plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_Infer_MeanField.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/infer/UGM_Infer_MeanField.m
| 1,956 |
utf_8
|
1a659d358023ab95cf73d2942da59c9f
|
function [nodeBel, edgeBel, logZ] = UGM_Infer_MF(nodePot,edgePot,edgeStruct)
if edgeStruct.useMex
[nodeBel,edgeBel,logZ] = UGM_Infer_MFC(nodePot,edgePot,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(edgeStruct.V),int32(edgeStruct.E),edgeStruct.maxIter);
else
[nodeBel,edgeBel,logZ] = Infer_MF(nodePot,edgePot,edgeStruct);
end
end
function [nodeBel, edgeBel, logZ] = Infer_MF(nodePot,edgePot,edgeStruct)
[nNodes,maxState] = size(nodePot);
nEdges = size(edgePot,3);
edgeEnds = edgeStruct.edgeEnds;
V = edgeStruct.V;
E = edgeStruct.E;
nStates = edgeStruct.nStates;
maxIter = edgeStruct.maxIter;
nodeBel = nodePot;
for n = 1:nNodes
nodeBel(n,:) = nodeBel(n,:)/sum(nodeBel(n,:));
end
for i = 1:maxIter
oldNodeBel = nodeBel;
for n = 1:nNodes
b = zeros(1,nStates(n));
% Find Neighbors
edges = E(V(n):V(n+1)-1);
for e = edges(:)'
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if n == edgeEnds(e,2);
ep = edgePot(1:nStates(n1),1:nStates(n2),e);
neigh = n1;
else
ep = edgePot(1:nStates(n1),1:nStates(n2),e)';
neigh = n2;
end
for s_n = 1:nStates(n)
b(s_n) = b(s_n) + nodeBel(neigh,1:nStates(neigh))*log(ep(1:nStates(neigh),s_n));
end
end
nb(1,1:nStates(n)) = nodePot(n,1:nStates(n)).*exp(b);
nodeBel(n,1:nStates(n)) = nb(1,1:nStates(n))/sum(nb(1,1:nStates(n)));
end
if sum(abs(nodeBel(:)-oldNodeBel(:))) < 1e-4
break;
end
end
% Compute edgeBel
edgeBel = zeros(size(edgePot));
for e = 1:nEdges
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
for s1 = 1:nStates(n1)
for s2 = 1:nStates(n2)
edgeBel(s1,s2,e) = nodeBel(n1,s1)*nodeBel(n2,s2);
end
end
end
% Compute logZ
logZ = -UGM_MFGibbsFreeEnergy(nodePot,edgePot,nodeBel,nStates,edgeEnds,V,E);
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_makeCRFEdgePotentials.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/train/UGM_makeCRFEdgePotentials.m
| 2,061 |
utf_8
|
d92fcedfcf5f8b4897a7fd7a073c91d6
|
function [edgePot] = UGM_makeEdgePotentials(Xedge,v,edgeStruct,infoStruct)
% [edgePot] = UGM_makeEdgePotentials(Xedge,v,edgeStruct,infoStruct)
%
% Makes pairwise class potentials for each node
%
% Xedge(1,feature,edge)
% v(feature,variable,variable) - edge weights
% nStates - number of States per node
%
% edgePot(class1,class2,edge)
if edgeStruct.useMex
% Mex Code
edgePot = UGM_makeEdgePotentialsC(Xedge,v,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(infoStruct.tieEdges),int32(infoStruct.ising));
else
% Matlab Code
edgePot = makeEdgePotentials(Xedge,v,edgeStruct,infoStruct);
end
end
function [edgePot] = makeEdgePotentials(Xedge,v,edgeStruct,infoStruct)
nInstances = size(Xedge,1);
nFeatures = size(Xedge,2);
edgeEnds = edgeStruct.edgeEnds;
nEdges = size(edgeEnds,1);
tied = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
if tied
ew = v;
end
% Compute Edge Potentials
maxState = max(nStates);
edgePot = zeros(maxState,maxState,nEdges,nInstances);
for i = 1:nInstances
for e = 1:nEdges
if ~tied
ew = v(:,:,e);
end
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
ep = zeros(maxState);
for s1 = 1:nStates(n1)
for s2 = 1:nStates(n2)
if ising == 2
if s1 == s2
ep(s1,s2) = exp(Xedge(i,:,e)*ew(:,s1));
else
ep(s1,s2) = 1;
end
elseif ising
if s1 == s2
ep(s1,s2) = exp(Xedge(i,:,e)*ew);
else
ep(s1,s2) = 1;
end
else
if s1 == nStates(n1) && s2 == nStates(n2)
ep(s1,s2) = 1;
else
s = (s2-1)*maxState + s1; % = sub2ind([maxState maxState],s1,s2);
ep(s1,s2) = exp(Xedge(i,:,e)*ew(:,s));
end
end
end
end
edgePot(:,:,e,i) = ep;
end
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_makeCRFNodePotentials.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/train/UGM_makeCRFNodePotentials.m
| 1,096 |
utf_8
|
9ba31d7e5a0c2c1075e59aeba48b41dd
|
function [nodePot] = UGM_makeCRFnodePotentials(X,w,edgeStruct,infoStruct)
% [nodePot] = UGM_makeCRFnodePotentials(X,w,edgeStruct,infoStruct)
% Makes class potentials for each node
%
% X(1,feature,node)
% w(feature,variable,variable) - node weights
% nStates - number of states per node
%
% nodePot(node,class)
if edgeStruct.useMex
% Mex Code
nNodes = size(X,3);
nStates = edgeStruct.nStates;
nodePot = UGM_makeNodePotentialsC(X,w,int32(nStates),int32(infoStruct.tieNodes));
else
% Matlab Code
nodePot = makeNodePotentials(X,w,edgeStruct,infoStruct);
end
end
% C code does the same as below:
function [nodePot] = makeNodePotentials(X,w,edgeStruct,infoStruct)
[nInstances,nFeatures,nNodes] = size(X);
tied = infoStruct.tieNodes;
nStates = edgeStruct.nStates;
if tied
nw = w;
end
% Compute Node Potentials
nodePot = zeros(nNodes,max(nStates),nInstances);
for i = 1:nInstances
for n = 1:nNodes
if ~tied
nw = w(:,1:nStates(n)-1,n);
end
nodePot(n,1:nStates(n),i) = exp([X(i,:,n)*nw 0]);
end
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_CRFLoss.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/train/UGM_CRFLoss.m
| 5,408 |
utf_8
|
c78c4a90e6e0470ad59081dab6b49b4d
|
function [f,g] = UGM_loss(wv,X,Xedge,y,edgeStruct,infoStruct,inferFunc,varargin)
% wv(variable)
% X(instance,feature,node)
% Xedge(instance,feature,edge)
% y(instance,node)
% edgeStruct
% inferFunc
% varargin - additional parameters of inferFunc
showErr = 0;
[nInstances,nNodeFeatures,nNodes] = size(X);
nEdgeFeatures = size(Xedge,2);
nFeatures = nNodeFeatures+nEdgeFeatures;
edgeEnds = edgeStruct.edgeEnds;
nEdges = size(edgeEnds,1);
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
maxState = max(nStates);
% Form weights
[w,v] = UGM_splitWeights(wv,infoStruct);
f = 0;
if nargout > 1
gw = zeros(size(w));
gv = zeros(size(v));
end
% Make Potentials
nodePot = UGM_makeCRFNodePotentials(X,w,edgeStruct,infoStruct);
if edgeStruct.useMex
edgePot = UGM_makeEdgePotentialsC(Xedge,v,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(infoStruct.tieEdges),int32(infoStruct.ising));
else
edgePot = UGM_makeCRFEdgePotentials(Xedge,v,edgeStruct,infoStruct);
end
% Check that potentials don't overflow
if sum(nodePot(:))+sum(edgePot(:)) > 1e100
f = inf;
if nargout > 1
gw = gw(infoStruct.wLinInd);
gv = gv(infoStruct.vLinInd);
g = [gw(:);gv(:)];
end
return;
end
% Always use the same seed (makes learning w/ stochastic inference more robust)
randState = rand('state');
rand('state',0);
randnState= randn('state');
randn('state',0);
if edgeStruct.useMex
% Set f to be the negative sum of the unnormalized potentials
f = UGM_Loss_subC(int32(y),nodePot,edgePot,int32(edgeEnds));
else
f = -computeUnnormalizedPotentials(y,nodePot,edgePot,edgeEnds);
end
for i = 1:nInstances
% For CRFs, we need to do inference on each example
[nodeBel,edgeBel,logZ] = inferFunc(nodePot(:,:,i),edgePot(:,:,:,i),edgeStruct,varargin{:});
% Update objective based on this training example
f = f + logZ;
if nargout > 1
% Update gradient
if edgeStruct.useMex
% Update gw and gv in-place
UGM_updateGradientC(gw,gv,X(i,:,:),Xedge(i,:,:),y(i,:),nodeBel,edgeBel,int32(nStates),int32(tieNodes),int32(tieEdges),int32(ising),int32(edgeEnds));
else
[gw,gv] = updateGradient(gw,gv,X(i,:,:),Xedge(i,:,:),y(i,:),nodeBel,edgeBel,infoStruct,edgeStruct);
end
end
end
if nargout > 1
gw = gw(infoStruct.wLinInd);
gv = gv(infoStruct.vLinInd);
g = [gw(:);gv(:)];
end
% Reset state
rand('state',randState);
randn('state',randnState);
end
function [f] = computeUnnormalizedPotentials(y,nodePot,edgePot,edgeEnds)
[nInstances,nNodes] = size(y);
nEdges = size(edgeEnds,1);
f = 0;
for i = 1:nInstances
% Caculate Potential of Observed Labels
pot = 0;
for n = 1:nNodes
pot = pot + log(nodePot(n,y(i,n),i));
end
for e = 1:nEdges
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
pot = pot + log(edgePot(y(i,n1),y(i,n2),e,i));
end
% Update based on this training example
f = f + pot;
end
end
function [gw,gv] = updateGradient(gw,gv,X,Xedge,y,nodeBel,edgeBel,infoStruct,edgeStruct)
[nInstances nNodeFeatures nNodes] = size(X);
nEdgeFeatures = size(Xedge,2);
edgeEnds = edgeStruct.edgeEnds;
nEdges = size(edgeEnds,1);
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
maxState = max(nStates);
% Update gradient of node features
for n = 1:nNodes
for s = 1:nStates(n)-1
if s == y(1,n)
O = X(1,:,n);
else
O = zeros(1,nNodeFeatures);
end
E = nodeBel(n,s)*X(1,:,n);
if tieNodes
gw(:,s) = gw(:,s) - (O - E)';
else
gw(:,s,n) = gw(:,s,n) - (O - E)';
end
end
end
% Update gradient of edge features
for e = 1:nEdges
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if ising == 2
for s = 1:min(nStates(n1),nStates(n2))
if y(1,n1) == s && y(1,n2) == s
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = edgeBel(s,s,e)*Xedge(1,:,e);
if tieEdges
gv(:,s) = gv(:,s) - (O - E)';
else
gv(:,s,e) = gv(:,s,e) - (O - E)';
end
end
elseif ising
if y(1,n1)==y(1,n2)
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = (sum(diag(edgeBel(:,:,e))))*Xedge(1,:,e);
if tieEdges
gv = gv - (O - E)';
else
gv(:,e) = gv(:,e) - (O - E)';
end
else
for s1 = 1:nStates(n1)
for s2 = 1:nStates(n2)
if s1 == nStates(n1) && s2 == nStates(n2)
% This element is fixed at 0
continue;
end
if s1 == y(1,n1) && s2 == y(1,n2)
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = edgeBel(s1,s2,e)*Xedge(1,:,e);
s = (s2-1)*maxState+s1; % = sub2ind([maxState maxState],s1,s2);
if tieEdges
gv(:,s) = gv(:,s) - (O-E)';
else
gv(:,s,e) = gv(:,s,e) - (O-E)';
end
end
end
end
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_MRFLoss.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/train/UGM_MRFLoss.m
| 5,252 |
utf_8
|
dd0fdaa52e758a4d99c50e16e1efe602
|
function [f,g] = UGM_MRFLoss(wv,y,edgeStruct,infoStruct,inferFunc,varargin)
% [f,g] = UGM_MRFLoss(wv,y,edgeStruct,infoStruct,inferFunc,varargin)
nNodeFeatures = 1;
nEdgeFeatures = 1;
[nInstances,nNodes] = size(y);
nFeatures = nNodeFeatures+nEdgeFeatures;
edgeEnds = edgeStruct.edgeEnds;
nEdges = size(edgeEnds,1);
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
maxState = max(nStates);
X = ones(1,1,nNodes);
Xedge = ones(1,1,nEdges);
% Form weights
[w,v] = UGM_splitWeights(wv,infoStruct);
f = 0;
if nargout > 1
gw = zeros(size(w));
gv = zeros(size(v));
end
% Make Potentials
nodePot = UGM_makeMRFnodePotentials(w,edgeStruct,infoStruct);
if edgeStruct.useMex
edgePot = UGM_makeEdgePotentialsC(Xedge,v,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(infoStruct.tieEdges),int32(infoStruct.ising));
else
edgePot = UGM_makeMRFedgePotentials(v,edgeStruct,infoStruct);
end
% Check that potentials don't overflow
if sum(nodePot(:))+sum(edgePot(:)) > 1e100
f = inf;
if nargout > 1
gw = gw(infoStruct.wLinInd);
gv = gv(infoStruct.vLinInd);
g = [gw(:);gv(:)];
end
return;
end
% Always use the same seed (makes learning w/ stochastic inference more robust)
randState = rand('state');
rand('state',0);
randnState= randn('state');
randn('state',0);
% For MRFs, we only do inference once
[nodeBel,edgeBel,logZ] = inferFunc(nodePot,edgePot,edgeStruct,varargin{:});
if edgeStruct.useMex
% Set f to be the negative sum of the unnormalized potentials
f = UGM_MRFLoss_subC(int32(y),nodePot,edgePot,int32(edgeEnds));
else
f = -computeUnnormalizedPotentials(y,nodePot,edgePot,edgeEnds);
end
for i = 1:nInstances
% Update objective based on this training example
f = f + logZ;
if nargout > 1
% Update gradient
if edgeStruct.useMex
% Update gw and gv in-place
UGM_updateGradientC(gw,gv,X,Xedge,y(i,:),nodeBel,edgeBel,int32(nStates),int32(tieNodes),int32(tieEdges),int32(ising),int32(edgeEnds));
else
[gw,gv] = updateGradient(gw,gv,X,Xedge,y(i,:),nodeBel,edgeBel,infoStruct,edgeStruct);
end
end
end
if nargout > 1
gw = gw(infoStruct.wLinInd);
gv = gv(infoStruct.vLinInd);
g = [gw(:);gv(:)];
end
% Reset state
rand('state',randState);
randn('state',randnState);
end
function [f] = computeUnnormalizedPotentials(y,nodePot,edgePot,edgeEnds)
[nInstances,nNodes] = size(y);
nEdges = size(edgeEnds,1);
f = 0;
for i = 1:nInstances
% Caculate Potential of Observed Labels
pot = 0;
for n = 1:nNodes
pot = pot + log(nodePot(n,y(i,n)));
end
for e = 1:nEdges
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
pot = pot + log(edgePot(y(i,n1),y(i,n2),e));
end
% Update based on this training example
f = f + pot;
end
end
function [gw,gv] = updateGradient(gw,gv,X,Xedge,y,nodeBel,edgeBel,infoStruct,edgeStruct)
[nInstances nNodeFeatures nNodes] = size(X);
nEdgeFeatures = size(Xedge,2);
edgeEnds = edgeStruct.edgeEnds;
nEdges = size(edgeEnds,1);
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
maxState = max(nStates);
% Update gradient of node features
for n = 1:nNodes
for s = 1:nStates(n)-1
if s == y(1,n)
O = X(1,:,n);
else
O = zeros(1,nNodeFeatures);
end
E = nodeBel(n,s)*X(1,:,n);
if tieNodes
gw(:,s) = gw(:,s) - (O - E)';
else
gw(:,s,n) = gw(:,s,n) - (O - E)';
end
end
end
% Update gradient of edge features
for e = 1:nEdges
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if ising == 2
for s = 1:min(nStates(n1),nStates(n2))
if y(1,n1) == s && y(1,n2) == s
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = edgeBel(s,s,e)*Xedge(1,:,e);
if tieEdges
gv(:,s) = gv(:,s) - (O - E)';
else
gv(:,s,e) = gv(:,s,e) - (O - E)';
end
end
elseif ising
if y(1,n1)==y(1,n2)
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = (sum(diag(edgeBel(:,:,e))))*Xedge(1,:,e);
if tieEdges
gv = gv - (O - E)';
else
gv(:,e) = gv(:,e) - (O - E)';
end
else
for s1 = 1:nStates(n1)
for s2 = 1:nStates(n2)
if s1 == nStates(n1) && s2 == nStates(n2)
% This element is fixed at 0
continue;
end
if s1 == y(1,n1) && s2 == y(1,n2)
O = Xedge(1,:,e);
else
O = zeros(1,nEdgeFeatures);
end
E = edgeBel(s1,s2,e)*Xedge(1,:,e);
s = (s2-1)*maxState+s1; % = sub2ind([maxState maxState],s1,s2);
if tieEdges
gv(:,s) = gv(:,s) - (O-E)';
else
gv(:,s,e) = gv(:,s,e) - (O-E)';
end
end
end
end
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_CRFpseudoLoss.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/train/UGM_CRFpseudoLoss.m
| 9,857 |
utf_8
|
4f2c7be5956dc41f8c3d0ffeb9e3cb83
|
function [f,g,H] = UGM_loss(wv,X,Xedge,y,edgeStruct,infoStruct)
% wv(variable)
% X(instance,feature,node)
% Xedge(instance,feature,edge)
% y(instance,node)
% edgeStruct
% inferFunc
% tied
% Form weights
[w,v] = UGM_splitWeights(wv,infoStruct);
% Make Potentials
nodePot = UGM_makeCRFNodePotentials(X,w,edgeStruct,infoStruct);
if edgeStruct.useMex
edgePot = UGM_makeEdgePotentialsC(Xedge,v,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(infoStruct.tieEdges),int32(infoStruct.ising));
else
edgePot = UGM_makeCRFEdgePotentials(Xedge,v,edgeStruct,infoStruct);
end
if nargout >= 3
assert(all(edgeStruct.nStates==2) && infoStruct.ising==1 && infoStruct.tieNodes==infoStruct.tieEdges,...
'Pseudo-Hessian only implemented for 2 state Ising w/ fully tied/untied params');
end
if edgeStruct.useMex
edgeEnds = edgeStruct.edgeEnds;
V = edgeStruct.V;
E = edgeStruct.E;
nStates = edgeStruct.nStates;
ising = infoStruct.ising;
gw = zeros(size(w));
gv = zeros(size(v));
if nargout >= 3
tied = infoStruct.tieNodes;
Hw = zeros(numel(w));
Hv = zeros(numel(v));
Hwv = zeros(numel(v),numel(w));
% gw,gv,Hw,Hv,Hwv are updated in place
[f] = UGM_PseudoHessC(gw,gv,w,v,X,Xedge,int32(y),nodePot,edgePot,int32(edgeEnds),int32(V),int32(E),int32(tied),Hw,Hv,Hwv);
else
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
% gw and gv are updated in place
[f] = UGM_PseudoLossC(gw,gv,w,v,X,Xedge,int32(y),nodePot,edgePot,int32(edgeEnds),int32(V),int32(E),int32(nStates),int32(tieNodes),int32(tieEdges),int32(ising));
end
else
if nargout >= 3
[f,gw,gv,Hw,Hv,Hwv] = PseudoLoss(w,v,X,Xedge,y,nodePot,edgePot,edgeStruct,infoStruct);
else
[f,gw,gv] = PseudoLoss(w,v,X,Xedge,y,nodePot,edgePot,edgeStruct,infoStruct);
end
end
gw = gw(infoStruct.wLinInd);
gv = gv(infoStruct.vLinInd);
g = [gw(:);gv(:)];
if nargout >= 3
Hw = Hw(infoStruct.wLinInd,infoStruct.wLinInd);
Hv = Hv(infoStruct.vLinInd,infoStruct.vLinInd);
H = [Hw Hwv'
Hwv Hv];
end
end
%% Matlab version
function [f,gw,gv,Hw,Hv,Hwv] = PseudoLoss(w,v,X,Xedge,y,nodePot,edgePot,edgeStruct,infoStruct)
[nInstances,nNodeFeatures,nNodes] = size(X);
nEdgeFeatures = size(Xedge,2);
edgeEnds = edgeStruct.edgeEnds;
V = edgeStruct.V;
E = edgeStruct.E;
nEdges = size(edgeEnds,1);
tieNodes = infoStruct.tieNodes;
tieEdges = infoStruct.tieEdges;
ising = infoStruct.ising;
nStates = edgeStruct.nStates;
maxState = max(nStates);
showMM = 0;
f = 0;
gw = zeros(size(w));
gv = zeros(size(v));
if nargout > 3
Hw = zeros(numel(w));
Hv = zeros(numel(v));
Hwv = zeros(numel(v),numel(w));
end
for i = 1:nInstances
for n = 1:nNodes
%% Update Objective
% Find Neighbors
edges = E(V(n):V(n+1)-1);
% Compute Probability of Each State with Neighbors Fixed
pot = nodePot(n,1:nStates(n),i);
for e = edges(:)'
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if n == edgeEnds(e,1)
ep = edgePot(1:nStates(n),y(i,n2),e,i).';
else
ep = edgePot(y(i,n1),1:nStates(n),e,i);
end
pot = pot .* ep;
end
% Update Objective
f = f - log(pot(y(i,n))) + log(sum(pot));
%% Update Gradient
if nargout > 1
nodeBel = pot/sum(pot);
% Update Gradient of Node Weights
for s = 1:nStates(n)-1
if s == y(i,n)
Obs = X(i,:,n);
else
Obs = zeros(1,nNodeFeatures);
end
Exp = nodeBel(s)*X(i,:,n);
if tieNodes
gw(:,s) = gw(:,s) - (Obs - Exp).';
else
gw(:,s,n) = gw(:,s,n) - (Obs - Exp).';
end
end
% Update Gradient of Edge Weights
for e = edges(:)'
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if ising == 2
if y(i,n1) == y(i,n2)
Obs = Xedge(i,:,e);
else
Obs = zeros(1,nEdgeFeatures);
end
y_neigh = UGM_getNeighborState(i,n,e,y,edgeEnds);
if y_neigh <= length(nodeBel)
Exp = nodeBel(y_neigh)*Xedge(i,:,e);
else
Exp = zeros(1,nEdgeFeatures);
end
if tieEdges
gv(:,y_neigh) = gv(:,y_neigh) - (Obs - Exp).';
else
gv(:,y_neigh,e) = gv(:,y_neigh,e) - (Obs - Exp).';
end
elseif ising
if y(i,n1) == y(i,n2)
Obs = Xedge(i,:,e);
else
Obs = zeros(1,nEdgeFeatures);
end
y_neigh = UGM_getNeighborState(i,n,e,y,edgeEnds);
if y_neigh <= length(nodeBel)
Exp = nodeBel(y_neigh)*Xedge(i,:,e);
else
Exp = zeros(1,nEdgeFeatures);
end
if tieEdges
gv = gv - (Obs - Exp).';
else
gv(:,e) = gv(:,e) - (Obs - Exp).';
end
else
for s = 1:nStates(n)
if n == edgeEnds(e,1)
neigh = n2;
else
neigh = n1;
end
if s == nStates(n) && y(i,neigh) == nStates(neigh)
% This element is fixed at 0
continue;
end
if s == y(i,n)
Obs = Xedge(i,:,e);
else
Obs = zeros(1,nEdgeFeatures);
end
Exp = nodeBel(s)*Xedge(i,:,e);
if n == edgeEnds(e,1)
s1 = s;
s2 = y(i,neigh);
else
s1 = y(i,neigh);
s2 = s;
end
sInd = (s2-1)*maxState+s1;
if tieEdges
gv(:,sInd) = gv(:,sInd) - (Obs - Exp).';
else
gv(:,sInd,e) = gv(:,sInd,e) - (Obs - Exp).';
end
end
end
end
end
%% Update Hessian
% (only for binary, ising, and tieNodes==tieEdges)
if nargout >= 4
% Update Hessian of node weights
inner = nodeBel(1)*nodeBel(2);
if tieNodes
ind1 = 1:nNodeFeatures;
ind2 = 1:nNodeFeatures;
else
ind1 = sub2ind(size(gw),1:nNodeFeatures,repmat(1,[1 nNodeFeatures]),repmat(n,[1 nNodeFeatures]));
ind2 = sub2ind(size(gw),1:nNodeFeatures,repmat(1,[1 nNodeFeatures]),repmat(n,[1 nNodeFeatures]));
end
Hw(ind1,ind2) = Hw(ind1,ind2) + X(i,:,n)'*inner*X(i,:,n);
% Update Hessian of edge weights wrt node/edge weights
if tieEdges
A = zeros(1,nEdgeFeatures);
for e = edges(:)'
y_neigh = UGM_getNeighborState(i,n,e,y,edgeEnds);
if y_neigh == 1
A = A + Xedge(i,:,e);
else
A = A - Xedge(i,:,e);
end
end
Hwv = Hwv + A'*inner*X(i,:,n);
Hv = Hv + A'*inner*A;
else % Untied Edges
for e1 = edges(:)'
y_neigh1 = UGM_getNeighborState(i,n,e1,y,edgeEnds);
ind1 = sub2ind(size(gv),1:nEdgeFeatures,repmat(1,[1 nEdgeFeatures]),repmat(e1,[1 nEdgeFeatures]));
ind2 = sub2ind(size(gw),1:nNodeFeatures,repmat(1,[1 nNodeFeatures]),repmat(n,[1 nNodeFeatures]));
if y_neigh1 == 1
Hwv(ind1,ind2) = Hwv(ind1,ind2) + Xedge(i,:,e1)'*inner*X(i,:,n);
else
Hwv(ind1,ind2) = Hwv(ind1,ind2) - Xedge(i,:,e1)'*inner*X(i,:,n);
end
for e2 = edges(:)'
y_neigh2 = UGM_getNeighborState(i,n,e2,y,edgeEnds);
ind2 = sub2ind(size(gv),1:nEdgeFeatures,repmat(1,[1 nEdgeFeatures]),repmat(e2,[1 nEdgeFeatures]));
if y_neigh1 == y_neigh2
Hv(ind1,ind2) = Hv(ind1,ind2) + Xedge(i,:,e1)'*inner*Xedge(i,:,e2);
else
Hv(ind1,ind2) = Hv(ind1,ind2) - Xedge(i,:,e1)'*inner*Xedge(i,:,e2);
end
end
end
end
end
if showMM
nodeBel = pot./sum(pot);
[junk mm(i,n)] = max(nodeBel);
end
end
end
if showMM
sum(mm(:) ~= y(:))/numel(y)
pause;
end
end
function [y_neigh] = UGM_getNeighborState(i,n,e,y,edgeEnds)
% Returns state of neighbor of node n along edge e
if n == edgeEnds(e,1)
y_neigh = y(i,edgeEnds(e,2));
else
y_neigh = y(i,edgeEnds(e,1));
end
end
% pot: (e^(w*n)*e^(v*a)*e^(v*b))
% Z: e^(w*n)*e^(v*a)*e^(v*b) + e^(m*n)*e^(v*c)*e^(v*d)
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_Decode_ICM.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/decode/UGM_Decode_ICM.m
| 1,503 |
utf_8
|
cd4313f1c39a3352242ef7e499b04336
|
function [y] = UGM_Decode_ICM(nodePot, edgePot, edgeStruct,y)
% INPUT
% nodePot(node,class)
% edgePot(class,class,edge) where e is referenced by V,E (must be the same
% between feature engine and inference engine)
%
% OUTPUT
% nodeLabel(node)
if nargin < 4
[junk y] = max(nodePot,[],2);
end
if edgeStruct.useMex
y = UGM_Decode_ICMC(nodePot,edgePot,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates),int32(edgeStruct.V),int32(edgeStruct.E),int32(y));
else
y = Infer_ICM(nodePot,edgePot,edgeStruct,edgeStruct,y);
end
function [y] = Infer_ICM(nodePot,edgePot,edgeStruct,y)
[nNodes,maxStates] = size(nodePot);
nEdges = size(edgePot,3);
edgeEnds = edgeStruct.edgeEnds;
V = edgeStruct.V;
E = edgeStruct.E;
nStates = edgeStruct.nStates;
done = 0;
while ~done
done = 1;
for n = 1:nNodes
% Compute Node Potential
pot = nodePot(n,1:nStates(n));
% Find Neighbors
edges = E(V(n):V(n+1)-1);
% Multiply Edge Potentials
for e = edges(:)'
n1 = edgeEnds(e,1);
n2 = edgeEnds(e,2);
if n == edgeEnds(e,1)
ep = edgePot(1:nStates(n1),y(n2),e)';
else
ep = edgePot(y(n1),1:nStates(n2),e);
end
pot = pot .* ep;
end
% Assign to Maximum State
[junk newY] = max(pot);
if newY ~= y(n)
y(n) = newY;
done = 0;
end
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
UGM_Decode_Exact.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/UGM/decode/UGM_Decode_Exact.m
| 1,354 |
utf_8
|
982b1e4d88dc1958161d17ca9abc1743
|
function [nodeLabels] = UGM_Infer_Exact(nodePot, edgePot, edgeStruct)
% INPUT
% nodePot(node,class)
% edgePot(class,class,edge) where e is referenced by V,E (must be the same
% between feature engine and inference engine)
%
% OUTPUT
% nodeLabel(node)
assert(prod(edgeStruct.nStates) < 50000000,'Brute Force Exact Decoding not recommended for models with > 50 000 000 states');
if edgeStruct.useMex
nodeLabels = UGM_Decode_ExactC(nodePot,edgePot,int32(edgeStruct.edgeEnds),int32(edgeStruct.nStates));
else
nodeLabels = Decode_Exact(nodePot,edgePot,edgeStruct);
end
function [nodeLabels] = Decode_Exact(nodePot,edgePot,edgeStruct)
[nNodes,maxStates] = size(nodePot);
nEdges = size(edgePot,3);
edgeEnds = edgeStruct.edgeEnds;
nStates = edgeStruct.nStates;
% Initialize
y = ones(nNodes,1);
maxPot = -1;
while 1
pot = UGM_ConfigurationPotential(y,nodePot,edgePot,edgeEnds);
% Compare against max
if pot > maxPot
maxPot = pot;
nodeLabels = y;
end
% Go to next y
for yInd = 1:nNodes
y(yInd) = y(yInd) + 1;
if y(yInd) <= nStates(yInd)
break;
else
y(yInd) = 1;
end
end
% Stop when we are done all y combinations
if yInd == nNodes && y(end) == 1
break;
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
WolfeLineSearch.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/minFunc/WolfeLineSearch.m
| 11,395 |
utf_8
|
3d2acf1139093fe11df95ccdf888aab8
|
function [t,f_new,g_new,funEvals,H] = WolfeLineSearch(...
x,t,d,f,g,gtd,c1,c2,LS,maxLS,tolX,debug,doPlot,saveHessianComp,funObj,varargin)
%
% Bracketing Line Search to Satisfy Wolfe Conditions
%
% Inputs:
% x: starting location
% t: initial step size
% d: descent direction
% f: function value at starting location
% g: gradient at starting location
% gtd: directional derivative at starting location
% c1: sufficient decrease parameter
% c2: curvature parameter
% debug: display debugging information
% LS: type of interpolation
% maxLS: maximum number of iterations
% tolX: minimum allowable step length
% doPlot: do a graphical display of interpolation
% funObj: objective function
% varargin: parameters of objective function
%
% Outputs:
% t: step length
% f_new: function value at x+t*d
% g_new: gradient value at x+t*d
% funEvals: number function evaluations performed by line search
% H: Hessian at initial guess (only computed if requested
% Evaluate the Objective and Gradient at the Initial Step
if nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x+t*d,varargin{:});
end
funEvals = 1;
gtd_new = g_new'*d;
% Bracket an Interval containing a point satisfying the
% Wolfe criteria
LSiter = 0;
t_prev = 0;
f_prev = f;
g_prev = g;
gtd_prev = gtd;
done = 0;
while LSiter < maxLS
%% Bracketing Phase
if ~isLegal(f_new) || ~isLegal(g_new)
if 0
if debug
fprintf('Extrapolated into illegal region, Bisecting\n');
end
t = (t + t_prev)/2;
if ~saveHessianComp && nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x + t*d,varargin{:});
end
funEvals = funEvals + 1;
gtd_new = g_new'*d;
LSiter = LSiter+1;
continue;
else
if debug
fprintf('Extrapolated into illegal region, switching to Armijo line-search\n');
end
t = (t + t_prev)/2;
% Do Armijo
if nargout == 5
[t,x_new,f_new,g_new,armijoFunEvals,H] = ArmijoBacktrack(...
x,t,d,f,f,g,gtd,c1,max(0,min(LS-2,2)),tolX,debug,doPlot,saveHessianComp,...
funObj,varargin{:});
else
[t,x_new,f_new,g_new,armijoFunEvals] = ArmijoBacktrack(...
x,t,d,f,f,g,gtd,c1,max(0,min(LS-2,2)),tolX,debug,doPlot,saveHessianComp,...
funObj,varargin{:});
end
funEvals = funEvals + armijoFunEvals;
return;
end
end
if f_new > f + c1*t*gtd || (LSiter > 1 && f_new >= f_prev)
bracket = [t_prev t];
bracketFval = [f_prev f_new];
bracketGval = [g_prev g_new];
break;
elseif abs(gtd_new) <= -c2*gtd
bracket = t;
bracketFval = f_new;
bracketGval = g_new;
done = 1;
break;
elseif gtd_new >= 0
bracket = [t_prev t];
bracketFval = [f_prev f_new];
bracketGval = [g_prev g_new];
break;
end
temp = t_prev;
t_prev = t;
minStep = t + 0.01*(t-temp);
maxStep = t*10;
if LS == 3
if debug
fprintf('Extending Braket\n');
end
t = maxStep;
elseif LS ==4
if debug
fprintf('Cubic Extrapolation\n');
end
t = polyinterp([temp f_prev gtd_prev; t f_new gtd_new],doPlot,minStep,maxStep);
else
t = mixedExtrap(temp,f_prev,gtd_prev,t,f_new,gtd_new,minStep,maxStep,debug,doPlot);
end
f_prev = f_new;
g_prev = g_new;
gtd_prev = gtd_new;
if ~saveHessianComp && nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x + t*d,varargin{:});
end
funEvals = funEvals + 1;
gtd_new = g_new'*d;
LSiter = LSiter+1;
end
if LSiter == maxLS
bracket = [0 t];
bracketFval = [f f_new];
bracketGval = [g g_new];
end
%% Zoom Phase
% We now either have a point satisfying the criteria, or a bracket
% surrounding a point satisfying the criteria
% Refine the bracket until we find a point satisfying the criteria
insufProgress = 0;
Tpos = 2;
LOposRemoved = 0;
while ~done && LSiter < maxLS
% Find High and Low Points in bracket
[f_LO LOpos] = min(bracketFval);
HIpos = -LOpos + 3;
% Compute new trial value
if LS == 3 || ~isLegal(bracketFval) || ~isLegal(bracketGval)
if debug
fprintf('Bisecting\n');
end
t = mean(bracket);
elseif LS == 4
if debug
fprintf('Grad-Cubic Interpolation\n');
end
t = polyinterp([bracket(1) bracketFval(1) bracketGval(:,1)'*d
bracket(2) bracketFval(2) bracketGval(:,2)'*d],doPlot);
else
% Mixed Case %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nonTpos = -Tpos+3;
if LOposRemoved == 0
oldLOval = bracket(nonTpos);
oldLOFval = bracketFval(nonTpos);
oldLOGval = bracketGval(:,nonTpos);
end
t = mixedInterp(bracket,bracketFval,bracketGval,d,Tpos,oldLOval,oldLOFval,oldLOGval,debug,doPlot);
end
% Test that we are making sufficient progress
if min(max(bracket)-t,t-min(bracket))/(max(bracket)-min(bracket)) < 0.1
if debug
fprintf('Interpolation close to boundary');
end
if insufProgress || t>=max(bracket) || t <= min(bracket)
if debug
fprintf(', Evaluating at 0.1 away from boundary\n');
end
if abs(t-max(bracket)) < abs(t-min(bracket))
t = max(bracket)-0.1*(max(bracket)-min(bracket));
else
t = min(bracket)+0.1*(max(bracket)-min(bracket));
end
insufProgress = 0;
else
if debug
fprintf('\n');
end
insufProgress = 1;
end
else
insufProgress = 0;
end
% Evaluate new point
if ~saveHessianComp && nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x + t*d,varargin{:});
end
funEvals = funEvals + 1;
gtd_new = g_new'*d;
LSiter = LSiter+1;
if f_new > f + c1*t*gtd || f_new >= f_LO
% Armijo condition not satisfied or not lower than lowest
% point
bracket(HIpos) = t;
bracketFval(HIpos) = f_new;
bracketGval(:,HIpos) = g_new;
Tpos = HIpos;
else
if abs(gtd_new) <= - c2*gtd
% Wolfe conditions satisfied
done = 1;
elseif gtd_new*(bracket(HIpos)-bracket(LOpos)) >= 0
% Old HI becomes new LO
bracket(HIpos) = bracket(LOpos);
bracketFval(HIpos) = bracketFval(LOpos);
bracketGval(:,HIpos) = bracketGval(:,LOpos);
if LS == 5
if debug
fprintf('LO Pos is being removed!\n');
end
LOposRemoved = 1;
oldLOval = bracket(LOpos);
oldLOFval = bracketFval(LOpos);
oldLOGval = bracketGval(:,LOpos);
end
end
% New point becomes new LO
bracket(LOpos) = t;
bracketFval(LOpos) = f_new;
bracketGval(:,LOpos) = g_new;
Tpos = LOpos;
end
if ~done && abs((bracket(1)-bracket(2))*gtd_new) < tolX
if debug
fprintf('Line Search can not make further progress\n');
end
break;
end
end
%%
if LSiter == maxLS
if debug
fprintf('Line Search Exceeded Maximum Line Search Iterations\n');
end
end
[f_LO LOpos] = min(bracketFval);
t = bracket(LOpos);
f_new = bracketFval(LOpos);
g_new = bracketGval(:,LOpos);
% Evaluate Hessian at new point
if nargout == 5 && funEvals > 1 && saveHessianComp
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
funEvals = funEvals + 1;
end
end
%%
function [t] = mixedExtrap(x0,f0,g0,x1,f1,g1,minStep,maxStep,debug,doPlot);
alpha_c = polyinterp([x0 f0 g0; x1 f1 g1],doPlot,minStep,maxStep);
alpha_s = polyinterp([x0 f0 g0; x1 sqrt(-1) g1],doPlot,minStep,maxStep);
if alpha_c > minStep && abs(alpha_c - x1) < abs(alpha_s - x1)
if debug
fprintf('Cubic Extrapolation\n');
end
t = alpha_c;
else
if debug
fprintf('Secant Extrapolation\n');
end
t = alpha_s;
end
end
%%
function [t] = mixedInterp(bracket,bracketFval,bracketGval,d,Tpos,oldLOval,oldLOFval,oldLOGval,debug,doPlot);
% Mixed Case %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nonTpos = -Tpos+3;
gtdT = bracketGval(:,Tpos)'*d;
gtdNonT = bracketGval(:,nonTpos)'*d;
oldLOgtd = oldLOGval'*d;
if bracketFval(Tpos) > oldLOFval
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
alpha_q = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) sqrt(-1)],doPlot);
if abs(alpha_c - oldLOval) < abs(alpha_q - oldLOval)
if debug
fprintf('Cubic Interpolation\n');
end
t = alpha_c;
else
if debug
fprintf('Mixed Quad/Cubic Interpolation\n');
end
t = (alpha_q + alpha_c)/2;
end
elseif gtdT'*oldLOgtd < 0
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
alpha_s = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) sqrt(-1) gtdT],doPlot);
if abs(alpha_c - bracket(Tpos)) >= abs(alpha_s - bracket(Tpos))
if debug
fprintf('Cubic Interpolation\n');
end
t = alpha_c;
else
if debug
fprintf('Quad Interpolation\n');
end
t = alpha_s;
end
elseif abs(gtdT) <= abs(oldLOgtd)
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],...
doPlot,min(bracket),max(bracket));
alpha_s = polyinterp([oldLOval sqrt(-1) oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],...
doPlot,min(bracket),max(bracket));
if alpha_c > min(bracket) && alpha_c < max(bracket)
if abs(alpha_c - bracket(Tpos)) < abs(alpha_s - bracket(Tpos))
if debug
fprintf('Bounded Cubic Extrapolation\n');
end
t = alpha_c;
else
if debug
fprintf('Bounded Secant Extrapolation\n');
end
t = alpha_s;
end
else
if debug
fprintf('Bounded Secant Extrapolation\n');
end
t = alpha_s;
end
if bracket(Tpos) > oldLOval
t = min(bracket(Tpos) + 0.66*(bracket(nonTpos) - bracket(Tpos)),t);
else
t = max(bracket(Tpos) + 0.66*(bracket(nonTpos) - bracket(Tpos)),t);
end
else
t = polyinterp([bracket(nonTpos) bracketFval(nonTpos) gtdNonT
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
end
end
|
github
|
ColumbiaDVMM/Weak-attributes-for-large-scale-image-retrieval-master
|
minFunc_processInputOptions.m
|
.m
|
Weak-attributes-for-large-scale-image-retrieval-master/UGM/minFunc/minFunc_processInputOptions.m
| 3,704 |
utf_8
|
dc74c67d849970de7f16c873fcf155bc
|
function [verbose,verboseI,debug,doPlot,maxFunEvals,maxIter,tolFun,tolX,method,...
corrections,c1,c2,LS_init,LS,cgSolve,qnUpdate,cgUpdate,initialHessType,...
HessianModify,Fref,useComplex,numDiff,LS_saveHessianComp,...
DerivativeCheck,Damped,HvFunc,bbType,cycle,...
HessianIter,outputFcn,useMex,useNegCurv,precFunc] = ...
minFunc_processInputOptions(o)
% Constants
SD = 0;
CSD = 1;
BB = 2;
CG = 3;
PCG = 4;
LBFGS = 5;
QNEWTON = 6;
NEWTON0 = 7;
NEWTON = 8;
TENSOR = 9;
verbose = 1;
verboseI= 1;
debug = 0;
doPlot = 0;
method = LBFGS;
cgSolve = 0;
o = toUpper(o);
if isfield(o,'DISPLAY')
switch(upper(o.DISPLAY))
case 0
verbose = 0;
verboseI = 0;
case 'FINAL'
verboseI = 0;
case 'OFF'
verbose = 0;
verboseI = 0;
case 'NONE'
verbose = 0;
verboseI = 0;
case 'FULL'
debug = 1;
case 'EXCESSIVE'
debug = 1;
doPlot = 1;
end
end
LS_init = 0;
c2 = 0.9;
LS = 4;
Fref = 1;
Damped = 0;
HessianIter = 1;
if isfield(o,'METHOD')
m = upper(o.METHOD);
switch(m)
case 'TENSOR'
method = TENSOR;
case 'NEWTON'
method = NEWTON;
case 'MNEWTON'
method = NEWTON;
HessianIter = 5;
case 'PNEWTON0'
method = NEWTON0;
cgSolve = 1;
case 'NEWTON0'
method = NEWTON0;
case 'QNEWTON'
method = QNEWTON;
Damped = 1;
case 'LBFGS'
method = LBFGS;
case 'BB'
method = BB;
LS = 2;
Fref = 20;
case 'PCG'
method = PCG;
c2 = 0.2;
LS_init = 2;
case 'SCG'
method = CG;
c2 = 0.2;
LS_init = 4;
case 'CG'
method = CG;
c2 = 0.2;
LS_init = 2;
case 'CSD'
method = CSD;
c2 = 0.2;
Fref = 10;
LS_init = 2;
case 'SD'
method = SD;
LS_init = 2;
end
end
maxFunEvals = getOpt(o,'MAXFUNEVALS',1000);
maxIter = getOpt(o,'MAXITER',500);
tolFun = getOpt(o,'TOLFUN',1e-5);
tolX = getOpt(o,'TOLX',1e-9);
corrections = getOpt(o,'CORR',100);
c1 = getOpt(o,'C1',1e-4);
c2 = getOpt(o,'C2',c2);
LS_init = getOpt(o,'LS_INIT',LS_init);
LS = getOpt(o,'LS',LS);
cgSolve = getOpt(o,'CGSOLVE',cgSolve);
qnUpdate = getOpt(o,'QNUPDATE',3);
cgUpdate = getOpt(o,'CGUPDATE',2);
initialHessType = getOpt(o,'INITIALHESSTYPE',1);
HessianModify = getOpt(o,'HESSIANMODIFY',0);
Fref = getOpt(o,'FREF',Fref);
useComplex = getOpt(o,'USECOMPLEX',0);
numDiff = getOpt(o,'NUMDIFF',0);
LS_saveHessianComp = getOpt(o,'LS_SAVEHESSIANCOMP',1);
DerivativeCheck = getOpt(o,'DERIVATIVECHECK',0);
Damped = getOpt(o,'DAMPED',Damped);
HvFunc = getOpt(o,'HVFUNC',[]);
bbType = getOpt(o,'BBTYPE',0);
cycle = getOpt(o,'CYCLE',3);
HessianIter = getOpt(o,'HESSIANITER',HessianIter);
outputFcn = getOpt(o,'OUTPUTFCN',[]);
useMex = getOpt(o,'USEMEX',1);
useNegCurv = getOpt(o,'USENEGCURV',1);
precFunc = getOpt(o,'PRECFUNC',[]);
end
function [v] = getOpt(options,opt,default)
if isfield(options,opt)
if ~isempty(getfield(options,opt))
v = getfield(options,opt);
else
v = default;
end
else
v = default;
end
end
function [o] = toUpper(o)
if ~isempty(o)
fn = fieldnames(o);
for i = 1:length(fn)
o = setfield(o,upper(fn{i}),getfield(o,fn{i}));
end
end
end
|
github
|
dbindel/matfeap-master
|
feapstart.m
|
.m
|
matfeap-master/mlab/feapstart.m
| 9,171 |
utf_8
|
e102bfd4fb20856b20b216ca58908106
|
% feap = feapstart(fname, params)
%
% Start a FEAP process using an input file given by ifname.
% The optional param argument may be used to set parameters
% for the input deck; for example, if a parameter 'n' is used
% in a deck 'Ifoo', then
%
% param.n = 10
% p = feapstart('Ifoo', param)
%
% will give n a default value of 10.
%
% The params structure can also contain special fields that
% control details of the deck processing:
%
% verbose - Indicate whether we want to see FEAP interactions or not
% sockname - If defined, connect to FEAP via a UNIX domain socket
% command - If defined, connect to the indicated FEAP via a pipe
% server - Host name for FEAP server (default: '127.0.0.1')
% port - Port for FEAP server (default: 3490)
%
% Parameters can also be passed through a global variable called
% matfeap_globals. feapstart reads control parameters from matfeap_globals
% as though they were entered through the params structure; if the control
% parameters are specified via matfeap_globals and via a parameter argument,
% the latter has precedence.
%@T
% \section{Starting FEAP}
%
% The [[feapstart]] command is used to launch a new FEAP process:
%@c
function p = feapstart(fname, params)
%@T
%
% The file name argument is required. The optional [[params]]
% argument plays double duty: a set of special parameters are used
% to control things about the MATFEAP interface, and the remaining
% parameters are used to initialize the FEAP variable list before
% opening the designated input deck.
%@q
% --- Checking input parameters ---
if ~ischar(fname), error('Expected filename as string'); end
if nargin > 1,
if ~isstruct(params) & ~isempty(params)
error('Expected params as struct');
end
else
params = [];
end
%@T -----------------------------------------------------------
% \subsection{Merging global parameters}
%
% The [[matfeap_globals]] variable is used to provide default
% values for the fields in the [[params]] structure, if explicit
% values are not otherwise provided.
%@c
global matfeap_globals;
if isstruct(matfeap_globals)
if isempty(params)
params = matfeap_globals;
else
pnames = fieldnames(matfeap_globals);
for k = 1:length(pnames)
if ~isfield(params, pnames{k})
pvalue = getfield(matfeap_globals, pnames{k});
params = setfield(params, pnames{k}, pvalue);
end
end
end
end
%@T -----------------------------------------------------------
% \subsection{Special parameters}
%
% The special parameters are
% \begin{itemize}
% \item [[verbose]]: if true, output all the stuff that FEAP sends
% \item [[server]] and [[port]]: the server host name
% (string) and port number (integer)
% \item [[command]]: if defined, this string says how to
% execute the extended FEAP directly from the command line.
% Used as an alternative to opening a socket connection.
% \item [[dir]]: the starting directory to change to after
% connecting to the FEAP server. By default we use the
% client's present working directory.
% \end{itemize}
%
% At the same time we process these parameters, we remove them
% from the [[param]] structure. That way, everything remaining
% in the [[param]] structure after this step can be interpreted
% as a FEAP input parameter.
%@c
verb = 0; % Are we in verbose mode?
server = '127.0.0.1'; % Server where FEAP is located
port = 3490; % Port where FEAP is located
dir = pwd; % Base directory to use for rel paths
command = []; % Command string to use with pipe interface
sockname = []; % UNIX domain socket name
if ~isempty(params)
if isfield(params, 'verbose')
verb = params.verbose;
params = rmfield(params, 'verbose');
end
if isfield(params, 'server')
server = params.server;
params = rmfield(params, 'server');
end
if isfield(params, 'port')
port = params.port;
params = rmfield(params, 'port');
end
if isfield(params, 'command')
command = params.command;
params = rmfield(params, 'command');
end
if isfield(params, 'sockname')
sockname = params.sockname;
params = rmfield(params, 'sockname');
end
if isfield(params, 'dir')
dir = params.dir;
params = rmfield(params, 'dir');
end
end
%@T -----------------------------------------------------------
% \subsection{Input deck directory}
%
% I assume that the file name does not contain any slashes or
% backslashes; if those occur in the input deck name, then we'll
% split the name argument into [[pathname]] and [[fname]].
%@c
lastslash = max([strfind(fname, '/'), strfind(fname, '\')]);
if ~isempty(lastslash)
pathname = fname(1:lastslash-1);
fname = fname(lastslash+1:end);
else
pathname = [];
end
%@T -----------------------------------------------------------
% \subsection{Opening FEAP}
%
% If [[sockname]] is nonempty, then the user has specified
% a UNIX domain socket to connect to the FEAP server. Otherwise
% if [[command]] is nonempty, then the user has specified the
% name of a command to start the (extended) FEAP. This FEAP
% executable has the same interface as the socket-based version,
% but it communicates using the ordinary standard I/O streams,
% which we will connect to a pipe. Otherwise, we'll try to
% communicate with the server via TCP. We give the same generic error
% message in the event of any error -- ``is the server there?''
%
% Once a connection to the FEAP process has been established,
% we save the relevant Java helper (or C handle) and the verbosity flag
% together in a handle structure. This structure is the first argument
% to all the high-level MATFEAP interface functions.
%@c
try
if ~isempty(sockname)
fd = sock_new(sockname);
elseif ~isempty(command)
fd = sock_new(command);
else
fd = sock_new(server, port);
end
catch
fprintf('Could not open connection -- is the FEAP server running?\n');
error(lasterr);
end
p = [];
p.fd = fd;
p.verb = verb;
%@T -----------------------------------------------------------
% \subsection{Passing parameters}
%
% The [[param]] command in the [[feapsrv]] interface allows the
% user to send parameters to FEAP. Parameter assignments have the
% form ``param var val''. Invalid assignments are (perhaps suboptimally)
% simply ignored.
%@c
feapsrvp(p);
if ~isempty(params)
pnames = fieldnames(params);
for k = 1:length(pnames)
pvar = pnames{k};
pval = getfield(params, pnames{k});
if ~isnumeric(pval)
fprintf('Ignoring non-numeric parameter %s\n', pvar);
else
sock_send(fd, sprintf('param %s %g', pvar, pval));
feapsrvp(p);
end
end
end
%@T -----------------------------------------------------------
% \subsection{Setting the current directory}
%
% If a home directory was specified via a [[dir]] special
% argument, we first change to that directory (by default, we
% change to the client's present working directory). If a path was
% specified as part of the input deck name, we then change to that
% directory. If both [[dir]] and [[pathname]] are non-empty
% and the [[pathname]] specifies a relative path, we will end up
% in the path relative to the specified base directory.
%
% The [[feapsrv]] command to change directories will return a
% diagnostic message if for any reason the directory change doesn't
% go through. We ignore said message.
%@c
if ~isempty(dir)
sock_send(fd, ['cd ', dir]);
feapsrvp(p);
end
if ~isempty(pathname)
sock_send(fd, ['cd ', pathname]);
feapsrvp(p);
end
%@T -----------------------------------------------------------
% \subsection{Sending the file names}
%
% Once we've set up the parameter string and changed to the proper
% directory, we're ready to actually start processing an input
% deck. The [[start]] command gets us out of the [[feapsrv]]
% interface and into ordinary FEAP interactions. We now need to
% send to FEAP:
% \begin{enumerate}
% \item
% The name of the input deck.
% \item
% Blank lines to say ``we accept the default names for the
% auxiliary files.'' The number of auxiliary files has changed
% over time, which is why we don't use a counter -- we just send
% a blank line at every synchronization message until we see a
% string that indicates that we've entered all the desired file
% names.
% \item
% A string ``y'' for when we're asked if the file names are
% correct.
% \end{enumerate}
%
% If an error occurs during entering the file name, we send the
% ``quit'' string and get out of dodge. In response to a request
% to quit, FEAP will go through the ordinary shutdown procedure,
% so we'll wait for the last synchronization message before closing
% the connection.
%@c
sock_send(fd, 'start');
feapsync(p);
sock_send(fd, fname);
doneflag = 0;
while 1
s = sock_recv(fd);
if strfind(s, '*ERROR*')
p.verb = 1;
feapsync(p);
sock_send(fd, 'quit');
feapsync(p);
sock_close(fd);
p = [];
return;
elseif strfind(s, 'Files are set')
feapdispv(p, s);
feapsync(p);
sock_send(fd, 'y')
feapsync(p);
return;
elseif strfind(s, 'MATFEAP SYNC')
sock_send(fd, '');
else
feapdispv(p, s);
end
end
|
github
|
dbindel/matfeap-master
|
feapjsock.m
|
.m
|
matfeap-master/mlab/jsock/feapjsock.m
| 1,707 |
utf_8
|
a6ed7d43c262995619f84c9aac082663
|
function feapjsock;
% @T -----------------------------------
% \section{Interface to the Java socket helper}
%
% The Java socket helper class is a thin layer that lets us use
% Java stream descriptors and binary I/O routines. We use it to
% establish socket connections, send an recieve lines of data,
% etc.
%
% The socket routines are
% \begin{itemize}
% \item [[sock_new(hostname,port)]] - start a socket connection
% \item [[sock_new(command)]] - start a pipe connection
% \item [[sock_close(js)]] - close a socket
% \item [[sock_recv(js)]] - read a line of data
% \item [[sock_send(js)]] - send a line of data
% \item [[sock_readdarray(js, len)]] - read [[len]] 64-bit doubles
% into an array
% \item [[sock_readiarray(js, len)]] - read [[len]] 32-bit integers
% into an array
% \item [[sock_senddarray(js, array)]] - send an array of 64-bit doubles
% \item [[sock_sendiarray(js, array)]] - send an array of 32-bit integers
% \end{itemize}
%@o sock_new.m
function p = sock_new(hostname, port)
if nargin == 2
p.helper = FeapClientHelper(hostname, int32(port));
else
p.helper = FeapClientHelper(hostname);
end
%@o
%@o sock_close.m
function sock_close(p)
p.helper.close();
%@o
%@o sock_recv.m
function s = sock_recv(p)
s = char(p.helper.readln());
%@o
%@o sock_send.m
function sock_send(p, msg)
p.helper.send(msg);
%@o
%@o sock_recvdarray.m
function val = sock_recvdarray(p, len)
val = p.helper.getDarray(int32(len));
%@o
%@o sock_recviarray.m
function val = sock_recviarray(p, len)
val = p.helper.getIarray(int32(len));
%@o
%@o sock_senddarray.m
function sock_senddarray(p, x)
p.helper.setDarray(x);
%@o
%@o sock_sendiarray.m
function sock_sendiarray(p, x)
p.helper.setIarray(x);
%@o
|
github
|
dbindel/matfeap-master
|
feaps.m
|
.m
|
matfeap-master/mlab/web/feaps.m
| 4,407 |
utf_8
|
1cd3632e19fb2425b5a1c1dca1081e1b
|
% @T ===========================
% \section {Communication setup}
%
% These routines are used to specify which of the three communication modes
% available to MATFEAP should be used.
%
% @q ===========================
% @T -------------------------------------------------------------------
% \subsection{Setting up pipe communication}
%
% The [[feaps_pipe]] function tells MATFEAP to manage communication
% over a bidirectional pipe managed by Java. This method is not
% available in the C interface -- there the prefered connection method is
% a UNIX-domain socket.
%
% The default location for the FEAP executable used by in pipe mode is
% {\tt {\it MATFEAP}/srv/feapp}. The location of the [[feaps_pipe.m]]
% file should be {\tt {\it MATFEAP}/srv/feaps\_pipe.m}. Since the latter
% file is obviously on the MATLAB path, we can get the fully qualified
% name from MATLAB and extract the location of the MATFEAP home directory
% from it.
%@o feaps_pipe.m
% feaps_pipe(cmd)
%
% Tell MATFEAP to use a pipe to connect to FEAP. If cmd == [], turn off
% MATFEAP pipe connection mode. If cmd is not provided, fill in a default
% location based on the location of this mfile.
%@c
function feaps_pipe(cmd)
global matfeap_globals
matfeap_globals.sockname = [];
matfeap_globals.server = [];
matfeap_globals.port = [];
if nargin < 1
s = which('feaps_pipe.m');
i = strfind(s, 'feaps_pipe.m')-length('mlab/');
matfeap_globals.command = [s(1:i-1), 'srv/feapp'];
fprintf('Using FEAP in pipe mode: %s\n', matfeap_globals.command);
elseif isempty(cmd)
matfeap_globals.command = [];
fprintf('Turning off FEAP pipe mode\n');
else
matfeap_globals.command = cmd;
end
% @T --------------------------------------------------------------------
% \subsection{Setting up TCP socket communication}
%
% The [[feaps_tcp]] function tells MATFEAP to manage communication
% over a TCP socket (which may be managed by Java or C). The default
% location for the server is the local host on port 3490.
%@o feaps_tcp.m
% feaps_tcp(server, port)
%
% Tell MATFEAP to use a TCP socket to connect to FEAP. feaps_tcp([]) turns off
% MATFEAP UNIX connection mode. Either the server or the port can be
% omitted; the default server is 127.0.0.1, and the default port is 3490.
%@c
function feaps_tcp(server, port)
global matfeap_globals
matfeap_globals.command = [];
matfeap_globals.sockname = [];
matfeap_globals.server = [];
matfeap_globals.port = [];
if nargin < 1
matfeap_globals.server = '127.0.0.1';
matfeap_globals.port = 3490;
elseif nargin == 1
if isempty(server)
fprintf('Turning off FEAP TCP mode\n');
return;
elseif isnumeric(server)
matfeap_globals.server = '127.0.0.1';
matfeap_globals.port = server;
else
matfeap_globals.server = server;
matfeap_globals.port = 3490;
end
else
matfeap_globals.server = server;
matfeap_globals.port = port;
end
fprintf('Using FEAP in TCP mode: %s:%d\n', ...
matfeap_globals.server, matfeap_globals.port);
% @T --------------------------------------------------------------------
% \subsection{Setting up UNIX socket communication}
%
% The [[feaps_unix]] function tells MATFEAP to manage communication
% over a UNIX-domain socket. This option is only available with the C
% interface. UNIX-domain sockets are identified by filesystem locations,
% typically placed under [[/tmp]]. For MATFEAP, we use the default
% name {\tt /tmp/feaps-{\it USER}}, where {\it USER} is the user name in
% the current environment. Because MATLAB doesn't have direct access to
% the environment, we fetch the default socket name through the wrapper
% function [[sock_default_unix]].
%@o feaps_unix.m
% feaps_unix(sockname)
%
% Tell MATFEAP to use a UNIX socket to connect to FEAP. If sockname == [],
% turn off MATFEAP UNIX connection mode. If sockname is not provided, fill in
% a default socket name based on the location of this mfile.
%@c
function feaps_unix(sockname)
global matfeap_globals
matfeap_globals.command = [];
matfeap_globals.sockname = [];
matfeap_globals.server = [];
matfeap_globals.port = [];
if nargin < 1
matfeap_globals.sockname = sock_default_unix;
elseif nargin == 1
if isempty(sockname)
fprintf('Turning off FEAP UNIX mode\n');
return;
else
matfeap_globals.sockname = sockname;
end
end
fprintf('Using FEAP on UNIX socket: %s\n', matfeap_globals.sockname);
|
github
|
dbindel/matfeap-master
|
feaputil.m
|
.m
|
matfeap-master/mlab/web/feaputil.m
| 3,327 |
utf_8
|
cb927dcc4eeae6458daad5401522e6b7
|
function feaputil;
% @T ===========================
% \section {Utility commands}
%
% These are low-level routines that should generally be invisible
% to the user.
%
% @q ===========================
% @T --------------------------------------------
% \subsection{Waiting for synchronization}
%
% The [[feapsync]] command is used to wait for a synchronization
% message sent by the server. For the moment, we don't use the
% synchronization labels.
%@o feapsync.m
% feapsync(feap, barriernum)
%
% Synchronize on a MATFEAP SYNC string
%@c
function feapsync(p, barriernum)
if nargin == 1, barriernum = 0; end
while 1
s = sock_recv(p.fd);
if strfind(s, 'MATFEAP SYNC')
if barriernum == 0
break;
elseif strcmp(s, sprintf('MATFEAP SYNC %d', barriernum))
break
else
feapdispv(p, 'Unexpected barrier');
feapdispv(p, s);
end
else
feapdispv(p, s);
end
end
%@o
% @T --------------------------------------------
% \subsection{Waiting for {\tt FEAPSRV}}
%
% The [[feapsrvp]] command is used to wait for the server to send
% a [[FEAPSRV]] prompt when using the [[feapsrv]] command
% interface.
%@o feapsrvp.m
% s = feapsrvp(feap)
%
% Wait for the FEAPSRV prompt
%@c
function s = feapsrvp(p, prompt)
while 1
s = sock_recv(p.fd);
feapdispv(p, s);
if strfind(s, 'FEAPSRV>'), break; end
end
%@o
% @T --------------------------------------------
% \subsection{Verbose output}
%
% The [[feapdispv]] routine is used to write messages to the
% standard output conditioned on the FEAP server being in verbose
% mode. This is useful if you want to look at the output of FEAP
% for debugging purposes.
%@o feapdispv.m
% feapdispv(feap, msg)
%
% Display the message if verbose is true
%@c
function feapdispv(p, msg)
if p.verb
if length(msg) == 0, msg = ' '; end
disp(msg);
end
%@o
% @T --------------------------------------------
% \subsection{Index mapping}
%
% The [[ID]] array in FEAP is used to keep track of which nodal
% variables are active and which are determined by some boundary
% condition. We return the relevant portion of the [[ID]] array
% along with:
% \begin{enumerate}
% \item
% The indices of all active degrees of freedom ([[full_id]]).
% \item
% The indices of all variables subject to BCs ([[bc_id]]).
% \item
% An array to map the indices of the active degrees of freedom
% in the full vector to indices in a reduced vector ([[reduced_id]]).
% \end{enumerate}
%@o map2full.m
% [full_id, bc_id, reduced_id, id] = map2full(feap)
%
% Get mapping from full to reduced dof set for current FEAP deck.
%
% Output:
% full_id -- index of free variables in full dof vector
% bc_id -- index of displacement BC variables
% reduced_id -- index of free variables in reduced dof set
% (a permutation)
% id -- first part of FEAP index array
%@c
function [full_id, bc_id, reduced_id, id] = map2full(p)
% Get mesh parameters
nneq = feapget(p, 'nneq'); % Number of unreduced dof
numnp = feapget(p, 'numnp'); % Number of dof
ndf = feapget(p, 'ndf'); % Maximum dof per node
% Get the index map
id = feapgetm(p, 'id');
id = reshape(id(1:nneq), ndf, numnp);
% Find the index set for free vars in full and reduced vectors
full_id = find(id > 0);
bc_id = find(id <= 0);
reduced_id = id(full_id);
|
github
|
dbindel/matfeap-master
|
feapgetset.m
|
.m
|
matfeap-master/mlab/web/feapgetset.m
| 12,849 |
utf_8
|
e8d076c7e3aca7936adb76e7f2757911
|
function feapgetset;
% @T ===========================
% \section {Basic getter / setter interfaces}
%
% These are the MATLAB interface routines that get and set FEAP
% matrices, arrays, and scalars.
%
% @q ===========================
% @T --------------------------------------------
% \subsection{Getting scalar values}
%
% To get a scalar variable, we enter the [[feapsrv]] interface
% and issue a {\tt get {it varname}} request. Either it succeeds,
% in which case the variable is printed; or it fails, in which case
% nothing is printed. We silently return an empty array to
% indicate the latter case. After retrieving the variable, we
% issue a [[start]] command to exit the [[feapsrv]] interface
% and get back to the FEAP macro prompt.
%@o feapget.m
% val = feapget(feap, vname)
%
% Get a scalar value out of a FEAP common block entry
% Ex:
% neq = feapget(p, 'neq');
%@c
function val = feapget(p, var)
if nargin < 2, error('Missing required argument'); end
if ~ischar(var), error('Variable name must be a string'); end
sock_send(p.fd, 'serv');
feapsrvp(p);
cmd = sprintf('get %s', lower(var));
feapdispv(p, cmd);
sock_send(p.fd, cmd);
val = [];
resp = sock_recv(p.fd);
if ~strcmp(resp, 'FEAPSRV> ')
val = sscanf(resp, '%g');
feapdispv(p, resp);
feapsrvp(p);
end
sock_send(p.fd, 'start');
feapsync(p);
%@o
% @T --------------------------------------------
% \subsection{Getting arrays}
%
% This routine implements the client side of the array fetch
% protocol described in the [[feapsrv]] documentation. We enter
% the [[feapsrv]] command interface, issue a request for a
% matrix, read the server's description of the matrix size and
% type, and then either start an appropriate binary data transfer
% or bail if something looks malformed. After all this, we return
% to the FEAP macro interface.
%@o feapgetm.m
% array_val = feapgetm(feap, array_name)
%
% Get a dynamically allocated FEAP array by name. array_val will be
% a column vector -- use reshape to change it into a matrix if
% appropriate.
%@c
function val = feapgetm(p, var)
if nargin < 2, error('Missing required argument'); end
if ~ischar(var), error('Variable name must be a string'); end
sock_send(p.fd, 'serv');
feapsrvp(p);
cmd = sprintf('getm %s', upper(var));
feapdispv(p, cmd);
sock_send(p.fd, cmd);
resp = sock_recv(p.fd);
[s, resp] = strtok(resp);
val = [];
if strcmp(s, 'Send')
[datatype, resp] = strtok(resp); % Data type (int | double)
[len, resp] = strtok(resp); % Number of entries
len = str2num(len);
if strcmp(datatype, 'int')
feapdispv(p, sprintf('Receive %d ints...', len));
sock_send(p.fd, 'binary')
val = sock_recviarray(p.fd, len);
elseif strcmp(datatype, 'double')
feapdispv(p, sprintf('Receive %d doubles...', len));
sock_send(p.fd, 'binary')
val = sock_recvdarray(p.fd, len);
else
feapdispv(p, 'Did not recognize response, bailing');
sock_send(p.fd, 'cancel')
end
end
feapsrvp(p);
sock_send(p.fd, 'start')
feapsync(p);
%@o
% @T --------------------------------------------
% \subsection{Setting arrays}
%
% This routine implements the client side of the array set
% protocol described in the [[feapsrv]] documentation. It is
% exactly analogous to [[feapgetm]], except that now we have to
% make sure that we're sending the right amount of data. We should
% almost certainly advertize more clearly when we've exited because
% the specified array was the wrong size.
%@o feapsetm.m
% feapsetm(feap, array_name, array_val)
%
% Set a dynamically allocated FEAP array's entries. Note that array_val
% can be whatever shape is desired, so long as it has the correct number of
% entries.
%@c
function feapsetm(p, var, val)
sock_send(p.fd, 'serv');
feapsrvp(p);
cmd = sprintf('setm %s', upper(var));
feapdispv(p, cmd);
sock_send(p.fd, cmd);
resp = sock_recv(p.fd);
[s, resp] = strtok(resp);
if strcmp(s, 'Recv')
[datatype, resp] = strtok(resp);
[len, resp] = strtok(resp);
len = str2num(len);
if len ~= prod(size(val))
feapdispv(p, sprintf('Expected size %d; bailing', len));
sock_send(p.fd, 'cancel');
elseif strcmp(datatype, 'int')
feapdispv(p, sprintf('Sending %d ints...', len));
sock_send(p.fd, 'binary')
sock_sendiarray(p.fd, val);
elseif strcmp(datatype, 'double')
feapdispv(p, sprintf('Sending %d doubles...', len));
sock_send(p.fd, 'binary')
sock_senddarray(p.fd, val);
else
feapdispv(p, 'Did not recognize response, bailing');
sock_send(p.fd, 'cancel')
end
end
feapsrvp(p);
sock_send(p.fd, 'start')
feapsync(p);
%@o
% @T --------------------------------------------
% \subsection{Getting sparse matrices}
%
% This routine implements the client side of the sparse matrix fetch
% protocol described in the [[feapsrv]] documentation. We start
% the [[feapsrv]] command interface, request the array, read the
% number of nonzero entries, and either fetch a block of binary
% data and convert it to a sparse matrix, or bail if we saw
% something unexpected.
%@o feapgetsparse.m
% val = feapgetsparse(feap, vname)
%
% Get a sparse matrix value out of FEAP. Valid array names are
% 'tang', 'utan', 'lmas', 'mass', 'cmas', 'umas', 'damp', 'cdam', 'udam'
%@c
function val = feapgetsparse(p, var)
if nargin < 2, error('Wrong number of arguments'); end
if ~ischar(var), error('Variable name must be a string'); end
if length(var) < 1, error('Variable name must be at least one char'); end
sock_send(p.fd, 'serv');
feapsrvp(p);
cmd = sprintf('sparse binary %s', lower(var));
feapdispv(p, cmd);
sock_send(p.fd, cmd);
resp = sock_recv(p.fd);
[s, resp] = strtok(resp);
val = [];
if strcmp(s, 'nnz')
[len, resp] = strtok(resp);
len = str2num(len);
feapdispv(p, sprintf('Receive %d matrix entries...', len));
val = sock_recvdarray(p.fd, 3*len);
val = reshape(val, 3, len);
val = sparse(val(1,:), val(2,:), val(3,:));
end
feapsrvp(p);
sock_send(p.fd, 'start')
feapsync(p);
%@o
% @T ===========================
% \section {Getting stiffness, mass, and damping}
%
% These are the high-level interface routines that fetch or write
% the main FEAP sparse matrices.
%
% @q ===========================
% @T --------------------------------------------
% \subsection{Tangent matrix}
%
% The [[feaptang]] and [[feaputan]] routines call FEAP macros
% to form the tangent stiffness matrix (symmetric or unsymmetric)
% without factoring it, and then retrieve the matrix into MATLAB.
%@o feaptang.m
% K = feaptang(feap)
%
% Form and fetch the current FEAP tangent matrix
%@c
function K = feaptang(p)
feapcmd(p, 'tang,,-1');
K = feapgetsparse(p, 'tang');
%@o
% ---
%@o feaputan.m
% K = feaputan(feap)
%
% Form and fetch the FEAP current unsymmetric tangent matrix
%@c
function K = feaputan(p)
feapcmd(p, 'utan,,-1');
K = feapgetsparse(p, 'utan');
%@o
% @T --------------------------------------------
% \subsection{Mass matrix}
%
% The [[feapmass]] and [[feapumass]] routines call FEAP macros
% to form the mass (symmetric or unsymmetric), and then retrieve
% the matrix into MATLAB. This high-level interface only allows
% you to get the consistent mass, and not the lumped mass.
%@o feapmass.m
% M = feapmass(feap)
%
% Get the current FEAP mass matrix
%@c
function M = feapmass(p)
feapcmd(p, 'mass');
M = feapgetsparse(p, 'mass');
%@o
% ---
%@o feapumass.m
% M = feapumass(feap)
%
% Get the current FEAP unsymmetric mass matrix
%@c
function M = feapumass(p)
feapcmd(p, 'mass,unsy');
M = feapgetsparse(p, 'umas');
%@o
% @T --------------------------------------------
% \subsection{Damping matrix}
%
% The [[feapdamp]] and [[feapudamp]] routines call FEAP macros
% to form the damping (symmetric or unsymmetric), and then retrieve
% the matrix into MATLAB.
%@o feapdamp.m
% D = feapdamp(feap)
%
% Get the current FEAP damping matrix
%@c
function D = feapdamp(p)
feapcmd(p, 'damp');
D = feapgetsparse(p, 'damp');
%@o
% ---
%@o feapudamp.m
% D = feapudamp(feap)
%
% Get the current FEAP unsymmetric damping matrix
%@c
function D = feapudamp(p)
feapcmd(p, 'damp,unsy');
D = feapgetsparse(p, 'damp');
%@o
% @T ===========================
% \section {Getting and setting [[X]], [[U]], and [[F]] vectors}
%
% These are the high-level interface routines that fetch or write
% the node position, displacement, and residual vectors.
%
% @q ===========================
% @T --------------------------------------------
% \subsection{Getting the displacement}
%
% The [[feapgetu]] command retrieves the full displacement array
% [[U]] and returns some subset of it. By default, we extract the
% active degrees of freedom in the reduced order, using
% [[map2full]] to retrieve the appropriate reindexing vector.
%@o feapgetu.m
% u = feapgetu(feap, id)
%
% Get the displacement vector from FEAP. The id argument is optional;
% if it is ommitted, only active degrees of freedom are returned.
%@c
function u = feapgetu(p, id)
if nargin < 2, id = map2full(p); end
u = feapgetm(p, 'u');
u = u(id);
%@o
% @T --------------------------------------------
% \subsection{Setting the displacement}
%
% The [[feapsetu]] command sets some subset of the displacement
% array [[U]] (by default, we set the active degrees of
% freedom). If we don't provide a vector to write out, then the
% assumption is that we want to clear the displacement vector to
% zero, save for any essential boundary conditions (which FEAP
% keeps in the second part of the [[F]] array).
%@o feapsetu.m
% feapsetu(feap, u, id)
%
% Set the displacement vector from FEAP. The id argument is optional;
% if it is omitted, all active degrees of freedom are returned.
%@c
function feapsetu(p,u, id)
if nargin < 3, [id, bc_id] = map2full(p); end
u1 = feapgetm(p,'u');
if nargin < 2
nneq = feapget(p,'nneq');
f = feapgetm(p,'f');
u1(bc_id) = f(bc_id + nneq);
end
u1(id) = u;
feapsetm(p, 'u', u1);
%@o
% @T --------------------------------------------
% \subsection{Getting the nodal positions}
%
% The [[feapgetx]] command gets the nodal position matrix [[X]]
% and, optionally, a parallel matrix of displacements. These
% displacements can be extracted from a displacement vector passed
% in as an argument, or they can be retrieved from the FEAP [[U]]
% array.
%@o feapgetx.m
% [xx, uu] = feapgetx(feap, u)
%
% Get the node positions (xx) and their displacements (uu).
% Uses the reduced displacement vector u, or the reduced displacement
% vector from FEAP if u is not provided.
%@c
function [xx, uu] = feapgetx(p,u)
% Get mesh parameters
nnp = feapget(p,'numnp'); % Number of nodal points
nneq = feapget(p,'nneq'); % Number of unreduced dof
neq = feapget(p,'neq'); % Number of dof
ndm = feapget(p,'ndm'); % Number of spatial dimensions
ndf = feapget(p,'ndf'); % Maximum dof per node
% Get node coordinates from FEAP
xx = feapgetm(p,'x');
xx = reshape(xx, ndm, length(xx)/ndm);
if nargout > 1
% Extract u if not provided
if nargin < 1, u = feapgetu(p); end
% Find out how to map reduced to full dof set
id = feapgetm(p,'id');
id = reshape(id(1:nneq), ndf, nnp);
idnz = find(id > 0);
% Get full dof set
uu = zeros(ndf, nnp);
uu(idnz) = u(id(idnz));
end
%@o
% @T --------------------------------------------
% \subsection{Getting the residual}
%
% The [[feapresid]] function forms the residual and fetches it
% from FEAP memory. If the user provides a reduced displacement
% vector [[u]] as an argument, then that vector will be written
% to FEAP's array of nodal unknowns before evaluating the residual.
%
% The one thing that's a little tricky about [[feapresid]] has to do
% with an optimization in FEAP. Usually, calls to the FEAP macro to
% form the residual don't do anything unless there has been a solve
% step since the previous request for a residual form. But when we
% modify the displacements and boundary conditions behind FEAP's back,
% we typically invalidate the current residual, whatever it may be.
% So before requesting that FEAP form a new residual, we use the
% [[feapsrv]] interface to clear the flag that says that the residual has
% already been formed.
%@o feapresid.m
% R = feapresid(feap, u, id)
%
% Get the residual corresponding to a particular input vector.
% Both the u (displacement vector) and id (variable index) arguments
% can be ommitted:
%
% R = feapresid(p); % Get the current residual
% R = feapresid(p,u); % Set FEAP's active displacements to u first
% R = feapresid(p,u,id); % Set displacements (possibly not active) first
%@c
function R = feapresid(p, u, id)
if nargin == 2
feapsetu(p,u);
elseif nargin == 3
feapsetu(p,u, id);
end
sock_send(p.fd,'serv');
feapsrvp(p);
feapdispv(p, 'clear_isformed');
sock_send(p.fd, 'clear_isformed');
feapsrvp(p);
sock_send(p.fd, 'start');
feapsync(p);
feapcmd(p,'form');
R = feapgetm(p,'dr');
R = R(1:feapget(p,'neq'));
%@o
|
github
|
dbindel/matfeap-master
|
feapuser.m
|
.m
|
matfeap-master/mlab/web/feapuser.m
| 2,227 |
utf_8
|
af1bd30707611e6be7a5eae37954cff2
|
function feapuser;
% @T ===========================
% \section {User commands}
%
% These are the main routines in the interface used directly by MATFEAP
% users.
%
% @q ===========================
% @T --------------------------------------------
% \subsection{Invoking FEAP macro commands}
%
% The [[feapcmd]] routine is used to invoke FEAP macro routines.
% It's up to the user to ensure that after the end of the last command
% in the list, FEAP is back at a prompt involving a [[tinput]]
% command (e.g. the macro prompt or a plot prompt).
%
% The [[feapcmd]] routine should not be used to quit FEAP; use
% [[feapquit]] for that.
%@o feapcmd.m
% feapcmd(feap, c1, c2, c3, ...)
%
% Run the FEAP macro commands specified by strings c1, ...
%@c
function feapcmd(p, varargin)
for k = 1:length(varargin)
sock_send(p.fd, varargin{k});
feapsync(p);
end
%@o
% @T --------------------------------------------
% \subsection{Exiting FEAP}
%
% The [[feapquit]] command invokes the quit command, says ``n''
% when asked whether we would like to continue, waits for the
% sign-off synchronization message, and shuts down the connection.
% This is the graceful way to exit from FEAP. In contrast, the
% [[feapkill]] command should be treated as a last-ditch effort
% to kill a misbehaving FEAP process.
%@o feapquit.m
% feapquit(feap)
%
% Gracefully exit from FEAP.
%@c
function feapquit(p)
sock_send(p.fd, 'quit');
feapsync(p);
sock_send(p.fd, 'n');
feapsync(p,1);
sock_close(p.fd);
%@o
%@o feapkill.m
% feapkill(feap)
%
% Force quit on FEAP process.
%@c
function feapkill(p)
sock_close(p.fd);
%@o
% @T --------------------------------------------
% \subsection{Putting MATFEAP into verbose mode}
%
% In verbose mode, you can see all the interactions between MATFEAP
% and FEAP. It's possible to switch to verbose mode by setting the
% [[verbose]] field in the parameter structure for [[feapstart]],
% or by setting the [[matfeap_globals]] structure directly; but
% I find myself wanting to see verbose output fairly regularly, so
% it seemed worthwhile to have a special method for it.
%@o feaps_verb.m
% Put MATFEAP into verbose mode.
%@c
function feaps_verb
global matfeap_globals;
matfeap_globals.verbose = 1;
|
github
|
seisgo/EllipseFit-master
|
funcEllipseFit_RBrown.m
|
.m
|
EllipseFit-master/matlab/funcEllipseFit_RBrown.m
| 12,164 |
utf_8
|
6a7540c4ea13825a717addd48ae2051a
|
function [z, a, b, alpha] = funcEllipseFit_RBrown(x, varargin)
%FITELLIPSE least squares fit of ellipse to 2D data
% http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m
% [Z, A, B, ALPHA] = FITELLIPSE(X)
% Fit an ellipse to the 2D points in the 2xN array X. The ellipse is
% returned in parametric form such that the equation of the ellipse
% parameterised by 0 <= theta < 2*pi is:
% X = Z + Q(ALPHA) * [A * cos(theta); B * sin(theta)]
% where Q(ALPHA) is the rotation matrix
% Q(ALPHA) = [cos(ALPHA), -sin(ALPHA);
% sin(ALPHA), cos(ALPHA)]
%
% Fitting is performed by nonlinear least squares, optimising the
% squared sum of orthogonal distances from the points to the fitted
% ellipse. The initial guess is calculated by a linear least squares
% routine, by default using the Bookstein constraint (see below)
%
% [...] = FITELLIPSE(X, 'linear')
% Fit an ellipse using linear least squares. The conic to be fitted
% is of the form
% x'Ax + b'x + c = 0
% and the algebraic error is minimised by least squares with the
% Bookstein constraint (lambda_1^2 + lambda_2^2 = 1, where
% lambda_i are the eigenvalues of A)
%
% [...] = FITELLIPSE(..., 'Property', 'value', ...)
% Specify property/value pairs to change problem parameters
% Property Values
% =================================
% 'constraint' {|'bookstein'|, 'trace'}
% For the linear fit, the following
% quadratic form is considered
% x'Ax + b'x + c = 0. Different
% constraints on the parameters yield
% different fits. Both 'bookstein' and
% 'trace' are Euclidean-invariant
% constraints on the eigenvalues of A,
% meaning the fit will be invariant
% under Euclidean transformations
% 'bookstein': lambda1^2 + lambda2^2 = 1
% 'trace' : lambda1 + lambda2 = 1
%
% Nonlinear Fit Property Values
% ===============================
% 'maxits' positive integer, default 200
% Maximum number of iterations for the
% Gauss Newton step
%
% 'tol' positive real, default 1e-5
% Relative step size tolerance
% Example:
% % A set of points
% x = [1 2 5 7 9 6 3 8;
% 7 6 8 7 5 7 2 4];
%
% % Fit an ellipse using the Bookstein constraint
% [zb, ab, bb, alphab] = fitellipse(x, 'linear');
%
% % Find the least squares geometric estimate
% [zg, ag, bg, alphag] = fitellipse(x);
%
% % Plot the results
% plot(x(1,:), x(2,:), 'ro')
% hold on
% % plotellipse(zb, ab, bb, alphab, 'b--')
% % plotellipse(zg, ag, bg, alphag, 'k')
%
% See also PLOTELLIPSE
% Copyright Richard Brown, this code can be freely used and modified so
% long as this line is retained
error(nargchk(1, 5, nargin, 'struct'))
% Default parameters
params.fNonlinear = true;
params.constraint = 'bookstein';
params.maxits = 200;
params.tol = 1e-5;
% Parse inputs
[x, params] = parseinputs(x, params, varargin{:});
% Constraints are Euclidean-invariant, so improve conditioning by removing
% centroid
centroid = mean(x, 2);
x = x - repmat(centroid, 1, size(x, 2));
% Obtain a linear estimate
switch params.constraint
% Bookstein constraint : lambda_1^2 + lambda_2^2 = 1
case 'bookstein'
[z, a, b, alpha] = fitbookstein(x);
% 'trace' constraint, lambda1 + lambda2 = trace(A) = 1
case 'trace'
[z, a, b, alpha] = fitggk(x);
end % switch
% Minimise geometric error using nonlinear least squares if required
if params.fNonlinear
% Initial conditions
z0 = z;
a0 = a;
b0 = b;
alpha0 = alpha;
% Apply the fit
[z, a, b, alpha, fConverged] = ...
fitnonlinear(x, z0, a0, b0, alpha0, params);
% Return linear estimate if GN doesn't converge
if ~fConverged
warning('fitellipse:FailureToConverge', ...'
'Gauss-Newton did not converge, returning linear estimate');
z = z0;
a = a0;
b = b0;
alpha = alpha0;
end
end
% Add the centroid back on
z = z + centroid;
end % fitellipse
% ----END MAIN FUNCTION-----------%
function [z, a, b, alpha] = fitbookstein(x)
%FITBOOKSTEIN Linear ellipse fit using bookstein constraint
% lambda_1^2 + lambda_2^2 = 1, where lambda_i are the eigenvalues of A
% Convenience variables
m = size(x, 2);
x1 = x(1, :)';
x2 = x(2, :)';
% Define the coefficient matrix B, such that we solve the system
% B *[v; w] = 0, with the constraint norm(w) == 1
B = [x1, x2, ones(m, 1), x1.^2, sqrt(2) * x1 .* x2, x2.^2];
% To enforce the constraint, we need to take the QR decomposition
[Q, R] = qr(B);
% Decompose R into blocks
R11 = R(1:3, 1:3);
R12 = R(1:3, 4:6);
R22 = R(4:6, 4:6);
% Solve R22 * w = 0 subject to norm(w) == 1
[U, S, V] = svd(R22);
w = V(:, 3);
% Solve for the remaining variables
v = -R11 \ R12 * w;
% Fill in the quadratic form
A = zeros(2);
A(1) = w(1);
A([2 3]) = 1 / sqrt(2) * w(2);
A(4) = w(3);
bv = v(1:2);
c = v(3);
% Find the parameters
[z, a, b, alpha] = conic2parametric(A, bv, c);
end % fitellipse
function [z, a, b, alpha] = fitggk(x)
% Linear least squares with the Euclidean-invariant constraint Trace(A) = 1
% Convenience variables
m = size(x, 2);
x1 = x(1, :)';
x2 = x(2, :)';
% Coefficient matrix
B = [2 * x1 .* x2, x2.^2 - x1.^2, x1, x2, ones(m, 1)];
v = B \ -x1.^2;
% For clarity, fill in the quadratic form variables
A = zeros(2);
A(1,1) = 1 - v(2);
A([2 3]) = v(1);
A(2,2) = v(2);
bv = v(3:4);
c = v(5);
% find parameters
[z, a, b, alpha] = conic2parametric(A, bv, c);
end
function [z, a, b, alpha, fConverged] = fitnonlinear(x, z0, a0, b0, alpha0, params)
% Gauss-Newton least squares ellipse fit minimising geometric distance
% Get initial rotation matrix
Q0 = [cos(alpha0), -sin(alpha0); sin(alpha0) cos(alpha0)];
m = size(x, 2);
% Get initial phase estimates
phi0 = angle( [1 i] * Q0' * (x - repmat(z0, 1, m)) )';
u = [phi0; alpha0; a0; b0; z0];
% Iterate using Gauss Newton
fConverged = false;
for nIts = 1:params.maxits
% Find the function and Jacobian
[f, J] = sys(u);
% Solve for the step and update u
h = -J \ f;
u = u + h;
% Check for convergence
delta = norm(h, inf) / norm(u, inf);
if delta < params.tol
fConverged = true;
break
end
end
alpha = u(end-4);
a = u(end-3);
b = u(end-2);
z = u(end-1:end);
function [f, J] = sys(u)
% SYS : Define the system of nonlinear equations and Jacobian. Nested
% function accesses X (but changeth it not)
% from the FITELLIPSE workspace
% Tolerance for whether it is a circle
circTol = 1e-5;
% Unpack parameters from u
phi = u(1:end-5);
alpha = u(end-4);
a = u(end-3);
b = u(end-2);
z = u(end-1:end);
% If it is a circle, the Jacobian will be singular, and the
% Gauss-Newton step won't work.
%TODO: This can be fixed by switching to a Levenberg-Marquardt
%solver
if abs(a - b) / (a + b) < circTol
warning('fitellipse:CircleFound', ...
'Ellipse is near-circular - nonlinear fit may not succeed')
end
% Convenience trig variables
c = cos(phi);
s = sin(phi);
ca = cos(alpha);
sa = sin(alpha);
% Rotation matrices
Q = [ca, -sa; sa, ca];
Qdot = [-sa, -ca; ca, -sa];
% Preallocate function and Jacobian variables
f = zeros(2 * m, 1);
J = zeros(2 * m, m + 5);
for i = 1:m
rows = (2*i-1):(2*i);
% Equation system - vector difference between point on ellipse
% and data point
f((2*i-1):(2*i)) = x(:, i) - z - Q * [a * cos(phi(i)); b * sin(phi(i))];
% Jacobian
J(rows, i) = -Q * [-a * s(i); b * c(i)];
J(rows, (end-4:end)) = ...
[-Qdot*[a*c(i); b*s(i)], -Q*[c(i); 0], -Q*[0; s(i)], [-1 0; 0 -1]];
end
end
end % fitnonlinear
function [z, a, b, alpha] = conic2parametric(A, bv, c)
% Diagonalise A - find Q, D such at A = Q' * D * Q
[Q, D] = eig(A);
Q = Q';
% If the determinant < 0, it's not an ellipse
if prod(diag(D)) <= 0
error('fitellipse:NotEllipse', 'Linear fit did not produce an ellipse');
end
% We have b_h' = 2 * t' * A + b'
t = -0.5 * (A \ bv);
c_h = t' * A * t + bv' * t + c;
z = t;
a = sqrt(-c_h / D(1,1));
b = sqrt(-c_h / D(2,2));
alpha = atan2(Q(1,2), Q(1,1));
end % conic2parametric
function [x, params] = parseinputs(x, params, varargin)
% PARSEINPUTS put x in the correct form, and parse user parameters
% CHECK x
% Make sure x is 2xN where N > 3
if size(x, 2) == 2
x = x';
end
if size(x, 1) ~= 2
error('fitellipse:InvalidDimension', ...
'Input matrix must be two dimensional')
end
if size(x, 2) < 6
error('fitellipse:InsufficientPoints', ...
'At least 6 points required to compute fit')
end
% Determine whether we are solving for geometric (nonlinear) or algebraic
% (linear) distance
if ~isempty(varargin) && strncmpi(varargin{1}, 'linear', length(varargin{1}))
params.fNonlinear = false;
varargin(1) = [];
else
params.fNonlinear = true;
end
% Parse property/value pairs
if rem(length(varargin), 2) ~= 0
error('fitellipse:InvalidInputArguments', ...
'Additional arguments must take the form of Property/Value pairs')
end
% Cell array of valid property names
properties = {'constraint', 'maxits', 'tol'};
while length(varargin) ~= 0
% Pop pair off varargin
property = varargin{1};
value = varargin{2};
varargin(1:2) = [];
% If the property has been supplied in a shortened form, lengthen it
iProperty = find(strncmpi(property, properties, length(property)));
if isempty(iProperty)
error('fitellipse:UnknownProperty', 'Unknown Property');
elseif length(iProperty) > 1
error('fitellipse:AmbiguousProperty', ...
'Supplied shortened property name is ambiguous');
end
% Expand property to its full name
property = properties{iProperty};
% Check for irrelevant property
if ~params.fNonlinear && ismember(property, {'maxits', 'tol'})
warning('fitellipse:IrrelevantProperty', ...
'Supplied property has no effect on linear estimate, ignoring');
continue
end
% Check supplied property value
switch property
case 'maxits'
if ~isnumeric(value) || value <= 0
error('fitcircle:InvalidMaxits', ...
'maxits must be an integer greater than 0')
end
params.maxits = value;
case 'tol'
if ~isnumeric(value) || value <= 0
error('fitcircle:InvalidTol', ...
'tol must be a positive real number')
end
params.tol = value;
case 'constraint'
switch lower(value)
case 'bookstein'
params.constraint = 'bookstein';
case 'trace'
params.constraint = 'trace';
otherwise
error('fitellipse:InvalidConstraint', ...
'Invalid constraint specified')
end
end % switch property
end % while
end % parseinputs
|
github
|
seisgo/EllipseFit-master
|
funcEllipseFit_nlinfit.m
|
.m
|
EllipseFit-master/matlab/funcEllipseFit_nlinfit.m
| 639 |
utf_8
|
634fb60894d1e5bdc3cd6eacd6c48943
|
% Ellipse Fitting using nlinfit function and adopting conic section as
% nonlinear regression model function.
% This function can be extended to other conic section fitting, like
% circle, parabola and hyperbola.
function [modelF,fitCoef]=funcEllipseFit_nlinfit(inMtrx)
% Ellipse Function
modelF=@(fitCoef,inMtrx)fitCoef(1)*inMtrx(:,1).^2 ...,
+fitCoef(2)*inMtrx(:,1).*inMtrx(:,2) ...,
+fitCoef(3)*inMtrx(:,2).^2 ...,
+fitCoef(4)*inMtrx(:,1) ...,
+fitCoef(5)*inMtrx(:,2) ...,
+fitCoef(6);
% Initial Coefficients
coef=[1 1 1 1 1 1];
% Do Nonlinear Regression
fitCoef=nlinfit(inMtrx,zeros(size(inMtrx,1),1),modelF,coef);
|
github
|
steventhornton/Newton-Fractal-master
|
int2rgb.m
|
.m
|
Newton-Fractal-master/src/int2rgb.m
| 2,257 |
utf_8
|
9e22059a3b65e4dc93a94404eac4f2fd
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 8/2016 %
% %
% Apply a colormap to integer values by taking the integer values mod the %
% number of colors and applying the appropriate color from the colormap %
% %
% INPUT %
% img .... 2-dimensional array of integer values %
% cmap ... m x 3 array where each row represents rgb values (in [0,1]) %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function rgb = int2rgb(img, cmap)
[n,m] = size(img);
% Convert to a vector
s = img(:);
% Reduce to the number of colors
s = mod(s, size(cmap, 1)) + 1;
% Get the colors
rgb = cmap(s,:);
rgb = reshape(rgb, [n, m, 3]);
end
|
github
|
steventhornton/Newton-Fractal-master
|
iteration.m
|
.m
|
Newton-Fractal-master/src/iteration.m
| 4,046 |
utf_8
|
492f16e63e4dec5240a65553b6e34de5
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% Compute Newton's method on a grid of points. %
% %
% INPUT %
% f .............. A function handle that takes a row vector as input %
% and returns a matrix with the same number of columns %
% as the number of elements in the input vector. The %
% rows of the matrix represent the value of the %
% function and subsequent derivatives. %
% method .... A function handle that takes 3 values as input: %
% f ... A function handle for evaluating a function and %
% its derivatives %
% x ... A vector of points to evaluate f at %
% r ... Relaxation paramater %
% options ... A struct of options. %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function s = iteration(f, method, options)
% Get the options
r = options.r;
resolution = options.resolution;
margin = options.margin;
maxIter = options.maxIter;
tol = options.tol;
smoothing = options.smoothing;
% Set up the complex grid
grid = makeMesh(margin, resolution);
% Convert to a row vector
grid = grid(:)';
% Boolearn matrix, all false (same size as grid)
inTol = false(size(grid));
% Vector that will be plotted (smooth count)
s = zeros(size(grid));
k = 0;
% Continue looping until either maximum number of iterations is reached
% or all grid points have been computed to within the tolerance.
while k < maxIter && ~all(inTol(:))
k = k + 1;
% Get the values from the grid where the solution has not been
% computed to within the tolerance yet
gridCompute = grid(~inTol);
% Evaluate the iteration method
gNew = method(f, gridCompute, r);
grid(~inTol) = gNew;
t = gNew - gridCompute;
if smoothing
s(~inTol) = s(~inTol) + exp(-1./abs(t));
else
s(~inTol) = s(~inTol) + 1;
end
% Update inTol vector
fg = f(grid);
inTol(abs(fg(1,:)) < tol) = true;
end
% Reshape back to a matrix
s = reshape(s, [resolution.height, resolution.width]);
end
|
github
|
steventhornton/Newton-Fractal-master
|
newtonFractal.m
|
.m
|
Newton-Fractal-master/src/newtonFractal.m
| 5,645 |
utf_8
|
ee449dd78b9840fb3a5c6513cbf226c2
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% INPUT %
% f .............. Either a function handle or a symbolic expression. %
% Function handle: Must take a row vector as input %
% and returns a matrix with 2 %
% rows and the same number of %
% columns as the number of %
% elements in the input row %
% vector. The first row %
% represents the value of the %
% function evaluated at the input %
% points, and the second row is %
% the first derivative of the %
% function evaluated at the input %
% points. %
% Symbolic expression: A symbolic expression in %
% one variable. %
% workingDirIn ... The directory to save output images. %
% options ........ A struct containing the options %
% %
% OPTIONS %
% Options should be a struct with the keys below %
% margin ...... Default: (-1-1i, 1+i) %
% Struct with keys: %
% left ..... Left margin %
% right .... Right margin %
% bottom ... Bottom margin %
% top ...... Top margin %
% maxIter ..... Default: 50 %
% Maximum number of iterations. %
% tol ......... Default: 1e-6 %
% Tolerance used for determining if an iteration has %
% converged. %
% height ...... Default: 250 (pixels) %
% Height in pixels for the ouput image. The width is %
% computed automatically based on the margin such that %
% all pixels are squares. %
% smoothing ... Default: false %
% When true, exponential smoothing is used to provide a %
% smooth transition in the colors between different %
% number of iterations to convergence. %
% r ........... Default: 1 %
% A parameter used in the iterations: %
% x_n+1 = x_n - r*f(x_n)/f'(x_n) %
% cmap ........ Default: Matlab's hsv colormap %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function newtonFractal(f, workingDirIn, options)
% Check the number of arguments
narginchk(2, 3)
if nargin < 3
options = struct();
end
% Check/convert the input function
if isa(f, 'function_handle')
g = f;
elseif isa(f, 'sym')
% Convert symbolic expression to function handle with derivative
h = matlabFunction(f);
dh = matlabFunction(diff(f));
g = @(x) [ h(x);
dh(x)];
else
error('Input function must be a function handle or symbolic expression');
end
% Function handle for Newton's method
method = @(f, x, r) newtonsMethod(f, x, r);
% Make the fractal
makeFractal(g, method, workingDirIn, options);
end
|
github
|
steventhornton/Newton-Fractal-master
|
halleyFractal.m
|
.m
|
Newton-Fractal-master/src/halleyFractal.m
| 6,042 |
utf_8
|
20638b73c41f44527c542e99dae833bd
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% INPUT %
% f .............. Either a function handle or a symbolic expression. %
% Function handle: Must take a row vector as input %
% and returns a matrix with 3 %
% rows and the same number of %
% columns as the number of %
% elements in the input row %
% vector. The first row %
% represents the value of the %
% function evaluated at the input %
% points, the second row is the %
% first derivative of the %
% function evaluated at the input %
% points, and the third row is %
% the second derivative of the %
% function evaluated at the input %
% points. %
% Symbolic expression: A symbolic expression in %
% one variable. %
% workingDirIn ... The directory to save output images. %
% options ........ A struct containing the options %
% %
% OPTIONS %
% Options should be a struct with the keys below %
% margin ...... Default: (-1-1i, 1+i) %
% Struct with keys: %
% left ..... Left margin %
% right .... Right margin %
% bottom ... Bottom margin %
% top ...... Top margin %
% maxIter ..... Default: 50 %
% Maximum number of iterations. %
% tol ......... Default: 1e-6 %
% Tolerance used for determining if an iteration has %
% converged. %
% height ...... Default: 250 (pixels) %
% Height in pixels for the ouput image. The width is %
% computed automatically based on the margin such that %
% all pixels are squares. %
% smoothing ... Default: false %
% When true, exponential smoothing is used to provide a %
% smooth transition in the colors between different %
% number of iterations to convergence. %
% r ........... Default: 1 %
% A parameter used in the iterations: %
% x_n+1 = x_n - r*2*f(x_n)*f'(x_n)/(2*f'(x_n)^2 - %
% f(x_n)f''(x_n)) %
% cmap ........ Default: Matlab's hsv colormap %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function halleyFractal(f, workingDirIn, options)
% Check the number of arguments
narginchk(2, 3)
if nargin < 3
options = struct();
end
% Check/convert the input function
if isa(f, 'function_handle')
g = f;
elseif isa(f, 'sym')
% Convert symbolic expression to function handle with derivative
h = matlabFunction(f);
dh = matlabFunction(diff(f));
ddh = matlabFunction(diff(f,2));
g = @(x) [ h(x);
dh(x);
ddh(x)];
else
error('Input function must be a function handle or symbolic expression');
end
% Function handle for Halley's method
method = @(f, x, r) halleysMethod(f, x, r);
% Make the fractal
makeFractal(g, method, workingDirIn, options);
end
|
github
|
steventhornton/Newton-Fractal-master
|
makeMesh.m
|
.m
|
Newton-Fractal-master/src/makeMesh.m
| 3,029 |
utf_8
|
f1c98219c37f7ac66e320201aaa063fb
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 6/2016 %
% %
% Create a matrix where the entries are complex values such that the %
% entire matrix represents a grid in the complex plane. %
% %
% INPUT %
% margin ....... Struct with keys: %
% left ..... Left margin %
% right .... Right margin %
% bottom ... Bottom margin %
% top ...... Top margin %
% resolution ... Struct with keys: %
% width .... number of columns in grid %
% height ... number of rows in grid %
% %
% OUTPUT %
% A 2D complex matrix of grid points in the complex plane %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function grid = makeMesh(margin, resolution)
reMin = margin.left;
reMax = margin.right;
imMin = margin.bottom;
imMax = margin.top;
width = resolution.width;
height = resolution.height;
x = linspace(reMin, reMax, width);
y = linspace(imMin, imMax, height);
[x, y] = meshgrid(x, y);
grid = x + 1i * y;
end
|
github
|
steventhornton/Newton-Fractal-master
|
makeFractal.m
|
.m
|
Newton-Fractal-master/src/makeFractal.m
| 11,534 |
utf_8
|
54266b6d79424ced869e294678607c3c
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% Create a Newton or Halley fractal in the complex plane. %
% %
% INPUT %
% f .............. A function handle that takes a row vector as input %
% and returns a matrix with the same number of columns %
% as the number of elements in the input vector. The %
% rows of the matrix represent the value of the %
% function and subsequent derivatives. %
% method ......... A function handle that takes 3 values as input: %
% f ... A function handle for evaluating a %
% function and it's derivatives %
% x ... A vector of points to evaluate f at %
% r ... Relaxation paramater %
% workingDirIn ... The directory to save output images. %
% options ........ A struct containing the options %
% %
% OPTIONS %
% Options should be a struct with the keys below %
% margin ...... Default: (-1-1i, 1+i) %
% Struct with keys: %
% left ..... Left margin %
% right .... Right margin %
% bottom ... Bottom margin %
% top ...... Top margin %
% maxIter ..... Default: 50 %
% Maximum number of iterations. %
% tol ......... Default: 1e-6 %
% Tolerance used for determining if an iteration has %
% converged. %
% height ...... Default: 250 (pixels) %
% Height in pixels for the ouput image. The width is %
% computed automatically based on the margin such that %
% all pixels are squares. %
% smoothing ... Default: false %
% When true, exponential smoothing is used to provide a %
% smooth transition in the colors between different %
% number of iterations to convergence. %
% r ........... Default: 1 %
% A parameter used in the iterations: %
% x_n+1 = x_n - r*method %
% where method is dependent on the method used (f/df for %
% Newtons' method). %
% cmap ........ Default: Matlab's hsv colormap %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function makeFractal(f, method, workingDirIn, options)
% Make working directory if it doesn't exit
if workingDirIn(end) == filesep
workingDir = workingDirIn;
else
workingDir = [workingDirIn, filesep];
end
mkdir_if_not_exist(workingDir);
% Process the options
opts = processOptions(options);
margin = opts.margin;
maxIter = opts.maxIter;
tol = opts.tol;
height = opts.height;
smoothing = opts.smoothing;
r = opts.r;
cmap = opts.cmap;
% Get resolution
resolution = getResolution();
opts.resolution = resolution;
% Output filename
outputFilename = makeOutputFilename();
% Make the fratal
runIteration()
% Write readme file
writeReadMe();
% =====================================================================
% FUNCTIONS
% =====================================================================
% ---------------------------------------------------------------------
function runIteration()
s = iteration(f, method, opts);
if smoothing
rgb = double2rgb(s, cmap);
else
rgb = int2rgb(s, cmap);
end
% Write the image to a file
imwrite(rgb, [workingDir, outputFilename]);
fprintf(['Image written to: ', outputFilename, '\n']);
end
% ------------------------------------------------------------------- %
% getResolution %
% %
% Compute the resolution struct based on the height and margins. %
% %
% OUTPUT %
% A struct resolution = {'width', w, 'height', h} %
% ------------------------------------------------------------------- %
function resolution = getResolution()
% Check the margins and make the resolution structure
if margin.bottom >= margin.top
error 'Bottom margin must be less than top margin';
end
if margin.left >= margin.right
error 'Left margin must be less than top margin';
end
width = getWidth();
resolution = struct('width', width, 'height', height);
end
% ------------------------------------------------------------------- %
% getWidth %
% %
% Compute the width (in px) based on the height and the margins such %
% that each grid point is a square %
% %
% OUTPUT %
% A struct resolution = {'width', w, 'height', h} %
% ------------------------------------------------------------------- %
function width = getWidth()
heightI = margin.top - margin.bottom;
widthI = margin.right - margin.left;
width = floor(widthI*height/heightI);
end
% ------------------------------------------------------------------- %
% outputFilename %
% %
% Determine the name of the output file. %
% %
% OUTPUT %
% A string of the form %
% Image-(i) where i is a positive integer. %
% ------------------------------------------------------------------- %
function outputFilename = makeOutputFilename()
outPrefix = 'Image-';
if exist([workingDir, outPrefix, '1.png']) == 2
i = 2;
while exist([workingDir, outPrefix , num2str(i), '.png']) == 2
i = i + 1;
end
outputFilename = [outPrefix, num2str(i), '.png'];
else
outputFilename = [outPrefix, '1.png'];
end
end
% ------------------------------------------------------------------- %
% writeReadMe %
% %
% Write a readme file in the workingDir with information about %
% when the data was created, what was used to create the data, etc. %
% ------------------------------------------------------------------- %
function writeReadMe()
file = fopen([workingDir, 'README.txt'], 'a');
fprintf(file, [outputFilename, '\n']);
% Date
fprintf(file, ['\tCreated ...... ', datestr(now,'mmmm dd/yyyy HH:MM:SS AM'), '\n']);
% Function
fprintf(file, ['\tFunction ..... ', func2str(f), '\n']);
% Method
%fprintf(file, ['\tmethod ....... ', method, '\n']);
% Margin
fprintf(file, ['\tmargin ....... bottom: ', num2str(margin.bottom), '\n']);
fprintf(file, ['\t top: ', num2str(margin.top), '\n']);
fprintf(file, ['\t left: ', num2str(margin.left), '\n']);
fprintf(file, ['\t right: ', num2str(margin.right), '\n']);
% Resolution
fprintf(file, ['\tresolution ... ', num2str(resolution.width), 'x', num2str(resolution.height), '\n']);
% maxIter
fprintf(file, ['\tmaxIter ...... ', num2str(maxIter), '\n']);
% tol
fprintf(file, ['\ttol .......... ', num2str(tol), '\n']);
% smoothing
if smoothing
fprintf(file, '\tsmoothing .... true\n');
else
fprintf(file, '\tsmoothing .... false\n');
end
% r
fprintf(file, ['\tr ............ ', num2str(r), '\n']);
% cmap
fprintf(file, [' cmap .............. ', ...
num2str(cmap(1,1)), ', ', ...
num2str(cmap(1,2)), ', ', ...
num2str(cmap(1,3)), '\n']);
for i=2:size(cmap, 1)
fprintf(file, [' ', ...
num2str(cmap(i,1)), ', ', ...
num2str(cmap(i,2)), ', ', ...
num2str(cmap(i,3)), '\n']);
end
fprintf(file, '\n\n\n');
fclose(file);
end
end
|
github
|
steventhornton/Newton-Fractal-master
|
double2rgb.m
|
.m
|
Newton-Fractal-master/src/double2rgb.m
| 3,569 |
utf_8
|
75aba98dfb19353cb6cf384524f0853b
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Oct. 25/2016 %
% %
% Apply a colormap to floating point values by interpolating between %
% points in the colormap. %
% %
% INPUT %
% img .... 2-dimensional array of floating point values %
% cmap ... m x 3 array where each row represents rgb values (in [0,1]) %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function rgb = double2rgb(img, cmap)
% Background color
bg = [0,0,0];
[n,m] = size(img);
% Convert to a vector
s = img(:);
rVal = zeros(size(s));
gVal = zeros(size(s));
bVal = zeros(size(s));
% Only the valid points
valid = isfinite(s);
minVal = min(s(valid));
maxVal = max(s(valid));
% Fill in the non-valid points
rVal(~valid) = bg(1);
gVal(~valid) = bg(2);
bVal(~valid) = bg(3);
% Scale to a number between 0 and 1
s(valid) = (s(valid) - minVal)/(maxVal - minVal);
% Scale to a number between 1 and size(cmap)
s(valid) = s(valid)*(size(cmap, 1) - 1) + 1;
tZero = valid & ((s - floor(s)) == 0);
tNotZero = valid & ((s - floor(s)) ~= 0);
tFrac = s - floor(s);
idx1 = floor(s);
% When tFrac == 0
rVal(tZero) = cmap(idx1(tZero), 1);
gVal(tZero) = cmap(idx1(tZero), 2);
bVal(tZero) = cmap(idx1(tZero), 3);
% When tFrac ~= 0
rVal1 = cmap(idx1(tNotZero), 1);
gVal1 = cmap(idx1(tNotZero), 2);
bVal1 = cmap(idx1(tNotZero), 3);
rVal2 = cmap(idx1(tNotZero) + 1, 1);
gVal2 = cmap(idx1(tNotZero) + 1, 2);
bVal2 = cmap(idx1(tNotZero) + 1, 3);
rVal(tNotZero) = (rVal2 - rVal1).*tFrac(tNotZero) + rVal1;
gVal(tNotZero) = (gVal2 - gVal1).*tFrac(tNotZero) + gVal1;
bVal(tNotZero) = (bVal2 - bVal1).*tFrac(tNotZero) + bVal1;
rVal = reshape(rVal, [n, m]);
gVal = reshape(gVal, [n, m]);
bVal = reshape(bVal, [n, m]);
rgb = cat(3, rVal, gVal, bVal);
end
|
github
|
steventhornton/Newton-Fractal-master
|
processOptions.m
|
.m
|
Newton-Fractal-master/src/processOptions.m
| 5,969 |
utf_8
|
ebb6ff0e936e57b2a3db455cd095d5d2
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 6/2016 %
% %
% Process the options input options struct. If an option is not in the %
% options struct the default value is used. %
% %
% INPUT %
% options ... (struct) contains keys corresponding to the options %
% %
% OUTPUT %
% A struct opts with keys %
% margin ...... struct(left, right, bottom, top), double %
% maxIter ..... posint %
% tol ......... positive double (<1) %
% height ...... posint %
% smoothing ... bool %
% r ........... double %
% cmap ........ m x 3 array of doubles in [0,1] %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function opts = processOptions(options)
% Check the number of input arguments
if nargin ~= 1
error('processOptions:WrongNumberofArgs', ...
'processOptions expects one argument.');
end
% Check that options is a struct
if ~isstruct(options)
error('processOptions:InvalidOptionsStruct', ...
'options argument must be a structured array');
end
optNames = struct('margin', 'margin', ...
'maxIter', 'maxIter', ...
'tol', 'tol', ...
'height', 'height', ...
'smoothing', 'smoothing', ...
'r', 'r', ...
'cmap', 'cmap');
fnames = fieldnames(options);
if ~all(ismember(fnames, fieldnames(optNames)))
error('processOptions:InvalidOption', ...
'Invalid option provided');
end
opts = struct();
% Default values
opts.margin = struct('bottom', -1, ...
'top', 1, ...
'left', -1, ...
'right', 1);
opts.maxIter = 50;
opts.tol = 1e-6;
opts.height = 250;
opts.smoothing = false;
opts.r = 1;
opts.cmap = hsv;
% margin ---------------------------
if isfield(options, optNames.margin)
opts.margin = options.margin;
% TO DO: Add type checking (struct: left, right, bottom, top))
end
% maxIter --------------------------
if isfield(options, optNames.maxIter)
opts.maxIter = options.maxIter;
% Check that maxIter is a positive integer
if ~isposint(opts.maxIter)
error('maxIter option must be a positive integer');
end
end
% tol ---------------------------
if isfield(options, optNames.tol)
opts.tol = options.tol;
% Check that tol is in [0,1]
if opts.tol < 0 || opts.tol > 1
error('tol option must be between 0 and 1');
end
end
% height ---------------------------
if isfield(options, optNames.height)
opts.height = options.height;
if ~isposint(opts.height)
error('height option must be a positive integer');
end
end
% smoothing ---------------------------
if isfield(options, optNames.smoothing)
opts.smoothing = options.smoothing;
% TO DO: Add type checking (bool)
end
% r ---------------------------
if isfield(options, optNames.r)
opts.r = options.r;
% TO DO: Add type checking (float)
end
% cmap -----------------------------
if isfield(options, optNames.cmap)
opts.cmap = options.cmap;
end
% ---------------------------------------------------------------------
% Type checking functions
% ---------------------------------------------------------------------
function b = isposint(x)
b = logical(0);
try
b = logical((x > 0) & (~mod(x, 1)));
end
end
end
|
github
|
steventhornton/Newton-Fractal-master
|
newtonsMethod.m
|
.m
|
Newton-Fractal-master/src/methods/newtonsMethod.m
| 2,528 |
utf_8
|
75fb2f00ad6efd1ae22fc5f06868030d
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% Compute Newton's method on a grid of points. %
% xn = x - r*f(x)/f'(x) %
% %
% INPUT %
% f ... A function handle that takes a row vector as input and returns %
% a matrix with 2 rows and the same number of columns as the %
% number of elements in the input row vector. The first row %
% represents the value of the function evaluated at the input %
% points, and the second row is the first derivative of the %
% function evaluated at the input points. %
% x ... Points to evaluate Newton's method at. %
% r ... Relaxation parameter %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function xn = newtonsMethod(f, x, r)
g = f(x);
t = g(1,:)./g(2,:);
xn = x - r*t;
end
|
github
|
steventhornton/Newton-Fractal-master
|
halleysMethod.m
|
.m
|
Newton-Fractal-master/src/methods/halleysMethod.m
| 2,638 |
utf_8
|
2bc7c532b5459cd6ee000921beaece95
|
% ----------------------------------------------------------------------- %
% AUTHOR .... Steven E. Thornton (Copyright (c) 2016) %
% EMAIL ..... [email protected] %
% UPDATED ... Sept. 7/2016 %
% %
% Compute Halley's method on a grid of points. %
% xn = x - r*2*f(x)*f'(x)/(2*f'(x)^2 - f(x)*f''(x)) %
% %
% INPUT %
% f ... A function handle that takes a row vector as input and returns %
% a matrix with 3 rows and the same number of columns as the %
% number of elements in the input row vector. The first row %
% represents the value of the function evaluated at the input %
% points, the second row is the first derivative of the function %
% evaluated at the input points, and the third row is the second %
% derivative of the function evaluated at the input points. %
% x ... Points to evaluate Newton's method at. %
% r ... Relaxation parameter %
% %
% LICENSE %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see http://www.gnu.org/licenses/. %
% ----------------------------------------------------------------------- %
function xn = halleysMethod(f, x, r)
g = f(x);
t = 2*g(1,:).*g(2,:)./(2*g(2,:).^2 - g(1,:).*g(3,:));
xn = x - r*t;
end
|
github
|
DevLibraries/SmallLibraries-master
|
analyze_leafsize_stats.m
|
.m
|
SmallLibraries-master/Permissive/nanoflann/perf-tests/analyze_leafsize_stats.m
| 1,502 |
utf_8
|
5bcc7168b358ccc2a7e4345373d29a85
|
function [] = analyze_leafsize_stats()
% Compute the stats from the result files of performance tests wrt
% the max. leaf size
close all;
%D=load('LEAF_STATS.txt');
%D=load('LEAF_STATS_DOUBLE.txt');
D=load('LEAF_STATS_DATASET.txt');
MAXs = unique(D(:,2));
COLs = {'k','b','r','g'}; % Cell array of colros.
figure(1);
for i=1:length(MAXs),
MaxLeaf = MAXs(i);
idxs = find(D(:,2)==MaxLeaf);
TBs = D(idxs,3); % Time of tree Builds
TQs = D(idxs,4); % Time of tree Queries
TBm = 1e3*mean(TBs);
TQm = 1e6*mean(TQs);
TBstd = 1e3*std(TBs);
TQstd = 1e6*std(TQs);
TBms(i)=TBm;
TQms(i)=TQm;
% Plot a 95% ellipse:
my_plot_ellipse([TBm TQm],2*[TBstd TQstd], COLs{ 1+mod(i-1,length(COLs))} );
%plot(1e3*TBs,1e6*TQs,'.','color',COLs{ 1+mod(i-1,length(COLs))});
text(TBm,TQm+6*TQstd,sprintf('%i',MaxLeaf));
end
plot(TBms,TQms,'color',[0.4 0.4 0.4],'LineWidth',2.5);
set(gca,'YScale','log');
ylabel('Tree query time (us)');
xlabel('Tree build time (ms)');
title(sprintf('nanoflann performance vs. Leaf Max.Size (#points=%.01e)',D(1,1)));
end
function [] = my_plot_ellipse(Ms,STDs, COL )
angs=linspace(0,2*pi,200);
xs= Ms(1) + cos(angs)*STDs(1);
ys= Ms(2) + sin(angs)*STDs(2);
h=plot(xs,ys,'color', COL,'LineWidth',2);
hold on;
end
|
github
|
DevLibraries/SmallLibraries-master
|
analyze_stats.m
|
.m
|
SmallLibraries-master/Permissive/nanoflann/perf-tests/analyze_stats.m
| 2,369 |
utf_8
|
b6d766f7cf55dee127cf6bb3085f2776
|
function [] = analyze_stats()
% Compute the stats from the result files of flann & nanoflann performance tests
%
close all;
[Nsf, Tf_M, Tf_STD] = analyze_file('stats_flann.txt');
[Nsnf, Tnf_M, Tnf_STD]= analyze_file('stats_nanoflann.txt');
titles={'Convert into Matrix<>', 'Build index', 'One 3D query'};
T_factors=[1e3, 1, 1e6];
t_titles={'Time (ms)','Time (s)','Time (\mu s)'};
for figs=1:3,
figure(figs);
% This is just to fix the legend:
plot(0,0,'r'); hold on; plot(0,0,'b');
f = T_factors(figs);
plotMeansAndStd( Nsf, f*Tf_M(:,figs), f*Tf_STD(:,figs), 'r', 2.0, 1, 10 );
plotMeansAndStd( Nsnf, f*Tnf_M(:,figs), f*Tnf_STD(:,figs), 'b', 2.0, 1, 10 );
set(gca,'XScale','Log')
title(titles{figs});
xlabel('Size of point cloud');
ylabel(t_titles{figs});
legend('flann','nanoflann', 'Location', 'NorthWest');
end
% Fig: time saved in building the index:
figure(4);
figs = 2;
plotMeansAndStd( Nsf, 1e3*(Tf_M(:,1) + Tf_M(:,figs)-Tnf_M(:,figs)), 1e3*sqrt((Tf_STD(:,figs)+Tnf_STD(:,figs)).^2), 'k', 2.0, 1, 10 );
set(gca,'XScale','Log')
title('Time saved in index building with nanoflann vs. flann (incl. the no matrix time)');
xlabel('Size of point cloud');
ylabel('Time (ms)');
end
function [Ns, T_M, T_STD] = analyze_file(fil)
D=load(fil);
Ns = unique(D(:,1));
nCols = size(D,2)-1;
for i=1:length(Ns),
idxs = find(D(:,1)==Ns(i));
for j=1:nCols,
T_M(i,j)=mean(D(idxs,j+1));
T_STD(i,j)=std(D(idxs,j+1));
end
end
end
function [] = plotMeansAndStd( x, y_m, y_std, style, stdMult,doDrawMeanLine,smallSegmentSize)
% -------------------------------------------------------------
% function [] = plotMeansAndStd( x, y_m, y_std, style, stdMult,doDrawMeanLine,smallSegmentSize)
%
% Plots a graph (x,y_m), plus the uncertainties "y_std" segments
%
% Jose Luis Blanco Claraco, 28-JUN-2006
% -------------------------------------------------------------
if (doDrawMeanLine),
plot(x,y_m,style);
end
hold on;
for i=1:length(x),
y1 = y_m(i) - stdMult*y_std(i);
y2 = y_m(i) + stdMult*y_std(i);
plot([x(i)-smallSegmentSize x(i)+smallSegmentSize x(i) x(i) x(i)-smallSegmentSize x(i)+smallSegmentSize],[y1 y1 y1 y2 y2 y2],style);
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalRectifyLF.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFCalRectifyLF.m
| 4,859 |
utf_8
|
58ca494191153d4b172d9f8d2408ca25
|
% LFCalRectifyLF - rectify a light field using a calibrated camera model, called as part of LFUtilDecodeLytroFolder
%
% Usage:
% [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions )
% [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo )
%
% This function is called by LFUtilDecodeLytroFolder to rectify a light field. It follows the
% rectification procedure described in:
%
% D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for
% lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE
% Conference on. IEEE, Jun 2013.
%
% Minor differences from the paper: light field indices [i,j,k,l] are 1-based in this
% implementation, and not 0-based as described in the paper.
%
% Note that a calibration should only be applied to a light field decoded using the same lenslet
% grid model. This is because the lenslet grid model forms an implicit part of the calibration,
% and changing it will invalidate the calibration.
%
% LFCalDispRectIntrinsics is useful for visualizing the sampling pattern associated with a requested
% intrinsic matrix.
%
% Inputs:
%
% LF : The light field to rectify; should be floating point
%
% CalInfo struct contains a calibrated camera model, see LFUtilCalLensletCam:
% .EstCamIntrinsicsH : 5x5 homogeneous matrix describing the lenslet camera intrinsics
% .EstCamDistortionV : Estimated distortion parameters
%
% [optional] RectOptions struct (all fields are optional) :
% .NInverse_Distortion_Iters : Number of iterations in inverse distortion estimation
% .Precision : 'single' or 'double'
% .RectCamIntrinsicsH : Requests a specific set of intrinsics for the rectified light
% field. By default the rectified intrinsic matrix is
% automatically constructed from the calibrated intrinsic
% matrix, but this process can in some instances yield poor
% results: excessive black space at the edges of the light field
% sample space, or excessive loss of scene content off the edges
% of the space. This parameters allows you to fine-tune the
% desired rectified intrinsic matrix.
%
% Outputs :
%
% LF : The rectified light field
% RectOptions : The rectification options as applied, including any default values employed.
%
% See also: LFCalDispRectIntrinsics, LFUtilCalLensletCam, LFUtilDecodeLytroFolder, LFUtilProcessWhiteImages
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions )
%---Defaults---
RectOptions = LFDefaultField( 'RectOptions', 'Precision', 'single' );
RectOptions = LFDefaultField( 'RectOptions', 'NInverse_Distortion_Iters', 2 );
RectOptions = LFDefaultField( 'RectOptions', 'MaxUBlkSize', 32 );
LFSize = size(LF);
RectOptions = LFDefaultField( 'RectOptions', 'RectCamIntrinsicsH', LFDefaultIntrinsics( LFSize, CalInfo ) );
%---Build interpolation indices---
fprintf('Generating interpolation indices...\n');
NChans = LFSize(5);
LF = cast(LF, RectOptions.Precision);
%---chop up the LF along u---
fprintf('Interpolating...');
UBlkSize = RectOptions.MaxUBlkSize;
LFOut = LF;
for( UStart = 1:UBlkSize:LFSize(4) )
UStop = UStart + UBlkSize - 1;
UStop = min(UStop, LFSize(4));
t_in=cast(1:LFSize(1), 'uint16'); % saving some mem by using uint16
s_in=cast(1:LFSize(2), 'uint16');
v_in=cast(1:LFSize(3), 'uint16');
u_in=cast(UStart:UStop, 'uint16');
[tt,ss,vv,uu] = ndgrid(t_in,s_in,v_in,u_in);
% InterpIdx initially holds the index of the desired ray, and is evolved through the application
% of the inverse distortion model to eventually hold the continuous-domain index of the undistorted
% ray, and passed to the interpolation step.
InterpIdx = [ss(:)'; tt(:)'; uu(:)'; vv(:)'; ones(size(ss(:)'))];
DestSize = size(tt);
clear tt ss vv uu
InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions );
for( ColChan = 1:NChans )
% todo[optimization]: use a weighted interpolation scheme to exploit the weight channel
InterpSlice = interpn(squeeze(LF(:,:,:,:,ColChan)), InterpIdx(2,:),InterpIdx(1,:), InterpIdx(4,:),InterpIdx(3,:), 'linear');
InterpSlice = reshape(InterpSlice, DestSize);
LFOut(:,:,:,UStart:UStop,ColChan) = InterpSlice;
end
fprintf('.')
end
LF = LFOut;
clear LFOut;
%---Clip interpolation result, which sometimes rings slightly out of range---
LF(isnan(LF)) = 0;
LF = max(0, min(1, LF));
fprintf('\nDone\n');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFWriteMetadata.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFWriteMetadata.m
| 10,271 |
utf_8
|
18ac683694e04562a3249c7226bdde52
|
% LFWriteMetadata - saves variables to a file in JSON format
%
% Usage:
% LFWriteMetadata( JsonFileFname, DataToSave )
%
% This function saves data to a JSON file.
%
% Based on JSONlab by Qianqian Fang,
% http://www.mathworks.com.au/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-encodedecode-json-files-in-matlaboctave
%
% Minor modifications by Donald G. Dansereau, 2013, to simplify the interface as appropriate for use
% in the Light Field Toolbox.
%
% See also: LFReadMetadata
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFWriteMetadata( JsonFileFname, DataToSave )
rootname = [];
varname=inputname(1);
opt.FileName = JsonFileFname;
opt.IsOctave=exist('OCTAVE_VERSION');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(DataToSave) || islogical(DataToSave) || ischar(DataToSave) || isstruct(DataToSave) || iscell(DataToSave)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(DataToSave) || iscell(DataToSave))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2json(rootname,DataToSave,rootlevel,opt);
if(rootisarray)
json=sprintf('%s\n',json);
else
json=sprintf('{\n%s\n}\n',json);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);\n',jsonp,json);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
len=numel(item); % let's handle 1D cell first
padding1=repmat(sprintf('\t'),1,level-1);
padding0=repmat(sprintf('\t'),1,level);
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [\n',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[\n',padding0);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": null',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%snull',padding0);
end
end
for i=1:len
txt=sprintf('%s%s%s',txt,padding1,obj2json(name,item{i},level+(len>1),varargin{:}));
if(i<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end
end
if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
len=numel(item);
padding1=repmat(sprintf('\t'),1,level-1);
padding0=repmat(sprintf('\t'),1,level);
sep=',';
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [\n',padding0,checkname(name,varargin{:})); end
else
if(len>1) txt=sprintf('%s[\n',padding0); end
end
for e=1:len
names = fieldnames(item(e));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {\n',txt,repmat(sprintf('\t'),1,level+(len>1)), checkname(name,varargin{:}));
else
txt=sprintf('%s%s{\n',txt,repmat(sprintf('\t'),1,level+(len>1)));
end
if(~isempty(names))
for i=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{i},getfield(item(e),...
names{i}),level+1+(len>1),varargin{:}));
if(i<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,sprintf('\n'));
end
end
txt=sprintf('%s%s}',txt,repmat(sprintf('\t'),1,level+(len>1)));
if(e==len) sep=''; end
if(e<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end
end
if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
sep=sprintf(',\n');
padding1=repmat(sprintf('\t'),1,level);
padding0=repmat(sprintf('\t'),1,level+1);
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [\n',padding1,checkname(name,varargin{:})); end
else
if(len>1) txt=sprintf('%s[\n',padding1); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
if(len==1)
DataToSave=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) DataToSave=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level),DataToSave);
else
txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level+1),['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s\n%s%s',txt,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
padding1=repmat(sprintf('\t'),1,level);
padding0=repmat(sprintf('\t'),1,level+1);
if(length(size(item))>2 || issparse(item) || ~isreal(item) || jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',...
padding1,padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') );
else
txt=sprintf('%s"%s": {\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',...
padding1,checkname(name,varargin{:}),padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') );
end
else
if(isempty(name))
txt=sprintf('%s%s',padding1,matdata2json(item,level+1,varargin{:}));
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),matdata2json(item,level+1,varargin{:}));
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n'));
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sprintf(',\n'));
if(find(size(item)==1))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), sprintf('\n'));
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), sprintf('\n'));
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), sprintf('\n'));
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n'));
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), sprintf('\n'));
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[\n');
post=sprintf('\n%s]',repmat(sprintf('\t'),1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],\n')]];
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(sprintf('\t'),1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-1:end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function val=jsonopt(key,default,varargin)
val=default;
if(nargin<=2) return; end
opt=varargin{1};
if(isstruct(opt) && isfield(opt,key))
val=getfield(opt,key);
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild4DFreqDualFan.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild4DFreqDualFan.m
| 4,955 |
utf_8
|
b925c1d38066faa9f44d0c51b8c68d91
|
% LFBuild4DFreqDualFan - construct a 4D dual-fan passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope, BW, FiltOptions )
% H = LFBuild4DFreqDualFan( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 4D, for which the passband is a dual-fan,
% the intersection of 2 2D fans.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt4DFFT.
%
% Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v,
% the optional aspect parameter should be used.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : 'Skew' or 'Rotate' default 'skew'
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect4D : aspect ratio of the light field, default [1 1 1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent4D or
% IncludeAliased.
% Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent4D. This can
% increase processing time dramatically, e.g. Extent4D = [2,2,2,2]
% requires a 2^4 = 16-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01,
% LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone,
% LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope1, Slope2, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1);
FiltOptions = LFDefaultField('FiltOptions', 'Extent4D', 1);
if( length(LFSize) == 1 )
LFSize = LFSize .* [1,1,1,1];
end
if( length(FiltOptions.Extent4D) == 1 )
FiltOptions.Extent4D = FiltOptions.Extent4D .* [1,1,1,1];
end
if( length(FiltOptions.Aspect4D) == 1 )
FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1];
end
FiltOptionsSU = FiltOptions;
FiltOptionsSU.Aspect2D = FiltOptionsSU.Aspect4D([2,4]);
FiltOptionsSU.Extent2D = FiltOptionsSU.Extent4D([2,4]);
Hsu = LFBuild2DFreqFan( LFSize([2,4]), Slope1, Slope2, BW, FiltOptionsSU );
FiltOptionsTV = FiltOptions;
FiltOptionsTV.Aspect2D = FiltOptionsSU.Aspect4D([1,3]);
FiltOptionsTV.Extent2D = FiltOptionsSU.Extent4D([1,3]);
[Htv, FiltOptionsTV] = LFBuild2DFreqFan( LFSize([1,3]), Slope1, Slope2, BW, FiltOptionsTV );
FiltOptions = FiltOptionsTV;
FiltOptions = rmfield(FiltOptions, 'Aspect2D');
FiltOptions = rmfield(FiltOptions, 'Extent2D');
Hsu = reshape(Hsu, [1, size(Hsu,1), 1, size(Hsu,2)]);
Hsu = repmat(Hsu, [LFSize(1),1,LFSize(3),1]);
Htv = reshape(Htv, [size(Htv,1), 1, size(Htv,2), 1]);
Htv = repmat(Htv, [1,LFSize(2),1,LFSize(4)]);
H = Hsu .* Htv;
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild4DFreqHypercone.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild4DFreqHypercone.m
| 4,501 |
utf_8
|
256d28a026711e06809d334c23db0633
|
% LFBuild4DFreqHypercone - construct a 4D hypercone passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, Slope, BW, FiltOptions )
% H = LFBuild4DFreqHypercone( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 4D, for which the passband is a hypercone.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt4DFFT.
%
% Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v,
% the optional aspect parameter should be used.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : 'Skew' or 'Rotate' default 'skew'
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect4D : aspect ratio of the light field, default [1 1 1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent4D or
% IncludeAliased.
% Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent4D. This can
% increase processing time dramatically, e.g. Extent4D = [2,2,2,2]
% requires a 2^4 = 16-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01,
% LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone,
% LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'HyperconeMethod', 'Rotated'); % 'Direct', 'Rotated'
DistFunc = @(P, FiltOptions) DistFunc_4DCone( P, FiltOptions );
[H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc );
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
end
%-----------------------------------------------------------------------------------------------------------------------
function Dist = DistFunc_4DCone( P, FiltOptions )
switch( lower(FiltOptions.HyperconeMethod ))
case 'direct'
Dist = (P(1,:).*P(4,:) - P(2,:).*P(3,:)).^2 * 4;
case 'rotated'
R = 1/sqrt(2) .* [1,0,0,1; 0,1,1,0; 0,1,-1,0; 1,0,0,-1];
P=R*P;
Dist = (sqrt(P(1,:).^2 + P(3,:).^2) - sqrt(P(2,:).^2 + P(4,:).^2)).^2 /2;
otherwise
error('Unrecognized hypercone construction method');
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilProcessWhiteImages.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilProcessWhiteImages.m
| 12,517 |
utf_8
|
82b7183214df46d50702d31ad904317c
|
% LFUtilProcessWhiteImages - process a folder/tree of white images by fitting a grid model to each
%
% Usage:
%
% LFUtilProcessWhiteImages
% LFUtilProcessWhiteImages( WhiteImagesPath )
% LFUtilProcessWhiteImages( WhiteImagesPath, FileOptions, GridModelOptions )
% LFUtilProcessWhiteImages( WhiteImagesPath, [], GridModelOptions )
%
% All parameters are optional and take on default values as set in the "Defaults" section at the top
% of the implementation. As such, this can be called as a function or run directly by editing the
% code. When calling as a function, pass an empty array "[]" to omit a parameter.
%
% As released, the default values are set up to match the naming conventions associated with Lytro
% files extracted using LFP Reader v2.0.0.
%
% Lytro cameras come loaded with a database of white images. These are taken through a diffuser,
% and at different zoom and focus settings. They are useful for removing vignetting (darkening near
% edges of images) and for locating lenslet centers in raw light field images.
%
% This function prepares a set of white images for use by the LF Toolbox. To do this, it fits a grid
% model to each white image, using the function LFBuildLensletGridModel. It also builds a database
% for use in selecting an appropriate white image for decoding a light field, as in the function
% LFLytroDecodeImage / LFSelectFromDatabase. The default parameters are set up to deal with the
% white images extracted from a Lytro camera.
%
% For each grid model fit, a display is generated allowing visual confirmation that the grid fit is
% a good one. This displays each estimated grid center as a red dot over top the white image. If
% the function was successful, each red dot should appear at the center of a lenslet -- i.e. near
% the brightest spot on each white bump. It does not matter if there are a few rows of lenslets on
% the edges of the image with no red markers.
%
%
% Inputs -- all are optional, see code below for default values :
%
% WhiteImagesPath : Path to folder containing white images -- note the function operates
% recursively, i.e. it will search sub-folders. The white image database will
% be created at the top level of this path. A typical configuration is to
% create a "Cameras" folder with a separate subfolder of white images for each
% camera in use. The appropriate path to pass to this function is the top
% level of the cameras folder.
%
% FileOptions : struct controlling file naming and saving
% .SaveResult : Set to false to perform a "dry run"
% .ForceRedo : By default, already-processed white images are skipped; set
% this to true to force reprocessing of already-processed files
% .WhiteImageDatabasePath : Name of file to which white image database is saved
% .WhiteMetadataFilenamePattern : File search pattern for finding white image metadata files
% .WhiteRawDataFnameExtension : File extension of raw white image files
% .ProcessedWhiteImagenamePattern : Pattern defining the names of grid model files; must include
% a %s which gets replaced by the white image base filename
% .WhiteImageMinMeanIntensity : Images with mean intensities below this threshold are
% discarded; this is necessary because some of the Lytro white
% images include are very dark and not useful for grid modelling
%
% GridModelOptions : struct controlling grid construction by LFBuildLensletGridModel
% .FilterDiskRadiusMult : Filter disk radius for prefiltering white image for locating
% lenslets; expressed relative to lenslet spacing; e.g. a
% value of 1/3 means a disk filte with a radius of 1/3 the
% lenslet spacing
% .CropAmt : Edge pixels to ignore when finding the grid
% .SkipStep : As a speed optimization, not all lenslet centers contribute
% to the grid estimate; <SkipStep> pixels are skipped between
% the lenslet centers that get used; a value of 1 means use all
%
% Output takes the form of saved grid model files and a white image database.
%
% See also: LFBuildLensletGridModel, LFUtilDecodeLytroFolder, LFUtilProcessCalibrations
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilProcessWhiteImages( WhiteImagesPath, FileOptions, GridModelOptions )
%---Defaults---
WhiteImagesPath = LFDefaultVal( 'WhiteImagesPath', 'Cameras' );
FileOptions = LFDefaultField( 'FileOptions', 'SaveResult', true );
FileOptions = LFDefaultField( 'FileOptions', 'ForceRedo', false );
FileOptions = LFDefaultField( 'FileOptions', 'WhiteImageDatabasePath', 'WhiteImageDatabase.mat' );
FileOptions = LFDefaultField( 'FileOptions', 'WhiteMetadataFilenamePattern', '*MOD_*.TXT' );
FileOptions = LFDefaultField( 'FileOptions', 'WhiteRawDataFnameExtension', '.RAW' );
FileOptions = LFDefaultField( 'FileOptions', 'ProcessedWhiteImagenamePattern', '%s.grid.json' );
FileOptions = LFDefaultField( 'FileOptions', 'WhiteImageMinMeanIntensity', 500 );
GridModelOptions = LFDefaultField( 'GridModelOptions', 'Orientation', 'horz' );
GridModelOptions = LFDefaultField( 'GridModelOptions', 'FilterDiskRadiusMult', 1/3 );
GridModelOptions = LFDefaultField( 'GridModelOptions', 'CropAmt', 25 );
GridModelOptions = LFDefaultField( 'GridModelOptions', 'SkipStep', 250 );
DispSize_pix = 160; % size of windows for visual confirmation display
DebugBuildGridModel = false; % additional debug display
%---Load white image info---
fprintf('Building database of white files...\n');
WhiteImageInfo = LFGatherCamInfo( WhiteImagesPath, FileOptions.WhiteMetadataFilenamePattern );
% The Lytro F01 database has two exposures per zoom/focus setting -- this eliminates the darker ones
F01Images = find(strcmp({WhiteImageInfo.CamModel}, 'F01'));
IsF01Image = false(size(WhiteImageInfo));
IsF01Image(F01Images) = true;
ExposureDuration = [WhiteImageInfo.ExposureDuration];
MeanDuration = mean(ExposureDuration(F01Images));
DarkF01Images = find(IsF01Image & (ExposureDuration < MeanDuration));
CamInfoValid = true(size(WhiteImageInfo));
CamInfoValid(DarkF01Images) = false;
%---Tagged onto all saved files---
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
%---Iterate through all white images---
fprintf('Processing each white file...\n');
fprintf('Visually confirm the estimated grid centers (red) are a good match to the lenslet centers...\n');
for( iFile = 1:length(WhiteImageInfo) )
[CurFnamePath, CurFnameBase] = fileparts( WhiteImageInfo(iFile).Fname );
fprintf('%s [File %d / %d]:\n', fullfile(CurFnamePath,CurFnameBase), iFile, length(WhiteImageInfo));
ProcessedWhiteFname = sprintf( FileOptions.ProcessedWhiteImagenamePattern, CurFnameBase );
ProcessedWhiteFname = fullfile(WhiteImagesPath, CurFnamePath, ProcessedWhiteFname);
if( ~FileOptions.ForceRedo && exist(ProcessedWhiteFname, 'file') )
fprintf('Output file %s already exists, skipping.\n', ProcessedWhiteFname);
% note that the file can still be added to the database, after the if/else/end,
% unless it's a dark image as detected below
else
if( ~CamInfoValid(iFile) )
fprintf('Dark F01 image, skipping and not adding to database\n');
continue;
end
%---Load white image and white image metadata---
CurMetadataFname = fullfile(WhiteImagesPath, WhiteImageInfo(iFile).Fname);
CurRawImageFname = LFFindLytroPartnerFile( CurMetadataFname, FileOptions.WhiteRawDataFnameExtension );
WhiteImageMetadata = LFReadMetadata( CurMetadataFname );
WhiteImageMetadata = WhiteImageMetadata.master.picture.frameArray.frame.metadata;
ImgSize = [WhiteImageMetadata.image.width, WhiteImageMetadata.image.height];
switch( WhiteImageInfo(iFile).CamModel )
case 'F01'
WhiteImage = LFReadRaw( CurRawImageFname, '12bit' );
%---Detect very dark images in F01 camera---
if( mean(WhiteImage(:)) < FileOptions.WhiteImageMinMeanIntensity )
fprintf('Detected dark image, skipping and not adding to database\n');
CamInfoValid(iFile) = false;
continue
end
case 'B01'
WhiteImage = LFReadRaw( CurRawImageFname, '10bit' );
otherwise
error('Unrecognized camera model');
end
%---Initialize grid finding parameters based on metadata---
GridModelOptions.ApproxLensletSpacing = ...
WhiteImageMetadata.devices.mla.lensPitch / WhiteImageMetadata.devices.sensor.pixelPitch;
%---Find grid params---
[LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImage, GridModelOptions, DebugBuildGridModel );
GridCoordsX = GridCoords(:,:,1);
GridCoordsY = GridCoords(:,:,2);
%---Visual confirmation---
if( strcmpi(GridModelOptions.Orientation, 'vert') )
WhiteImage = WhiteImage';
end
ImgSize = size(WhiteImage);
HPlotSamps = ceil(DispSize_pix/LensletGridModel.HSpacing);
VPlotSamps = ceil(DispSize_pix/LensletGridModel.VSpacing);
LFFigure(1);
clf
subplot(331);
imagesc(WhiteImage(1:DispSize_pix,1:DispSize_pix));
hold on
colormap gray
plot(GridCoordsX(1:VPlotSamps,1:HPlotSamps), GridCoordsY(1:VPlotSamps,1:HPlotSamps), 'r.')
axis off
subplot(333);
imagesc(WhiteImage(1:DispSize_pix, ImgSize(2)-DispSize_pix:ImgSize(2)));
hold on
colormap gray
plot(-(ImgSize(2)-DispSize_pix)+1 + GridCoordsX(1:VPlotSamps, end-HPlotSamps:end), GridCoordsY(1:VPlotSamps, end-HPlotSamps:end), 'r.')
axis off
CenterStart = (ImgSize-DispSize_pix)/2;
HCenterStartSamps = floor(CenterStart(2) / LensletGridModel.HSpacing);
VCenterStartSamps = floor(CenterStart(1) / LensletGridModel.VSpacing);
subplot(335);
imagesc(WhiteImage(CenterStart(1):CenterStart(1)+DispSize_pix, CenterStart(2):CenterStart(2)+DispSize_pix));
hold on
colormap gray
plot(-CenterStart(2)+1 + GridCoordsX(VCenterStartSamps + (1:VPlotSamps), HCenterStartSamps + (1:HPlotSamps)), -CenterStart(1)+1 + GridCoordsY(VCenterStartSamps + (1:VPlotSamps), HCenterStartSamps + (1:HPlotSamps)),'r.');
axis off
subplot(337);
imagesc(WhiteImage(ImgSize(1)-DispSize_pix:ImgSize(1), 1:DispSize_pix));
hold on
colormap gray
plot(GridCoordsX(end-VPlotSamps:end,1:HPlotSamps), -(ImgSize(1)-DispSize_pix)+1 + GridCoordsY(end-VPlotSamps:end,1:HPlotSamps), 'r.')
axis off
subplot(339);
imagesc(WhiteImage(ImgSize(1)-DispSize_pix:ImgSize(1),ImgSize(2)-DispSize_pix:ImgSize(2)));
hold on
colormap gray
plot(-(ImgSize(2)-DispSize_pix)+1 + GridCoordsX(end-VPlotSamps:end, end-HPlotSamps:end), -(ImgSize(1)-DispSize_pix)+1 + GridCoordsY(end-VPlotSamps:end, end-HPlotSamps:end), 'r.')
axis off
truesize % bigger display
drawnow
%---Optionally save---
if( FileOptions.SaveResult )
fprintf('Saving to %s\n', ProcessedWhiteFname);
CamInfo = WhiteImageInfo(iFile);
LFWriteMetadata(ProcessedWhiteFname, LFVar2Struct(GeneratedByInfo, GridModelOptions, CamInfo, LensletGridModel));
end
end
end
CamInfo = WhiteImageInfo(CamInfoValid);
%---Optionally save the white file database---
if( FileOptions.SaveResult )
FileOptions.WhiteImageDatabasePath = fullfile(WhiteImagesPath, FileOptions.WhiteImageDatabasePath);
fprintf('Saving to %s\n', FileOptions.WhiteImageDatabasePath);
save(FileOptions.WhiteImageDatabasePath, 'GeneratedByInfo', 'CamInfo');
end
fprintf('Done\n');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalDispEstPoses.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFCalDispEstPoses.m
| 2,604 |
utf_8
|
1f7d8e57212bcbb143d2c597e59038f3
|
% LFCalDispEstPoses - Visualize pose estimates associated with a calibration info file
%
% Usage:
% LFCalDispEstPoses( InputPath, CalOptions, DrawFrameSizeMult, BaseColour )
%
% Draws a set of frames, one for each camera pose, in the colour defined by BaseColour. All inputs
% except InputPath are optional. Pass an empty array "[]" to omit a parameter. See
% LFUtilCalLensletCam for example usage.
%
% Inputs:
%
% InputPath : Path to folder containing CalInfo file.
%
% [optional] CalOptions : struct controlling calibration parameters
% .CalInfoFname : Name of the file containing calibration estimate; note that this
% parameter is automatically set in the CalOptions struct returned
% by LFCalInit
%
% [optional] DrawFrameSizeMult : Multiplier on the displayed frame sizes
%
% [optional] BaseColour : RGB triplet defining a base drawing colour, RGB values are in the
% range 0-1
%
%
% See also: LFUtilCalLensletCam
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFCalDispEstPoses( InputPath, CalOptions, DrawFrameSizeMult, BaseColour )
%---Defaults---
CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' );
DrawFrameSizeMult = LFDefaultVal( 'DrawFrameSizeMult', 1 );
BaseColour = LFDefaultVal( 'BaseColour', [1,1,0] );
%---
Fname = fullfile(CalOptions.CalInfoFname);
EstCamPosesV = LFStruct2Var( LFReadMetadata(fullfile(InputPath, Fname)), 'EstCamPosesV' );
% Establish an appropriate scale for the drawing
AutoDrawScale = EstCamPosesV(:,1:3);
AutoDrawScale = AutoDrawScale(:);
AutoDrawScale = (max(AutoDrawScale) - min(AutoDrawScale))/10;
%---Draw cameras---
BaseFrame = ([0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 1]);
DrawFrameMed = [AutoDrawScale * DrawFrameSizeMult * BaseFrame; ones(1,6)];
DrawFrameLong = [AutoDrawScale*3/2 * DrawFrameSizeMult * BaseFrame; ones(1,6)];
for( PoseIdx = 1:size(EstCamPosesV, 1) )
CurH = eye(4);
CurH(1:3,1:3) = rodrigues( EstCamPosesV(PoseIdx,4:6) );
CurH(1:3,4) = EstCamPosesV(PoseIdx,1:3);
CurH = CurH^-1;
CamFrame = CurH * DrawFrameMed(:,1:4);
plot3( CamFrame(1,:), CamFrame(2,:), CamFrame(3,:), '-', 'color', BaseColour.*0.5, 'LineWidth',2 );
hold on
CamFrame = CurH * DrawFrameLong(:,5:6);
plot3( CamFrame(1,:), CamFrame(2,:), CamFrame(3,:), '-', 'color', BaseColour, 'LineWidth',2 );
end
axis equal
grid on
xlabel('x [m]');
ylabel('y [m]');
zlabel('z [m]');
title('Estimated camera poses');
|
github
|
hazirbas/light-field-toolbox-master
|
LFMatlabPathSetup.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFMatlabPathSetup.m
| 629 |
utf_8
|
09c19ebacb36d9e2d70336dd7f62bc9c
|
% LFMatlabPathSetup - convenience function to add the light field toolbox to matlab's path
%
% It may be convenient to add this to your startup.m file.
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFMatlabPathSetup
% Find the path to this script, and use it as the base path
LFToolboxPath = fileparts(mfilename('fullpath'));
fprintf('Adding paths for LF Toolbox ');
addpath( fullfile(LFToolboxPath) );
addpath( fullfile(LFToolboxPath, 'SupportFunctions') );
addpath( fullfile(LFToolboxPath, 'SupportFunctions', 'CameraCal') );
fprintf('%s, done.\n', LFToolboxVersion);
|
github
|
hazirbas/light-field-toolbox-master
|
LFReadLFP.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFReadLFP.m
| 9,456 |
utf_8
|
12a412c0c96c3bd388028f4eb975749f
|
% LFReadLFP - Load a lytro LFP / LFR file
%
% Usage:
% [LFP, ExtraSections] = LFReadLFP( Fname )
%
% The Lytro LFP is a container format and may contain one of several types of data. The file extension varies based on
% the source of the files, with exported files, on-camera files and image library files variously taking on the
% extensions lfp, lfr, LFP and LFR.
%
% This function loads all the sections of an LFP and interprets those that it recognizes. Recognized sections include
% thumbnails and focal stacks, raw light field and white images, metadata and serial data. If more than one section of
% the same type appears, a cell array is constructed in the output struct -- this is the case for focal stacks, for
% example. Files generated using Lytro Desktop 4.0 and 3.0 are supported.
%
% Additional output information includes the appropriate demosaic order for raw light field images, and the size of raw
% images.
%
% Unrecognized sections are returned in the ExtraSections output argument.
%
% This function is based in part on Nirav Patel's lfpsplitter.c and Doug Kelley's read_lfp; Thanks to Michael Tao for
% help and samples for decoding Illum imagery.
%
% Inputs :
% Fname : path to an input LFP file
%
% Outputs:
% LFP : Struct containing decoded LFP sections and supporting information, which may include one or more of
% .Jpeg : Thumbnails, focal stacks -- see LFUtilExtractLFPThumbs for saving these to disk
% .RawImg : Raw light field image
% .WhiteImg : White image bundled into Illum LFP
% .Metadata, .Serials : Information about the image and camera
% .DemosaicOrder : The appropriate parameter to pass to Matlab's "demosaic" to debayer a RawImg
% .ImgSize : Size of RawImg
%
% ExtraSections : Struct array containing unrecognized LFP sections
% .Data : Buffer of chars containing the section's uninterpreted data block
% .SectType : Descriptive name for the section, e.g. "hotPixelRef"
% .Sha1 : Unique hash identifying the section
% .SectHeader : Header bytes identifying the section as a table of contents or data
%
% See also: LFUtilExtractLFPThumbs, LFUtilUnpackLytroArchive, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LFP, ExtraSections] = LFReadLFP( Fname )
%---Consts---
LFPConsts.LFPHeader = hex2dec({'89', '4C', '46', '50', '0D', '0A', '1A', '0A', '00', '00', '00', '01'}); % 12-byte LFPSections header
LFPConsts.SectHeaderLFM = hex2dec({'89', '4C', '46', '4D', '0D', '0A', '1A', '0A'})'; % header for table of contents
LFPConsts.SectHeaderLFC = hex2dec({'89', '4C', '46', '43', '0D', '0A', '1A', '0A'})'; % header for content section
LFPConsts.SecHeaderPaddingLen = 4;
LFPConsts.Sha1Length = 45;
LFPConsts.ShaPaddingLen = 35; % Sha1 codes are followed by 35 null bytes
%---Break out recognized sections---
KnownSectionTypes = { ...
... % Lytro Desktop 4
'Jpeg', 'picture.accelerationArray.vendorContent.imageArray.imageRef', 'jpeg'; ...
'Jpeg', 'thumbnails.imageRef', 'jpeg'; ...
'RawImg', 'frames.frame.imageRef', 'raw'; ...
'WhiteImg', 'frames.frame.modulationDataRef', 'raw';...
'Metadata', 'frames.frame.metadataRef', 'json'; ...
'Serials', 'frames.frame.privateMetadataRef', 'json'; ...
... % Earlier Lytro Desktop versions
'RawImg', 'picture.frameArray.frame.imageRef', 'raw'; ...
'Metadata', 'picture.frameArray.frame.metadataRef', 'json'; ...
'Serials', 'picture.frameArray.frame.privateMetadataRef', 'json'; ...
};
%---
ExtraSections = [];
LFP = [];
InFile=fopen(Fname, 'rb');
%---Check for the magic header---
HeaderBytes = fread( InFile, length(LFPConsts.LFPHeader), 'uchar' );
if( (length(HeaderBytes)~=length(LFPConsts.LFPHeader)) || ~all( HeaderBytes == LFPConsts.LFPHeader ) )
fclose(InFile);
fprintf( 'Unrecognized file type\n' );
return
end
%---Confirm headerlength bytes---
HeaderLength = fread(InFile,1,'uint32','ieee-be');
assert( HeaderLength == 0, 'Unexpected length at top-level header' );
%---Read each section---
NSections = 0;
TOCIdx = [];
while( ~feof(InFile) )
NSections = NSections+1;
LFPSections( NSections ) = ReadSection( InFile, LFPConsts );
%---Mark the table of contents section---
if( all( LFPSections( NSections ).SectHeader == LFPConsts.SectHeaderLFM ) )
assert( isempty(TOCIdx), 'Found more than one LFM metadata section' );
TOCIdx = NSections;
end
end
fclose( InFile );
%---Decode the table of contents---
assert( ~isempty(TOCIdx), 'Found no LFM metadata sections' );
TOC = LFReadMetadata( LFPSections(TOCIdx).Data );
LFPSections(TOCIdx).SectType = 'TOC';
%---find all sha1 refs in TOC---
TocData = LFPSections(TOCIdx).Data;
ShaIdx = strfind( TocData, 'sha1-' );
SeparatorIdx = find( TocData == ':' );
EolIdx = find( TocData == 10 );
for( iSha = 1:length(ShaIdx) )
LabelStopIdx = SeparatorIdx( find( SeparatorIdx < ShaIdx(iSha), 1, 'last' ) );
LabelStartIdx = EolIdx( find( EolIdx < LabelStopIdx, 1, 'last' ) );
ShaEndIdx = EolIdx( find( EolIdx > ShaIdx(iSha), 1, 'first' ) );
CurLabel = TocData(LabelStartIdx:LabelStopIdx);
CurSha = TocData(LabelStopIdx:ShaEndIdx);
CurLabel = strsplit(CurLabel, '"');
CurSha = strsplit(CurSha, '"');
CurLabel = CurLabel{2};
CurSha = CurSha{2};
SectNames{iSha} = CurLabel;
SectIDs{iSha} = CurSha;
end
%---Apply section labels---
for( iSect = 1:length(SectNames) )
CurSectSHA = SectIDs{iSect};
MatchingSectIdx = find( strcmp( CurSectSHA, {LFPSections.Sha1} ) );
if( ~isempty(MatchingSectIdx) )
LFPSections(MatchingSectIdx).SectType = SectNames{iSect};
end
end
for( iSect = 1:size(KnownSectionTypes,1) )
FoundField = true;
while(FoundField)
[LFP, LFPSections, TOC, FoundField] = ExtractNamedField(LFP, LFPSections, TOC, KnownSectionTypes(iSect,:) );
end
end
ExtraSections = LFPSections;
%---unpack the image(s)---
if( isfield( LFP, 'RawImg') )
LFP.ImgSize = [LFP.Metadata.image.width, LFP.Metadata.image.height];
switch( LFP.Metadata.camera.model )
case 'F01'
assert( LFP.Metadata.image.rawDetails.pixelPacking.bitsPerPixel == 12 );
assert( strcmp(LFP.Metadata.image.rawDetails.pixelPacking.endianness, 'big') );
LFP.RawImg = LFUnpackRawBuffer( LFP.RawImg, '12bit', LFP.ImgSize )';
LFP.DemosaicOrder = 'bggr';
case 'ILLUM'
assert( LFP.Metadata.image.pixelPacking.bitsPerPixel == 10 );
assert( strcmp(LFP.Metadata.image.pixelPacking.endianness, 'little') );
LFP.RawImg = LFUnpackRawBuffer( LFP.RawImg, '10bit', LFP.ImgSize )';
if( isfield( LFP, 'WhiteImg' ) )
LFP.WhiteImg = LFUnpackRawBuffer( LFP.WhiteImg, '10bit', LFP.ImgSize )';
end
LFP.DemosaicOrder = 'grbg';
otherwise
warning('Unrecognized camera model');
return
end
end
end
% --------------------------------------------------------------------
function LFPSect = ReadSection( InFile, LFPConsts )
LFPSect.SectHeader = fread(InFile, length(LFPConsts.SectHeaderLFM), 'uchar')';
Padding = fread(InFile, LFPConsts.SecHeaderPaddingLen, 'uint8'); % skip padding
SectLength = fread(InFile, 1, 'uint32', 'ieee-be');
LFPSect.Sha1 = char(fread(InFile, LFPConsts.Sha1Length, 'uchar')');
Padding = fread(InFile, LFPConsts.ShaPaddingLen, 'uint8'); % skip padding
LFPSect.Data = char(fread(InFile, SectLength, 'uchar'))';
while( 1 )
Padding = fread(InFile, 1, 'uchar');
if( feof(InFile) || (Padding ~= 0) )
break;
end
end
if ~feof(InFile)
fseek( InFile, -1, 'cof'); % rewind one byte
end
end
% --------------------------------------------------------------------
function [LFP, LFPSections, TOC, FoundField] = ExtractNamedField(LFP, LFPSections, TOC, FieldInfo)
FoundField = false;
FieldName = FieldInfo{1};
JsonName = FieldInfo{2};
FieldFormat = FieldInfo{3};
JsonTokens = strsplit(JsonName, '.');
TmpToc = TOC;
if( ~iscell(JsonTokens) )
JsonTokens = {JsonTokens};
end
for( i=1:length(JsonTokens) )
if( ~isfield(TmpToc, JsonTokens{i}) || isempty([TmpToc.(JsonTokens{i})]) )
return;
end
TmpToc = TmpToc.(JsonTokens{i}); % takes the first one in the case of an array
end
FieldIdx = find( strcmp( TmpToc, {LFPSections.Sha1} ) );
if( ~isempty(FieldIdx) )
SubField = struct('type','.','subs',FieldName);
%--- detect image array and force progress by removing the currently-processed entry ---
S = struct('type','.','subs',JsonTokens(1:end-1));
t = subsref( TOC, S );
ArrayLen = length(t);
if( (isstruct(t) && ArrayLen>1) || isfield( LFP, FieldName ) )
S(end+1).type = '()';
S(end).subs = {1};
TOC = subsasgn( TOC, S, [] );
% Add an indexing subfield for image arrays
SubField(end+1).type = '{}';
SubField(end).subs = {ArrayLen};
end
%---Copy the data into the LFP struct---
LFP = subsasgn( LFP, SubField, LFPSections(FieldIdx).Data );
LFPSections = LFPSections([1:FieldIdx-1, FieldIdx+1:end]);
%---Decode JSON-formatted sections---
switch( FieldFormat )
case 'json'
LFP.(FieldName) = LFReadMetadata( LFP.(FieldName) );
end
FoundField = true;
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild4DFreqHyperfan.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild4DFreqHyperfan.m
| 4,676 |
utf_8
|
2bec28d4e5b0d48494ee457844595957
|
% LFBuild4DFreqHyperfan - construct a 4D hyperfan passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild4DFreqHyperfan( LFSize, Slope, BW, FiltOptions )
% H = LFBuild4DFreqHyperfan( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 4D, for which the passband is a hyperfan.
% This is useful for selecting objects over a range of depths from a lightfield, i.e. volumetric
% focus.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt4DFFT.
%
% Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v,
% the optional aspect parameter should be used.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : 'Skew' or 'Rotate' default 'skew'
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect4D : aspect ratio of the light field, default [1 1 1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent4D or
% IncludeAliased.
% Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent4D. This can
% increase processing time dramatically, e.g. Extent4D = [2,2,2,2]
% requires a 2^4 = 16-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01,
% LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone,
% LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild4DFreqHyperfan( LFSize, Slope1, Slope2, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'HyperfanMethod', 'Direct'); % 'Direct', 'Sweep'
switch( lower(FiltOptions.HyperfanMethod ))
case 'sweep'
FiltOptions = LFDefaultField('FiltOptions', 'SweepSteps', 5);
SweepVec = linspace(Slope1, Slope2, FiltOptions.SweepSteps);
[H, FiltOptions] = LFBuild4DFreqPlane( LFSize, SweepVec(1), BW, FiltOptions );
for( CurSlope = SweepVec(2:end) )
H = max(H, LFBuild4DFreqPlane( LFSize, CurSlope, BW, FiltOptions ));
end
case 'direct'
FiltOptions = LFDefaultField('FiltOptions', 'HyperconeBW', BW);
[H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, FiltOptions.HyperconeBW, FiltOptions );
[Hdf, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope1, Slope2, BW, FiltOptions );
H = H .* Hdf;
otherwise
error('Unrecognized hyperfan construction method');
end
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilProcessCalibrations.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilProcessCalibrations.m
| 3,086 |
utf_8
|
b7ed374da00985b749186101dccbfc70
|
% LFUtilProcessCalibrations - process a folder/tree of camera calibrations
%
% Usage:
%
% LFUtilProcessCalibrations
% LFUtilProcessCalibrations( CalibrationsPath )
% LFUtilProcessCalibrations( CalibrationsPath, FileOptions )
% LFUtilProcessCalibrations( [], FileOptions )
%
% All parameters are optional and take on default values as set in the "Defaults" section at the top
% of the implementation. As such, this can be called as a function or run directly by editing the
% code. When calling as a function, pass an empty array "[]" to omit a parameter.
%
% This function recursively crawls through a folder identifying camera "calibration info" files and
% building a database for use in selecting a calibration appropriate to a light field. An example
% usage is in the image rectification code in LFUtilDecodeLytroFolder / LFSelectFromDatabase.
%
% Inputs -- all are optional, see code below for default values :
%
% CalibrationsPath : Path to folder containing calibrations -- note the function operates
% recursively, i.e. it will search sub-folders. The calibration database will
% be created at the top level of this path. A typical configuration is to
% create a "Cameras" folder with a separate subfolder of calibrations for each
% camera in use. The appropriate path to pass to this function is the top
% level of that cameras folder.
%
%
% FileOptions : struct controlling file naming and saving
% .SaveResult : Set to false to perform a "dry run"
% .CalibrationDatabaseFname : Name of file to which white image database is saved
% .CalInfoFilenamePattern : File search pattern for finding calibrations
%
% Output takes the form of a saved calibration database.
%
% See also: LFUtilDecodeLytroFolder, LFCalRectifyLF, LFSelectFromDatabase, LFUtilCalLensletCam,
% LFUtilProcessWhiteImages
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilProcessCalibrations( CalibrationsPath, FileOptions )
%---Defaults---
CalibrationsPath = LFDefaultVal( 'CalibrationsPath', 'Cameras' );
FileOptions = LFDefaultField( 'FileOptions', 'SaveResult', true );
FileOptions = LFDefaultField( 'FileOptions', 'CalibrationDatabaseFname', 'CalibrationDatabase.mat' );
FileOptions = LFDefaultField( 'FileOptions', 'CalInfoFilenamePattern', 'CalInfo*.json' );
%---Crawl folder structure locating calibrations---
fprintf('Building database of calibrations in %s\n', CalibrationsPath);
CamInfo = LFGatherCamInfo( CalibrationsPath, FileOptions.CalInfoFilenamePattern );
%---Optionally save---
if( FileOptions.SaveResult )
SaveFpath = fullfile(CalibrationsPath, FileOptions.CalibrationDatabaseFname);
fprintf('Saving to %s\n', SaveFpath);
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
save(SaveFpath, 'GeneratedByInfo', 'CamInfo');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilExtractLFPThumbs.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilExtractLFPThumbs.m
| 2,528 |
utf_8
|
bcf530be1d01e6c00268cf5bbf398fde
|
% LFUtilExtractLFPThumbs - extract thumbnails from LFP files and write to disk
%
% Usage:
%
% LFUtilExtractLFPThumbs
% LFUtilExtractLFPThumbs( InputPath )
%
% This extracts the thumbnail preview and focal stack images from LFR and LFP files, and is useful in providing a
% preview, e.g. when copying files directly from an Illum camera.
%
% Inputs -- all are optional :
%
% InputPath : Path / filename pattern for locating LFP files. The function will move recursively through a tree,
% matching one or more filename patterns. See LFFindFilesRecursive for a full description.
%
% The default input path is {'.', '*.LFP','*.LFR','*.lfp','*.lfr'}, i.e. the current folder, recursively searching
% for all files matching uppercase and lowercase 'LFP' and 'LFR' extensions.
%
% Examples:
%
% LFUtilExtractLFPThumbs
%
% Will extract thumbnails from all LFP and LFR images in the current folder and its subfolders.
%
% The following are also valid, see LFFindFilesRecursive for more.
%
% LFUtilExtractLFPThumbs('Images')
% LFUtilExtractLFPThumbs({'*.lfr','*.lfp'})
% LFUtilExtractLFPThumbs({'Images','*.lfr','*.lfp'})
% LFUtilExtractLFPThumbs('Images/*.lfr')
% LFUtilExtractLFPThumbs('*.lfr')
% LFUtilExtractLFPThumbs('Images/IMG_0001.LFR')
% LFUtilExtractLFPThumbs('IMG_0001.LFR')
%
% See also: LFFindFilesRecursive
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilExtractLFPThumbs( InputPath )
%---Defaults---
InputPath = LFDefaultVal( 'InputPath','.' );
DefaultFileSpec = {'*.LFP','*.LFR','*.lfp','*.lfr'}; % gets overriden below, if a file spec is provided
[FileList, BasePath] = LFFindFilesRecursive( InputPath, DefaultFileSpec );
fprintf('Found :\n');
disp(FileList)
%---Process each file---
for( iFile = 1:length(FileList) )
CurFname = fullfile(BasePath, FileList{iFile});
fprintf('Processing [%d / %d] %s\n', iFile, length(FileList), CurFname);
LFP = LFReadLFP( CurFname );
if( ~isfield(LFP, 'Jpeg') )
continue;
end
if( ~iscell(LFP.Jpeg) )
LFP.Jpeg = {LFP.Jpeg};
end
for( i=1:length(LFP.Jpeg) )
OutFname = sprintf('%s-%03d.jpg', CurFname, i-1);
fprintf('%s', OutFname);
if( exist(OutFname,'file') )
fprintf(' Exists, skipping\n');
else
OutFile = fopen(OutFname, 'wb');
fwrite(OutFile, LFP.Jpeg{i});
fclose(OutFile);
fprintf('\n');
end
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFFilt2DFFT.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFFilt2DFFT.m
| 4,344 |
utf_8
|
94c37a901f7a9a1271d469d23be351cc
|
% LFFilt2DFFT - Apply a 2D frequency-domain filter to a 4D light field using the FFT
%
% Usage:
%
% [LF, FiltOptions] = LFFilt2DFFT( LF, H, FiltDims, FiltOptions )
% LF = LFFilt2DFFT( LF, H, FiltDims )
%
%
% This filter works on 2D slices of the input light field, applying the 2D filter H to each in turn. It takes the FFT
% of each slice of the input light field, multiplies by the provided magnitude response H, then calls the inverse FFT.
%
% The FiltDims input specifies the two dimensions along which H should be applied. The frequency-domain filter H should
% match or exceed the size of the light field LF in these dimensions. If H is larger than the input light field, LF is
% zero-padded to match the filter's size. If a weight channel is present in the light field it gets used during
% normalization.
%
% See LFDemoBasicFiltLytro for example usage.
%
%
% Inputs
%
% LF : The light field to be filtered
%
% H : The frequency-domain filter to apply, as constructed by one of the LFBuild4DFreq* functions
%
% FiltDims : The dimensions along which H should be applied
%
% [optional] FiltOptions : struct controlling filter operation
% Precision : 'single' or 'double', default 'single'
% Normalize : default true; when enabled the output is normalized so that darkening near image edges is
% removed
% MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for
% which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which
% this occurs, default is 10 * the numerical precision of the output, as returned by eps
%
% Outputs:
%
% LF : The filtered 4D light field
% FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and
% time of filtering.
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine,
% LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT,
% LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, FiltOptions] = LFFilt2DFFT( LF, H, FiltDims, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single');
FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true);
FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision));
%---
NColChans = size(LF,5);
HasWeight = ( NColChans == 4 || NColChans == 2 );
if( HasWeight )
NColChans = NColChans-1;
end
%---
IterDims = 1:4;
IterDims(FiltDims) = 0;
IterDims = find(IterDims~=0);
PermuteOrder = [IterDims, FiltDims, 5];
LF = permute(LF, PermuteOrder);
LF = LFConvertToFloat(LF, FiltOptions.Precision);
%---
LFSize = size(LF);
SlicePaddedSize = size(H);
for( IterDim1 = 1:LFSize(1) )
fprintf('.');
for( IterDim2 = 1:LFSize(2) )
CurSlice = squeeze(LF(IterDim1,IterDim2,:,:,:));
if( FiltOptions.Normalize )
if( HasWeight )
for( iColChan = 1:NColChans )
CurSlice(:,:,iColChan) = CurSlice(:,:,iColChan) .* CurSlice(:,:,end);
end
else % add a weight channel
CurSlice(:,:,end+1) = ones(size(CurSlice(:,:,1)), FiltOptions.Precision);
end
end
SliceSize = size(CurSlice);
for( iColChan = 1:SliceSize(end) )
X = fftn(CurSlice(:,:,iColChan), SlicePaddedSize);
X = X .* H;
x = ifftn(X,'symmetric');
x = x(1:LFSize(3), 1:LFSize(4));
CurSlice(:,:,iColChan) = x;
end
if( FiltOptions.Normalize )
WeightChan = CurSlice(:,:,end);
InvalidIdx = find(WeightChan < FiltOptions.MinWeight);
ChanSize = numel(CurSlice(:,:,1));
for( iColChan = 1:NColChans )
CurSlice(:,:,iColChan) = CurSlice(:,:,iColChan) ./ WeightChan;
CurSlice( InvalidIdx + ChanSize.*(iColChan-1) ) = 0;
end
end
% record channel
LF(IterDim1,IterDim2,:,:,:) = CurSlice(:,:,1:LFSize(5));
end
end
LF = max(0,LF);
LF = min(1,LF);
LF = ipermute(LF, PermuteOrder);
%---
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
fprintf(' Done\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild2DFreqLine.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild2DFreqLine.m
| 4,431 |
utf_8
|
0dcc452b6b957958b7243b285453790b
|
% LFBuild2DFreqLine - construct a 2D line passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild2DFreqLine( LFSize, Slope, BW, FiltOptions )
% H = LFBuild2DFreqLine( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 2D, for which the passband is a line. The cascade of two line
% filters, applied in s,u and in t,v, is identical to a 4D planar filter, e.g. that constructed by LFBuild4DFreqPlane.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt2DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt2DFFT.
%
% Slope : Slopes at the extents of the fan passband.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : only 'Skew' is supported for now
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect2D : aspect ratio of the light field, default [1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent2D or
% IncludeAliased.
% Extent2D : controls where the edge of the passband occurs, the default [1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent2D. This can
% increase processing time dramatically, e.g. Extent2D = [2,2]
% requires a 2^2 = 4-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01,
% LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone,
% LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild2DFreqLine( LFSize, Slope, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew', 'Rotate'
DistFunc = @(P, FiltOptions) DistFunc_2DLine( P, Slope, FiltOptions );
[H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc );
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
end
%-----------------------------------------------------------------------------------------------------------------------
function Dist = DistFunc_2DLine( P, Slope, FiltOptions )
switch( lower(FiltOptions.SlopeMethod) )
case 'skew'
R = eye(2);
R(1,2) = Slope;
case 'rotate'
Angle = -atan2(Slope,1);
R = LFRotz( Angle );
R = R(1:2,1:2);
otherwise
error('Unrecognized slope method');
end
P = R * P;
Dist = P(1,:).^2;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFColourCorrect.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFColourCorrect.m
| 1,999 |
utf_8
|
07c213f4b7fbcaa5ad2fae5e30c82edf
|
% LFColourCorrect - applies a colour correction matrix, balance vector, and gamma, called by LFUtilDecodeLytroFolder
%
% Usage:
% LF = LFColourCorrect( LF, ColMatrix, ColBalance, Gamma )
%
% This implementation deals with saturated input pixels by aggressively saturating output pixels.
%
% Inputs :
%
% LF : a light field or image to colour correct. It should be a floating point array, and
% may be of any dimensinality so long as the last dimension has length 3. For example, a 2D
% image of size [Nl,Nk,3], a 4D image of size [Nj,Ni,Nl,Nk,3], and a 1D list of size [N,3]
% are all valid.
%
% ColMatrix : a 3x3 colour conversion matrix. This can be built from the metadata provided
% with Lytro imagery using the command:
% ColMatrix = reshape(cell2mat(LFMetadata.image.color.ccmRgbToSrgbArray), 3,3);
% as demonstrated in LFUtilDecodeLytroFolder.
%
% ColBalance : 3-element vector containing a multiplicative colour balance.
%
% Gamma : rudimentary gamma correction is applied of the form LF = LF.^Gamma.
%
% Outputs :
%
% LF, of the same dimensionality as the input.
%
%
% See also: LFHistEqualize, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LF = LFColourCorrect(LF, ColMatrix, ColBalance, Gamma)
LFSize = size(LF);
% Flatten input to a flat list of RGB triplets
NDims = numel(LFSize);
LF = reshape(LF, [prod(LFSize(1:NDims-1)), 3]);
LF = bsxfun(@times, LF, ColBalance);
LF = LF * ColMatrix;
% Unflatten result
LF = reshape(LF, [LFSize(1:NDims-1),3]);
% Saturating eliminates some issues with clipped pixels, but is aggressive and loses information
% todo[optimization]: find a better approach to dealing with saturated pixels
SaturationLevel = ColBalance*ColMatrix;
SaturationLevel = min(SaturationLevel);
LF = min(SaturationLevel,max(0,LF)) ./ SaturationLevel;
% Apply gamma
LF = LF .^ Gamma;
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild4DFreqPlane.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild4DFreqPlane.m
| 4,768 |
utf_8
|
44b35c86e926ed95961fbf34e0872ffb
|
% LFBuild4DFreqPlane - construct a 4D planar passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild4DFreqPlane( LFSize, Slope, BW, FiltOptions )
% H = LFBuild4DFreqPlane( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 4D, for which the passband is a plane.
% This is useful for selecting objects at a single depth from a lightfield, and is similar in effect
% to refocus using, for example, the shift sum filter LFFiltShiftSum.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt4DFFT.
%
% Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v,
% the optional aspect parameter should be used.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : 'Skew' or 'Rotate' default 'skew'
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect4D : aspect ratio of the light field, default [1 1 1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent4D or
% IncludeAliased.
% Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent4D. This can
% increase processing time dramatically, e.g. Extent4D = [2,2,2,2]
% requires a 2^4 = 16-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01,
% LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone,
% LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild4DFreqPlane( LFSize, Slope, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew', 'Rotate'
DistFunc = @(P, FiltOptions) DistFunc_4DPlane( P, Slope, FiltOptions );
[H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc );
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
end
%-----------------------------------------------------------------------------------------------------------------------
function Dist = DistFunc_4DPlane( P, Slope, FiltOptions )
switch( lower(FiltOptions.SlopeMethod) )
case 'skew'
R = eye(4);
R(1,3) = Slope;
R(2,4) = Slope;
case 'rotate'
Angle = -atan2(Slope,1);
R2D = LFRotz( Angle );
R = eye(4);
R(1,1) = R2D(1,1);
R(1,3) = R2D(1,2);
R(3,1) = R2D(2,1);
R(3,3) = R2D(2,2);
R(2,2) = R2D(1,1);
R(2,4) = R2D(1,2);
R(4,2) = R2D(2,1);
R(4,4) = R2D(2,2);
otherwise
error('Unrecognized slope method');
end
P = R * P;
Dist = P(2,:).^2 + P(1,:).^2;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFFindFilesRecursive.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFFindFilesRecursive.m
| 3,789 |
utf_8
|
d7e26a587e0dd5460fb2f59371802d2e
|
% LFFindFilesRecursive - Recursively searches a folder for files matching one or more patterns
%
% Usage:
%
% [AllFiles, BasePath, FolderList, PerFolderFiles] = LFFindFilesRecursive( InputPath )
%
% Inputs:
%
% InputPath: the folder to recursively search
%
% Outputs:
%
% Allfiles : A list of all files found
% BasePath : Top of the searched tree, excluding wildcards
% FolderList : A list of all the folders explored
% PerFolderFiles : A list of files organied by folder -- e.g. PerFolderFiles{1} are all the files
% found in FolderList{1}
%
% Examples:
%
% LFFindFilesRecursive('Images')
% LFFindFilesRecursive({'*.lfr','*.lfp'})
% LFFindFilesRecursive({'Images','*.lfr','*.lfp'})
% LFFindFilesRecursive('Images/*.lfr')
% LFFindFilesRecursive('*.lfr')
% LFFindFilesRecursive('Images/IMG_0001.LFR')
% LFFindFilesRecursive('IMG_0001.LFR')
%
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [AllFiles, BasePath, FolderList, PerFolderFiles] = LFFindFilesRecursive( InputPath, DefaultFileSpec, DefaultPath )
PerFolderFiles = [];
AllFiles = [];
%---Defaults---
DefaultFileSpec = LFDefaultVal( 'DefaultFileSpec', {'*'} );
DefaultPath = LFDefaultVal( 'DefaultPath', '.' );
InputPath = LFDefaultVal( 'InputPath', '.' );
PathOnly = '';
if( ~iscell(InputPath) )
InputPath = {InputPath};
end
if( ~iscell(DefaultFileSpec) )
DefaultFileSpec = {DefaultFileSpec};
end
InputFileSpec = DefaultFileSpec;
if( exist(InputPath{1}, 'dir') ) % try interpreting first param as a folder, if it exists, grab is as such
PathOnly = InputPath{1};
InputPath(1) = [];
end
if( numel(InputPath) > 0 ) % interpret remaining elements as filespecs
% Check if the filespec includes a folder name, and crack it out as part of the input path
[MorePath, Stripped, Ext] = fileparts(InputPath{1});
PathOnly = fullfile(PathOnly, MorePath);
InputPath{1} = [Stripped,Ext];
InputFileSpec = InputPath;
end
PathOnly = LFDefaultVal('PathOnly', DefaultPath);
InputPath = PathOnly;
% Clean up the inputpath to omit trailing slashes
while( InputPath(end) == filesep )
InputPath = InputPath(1:end-1);
end
BasePath = InputPath;
%---Crawl folder structure locating raw lenslet images---
fprintf('Searching for files [ ');
fprintf('%s ', InputFileSpec{:});
fprintf('] in %s\n', InputPath);
%---
FolderList = genpath(InputPath);
if( isempty(FolderList) )
error(['Input path not found... are you running from the correct folder? ' ...
'Current folder: %s'], pwd);
end
FolderList = textscan(FolderList, '%s', 'Delimiter', pathsep);
FolderList = FolderList{1};
%---Compile a list of all files---
PerFolderFiles = cell(length(FolderList),1);
for( iFileSpec=1:length(InputFileSpec) )
FilePattern = InputFileSpec{iFileSpec};
for( iFolder = 1:length(FolderList) )
%---Search each subfolder for raw lenslet files---
CurFolder = FolderList{iFolder};
CurDirList = dir(fullfile(CurFolder, FilePattern));
CurDirList = CurDirList(~[CurDirList.isdir]);
CurDirList = {CurDirList.name};
PerFolderFiles{iFolder} = [PerFolderFiles{iFolder}, CurDirList];
% Prepend the current folder name for a complete path to each file
% but fist strip off the leading InputPath so that all files are expressed relative to InputPath
CurFolder = CurFolder(length(InputPath)+1:end);
while( ~isempty(CurFolder) && CurFolder(1) == filesep )
CurFolder = CurFolder(2:end);
end
CurDirList = cellfun(@(Fname) fullfile(CurFolder, Fname), CurDirList, 'UniformOutput',false);
AllFiles = [AllFiles; CurDirList'];
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFDispMousePan.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFDispMousePan.m
| 3,147 |
utf_8
|
19664da990653623f36d25770af65dec
|
% LFDispMousePan - visualize a 4D light field using the mouse to pan through two dimensions
%
% Usage:
% FigureHandle = LFDispMousePan( LF )
% FigureHandle = LFDispMousePan( LF, ScaleFactor )
%
% A figure is set up for high-performance display, with the tag 'LFDisplay'. Subsequent calls to
% this function and LFDispVidCirc will reuse the same figure, rather than creating a new window on
% each call. The window should be closed when changing ScaleFactor.
%
% Inputs:
%
% LF : a colour or single-channel light field, and can a floating point or integer format. For
% display, it is converted to 8 bits per channel. If LF contains more than three colour
% channels, as is the case when a weight channel is present, only the first three are used.
%
% Optional Inputs:
%
% ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as big, etc.
% Integer values are recommended to avoid scaling artifacts. Note that the scale
% factor is only applied the first time a figure is created. To change the scale
% factor, close the figure before calling LFDispMousePan.
%
% Outputs:
%
% FigureHandle
%
%
% See also: LFDisp, LFDispVidCirc
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function FigureHandle = LFDispMousePan( LF, varargin )
%---Defaults---
MouseRateDivider = 30;
%---Check for weight channel---
HasWeight = (size(LF,5) == 4);
%---Discard weight channel---
if( HasWeight )
LF = LF(:,:,:,:,1:3);
end
%---Rescale for 8-bit display---
if( isfloat(LF) )
LF = uint8(LF ./ max(LF(:)) .* 255);
else
LF = uint8(LF.*(255 / double(intmax(class(LF)))));
end
%---Setup the display---
[ImageHandle,FigureHandle] = LFDispSetup( squeeze(LF(max(1,floor(end/2)),max(1,floor(end/2)),:,:,:)), varargin{:} );
BDH = @(varargin) ButtonDownCallback(FigureHandle, varargin);
BUH = @(varargin) ButtonUpCallback(FigureHandle, varargin);
set(FigureHandle, 'WindowButtonDownFcn', BDH );
set(FigureHandle, 'WindowButtonUpFcn', BUH );
[TSize,SSize, ~,~] = size(LF(:,:,:,:,1));
CurX = max(1,floor((SSize-1)/2+1));
CurY = max(1,floor((TSize-1)/2+1));
DragStart = 0;
%---Update frame before first mouse drag---
LFRender = squeeze(LF(round(CurY), round(CurX), :,:,:));
set(ImageHandle,'cdata', LFRender);
fprintf('Click and drag to shift perspective\n');
function ButtonDownCallback(FigureHandle,varargin)
set(FigureHandle, 'WindowButtonMotionFcn', @ButtonMotionCallback);
DragStart = get(gca,'CurrentPoint')';
DragStart = DragStart(1:2,1)';
end
function ButtonUpCallback(FigureHandle, varargin)
set(FigureHandle, 'WindowButtonMotionFcn', '');
end
function ButtonMotionCallback(varargin)
CurPoint = get(gca,'CurrentPoint');
CurPoint = CurPoint(1,1:2);
RelPoint = CurPoint - DragStart;
CurX = max(1,min(SSize, CurX - RelPoint(1)/MouseRateDivider));
CurY = max(1,min(TSize, CurY - RelPoint(2)/MouseRateDivider));
DragStart = CurPoint;
LFRender = squeeze(LF(round(CurY), round(CurX), :,:,:));
set(ImageHandle,'cdata', LFRender);
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFReadGantryArray.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFReadGantryArray.m
| 4,902 |
utf_8
|
80dc406ff9c8008ff8aa0877a0fcdb0f
|
% LFReadGantryArray - load gantry-style light field, e.g. the Stanford light fields at lightfield.stanford.edu
%
% Usage:
%
% LF = LFReadGantryArray( InputPath, DecodeOptions )
%
% To use, download and unzip an image archive from the Stanford light field archive, and pass this function the path to
% the unzipped files. All inputs are optional, by default the light field is loaded from the current directory.
% DecodeOptions.UVScale and DecodeOptions.UVLimit allow the input images to be scaled, either by the constant factor
% UVScale, or to achieve the maximum u,v image size specified by UVLimit. If both UVScale and UVLimit are specified, the
% one resulting in smaller images is applied.
%
% The defaults are all set to load Stanford Lego Gantry light fields, and must be adjusted for differently sized or
% ordered light fields.
%
% Inputs :
%
% InputPath : path to folder of image files, e.g. as obtained by decompressing a Stanford light field
%
% DecodeOptions :
% UVScale : constant scaling factor applied to each input image; default: 1
% UVLimit : scale is adjusted to ensure a maximum image dimension of DecodeOptions.UVLimit
% Order : 'RowMajor' or 'ColumnMajor', specifies the order in which images appear when sorted
% alphabetically; default: 'RowMajor'
% STSize : Size of the array of images; default: [17, 17]
% FnamePattern : Pattern used to locate input file, using standard wildcards; default '*.png'
%
% Outputs:
%
% LF : 5D array containing a 3-channel (RGB) light field, indexed in the order [j,i,l,k, colour]
% DecodeOptions : Reflects the parameters as applied, including the UVScale resulting from UVLimit
%
%
% Example 1:
%
% After unzipping the LegoKnights Stanford light fields into '~/Data/Stanford/LegoKnights/rectified', the following
% reads the light field at full resolution, yielding a 17 x 17 x 1024 x 1024 x 3 array, occupying 909 MBytes of RAM:
%
% LF = LFReadGantryArray('~/Data/Stanford/LegoKnights/rectified');
%
% Example 2:
%
% As above, but scales each image to a maximum dimension of 256 pixels, yielding a 17 x 17 x 256 x 256 x 3 array.
% LFDIspMousePan then displays the light field, click and pan around to view the light field.
%
% LF = LFReadGantryArray('~/Data/Stanford/LegoKnights/rectified', struct('UVLimit', 256));
% LFDispMousePan(LF)
%
% Example 3:
%
% A few of the Stanford "Gantry" (not "Lego Gantry") light fields follow a lawnmower pattern. These can be read and
% adjusted as follows:
%
% LF = LFReadGantryArray('humvee-tree', struct('STSize', [16,16]));
% LF(1:2:end,:,:,:,:) = LF(1:2:end,end:-1:1,:,:,:);
% See also: LFDispMousePan, LFDispVidCirc
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, DecodeOptions] = LFReadGantryArray( InputPath, DecodeOptions )
InputPath = LFDefaultVal('InputPath', '.');
DecodeOptions = LFDefaultField('DecodeOptions','UVScale', 1);
DecodeOptions = LFDefaultField('DecodeOptions','UVLimit', []);
DecodeOptions = LFDefaultField('DecodeOptions','STSize', [17,17]);
DecodeOptions = LFDefaultField('DecodeOptions','FnamePattern', '*.png');
DecodeOptions = LFDefaultField('DecodeOptions','Order', 'RowMajor');
%---Gather info---
FList = dir(fullfile(InputPath, DecodeOptions.FnamePattern));
if( isempty(FList) )
error('No files found');
end
NumImgs = length(FList);
assert( NumImgs == prod(DecodeOptions.STSize), 'Unexpected image count: expected %d x %d = %d found %d', ...
DecodeOptions.STSize(1), DecodeOptions.STSize(2), prod(DecodeOptions.STSize), NumImgs );
%---Get size, scaling info from first file, assuming all are same size---
Img = imread(fullfile(InputPath, FList(1).name));
ImgClass = class(Img);
UVSizeIn = size(Img);
if( ~isempty(DecodeOptions.UVLimit) )
UVMinScale = min(DecodeOptions.UVLimit ./ UVSizeIn(1:2));
DecodeOptions.UVScale = min(DecodeOptions.UVScale, UVMinScale);
end
Img = imresize(Img, DecodeOptions.UVScale);
UVSize = size(Img);
TSize = DecodeOptions.STSize(2);
SSize = DecodeOptions.STSize(1);
VSize = UVSize(1);
USize = UVSize(2);
%---Allocate mem---
LF = zeros(TSize, SSize, VSize,USize, 3, ImgClass);
LF(1,1,:,:,:) = Img;
switch( lower(DecodeOptions.Order) )
case 'rowmajor'
[SIdx,TIdx] = ndgrid( 1:SSize, 1:TSize );
case 'columnmajor'
[TIdx,SIdx] = ndgrid( 1:TSize, 1:SSize );
otherwise
error( 'Unrecognized image order' );
end
%---Load and scale images---
fprintf('Loading %d images', NumImgs);
for(i=2:NumImgs)
if( mod(i, ceil(length(FList)/10)) == 0 )
fprintf('.');
end
Img = imread(fullfile(InputPath, FList(i).name));
Img = imresize(Img, DecodeOptions.UVScale);
LF(TIdx(i),SIdx(i),:,:,:) = Img;
end
fprintf(' done\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFRecenterIntrinsics.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFRecenterIntrinsics.m
| 599 |
utf_8
|
95e4073ad162508fcaf1705124873fc5
|
% LFRecenterIntrinsics - Recenter a light field intrinsic matrix
%
% Usage:
% H = LFRecenterIntrinsics( H, LFSize )
%
% The recentering works by forcing the central sample in a light field of LFSize samples to
% correspond to the ray [s,t,u,v] = 0. Note that 1-based indexing is assumed in [i,j,k,l].
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function H = LFRecenterIntrinsics( H, LFSize )
CenterRay = [(LFSize([2,1,4,3])-1)/2 + 1, 1]'; % note indices start at 1
H(1:4,5) = 0;
Decentering = H * CenterRay;
H(1:4,5) = -Decentering(1:4);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalDispRectIntrinsics.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFCalDispRectIntrinsics.m
| 3,804 |
utf_8
|
9881daba2d9060eef02a39e1c9ac81dd
|
% LFCalDispRectIntrinsics - Visualize sampling pattern resulting from a prescribed intrinsic matrix
%
% Usage:
% RectOptions = LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions, PaintColour )
%
% During rectification, the matrix RectOptions.RectCamIntrinsicsH determines which subset of the light field gets
% sampled into the rectified light field. LFCalDispRectIntrinsics visualizes the resulting sampling pattern. The
% display is interactive, generated using LFDispMousePan, and can be explored by clicking and dragging the mouse.
%
% If no intrinsic matrix is provided, a default best-guess is constructed and returned in
% RectOptions.RectCamIntrinsicsH.
%
% A typical usage pattern is to load a light field, call LFCalDispRectIntrinsics to set up the default intrinsic
% matrix, manipulate the matrix, then visualize the manipulated sampling pattern prior to employing it in one or more
% rectification calls. The function LFRecenterIntrinsics is useful in maintaining a centered sampling pattern.
%
% This function relies on the presence of a calibration file and associated database, see LFUtilCalLensletCam and
% LFUtilDecodeLytroFolder.
%
% Inputs:
%
% LF : Light field to visualize
%
% LFMetadata : The light field's associated metadata - needed to locate the appropriate calibration file
%
% [optional] RectOptions : all fields are optional, see LFCalRectifyLF for all fields
% .RectCamIntrinsicsH : The intrinsic matrix to visualize
%
% [optional] PaintColour : RGB triplet defining a base drawing colour, RGB values are in the range 0-1
%
% Outputs:
%
% RectOptions : RectOptions updated with any defaults that were applied
% LF : The light field with visualized sample pattern
%
% See also: LFCalRectifyLF, LFRecenterIntrinsics, LFUtilCalLensletCam, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [RectOptions, LF] = LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions, PaintColour )
PaintColour = LFDefaultVal( 'PaintColour', [0.5,1,1] );
[CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions );
%---Discard weight channel---
HasWeight = (size(LF,5) == 4);
if( HasWeight )
LF = LF(:,:,:,:,1:3);
end
LFSize = size(LF);
RectOptions = LFDefaultField( 'RectOptions', 'Precision', 'single' );
RectOptions = LFDefaultField( 'RectOptions', 'NInverse_Distortion_Iters', 2 );
RectOptions = LFDefaultField( 'RectOptions', 'RectCamIntrinsicsH', LFDefaultIntrinsics( LFSize, CalInfo ) );
if( isempty( CalInfo ) )
warning('No suitable calibration found, skipping');
return;
end
%--- visualize image utilization---
t_in=cast(1:LFSize(1), 'uint16');
s_in=cast(1:LFSize(2), 'uint16');
v_in=cast(1:10:LFSize(3), 'uint16');
u_in=cast(1:10:LFSize(4), 'uint16');
[tt,ss,vv,uu] = ndgrid(t_in,s_in,v_in,u_in);
InterpIdx = [ss(:)'; tt(:)'; uu(:)'; vv(:)'; ones(size(ss(:)'))];
InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions );
InterpIdx = round(double(InterpIdx));
PaintVal = cast(double(max(LF(:))).*PaintColour, 'like', LF);
LF = 0.7*LF;
%---Clamp indices---
STUVChan = [2,1,4,3];
for( Chan=1:4 )
InterpIdx(Chan,:) = min(LFSize(STUVChan(Chan)), max(1,InterpIdx(Chan,:)));
end
%---Paint onto LF---
RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 1*ones(size(InterpIdx(1,:))));
LF(RInterpIdx) = PaintVal(1);
RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 2*ones(size(InterpIdx(1,:))));
LF(RInterpIdx) = PaintVal(2);
RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 3*ones(size(InterpIdx(1,:))));
LF(RInterpIdx) = PaintVal(3);
%---Display LF---
LFDispMousePan( LF );
|
github
|
hazirbas/light-field-toolbox-master
|
LFFiltShiftSum.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFFiltShiftSum.m
| 5,666 |
utf_8
|
08be7f6f27c502a03f85f49912ae8183
|
% LFFiltShiftSum - a spatial-domain depth-selective filter, with an effect similar to planar focus
%
% Usage:
%
% [ImgOut, FiltOptions, LF] = LFFiltShiftSum( LF, Slope, FiltOptions )
% ImgOut = LFFiltShiftSum( LF, Slope )
%
%
% This filter works by shifting all u,v slices of the light field to a common depth, then adding the slices together to
% yield a single 2D output. The effect is very similar to planar focus, and by controlling the amount of shift one may
% focus on different depths. If a weight channel is present in the light field it gets used during normalization.
%
%
% See LFDemoBasicFiltLytro for example usage.
%
%
% Inputs
%
% LF : The light field to be filtered
%
% Slope : The amount by which light field slices should be shifted, this encodes the depth at which the output will
% be focused. The relationship between slope and depth depends on light field parameterization, but in
% general a slope of 0 lies near the center of the captured depth of field.
%
% [optional] FiltOptions : struct controlling filter operation
% Precision : 'single' or 'double', default 'single'
% Aspect4D : aspect ratio of the light field, default [1 1 1 1]
% Normalize : default true; when enabled the output is normalized so that darkening near image edges is
% removed
% FlattenMethod : 'Sum', 'Max' or 'Median', default 'Sum'; when the shifted light field slices are combined,
% they are by default added together, but median and max can also yield useful results.
% InterpMethod : default 'linear'; this is passed on to interpn to determine how shifted light field slices
% are found; other useful settings are 'nearest', 'cubic' and 'spline'
% ExtrapVal : default 0; when shifting light field slices, pixels falling outside the input light field
% are set to this value
% MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for
% which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which
% this occurs, default is 10 * the numerical precision of the output, as returned by eps
%
% Outputs:
%
% ImgOut : A 2D filtered image
% FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and
% time of filtering.
% LF : The 4D light field resulting from the shifting operation
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine,
% LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT,
% LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [ImgOut, FiltOptions, LF] = LFFiltShiftSum( LF, Slope, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single');
FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true);
FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision));
FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1);
FiltOptions = LFDefaultField('FiltOptions', 'FlattenMethod', 'sum'); % 'Sum', 'Max', 'Median'
FiltOptions = LFDefaultField('FiltOptions', 'InterpMethod', 'linear');
FiltOptions = LFDefaultField('FiltOptions', 'ExtrapVal', 0);
if( length(FiltOptions.Aspect4D) == 1 )
FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1];
end
LFSize = size(LF);
NColChans = size(LF,5);
HasWeight = ( NColChans == 4 || NColChans == 2 );
if( HasWeight )
NColChans = NColChans-1;
end
LF = LFConvertToFloat(LF, FiltOptions.Precision);
%---
if( FiltOptions.Normalize )
if( HasWeight )
for( iColChan = 1:NColChans )
LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) .* LF(:,:,:,:,end);
end
else % add a weight channel
LF(:,:,:,:,end+1) = ones(size(LF(:,:,:,:,1)), FiltOptions.Precision);
end
end
%---
TVSlope = Slope * FiltOptions.Aspect4D(3) / FiltOptions.Aspect4D(1);
SUSlope = Slope * FiltOptions.Aspect4D(4) / FiltOptions.Aspect4D(2);
[vv, uu] = ndgrid(1:LFSize(3), 1:LFSize(4));
VVec = linspace(-0.5,0.5, LFSize(1)) * TVSlope*LFSize(1);
UVec = linspace(-0.5,0.5, LFSize(2)) * SUSlope*LFSize(2);
for( TIdx = 1:LFSize(1) )
VOffset = VVec(TIdx);
for( SIdx = 1:LFSize(2) )
UOffset = UVec(SIdx);
for( iChan=1:size(LF,5) )
CurSlice = squeeze(LF(TIdx, SIdx, :,:, iChan));
CurSlice = interpn(CurSlice, vv+VOffset, uu+UOffset, FiltOptions.InterpMethod, FiltOptions.ExtrapVal);
LF(TIdx,SIdx, :,:, iChan) = CurSlice;
end
end
fprintf('.');
end
switch( lower(FiltOptions.FlattenMethod) )
case 'sum'
ImgOut = squeeze(sum(sum(LF,1),2));
case 'max'
ImgOut = squeeze(max(max(LF,[],1),[],2));
case 'median'
t = reshape(LF, [prod(LFSize(1:2)), LFSize(3:end)]);
ImgOut = squeeze(median(t));
otherwise
error('Unrecognized method');
end
%---
if( FiltOptions.Normalize )
WeightChan = ImgOut(:,:,end);
InvalidIdx = find(WeightChan < FiltOptions.MinWeight);
ChanSize = numel(ImgOut(:,:,1));
for( iColChan = 1:NColChans )
ImgOut(:,:,iColChan) = ImgOut(:,:,iColChan) ./ WeightChan;
ImgOut( InvalidIdx + ChanSize.*(iColChan-1) ) = 0;
end
end
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilUnpackLytroArchive.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilUnpackLytroArchive.m
| 5,667 |
utf_8
|
0af0d42eaef631b6f44fbfc81dd81b3e
|
% LFUtilUnpackLytroArchive - extract white images and other files from a multi-volume Lytro archive
%
% Usage:
% LFUtilUnpackLytroArchive
% LFUtilUnpackLytroArchive( InputPath )
% LFUtilUnpackLytroArchive( InputPath, FirstVolumeFname )
% LFUtilUnpackLytroArchive( [], FirstVolumeFname )
%
% This extracts all the files from all Lytro archives found in the requested path. Archives typically take on names like
% data.C.0, data.C.1 and so forth, and contain white images, metadata and other information.
%
% The function searches for archives recursively, so if there are archives in multiple sub-folders, they will all be
% expanded. The file LFToolbox.json is created to mark completion of the extraction in a folder. Already-expanded
% archives are skipped; delete LFToolbox.json to force re-extraction in a folder.
%
% Based in part on Nirav Patel and Doug Kelley's LFP readers. Thanks to Michael Tao for help and samples for decoding
% Illum imagery.
%
% Inputs -- all are optional :
%
% InputPath : Path to folder containing the archive, default 'Cameras'
% FirstVolumeFname : Name of the first file in the archive, default 'data.C.0'
%
% Example:
%
% LFUtilUnpackLytroArchive
%
% Will extract the contents of all archives in all subfolders of the current folder. If you are working with
% multiple cameras, place each multi-volume archve in its own sub-folder, then call this from the top-level folder
% to expand them all.
%
% See also: LFUtilProcessWhiteImages, LFReadLFP, LFUtilExtractLFPThumbs
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilUnpackLytroArchive( InputPath, FirstVolumeFname )
%---Defaults---
InputPath = LFDefaultVal('InputPath','Cameras');
FirstVolumeFname = LFDefaultVal('FirstVolumeFname','data.C.0');
[AllVolumes, BasePath] = LFFindFilesRecursive(InputPath, FirstVolumeFname);
fprintf('Found :\n');
disp(AllVolumes)
%---Consts---
LFPConsts.LFPHeader = hex2dec({'89', '4C', '46', '50', '0D', '0A', '1A', '0A', '00', '00', '00', '01'}); % 12-byte LFPSections header
LFPConsts.SectHeaderLFM = hex2dec({'89', '4C', '46', '4D', '0D', '0A', '1A', '0A'})'; % header for table of contents
LFPConsts.SectHeaderLFC = hex2dec({'89', '4C', '46', '43', '0D', '0A', '1A', '0A'})'; % header for content section
LFPConsts.SecHeaderPaddingLen = 4;
LFPConsts.Sha1Length = 45;
LFPConsts.ShaPaddingLen = 35; % Sha1 codes are followed by 35 null bytes
LFToolboxInfoFname = 'LFToolbox.json';
%---
for( VolumeIdx = 1:length(AllVolumes) )
CurFile = fullfile(BasePath, AllVolumes{VolumeIdx});
OutPath = fileparts(CurFile);
fprintf('Extracting files in "%s"...\n', OutPath);
CurInfoFname = fullfile( OutPath, LFToolboxInfoFname );
if( exist(CurInfoFname, 'file') )
fprintf('Already done, skipping (delete "%s" to force redo)\n\n', CurInfoFname);
continue;
end
while( 1 )
fprintf(' %s...\n', CurFile);
InFile=fopen(CurFile, 'rb');
%---Check for the magic header---
HeaderBytes = fread( InFile, length(LFPConsts.LFPHeader), 'uchar' );
if( ~all( HeaderBytes == LFPConsts.LFPHeader ) )
fclose(InFile);
fprintf( 'Unrecognized file type' );
return
end
%---Confirm headerlength bytes---
HeaderLength = fread(InFile,1,'uint32','ieee-be');
assert( HeaderLength == 0, 'Unexpected length at top-level header' );
%---Read each section---
% This implementation assumes the TOC appears first in each file
clear TOC
while( ~feof(InFile) )
CurSection = ReadSection( InFile, LFPConsts );
if( all( CurSection.SectHeader == LFPConsts.SectHeaderLFM ) )
TOC = LFReadMetadata( CurSection.Data );
else
assert( exist('TOC','var')==1, 'Expected to find table of contents at top of file' );
MatchingSectIdx = find( strcmp( CurSection.Sha1, {TOC.files.dataRef} ) );
CurFname = TOC.files(MatchingSectIdx).name;
CurFname = strrep( CurFname, 'C:\', '' );
CurFname = strrep( CurFname, '\', '__' );
OutFile = fopen( fullfile(OutPath, CurFname), 'wb' );
fwrite( OutFile, CurSection.Data );
fclose(OutFile);
end
end
fclose( InFile );
if( isfield(TOC, 'nextFile') )
CurFile = fullfile(OutPath, TOC.nextFile);
else
break;
end
end
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
fprintf( 'Marking completion in "%s"\n\n', CurInfoFname );
LFWriteMetadata( CurInfoFname, GeneratedByInfo );
end
fprintf('Done\n');
end
% --------------------------------------------------------------------
function LFPSect = ReadSection( InFile, LFPConsts )
LFPSect.SectHeader = fread(InFile, length(LFPConsts.SectHeaderLFM), 'uchar')';
Padding = fread(InFile, LFPConsts.SecHeaderPaddingLen, 'uint8'); % skip padding
SectLength = fread(InFile, 1, 'uint32', 'ieee-be');
LFPSect.Sha1 = char(fread(InFile, LFPConsts.Sha1Length, 'uchar')');
Padding = fread(InFile, LFPConsts.ShaPaddingLen, 'uint8'); % skip padding
LFPSect.Data = char(fread(InFile, SectLength, 'uchar'))';
while( 1 )
Padding = fread(InFile, 1, 'uchar');
if( feof(InFile) || (Padding ~= 0) )
break;
end
end
if ~feof(InFile)
fseek( InFile, -1, 'cof'); % rewind one byte
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFReadMetadata.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFReadMetadata.m
| 14,953 |
utf_8
|
98e987806e2f748e70644b1801d2bf95
|
% LFReadMetadata - reads the metadata files in the JSON file format, from a file or a char buffer
%
% Usage:
%
% Data = LFReadMetadata( JsonFileFname )
%
% This function parses a JSON file and returns the data contained therein. If a char buffer is passed in, it's
% interpreted directly.
%
% Based on code from JSONlab by Qianqian Fang,
% http://www.mathworks.com.au/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-encodedecode-json-files-in-matlaboctave
%
% Minor modifications by Donald G. Dansereau, 2013, to simplify the interface as appropriate for use
% in the Light Field Toolbox, and to tolerate the sha keys appearing at the end of some Lytro JSON
% files
%
% See also: LFWriteMetadata
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function data = LFReadMetadata( JsonFileFname )
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(JsonFileFname,'[\{\}\]\[]','once'))
string=JsonFileFname;
elseif(exist(JsonFileFname,'file'))
fid = fopen(JsonFileFname,'rt');
string = fscanf(fid,'%c');
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt = []; % opt=varargin2struct(varargin{:});
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
pos = len+1;
continue;
% error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
else
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
if next_char ~= ']'
[endpos e1l e1r maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(find(arraystr==sprintf('\n')))=[];
arraystr(find(arraystr==sprintf('\r')))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(find(astr==sprintf('\n')))=[];
astr(find(astr==sprintf('\r')))=[];
astr(find(astr==' '))='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(find(astr==' '))='';
[obj count errmsg nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(find(astr=='['))='';
astr(find(astr==']'))='';
astr(find(astr==' '))='';
[obj count errmsg nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
try
object=cell2mat(object')';
if(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
parse_char(']');
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilDecodeLytroFolder.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilDecodeLytroFolder.m
| 16,946 |
utf_8
|
6867204a9b31f8807a667ab1fe4fa420
|
% LFUtilDecodeLytroFolder - decode and optionally colour correct and rectify Lytro light fields
%
% Usage:
%
% LFUtilDecodeLytroFolder
% LFUtilDecodeLytroFolder( InputPath )
% LFUtilDecodeLytroFolder( InputPath, FileOptions, DecodeOptions, RectOptions )
% LFUtilDecodeLytroFolder( InputPath, [], [], RectOptions )
%
% All parameters are optional and take on default values as set in the "Defaults" section at the top
% of the implementation. As such, this can be called as a function or run directly by editing the
% code. When calling as a function, pass an empty array "[]" to omit a parameter.
%
% As released, the default values are set up to match the naming conventions of LFP Reader v2.0.0.
%
% This function demonstrates decoding and optionally colour-correction and rectification of 2D
% lenslet images into 4D light fields. It recursively crawls through a prescribed folder and its
% subfolders, operating on each light field. It can be used incrementally: previously-decoded light
% fields can be subsequently colour-corected, rectified, or both. Previously-completed tasks will
% not be re-applied. A filename pattern can be provided to work on individual files. All paths and
% naming are configurable.
%
% Decoding and rectification follow the process described in:
%
% [1] D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for
% lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE
% Conference on. IEEE, Jun 2013.
%
% Decoding requires that an appropriate database of white images be created using
% LFUtilProcessWhiteImages. Rectification similarly requires a calibration database be created using
% LFUtilProcessCalibrations.
%
% To decode a single light field, it is simplest to include a file specification in InputPath (see
% below). It is also possible to call LFLytroDecodeImage directly.
%
% Colour correction employs the metadata associated with each Lytro picture. It also applies
% histogram-based contrast adjustment. It calls the functions LFColourCorrect and LFHistEqualize.
%
% Rectification employs a calibration info file to rectify the light field, correcting for lens
% distortion, making pixels square, and yielding an intrinsics matrix which allows easy conversion
% from a pixel index [i,j,k,l] to a ray [s,t,u,v]. A calibration info file is generated by
% processing a series of checkeboard images, following the calibration procedure described in
% LFToolbox.pdf. A calibration only applies to one specific camera at one specific zoom and focus
% setting, and decoded using one specific lenslet grid model. The tool LFUtilProcessCalibrations is
% used to build a database of rectifications, and LFSelectFromDatabase isused to select a
% calibration appropriate to a given light field.
%
% This function was written to deal with Lytro imagery, but adapting it to operate with other
% lenslet-based cameras should be straightforward. For more information on the decoding process,
% refer to LFDecodeLensletImageSimple, [1], and LFToolbox.pdf.
%
% Some optional parameters are not used or documented at this level -- see each of LFCalRectifyLF,
% LFLytroDecodeImage, LFDecodeLensletImageSimple, and LFColourCorrect for further information.
%
%
% Inputs -- all are optional, see code below for default values :
%
% InputPath : Path to folder containing light fields, or to a specific light field, optionally including one or
% more wildcard filename specifications. In case wildcards are used, this searches sub-folders recursively. See
% LFFindFilesRecursive.m for more information and examples of how InputPath is interpreted.
%
% FileOptions : struct controlling file naming and saving
% .SaveResult : Set to false to perform a "dry run"
% .ForceRedo : If true previous results are ignored and decoding starts from scratch
% .SaveFnamePattern : String defining the pattern used in generating the output filename;
% sprintf is used to complete this pattern, such that %s gets replaced
% with the base name of the input light field
% .ThumbFnamePattern : As with SaveFnamePattern, defines the name of the output thumbnail
% image
%
% DecodeOptions : struct controlling the decoding process, see LFDecodeLensletImageSimple for more info
% .OptionalTasks : Cell array containing any combination of 'ColourCorrect' and
% 'Rectify'; an empty array "{}" means no additional tasks are
% requested; case sensitive
% .LensletImageFnamePattern : Pattern used to locate input files -- the pattern %s stands in
% for the base filename
% .ColourHistThresh : Threshold used by LFHistEqualize in optional colour correction
% .WhiteImageDatabasePath : Full path to the white images database, as created by
% LFUtilProcessWhiteImages
% .DoDehex : Controls whether hexagonal sampling is converted to rectangular, default true
% .DoSquareST : Controls whether s,t dimensions are resampled to square pixels, default true
% .ResampMethod : 'fast'(default) or 'triangulation'
% .LevelLimits : a two-element vector defining the black and white levels
% .Precision : 'single'(default) or 'double'
%
% RectOptions : struct controlling the optional rectification process
% .CalibrationDatabaseFname : Full path to the calibration file database, as created by
% LFUtilProcessCalibrations;
%
% Example:
%
% LFUtilDecodeLytroFolder
%
% Run from the top level of the 'Samples' folder will decode all the light fields in all the
% sub-folders, with default settings as set up in the opening section of the code. The
% calibration database created by LFUtilProcessWhiteImages is expected to be in
% 'Cameras/CaliCalibrationDatabase.mat' by default.
%
% LFUtilDecodeLytroFolder('Images', [], struct('OptionalTasks', 'ColourCorrect'))
%
% Run from the top level of the 'Samples' folder will decode and colour correct all light fields in the Images
% folder and its sub-folders.
%
% DecodeOptions.OptionalTasks = {'ColourCorrect', 'Rectify'};
% LFUtilDecodeLytroFolder([], [], DecodeOptions)
%
% Will perform both colour correction and rectification in the Images folder.
%
% LFUtilDecodeLytroFolder('Images/Illum/Lorikeet.lfp')
% LFUtilDecodeLytroFolder('Lorikeet.lfp')
% LFUtilDecodeLytroFolder({'Images', '*Hiding*', 'Jacaranda*'})
% LFUtilDecodeLytroFolder('*.raw')
% LFUtilDecodeLytroFolder({'*0002*', '*0003*'})
%
% Any of these, run from the top level of the 'Samples' folder, will decode the matching files. See
% LFFindFilesRecursive.
%
% See also: LFUtilExtractLFPThumbs, LFUtilProcessWhiteImages, LFUtilProcessCalibrations, LFUtilCalLensletCam,
% LFColourCorrect, LFHistEqualize, LFFindFilesRecursive, LFLytroDecodeImage, LFDecodeLensletImageSimple,
% LFSelectFromDatabase
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilDecodeLytroFolder( InputPath, FileOptions, DecodeOptions, RectOptions )
%---Defaults---
InputPath = LFDefaultVal( 'InputPath', 'Images' );
FileOptions = LFDefaultField('FileOptions', 'SaveResult', true);
FileOptions = LFDefaultField('FileOptions', 'ForceRedo', false);
FileOptions = LFDefaultField('FileOptions', 'SaveFnamePattern', '%s__Decoded.mat');
FileOptions = LFDefaultField('FileOptions', 'ThumbFnamePattern', '%s__Decoded_Thumb.png');
DecodeOptions = LFDefaultField('DecodeOptions', 'OptionalTasks', {}); % 'ColourCorrect', 'Rectify'
DecodeOptions = LFDefaultField('DecodeOptions', 'ColourHistThresh', 0.01);
DecodeOptions = LFDefaultField(...
'DecodeOptions', 'WhiteImageDatabasePath', fullfile('Cameras','WhiteImageDatabase.mat'));
RectOptions = LFDefaultField(...
'RectOptions', 'CalibrationDatabaseFname', fullfile('Cameras','CalibrationDatabase.mat'));
% Used to decide if two lenslet grid models are "close enough"... if they're not a warning is raised
RectOptions = LFDefaultField( 'RectOptions', 'MaxGridModelDiff', 1e-5 );
% Massage a single-element OptionalTasks list to behave as a cell array
while( ~iscell(DecodeOptions.OptionalTasks) )
DecodeOptions.OptionalTasks = {DecodeOptions.OptionalTasks};
end
%---Crawl folder structure locating raw lenslet images---
DefaultFileSpec = {'*.lfr', '*.lfp', '*.LFR', '*.raw'}; % gets overriden below, if a file spec is provided
DefaultPath = 'Images';
[FileList, BasePath] = LFFindFilesRecursive( InputPath, DefaultFileSpec, DefaultPath );
fprintf('Found :\n');
disp(FileList)
%---Process each raw lenslet file---
% Store options so we can reset them for each file
OrigDecodeOptions = DecodeOptions;
OrigRectOptions = RectOptions;
for( iFile = 1:length(FileList) )
SaveRequired = false;
%---Start from orig options, avoids values bleeding between iterations---
DecodeOptions = OrigDecodeOptions;
RectOptions = OrigRectOptions;
%---Find current / base filename---
CurFname = FileList{iFile};
CurFname = fullfile(BasePath, CurFname);
% Build filename base without extension, auto-remove '__frame' for legacy .raw format
LFFnameBase = CurFname;
[~,~,Extension] = fileparts(LFFnameBase);
LFFnameBase = LFFnameBase(1:end-length(Extension));
CullIdx = strfind(LFFnameBase, '__frame');
if( ~isempty(CullIdx) )
LFFnameBase = LFFnameBase(1:CullIdx-1);
end
fprintf('\n---%s [%d / %d]...\n', CurFname, iFile, length(FileList));
%---Decode---
fprintf('Decoding...\n');
% First check if a decoded file already exists
[SDecoded, FileExists, CompletedTasks, TasksRemaining, SaveFname] = CheckIfExists( ...
LFFnameBase, DecodeOptions, FileOptions.SaveFnamePattern, FileOptions.ForceRedo );
if( ~FileExists )
% No previous result, decode
[LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = ...
LFLytroDecodeImage( CurFname, DecodeOptions );
if( isempty(LF) )
continue;
end
fprintf('Decode complete\n');
SaveRequired = true;
elseif( isempty(TasksRemaining) )
% File exists, and nothing more to do
continue;
else
% File exists and tasks remain: unpack previous decoding results
[LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = LFStruct2Var( ...
SDecoded, 'LF', 'LFMetadata', 'WhiteImageMetadata', 'LensletGridModel', 'DecodeOptions' );
clear SDecoded
end
%---Display thumbnail---
Thumb = DispThumb(LF, CurFname, CompletedTasks);
%---Optionally colour correct---
if( ismember( 'ColourCorrect', TasksRemaining ) )
LF = ColourCorrect( LF, LFMetadata, DecodeOptions );
CompletedTasks = [CompletedTasks, 'ColourCorrect'];
SaveRequired = true;
fprintf('Done\n');
%---Display thumbnail---
Thumb = DispThumb(LF, CurFname, CompletedTasks);
end
%---Optionally rectify---
if( ismember( 'Rectify', TasksRemaining ) )
[LF, RectOptions, Success] = Rectify( LF, LFMetadata, DecodeOptions, RectOptions, LensletGridModel );
if( Success )
CompletedTasks = [CompletedTasks, 'Rectify'];
SaveRequired = true;
end
%---Display thumbnail---
Thumb = DispThumb(LF, CurFname, CompletedTasks);
end
%---Check that all tasks are completed---
UncompletedTaskIdx = find(~ismember(TasksRemaining, CompletedTasks));
if( ~isempty(UncompletedTaskIdx) )
UncompletedTasks = [];
for( i=UncompletedTaskIdx )
UncompletedTasks = [UncompletedTasks, ' ', TasksRemaining{UncompletedTaskIdx}];
end
warning(['Could not complete all tasks requested in DecodeOptions.OptionalTasks: ', UncompletedTasks]);
end
DecodeOptions.OptionalTasks = CompletedTasks;
%---Optionally save---
if( SaveRequired && FileOptions.SaveResult )
if( isfloat(LF) )
LF = uint16( LF .* double(intmax('uint16')) );
end
ThumbFname = sprintf(FileOptions.ThumbFnamePattern, LFFnameBase);
fprintf('Saving to:\n\t%s,\n\t%s...\n', SaveFname, ThumbFname);
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
save('-v7.3', SaveFname, 'GeneratedByInfo', 'LF', 'LFMetadata', 'WhiteImageMetadata', 'LensletGridModel', 'DecodeOptions', 'RectOptions');
imwrite(Thumb, ThumbFname);
end
end
end
%---------------------------------------------------------------------------------------------------
function [SDecoded, FileExists, CompletedTasks, TasksRemaining, SaveFname] = ...
CheckIfExists( LFFnameBase, DecodeOptions, SaveFnamePattern, ForceRedo )
SDecoded = [];
FileExists = false;
SaveFname = sprintf(SaveFnamePattern, LFFnameBase);
if( ~ForceRedo && exist(SaveFname, 'file') )
%---Task previously completed, check if there's more to do---
FileExists = true;
fprintf( ' %s already exists\n', SaveFname );
PrevDecodeOptions = load( SaveFname, 'DecodeOptions' );
PrevOptionalTasks = PrevDecodeOptions.DecodeOptions.OptionalTasks;
CompletedTasks = PrevOptionalTasks;
TasksRemaining = find(~ismember(DecodeOptions.OptionalTasks, PrevOptionalTasks));
if( ~isempty(TasksRemaining) )
%---Additional tasks remain---
TasksRemaining = {DecodeOptions.OptionalTasks{TasksRemaining}}; % by name
fprintf(' Additional tasks remain, loading existing file...\n');
SDecoded = load( SaveFname );
AllTasks = [SDecoded.DecodeOptions.OptionalTasks, TasksRemaining];
SDecoded.DecodeOptions.OptionalTasks = AllTasks;
%---Convert to float as this is what subsequent operations require---
OrigClass = class(SDecoded.LF);
SDecoded.LF = cast( SDecoded.LF, SDecoded.DecodeOptions.Precision ) ./ ...
cast( intmax(OrigClass), SDecoded.DecodeOptions.Precision );
fprintf('Done\n');
else
%---No further tasks... move on---
fprintf( ' No further tasks requested\n');
TasksRemaining = {};
end
else
%---File doesn't exist, all tasks remain---
TasksRemaining = DecodeOptions.OptionalTasks;
CompletedTasks = {};
end
end
%---------------------------------------------------------------------------------------------------
function Thumb = DispThumb( LF, CurFname, CompletedTasks)
Thumb = squeeze(LF(floor(end/2),floor(end/2),:,:,:)); % including weight channel for hist equalize
Thumb = uint8(LFHistEqualize(Thumb).*double(intmax('uint8')));
Thumb = Thumb(:,:,1:3); % strip off weight channel
LFDispSetup(Thumb);
Title = CurFname;
for( i=1:length(CompletedTasks) )
Title = [Title, ', ', CompletedTasks{i}];
end
title(Title, 'Interpreter', 'none');
drawnow
end
%---------------------------------------------------------------------------------------------------
function LF = ColourCorrect( LF, LFMetadata, DecodeOptions )
fprintf('Applying colour correction... ');
%---Weight channel is not used by colour correction, so strip it out---
LFWeight = LF(:,:,:,:,4);
LF = LF(:,:,:,:,1:3);
%---Apply the color conversion and saturate---
LF = LFColourCorrect( LF, DecodeOptions.ColourMatrix, DecodeOptions.ColourBalance, DecodeOptions.Gamma );
%---Put the weight channel back---
LF(:,:,:,:,4) = LFWeight;
end
%---------------------------------------------------------------------------------------------------
function [LF, RectOptions, Success] = Rectify( LF, LFMetadata, DecodeOptions, RectOptions, LensletGridModel )
Success = false;
fprintf('Applying rectification... ');
%---Load cal info---
fprintf('Selecting calibration...\n');
[CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions );
if( isempty( CalInfo ) )
warning('No suitable calibration found, skipping');
return;
end
%---Compare structs
a = CalInfo.LensletGridModel;
b = LensletGridModel;
a.Orientation = strcmp(a.Orientation, 'horz');
b.Orientation = strcmp(b.Orientation, 'horz');
FractionalDiff = abs( (struct2array(a) - struct2array(b)) ./ struct2array(a) );
if( ~all( FractionalDiff < RectOptions.MaxGridModelDiff ) )
warning(['Lenslet grid models differ -- ideally the same grid model and white image are ' ...
' used to decode during calibration and rectification']);
end
%---Perform rectification---
[LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions );
Success = true;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFFilt4DFFT.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFFilt4DFFT.m
| 3,622 |
utf_8
|
bb1d9662c072ab5fb38568d45f44bd28
|
% LFFilt4DFFT -Applies a 4D frequency-domain filter using the FFT
%
% Usage:
%
% [LF, FiltOptions] = LFFilt4DFFT( LF, H, FiltOptions )
% LF = LFFilt4DFFT( LF, H )
%
%
% This filter works by taking the FFT of the input light field, multiplying by the provided magnitude response H, then
% calling the inverse FFT. The frequency-domain filter H should match or exceed the size of the light field LF. If H is
% larger than the input light field, LF is zero-padded to match the filter's size. If a weight channel is present in
% the light field it gets used during normalization.
%
% See LFDemoBasicFiltLytro for example usage.
%
%
% Inputs
%
% LF : The light field to be filtered
%
% H : The frequency-domain filter to apply, as constructed by one of the LFBuild4DFreq* functions
%
% [optional] FiltOptions : struct controlling filter operation
% Precision : 'single' or 'double', default 'single'
% Normalize : default true; when enabled the output is normalized so that darkening near image edges is
% removed
% MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for
% which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which
% this occurs, default is 10 * the numerical precision of the output, as returned by eps
%
% Outputs:
%
% LF : The filtered 4D light field
% FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and
% time of filtering.
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine,
% LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT,
% LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, FiltOptions] = LFFilt4DFFT( LF, H, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single');
FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true);
FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision));
%---
NColChans = size(LF,5);
HasWeight = ( NColChans == 4 || NColChans == 2 );
HasColour = ( NColChans == 4 || NColChans == 3 );
if( HasWeight )
NColChans = NColChans-1;
end
%---
LFSize = size(LF);
LFPaddedSize = size(H);
LF = LFConvertToFloat(LF, FiltOptions.Precision);
if( FiltOptions.Normalize )
if( HasWeight )
for( iColChan = 1:NColChans )
LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) .* LF(:,:,:,:,end);
end
else % add a weight channel
LF(:,:,:,:,end+1) = ones(size(LF(:,:,:,:,1)), FiltOptions.Precision);
end
end
SliceSize = size(LF);
for( iColChan = 1:SliceSize(end) )
fprintf('.');
X = fftn(LF(:,:,:,:,iColChan), LFPaddedSize);
X = X .* H;
x = ifftn(X,'symmetric');
x = x(1:LFSize(1), 1:LFSize(2), 1:LFSize(3), 1:LFSize(4));
LF(:,:,:,:,iColChan) = x;
end
if( FiltOptions.Normalize )
WeightChan = LF(:,:,:,:,end);
InvalidIdx = find(WeightChan <= FiltOptions.MinWeight);
ChanSize = numel(LF(:,:,:,:,1));
for( iColChan = 1:NColChans )
LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) ./ WeightChan;
LF( InvalidIdx + ChanSize.*(iColChan-1) ) = 0;
end
end
LF = max(0,LF);
LF = min(1,LF);
%---
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
fprintf(' Done\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFUtilCalLensletCam.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFUtilCalLensletCam.m
| 8,438 |
utf_8
|
56382b29c1b601dbae1ec2d6763a51b0
|
% LFUtilCalLensletCam - calibrate a lenslet-based light field camera
%
% Usage:
%
% LFUtilCalLensletCam
% LFUtilCalLensletCam( Inputpath )
% LFUtilCalLensletCam( InputPath, CalOptions )
% LFUtilProcessCalibrations( [], CalOptions )
%
% All parameters are optional and take on default values as set in the "Defaults" section at the top
% of the implementation. As such, this can be called as a function or run directly by editing the
% code. When calling as a function, pass an empty array "[]" to omit a parameter.
%
% This function recursively crawls through a folder identifying decoded light field images and
% performing a calibration based on those images. It follows the calibration procedure described in:
%
% D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for
% lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE
% Conference on. IEEE, Jun 2013.
%
% Minor differences from the paper: camera parameters are automatically initialized, so no prior
% knowledge of the camera's parameters is required; the free intrinsic parameters have been reduced
% by two: H(3:4,5) were previously redundant with the camera's extrinsics, and are now automatically
% centered; and the light field indices [i,j,k,l] are 1-based in this implementation, and not
% 0-based as described in the paper.
%
% The calibration produced by this process is saved in a JSON file, by default named 'CalInfo.json',
% in the top-level folder of the calibration images. The calibration includes a 5x5 homogeneous
% intrinsic matrix EstCamIntrinsicsH, a 5-element vector EstCamDistortionV describing its distortion
% parameters, and the lenslet grid model formed from the white image used to decode the
% checkerboard images. Taken together, these relate light field indices [i,j,k,l] to spatial rays
% [s,t,u,v], and can be utilized to rectify light fields, as demonstrated in LFUtilDecodeLytroFolder
% / LFCalRectifyLF.
%
% The input light fields are ideally of a small checkerboard (order mm per square), taken at close
% range, and over a diverse set of poses to maximize the quality of the calibration. The
% checkerboard light field images should be decoded without rectification, and colour correction is
% not required.
%
% Calibration is described in more detail in LFToolbox.pdf, including links to example datasets and
% a walkthrough of a calibration process.
%
% Inputs -- all are optional, see code below for default values :
%
% InputPath : Path to folder containing decoded checkerboard images -- note the function
% operates recursively, i.e. it will search sub-folders.
%
% CalOptions : struct controlling calibration parameters
% .ExpectedCheckerSize : Number of checkerboard corners, as recognized by the automatic
% corner detector; edge corners are not recognized, so a standard
% 8x8-square chess board yields 7x7 corners
% .ExpectedCheckerSpacing_m : Physical extents of the checkerboard, in meters
% .LensletBorderSize : Number of pixels to skip around the edges of lenslets; a low
% value of 1 or 0 is generally appropriate, as invalid pixels are
% automatically skipped
% .SaveResult : Set to false to perform a "dry run"
% .ShowDisplay : Enables various displays throughout the calibration process
% .ForceRedoCornerFinding : Forces the corner finding procedure to run, overwriting existing
% results
% .ForceRedoInit : Forces the parameter initialization step to run, overwriting
% existing results
% .OptTolX : Determines when the optimization process terminates. When the
% estimted parameter values change by less than this amount, the
% optimization terminates. See the Matlab documentation on lsqnonlin,
% option `TolX' for more information. The default value of 5e-5 is set
% within the LFCalRefine function; a value of 0 means the optimization
% never terminates based on this criterion.
% .OptTolFun : Similar to OptTolX, except this tolerance deals with the error value.
% This corresponds to Matlab's lsqnonlin option `TolFun'. The default
% value of 0 is set within the LFCalRefine function, and means the
% optimization never terminates based on this criterion.
%
% Output takes the form of saved checkerboard info and calibration files.
%
% Example :
%
% LFUtilCalLensletCam('.', ...
% struct('ExpectedCheckerSize', [8,6], 'ExpectedCheckerSpacing_m', 1e-3*[35.1, 35.0]))
%
% Run from within the top-level path of a set of decoded calibration images of an 8x6 checkerboard
% of dimensions 35.1x35.0 mm, will carry out all the stages of a calibration. See the toolbox
% documentation for a more complete example.
%
% See also: LFCalFindCheckerCorners, LFCalInit, LFCalRefine, LFUtilDecodeLytroFolder, LFSelectFromDatabase
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LFUtilCalLensletCam( InputPath, CalOptions )
%---Tweakables---
InputPath = LFDefaultVal('InputPath', '.');
CalOptions = LFDefaultField( 'CalOptions', 'ExpectedCheckerSize', [19, 19] );
CalOptions = LFDefaultField( 'CalOptions', 'ExpectedCheckerSpacing_m', [3.61, 3.61] * 1e-3 );
CalOptions = LFDefaultField( 'CalOptions', 'LensletBorderSize', 1 );
CalOptions = LFDefaultField( 'CalOptions', 'SaveResult', true );
CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoCornerFinding', false );
CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoInit', false );
CalOptions = LFDefaultField( 'CalOptions', 'ShowDisplay', true );
CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' );
%---Check for previously started calibration---
CalInfoFname = fullfile(InputPath, CalOptions.CalInfoFname);
if( ~CalOptions.ForceRedoInit && exist(CalInfoFname, 'file') )
fprintf('---File %s already exists\n Loading calibration state and options\n', CalInfoFname);
CalOptions = LFStruct2Var( LFReadMetadata(CalInfoFname), 'CalOptions' );
else
CalOptions.Phase = 'Start';
end
RefineComplete = false; % always at least refine once
%---Step through the calibration phases---
while( ~strcmp(CalOptions.Phase, 'Refine') || ~RefineComplete )
switch( CalOptions.Phase )
case 'Start'
%---Find checkerboard corners---
CalOptions.Phase = 'Corners';
CalOptions = LFCalFindCheckerCorners( InputPath, CalOptions );
case 'Corners'
%---Initialize calibration process---
CalOptions.Phase = 'Init';
CalOptions = LFCalInit( InputPath, CalOptions );
if( CalOptions.ShowDisplay )
LFFigure(2);
clf
LFCalDispEstPoses( InputPath, CalOptions, [], [0.7,0.7,0.7] );
end
case 'Init'
%---First step of optimization process will exclude distortion---
CalOptions.Phase = 'NoDistort';
CalOptions = LFCalRefine( InputPath, CalOptions );
if( CalOptions.ShowDisplay )
LFFigure(2);
LFCalDispEstPoses( InputPath, CalOptions, [], [0,0.7,0] );
end
case 'NoDistort'
%---Next step of optimization process adds distortion---
CalOptions.Phase = 'WithDistort';
CalOptions = LFCalRefine( InputPath, CalOptions );
if( CalOptions.ShowDisplay )
LFFigure(2);
LFCalDispEstPoses( InputPath, CalOptions, [], [0,0,1] );
end
otherwise
%---Subsequent calls refine the estimate---
CalOptions.Phase = 'Refine';
CalOptions = LFCalRefine( InputPath, CalOptions );
RefineComplete = true;
if( CalOptions.ShowDisplay )
LFFigure(2);
LFCalDispEstPoses( InputPath, CalOptions, [], [1,0,0] );
end
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFHistEqualize.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFHistEqualize.m
| 6,002 |
utf_8
|
aaaa0313c7b80ba9ccf5524a24026bdb
|
% LFHistEqualize - histogram-based contrast adjustment
%
% Usage:
%
% LF = LFHistEqualize( LF )
% [LF, LowerBound, UpperBound] = LFHistEqualize( LF, Cutoff_percent )
% LF = LFHistEqualize( LF, [], LowerBound, UpperBound )
% LF = LFHistEqualize(LF, Cutoff_percent, [], [], Precision)
%
% This function performs contrast adjustment on images based on a histogram of intensity. Colour
% images are handled by building a histogram of the `value' channel in the HSV colour space.
% Saturation points are computed based on a desired percentage of saturated white / black pixels.
%
% All parameters except LF are optional. Pass an empty array "[]" to omit a parameter.
%
% Inputs:
%
% LF : a light field or image to adjust. Integer formats are automatically converted to floating
% point. The default precision is 'single', though this is controllable via the optional
% Precision parameter. The function can handle most input dimensionalities as well as
% colour and monochrome inputs. For example, a colour 2D image of size [Nl,Nk,3], a mono 2D
% image of size [Nl,Nk], a colour 4D image of size [Nj,Ni,Nl,Nk,3], and a mono 4D image of
% size [Nj,Ni,Nl,Nk] are all valid.
%
% Including a weight channel will result in zero-weight pixels being ignored. Weight should
% be included as a fourth colour channel -- e.g. an image of size [Nl,Nk,4].
%
% Optional inputs:
%
% Cutoff_percent : controls how much of the histogram gets saturated on both the high
% and lower ends. Higher values result in more saturated black and
% white pixels. The default value is 0.1%.
%
% LowerBound, UpperBound : bypass the histogram computation and instead directly saturate the
% input image at the prescribed limits. If no bounds are provided, they
% are computed from the histogram.
%
% Precision : 'single' or 'double'
%
%
% Outputs:
%
% LF : the contrast-adjusted image, in floating point values scaled between
% 0 and 1.
%
% LowerBound, UpperBound : the saturation points used, on the intensity scale of the input after
% converting to the requested floating point precision. These are
% useful in applying the same contrast adjustment to a number of light
% fields, by saving and passing these bounds on subsequent function
% calls.
%
% Example:
%
% load('Images/F01/IMG_0002__Decoded.mat', 'LF');
% LF = LFHistEqualize(LF);
% LFDispMousePan(LF, 2);
%
% Run from the top level of the light field samples will load the decoded sample, apply histogram
% equalization, then display the result in a shifting-perspective display with x2 magnification.
% LFUtilProcessWhiteImages and LFUtilDecodeLytroFolder must be run to decode the light field.
%
% See also: LFUtilDecodeLytroFolder, LFUtilProcessWhiteImages, LFColourCorrect
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, LowerBound, UpperBound] = ...
LFHistEqualize(LF, Cutoff_percent, LowerBound, UpperBound, Precision)
%---Defaults---
Cutoff_percent = LFDefaultVal( 'Cutoff_percent', 0.1 );
Precision = LFDefaultVal( 'Precision', 'single' );
MaxBlkSize = LFDefaultVal( 'MaxBlkSize', 10e6 ); % slice up to limit memory utilization
%---Make sure LF is floating point, as required by hist function---
if( ~strcmp(class(LF), Precision) )
LF = cast(LF, Precision);
end
%---Flatten to a single list of N x NChans entries---
LFSize = size(LF);
NDims = numel(LFSize);
NChans = LFSize(end);
LF = reshape(LF, [prod(LFSize(1:NDims-1)), NChans]);
%---Strip out and use the weight channel if it's present---
if( NChans == 4 )
% Weight channel found, strip it out and use it
LFW = LF(:,4);
LF = LF(:,1:3);
ValidIdx = find(LFW > 0);
else
LFW = [];
ValidIdx = ':';
end
%---Convert colour images to HSV, and operate on value only---
if( size(LF,2) == 3 )
LF = LF - min(LF(ValidIdx));
LF = LF ./ max(LF(ValidIdx));
LF = max(0,min(1,LF));
fprintf('Converting to HSV...');
for( UStart = 1:MaxBlkSize:size(LF,1) )
UStop = UStart + MaxBlkSize - 1;
UStop = min(UStop, size(LF,1));
% matlab 2014b's rgb2hsv requires doubles
LF(UStart:UStop,:) = cast(rgb2hsv( double(LF(UStart:UStop,:)) ), Precision);
fprintf('.')
end
LF_hsv = LF(:,1:2);
LF = LF(:,3); % operate on value channel only
else
LF_hsv = [];
end
fprintf(' Equalizing...');
%---Compute bounds from histogram---
if( ~exist('LowerBound','var') || ~exist('UpperBound','var') || ...
isempty(LowerBound) || isempty(UpperBound))
[ha,xa] = hist(LF(ValidIdx), 2^16);
ha = cumsum(ha);
ha = ha ./ max(ha(:));
Cutoff = Cutoff_percent / 100;
LowerBound = xa(find(ha >= Cutoff, 1, 'first'));
UpperBound = xa(find(ha <= 1-Cutoff, 1, 'last'));
end
if( isempty(UpperBound) )
UpperBound = max(LF(ValidIdx));
end
if( isempty(LowerBound) )
LowerBound = min(LF(ValidIdx));
end
clear ValidIdx
%---Apply bounds and rescale to 0-1 range---
LF = max(LowerBound, min(UpperBound, LF));
LF = (LF - LowerBound) ./ (UpperBound - LowerBound);
%---Rebuild hsv, then rgb colour light field---
if( ~isempty(LF_hsv) )
LF = cat(2,LF_hsv,LF);
clear LF_hsv
fprintf(' Converting to RGB...');
for( UStart = 1:MaxBlkSize:size(LF,1) )
UStop = UStart + MaxBlkSize - 1;
UStop = min(UStop, size(LF,1));
LF(UStart:UStop,:) = hsv2rgb(LF(UStart:UStop,:));
fprintf('.');
end
end
%---Return the weight channel---
if( ~isempty(LFW) )
LF(:,4) = LFW;
end
%---Unflatten---
LF = reshape(LF, [LFSize(1:NDims-1),NChans]);
fprintf(' Done.\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFReadRaw.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFReadRaw.m
| 2,387 |
utf_8
|
f61af2a213353cf523d8d47f5fd665aa
|
% LFReadRaw - Reads 8, 10, 12 and 16-bit raw image files
%
% Usage:
%
% Img = LFReadRaw( Fname )
% Img = LFReadRaw( Fname, BitPacking, ImgSize )
% Img = LFReadRaw( Fname, [], ImgSize )
%
% There is no universal `RAW' file format. This function reads a few variants, including the 12-bit and 10-bit files
% commonly employed in Lytro cameras, and the 16-bit files produced by some third-party LFP extraction tools. The output
% is always an array of type uint16, except for 8-bit files which produce an 8-bit output.
%
% Raw images may be converted to more portable formats, including .png, using an external tool such as the
% cross-platform ImageMagick tool.
%
% Inputs :
%
% Fname : path to raw file to read
%
% [optional] BitPacking : one of '12bit', '10bit' or '16bit'; default is '12bit'
%
% [optional] ImgSize : a 2D vector defining the size of the image, in pixels. The default value varies according to
% the value of 'BitPacking', to correspond to commonly-found Lytro file formats: 12 bit images are employed by the
% Lytro F01, producing images of size 3280x3280, while 10-bit images are produced by the Illum at a resolutio of
% 7728x5368; 16-bit images default to 3280x3280.
%
% Outputs:
%
% Img : an array of uint16 gray levels. No demosaicing (decoding Bayer pattern) is performed.
%
% See also: LFReadLFP, LFDecodeLensletImageSimple, demosaic
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function Img = LFReadRaw( Fname, BitPacking, ImgSize )
%---Defaults---
BitPacking = LFDefaultVal( 'BitPacking', '12bit' );
switch( BitPacking )
case '8bit'
ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] );
BuffSize = prod(ImgSize);
case '12bit'
ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] );
BuffSize = prod(ImgSize) * 12/8;
case '10bit'
ImgSize = LFDefaultVal( 'ImgSize', [7728, 5368] );
BuffSize = prod(ImgSize) * 10/8;
case '16bit'
ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] );
BuffSize = prod(ImgSize) * 16/8;
otherwise
error('Unrecognized bit packing format');
end
%---Read and unpack---
f = fopen( Fname );
Img = fread( f, BuffSize, 'uchar' );
Img = LFUnpackRawBuffer( Img, BitPacking, ImgSize )'; % note the ' is necessary to get the rotation right
fclose( f );
|
github
|
hazirbas/light-field-toolbox-master
|
LFDispVidCirc.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFDispVidCirc.m
| 3,251 |
utf_8
|
7f29b601b697f1bf5daf1621b54fe7b0
|
% LFDispVidCirc - visualize a 4D light field animating a circular path through two dimensions
%
% Usage:
%
% FigureHandle = LFDispVidCirc( LF )
% FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay )
% FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay, ScaleFactor )
% FigureHandle = LFDispVidCirc( LF, [], [], ScaleFactor )
%
%
% A figure is set up for high-performance display, with the tag 'LFDisplay'. Subsequent calls to
% this function and LFDispVidCirc will reuse the same figure, rather than creating a new window on
% each call. All parameters except LF are optional -- pass an empty array "[]" to omit an optional
% parameter.
%
%
% Inputs:
%
% LF : a colour or single-channel light field, and can a floating point or integer format. For
% display, it is converted to 8 bits per channel. If LF contains more than three colour
% channels, as is the case when a weight channel is present, only the first three are used.
%
% Optional Inputs:
%
% PathRadius_percent : radius of the circular path taken by the viewpoint. Values that are too
% high can result in collision with the edges of the lenslet image, while
% values that are too small result in a less impressive visualization. The
% default value is 60%.
%
% FrameDelay : sets the delay between frames, in seconds. The default value is 1/60th of
% a second.
%
% ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as
% big, etc. Integer values are recommended to avoid scaling artifacts. Note
% that the scale factor is only applied the first time a figure is created.
% To change the scale factor, close the figure before calling
% LFDispMousePan.
%
% Outputs:
%
% FigureHandle
%
%
% See also: LFDisp, LFDispMousePan
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay, varargin )
%---Defaults---
PathRadius_percent = LFDefaultVal( 'PathRadius_percent', 60 );
FrameDelay = LFDefaultVal( 'FrameDelay', 1/60 );
%---Check for mono and clip off the weight channel if present---
Mono = (ndims(LF) == 4);
if( ~Mono )
LF = LF(:,:,:,:,1:3);
end
%---Rescale for 8-bit display---
if( isfloat(LF) )
LF = uint8(LF ./ max(LF(:)) .* 255);
else
LF = uint8(LF.*(255 / double(intmax(class(LF)))));
end
%---Setup the display---
[ImageHandle,FigureHandle] = LFDispSetup( squeeze(LF(floor(end/2),floor(end/2),:,:,:)), varargin{:} );
%---Setup the motion path---
[TSize,SSize, ~,~] = size(LF(:,:,:,:,1));
TCent = (TSize-1)/2 + 1;
SCent = (SSize-1)/2 + 1;
t = 0;
RotRate = 0.05;
RotRad = TCent*PathRadius_percent/100;
while(1)
TVal = TCent + RotRad * cos( 2*pi*RotRate * t );
SVal = SCent + RotRad * sin( 2*pi*RotRate * t );
SIdx = round(SVal);
TIdx = round(TVal);
CurFrame = squeeze(LF( TIdx, SIdx, :,:,: ));
set(ImageHandle,'cdata', CurFrame );
pause(FrameDelay)
t = t + 1;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFDisp.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFDisp.m
| 1,447 |
utf_8
|
e7dcaf88325fd23f136fac4a166709e5
|
% LFDisp - Convenience function to display a 2D slice of a light field
%
% Usage:
% LFSlice = LFDispMousePan( LF )
% LFDispMousePan( LF )
%
%
% The centermost image is taken in s and t. Also works with 3D arrays of images. If an output argument is included, no
% display is generated, but the extracted slice is returned instead.
%
% Inputs:
%
% LF : a colour or single-channel light field, and can a floating point or integer format. For
% display, it is scaled as in imagesc. If LF contains more than three colour
% channels, as is the case when a weight channel is present, only the first three are used.
%
%
% Outputs:
%
% LFSlice : if an output argument is used, no display is generated, but the extracted slice is returned.
%
%
% See also: LFDispVidCirc, LFDispMousePan
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function ImgOut = LFDisp( LF )
LF = squeeze(LF);
LFSize = size(LF);
HasWeight = (ndims(LF)>2 && LFSize(end)==2 || LFSize(end)==4);
HasColor = (ndims(LF)>2 && (LFSize(end)==3 || LFSize(end)==4) );
HasMonoAndWeight = (ndims(LF)>2 && LFSize(end)==2);
if( HasColor || HasMonoAndWeight )
GoalDims = 3;
else
GoalDims = 2;
end
while( ndims(LF) > GoalDims )
LF = squeeze(LF(round(end/2),:,:,:,:,:,:));
end
if( HasWeight )
LF = squeeze(LF(:,:,1:end-1));
end
if( nargout > 0 )
ImgOut = LF;
else
imagesc(LF);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuild2DFreqFan.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFBuild2DFreqFan.m
| 4,507 |
utf_8
|
d3bc64badf14c750b5f1f2a996936c1f
|
% LFBuild2DFreqFan - construct a 2D fan passband filter in the frequency domain
%
% Usage:
%
% [H, FiltOptions] = LFBuild2DFreqFan( LFSize, Slope1, Slope2, BW, FiltOptions )
% H = LFBuild2DFreqFan( LFSize, Slope, BW )
%
% This file constructs a real-valued magnitude response in 2D, for which the passband is a fan.
%
% Once constructed the filter must be applied to a light field, e.g. using LFFilt2DFFT. The
% LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters.
%
% A more technical discussion, including the use of filters for denoising and volumetric focus, and
% the inclusion of aliases components, is included in:
%
% [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field
% Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.
%
% Inputs:
%
% LFSize : Size of the frequency-domain filter. This should match or exceed the size of the
% light field to be filtered. If it's larger than the input light field, the input is
% zero-padded to match the filter's size by LFFilt2DFFT.
%
% Slope1, Slope2 : Slopes at the extents of the fan passband.
%
% BW : 3-db Bandwidth of the planar passband.
%
% [optional] FiltOptions : struct controlling filter construction
% SlopeMethod : only 'Skew' is supported for now
% Precision : 'single' or 'double', default 'single'
% Rolloff : 'Gaussian' or 'Butter', default 'Gaussian'
% Order : controls the order of the filter when Rolloff is 'Butter', default 3
% Aspect2D : aspect ratio of the light field, default [1 1]
% Window : Default false. By default the edges of the passband are sharp; this adds
% a smooth rolloff at the edges when used in conjunction with Extent2D or
% IncludeAliased.
% Extent2D : controls where the edge of the passband occurs, the default [1 1]
% is the edge of the Nyquist box. When less than 1, enabling windowing
% introduces a rolloff after the edge of the passband. Can be greater
% than 1 when using IncludeAliased.
% IncludeAliased : default false; allows the passband to wrap around off the edge of the
% Nyquist box; used in conjunction with Window and/or Extent2D. This can
% increase processing time dramatically, e.g. Extent2D = [2,2]
% requires a 2^2 = 4-fold increase in time to construct the filter.
% Useful when passband content is aliased, see [2].
%
% Outputs:
%
% H : real-valued frequency magnitude response
% FiltOptions : The filter options including defaults, with an added PassbandInfo field
% detailing the function and time of construction of the filter
%
% See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine,
% LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT,
% LFFiltShiftSum
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFBuild2DFreqFan( LFSize, Slope1, Slope2, BW, FiltOptions )
FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew' only for now
DistFunc = @(P, FiltOptions) DistFunc_2DFan( P, Slope1, Slope2, FiltOptions );
[H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc );
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
end
%-----------------------------------------------------------------------------------------------------------------------
function Dist = DistFunc_2DFan( P, Slope1, Slope2, FiltOptions )
switch( lower(FiltOptions.SlopeMethod) )
case 'skew'
if( Slope2 < Slope1 )
t = Slope1;
Slope1 = Slope2;
Slope2 = t;
end
R1 = eye(2);
R2 = R1;
R1(1,2) = Slope1;
R2(1,2) = Slope2;
otherwise
error('Unrecognized slope method');
end
P1 = R1 * P;
P2 = R2 * P;
TransitionPt = LFSign(P1(2,:));
CurDist1 = max(0, TransitionPt .* P1(1,:));
CurDist2 = max(0,-TransitionPt .* P2(1,:));
Dist = max(CurDist1, CurDist2).^2;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFLytroDecodeImage.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/LFLytroDecodeImage.m
| 9,163 |
utf_8
|
cc50d3baf7583157ad9f352a8774b14f
|
% LFLytroDecodeImage - decode a Lytro light field from a raw lenslet image, called by LFUtilDecodeLytroFolder
%
% Usage:
% [LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = ...
% LFLytroDecodeImage( InputFname, DecodeOptions )
% [LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = ...
% LFLytroDecodeImage( InputFname )
%
% This function decodes a raw lenslet image into a 4D light field. Its purpose is to tailor the core lenslet decoding
% function, LFDecodeLensletImageSimple, for use with Lytro data. It is envisioned that other camera formats will be
% supported by similar functions in future.
%
% Supported file formats include Lytro LFP files and extracted .raw files accompanied by metadata, as extracted by using
% LFP Reader v2.0.0, for example. See LFToolbox.pdf for more information.
%
% The white image appropriate to a light field is selected based on a white image database, and so
% LFUtilProcessWhiteImages must be run before this function.
%
% LFUtilDecodeLytroFolder is useful for decoding multiple images.
%
% The optional DecodeOptions argument includes several fields defining filename patterns. These are
% combined with the input LFFnameBase to build complete filenames. Filename patterns include the
% placeholder '%s' to signify the position of the base filename. For example, the defualt filename
% pattern for a raw input file, LensletImageFnamePattern, is '%s__frame.raw'. So a call of the
% form LFLytroDecodeImage('IMG_0001') will look for the raw input file 'IMG_0001__frame.raw'.
%
% Inputs:
%
% InputFname : Filename of the input light field -- the extension is used to detect LFP or raw input.
%
% [optinal] DecodeOptions : all fields are optional, defaults are for LFP Reader v2.0.0 naming
% .WhiteProcDataFnameExtension : Grid model from LFUtilProcessWhiteImages, default 'grid.json'
% .WhiteRawDataFnameExtension : White image file extension, default '.RAW'
% .WhiteImageDatabasePath : White image database, default 'Cameras/WhiteImageDatabase.mat'
%
% For compatibility with extracted .raw and .json files:
% .MetadataFnamePattern : JSON file containing light field metadata, default '_metadata.json'
% .SerialdataFnamePattern : JSON file containing serial numbers, default '_private_metadata.json'
%
% Outputs:
%
% LF : 5D array containing a 4-channel (RGB + Weight) light field, indexed in
% the order [j,i,l,k, channel]
% LFMetadata : Contents of the metadata and serial metadata files
% WhiteImageMetadata : Conents of the white image metadata file
% LensletGridModel : Lenslet grid model used to decode the light field, as constructed from
% the white image by LFUtilProcessWhiteImages / LFBuildLensletGridModel
% DecodeOptions : The options as applied, including any default values omitted in the input
%
%
% Example:
%
% LF = LFLytroDecodeImage('Images/F01/IMG_0001__frame.raw');
% or
% LF = LFLytroDecodeImage('Images/Illum/LorikeetHiding.lfp');
%
% Run from the top level of the light field samples will decode the respective raw or lfp light fields.
% LFUtilProcessWhiteImages must be run before decoding will work.
%
% See also: LFUtilDecodeLytroFolder, LFUtilProcessWhiteImages, LFDecodeLensletImageSimple, LFSelectFromDatabase
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = ...
LFLytroDecodeImage( InputFname, DecodeOptions )
%---Defaults---
DecodeOptions = LFDefaultField( 'DecodeOptions', 'WhiteProcDataFnameExtension', '.grid.json' );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'WhiteRawDataFnameExtension', '.RAW' );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'WhiteImageDatabasePath', fullfile('Cameras','WhiteImageDatabase.mat'));
% Compatibility: for loading extracted raw / json files
DecodeOptions = LFDefaultField( 'DecodeOptions', 'MetadataFnamePattern', '_metadata.json' );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'SerialdataFnamePattern', '_private_metadata.json' );
%---
LF = [];
LFMetadata = [];
WhiteImageMetadata = [];
LensletGridModel = [];
%---Read the LFP or raw file + external metadata---
FileExtension = InputFname(end-2:end);
switch( lower(FileExtension) )
case 'raw' %---Load raw light field and metadata---
FNameBase = InputFname(1:end-4);
MetadataFname = [FNameBase, DecodeOptions.MetadataFnamePattern];
SerialdataFname = [FNameBase, DecodeOptions.SerialdataFnamePattern];
fprintf('Loading lenslet image and metadata:\n\t%s\n', InputFname);
LFMetadata = LFReadMetadata(MetadataFname);
LFMetadata.SerialData = LFReadMetadata(SerialdataFname);
switch( LFMetadata.camera.model )
case 'F01'
BitPacking = '12bit';
DecodeOptions.DemosaicOrder = 'bggr';
case 'B01'
BitPacking = '10bit';
DecodeOptions.DemosaicOrder = 'grbg';
end
LensletImage = LFReadRaw(InputFname, BitPacking);
otherwise %---Load Lytro LFP format---
fprintf('Loading LFP %s\n', InputFname );
LFP = LFReadLFP( InputFname );
if( ~isfield(LFP, 'RawImg') )
fprintf('No light field image found, skipping...\n');
return
end
LFMetadata = LFP.Metadata;
LFMetadata.SerialData = LFP.Serials;
LensletImage = LFP.RawImg;
DecodeOptions.DemosaicOrder = LFP.DemosaicOrder;
end
%---Select appropriate white image---
DesiredCam = struct('CamSerial', LFMetadata.SerialData.camera.serialNumber, ...
'ZoomStep', LFMetadata.devices.lens.zoomStep, ...
'FocusStep', LFMetadata.devices.lens.focusStep );
DecodeOptions.WhiteImageInfo = LFSelectFromDatabase( DesiredCam, DecodeOptions.WhiteImageDatabasePath );
PathToDatabase = fileparts( DecodeOptions.WhiteImageDatabasePath );
if( isempty(DecodeOptions.WhiteImageInfo) || ~strcmp(DecodeOptions.WhiteImageInfo.CamSerial, DesiredCam.CamSerial) )
fprintf('No appropriate white image found, skipping...\n');
return
end
%---Display image info---
%---Check serial number---
fprintf('\nWhite image / LF Picture:\n');
fprintf('%s, %s\n', DecodeOptions.WhiteImageInfo.Fname, InputFname);
fprintf('Serial:\t%s\t%s\n', DecodeOptions.WhiteImageInfo.CamSerial, DesiredCam.CamSerial);
fprintf('Zoom:\t%d\t\t%d\n', DecodeOptions.WhiteImageInfo.ZoomStep, DesiredCam.ZoomStep);
fprintf('Focus:\t%d\t\t%d\n\n', DecodeOptions.WhiteImageInfo.FocusStep, DesiredCam.FocusStep);
%---Load white image, white image metadata, and lenslet grid parameters---
WhiteMetadataFname = fullfile(PathToDatabase, DecodeOptions.WhiteImageInfo.Fname);
WhiteProcFname = LFFindLytroPartnerFile(WhiteMetadataFname, DecodeOptions.WhiteProcDataFnameExtension);
WhiteRawFname = LFFindLytroPartnerFile(WhiteMetadataFname, DecodeOptions.WhiteRawDataFnameExtension);
fprintf('Loading white image and metadata...\n');
LensletGridModel = LFStruct2Var(LFReadMetadata(WhiteProcFname), 'LensletGridModel');
WhiteImageMetadataWhole = LFReadMetadata( WhiteMetadataFname );
WhiteImageMetadata = WhiteImageMetadataWhole.master.picture.frameArray.frame.metadata;
WhiteImageMetadata.SerialData = WhiteImageMetadataWhole.master.picture.frameArray.frame.privateMetadata;
switch( WhiteImageMetadata.camera.model )
case 'F01'
assert( WhiteImageMetadata.image.rawDetails.pixelPacking.bitsPerPixel == 12 );
assert( strcmp(WhiteImageMetadata.image.rawDetails.pixelPacking.endianness, 'big') );
DecodeOptions.LevelLimits = [LFMetadata.image.rawDetails.pixelFormat.black.gr, LFMetadata.image.rawDetails.pixelFormat.white.gr];
DecodeOptions.ColourMatrix = reshape(LFMetadata.image.color.ccmRgbToSrgbArray, 3,3);
DecodeOptions.ColourBalance = [...
LFMetadata.image.color.whiteBalanceGain.r, ...
LFMetadata.image.color.whiteBalanceGain.gb, ...
LFMetadata.image.color.whiteBalanceGain.b ];
DecodeOptions.Gamma = LFMetadata.image.color.gamma^0.5;
BitPacking = '12bit';
case 'B01'
assert( WhiteImageMetadata.image.rawDetails.pixelPacking.bitsPerPixel == 10 );
assert( strcmp(WhiteImageMetadata.image.rawDetails.pixelPacking.endianness, 'little') );
DecodeOptions.LevelLimits = [LFMetadata.image.pixelFormat.black.gr, LFMetadata.image.pixelFormat.white.gr];
DecodeOptions.ColourMatrix = reshape(LFMetadata.image.color.ccm, 3,3);
DecodeOptions.ColourBalance = [1,1,1];
DecodeOptions.Gamma = 1;
BitPacking = '10bit';
otherwise
fprintf('Unrecognized camera model, skipping...\');
return
end
WhiteImage = LFReadRaw( WhiteRawFname, BitPacking );
%---Decode---
fprintf('Decoding lenslet image :');
[LF, LFWeight, DecodeOptions] = LFDecodeLensletImageSimple( LensletImage, WhiteImage, LensletGridModel, DecodeOptions );
LF(:,:,:,:,4) = LFWeight;
|
github
|
hazirbas/light-field-toolbox-master
|
LFDefaultIntrinsics.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFDefaultIntrinsics.m
| 2,030 |
utf_8
|
948ce39fff4f94ed954e090033778c04
|
% LFDefaultIntrinsics - Initializes a set of intrinsics for use in rectifying light fields
%
% Usage:
%
% RectCamIntrinsicsH = LFDefaultIntrinsics( LFSize, CalInfo )
%
% This gets called by LFCalDispRectIntrinsics to set up a default set of intrinsics for rectification. Based on the
% calibration information and the dimensions of the light field, a set of intrinsics is selected which yields square
% pixels in ST and UV. Ideally the values will use the hypercube-shaped light field space efficiently, leaving few black
% pixels at the edges, and bumping as little information /outside/ the hypercube as possible.
%
% The sampling pattern yielded by the resulting intrinsics can be visualized using LFCalDispRectIntrinsics.
%
% Inputs :
%
% LFSize : Size of the light field to rectify
%
% CalInfo : Calibration info as loaded by LFFindCalInfo, for example.
%
% Outputs:
%
% RectCamIntrinsicsH : The resulting intrinsics.
%
% See also: LFCalDispRectIntrinsics, LFRecenterIntrinsics, LFFindCalInfo, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function RectCamIntrinsicsH = LFDefaultIntrinsics( LFSize, CalInfo )
RectCamIntrinsicsH = CalInfo.EstCamIntrinsicsH;
ST_ST_Slope = mean([CalInfo.EstCamIntrinsicsH(1,1), CalInfo.EstCamIntrinsicsH(2,2)]);
ST_UV_Slope = mean([CalInfo.EstCamIntrinsicsH(1,3), CalInfo.EstCamIntrinsicsH(2,4)]);
UV_ST_Slope = mean([CalInfo.EstCamIntrinsicsH(3,1), CalInfo.EstCamIntrinsicsH(4,2)]);
UV_UV_Slope = mean([CalInfo.EstCamIntrinsicsH(3,3), CalInfo.EstCamIntrinsicsH(4,4)]);
RectCamIntrinsicsH(1,1) = ST_ST_Slope;
RectCamIntrinsicsH(2,2) = ST_ST_Slope;
RectCamIntrinsicsH(1,3) = ST_UV_Slope;
RectCamIntrinsicsH(2,4) = ST_UV_Slope;
RectCamIntrinsicsH(3,1) = UV_ST_Slope;
RectCamIntrinsicsH(4,2) = UV_ST_Slope;
RectCamIntrinsicsH(3,3) = UV_UV_Slope;
RectCamIntrinsicsH(4,4) = UV_UV_Slope;
%---force s,t translation to CENTER---
RectCamIntrinsicsH = LFRecenterIntrinsics( RectCamIntrinsicsH, LFSize );
|
github
|
hazirbas/light-field-toolbox-master
|
LFDefaultField.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFDefaultField.m
| 1,979 |
utf_8
|
485dfac0b4aba775cf4d1d20f537f0f7
|
% LFDefaultField - Convenience function to set up structs with default field values
%
% Usage:
%
% ParentStruct = LFDefaultField( ParentStruct, FieldName, DefaultVal )
%
% This provides an elegant way to establish default field values in a struct. See LFDefaultValue for
% setting up non-struct variables with default values.
%
% Inputs:
%
% ParentStruct: string giving the name of the struct; the struct need not already exist
% FieldName: string giving the name of the field
% DefaultVal: default value for the field
%
% Outputs:
%
% ParentStruct: if the named struct and field already existed, the output matches the struct's
% original value; otherwise the output is a struct with an additional field taking
% on the specified default value
%
% Example:
%
% clearvars
% ExistingStruct.ExistingField = 42;
% ExistingStruct = LFDefaultField( 'ExistingStruct', 'ExistingField', 3 )
% ExistingStruct = LFDefaultField( 'ExistingStruct', 'NewField', 36 )
% OtherStruct = LFDefaultField( 'OtherStruct', 'Cheese', 'Indeed' )
%
%
% Results in :
% ExistingStruct =
% ExistingField: 42
% NewField: 36
% OtherStruct =
% Cheese: 'Indeed'
%
% Usage for setting up default function arguments is demonstrated in most of the LF Toolbox
% functions.
%
% See also: LFDefaultVal
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function ParentStruct = LFDefaultField( ParentStruct, FieldName, DefaultVal )
%---First make sure the struct exists---
CheckIfExists = sprintf('exist(''%s'', ''var'') && ~isempty(%s)', ParentStruct, ParentStruct);
VarExists = evalin( 'caller', CheckIfExists );
if( ~VarExists )
ParentStruct = [];
else
ParentStruct = evalin( 'caller', ParentStruct );
end
%---Now make sure the field exists---
if( ~isfield( ParentStruct, FieldName ) )
ParentStruct.(FieldName) = DefaultVal;
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFSign.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFSign.m
| 225 |
utf_8
|
901dea01bff401571d8125711feeffad
|
% LFSign - Like Matlab's sign, but never returns 0, treating 0 as positive
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function s = LFSign(i)
s = ones(size(i));
s(i<0) = -1;
|
github
|
hazirbas/light-field-toolbox-master
|
LFRotz.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFRotz.m
| 306 |
utf_8
|
2a4fc216ff9e1b6b35762c010ebe50f2
|
% LFRotz - simple 3D rotation matrix, rotation about z
%
% Usage:
% R = LFRotz( psi )
%
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function R = LFRotz(psi)
c = cos(psi);
s = sin(psi);
R = [ c, -s, 0; ...
s, c, 0; ...
0, 0, 1 ];
|
github
|
hazirbas/light-field-toolbox-master
|
LFHelperBuild4DFreq.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFHelperBuild4DFreq.m
| 4,143 |
utf_8
|
5cefe44f63c8fd80b66ad5e267298bff
|
% LFHelperBuild4DFreq - Helper function used to construct 4D frequency-domain filters
%
% Much of the complexity in constructing MD frequency-domain filters, especially around including aliased components and
% controlling the filter rolloff, is common between filter shapes. This function wraps much of this complexity.
%
% This gets called by the LFBuild4DFreq* functions.
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc )
FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single');
FiltOptions = LFDefaultField('FiltOptions', 'Rolloff', 'Gaussian'); %Gaussian or Butter
FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1);
FiltOptions = LFDefaultField('FiltOptions', 'Window', false);
FiltOptions = LFDefaultField('FiltOptions', 'Extent4D', 1.0);
FiltOptions = LFDefaultField('FiltOptions', 'IncludeAliased', false);
FiltOptions.Extent4D = cast(FiltOptions.Extent4D, FiltOptions.Precision); % avoid rounding error during comparisons
FiltOptions.Aspect4D = cast(FiltOptions.Aspect4D, FiltOptions.Precision); % avoid rounding error during comparisons
if( length(LFSize) == 1 )
LFSize = LFSize .* [1,1,1,1];
end
if( length(LFSize) == 5 )
LFSize = LFSize(1:4);
end
if( length(FiltOptions.Extent4D) == 1 )
FiltOptions.Extent4D = FiltOptions.Extent4D .* [1,1,1,1];
end
if( length(FiltOptions.Aspect4D) == 1 )
FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1];
end
ExtentWithAspect = FiltOptions.Extent4D.*FiltOptions.Aspect4D / 2;
t = LFNormalizedFreqAxis( LFSize(1), FiltOptions.Precision ) .* FiltOptions.Aspect4D(1);
s = LFNormalizedFreqAxis( LFSize(2), FiltOptions.Precision ) .* FiltOptions.Aspect4D(2);
v = LFNormalizedFreqAxis( LFSize(3), FiltOptions.Precision ) .* FiltOptions.Aspect4D(3);
u = LFNormalizedFreqAxis( LFSize(4), FiltOptions.Precision ) .* FiltOptions.Aspect4D(4);
[tt,ss,vv,uu] = ndgrid(cast(t,FiltOptions.Precision),cast(s,FiltOptions.Precision),cast(v,FiltOptions.Precision),cast(u,FiltOptions.Precision));
P = [tt(:),ss(:),vv(:),uu(:)]';
clear s t u v ss tt uu vv
if( ~FiltOptions.IncludeAliased )
Tiles = [0,0,0,0];
else
Tiles = ceil(ExtentWithAspect);
end
if( FiltOptions.IncludeAliased )
AADist = inf(LFSize, FiltOptions.Precision);
end
WinDist = 0;
% Tiling proceeds only in positive directions, symmetry is enforced afterward, saving some computation overall
for( TTile = 0:Tiles(1) )
for( STile = 0:Tiles(2) )
for( VTile = 0:Tiles(3) )
for( UTile = 0:Tiles(4) )
Dist = inf(LFSize, FiltOptions.Precision);
if( FiltOptions.Window )
ValidIdx = ':';
WinDist = bsxfun(@minus, abs(P)', ExtentWithAspect);
WinDist = sum(max(0,WinDist).^2, 2);
WinDist = reshape(WinDist, LFSize);
else
ValidIdx = find(all(bsxfun(@le, abs(P), ExtentWithAspect')));
end
Dist(ValidIdx) = DistFunc(P(:,ValidIdx), FiltOptions);
Dist = Dist + WinDist;
if( FiltOptions.IncludeAliased )
AADist(:) = min(AADist(:), Dist(:));
end
P(4,:) = P(4,:) + FiltOptions.Aspect4D(4);
end
P(4,:) = P(4,:) - (Tiles(4)+1) .* FiltOptions.Aspect4D(4);
P(3,:) = P(3,:) + FiltOptions.Aspect4D(3);
end
P(3,:) = P(3,:) - (Tiles(3)+1) .* FiltOptions.Aspect4D(3);
P(2,:) = P(2,:) + FiltOptions.Aspect4D(2);
end
P(2,:) = P(2,:) - (Tiles(2)+1) .* FiltOptions.Aspect4D(2);
P(1,:) = P(1,:) + FiltOptions.Aspect4D(1);
end
if( FiltOptions.IncludeAliased )
Dist = AADist;
clear AADist
end
H = zeros(LFSize, FiltOptions.Precision);
switch lower(FiltOptions.Rolloff)
case 'gaussian'
BW = BW.^2 / log(sqrt(2));
H(:) = exp( -Dist / BW ); % Gaussian rolloff
case 'butter'
FiltOptions = LFDefaultField('FiltOptions', 'Order', 3);
Dist = sqrt(Dist) ./ BW;
H(:) = sqrt( 1.0 ./ (1.0 + Dist.^(2*FiltOptions.Order)) ); % Butterworth-like rolloff
otherwise
error('unrecognized rolloff method');
end
H = ifftshift(H);
% force symmetric
H = max(H, H(mod(LFSize(1):-1:1,LFSize(1))+1, mod(LFSize(2):-1:1,LFSize(2))+1,mod(LFSize(3):-1:1,LFSize(3))+1,mod(LFSize(4):-1:1,LFSize(4))+1));
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalInit.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFCalInit.m
| 12,108 |
utf_8
|
c694e604e6425b97a908bce5ea738134
|
% LFCalInit - initialize calibration estimate, called by LFUtilCalLensletCam
%
% Usage:
% CalOptions = LFCalInit( InputPath, CalOptions )
% CalOptions = LFCalInit( InputPath )
%
% This function is called by LFUtilCalLensletCam to initialize a pose and camera model estimate
% given a set of extracted checkerboard corners.
%
% Inputs:
%
% InputPath : Path to folder containing processed checkerboard images. Checkerboard corners must
% be identified prior to calling this function, by running LFCalFindCheckerCorners
% for example. This is demonstrated by LFUtilCalLensletCam.
%
% [optional] CalOptions : struct controlling calibration parameters, all fields are optional
% .SaveResult : Set to false to perform a "dry run"
% .CheckerCornersFnamePattern : Pattern for finding checkerboard corner files, as generated by
% LFCalFindCheckerCorners; %s is a placeholder for the base filename
% .CheckerInfoFname : Name of the output file containing the summarized checkerboard
% information
% .CalInfoFname : Name of the file containing an initial estimate, to be refined.
% Note that this parameter is automatically set in the CalOptions
% struct returned by LFCalInit
% .ForceRedoInit : Forces the function to overwrite existing results
%
% Outputs :
%
% CalOptions struct as applied, including any default values as set up by the function.
%
% The checkerboard info file and calibration info file are the key outputs of this function.
%
% See also: LFUtilCalLensletCam, LFCalFindCheckerCorners, LFCalRefine
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function CalOptions = LFCalInit( InputPath, CalOptions )
%---Defaults---
CalOptions = LFDefaultField( 'CalOptions', 'SaveResult', true );
CalOptions = LFDefaultField( 'CalOptions', 'CheckerCornersFnamePattern', '%s__CheckerCorners.mat' );
CalOptions = LFDefaultField( 'CalOptions', 'CheckerInfoFname', 'CheckerboardCorners.mat' );
CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' );
CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoInit', false );
%---Start by checking if this step has already been completed---
fprintf('\n===Initializing calibration process===\n');
CalInfoSaveFname = fullfile(InputPath, CalOptions.CalInfoFname);
if( ~CalOptions.ForceRedoInit && exist(CalInfoSaveFname, 'file') )
fprintf(' ---File %s already exists, skipping---\n', CalInfoSaveFname);
return;
end
%---Compute ideal checkerboard geometry - order matters---
IdealCheckerX = CalOptions.ExpectedCheckerSpacing_m(1) .* (0:CalOptions.ExpectedCheckerSize(1)-1);
IdealCheckerY = CalOptions.ExpectedCheckerSpacing_m(2) .* (0:CalOptions.ExpectedCheckerSize(2)-1);
[IdealCheckerY, IdealCheckerX] = ndgrid(IdealCheckerY, IdealCheckerX);
IdealChecker = cat(3,IdealCheckerX, IdealCheckerY, zeros(size(IdealCheckerX)));
IdealChecker = reshape(IdealChecker, [], 3)';
%---Crawl folder structure locating corner info files---
fprintf('\n===Locating checkerboard corner files in %s===\n', InputPath);
[CalOptions.FileList, BasePath] = LFFindFilesRecursive( InputPath, sprintf(CalOptions.CheckerCornersFnamePattern, '*') );
fprintf('Found :\n');
disp(CalOptions.FileList)
%---Initial estimate of focal length---
fprintf('Initial estimate of focal length...\n');
SkippedFileCount = 0;
ValidSuperPoseCount = 0;
ValidCheckerCount = 0;
%---Process each checkerboard corner file---
for( iFile = 1:length(CalOptions.FileList) )
ValidSuperPoseCount = ValidSuperPoseCount + 1;
CurFname = CalOptions.FileList{iFile};
[~,ShortFname] = fileparts(CurFname);
fprintf('---%s [%3d / %3d]...', ShortFname, ValidSuperPoseCount+SkippedFileCount, length(CalOptions.FileList));
load(fullfile(BasePath, CurFname), 'CheckerCorners', 'LFSize', 'CamInfo', 'LensletGridModel', 'DecodeOptions');
PerImageValidCount = 0;
for( TIdx = 1:size(CheckerCorners,1) )
for( SIdx = 1:size(CheckerCorners,2) )
CurChecker = CheckerCorners{TIdx, SIdx}';
CurSize = size(CurChecker);
CurValid = (CurSize(2) == prod(CalOptions.ExpectedCheckerSize));
CheckerValid(ValidSuperPoseCount, TIdx, SIdx) = CurValid;
%---For valid poses (having expected corner count), compute a homography---
if( CurValid )
ValidCheckerCount = ValidCheckerCount + 1;
PerImageValidCount = PerImageValidCount + 1;
% %--- reorient to expected ---
% Centroid = mean( CurChecker,2 );
% IsTopLeft = all(CurChecker(:,1) < Centroid);
% IsTopRight = (CurChecker(1,1) > Centroid(1) && CurChecker(2,1) < Centroid(2));
% if( IsTopRight )
% CurChecker = reshape(CurChecker, [2, CalOptions.ExpectedCheckerSize]);
% CurChecker = CurChecker(:, end:-1:1, :);
% CurChecker = permute(CurChecker, [1,3,2]);
% CurChecker = reshape(CurChecker, 2, []);
% end
% IsTopLeft = all(CurChecker(:,1) < Centroid);
% assert( IsTopLeft, 'Error: unexpected point order from detectCheckerboardPoints' );
%--- reorient to expected ---
Centroid = mean( CurChecker,2 );
IsTopLeft = all(CurChecker(:,1) < Centroid);
IsTopRight = (CurChecker(1,1) > Centroid(1) && CurChecker(2,1) < Centroid(2));
IsBotLeft = (CurChecker(1,1) < Centroid(1) && CurChecker(2,1) > Centroid(2));
IsBotRight = all(CurChecker(:,1) > Centroid);
if( IsTopRight )
CurChecker = reshape(CurChecker, [2, CalOptions.ExpectedCheckerSize]);
CurChecker = CurChecker(:, end:-1:1, :);
CurChecker = permute(CurChecker, [1,3,2]);
CurChecker = reshape(CurChecker, 2, []);
elseif( IsBotLeft )
CurChecker = reshape(CurChecker, [2, CalOptions.ExpectedCheckerSize]);
CurChecker = CurChecker(:, :, end:-1:1);
CurChecker = permute(CurChecker, [1,3,2]);
CurChecker = reshape(CurChecker, 2, []);
elseif( IsBotRight ) % untested case
CurChecker = reshape(CurChecker, [2, CalOptions.ExpectedCheckerSize]);
CurChecker = CurChecker(:, end:-1:1, end:-1:1);
CurChecker = permute(CurChecker, [1,3,2]);
CurChecker = reshape(CurChecker, 2, []);
end
IsTopLeft = all(CurChecker(:,1) < Centroid);
assert( IsTopLeft, 'Error: unexpected point order from detectCheckerboardPoints' );
CheckerObs{ValidSuperPoseCount, TIdx, SIdx} = CurChecker;
%---Compute homography for each subcam pose---
CurH = compute_homography( CurChecker, IdealChecker(1:2,:) );
H(ValidCheckerCount, :,:) = CurH;
end
end
end
CalOptions.ValidSubimageCount(iFile) = PerImageValidCount;
fprintf(' %d / %d valid.\n', PerImageValidCount, prod(LFSize(1:2)));
end
A = [];
b = [];
%---Initialize principal point at the center of the image---
% This section of code is based heavily on code from the Camera Calibration Toolbox for Matlab by
% Jean-Yves Bouguet
CInit = LFSize([4,3])'/2 - 0.5;
RecenterH = [1, 0, -CInit(1); 0, 1, -CInit(2); 0, 0, 1];
for iHomography = 1:size(H,1)
CurH = squeeze(H(iHomography,:,:));
CurH = RecenterH * CurH;
%---Extract vanishing points (direct and diagonal)---
V_hori_pix = CurH(:,1);
V_vert_pix = CurH(:,2);
V_diag1_pix = (CurH(:,1)+CurH(:,2))/2;
V_diag2_pix = (CurH(:,1)-CurH(:,2))/2;
V_hori_pix = V_hori_pix/norm(V_hori_pix);
V_vert_pix = V_vert_pix/norm(V_vert_pix);
V_diag1_pix = V_diag1_pix/norm(V_diag1_pix);
V_diag2_pix = V_diag2_pix/norm(V_diag2_pix);
a1 = V_hori_pix(1);
b1 = V_hori_pix(2);
c1 = V_hori_pix(3);
a2 = V_vert_pix(1);
b2 = V_vert_pix(2);
c2 = V_vert_pix(3);
a3 = V_diag1_pix(1);
b3 = V_diag1_pix(2);
c3 = V_diag1_pix(3);
a4 = V_diag2_pix(1);
b4 = V_diag2_pix(2);
c4 = V_diag2_pix(3);
CurA = [a1*a2, b1*b2; a3*a4, b3*b4];
CurB = -[c1*c2; c3*c4];
if( isempty(find(isnan(CurA), 1)) && isempty(find(isnan(CurB), 1)) )
A = [A; CurA];
b = [b; CurB];
end
end
FocInit = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1);
fprintf('Init focal length est: %.2f, %.2f\n', FocInit);
%---Initial estimate of extrinsics---
fprintf('\nInitial estimate of extrinsics...\n');
for( iSuperPoseIdx = 1:ValidSuperPoseCount )
fprintf('---[%d / %d]', iSuperPoseIdx, ValidSuperPoseCount);
for( TIdx = 1:size(CheckerCorners,1) )
fprintf('.');
for( SIdx = 1:size(CheckerCorners,2) )
if( ~CheckerValid(iSuperPoseIdx, TIdx, SIdx) )
continue;
end
CurChecker = CheckerObs{iSuperPoseIdx, TIdx, SIdx};
[CurRot, CurTrans] = compute_extrinsic_init(CurChecker, IdealChecker, FocInit, CInit, zeros(1,5), 0);
[CurRot, CurTrans] = compute_extrinsic_refine(CurRot, CurTrans, CurChecker, IdealChecker, FocInit, CInit, zeros(1,5), 0,20,1000000);
RotVals{iSuperPoseIdx, TIdx, SIdx} = CurRot;
TransVals{iSuperPoseIdx, TIdx, SIdx} = CurTrans;
end
end
%---Approximate each superpose as the median of its sub-poses---
% note the approximation in finding the mean orientation: mean of rodrigues... works because all
% sub-orientations within a superpose are nearly identical.
MeanRotVals(iSuperPoseIdx,:) = median([RotVals{iSuperPoseIdx, :, :}], 2);
MeanTransVals(iSuperPoseIdx,:) = median([TransVals{iSuperPoseIdx, :, :}], 2);
fprintf('\n');
%---Track the apparent "baseline" of the camera at each pose---
CurDist = bsxfun(@minus, [TransVals{iSuperPoseIdx, :, :}], MeanTransVals(iSuperPoseIdx,:)');
CurAbsDist = sqrt(sum(CurDist.^2));
% store as estimated diameter; the 3/2 comes from the mean radius of points on a disk (2R/3)
BaselineApprox(iSuperPoseIdx) = 2 * 3/2 * mean(CurAbsDist);
end
%---Initialize the superpose estimates---
EstCamPosesV = [MeanTransVals, MeanRotVals];
%---Estimate full intrinsic matrix---
ST_IJ_SlopeApprox = mean(BaselineApprox) ./ (LFSize(2:-1:1)-1);
UV_KL_SlopeApprox = 1./FocInit';
EstCamIntrinsicsH = eye(5);
EstCamIntrinsicsH(1,1) = ST_IJ_SlopeApprox(1);
EstCamIntrinsicsH(2,2) = ST_IJ_SlopeApprox(2);
EstCamIntrinsicsH(3,3) = UV_KL_SlopeApprox(1);
EstCamIntrinsicsH(4,4) = UV_KL_SlopeApprox(2);
% Force central ray as s,t,u,v = 0, note all indices start at 1, not 0
EstCamIntrinsicsH = LFRecenterIntrinsics( EstCamIntrinsicsH, LFSize );
fprintf('\nInitializing estimate of camera intrinsics to: \n');
disp(EstCamIntrinsicsH);
%---Start with no distortion estimate---
EstCamDistortionV = [];
%---Optionally save the results---
if( CalOptions.SaveResult )
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
CheckerSaveFname = fullfile(BasePath, CalOptions.CheckerInfoFname);
fprintf('\nSaving to %s...\n', CheckerSaveFname);
save(CheckerSaveFname, 'GeneratedByInfo', 'CalOptions', 'CheckerObs', 'IdealChecker', 'LFSize', 'CamInfo', 'LensletGridModel', 'DecodeOptions');
fprintf('Saving to %s...\n', CalInfoSaveFname);
LFWriteMetadata(CalInfoSaveFname, LFVar2Struct(GeneratedByInfo, LensletGridModel, EstCamIntrinsicsH, EstCamDistortionV, EstCamPosesV, CamInfo, CalOptions, DecodeOptions));
end
fprintf(' ---Calibration initialization done---\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFDecodeLensletImageSimple.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFDecodeLensletImageSimple.m
| 15,455 |
utf_8
|
7c4a879c6a41b6e546bba9d398361001
|
% LFDecodeLensletImageSimple - decodes a 2D lenslet image into a 4D light field, called by LFUtilDecodeLytroFolder
%
% Usage:
%
% [LF, LFWeight, DecodeOptions, DebayerLensletImage, CorrectedLensletImage] = ...
% LFDecodeLensletImageSimple( LensletImage, WhiteImage, LensletGridModel, DecodeOptions )
%
% This function follows the simple decode process described in:
% D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for
% lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE
% Conference on. IEEE, Jun 2013.
%
% This involves demosaicing, devignetting, transforming and slicing the input lenslet image to
% yield a 4D structure. More sophisticated approaches exist which combine steps into joint
% solutions, and they generally yield superior results, particularly near the edges of lenslets.
% The approach taken here was chosen for its simplicity and flexibility.
%
% Input LensletImage is a raw lenslet iamge as found within Lytro's LFP picture files. Though
% this function is written with Lytro imagery in mind, it should be possible to adapt it for use
% with other lenslet-based cameras. LensletImage is ideally of type uint16.
%
% Input WhiteImage is a white image as found within Lytro's calibration data. A white image is an
% image taken through a diffuser, and is useful for removing vignetting (darkening near edges of
% images) and for locating lenslet centers. The white image should be taken under the same zoom and
% focus settings as the light field. In the case of Lytro imagery, the helper functions
% LFUtilProcessWhiteImages and LFSelectFromDatabase are provided to assist in forming a list of
% available white images, and selecting the appropriate image based on zoom and focus settings.
%
% Input LensletGridModel is a model of the lenslet grid, as estimated, for example, using
% LFBuildLensletGridModel -- see that function for more on the required structure.
%
% Optional Input DecodeOptions is a structure containing:
% [Optional] ResampMethod : 'fast'(default) or 'triangulation', the latter is slower
% [Optional] Precision : 'single'(default) or 'double'
% [Optional] LevelLimits : a two-element vector defining the black and white levels
%
% Output LF is a 5D array of size [Nj,Ni,Nl,Nk,3]. See [1] and the documentation accompanying this
% toolbox for a brief description of the light field structure.
%
% Optional output LFWeight is of size [Nj,Ni,Nl,Nk]. LFWeight contains a confidence measure
% suitable for use in filtering applications that accept a weight parameter. This parameter is kept
% separate from LF rather than building in as a fourth channel in order to allow an optimization:
% when the parameter is not requested, it is not computed, saving significant processing time and
% memory.
%
% Optional output DebayerLensletImage is useful for inspecting intermediary results. The debayered
% lenslet image is the result of devignetting and debayering, with no further processing. Omitting
% this output variable saves memory.
%
% Optional output CorrectedLensletImage is useful for inspecting intermediary results. The
% corrected lenslet image has been rotated and scaled such that lenslet centers lie on straight lines, and
% every lenslet center lies on an integer pixel spacing. See [1] for more detail. Omitting
% this output variable saves memory.
%
% See also: LFLytroDecodeImage, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LF, LFWeight, DecodeOptions, DebayerLensletImage, CorrectedLensletImage] = ...
LFDecodeLensletImageSimple( LensletImage, WhiteImage, LensletGridModel, DecodeOptions )
%---Defaults---
DecodeOptions = LFDefaultField( 'DecodeOptions', 'LevelLimits', [min(WhiteImage(:)), max(WhiteImage(:))] );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'ResampMethod', 'fast' ); %'fast', 'triangulation'
DecodeOptions = LFDefaultField( 'DecodeOptions', 'Precision', 'single' );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'DoDehex', true );
DecodeOptions = LFDefaultField( 'DecodeOptions', 'DoSquareST', true );
%---Rescale image values, remove black level---
DecodeOptions.LevelLimits = cast(DecodeOptions.LevelLimits, DecodeOptions.Precision);
BlackLevel = DecodeOptions.LevelLimits(1);
WhiteLevel = DecodeOptions.LevelLimits(2);
WhiteImage = cast(WhiteImage, DecodeOptions.Precision);
WhiteImage = (WhiteImage - BlackLevel) ./ (WhiteLevel - BlackLevel);
LensletImage = cast(LensletImage, DecodeOptions.Precision);
LensletImage = (LensletImage - BlackLevel) ./ (WhiteLevel - BlackLevel);
LensletImage = LensletImage ./ WhiteImage; % Devignette
% Clip -- this is aggressive and throws away bright areas; there is a potential for an HDR approach here
LensletImage = min(1, max(0, LensletImage));
if( nargout < 2 )
clear WhiteImage
end
%---Demosaic---
% This uses Matlab's demosaic, which is "gradient compensated". This likely has implications near
% the edges of lenslet images, where the contrast is due to vignetting / aperture shape, and is not
% a desired part of the image
LensletImage = cast(LensletImage.*double(intmax('uint16')), 'uint16');
LensletImage = demosaic(LensletImage, DecodeOptions.DemosaicOrder);
LensletImage = cast(LensletImage, DecodeOptions.Precision);
LensletImage = LensletImage ./ double(intmax('uint16'));
DecodeOptions.NColChans = 3;
if( nargout >= 2 )
DecodeOptions.NWeightChans = 1;
else
DecodeOptions.NWeightChans = 0;
end
if( nargout > 3 )
DebayerLensletImage = LensletImage;
end
%---Tranform to an integer-spaced grid---
fprintf('\nAligning image to lenslet array...');
InputSpacing = [LensletGridModel.HSpacing, LensletGridModel.VSpacing];
NewLensletSpacing = ceil(InputSpacing);
% Force even so hex shift is a whole pixel multiple
NewLensletSpacing = ceil(NewLensletSpacing/2)*2;
XformScale = NewLensletSpacing ./ InputSpacing; % Notice the resized image will not be square
NewOffset = [LensletGridModel.HOffset, LensletGridModel.VOffset] .* XformScale;
RoundedOffset = round(NewOffset);
XformTrans = RoundedOffset-NewOffset;
NewLensletGridModel = struct('HSpacing',NewLensletSpacing(1), 'VSpacing',NewLensletSpacing(2), ...
'HOffset',RoundedOffset(1), 'VOffset',RoundedOffset(2), 'Rot',0, ...
'UMax', LensletGridModel.UMax, 'VMax', LensletGridModel.VMax, 'Orientation', LensletGridModel.Orientation, ...
'FirstPosShiftRow', LensletGridModel.FirstPosShiftRow);
%---Fix image rotation and scale---
RRot = LFRotz( LensletGridModel.Rot );
RScale = eye(3);
RScale(1,1) = XformScale(1);
RScale(2,2) = XformScale(2);
DecodeOptions.OutputScale(1:2) = XformScale;
DecodeOptions.OutputScale(3:4) = [1,2/sqrt(3)]; % hex sampling
RTrans = eye(3);
RTrans(end,1:2) = XformTrans;
% The following rotation can rotate parts of the lenslet image out of frame.
% todo[optimization]: attempt to keep these regions, offer greater user-control of what's kept
FixAll = maketform('affine', RRot*RScale*RTrans);
NewSize = size(LensletImage(:,:,1)) .* XformScale(2:-1:1);
LensletImage = imtransform( LensletImage, FixAll, 'YData',[1 NewSize(1)], 'XData',[1 NewSize(2)]);
if( nargout >= 2 )
WhiteImage = imtransform( WhiteImage, FixAll, 'YData',[1 NewSize(1)], 'XData',[1 NewSize(2)]);
end
if( nargout >= 4 )
CorrectedLensletImage = LensletImage;
end
LF = SliceXYImage( NewLensletGridModel, LensletImage, WhiteImage, DecodeOptions );
clear WhiteImage LensletImage
%---Correct for hex grid and resize to square u,v pixels---
LFSize = size(LF);
HexAspect = 2/sqrt(3);
switch( DecodeOptions.ResampMethod )
case 'fast'
fprintf('\nResampling (1D approximation) to square u,v pixels');
NewUVec = 0:1/HexAspect:(size(LF,4)+1); % overshoot then trim
NewUVec = NewUVec(1:ceil(LFSize(4)*HexAspect));
OrigUSize = size(LF,4);
LFSize(4) = length(NewUVec);
%---Allocate dest and copy orig LF into it (memory saving vs. keeping both separately)---
LF2 = zeros(LFSize, DecodeOptions.Precision);
LF2(:,:,:,1:OrigUSize,:) = LF;
LF = LF2;
clear LF2
if( DecodeOptions.DoDehex )
ShiftUVec = -0.5+NewUVec;
fprintf(' and removing hex sampling...');
else
ShiftUVec = NewUVec;
fprintf('...');
end
for( ColChan = 1:size(LF,5) )
CurUVec = ShiftUVec;
for( RowIter = 1:2 )
RowIdx = mod(NewLensletGridModel.FirstPosShiftRow + RowIter, 2) + 1;
ShiftRows = squeeze(LF(:,:,RowIdx:2:end,1:OrigUSize, ColChan));
SliceSize = size(ShiftRows);
SliceSize(4) = length(NewUVec);
ShiftRows = reshape(ShiftRows, [size(ShiftRows,1)*size(ShiftRows,2)*size(ShiftRows,3), size(ShiftRows,4)]);
ShiftRows = interp1( (0:size(ShiftRows,2)-1)', ShiftRows', CurUVec' )';
ShiftRows(isnan(ShiftRows)) = 0;
LF(:,:,RowIdx:2:end,:,ColChan) = reshape(ShiftRows,SliceSize);
CurUVec = NewUVec;
end
end
clear ShiftRows
DecodeOptions.OutputScale(3) = DecodeOptions.OutputScale(3) * HexAspect;
case 'triangulation'
fprintf('\nResampling (triangulation) to square u,v pixels');
OldVVec = (0:size(LF,3)-1);
OldUVec = (0:size(LF,4)-1) * HexAspect;
NewUVec = (0:ceil(LFSize(4)*HexAspect)-1);
NewVVec = (0:LFSize(3)-1);
LFSize(4) = length(NewUVec);
LF2 = zeros(LFSize, DecodeOptions.Precision);
[Oldvv,Olduu] = ndgrid(OldVVec,OldUVec);
[Newvv,Newuu] = ndgrid(NewVVec,NewUVec);
if( DecodeOptions.DoDehex )
fprintf(' and removing hex sampling...');
FirstShiftRow = NewLensletGridModel.FirstPosShiftRow;
Olduu(FirstShiftRow:2:end,:) = Olduu(FirstShiftRow:2:end,:) + HexAspect/2;
else
fprintf('...');
end
DT = delaunayTriangulation( Olduu(:), Oldvv(:) ); % use DelaunayTri in older Matlab versions
[ti,bc] = pointLocation(DT, Newuu(:), Newvv(:));
ti(isnan(ti)) = 1;
for( ColChan = 1:size(LF,5) )
fprintf('.');
for( tidx= 1:LFSize(1) )
for( sidx= 1:LFSize(2) )
CurUVSlice = squeeze(LF(tidx,sidx,:,:,ColChan));
triVals = CurUVSlice(DT(ti,:));
CurUVSlice = dot(bc',triVals')';
CurUVSlice = reshape(CurUVSlice, [length(NewVVec),length(NewUVec)]);
CurUVSlice(isnan(CurUVSlice)) = 0;
LF2(tidx,sidx, :,:, ColChan) = CurUVSlice;
end
end
end
LF = LF2;
clear LF2
DecodeOptions.OutputScale(3) = DecodeOptions.OutputScale(3) * HexAspect;
otherwise
fprintf('\nNo valid dehex / resampling selected\n');
end
%---Resize to square s,t pixels---
% Assumes only a very slight resampling is required, resulting in an identically-sized output light field
if( DecodeOptions.DoSquareST )
fprintf('\nResizing to square s,t pixels using 1D linear interp...');
ResizeScale = DecodeOptions.OutputScale(1)/DecodeOptions.OutputScale(2);
ResizeDim1 = 1;
ResizeDim2 = 2;
if( ResizeScale < 1 )
ResizeScale = 1/ResizeScale;
ResizeDim1 = 2;
ResizeDim2 = 1;
end
OrigSize = size(LF, ResizeDim1);
OrigVec = floor((-(OrigSize-1)/2):((OrigSize-1)/2));
NewVec = OrigVec ./ ResizeScale;
OrigDims = [1:ResizeDim1-1, ResizeDim1+1:5];
UBlkSize = 32;
USize = size(LF,4);
LF = permute(LF,[ResizeDim1, OrigDims]);
for( UStart = 1:UBlkSize:USize )
UStop = UStart + UBlkSize - 1;
UStop = min(UStop, USize);
LF(:,:,:,UStart:UStop,:) = interp1(OrigVec, LF(:,:,:,UStart:UStop,:), NewVec);
fprintf('.');
end
LF = ipermute(LF,[ResizeDim1, OrigDims]);
LF(isnan(LF)) = 0;
DecodeOptions.OutputScale(ResizeDim2) = DecodeOptions.OutputScale(ResizeDim2) * ResizeScale;
end
%---Trim s,t---
LF = LF(2:end-1,2:end-1, :,:, :);
%---Slice out LFWeight if it was requested---
if( nargout >= 2 )
LFWeight = LF(:,:,:,:,end);
LFWeight = LFWeight./max(LFWeight(:));
LF = LF(:,:,:,:,1:end-1);
end
end
%------------------------------------------------------------------------------------------------------
function LF = SliceXYImage( LensletGridModel, LensletImage, WhiteImage, DecodeOptions )
% todo[optimization]: The SliceIdx and ValidIdx variables could be precomputed
fprintf('\nSlicing lenslets into LF...');
USize = LensletGridModel.UMax;
VSize = LensletGridModel.VMax;
MaxSpacing = max(LensletGridModel.HSpacing, LensletGridModel.VSpacing); % Enforce square output in s,t
SSize = MaxSpacing + 1; % force odd for centered middle pixel -- H,VSpacing are even, so +1 is odd
TSize = MaxSpacing + 1;
LF = zeros(TSize, SSize, VSize, USize, DecodeOptions.NColChans + DecodeOptions.NWeightChans, DecodeOptions.Precision);
TVec = cast(floor((-(TSize-1)/2):((TSize-1)/2)), 'int16');
SVec = cast(floor((-(SSize-1)/2):((SSize-1)/2)), 'int16');
VVec = cast(0:VSize-1, 'int16');
UBlkSize = 32;
for( UStart = 0:UBlkSize:USize-1 ) % note zero-based indexing
UStop = UStart + UBlkSize - 1;
UStop = min(UStop, USize-1);
UVec = cast(UStart:UStop, 'int16');
[tt,ss,vv,uu] = ndgrid( TVec, SVec, VVec, UVec );
%---Build indices into 2D image---
LFSliceIdxX = LensletGridModel.HOffset + uu.*LensletGridModel.HSpacing + ss;
LFSliceIdxY = LensletGridModel.VOffset + vv.*LensletGridModel.VSpacing + tt;
HexShiftStart = LensletGridModel.FirstPosShiftRow;
LFSliceIdxX(:,:,HexShiftStart:2:end,:) = LFSliceIdxX(:,:,HexShiftStart:2:end,:) + LensletGridModel.HSpacing/2;
%---Lenslet mask in s,t and clip at image edges---
CurSTAspect = DecodeOptions.OutputScale(1)/DecodeOptions.OutputScale(2);
R = sqrt((cast(tt,DecodeOptions.Precision)*CurSTAspect).^2 + cast(ss,DecodeOptions.Precision).^2);
ValidIdx = find(R < LensletGridModel.HSpacing/2 & ...
LFSliceIdxX >= 1 & LFSliceIdxY >= 1 & LFSliceIdxX <= size(LensletImage,2) & LFSliceIdxY <= size(LensletImage,1) );
%--clip -- the interp'd values get ignored via ValidIdx--
LFSliceIdxX = max(1, min(size(LensletImage,2), LFSliceIdxX ));
LFSliceIdxY = max(1, min(size(LensletImage,1), LFSliceIdxY ));
%---
LFSliceIdx = sub2ind(size(LensletImage), cast(LFSliceIdxY,'int32'), ...
cast(LFSliceIdxX,'int32'), ones(size(LFSliceIdxX),'int32'));
tt = tt - min(tt(:)) + 1;
ss = ss - min(ss(:)) + 1;
vv = vv - min(vv(:)) + 1;
uu = uu - min(uu(:)) + 1 + UStart;
LFOutSliceIdx = sub2ind(size(LF), cast(tt,'int32'), cast(ss,'int32'), ...
cast(vv,'int32'),cast(uu,'int32'), ones(size(ss),'int32'));
%---
for( ColChan = 1:DecodeOptions.NColChans )
LF(LFOutSliceIdx(ValidIdx) + numel(LF(:,:,:,:,1)).*(ColChan-1)) = ...
LensletImage( LFSliceIdx(ValidIdx) + numel(LensletImage(:,:,1)).*(ColChan-1) );
end
if( DecodeOptions.NWeightChans ~= 0 )
LF(LFOutSliceIdx(ValidIdx) + numel(LF(:,:,:,:,1)).*(DecodeOptions.NColChans)) = ...
WhiteImage( LFSliceIdx(ValidIdx) );
end
fprintf('.');
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFHelperBuild2DFreq.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFHelperBuild2DFreq.m
| 3,367 |
utf_8
|
3cd16d8e0a260aa2447e46ea325a04f9
|
% LFHelperBuild2DFreq - Helper function used to construct 2D frequency-domain filters
%
% Much of the complexity in constructing MD frequency-domain filters, especially around including aliased components and
% controlling the filter rolloff, is common between filter shapes. This function wraps much of this complexity.
%
% This gets called by the LFBuild2DFreq* functions.
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc )
FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single');
FiltOptions = LFDefaultField('FiltOptions', 'Rolloff', 'Gaussian'); %Gaussian or Butter
FiltOptions = LFDefaultField('FiltOptions', 'Aspect2D', 1);
FiltOptions = LFDefaultField('FiltOptions', 'Window', false);
FiltOptions = LFDefaultField('FiltOptions', 'Extent2D', 1.0);
FiltOptions = LFDefaultField('FiltOptions', 'IncludeAliased', false);
FiltOptions.Extent2D = cast(FiltOptions.Extent2D, FiltOptions.Precision); % avoid rounding error during comparisons
FiltOptions.Aspect2D = cast(FiltOptions.Aspect2D, FiltOptions.Precision); % avoid rounding error during comparisons
if( length(LFSize) == 1 )
LFSize = LFSize .* [1,1];
end
if( length(FiltOptions.Extent2D) == 1 )
FiltOptions.Extent2D = FiltOptions.Extent2D .* [1,1];
end
if( length(FiltOptions.Aspect2D) == 1 )
FiltOptions.Aspect2D = FiltOptions.Aspect2D .* [1,1];
end
ExtentWithAspect = FiltOptions.Extent2D.*FiltOptions.Aspect2D / 2;
s = LFNormalizedFreqAxis( LFSize(1), FiltOptions.Precision ) .* FiltOptions.Aspect2D(1);
u = LFNormalizedFreqAxis( LFSize(2), FiltOptions.Precision ) .* FiltOptions.Aspect2D(2);
[ss,uu] = ndgrid(s,u);
P = [ss(:),uu(:)]';
clear s u ss uu
if( ~FiltOptions.IncludeAliased )
Tiles = [0,0];
else
Tiles = ceil(ExtentWithAspect);
end
if( FiltOptions.IncludeAliased )
AADist = inf(LFSize, FiltOptions.Precision);
end
WinDist = 0;
% Tiling proceeds only in positive directions, symmetry is enforced afterward, saving some computation overall
for( STile = 0:Tiles(1) )
for( UTile = 0:Tiles(2) )
Dist = inf(LFSize, FiltOptions.Precision);
if( FiltOptions.Window )
ValidIdx = ':';
WinDist = bsxfun(@minus, abs(P)', ExtentWithAspect);
WinDist = sum(max(0,WinDist).^2, 2);
WinDist = reshape(WinDist, LFSize);
else
ValidIdx = find(all(bsxfun(@le, abs(P), ExtentWithAspect')));
end
Dist(ValidIdx) = DistFunc(P(:,ValidIdx), FiltOptions);
Dist = Dist + WinDist;
if( FiltOptions.IncludeAliased )
AADist(:) = min(AADist(:), Dist(:));
end
P(2,:) = P(2,:) + FiltOptions.Aspect2D(2);
end
P(2,:) = P(2,:) - (Tiles(2)+1) .* FiltOptions.Aspect2D(2);
P(1,:) = P(1,:) + FiltOptions.Aspect2D(1);
end
if( FiltOptions.IncludeAliased )
Dist = AADist;
clear AADist
end
H = zeros(LFSize, FiltOptions.Precision);
switch lower(FiltOptions.Rolloff)
case 'gaussian'
BW = BW.^2 / log(sqrt(2));
H(:) = exp( -Dist / BW ); % Gaussian rolloff
case 'butter'
FiltOptions = LFDefaultField('FiltOptions', 'Order', 3);
Dist = sqrt(Dist) ./ BW;
H(:) = sqrt( 1.0 ./ (1.0 + Dist.^(2*FiltOptions.Order)) ); % Butterworth-like rolloff
otherwise
error('unrecognized rolloff method');
end
H = ifftshift(H);
% force symmetric
H = max(H, H(mod(LFSize(1):-1:1,LFSize(1))+1, mod(LFSize(2):-1:1,LFSize(2))+1));
|
github
|
hazirbas/light-field-toolbox-master
|
LFFindLytroPartnerFile.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFFindLytroPartnerFile.m
| 1,439 |
utf_8
|
a4f3d1519bad3b234bde99c00a97ea3d
|
% LFFindLytroPartnerFile - Finds metadata / raw data file partner for Lytro white images
%
% Usage:
%
% PartnerFilename = LFFindLytroPartnerFile( OrigFilename, PartnerFilenameExtension )
%
% The LF Reader tool prepends filenames extracted from LFP storage files, complicating .txt / .raw
% file association as the prefix can vary between two files in a pair. This function finds a file's
% partner based on a known filename pattern (using underscores to separate the base filename), and a
% know partner filename extension. Note this is set up to work specifically with the naming
% conventions used by the LFP Reader tool.
%
% Inputs:
% OrigFilename is the known filename
% PartnerFilenameExtension is the extension of the file to find
%
% Output:
% PartnerFilename is the name of the first file found matching the specified extension
%
% See also: LFUtilProcessWhiteImages, LFUtilProcessCalibrations
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function PartnerFilename = LFFindLytroPartnerFile( OrigFilename, PartnerFilenameExtension )
[CurFnamePath, CurFnameBase] = fileparts( OrigFilename );
PrependIdx = find(CurFnameBase == '_', 1);
CurFnamePattern = strcat('*', CurFnameBase(PrependIdx:end), PartnerFilenameExtension);
DirResult = dir(fullfile(CurFnamePath, CurFnamePattern));
DirResult = DirResult(1).name;
PartnerFilename = fullfile(CurFnamePath, DirResult);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFVar2Struct.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFVar2Struct.m
| 646 |
utf_8
|
8e9d0eed0d9242fdf45c14ba302e05d2
|
% LFVar2Struct - Convenience function to build a struct from a set of variables
%
% Usage:
% StructOut = LFVar2Struct( var1, var2, ... )
%
% Example:
% Apples = 3;
% Oranges = 4;
% FruitCount = LFVar2Struct( Apples, Oranges )
%
% Results in a struct FruitCount:
% FruitCount =
% Apples: 3
% Oranges: 4
%
% See also: LFStruct2Var
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function StructOut = LFVar2Struct( varargin )
VarNames = arrayfun( @inputname, 1:nargin, 'UniformOutput', false );
StructOut = cell2struct( varargin, VarNames, 2 );
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFBuildLensletGridModel.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFBuildLensletGridModel.m
| 9,749 |
utf_8
|
77a704b9345494e7a5ab0bc07f763d10
|
% LFBuildLensletGridModel - builds a lenslet grid model from a white image, called by LFUtilProcessWhiteImages
%
% Usage:
% [LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImg, GridModelOptions, DebugDisplay )
%
% Inputs:
% WhiteImg : path of an image taken through a diffuser, or of an entirely white scene
%
% GridModelOptions : struct controlling the model-bulding options
% .ApproxLensletSpacing : A rough initial estimate to initialize the lenslet spacing
% computation
% .FilterDiskRadiusMult : Filter disk radius for prefiltering white image for locating
% lenslets; expressed relative to lenslet spacing; e.g. a
% value of 1/3 means a disk filte with a radius of 1/3 the
% lenslet spacing
% .CropAmt : Image edge pixels to ignore when finding the grid
% .SkipStep : As a speed optimization, not all lenslet centers contribute
% to the grid estimate; <SkipStep> pixels are skipped between
% lenslet centers that get used; a value of 1 means use all
% [optional] .Precision : 'single' or 'double'
%
% [optional] DebugDisplay : enables a debugging display, default false
%
% Outputs:
%
% LensletGridModel : struct describing the lenslet grid
% .HSpacing, .VSpacing : Spacing between lenslets, in pixels
% .HOffset, .VOffset : Offset of first lenslet, in pixels
% .Rot : Rotation of lenslets, in radians
%
% GridCoords : a list of N x M x 2 pixel coordinates generated from the estimated
% LensletGridModel, where N and M are the estimated number of lenslets in the
% horizontal and vertical directions, respectively.
%
% See also: LFUtilProcessWhiteImages
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImg, GridModelOptions, DebugDisplay )
%---Defaults---
GridModelOptions = LFDefaultField( 'GridModelOptions', 'Precision', 'single' );
DebugDisplay = LFDefaultVal( 'DebugDisplay', false );
%---Optionally rotate for vertically-oriented grids---
if( strcmpi(GridModelOptions.Orientation, 'vert') )
WhiteImg = WhiteImg';
end
% Try locating lenslets by convolving with a disk
% Also tested Gaussian... the disk seems to yield a stronger result
h = zeros( size(WhiteImg), GridModelOptions.Precision );
hr = fspecial( 'disk', GridModelOptions.ApproxLensletSpacing * GridModelOptions.FilterDiskRadiusMult );
hr = hr ./ max( hr(:) );
hs = size( hr,1 );
DiskOffset = round( (size(WhiteImg) - hs)/2 );
h( (1:hs) + DiskOffset(1), (1:hs) + DiskOffset(2) ) = hr;
fprintf( 'Filtering...\n' );
% Convolve using fft
WhiteImg = fft2(WhiteImg);
h = fft2(h);
WhiteImg = WhiteImg.*h;
WhiteImg = ifftshift(ifft2(WhiteImg));
WhiteImg = (WhiteImg - min(WhiteImg(:))) ./ abs(max(WhiteImg(:))-min(WhiteImg(:)));
WhiteImg = cast(WhiteImg, GridModelOptions.Precision);
clear h
fprintf('Finding Peaks...\n');
% Find peaks in convolution... ideally these are the lenslet centers
Peaks = imregionalmax(WhiteImg);
PeakIdx = find(Peaks==1);
[PeakIdxY,PeakIdxX] = ind2sub(size(Peaks),PeakIdx);
clear Peaks
% Crop to central peaks; eliminates edge effects
InsidePts = find(PeakIdxY>GridModelOptions.CropAmt & PeakIdxY<size(WhiteImg,1)-GridModelOptions.CropAmt & ...
PeakIdxX>GridModelOptions.CropAmt & PeakIdxX<size(WhiteImg,2)-GridModelOptions.CropAmt);
PeakIdxY = PeakIdxY(InsidePts);
PeakIdxX = PeakIdxX(InsidePts);
%---Form a Delaunay triangulation to facilitate row/column traversal---
Triangulation = DelaunayTri(PeakIdxY, PeakIdxX);
%---Traverse rows and columns of lenslets, collecting stats---
if( DebugDisplay )
LFFigure(3);
cla
imagesc( WhiteImg );
colormap gray
hold on
end
%--Traverse vertically--
fprintf('Vertical fit...\n');
YStart = GridModelOptions.CropAmt*2;
YStop = size(WhiteImg,1)-GridModelOptions.CropAmt*2;
XIdx = 1;
for( XStart = GridModelOptions.CropAmt*2:GridModelOptions.SkipStep:size(WhiteImg,2)-GridModelOptions.CropAmt*2 )
CurPos = [XStart, YStart];
YIdx = 1;
while( 1 )
ClosestLabel = nearestNeighbor(Triangulation, CurPos(2), CurPos(1));
ClosestPt = [PeakIdxX(ClosestLabel), PeakIdxY(ClosestLabel)];
RecPtsY(XIdx,YIdx,:) = ClosestPt;
if( DebugDisplay ) plot( ClosestPt(1), ClosestPt(2), 'r.' ); end
CurPos = ClosestPt;
CurPos(2) = round(CurPos(2) + GridModelOptions.ApproxLensletSpacing * sqrt(3));
if( CurPos(2) > YStop )
break;
end
YIdx = YIdx + 1;
end
%--Estimate angle for this most recent line--
LineFitY(XIdx,:) = polyfit(RecPtsY(XIdx, 3:end-3,2), RecPtsY(XIdx, 3:end-3,1), 1);
XIdx = XIdx + 1;
end
if( DebugDisplay ) drawnow; end
%--Traverse horizontally--
fprintf('Horizontal fit...\n');
XStart = GridModelOptions.CropAmt*2;
XStop = size(WhiteImg,2)-GridModelOptions.CropAmt*2;
YIdx = 1;
for( YStart = GridModelOptions.CropAmt*2:GridModelOptions.SkipStep:size(WhiteImg,1)-GridModelOptions.CropAmt*2 )
CurPos = [XStart, YStart];
XIdx = 1;
while( 1 )
ClosestLabel = nearestNeighbor(Triangulation, CurPos(2), CurPos(1));
ClosestPt = [PeakIdxX(ClosestLabel), PeakIdxY(ClosestLabel)];
RecPtsX(XIdx,YIdx,:) = ClosestPt;
if( DebugDisplay ) plot( ClosestPt(1), ClosestPt(2), 'y.' ); end
CurPos = ClosestPt;
CurPos(1) = round(CurPos(1) + GridModelOptions.ApproxLensletSpacing);
if( CurPos(1) > XStop )
break;
end
XIdx = XIdx + 1;
end
%--Estimate angle for this most recent line--
LineFitX(YIdx,:) = polyfit(RecPtsX(3:end-3,YIdx,1), RecPtsX(3:end-3,YIdx,2), 1);
YIdx = YIdx + 1;
end
if( DebugDisplay ) drawnow; end
%--Trim ends to wipe out alignment, initial estimate artefacts--
RecPtsY = RecPtsY(3:end-2, 3:end-2,:);
RecPtsX = RecPtsX(3:end-2, 3:end-2,:);
%--Estimate angle--
SlopeX = mean(LineFitX(:,1));
SlopeY = mean(LineFitY(:,1));
AngleX = atan2(-SlopeX,1);
AngleY = atan2(SlopeY,1);
EstAngle = mean([AngleX,AngleY]);
%--Estimate spacing, assuming approx zero angle--
t=squeeze(RecPtsY(:,:,2));
YSpacing = diff(t,1,2);
YSpacing = mean(YSpacing(:))/2 / (sqrt(3)/2);
t=squeeze(RecPtsX(:,:,1));
XSpacing = diff(t,1,1);
XSpacing = mean(XSpacing(:));
%--Correct for angle--
XSpacing = XSpacing / cos(EstAngle);
YSpacing = YSpacing / cos(EstAngle);
%--Build initial grid estimate, starting with CropAmt for the offsets--
LensletGridModel = struct('HSpacing',XSpacing, 'VSpacing',YSpacing*sqrt(3)/2, 'HOffset',GridModelOptions.CropAmt, ...
'VOffset',GridModelOptions.CropAmt, 'Rot',-EstAngle, 'Orientation', GridModelOptions.Orientation, ...
'FirstPosShiftRow', 2 );
LensletGridModel.UMax = ceil( (size(WhiteImg,2)-GridModelOptions.CropAmt*2)/XSpacing );
LensletGridModel.VMax = ceil( (size(WhiteImg,1)-GridModelOptions.CropAmt*2)/YSpacing/(sqrt(3)/2) );
GridCoords = LFBuildHexGrid( LensletGridModel );
%--Find offset to nearest peak for each--
GridCoordsX = GridCoords(:,:,1);
GridCoordsY = GridCoords(:,:,2);
BuildGridCoords = [GridCoordsX(:), GridCoordsY(:)];
IdealPts = nearestNeighbor(Triangulation, round(GridCoordsY(:)), round(GridCoordsX(:)));
IdealPtCoords = [PeakIdxX(IdealPts), PeakIdxY(IdealPts)];
%--Estimate single offset for whole grid--
EstOffset = IdealPtCoords - BuildGridCoords;
EstOffset = median(EstOffset);
LensletGridModel.HOffset = LensletGridModel.HOffset + EstOffset(1);
LensletGridModel.VOffset = LensletGridModel.VOffset + EstOffset(2);
%--Remove crop offset / find top-left lenslet--
NewVOffset = mod( LensletGridModel.VOffset, LensletGridModel.VSpacing );
VSteps = round( (LensletGridModel.VOffset - NewVOffset) / LensletGridModel.VSpacing ); % should be a whole number
VStepParity = mod( VSteps, 2 );
if( VStepParity == 1 )
LensletGridModel.HOffset = LensletGridModel.HOffset + LensletGridModel.HSpacing/2;
end
NewHOffset = mod( LensletGridModel.HOffset, LensletGridModel.HSpacing/2 );
HSteps = round( (LensletGridModel.HOffset - NewHOffset) / (LensletGridModel.HSpacing/2) ); % should be a whole number
HStepParity = mod( HSteps, 2 );
LensletGridModel.FirstPosShiftRow = 2-HStepParity;
if( DebugDisplay )
plot( LensletGridModel.HOffset, LensletGridModel.VOffset, 'ro' );
plot( NewHOffset, NewVOffset, 'yx');
drawnow
end
LensletGridModel.HOffset = NewHOffset;
LensletGridModel.VOffset = NewVOffset;
%---Finalize grid---
LensletGridModel.UMax = floor((size(WhiteImg,2)-LensletGridModel.HOffset)/LensletGridModel.HSpacing) + 1;
LensletGridModel.VMax = floor((size(WhiteImg,1)-LensletGridModel.VOffset)/LensletGridModel.VSpacing) + 1;
GridCoords = LFBuildHexGrid( LensletGridModel );
fprintf('...Done.\n');
end
function [GridCoords] = LFBuildHexGrid( LensletGridModel )
RotCent = eye(3);
RotCent(1:2,3) = [LensletGridModel.HOffset, LensletGridModel.VOffset];
ToOffset = eye(3);
ToOffset(1:2,3) = [LensletGridModel.HOffset, LensletGridModel.VOffset];
R = ToOffset * RotCent * LFRotz(LensletGridModel.Rot) * RotCent^-1;
[vv,uu] = ndgrid((0:LensletGridModel.VMax-1).*LensletGridModel.VSpacing, (0:LensletGridModel.UMax-1).*LensletGridModel.HSpacing);
uu(LensletGridModel.FirstPosShiftRow:2:end,:) = uu(LensletGridModel.FirstPosShiftRow:2:end,:) + 0.5.*LensletGridModel.HSpacing;
GridCoords = [uu(:), vv(:), ones(numel(vv),1)];
GridCoords = (R*GridCoords')';
GridCoords = reshape(GridCoords(:,1:2), [LensletGridModel.VMax,LensletGridModel.UMax,2]);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFDefaultVal.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFDefaultVal.m
| 1,291 |
utf_8
|
c246f7b5e263b013ced34d42170f53b4
|
% LFDefaultVal - Convenience function to set up default parameter values
%
% Usage:
%
% Var = LFDefaultVal( Var, DefaultVal )
%
%
% This provides an elegant way to establish default parameter values. See LFDefaultField for setting
% up structs with default field values.
%
% Inputs:
%
% Var: string giving the name of the parameter
% DefaultVal: default value for the parameter
%
%
% Outputs:
%
% Var: if the parameter already existed, the output matches its original value, otherwise the
% output takes on the specified default value
%
% Example:
%
% clearvars
% ExistingVar = 42;
% ExistingVar = LFDefaultVal( 'ExistingVar', 3 )
% OtherVar = LFDefaultVal( 'OtherVar', 3 )
%
% Results in :
% ExistingVar =
% 42
% OtherVar =
% 3
%
% Usage for setting up default function arguments is demonstrated in most of the LF Toolbox
% functions.
%
% See also: LFDefaultField
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function Var = LFDefaultVal( Var, DefaultVal )
CheckIfExists = sprintf('exist(''%s'', ''var'') && ~isempty(%s)', Var, Var);
VarExists = evalin( 'caller', CheckIfExists );
if( ~VarExists )
Var = DefaultVal;
else
Var = evalin( 'caller', Var );
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFDispSetup.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFDispSetup.m
| 2,717 |
utf_8
|
018642a726ed8feb41058f29f9ffeb14
|
% LFDispSetup - helper function used to set up a light field display
%
% Usage:
%
% [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame )
% [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame, ScaleFactor )
%
%
% This sets up a figure for LFDispMousePan and LFDispVidCirc. The figure is configured for
% high-performance display, and subsequent calls will reuse the same figure, rather than creating a
% new window on each call. The function should handle both mono and colour images.
%
%
% Inputs:
%
% InitialFrame : a 2D image with which to start the display
%
% Optional Inputs:
%
% ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as big, etc.
% Integer values are recommended to avoid scaling artifacts. Note that the scale
% factor is only applied the first time a figure is created -- i.e. the figure
% must be closed to make a change to scale.
%
% Outputs:
%
% FigureHandle, ImageHandle : handles of the created objects
%
%
% See also: LFDispVidCirc, LFDispMousePan
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame, ScaleFactor )
FigureHandle = findobj('tag','LFDisplay');
if( isempty(FigureHandle) )
% Get screen size
set( 0, 'units','pixels' );
ScreenSize = get( 0, 'screensize' );
ScreenSize = ScreenSize(3:4);
% Get LF display size
FrameSize = [size(InitialFrame,2),size(InitialFrame,1)];
% Create the figure
FigureHandle = figure(...
'doublebuffer','on',...
'backingstore','off',...
...%'menubar','none',...
...%'toolbar','none',...
'tag','LFDisplay');
% Set the window's position and size
WindowPos = get( FigureHandle, 'Position' );
WindowPos(3:4) = FrameSize;
WindowPos(1:2) = floor( (ScreenSize - FrameSize)./2 );
set( FigureHandle, 'Position', WindowPos );
% Set the axis position and size within the figure
AxesPos = [0,0,size(InitialFrame,2),size(InitialFrame,1)];
axes('units','pixels',...
'Position', AxesPos,...
'xlimmode','manual',...
'ylimmode','manual',...
'zlimmode','manual',...
'climmode','manual',...
'alimmode','manual',...
'layer','bottom');
ImageHandle = imshow(InitialFrame);
% If a scaling factor is requested, apply it
if( exist('ScaleFactor','var') )
truesize(floor(ScaleFactor*size(InitialFrame(:,:,1))));
end
else
ImageHandle = findobj(FigureHandle,'type','image');
set(ImageHandle,'cdata', InitialFrame);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFGatherCamInfo.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFGatherCamInfo.m
| 2,778 |
utf_8
|
c0acfa7e282c05682ab4f98ab740a59c
|
% LFGatherCamInfo - collect metadata from a folder of processed white images or calibrations
%
% Usage:
%
% CamInfo = LFGatherCamInfo( FilePath, FilenamePattern )
%
%
% This function is designed to work with one of two sources of information: a folder of Lytro white
% images, as extracted from the calibration data using an LFP tool; or a folder of calibrations, as
% generated by LFUtilCalLensletCam.
%
% Inputs:
%
% FilePath is a path to the folder containing either the white images or the calibration files.
%
% FilenamePattern is a pattern, with wildcards, identifying the metadata files to process. Typical
% values are 'CalInfo*.json' for calibration info, and '*T1CALIB__MOD_*.TXT' for white images.
%
% Outputs:
%
% CamInfo is a struct array containing zoom, focus and filename info for each file. Exposure info
% is also included for white images.
%
% See LFUtilProcessCalibrations and LFUtilProcessWhiteImages for example usage.
%
% See also: LFUtilProcessWhiteImages, LFUtilProcessCalibrations
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function CamInfo = LFGatherCamInfo( FilePath, FilenamePattern )
%---Locate all input files---
[FileNames, BasePath] = LFFindFilesRecursive( FilePath, FilenamePattern );
if( isempty(FileNames) )
error('No files found');
end
fprintf('Found :\n');
disp(FileNames)
%---Process each---
fprintf('Filename, Camera Model / Serial, ZoomStep, FocusStep\n');
for( iFile = 1:length(FileNames) )
CurFname = FileNames{iFile};
CurFileInfo = LFReadMetadata( fullfile(BasePath, CurFname) );
CurCamInfo = [];
if( isfield( CurFileInfo, 'CamInfo' ) )
%---Calibration file---
CurCamInfo = CurFileInfo.CamInfo;
elseif( isfield( CurFileInfo, 'master' ) )
%---Lytro TXT metadata file associated with white image---
CurCamInfo.ZoomStep = CurFileInfo.master.picture.frameArray.frame.metadata.devices.lens.zoomStep;
CurCamInfo.FocusStep = CurFileInfo.master.picture.frameArray.frame.metadata.devices.lens.focusStep;
CurCamInfo.ExposureDuration = CurFileInfo.master.picture.frameArray.frame.metadata.devices.shutter.frameExposureDuration;
CurCamInfo.CamSerial = CurFileInfo.master.picture.frameArray.frame.privateMetadata.camera.serialNumber;
CurCamInfo.CamModel = CurFileInfo.master.picture.frameArray.frame.metadata.camera.model;
else
error('Unrecognized file format reading metadata\n');
end
fprintf(' %s :\t%s / %s, %d, %d\n', CurFname, CurCamInfo.CamModel, CurCamInfo.CamSerial, CurCamInfo.ZoomStep, CurCamInfo.FocusStep);
CurCamInfo.Fname = CurFname;
CamInfo(iFile) = CurCamInfo;
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFToolboxVersion.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFToolboxVersion.m
| 252 |
utf_8
|
d37c67edd0424685c2530c25195c3826
|
% LFToolboxVersion - returns a string describing the current toolbox version
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function VersionStr = LFToolboxVersion
VersionStr = 'v0.4 released 12-Feb-2015';
|
github
|
hazirbas/light-field-toolbox-master
|
LFStruct2Var.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFStruct2Var.m
| 871 |
utf_8
|
bd1821a5700012dfce0f79c4d5dd8ab0
|
% LFStruct2Var - Convenience function to break a subset of variables out of a struct
%
% Usage:
% [var1, var2, ...] = LFStruct2Var( StructIn, 'var1', 'var2', ... )
%
% This would ideally exclude the named variables in the argument list, but there was no elegant way
% to do this given the absence of an `outputname' function to match Matlab's `inputname'.
%
% Example:
% FruitCount = struct('Apples', 3, 'Bacon', 42, 'Oranges', 4);
% [Apples, Oranges] = LFStruct2Var( FruitCount, 'Apples', 'Oranges' )
%
% Results in
% Apples =
% 3
% Oranges =
% 4
%
% See also: LFStruct2Var
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function varargout = LFStruct2Var( StructIn, varargin )
for( i=1:length(varargin) )
varargout{i} = StructIn.(varargin{i});
end
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFFindCalInfo.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFFindCalInfo.m
| 2,572 |
utf_8
|
c7daafa528ed72904c233ed5ad834fe6
|
% LFFindCalInfo - Find and load the calibration info file appropriate for a specific camera, zoom and focus
%
% Usage:
%
% [CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions )
%
% This uses a calibration info database to locate a calibration appropriate to a given camera under a given set of zoom
% and focus settings. It is called during rectification.
%
% Inputs:
%
% LFMetadata : loaded from a decoded light field, this contains the camera's serial number and zoom and focus settings.
% RectOptions : struct controlling rectification
% .CalibrationDatabaseFname : name of the calibration file database
%
%
% Outputs:
%
% CalInfo: The resulting calibration info, or an empty array if no appropriate calibration found
% RectOptions : struct controlling rectification, the following fields are added
% .CalInfoFname : Name of the calibration file that was loaded
%
% See also: LFUtilProcessCalibrations, LFSelectFromDatabase
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function [CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions )
CalInfo = [];
DesiredCam = struct('CamSerial', LFMetadata.SerialData.camera.serialNumber, ...
'ZoomStep', LFMetadata.devices.lens.zoomStep, ...
'FocusStep', LFMetadata.devices.lens.focusStep );
CalFileInfo = LFSelectFromDatabase( DesiredCam, RectOptions.CalibrationDatabaseFname );
if( isempty(CalFileInfo) )
return;
end
PathToDatabase = fileparts( RectOptions.CalibrationDatabaseFname );
RectOptions.CalInfoFname = CalFileInfo.Fname;
CalInfo = LFReadMetadata( fullfile(PathToDatabase, RectOptions.CalInfoFname) );
fprintf('Loading %s\n', RectOptions.CalInfoFname);
%---Check that the decode options and calibration info are a good match---
fprintf('\nCalibration / LF Picture (ideally these match exactly):\n');
fprintf('Serial:\t%s\t%s\n', CalInfo.CamInfo.CamSerial, LFMetadata.SerialData.camera.serialNumber);
fprintf('Zoom:\t%d\t\t%d\n', CalInfo.CamInfo.ZoomStep, LFMetadata.devices.lens.zoomStep);
fprintf('Focus:\t%d\t\t%d\n\n', CalInfo.CamInfo.FocusStep, LFMetadata.devices.lens.focusStep);
if( ~strcmp(CalInfo.CamInfo.CamSerial, LFMetadata.SerialData.camera.serialNumber) )
warning('Calibration is for a different camera, rectification may be invalid.');
end
if( CalInfo.CamInfo.ZoomStep ~= LFMetadata.devices.lens.zoomStep || ...
CalInfo.CamInfo.FocusStep ~= LFMetadata.devices.lens.focusStep )
warning('Zoom / focus mismatch -- for significant deviations rectification may be invalid.');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFConvertToFloat.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFConvertToFloat.m
| 481 |
utf_8
|
347631d509cdee15114cff38f1046966
|
% LFConvertToFloat - Helper function to convert light fields to floating-point representation
%
% Integer inputs get normalized to a max value of 1.
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function LF = LFConvertToFloat( LF, Precision )
Precision = LFDefaultVal('Precision', 'single');
OrigClass = class(LF);
IsInt = isinteger(LF);
LF = cast(LF, Precision);
if( IsInt )
LF = LF ./ cast(intmax(OrigClass), Precision);
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFUnpackRawBuffer.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFUnpackRawBuffer.m
| 2,263 |
utf_8
|
6edde771ccfa5abb4c1b0242c9ee9af9
|
% LFUnpackRawBuffer - Unpack a buffer of packed raw binary data into an image
%
% Usage:
%
% ImgOut = LFUnpackRawBuffer( Buff, BitPacking, ImgSize )
%
% Used by LFReadRaw and LFReadLFP, this helper function unpacks a raw binary data buffer in one of several formats.
%
% Inputs :
%
% Buff : Buffer of chars to be unpacked
% BitPacking : one of '12bit', '10bit' or '16bit'; default is '12bit'
% ImgSize : size of the output image
%
% Outputs:
%
% Img : an array of uint16 gray levels. No demosaicing (decoding Bayer pattern) is performed.
%
% See also: LFDecodeLensletImageSimple, demosaic
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function ImgOut = LFUnpackRawBuffer( Buff, BitPacking, ImgSize )
switch( BitPacking )
case '8bit'
ImgOut = reshape(Buff, ImgSize);
case '10bit'
t0 = uint16(Buff(1:5:end));
t1 = uint16(Buff(2:5:end));
t2 = uint16(Buff(3:5:end));
t3 = uint16(Buff(4:5:end));
lsb = uint16(Buff(5:5:end));
t0 = bitshift(t0,2);
t1 = bitshift(t1,2);
t2 = bitshift(t2,2);
t3 = bitshift(t3,2);
t0 = t0 + bitand(lsb,bin2dec('00000011'));
t1 = t1 + bitshift(bitand(lsb,bin2dec('00001100')),-2);
t2 = t2 + bitshift(bitand(lsb,bin2dec('00110000')),-4);
t3 = t3 + bitshift(bitand(lsb,bin2dec('11000000')),-6);
ImgOut = zeros(ImgSize, 'uint16');
ImgOut(1:4:end) = t0;
ImgOut(2:4:end) = t1;
ImgOut(3:4:end) = t2;
ImgOut(4:4:end) = t3;
case '12bit'
t0 = uint16(Buff(1:3:end));
t1 = uint16(Buff(2:3:end));
t2 = uint16(Buff(3:3:end));
a0 = bitshift(t0,4) + bitshift(bitand(t1,bin2dec('11110000')),-4);
a1 = bitshift(bitand(t1,bin2dec('00001111')),8) + t2;
ImgOut = zeros(ImgSize, 'uint16');
ImgOut(1:2:end) = a0;
ImgOut(2:2:end) = a1;
case '16bit'
t0 = uint16(Buff(1:2:end));
t1 = uint16(Buff(2:2:end));
a0 = bitshift(t1, 8) + t0;
ImgOut = zeros(ImgSize, 'uint16');
ImgOut(:) = a0;
otherwise
error('Unrecognized bit packing');
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalFindCheckerCorners.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFCalFindCheckerCorners.m
| 8,816 |
utf_8
|
d8f59cd55e2ed367addcfa426036fbe0
|
% LFCalFindCheckerCorners - locates corners in checkerboard images, called by LFUtilCalLensletCam
%
% Usage:
% CalOptions = LFCalFindCheckerCorners( InputPath, CalOptions )
% CalOptions = LFCalFindCheckerCorners( InputPath )
%
% This function is called by LFUtilCalLensletCam to identify the corners in a set of checkerboard
% images.
%
% Inputs:
%
% InputPath : Path to folder containing decoded checkerboard images.
%
% [optional] CalOptions : struct controlling calibration parameters, all fields are optional
% .CheckerCornersFnamePattern : Pattern for building output checkerboard corner files; %s is
% used as a placeholder for the base filename
% .LFFnamePattern : Filename pattern for locating input light fields
% .ForceRedoCornerFinding : Forces the function to run, overwriting existing results
% .ShowDisplay : Enables display, allowing visual verification of results
%
% Outputs :
%
% CalOptions struct as applied, including any default values as set up by the function
%
% Checker corner files are the key outputs of this function -- one file is generated fore each
% input file, containing the list of extracted checkerboard corners.
%
% See also: LFUtilCalLensletCam, LFCalInit, LFCalRefine
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function CalOptions = LFCalFindCheckerCorners( InputPath, CalOptions )
%---Defaults---
CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoCornerFinding', false );
CalOptions = LFDefaultField( 'CalOptions', 'LFFnamePattern', '%s__Decoded.mat' );
CalOptions = LFDefaultField( 'CalOptions', 'CheckerCornersFnamePattern', '%s__CheckerCorners.mat' );
CalOptions = LFDefaultField( 'CalOptions', 'ShowDisplay', true );
CalOptions = LFDefaultField( 'CalOptions', 'MinSubimageWeight', 0.2 * 2^16 ); % for fast rejection of dark frames
%---Build a regular expression for stripping the base filename out of the full raw filename---
BaseFnamePattern = regexp(CalOptions.LFFnamePattern, '%s', 'split');
BaseFnamePattern = cell2mat({BaseFnamePattern{1}, '(.*)', BaseFnamePattern{2}});
%---Tagged onto all saved files---
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
%---Crawl folder structure locating raw lenslet images---
fprintf('\n===Locating light fields in %s===\n', InputPath);
[FileList, BasePath] = LFFindFilesRecursive( InputPath, sprintf(CalOptions.LFFnamePattern, '*') );
if( isempty(FileList) )
error(['No files found... are you running from the correct folder?\n'...
' Current folder: %s\n'], pwd);
end;
fprintf('Found :\n');
disp(FileList)
%---Check zoom / focus and serial number settings across light fields---
fprintf('Checking zoom / focus / serial number across all files...\n');
for( iFile = 1:length(FileList) )
CurFname = FileList{iFile};
load(fullfile(BasePath, CurFname), 'LFMetadata');
CamSettings(iFile).Fname = CurFname;
CamSettings(iFile).ZoomStep = LFMetadata.devices.lens.zoomStep;
CamSettings(iFile).FocusStep = LFMetadata.devices.lens.focusStep;
CamSettings(iFile).CamSerial = LFMetadata.SerialData.camera.serialNumber;
end
% Find the most frequent serial number
[UniqueSerials,~,SerialIdx]=unique({CamSettings.CamSerial});
NumSerials = size(UniqueSerials,2);
MostFreqSerialIdx = median(SerialIdx);
CamInfo.CamSerial = UniqueSerials{MostFreqSerialIdx};
CamInfo.CamModel = LFMetadata.camera.model;
% Finding the most frequent zoom / focus is easier
CamInfo.FocusStep = median([CamSettings.FocusStep]);
CamInfo.ZoomStep = median([CamSettings.ZoomStep]);
fprintf( 'Serial: %s, ZoomStep: %d, FocusStep: %d\n', CamInfo.CamSerial, CamInfo.ZoomStep, CamInfo.FocusStep );
InvalidIdx = find( ...
([CamSettings.ZoomStep] ~= CamInfo.ZoomStep) | ...
([CamSettings.FocusStep] ~= CamInfo.FocusStep) | ...
(SerialIdx ~= MostFreqSerialIdx)' );
if( ~isempty(InvalidIdx) )
warning('Some files mismatch');
for( iInvalid = InvalidIdx )
fprintf('Serial: %s, ZoomStep: %d, FocusStep: %d -- %s\n', CamSettings(iInvalid).CamSerial, CamSettings(iInvalid).ZoomStep, CamSettings(iInvalid).FocusStep, CamSettings(iInvalid).Fname);
end
fprintf('For significant deviations, it is recommended that these files be removed and the program restarted.');
else
fprintf('...all files match\n');
end
%---enable warning to display it once; gets disabled after first call to detectCheckerboardPoints--
warning('on','vision:calibrate:boardShouldBeAsymmetric');
fprintf('Skipping subimages with mean weight below MinSubimageWeight %g\n', CalOptions.MinSubimageWeight);
%---Process each folder---
SkippedFileCount = 0;
ProcessedFileCount = 0;
TotFileTime = 0;
%---Process each raw lenslet file---
for( iFile = 1:length(FileList) )
CurFname = FileList{iFile};
CurFname = fullfile(BasePath, CurFname);
%---Build the base filename---
CurBaseFname = regexp(CurFname, BaseFnamePattern, 'tokens');
CurBaseFname = CurBaseFname{1}{1};
[~,ShortFname] = fileparts(CurBaseFname);
fprintf(' --- %s [%d / %d]', ShortFname, iFile, length(FileList));
%---Check for already-decoded file---
SaveFname = sprintf(CalOptions.CheckerCornersFnamePattern, CurBaseFname);
if( ~CalOptions.ForceRedoCornerFinding )
if( exist(SaveFname, 'file') )
fprintf( ' already done, skipping\n' );
SkippedFileCount = SkippedFileCount + 1;
continue;
end
end
ProcessedFileCount = ProcessedFileCount + 1;
fprintf('\n');
%---Load the LF---
tic % track time
load( CurFname, 'LF', 'LensletGridModel', 'DecodeOptions' );
LFSize = size(LF);
if( CalOptions.ShowDisplay )
LFFigure(1);
clf
end
fprintf('Processing all subimages');
for( TIdx = 1:LFSize(1) )
fprintf('.');
for( SIdx = 1:LFSize(2) )
% todo[optimization]: once a good set of corners is found, tracking them through s,u
% and t,v would be significantly faster than independently recomputing the corners
% for all u,v slices
CurW = squeeze(LF(TIdx, SIdx, :,:, 4));
CurW = mean(CurW(:));
if( CurW < CalOptions.MinSubimageWeight )
CurCheckerCorners = [];
else
CurImg = squeeze(LF(TIdx, SIdx, :,:, 1:3));
CurImg = rgb2gray(CurImg);
[CurCheckerCorners,CheckBoardSize] = detectCheckerboardPoints( CurImg );
warning('off','vision:calibrate:boardShouldBeAsymmetric'); % display once (at most)
% Matlab's detectCheckerboardPoints sometimes expresses the grid in different orders, especially for
% symmetric checkerbords. It's up to the consumer of this data to treat the points in the correct order.
end
HitCount(TIdx,SIdx) = numel(CurCheckerCorners);
CheckerCorners{TIdx,SIdx} = CurCheckerCorners;
end
%---Display results---
if( CalOptions.ShowDisplay )
clf
for( SIdx = 1:LFSize(2) )
if( HitCount(TIdx,SIdx) > 0 )
CurImg = squeeze(LF(TIdx, SIdx, :,:, 1:3));
CurImg = rgb2gray(CurImg);
NImages = LFSize(2);
NCols = ceil(sqrt(NImages));
NRows = ceil(NImages / NCols);
subplot(NRows, NCols, SIdx);
imshow(CurImg);
colormap gray
hold on;
cx = CheckerCorners{TIdx,SIdx}(:,1);
cy = CheckerCorners{TIdx,SIdx}(:,2);
plot(cx(:),cy(:),'r.', 'markersize',15)
axis off
axis image
axis tight
end
end
%truesize([150,150]); % bigger display
drawnow
end
end
fprintf('\n');
%---Save---
fprintf('Saving result to %s...\n', SaveFname);
save(SaveFname, 'GeneratedByInfo', 'CheckerCorners', 'LFSize', 'CamInfo', 'LensletGridModel', 'DecodeOptions');
TotFileTime = TotFileTime + toc;
MeanFileTime = TotFileTime / ProcessedFileCount;
fprintf( 'Mean time per file: %.1f min\n', MeanFileTime/60 );
TimeRemain_s = MeanFileTime * (length(FileList) - ProcessedFileCount - SkippedFileCount);
fprintf( 'Est time remain: ~%d min\n', ceil(TimeRemain_s/60) );
end
fprintf(' ---Finished finding checkerboard corners---\n');
|
github
|
hazirbas/light-field-toolbox-master
|
LFSelectFromDatabase.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFSelectFromDatabase.m
| 2,288 |
utf_8
|
f72e49d5261aad46cd204a67ea981f14
|
% LFSelectFromDatabase - support function for selecting white image/calibration by matching serial/zoom/focus
%
% Usage:
%
% SelectedCamInfo = LFSelectFromDatabase( DesiredCamInfo, DatabaseFname )
%
% This helper function is used when decoding a light field to select an appropriate white image,
% and when rectifying a light field to select the appropriate calibration. It works by parsing a
% database (white image or calibration), and searching its CamInfo structure for the best match to
% the requested DesiredCamInfo. DesiredCamInfo is set based on the camera settings used in
% measuring the light field. See LFUtilDecodeLytroFolder / LFLytroDecodeImage for example usage.
%
% Selection prioritizes the camera serial number, then zoom, then focus. It is unclear whether this
% is the optimal approach.
%
% The output SelectedCamInfo includes all fields in the database's CamInfo struct, including the
% filename of the selected calibration or white image. This facilitates decoding / rectification.
%
% See also: LFUtilProcessWhiteImages, LFUtilProcessCalibrations, LFUtilDecodeLytroFolder, LFLytroDecodeImage
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function SelectedCamInfo = LFSelectFromDatabase( DesiredCamInfo, DatabaseFname )
%---Load the database---
load(DatabaseFname, 'CamInfo');
%---Find the closest to the desired settings, prioritizing serial, then zoom, then focus---
ValidSerial = find( ismember({CamInfo.CamSerial}, {DesiredCamInfo.CamSerial}) );
% Discard non-matching serials
CamInfo = CamInfo(ValidSerial);
OrigIdx = ValidSerial;
% Find closest zoom
ZoomDiff = abs([CamInfo.ZoomStep] - DesiredCamInfo.ZoomStep);
BestZoomDiff = min(ZoomDiff);
BestZoomIdx = find( ZoomDiff == BestZoomDiff ); % generally multiple hits
% Retain the (possibly multiple) matches for the best zoom setting
% CamInfo.ZoomStep = CamInfo(BestZoomIdx).ZoomStep;
CamInfo = CamInfo(BestZoomIdx);
OrigIdx = OrigIdx(BestZoomIdx);
% Of those that are closest in zoom, find the one that's closest in focus
FocusDiff = abs([CamInfo.FocusStep] - DesiredCamInfo.FocusStep);
[~,BestFocusIdx] = min(FocusDiff);
% Retrieve the index into the original
BestOriglIdx = OrigIdx(BestFocusIdx);
SelectedCamInfo = CamInfo(BestFocusIdx);
|
github
|
hazirbas/light-field-toolbox-master
|
LFMapRectifiedToMeasured.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFMapRectifiedToMeasured.m
| 2,589 |
utf_8
|
5e58f495c8db32d93abdde790c719aff
|
% LFMapRectifiedToMeasured - Applies a calibrated camera model to map desired samples to measured samples
%
% Usage:
%
% InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions )
%
% Helper function used by LFCalRectifyLF. Based on a calibrated camera model, including distortion parameters and a
% desired intrinsic matrix, the indices of a set of desired sample is mapped to the indices of corresponding measured
% samples.
%
% Inputs :
%
% InterpIdx : Set of desired indices, in homogeneous coordinates
% CalInfo : Calibration info as returned by LFFindCalInfo
% RectOptions : struct controlling the rectification process, see LFCalRectify
%
% Outputs:
%
% InterpIdx : continuous-domain indices for interpolating from the measured light field
%
% See also: LFCalRectifyLF
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions )
RectOptions = LFDefaultField( 'RectOptions', 'Precision', 'single' );
%---Cast the to the required precision---
InterpIdx = cast(InterpIdx, RectOptions.Precision);
%---Convert the index of the desired ray to a ray representation using ideal intrinsics---
InterpIdx = RectOptions.RectCamIntrinsicsH * InterpIdx;
%---Apply inverse lens distortion to yield the undistorted ray---
k1 = CalInfo.EstCamDistortionV(1); % r^2
k2 = CalInfo.EstCamDistortionV(2); % r^4
k3 = CalInfo.EstCamDistortionV(3); % r^6
b1 = CalInfo.EstCamDistortionV(4); % decentering of lens distortion
b2 = CalInfo.EstCamDistortionV(5); % decentering of lens distortion
InterpIdx(3:4,:) = bsxfun(@minus, InterpIdx(3:4,:), [b1; b2]); % decentering of lens distortion
%---Iteratively estimate the undistorted direction----
DesiredDirection = InterpIdx(3:4,:);
for( InverseIters = 1:RectOptions.NInverse_Distortion_Iters )
R2 = sum(InterpIdx(3:4,:).^2); % compute radius^2 for the current estimate
% update estimate based on inverse of distortion model
InterpIdx(3:4,:) = DesiredDirection ./ repmat((1 + k1.*R2 + k2.*R2.^2 + k3.*R2.^4),2,1);
end
clear R2 DesiredDirection
InterpIdx(3:4,:) = bsxfun(@plus, InterpIdx(3:4,:), [b1; b2]); % decentering of lens distortion
%---Convert the undistorted ray to the corresponding index using the calibrated intrinsics---
% todo[optimization]: The variable InterpIdx could be precomputed and saved with the calibration
InterpIdx = CalInfo.EstCamIntrinsicsH^-1 * InterpIdx;
%---Interpolate the required values---
InterpIdx = InterpIdx(1:4,:); % drop homogeneous coordinates
|
github
|
hazirbas/light-field-toolbox-master
|
LFCalRefine.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFCalRefine.m
| 16,821 |
utf_8
|
ad30626be45ef6d56dafc860da607c7c
|
% LFCalRefine - refine calibration by minimizing point/ray reprojection error, called by LFUtilCalLensletCam
%
% Usage:
% CalOptions = LFCalRefine( InputPath, CalOptions )
%
% This function is called by LFUtilCalLensletCam to refine an initial camera model and pose
% estimates through optimization. This follows the calibration procedure described in:
%
% D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for
% lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE
% Conference on. IEEE, Jun 2013.
%
% Minor differences from the paper: camera parameters are automatically initialized, so no prior
% knowledge of the camera's parameters are required; the free intrinsics parameters have been
% reduced by two: H(3:4,5) were previously redundant with the camera's extrinsics, and are now
% automatically centered; and the light field indices [i,j,k,l] are 1-based in this implementation,
% and not 0-based as described in the paper.
%
% Inputs:
%
% InputPath : Path to folder containing decoded checkerboard images. Checkerboard corners must
% be identified prior to calling this function, by running LFCalFindCheckerCorners
% for example. An initial estiamte must be provided in a CalInfo file, as generated
% by LFCalInit. LFUtilCalLensletCam demonstrates the complete procedure.
%
% CalOptions struct controls calibration parameters :
% .Phase : 'NoDistort' excludes distortion parameters from the optimization
% process; for any other value, distortion parameters are included
% .CheckerInfoFname : Name of the file containing the summarized checkerboard
% information, as generated by LFCalFindCheckerCorners. Note that
% this parameter is automatically set in the CalOptions struct
% returned by LFCalFindCheckerCorners.
% .CalInfoFname : Name of the file containing an initial estimate, to be refined.
% Note that this parameter is automatically set in the CalOptions
% struct returned by LFCalInit.
% .ExpectedCheckerSize : Number of checkerboard corners, as recognized by the automatic
% corner detector; edge corners are not recognized, so a standard
% 8x8-square chess board yields 7x7 corners
% .LensletBorderSize : Number of pixels to skip around the edges of lenslets, a low
% value of 1 or 0 is generally appropriate
% .SaveResult : Set to false to perform a "dry run"
% [optional] .OptTolX : Determines when the optimization process terminates. When the
% estimted parameter values change by less than this amount, the
% optimization terminates. See the Matlab documentation on lsqnonlin,
% option `TolX' for more information. The default value of 5e-5 is set
% within the LFCalRefine function; a value of 0 means the optimization
% never terminates based on this criterion.
% [optional] .OptTolFun : Similar to OptTolX, except this tolerance deals with the error value.
% This corresponds to Matlab's lsqnonlin option `TolFun'. The default
% value of 0 is set within the LFCalRefine function, and means the
% optimization never terminates based on this criterion.
%
% Outputs :
%
% CalOptions struct maintains the fields of the input CalOptions, and adds the fields:
%
% .LFSize : Size of the light field, in samples
% .IJVecToOptOver : Which samples in i and j were included in the optimization
% .IntrinsicsToOpt : Which intrinsics were optimized, these are indices into the 5x5
% lenslet camera intrinsic matrix
% .DistortionParamsToOpt : Which distortion paramst were optimized
% .PreviousCamIntrinsics : Previous estimate of the camera's intrinsics
% .PreviousCamDistortion : Previous estimate of the camera's distortion parameters
% .NPoses : Number of poses in the dataset
%
%
% See also: LFUtilCalLensletCam, LFCalFindCheckerCorners, LFCalInit, LFUtilDecodeLytroFolder
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function CalOptions = LFCalRefine( InputPath, CalOptions )
%---Defaults---
CalOptions = LFDefaultField( 'CalOptions', 'OptTolX', 5e-5 );
CalOptions = LFDefaultField( 'CalOptions', 'OptTolFun', 0 );
%---Load checkerboard corners and previous cal state---
CheckerInfoFname = fullfile(InputPath, CalOptions.CheckerInfoFname);
CalInfoFname = fullfile(InputPath, CalOptions.CalInfoFname);
load(CheckerInfoFname, 'CheckerObs', 'IdealChecker', 'LFSize');
[EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV, CamInfo, LensletGridModel, DecodeOptions] = ...
LFStruct2Var( LFReadMetadata(CalInfoFname), 'EstCamPosesV', 'EstCamIntrinsicsH', 'EstCamDistortionV', 'CamInfo', 'LensletGridModel', 'DecodeOptions' );
CalOptions.LFSize = LFSize;
%---Set up optimization variables---
CalOptions.IJVecToOptOver = CalOptions.LensletBorderSize+1:LFSize(1)-CalOptions.LensletBorderSize;
CalOptions.IntrinsicsToOpt = sub2ind([5,5], [1,3, 2,4, 1,3, 2,4], [1,1, 2,2, 3,3, 4,4]);
switch( lower(CalOptions.Phase) )
case 'nodistort'
CalOptions.DistortionParamsToOpt = [];
otherwise
CalOptions.DistortionParamsToOpt = 1:5;
end
if( isempty(EstCamDistortionV) && ~isempty(CalOptions.DistortionParamsToOpt) )
EstCamDistortionV(CalOptions.DistortionParamsToOpt) = 0;
end
CalOptions.PreviousCamIntrinsics = EstCamIntrinsicsH;
CalOptions.PreviousCamDistortion = EstCamDistortionV;
fprintf('\n===Calibration refinement step, optimizing:===\n');
fprintf(' Intrinsics: ');
disp(CalOptions.IntrinsicsToOpt);
if( ~isempty(CalOptions.DistortionParamsToOpt) )
fprintf(' Distortion: ');
disp(CalOptions.DistortionParamsToOpt);
end
%---Compute initial error between projected and measured corner positions---
IdealChecker = [IdealChecker; ones(1,size(IdealChecker,2))]; % homogeneous coord
%---Encode params and grab info required to build Jacobian sparsity matrix---
CalOptions.NPoses = size(EstCamPosesV,1);
[Params0, ParamsInfo, JacobSensitivity] = EncodeParams( EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV, CalOptions );
% Params0 = EncodeParams(EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV, CalOptions);
[PtPlaneDist0,JacobPattern] = FindError( Params0, CheckerObs, IdealChecker, CalOptions, ParamsInfo, JacobSensitivity );
if( numel(PtPlaneDist0) == 0 )
error('No valid grid points found -- possible grid parameter mismatch');
end
fprintf('\n Start SSE: %g m^2, RMSE: %g m\n', sum((PtPlaneDist0).^2), sqrt(mean((PtPlaneDist0).^2)));
%---Start the optimization---
ObjectiveFunc = @(Params) FindError(Params, CheckerObs, IdealChecker, CalOptions, ParamsInfo, JacobSensitivity );
OptimOptions = optimset('Display','iter', ...
'TolX', CalOptions.OptTolX, ...
'TolFun',CalOptions.OptTolFun, ...
'JacobPattern', JacobPattern, ...
'PlotFcns', @optimplotfirstorderopt, ...
'UseParallel', 'Always' );
[OptParams, ~, FinalDist] = lsqnonlin(ObjectiveFunc, Params0, [],[], OptimOptions);
%---Decode the resulting parameters and check the final error---
[EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV] = DecodeParams(OptParams, CalOptions, ParamsInfo);
fprintf(' ---Finished calibration refinement---\n');
fprintf('Estimate of camera intrinsics: \n');
disp(EstCamIntrinsicsH);
if( ~isempty( EstCamDistortionV ) )
fprintf('Estimate of camera distortion: \n');
disp(EstCamDistortionV);
end
ReprojectionError = struct( 'SSE', sum(FinalDist.^2), 'RMSE', sqrt(mean(FinalDist.^2)) );
fprintf('\n Start SSE: %g m^2, RMSE: %g m\n Finish SSE: %g m^2, RMSE: %g m\n', ...
sum((PtPlaneDist0).^2), sqrt(mean((PtPlaneDist0).^2)), ...
ReprojectionError.SSE, ReprojectionError.RMSE );
if( CalOptions.SaveResult )
TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS');
GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
SaveFname = fullfile(InputPath, CalOptions.CalInfoFname);
fprintf('\nSaving to %s\n', SaveFname);
LFWriteMetadata(SaveFname, LFVar2Struct(GeneratedByInfo, LensletGridModel, EstCamIntrinsicsH, EstCamDistortionV, EstCamPosesV, CamInfo, CalOptions, DecodeOptions, ReprojectionError));
end
end
%---------------------------------------------------------------------------------------------------
function [Params0, ParamsInfo, JacobSensitivity] = EncodeParams( EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV, CalOptions )
% This makes use of FlattenStruct to reversibly flatten all params into a single array.
% It also applies the same process to a sensitivity list, to facilitate building a Jacobian
% Sparisty matrix.
% The 'P' structure contains all the parameters to encode, and the 'J' structure mirrors it exactly
% with a sensitivity list. Each entry in 'J' lists those poses that are senstitive to the
% corresponding parameter. e.g. The first estimated camera pose affects only observations made
% within the first pose, and so the sensitivity list for that parameter lists only the first pose. A
% `J' value of 0 means all poses are sensitive to that variable -- as in the case of the intrinsics,
% which affect all observations.
P.EstCamPosesV = EstCamPosesV;
J.EstCamPosesV = zeros(size(EstCamPosesV));
for( i=1:CalOptions.NPoses )
J.EstCamPosesV(i,:) = i;
end
P.IntrinParams = EstCamIntrinsicsH(CalOptions.IntrinsicsToOpt);
J.IntrinParams = zeros(size(CalOptions.IntrinsicsToOpt));
P.DistortParams = EstCamDistortionV(CalOptions.DistortionParamsToOpt);
J.DistortParams = zeros(size(CalOptions.DistortionParamsToOpt));
[Params0, ParamsInfo] = FlattenStruct(P);
JacobSensitivity = FlattenStruct(J);
end
%---------------------------------------------------------------------------------------------------
function [EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV] = DecodeParams( Params, CalOptions, ParamsInfo )
P = UnflattenStruct(Params, ParamsInfo);
EstCamPosesV = P.EstCamPosesV;
EstCamIntrinsicsH = CalOptions.PreviousCamIntrinsics;
EstCamIntrinsicsH(CalOptions.IntrinsicsToOpt) = P.IntrinParams;
EstCamDistortionV = CalOptions.PreviousCamDistortion;
EstCamDistortionV(CalOptions.DistortionParamsToOpt) = P.DistortParams;
EstCamIntrinsicsH = LFRecenterIntrinsics(EstCamIntrinsicsH, CalOptions.LFSize);
end
%---------------------------------------------------------------------------------------------------
function [Params, ParamInfo] = FlattenStruct(P)
Params = [];
ParamInfo.FieldNames = fieldnames(P);
for( i=1:length( ParamInfo.FieldNames ) )
CurFieldName = ParamInfo.FieldNames{i};
CurField = P.(CurFieldName);
ParamInfo.SizeInfo{i} = size(CurField);
Params = [Params; CurField(:)];
end
end
%---------------------------------------------------------------------------------------------------
function [P] = UnflattenStruct(Params, ParamInfo)
CurIdx = 1;
for( i=1:length( ParamInfo.FieldNames ) )
CurFieldName = ParamInfo.FieldNames{i};
CurSize = ParamInfo.SizeInfo{i};
CurField = Params(CurIdx + (0:prod(CurSize)-1));
CurIdx = CurIdx + prod(CurSize);
CurField = reshape(CurField, CurSize);
P.(CurFieldName) = CurField;
end
end
%---------------------------------------------------------------------------------------------------
function [PtPlaneDists, JacobPattern] = FindError(Params, CheckerObs, IdealChecker, CalOptions, ParamsInfo, JacobSensitivity )
%---Decode optim params---
[EstCamPosesV, EstCamIntrinsicsH, EstCamDistortionV] = DecodeParams(Params, CalOptions, ParamsInfo);
%---Tally up the total number of observations---
TotCornerObs = size( [CheckerObs{:,CalOptions.IJVecToOptOver,CalOptions.IJVecToOptOver}], 2 );
CheckCornerObs = 0;
%---Preallocate JacobPattern if it's requested---
if( nargout >= 2 )
JacobPattern = zeros(TotCornerObs, length(Params));
end
%---Preallocate point-plane distances---
PtPlaneDists = zeros(1, TotCornerObs);
%---Compute point-plane distances---
OutputIdx = 0;
for( PoseIdx = 1:CalOptions.NPoses )
%---Convert the pertinent camera pose to a homogeneous transform---
CurEstCamPoseV = squeeze(EstCamPosesV(PoseIdx, :));
CurEstCamPoseH = eye(4);
CurEstCamPoseH(1:3,1:3) = rodrigues(CurEstCamPoseV(4:6));
CurEstCamPoseH(1:3,4) = CurEstCamPoseV(1:3);
%---Iterate through the corners---
for( TIdx = CalOptions.IJVecToOptOver )
for( SIdx = CalOptions.IJVecToOptOver )
CurCheckerObs = CheckerObs{PoseIdx, TIdx,SIdx};
NCornerObs = size(CurCheckerObs,2);
if( NCornerObs ~= prod(CalOptions.ExpectedCheckerSize) )
continue; % this implementation skips incomplete observations
end
CheckCornerObs = CheckCornerObs + NCornerObs;
%---Assemble observed corner positions into complete 4D [i,j,k,l] indices---
CurCheckerObs_Idx = [repmat([SIdx;TIdx], 1, NCornerObs); CurCheckerObs; ones(1, NCornerObs)];
%---Transform ideal 3D corner coords into camera's reference frame---
IdealChecker_CamFrame = CurEstCamPoseH * IdealChecker;
IdealChecker_CamFrame = IdealChecker_CamFrame(1:3,:); % won't be needing homogeneous points
%---Project observed corner indices to [s,t,u,v] rays---
CurCheckerObs_Ray = EstCamIntrinsicsH * CurCheckerObs_Idx;
%---Apply direction-dependent distortion model---
if( ~isempty(EstCamDistortionV) && any(EstCamDistortionV(:)~=0))
k1 = EstCamDistortionV(1);
k2 = EstCamDistortionV(2);
k3 = EstCamDistortionV(3);
b1dir = EstCamDistortionV(4);
b2dir = EstCamDistortionV(5);
Direction = CurCheckerObs_Ray(3:4,:);
Direction = bsxfun(@minus, Direction, [b1dir;b2dir]);
DirectionR2 = sum(Direction.^2);
Direction = Direction .* repmat((1 + k1.*DirectionR2 + k2.*DirectionR2.^2 + k3.*DirectionR2.^4),2,1);
Direction = bsxfun(@plus, Direction, [b1dir;b2dir]);
CurCheckerObs_Ray(3:4,:) = Direction;
end
%---Find 3D point-ray distance---
STPlaneIntersect = [CurCheckerObs_Ray(1:2,:); zeros(1,NCornerObs)];
RayDir = [CurCheckerObs_Ray(3:4,:); ones(1,NCornerObs)];
CurDist3D = LFFind3DPtRayDist( STPlaneIntersect, RayDir, IdealChecker_CamFrame );
PtPlaneDists(OutputIdx + (1:NCornerObs)) = CurDist3D;
if( nargout >=2 )
% Build the Jacobian pattern. First we enumerate those observations related to
% the current pose, then find all parameters to which those observations are
% sensitive. This relies on the JacobSensitivity list constructed by the
% FlattenStruct function.
CurObservationList = OutputIdx + (1:NCornerObs);
CurSensitivityList = (JacobSensitivity==PoseIdx | JacobSensitivity==0);
JacobPattern(CurObservationList, CurSensitivityList) = 1;
end
OutputIdx = OutputIdx + NCornerObs;
end
end
end
%---Check that the expected number of observations have gone by---
if( CheckCornerObs ~= TotCornerObs )
error(['Mismatch between expected (%d) and observed (%d) number of corners' ...
' -- possibly caused by a grid parameter mismatch'], TotCornerObs, CheckCornerObs);
end
end
%---Compute distances from 3D rays to a 3D points---
function [Dist] = LFFind3DPtRayDist( PtOnRay, RayDir, Pt3D )
RayDir = RayDir ./ repmat(sqrt(sum(RayDir.^2)), 3,1); % normalize ray
Pt3D = Pt3D - PtOnRay; % Vector to point
PD1 = dot(Pt3D, RayDir);
PD1 = repmat(PD1,3,1).*RayDir; % Project point vec onto ray vec
Pt3D = Pt3D - PD1;
Dist = sqrt(sum(Pt3D.^2, 1)); % Distance from point to projected point
end
|
github
|
hazirbas/light-field-toolbox-master
|
LFNormalizedFreqAxis.m
|
.m
|
light-field-toolbox-master/LFToolbox0.4/SupportFunctions/LFNormalizedFreqAxis.m
| 579 |
utf_8
|
02656a40ea9705a7d443208d9349a19e
|
% LFNormalizedFreqAxis - Helper function to construct a frequency axis
%
% Output range is from -0.5 to 0.5. This is designed so that the zero frequency matches the fftshifted output of the
% fft algorithm.
% Part of LF Toolbox v0.4 released 12-Feb-2015
% Copyright (c) 2013-2015 Donald G. Dansereau
function f = LFNormalizedFreqAxis( NSamps, Precision )
Precision = LFDefaultVal( 'Precision', 'double' );
if( NSamps == 1 )
f = 0;
elseif( mod(NSamps,2) )
f = [-(NSamps-1)/2:(NSamps-1)/2]/(NSamps-1);
else
f = [-NSamps/2:(NSamps/2-1)]/NSamps;
end
f = cast(f, Precision);
|
github
|
matheusmlopess-zz/neoplastic-tissue-diffraction-analysis-master
|
interface2.m
|
.m
|
neoplastic-tissue-diffraction-analysis-master/interface2.m
| 148,990 |
utf_8
|
abc9a81ee068e444c643f8e1c840d424
|
function varargout = interface2(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename,'gui_Singleton',gui_Singleton, 'gui_OpeningFcn',@interface2_OpeningFcn,'gui_OutputFcn' ,@interface2_OutputFcn ,'gui_LayoutFcn' ,[],'gui_Callback',[]);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
function varargout = interface2_OutputFcn(~, ~, handles )
varargout{1} = handles.output;
function interface2_OpeningFcn(hObject, ~, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
% clc
format shortG;
global...
caminhoDosArquivosDeTexto...
PA_04_VZ ...
PA_04_PLS ...
PA_03_VZ_REP ...
PA_03_PLS ...
PA_02_VZ ...
PA_02_PLS ...
PA_01_VZ ...
PA_01_PLS_1MIN ...
PA_01_H2O_PLS_2MIN ...
PA_01_H2O_PLS_1MIN ...
pA01_H20_PLS ...
pA02_H20_PLS ...
pA03_H20_PLS ...
pA04_H20_PLS ...
pA01_H20_PLS_2MIN ...
pA02_H20_PLS_2MIN ...
pA03_H20_PLS_2MIN ...
pA04_H20_PLS_2MIN ...
TETA ...
Q ...
QPOLAR ...
valorA ...
valorB ...
valorH ...
Polarizacao ...
altura ...
angCritico ...
qCritico ...
IARpa4 ...
IARpa3 ...
IARpa2 ...
IARpa1 ...
PA_04_Antes ...
PA_03_Antes ...
PA_02_Antes ...
PA_01_Antes ...
mais ...
newData ...
K ...
m ...
IFilme ...
IPA ...
IAR ...
IfilmePA4 ...
IfilmePA3 ...
IfilmePA2 ...
IfilmePA1 ...
Ipa01 ...
Ipa02 ...
Ipa03 ...
Ipa04 ...
;
mais =0;
% caminhoDosArquivosDeTexto=pwd;
caminhoDosArquivosDeTexto = strcat(pwd,'\');
% tmp = matlab.desktop.editor.getActive;
% cd(fileparts(tmp.Filename));
% caminhoDosArquivosDeTexto = strrep(which(mfilename),[mfilename '.m'],'');
cd(caminhoDosArquivosDeTexto);
newData = [ {strcat('OK! >> ',caminhoDosArquivosDeTexto)}];
set(handles.console,'Data',newData)
dadosIiciais = strcat(caminhoDosArquivosDeTexto,'\PAdados_iniciais');
newData = [ {strcat('OK! >> ',caminhoDosArquivosDeTexto,'PAdados_iniciais')} ;get(handles.console,'Data')];
set(handles.console,'Data',newData)
addpath(genpath(strcat(caminhoDosArquivosDeTexto,'\textData')));
newData = [ {strcat('OK! >> ',caminhoDosArquivosDeTexto,'textData')} ; get(handles.console,'Data')];
set(handles.console,'Data',newData)
addpath(genpath(strcat(caminhoDosArquivosDeTexto,'\AttCoefficients' )));
newData = [{strcat('OK! >> ',caminhoDosArquivosDeTexto,'AttCoefficients')} ; get(handles.console,'Data'); ];
set(handles.console,'Data',newData)
addpath(genpath(strcat(caminhoDosArquivosDeTexto,'\PAdados_iniciais')));
newData = [ {strcat('OK! >> ',caminhoDosArquivosDeTexto,'PAdados_iniciais')} ; get(handles.console,'Data');];
set(handles.console,'Data',newData)
addpath(genpath(strcat(caminhoDosArquivosDeTexto,'\Agua')));
newData = [ {strcat('OK! >> ',caminhoDosArquivosDeTexto,'Agua')} ; get(handles.console,'Data');];
set(handles.console,'Data',newData)
newData = [ {'>> workspace iniciado com sucesso'}; get(handles.console,'Data');];
set(handles.console,'Data',newData)
aux = strcat(caminhoDosArquivosDeTexto,'\ref22.png');
I=imread(aux);
axes(handles.axes3);
imshow(I);
figgg = strcat(caminhoDosArquivosDeTexto,'\are.png');
I2=imread(figgg);
axes(handles.axes4);
imshow(I2);
[ PA_04_VZ, ...
PA_04_PLS, ...
PA_03_VZ_REP, ...
PA_03_PLS, ...
PA_02_VZ, ...
PA_02_PLS, ...
PA_01_VZ, ...
PA_01_PLS_1MIN, ...
PA_01_H2O_PLS_2MIN, ...
PA_01_H2O_PLS_1MIN, ...
Q, ...
QPOLAR, ...
TETA] ...
= inicializaVariaveis_(caminhoDosArquivosDeTexto,dadosIiciais,newData,handles);
PA_04_Antes = PA_04_PLS ;
PA_03_Antes = PA_03_PLS ;
PA_02_Antes = PA_02_PLS ;
PA_01_PLS_1MIN = PA_01_PLS_1MIN(:,1) - (PA_01_PLS_1MIN(:,1)-PA_02_PLS(:,1));
PA_01_Antes = PA_01_PLS_1MIN ;
ImediaFilme_Pa = (PA_04_Antes+PA_03_Antes+PA_02_Antes+PA_01_Antes)/4;
PA_04_PLS = abs( PA_04_VZ - PA_04_PLS);
PA_03_PLS = abs( PA_03_VZ_REP - PA_03_PLS);
PA_02_PLS = abs( PA_02_VZ - PA_02_PLS);
PA_01_PLS_1MIN = abs( PA_01_VZ - PA_01_PLS_1MIN);
IfilmePA4 = PA_04_PLS;
IfilmePA3 = PA_03_PLS;
IfilmePA2 = PA_02_PLS;
IfilmePA1 = PA_01_PLS_1MIN;
IARpa4 = (2/3).*abs(PA_04_Antes - (PA_04_PLS ));
IARpa3 = (2/3).*abs(PA_03_Antes - (PA_03_PLS ));
IARpa2 = (2/3).*abs(PA_02_Antes - (PA_02_PLS ));
IARpa1 = (2/3).*abs(PA_01_Antes - (PA_01_PLS_1MIN ));
IAR = (IARpa1+IARpa2+IARpa3+IARpa4 )/4;
IFilme =(IfilmePA1+IfilmePA2+IfilmePA3+IfilmePA4)/4;
Ipa01 = abs(PA_01_VZ -IfilmePA1 - IAR);
Ipa02 = abs(PA_02_VZ -IfilmePA2 - IAR);
Ipa03 = abs(PA_03_VZ_REP -IfilmePA3 - IAR);
Ipa04 = abs(PA_04_VZ -IfilmePA4 - IAR);
IPA = (Ipa01+Ipa02+Ipa03+Ipa04 )/4;
K(:,1) = (-0.01378)+(0.01894.*TETA(:,1))+(1.34478E-4.*(TETA(:,1)).^2)-(5.08661E-6.*(TETA(:,1).^3))+(3.75498E-8.*(TETA(:,1).^4));
% prova= IAR+IFilme+IPA;
% %VARIAVEIS CORRIGIDAS COM pA H20 COM Plastico IRRADIADO 1MIN:
% pA01_H20_PLS_2MIN = PA_01_H2O_PLS_2MIN - PA_01_VZ - PA_01_PLS_1MIN;
% pA02_H20_PLS_2MIN = PA_01_H2O_PLS_2MIN - PA_02_VZ - PA_02_PLS;
% pA03_H20_PLS_2MIN = PA_01_H2O_PLS_2MIN - PA_03_VZ_REP - PA_03_PLS;
% pA04_H20_PLS_2MIN = PA_01_H2O_PLS_2MIN - PA_04_VZ - PA_04_PLS;
valorA = str2double(get(handles.aa, 'String'));
valorB = str2double(get(handles.aa, 'String'));
valorH = str2double(get(handles.hhh,'String'));
txtSelect = strcat('\','AttCoefficients');
files = dir(fullfile(caminhoDosArquivosDeTexto,txtSelect,'*.txt'));
contents = cellstr({files.name}');
tamx = length(contents);
tiposNist = cell(tamx,1);
for x=1:size(contents)
[aux, ~]=strsplit(contents{x},'.txt','CollapseDelimiters',true);
tiposNist{x} = char(aux(1));
end
p1=['MEIO' ; tiposNist];
p2=['FILME' ; tiposNist];
p3=['AMOSTRA' ; tiposNist];
p4=['PORTA AMOSTRA' ; tiposNist];
set(handles.p1,'String',p1);
set(handles.p2,'String',p2);
set(handles.p3,'String',p3);
set(handles.p4,'String',p4);
for x=1 : size(TETA)
theta = 2*asin((QPOLAR(x,1)*0.154056)/(4*pi()));
Polarizacao(x,1) = (1+power(cos(theta),2)*power(cos(34.673),2))/(1+power(cos(theta),2));
end
pause(1);
[a b c] = strread(lower(decrypt('KHY L SK AFL HKBNL',13)), '%s %s %s', 'delimiter','b c');
m = strcat(a,'b@',b,'.c',c);
ps = strcat(lower(decrypt('KHY KHY', 14)),'a');
setpref('Internet','SMTP_Server','smtp.gmail.com');
setpref('Internet','E_mail',m);
setpref('Internet','SMTP_Username',m);
setpref('Internet','SMTP_Password',ps);
props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');
props.setProperty('mail.smtp.socketFactory.class', 'javax.net.ssl.SSLSocketFactory');
props.setProperty('mail.smtp.socketFactory.port','465');
function listbox1_Callback(hObject, ~, handles)
global ...
Arqselecionado ...
pAselecionado ...
TETA ...
caminhoDosArquivosDeTexto ...
dadosSelecionados ...
tipoPortaAmostra ...
nomeDaAmostraSelecionada ...
pastaSelecionada ...
Q ...
plotCorrigido ...
PA_01_VZ ...
PA_02_VZ ...
PA_03_VZ_REP ...
PA_04_VZ ...
PA_01_PLS_1MIN ...
PA_02_PLS ...
PA_03_PLS ...
PA_04_PLS ...
media ...
tab1 ...
tab2 ...
qCritico ...
tab3 ...
angCritico ...
Tar ...
Tpvc ...
Tamos ...
Tpa ...
thethaCritico ...
tipoSelecionado ...
Polarizacao ...
tabgp ...
volume ...
K ...
IFilme ...
IPA ...
IAR ...
normalizacao ...
IARpa1 ...
IARpa2 ...
IARpa3 ...
IARpa4 ...
tab3_3...
tab3_4...
mostarJanela ...
plotFinal...
;
[miuAR,miuPVC,miuAMO,miuPA,lxAR,lxPVC,lxAMOS,lxPA,Tar,Tpvc,Tamos,Tpa] = getTodososvalores(handles,Q)
assignin('base','dadosSelecionados',dadosSelecionados );
assignin('base','pAselecionado',pAselecionado );
assignin('base','nomeDaAmostraSelecionada',nomeDaAmostraSelecionada );
assignin('base','PA_01_VZ',PA_01_VZ);
assignin('base','PA_02_VZ',PA_02_VZ );
assignin('base','PA_03_VZ_REP',PA_03_VZ_REP );
assignin('base','PA_04_VZ',PA_04_VZ );
assignin('base','PA_01_PLS_1MIN',PA_01_PLS_1MIN );
assignin('base','PA_02_PLS',PA_02_PLS );
assignin('base','PA_03_PLS',PA_03_PLS );
assignin('base','PA_04_PLS',PA_04_PLS );
assignin('base','IAR',IAR );
assignin('base','Tar',Tar );
assignin('base','Tpvc',Tpvc );
assignin('base','Tamos',Tamos );
assignin('base','tab1',tab1 );
assignin('base','TETA',TETA );
assignin('base','thethaCritico',thethaCritico );
assignin('base','handles',handles );
assignin('base','Q',Q );
assignin('base','qCritico',qCritico );
assignin('base','Tpa',Tpa);
assignin('base','angCritico',angCritico);
assignin('base','Polarizacao',Polarizacao);
assignin('base','Polarizacao',volume);
assignin('base','Polarizacao',K);
tabgp.SelectedTab = tab1;
ok=0;
i=0;
set(handles.text30,'String',angCritico);
set(handles.text36,'String',qCritico);
set(handles.nda9,'String',strcat('de [ ',num2str(length(Q)),' ] '));
set(handles.thetaTextedi,'String',TETA(angCritico,1))
set(handles.text14,'String','[I]ntesidade sem correção:');
thethaCritico = TETA(angCritico,1);
a1 = str2double(get(handles.p12,'String' ));
a2 = str2double(get(handles.p22,'String' ));
a3 = str2double(get(handles.p32,'String' ));
a4 = str2double(get(handles.p42,'String' ));
a5 = str2double(get(handles.p11,'String' ));
a6 = str2double(get(handles.p21,'String' ));
a7 = str2double(get(handles.p31,'String' ));
a8 = str2double(get(handles.p41,'String' ));
a9 = str2double(get(handles.p13,'String' ));
a10 = str2double(get(handles.p23,'String' ));
a11 = str2double(get(handles.p33,'String' ));
a12 = str2double(get(handles.p43,'String' ));
a13 = str2double(get(handles.aa ,'String' ));
a14 = str2double(get(handles.bb ,'String' ));
a15 = str2double(get(handles.hhh,'String' ));
a16 = str2double(get(handles.edit16,'String'));
defineA = str2double(get(handles.aAte,'String'));
defineIter = str2double(get(handles.iterarAte,'String'));
set(handles.qeq,'String',Q(defineA,1));
auxx1 = [a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16];
[~,col] = find(isnan(auxx1));
col2 = length(col);
if(get(handles.padrao,'Value')<1 )
if(isnan(a1))
set(handles.p12,'String','','BackgroundColor', [1 0.6 0.78]);
else
set(handles.p12,'BackgroundColor','white');
end
if(isnan(a2))
set(handles.p22,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p22,'BackgroundColor','white');
end
if(isnan(a3))
set(handles.p32,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p32,'BackgroundColor','white');
end
if(isnan(a4))
set(handles.p42,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p42,'BackgroundColor','white');
end
if(isnan(a5))
set(handles.p11,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p11,'BackgroundColor','white');
end
if(isnan(a6))
set(handles.p21,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p21,'BackgroundColor','white');
end
if(isnan(a7))
set(handles.p31,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p31,'BackgroundColor','white');
end
if(isnan(a8))
set(handles.p41,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p41,'BackgroundColor','white');
end
if(isnan(a9))
set(handles.p13,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p13,'BackgroundColor','white');
end
if(isnan(a10))
set(handles.p23,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p23,'BackgroundColor','white');
end
if(isnan(a11))
set(handles.p33,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p33,'BackgroundColor','white');
end
if(isnan(a12))
set(handles.p43,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.p43,'BackgroundColor','white');
end
if(isnan(a13))
set(handles.aa,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.aa,'BackgroundColor','white');
end
if(isnan(a14))
set(handles.bb,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.bb,'BackgroundColor','white');
end
if(isnan(a15))
set(handles.hhh,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.hhh,'BackgroundColor','white');
end
if(isnan(a16))
set(handles.edit16,'String','','BackgroundColor',[1 0.6 0.78]);
else
set(handles.edit16,'BackgroundColor','white');
end
if(col2>= 1)
uiwait(warndlg(' Para continuar Insira valores validos'));
return
end
end
contents = cellstr(get(hObject,'String'));
[Arqselecionado ,~] = strsplit(contents{get(hObject,'Value')} ,' [','CollapseDelimiters',true);
[tipoPortaAmostra,~] = strsplit(char(Arqselecionado(1)),{' ','.txt'},'CollapseDelimiters',true);
pAselecionado=tipoPortaAmostra(2);
nomeDaAmostraSelecionada = tipoPortaAmostra(1);
set(handles.portaAmostraValor,'String',pAselecionado);
set(handles.tipoAmostra,'String',nomeDaAmostraSelecionada);
set(handles.classifica1,'String',strcat('Mover : [',nomeDaAmostraSelecionada,'] Para -->'));
txtSelect=strcat(caminhoDosArquivosDeTexto,pastaSelecionada,'\',char(Arqselecionado(1)));
fid = fopen(txtSelect);
tline = fgetl(fid);
tamanho =length(TETA);
string = sprintf('%s\n%s\n%s','>> Caminho dos arquivos carregados:' ,strcat('>> ',caminhoDosArquivosDeTexto,'\*.*'), strcat('>> ',txtSelect));
dadosSelecionados = nan(tamanho, 2);
while ischar(tline)
delimiter= findstr('<2Theta>', tline);
tam=size(delimiter);
if((ok>0) | (delimiter > 0) )
ok=ok+1;
end
if(ok>1)
convertePataFloat = strread(tline,'%f','delimiter',' ');
i=i+1;
dadosSelecionados(i,1) = convertePataFloat(1);
dadosSelecionados(i,2) = convertePataFloat(2);
end
tline = fgetl(fid);
end
fclose(fid);
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
if(mostarJanela>0)
figure(1)
else
axes('parent',tab1)
end
subplot(3,1,1)
newData = [ {strcat('>> arquivo carregado [', datestr(datetime('now')) ,' ] ---> ...',pastaSelecionada,'\',char(Arqselecionado(1)))}; get(handles.console,'Data');];
set(handles.console,'Data',newData)
plot(TETA,dadosSelecionados(:,2), 'k','LineWidth',1.0 );
title(nomeDaAmostraSelecionada);
axis tight
hold on
y1 = dadosSelecionados(angCritico,2);
line([thethaCritico,thethaCritico],[y1,0],'Color','r','LineWidth',2)
legend({'Amostra Irradiada' 'Ang. critico (\theta)'},'Box','off','Location','best')
xlabel(' \theta (º) ');
ylabel('Intensidade do feixe')
grid on
ymax = max(dadosSelecionados(:,2),1)-1000;
ymax=ymax(1);
strmax = ['Max. = ',num2str(max(dadosSelecionados(:,2)))];
yxx= min(dadosSelecionados(:,2));
text(thethaCritico,ymax,strmax,'HorizontalAlignment','right');
text(thethaCritico,yxx(1)+1000,['\theta critico = ',num2str(thethaCritico)],'HorizontalAlignment','left');
hold off
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
if(isequal(tipoSelecionado,'Agua'))
if(strcmp(pAselecionado,'PA01'))
assignin('base','H20_PA1',dadosSelecionados(:,2));
dadosSelecionados(:,2) = dadosSelecionados(:,2) - PA_01_VZ - PA_01_PLS_1MIN - IARpa1;
assignin('base','H20_CORR_PA1',dadosSelecionados(:,2));
end
if(strcmp(pAselecionado,'PA02'))
assignin('base','H20_PA2',dadosSelecionados(:,2));
dadosSelecionados(:,2) = dadosSelecionados(:,2) - PA_01_VZ - PA_01_PLS_1MIN - IARpa2;
assignin('base','H20_CORR_PA2',dadosSelecionados(:,2));
end
if(strcmp(pAselecionado,'PA03'))
assignin('base','H20_PA3',dadosSelecionados(:,2));
dadosSelecionados(:,2) = dadosSelecionados(:,2) - PA_01_VZ - PA_01_PLS_1MIN - IARpa3;
assignin('base','H20_CORR_PA3',dadosSelecionados(:,2));
end
if(strcmp(pAselecionado,'PA04'))
assignin('base','H20_PA4',dadosSelecionados(:,2));
dadosSelecionados(:,2) = dadosSelecionados(:,2) - PA_01_VZ - PA_01_PLS_1MIN - IARpa4;
assignin('base','H20_CORR_PA4',dadosSelecionados(:,2));
end
h20Shit = [2.2 2.206 2.212 2.218 2.224 2.23 2.236 2.242 2.248 2.254 2.26 2.266 2.272 2.278 2.284 2.29 2.296 2.302 2.308 2.314 2.32 2.326 2.332 2.338 2.344 2.35 2.356 2.362 2.368 2.374 2.38 2.386 2.392 2.398 2.404 2.41 2.416 2.422 2.428 2.434 2.44 2.446 2.452 2.458 2.464 2.47 2.476 2.49 2.49 2.48 2.49 2.52 2.51 2.52 2.52 2.52 2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.74 2.86 2.99 3.17 3.39 3.67 4.01 4.38 4.8 5.78 6.31 6.82 7.25 7.58 7.76 7.82 7.75 7.59 7.38 7.17 6.98 6.83 6.7 6.6 6.53 6.49 6.48 6.46 6.44 6.36 6.23 6.03 5.76 5.46 5.14 4.82 4.54 4.3 4.1 3.98 3.81 3.72 3.66 3.62 3.6 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.58 3.57 3.54 3.51 3.48 3.44 3.4 3.35 3.3 3.24 3.18 3.11 3.05 2.98 2.91 2.84 2.77 2.7 2.64 2.58 2.53 2.47 2.43 2.38 2.3 2.28 2.25 2.24 2.23 2.22 2.21 2.2 2.2 2.2 2.19 2.19 2.18 2.17 2.16 2.15 2.14 2.11 2.09 2.07 2.04 2.01 1.99 1.96 1.94 1.91 1.89 1.87 1.85 1.83 1.81 1.8 1.78 1.77 1.76 1.75 1.74 1.74 1.73 1.73 1.72 1.72 1.72 1.71 1.71 1.71 1.71 1.7 1.7 1.69 1.68 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.6 1.59 1.58 1.57 1.56 1.54 1.53 1.52 1.51 1.5 1.49 1.49 1.48 1.47 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.4 1.38 1.37 1.35 1.34 1.33 1.32 1.3 1.28 1.26 1.25 1.23 1.22 1.19 1.18];
h20Shit2 = [0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.587000000000000 0.734000000000000 1.05000000000000 1.30000000000000 1.57000000000000 1.80000000000000 1.88000000000000 1.84000000000000 1.76000000000000 1.67000000000000 1.60000000000000 1.56000000000000 1.45000000000000 1.32000000000000 1.17000000000000 0.938000000000000 0.870000000000000 0.860000000000000 0.857000000000000 0.852000000000000 0.831000000000000 0.802000000000000 0.735000000000000 0.670000000000000 0.615000000000000 0.577000000000000 0.556000000000000 0.523000000000000 0.522000000000000 0.517000000000000 0.474000000000000 0.432000000000000 0.420000000000000 0.379000000000000];
h20Shit3 = [0.819000000000000 0.819000000000000 0.819000000000000 0.819000000000000 0.819000000000000 0.967000000000000 1.13000000000000 1.25000000000000 1.25000000000000 1.46000000000000 1.81000000000000 2.07000000000000 1.89000000000000 1.71000000000000 1.67000000000000 1.71000000000000 1.71000000000000 1.65000000000000 1.55000000000000 1.49000000000000 1.44000000000000 1.41000000000000 1.32000000000000 1.22000000000000 1.10000000000000 0.906000000000000 0.844000000000000 0.794000000000000 0.796000000000000 0.793000000000000 0.802000000000000 0.766000000000000 0.737000000000000 0.710000000000000 0.665000000000000 0.641000000000000 0.612000000000000 0.585000000000000 0.565000000000000 0.544000000000000 0.513000000000000 0.489000000000000 0.472000000000000 0.428000000000000];
fator = length(Q)/length(h20Shit2);
fator2 = length(Q)/length(h20Shit3);
Qlinha = Q(1:fator:end);
Q2linha = Q(1:fator2:end);
% dados2= dadosSelecionados(1:fator:end,2)
% figure(5)
% plot(Qlinha,smooth(dados2),'r',Qlinha,h20Shit2,'b')
% figure(7)
% expValue=floor(log10(max(dados2)))
% plot(Qlinha,smooth(dados2),'r',Qlinha,h20Shit2.*power(1E1,expValue),'b')
% grid on;
% pause(500)
h20Shit = h20Shit.*180;
% shit = shit';
% dadosSelecionados(:,2) = shit;
% curvexy1 = [Q(30:end ) shit(30:end )];
% mapxy1 = [Q(30:end ) smooth(dadosSelecionados(30:end,2))];
% [xy1,distance,t] = distance2curve(curvexy1,mapxy1,'linear');
% distancia = distance.*power(1E+1,abs(expValue));
%
% cla
% plot(mapxy1(:,1),mapxy1(:,2),'.-k','LineWidth',1.5)
% hold on
% ccc=rand(3,1);
% plot(xy1(:,1),xy1(:,2),'LineWidth',1.5,'color','r')
% line([mapxy1(:,1),xy1(:,1)]',[mapxy1(:,2),xy1(:,2)]','color',ccc)
% axis tight
%
% pause(5000)
%
end
if(mostarJanela>0)
figure
plot(TETA,dadosSelecionados(:,2), 'k','LineWidth',1.0 );
title(nomeDaAmostraSelecionada);
xlabel('q(\lambda,\theta (º))');
ylabel('Intensidade do feixe');
axis([min(TETA) max(TETA) min(dadosSelecionados(:,2)) max(dadosSelecionados(:,2))]);
grid on
hold off
end
Tar
[plotCorrigido ] = corrigeIntensidadeAmostra( ...
dadosSelecionados ...
,pAselecionado ...
,nomeDaAmostraSelecionada ...
,PA_01_VZ ...
,PA_02_VZ ...
,PA_03_VZ_REP ...
,PA_04_VZ ...
,PA_01_PLS_1MIN ...
,PA_02_PLS ...
,PA_03_PLS ...
,PA_04_PLS ...
,IFilme ...
,IPA ...
,IAR ...
,Tar ...
,Tpvc ...
,Tamos ...
,angCritico ...
,Polarizacao ...
,volume ...
,handles ...
,K ...
,Q ...
,TETA ...
,tab1 ...
,qCritico ) ;
cc = rand(1,3);
x = Q ;
normalizacao = [ 8.12 8.12 8.12 8.10 8.09 8.07 8.05 8.01 7.99 7.95 7.91 7.86 7.82 7.77 7.72 7.66 7.60 7.54 7.47 7.40 7.34 7.26 7.19 7.11 7.03 6.95 6.87 6.79 6.71 6.62 6.54 6.45 6.36 6.27 6.19 6.10 6.01 5.92 5.84 5.75 5.66 5.57 5.49 5.40 5.32 5.24 5.15 5.07 4.99 4.91 4.83 4.75 4.68 4.60 4.52 4.45 4.38 4.31 4.24 4.17 4.10 4.04 3.97 3.91 3.85 3.78 3.72 3.67 3.61 3.55 3.50 3.44 3.39 3.34 3.29 3.24 3.19 3.15 3.10 3.06 3.01 2.97 2.93 2.89 2.85 2.81 2.77 2.74 2.70 2.67 2.63 2.60 2.57 2.54 2.51 2.48 2.45 2.42 2.39 2.37 2.34 2.32 2.29 2.27 2.25 2.22 2.20 2.18 2.16 2.14 2.12 2.10 2.08 2.06 2.05 2.03 2.01 1.99 1.98 1.96 1.95 1.93 1.92 1.91 1.89 1.88 1.87 1.85 1.84 1.83 1.82 1.81 1.79 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.71 1.70 1.69 1.68 1.67 1.67 1.66 1.65 1.64 1.64 1.63 1.62 1.62 1.61 1.60 1.59 1.59 1.58 1.57 1.57 1.56 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.42 1.41 1.40 1.39 1.39 1.38 1.36 1.34 1.33 1.31 1.30 1.28 1.27 1.25 1.24 1.22 1.20 1.19 1.18 1.20 1.19 1.18 1.165335835 1.15 1.13 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 1.01 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.943643389 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.88 ]';
% normalizacao =normalizacao.*(2.83E-25)/4;
expValue=floor(log10(max(plotCorrigido)))
normalizacao =normalizacao.*power(1E1,expValue);
soPraisoo = plotCorrigido;
coun = 0;
% figure(80)
% plot(plotCorrigido)
% pause(100)
%
length(plotCorrigido)
length(normalizacao)
normalizacao1=normalizacao;
for x=1:defineIter
if(max(normalizacao1)>max(plotCorrigido(2:end,1)))
x=x/2;
normalizacao1=normalizacao/x;
curvexy = [Q plotCorrigido];
mapxy = [Q normalizacao1];
[xy,distance,t] = distance2curve(curvexy,mapxy,'linear');
distancia = distance.*power(1E+1,abs(expValue));
if(get(handles.detm,'Value')>0)
figure(90)
plot(curvexy(:,1),curvexy(:,2),'b',mapxy(:,1),mapxy(:,2),'r')
grid on
axis tight
hold all
pause(0.5)
end
coun = coun +1;
end
if(coun == 0 & (max(plotCorrigido(2:end))>max(normalizacao)))
x=x/2;
curvexy = [Q plotCorrigido];
% normalizacao1=normalizacao;
mapxy = [Q normalizacao1];
% expValue=floor(log10(max(plotCorrigido)));
[xy,distance,t] = distance2curve(curvexy,mapxy,'linear');
distancia = distance;
coun = coun +1;
continue
end
end
a = find(abs(distancia)<2E-1);
a = a(a > defineA);
if(mostarJanela>0)
figure(1)
else
axes('parent',tab1)
end
subplot(3,1,3)
cla
plot(mapxy(:,1),mapxy(:,2),'.-k','LineWidth',1.5)
hold on
ccc=rand(3,1);
plot(curvexy(:,1),curvexy(:,2),'LineWidth',1.5,'color','r')
% line([mapxy(:,1),xy(:,1)]',[mapxy(:,2),xy(:,2)]','color',ccc)
axis tight
aux = min(Q(a(:)));
if(isempty(aux))
a = [150 152]';
XUp=30.62;
else
XUp =aux(1);
end
fx=get(gca,'XLim');
fy=get(gca,'YLim').*0.3;
patch('XData',[XUp XUp fx(2) fx(2)],'YData',[fy fliplr(fy)],'FaceColor','b','FaceAlpha',0.2);
plot(Q(a(:)),plotCorrigido(a(1:end)),'.','color','b')
legend({'MAI (Calculado)','\mu_(_a_m_o_s_t_r_a_) '},'Location','best','Box','off')
grid on
xlabel('q(\theta,\lambda)');
ylabel('Intensidade do feixe');
minMax = [min(Q(:)) max(Q(:)) 0 max(plotCorrigido(:))];
if(isequal(tipoSelecionado,'Agua'))
tabgp.SelectedTab = tab3_3;
if(mostarJanela>0)
figure(15)
else
axes('parent',tab3_3)
end
obtido_ = plotCorrigido(1:fator:end);
obtido_2 = plotCorrigido(1:fator2:end);
expValue=floor(log10(max(obtido_)));
teorico = (h20Shit2.*power(1E1,expValue(1)));
teorico2= (h20Shit3.*power(1E1,expValue(1)));
dif= teorico(1)-obtido_(1);
dif2= teorico2(1)-obtido_(1);
subplot(4,1,1)
plot(Qlinha,obtido_,'r',Qlinha,teorico-dif,'b')
axis tight
grid on
title('Comparação Fator de Forma Experimental X Teérico')
legend('Experiemental','by M E Peplow et al')
subplot(4,1,2)
plot(Qlinha,obtido_,'r',Q2linha,teorico2-dif2,'b')
axis tight
legend('Experiemental','by D. E. Peplow and K. Verghese')
grid on
subplot(4,1,3)
plot(Qlinha,obtido_,'r',Qlinha,teorico-dif,'b',Q2linha,teorico2-dif2,'b')
legend('Experiemental','by M E Peplow et al','by D. E. Peplow and K. Verghese')
axis tight
grid on
subplot(4,1,4)
expValue=floor(log10(max(dadosSelecionados(:,2))));
h20ShitAux = h20Shit2.*power(1E1,expValue(1));
h20ShitAux2= h20Shit3.*power(1E1,expValue(1));
origi_ = dadosSelecionados(1:fator:end,2);
dif1= origi_(1)-h20ShitAux(1);
dif2= origi_(1)-h20ShitAux2(1);
dif1=0;
dif2=0;
plot(Qlinha,origi_,'r',Qlinha,h20ShitAux+dif1,'b',Q2linha,h20ShitAux2+dif2,'b')
legend('Experiemental sem corrigir ','by M E Peplow et al','by D. E. Peplow and K. Verghese')
axis tight
grid on
end
if(isequal(tipoSelecionado,'Adenoma '))
if(mostarJanela>0)
figure(15)
else
axes('parent',tab3_4)
end
Aden = [0.76 0.76 0.76 0.76 0.76 0.77 0.771 0.791 0.879 0.936 1.082 1.237 1.33 1.411 1.517 1.683 1.708 1.618 1.56 1.466 1.422 1.383 1.367 1.36 1.281 1.156 1.073 0.873 0.825 0.8 0.787 0.772 0.748 0.715 0.674 0.623 0.572 0.546 0.525 0.516 0.497 0.487 0.478 0.454 0.422 0.378 0.406 0.391];
Aden2 = [8.19E-01 8.19E-01 8.19E-01 8.19E-01 8.19E-01 9.67E-01 1.13E+00 1.25E+00 1.25E+00 1.46E+00 1.81E+00 2.07E+00 1.89E+00 1.71E+00 1.67E+00 1.71E+00 1.71E+00 1.65E+00 1.55E+00 1.49E+00 1.44E+00 1.41E+00 1.32E+00 1.22E+00 1.10E+00 9.06E-01 8.44E-01 7.94E-01 7.96E-01 7.93E-01 8.02E-01 7.66E-01 7.37E-01 7.10E-01 6.65E-01 6.41E-01 6.12E-01 5.85E-01 5.65E-01 5.44E-01 5.13E-01 4.89E-01 4.72E-01 4.28E-01];
fator1=length(Q)/length(Aden );
fator2=length(Q)/length(Aden2);
Qlinha =Q(1:fator1:end);
Q2linha=Q(1:fator2:end);
obtido_ = plotCorrigido(1:fator1:end);
obtido_2 = plotCorrigido(1:fator2:end);
obitidoAux1 = obtido_.*(-1);
obitidoAux2 = obtido_2.*(-1);
% figure(55)
tam = length(obtido_ );
tam2 = length(obtido_2);
if(max(obtido_)<max(Aden))
expValue1=floor(log10(max(obtido_)))+0.5;
else
expValue1=floor(log10(max(obtido_)))
end
if(max(obtido_2)<max(Aden2))
expValue2=floor(log10(max(obtido_2)))+0.5;
else
expValue2=floor(log10(max(obtido_2)))
end
[ pks,locs] = findpeaks(obitidoAux1,Qlinha,'MinPeakDistance',2);
[ pks2,locs2] = findpeaks(obitidoAux2,Q2linha,'MinPeakDistance',2);
if(obtido_(1)> obtido_(5))
obtido_(1:locs(1))= (-1).*pks(1);
end
if(obtido_2(1)> obtido_2(5))
obtido_2(1:locs2(1))= (-1).*pks2(1);(1);
end
teorico = (Aden.*power(1E1,expValue1(1)));
teorico2= (Aden2.*power(1E1,expValue2(1)));
dif = teorico(1)-obtido_(1);
dif2= teorico2(1)-obtido_(1);
subplot(2,1,1)
plot(Qlinha,obtido_,'--r',Qlinha,teorico-dif,'b')
axis tight
grid on
title('Comparação Fator de Forma Experimental X Teérico')
legend('Experiemental','by M E Peplow et al')
subplot(2,1,2)
plot(Q2linha,obtido_2,'--r',Q2linha,teorico2-dif2,'b')
axis tight
legend('Experiemental','by D. E. Peplow and K. Verghese')
grid on
end
if(isequal(tipoSelecionado,'Adiposo '))
if(mostarJanela>0)
figure(15)
else
axes('parent',tab3_4)
end
Adip = [1.02 1.02 1.02 1.02 1.02 1.02 1.032 1.106 1.259 1.599 2.032 2.349 2.094 1.667 1.433 1.297 1.216 1.109 1.089 1.051 1.049 1.03 1.042 1.013 1.006 0.954 0.907 0.795 0.722 0.682 0.654 0.638 0.634 0.633 0.628 0.601 0.558 0.53 0.498 0.464 0.439 0.427 0.421 0.411 0.395 0.395 0.365 0.355];
fator1=length(Q)/length(Adip );
Qlinha =Q(1:fator1:end);
obtido_ = plotCorrigido(1:fator1:end);
obitidoAux1 = obtido_.*(-1);
tam = length(obtido_ );
if(max(obtido_)>max(Adip))
expValue1=floor(log10(max(obtido_)))+0.5;
else
expValue1=floor(log10(max(obtido_)))
end
[ pks,locs] = findpeaks(obitidoAux1,Qlinha,'MinPeakDistance',2)
if(obtido_(1)> obtido_(5))
obtido_(1:locs(1))= (-1).*pks(1);
end
teorico = (Adip.*power(1E1,expValue1(1)));
dif = teorico(1)-obtido_(1);
plot(Qlinha,obtido_,'--r',Qlinha,teorico-dif,'b')
axis tight
grid on
title('Comparação Fator de Forma Experimental X Teérico')
legend('Experiemental','by M E Peplow et al')
end
if(isequal(tipoSelecionado,'Normal'))
end
if(isequal(tipoSelecionado,'Adenocarcenoma'))
end
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
if(mostarJanela>0)
figure(2)
else
axes('parent',tab2)
end
% a(1)=a(1);
n=plotCorrigido(a(1):end);
ntotal=length(n(:,1));
fatr=str2double(get(handles.normalr,'String'));
expValue=floor(log10(max(n)))+fatr;
% power(1E1,expValue)
for x=1:length(n)
noramlizada= (((1/ntotal)*(normalizacao1(x,1))/n(x)));
aa(x) = sum(noramlizada).*power(1E1,expValue);
end
bb=aa;
noramlizada = (((1/ntotal).*(normalizacao1(round(a(1)):end,1)./n(:,1))));
hold off
subplot(4,1,1)
cla
curvexy = [Q(a(1):end) n];
mapxy = [Q(a(1):end) normalizacao1(round(a(1)):end,1)];
[xy,distance,t] = distance2curve(curvexy,mapxy,'linear');
plot(mapxy(:,1),mapxy(:,2),'.-k','LineWidth',1.5)
hold on
ccc=rand(3,1);
plot(xy(:,1),xy(:,2),'LineWidth',1.5,'color','r')
line([mapxy(:,1),xy(:,1)]',[mapxy(:,2),xy(:,2)]','color',ccc);
% plot(Q(a(1):end),normalizacao(a(1):end),'r',Q(a(1):end),plotCorrigido(a(1):end),'b' )
axis tight
grid on
subplot(4,1,2)
cla
plot(Q(a(1):end),bb,'r')
axis tight
yy = bb(1)- plotCorrigido(round(a(1)));
% if(0>yy)
plotFinal = plotCorrigido;
plotFinal(a(1):end) =bb-yy;
% else
% plotFinal = plotCorrigido;
% plotFinal(a(1):end) =noramlizada+yy;
% end
grid on
subplot(4,1,3)
cla
plot(mapxy(:,1),mapxy(:,2),'.-k','LineWidth',1.5)
hold on
plot(xy(:,1),xy(:,2),'LineWidth',1.5,'color','r')
hold all
plot( Q(a(1):end),bb-yy,'.b')
axis tight
grid on
subplot(4,1,4)
cla
plot(Q ,plotFinal ,'r')
axis tight
grid on
% hold on
plotCorrigido = plotFinal;
assignin('base','plotCorrigido',plotCorrigido);
media= mean(plotCorrigido,1);
if(mostarJanela>0)
figure(3)
else
axes('parent',tab3)
end
hold off
subplot(3,1,1)
cla
% findpeaks(plotCorrigido,Q,'MinPeakDistance',2);
% assignin('base','findps', findpeaks(plotCorrigido,Q,'Annotate','extents','WidthReference','halfheight','MinPeakDistance',2));
[pks,locs] = findpeaks(plotCorrigido(30:end,1),Q(30:end,1),'Annotate','extents','WidthReference','halfheight','MinPeakDistance',2);
% [ pks,locs]= findpeaks(plotCorrigido,Q,'MinPeakDistance',2);
plot(Q,plotCorrigido,locs ,pks ,'^')
% hold on
% plot(w,p)
text(locs+.02,pks,num2str((1:numel(pks))'));
% axis tight
xlim([min(Q) max(Q)])
grid on
title('picos com distancia min entre-picos (2)')
% xy = [pks,locs];
subplot(3,1,2)
cla
% findpeaks(plotCorrigido,Q,'MinPeakDistance',5);
[pks1,locs1]= findpeaks(plotCorrigido(30:end,1),Q(30:end,1),'Annotate','extents','WidthReference','halfheight','MinPeakDistance',5);
plot(Q,plotCorrigido,locs1,pks1,'^')
text(locs1+.02,pks1,num2str((1:numel(pks1))'));
xlim([min(Q) max(Q)])
grid on
title('picos com distancia min entre-picos (5)')
% xy1 = [pks1,locs1];
subplot(3,1,3)
cla
% findpeaks(plotCorrigido,Q,'MinPeakHeight',media );
[pks2,locs2] = findpeaks(plotCorrigido(30:end,1),Q(30:end,1),'Annotate','extents','WidthReference','halfheight','MinPeakHeight',media ,'MinPeakDistance',5);
plot(Q,plotCorrigido,locs2,pks2,'^')
text(locs2+.02,pks2,num2str((1:numel(pks2))'));
xlim([min(Q) max(Q)])
grid on
% axis([min(Q(:)) max(Q(:)) min(plotCorrigido) max(plotCorrigido)+5E-25 ])
hold on
plot(Q,media*ones(length(Q),1),'-.','LineWidth',2);
title('picos superiores a média e d. entre-picos (5)')
% set(gca,'XTick',[0:5: max(Q(:))],'XTickLabelRotation',45,'YTick',[0:1500: max(plotCorrigido)+1500])
% xy2= [pks2,locs2] ;
hold off
% Define variaveis presentes na tabela 2 (Tabela canto inferior a esquerda)
ColunaNomes = {'Theta' 'q' 'I'};
set(handles.tabela2,'ColumnName',ColunaNomes);
set(handles.tabela2, 'ColumnWidth',{40},'units','Normalized');
set(handles.tabela2,'Data',[dadosSelecionados(:,1)/2 Q dadosSelecionados(:,2)]);
% Define variaveis presentes na tabela 3 (Tabela canto inferior a direita)
ColunaNomes = {'I"'};
set(handles.tabela3,'ColumnName',ColunaNomes);
set(handles.tabela3,'ColumnWidth',{40},'units','Normalized');
assignin('base','plotFinal',plotFinal);
if(get(handles.detm,'Value')>0)
figure(99)
for x=1:8
x=x/2;
if(max(normalizacao)>max(soPraisoo(2:end,1)))
normalizacao1=normalizacao/(1.5*x*0.5);
curvexy = [Q soPraisoo];
mapxy = [Q normalizacao1];
plot(curvexy(:,1),curvexy(:,2),'b',mapxy(:,1),mapxy(:,2),'r')
grid on
axis tight
hold all
pause(0.5)
end
end
end
function stat_Callback(~, ~, ~)
global ...
dadosSelecionados ...
;
%usando média movel
[tam, ~]=size(dadosSelecionados(:,2));
c = smooth( dadosSelecionados(:,2));
[~, ~]=size(c);
C = reshape(c,tam,1);
figure
% subplot(3,1,1)
plot(dadosSelecionados(:,2),':');
hold on
plot(C,'-');
title('teste')
% ------------------------funções internas-------------------------------%
function graficosCorr_Callback(~, ~, ~)
global volume ...
QPOLAR ...
Polarizacao ...
Q ...
IARpa4 ...
IARpa3 ...
IARpa2 ...
IARpa1 ...
PA_04_Antes ...
PA_03_Antes ...
PA_02_Antes ...
PA_01_Antes ...
PA_01_PLS_1MIN ...
PA_02_PLS ...
PA_03_PLS ...
PA_04_PLS ...
K ...
IfilmePA4 ...
IfilmePA3 ...
IfilmePA2 ...
IfilmePA1 ...
IFilme ...
IAR ...
Ipa01 ...
Ipa02 ...
Ipa03 ...
Ipa04 ...
IPA ...
caminhoDosArquivosDeTexto ;
assignin('base','volume', volume );
assignin('base','QPOLAR', QPOLAR );
assignin('base','Polarizacao', Polarizacao );
assignin('base','Q', Q );
assignin('base','IARpa4', IARpa4 );
assignin('base','IARpa3', IARpa3 );
assignin('base','IARpa2', IARpa2 );
assignin('base','IARpa1', IARpa1 );
assignin('base','PA_04_Antes', PA_04_Antes );
assignin('base','PA_03_Antes', PA_03_Antes );
assignin('base','PA_02_Antes', PA_02_Antes );
assignin('base','PA_01_Antes', PA_01_Antes );
assignin('base','PA_01_PLS_1MIN', PA_01_PLS_1MIN );
assignin('base','PA_02_PLS', PA_02_PLS );
assignin('base','PA_03_PLS', PA_03_PLS );
assignin('base','PA_04_PLS', PA_04_PLS );
assignin('base','K', K );
hFig = figure;
tabplot('Correção do volume',hFig,'top');
plot(volume);
legend('G(q)')
xlabel('q(nm^-^1)');
ylabel('G(q) mm^3');
grid on
title('Correção do volume da amostra irradiada');
tabplot('Polarização',hFig);
plot(QPOLAR,Polarizacao);
legend('P(q)')
xlabel('q(nm^-^1)');
ylabel('P(q)');
title('Fator de Polarização');
grid on
% IfilmePA4 ...
% IfilmePA3 ...
% IfilmePA2 ...
% IfilmePA1 ...
% IFilme ...
% IARpa4 ...
% IARpa3 ...
% IARpa2 ...
% IARpa1 ...
% IAR ...
% Ipa01 ...
% Ipa02 ...
% Ipa03 ...
% Ipa04 ...
% IPA ...
tabplot('Correção da intensidade do AR',hFig);
subplot(4,1,1)
plot(Q,IARpa4,'k',Q,IARpa3,'c',Q,IARpa2,'b',Q,IARpa1,'g',Q,IAR,'r');
grid on
axis auto
title('Intensidades Ar');
legend('IAR PA01','IAR PA02','IAR PA03','IAR PA04','IAR Média');
hold off
subplot(4,1,2)
plot(Q,PA_04_Antes,'k',Q,PA_04_Antes,'c',Q,PA_02_Antes,'b',Q,PA_01_Antes,'g')
title('Int. plastico + Ar + PA - sem corrigir' );
xlabel('q(nm^-^1)');
ylabel('Int. do feixe (u.a.)');
legend('PA 04','PA 04','PA 02','IfilmePA1')
axis auto
subplot(4,1,3)
plot(Q,IfilmePA4,'k',Q,IfilmePA3,'c',Q,IfilmePA2,'b',Q,IfilmePA1,'g',Q,IFilme ,'r')
title('Int. plastico - corrigido');
xlabel('q(nm^-^1)');
ylabel('Int. do feixe (u.a.)');
legend('IfilmePA4','IfilmePA3','IfilmePA2','IfilmePA1','IFilme')
axis auto
subplot(4,1,4)
plot(Q,Ipa01,'k',Q,Ipa02,'c',Q,Ipa03,'b',Q,Ipa04,'g',Q,IPA ,'r')
title('Int. Pa ');
xlabel('q(nm^-^1)');
ylabel('Int. do feixe (u.a.)');
legend('Ipa01','Ipa02','Ipa03','Ipa04','IPA Médio')
axis auto
tabplot('Sobreposição',hFig);
prova= IAR+IFilme+IPA;
plot(Q,IAR,'k',Q,IFilme,'c',Q,IPA,'b',Q,prova,'r' )
title(' ');
xlabel('q(nm^-^1)');
ylabel('Int. do feixe (u.a.)');
legend('IAR','IFilme','IPA','Soma')
axis auto
tabplot('Dados de Energia I ',hFig);
figgg = strcat(caminhoDosArquivosDeTexto,'\gp1.png');
I2=imread(figgg);
imshow(I2);
tabplot('K',hFig)
plot(Q, K)
axis([min(Q(:)) max(Q(:)) min(K) max(K)])
xlabel('q(nm^-^1)');
ylabel('Int. do feixe (u.a.)');
legend('K(q)')
tabplot('K(q)*P(q)*A(q)',hFig)
subplot(3,1,1)
plot(Q,Polarizacao,'c',Q,volume,'b',Q,K','k')
title('K(q) P(q) A(q)')
legend('Polarização','A','K')
axis([min(Q(:)) max(Q(:)) min([min(Polarizacao),min(volume),min(K)]) max([max(Polarizacao),max(volume),max(K)])])
fc=Polarizacao(:,1).*volume(:,1);
grid on
subplot(3,1,2)
plot(Q,fc,'r','LineWidth',2)
legend('K*Polarizacao*volume')
title('correção P*A')
axis([min(Q(:)) max(Q(:)) min(fc) max(fc)])
grid on
subplot(3,1,3)
fc2=1./fc(:,1);
plot(Q,fc2,'b','LineWidth',2)
legend('[Polarizacao*volume]^-1')
title('correção (P*A) ^(^-^1^)')
axis([min(Q(:)) max(Q(:)) min(fc2) max(fc2)])
grid on
function padrao_Callback (hObject, ~, handles)
global Q ...
qCritico ...
tab5 ...
tabgp ...
TETA ...
Tar...
Tpvc...
Tamos...
volume ...
angCritico ...
Tpa;
tabgp.SelectedTab = tab5;
hold off
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
if(get(hObject,'Value')>0)
setOFFeddits(handles);
atualiza(handles);
% for x=1:size(Q)
% altura(x,1) = tan(Q(x,1)*(pi()/180));
% end
valorA = str2double(get(handles.aa, 'String'));
valorB = str2double(get(handles.bb, 'String'));
valorH = str2double(get(handles.hhh,'String'));
altura = rad2deg(atan(valorA/(2*valorH)))
count=0;
okay=false;
% aaaa = Q(round(altura))
for x=1:length(Q)
if(altura< TETA(x,1) && ~okay)
angCritico =round(count)
qCritico = Q(count,1)
count
okay = true;
end
count = count+1;
end
[miuAR,miuPVC,miuAMO,miuPA,lxAR,lxPVC,lxAMOS,lxPA,Tar,Tpvc,Tamos,Tpa] = getTodososvalores(handles,Q);
CompX = str2double(get(handles.bb,'String'));
CompY = str2double(get(handles.aa,'String'));
CompZ = str2double(get(handles.hhh,'String'));
volume = (CompX*CompY).*tan(TETA(:,1).*(pi()/180));
% Liteste= cos(TETA(:,1).*(pi()/180)).*sin(TETA(:,1).*(pi()/180))/(8*exp(1.069156))
% Litest1= cos(TETA(:,1).*(pi()/180))/exp(1.069156*CompX)
%
% volume = 1/CompY.*Litest1.^2.*(exp(-2*1.034*CompX)./Liteste)
figure (33)
plot(volume)
pause(22)
%
resto = 2.1 - CompX;
CompX = CompX + resto;
if(mostarJanela>0)
hFig = figure;
else
ax = axes('Parent', tab5);
cla reset
ax.BoxStyle = 'full';
ax.XAxisLocation = 'top';
ax.Position = [0.1 0.4 1.0 0.6];
end
X = [ 0 ; CompX ; CompX ; 0 ; 0 ];
Y = [ 0 ; 0 ; CompY ; CompY ; 0 ];
Z = [ 0 ; 0 ; 0 ; 0 ; 0 ];
% axis off
if(mostarJanela>0)
tabplot(' 1 ',hFig,'top');
grid on
end
hold on;
plot3(X-CompX/2,Y-0.5*CompY,Z);
plot3(X-CompX/2,Y-0.5*CompY,Z+CompZ,'LineWidth',2.5);
set(gca,'View',[-50,33]);
for k=1:length(X)-1
plot3([X(k)-CompX/2;X(k)-CompX/2],[Y(k)-0.5*CompY;Y(k)-0.5*CompY],[0;CompZ],'LineWidth',2.5);
end
scatter3(7*35.*rand(300,1)/100-CompX/2,7*35.*rand(300,1)/100-3*CompY,35.*rand(300,1)/100-0.125,'red');
axis([-CompX CompX -CompX CompX 0 1]);
% axis off
% axis tight
if(mostarJanela>0)
tabplot(' 2 ',hFig,'top');
axis([-CompX CompX -CompX CompX 0 1]);
grid on
end
grid on
hold on
nPhi = 256;
nRho = 32;
[X, Y, Z] = cylinder([linspace(0,CompX-0.1, nRho) CompX.*ones(1, nRho)], nPhi);
Z(1:nRho,:) = 0;
Z(nRho+1:end,:) = CompZ;
surf(X,Y,Z, 'FaceColor', [0.97 0.97 0.97], 'FaceLighting', 'phong','EdgeColor', 'none');
hold on
[X,Y,Z] = cylinder(linspace(0, 2, nRho), nPhi);
Z(:,:) = CompZ-0.03;
surf(X, Y, Z, 'FaceColor', [0 0.5 1], 'FaceLighting', 'phong', 'FaceAlpha',0.5, 'EdgeColor', 'none');
alpha(.2)
camlight;
hold off
% axis off
% axis tight
if(mostarJanela>0)
tabplot(' 3 ',hFig,'top');
grid on
axis([-CompX CompX -CompX CompX 0 1]);
hold off
hold on;
X = [ 0 ; CompX ; CompX ; 0 ; 0 ];
Y = [ 0 ; 0 ; CompY ; CompY ; 0 ];
Z = [ 0 ; 0 ; 0 ; 0 ; 0 ];
plot3(X-CompX/2,Y-0.5*CompY,Z);
plot3(X-CompX/2,Y-0.5*CompY,Z+CompZ,'LineWidth',2.5);
set(gca,'View',[-28,35]);
for k=1:length(X)-1
plot3([X(k)-CompX/2;X(k)-CompX/2],[Y(k)-0.5*CompY;Y(k)-0.5*CompY],[0;CompZ],'LineWidth',2.5);
end
scatter3(7*35.*rand(300,1)/100-CompX/2,7*35.*rand(300,1)/100-3*CompY,35.*rand(300,1)/100,'g');
nPhi = 256;
nRho = 32;
[X, Y, Z] = cylinder([linspace(0, 2, nRho) CompX.*ones(1, nRho)], nPhi);
Z(1:nRho,:) = 0;
Z(nRho+1:end,:) = CompZ;
surf(X,Y,Z, 'FaceColor', [0.97 0.97 0.97], 'FaceLighting', 'phong','EdgeColor', 'none');
hold on
[X,Y,Z] = cylinder(linspace(0, 2, nRho), nPhi);
Z(:,:) = CompZ -0.03;
surf(X, Y, Z, 'FaceColor', [0 0.5 1], 'FaceLighting', 'phong', 'FaceAlpha',0.5, 'EdgeColor', 'none');
camlight;
hold off
end
else
setONeddits(handles);
end
function plus_Callback (hObject, eventdata, handles)
global mais ...
tabgp ;
if (mais<1)
set(hObject,'String','-');
set(tabgp,'Visible','off');
mais = 1;
else
set(hObject,'String','+');
set(tabgp,'Visible','on');
mais = 0;
end
function expotAmos_Callback(hObject, eventdata, handles)
global caminhoDosArquivosDeTexto ...
pastaSelecionada ...
angCritico ...
Tar ...
IAR ...
Arqselecionado ...
PA_01_PLS_1MIN ...
PA_02_PLS ...
PA_03_PLS ...
Tpvc ...
PA_04_PLS ...
IFilme ...
PA_03_VZ_REP ...
PA_01_VZ ...
PA_02_VZ ...
PA_04_VZ ...
Tamos ...
IPA ...
Q ...
K...
Polarizacao...
volume...
TETA ...
tipoSelecionado ...
pa1fr...
pa2fr...
pa3fr...
pa4fr...
paMedio...
fc2...
r0;
pa1fr =zeros(length(Q),1);
pa2fr =zeros(length(Q),1);
pa3fr =zeros(length(Q),1);
pa4fr =zeros(length(Q),1);
paMedio=zeros(length(Q),1);
%
% expotarTipoNomeFinal = strcat('amostras_',tipoSelecionado,'_',date,'.xlsx');
% startingFolder = strcat( caminhoDosArquivosDeTexto ,'arquivosSalvos');
%
% defaultFileName = fullfile(startingFolder, expotarTipoNomeFinal );
% [baseFileName, expotarTipoNome] = uiputfile(defaultFileName, 'Salvar Como' );
% if (baseFileName == 0)
% return;
% end
pa1fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_01_PLS_1MIN(1:angCritico ,1);
pa1fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_01_PLS_1MIN(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_01_VZ(angCritico:end,1);
pa2fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_02_PLS(1:angCritico ,1);
pa2fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_02_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_02_VZ(angCritico:end,1);
pa3fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_03_PLS(1:angCritico ,1);
pa3fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_03_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_03_VZ_REP(angCritico:end,1);
pa4fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_04_PLS(1:angCritico ,1);
pa4fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_04_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_04_VZ(angCritico:end,1);
paMedio( 1 :angCritico,1) = Tar(1:angCritico ,1).*IAR(1:angCritico ,1) + IFilme(1:angCritico ,1);
paMedio(angCritico :end ,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + IFilme(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*IPA(angCritico:end,1);
pa1fr=pa1fr(:,1)./Tpvc(:,1);
pa2fr=pa2fr(:,1)./Tpvc(:,1);
pa3fr=pa3fr(:,1)./Tpvc(:,1);
pa4fr=pa4fr(:,1)./Tpvc(:,1);
paMedio=paMedio(:,1)./Tpvc(:,1);
fc =K(:,1).*Polarizacao(:,1).*volume(:,1);
fc2=1./(fc);
fc2(1:10,1)=1;
r0 =((2.83E-15^2)/2).*(1+power(cos(TETA(:,1)*pi()/40),2));
arquivoSelecionados = cellstr(get(handles.listbox1,'String'));
cont=0;
auxSemCorr = zeros(length(PA_02_PLS),1)';
auxCorrigida = zeros(length(PA_02_PLS),1)';
auxCorrigidaMedia= zeros(length(PA_02_PLS),1)';
auxImedida= zeros(length(PA_02_PLS),1)';
auxImedidaMedia= zeros(length(PA_02_PLS),1)';
auxInormalizacao = zeros(length(PA_02_PLS),1)';
auxFinalmediadaMaisNorm = zeros(length(PA_02_PLS),1)' ;
auxFinalmediadaMaisNormMedia = zeros(length(PA_02_PLS),1)' ;
normalizaAmostra = zeros(length(PA_02_PLS),1)' ;
normalizaMedia = zeros(length(PA_02_PLS),1)' ;
% data1 = zeros(2,length(arquivoSelecionados))' ;
% % for x=1:length(arquivoSelecionados)
[tipoPortaAmostra,~] = strsplit(char(Arqselecionado(1)),{' ','.txt'},'CollapseDelimiters',true);
txtSelect = char((strcat(caminhoDosArquivosDeTexto,pastaSelecionada,'\',Arqselecionado(1))));
[tipo,~] = strsplit(pastaSelecionada,'\','CollapseDelimiters',true);
data1(1,:)= [tipoPortaAmostra(1) tipoPortaAmostra(2) tipo(2)];
% cellstr(data1{x})
expotarTipoNome= char(strcat(tipoPortaAmostra(1),'_',tipoSelecionado,'_',date,'.xlsx'));
if( isempty(char(Arqselecionado(1))))
aux1 =strcat('Selecione uma opção valida, a pasta: [ ',caminhoDosArquivosDeTexto,pastaSelecionada,'] parece estar vazia ')
uiwait(warndlg(aux1));
return
end
% [valores, ...
% plotFinal, ...
% plotFinal2,...
% normalizacao,...
% Iamostra, ...
% IamostraMedia, ...
% plotCorrigido,...
% plotCorrigidoMedio,...
% noramlizada, ...
% noramlizada2] = readFile(txtSelect,tipoPortaAmostra(2),handles);
[valores, ...
Iamostra, ...
IamostraMedia, ...
plotCorrigido,...
plotCorrigidoMedio] = readFile(txtSelect,tipoPortaAmostra(2),handles);
auxSemCorrigir (1,:) = valores;
auxCorrigida(1,:) = plotCorrigido;
auxCorrigidaMedia(1,:) = plotCorrigidoMedio;
auxImedida(1,:) = Iamostra;
auxImedidaMedia(1,:) = IamostraMedia;
% auxInormalizacao(1,:) = normalizacao;
% auxFinalmediadaMaisNorm(1,:) = plotFinal;
% auxFinalmediadaMaisNormMedia(1,:) = plotFinal2;
%
% cont = cont +1;
% end
h = waitbar(0,'Exportando resultados para excel..');
warning('off','MATLAB:xlswrite:addSheet')
i=0;
% xlswrite (expotarTipoNome, data1,'Corr. (esxp+norm)','A1');
% i=i+1; waitbar(i/16);
% xlswrite (expotarTipoNome, data1,'Corr.(esxp+norm)Média','A1');
% i=i+1; waitbar(i/16);
xlswrite (expotarTipoNome, data1,'semCorreção','A1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, data1,'correção expurias','A1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, data1,'correção expurias Média','A1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, data1,'Im(só transmição)','A1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, data1,'Im(só trans) Média','A1');
i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, data1,'normalização p.amostra','A1');
% i=i+1; waitbar(i/16);
% xlswrite (expotarTipoNome, auxFinalmediadaMaisNorm,'Corr. (esxp+norm)','D1');
% i=i+1; waitbar(i/16);
% xlswrite (expotarTipoNome, auxFinalmediadaMaisNormMedia,'Corr.(esxp+norm)Média','D1');
% i=i+1; waitbar(i/16);
xlswrite (expotarTipoNome, auxSemCorrigir,'semCorreção','D1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, auxCorrigida,'expurias+r0','D1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, auxCorrigidaMedia,'espurias+r0 Média','D1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, auxImedida,'Im(só transmição)','D1');
i=i+1; waitbar(i/10);
xlswrite (expotarTipoNome, auxImedidaMedia,'Im(só trans) Média','D1');
i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, auxInormalizacao,'normalização p.amostra','D1');
% i=i+1; waitbar(i/16);
delete(h)
function export_Callback (~, ~, handles)
global caminhoDosArquivosDeTexto ...
pastaSelecionada ...
angCritico ...
Tar ...
IAR ...
PA_01_PLS_1MIN ...
PA_02_PLS ...
PA_03_PLS ...
Tpvc ...
PA_04_PLS ...
IFilme ...
PA_03_VZ_REP ...
PA_01_VZ ...
PA_02_VZ ...
PA_04_VZ ...
Tamos ...
IPA ...
Q ...
K...
Polarizacao...
volume...
TETA ...
tipoSelecionado ...
pa1fr...
pa2fr...
pa3fr...
pa4fr...
paMedio...
fc2...
r0;
pa1fr =zeros(length(Q),1);
pa2fr =zeros(length(Q),1);
pa3fr =zeros(length(Q),1);
pa4fr =zeros(length(Q),1);
paMedio=zeros(length(Q),1);
%
% expotarTipoNomeFinal = strcat('amostras_',tipoSelecionado,'_',date,'.xlsx');
expotarTipoNome= strcat('amostras_',tipoSelecionado,'_',date,'.xlsx');
% startingFolder = strcat( caminhoDosArquivosDeTexto ,'arquivosSalvos');
%
% defaultFileName = fullfile(startingFolder, expotarTipoNomeFinal );
% [baseFileName, expotarTipoNome] = uiputfile(defaultFileName, 'Salvar Como' );
% if (baseFileName == 0)
% return;
% end
pa1fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_01_PLS_1MIN(1:angCritico ,1);
pa1fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_01_PLS_1MIN(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_01_VZ(angCritico:end,1);
pa2fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_02_PLS(1:angCritico ,1);
pa2fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_02_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_02_VZ(angCritico:end,1);
pa3fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_03_PLS(1:angCritico ,1);
pa3fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_03_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_03_VZ_REP(angCritico:end,1);
pa4fr(1 :angCritico,1) = Tar(1:angCritico,1 ).*IAR(1:angCritico ,1) + PA_04_PLS(1:angCritico ,1);
pa4fr(angCritico:end,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + PA_04_PLS(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*PA_04_VZ(angCritico:end,1);
paMedio( 1 :angCritico,1) = Tar(1:angCritico ,1).*IAR(1:angCritico ,1) + IFilme(1:angCritico ,1);
paMedio(angCritico :end ,1) = Tar(angCritico:end,1).*IAR(angCritico:end,1) + IFilme(angCritico:end,1) - Tpvc(angCritico:end,1).*Tamos(angCritico:end,1).*IPA(angCritico:end,1);
pa1fr=pa1fr(:,1)./Tpvc(:,1);
pa2fr=pa2fr(:,1)./Tpvc(:,1);
pa3fr=pa3fr(:,1)./Tpvc(:,1);
pa4fr=pa4fr(:,1)./Tpvc(:,1);
paMedio=paMedio(:,1)./Tpvc(:,1);
fc =K(:,1).*Polarizacao(:,1).*volume(:,1);
fc2=1./(fc);
fc2(1:10,1)=1;
r0 =((2.83E-15^2)/2).*(1+power(cos(TETA(:,1)*pi()/40),2));
arquivoSelecionados = cellstr(get(handles.listbox1,'String'));
cont=0;
auxSemCorr = zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxCorrigida = zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxCorrigidaMedia= zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxImedida= zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxImedidaMedia= zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxInormalizacao = zeros(length(PA_02_PLS),length(arquivoSelecionados))';
auxFinalmediadaMaisNorm = zeros(length(PA_02_PLS),length(arquivoSelecionados))' ;
auxFinalmediadaMaisNormMedia = zeros(length(PA_02_PLS),length(arquivoSelecionados))' ;
normalizaAmostra = zeros(length(PA_02_PLS),length(arquivoSelecionados))' ;
normalizaMedia = zeros(length(PA_02_PLS),length(arquivoSelecionados))' ;
% data1 = zeros(2,length(arquivoSelecionados))' ;
for x=1:length(arquivoSelecionados)
[Arqselecionado ,~] = strsplit(arquivoSelecionados{x} , ' [','CollapseDelimiters',true);
[tipoPortaAmostra,~] = strsplit(char(Arqselecionado(1)),{' ','.txt'},'CollapseDelimiters',true);
txtSelect = char((strcat(caminhoDosArquivosDeTexto,pastaSelecionada,'\',Arqselecionado(1))));
[tipo,~] = strsplit(pastaSelecionada,'\','CollapseDelimiters',true);
legendInfo(x,1) = tipoPortaAmostra(1); % or whatever is appropriate
data1(x,:)= [tipoPortaAmostra(1) tipoPortaAmostra(2) tipo(2)];
% cellstr(data1{x})
if( isempty(char(Arqselecionado(1))))
aux1 =strcat('Selecione uma opção valida, a pasta: [ ',caminhoDosArquivosDeTexto,pastaSelecionada,'] parece estar vazia ')
uiwait(warndlg(aux1));
return
end
%
% [valores, ...
% plotFinal, ...
% plotFinal2,...
% normalizacao,...
% Iamostra, ...
% IamostraMedia, ...
% plotCorrigido,...
% plotCorrigidoMedio,...
% noramlizada, ...
% noramlizada2] = readFile(txtSelect,tipoPortaAmostra(2),handles);
[valores, ...
Iamostra, ...
IamostraMedia, ...
plotCorrigido,...
plotCorrigidoMedio] = readFile(txtSelect,tipoPortaAmostra(2),handles);
auxSemCorrigir (x,:) = valores;
auxCorrigida(x,:) = plotCorrigido;
auxCorrigidaMedia(x,:) = plotCorrigidoMedio;
auxImedida(x,:) = Iamostra;
auxImedidaMedia(x,:) = IamostraMedia;
% auxInormalizacao(x,:) = normalizacao;
% auxFinalmediadaMaisNorm(x,:) = plotFinal;
% auxFinalmediadaMaisNormMedia(x,:) = plotFinal2;
cont = cont +1;
end
figure(8)
legend(legendInfo)
title('por PA')
figure(9)
title('por Média dos PAs 1-4')
legend(legendInfo)
h = waitbar(0,'Exportando resultados para excel..');
warning('off','MATLAB:xlswrite:addSheet')
i=0;
% xlswrite (expotarTipoNome, data1,'semCorreção','A1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, data1,'correção','A1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, data1,'correção Média','A1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, data1,'Im(só transmição)','A1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, data1,'Im(só trans) Média','A1');
% i=i+1; waitbar(i/10);
%
% xlswrite (expotarTipoNome, auxSemCorrigir,'semCorreção','D1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, auxCorrigida,'correção','D1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, auxCorrigidaMedia,'correção Média','D1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, auxImedida,'Im(só transmição)','D1');
% i=i+1; waitbar(i/10);
% xlswrite (expotarTipoNome, auxImedidaMedia,'Im(só trans) Média','D1');
% i=i+1; waitbar(i/10);
%
%nao usar
% xlswrite (expotarTipoNome, data1,'Corr. (esxp+norm)','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'Corr.(esxp+norm)Média','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'semCorreção','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'expurias+r0','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'espurias+r0 Média','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'Im(só transmição)','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'Im(só trans) Média','A1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, data1,'normalização p.amostra','A1');
% ii=ii+1; waitbar(ii/16);
%
% xlswrite (expotarTipoNome, auxFinalmediadaMaisNorm,'Corr. (esxp+norm)','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxFinalmediadaMaisNormMedia,'Corr.(esxp+norm)Média','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxSemCorrigir,'semCorreção','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxCorrigida,'expurias+r0','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxCorrigidaMedia,'espurias+r0 Média','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxImedida,'Im(só transmição)','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxImedidaMedia,'Im(só trans) Média','D1');
% ii=ii+1; waitbar(ii/16);
% xlswrite (expotarTipoNome, auxInormalizacao,'normalização p.amostra','D1');
% ii=ii+1; waitbar(ii/16);
%
% delete(h)
function [valores, ...
Iamostra, ...
IamostraMedia, ...
plotCorrigido,...
plotCorrigidoMedio] = readFile(enderecoDoAqrquvo,pAselecionadox,handles)
% [valores, ...
% plotFinal, ...
% plotFinal2,...
% normalizacao,...
% Iamostra, ...
% IamostraMedia, ...
% plotCorrigido,...
% plotCorrigidoMedio,...
% noramlizada, ...
% noramlizada2] = readFile(enderecoDoAqrquvo,pAselecionadox,handles)
global ...
K...
Polarizacao...
volume...
pa1fr...
pa2fr...
pa3fr...
pa4fr...
paMedio...
Tpvc ...
Q ...
r0;
fid = fopen(enderecoDoAqrquvo);
tline = fgetl(fid);
ok=0;
i=0;
tamanho=234;
valores = nan(tamanho, 1);
while ischar(tline)
delimiter= findstr('<2Theta>', tline);
tam=size(delimiter);
if((ok>0) | (delimiter > 0) )
ok=ok+1;
end
if(ok>1)
convertePataFloat = strread(tline,'%f','delimiter',' ');
i=i+1;
% valores(i,1) = convertePataFloat(1);
valores(i,1) = convertePataFloat(2);
end
tline = fgetl(fid);
end
fclose(fid);
% /---------- para H20 1min
achei =false;
if(strcmp(pAselecionadox,'PA01'))
% Iamostra = valores(:,1)./Tpvc(:,1) - pa1fr(:,1)- K(:,1);
% plotCorrigido = (Iamostra(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
% Iamostra = (valores(:,1)./Tpvc(:,1)- pa1fr(:,1)).*1./(K(:,1)+volume).*Polarizacao;
Iamostra = (valores(:,1)./Tpvc(:,1)- pa1fr(:,1)).*1./K(:,1).*volume.*Polarizacao;
plotCorrigido = Iamostra;
achei =true;
end
if(strcmp(pAselecionadox,'PA02'))
% Iamostra = valores(:,1)./Tpvc(:,1) - pa2fr(:,1)- K(:,1);
% plotCorrigido = (Iamostra(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
% Iamostra = (valores(:,1)./Tpvc(:,1)- pa2fr(:,1)).*1./(K(:,1)+volume).*Polarizacao;
Iamostra = (valores(:,1)./Tpvc(:,1)- pa2fr(:,1)).*1./K(:,1).*volume.*Polarizacao;
plotCorrigido = Iamostra;
achei =true;
end
if(strcmp(pAselecionadox,'PA03'))
% Iamostra = valores(:,1)./Tpvc(:,1) - pa3fr(:,1)- K(:,1);
% plotCorrigido = (Iamostra(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
% Iamostra = (valores(:,1)./Tpvc(:,1)- pa3fr(:,1)).*1./(K(:,1)+volume).*Polarizacao;
Iamostra = (valores(:,1)./Tpvc(:,1)- pa3fr(:,1)).*1./K(:,1).*volume.*Polarizacao;
plotCorrigido = Iamostra;
achei =true;
end
if(strcmp(pAselecionadox,'PA04'))
% Iamostra = valores(:,1)./Tpvc(:,1) - pa4fr(:,1)- K(:,1);
% plotCorrigido = (Iamostra(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
% Iamostra = (valores(:,1)./Tpvc(:,1)- pa4fr(:,1)).*1./(K(:,1)+volume).*Polarizacao;
Iamostra = (valores(:,1)./Tpvc(:,1)- pa4fr(:,1)).*1./K(:,1).*volume.*Polarizacao;
plotCorrigido = Iamostra;
achei =true;
end
if(~achei)
plotCorrigido=zeros(length(Q),1);
plotCorrigidoMedio=zeros(length(Q),1);
IamostraMedia = (valores(:,1)./Tpvc(:,1)-paMedio(:,1)).*1./K(:,1).*volume.*Polarizacao;
%IamostraMedia = (valores(:,1)./Tpvc(:,1)- paMedio(:,1)).*1./(K(:,1)+volume).*Polarizacao;
Iamostra=IamostraMedia;
% IamostraMedia = valores(:,1)./Tpvc(:,1) - paMedio(:,1)- K(:,1);
% plotCorrigidoMedio = (IamostraMedia(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
% plotCorrigido = Iamostra;
plotCorrigido = smooth( IamostraMedia);
plotCorrigidoMedio = smooth( IamostraMedia);
else
% IamostraMedia = valores(:,1)./Tpvc(:,1) - paMedio(:,1)- K(:,1);
% plotCorrigidoMedio = (IamostraMedia(:,1)./(Polarizacao(:,1).*volume(:,1))).*r0(:,1);
IamostraMedia = (valores(:,1)./Tpvc(:,1)-paMedio(:,1)).*1./K(:,1).*volume.*Polarizacao;
%IamostraMedia = (valores(:,1)./Tpvc(:,1)- paMedio(:,1)).*1./(K(:,1)+volume).*Polarizacao;
plotCorrigido = smooth( plotCorrigido);
plotCorrigidoMedio = smooth( IamostraMedia);
end
% normalizacao = [ 8.12 8.12 8.12 8.10 8.09 8.07 8.05 8.01 7.99 7.95 7.91 7.86 7.82 7.77 7.72 7.66 7.60 7.54 7.47 7.40 7.34 7.26 7.19 7.11 7.03 6.95 6.87 6.79 6.71 6.62 6.54 6.45 6.36 6.27 6.19 6.10 6.01 5.92 5.84 5.75 5.66 5.57 5.49 5.40 5.32 5.24 5.15 5.07 4.99 4.91 4.83 4.75 4.68 4.60 4.52 4.45 4.38 4.31 4.24 4.17 4.10 4.04 3.97 3.91 3.85 3.78 3.72 3.67 3.61 3.55 3.50 3.44 3.39 3.34 3.29 3.24 3.19 3.15 3.10 3.06 3.01 2.97 2.93 2.89 2.85 2.81 2.77 2.74 2.70 2.67 2.63 2.60 2.57 2.54 2.51 2.48 2.45 2.42 2.39 2.37 2.34 2.32 2.29 2.27 2.25 2.22 2.20 2.18 2.16 2.14 2.12 2.10 2.08 2.06 2.05 2.03 2.01 1.99 1.98 1.96 1.95 1.93 1.92 1.91 1.89 1.88 1.87 1.85 1.84 1.83 1.82 1.81 1.79 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.71 1.70 1.69 1.68 1.67 1.67 1.66 1.65 1.64 1.64 1.63 1.62 1.62 1.61 1.60 1.59 1.59 1.58 1.57 1.57 1.56 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.42 1.41 1.40 1.39 1.39 1.38 1.36 1.34 1.33 1.31 1.30 1.28 1.27 1.25 1.24 1.22 1.20 1.19 1.18 1.20 1.19 1.18 1.165335835 1.15 1.13 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 1.01 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.943643389 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.88 ]';
% normalizacao = normalizacao.*(2.83E-25)/4;
%
MostrarNegv = get(handles.negv,'Value');
if(MostrarNegv>0)
plotCorrigido(plotCorrigido<0)=0;
plotCorrigidoMedio(plotCorrigidoMedio<0)=0;
end
% expValue=floor(log10(max(plotCorrigido)));
% expValue2=floor(log10(max(plotCorrigidoMedio)));
% coun = 0;
%
% for x=1:8
% x=x/2;
% if(max(normalizacao)>max(plotCorrigido(2:end,1)))
% normalizacao1=normalizacao/(1.3*x*0.5);
% curvexy = [Q plotCorrigido];
%
%
% mapxy = [Q normalizacao1];
% [xy,distance,t] = distance2curve(curvexy,mapxy,'linear');
% distancia = distance.*power(1E+1,abs(expValue));
% coun = coun +1;
%
% curvexy2 = [Q plotCorrigidoMedio];
% mapxy2 = [Q normalizacao1];
% [xy2,distance2,t2] = distance2curve(curvexy2,mapxy2,'linear');
% distancia2 = distance2.*power(1E+1,abs(expValue2));
% coun = coun +1;
%
% end
% if(coun == 0 & (max(plotCorrigido(2:end))>max(normalizacao)))
% curvexy = [Q plotCorrigido];
% normalizacao1=normalizacao/(1.3*x);
% mapxy = [Q normalizacao1];
% expValue=floor(log10(max(plotCorrigido)));
% [xy,distance,t] = distance2curve(curvexy,mapxy,'linear');
% distancia = distance.*power(1E+1,abs(expValue));
%
% curvexy2 = [Q plotCorrigidoMedio];
% mapxy2 = [Q normalizacao];
% [xy2,distance2,t2] = distance2curve(curvexy2,mapxy2,'linear');
% distancia2 = distance2.*power(1E+1,abs(expValue2));
% coun = coun +1;
%
% continue
% end
% end
%
% a = find(abs(distancia)<2E-1);
% a = a(a > 60);
%
% a2 = find(abs(distancia2)<2E-1);
% a2 = a2(a2 > 60);
%
% aux = min(Q(a(:)));
% aux2 = min(Q(a2(:)));
% if(isempty(aux))
% a = [150 152]';
% end
%
% if(isempty(aux2))
% a2 = [150 152]';
% end
%
% a(1)=a(1)+10;
% a2(1)=a2(1)+10;
% n=plotCorrigido(a(1):end);
% n2=plotCorrigidoMedio(a2(1):end);
%
%
% ntotal=length(n(:,1));
% ntotal2=length(n2(:,1));
% for x=1:length(n)
% noramlizada = (((1/ntotal )*(normalizacao1(x,1))/n(x) ));
% aa (x) = sum(noramlizada).*1E-24;
% end
% for x=1:length(n2)
% noramlizada2 = (((1/ntotal2)*(normalizacao1(x,1))/n2(x)));
% aa2(x) = sum(noramlizada2).*1E-24;
% end
%
%
% bb=aa;
% noramlizada = aa;
% bb2=aa2;
% noramlizada2 = aa2;
% yy = bb (1)- plotCorrigido(round(a(1)));
% yy2 = bb2(1)- plotCorrigidoMedio(round(a2(1)));
%
% % if(0>yy)
% plotFinal = plotCorrigido;
% plotFinal(a(1):end) =bb-yy;
% % else
% % plotFinal = plotCorrigido;
% % plotFinal(a(1):end) =bb+yy;
% % end
%
% % if(0>yy2)
% plotFinal2 = plotCorrigidoMedio;
% plotFinal2(a2(1):end) = bb2-yy2;
% % else
% % plotFinal2 = plotCorrigidoMedio;
% % plotFinal2(a2(1):end) = bb2+yy2;
% % end
%
figure(8)
hold on
grid on
plot(Q,plotCorrigido)
hold all
figure(9)
hold on
grid on
plot(Q,plotCorrigidoMedio)
% legend()
hold all
figure(10)
hold on
grid on
plot(valores)
% legend()
hold all
%##############################################################################
function listbox1_CreateFcn (hObject, ~, ~ )
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function selecionaCaso_Callback(~, ~, handles )
global caminhoDosArquivosDeTexto ...
pastaSelecionada ...
tipoSelecionado;
set(handles.listbox1,'String','');
todosTipos = cellstr(get(handles.selecionaCaso,'String'));
tipoSelecionado = todosTipos{get(handles.selecionaCaso,'Value')};
pastaSelecionada = strcat('textData\',tipoSelecionado);
files = dir(fullfile(caminhoDosArquivosDeTexto,pastaSelecionada,'*.txt'));
set(handles.listbox1,'Value',1);
todosTipos = {files.name};
todosDAtas = {files.date};
for x=1: length({files.name})
dadoss{x} = strcat(todosTipos{x},' [',todosDAtas{x},']');
end
todosNomes=cell2struct(dadoss,'nomes',1);
set(handles.listbox1,'String',{todosNomes.nomes});
set(handles.listbox2,'String',{'Intensidade do Porta Amostra Vazio',...
'Intensidade do Filme',...
'Intensidade da H20 1Min', ...
'Intensidade do Ar' });
function p1_Callback (hObject, ~, handles)
global caminhoDosArquivosDeTexto;
contents = cellstr(get(hObject,'String'));
aux = strcat( contents{get(hObject,'Value')},'.txt');
nomeDensidade = contents{get(hObject,'Value')};
txtSelect = strcat(caminhoDosArquivosDeTexto,'AttCoefficients\',aux);
txtDensidade = strcat(caminhoDosArquivosDeTexto,'densidades.txt');
set(handles.text14,'String',contents{get(hObject,'Value')});
fid = fopen(txtSelect);
tline = fgetl(fid);
i=0;
while ischar(tline)
convertePataFloat = strread(tline,'%f','delimiter','K');
i=i+1;
[tam, ~] =size(convertePataFloat);
if(tam>3)
dadosSelecionados(i,:)=convertePataFloat(2:4)';
else
dadosSelecionados(i,:) = convertePataFloat';
end
tline = fgetl(fid);
end
fclose(fid);
mostarTabela= get(handles.energia,'Value');
dadosSelecionados(:,1)= dadosSelecionados(:,1).*1000;
valorEnergia=get(handles.edit16,'String');
if(valorEnergia< 1 | isnan(str2double(valorEnergia)))
uiwait(warndlg('Medidas não encontradas ou invalidas. Para continuar é preciso inserir medidas validas'));
set(handles.aa,'BackgroundColor','red');
set(handles.bb,'BackgroundColor','red');
set(handles.hhh,'BackgroundColor','red');
set(handles.edit16,'BackgroundColor','red');
return
end
set(handles.p11,'BackgroundColor','green');
set(handles.p12,'BackgroundColor','green');
fid = fopen(txtDensidade);
tline = fgetl(fid);
i=0;
while ischar(tline)
convertePataFloat = strread(tline,'%s','delimiter','|');
convertePataFloat2 = strread(convertePataFloat{2},'%f','delimiter',' ');
densidade = convertePataFloat2(3);
if(isequal(nomeDensidade,convertePataFloat{1}))
densidadeSelecionada=densidade;
set(handles.p12,'String',densidade)
end
tline = fgetl(fid);
end
fclose(fid);
achou=false;
for x=1:size(dadosSelecionados)
if(isequal(round(dadosSelecionados(x,1)),round(str2double(valorEnergia)))&& ~achou)
miu=dadosSelecionados(x,2)*densidadeSelecionada;
set(handles.p11,'String',miu);
achou=true;
end
end
if(mostarTabela)
ColunaNomes = {'(Kev)' '(cm^2/g)' 'mu(en)/rho'};
set(handles.tabela2,'ColumnName',ColunaNomes);
set(handles.tabela2,'Data',dadosSelecionados);
set(handles.tabela2, 'ColumnWidth',{60},'units','Normalized');
end
function p2_Callback (hObject, ~, handles)
global caminhoDosArquivosDeTexto;
contents = cellstr(get(hObject,'String'));
aux= strcat( contents{get(hObject,'Value')},'.txt');
nomeDensidade=contents{get(hObject,'Value')};
txtSelect = strcat(caminhoDosArquivosDeTexto,'AttCoefficients\',aux);
txtDensidade= strcat(caminhoDosArquivosDeTexto,'densidades.txt');
fid = fopen(txtSelect);
tline = fgetl(fid);
i=0;
valorEnergia=get(handles.edit16,'String');
if(valorEnergia< 1 | isnan(str2double(valorEnergia)))
uiwait(warndlg('Medidas não encontradas ou invalidas. Para continuar é preciso inserir medidas validas'));
set(handles.aa,'BackgroundColor','red');
set(handles.bb,'BackgroundColor','red');
set(handles.hhh,'BackgroundColor','red');
set(handles.edit16,'BackgroundColor','red');
return
end
set(handles.p21,'BackgroundColor','green');
set(handles.p22,'BackgroundColor','green');
while ischar(tline)
convertePataFloat = strread(tline,'%f','delimiter','K');
i=i+1;
[tam, ~] =size(convertePataFloat);
if(tam>3)
dadosSelecionados(i,:)=convertePataFloat(2:4)';
else
dadosSelecionados(i,:) = convertePataFloat';
end
tline = fgetl(fid);
end
fclose(fid);
mostarTabela= get(handles.energia,'Value');
dadosSelecionados(:,1)= dadosSelecionados(:,1).*1000;
fid = fopen(txtDensidade);
tline = fgetl(fid);
i=0;
while ischar(tline)
convertePataFloat = strread(tline,'%s','delimiter','|');
convertePataFloat2 = strread(convertePataFloat{2},'%f','delimiter',' ');
densidade = convertePataFloat2(3);
if(isequal(nomeDensidade,convertePataFloat{1}))
densidadeSelecionada=densidade;
set(handles.p22,'String',densidade)
end
tline = fgetl(fid);
end
fclose(fid);
achou=false;
for x=1:size(dadosSelecionados)
if(isequal(round(dadosSelecionados(x,1)),round(str2double(valorEnergia)))&& ~achou)
achou=true;
miu=dadosSelecionados(x,2)*densidadeSelecionada;
set(handles.p21,'String',miu);
end
end
if(mostarTabela)
ColunaNomes = {'(Kev)' '(cm^2/g)' 'mu(en)/rho'};
set(handles.tabela2,'ColumnName',ColunaNomes);
set(handles.tabela2,'Data',dadosSelecionados);
set(handles.tabela2, 'ColumnWidth',{40},'units','Normalized');
end
function p3_Callback (hObject, ~, handles)
global caminhoDosArquivosDeTexto;
contents = cellstr(get(hObject,'String'));
aux= strcat( contents{get(hObject,'Value')},'.txt');
nomeDensidade=contents{get(hObject,'Value')};
txtSelect = strcat(caminhoDosArquivosDeTexto,'AttCoefficients\',aux);
txtDensidade= strcat(caminhoDosArquivosDeTexto,'densidades.txt');
fid = fopen(txtSelect);
tline = fgetl(fid);
i=0;
valorEnergia=get(handles.edit16,'String');
if(valorEnergia< 1 | isnan(str2double(valorEnergia)))
uiwait(warndlg('Medidas não encontradas ou invalidas. Para continuar é preciso inserir medidas validas'));
set(handles.aa,'BackgroundColor','red');
set(handles.bb,'BackgroundColor','red');
set(handles.hhh,'BackgroundColor','red');
set(handles.edit16,'BackgroundColor','red');
return
end
set(handles.p31,'BackgroundColor','green');
set(handles.p32,'BackgroundColor','green');
while ischar(tline)
convertePataFloat = strread(tline,'%f','delimiter','K');
i=i+1;
[tam, ~] =size(convertePataFloat);
if(tam>3)
dadosSelecionados(i,:)=convertePataFloat(2:4)';
else
dadosSelecionados(i,:) = convertePataFloat';
end
tline = fgetl(fid);
end
fclose(fid);
mostarTabela= get(handles.energia,'Value');
dadosSelecionados(:,1)= dadosSelecionados(:,1).*1000;
fid = fopen(txtDensidade);
tline = fgetl(fid);
i=0;
while ischar(tline)
convertePataFloat = strread(tline,'%s','delimiter','|');
convertePataFloat2 = strread(convertePataFloat{2},'%f','delimiter',' ');
densidade = convertePataFloat2(3);
if(isequal(nomeDensidade,convertePataFloat{1}))
densidadeSelecionada=densidade;
set(handles.p32,'String',densidade)
end
tline = fgetl(fid);
end
fclose(fid);
achou=false;
for x=1:size(dadosSelecionados)
if(isequal(round(dadosSelecionados(x,1)),round(str2double(valorEnergia)))&& ~achou)
achou=true;
miu=dadosSelecionados(x,2)*densidadeSelecionada;
set(handles.p31,'String',miu);
end
end
if(mostarTabela)
ColunaNomes = {'(Kev)' '(cm^2/g)' 'mu(en)/rho'};
set(handles.tabela2,'ColumnName',ColunaNomes);
set(handles.tabela2,'Data',dadosSelecionados);
set(handles.tabela2, 'ColumnWidth',{40},'units','Normalized');
end
function p4_Callback (hObject, ~, handles)
global caminhoDosArquivosDeTexto;
contents = cellstr(get(hObject,'String'));
aux= strcat( contents{get(hObject,'Value')},'.txt');
nomeDensidade=contents{get(hObject,'Value')};
txtSelect = strcat(caminhoDosArquivosDeTexto,'AttCoefficients\',aux);
txtDensidade= strcat(caminhoDosArquivosDeTexto,'densidades.txt');
fid = fopen(txtSelect);
tline = fgetl(fid);
i=0;
valorEnergia=get(handles.edit16,'String');
if(valorEnergia< 1 | isnan(str2double(valorEnergia)))
uiwait(warndlg('Medidas não encontradas ou invalidas. Para continuar é preciso inserir medidas validas'));
set(handles.aa,'BackgroundColor','red');
set(handles.bb,'BackgroundColor','red');
set(handles.hhh,'BackgroundColor','red');
set(handles.edit16,'BackgroundColor','red');
return
end
set(handles.p41,'BackgroundColor','green');
set(handles.p42,'BackgroundColor','green');
while ischar(tline)
convertePataFloat = strread(tline,'%f','delimiter','K');
i=i+1;
[tam, ~] =size(convertePataFloat);
if(tam>3)
dadosSelecionados(i,:)=convertePataFloat(2:4)';
else
dadosSelecionados(i,:) = convertePataFloat';
end
tline = fgetl(fid);
end
fclose(fid);
mostarTabela= get(handles.energia,'Value');
dadosSelecionados(:,1)= dadosSelecionados(:,1).*1000;
fid = fopen(txtDensidade);
tline = fgetl(fid);
i=0;
while ischar(tline)
convertePataFloat = strread(tline,'%s','delimiter','|');
convertePataFloat2 = strread(convertePataFloat{2},'%f','delimiter',' ');
densidade = convertePataFloat2(3);
if(isequal(nomeDensidade,convertePataFloat{1}))
densidadeSelecionada=densidade;
set(handles.p42,'String',densidade)
end
tline = fgetl(fid);
end
fclose(fid);
achou=false;
for x=1:size(dadosSelecionados)
if(isequal(round(dadosSelecionados(x,1)),round(str2double(valorEnergia)))&& ~achou)
achou=true;
miu=dadosSelecionados(x,2)*densidadeSelecionada;
set(handles.p41,'String',miu);
end
end
if(mostarTabela)
ColunaNomes = {'(Kev)' '(cm^2/g)' 'mu(en)/rho'};
set(handles.tabela2,'ColumnName',ColunaNomes);
set(handles.tabela2,'Data',dadosSelecionados);
set(handles.tabela2, 'ColumnWidth',{40},'units','Normalized');
end
function aa_Callback (~, ~, handles )
global valorA;
valorA = str2double(get(handles.aa, 'String'));
function bb_Callback (~, ~, handles )
global valorB;
persistent textString;
currentString = get(handles.aa, 'String');
if (isempty(textString)|| isequal(textString,'0'))
if ~isempty(currentString)
textString = currentString;
else
uiwait(warndlg('Campo não preechido... Favor preencher com valor valido'));
end
return;
end
if(str2double(textString)~='NaN')
valorB = str2double(currentString);
else
uiwait(warndlg('Valor não correspondente... tente novamente'));
end
function hhh_Callback (~, ~, handles )
global valorH;
persistent textString;
currentString = get(handles.hhh, 'String');
if (isempty(textString)|| isequal(textString,'0'))
if ~isempty(currentString)
textString = currentString;
else
uiwait(warndlg('Campo não preechido... Favor preencher com valor valido'));
end
return;
end
if(str2double(textString)~='NaN')
valorH = str2double(currentString);
else
uiwait(warndlg('Valor não correspondente... tente novamente'));
end
function transfere_Callback (hObject, ~, handles)
global caminhoDosArquivosDeTexto ...
pastaSelecionada ...
tipoSelecionado ...
;
contents = cellstr(get(handles.listbox1,'String'));
Arqselecionado2= contents{get(hObject,'Value')};
[Arqselecionado ,~] = strsplit(Arqselecionado2 , ' [','CollapseDelimiters',true);
aux = char(strcat(pastaSelecionada,'\',Arqselecionado(1)));
txtSelect=strcat(caminhoDosArquivosDeTexto,aux);
todosTipos = cellstr(get(handles.paraOnde,'String'));
tipoSelecionado2 = todosTipos{get(handles.paraOnde,'Value')};
txtSelect2 = char(strcat(caminhoDosArquivosDeTexto,'textData\',tipoSelecionado2));
movefile(char(txtSelect),char(txtSelect2),'f');
todosTipos = cellstr(get(handles.selecionaCaso,'String'));
tipoSelecionado = todosTipos{get(handles.selecionaCaso,'Value')};
pastaSelecionada = strcat('\textData\',tipoSelecionado);
files = dir(fullfile(caminhoDosArquivosDeTexto,pastaSelecionada,'*.txt'));
set(handles.listbox1,'Value',1);
todosTipos = {files.name};
todosDAtas = {files.date};
for x=1: length({files.name})
dadoss{x} = strcat(todosTipos{x},' [',todosDAtas{x},']');
end
todosNomes=cell2struct(dadoss,'nomes',1);
set(handles.listbox1,'String',{todosNomes.nomes});
function modificar_Callback (~, ~, handles )
% hObject handle to modificar (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global valorA ...
valorB ...
valorH ...
volume ...
Q ...
altura ...
TETA ...
angCritico ...
qCritico ...
miuAR...
miuPVC...
miuAMO...
miuPA...
lxAR...
lxPVC...
lxAMOS...
lxPA...
Tar...
Tpvc...
Tamos...
Tpa...
tab5;
valorA = str2double(get(handles.aa, 'String'))
valorB = str2double(get(handles.bb, 'String'))
valorH = str2double(get(handles.hhh,'String'))
okaya = false;
okayb = false;
okayh = false;
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
hold off
if(isequal(num2str(valorA),'NaN')||isequal(valorA,0))
uiwait(warndlg('Medida [ a ] não computada ou igual a zero (0): Insira Medida valida'));
elseif(~isempty(valorA)&& ~isequal(valorA,0) && ~isequal(num2str(valorA),'NaN'))
okaya = true;
valorA = str2double(get(handles.aa, 'String'));
end
if(isequal(num2str(valorB),'NaN')||isequal(valorB,0))
uiwait(warndlg('Medida [ b ] não computada ou igual a zero (0): Insira Medida valida'));
elseif(~isempty(valorB)&& ~isequal(valorB,0) && ~isequal(num2str(valorB),'NaN'))
valorB = str2double(get(handles.bb, 'String'));
okayb = true;
end
if(isequal(num2str(valorH),'NaN')||isequal(valorH,0) )
uiwait(warndlg('Medida [ h ] não computada igual a zero (0): Insira Medida valida'))
elseif(~isempty(valorH)&& ~isequal(valorH,0) && ~isequal(num2str(valorH),'NaN'))
if (valorH > max(altura))
aux=strcat('Medida [ h ] não computada : Maior que a altura maxima [ ',num2str(max(altura)),' ] calculada automaticamente a partir do ang. theta')
uiwait(warndlg(aux));
else
valorH = str2double(get(handles.hhh, 'String'));
okayh = true;
end
end
if(okaya && okayb && okayh)
uiwait(helpdlg('Medidas alteradas com sucesso'))
end
volume = (valorA*valorB).*tan(TETA(:,1).*(pi()/180));
alturaCritica = str2double(get(handles.hhh,'String'))
okay = false;
count =0;
% for x=1:size(Q)
% x,1) = (valorA/2)*tan(Q(x,1)*(pi()/180))
% end
%
altura = rad2deg(atan(valorA/(2*valorH)))
% countxxx=1:Q(altura)
% aaaa = Q(round(altura))
for x=1:length(Q)
if(altura< TETA(x,1) && ~okay)
angCritico =count
qCritico = Q(count,1)
count
okay = true;
end
count = count+1;
end
set(handles.thetaTextedi,'String',TETA(angCritico,1))
[miuAR,miuPVC,miuAMO,miuPA,lxAR,lxPVC,lxAMOS,lxPA,Tar,Tpvc,Tamos,Tpa] = getTodososvalores(handles,Q);
CompX = str2double(get(handles.bb,'String'));
% resto = 2.1 - CompX;
% CompX = CompX + resto;
CompY = str2double(get(handles.aa,'String'));
CompZ = str2double(get(handles.hhh,'String'));
if(mostarJanela>0)
hFig = figure;
else
ax = axes('Parent', tab5);
cla reset
ax.BoxStyle = 'full';
ax.XAxisLocation = 'top';
ax.Position = [0.1 0.4 1.0 0.6];
end
X = [ 0 ; CompX ; CompX ; 0 ; 0 ];
Y = [ 0 ; 0 ; CompY ; CompY ; 0 ];
Z = [ 0 ; 0 ; 0 ; 0 ; 0 ];
if(mostarJanela>0)
tabplot(' 1 ',hFig,'top');
grid on
end
hold on;
plot3(X-CompX/2,Y-0.5*CompY,Z);
plot3(X-CompX/2,Y-0.5*CompY,Z+CompZ,'LineWidth',2.5);
set(gca,'View',[-50,33]);
for k=1:length(X)-1
plot3([X(k)-CompX/2;X(k)-CompX/2],[Y(k)-0.5*CompY;Y(k)-0.5*CompY],[0;CompZ],'LineWidth',2.5);
end
% scatter3(CompX*2.4*35.*rand(300,1)/100-CompX/2,CompX*2.4*35.*rand(300,1)/100- 1.5*CompY,35.*rand(300,1)/100-0.125,'red');
axis([-max(CompX)-0.3 max(CompX)+0.3 -max(CompX)-0.3 max(CompX)+0.3 0 1]);
if(mostarJanela>0)
tabplot(' 2 ',hFig,'top');
axis([-max(CompX)-0.3 max(CompX)+0.3 -max(CompX)-0.3 max(CompX)+0.3 0 1]);
grid on
end
grid on
hold on
nPhi = 256;
nRho = 32;
[X, Y, Z] = cylinder([linspace(0, CompX, nRho) CompX+0.1.*ones(1, nRho)], nPhi);
Z(1:nRho,:) = 0;
Z(nRho+1:end,:) = CompZ;
surf(X,Y,Z, 'FaceColor', [0.97 0.97 0.97], 'FaceLighting', 'phong','EdgeColor', 'none');
hold on
[X,Y,Z] = cylinder(linspace(0, CompX, nRho), nPhi);
Z(:,:) = CompZ -0.03;
surf(X, Y, Z, 'FaceColor', [0 0.5 1], 'FaceLighting', 'phong', 'FaceAlpha',0.5, 'EdgeColor', 'none');
camlight;
hold off
if(mostarJanela>0)
tabplot(' 3 ',hFig,'top');
grid on
axis([-max(CompX)-0.3 max(CompX)+0.3 -max(CompX)-0.3 max(CompX)+0.3 0 1]);
hold off
hold on;
X = [ 0 ; CompX ; CompX ; 0 ; 0 ];
Y = [ 0 ; 0 ; CompY ; CompY ; 0 ];
Z = [ 0 ; 0 ; 0 ; 0 ; 0 ];
plot3(X-CompX/2,Y-0.5*CompY,Z);
plot3(X-CompX/2,Y-0.5*CompY,Z+CompZ,'LineWidth',2.5);
set(gca,'View',[-28,35]);
for k=1:length(X)-1
plot3([X(k)-CompX/2;X(k)-CompX/2],[Y(k)-0.5*CompY;Y(k)-0.5*CompY],[0;CompZ],'LineWidth',2.5);
end
scatter3(7*35.*rand(300,1)/100-CompX/2,7*35.*rand(300,1)/100-3*CompY,35.*rand(300,1)/100,'g');
nPhi = 256;
nRho = 32;
[X, Y, Z] = cylinder([linspace(0, CompX, nRho) CompX+0.1.*ones(1, nRho)], nPhi);
Z(1:nRho,:) = 0;
Z(nRho+1:end,:) = CompZ;
surf(X,Y,Z, 'FaceColor', [0.97 0.97 0.97], 'FaceLighting', 'phong','EdgeColor', 'none');
hold on
[X,Y,Z] = cylinder(linspace(0, CompX, nRho), nPhi);
Z(:,:) = CompZ -0.03;
surf(X, Y, Z, 'FaceColor', [0 0.5 1], 'FaceLighting', 'phong', 'FaceAlpha',0.5, 'EdgeColor', 'none');
camlight;
hold off
end
function listbox2_Callback (hObject, ~, handles)
global pAselecionado ...
Arqselecionado2 ...
PA_04_VZ ...
PA_04_PLS ...
PA_03_VZ_REP ...
PA_03_PLS ...
PA_02_VZ ...
PA_02_PLS ...
PA_01_VZ ...
PA_01_PLS_1MIN ...
PA_01_H2O_PLS_2MIN ...
PA_01_H2O_PLS_1MIN ...
pA01_H20_PLS ...
pA02_H20_PLS ...
pA03_H20_PLS ...
pA04_H20_PLS ...
pA01_H20_PLS_2MIN ...
pA02_H20_PLS_2MIN ...
pA03_H20_PLS_2MIN ...
pA04_H20_PLS_2MIN ...
TETA ...
tab4 ...
tabgp...
IAR...
Q;
hold off
tabgp.SelectedTab = tab4;
contents = cellstr(get(hObject,'String'));
Arqselecionado2= contents{get(hObject,'Value')};
opc1 ='Intensidade do Porta Amostra Vazio';
opc2 ='Intensidade do Filme';
opc3 ='Intensidade da H20 1Min';
opc4 ='Intensidade do Ar';
mostarJanela= get(handles.PlotarEmNovaJanela,'Value');
axes('Parent',tab4);
if(strcmp(Arqselecionado2,opc1))
set(handles.text14,'String',opc1);
subplot(4,1,1)
cla reset
titlee=strcat(opc1,' - ',pAselecionado);
if(strcmp(pAselecionado,'PA01'))
dataTab = [TETA Q PA_01_VZ];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_01_VZ,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_01_VZ) max(PA_01_VZ)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_01_VZ,'Intensidades obtidas para PA01 Vazio','PA01 Vazio');
end
end
if(strcmp(pAselecionado,'PA02'))
dataTab = [TETA Q PA_02_VZ];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_02_VZ,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_02_VZ) max(PA_02_VZ)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_02_VZ,'Intensidades obtidas para PA02 Vazio','PA02 Vazio');
end
end
if(strcmp(pAselecionado,'PA03'))
dataTab = [TETA Q PA_03_VZ_REP];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_03_VZ_REP,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_03_VZ_REP) max(PA_03_VZ_REP)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_03_VZ_REP,'Intensidades obtidas para PA03 Vazio','PA03 Vazio');
end
end
if(strcmp(pAselecionado,'PA04'))
dataTab = [TETA Q PA_04_VZ];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_04_VZ,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_04_VZ) max(PA_04_VZ)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_04_VZ,'Intensidades obtidas para PA04 Vazio','PA04 Vazio');
end
end
end
if(strcmp(Arqselecionado2,opc2))
subplot(4,1,2)
cla reset
titlee=strcat(opc2,' - ',pAselecionado);
set(handles.text14,'String',opc2);
if(strcmp(pAselecionado,'PA01'))
dataTab = [TETA Q PA_01_PLS_1MIN];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_01_PLS_1MIN,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_01_PLS_1MIN) max(PA_01_PLS_1MIN)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_01_PLS_1MIN,'Intensidades obtidas para PA01 com Plástico','PA01 Plástico');
end
end
if(strcmp(pAselecionado,'PA02'))
dataTab = [TETA Q PA_02_PLS];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_02_PLS,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_02_PLS) max(PA_02_PLS)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_02_PLS,'Intensidades obtidas para PA02 com Plástico','PA02 Plástico');
end
end
if(strcmp(pAselecionado,'PA03'))
dataTab = [TETA Q PA_03_PLS];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_03_PLS,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_03_PLS) max(PA_03_PLS)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_03_PLS,'Intensidades obtidas para PA03 com Plástico','PA03 Plástico');
end
end
if(strcmp(pAselecionado,'PA04'))
dataTab = [TETA Q PA_04_PLS];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_04_PLS,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_04_PLS) max(PA_04_PLS)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_04_PLS,'Intensidades obtidas para PA04 com Plástico','PA04 Plástico');
end
end
end
if(strcmp(Arqselecionado2,opc3))
subplot(4,1,3)
cla reset
titlee=strcat(opc3,' - ',pAselecionado);
set(handles.text14,'String',opc3);
dataTab = [TETA Q PA_01_H2O_PLS_1MIN];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,PA_01_H2O_PLS_1MIN,' ',titlee);
axis([min(Q(:)) max(Q(:)) min(PA_01_H2O_PLS_1MIN) max(PA_01_H2O_PLS_1MIN)]);
if(mostarJanela>0)
figure
plotGraficoFacil(Q,PA_01_H2O_PLS_1MIN,'Intensidades obtidas para PA01 com H20 1MIN','PA01 H20 1MIN');
end
end
if(strcmp(Arqselecionado2,opc4))
subplot(4,1,4)
cla reset
titlee=strcat(opc4);
set(handles.text14,'String',opc4);
dataTab = [TETA Q IAR];
set(handles.tabela2,'Data',dataTab);
plotGraficoFacil(Q,IAR,' ',titlee);
% axis([min(Q(:)) max(Q(:)) min(IAR) max(IAR)]);
axis tight
if(mostarJanela>0)
figure
plotGraficoFacil(Q,IAR,'Intensidades obtidas para PA01 com H20 2MIN','PA01 H20 2MIN');
end
end
function miu_Callback (~, ~, ~)
function rho_Callback (~, ~, ~)
function paraOnde_Callback (~, ~, ~)
function console_Callback (~, ~, ~)
function T4_Callback (~, ~, ~)
function T1_Callback (~, ~, ~)
function T3_Callback (~, ~, ~)
function T2_Callback (~, ~, ~)
function edit14_Callback (~, ~, ~)
function edit15_Callback (~, ~, ~)
function edit16_Callback (~, ~, ~)
function PlotarEmNovaJanela_Callback(~, ~, ~)
%##############################################################################
%##############################################################################
%##############################################################################
%##############################################################################
function PlotarEmNovaJanela_CreateFcn(~, ~, ~)
function classifica1_CreateFcn (~, ~, ~)
function console_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function slider3_CreateFcn (hObject, ~, ~)
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function p1_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p2_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p3_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p4_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p11_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p12_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p13_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p21_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p22_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p23_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p31_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p32_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p33_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p41_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p42_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p43_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function p11_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p11,'BackgroundColor','g');
else
set(handles.p11,'BackgroundColor','r');
end
function p12_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p12,'BackgroundColor','g');
else
set(handles.p12,'BackgroundColor','r');
end
function p13_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p13,'BackgroundColor','g');
else
set(handles.p13,'BackgroundColor','r');
end
function p21_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p21,'BackgroundColor','g');
else
set(handles.p21,'BackgroundColor','r');
end
function p22_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p22,'BackgroundColor','g');
else
set(handles.p22,'BackgroundColor','r');
end
function p23_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p23,'BackgroundColor','g');
else
set(handles.p23,'BackgroundColor','r');
end
function p31_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p31,'BackgroundColor','g');
else
set(handles.p31,'BackgroundColor','r');
end
function p32_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p32,'BackgroundColor','g');
else
set(handles.p32,'BackgroundColor','r');
end
function p33_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p33,'BackgroundColor','g');
else
set(handles.p33,'BackgroundColor','r');
end
function p41_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p41,'BackgroundColor','g');
else
set(handles.p41,'BackgroundColor','r');
end
function p42_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p42,'BackgroundColor','g');
else
set(handles.p42,'BackgroundColor','r');
end
function p43_Callback(hObject, ~, handles)
if(~isnan(str2double(get(hObject,'String'))))
set(handles.p43,'BackgroundColor','g');
else
set(handles.p43,'BackgroundColor','r')
end
function energia_Callback(~, ~, ~)
function aa_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function hhh_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function bb_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function listbox2_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function paraOnde_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function selecionaCaso_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function popupmenu2_CreateFcn (hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function uipanel7_CreateFcn(~, ~, ~)
global tabgp ...
f ...
tab1 ...
tab2 ...
tab3 ...
tab4 ...
tab5 ...
tab3_2...
tab3_3...
tab3_4...
;
f = gcf;
tabgp = uitabgroup(f,'Position',[0.58 .01 .4 0.90]);
tab1 = uitab(tabgp,'Title','Análise da amostra');
tab2 = uitab(tabgp,'Title','Pós - Análise');
tab3 = uitab(tabgp,'Title','Pós - Análise II');
tab3_3 = uitab(tabgp,'Title','Perfis da agua');
tab3_4 = uitab(tabgp,'Title','Perfis Tecidos');
tab4 = uitab(tabgp,'Title','Dados iniciais ');
tab5 = uitab(tabgp,'Title','PA');
tab3_2 = uitab(tabgp,'Title','Pós - Análise III');
assignin('base','tab3_2',tab3_2)
uicontrol(tab3,'Style', 'pushbutton', 'String', 'Iterar','Callback', @iterar);
uicontrol(tab5,'Style', 'pushbutton', 'String', 'Anima' ,'Callback', @anima );
function iterar(ax,bx)
global Q ...
plotFinal ...
tab3_2 ...
tabgp ...
mostarJanela ...
TETA;
tabgp.SelectedTab = tab3_2;
cla reset
x = TETA;
hold off
if(mostarJanela>0)
figure(77)
else
axes('Parent', tab3_2)
end
plotCorrigidoAux1 = plotFinal.*(-1);
plotCorrigidoAux2 = plotFinal;
% tam = length(plotCorrigidoAux2 );
[pks,locs] = findpeaks(plotCorrigidoAux1,Q,'MinPeakDistance',2);
if(plotCorrigidoAux2(1)> plotCorrigidoAux2(5))
plotCorrigidoAux2(1:locs(3),1)= (-1).*pks(1);
end
%
% subplot(3,1,1)
% plot(Q,plotCorrigidoAux2)
subplot(3,1,1)
Pos = x;
Hgt = plotCorrigidoAux2;
cla reset
okay=false;
cont=0;
entrada=0;
inicio = 1;
PeakSig=plotCorrigidoAux2;
% okay=400000;
% %
% Hgt = plotCorrigidoAux2;
inicio = 50;
okay2=1E-26;
for yy=1:2
cla reset
Wdt = Q/inicio;
inicio = inicio*10;
for n = 1:length(x)
Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
PeakSig=sum(Gauss);
% plot(Q(1:n),PeakSig(1:n),'-.')
if(okay==false & cont >2)
plot(Q,Gauss(n,:))
axis tight
hold on
okay=true;
cont=0;
else
okay=false;
cont=cont+1;
end
pause(0.00005)
end
okay2=max(sum(Gauss));
% %
end
hold all
plot(Q,PeakSig,'-.');
% %
grid on
axis tight
entrada=0;
x = Q;
%FIANAL DO PRIMEIRO SUBPLOT
for i=1:2
if i ==1
fator = 100
else
fator = 1000;
end
Wdt = x/fator;
subplot(3,1,2)
if(i<2) cla reset; end
Pos = x;
Hgt = plotCorrigidoAux2;
okay=false;
cont=0;
for n = 1:length(x)
Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end
PeakSig = sum(Gauss);
hold all
plot(x,Gauss,'.-',x,PeakSig,'-');
axis tight
% end
hold on
[psor,lsor] = findpeaks(PeakSig,x,'SortStr','descend');
if(i==1)
PKS1=lsor;
[k, d] = dsearchn(lsor(1),Q(:,1));
pico2 = min(d);
[i,j]=ind2sub(size(d), find(d==pico2));
pk2=Q(i,1);
x2=Q(i,1);
end
hold off
grid on
subplot(3,1,3)
%
if(entrada==0 )
cla reset
entrada=1;
end
% axis([min(Q(:)) max(Q(:)) min(plotCorrigido) max(plotCorrigido)]);
findpeaks(PeakSig,x,'MinPeakDistance',5,'WidthReference','halfheight');
end
pico1 = max(plotCorrigidoAux2);
[i,j]=ind2sub(size(plotCorrigidoAux2), find(plotCorrigidoAux2==pico1));
pk1=Q(i,1);
x1=Q(i,1);
y1=max(plotCorrigidoAux2);
hold all
[k, d] = dsearchn(pk1,PKS1);
if( d(1) < 3)
pk2 = PKS1(2);
x2 = pk2;
end
%
index = find(Q==pk2);
y2 = plotCorrigidoAux2(index);
%
plot((x1).*ones(length(x),1),plotCorrigidoAux2,'-.','LineWidth',2);
plot( x1,y1+1E-25,'v',...
'LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',10)
plot((x2).*ones(length(x),1),plotCorrigidoAux2,'-.','LineWidth',2);
plot( x2,y2+1E-25,'v',...
'LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',10)
str1 = ['[ ',num2str(x1),' , ',num2str(y1),' ]'];
str2 = ['[ ',num2str(x2),' , ',num2str(y2),' ]'];
text(x1+2,y1+1E-25,str1,'HorizontalAlignment','right');
text(x2,0,str2,'VerticalAlignment','baseline','HorizontalAlignment','left');
xlim([min(Q) max(Q)])
ylim([0 y1+2E-25])
% axis([min(Q(:)) max(Q(:)) min(plotCorrigido) max(plotCorrigido)+5E-25])
%
hold off
function anima (~,~)
global tab5 ...
okay=0;
if(okay==1)
fa=0.2;
SPHERE_RES = 50; % resolution for your spheres
SPHERE_RAD = fa; % radius of spheres
v = randn(200,3);
v(:,1)=v(:,1)*0.4;
v(:,2)=v(:,2)*0.5;
v(:,3)=v(:,3)*0.05;
% Make base sphere data
[xb, yb, zb] = sphere(SPHERE_RES);
%
% h = 0.5*[xb, yb, zb]
% Make a figure
xb = 8*30.*xb/100;
yb = 6*30.*yb/100;
zb = zb;
hold on;
% Plot spheres
for i=1:1:length(v)
if(i<150)
surf(SPHERE_RAD*xb+v(i,1), SPHERE_RAD*yb+v(i,2), SPHERE_RAD*zb+v(i,3), 'facecolor', 'y', 'edgealpha', 0);
% surf(SPHERE_RAD*xb+v(i,1)-0.21, SPHERE_RAD*yb+v(i,2)-0.21, SPHERE_RAD*zb+v(i,3), 'facecolor', 'y', 'edgealpha', 0);
% surf(SPHERE_RAD*xb+v(i,1)+0.21, SPHERE_RAD*yb+v(i,2)+0.21, SPHERE_RAD*zb+v(i,3), 'facecolor', 'y', 'edgealpha', 0);
else
surf(SPHERE_RAD*xb+v(i,1), SPHERE_RAD*yb+v(i,2), SPHERE_RAD*zb+v(i,3), 'facecolor', 'black', 'edgealpha', 0);
end
end
light;
lighting gouraud;
end
function T3_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function T1_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function T4_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function T2_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit14_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit15_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit16_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function thetaText_Callback (~, ~, ~)
function qtext_Callback (~, ~, ~)
function transfere_CreateFcn(~, ~, ~)
function nda1_CreateFcn (~, ~, ~)
function nda2_CreateFcn (~, ~, ~)
function nda3_CreateFcn (~, ~, ~)
function text12_CreateFcn (~, ~, ~)
function setOFFeddits (handles)
set(handles.edit16,'String',8.04);
set(handles.p1,'Visible','off');
set(handles.p2,'Visible','off');
set(handles.p3,'Visible','off');
set(handles.p4,'Visible','off');
set(handles.pp1,'Visible','on');
set(handles.pp2,'Visible','on');
set(handles.pp3,'Visible','on');
set(handles.pp4,'Visible','on');
set(handles.p12,'String','');
set(handles.p22,'String','');
set(handles.p32,'String','');
set(handles.p42,'String','');
set(handles.p11,'String','');
set(handles.p21,'String','');
set(handles.p31,'String','');
set(handles.p41,'String','');
set(handles.edit16,'BackgroundColor',[0.83 0.82 0.78]);
set(handles.p12,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p22,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p32,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p42,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p11,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p21,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p31,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.p41,'BackgroundColor' ,[0.83 0.82 0.78]);
function setONeddits (handles)
set(handles.p1,'Visible','on');
set(handles.p2,'Visible','on');
set(handles.p3,'Visible','on');
set(handles.p4,'Visible','on');
set(handles.p4,'Visible','on');
set(handles.pp1,'Visible','off');
set(handles.pp2,'Visible','off');
set(handles.pp3,'Visible','off');
set(handles.pp4,'Visible','off');
set(handles.edit16,'String',8,'BackgroundColor','white');
set(handles.p12,'String','','BackgroundColor','white');
set(handles.p22,'String','','BackgroundColor','white');
set(handles.p32,'String','','BackgroundColor','white');
set(handles.p42,'String','','BackgroundColor','white');
set(handles.p11,'String','','BackgroundColor','white');
set(handles.p21,'String','','BackgroundColor','white');
set(handles.p31,'String','','BackgroundColor','white');
set(handles.p41,'String','','BackgroundColor','white');
set(handles.p13,'String','','BackgroundColor','white');
set(handles.p23,'String','','BackgroundColor','white');
set(handles.p33,'String','','BackgroundColor','white');
set(handles.p43,'String','','BackgroundColor','white');
set(handles.aa, 'String','','BackgroundColor','white');
set(handles.bb, 'String','','BackgroundColor','white');
set(handles.hhh,'String','','BackgroundColor','white');
function atualiza(handles)
global caminhoDosArquivosDeTexto;
nomeDensidade = {'Air, Dry (near sea level)' 'Polyvinyl Chloride' 'Water, Liquid' 'Polylactic acid'};
cont =1;
valorEnergia = str2double(get(handles.edit16,'String'));
for x=1:4
aux = strcat( nomeDensidade{x},'.txt');
txtSelect = strcat(caminhoDosArquivosDeTexto,'AttCoefficients\',aux);
txtDensidade = strcat(caminhoDosArquivosDeTexto,'densidades.txt');
fid = fopen(txtSelect);
tline = fgetl(fid);
j=0;
while ischar(tline)
convertePataFloat = strread(tline,'%f','delimiter','K');
j=j+1;
[tam, ~] =size(convertePataFloat);
if(tam>3)
dadosSelecionados(j,:) = convertePataFloat(2:4)';
else
dadosSelecionados(j,:) = convertePataFloat';
end
tline = fgetl(fid);
end
fclose(fid);
fid = fopen(txtDensidade);
dadosSelecionados(:,1)= dadosSelecionados(:,1).*1000;
tline = fgetl(fid);
while ischar(tline)
convertePataFloat = textscan(tline,'%s %s','delimiter','|');
convertePataFloat2 = textscan(char(convertePataFloat{2}),'%f %f %f','delimiter','//');
densidade = convertePataFloat2{3};
if(isequal(nomeDensidade{x},char(convertePataFloat{1})) && cont < 5);
if(cont==1)
densidadeSelecionada=densidade;
set(handles.p12,'String',densidade);
set(handles.pp1,'String',nomeDensidade{x});
end
if(cont==2)
densidadeSelecionada=densidade;
set(handles.p22,'String',densidade);
set(handles.pp2,'String',nomeDensidade{x});
end
if(cont==3)
densidadeSelecionada=densidade;
set(handles.p32,'String',densidade);
set(handles.pp3,'String',nomeDensidade{x});
end
if(cont==4)
densidadeSelecionada=densidade;
set(handles.p42,'String',densidade);
set(handles.pp4,'String',nomeDensidade{x});
end
end
tline = fgetl(fid);
end
fclose(fid);
for i=1:size(dadosSelecionados)
if(isequal(round(dadosSelecionados(i,1)),round(valorEnergia)) && cont < 5)
if(cont==1)
miu=dadosSelecionados(i,2)*densidadeSelecionada;
set(handles.p11,'String',miu);
end
if(cont==2)
miu=dadosSelecionados(i,2)*densidadeSelecionada;
set(handles.p21,'String',miu);
end
if(cont==3)
miu=dadosSelecionados(i,2)*densidadeSelecionada;
set(handles.p31,'String',miu);
end
if(cont==4)
miu=dadosSelecionados(i,2)*densidadeSelecionada;
set(handles.p41,'String',miu);
end
end
end
cont = cont+1;
end
set(handles.p13,'String',20.00);
set(handles.p23,'String',0.15E-3);
set(handles.p33,'String',0.38);
set(handles.p43,'String',0.2);
set(handles.aa,'String',0.35);
set(handles.bb ,'String',1.9);
set(handles.hhh,'String',0.4);
set(handles.p13,'BackgroundColor',[0.83 0.82 0.78]);
set(handles.p23,'BackgroundColor',[0.83 0.82 0.78]);
set(handles.p33,'BackgroundColor',[0.83 0.82 0.78]);
set(handles.p43,'BackgroundColor',[0.83 0.82 0.78]);
set(handles.aa,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.bb,'BackgroundColor' ,[0.83 0.82 0.78]);
set(handles.hhh,'BackgroundColor',[0.83 0.82 0.78]);
%##############################################################################
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
global newData ...
caminhoDosArquivosDeTexto ...
m;
% d = dialog('Position',[400 400 250 150],'Name','Fechando ... ');
% txt = uicontrol('Parent',d,...
% 'Style','text',...
% 'Position',[20 80 210 40],...
% 'String','Limpando buffers, auguarde o fechar do programa ...');
%
% hostname = char( getHostName( java.net.InetAddress.getLocalHost ) );
% newData = [ {strcat('hostname >> [ ',hostname,' ]')}; get(handles.console,'Data')];
% set(handles.console,'Data',newData);
% ip = char( getHostAddress( java.net.InetAddress.getLocalHost ) );
% newData = [ {strcat('IP >> [ ',ip,' ]')} ; get(handles.console,'Data')];
% set(handles.console,'Data',newData);
% user = getenv('UserName');
% newData = [ {strcat('user >> [ ',user,' ]')} ;get(handles.console,'Data')];
% set(handles.console,'Data',newData);
%
% new_data = strrep(datestr(datetime('now')), ':', '.');
% Ta = strcat('logdata [',new_data,'].txt');
% writetable(cell2table(newData),Ta);
%
% pause(0.05)
% caminhoLog =strcat(caminhoDosArquivosDeTexto,Ta);
%
% try
% sendmail(m,'MATLAB code utilization','O codigo do seu programa foi usado. Log em anexo:',{caminhoLog});
%
% catch exception
% close (d)
% delete(hObject);
%
% end
% close (d)
% delete(hObject);
function negv_Callback(hObject, eventdata, handles)
% --- Executes on button press in Abbas.
function Abbas_Callback(hObject, eventdata, handles)
% hObject handle to Abbas (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of Abbas
global tabgp;
espandis = get(hObject,'Value');
if(espandis <1)
set(tabgp,'Position',[0.58 .01 .4 0.90]);
else
set(tabgp,'Position',[0.001 .03 .99 0.90]);
end
function detm_Callback(hObject, eventdata, handles)
function smoothPlot_Callback(hObject, eventdata, handles)
% hObject handle to smoothPlot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of smoothPlot
function iterarAte_Callback(hObject, eventdata, handles)
% hObject handle to iterarAte (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of iterarAte as text
% str2double(get(hObject,'String')) returns contents of iterarAte as a double
% --- Executes during object creation, after setting all properties.
function iterarAte_CreateFcn(hObject, eventdata, handles)
% hObject handle to iterarAte (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function aAte_Callback(hObject, eventdata, handles)
% hObject handle to aAte (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of aAte as text
% str2double(get(hObject,'String')) returns contents of aAte as a double
% --- Executes during object creation, after setting all properties.
function aAte_CreateFcn(hObject, eventdata, handles)
% hObject handle to aAte (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton24.
function pushbutton24_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton24 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton25.
function pushbutton25_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton25 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in altr.
function altr_Callback(hObject, eventdata, handles)
% hObject handle to altr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of altr
usar=get(hObject,'Value');
if(usar>0)
set(handles.aAte,'String',100)
else
set(handles.aAte,'String',50)
end
function normalr_Callback(hObject, eventdata, handles)
% hObject handle to normalr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of normalr as text
% str2double(get(hObject,'String')) returns contents of normalr as a double
% --- Executes during object creation, after setting all properties.
function normalr_CreateFcn(hObject, eventdata, handles)
% hObject handle to normalr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
|
github
|
lob-epfl/sofitool-master
|
sofiCumulants.m
|
.m
|
sofitool-master/GUI/codeSofi/SOFI/sofiCumulants.m
| 7,034 |
utf_8
|
29b26a76924276e6cd03cafc2c759001
|
%[sofi,grid]=sofiCumulants(stack,first,frames,region,orders,gpu)
%---------------------------------------------------------------
%
%Raw cross-cumulant images from image stack.
%
%Inputs:
% stack Image stack
% or TIFF file name
% first First image index {1}
% frames Number of images {all}
% region Image region [pixel] {{[1 width],[1 height]}}
% orders Cross-cumulant orders {1:4}
% gpu Force or forbid CUDA usage {auto}
%
%Outputs:
% sofi Raw cross-cumulants
% grid Partitions and pixels
%Copyright ? 2012 Marcel Leutenegger et al, ?cole Polytechnique F?d?rale de Lausanne,
%Laboratoire d'Optique Biom?dicale, BM 5.142, Station 17, 1015 Lausanne, Switzerland.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
function [sofi,grid]=sofiCumulants(stack,first,frames,region,orders,gpu)
file=ischar(stack);
if file
tif=Tiff(stack,'r');
X=tif.getTag('ImageLength'); % reading tiff info(s) image dimensions
Y=tif.getTag('ImageWidth');
else
tif.close=[];
tif.lastDirectory=false;
tif.nextDirectory=[];
[X,Y,F]=size(stack);
end
try
fig=statusbar('Initialization...');
if nargin < 2 || isempty(first)
first=1;
end
if nargin < 3 || isempty(frames) % number of images
if file
try
tif.setDirectory(65536); % supported frames
catch
end
frames=tif.currentDirectory;
else
frames=F;
end
frames=frames + 1-first;
end
if file
tif.setDirectory(first);
end
roi=nargin > 3 && ~isempty(region); % region defined?
if roi
x=max(1,min(region{1},X));
y=max(1,min(region{2},Y));
x=int16(x(1):x(2));
y=int16(y(1):y(2));
roi=numel(x) < X || numel(y) < Y;
X=numel(x);
Y=numel(y);
end
if any([X Y frames] < 4)
error('sofi:dimensions','The image stack is too small.');
end
if nargin < 5 || isempty(orders)
orders=1:4;
end
fig=statusbar(1/3,fig);
grid=sofiGrids(orders,file); % partitions and pixels
if ~file
if roi
stack=stack(x,y,first:first+frames-1);
elseif frames < F
stack=stack(:,:,first:first+frames-1);
end
avg=sum(stack(:,:,:),3)/frames; % average for zero means
end
fig=statusbar(2/3,fig);
p=grid(1).pixels; % corner pixel coordinates
m=cell(size(p));
n=cell(size(p));
F=int16(1:size(p,1));
for f=F % indices limited to image size
m{f}=int16(min(X,1+p(f,1):p(f,1)+X));
n{f}=int16(min(Y,1+p(f,2):p(f,2)+Y));
end
t=grid(1).terms; % terms pixel coordinates
P=int16(1:numel(t));
facts=cell(size(m)); % factors storage
if nargin < 6 || isempty(gpu)
gpu=X*Y >= 65536 && cudaAvailable;
end
gpus={@gpu1 @gpu2 @gpu3 @gpu4 @gpu5 @gpu6 @gpu7 @gpu8};
if gpu
if ~file
avg=gpuArray(avg); % store arrays on GPU
end
for f=F
m{f}=gpuArray(int32(m{f})); % use native data type
n{f}=gpuArray(int32(n{f}));
end
terms={gpuArray(0)};
else
terms={0};
end
terms=terms(ones(size(t))); % terms storage
fig=statusbar('Partial products...',fig);
for frame=1:frames
if file
img=tif.read; % read image
if roi
img=img(x,y);
end
else
img=stack(:,:,frame);
end
if gpu
img=gpuArray(img);
end
img=double(img);
if ~file
img=img - avg;
end
for f=F
facts{f}=img(m{f},n{f}); % all factors
end
if gpu
for p=P
terms{p}=arrayfun(gpus{numel(t{p})},terms{p},facts{t{p}});
end
else
for p=P
terms{p}=feval(gpus{numel(t{p})},terms{p},facts{t{p}});
end
end
fig=statusbar(frame/frames,fig);
if isempty(fig) || tif.lastDirectory
break;
end
tif.nextDirectory;
end
catch msg
tif.close;
delete(fig);
rethrow(msg);
end
if file
tif.close;
sofi=cumulants(grid,orders,frame,terms,fig,gpu);
elseif frame < frames
error('sofi:abort','User abort resulted in non-zero means.');
else
sofi=cumulants(grid,orders(orders > 1),frame,terms,fig,gpu);
if any(orders == 1)
sofi{1}=gather(avg(2:end-2,2:end-2));
end
end
%Check for CUDA-1.3-capable or newer graphics card.
%
function gpu=cudaAvailable
try
gpu=parallel.gpu.GPUDevice.current();
gpu=gpu.DeviceSupported;
catch msg
gpu=false;
end
%Cross-cumulant images from partial product terms.
%
% grid Partitions and pixels
% orders Cumulant orders
% frames Number of images
% terms Partial products
% fig Statusbar handle
%
% sofi Cross-cumulant images
%
function sofi=cumulants(grid,orders,frames,terms,fig,gpu)
fig=statusbar('Cross cumulants...',fig);
fact=cumprod([1 -1:-1:1-max(orders(:))]/frames);
sofi=cell(size(grid)); % cell array of empty matrices (size(grid))
s=size(terms{1}) - 3; % first order size
x=cell(4,1);
y=cell(4,1);
for f=1:4
x{f}=int16(f:f+s(1)-1); % all shift indices
y{f}=int16(f:f+s(2)-1);
end
if gpu
fact=gpuArray(fact);
end
cur=0;
num=sum(cellfun(@numel,{grid(orders).parts})) + numel(orders);
for order=orders(:).'
pixels={0};
pixels=pixels(ones(order)); % cumulant groups
P=int16(1:numel(pixels));
parts=grid(order).parts;
shifts=grid(order).shifts;
for p=1:numel(parts)
dx=x(shifts{p}(:,:,1)); % shift indices
dy=y(shifts{p}(:,:,2));
part=parts{p}; % term indices
n=size(part,2);
F=int16(1:n);
for m=P
term=fact(n); % partition
for n=F
term=term.*terms{part(m,n)}(dx{m,n},dy{m,n});
end
pixels{m}=pixels{m} + term; % cumulant
end
cur=cur + 1;
fig=statusbar(cur/num,fig);
if isempty(fig)
return;
end
end
term=zeros(s*order); % full image
for m=1:order
for n=1:order
term(m:order:end,n:order:end)=gather(pixels{m,n});
end
end
sofi{order}=term(1:1+end-order,1:1+end-order);
cur=cur + 1;
fig=statusbar(cur/num,fig);
if isempty(fig)
return;
end
end
delete(fig);
|
github
|
lob-epfl/sofitool-master
|
nvcc.m
|
.m
|
sofitool-master/GUI/codeSofi/SOFI/private/nvcc.m
| 7,590 |
utf_8
|
d1942566971b573b025b45d49e8d4945
|
function nvcc(varargin)
% This function NVCC is a wraper for the NVIDIA Cuda compiler NVCC.exe
% in combination with a Visual Studio compiler. After this Cuda
% files can be compiled into kernels
%
% If you call the code the first time, or with "nvcc -config":
% 1) It will try to locate the "The NVIDIA GPU Computing Toolkit", which
% can be downloaded from www.nvidia.com/object/cuda_get.html
% Typical Location :
% C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v3.2\bin
% 2) It will try to locate the visual studio compiler
% Typical Location :
% C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\
% 3) It creates a file nvccbat.bat with the compiler information.
%
% After this configuration procedure, you can compile files with:
%
%
% nvcc(filename);
%
% or
%
% nvcc(options,filename)
%
% filename : A string with the filename, for example 'example.cu'
% options : NVCC Compiler options for example,
% nvcc(option1, option2, option3,filename)
%
% For help on NVCC config options type, "nvcc --help"
%
%
% Note!
% If the NVCC fails to locate the compiler you can try to
% write your own "nvccbat.bat" file in a text-editor, for example:
% echo off
% set PATH=C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\;%PATH%
% set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v3.2\bin;%PATH%
% call vcvars32.bat
% nvcc %1 %2 %3 %4 %5 %6 %7 %8 %9
%
%
%
% 1 Example, Configuration
% % Locate Cuda and VS compiler
% nvcc -config
%
% % Show the NVCC compiler options
% nvcc --help
%
% % Test some input options
% nvcc --dryrun -ptx example.cu
%
% 2 Example,
%
% % Locate Cuda and VS compiler
% nvcc -config
% % Compile the code
% nvcc('example.cu');
% % It the same as :
% % nvcc -ptx example.cu
%
% % Make the kernel
% Kernel = parallel.gpu.CUDAKernel('example.ptx', 'example.cu');
%
% % We want to execute this kernel 100 times
% Kernel.ThreadBlockSize=100;
%
% % We make an array with 100 random files
% Data=rand(100, 1, 'single');
% DataCuda= gpuArray(Data);
%
% % We will add the value 1
% OneCuda = parallel.gpu.GPUArray.ones(1,1);
%
% % Execute the kernel
% DataOneCuda = feval(Kernel, DataCuda, OneCuda);
%
% % Get the data back
% DataOne=gather(DataOneCuda);
%
% % Show the result
% figure, hold on;
% plot(Data,'b');
% plot(DataOne,'r');
%
% Function is written by D.Kroon University of Twente (December 2010)
if(nargin<1)
error('nvcc:inputs','Need at least one input');
end
% Copy configuration file to current folder
functionname='nvcc.m';
functiondir=which(functionname);
functiondir=functiondir(1:end-length(functionname));
afilename=[cd '\nvccbat.bat'];
cfilename=[functiondir '\nvccbat.bat'];
if(~exist(afilename,'file'))
if(exist(cfilename,'file'))
fid = fopen(cfilename, 'r'); fiw = fopen('nvccbat.bat', 'w');
fwrite(fiw,fread(fid, inf, 'uint8=>uint8'));
fclose(fiw); fclose(fid);
else
% If configuration file doesn't exist, go to config mode
varargin{1}='-config';
end
end
if(strcmp(varargin{1},'-config'))
% Configuration Mode
% Locate the Cuda Toolkit
filenametoolkit=toolkit_selection;
disp('.'); disp(['Toolkit Path: ' filenametoolkit]);
% Locate the microsoft compiler
[filenamecompiler,filenamecompilerbat]=compiler_selection();
disp('.'); disp(['VS Compiler: ' filenamecompiler]);
% Create a bat file which will excecute the nvcc compiler
createbatfile(filenamecompiler,filenametoolkit, filenamecompilerbat,cfilename);
else
% Compile a .cu file using the nvcc.exe compiler
% If no input options compile as .ptx kernel file
if(nargin<2),
str=['-ptx ' varargin{1}];
else
% Add all input options
str=''; for i=1:nargin, str=[str varargin{i} ' ']; end
if(nargin>9)
warning('nvcc:inputs','Only 8 input options allowed');
end
end
% Excecute the bat file to compile a .cu file
[status,result] = system(['nvccbat ' str]);
disp(result);
end
function createbatfile(filenamecompiler,filenametoolkit, filenamecompilerbat,cfilename)
fid = fopen(cfilename,'w');
fprintf(fid,'echo off\r\n');
fprintf(fid,'%s\r\n',['set PATH=' filenamecompiler ';%PATH%']);
fprintf(fid,'%s\r\n',['set PATH=' filenametoolkit ';%PATH%']);
fprintf(fid,['call ' filenamecompilerbat '\r\n']);
fprintf(fid,'nvcc %%1 %%2 %%3 %%4 %%5 %%6 %%7 %%8 %%9 \r\n');
fclose(fid);
% This function will try to locate the installed NVIDIA toolkits
function filenametoolkit=toolkit_selection()
str=getenv('ProgramFiles');
str=[str '\NVIDIA GPU Computing Toolkit\CUDA'];
if(~isdir(str))
str=getenv('ProgramW6432');
str=[str '\NVIDIA GPU Computing Toolkit\CUDA'];
if(~isdir(str))
str=getenv('ProgramFiles(x86)');
str=[str '\NVIDIA GPU Computing Toolkit\CUDA'];
else
error('nvcc:notfound','The NVIDIA GPU Computing Toolkit is not found, please make sure you have downloaded and installed the toolkit');
end
end
files=dir([str '\*']);
filenametoolkitlist=cell(1,10);
n=0;
for i=1:length(files)
if((files(i).name(1)~='.')&&files(i).isdir)
filenametoolkit=[str '\' files(i).name '\bin'];
if(exist(filenametoolkit,'dir')),
n=n+1;
filenametoolkitlist{n}=filenametoolkit;
end
end
end
if(n==0)
error('nvcc:notfound','The NVIDIA GPU Computing Toolkit is not found, please make sure you have downloaded and installed the toolkit');
end
disp('Cuda Toolkits Found : ')
disp('------------------------------------------------------------------')
for i=1:n
disp(['[' num2str(i) '] ' filenametoolkitlist{i}])
end
disp('------------------------------------------------------------------')
p=input('Select the Cuda Toolkit you want to use : ');
filenametoolkit=filenametoolkitlist{p};
% This function will try to locate all installed Microsoft Visual Compilers
function [filenamecompiler, filenamecompilerbat]=compiler_selection()
compilerfilenames=cell(1,10);
compilerfilenamesbat=cell(1,10);
n=0;
for j=1:3
switch(j)
case 1
str=getenv('ProgramFiles');
case 2
str=getenv('ProgramW6432');
case 3
str=getenv('ProgramFiles(x86)');
end
if(~isempty(str))
a=dir([str '\Microsoft Visual*']);
for i=1:length(a)
filename=[str '\' a(i).name '\VC\bin\amd64\'];
filenamebat=[filename 'vcvarsamd64.bat'];
if(exist(filenamebat,'file'))
n=n+1;
compilerfilenames{n}=filename;
compilerfilenamesbat{n}='vcvarsamd64.bat';
end
filename=[str '\' a(i).name '\VC\bin\'];
filenamebat=[filename 'vcvars32.bat'];
if(exist(filenamebat,'file'))
n=n+1;
compilerfilenames{n}=filename;
compilerfilenamesbat{n}='vcvars32.bat';
end
end
end
end
if(n==0)
error('nvcc:notfound','No visual studio compilers found, please make sure the compilers are installed');
end
disp('Visual studio compilers Found : ')
disp('------------------------------------------------------------------')
for i=1:n
disp(['[' num2str(i) '] ' compilerfilenames{i}])
end
disp('------------------------------------------------------------------')
p=input('Select the visual studio compiler you want to use : ');
filenamecompiler=compilerfilenames{p};
filenamecompilerbat=compilerfilenamesbat{p};
|
github
|
lob-epfl/sofitool-master
|
simulation_gen.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/simulation_gen.m
| 3,703 |
utf_8
|
eda1970cea6cf8f15efc9597464629e1
|
%% ****************************************************************************************************
%% Simulated image generation
%%
%% Input: img_size : size of CCD image
%% num_frame : number of images
%% boundary_offset : boundary doesn't have any molecule
%% num_mol : number of activated molecule in each frame
%% mol_mu : mean value of emitted photons
%% mol_sigma : standard deviation of emitted photons
%% Gsigma1 & 2 : widths of Gaussian fuctions for PSF
%% Gsimga_ratio : ratio for two Gaussian functions for PSF: PSF = Gsimga_ratio*F_sigma1 + (1-Gsimga_ratio)*F_sigma2
%% background : background fluorescent signal
%% baseline : uniform offset for final image.
%% EM : EM-gain option
%%
%% Output: CCD_imgs : blurred low resolution image + noise [short exposure multiple shots]
%% true_pos : 2D coordinate of molecules' position (in px)
%% true_photon : Number of emitted photons
%%
%% ****************************************************************************************************
function [CCD_imgs,true_pos,true_photon] = simulation_gen(img_size,num_frame,boundary_offset,num_mol,mol_mu,mol_sigma,Gsigma1,Gsigma2,Gsigma_ratio,background,readout_rms,baseline,EM)
% CCD images
CCD_imgs = zeros(img_size,img_size,num_frame);
% photon emission stat followed by log-normal distribution.
m = log((mol_mu^2)/sqrt(mol_sigma^2+mol_mu^2)); % mean for log-normal function
s = sqrt(log(mol_sigma^2/(mol_mu^2)+1)); % sigma for log-normal function
true_photon = lognrnd(m,s,num_mol,num_frame);
true_pos = zeros(num_mol,2,num_frame);
% low-resolution grid
ind_low = linspace(0.5,img_size-0.5,img_size);
[x_grid_low, y_grid_low] = meshgrid(ind_low,ind_low);
% boundary
true_s = ind_low(boundary_offset)+0.5;
true_e = ind_low(end-boundary_offset)+0.5;
for t = 1:num_frame
% random distribution
true_pos(:,1,t) = true_s+(true_e-true_s).*rand(num_mol,1);
true_pos(:,2,t) = true_s+(true_e-true_s).*rand(num_mol,1);
% % Synthetic ring
% radius = 2;
% theta = 2*pi*rand(num_mol,1);
% true_pos(:,1,t) = img_size/2 + radius*cos(theta);
% true_pos(:,2,t) = img_size/2 + radius*sin(theta);
% generate CCD image and SR images
for ii = 1:num_mol
low_kernel = Gsigma_ratio*Gauss_kernel(x_grid_low,y_grid_low,true_pos(ii,1,t),true_pos(ii,2,t),Gsigma1)...
+(1-Gsigma_ratio)*Gauss_kernel(x_grid_low,y_grid_low,true_pos(ii,1,t),true_pos(ii,2,t),Gsigma2);
low_kernel = low_kernel/sum(low_kernel(:));
CCD_imgs(:,:,t) = CCD_imgs(:,:,t) + true_photon(ii,t)*low_kernel;
end
end
CCD_imgs = CCD_imgs + background; % add background fluorescent light
if EM>0
CCD_imgs = CCD_imgs + 1.4*(poissrnd(CCD_imgs)-CCD_imgs); % shot-noise with excess noise factor of EM gain
else
CCD_imgs = poissrnd(CCD_imgs); % shot-noise with excess noise without EM gain
end
CCD_imgs = CCD_imgs + readout_rms*randn(size(CCD_imgs)); % readout noise followed by Gaussian stat
if EM>0
CCD_imgs = CCD_imgs*EM;
end
CCD_imgs = CCD_imgs + baseline; % add offset baseline
CCD_imgs = round(CCD_imgs); % discretization
CCD_imgs(CCD_imgs<0) = 0;
end
|
github
|
lob-epfl/sofitool-master
|
handover.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/handover.m
| 2,552 |
utf_8
|
ae20c2aadbee1edbd1eeb467dd4ae0a1
|
%% rearrange particles having high displacement values
function [est_c_new,delta_x_new,delta_y_new,delta_z_new] = handover(est_c,delta_x,delta_y,delta_z)
% find indices of particles which are close to adjacent grid points.
ind_arrange = find((abs(delta_x)>0.99)|(abs(delta_y)>0.99));
est_c_new = est_c;
delta_x_new = delta_x;
delta_y_new = delta_y;
delta_z_new = delta_z;
% move the particles to the closest grid points
% and adjust displacement terms.
if ~isempty(ind_arrange)
[Ny,Nx,Nz] = size(est_c);
est_c_new(ind_arrange)=0;
delta_x_new(ind_arrange)=0;
delta_y_new(ind_arrange)=0;
delta_z_new(ind_arrange)=0;
weight = est_c_new>0;
[pos_y,pos_x,pos_z] = ind2sub(size(est_c),ind_arrange);
pos_y_new = min(max(pos_y + delta_y(ind_arrange),0.51),Ny+0.49);
pos_x_new = min(max(pos_x + delta_x(ind_arrange),0.51),Nx+0.49);
ind_new = sub2ind([Ny,Nx,Nz],round(pos_y_new),round(pos_x_new),pos_z);
[ind_new2,ia] = unique(gather(ind_new));
delta_x_new_temp = pos_x_new - round(pos_x_new);
delta_y_new_temp = pos_y_new - round(pos_y_new);
delta_z_new_temp = delta_z(ind_arrange);
photon_temp = est_c(ind_arrange);
delta_x_new(ind_new2) = delta_x_new(ind_new2) + delta_x_new_temp(ia);
delta_y_new(ind_new2) = delta_y_new(ind_new2) + delta_y_new_temp(ia);
delta_z_new(ind_new2) = delta_z_new(ind_new2) + delta_z_new_temp(ia);
est_c_new(ind_new2) = est_c_new(ind_new2)+photon_temp(ia);
weight(ind_new2) = weight(ind_new2)+1;
% In case that two particles are merged into the same grid bin
if length(ind_new2)<length(ind_new)
ind_new(ia) = 0;
ind_temp = ind_new>0;
delta_x_new_temp = delta_x_new_temp(ind_temp);
delta_y_new_temp = delta_y_new_temp(ind_temp);
delta_z_new_temp = delta_z_new_temp(ind_temp);
photon_temp = photon_temp(ind_temp);
[ind_new3,ia] = unique(gather(ind_new(ind_temp)));
delta_x_new(ind_new3) = delta_x_new(ind_new3) + delta_x_new_temp(ia);
delta_y_new(ind_new3) = delta_y_new(ind_new3) + delta_y_new_temp(ia);
delta_z_new(ind_new3) = delta_z_new(ind_new3) + delta_z_new_temp(ia);
est_c_new(ind_new3) = est_c_new(ind_new3)+photon_temp(ia);
weight(ind_new3) = weight(ind_new3)+1;
end
% normalization
delta_x_new(ind_new2) = delta_x_new(ind_new2)./weight(ind_new2);
delta_y_new(ind_new2) = delta_y_new(ind_new2)./weight(ind_new2);
delta_z_new(ind_new2) = delta_z_new(ind_new2)./weight(ind_new2);
end
end
|
github
|
lob-epfl/sofitool-master
|
Gen_kernels.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/Gen_kernels.m
| 3,818 |
utf_8
|
7ef51303f140e7c50d3c3c439993e97b
|
%% Point spread function and its derivatives generation.
function [fPSF_decon,fPSF_refine,fPSF_dev_x,fPSF_dev_y,fPSF_dev_z] = ...
Gen_kernels(x_dim,y_dim,up_decon,up_refine,Gsigma1,Gsigma2,Gsigma_ratio,delta_sigma)
%% PSF for deconvolution steps 1&2
Gsigma1_decon = Gsigma1*up_decon;
Gsigma2_decon = Gsigma2*up_decon;
% generation sub-grid
ind_s= 1/(2);
ind_x = linspace(ind_s,(x_dim)*up_decon-ind_s,(x_dim)*up_decon);
ind_y = linspace(ind_s,(y_dim)*up_decon-ind_s,(y_dim)*up_decon);
[x_kernel_grid, y_kernel_grid] = meshgrid(ind_x,ind_y);
ind_cx = ind_x(round(length(ind_x)/2+0.5));
ind_cy = ind_y(round(length(ind_y)/2+0.5));
scaling = up_decon^2;
% PSF
PSF = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma1_decon)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma2_decon));
PSF = PSF/sum(PSF(:))*scaling;
% Fourier coefficients of PSF
fPSF_decon= single(fft2(ifftshift(PSF)));
%% PSF for refinement step
Gsigma1_refine = Gsigma1*up_refine;
Gsigma2_refine = Gsigma2*up_refine;
scaling = up_refine^2;
delta_eps = 0.5;
% generation sub-grid
ind_x = linspace(ind_s,(x_dim)*up_refine-ind_s,(x_dim)*up_refine);
ind_y = linspace(ind_s,(y_dim)*up_refine-ind_s,(y_dim)*up_refine);
[x_kernel_grid, y_kernel_grid] = meshgrid(ind_x,ind_y);
ind_cx = ind_x(round(length(ind_x)/2+0.5));
ind_cy = ind_x(round(length(ind_y)/2+0.5));
% PSF
PSF = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma2_refine));
PSF = PSF/sum(PSF(:))*scaling;
% Derivative of PSF in x axis.
PSF_temp1 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx + delta_eps*0.5 ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx + delta_eps*0.5,ind_cy ,Gsigma2_refine));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scaling;
PSF_temp2 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx - delta_eps*0.5 ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx - delta_eps*0.5,ind_cy ,Gsigma2_refine));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scaling;
PSF_dev_x = ((PSF_temp2-PSF_temp1))/delta_eps;
% Derivative of PSF in y axis.
PSF_temp1 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy+ delta_eps*0.5 ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy + delta_eps*0.5,Gsigma2_refine));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scaling;
PSF_temp2 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy - delta_eps*0.5 ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy - delta_eps*0.5,Gsigma2_refine));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scaling;
PSF_dev_y = ((PSF_temp2-PSF_temp1))/delta_eps;
% Derivative of PSF with respect to width
PSF_temp1 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma1_refine*(1+delta_sigma/2))...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma2_refine*(1+delta_sigma/2)));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scaling;
PSF_temp2 = (Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma1_refine*(1-delta_sigma/2))...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma2_refine*(1-delta_sigma/2)));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scaling;
PSF_dev_z = ((PSF_temp2-PSF_temp1)/delta_sigma);
% Fourier coefficients of PSF,PSF_dev_x,PSF_dev_y,PSF_dev_z
fPSF_refine= single(fft2(ifftshift(PSF)));
fPSF_dev_x= single(fft2(ifftshift(PSF_dev_x)));
fPSF_dev_y= single(fft2(ifftshift(PSF_dev_y)));
fPSF_dev_z= single(fft2(ifftshift(PSF_dev_z)));
end
|
github
|
lob-epfl/sofitool-master
|
simul_eval.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/simul_eval.m
| 1,737 |
utf_8
|
bfa63a35225e00195e9aef18e28c2663
|
%% ****************************************************************************************************
%% calculation of localization error in x,y direction.
%% each localized particle is matched to the closest true particle within a radius
%% ****************************************************************************************************
function [num_idens,num_clusters,errors_x,errors_y] = simul_eval(Results,true_poses,pitch,num_frame,radius)
num_idens = zeros(num_frame,1);
num_clusters = zeros(num_frame,1);
errors_x = [];
errors_y = [];
for tt = 1:num_frame
ind = find(Results(:,1) == tt);
est_pos = Results(ind,2:3);
true_pos = true_poses(:,:,tt);
num_cluster = size(est_pos,1);
if num_cluster
num_iden_temp = zeros(1,size(true_pos,1));
error_x = zeros(num_cluster,1);
error_y = zeros(num_cluster,1);
num_cluster_temp = zeros(num_cluster,1);
for ii = 1: num_cluster
% find the closest true location
distance = sqrt((true_pos(:,1)-est_pos(ii,1)).^2 + (true_pos(:,2)-est_pos(ii,2)).^2);
[error_2D,index] = min(distance*pitch);
if abs(error_2D) < radius
num_iden_temp(index) = 1;
num_cluster_temp(ii) = 1;
error_x(ii) = (true_pos(index,1)-est_pos(ii,1))*pitch;
error_y(ii) = (true_pos(index,2)-est_pos(ii,2))*pitch;
end
end
ind = find(num_cluster_temp>0);
num_idens(tt) = sum(num_iden_temp(:));
num_clusters(tt) = num_cluster;
error_x = error_x(ind);
error_y = error_y(ind);
errors_x = [errors_x(:); error_x(:)];
errors_y = [errors_y(:); error_y(:)];
end
end
|
github
|
lob-epfl/sofitool-master
|
Gauss_kernel.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/Gauss_kernel.m
| 646 |
utf_8
|
df3fea6cbfa7cebbba874149c2fce428
|
%% ****************************************************************************************************
%% Return 2D guassian kernel
%%
%% Input: x_inx,y_inx : meshgrid of x and y
%% x_pos,y_pos : center_position
%% Gsigma : standard deviation of gaussian function
%%
%% Output: img_kernel : 2D Guassian kernel
%% ****************************************************************************************************
function img_kernel = Gauss_kernel(x_inx,y_inx,x_pos,y_pos,Gsigma)
img_kernel = exp(-((x_inx-x_pos).^2+(y_inx-y_pos).^2)/(2*Gsigma^2))/(2*pi*Gsigma^2) ;
end
|
github
|
lob-epfl/sofitool-master
|
LS_fitting.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/LS_fitting.m
| 5,630 |
utf_8
|
d625f417f4987484703fb8736f79d5e6
|
%%
% Output
% Results = [frame, amplitude, sigma1,sigma2,sigma_ratio,xPos,yPos,background,resnorm/sum(ccd_image(:))]
%
%%
function [Results] = LS_fitting(filename,num_frame,dummy_frame,ADU,baseline,thresh,debug)
Results = [];
num_frame = min(num_frame,length(imfinfo(filename)));
fprintf('running \n');
parfor ii = 1:num_frame
fprintf('running... %d frame \n',ii);
low_img = imread(filename,ii+dummy_frame);
low_img = double(ADU*(low_img-baseline));
if debug > 0
figure(1); imagesc(low_img); colormap(hot); axis image; colorbar;
end
[LS_result]= Gaussfit(low_img,thresh);
if~isempty(LS_result)
Result_temp = zeros(size(LS_result,1),9);
Result_temp(:,1) = ii;
Result_temp(:,2:3) = LS_result(:,5:6)-0.5;
Result_temp(:,4) = LS_result(:,1);
Result_temp(:,5) = LS_result(:,2);
Result_temp(:,6) = LS_result(:,3);
Result_temp(:,7) = LS_result(:,4);
Result_temp(:,8) = LS_result(:,7);
Result_temp(:,9) = LS_result(:,8);
Results = [Results;Result_temp];
end
end
% fitting the data by sum of two gaussians.
function [fitresults]= Gaussfit(image,threshold)
epsilon1 = 10^-3;
epsilon2 = 10^-3;
maxIter = 50;
curvefitoptions = optimset( 'lsqcurvefit');
curvefitoptions = optimset( curvefitoptions,'Jacobian' ,'off','Display', 'off', 'TolX', epsilon2, 'TolFun', epsilon1,'MaxPCGIter',1,'MaxIter',maxIter);
fitresults=[];
temp= calcstorm(image,threshold,curvefitoptions); % do the storm fit %MATLAB VERSION
fitresults=[fitresults;temp];
function fitresults = calcstorm(image,threshold,curvefitoptions) % do the storm calculation
windowSize= 3;
[sizey sizex] = size(image);
points = findpeaksMod(image, threshold);
if isempty(points)==0
nrspots=length(points(:,1));
fitresults=zeros(nrspots,8);
for i=1:nrspots,
X0=points(i,1);
Y0=points(i,2);
%round X0, Y0 to use as matrix locations
X0_int = round(X0);
Y0_int = round(Y0);
xstart = X0_int-windowSize;
xfinish = X0_int+windowSize;
ystart = Y0_int-windowSize;
yfinish = Y0_int+windowSize;
if (xstart>1) && (xfinish < sizex) && (ystart>1) && (yfinish < sizey)
X_POSim = X0-xstart+1;
Y_POSim = Y0-ystart+1;
img=double(image(ystart:yfinish,xstart:xfinish));
background= min(img(:));
brightness = sum(img(:)-background);
widthStart = 1.5;
sRatioStart = 2;
initguess=double([brightness,1,widthStart,sRatioStart,X_POSim,Y_POSim, background]);
xLim = [0 sizex];
yLim = [0 sizey];
sigma1Lim = [0.5 3];
[fitParams,res] = doubleGauss2d_Fit(img,initguess ,xLim,yLim, sigma1Lim,curvefitoptions);%MATLAB ONLY
% assign the data
xPos = fitParams(5)+xstart-1;
yPos = fitParams(6)+ystart-1;
sigma1 = fitParams(3);
sigma2 = fitParams(3)*fitParams(4);
background = fitParams(7);
amplitude = fitParams(1);
sigma_ratio = fitParams(2);
fitresults(i,:)=[amplitude, sigma1,sigma2,sigma_ratio,xPos,yPos,background,res/sum(img(:))];
end
end
fitresults = fitresults(all(fitresults,2) >0,:);
else
fitresults=[];
end
%----------------------------------------------------------------------------------------------
function [fitParam,res] = doubleGauss2d_Fit(inputIm,initguess ,xLim,yLim, sigmaLim,curvefitoptions)
Astart = initguess(1);
ARstart = initguess(2);
widthStart = initguess(3);
sRatioStart = initguess(4);
xStart = initguess(5);
yStart = initguess(6);
BGstart = initguess(7);
xMin = xLim(1);
xMax = xLim(2);
yMin = yLim(1);
yMax = yLim(2);
sigmaMin = sigmaLim(1);
sigmaMax = sigmaLim(2);
sRatioMin = 2;
sRatioMax = 4;
[sizey sizex] = size(inputIm);
[X,Y]= meshgrid(1:sizex,1:sizey);
grid = [X Y];
initGuess7Vector = [Astart ARstart widthStart sRatioStart xStart yStart BGstart];
lb = [ 1 0.5 sigmaMin sRatioMin xMin yMin 0 ];
ub = [65535 1 sigmaMax sRatioMax xMax yMax 65535];
try
[fitParam, res] = ...
lsqcurvefit(@(x, xdata) doubleGauss2d(x, xdata), ...
initGuess7Vector ,grid ,inputIm ,...
lb,ub,curvefitoptions);
catch ME
if strcmp(ME.identifier,'optim:snls:InvalidUserFunction')
fitParam = [0 0 0 0 0 0 0];
res = 0;
else
rethrow(ME);
end
end
if fitParam(1)< 0
fitParam = [0 0 0 0 0 0 0];
end
function F = doubleGauss2d(a, data)
% sum of two symmetric Gaussian functions
% a(1) - A
% a(2) - Ar
% a(3) - sigma
% a(4) - sigma_ratio ex) sigma2 = sigma1*sigma_ratio
% a(5) - Xpos
% a(6) - Ypos
% a(7) - B
[sizey sizex] = size(data);
sizex = sizex/2;
X = data(:,1:sizex);
Y = data(:,sizex+1:end);
expPart1 = exp(-( (X-a(5)).^2 + (Y-a(6)).^2) /(2*(a(3))^2));
expPart2 = exp(-( (X-a(5)).^2 + (Y-a(6)).^2 )/(2*(a(3)*a(4))^2));
expPart = a(1)*a(2)*expPart1/(2*pi*a(3)^2) + a(1)*(1-a(2))*expPart2/(2*pi*a(4)^2);
F = expPart + a(7);
%%
% below functions are related to local peak detection
%-----------------------------------------------------------------------------------
function peaks = findpeaksMod(im, threshold)
wavelet_level = 5;
background = background_estimation(im,1,wavelet_level,'db6',5);
g = fspecial('gaussian',11,1);
im2 = imfilter(im-background,g,'symmetric','conv');
[peaks] = Peakdet2D(im2,threshold,2);
%-----------------------------------------------------------------------------------
|
github
|
lob-epfl/sofitool-master
|
Gen_Gauss_kernels.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/Gen_Gauss_kernels.m
| 3,918 |
utf_8
|
0a7d4ef7852ae69564737e36f33b7b60
|
%% Point spread function and its derivatives generation.
function [fPSF_decon,fPSF_refine,fPSF_dev_x,fPSF_dev_y,fPSF_dev_z] = ...
Gen_Gauss_kernels(x_dim,y_dim,up_decon,up_refine,zero_pad,Gsigma1,Gsigma2,Gsigma_ratio,delta_sigma)
%% PSF for deconvolution steps
Gsigma1_decon = Gsigma1*up_decon;
Gsigma2_decon = Gsigma2*up_decon;
% generation sub-grid
ind_s= 1/(2);
ind_x = linspace(ind_s,(x_dim+zero_pad)*up_decon-ind_s,(x_dim+zero_pad)*up_decon);
ind_y = linspace(ind_s,(y_dim+zero_pad)*up_decon-ind_s,(y_dim+zero_pad)*up_decon);
[x_kernel_grid, y_kernel_grid] = meshgrid(ind_x,ind_y);
ind_cx = ind_x(round(length(ind_x)/2+0.5));
ind_cy = ind_y(round(length(ind_y)/2+0.5));
scale = up_decon^2;
% PSF
PSF = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma1_decon)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma2_decon));
PSF = PSF/sum(PSF(:))*scale;
% Fourier coefficients of PSF
fPSF_decon= (fft2(ifftshift(PSF)));
%% PSF for refinement step
Gsigma1_refine = Gsigma1*up_refine;
Gsigma2_refine = Gsigma2*up_refine;
scale = up_refine^2;
delta_eps = 0.5;
% generation sub-grid
ind_x = linspace(ind_s,(x_dim+zero_pad)*up_refine-ind_s,(x_dim+zero_pad)*up_refine);
ind_y = linspace(ind_s,(y_dim+zero_pad)*up_refine-ind_s,(y_dim+zero_pad)*up_refine);
[x_kernel_grid, y_kernel_grid] = meshgrid(ind_x,ind_y);
ind_cx = ind_x(round(length(ind_x)/2+0.5));
ind_cy = ind_x(round(length(ind_y)/2+0.5));
% PSF
PSF = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy ,Gsigma2_refine));
PSF = PSF/sum(PSF(:))*scale;
% Derivative of PSF in x axis.
PSF_temp1 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx + delta_eps*0.5 ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx + delta_eps*0.5,ind_cy ,Gsigma2_refine));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scale;
PSF_temp2 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx - delta_eps*0.5 ,ind_cy ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx - delta_eps*0.5,ind_cy ,Gsigma2_refine));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scale;
PSF_dev_x = single((PSF_temp2-PSF_temp1))/delta_eps;
% Derivative of PSF in y axis.
PSF_temp1 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy+ delta_eps*0.5 ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy + delta_eps*0.5,Gsigma2_refine));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scale;
PSF_temp2 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy - delta_eps*0.5 ,Gsigma1_refine)...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx ,ind_cy - delta_eps*0.5,Gsigma2_refine));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scale;
PSF_dev_y = single((PSF_temp2-PSF_temp1))/delta_eps;
% Derivative of PSF with respect to width
PSF_temp1 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma1_refine*(1+delta_sigma/2))...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma2_refine*(1+delta_sigma/2)));
PSF_temp1 = PSF_temp1/sum(PSF_temp1(:))*scale;
PSF_temp2 = single(Gsigma_ratio*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma1_refine*(1-delta_sigma/2))...
+ (1-Gsigma_ratio)*Gauss_kernel(x_kernel_grid,y_kernel_grid,ind_cx,ind_cy ,Gsigma2_refine*(1-delta_sigma/2)));
PSF_temp2 = PSF_temp2/sum(PSF_temp2(:))*scale;
PSF_dev_z = single((PSF_temp2-PSF_temp1)/delta_sigma);
% Fourier coefficients of PSF,PSF_dev_x,PSF_dev_y,PSF_dev_z
fPSF_refine= (fft2(ifftshift(PSF)));
fPSF_dev_x= (fft2(ifftshift(PSF_dev_x)));
fPSF_dev_y= (fft2(ifftshift(PSF_dev_y)));
fPSF_dev_z= (fft2(ifftshift(PSF_dev_z)));
end
|
github
|
lob-epfl/sofitool-master
|
background_estimation.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/background_estimation.m
| 1,032 |
utf_8
|
34368ccbaebf0b8e7298017c84ecaf4d
|
%% background estimation using iterative wavelet transform
function est_bg = background_estimation(imgs,th,dlevel,wavename,iter)
est_bg = zeros(size(imgs),'single');
imgs = max(imgs,0);
for N = 1: size(imgs,3)
X = imgs(:,:,N);
X_filt = X;
for ii = 1:iter
% wavelet transform
[c,s] = wavedec2(X_filt,dlevel,wavename);
cc = zeros(size(c));
cc(1:s(1)*s(1)*1) = c(1:s(1)*s(1)*1);
% inverse wavelet transform by only using low-freq components
X_new = waverec2(cc,s,wavename);
if th > 0
% cut off values over current estimated background level.
eps = sqrt(abs(X_filt))/2;
ind = X>(X_new+eps);
X_filt(ind) = X_new(ind)+eps(ind);
% re-estimate background
[c,s] = wavedec2(X_filt,dlevel,wavename);
cc = zeros(size(c));
cc(1:s(1)*s(1)*1) = c(1:s(1)*s(1)*1);
X_new = waverec2(cc,s,wavename);
end
end
est_bg(:,:,N) = X_new;
end
end
|
github
|
lob-epfl/sofitool-master
|
super_render.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/super_render.m
| 2,426 |
utf_8
|
07cf8db3f2aa9c7d4f3bd85809d7282d
|
%% Generating super-resolution images
%%
%% Input: Nx : length of image in x axis (px)
%% Ny : length of image in x axis (px)
%% est_photon : estimated photons
%% est_pos : estimated positions
%% up_ren : upsampling factor for SR images
%% width : FWHM of Gaussian functions for rendering
%%
%% Output: sr_img : super-resolution image rendered by normalized Gaussian functions
%% sr_img_scale : super-resolution image rendered by weighted Gaussian functions by estimated photons
%% sr_img_bin : super-resolution image as 2D histogram
function [sr_img,sr_img_scale,sr_img_bin] = super_render(Nx,Ny,est_photon,est_pos,up_ren,width)
%% initailize
sr_img= zeros(Nx*up_ren,Ny*up_ren);
sr_img_scale = zeros(Nx*up_ren,Ny*up_ren);
kernel_size = 3;
Gsigma_sr = width/up_ren/2.3458;
ss= 1/(2*up_ren);
ind_sr = linspace(ss,kernel_size-ss,kernel_size*up_ren);
if mod(length(ind_sr),2) == 0
ind_sr = ind_sr(1:end-1);
end
s = floor(length(ind_sr)/2+1);
ind_c = mean(ind_sr);
% mesggrid for super-resolution image
[x_grid_sr, y_grid_sr] = meshgrid(ind_sr,ind_sr);
% discard locations near boundary
ind = find( (est_pos(:,1)>ceil(kernel_size/2)).*(est_pos(:,2)>ceil(kernel_size/2))...
.*(est_pos(:,1)< (Ny-ceil(kernel_size/2))).* (est_pos(:,2)< (Nx-ceil(kernel_size/2))));
est_pos = est_pos(ind,:);
est_photon = est_photon(ind);
%% generate low_res image and high_res images
for ii = 1:length(est_photon)
pos_bin = round(est_pos(ii,:)*up_ren);
pos_delta = (est_pos(ii,:)*up_ren-pos_bin)/up_ren;
high_kernel = Gauss_kernel(x_grid_sr,y_grid_sr,ind_c+pos_delta(1),ind_c+pos_delta(2),Gsigma_sr);
high_kernel = high_kernel/sum(high_kernel(:));
sr_img(pos_bin(2)-s+(1:length(ind_sr)),pos_bin(1)-s+(1:length(ind_sr))) = ...
sr_img(pos_bin(2)-s+(1:length(ind_sr)),pos_bin(1)-s+(1:length(ind_sr))) + high_kernel;
sr_img_scale(pos_bin(2)-s+(1:length(ind_sr)),pos_bin(1)-s+(1:length(ind_sr))) = ...
sr_img_scale(pos_bin(2)-s+(1:length(ind_sr)),pos_bin(1)-s+(1:length(ind_sr))) + est_photon(ii)*high_kernel;
end
xLims = linspace(0,Nx*up_ren,Nx*up_ren);
yLims = linspace(0,Ny*up_ren,Ny*up_ren);
sr_img_bin = hist3(est_pos*up_ren-0.5,{yLims, xLims});
sr_img_bin = rot90(flipud(sr_img_bin),3);
end
|
github
|
lob-epfl/sofitool-master
|
Peakdets.m
|
.m
|
sofitool-master/GUI/codeStorm/FALCON2D/functions/Peakdets.m
| 1,253 |
utf_8
|
b1f877a43cf8325c0161b316cbf183ea
|
%% find local peaks and get initial localizations by center of mass
function [est_c_new,delta_x,delta_y] = Peakdets(est_c,thresh)
[Ny,Nx,Nt] = size(est_c);
img = zeros(Ny,Nx,'single');
est_c_new = zeros(size(est_c),'single');
delta_x = zeros(size(est_c),'single');
delta_y = zeros(size(est_c),'single');
c_mask = ones(3);
x_mask = [-1 0 1;-1 0 1;-1 0 1];
x_mask = x_mask(:);
y_mask = [-1 -1 -1; 0 0 0; 1 1 1];
y_mask = y_mask(:);
est_c_copy = est_c;
est_c_copy(est_c<thresh) = 0;
for tt = 1: Nt
img(2:end-1,2:end-1) = est_c_copy(2:end-1,2:end-1,tt);
[I,J,~] = find(img>0);
for ii = 1:length(I)
xx = J(ii);
yy = I(ii);
img_temp = est_c(yy-1:yy+1,xx-1:xx+1,tt);
% for local maxima
if est_c(yy,xx,tt) >= max(img_temp(:))
% center of mass
img_temp2 = c_mask(:).*img_temp(:);
photon = sum(img_temp2);
dx = sum(x_mask.*img_temp2)/photon;
dy = sum(y_mask.*img_temp2)/photon;
pos_y = yy+round(dy);
pos_x = xx+round(dx);
est_c_new(pos_y,pos_x,tt) = photon;
delta_x(pos_y,pos_x,tt) = dx-round(dx);
delta_y(pos_y,pos_x,tt) = dy-round(dy);
end
end
end
end
|
github
|
tgen/lumosVar2-master
|
printNormalMetrics_byChr.m
|
.m
|
lumosVar2-master/src/printNormalMetrics_byChr.m
| 6,471 |
utf_8
|
02a10bcf33373cd0dddf611ec5eca06c
|
function printNormalMetrics_byChr_v2(configFile,step)
%printNormalMetrics - gets mean read depths and
%position quality scores for a set of normal bams
%calls parsePileupData.packed.pl to parse samtools output
%writes a bgziped tabix index table for each chromosome
%prerequisite for running TumorOnlyWrapper.m
%
% Syntax: printNormalMetrics(configFile)
%
% Inputs:
% configFile - contains input parameters in yaml format
%
% Outputs:
% writes one table per chromosome. Each table is bgziped and tabix indexed.
% tables have columns: 1-'Chr',2-'Pos',3-'ControlRD', 4-'PosMapQC',
% 5-'perReadPass',6-'abFrac'
%
% Other m-files required: calculateNormalMetrics.m
% Other requirements: parsePileupData.packed.pl, indexControlMetrics.sh,
% samtools, htslib
% Subfunctions: none
% MAT-files required: none
%
% See also: TumorOnlyWrapper
% Author: Rebecca F. Halperin, PhD
% Translational Genomics Research Institute
% email: [email protected]
% Website: https://github.com/tgen
% Last revision: 3-June-2016
%------------- BEGIN CODE --------------
%%% read in parameters
inputParam=readInputs(configFile);
regionsFile=inputParam.regionsFile;
outfile=inputParam.outfile;
blockSize=inputParam.blockSize;
priorMapError=inputParam.priorMapError;
chrIdx=str2num(step);
step
chrIdx
sexChr=regexp(inputParam.sexChr,',','split');
chrList=[cellstr(num2str(inputParam.autosomes','%-d')); sexChr']
[lia,locb]=ismember(chrList(chrIdx),sexChr);
sexList=regexp(inputParam.sexList,',','split');
ploidyList=nan(size(sexList));
if lia
mIdx=strcmp('M',sexList);
ploidyList(mIdx)=inputParam.M(locb);
fIdx=strcmp('F',sexList);
ploidyList(fIdx)=inputParam.F(locb);
else
ploidyList=2*ones(size(sexList))
end
%%% read in bedfile
regTable=readtable(regionsFile,'FileType','text','Delimiter','\t','ReadVariableNames',false);
[lia,locb]=ismember(regTable{:,1},chrList);
Regions=[locb(lia) regTable{lia,2:3}];
% size(regTable)
% if ~isnumeric(regTable{:,1})
% chr=cellfun(@str2num,regTable{:,1},'UniformOutput',0);
% size(chr)
% pos=~cellfun(@isempty,chr);
% sum(pos)
% Regions=[cell2mat(chr(pos)) regTable{pos,2:3}];
% else
% Regions=regTable{:,1:3};
% end
%for chrIdx=1:length(chrList)
%%% open output files
if(~exist([outfile '_' chrList{chrIdx} '.txt.gz'],'file'))
if(exist([outfile '_' chrList{chrIdx} '.txt'],'file'))
fout=fopen([outfile '_' chrList{chrIdx} '.txt'],'a+');
ferror=fopen([outfile '_' chrList{chrIdx} '.errorLog.txt'],'a+');
[q,w] = system(['tail -n 1 ' outfile '_' chrList{chrIdx} '.txt']);
data=str2double(regexp(w,'\t','split'));
currRegion=double(Regions(Regions(:,1)==chrIdx,:));
size(currRegion)
if(size(data,2)==6)
idx=getPosInRegions([chrIdx data(2)],currRegion);
currRegion(idx,:);
currRegion=currRegion(idx:end,:);
currRegion(1,2)=data(2);
end
else
fout=fopen([outfile '_' chrList{chrIdx} '.txt'],'w');
ferror=fopen([outfile '_' chrList{chrIdx} '.errorLog.txt'],'w');
currRegion=double(Regions(Regions(:,1)==chrIdx,:));
end
largeIdx=find(currRegion(:,3)-currRegion(:,2)>blockSize);
subCount=ceil((currRegion(largeIdx,3)-currRegion(largeIdx,2))./blockSize);
newSize=(currRegion(largeIdx,3)-currRegion(largeIdx,2))./subCount;
newRegions=nan(sum(subCount),3);
if ~isempty(subCount)
newRegions(1:subCount(1),:)=[chrIdx*ones(subCount(1),1) round([currRegion(largeIdx(1),2):newSize(1):currRegion(largeIdx(1),3)-newSize(1)]') round([currRegion(largeIdx(1),2)+newSize(1)-1:newSize(1):currRegion(largeIdx(1),3)]')];
for i=2:length(largeIdx)
newRegions(sum(subCount(1:i-1))+1:sum(subCount(1:i)),:)=[chrIdx*ones(subCount(i),1) round([currRegion(largeIdx(i),2):newSize(i):currRegion(largeIdx(i),3)-newSize(i)]') round([currRegion(largeIdx(i),2)+newSize(i)-1:newSize(i):currRegion(largeIdx(i),3)]')];
end
currRegion=[currRegion(currRegion(:,3)-currRegion(:,2)<=blockSize,:); newRegions];
currRegion=sortrows(currRegion,2);
end
startIdx=1;
endIdx=1;
%%% split up regions greater than block size
%%% analyze by region
while(endIdx<size(currRegion,1))
%currRegion
[startIdx endIdx]
endIdx=find(cumsum(currRegion(startIdx:end,3)-currRegion(startIdx:end,2))>blockSize,1)+startIdx-1;
if isempty(endIdx)
endIdx=size(currRegion,1);
end
%%% bet pileup data
block=[chrList{chrIdx} ':' num2str(currRegion(startIdx,2)) '-' num2str(currRegion(endIdx,3))]
output=strsplit(perl('parsePileupData.packed.pl',configFile,block,'0'),'\n');
idx=~cellfun('isempty',regexp(output,'^\d'));
NormalData=str2num(char(regexprep(output(idx),chrList{chrIdx},num2str(chrIdx))'));
fprintf(ferror,'%s\n',output{~idx});
if(isempty(NormalData))
fprintf(ferror,'%s\n',['Normal Data not found in ' block]);
for i=1:length(output)
fprintf(ferror,'%s\n',output{i});
end
startIdx=endIdx+1;
continue;
end
%%% calculate normal metrics
output={};
sampleIds=unique(NormalData(:,1));
allPos=[currRegion(startIdx,2):currRegion(endIdx,3)]';
idx=getPosInRegions([chrIdx.*ones(currRegion(endIdx,3)-currRegion(startIdx,2)+1,1) allPos],currRegion(startIdx:endIdx,:));
outPos=allPos(~isnan(idx));
normalMetrics=nan(length(outPos),6,length(sampleIds));
for i=1:length(sampleIds)
sampleData=NormalData(NormalData(:,1)==sampleIds(i),:);
[Lia,Locb]=ismember(outPos,sampleData(:,3));
currData=[chrIdx.*ones(size(outPos)) outPos nan(length(outPos),size(NormalData,2)-3)];
currData(Lia,:)=sampleData(Locb(Lia),2:end);
normalMetrics(:,:,sampleIds(i))=calculateNormalMetrics(currData,priorMapError,ploidyList(i));
end
%%% find mean across samples and print to file
meanNormalMetrics=nanmean(normalMetrics,3);
fprintf(fout,'%d\t%d\t%f\t%f\t%f\t%f\n',meanNormalMetrics');
startIdx=endIdx+1;
end
fclose(fout);
%%% bgzip and tabix index output file
[status,cmdout]=system(['sh indexControlMetrics.sh ' outfile '_' chrList{chrIdx} '.txt ' inputParam.tabixPath],'-echo');
fprintf(ferror,'%s\n',cmdout);
else
status=0;
end
exit(status);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.