.m
% 1/8/16
% Leila Saberi
%
% 2 - gcng
function make_sfr2_f(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all)
% Note: assume .dis file already created!! (reads in TOP for setting STRTOP)
% % ======== TO RUN AS SCRIPT ===============================================
% clear all, close all, fclose all;
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% infile_pre = 'test2lay';
%
% % for sfr
% GIS_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
% reach_fil = [GIS_indir, 'reach_data.txt'];
% segment_fil_all = cell(3,1);
% segment_fil_all{1} = [GIS_indir, 'segment_data_4A_INFORMATION.txt'];
% segment_fil_all{2} = [GIS_indir, 'segment_data_4B_UPSTREAM.txt'];
% segment_fil_all{3} = [GIS_indir, 'segment_data_4C_DOWNSTREAM.txt'];
% % =========================================================================
%%
sfr_file = [infile_pre, '.sfr'];
% -- Refer to GSFLOW manual p.202, SFR1 manual, and SFR2 manual
% - Refer to Fig. 1 of SFR1 documentation for segment vs. reach numbering
% You need the following inputs (with corresponding structures)
% the followings are used to write item 1
fl_nstrm = -1; % flag for stream reaches, <0: include unsaturated zone below (sagehen: >0)
nsfrpar = 0; %Always Zero
nparseg = 0; %Always Zero
const = 86400.; %Conversion factor used in calculating depth for a stream reach (86400 in sagehen example)
dleak = 0.0001; %Tolerance level of stream depth used in computing leakage between each stream (0.0001 in sagehen example)
istcb1 = -1; %Flag for writing stream-aquifer leakage values (>0: file unit, <0: write to listing file)
istcb2 = 0; %Flag for writing to a seperate formatted file information on inflows&outflows
isfropt = 3; %defines input structure; saturated or non-saturated zone (1: No UZ; 3: UZ, unsat prop at start of simulation), sagehen uses 3
nstrail = 10; %Number of trailing-waive increments, incr for better mass balance (10-20 rec'd, sagehen uses 8)
isuzn = 1; %Maximum number of vertical cells used to define the unsaturated zone beneath a stream reach (for icalc=1 (Mannings for depth): use isuzn=1)
nsfrsets = 40; %Maximum number of different sets of trailing waves used to allocate arrays.
irtflg = 0; %Flag whether transient streamflow routing is active
project_name = 'TestProject'; % used to name the output file (.sfr)
% data_indir = '/home/gcng/workspace/matlab_files/GSFLOW_pre-processor/MODFLOW_scripts/sfr_final/data/';
data_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
% items
reach_data_all = importdata(reach_fil); % used to write item 2: assumes
NPER = 2; % used for item 3
% items 4a: # NSEG ICALC OUTSEG IUPSEG IPRIOR NSTRPTS FLOW RUNOFF ETSW PPTSW ROUGHCH ROUGHBK CDPTH FDPTH AWDTH BWDTH
segment_data_4A = importdata(segment_fil_all{1}); % used to write items 4a
segment_data_4B = importdata(segment_fil_all{2}); % used to write items 4b (ignored for ICALC=3 in 4a)
segment_data_4C = importdata(segment_fil_all{3}); % used to write items 4c (ignored for ICALC=3 in 4a)
% -------------------------------------------------------------------------
% In case the input text files (e.g. reach_data.txt) contain header lines (comments)
if isstruct(reach_data_all)
reach_data_all0 = reach_data_all.data;
nstrm = size(reach_data_all0,1);
if fl_nstrm < 0, nstrm = -nstrm; end
% sort rows according to increasing segment numbers
[~, ind] = sort(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')), 'ascend');
reach_data_all0 = reach_data_all0(ind,:);
nss = max(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')));
% sort rows according to increasing reach numbers
for ii = 1: nss
ind1 = find(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')) == ii);
[~, ind2] = sort(reach_data_all0(ind1,strcmp(reach_data_all.colheaders, 'IREACH')), 'ascend');
reach_data_all0(ind1,:) = reach_data_all0(ind1(ind2),:);
% renumber IREACH to start at 1 for each segment
reach_data_all0(ind1,strcmp(reach_data_all.colheaders, 'IREACH')) = [1:length(ind1)];
end
X = mat2cell(reach_data_all0, abs(nstrm), ones(size(reach_data_all0,2),1));
[KRCH,IRCH,JRCH,ISEG,IREACH,RCHLEN,STRTOP,SLOPE,STRTHICK,STRHC1,THTS,THTI,EPS,UHC] = X{:};
% -- make sure STRTOP is within 1st layer
% - read in TOP and BOTM from .dis file
dis_file = [GSFLOW_indir, '/', infile_pre, '.dis'];
fid = fopen(dis_file);
for ii = 1:2, cmt = fgets(fid); end
line0 = fgets(fid);
D = textscan(line0, '%d', 6);
NLAY = D{1}(1); NROW = D{1}(2); NCOL = D{1}(3);
NPER = D{1}(4); ITMUNI = D{1}(5); LENUNI = D{1}(6);
line0 = fgets(fid);
D = textscan(line0, '%d');
LAYCBD = D{1}; % 1xNLAY (0 if no confining layer)
line0 = fgets(fid);
D = textscan(line0, '%s %d'); DELR = D{2}; % width of column
line0 = fgets(fid);
D = textscan(line0, '%s %d'); DELC = D{2}; % height of row
TOP = nan(NROW,NCOL);
line0 = fgets(fid);
for irow = 1: NROW
line0 = fgets(fid);
D = textscan(line0, '%f');
TOP(irow,:) = D{1}(1:NCOL);
end
BOTM = nan(NROW, NCOL, NLAY);
for ilay = 1: NLAY
line0 = fgets(fid);
for irow = 1: NROW
line0 = fgets(fid);
D = textscan(line0, '%f');
BOTM(irow,:,ilay) = D{1}(1:NCOL);
end
end
fclose(fid);
% TOP for cells corresponding to reaches
TOP_RCH = nan(abs(nstrm),1);
for ii = 1:abs(nstrm), TOP_RCH(ii) = TOP(IRCH(ii),JRCH(ii)); end
% BOTM for cells corresponding to reaches
BOTM_RCH = nan(abs(nstrm),1);
for ii = 1:abs(nstrm), BOTM_RCH(ii) = BOTM(IRCH(ii),JRCH(ii),KRCH(ii)); end
% - set STRTOP to be just below TOP
STRTOP = TOP_RCH - 2;
if ~isempty(find(STRTOP-STRTHICK < BOTM_RCH,1))
fprintf('Error! STRTOP is below BOTM of the corresponding layer! Exiting...\n');
end
reach_data_all0(:,strcmp(reach_data_all.colheaders, 'STRTOP')) = STRTOP;
% -- plot stream reaches
RCH_mask = TOP;
for ii = 1:abs(nstrm), RCH_mask(IRCH(ii),JRCH(ii)) = max(TOP(:))*2; end
figure
subplot(2,2,1)
imagesc(TOP), colorbar,
cm = colormap;
cm(end,:) = [1 1 1];
caxis([min(TOP(:)) max(TOP(:))* 1.25]);
colormap(cm);
subplot(2,2,2)
imagesc(RCH_mask), colorbar,
cm = colormap;
cm(end,:) = [1 1 1];
caxis([min(TOP(:)) max(TOP(:))* 1.25]);
colormap(cm);
RCH_NUM = zeros(NROW,NCOL); SEG_NUM = zeros(NROW,NCOL);
for ii = 1:abs(nstrm), RCH_NUM(IRCH(ii),JRCH(ii)) = IREACH(ii); end
for ii = 1:abs(nstrm), SEG_NUM(IRCH(ii),JRCH(ii)) = ISEG(ii); end
figure
imagesc(RCH_NUM), colorbar,
colormap(jet(1+max(IREACH)));
caxis([-0.5 max(IREACH)+0.5])
figure
imagesc(SEG_NUM), colorbar,
colormap(jet(1+max(ISEG)));
caxis([-0.5 max(ISEG)+0.5])
% % when running as script: to visualize segments one at a time
% for j = 1: max(ISEG)
% RCH_NUM = zeros(NROW,NCOL); SEG_NUM = zeros(NROW,NCOL);
% ind = find(ISEG==j);
% for ii = ind(:)'
% RCH_NUM(IRCH(ii),JRCH(ii)) = IREACH(ii);
% SEG_NUM(IRCH(ii),JRCH(ii)) = ISEG(ii);
% end
%
% figure(100)
% imagesc(RCH_NUM), colorbar,
% colormap(jet(1+max(RCH_NUM(:))));
% caxis([-0.5 max(RCH_NUM(:))+0.5])
% title(['reaches for seg ', num2str(j)]);
% figure(101)
% imagesc(SEG_NUM), colorbar,
% colormap(jet(1+max(SEG_NUM(:))));
% caxis([-0.5 max(SEG_NUM(:))+0.5])
% title(['seg ', num2str(j)]);
% pause
% end
% -- threshold slope at minimum 0.001
ind = reach_data_all0(:,strcmp(reach_data_all.colheaders, 'SLOPE')) < 0.001;
reach_data_all0(ind,strcmp(reach_data_all.colheaders, 'SLOPE')) = 0.001;
% -- set streambed thickness (Sagehen uses constant 1m)
ind = strcmp(reach_data_all.colheaders, 'STRTHICK');
reach_data_all0(:,ind) = 1; % [m]
% -- set streambed hydraulic conductivity (Sagehen example: 5 m/d)
ind = strcmp(reach_data_all.colheaders, 'STRHC1');
reach_data_all0(:,ind) = 5;
% set streambed theta_s
ind = strcmp(reach_data_all.colheaders, 'THTS');
reach_data_all0(:,ind) = 0.35;
% set streambed initial theta
ind = strcmp(reach_data_all.colheaders, 'THTI');
reach_data_all0(:,ind) = 0.3;
% set streambed Brooks-Corey exp (sagehen example is 3.5)
ind = strcmp(reach_data_all.colheaders, 'EPS');
reach_data_all0(:,ind) = 3.5;
% set streambed unsaturated zone saturated hydraulic conductivity
% (sagehen example is 0.3 m/d)
ind = strcmp(reach_data_all.colheaders, 'UHC');
reach_data_all0(:,ind) = 0.3;
reach_data_all = reach_data_all0;
end
if isstruct(segment_data_4A)
segment_data_4A = segment_data_4A.data;
nss = size(segment_data_4A,1); %Number of stream segments
end
if isstruct(segment_data_4B)
segment_data_4B = segment_data_4B.data;
end
if isstruct(segment_data_4C)
segment_data_4C = segment_data_4C.data;
end
% if isstruct(stress_periods)
% stress_periods = stress_periods.data;
% end
% - specify only for 2 stress periods:
stress_periods = zeros(NPER, 3); % itmp, irdflg, iptflg (latter 2 are set to 0)
stress_periods(1,1) = nss;
if NPER > 1, stress_periods(2:end,1) = -1; end
% -------------------------------------------------------------------------
% First put 4A, 4B and 4C data all together in a cell array
% size(cell) = nitems x 1 x nperiods
% In this case, nitems is 3 (i.e. 4A, 4B and 4C)
nitems = 3;
nperiods = size(stress_periods, 1);
segment_data_all = cell(nitems, 1, nperiods);
segment_data_all{1, 1, 1} = segment_data_4A;
segment_data_all{2, 1, 1} = segment_data_4B;
segment_data_all{3, 1, 1} = segment_data_4C;
% -------------------------------------------------------------------------
% validate some of the input data
msg_invalidISFROPT = ['Error: ISFROPT should be set to an integer of', ...
'1, 2, 3, 4 or 5.'];
if (nstrm < 0)
if ~ismember(isfropt, [1, 2, 3, 4, 5])
error(msg_invalidISFROPT);
end
end
msg_notSupport = ['Error: %s: this variable must be zero because ', ...
'parameters are not supported in GSFLOW.'];
if (nsfrpar ~= 0)
error(msg_notSupport, 'NSFRPAR');
end
if (nparseg ~= 0)
error(msg_notSupport, 'NPARSEG');
end
% -------------------------------------------------------------------------
% Ouput file
fid = fopen([GSFLOW_indir, '/', sfr_file], 'wt');
% Write header lines (item 0)
heading = '# Streamflow-Routing (SFR7) input file.\n';
fprintf(fid, heading);
fprintf(fid, '# %s simulation -- created on %s.\n', upper(project_name), date);
% Item 1
fprintf(fid, ' %5d %5d %5d %5d %8.2f %8.4f %5d %5d', ...
nstrm, nss, nsfrpar, nparseg, const, dleak, istcb1, istcb2);
if (isfropt >= 1)
fprintf(fid, ' %5d', isfropt);
if (isfropt == 1)
fprintf(fid, ' %5d\n', irtflg);
elseif (isfropt > 1)
fprintf(fid, ' %5d %5d %5d %5d\n', nstrail, isuzn, nsfrsets, irtflg);
end
else
fprintf(fid, '\n');
end
% Item 2
if (isfropt == 1)
ncols_reach = 10;
elseif (isfropt == 2)
ncols_reach = 13;
elseif (isfropt == 3)
ncols_reach = 14;
else
ncols_reach = 6;
end
reach_data_copy = reach_data_all(:, 1:ncols_reach);
p = ncols_reach - 5;
fmt_reach = [repmat(' %5d', 1, 5), repmat(' %8.3f', 1, p), '\n'];
for istrm=1:abs(nstrm)
dummy = reach_data_copy(istrm, :);
fprintf(fid, fmt_reach, dummy);
end
% Item 3 and 4
nper = size(stress_periods, 1);
for iper=1:nper
% write item 3 to the file
dummy3 = num2cell(stress_periods(iper, :));
[itmp, irdflg, iptflg] = dummy3{:};
fprintf(fid, ' %5d %5d %5d\n', itmp, irdflg, iptflg);
if (itmp > 0)
seg_inf_4a = segment_data_all{1, 1, iper};
seg_inf_4b = segment_data_all{2, 1, iper};
seg_inf_4c = segment_data_all{3, 1, iper};
for iitmp=1:itmp % start loop over itmp (num_segments)
% write item 4a to the file
dummy4a = num2cell(seg_inf_4a(iitmp, :));
[nseg, icalc, outseg, iupseg, iprior, nstrpts, ...
flow, runoff, etsw, pptsw, roughch, roughbk, ...
cdpth, fdpth, awdth, bwdth] = dummy4a{:};
fmt = [' ', repmat(' %5d', 1, 4)];
fprintf(fid, fmt, nseg, icalc, outseg, iupseg);
if (iupseg > 0)
fprintf(fid, ' %5d', iprior);
end
if (icalc == 4)
fprintf(fid, ' %5d', nstrpts);
end
fmt = repmat(' %8.3f', 1, 4);
fprintf(fid, fmt, flow, runoff, etsw, pptsw);
if ((icalc == 1) || (icalc == 2))
fprintf(fid, ' %8.3f', roughch);
end
if (icalc == 2)
fprintf(fid, ' %8.3f', roughbk);
end
if (icalc == 3)
fmt = repmat(' %8.3f', 1, 4);
fprintf(fid, fmt, cdpth, fdpth, awdth, bwdth);
end
fprintf(fid, '\n');
% write items 4b and 4c to the file
suffixes = 'bc';
for i=1:2 % start loop over i
suffix = suffixes(i);
var_str = ['seg_inf_4', suffix];
var = eval(var_str);
dummy4bc = num2cell(var(iitmp, :));
[hcond, thickm, elevupdn, width, ...
depth, thts, thti, eps, uhc] = dummy4bc{:};
fl_no_4bc = 0;
if (ismember(isfropt, [0, 4, 5]) && (icalc <= 0))
fmt = [' ', repmat(' %8.3f', 1, 5)];
fprintf(fid, fmt, hcond, thickm, elevupdn, width, depth);
elseif (ismember(isfropt, [0, 4, 5]) && (icalc == 1))
fprintf(fid, ' %8.3f', hcond);
if (iper == 1) % only for the first period
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thickm, elevupdn, width);
if ((isfropt == 4) || (isfropt == 5))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thts, thti, eps);
end
if (isfropt == 5)
fprintf(fid, ' %8.3f', uhc);
end
elseif ((iper > 1) && (isfropt == 0))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thickm, elevupdn, width);
end
elseif (ismember(isfropt, [0, 4, 5]) && (icalc >= 2))
fprintf(fid, ' %8.3f', hcond);
if ~(ismember(isfropt, [4, 5]) && (iper > 1) && (icalc == 2))
fprintf(fid, ' %8.3f %8.3f', thickm, elevupdn);
if (ismember(isfropt, [4, 5]) && (iper == 1) && (icalc == 2))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thts, thti, eps);
if (isfropt == 5)
fprintf(fid, ' %8.3f', uhc);
end
end
end
elseif ((isfropt == 1) && (icalc <= 1))
fprintf(fid, ' %8.3f', width);
if (icalc <= 0)
fprintf(fid, ' %8.3f', depth);
end
elseif (ismember(isfropt, [2, 3]) && (icalc <= 1))
if (iper == 1)
fprintf(fid, ' %8.3f', width);
if (icalc <= 0)
fprintf(fid, ' %8.3f', depth);
end
end
else
fl_no_4bc = 1;
end
if ~fl_no_4bc
fprintf(fid, '\n');
end
end % terminate loop over i (4b and 4c, respectively)
end % terminate loop over itmp (num_segments)
end % enf if (itmp > 0)
end % terminate loop over iper (num_periods)
fclose(fid);
% -------------------------------------------------------------------------
% End of the script
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_ba6_MOD2.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_ba6_MOD2.m
| 6,007 |
utf_8
|
bfc6c92e0800b0dfe653046c07f81fc6
|
% write_ba6_MOD
% 11/17/16
function write_ba6_MOD2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil, NLAY, DZ)
% % ==== TO RUN AS SCRIPT ===================================================
% clear all, close all, fclose all;
% % - directories
% % MODFLOW input files
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% % MODFLOW output files
% GSFLOW_outdir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/';
%
% % infile_pre = 'test1lay';
% % NLAY = 1;
% % DZ = 10; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% infile_pre = 'test2lay';
% NLAY = 2;
% DZ = [50; 50]; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% GIS_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
%
% % for various files: ba6, dis, uzf, lpf
% surfz_fil = [GIS_indir, 'topo.asc'];
% % for various files: ba6, uzf
% mask_fil = [GIS_indir, 'basinmask_dischargept.asc'];
% % =========================================================================
%%
% - write to this file
% GSFLOW_dir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
ba6_file = [infile_pre, '.ba6'];
slashstr = '/';
% - domain dimensions, maybe already in surfz_fil and botm_fil{}?
% NLAY = 1;
% NROW = 50;
% NCOL = 50;
% -- IBOUND(NROW,NCOL,NLAY): <0 const head, 0 no flow, >0 variable head
% use basin mask (set IBOUND>0 within watershed, =0 outside watershed, <0 at discharge point and 2 neighboring pixels)
% mask_fil = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/basinmask_dischargept.asc';
fid = fopen(mask_fil, 'r');
D = textscan(fid, '%s %f', 6);
NSEW = D{2}(1:4);
NROW = D{2}(5);
NCOL = D{2}(6);
D = textscan(fid, '%f');
IBOUND = reshape(D{1}, NCOL, NROW)'; % NROW x NCOL
D = textscan(fid, '%s %s %f %s %f');
dischargePt_rowi = D{3};
dischargePt_coli = D{5};
fclose(fid);
% - force some cells to be active to correspond to stream reaches
IBOUND(14,33) = 1;
IBOUND(11,35) = 1;
IBOUND(12,34) = 1;
IBOUND(7,43) = 1;
% find boundary cells
IBOUNDin = IBOUND(2:end-1,2:end-1);
IBOUNDu = IBOUND(1:end-2,2:end-1); % up
IBOUNDd = IBOUND(3:end,2:end-1); % down
IBOUNDl = IBOUND(2:end-1,1:end-2); % left
IBOUNDr = IBOUND(2:end-1,3:end); % right
% - inner boundary is constant head
ind_bound = IBOUNDin==1 & (IBOUNDin-IBOUNDu==1 | IBOUNDin-IBOUNDd==1 | ...
IBOUNDin-IBOUNDl==1 | IBOUNDin-IBOUNDr==1);
% - outer boundary is constant head
% ind_bound = IBOUNDin==0 & (IBOUNDin-IBOUNDu==-1 | IBOUNDin-IBOUNDd==-1 | ...
% IBOUNDin-IBOUNDl==-1 | IBOUNDin-IBOUNDr==-1);
% -- init head: base on TOP and BOTM
% surfz_fil = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/topo.asc';
fid = fopen(surfz_fil, 'r');
D = textscan(fid, '%s %f', 6);
if ~isempty(find(NSEW ~= D{2}(1:4),1)) || NROW ~= D{2}(5) || NCOL ~= D{2}(6);
fprintf('Error!! NSEW, NROW, or NCOL in data files do not match!\n');
fprintf(' (files: %d and %d\n', mask_fil, surfz_fil);
fprintf('exiting...\n');
return
end
% - space discretization
DELR = (NSEW(3)-NSEW(4))/NCOL; % width of column [m]
DELC = (NSEW(1)-NSEW(2))/NROW; % height of row [m]
% DZ = 10; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
% DZ = [5; 5]; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
% - set TOP to surface elevation [m]
D = textscan(fid, '%f');
fclose(fid);
TOP = reshape(D{1}, NCOL, NROW)'; % NROW x NCOL
BOTM = zeros(NROW, NCOL, NLAY);
BOTM(:,:,1) = TOP-DZ(1);
for ilay = 2:NLAY
BOTM(:,:,ilay) = BOTM(:,:,ilay-1)-DZ(ilay);
end
% - make boundary cells constant head above a certain elevation
% IBOUNDin(ind_bound & TOP(2:end-1,2:end-1) > 4500) = -1;
IBOUNDin(ind_bound & TOP(2:end-1,2:end-1) > 3500) = -1;
IBOUND(2:end-1,2:end-1,1) = IBOUNDin;
% - make discharge point and neighboring cells constant head
IBOUND(dischargePt_rowi,dischargePt_coli,1) = -2; % downgrad of discharge pt
% IBOUND(dischargePt_rowi-1,dischargePt_coli,1) = -1; % neighbor points
IBOUND(dischargePt_rowi+1,dischargePt_coli,1) = -1;
IBOUND(dischargePt_rowi,dischargePt_coli+1,1) = -2; % downgrad of discharge pt
IBOUND(dischargePt_rowi-1,dischargePt_coli+1,1) = -1; % neighbor points
IBOUND(dischargePt_rowi+1,dischargePt_coli+1,1) = -1;
IBOUND(dischargePt_rowi,dischargePt_coli,1) = 1; % downgrad of discharge pt
IBOUND = repmat(IBOUND, [1 1 NLAY]);
% - initHead(NROW,NCOL,NLAY)
initHead = BOTM(:,:,1) + (TOP-BOTM(:,:,1))*0.9; % within top layer
initHead = repmat(initHead, [1, 1, NLAY]);
% - assumed values
HNOFLO = -999.99;
%% ------------------------------------------------------------------------
% -- Write ba6 file
fil_ba6_0 = [GSFLOW_indir, slashstr, ba6_file];
fmt1 = [repmat('%4d ', 1, NCOL), '\n']; % for IBOUND
fmt2 = [repmat('%7g ', 1, NCOL), '\n']; % for initHead
fid = fopen(fil_ba6_0, 'wt');
fprintf(fid, '# basic package file --- %d layers, %d rows, %d columns\n', NLAY, NROW, NCOL);
fprintf(fid, 'FREE\n');
for ilay = 1: NLAY
fprintf(fid, 'INTERNAL 1 (FREE) 3 IBOUND for layer %d \n', ilay); % 1: CNSTNT multiplier, 3: IPRN>0 to print input to list file
fprintf(fid, fmt1, IBOUND(:,:,ilay)');
end
fprintf(fid, ' %f HNOFLO\n', HNOFLO);
for ilay = 1: NLAY
fprintf(fid, 'INTERNAL 1 (FREE) 3 init head for layer %d \n', ilay); % 1: CNSTNT multiplier, 3: IPRN>0 to print input to list file
fprintf(fid, fmt2, initHead(:,:,ilay)');
end
fclose(fid);
% -- Plot basics
for ii = 1:2
if ii == 1,
X0 = IBOUND; ti0 = 'IBOUND';
elseif ii == 2
X0 = initHead; ti0 = 'init head';
end
figure
for ilay = 1:NLAY
subplot(2,2,double(ilay))
X = X0(:,:,ilay);
m = X(X>0); m = min(m(:));
imagesc(X), %caxis([m*0.9, max(X(:))]),
cm = colormap;
% cm(1,:) = [1 1 1];
colormap(cm);
colorbar
title([ti0, ' lay', num2str(ilay)]);
end
end
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_OC_PCG_MOD_f.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_OC_PCG_MOD_f.m
| 2,481 |
utf_8
|
f551b71b3d0abcd9c4944b5d685e002b
|
% write_OC_PCG_MOD.m
% 11/20/16
function write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr)
% clear all, close all, fclose all;
% - write to this file
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
fil_pcg = [infile_pre, '.pcg'];
fil_oc = [infile_pre, '.oc'];
slashstr = '/';
% -- shoud match .dis
NPER = 2; % 1 SS then 1 transient
PERLEN = [1; perlen_tr]; % 2 periods: 1-day steady-state and multi-day transient
NSTP = PERLEN;
% -- pcg and oc files are not changed with this script
% fil_pcg_0 = fullfile(MODtest_dir0, fil_pcg);
fil_pcg_0 = [GSFLOW_indir, slashstr, fil_pcg];
fid = fopen(fil_pcg_0, 'wt');
% fprintf(fid, '# Preconditioned conjugate-gradient package\n');
% fprintf(fid, ' 50 30 1 MXITER, ITER1, NPCOND\n');
% fprintf(fid, ' 0000.001 .001 1. 2 1 1 1.00\n');
% fprintf(fid, ' HCLOSE, RCLOSE, RELAX, NBPOL, IPRPCG, MUTPCG damp\n');
% % sagehen example:
% fprintf(fid, '# Preconditioned conjugate-gradient package\n');
% fprintf(fid, ' 1000 450 1 MXITER, ITER1, NPCOND\n');
% fprintf(fid, ' 0.001 0.08 1.0 2 1 0 -0.05 0.70\n');
% fprintf(fid, ' HCLOSE, RCLOSE, RELAX, NBPOL, IPRPCG, MUTPCG damp\n');
% sagehen example:
fprintf(fid, '# Preconditioned conjugate-gradient package\n');
fprintf(fid, ' 1000 450 1 MXITER, ITER1, NPCOND\n');
fprintf(fid, ' 0.001 0.08 1.0 2 1 0 -0.05 0.70\n');
fprintf(fid, ' HCLOSE, RCLOSE, RELAX, NBPOL, IPRPCG, MUTPCG damp\n');
fclose(fid);
% fil_oc_0 = (MODtest_dir0, fil_oc);
% "PRINT": to listing file
% "SAVE": to file with unit number in name file
fil_oc_0 = [GSFLOW_indir, slashstr, fil_oc];
fid = fopen(fil_oc_0, 'wt');
fprintf(fid, 'HEAD PRINT FORMAT 20\n');
fprintf(fid, 'HEAD SAVE UNIT 51\n');
fprintf(fid, 'COMPACT BUDGET AUX\n');
fprintf(fid, 'IBOUND SAVE UNIT 52\n');
for per_i = 1:NPER
for stp_i = 1:30:NSTP(per_i)
fprintf(fid, 'PERIOD %d STEP %d\n', per_i, stp_i);
if stp_i == NSTP(per_i) % only at end of stress period
fprintf(fid, ' PRINT HEAD\n');
fprintf(fid, ' SAVE IBOUND\n');
fprintf(fid, ' PRINT BUDGET\n');
end
fprintf(fid, ' SAVE HEAD\n');
fprintf(fid, ' SAVE BUDGET\n');
end
end
fclose(fid);
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_dis_MOD2_f_ok.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_dis_MOD2_f_ok.m
| 5,215 |
utf_8
|
742208d6af6018bc30137be25b31f571
|
% write_dis_MOD (for 3D domains)
% 11/17/16
%
% v1 - 11/30/16 start to include GIS data for Chimborazo's Gavilan Machay
% watershed; topo.asc for surface elevation (fill in bottom elevation
% based on uniform thickness of single aquifer)
function write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ)
% % ==== TO RUN AS SCRIPT ===================================================
% % - directories
% % MODFLOW input files
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% % MODFLOW output files
% GSFLOW_outdir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/';
%
% % infile_pre = 'test1lay';
% % NLAY = 1;
% % DZ = 10; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% infile_pre = 'test2lay';
% NLAY = 2;
% DZ = [50; 50]; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
%
% GIS_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
%
% % for various files: ba6, dis, uzf, lpf
% surfz_fil = [GIS_indir, 'topo.asc'];
% % for various files: ba6, uzf
% mask_fil = [GIS_indir, 'basinmask_dischargept.asc'];
% % =========================================================================
% %%
% clear all, close all, fclose all;
% - write to this file
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
dis_file = [infile_pre, '.dis'];
% - read in this file for surface elevation (for TOP(NROW,NCOL))
% surfz_fil = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/topo.asc';
% - read in this file for elevation of layer bottoms (for BOTM(NROW,NCOL,NLAY))
% (layer 1 is top layer)
botmz_fil = '';
% - domain dimensions, maybe already in surfz_fil and botm_fil{}?
% NLAY = 1;
% NROW = 1058;
% NCOL = 1996;
% % - domain boundary (UTM zone 17S, outer boundaries)
% north = 9841200;
% south = 9835900;
% east = 751500;
% west = 741500;
% % - space discretization
% DELR = (east-west)/NCOL; % width of column [m]
% DELC = (north-south)/NROW; % height of row [m]
% DZ = 10; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
% DZ = [5; 5]; % [NLAYx1] ***temporary: constant 10m thick single aquifer (consider 2-layer?)
% - time discretization
PERLEN = [1; 365]; % 2 periods: 1-day steady-state and multi-day transient
comment1 = '# test file for Gavilan Machay';
comment2 = '# test file';
% - The following will be assumed:
LAYCBD = zeros(NLAY,1); % no confining layer below layer
ITMUNI = 4; % [d]
LENUNI = 2; % [m]
NPER = 2; % 1 SS then 1 transient
NSTP = PERLEN; TSMULT = 1; % must have daily time step to correspond with PRMS
SsTr_flag = ['ss'; 'tr'];
%% ------------------------------------------------------------------------
% -- Read in data from files
fid = fopen(surfz_fil, 'r');
D = textscan(fid, '%s %f', 6);
NSEW = D{2}(1:4);
NROW = D{2}(5);
NCOL = D{2}(6);
% - space discretization
DELR = (NSEW(3)-NSEW(4))/NCOL; % width of column [m]
DELC = (NSEW(1)-NSEW(2))/NROW; % height of row [m]
% - set TOP to surface elevation [m]
D = textscan(fid, '%f');
fclose(fid);
fprintf('Done reading...\n');
TOP = reshape(D{1}, NCOL, NROW)'; % NROW x NCOL
BOTM = zeros(NROW, NCOL, NLAY);
BOTM(:,:,1) = TOP-DZ(1);
for ilay = 2:NLAY
BOTM(:,:,ilay) = BOTM(:,:,ilay-1)-DZ(ilay);
end
% -- Discretization file:
fmt1 = [repmat('%4d ', 1, NCOL), '\n']; %
fmt2 = [repmat('%10g ', 1, NCOL), '\n']; %
fid = fopen([GSFLOW_indir, '/', dis_file], 'wt');
fmt3 = [repmat(' %d', 1, NLAY), '\n']; % for LAYCBD
fprintf(fid, '%s\n', comment1);
fprintf(fid, '%s\n', comment2);
fprintf(fid, ' %d %d %d %d %d %d ', NLAY, NROW, NCOL, NPER, ITMUNI, LENUNI);
fprintf(fid, ' NLAY,NROW,NCOL,NPER,ITMUNI,LENUNI\n');
fprintf(fid, fmt3, LAYCBD);
fprintf(fid, 'CONSTANT %14g DELR\n', DELR);
fprintf(fid, 'CONSTANT %14g DELC\n', DELC);
fprintf(fid, 'INTERNAL 1.0 (FREE) 0 TOP ELEVATION OF LAYER 1 \n');
fprintf(fid, fmt2, TOP');
for ii = 1: NLAY
fprintf(fid, 'INTERNAL 1.0 (FREE) 0 BOTM ELEVATION OF LAYER %d \n', ii);
fprintf(fid, fmt2, BOTM(:,:,ii)');
end
for ii = 1: NPER
fprintf(fid, ' %g %d %g %c%c PERLEN, NSTP, TSMULT, Ss/Tr (stress period %4d)\n', ...
PERLEN(ii), NSTP(ii), TSMULT, SsTr_flag(ii,:), ii);
end
fclose(fid);
% -- plot domain discretization
figure
subplot(2,2,1)
imagesc(TOP),
m = TOP(TOP>0); m = min(m(:));
caxis([m*0.9, max(TOP(:))]),
cm = colormap;
cm(1,:) = [1 1 1];
colormap(cm);
colorbar
title('TOP')
for ilay = 1:NLAY
subplot(2,2,1+double(ilay))
m = BOTM(BOTM>0); m = min(m(:));
imagesc(BOTM(:,:,ilay)), caxis([m*0.9, max(BOTM(:))]),
cm = colormap;
cm(1,:) = [1 1 1];
colormap(cm);
colorbar
title(['BOTM', ' lay', num2str(ilay)]);
end
figure
for ilay = 1:NLAY
subplot(2,2,double(ilay))
if ilay == 1
X = TOP - BOTM(:,:,ilay);
else
X = BOTM(:,:,ilay-1)-BOTM(:,:,ilay);
end
% m = X(X>0); m = min(m(:));
imagesc(X), %caxis([m*0.9, max(X(:))]),
cm = colormap;
cm(1,:) = [1 1 1];
colormap(cm);
colorbar
title(['DZ', ' lay', num2str(ilay)]);
end
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_nam_MOD_f2_NWT.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_nam_MOD_f2_NWT.m
| 2,638 |
utf_8
|
3261d3b51994f10674a7eb18c50f9eaa
|
% write_nam_MOD
% 11/20/16
function write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in)
% v2 - allows for restart option (init)
% _170916: from Leila's email, her work from spring 2017, incorporates
% MODFLOW-NWT
%
% clear all, close all, fclose all;
% % - directories
% % MODFLOW input filesfil_res_in
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW';
% % MODFLOW output files
% GSFLOW_outdir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/';
% - write to this file (within indir)
fil_nam = [infile_pre, '.nam'];
slashstr = '/';
% all assumed to be in GSFLOW_dir
fil_ba6 = [infile_pre, '.ba6'];
fil_lpf = [infile_pre, '.lpf'];
fil_pcg = [infile_pre, '.pcg'];
fil_oc = [infile_pre, '.oc'];
fil_dis = [infile_pre, '.dis'];
fil_uzf = [infile_pre, '.uzf'];
fil_sfr = [infile_pre, '.sfr'];
fil_nwt = [infile_pre, '.nwt'];
fil_upw = [infile_pre, '.upw'];
fil_res_out = [infile_pre, '.out']; % write to restart file
%% ------------------------------------------------------------------------
% -- .nam file with full paths
% fil_nam_0 = fullfile(MODtest_dir0, fil_nam);
fil_nam_0 = [GSFLOW_indir, slashstr, fil_nam];
fid = fopen(fil_nam_0, 'wt');
fprintf(fid, 'LIST 7 %s \n', [GSFLOW_outdir, slashstr, 'test.lst']); % MODFLOW output file
fprintf(fid, 'BAS6 8 %s \n', [GSFLOW_indir, slashstr, fil_ba6]);
fprintf(fid, 'LPF 11 %s \n', [GSFLOW_indir, slashstr, fil_lpf]);
fprintf(fid, 'PCG 19 %s \n', [GSFLOW_indir, slashstr, fil_pcg]);
fprintf(fid, 'OC 22 %s \n', [GSFLOW_indir, slashstr, fil_oc]);
fprintf(fid, 'DIS 10 %s \n', [GSFLOW_indir, slashstr, fil_dis]);
fprintf(fid, 'UZF 12 %s \n', [GSFLOW_indir, slashstr, fil_uzf]);
fprintf(fid, 'SFR 13 %s \n', [GSFLOW_indir, slashstr, fil_sfr]);
fprintf(fid, 'NWT 17 %s \n', [GSFLOW_indir, slashstr, fil_nwt]);
fprintf(fid, 'UPW 25 %s \n', [GSFLOW_indir, slashstr, fil_upw]);
if ~isempty(fil_res_in)
fprintf(fid, 'IRED 90 %s \n', fil_res_in);
end
fprintf(fid, 'IWRT 91 %s \n', [GSFLOW_outdir, slashstr, fil_res_out]);
fprintf(fid, 'DATA(BINARY) 34 %s \n', fullfile(GSFLOW_outdir, 'test.bud')); % MODFLOW LPF output file, make sure 34 is unit listed in lpf file!!
fprintf(fid, 'DATA(BINARY) 51 %s \n', [GSFLOW_outdir, slashstr, 'testhead.dat']); % MODFLOW output file
fprintf(fid, 'DATA(BINARY) 61 %s \n', [GSFLOW_outdir, slashstr, 'uzf.dat']); % MODFLOW output file
fprintf(fid, 'DATA 52 %s \n', [GSFLOW_outdir, slashstr, 'ibound.dat']); % MODFLOW output file
fclose(fid);
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
write_lpf_MOD2_f.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/write_lpf_MOD2_f.m
| 3,800 |
utf_8
|
a0750e358a3de9072fd4e6c5a2a92b06
|
% write_lpf_MOD
% 11/17/16
function write_lpf_MOD2_f(GSFLOW_dir, infile_pre, surfz_fil, NLAY)
% clear all, close all, fclose all;
% - write to this file
% GSFLOW_dir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% lpf_file = 'test.lpf';
lpf_file = [infile_pre, '.lpf'];
slashstr = '/';
% - domain dimensions, maybe already in surfz_fil and botm_fil{}?
% NLAY = 2;
% surfz_fil = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/topo.asc';
fid = fopen(surfz_fil, 'r');
D = textscan(fid, '%s %f', 6);
NSEW = D{2}(1:4);
NROW = D{2}(5);
NCOL = D{2}(6);
fclose(fid);
% -- Base hydcond, Ss (all layers), and Sy (top layer only) on data from files
% (temp place-holder)
hydcond = ones(NROW,NCOL,NLAY)*4; % m/d (Sagehen: 0.026 to 0.39 m/d, lower K under ridges for volcanic rocks)
Ss = ones(NROW,NCOL,NLAY)* 2e-6; % constant 2e-6 /m for Sagehen
Sy = ones(NROW,NCOL,NLAY)*0.15; % 0.08-0.15 in Sagehen (lower Sy under ridges for volcanic rocks)
WETDRY = Sy; % = Sy in Sagehen (lower Sy under ridges for volcanic rocks)
% -- assumed input values
flow_filunit = 34; % make sure this matches namefile!!
hdry = 1e30; % head assigned to dry cells
nplpf = 0; % number of LPF parameters (if >0, key words would follow)
laytyp = zeros(NLAY,1); laytyp(1) = 1; % flag, top>0: "covertible", rest=0: "confined"
layave = zeros(NLAY,1); % flag, layave=1: harmonic mean for interblock transmissivity
chani = ones(NLAY,1); % flag, chani=1: constant horiz anisotropy mult factor (for each layer)
layvka = zeros(NLAY,1); % flag, layvka=0: vka is vert K; >0 is vertK/horK ratio
VKA = hydcond;
laywet = zeros(NLAY,1); laywet(1)=1; % flag, 1: wetting on for top convertible cells, 0: off for confined
fl_Tr = 1; % flag, 1 for at least 1 transient stress period (for Ss and Sy)
WETFCT = 1.001; % 1.001 for Sagehen, wetting (convert dry cells to wet)
IWETIT = 4; % number itermations for wetting
IHDWET = 0; % wetting scheme, 0: equation 5-32A is used: h = BOT + WETFCT (hn - BOT)
%% ------------------------------------------------------------------------
fmt1 = repmat('%2d ', 1, NLAY);
fil_lpf_0 = [GSFLOW_dir, slashstr, lpf_file];
fid = fopen(fil_lpf_0, 'wt');
fprintf(fid, '# LPF package inputs\n');
fprintf(fid, '%d %g %d ILPFCB,HDRY,NPLPF\n', flow_filunit, hdry, nplpf);
fprintf(fid, [fmt1, ' LAYTYP\n'], laytyp);
fprintf(fid, [fmt1, ' LAYAVE\n'], layave);
fprintf(fid, [fmt1, ' CHANI \n'], chani);
fprintf(fid, [fmt1, ' LAYVKA\n'], layvka);
fprintf(fid, [fmt1, ' LAYWET\n'], laywet);
if ~isempty(find(laywet,1))
fprintf(fid, '%g %d %d WETFCT, IWETIT, IHDWET\n', WETFCT, IWETIT, IHDWET);
end
% -- Write HKSAT and Ss, Sy (if Tr) in .lpf file
format0 = [repmat(' %4.2f ', 1, NCOL), '\n'];
format1 = [repmat(' %4.2e ', 1, NCOL), '\n'];
% loop thru layers (different entry for each layer)
for lay = 1: NLAY
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 HY layer %d\n', lay); % horizontal hyd cond
fprintf(fid, format0, hydcond(:,:,lay)');
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 VKA layer %d\n', lay); % vertical hyd cond
fprintf(fid, format0, VKA(:,:,lay)');
if fl_Tr
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 Ss layer %d\n', lay);
fprintf(fid, format1, Ss(:,:,lay)');
if laytyp(lay) > 0 % convertible, i.e. unconfined
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 Sy layer %d\n', lay);
fprintf(fid, format1, Sy(:,:,lay)');
if laywet(lay) > 0
fprintf(fid, 'INTERNAL 1.000E-00 (FREE) 0 WETDRY layer %d\n', lay);
fprintf(fid, format0, WETDRY(:,:,lay)');
end
end
end
end
fprintf(fid, '\n');
fclose(fid);
|
github
|
UMN-Hydro/GSFLOW_pre-processor-master
|
make_sfr2_f_ok.m
|
.m
|
GSFLOW_pre-processor-master/matlab_scripts/MODFLOW_scripts/make_sfr2_f_ok.m
| 16,998 |
utf_8
|
0ad0153cb953fb0dc4dfac073cf5d6b4
|
% make_sfr.m
% 1/8/16
% Leila Saberi
%
% 2 - gcng
function make_sfr2_f(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all)
% Note: assume .dis file already created!! (reads in TOP for setting STRTOP)
% % ======== TO RUN AS SCRIPT ===============================================
% clear all, close all, fclose all;
% GSFLOW_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/GSFLOW/inputs/MODFLOW/';
% infile_pre = 'test2lay';
%
% % for sfr
% GIS_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
% reach_fil = [GIS_indir, 'reach_data.txt'];
% segment_fil_all = cell(3,1);
% segment_fil_all{1} = [GIS_indir, 'segment_data_4A_INFORMATION.txt'];
% segment_fil_all{2} = [GIS_indir, 'segment_data_4B_UPSTREAM.txt'];
% segment_fil_all{3} = [GIS_indir, 'segment_data_4C_DOWNSTREAM.txt'];
% % =========================================================================
%%
sfr_file = [infile_pre, '.sfr'];
% -- Refer to GSFLOW manual p.202, SFR1 manual, and SFR2 manual
% - Refer to Fig. 1 of SFR1 documentation for segment vs. reach numbering
% You need the following inputs (with corresponding structures)
% the followings are used to write item 1
fl_nstrm = -1; % flag for stream reaches, <0: include unsaturated zone below (sagehen: >0)
nsfrpar = 0; %Always Zero
nparseg = 0; %Always Zero
const = 86400.; %Conversion factor used in calculating depth for a stream reach (86400 in sagehen example)
dleak = 0.0001; %Tolerance level of stream depth used in computing leakage between each stream (0.0001 in sagehen example)
istcb1 = -1; %Flag for writing stream-aquifer leakage values (>0: file unit, <0: write to listing file)
istcb2 = 0; %Flag for writing to a seperate formatted file information on inflows&outflows
isfropt = 3; %defines input structure; saturated or non-saturated zone (1: No UZ; 3: UZ, unsat prop at start of simulation), sagehen uses 3
nstrail = 10; %Number of trailing-waive increments, incr for better mass balance (10-20 rec'd, sagehen uses 8)
isuzn = 1; %Maximum number of vertical cells used to define the unsaturated zone beneath a stream reach (for icalc=1 (Mannings for depth): use isuzn=1)
nsfrsets = 40; %Maximum number of different sets of trailing waves used to allocate arrays.
irtflg = 0; %Flag whether transient streamflow routing is active
project_name = 'TestProject'; % used to name the output file (.sfr)
% data_indir = '/home/gcng/workspace/matlab_files/GSFLOW_pre-processor/MODFLOW_scripts/sfr_final/data/';
data_indir = '/home/gcng/workspace/ProjectFiles/AndesWaterResources/Data/GIS/';
% items
reach_data_all = importdata(reach_fil); % used to write item 2: assumes
NPER = 2; % used for item 3
% items 4a: # NSEG ICALC OUTSEG IUPSEG IPRIOR NSTRPTS FLOW RUNOFF ETSW PPTSW ROUGHCH ROUGHBK CDPTH FDPTH AWDTH BWDTH
segment_data_4A = importdata(segment_fil_all{1}); % used to write items 4a
segment_data_4B = importdata(segment_fil_all{2}); % used to write items 4b (ignored for ICALC=3 in 4a)
segment_data_4C = importdata(segment_fil_all{3}); % used to write items 4c (ignored for ICALC=3 in 4a)
% -------------------------------------------------------------------------
% In case the input text files (e.g. reach_data.txt) contain header lines (comments)
if isstruct(reach_data_all)
reach_data_all0 = reach_data_all.data;
nstrm = size(reach_data_all0,1);
if fl_nstrm < 0, nstrm = -nstrm; end
% sort rows according to increasing segment numbers
[~, ind] = sort(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')), 'ascend');
reach_data_all0 = reach_data_all0(ind,:);
nss = max(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')));
% sort rows according to increasing reach numbers
for ii = 1: nss
ind1 = find(reach_data_all0(:,strcmp(reach_data_all.colheaders, 'ISEG')) == ii);
[~, ind2] = sort(reach_data_all0(ind1,strcmp(reach_data_all.colheaders, 'IREACH')), 'ascend');
reach_data_all0(ind1,:) = reach_data_all0(ind1(ind2),:);
% renumber IREACH to start at 1 for each segment
reach_data_all0(ind1,strcmp(reach_data_all.colheaders, 'IREACH')) = [1:length(ind1)];
end
X = mat2cell(reach_data_all0, abs(nstrm), ones(size(reach_data_all0,2),1));
[KRCH,IRCH,JRCH,ISEG,IREACH,RCHLEN,STRTOP,SLOPE,STRTHICK,STRHC1,THTS,THTI,EPS,UHC] = X{:};
% -- make sure STRTOP is within 1st layer
% - read in TOP and BOTM from .dis file
dis_file = [GSFLOW_indir, '/', infile_pre, '.dis'];
fid = fopen(dis_file);
for ii = 1:2, cmt = fgets(fid); end
line0 = fgets(fid);
D = textscan(line0, '%d', 6);
NLAY = D{1}(1); NROW = D{1}(2); NCOL = D{1}(3);
NPER = D{1}(4); ITMUNI = D{1}(5); LENUNI = D{1}(6);
line0 = fgets(fid);
D = textscan(line0, '%d');
LAYCBD = D{1}; % 1xNLAY (0 if no confining layer)
line0 = fgets(fid);
D = textscan(line0, '%s %d'); DELR = D{2}; % width of column
line0 = fgets(fid);
D = textscan(line0, '%s %d'); DELC = D{2}; % height of row
TOP = nan(NROW,NCOL);
line0 = fgets(fid);
for irow = 1: NROW
line0 = fgets(fid);
D = textscan(line0, '%f');
TOP(irow,:) = D{1}(1:NCOL);
end
BOTM = nan(NROW, NCOL, NLAY);
for ilay = 1: NLAY
line0 = fgets(fid);
for irow = 1: NROW
line0 = fgets(fid);
D = textscan(line0, '%f');
BOTM(irow,:,ilay) = D{1}(1:NCOL);
end
end
fclose(fid);
% TOP for cells corresponding to reaches
TOP_RCH = nan(abs(nstrm),1);
for ii = 1:abs(nstrm), TOP_RCH(ii) = TOP(IRCH(ii),JRCH(ii)); end
% BOTM for cells corresponding to reaches
BOTM_RCH = nan(abs(nstrm),1);
for ii = 1:abs(nstrm), BOTM_RCH(ii) = BOTM(IRCH(ii),JRCH(ii),KRCH(ii)); end
% - set STRTOP to be just below TOP
STRTOP = TOP_RCH - 2;
if ~isempty(find(STRTOP-STRTHICK < BOTM_RCH,1))
fprintf('Error! STRTOP is below BOTM of the corresponding layer! Exiting...\n');
end
reach_data_all0(:,strcmp(reach_data_all.colheaders, 'STRTOP')) = STRTOP;
% -- plot stream reaches
RCH_mask = TOP;
for ii = 1:abs(nstrm), RCH_mask(IRCH(ii),JRCH(ii)) = max(TOP(:))*2; end
figure
subplot(2,2,1)
imagesc(TOP), colorbar,
cm = colormap;
cm(end,:) = [1 1 1];
caxis([min(TOP(:)) max(TOP(:))* 1.25]);
colormap(cm);
subplot(2,2,2)
imagesc(RCH_mask), colorbar,
cm = colormap;
cm(end,:) = [1 1 1];
caxis([min(TOP(:)) max(TOP(:))* 1.25]);
colormap(cm);
RCH_NUM = zeros(NROW,NCOL); SEG_NUM = zeros(NROW,NCOL);
for ii = 1:abs(nstrm), RCH_NUM(IRCH(ii),JRCH(ii)) = IREACH(ii); end
for ii = 1:abs(nstrm), SEG_NUM(IRCH(ii),JRCH(ii)) = ISEG(ii); end
figure
imagesc(RCH_NUM), colorbar,
colormap(jet(1+max(IREACH)));
caxis([-0.5 max(IREACH)+0.5])
figure
imagesc(SEG_NUM), colorbar,
colormap(jet(1+max(ISEG)));
caxis([-0.5 max(ISEG)+0.5])
% % when running as script: to visualize segments one at a time
% for j = 1: max(ISEG)
% RCH_NUM = zeros(NROW,NCOL); SEG_NUM = zeros(NROW,NCOL);
% ind = find(ISEG==j);
% for ii = ind(:)'
% RCH_NUM(IRCH(ii),JRCH(ii)) = IREACH(ii);
% SEG_NUM(IRCH(ii),JRCH(ii)) = ISEG(ii);
% end
%
% figure(100)
% imagesc(RCH_NUM), colorbar,
% colormap(jet(1+max(RCH_NUM(:))));
% caxis([-0.5 max(RCH_NUM(:))+0.5])
% title(['reaches for seg ', num2str(j)]);
% figure(101)
% imagesc(SEG_NUM), colorbar,
% colormap(jet(1+max(SEG_NUM(:))));
% caxis([-0.5 max(SEG_NUM(:))+0.5])
% title(['seg ', num2str(j)]);
% pause
% end
% -- threshold slope at minimum 0.001
ind = reach_data_all0(:,strcmp(reach_data_all.colheaders, 'SLOPE')) < 0.001;
reach_data_all0(ind,strcmp(reach_data_all.colheaders, 'SLOPE')) = 0.001;
% -- set streambed thickness (Sagehen uses constant 1m)
ind = strcmp(reach_data_all.colheaders, 'STRTHICK');
reach_data_all0(:,ind) = 1; % [m]
% -- set streambed hydraulic conductivity (Sagehen example: 5 m/d)
ind = strcmp(reach_data_all.colheaders, 'STRHC1');
reach_data_all0(:,ind) = 5;
% set streambed theta_s
ind = strcmp(reach_data_all.colheaders, 'THTS');
reach_data_all0(:,ind) = 0.35;
% set streambed initial theta
ind = strcmp(reach_data_all.colheaders, 'THTI');
reach_data_all0(:,ind) = 0.3;
% set streambed Brooks-Corey exp (sagehen example is 3.5)
ind = strcmp(reach_data_all.colheaders, 'EPS');
reach_data_all0(:,ind) = 3.5;
% set streambed unsaturated zone saturated hydraulic conductivity
% (sagehen example is 0.3 m/d)
ind = strcmp(reach_data_all.colheaders, 'UHC');
reach_data_all0(:,ind) = 0.3;
reach_data_all = reach_data_all0;
end
if isstruct(segment_data_4A)
segment_data_4A = segment_data_4A.data;
nss = size(segment_data_4A,1); %Number of stream segments
end
if isstruct(segment_data_4B)
segment_data_4B = segment_data_4B.data;
end
if isstruct(segment_data_4C)
segment_data_4C = segment_data_4C.data;
end
% if isstruct(stress_periods)
% stress_periods = stress_periods.data;
% end
% - specify only for 2 stress periods:
stress_periods = zeros(NPER, 3); % itmp, irdflg, iptflg (latter 2 are set to 0)
stress_periods(1,1) = nss;
if NPER > 1, stress_periods(2:end,1) = -1; end
% -------------------------------------------------------------------------
% First put 4A, 4B and 4C data all together in a cell array
% size(cell) = nitems x 1 x nperiods
% In this case, nitems is 3 (i.e. 4A, 4B and 4C)
nitems = 3;
nperiods = size(stress_periods, 1);
segment_data_all = cell(nitems, 1, nperiods);
segment_data_all{1, 1, 1} = segment_data_4A;
segment_data_all{2, 1, 1} = segment_data_4B;
segment_data_all{3, 1, 1} = segment_data_4C;
% -------------------------------------------------------------------------
% validate some of the input data
msg_invalidISFROPT = ['Error: ISFROPT should be set to an integer of', ...
'1, 2, 3, 4 or 5.'];
if (nstrm < 0)
if ~ismember(isfropt, [1, 2, 3, 4, 5])
error(msg_invalidISFROPT);
end
end
msg_notSupport = ['Error: %s: this variable must be zero because ', ...
'parameters are not supported in GSFLOW.'];
if (nsfrpar ~= 0)
error(msg_notSupport, 'NSFRPAR');
end
if (nparseg ~= 0)
error(msg_notSupport, 'NPARSEG');
end
% -------------------------------------------------------------------------
% Ouput file
fid = fopen([GSFLOW_indir, '/', sfr_file], 'wt');
% Write header lines (item 0)
heading = '# Streamflow-Routing (SFR7) input file.\n';
fprintf(fid, heading);
fprintf(fid, '# %s simulation -- created on %s.\n', upper(project_name), date);
% Item 1
fprintf(fid, ' %5d %5d %5d %5d %8.2f %8.4f %5d %5d', ...
nstrm, nss, nsfrpar, nparseg, const, dleak, istcb1, istcb2);
if (isfropt >= 1)
fprintf(fid, ' %5d', isfropt);
if (isfropt == 1)
fprintf(fid, ' %5d\n', irtflg);
elseif (isfropt > 1)
fprintf(fid, ' %5d %5d %5d %5d\n', nstrail, isuzn, nsfrsets, irtflg);
end
else
fprintf(fid, '\n');
end
% Item 2
if (isfropt == 1)
ncols_reach = 10;
elseif (isfropt == 2)
ncols_reach = 13;
elseif (isfropt == 3)
ncols_reach = 14;
else
ncols_reach = 6;
end
reach_data_copy = reach_data_all(:, 1:ncols_reach);
p = ncols_reach - 5;
fmt_reach = [repmat(' %5d', 1, 5), repmat(' %8.3f', 1, p), '\n'];
for istrm=1:abs(nstrm)
dummy = reach_data_copy(istrm, :);
fprintf(fid, fmt_reach, dummy);
end
% Item 3 and 4
nper = size(stress_periods, 1);
for iper=1:nper
% write item 3 to the file
dummy3 = num2cell(stress_periods(iper, :));
[itmp, irdflg, iptflg] = dummy3{:};
fprintf(fid, ' %5d %5d %5d\n', itmp, irdflg, iptflg);
if (itmp > 0)
seg_inf_4a = segment_data_all{1, 1, iper};
seg_inf_4b = segment_data_all{2, 1, iper};
seg_inf_4c = segment_data_all{3, 1, iper};
for iitmp=1:itmp % start loop over itmp (num_segments)
% write item 4a to the file
dummy4a = num2cell(seg_inf_4a(iitmp, :));
[nseg, icalc, outseg, iupseg, iprior, nstrpts, ...
flow, runoff, etsw, pptsw, roughch, roughbk, ...
cdpth, fdpth, awdth, bwdth] = dummy4a{:};
fmt = [' ', repmat(' %5d', 1, 4)];
fprintf(fid, fmt, nseg, icalc, outseg, iupseg);
if (iupseg > 0)
fprintf(fid, ' %5d', iprior);
end
if (icalc == 4)
fprintf(fid, ' %5d', nstrpts);
end
fmt = repmat(' %8.3f', 1, 4);
fprintf(fid, fmt, flow, runoff, etsw, pptsw);
if ((icalc == 1) || (icalc == 2))
fprintf(fid, ' %8.3f', roughch);
end
if (icalc == 2)
fprintf(fid, ' %8.3f', roughbk);
end
if (icalc == 3)
fmt = repmat(' %8.3f', 1, 4);
fprintf(fid, fmt, cdpth, fdpth, awdth, bwdth);
end
fprintf(fid, '\n');
% write items 4b and 4c to the file
suffixes = 'bc';
for i=1:2 % start loop over i
suffix = suffixes(i);
var_str = ['seg_inf_4', suffix];
var = eval(var_str);
dummy4bc = num2cell(var(iitmp, :));
[hcond, thickm, elevupdn, width, ...
depth, thts, thti, eps, uhc] = dummy4bc{:};
fl_no_4bc = 0;
if (ismember(isfropt, [0, 4, 5]) && (icalc <= 0))
fmt = [' ', repmat(' %8.3f', 1, 5)];
fprintf(fid, fmt, hcond, thickm, elevupdn, width, depth);
elseif (ismember(isfropt, [0, 4, 5]) && (icalc == 1))
fprintf(fid, ' %8.3f', hcond);
if (iper == 1) % only for the first period
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thickm, elevupdn, width);
if ((isfropt == 4) || (isfropt == 5))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thts, thti, eps);
end
if (isfropt == 5)
fprintf(fid, ' %8.3f', uhc);
end
elseif ((iper > 1) && (isfropt == 0))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thickm, elevupdn, width);
end
elseif (ismember(isfropt, [0, 4, 5]) && (icalc >= 2))
fprintf(fid, ' %8.3f', hcond);
if ~(ismember(isfropt, [4, 5]) && (iper > 1) && (icalc == 2))
fprintf(fid, ' %8.3f %8.3f', thickm, elevupdn);
if (ismember(isfropt, [4, 5]) && (iper == 1) && (icalc == 2))
fmt = repmat(' %8.3f', 1, 3);
fprintf(fid, fmt, thts, thti, eps);
if (isfropt == 5)
fprintf(fid, ' %8.3f', uhc);
end
end
end
elseif ((isfropt == 1) && (icalc <= 1))
fprintf(fid, ' %8.3f', width);
if (icalc <= 0)
fprintf(fid, ' %8.3f', depth);
end
elseif (ismember(isfropt, [2, 3]) && (icalc <= 1))
if (iper == 1)
fprintf(fid, ' %8.3f', width);
if (icalc <= 0)
fprintf(fid, ' %8.3f', depth);
end
end
else
fl_no_4bc = 1;
end
if ~fl_no_4bc
fprintf(fid, '\n');
end
end % terminate loop over i (4b and 4c, respectively)
end % terminate loop over itmp (num_segments)
end % enf if (itmp > 0)
end % terminate loop over iper (num_periods)
fclose(fid);
% -------------------------------------------------------------------------
% End of the script
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.