plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
mc225/Softwares_Tom-master
correctShear.m
.m
Softwares_Tom-master/LightSheet/correctShear.m
705
utf_8
f64b7fdc0a6df81e26117d8162d9573d
% correctedDataCube=correctShear(dataCube,shearFactor) % % dataCube: a three-dimensional matrix % shearFactor: the shear to be undone in units of pixels for the first and second dimension, respectively. function dataCube=correctShear(dataCube,shearFactor) if (~isempty(shearFactor) && ~all(shearFactor==0)) logMessage('Correcting a shear of (%0.3f,%0.3f) pixels...',shearFactor); xRange=[1:size(dataCube,1)]; yRange=[1:size(dataCube,2)]; for zIdx=1:size(dataCube,3) shearing=shearFactor*(zIdx-floor(1+size(dataCube,3)/2)); dataCube(:,:,zIdx)=interp2(dataCube(:,:,zIdx),yRange+shearing(2),xRange.'+shearing(1),'*cubic',0); end end end
github
mc225/Softwares_Tom-master
lightSheet3DShapeSimulation.m
.m
Softwares_Tom-master/LightSheet/lightSheet3DShapeSimulation.m
5,746
utf_8
e8d3642b3c622cb2fa641586beb5c172
function lightSheet3DShapeSimulation() close all; outputFolderName=[pwd(),'/']; stepSize=[1 1 1]*.1e-6; % % Create figures % colorMap=jet(1024); % colorMap=interpolatedColorMap(1024,[.5 1 .5; .5 .5 1; 0 0 1; 1 1 0; 1 0 0],[0 0.25 .5 .75 1]); % colorMap=hot(1024); figures=createFigure(0,1,true,9,true,15,@max,[0.2 0.4],stepSize,.001); colormap(colorMap); figures(2)=createFigure(0,0.01,true,9,true,15,@plus,[0.2 0.4],stepSize,.001); colormap(colorMap); figures(3)=createFigure(5,1,false,.12,false,0,@max,[0.05 0.2],stepSize,-1); colormap(colorMap); % Output saveWithTransparency(figures(1),strcat(outputFolderName,'GaussianBeamSwipedIntoLightSheet.png')); saveWithTransparency(figures(2),strcat(outputFolderName,'BesselBeamSwipedIntoLightSheet.png')); saveWithTransparency(figures(3),strcat(outputFolderName,'AiryBeamSwipedIntoLightSheet.png')); end function fig=createFigure(alpha,beta,circularSymmetric,isoValues,logScale,colorMapOffset,projector,opaquenessLightSheet,stepSize,noiseLevel) % Generates the light sheets [psf lightSheet X Y Z]=generateLightSheet(alpha,beta,circularSymmetric,projector,stepSize,noiseLevel); if (logScale) psf=log(max(psf,eps(1))); lightSheet=log(max(lightSheet,eps(1))); end psf=psf+colorMapOffset; lightSheet=lightSheet+colorMapOffset; % Draw the figures fig=figure('Position',[50 50 1024 768],'Color','white'); % Draw beam if (circularSymmetric) beamCenterIdx=1+floor(size(psf,1)/2); psfSlice=squeeze(psf(1+floor(end/2):end,beamCenterIdx,:)); pRange=2*pi*[0:.01:1]; rRange=Y(1+floor(end/2):end,1,1); zRange=squeeze(Z(1,1,:)); [P,R,Zpolar]=meshgrid(pRange,rRange,zRange); [Xpolar,Ypolar,Zpolar]=pol2cart(P,R,Zpolar); psfSlice=repmat(permute(psfSlice,[1 3 2]),[1 length(pRange) 1]); fv=isosurface(Xpolar,Ypolar,Zpolar,psfSlice,isoValues(1)); if (~isempty(fv.faces)) p1=patch(fv,'FaceColor','interp','EdgeColor','none'); patch(isocaps(Xpolar,Ypolar,Zpolar*1.005,psfSlice,isoValues(1)),'FaceColor','interp','EdgeColor','none'); faceNormals=cross(fv.vertices(fv.faces(:,1),:)-fv.vertices(fv.faces(:,2),:),fv.vertices(fv.faces(:,1),:)-fv.vertices(fv.faces(:,3),:)); vertexNormals=zeros(size(fv.vertices)); for (faceIdx=1:size(faceNormals,1)) vertexNormals(fv.faces(faceIdx,:),:)=vertexNormals(fv.faces(faceIdx,:),:)+repmat(faceNormals(faceIdx,:),[3 1]); end vertexNormals=-vertexNormals./repmat(sum(abs(vertexNormals).^2,2),[1 3]); set(p1,'VertexNormals',vertexNormals); end clear psfSlice Xpolar Ypolar Zpolar; else p1=patch(isosurface(X,Y,Z,psf,isoValues(1)),'FaceColor','white','EdgeColor','none'); patch(isocaps(X,Y,Z*1.005,psf,isoValues(1)),'FaceColor','interp','EdgeColor','none'); isonormals(X,Y,Z,psf,p1); end set(p1,'FaceColor','flat','CData',isoValues(1),'CDataMapping','scaled'); %Draw light sheet p2=patch(isosurface(X,Y,Z,lightSheet,isoValues(end)),'FaceColor','white','EdgeColor','none','FaceAlpha',opaquenessLightSheet(1)); patch(isocaps(X,Y,Z,lightSheet,isoValues(end)),'FaceColor','interp','EdgeColor','none','FaceAlpha',opaquenessLightSheet(2)); axis equal; camtarget([mean(X(:)) mean(Y(:)) mean(Z(:))]); camup([0 1 0]); campos([40 15 -25]); camva(33); camproj('orthographic'); camlight(60,30); camlight; lighting gouraud; isonormals(X,Y,Z,lightSheet,p2); set(p2,'FaceColor','flat','CData',isoValues(end),'CDataMapping','scaled'); set(gca,'Visible','Off'); xlim(X([1 end]));ylim(Y([1 end]));zlim(Z([1 end])); drawnow(); end function [psf lightSheet X Y Z]=generateLightSheet(alpha,beta,circularSymmetric,projector,stepSize,noiseLevel) xRange=[-10e-6:stepSize(1):25e-6]; yRange=[-10e-6:stepSize(2):10e-6]; zRange=[-10e-6:stepSize(3):10e-6]; xRangeShort=xRange(1:length(yRange)); [X,Y,Z]=ndgrid(xRange,yRange,zRange); wavelength=532e-9; pupilFunctor=@(U,V) (sqrt(U.^2+V.^2)<=1 & sqrt(U.^2+V.^2)>(1-beta)).*exp(2i*pi*alpha*(U.^3-V.^3-2/3*(U-V))); objectiveNumericalAperture=0.42; refractiveIndex=1.4; magnification=20; tubeLength=Inf; % Infinite focal length lens simulated, more typically this should be 200e-3; psf=calcVectorialPsf(xRangeShort,yRange,zRange,wavelength,... @(U,V) pupilFunctor(U,V)/sqrt(2),@(U,V) 1i*pupilFunctor(U,V)/sqrt(2), ... % Circ polariz objectiveNumericalAperture,refractiveIndex,magnification,tubeLength); psf=psf./max(psf(:)); psf(psf<noiseLevel)=0; if (circularSymmetric) [XShort YShort]=ndgrid(xRangeShort,yRange,zRange); R=sqrt(XShort.^2+YShort.^2); maxRadius=R(1+floor(end/2),find(psf(1+floor(end/2),:,1)>0,1,'first')); psf(R>maxRadius)=0; clear XShort YShort; end % Calculate the light-sheet beamSize=size(psf); swipeLength=beamSize(1); lightSheet=psf; for swipeIdx=2:swipeLength, lightSheet(swipeIdx:end,:,:)=projector(lightSheet(swipeIdx:end,:,:),psf(1:(end-(swipeIdx-1)),:,:)); end extension=length(xRange)-length(xRangeShort); lightSheet(end+[1:extension],:,:)=repmat(lightSheet(end,:,:),[extension 1 1]); lightSheet=lightSheet/max(lightSheet(:)); psf(end+extension,1,1)=0; psf=permute(psf,[2 1 3]); lightSheet=permute(lightSheet,[2 1 3]); X=permute(X,[2 1 3])*1e6; Y=permute(Y,[2 1 3])*1e6; Z=permute(Z,[2 1 3])*1e6; end
github
mc225/Softwares_Tom-master
displayDataCubeSlices.m
.m
Softwares_Tom-master/LightSheet/displayDataCubeSlices.m
35,999
utf_8
888aa32cd3de3dbc6c680870bcff7db8
function displayDataCubeSlices(folderNames) close all; if (nargin<1 || isempty(folderNames)) % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_nofilter_ap1-3\cropped'; % Cell cluster section at -27.5um % % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-3'; %,'Z:\RESULTS\2013-05-14_cellspheroidsWGA_nofilter_ap1-3'}; % Cell cluster section at -32um % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-2B'; % 5-cell cluster %folderNames={'Z:\RESULTS\2013-04-26HEK_ApOneThird\2013-04-26 13_03_52.075_blue1','Z:\RESULTS\2013-04-26HEK_ApOneThird\2013-04-26 12_49_28.119_green1'}; %folderNames={'Z:\RESULTS\2013-05-09_HEK_transientTransfected_apOneThird\2013-05-09 16_15_24.228_filter_nodichr','Z:\RESULTS\2013-05-09_HEK_transientTransfected_apOneThird\2013-05-09 16_37_05.814_nofilter_dichroic'}; % folderNames='Z:\RESULTS\2013-05-09_HEK_transientTransfected_apOneThird\2013-05-09 16_37_05.814_nofilter_dichroic'; % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-3'; %,'Z:\RESULTS\2013-05-14_cellspheroidsWGA_nofilter_ap1-3'}; % Cell cluster section at -35um % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-2B'; % 5-cell cluster % folderNames='Z:\RESULTS\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-3B'; % 5 cell cluster (not used?) % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_cellspheroidsWGA_apOneHalf\2013-05-15 17_31_34.698_A','Z:\RESULTS\2013-05-15\2013-05-15_cellspheroidsWGA_apOneHalf\2013-05-15 17_45_03.053_A'}; % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_HEKsWGA_apOneHalf\2013-05-15 16_52_04.156','Z:\RESULTS\2013-05-15\2013-05-15_HEKsWGA_apOneHalf\2013-05-15 17_11_39.629'}; % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneHalf\2013-05-15 19_16_41.859_A','Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneHalf\2013-05-15 19_26_28.113_A'}; % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneHalf\2013-05-15 19_43_10.533_B','Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneHalf\2013-05-15 19_52_04.788_B_changedLambda'}; % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneThird\2013-05-15 18_54_03.883','Z:\RESULTS\2013-05-15\2013-05-15_HEKWGA_apOneThird\2013-05-15 19_04_11.913'}; % folderNames={'Z:\RESULTS\2013-05-15\2013-05-15_cellspheroidsWGA_apOneThird\2013-05-15 18_12_45.370','Z:\RESULTS\2013-05-15\2013-05-15_cellspheroidsWGA_apOneThird\2013-05-15 18_23_14.789_changedColor'}; % Dual color % folderNames={'C:\Users\Tom\Dropbox\AirySheetData\DataCubes\2013-05-14_cellspheroidsWGA\2013-05-14_cellspheroidsWGA_filter_ap1-2B'}; % 5 cells % folderNames={'E:\Stored Files\RESULTS\2013-08-08\HEK2\2013-08-08 15_57_16.566\'}; % folderNames={'Z:\RESULTS\2013-09-09\2013-09-09 17_20_19.909 at0um_sliced'}; % folderNames={'Z:\RESULTS\2013-09-09\2013-09-09 17_28_37.355 at_50um_sliced'}; % folderNames={'Z:\RESULTS\2013-09-09\2013-09-09 17_38_06.531 at_85um_sliced'}; % folderNames={'Z:\RESULTS\2013-09-13_Amphioxus\Run_1\2013-09-13 12_31_28.686'}; % 488 nm % folderNames={'Z:\RESULTS\2013-09-13_Amphioxus\Run_1\2013-09-13 12_34_55.726'}; % 532 nm % folderNames={'Z:\RESULTS\2013-09-13_Amphioxus\Run_2\2013-09-13 12_44_38.570'}; % 488 nm % folderNames={'Z:\RESULTS\2013-09-13_Amphioxus\Run_2\2013-09-13 12_47_53.135'}; % 532 nm % folderNames={'Z:\RESULTS\2013-10-10_200nmBeadsNearEntranceInSmallAgaroseDroplet\sample5ApLarge\2013-10-10 18_41_27.129\'}; % folderNames={'Z:\RESULTS\2013-10-10_200nmBeadsNearEntranceInSmallAgaroseDroplet\sample5ApSmall\2013-10-10 18_16_34.014\'}; % folderNames={'Z:\RESULTS\600nmBeadsApOneThird\B\at0\'}; % folderNames={'Z:\RESULTS\2013-01-17 16_59_54.447_Green_2W_Andor_0.05um_(1)\'}; % folderNames={'Z:\RESULTS\2013-01-17 17_07_40.377_Blue_30A_Andor_0.2um_(1)'}; % folderNames={'Z:\RESULTS\2013-04-10_Beads200nm\2013-04-10 16_27_33.222_ApOneQuarter'}; % folderNames={'Z:\RESULTS\2013-04-10_Beads200nm\2013-04-10 16_10_20.097_ApOneHalf'}; % folderNames={'Z:\RESULTS\20120501_alpha7_int1000_g1_morepower_beads_leftofprobe\'}; % folderNames={'Z:\RESULTS\20120501_alpha7_int1000_g1_littlemorepower_betterfocus_beads_leftofprobe\forwardScans\'}; % folderNames={'Z:\RESULTS\20120501_alpha7_int1000_g1_littlemorepower_betterfocus_beads_leftofprobe\forwardScans\'}; folderNames={'H:\RESULTS\2013-09-13_Amphioxus\Run_1\2013-09-13 12_31_28.686'}; % 488 nm % folderNames={'Z:\RESULTS\2013-09-13_Amphioxus_colorCombined\Run_2'}; end if (~iscell(folderNames)) folderNames={folderNames}; end % Load the default values fig=figure('Visible','off','CloseRequestFcn',@(obj,event) shutDown(obj)); getBaseFigureHandle(fig); % Set permanent reference loadStatus([folderNames{1},'/displayDataCubeSlices.mat']); set(fig,'ResizeFcn',@(obj,event) updateStatus('windowPosition',get(obj,'Position'))); updateStatus('version',0.10); dataCubeNames={}; for (folderName=folderNames) folderName=folderName{1}; namesInStructs=dir([folderName,'/*.mat']); if (~isempty(namesInStructs)) for fileName={namesInStructs.name} fileName=fileName{1}; dataCubeNames{end+1}=[folderName,'/',fileName]; end else logMessage('No files found in folder %s.',folderName); end end % Make a list of available data sorted by alpha value fileDescriptors=struct(); % Use a struct as a hash table for (fullFileName=dataCubeNames) fullFileName=fullFileName{1}; try % Determine the wavelength wavelength=regexpi(fullFileName,'lambda([\d]*)nm_alpha[^\\/]+','tokens'); if (~isempty(wavelength)) wavelength=str2double(wavelength{1})*1e-9; % Determine the light sheet type alpha=regexpi(fullFileName,'alpha([\d]*)_[^\\/]+','tokens'); alpha=str2double(alpha{1}); beta=regexpi(fullFileName,'beta([\d]*)[\D\s]','tokens'); beta=str2double(beta{1})/100; else configFile=strcat(fullFileName(1:end-4),'.json'); specificConfig=loadjson(configFile); alpha=specificConfig.modulation.alpha; beta=specificConfig.modulation.beta; wavelength=532e-9; end fileDescriptorTag=sprintf('alpha%06.0f_beta%03.0f',[abs(alpha)*1000 beta*1000]); if (isfield(fileDescriptors,fileDescriptorTag)) fileDescriptor=getfield(fileDescriptors,fileDescriptorTag); else fileDescriptor={}; fileDescriptor.fullFileNameGreen=[]; fileDescriptor.fullFileNameRed=[]; end if (abs(wavelength-488e-9)<20e-9) fileDescriptor.fullFileNameGreen=fullFileName; else fileDescriptor.fullFileNameRed=fullFileName; end fileDescriptor.alpha=alpha; fileDescriptor.beta=beta; if (fileDescriptor.alpha==0) if (fileDescriptor.beta==1) lightSheetType='Gaussian'; else lightSheetType=sprintf('Bessel %0.0f%%',fileDescriptor.beta*100); end else if (fileDescriptor.beta==1) lightSheetType=sprintf('Airy %0.1f',fileDescriptor.alpha); else lightSheetType=sprintf('a=%0.1f,b=%0.0f%%',[fileDescriptor.alpha fileDescriptor.beta*100]); end end fileDescriptor.lightSheetType=lightSheetType; fileDescriptors=setfield(fileDescriptors,fileDescriptorTag,fileDescriptor); catch Exc logMessage('Skipping %s.',fullFileName); end end % Convert hash table to a sorted array of structs [~, sortI]=sort(fieldnames(fileDescriptors)); fileDescriptors=cell2mat(struct2cell(fileDescriptors)); fileDescriptors=fileDescriptors(sortI); % Create the dynamic figure drawFigure(fig,fileDescriptors,folderNames{1}); end function drawFigure(fig,fileDescriptors,description) nbPanels=2; % Open the figure window windowMargins=[1 1]*128; initialPosition=get(0,'ScreenSize')+[windowMargins -2*windowMargins]; set(fig,'Name',description,'Position',getStatus('windowPosition',initialPosition),'Visible','on'); panelSpacing=0*[1/30 1/30]; % Of complete box axesSpacing=[1/20 1/7]; % Of complete box projectionsPanel=uipanel('Parent',fig,'BackgroundColor',[1 1 1],'Units','normalized','Position',[0.15 0 0.85 1]); lightSheetTypes={'<select>', fileDescriptors.lightSheetType}; setUserData('fileDescriptors',fileDescriptors); panelInfos=[]; for panelIdx=1:nbPanels, panelInfo=struct(); panelInfo.panel=uipanel('Parent',projectionsPanel,'BackgroundColor',[1 1 1],'BorderWidth',0,'Units','normalized','Position',[panelSpacing(1) panelSpacing(2)+(nbPanels-panelIdx)/nbPanels 1-panelSpacing(1) 1/nbPanels-panelSpacing(2)]); panelInfo.createMovieButton=uicontrol('Parent',panelInfo.panel,'Position',[10 130 80 20], 'Style','pushbutton', 'String','Create Movie', 'Callback', {@createMovie,fig,panelIdx}); panelInfo.rawDeconvPopup=uicontrol('Parent',panelInfo.panel,'Position',[10 100 80 20], 'Style','popupmenu', 'String', {'raw','deconvolved'}, 'Value',getStatus(sprintf('rawDeconvPopupValue%i',panelIdx),2), 'Callback', {@reloadData,fig}); % beamTypePopupValue=find(strcmp(lightSheetTypes,getStatus(sprintf('beamTypePopupString%i',panelIdx),'<select>')),1,'first'); beamTypePopupValue=1; % Don't preselect if (isempty(beamTypePopupValue)) beamTypePopupValue=1; end panelInfo.beamTypePopup=uicontrol('Parent',panelInfo.panel,'Position',[10 70 80 20], 'Style','popupmenu', 'String',lightSheetTypes, 'Value',beamTypePopupValue, 'Callback', {@reloadData,fig}); panelInfo.axes=[]; panelInfo.axes(1)=axes('Parent',panelInfo.panel,'Units','normalized','Position',[1/6+axesSpacing(1) axesSpacing(2) 2/6-axesSpacing(1) 1-axesSpacing(2)]); panelInfo.axes(2)=axes('Parent',panelInfo.panel,'Units','normalized','Position',[3/6+axesSpacing(1) axesSpacing(2) 2/6-axesSpacing(1) 1-axesSpacing(2)]); panelInfo.axes(3)=axes('Parent',panelInfo.panel,'Units','normalized','Position',[5/6+axesSpacing(1) axesSpacing(2) 1/6-axesSpacing(1) 1-axesSpacing(2)]); if (isempty(panelInfos)) panelInfos=panelInfo; else panelInfos(end+1)=panelInfo; end end setUserData('panelInfos',panelInfos); linkaxes(arrayfun(@(x) x.axes(1),panelInfos)); linkaxes(arrayfun(@(x) x.axes(2),panelInfos)); linkaxes(arrayfun(@(x) x.axes(3),panelInfos)); % Draw the controls controlsPanel=uipanel('Parent',fig,'Units','normalized','Position',[0 0 0.15 1],'Title','Controls'); uicontrol('Parent',controlsPanel,'Style','text','String','Colormap:','Position',[10,240,80,20]); setUserData('colorMapPopup',uicontrol('Parent',controlsPanel,'Position',[100 240 80 20], 'Style','popupmenu', ... 'String', {'Screen','Print'}, 'Value',getStatus('colorMapPopupValue',1), 'Callback', {@updateProjections,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','Background red:','Position',[10,210,100,20]); setUserData('redBackgroundEdit',uicontrol('Style','edit','String',getStatus('redBackgroundString','0'),'Position',... [100,210,45,20],'Callback',{@updateProjections,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','%, green:','Position',[140,210,50,20]); setUserData('greenBackgroundEdit',uicontrol('Style','edit','String',getStatus('greenBackgroundString','0'),'Position',... [190,210,45,20],'Callback',{@updateProjections,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','%','Position',[235,210,20,20]); uicontrol('Parent',controlsPanel,'Style','text','String','Rel. Int. red:','Position',[10,180,100,20]); setUserData('redRelativeDisplayIntensityEdit',uicontrol('Style','edit','String',getStatus('redRelativeDisplayIntensityString','1000'),'Position',... [100,180,45,20],'Callback',{@updateProjections,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','%, green:','Position',[140,180,50,20]); setUserData('greenRelativeDisplayIntensityEdit',uicontrol('Style','edit','String',getStatus('greenRelativeDisplayIntensityString','1000'),'Position',... [190,180,45,20],'Callback',{@updateProjections,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','%','Position',[235,180,20,20]); uicontrol('Parent',controlsPanel,'Style','text','String','Green X-shift','Position',[10,150,80,20]); setUserData('yShiftEdit',uicontrol('Style','edit','String',getStatus('yShiftString','0'),'Position',... [100,150,40,20],'Callback',{@updateDataCubeSection,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','Green Y-shift','Position',[10,130,80,20]); setUserData('xShiftEdit',uicontrol('Style','edit','String',getStatus('xShiftString','0'),'Position',... [100,130,40,20],'Callback',{@updateDataCubeSection,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','Green Z-shift','Position',[10,110,80,20]); setUserData('zShiftEdit',uicontrol('Style','edit','String',getStatus('zShiftString','0'),'Position',... [100,110,40,20],'Callback',{@updateDataCubeSection,fig})); % sectioning controls uicontrol('Parent',controlsPanel,'Style','text','String','X-stack position','Position',[10,50,80,20]); setUserData('yRangeSelEdit',uicontrol('Style','edit','String',getStatus('yRangeSelString',''),'Position',[100,50,90,20],'Callback',{@updateDataCubeSection,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','Y-stack position','Position',[10,30,80,20]); setUserData('xRangeSelEdit',uicontrol('Style','edit','String',getStatus('xRangeSelString',''),'Position',[100,30,90,20],'Callback',{@updateDataCubeSection,fig})); uicontrol('Parent',controlsPanel,'Style','text','String','Z-stack position','Position',[10,10,80,20]); setUserData('zRangeSelEdit',uicontrol('Style','edit','String',getStatus('zRangeSelString',''),'Position',[100,10,90,20],'Callback',{@updateDataCubeSection,fig})); set(fig,'Toolbar','figure'); drawnow(); reloadData([],[],fig); end function createMovie(obj,event,fig,panelIdx) end function reloadData(obj,event,fig) flipPropagationAxis=false; fig=getBaseFigureHandle(); fileDescriptors=getUserData('fileDescriptors'); panelInfos=getUserData('panelInfos'); experimentalSettings=[]; for panelIdx=1:numel(panelInfos), panelInfo=panelInfos(panelIdx); beamTypeValue=get(panelInfo.beamTypePopup,'Value')-1; % skip <select> if (beamTypeValue>0) % skip the <select> beamTypes=get(panelInfo.beamTypePopup,'String'); if (beamTypeValue<=length(beamTypes)) beamType=beamTypes{beamTypeValue}; updateStatus(sprintf('beamTypePopupString%i',panelIdx),beamType); set(panelInfo.panel,'Title',beamType); beamTypeValue=find(strcmp(beamTypes,beamType),1); fileDescriptor=fileDescriptors(beamTypeValue); if (isempty(experimentalSettings)) % Load the experimental settings first if (~isempty(fileDescriptor.fullFileNameGreen)) logMessage(['Loading settings from ',fileDescriptor.fullFileNameGreen,'.']); experimentalSettings=load(fileDescriptor.fullFileNameGreen,'xRange','yRange','zRange','tRange','setupConfig'); else logMessage(['Loading settings from ',fileDescriptor.fullFileNameRed,'.']); experimentalSettings=load(fileDescriptor.fullFileNameRed,'xRange','yRange','zRange','tRange','setupConfig'); end if (flipPropagationAxis) experimentalSettings.yRange=-experimentalSettings.yRange(end:-1:1); end stageTranslationStepSize=norm(median(diff(experimentalSettings.setupConfig.stagePositions.target))); if isempty(experimentalSettings.setupConfig.detector.center) experimentalSettings.setupConfig.detector.center=[0 0]; end % if (~isfield(experimentalSettings,'xRange')) % realMagnification=experimentalSettings.setupConfig.detection.objective.magnification*experimentalSettings.setupConfig.detection.tubeLength/experimentalSettings.setupConfig.detection.objective.tubeLength; % experimentalSettings.xRange=-experimentalSettings.setupConfig.detector.center(1)+experimentalSettings.setupConfig.detector.pixelSize(1)*([1:size(recordedImageStack,1)]-floor(size(recordedImageStack,1)/2)-1)/realMagnification; % up/down % experimentalSettings.yRange=-experimentalSettings.setupConfig.detector.center(2)+experimentalSettings.setupConfig.detector.pixelSize(2)*([1:size(recordedImageStack,2)]-floor(size(recordedImageStack,2)/2)-1)/realMagnification; % left/right % experimentalSettings.tRange=stageTranslationStepSize*([1:size(recordedImageStack,3)]-floor(size(recordedImageStack,3)/2+1))/experimentalSettings.setupConfig.detector.framesPerSecond; %Translation range (along z-axis) % experimentalSettings.zRange=tRange; % detection axis, zero centered % end setUserData('xRange',experimentalSettings.xRange); setUserData('yRange',experimentalSettings.yRange); setUserData('zRange',experimentalSettings.zRange); % if (isfield(experimentalSettings,'tRange')) setUserData('tRange',experimentalSettings.tRange); % else % setUserData('tRange',experimentalSettings.zRange); % end end dropDownValue=get(panelInfo.rawDeconvPopup,'Value'); updateStatus(sprintf('rawDeconvPopupValue%i',panelIdx),dropDownValue); restored=dropDownValue>1; if (restored) dataCubeField='restoredDataCube'; else dataCubeField='recordedImageStack'; end % Free memory panelUserData.dataCube=[]; set(panelInfo.panel,'UserData',panelUserData); if (~isempty(fileDescriptor.fullFileNameRed)) logMessage(['Loading RED channel from ',fileDescriptor.fullFileNameRed,'...']); loadedData=load(fileDescriptor.fullFileNameRed,dataCubeField); panelUserData.dataCube=getfield(loadedData,dataCubeField); clear loadedData; panelUserData.channels={'red'}; if (~isempty(fileDescriptor.fullFileNameGreen)) logMessage(['Loading GREEN channel from ',fileDescriptor.fullFileNameGreen,'...']); loadedData=load(fileDescriptor.fullFileNameGreen,dataCubeField); panelUserData.dataCube(:,:,:,2)=getfield(loadedData,dataCubeField); clear loadedData; panelUserData.channels{end+1}='green'; end else logMessage(['Loading SINGLE GREEN channel from ',fileDescriptor.fullFileNameGreen,'...']); loadedData=load(fileDescriptor.fullFileNameGreen,dataCubeField); panelUserData.dataCube=getfield(loadedData,dataCubeField); clear loadedData; panelUserData.channels={'green'}; end if (flipPropagationAxis) for (colIdx=1:floor(size(panelUserData.dataCube,2)/2)) panelUserData.dataCube(:,[colIdx end-(colIdx-1)],:,:)=panelUserData.dataCube(:,[end-(colIdx-1) colIdx],:,:); end end else logMessage('No beams found on disk.'); end else panelUserData={}; panelUserData.dataCube=[]; panelUserData.channels={'black'}; end % of if beamTypeValue>0 set(panelInfo.panel,'UserData',panelUserData); end % of for updateDataCubeSection([],[],fig); end function fig=updateDataCubeSection(hObj,event,fig) % projector=@mean; projector=@(X,dim) max(X,[],dim); % Maximum intensity projection % Interpret the sectioning controls xRange=getUserData('xRange'); yRange=getUserData('yRange'); zRange=getUserData('zRange'); tRange=getUserData('tRange'); if (~isempty(xRange)) xRangeSel=readDefaultAndConvertToIndexRange(getUserData('xRangeSelEdit'),xRange,xRange([1 end])); yRangeSel=readDefaultAndConvertToIndexRange(getUserData('yRangeSelEdit'),yRange,yRange([1 end])); zRangeSel=readDefaultAndConvertToIndexRange(getUserData('zRangeSelEdit'),zRange,zRange([1 end])); tRangeSel=zRangeSel; xShift=readDefaultAndConvertToIndices(getUserData('xShiftEdit'),xRange,0); yShift=readDefaultAndConvertToIndices(getUserData('yShiftEdit'),yRange,0); zShift=readDefaultAndConvertToIndices(getUserData('zShiftEdit'),zRange,0); [~, dataCubeCenter(1)]=min(abs(xRange)); [~, dataCubeCenter(2)]=min(abs(yRange)); [~, dataCubeCenter(3)]=min(abs(zRange)); greenShiftInPixels=[xShift yShift zShift]-dataCubeCenter; % Save the settings for next time we run updateStatus('xRangeSelString',get(getUserData('xRangeSelEdit'),'String')); updateStatus('yRangeSelString',get(getUserData('yRangeSelEdit'),'String')); updateStatus('zRangeSelString',get(getUserData('zRangeSelEdit'),'String')); updateStatus('xShiftString',get(getUserData('xShiftEdit'),'String')); updateStatus('yShiftString',get(getUserData('yShiftEdit'),'String')); updateStatus('zShiftString',get(getUserData('zShiftEdit'),'String')); % Shift the Green channel xRangeSelGreen=min(length(xRange),max(1,xRangeSel-greenShiftInPixels(1))); yRangeSelGreen=min(length(yRange),max(1,yRangeSel-greenShiftInPixels(2))); zRangeSelGreen=min(length(zRange),max(1,zRangeSel-greenShiftInPixels(3))); for (panelInfo=getUserData('panelInfos')) panelUserData=get(panelInfo.panel,'UserData'); if (~isempty(panelUserData.dataCube)) % Calculate the projections panelUserData.projZY=projector(panelUserData.dataCube(xRangeSel,yRangeSel,zRangeSel,1),1); panelUserData.projYX=projector(panelUserData.dataCube(xRangeSel,yRangeSel,zRangeSel,1),3); panelUserData.projZX=projector(panelUserData.dataCube(xRangeSel,yRangeSel,zRangeSel,1),2); if (ndims(panelUserData.dataCube)>=4) panelUserData.projZY(:,:,:,2)=projector(panelUserData.dataCube(xRangeSelGreen,yRangeSelGreen,zRangeSelGreen,2),1); panelUserData.projYX(:,:,:,2)=projector(panelUserData.dataCube(xRangeSelGreen,yRangeSelGreen,zRangeSelGreen,2),3); panelUserData.projZX(:,:,:,2)=projector(panelUserData.dataCube(xRangeSelGreen,yRangeSelGreen,zRangeSelGreen,2),2); end panelUserData.projZY=shiftdim(panelUserData.projZY,1); %Remove new singleton dimension panelUserData.projZY=permute(panelUserData.projZY,[2 1 3:ndims(panelUserData.projZY)]); panelUserData.projYX=permute(panelUserData.projYX,[1 2 4:ndims(panelUserData.projYX) 3]); %Remove new singleton dimension panelUserData.projZX=permute(panelUserData.projZX,[1 3:ndims(panelUserData.projZX) 2]); %Remove new singleton dimension panelUserData.projZX=permute(panelUserData.projZX,[2 1 3:ndims(panelUserData.projZX)]); else % Fake the projections panelUserData.projZY=zeros(length(yRangeSel),length(zRangeSel),length(panelUserData.channels)); panelUserData.projZY=permute(panelUserData.projZY,[2 1 3:ndims(panelUserData.projZY)]); panelUserData.projYX=zeros(length(xRangeSel),length(yRangeSel),length(panelUserData.channels)); panelUserData.projZX=zeros(length(xRangeSel),length(zRangeSel),length(panelUserData.channels)); panelUserData.projZX=permute(panelUserData.projZX,[2 1 3:ndims(panelUserData.projZX)]); end set(panelInfo.panel,'UserData',panelUserData); end fig=updateProjections(hObj,event,fig); end end function fig=updateProjections(obj,event,fig) colorMapPopupValue=get(getUserData('colorMapPopup'),'Value'); updateStatus('colorMapPopupValue',colorMapPopupValue); redBackground=str2double(get(getUserData('redBackgroundEdit'),'String')); if (isempty(redBackground) || isnan(redBackground)) redBackground=0; end redBackground=redBackground(1)/100; set(getUserData('redBackgroundEdit'),'String',sprintf('%0.3f',redBackground*100)); updateStatus('redBackgroundString',sprintf('%0.3f',redBackground*100)); greenBackground=str2double(get(getUserData('greenBackgroundEdit'),'String')); if (isempty(greenBackground) || isnan(greenBackground)) greenBackground=0; end greenBackground=greenBackground(1)/100; set(getUserData('greenBackgroundEdit'),'String',sprintf('%0.3f',greenBackground*100)); updateStatus('greenBackgroundString',sprintf('%0.3f',greenBackground*100)); colorsForPrint=colorMapPopupValue==2; colorMapGreen=@(values) interpolatedColorMap(values,[0 0 0; 0 1 0; 1 1 1],[0 .5 1]); colorMapRed=@(values) interpolatedColorMap(values,[0 0 0; 1 0 0; 1 1 1],[0 .5 1]); % colorMapImageSize=[1024 64]; % colorMapSingleColorImage=mapColor(repmat([1:colorMapImageSize(1)].',[1 colorMapImageSize(2)]),colorMapSingleColor); % imwrite('colorMapSingleColorImage.png',colorMapSingleColorImage); % Normalize redRelativeDisplayIntensity=str2double(get(getUserData('redRelativeDisplayIntensityEdit'),'String')); if (isempty(redRelativeDisplayIntensity)) redRelativeDisplayIntensity=100; set(getUserData('redRelativeDisplayIntensityEdit'),'String',sprintf('%0.0f',redRelativeDisplayIntensityString)); end redRelativeDisplayIntensity=redRelativeDisplayIntensity/100; updateStatus('redRelativeDisplayIntensityString',get(getUserData('redRelativeDisplayIntensityEdit'),'String')); greenRelativeDisplayIntensity=str2double(get(getUserData('greenRelativeDisplayIntensityEdit'),'String')); if (isempty(greenRelativeDisplayIntensity)) greenRelativeDisplayIntensity=100; set(getUserData('greenRelativeDisplayIntensityEdit'),'String',sprintf('%0.0f',greenRelativeDisplayIntensityString)); end greenRelativeDisplayIntensity=greenRelativeDisplayIntensity/100; updateStatus('greenRelativeDisplayIntensityString',get(getUserData('greenRelativeDisplayIntensityEdit'),'String')); panelIdx=1; for (panelInfo=getUserData('panelInfos')) panelUserData=get(panelInfo.panel,'UserData'); projZY=panelUserData.projZY; projYX=panelUserData.projYX; projZX=panelUserData.projZX; % Remove background and normalize normalization=ones(1,1,length(panelUserData.channels)); for channelIdx=1:length(panelUserData.channels) if (strcmp(panelUserData.channels{channelIdx},'red')) backgroundOffset=redBackground; relativeDisplayIntensity=redRelativeDisplayIntensity; else backgroundOffset=greenBackground; relativeDisplayIntensity=greenRelativeDisplayIntensity; end projZY(:,:,channelIdx)=projZY(:,:,channelIdx)-backgroundOffset; projYX(:,:,channelIdx)=projYX(:,:,channelIdx)-backgroundOffset; projZX(:,:,channelIdx)=projZX(:,:,channelIdx)-backgroundOffset; normalization(channelIdx)=relativeDisplayIntensity; end % normalization=max([max(max(projZY)), max(max(projYX)), max(max(projZX))]); % if (length(normalization)>=2) % normalization(2)=normalization(2)/greenRelativeDisplayIntensity; % end projZY=projZY.*repmat(normalization,[size(projZY,1) size(projZY,2)]); projYX=projYX.*repmat(normalization,[size(projYX,1) size(projYX,2)]); projZX=projZX.*repmat(normalization,[size(projZX,1) size(projZX,2)]); % Add blue channel, or user colormap in case only one channel is present if (ndims(projZY)>2) projZY=colorMapChannels(projZY,{colorMapRed,colorMapGreen},colorsForPrint); projYX=colorMapChannels(projYX,{colorMapRed,colorMapGreen},colorsForPrint); projZX=colorMapChannels(projZX,{colorMapRed,colorMapGreen},colorsForPrint); else if (strcmp(panelUserData.channels{1},'red')) colorMapSingleColor=colorMapRed; else colorMapSingleColor=colorMapGreen; end projZY=colorMapChannels(projZY,colorMapSingleColor,colorsForPrint); projYX=colorMapChannels(projYX,colorMapSingleColor,colorsForPrint); projZX=colorMapChannels(projZX,colorMapSingleColor,colorsForPrint); end % Draw the projections xRange=getUserData('xRange'); yRange=getUserData('yRange'); zRange=getUserData('zRange'); tRange=getUserData('tRange'); xRangeSel=readDefaultAndConvertToIndexRange(getUserData('xRangeSelEdit'),xRange,xRange([1 end])); yRangeSel=readDefaultAndConvertToIndexRange(getUserData('yRangeSelEdit'),yRange,yRange([1 end])); zRangeSel=readDefaultAndConvertToIndexRange(getUserData('zRangeSelEdit'),zRange,zRange([1 end])); tRangeSel=zRangeSel; axesColor=[0 0 0]; showImage(projYX,[],yRange(yRangeSel)*1e6,xRange(xRangeSel)*1e6,panelInfo.axes(1)); axis equal; set(panelInfo.axes(1),'TickDir','out','TickLength',[0.01 0.025]*3,'Color',axesColor,'XColor',axesColor,'YColor',axesColor,'LineWidth',3,'FontSize',16,'FontWeight','bold'); xlabel('Parent',panelInfo.axes(1),'X (propagation) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); ylabel('Parent',panelInfo.axes(1),'Y (swipe) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); showImage(projZY,[],yRange(yRangeSel)*1e6,zRange(zRangeSel)*1e6,panelInfo.axes(2)); axis equal; set(panelInfo.axes(2),'TickDir','out','TickLength',[0.01 0.025]*3,'Color',axesColor,'XColor',axesColor,'YColor',axesColor,'LineWidth',3,'FontSize',16,'FontWeight','bold'); xlabel('Parent',panelInfo.axes(2),'X (propagation) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); ylabel('Parent',panelInfo.axes(2),'Z (axial) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); showImage(projZX,[],xRange(xRangeSel)*1e6,tRange(tRangeSel)*1e6,panelInfo.axes(3)); axis equal; set(panelInfo.axes(3),'TickDir','out','TickLength',[0.01 0.025]*3,'Color',axesColor,'XColor',axesColor,'YColor',axesColor,'LineWidth',3,'FontSize',16,'FontWeight','bold'); xlabel('Parent',panelInfo.axes(3),'Y (swipe) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); ylabel('Parent',panelInfo.axes(3),'Z (axial) [\mum]','LineWidth',3,'FontSize',22,'FontWeight','bold'); imwrite(projYX,sprintf('projXY%0.0f.png',panelIdx)); imwrite(projZY,sprintf('projZX%0.0f.png',panelIdx)); imwrite(projZX,sprintf('projZY%0.0f.png',panelIdx)); panelIdx=panelIdx+1; end end function [rangeSelStart rangeSelEnd]=readDefaultAndConvertToIndices(rangeSelEdit,range,defaultValues) rangeSel=str2num(get(rangeSelEdit,'String'))*1e-6; if (isempty(rangeSel)) rangeSel=defaultValues(1); end if (length(rangeSel)<2 && length(defaultValues)>=2) rangeSel(2)=defaultValues(end); end set(rangeSelEdit,'String',sprintf('%0.3f ',rangeSel*1e6)); % Convert metric to indexes [~, rangeSelStart]=min(abs(range-min(rangeSel))); [~, rangeSelEnd]=min(abs(range-max(rangeSel))); end function rangeSel=readDefaultAndConvertToIndexRange(rangeSelEdit,range,defaultValues) [rangeSelStart rangeSelEnd]=readDefaultAndConvertToIndices(rangeSelEdit,range,defaultValues); rangeSel=[rangeSelStart:rangeSelEnd]; end function RGB=colorMapChannels(imageChannels,colorMaps,colorsForPrint) if ~iscell(colorMaps) colorMaps={colorMaps}; end if (nargin<3) colorsForPrint=false; end inputSize=size(imageChannels); if (length(inputSize)<3) inputSize(3)=1; end RGB=zeros([inputSize(1:2) 3]); for channelIdx=1:inputSize(3), RGB=RGB+mapColor(imageChannels(:,:,channelIdx),colorMaps{channelIdx}); end if (colorsForPrint), HSV=rgb2hsv(RGB); HSV(:,:,3)=1-HSV(:,:,3); % Swap the intensity RGB=hsv2rgb(HSV); end end function shutDown(obj,event) getBaseFigureHandle([]); % Clear the permanent reference closereq(); end % % Data access functions % % % User data function are 'global' variables linked to this GUI, though not % persistent between program shutdowns. % function value=getUserData(fieldName) fig=getBaseFigureHandle(); userData=get(fig,'UserData'); if (isfield(userData,fieldName)) value=userData.(fieldName); else value=[]; end end function setUserData(fieldName,value) if (nargin<2) value=fieldName; fieldName=inputname(1); end fig=getBaseFigureHandle(); userData=get(fig,'UserData'); userData.(fieldName)=value; set(fig,'UserData',userData); end function fig=getBaseFigureHandle(fig) persistent persistentFig; if (nargin>=1) if (~isempty(fig)) persistentFig=fig; else clear persistentFig; end else fig=persistentFig; end end % % 'Status' variables are stored persistently to disk and reloaded next time % function loadStatus(pathToStatusFile) if (nargin<1 || isempty(pathToStatusFile)) pathToStatusFile=[mfilename('fullpath'),'.mat']; end try load(pathToStatusFile,'status'); catch Exc status={}; status.version=-1; end status.pathToStatusFile=pathToStatusFile; setUserData('status',status); end function value=getStatus(fieldName,defaultValue) status=getUserData('status'); if (isfield(status,fieldName)) value=status.(fieldName); else if (nargin<2) defaultValue=[]; end value=defaultValue; end end function updateStatus(fieldName,value) status=getUserData('status'); status.(fieldName)=value; setUserData('status',status); saveStatus(); end function saveStatus() status=getUserData('status'); save(status.pathToStatusFile,'status'); end
github
mc225/Softwares_Tom-master
copyMatFilesOnly.m
.m
Softwares_Tom-master/LightSheet/copyMatFilesOnly.m
2,403
utf_8
720bb47b2fa9577991dbb81890e7a856
% copyMatFilesOnly(sourceFolder,targetFolder) % % Copies only the .mat files and removes the date-time folders, combining everything into the parent folder. % function status=copyMatFilesOnly(sourceFolder,targetFolder) if nargin<1 || isempty(sourceFolder) sourceFolder=uigetdir(pwd(),'Select Source Folder...'); if (sourceFolder==0) logMessage('No source folder selected.'); return; end end if nargin<2 || isempty(targetFolder) targetFolder=uigetdir('D:\Stored Files\RESULTS','Select Destination...'); if (targetFolder==0) logMessage('No target folder selected.'); return; end end status=true; % Copy all files fileNameList=dir(fullfile(sourceFolder,'*.mat')); for (fileName={fileNameList.name}) fileName=fileName{1}; filePathAndName=fullfile(sourceFolder,fileName); logMessage(['Copying ',filePathAndName,' to ',targetFolder,'...']); if ~exist(fullfile(targetFolder,fileName),'file') status=copyfile(filePathAndName,targetFolder); if (~status) logMessage('Error copying file %s!',filePathAndName); return; end else logMessage('The file %s is already copied.',fullfile(targetFolder,fileName)); end end % Recurse through folders fileDescList=dir(sourceFolder); for fileDescIdx=1:length(fileDescList) fileDesc=fileDescList(fileDescIdx); if fileDesc.isdir && ~strcmp(fileDesc.name,'.') && ~strcmp(fileDesc.name,'..') if regexp(fileDesc.name,'^\d\d\d\d-\d\d-\d\d\ \d\d_\d\d_\d\d.\d\d\d$') targetFolderRecursive=targetFolder; else targetFolderRecursive=fullfile(targetFolder,fileDesc.name); [status message]=mkdir(targetFolderRecursive); if ~status logMessage(message); end end status=copyMatFilesOnly(fullfile(sourceFolder,fileDesc.name),targetFolderRecursive); if (~status) return; end end end % Results if nargout==0 if status logMessage('Copied all files.'); else logMessage('Could not copy (all) files.'); end clear status; end end
github
mc225/Softwares_Tom-master
simulateAiryAndBesselSI.m
.m
Softwares_Tom-master/LightSheet/simulateAiryAndBesselSI.m
9,858
utf_8
e500dee14c2547d5c544bcbd4f8e6a1a
% % % function [sample xRange yRange zRange]=simulateAiryAndBesselSI() alpha=7; beta=5/100; xRange=single([-25:.15:25]*1e-6); % propagation yRange=single([-20:.15:20]*1e-6); % swipe zRange=single([-21:.15:21]*1e-6); % scan config=struct(); config.excitation=struct(); config.excitation.objective=struct(); config.excitation.objective.refractiveIndex=1.00; % config.excitation.objective.numericalAperture=0.42; config.excitation.objective.numericalAperture=0.43; % Fig 1C config.excitation.objective.magnification=20; config.excitation.objective.tubeLength=0.200; % config.excitation.wavelength=532e-9; config.excitation.wavelength=488e-9; % Fig 1C config.excitation.fractionOfNumericalApertureUsed=1; % config.sample.refractiveIndex=1.40; config.sample.refractiveIndex=1.33; % Fig 1C config.detection=struct(); config.detection.objective=struct(); config.detection.objective.refractiveIndex=1.00; % config.detection.objective.numericalAperture=0.40; config.detection.objective.numericalAperture=0.80; % Fig 1C config.detection.objective.magnification=20; config.detection.objective.tubeLength=0.160; config.detection.tubeLength=0.176; % config.detection.wavelength=600e-9; %6.12e-7; config.detection.wavelength=509e-9; % eGFP, Fig 1C config.detection.fractionOfNumericalApertureUsed=1; config.detector=struct(); config.detector.pixelSize=[1 1]*7.4e-6; % Load synthetic sample sample=getTetraedronDensity(xRange,yRange,zRange); % sample=getSpiralDensity(xRange,yRange,zRange); % Calculate light sheet pupilFunctor=@(U,V) U.^2+V.^2>(1-beta)^2; [~,psfField]=calcVectorialPsf(yRange,zRange,xRange,config.excitation.wavelength,pupilFunctor,@(U,V) 1i*pupilFunctor(U,V),... config.excitation.objective.numericalAperture,config.sample.refractiveIndex,... config.excitation.objective.magnification,config.excitation.objective.tubeLength); psfField=ipermute(psfField,[2 3 1 4]); psfFieldSize=size(psfField); psfField(1,end*2,1,1)=0; % Pad psfFieldFftY=fft(psfField,[],2); clear psfField; yRangeExt=[yRange yRange(end)+diff(yRange(1:2))*[1:length(yRange)]]; nbBeams=7; nbPhases=5; period=1.02e-6*config.excitation.wavelength/488e-9; diffractionPeriod=ceil(10e-6/period)*period; % Create diffractive grating of nbBeams beams logMessage('Passing beam through diffraction grating...'); gratingFft=0*yRange; gratingFft(end*2)=0; for diffBeamPos=diffractionPeriod*([1:nbBeams]-floor(1+nbBeams/2)), if abs(diffBeamPos)<-2*yRange(1), gratingFft=gratingFft+exp(2i*pi*(([1:2*length(yRange)]-1-length(yRange))/(2*length(yRange)))*diffBeamPos/diff(yRange(1:2))); end end gratingFft=ifftshift(gratingFft)./nbBeams; psf=ifft(psfFieldFftY.*repmat(gratingFft(:).',[psfFieldSize(1) 1 psfFieldSize(3:end)]),[],2); clear psfFieldFftY gratingFft; psf=sum(abs(psf).^2,4); % showImage(squeeze(psf(1+floor(end/2),:,:)),-1,zRange*1e6,yRangeExt*1e6);axis equal; % Create intensity structured illumination and phase shifts logMessage('Patterning light sheet intensity...'); psfFft=fft(psf,[],2); clear psf; lightSheetFft=zeros([size(psfFft) nbPhases],'single'); for phaseIdx=1:nbPhases, % Generate phases phaseOffset=(phaseIdx-1)/nbPhases; pulseFft=0*yRange; pulseFft(end*2)=0; beamPositions=period*(phaseOffset+[1:round(diffractionPeriod/period)]-1-floor(round(diffractionPeriod/period)/2)); for beamPos=beamPositions, pulseFft=pulseFft+exp(2i*pi*(([1:2*length(yRange)]-1-length(yRange))/(2*length(yRange)))*beamPos/diff(yRange(1:2))); end pulseFft=ifftshift(pulseFft)./length(beamPositions); lightSheetFft(:,:,:,phaseIdx)=psfFft.*repmat(pulseFft(:).',[psfFieldSize(1) 1 psfFieldSize(3)]); end clear psfFft; lightSheet=ifft(lightSheetFft,[],2,'symmetric'); clear lightSheetFft; % for phaseIdx=repmat(1:nbPhases,[1 10]) % showImage(squeeze(lightSheet(1+floor(end/2),1:end/2,:,phaseIdx)),-1,zRange*1e6,yRange*1e6);axis equal; % drawnow(); % pause(.1); % end lightSheet=lightSheet(:,1:end/2,:,:); % Crop again % % Calculate detection PSF % logMessage('Calculating detection PSF...'); detectionPsf=calcVectorialPsf(xRange,yRange,zRange,config.detection.wavelength,1/sqrt(2),1/sqrt(2),... config.detection.objective.numericalAperture,config.sample.refractiveIndex,... config.detection.objective.magnification,config.detection.objective.tubeLength); detectionPsfFft=fft2(ifftshift(ifftshift(detectionPsf,1),2)); % % Do the light sheet imaging % logMessage('Starting light sheet recording...'); img=zeros([psfFieldSize(1:3) nbPhases]); for zIdx=1:length(zRange), logMessage('z=%0.1fum in interval [%0.1fum %0.1fum]',[zRange(zIdx)*1e6,zRange([1 end])*1e6]); for phaseIdx=1:nbPhases, fluorescence=sample(:,:,max(1,min(end,[1:end]+(zIdx-1)-floor(length(zRange)/2)))).*lightSheet(:,:,:,phaseIdx); imgSlice=sum(ifft2(fft2(fluorescence).*detectionPsfFft,'symmetric'),3); img(:,:,zIdx,phaseIdx)=imgSlice; end end save('img2.mat'); % % Deconvolve slice by slice % [XOtf,YOtf,fRel]=calcOtfGridFromSampleFrequencies(1./[diff(xRange(1:2)) diff(yRange(1:2))],[length(xRange) length(yRange)],(2*config.detection.objective.numericalAperture)/config.detection.wavelength); deconvolvedImg=zeros([size(img,1) size(img,2) size(img,3)],'single'); for zIdx=1:length(zRange), slice=img(:,:,zIdx,:); orders=[-floor(nbPhases/2):floor(nbPhases/2)]; order=zeros([size(slice,1) size(slice,2) 1 length(orders)]); for orderIdx=1:length(orders), grating=repmat((yRange/period),[1 1 1 nbPhases])+repmat(permute(([1:nbPhases]-1)/nbPhases,[1 4 3 2]),[1 length(yRange) 1 1]); grating=exp(2i*pi*grating*orders(orderIdx)); grating=repmat(grating,[length(xRange) 1 1 1]); sliceFft=fft2(slice.*grating); %,[],2); sliceFft=sum(sliceFft,4); % Remove other orders sliceFft=sliceFft.*repmat(ifftshift(fRel)<=1,[1 1 1 size(sliceFft,4)]); % Remove high frequency noise order(:,:,1,orderIdx)=fft2(ifft2(sliceFft).*conj(grating(:,:,1,1))); % Shift back end deconvolvedSlice=ifft(deconvolvedSliceFft,[],2,'symmetric'); deconvolvedImg(:,:,zIdx)=deconvolvedSlice; end % % Output % if (nargout==0) fig=figure(); % for zIdx=1:size(sample,3), % imagesc(xRange*1e6,yRange*1e6,sample(:,:,zIdx).'); % axis equal; % title(zRange(zIdx)*1e6); % drawnow(); % pause(.1); % end [X,Y,Z]=ndgrid(xRange,yRange,zRange); [X,Y,Z, redSample]=reducevolume(X,Y,Z,smooth3(sample,'gaussian',11),[1 1 1]*2); isoVal=double(max(redSample(:))/2); fv=isosurface(X*1e6,Y*1e6,Z*1e6,redSample,isoVal); fvCaps=isocaps(X*1e6,Y*1e6,Z*1e6,redSample,isoVal); rfv=reducepatch(fv,0.1); rfvCaps=reducepatch(fvCaps,0.1); patch(rfv,'FaceColor',[1 0 0],'EdgeColor','none'); patch(rfvCaps,'FaceColor',[0.5 0 0],'EdgeColor','none'); axis equal; lighting phong; % shading interp; camlight(30,30); camlight(30+180,30); % close(fig); clear sample; end end function sample=getSpiralDensity(xRange,yRange,zRange) diameter=20e-6; period=2*diameter; tubeDiameter=10e-6; thickness=1e-6; nbSpirals=3; innerR2=abs(tubeDiameter/2-thickness/2)^2; outerR2=abs(tubeDiameter/2+thickness/2)^2; % Make all horizontal xRange=xRange(:).'; yRange=yRange(:).'; zRange=zRange(:).'; outputSize=[numel(xRange) numel(yRange) numel(zRange)]; sample=false(outputSize); for xIdx=1:outputSize(1), thetas=2*pi*(xRange(xIdx)/period+([1:nbSpirals].'-1)./nbSpirals); spiralPos=[thetas*0 cos(thetas) sin(thetas)]*diameter/2; inAnySpiral=false(outputSize(2:3)); for spiralIdx=1:size(spiralPos,1), R2=repmat(abs(yRange-spiralPos(spiralIdx,2)).^2.',[1 outputSize(3)])+repmat(abs(zRange-spiralPos(spiralIdx,3)).^2,[outputSize(2) 1]); inSpiral=R2>=innerR2 & R2<=outerR2; inAnySpiral=inAnySpiral|inSpiral; end sample(xIdx,:,:)=inAnySpiral; end end function sample=getTetraedronDensity(xRange,yRange,zRange) diameter=20e-6; thickness=1e-6; centerOffset=[0 -5e-6 -2.5e-6]; % Make all horizontal xRange=xRange(:).'; yRange=yRange(:).'; zRange=zRange(:).'; outputSize=[numel(xRange) numel(yRange) numel(zRange)]; innerR2=abs(diameter/2-thickness/2)^2; outerR2=abs(diameter/2+thickness/2)^2; sample=false(outputSize); spherePos=[0 -1/sqrt(6) 2/sqrt(3); -1 -1/sqrt(6) -1/sqrt(3); 1 -1/sqrt(6) -1/sqrt(3); 0 sqrt(3/2) 0]*diameter/2; spherePos=spherePos+repmat(centerOffset,[size(spherePos,1) 1]); for xIdx=1:outputSize(1), inAnyShell=false(outputSize(2:3)); for sphereIdx=1:size(spherePos,1), R2=abs(xRange(xIdx)-spherePos(sphereIdx,1)).^2+... repmat(abs(yRange-spherePos(sphereIdx,2)).^2.',[1 outputSize(3)])+repmat(abs(zRange-spherePos(sphereIdx,3)).^2,[outputSize(2) 1]); inShell=R2>=innerR2 & R2<=outerR2; inAnyShell=inAnyShell|inShell; end sample(xIdx,:,:)=inAnyShell; end sample=single(sample); end
github
mc225/Softwares_Tom-master
previewLightSheetRecordings.m
.m
Softwares_Tom-master/LightSheet/previewLightSheetRecordings.m
4,212
utf_8
54901b2af67bbac18cf1165fc26d700c
% % previewLightSheetRecordings(folders) % % Calls previewLightSheetRecording repeatedly % function previewLightSheetRecordings(folderNames,destinationEmails) if (nargin<1 || isempty(folderNames)) folderNames={'H:\RESULTS\2013-11-27\Amphioxus'}; % folderNames={'H:\RESULTS\2013-11-27\Zebra fish','H:\RESULTS\2013-11-27\Spheroid'}; % Jonny: Please update the e-mail addresses below % folderNames=uigetdir(pwd(),'Select Recording(s)'); % if (~iscell(folderNames) && ~ischar(folderNames) && ~isempty(folderNames)) % logMessage('Folder selection canceled.'); % return; % end end if (~iscell(folderNames)) folderNames={folderNames}; end if nargin<2 destinationEmails={'[email protected]','[email protected]','[email protected]'}; end dataFileRegEx='recording_lambda([0-9]+)nm.+\.avi'; % Recursively process all folders for folderName=folderNames, folderName=folderName{1}; allFilesOrDirs=dir(folderName); allDirs={allFilesOrDirs(cell2mat({allFilesOrDirs.isdir}) & cellfun(@(nm) nm(1)~='.',{allFilesOrDirs.name})).name}; allDataFiles={allFilesOrDirs(cellfun(@(nm) ~isempty(regexpi(nm,dataFileRegEx)),{allFilesOrDirs.name})).name}; allDirs=cellfun(@(nm) fullfile(folderName,nm),allDirs,'UniformOutput',false); allDataFiles=cellfun(@(nm) fullfile(folderName,nm),allDataFiles,'UniformOutput',false); % Go through subfolders and add to file list if it has a time stamp, otherwise recurse for subDir=allDirs, subDir=subDir{1}; if ~isempty(regexpi(subDir,'[0-9][0-9][0-9][0-9]+-[0-9][0-9]-[0-9][0-9] [0-9][0-9]_[0-9][0-9]_[0-9][0-9]\.[0-9][0-9]+$')) % If a time stamp subFolderContents=dir(subDir); subFolderContents={subFolderContents(cellfun(@(nm) ~isempty(regexpi(nm,dataFileRegEx)),{subFolderContents.name})).name}; subFolderContents=cellfun(@(nm) fullfile(subDir,nm),subFolderContents,'UniformOutput',false); allDataFiles(end+[1:numel(subFolderContents)])=subFolderContents; % Append new found files else previewLightSheetRecordings(subDir,destinationEmails); end end % Combine files by wavelength allDataFileSets={}; for dataFileIdx=1:numel(allDataFiles), dataFileSet={allDataFiles{dataFileIdx}}; % Still a single file at this point % Check if there is also another wavelength version wavelengthStr=regexpi(dataFileSet{1},dataFileRegEx,'tokens'); wavelengthStr=wavelengthStr{1}{1}; firstGreen=strcmp(wavelengthStr,'488'); if firstGreen, otherWavelengthStr='532'; else otherWavelengthStr='488'; end fileToFind=strrep(dataFileSet{1},['lambda',wavelengthStr,'nm'],['lambda',otherWavelengthStr,'nm']); clear otherWavelengthStr; [~,fileToFind]=fileparts(fileToFind); %Use only the file name part otherFileIdx=find(cellfun(@(nm) ~isempty(regexpi(nm,fileToFind)),allDataFiles),1); if ~isempty(otherFileIdx) if otherFileIdx>dataFileIdx dataFileSet{2}=allDataFiles{otherFileIdx}; if ~firstGreen && numel(dataFileSet)>=2, % Make sure that green is first if it exists dataFileSet=dataFileSet([2 1]); end allDataFileSets{end+1}=dataFileSet; end else allDataFileSets{end+1}=dataFileSet; end end % Process all the collected data files sets for dataFileSetIdx=1:numel(allDataFileSets), dataFileSet=allDataFileSets{dataFileSetIdx}; try outputFullFileName=previewLightSheetRecording(dataFileSet); logMessage('Just created %s.',outputFullFileName,destinationEmails,outputFullFileName); catch Exc Exc logMessage('Could not process %s.',dataFileSet{1}); end end end end
github
mc225/Softwares_Tom-master
deconvolveRecordedImageStack.m
.m
Softwares_Tom-master/LightSheet/deconvolveRecordedImageStack.m
8,273
utf_8
8c3ebf6ff4d3aa1207bbd66184ddea0a
% [restoredDataCube lightSheetDeconvFilter lightSheetOtf ZOtf xRange,yRange,zRange tRange lightSheetPsf]=deconvolveRecordedImageStack(recordedImageStack,config) % % recordedImageStack: The recorded values [x y z]=[down right back] % config: a light sheet microscope set-up configuration file, including the wavelengths and the pupil functions. % function [restoredDataCube lightSheetDeconvFilter lightSheetOtf ZOtf xRange,yRange,zRange tRange lightSheetPsf]=deconvolveRecordedImageStack(recordedImageStack,config) cubicInterpolation=true; % Sample grid specification stageTranslationStepSize=norm(median(diff(config.stagePositions.target))); if isempty(config.detector.center) config.detector.center=[0 0]; end realMagnification=config.detection.objective.magnification*config.detection.tubeLength/config.detection.objective.tubeLength; xRange=-config.detector.center(1)+config.detector.pixelSize(1)*([1:size(recordedImageStack,1)]-floor(size(recordedImageStack,1)/2)-1)/realMagnification; % up/down yRange=-config.detector.center(2)+config.detector.pixelSize(2)*([1:size(recordedImageStack,2)]-floor(size(recordedImageStack,2)/2)-1)/realMagnification; % left/right tRange=stageTranslationStepSize*([1:size(recordedImageStack,3)]-floor(size(recordedImageStack,3)/2+1))/config.detector.framesPerSecond; %Translation range (along z-axis) zRange=tRange; % detection axis, zero centered tilt=0; logMessage('Calculating light sheet...'); lightSheetPsf=calcLightSheetPsf(single(xRange),single(yRange),single(zRange),tilt,config.excitation,config.modulation.alpha,config.modulation.beta,config.sample.refractiveIndex); if (isfield(config.detector,'scanShear')) scanShear=config.detector.scanShear; else scanShear=[0 0]; end if (isfield(config.detector,'perspectiveScaling')) scaling=config.detector.perspectiveScaling; else scaling=[0 0]; end if (~all(scanShear==0) || ~all(scaling==0)) % Geometrically correcting recorded data cube and light sheet lightSheetPsfOrig=lightSheetPsf; logMessage('Geometrically shifting and deforming recorded date cube and light sheet by [%0.3f%%,%0.3f%%] and a magnification change of [%0.3f%%,%0.3f%%] per micrometer...',-[scanShear scaling*1e-6]*100); % YRangeMatrix=repmat(yRange,[size(xRange,2) 1]);XRangeMatrix=repmat(xRange.',[1 size(yRange,2)]); for (zIdx=1:size(recordedImageStack,3)) % [~, sV] = memory(); % logMessage('zIdx=%d, memory available: %0.0f MB',[zIdx sV.PhysicalMemory.Available/2^20]); zPos=zRange(zIdx); sampleXRange = scanShear(1)*zPos + xRange*(1-scaling(1)*zPos); sampleYRange = scanShear(2)*zPos + yRange*(1-scaling(2)*zPos); if (cubicInterpolation) interpolatedSlice=interp2(yRange.',xRange,recordedImageStack(:,:,zIdx),sampleYRange.',sampleXRange,'*cubic',0); else interpolatedSlice=interp2(yRange.',xRange,recordedImageStack(:,:,zIdx),sampleYRange.',sampleXRange,'*linear',0); % interpolatedSlice=qinterp2(YRangeMatrix,XRangeMatrix,recordedImageStack(:,:,zIdx),repmat(sampleYRange,[size(sampleXRange,2) 1]),repmat(sampleXRange.',[1 size(sampleYRange,2)]), 2); % interpolatedSlice(isnan(interpolatedSlice))=0; end recordedImageStack(:,:,zIdx)=interpolatedSlice; lightSheetPsf(:,:,zIdx)=interp1(yRange,lightSheetPsf(:,:,zIdx),sampleYRange,'*cubic',0); end end logMessage('Reconstructing convolved data set...'); [recordedImageStack lightSheetDeconvFilter lightSheetOtf ZOtf tRange]=deconvolveLightSheet(xRange,yRange,zRange,tRange,recordedImageStack,config,lightSheetPsf); restoredDataCube=recordedImageStack; clear recordedImageStack; % This operation does not take extra memory in Matlab if (~all(scanShear==0) || ~all(scaling==0)) logMessage('Undoing the geometrically shifting and deformation of the date cube and light sheet by [%0.3f%%,%0.3f%%] and a magnification change of [%0.3f%%,%0.3f%%] per micrometer...',-[scanShear scaling*1e-6]*100); for (tIdx=1:size(restoredDataCube,3)) tPos=tRange(tIdx); sampleXRange = scanShear(1)*tPos + xRange*(1-scaling(1)*tPos); sampleYRange = scanShear(2)*tPos + yRange*(1-scaling(2)*tPos); if (cubicInterpolation) interpolatedSlice=interp2(sampleYRange.',sampleXRange,restoredDataCube(:,:,tIdx),yRange.',xRange,'*cubic',0); else interpolatedSlice=interp2(sampleYRange.',sampleXRange,restoredDataCube(:,:,tIdx),yRange.',xRange,'*linear',0); % interpolatedSlice=qinterp2(repmat(sampleYRange,[size(sampleXRange,2) 1]),repmat(sampleXRange.',[1 size(sampleYRange,2)]),restoredDataCube(:,:,tIdx),YRangeMatrix,XRangeMatrix, 2); % interpolatedSlice(isnan(interpolatedSlice))=0; end recordedImageStack(:,:,tIdx)=interpolatedSlice; end lightSheetPsf=lightSheetPsfOrig; end end % % Deconvolution in Z after extending the last pixels outward. Note that the % PSF should occupy maximum 1/2 of the total input z-range to avoid wrapping. % function [restoredDataCube lightSheetDeconvFilter lightSheetOtf ZOtf tRange]=deconvolveLightSheet(xRange,yRange,zRange,tRange,recordedImageStack,config,lightSheetPsf) % Calculate an extended range over which the deconvolved image can be % spread out due to the light sheet diffraction. if (length(tRange)>1), dt=diff(tRange([1:2])); else dt=1; end tRangePadded=tRange(floor(end/2)+1) + dt*([1:length(tRange)*2]-length(tRange)-1); inputSize=size(recordedImageStack); if (length(inputSize)<4) if (length(inputSize)<3) inputSize(3)=1; end inputSize(4)=1; end %Just (sub-pixel)-shift the PSF to the center and pad to double the size if (length(zRange)>1) lightSheetDeconvPsf=interp1(-zRange,squeeze(lightSheetPsf(floor(end/2)+1,:,:)).',tRangePadded,'*cubic',0).'; lightSheetDeconvPsf=permute(lightSheetDeconvPsf,[3 1 2]); else lightSheetDeconvPsf=lightSheetPsf; lightSheetDeconvPsf(:,:,2)=0; end deconvSize=size(lightSheetDeconvPsf); deconvSize(2)=size(recordedImageStack,2); %Deconvolve the light-sheet in Z ZOtf=([1:deconvSize(3)]-floor(deconvSize(3)/2)-1)/(dt*deconvSize(3)); actualNumericalAperture=config.excitation.fractionOfNumericalApertureUsed*config.excitation.objective.numericalAperture; excitationOpticalCutOffSpFreq=2*actualNumericalAperture/config.excitation.wavelength; % Independent of refractive index of medium excitationNoiseToSignalRatio=config.sample.backgroundLevel*(ZOtf/excitationOpticalCutOffSpFreq)/config.sample.signalLevel; lightSheetOtf=fftshift(fft(ifftshift(lightSheetDeconvPsf(1,:,:),3),[],3),3); clear lightSheetDeconvPsf; lightSheetOtf=lightSheetOtf./max(abs(lightSheetOtf(:))); % Maintain the mean brightness %Construct the deconvolution filter: lightSheetDeconvFilter=conj(lightSheetOtf)./(abs(lightSheetOtf).^2+repmat(permute(excitationNoiseToSignalRatio.^2,[1 3 2]),[size(lightSheetOtf,1) size(lightSheetOtf,2) 1])); %Extend edges to double the size and convolve (slice by slice to avoid memory issues) % restoredDataCube=zeros([inputSize(1:2), inputSize(3), inputSize(4:end)],'single'); % overwrite recordedImageStack instead to save memory for (xIdx=1:size(recordedImageStack,1)) recordedImageStackSliceFft=fft(recordedImageStack(xIdx,:,[1:end, end*ones(1,floor(end/2)), ones(1,floor((end+1)/2))],:),[],3); % Extend edges restoredDataCubeSlice=ifft(recordedImageStackSliceFft.*repmat(ifftshift(lightSheetDeconvFilter,3),[1 1 1 inputSize(4:end)]),[],3,'symmetric'); %Drop the bit that might have overlap from a wrapped kernel recordedImageStack(xIdx,:,:,:)=restoredDataCubeSlice(:,:,1:end/2,:); % overwrite recordedImageStack to save memory end restoredDataCube=recordedImageStack; clear recordedImageStack; % This operation does not take extra memory in Matlab end
github
mc225/Softwares_Tom-master
createResolutionPlot.m
.m
Softwares_Tom-master/LightSheet/createResolutionPlot.m
6,629
utf_8
172b08ac5b385c30f5181b644fc70966
function createResolutionPlot(inputFolder) % close all; % beamTypes={'Gaussian','Airy'}; if nargin<1 || isempty(inputFolder) % inputFolder='C:\Users\Tom\Dropbox\AirySheetData\FWHMs\forwardscans2'; % inputFolder='C:\Users\Tom\Dropbox\AirySheetData\FWHMs\forwardscans'; % inputFolder='C:\Users\Tom\Dropbox\AirySheetData\FWHMs\backwardscans'; % inputFolder='C:\Users\Tom\Dropbox\AirySheetData\FWHMs\morePowerBackward'; beamTypes={'Bessel10','Bessel5'}; inputFolder='C:\Users\Tom\Dropbox\AirySheetData\FWHMs\morePowerForward'; end description=''; for beamTypeIdx=1:length(beamTypes) description=[description,'_',beamTypes{beamTypeIdx}]; end outputFilePath=['C:\Users\Tom\Documents\nanoscope\docs\LightSheet\paper\figures\resolutionVsFOV\fwhmZOfBeads',description,'.svg']; samples{1}=load(fullfile(inputFolder,['images',beamTypes{1},'.mat'])); samples{1}=samples{1}.samples; samples{2}=load(fullfile(inputFolder,['images',beamTypes{2},'.mat'])); samples{2}=samples{2}.samples; %Keep only those points that fall within the plot positions=cell2mat({samples{1}.centroid}.'); inPlot=positions(:,1)>=-20e-6; samples{1}=samples{1}(inPlot); samples{2}=samples{2}(inPlot); positions=positions(inPlot,:); positions=cell2mat({samples{1}.centroid}.'); fwhm{1}=cell2mat({samples{1}.fwhm}.'); fwhm{2}=cell2mat({samples{2}.fwhm}.'); % distanceFromWaist=-positions(:,2); distanceFromWaist=abs(positions(:,2)); fig=figure('Position',[50 50 800 300],'NumberTitle','off','Name',description); ax=axes(); scatterGaussian=scatterV6(distanceFromWaist*1e6,fwhm{1}(:,3)*1e6,'x','MarkerEdgeColor',[1 0 0],'LineWidth',2); hold on; scatterAiry=scatterV6(distanceFromWaist*1e6,fwhm{2}(:,3)*1e6,50,[0 0.5 0],'filled'); hold off; xlim([0 150]); ylim([0 25]); labs(1)=xlabel('x [\mum]'); labs(2)=ylabel('FWHM [\mum]'); set(ax,'XTick',[0:25:1000]); set(ax,'YTick',[0:5:100]); set(ax,'LineWidth',2); set([ax labs],'FontSize',22,'FontWeight','bold','FontName','Arial'); set(labs,'FontSize',24); set(ax,'Box','on'); drawnow(); %attach Callback % set([scatterGaussian scatterAiry],'HitTest','off'); sampleMarkersGaussian=scatterGaussian; %get(scatterGaussian,'Children'); sampleMarkersAiry=scatterAiry; %get(scatterAiry,'Children'); set([sampleMarkersGaussian sampleMarkersAiry],'HitTest','on'); for sampleIdx=1:length(sampleMarkersGaussian) bothMarkers=[sampleMarkersGaussian(sampleIdx) sampleMarkersAiry(sampleIdx)]; set(sampleMarkersGaussian(sampleIdx),'ButtonDownFcn',@(obj,evt) inspectSample(bothMarkers,'gaussian',sampleIdx,samples{1}(sampleIdx),samples{2}(sampleIdx))); set(sampleMarkersAiry(sampleIdx),'ButtonDownFcn',@(obj,evt) inspectSample(bothMarkers,'airy',sampleIdx,samples{1}(sampleIdx),samples{2}(sampleIdx))); end uicontrol(fig,'Style','pushbutton','String','Save','Callback',@saveFigure,'UserData',outputFilePath); set(fig,'ToolBar','figure'); zoom(fig); end function markers=scatterV6(X,Y,S,varargin) nbMarkers=length(X); maxMarkers=50; markers=zeros(size(X)); for markerIdx=1:maxMarkers:nbMarkers opts=varargin; selI=markerIdx:min(nbMarkers,markerIdx+maxMarkers-1); if all(ischar(S)) || isempty(opts) || all(isscalar(opts{1})) scatterGroup=scatter(X(selI),Y(selI),S); else if (length(opts)>1 && strcmpi(opts{2},'filled')) scatterGroup=scatter(X(selI),Y(selI),S,opts{1:2}); opts={opts{3:end}}; else scatterGroup=scatter(X(selI),Y(selI),S,opts{1}); opts={opts{2:end}}; end end for (argIdx=1:2:length(opts)-1) set(scatterGroup,opts{argIdx},opts{argIdx+1}); end hold on; newMarkers=get(scatterGroup,'Children'); markers(markerIdx-1+[1:length(newMarkers)])=newMarkers(end:-1:1); % Assume that the order is swapped! end hold off; end function saveFigure(obj,evt) fig=get(obj,'Parent'); outputFilePath=get(obj,'UserData'); set(obj,'Visible','off'); logMessage('Writing figure to %s.',outputFilePath); plot2svg(outputFilePath,fig); set(obj,'Visible','on'); end function inspectSample(sampleMarkers,sampleSet,sampleIdx,sampleG,sampleA) description=sprintf([sampleSet ' sample %d, centroid=(%0.1f,%0.1f,%0.1f)um, FWHM=%0.0f and %0.0f nm'],[sampleIdx,sampleA.centroid*1e6 [sampleG.fwhm(3) sampleA.fwhm(3)]*1e9]); logMessage(description); colorMap=hot(1024); inspectFig=figure('Position',[200 200 640 480]); subplot(2,3,1);showImage(mapColor(sampleG.test.proj3./max(sampleG.test.proj3(:)),colorMap),[],sampleG.yRange*1e6,sampleG.xRange*1e6);axis equal; xlabel('x (propagation) [um]'); ylabel('y (swipe) [um]'); subplot(2,3,2);showImage(mapColor(sampleG.test.proj2./max(sampleG.test.proj2(:)),colorMap),[],sampleG.yRange*1e6,sampleG.zRange*1e6); axis equal; xlabel('x (propagation) [um]'); ylabel('z (scan) [um]'); subplot(2,3,3);showImage(mapColor(sampleG.test.proj1./max(sampleG.test.proj1(:)),colorMap),[],sampleG.xRange*1e6,sampleG.zRange*1e6); axis equal; xlabel('y (swipe) [um]'); ylabel('z (scan) [um]'); subplot(2,3,4);showImage(mapColor(sampleA.test.proj3./max(sampleA.test.proj3(:)),colorMap),[],sampleA.yRange*1e6,sampleA.xRange*1e6);axis equal; xlabel('x (propagation) [um]'); ylabel('y (swipe) [um]'); subplot(2,3,5);showImage(mapColor(sampleA.test.proj2./max(sampleA.test.proj2(:)),colorMap),[],sampleA.yRange*1e6,sampleA.zRange*1e6); axis equal; xlabel('x (propagation) [um]'); ylabel('z (scan) [um]'); subplot(2,3,6);showImage(mapColor(sampleA.test.proj1./max(sampleA.test.proj1(:)),colorMap),[],sampleA.xRange*1e6,sampleA.zRange*1e6); axis equal; xlabel('y (swipe) [um]'); ylabel('z (scan) [um]'); set(inspectFig,'NumberTitle','off','Name',description); set(inspectFig,'ToolBar','figure'); zoom(inspectFig); drawnow(); keepAction=@(obj,evt) close(inspectFig); uicontrol(inspectFig,'Style','pushbutton','String','Keep','Position',[10 10 50 20],'Callback',keepAction); uicontrol(inspectFig,'Style','pushbutton','String','Remove','Position',[80 10 50 20],'Callback',@(obj,evt) removeMarkers(sampleMarkers,inspectFig)); end function removeMarkers(sampleMarkers,inspectFig) set(sampleMarkers,'Visible','off'); close(inspectFig); end
github
mc225/Softwares_Tom-master
plotFieldOfViewWidthAndAxialResolutionVersusNA.m
.m
Softwares_Tom-master/LightSheet/plotFieldOfViewWidthAndAxialResolutionVersusNA.m
8,351
utf_8
f4eb96474608903a149d69fba59c96a2
% [numericalApertures,FOVWidths,axialResolutions]=plotFieldOfViewWidthAndAxialResolutionVersusNA(refractiveIndex,wavelength) % % Calculates the field of view and axial resolution of a light sheet microscope as a function of the illumination NA. % % All SI units. % function [numericalApertures,FOVWidths,axialResolutions]=plotFieldOfViewWidthAndAxialResolutionVersusNA(refractiveIndex,wavelength) close all; if (nargin<1 || isempty(refractiveIndex)) refractiveIndex=1.4; end if (nargin<2 || isempty(wavelength)) wavelength=532e-9; end numericalApertures=.001:.001:(refractiveIndex/1); alpha=7; betas=[0.10 0.05]; fontSize=24; lineColors=[.33 .33 .33; 0.2 0.2 0.8; 0.8 0 0; 0 .67 0]; lineStyles={':','-','--','-'}; lineWidths=[2 3 2 3]; % Calculate FOVGaussian=4*wavelength*refractiveIndex*numericalApertures.^-2; axialResolutionGaussian=wavelength./(2*numericalApertures*0.88); FOVBessel10=(wavelength/refractiveIndex)./(2*(1-sqrt(1-(numericalApertures/refractiveIndex).^2))*betas(1)); axialResolutionBessel10=wavelength*pi*.05./(numericalApertures*betas(1)); FOVBessel5=(wavelength/refractiveIndex)./(2*(1-sqrt(1-(numericalApertures/refractiveIndex).^2))*betas(2)); axialResolutionBessel5=wavelength*pi*.05./(numericalApertures*betas(2)); FOVAiry=(6*alpha*wavelength/refractiveIndex)./(1-sqrt(1-(numericalApertures/refractiveIndex).^2)); maxSpFreqAiry=min(0.88,1/(0.05^2*48*alpha)).*numericalApertures/(wavelength/2); axialResolutionAiry=1./maxSpFreqAiry; maxDetectionNAs=refractiveIndex*sin(pi/2-asin(numericalApertures/refractiveIndex)); maxDetectionNAs=maxDetectionNAs*0+0.40; spotLengths=4*refractiveIndex*wavelength./(maxDetectionNAs.^2); pixelSize=[1 1]*7.4e-6; realMagnification=20*0.176/0.160; depthOfFocus=refractiveIndex*(wavelength./(maxDetectionNAs.^2)+pixelSize(1)./(realMagnification.*maxDetectionNAs)); % FOVWidths_old=2*wavelength*sqrt(1-(numericalApertures./refractiveIndex).^2)*refractiveIndex./(2*sqrt(2)*numericalApertures.^2); FOVWidths=4*wavelength*refractiveIndex./numericalApertures.^2; axialResolutions=wavelength/2./numericalApertures; if (nargout==0) % Display results figs(1)=figure('Position',[100 100 1024 768]); axs(1)=subplot(2,2,1,'Parent',figs(1)); axs(2)=subplot(2,2,2,'Parent',figs(1)); axs(3)=subplot(2,2,[3 4],'Parent',figs(1)); labels=[]; semilogy(numericalApertures,axialResolutionGaussian*1e6,lineStyles{1},'LineWidth',lineWidths(1),'Color',lineColors(1,:),'Parent',axs(1)); hold(axs(1),'on'); semilogy(numericalApertures,axialResolutionBessel10*1e6,lineStyles{2},'LineWidth',lineWidths(2),'Color',lineColors(2,:),'Parent',axs(1)); hold(axs(1),'on'); semilogy(numericalApertures,axialResolutionBessel5*1e6,lineStyles{3},'LineWidth',lineWidths(3),'Color',lineColors(3,:),'Parent',axs(1)); hold(axs(1),'on'); semilogy(numericalApertures,axialResolutionAiry*1e6,lineStyles{4},'LineWidth',lineWidths(4),'Color',lineColors(4,:),'Parent',axs(1)); hold(axs(1),'on'); semilogy(numericalApertures,axialResolutionGaussian*1e6,lineStyles{1},'LineWidth',lineWidths(1),'Color',lineColors(1,:),'Parent',axs(1)); hold(axs(1),'on'); % semilogy(numericalApertures,spotLengths*1e6,':','LineWidth',2,'Color',[1 1 1]*.33,'Parent',axs(1)); hold(axs(1),'on'); xlim(axs(1),[0 numericalApertures(end)]); ylim(axs(1),[.1 500]); set(axs(1),'YTick',10.^[0:1:100]); labels(end+1)=xlabel(axs(1),'NA'); labels(end+1)=ylabel(axs(1),'Axial Resolution [\mum]'); legend(axs(1),{'Gaussian','Bessel10','Bessel5','Airy'}); semilogy(numericalApertures,FOVGaussian*1e6,lineStyles{1},'LineWidth',lineWidths(1),'Color',lineColors(1,:),'Parent',axs(2)); hold(axs(2),'on'); semilogy(numericalApertures,FOVBessel10*1e6,lineStyles{2},'LineWidth',lineWidths(2),'Color',lineColors(2,:),'Parent',axs(2)); hold(axs(2),'on'); semilogy(numericalApertures,FOVBessel5*1e6,lineStyles{3},'LineWidth',lineWidths(3),'Color',lineColors(3,:),'Parent',axs(2)); hold(axs(2),'on'); semilogy(numericalApertures,FOVAiry*1e6,lineStyles{4},'LineWidth',lineWidths(4),'Color',lineColors(4,:),'Parent',axs(2)); hold(axs(2),'on'); xlim(axs(2),[0 numericalApertures(end)]); ylim(axs(2),[.1 500]); set(axs(2),'YTick',10.^[0:1:100]); labels(end+1)=xlabel(axs(2),'NA'); labels(end+1)=ylabel(axs(2),'FOV Width [\mum]'); legend(axs(2),{'Gaussian','Bessel10','Bessel5','Airy'}); % loglog(axialResolutionGaussian*1e6,FOVGaussian*1e6,lineStyles{1},'LineWidth',lineWidths(1),'Color',lineColors(1,:),'Parent',axs(3)); hold(axs(3),'on'); % loglog(axialResolutionBessel10*1e6,FOVBessel10*1e6,lineStyles{2},'LineWidth',lineWidths(2),'Color',[0.8 0.2 0.2],'Parent',axs(3)); hold(axs(3),'on'); % loglog(axialResolutionBessel5*1e6,FOVBessel5*1e6,lineStyles{3},'LineWidth',lineWidths(3),'Color',lineColors(3,:),'Parent',axs(3)); hold(axs(3),'on'); % loglog(axialResolutionAiry*1e6,FOVAiry*1e6,lineStyles{4},'LineWidth',lineWidths(4),'Color',lineColors(4,:),'Parent',axs(3)); hold(axs(3),'on'); plot(FOVGaussian*1e6,axialResolutionGaussian*1e6,lineStyles{1},'LineWidth',lineWidths(1),'Color',lineColors(1,:),'Parent',axs(3)); hold(axs(3),'on'); plot(FOVBessel10*1e6,axialResolutionBessel10*1e6,lineStyles{2},'LineWidth',lineWidths(2),'Color',lineColors(2,:),'Parent',axs(3)); hold(axs(3),'on'); plot(FOVBessel5*1e6,axialResolutionBessel5*1e6,lineStyles{3},'LineWidth',lineWidths(3),'Color',lineColors(3,:),'Parent',axs(3)); hold(axs(3),'on'); plot(FOVAiry*1e6,axialResolutionAiry*1e6,lineStyles{4},'LineWidth',lineWidths(4),'Color',lineColors(4,:),'Parent',axs(3)); hold(axs(3),'on'); xlim(axs(3),[0 1000]); ylim(axs(3),[0 10]); set(axs(3),'YTick',[0:1:100]); labels(end+1)=xlabel(axs(3),'FOV Width [\mum]'); labels(end+1)=ylabel(axs(3),'Axial Resolution [\mum]'); legend(axs(3),{'Gaussian','Bessel10','Bessel5','Airy'},'Parent',figs(1)); set(axs,'LineWidth',3,'FontSize',fontSize,'FontWeight','bold'); set(labels,'FontSize',fontSize,'FontWeight','bold'); % figs(1)=figure('Position',[100 100 1024 768]); % axs(1)=axes('Parent',figs(1)); % % Add horizontal gray lines % horizontalLinePositions=[.5 1 5 10 50 100]; % semilogy(repmat([0 refractiveIndex].',size(horizontalLinePositions)),repmat(horizontalLinePositions,[2 1]),'LineWidth',lineWidths(1)1,'Color',[0.8 0.8 0.8],'Parent',axs(1)); % hold(axs(1),'on'); % semilogy(numericalApertures,FOVWidths*1e6,'LineWidth',lineWidths(1)3,'Color',lineColors(1,:),'Parent',axs(1)); % semilogy(numericalApertures,axialResolutions*1e6,'LineWidth',lineWidths(1)2,'Color',[0 .33 0],'Parent',axs(1)); % xlim([0 refractiveIndex]); % ylim([.1 500]); % xlabel('NA','FontSize',fontSize,'FontWeight','bold'); % ylabel('FOV width and axial resolution [\mum]','FontSize',fontSize,'FontWeight','bold'); % legend({'Gaussian FOV Width','Gaussian axial resolution'}); % hold off; % set(axs(1),'LineWidth',lineWidths(1)3,'FontSize',fontSize,'FontWeight','bold'); % set(axs(1),'XTick',[0:.2:10]); % % figs(2)=figure('Position',[100 100 1024 768]); % axs(2)=axes('Parent',figs(2)); % hold(axs(1),'on'); % plot(FOVWidths*1e6,axialResolutions*1e6,'LineWidth',lineWidths(1)3,'Color',lineColors(1,:),'Parent',axs(2)); % xlim([0 5]); % % ylim([0 500]); % xlabel('FOV width and axial resolution [\mum]','FontSize',fontSize,'FontWeight','bold'); % ylabel('approx. light sheet width [\mum]','FontSize',fontSize,'FontWeight','bold'); % legend({'Gaussian'}); % hold off; % set(axs(2),'LineWidth',lineWidths(1)3,'FontSize',fontSize,'FontWeight','bold'); % set(axs(2),'XTick',[0:1:10]); % % print(figs(1),'plotFieldOfViewWidthAndAxialResolutionVersusNA.eps','-depsc') % print(figs(2),'plotFieldOfViewWidthVersusAxialResolution.eps','-depsc') clear numericalApertures; end end
github
mc225/Softwares_Tom-master
extractSubVolumeThenProject_2Colors.m
.m
Softwares_Tom-master/LightSheet/extractSubVolumeThenProject_2Colors.m
2,408
utf_8
ae6e05fdafcae2535c8b4859b603461f
% Takes a subvolume out of corresponding red and green datacubes, makes a % maximum intensity projection of the 2 subvolumes, applies the % corresponding colormaps to the data and combines in a 3-colour image. % Can also output the normalisation factors used to allow the same % normalisation to be used across multiple images. function [TwoColorImage,normalisation]=extractSubVolumeThenProject_2Colors(dataType,alpha,beta,subVolume_x,subVolume_y,subVolume_z,transpose,normalisation) fileName_g=strcat('recording_lambda488nm_alpha',num2str(alpha),'_beta',num2str(beta)); fileName_r=strcat('recording_lambda532nm_alpha',num2str(alpha),'_beta',num2str(beta)); matfile_g=matfile(fileName_g); matfile_r=matfile(fileName_r); %guess the projection direction - minimum sized dimension subVolumeSize=[length(subVolume_x),length(subVolume_y),length(subVolume_z)]; if min(subVolumeSize)==length(subVolume_x) ProjectionGuess=1; elseif min(subVolumeSize)==length(subVolume_y) ProjectionGuess=2; elseif min(subVolumeSize)==length(subVolume_z) ProjectionGuess=3; end if strcmp(dataType,'deconv')==1 image_g=squeeze(max(matfile_g.restoredDataCube(subVolume_x,subVolume_y,subVolume_z),[],ProjectionGuess)); image_r=squeeze(max(matfile_r.restoredDataCube(subVolume_x,subVolume_y,subVolume_z),[],ProjectionGuess)); elseif strcmp(dataType,'record')==1 image_g=squeeze(max(matfile_g.recordedImageStack(subVolume_x,subVolume_y,subVolume_z),[],ProjectionGuess)); image_r=squeeze(max(matfile_r.recordedImageStack(subVolume_x,subVolume_y,subVolume_z),[],ProjectionGuess)); end if strcmp(transpose,'Y_transp')==1 image_g=image_g.'; image_r=image_r.'; end image_g=image_g.*(image_g>0); image_r=image_r.*(image_r>0); if size(normalisation~=[1 2]); normalisation=zeros(1,2); normalisation(1)=max(image_g(:)); normalisation(2)=max(image_r(:)); end image_g=image_g./normalisation(1); image_r=image_r./normalisation(2); colorMap=interpolatedColorMap(1024,[0 0 0; 0 .8 0; 1 1 1],[0 .5 1]); image_g_RGB=mapColor(image_g,colorMap); colorMap=interpolatedColorMap(1024,[0 0 0; .8 0 0; 1 1 1],[0 .5 1]); image_r_RGB=mapColor(image_r,colorMap); image_RGB=image_r_RGB+image_g_RGB; TwoColorImage=min(1,image_RGB); end
github
mc225/Softwares_Tom-master
compareBeamProfiles.m
.m
Softwares_Tom-master/LightSheet/compareBeamProfiles.m
18,256
utf_8
ed79ad33dfda4e0606a2269708108d80
% % function compareBeamProfiles() close all; config=struct(); config.excitation=struct(); config.excitation.objective=struct(); config.excitation.objective.refractiveIndex=1.00; config.excitation.objective.numericalAperture=0.42; config.excitation.objective.magnification=20; config.excitation.objective.tubeLength=0.200; config.excitation.wavelength=532e-9; config.excitation.fractionOfNumericalApertureUsed=1; config.sample.refractiveIndex=1.40; config.detection=struct(); config.detection.objective=struct(); config.detection.objective.refractiveIndex=1.00; config.detection.objective.numericalAperture=0.40; config.detection.objective.magnification=20; config.detection.objective.tubeLength=0.160; config.detection.tubeLength=0.176; config.detection.wavelength=600e-9; %6.12e-7; config.detection.fractionOfNumericalApertureUsed=1; config.detector=struct(); config.detector.pixelSize=[1 1]*7.4e-6; % coreWidthBessel=2*config.excitation.wavelength/(2*config.excitation.objective.numericalAperture); % coreWidthBessel=2*config.excitation.wavelength/(2*config.excitation.objective.numericalAperture*0.88); %2*0.720e-6; coreWidthBessel=2*2.4048255576957727686216318793264546431242449091459671*config.excitation.wavelength/(2*pi*config.excitation.objective.numericalAperture); realMagnification=config.detection.objective.magnification*config.detection.tubeLength/config.detection.objective.tubeLength; depthOfFocus=config.sample.refractiveIndex*(config.detection.wavelength/(config.detection.objective.numericalAperture^2)+... config.detector.pixelSize(1)/(realMagnification*config.detection.objective.numericalAperture)); spotLength=4*config.sample.refractiveIndex*config.detection.wavelength/(config.detection.objective.numericalAperture^2); % Gaussian resGaussian=plotUsefulPhotonFraction(config,0,1,spotLength); % Airy resAiry=plotUsefulPhotonFraction(config,7,1,spotLength); % Bessel 10 resBessel10=plotUsefulPhotonFraction(config,0,0.10,[coreWidthBessel spotLength]); % Bessel 5 resBessel5=plotUsefulPhotonFraction(config,0,0.05,[coreWidthBessel spotLength]); % Bessel 2 resBessel2=plotUsefulPhotonFraction(config,0,0.02,[coreWidthBessel spotLength]); % Bessel 1 resBessel1=plotUsefulPhotonFraction(config,0,0.01,[coreWidthBessel spotLength]); % % Show two-photon MTF plots % figure; % plot(resGaussian.fRel2Slice,abs(resGaussian.otf2Slice),'Color',[.5 .5 .5]); hold on; % plot(resAiry.fRel2Slice,abs(resAiry.otf2Slice),'Color',[0 .8 0]); hold on; % plot(resBessel10(1).fRel2Slice,abs(resBessel10(1).otf2Slice),'Color',[.3 0 0]); hold on; % plot(resBessel5(1).fRel2Slice,abs(resBessel5(1).otf2Slice),'Color',[.5 0 0]); hold on; % plot(resBessel2(1).fRel2Slice,abs(resBessel2(1).otf2Slice),'Color',[.7 0 0]); hold on; % plot(resBessel1(1).fRel2Slice,abs(resBessel1(1).otf2Slice),'Color',[1 0 0]); hold on; % Display fig=figure(); plot(resGaussian.zRange*1e6,resGaussian.focalPlaneEfficiency(:,1),'Color',[0 0 0],'LineWidth',2); hold on; plot(resAiry.zRange*1e6,resAiry.focalPlaneEfficiency(:,1),'Color',[0 .5 0],'LineWidth',3); plot(resBessel10(1).zRange*1e6,resBessel10(1).focalPlaneEfficiency(:,1),'Color',[1 0 0],'LineWidth',2,'LineStyle','--'); plot(resBessel5(1).zRange*1e6,resBessel5(1).focalPlaneEfficiency(:,1),'Color',[.75 0 .75],'LineWidth',1,'LineStyle','--'); plot(resBessel2(1).zRange*1e6,resBessel2(1).focalPlaneEfficiency(:,1),'Color',[0 1 .5],'LineWidth',1,'LineStyle','--'); plot(resBessel1(1).zRange*1e6,resBessel1(1).focalPlaneEfficiency(:,1),'Color',[0 0 1],'LineWidth',2,'LineStyle','--'); plot(resBessel10(1).zRange*1e6,resBessel10(1).coreEfficiency(:,1),'Color',[1 0 0],'LineWidth',2,'LineStyle',':'); plot(resBessel5(1).zRange*1e6,resBessel5(1).coreEfficiency(:,1),'Color',[.75 0 .75],'LineWidth',1,'LineStyle',':'); plot(resBessel2(1).zRange*1e6,resBessel2(1).coreEfficiency(:,1),'Color',[0 1 .5],'LineWidth',1,'LineStyle',':'); plot(resBessel1(1).zRange*1e6,resBessel1(1).coreEfficiency(:,1),'Color',[0 0 1],'LineWidth',2,'LineStyle',':'); plot(resBessel2(1).zRange*1e6,resBessel2(1).focalPlaneEfficiency(:,2),'Color',[0 1 .5],'LineWidth',2,'LineStyle','-.'); plot(resBessel1(1).zRange*1e6,resBessel1(1).focalPlaneEfficiency(:,2),'Color',[0 0 1],'LineWidth',2,'LineStyle','-.'); xlim(resBessel1(1).zRange([1 end])*1e6); ylim([0 1]); legend({'Gaussian','Airy','Bessel10-SI','Bessel5-SI','Bessel2-SI','Bessel1-SI',... 'Bessel10-conf','Bessel5-conf','Bessel2-conf','Bessel1-conf','Bessel2-2PE','Bessel1-2PE'}); FOVs=[resGaussian.FOV resAiry.FOV... repmat([resBessel10(1).FOV resBessel5(1).FOV resBessel2(1).FOV resBessel1(1).FOV],[1 3])... resBessel10(1).FOV2PE resBessel5(1).FOV2PE resBessel2(1).FOV2PE resBessel1(1).FOV2PE]; FWHMs=[resGaussian(1).fullWidthAtHalfMaximumAtWaist resAiry(1).fullWidthAtHalfMaximumAtWaist... resBessel10(2).fullWidthAtHalfMaximumAtWaist resBessel5(2).fullWidthAtHalfMaximumAtWaist resBessel2(2).fullWidthAtHalfMaximumAtWaist resBessel1(2).fullWidthAtHalfMaximumAtWaist... resBessel10(1).fullWidthAtHalfMaximumAtWaist resBessel5(1).fullWidthAtHalfMaximumAtWaist resBessel2(1).fullWidthAtHalfMaximumAtWaist resBessel1(1).fullWidthAtHalfMaximumAtWaist... resBessel10(1).fullWidthAtHalfMaximumAtWaist resBessel5(1).fullWidthAtHalfMaximumAtWaist resBessel2(1).fullWidthAtHalfMaximumAtWaist resBessel1(1).fullWidthAtHalfMaximumAtWaist... resBessel10(2).fullWidthAtHalfMaximumAtWaist2PE resBessel5(2).fullWidthAtHalfMaximumAtWaist2PE resBessel2(2).fullWidthAtHalfMaximumAtWaist2PE resBessel1(2).fullWidthAtHalfMaximumAtWaist2PE... ]; waistEfficiencies=[resGaussian.focalPlaneEfficiency(1,1) resAiry.focalPlaneEfficiency(1,1)... resBessel10(2).focalPlaneEfficiency(1,1) resBessel5(2).focalPlaneEfficiency(1,1) resBessel2(2).focalPlaneEfficiency(1,1) resBessel1(2).focalPlaneEfficiency(1,1)... resBessel10(1).focalPlaneEfficiency(1,1) resBessel5(1).focalPlaneEfficiency(1,1) resBessel2(1).focalPlaneEfficiency(1,1) resBessel1(1).focalPlaneEfficiency(1,1)... resBessel10(1).coreEfficiency(1,1) resBessel5(1).coreEfficiency(1,1) resBessel2(1).coreEfficiency(1,1) resBessel1(1).coreEfficiency(1,1)... resBessel10(2).focalPlaneEfficiency(1,2) resBessel5(2).focalPlaneEfficiency(1,2) resBessel2(2).focalPlaneEfficiency(1,2) resBessel1(2).focalPlaneEfficiency(1,2)]; averageEfficiencies=[resGaussian.averageFocalPlaneEfficiency(1) resAiry.averageFocalPlaneEfficiency(1)... resBessel10(2).averageFocalPlaneEfficiency(1) resBessel5(2).averageFocalPlaneEfficiency(1) resBessel2(2).averageFocalPlaneEfficiency(1) resBessel1(2).averageFocalPlaneEfficiency(1)... resBessel10(1).averageFocalPlaneEfficiency(1) resBessel5(1).averageFocalPlaneEfficiency(1) resBessel2(1).averageFocalPlaneEfficiency(1) resBessel1(1).averageFocalPlaneEfficiency(1)... resBessel10(1).averageCoreEfficiency(1) resBessel5(1).averageCoreEfficiency(1) resBessel2(1).averageCoreEfficiency(1) resBessel1(1).averageCoreEfficiency(1)... resBessel10(1).averageCoreEfficiency(2) resBessel5(1).averageCoreEfficiency(2) resBessel2(1).averageCoreEfficiency(2) resBessel1(1).averageCoreEfficiency(2)]; axialResolution=[resGaussian(1).axialResolution resAiry(1).axialResolution... resBessel10(2).axialResolution resBessel5(2).axialResolution resBessel2(2).axialResolution resBessel1(2).axialResolution... resBessel10(1).axialResolution resBessel5(1).axialResolution resBessel2(1).axialResolution resBessel1(1).axialResolution... resBessel10(1).axialResolution resBessel5(1).axialResolution resBessel2(1).axialResolution resBessel1(1).axialResolution... resBessel10(2).axialResolution resBessel5(2).axialResolution resBessel2(2).axialResolution resBessel1(2).axialResolution]; numericalAxialResolution=[resGaussian(1).axialResolution1PE resAiry(1).axialResolution1PE... resBessel10(2).axialResolution1PE resBessel5(2).axialResolution1PE resBessel2(2).axialResolution1PE resBessel1(2).axialResolution1PE... resBessel10(1).axialResolution resBessel5(1).axialResolution resBessel2(1).axialResolution resBessel1(1).axialResolution... resBessel10(1).axialResolution resBessel5(1).axialResolution resBessel2(1).axialResolution resBessel1(1).axialResolution... resBessel10(2).axialResolution2PE resBessel5(2).axialResolution2PE resBessel2(2).axialResolution2PE resBessel1(2).axialResolution2PE]; peakValues=[resGaussian(1).peakValueAtWaist resAiry(1).peakValueAtWaist... resBessel10(2).peakValueAtWaist resBessel5(2).peakValueAtWaist resBessel2(2).peakValueAtWaist resBessel1(2).peakValueAtWaist... resBessel10(1).peakValueAtWaist resBessel5(1).peakValueAtWaist resBessel2(1).peakValueAtWaist resBessel1(1).peakValueAtWaist... resBessel10(1).peakValueAtWaist resBessel5(1).peakValueAtWaist resBessel2(1).peakValueAtWaist resBessel1(1).peakValueAtWaist... resBessel10(2).peakValueAtWaist2PE resBessel5(2).peakValueAtWaist2PE resBessel2(2).peakValueAtWaist2PE resBessel1(2).peakValueAtWaist2PE]; peakValues=peakValues/peakValues(1); relativePeakValues=peakValues./waistEfficiencies; relativePeakValues=relativePeakValues/relativePeakValues(1); logMessage(['Light Sheet Type: Gaussian, Airy, Bessel10, Bessel5, Bessel2, Bessel1, Bessel10-SI, Bessel5-SI, Bessel2-SI, Bessel1-SI, Bessel10-conf, Bessel5-conf, Bessel2-conf, Bessel1-conf, Bessel10-2PE, Bessel5-2PE, Bessel2-2PE, Bessel1-2PE']); logMessage(['FOV: ', sprintf('%0.0f ',FOVs*1e6),'um']); logMessage(['FWHMs: ', sprintf('%0.0f ',FWHMs*1e9),'nm']); logMessage(['half-FOV: ', sprintf('%0.0f ',0.5*FOVs*1e6),'um']); logMessage(['waistEfficiencies: ', sprintf('%0.1f ',waistEfficiencies*100),'%']); logMessage(['averageEfficiencies: ', sprintf('%0.1f ',averageEfficiencies*100),'%']); logMessage(['theoretical axial resolution: ', sprintf('%0.0f ',axialResolution*1e9),'nm']); logMessage(['numerical axial resolution: ', sprintf('%0.0f ',numericalAxialResolution*1e9),'nm']); logMessage(['peak value: ', sprintf('%0.1f ',100*peakValues),'%']); logMessage(['relative peak value: ', sprintf('%0.1f ',100*relativePeakValues),'%']); end function results=plotUsefulPhotonFraction(config,alpha,beta,coreWidths) results=struct([]); result=struct(); % Calculate the theorectical FOV if beta<1 % Bessel beam result.FOV=config.excitation.wavelength/config.sample.refractiveIndex/(2*(1-sqrt(1-(config.excitation.objective.numericalAperture/config.sample.refractiveIndex)^2))*beta); axialResolution=config.excitation.wavelength*pi*.05/(config.excitation.objective.numericalAperture*beta); axialResolution2PE=config.excitation.wavelength*pi*.05/(config.excitation.objective.numericalAperture*beta); elseif alpha~=0 % Airy result.FOV=6*alpha*config.excitation.wavelength/config.sample.refractiveIndex/(1-sqrt(1-(config.excitation.objective.numericalAperture/config.sample.refractiveIndex)^2)); maxSpFreq=min(0.88,1/(0.05^2*48*alpha))*config.excitation.objective.numericalAperture/(config.excitation.wavelength/2); axialResolution=1./maxSpFreq; else % Gaussian result.FOV=4*config.excitation.wavelength*config.sample.refractiveIndex*config.excitation.objective.numericalAperture^-2; axialResolution=config.excitation.wavelength/(2*config.excitation.objective.numericalAperture*0.88); end result.FOV2PE=2*result.FOV; result.xRange=single([-75:.05:75]*1e-6); result.yRange=result.xRange; result.zRange=single([0:.05:1]*result.FOV/2); config.modulation.alpha=alpha; config.modulation.beta=beta; pupilFunctor=@(U,V) (sqrt(U.^2+V.^2)>=(1-config.modulation.beta)).*exp(2i*pi*config.modulation.alpha*(U.^3+V.^3)); cache=Cache(); % Get the default cache key={result.zRange,result.zRange,result.yRange,config,1/sqrt(2),1i/sqrt(2)}; if (isfield(cache,key)) logMessage('Loading PSF projection from cache...'); psf=cache(key); else psf=calcVectorialPsf(result.xRange,result.yRange,result.zRange,config.excitation.wavelength,@(U,V) pupilFunctor(U,V)/sqrt(2),@(U,V) 1i*pupilFunctor(U,V)/sqrt(2),config.excitation.objective.numericalAperture,config.sample.refractiveIndex,config.excitation.objective.magnification,config.excitation.objective.tubeLength); cache(key)=psf; end % Calc PSF projection and OTF slice result.psfAtWaist=sum(psf(:,:,1)); result.fullWidthAtHalfMaximumAtWaist=calcFullWidthAtHalfMaximum(result.xRange,result.psfAtWaist,'Linear'); result.fullWidthAtHalfMaximumAtWaist2PE=calcFullWidthAtHalfMaximum(result.xRange*2,abs(result.psfAtWaist).^2,'Linear'); cutOffSpatialFrequency=(2*config.excitation.objective.numericalAperture*config.excitation.fractionOfNumericalApertureUsed)/config.excitation.wavelength; [XOtf,YOtf,fRel]=calcOtfGridFromSampleFrequencies(1./[diff(result.xRange(1:2)) diff(result.yRange(1:2))],[length(result.xRange) length(result.yRange)],cutOffSpatialFrequency); otf=fftshift(fft2(ifftshift(psf(:,:,1)))); otf2=fftshift(fft2(ifftshift(abs(psf(:,:,1)).^2))); otf2=otf2/otf2(1+floor(end/2),1+floor(end/2)); fRelSel=single(any(fRel.'<=1).')*single(any(fRel<=1)); fRelSel2=single(any(fRel.'<=2).')*single(any(fRel<=2)); selSize=[sum(any(fRel.'<=1)) sum(any(fRel<=1))]; selSize2=[sum(any(fRel.'<=2)) sum(any(fRel<=2))]; otf=reshape(otf(logical(fRelSel)),selSize); otf2=reshape(otf2(logical(fRelSel2)),selSize2); XOtf2=0.5*reshape(XOtf(logical(fRelSel2)),selSize2); XOtf=reshape(XOtf(logical(fRelSel)),selSize); fRel2=0.5*reshape(fRel(logical(fRelSel2)),selSize2); fRel=reshape(fRel(logical(fRelSel)),selSize); result.otfSlice=conj(otf(1+floor(end/2),1+floor(end/2):-1:1)); result.otf2Slice=conj(otf2(1+floor(end/2),1+floor(end/2):-1:1)); result.XOtfSlice=-XOtf(1+floor(end/2),1+floor(end/2):-1:1); result.XOtf2Slice=-XOtf2(1+floor(end/2),1+floor(end/2):-1:1); result.fRelSlice=fRel(1+floor(end/2),1+floor(end/2):-1:1); result.fRel2Slice=fRel2(1+floor(end/2),1+floor(end/2):-1:1); result.peakValueAtWaist=max(result.psfAtWaist/sum(result.psfAtWaist)); result.peakValueAtWaist2PE=max(abs(result.psfAtWaist).^2/sum(abs(result.psfAtWaist).^2)); maxSpFreq1PE=result.XOtfSlice(find(abs(result.otfSlice)/max(abs(result.otfSlice))<.05,1,'first')-1); result.axialResolution1PE=1/maxSpFreq1PE; maxSpFreq2PE=result.XOtf2Slice(find(abs(result.otf2Slice)/max(abs(result.otf2Slice))<.05,1,'first')-1); result.axialResolution2PE=1/maxSpFreq2PE; % figure; % plot(result.XOtfSlice*1e-3,abs(result.otfSlice)); % figure; % ssurf(XOtf*1e-3,YOtf*1e-3,abs(result.otf),angle(result.otf)); % xlim(cutOffSpatialFrequency*[-1 1]*1e-3); % ylim(cutOffSpatialFrequency*[-1 1]*1e-3); % zlim([0 1]); [X,Y]=ndgrid(result.xRange,result.yRange); for (coreWidthIdx=1:length(coreWidths)) coreWidth=coreWidths(coreWidthIdx); result.axialResolution=min(coreWidth,axialResolution); corePixels=X.^2+Y.^2<=(coreWidth/2)^2; corePixels2PE=2*sqrt(X.^2+Y.^2)<=(coreWidth/2); focalPlanePixels=abs(X)<=(coreWidth/2); focalPlanePixels2PE=2*abs(X)<=(coreWidth/2); result.totalPower=[]; result.corePower=[]; result.focalPlanePower=[]; for zIdx=1:length(result.zRange) psfSlice=psf(:,:,zIdx); result.totalPower(zIdx,1)=sum(psfSlice(:)); result.totalPower(zIdx,2)=sum(psfSlice(:).^2); result.corePower(zIdx,1)=sum(psfSlice(corePixels)); result.corePower(zIdx,2)=sum(psfSlice(corePixels2PE).^2); result.focalPlanePower(zIdx,1)=sum(psfSlice(focalPlanePixels)); result.focalPlanePower(zIdx,2)=sum(psfSlice(focalPlanePixels2PE).^2); % showImage(cat(3,psfSlice.*corePixels,psfSlice.*~corePixels,psfSlice*0),-1,result.xRange*1e6,result.yRange*1e6); end % Calculate some derived metrics result.powerOutsideCore=result.totalPower-result.corePower; result.powerOutsideFocalPlane=result.totalPower-result.focalPlanePower; result.powerOutsideCorePerUsefulPower=result.powerOutsideCore./result.corePower; result.powerOutsideFocalPlanePerUsefulPower=result.powerOutsideFocalPlane./result.focalPlanePower; result.averagePowerOutsideCorePerUsefulPower=sum(result.powerOutsideCore)./sum(result.corePower); result.averagePowerOutsideFocalPlanePerUsefulPower=sum(result.powerOutsideFocalPlane)./sum(result.focalPlanePower); result.coreEfficiency=result.corePower./result.totalPower; result.focalPlaneEfficiency=result.focalPlanePower./result.totalPower; result.averageCoreEfficiency=sum(result.corePower)./sum(result.totalPower); result.averageFocalPlaneEfficiency=sum(result.focalPlanePower)./sum(result.totalPower); % Stack all results in an array if (isempty(results)) results=result; else results(coreWidthIdx)=result; end if (nargout==0) % % Display % fig(coreWidthIdx)=figure(); subplot(1,2,1); plot(zRange*1e6,result.powerOutsideCorePerUsefulPower); ylim([0 ceil(1.5*result.powerOutsideCorePerUsefulPower(1)/10)*10]); title(sprintf('core of alpha=%0.0f, beta=%0.0f%%',[config.modulation.alpha config.modulation.beta*100])); subplot(1,2,2); plot(zRange*1e6,result.powerOutsideFocalPlanePerUsefulPower); ylim([0 ceil(1.5*result.powerOutsideFocalPlanePerUsefulPower(1)/10)*10]); title(sprintf('section of alpha=%0.0f, beta=%0.0f%%',[config.modulation.alpha config.modulation.beta*100])); end end end
github
mc225/Softwares_Tom-master
processCapillaryLightSheetVideos.m
.m
Softwares_Tom-master/LightSheet/processCapillaryLightSheetVideos.m
9,147
utf_8
5026d17a78cc88cb105294590ac086cc
% processCapillaryLightSheetVideos(folderNames,reprocessData,centerOffset,scanShear,perspectiveScaling,gaussianIlluminationStd,beamAngle) % % Reads the recorded date, converts it the matrices and deconvolves. % % Input: % folderNames: a string or cell array of strings indicating folders with avi and json files. % reprocessData: When false, date which already has a mat file with % a restoredDataCube matrix in it will be skipped. % centerOffset: The offset of the light sheet beam waist in meters given % as a two-elent vector containing the vertical (swipe direction, Y) and the % horizontal (propagation direction, X) offset, respectivelly. % scanShear: The linear shift of the recording in [x,y]=[vertical,horizontal] when increasing z by one meter % perspectiveScaling: The linear change in [x,y]=[vertical,horizontal] magnification when increasing z by one meter % % % Note: projections can be shown using: % figure;axs=subplot(1,2,1);imagesc(yRange*1e6,zRange*1e6,squeeze(max(recordedImageStack,[],1)).');axis equal;axs(2)=subplot(1,2,2);imagesc(yRange*1e6,tRange*1e6,squeeze(max(restoredDataCube,[],1)).'); linkaxes(axs); % figure;imagesc(yRange*1e6,xRange*1e6,squeeze(max(recordedImageStack,[],3))); axis equal; % function processCapillaryLightSheetVideos(folderNames,reprocessData,centerOffset,scanShear,perspectiveScaling,gaussianIlluminationStd,beamAngle) if (nargin<1 || isempty(folderNames)) folderNames={'Z:\RESULTS\20120501_alpha7_int1000_g1_littlemorepower_betterfocus_beads_leftofprobe\backwardScans'}; % folderNames={'Z:\RESULTS\20120501_alpha7_int1000_g1_morepower_beads_leftofprobe'}; end if (nargin<2) reprocessData=true; end if (nargin<3) % the first two dimensions of the data cube [swipe propagation], x-y here, y-x in paper centerOffset=[0 42e-6]; % Leave empty [] to keep default end if (nargin<4) % the first two dimensions of the data cube [swipe propagation], x-y here, y-x in paper scanShear=[0.025 0.023]; % Leave empty [] to keep default end if (nargin<5) % the first two dimensions of the data cube [swipe propagation], x-y here, y-x in paper perspectiveScaling=[]; % [373.4900 722.6800]; % Leave empty [] to keep default end if (nargin<6) gaussianIlluminationStd=2/3; end if (nargin<7) beamAngle=0.05; end if (ischar(folderNames)) folderNames={folderNames}; end %Load the default configuration functionName=mfilename(); configPath=mfilename('fullpath'); configPath=configPath(1:end-length(functionName)); defaultConfigFileName=strcat(configPath,'capillarySetup.json'); defaultConfig=loadjson(defaultConfigFileName); defaultConfig.sample.signalLevel=0.3; % Go through all the specified folders for (folderName=folderNames(:).') folderName=folderName{1}; logMessage('Checking folder %s for recorded videos.',folderName); experimentConfigFileName=fullfile(folderName,'experimentConfig.json'); if (exist(experimentConfigFileName,'file')) experimentConfig=loadjson(experimentConfigFileName); else experimentConfig=struct(); experimentConfig.detector=struct(); experimentConfig.detector.center=[0 0]; experimentConfig.detector.scanShear=[0 0]; experimentConfig.detector.perspectiveScaling=[0 0]; experimentConfig.excitation.illuminationClippingFactors=zeros(2); %0.06*[1 1; 1 1]; end if (~isempty(centerOffset)) experimentConfig.detector.center=centerOffset; end if (~isempty(scanShear)) experimentConfig.detector.scanShear=scanShear; end if (~isempty(perspectiveScaling)) experimentConfig.detector.perspectiveScaling=perspectiveScaling; end if (~isempty(gaussianIlluminationStd)) experimentConfig.excitation.gaussianIlluminationStd=gaussianIlluminationStd; end if (~isempty(beamAngle)) experimentConfig.excitation.beamAngle=beamAngle; end % experimentConfig.excitation.excitationApertureFilling=.92; % not used? savejson([],experimentConfig,experimentConfigFileName); experimentConfig=structUnion(defaultConfig,experimentConfig); % and process all videos videoFileNameList=dir(strcat(folderName,'/*.avi')); for (fileName={videoFileNameList.name}) fileName=fileName{1}(1:end-4); filePathAndName=strcat(folderName,'/',fileName); logMessage('Processing %s...',filePathAndName); % Load specific configuration description configFile=strcat(filePathAndName,'.json'); inputFileName=strcat(filePathAndName,'.avi'); outputFileName=strcat(filePathAndName,'.mat'); reprocessFile=true; if (~reprocessData && exist(outputFileName,'file')) storedVariables = whos('-file',outputFileName); if (ismember('restoredDataCube', {storedVariables.name})) reprocessFile=false; end end if (reprocessFile) if (~exist(configFile,'file')) logMessage('Description file with extension .json is missing, deducing parameters from file name!'); specificConfig={}; specificConfig.modulation={}; if (~isempty(regexp(configFile,'Airy_[^\\/]*\.json$', 'once'))) alpha=regexpi(configFile,'_alpha(\d+)_','tokens'); alpha=alpha{end}; specificConfig.modulation.alpha=-str2double(alpha); else specificConfig.modulation.alpha=0; end beta=regexp(configFile,'Bessel(\d+)_[^\\/]*\.json$','tokens'); if (~isempty(beta)) beta=beta{1}; specificConfig.modulation.beta=str2double(beta)/100; else specificConfig.modulation.beta=1; end stagePositions=csvread([configFile(1:end-5),'.txt'])*1e-6; stagePositions=stagePositions*experimentConfig.sample.refractiveIndex*2; %Adjust for the capillary movement in air specificConfig.stagePositions.actual=stagePositions; specificConfig.stagePositions.target=median(diff(stagePositions))*([1:length(stagePositions)]-1)+stagePositions(1); savejson([],specificConfig,configFile); else specificConfig=loadjson(configFile); end setupConfig=structUnion(experimentConfig,specificConfig); % Load recorded data logMessage('Loading %s...',inputFileName); recordedImageStack=readDataCubeFromAviFile(inputFileName); %If backward scan, flip axis if (median(diff(specificConfig.stagePositions.target))<0) specificConfig.stagePositions.target=specificConfig.stagePositions.target(end:-1:1); specificConfig.stagePositions.actual=specificConfig.stagePositions.actual(end:-1:1); recordedImageStack=recordedImageStack(:,:,end:-1:1,:); end % Store partial results logMessage('Saving recorded data to %s...',outputFileName); save(outputFileName,'recordedImageStack','setupConfig', '-v7.3'); % Deconvolve logMessage('Starting image reconstruction...'); [recordedImageStack lightSheetDeconvFilter lightSheetOtf ZOtf xRange,yRange,zRange tRange lightSheetPsf]=deconvolveRecordedImageStack(recordedImageStack,setupConfig); restoredDataCube=recordedImageStack; clear recordedImageStack; % This operation does not take extra memory in Matlab % Append the rest of the results logMessage('Saving restored data cube to %s...',outputFileName); save(outputFileName,'restoredDataCube','xRange','yRange','zRange','tRange','ZOtf','lightSheetPsf','lightSheetOtf','lightSheetDeconvFilter', '-v7.3','-append'); clear restoredDataCube; else logMessage('Skipping file %s, already done.',inputFileName); end end % Check for subfolders and handles these recursively directoryList=dir(folderName); for listIdx=1:length(directoryList), if directoryList(listIdx).isdir && directoryList(listIdx).name(1)~='.' expandedFolderName=strcat(folderName,'/',directoryList(listIdx).name); processCapillaryLightSheetVideos(expandedFolderName,reprocessData); end end end end
github
mc225/Softwares_Tom-master
processLightSheetDataCube.m
.m
Softwares_Tom-master/LightSheet/processLightSheetDataCube.m
17,786
utf_8
d051ac6eefc1099c0ee639467475c284
% [restoredDataCubeI xRange yRange zRange tRangeExtended recordedImageStack tRange ZOtf lightSheetPsf lightSheetOtf lightSheetDeconvFilter] % =processLightSheetDataCube(inputFileName,stageTranslationStepSize,excitation,detection,sample,detector,focusCoordinates,openFractionOfRadius,alpha,extraIntegrationTime,illuminationCroppingFactors,dataShear,deNoiseFrames,deconvolveWithDetectionPsf) % % Processes the datacube obtained after a light sheet capturing experiment. % % Input: % inputFileName: The avi file containing the captured frames. % stageTranslationStepSize: z-step size of the sample in meters. % excitation: struct array with the fields: % wavelength % numericalApertureInAir % magnification % tubeLength % power % detection: struct array with the fields: % wavelength % numericalApertureInAir % magnification % tubeLength % sample: struct array with the fields: % fluorophore: struct array with the fields: % maxDensity % extinctionCoefficient: m^2 % quantumYield % refractiveIndex: assuming the objective NA is in air % signalLevel: used for deconvolution % backgroundLevel % detector: struct array with the fields: % wavelength % numericalApertureInAir % magnification % tubeLength % focusCoordinates: The coordinates of the beam focus used to calculate the PSF for the % deconvolution. The coordinates are given in pixels and frames % (starting from 0) % openFractionOfRadius: The open fraction of the radius of the annular % aperture to create a Bessel beam, default 1 (full open aperture, top-hat beam). % alpha: The cubic phase mask value, default 0 (no cubic phase mask). The % optical path length is altered by alpha*u^3 wavelengths, where U is % the normalized pupil coordinate. % extraIntegrationTime: for Bessel beam % illuminationCroppingFactors: % dataShear: The (fractional) pixel shift in X and Y of the projection when moving one step in Z. % deNoiseFrames: before deconvolution in Z, default false % deconvolveWithDetectionPsf: after deconvolution in Z, default false % maxFilesToLoad: The limit to the number of replicated scans that will be loaded if duplicates exist. (default: Inf) % % Output: % restoredDataCubeI: % xRange yRange zRange tRangeExtended: % recordedImageStack % tRange % ZOtf % lightSheetPsf % lightSheetOtf % lightSheetDeconvFilter % function [restoredDataCubeI xRange yRange zRange tRangeExtended recordedImageStack tRange ZOtf lightSheetPsf lightSheetOtf lightSheetDeconvFilter]=processLightSheetDataCube(inputFileName,stageTranslationStepSize,excitation,detection,sample,detector,focusCoordinateDecenter,openFractionOfRadius,alpha,extraIntegrationTime,illuminationCroppingFactors,dataShear,deNoiseFrames,deconvolveWithDetectionPsf,maxFilesToLoad) if (nargin<1) inputFileName='Z:\RESULTS\20120501_alpha7_int1000_g1_littlemorepower_betterfocus_beads_leftofprobe\Airy_0F.avi'; end if (nargin<2) % stageTranslationStepSize=0.00025e-3; % [m/frame] stageTranslationStepSize=100e-9; % [m/frame] end if (nargin<3 || isempty(excitation)) % Objectives and wavelengths excitation={}; excitation.wavelength=532e-9; excitation.objective={}; excitation.objective.numericalAperture=.42; excitation.fractionOfNumericalApertureUsed=1; excitation.objective.magnification=20; excitation.objective.tubeLength=200e-3; %for Mitutoyo the rear focal length is 200mm excitation.power=0.01e-3; excitation.tubeLength=200e-3; end if (nargin<4 || isempty(detection)) detection={}; detection.wavelength=612e-9; % Firefli* Fluorescent Red (542/612nm) % 395e-9; for GFP detection.objective={}; detection.objective.numericalAperture=.40; % .28; detection.objective.magnification=20; %Actual total magnification 22 detection.objective.tubeLength=160e-3; % for Newport, %200e-3 for Mitutoyo / Nikon detection.tubeLength=1.1*160e-3; end if (nargin<5 || isempty(sample)) % Sample medium specification NAvogadro=6.0221417930e23; sample={}; sample.fluorophore={}; sample.fluorophore.maxDensity=0.01*10^3*NAvogadro; % m^-3, 0.01*mol/L density sample.fluorophore.extinctionCoefficient=30000*(100/10^3)/NAvogadro; % m^2 sample.fluorophore.quantumYield=0.79; sample.refractiveIndex=1.4; %Assuming the objective NA is in air sample.signalLevel=0.5; % for deconvolution sample.backgroundLevel=0.05; % fraction of dynamic range end if (nargin<6 || isempty(detector)) % Detector specification detector={}; detector.integrationTime=2e-3; % s detector.quantumEfficiency=0.55; detector.darkCurrent=200; % e-/s detector.readOutNoise=16; % e- detector.wellDepth=20e3; % e- detector.numberOfGrayLevels=2^12; detector.pixelSize=7.4*[1 1]*1e-6; detector.framesPerSecond=1; % [s] detector.center=[0 0]*1e-6; end if (nargin<7) focusCoordinateDecenter=[]; end % Choice of light-sheet if (nargin<8) openFractionOfRadius=1.0; %Fraction of radius end if (nargin<9) alpha=0.0; end if (nargin<10) extraIntegrationTime=1.0; % Assume the bessel beam is illuminated equally end if (nargin<11 || isempty(illuminationCroppingFactors)) illuminationCroppingFactors=[1 1; 1 1]*0.06; end if (nargin<12) dataShear=[]; end if (nargin<13 || isempty(deNoiseFrames)) deNoiseFrames=false; end if (nargin<14 || isempty(deconvolveWithDetectionPsf)) deconvolveWithDetectionPsf=false; end if (nargin<15 || isempty(maxFilesToLoad)) maxFilesToLoad=Inf; end % General constants hPlanck=6.6260695729e-34; cLight=299792458; %% Calculation parameters deflectBeamInsteadOfSampleMovement=false; if (alpha~=0) lightSheetName='Airy'; else if (openFractionOfRadius==1.0) lightSheetName='Classic'; else if (openFractionOfRadius==0.0) lightSheetName='Theoretical Bessel'; else lightSheetName='Bessel'; end end end %Assume that the power is adjusted to compensate for a reduction in open fraction. beamPowerAdjustment=1; %1-(1-openFractionOfRadius)^2; excitation.power=excitation.power*beamPowerAdjustment; % W %Load and pre-process data if (~strcmpi(inputFileName(end-4:end),'_.avi')) recordedImageStack=readDataCubeFromAviFile(inputFileName); else pathName = fileparts(inputFileName); videoFiles=dir(strcat(inputFileName(1:end-4),'*.avi')); positionFiles=dir(strcat(inputFileName(1:end-4),'*.txt')); nbFilesToLoad=min(maxFilesToLoad,length(videoFiles)); logMessage('Loading %u video files of %u ...',[nbFilesToLoad length(videoFiles)]); recordedImageStack=[]; for (fileIdx=1:nbFilesToLoad) fileName=videoFiles(fileIdx).name; singlePositions=dlmread(strcat(pathName,'/',positionFiles(fileIdx).name),'\t'); forward=mean(mean(diff(singlePositions)))>0; logMessage('Loading video file %s...',fileName); singleImageStack=readDataCubeFromAviFile(strcat(pathName,'/',fileName)); % %Debug % singleImageStack=getTestImage('usaf'); singleImageStack(1,1,10)=0; % if (~forward) % singleImageStack=singleImageStack(:,:,[end end 1:end-2]); % end if (~forward) singleImageStack=singleImageStack(:,:,end:-1:1); singlePositions=singlePositions(end:-1:1,:); end save(strcat(pathName,'/',fileName(1:end-4),'.mat'),'singleImageStack'); singleImageStackVectorFFT=fft(squeeze(max(max(singleImageStack,[],1),[],2))); if (~isempty(recordedImageStack)) logMessage('Merging...'); [output Greg] = dftregistration(recordedImageStackVectorFFT,singleImageStackVectorFFT,100); imageShift=output(3); logMessage('Detected a shift of %0.2f pixels',imageShift); singleImageStack=circshift(singleImageStack,[0 0 round(imageShift)]); recordedImageStack=recordedImageStack+singleImageStack; else recordedImageStack = singleImageStack; recordedImageStackVectorFFT=singleImageStackVectorFFT; positions=singlePositions(:,1); end end % recordedImageStack=ifftn(recordedImageStack,'symmetric'); end clear singleImageStack; %Mask saturated beads % mask=recordedImageStack>=1; % logMessage('Masking %f saturated pixels.',sum(mask(:))); % mask=circshift(mask,-[2^4 2^4 2^7]); % for (xIdx=2.^[0:5]) % mask=mask|circshift(mask,[xIdx 0 0]); % end % for (yIdx=2.^[0:5]) % mask=mask|circshift(mask,[0 yIdx 0]); % end % for (zIdx=2.^[0:8]) % mask=mask|circshift(mask,[0 0 zIdx]); % end % mask=0*recordedImageStack; % mask(:,:,1:710)=1; % recordedImageStack=recordedImageStack.*(1-mask); % logMessage('Masked %0.6f%% of the data.',100*mean(mask(:))); % clear mask; %Correct shear recordedImageStack=recordedImageStack/extraIntegrationTime; recordedImageStack=permute(recordedImageStack,[2 1 3]); % Dimension order [x y z] if (~isempty(dataShear)) logMessage('Correcting a shear of (%0.3f,%0.3f)...',dataShear); recordedImageStack=correctShear(single(recordedImageStack),dataShear); end if (isempty(focusCoordinateDecenter)) focusCoordinateDecenter=[0 0 0]; end % Sample grid specification realDetectionMagnification=detection.objective.magnification*detection.objective.tubeLength/detection.tubeLength; xRange=detector.pixelSize(1)*([1:size(recordedImageStack,1)]-floor(size(recordedImageStack,1)/2)-1)/realDetectionMagnification; % left/right yRange=detector.pixelSize(2)*([1:size(recordedImageStack,2)]-floor(size(recordedImageStack,2)/2)-1)/realDetectionMagnification; % up/down tRange=(stageTranslationStepSize*sample.refractiveIndex)*([1:size(recordedImageStack,3)]-floor(size(recordedImageStack,3)/2+1))/detector.framesPerSecond; %Translation range (along z-axis) zRange=tRange; % detection axis, zero centered xRange=single(xRange); yRange=single(yRange); zRange=single(zRange); tRange=single(tRange); % %Crop the first two dimensions by half % recordedImageStack=recordedImageStack([1:floor(end/2)]+floor(end/4)+focusCoordinateDecenter(1),[1:floor(end/2)]+floor(end/4)+focusCoordinateDecenter(2),:); %Shift in z (the scan direction) after deconvolution %Crop the first dimension by 1/8th and the second by a half %recordedImageStack=recordedImageStack([1:floor(7*end/8)]+floor(end/16)+focusCoordinateDecenter(1),[1:floor(end/2)]+floor(end/4)+focusCoordinateDecenter(2),:); recordedImageStack=recordedImageStack(:,[1:floor(end/2)]+floor(end/4)+focusCoordinateDecenter(2),:); if (focusCoordinateDecenter(1)~=0) logMessage('Warning: light sheet not assumed to be centered!!'); %recordedImageStack=circshift(recordedImageStack,[focusCoordinateDecenter(1) 0 0]); xRange=xRange-focusCoordinateDecenter(1)*detector.pixelSize(1)/realDetectionMagnification; % left/right; end %% Preparative Calculations % Define some noise related variables detectionObjectiveSolidAngle=2*pi*(1-cos(asin(detection.objective.numericalAperture/sample.refractiveIndex))); objectiveEfficiency=detectionObjectiveSolidAngle/(4*pi); overallDetectionEfficiency=sample.fluorophore.quantumYield*objectiveEfficiency*detector.quantumEfficiency; % Pre-calc. detection PSF if (deconvolveWithDetectionPsf) logMessage('Calculating detection PSF...'); detectionPsf=calcDetectionPsf(xRange,yRange,zRange,0,0,detection,sample.refractiveIndex); %Assume shift invariance of the detection PSF detectionPsf=single(detectionPsf); detectionPsf=overallDetectionEfficiency*detectionPsf; else detectionPsf=[]; end %Pre-calc the light-sheet logMessage('Calculating theoretical light sheet...'); photonEnergy=hPlanck*cLight/excitation.wavelength; lightSheetPsf=calcLightSheetPsf(xRange,yRange,zRange,0,excitation,alpha,openFractionOfRadius,sample.refractiveIndex,illuminationCroppingFactors); lightSheetPsf=lightSheetPsf*excitation.power*detector.integrationTime/photonEnergy; %Convert to photons per voxel %% Image reconstruction logMessage('Reconstructing convolved data set...'); config={}; config.excitation=excitation; config.detection=detection; config.detector=detector; config.sample=sample; config.excitation.objective.refractiveIndex=1; config.stagePositions={}; config.stagePositions.target=tRange; config.modulation={}; config.modulation.alpha=7; config.modulation.beta=1; [restoredDataCube lightSheetDeconvFilter lightSheetOtf ZOtf xRange,yRange,zRange tRange lightSheetPsf]=deconvolveRecordedImageStack(recordedImageStack,config); % [restoredDataCubeI lightSheetDeconvFilter lightSheetOtf ZOtf tRangeExtended]=reconstructLightSheetDataCube(xRange,yRange,zRange,tRange,recordedImageStack,excitation,detection,lightSheetPsf,detectionPsf,sample.signalLevel,sample.backgroundLevel,deflectBeamInsteadOfSampleMovement,deNoiseFrames); % restoredDataCubeI=circshift(restoredDataCubeI,[0 0 round(focusCoordinateDecenter(3))]); if (nargout==0) save('restoredDataCube.mat','restoredDataCubeI','xRange','yRange','zRange','tRange','tRangeExtended'); %% Display results resultFig=figure(); resultAx(1)=subplot(2,2,1); resultAx(2)=subplot(2,2,2); resultAx(3)=subplot(2,2,3); resultAx(4)=subplot(2,2,4); %The recorded image showImage(squeeze(sum(recordedImageStack,2)).',.20,xRange*1e6,tRange*1e6,resultAx(1)); set(gca,'FontWeight','bold','FontName','Times','FontSize',18,'LineWidth',3); xlabel('x [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); ylabel('z [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); title(sprintf('%s',lightSheetName),'FontWeight','bold','FontName','Times','FontSize',24); centerImageView(); %The restored image showImage(squeeze(sum(restoredDataCubeI,2)).',.05,xRange*1e6,tRangeExtended*1e6,resultAx(2)); set(gca,'FontWeight','bold','FontName','Times','FontSize',18,'LineWidth',3); xlabel('x [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); ylabel('z [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); title(sprintf('%s restored',lightSheetName),'FontWeight','bold','FontName','Times','FontSize',24); centerImageView(); %The light-sheet showImage(squeeze(lightSheetPsf(:,floor(end/2)+1,:)).'./max(abs(lightSheetPsf(:))),[],xRange*1e6,zRange*1e6,resultAx(3)); set(gca,'FontWeight','bold','FontName','Times','FontSize',18,'LineWidth',3); xlabel('x [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); ylabel('z [\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); title(sprintf('%s light-sheet',lightSheetName),'FontWeight','bold','FontName','Times','FontSize',24); centerImageView(); %The MTF axes(resultAx(4)); plotSliceXPosIdx=floor(length(xRange)/2)+1; % plotSliceXPosIdx=find(xRange==0); mtf=abs(squeeze(lightSheetOtf(plotSliceXPosIdx,floor(end/2)+1,[floor(end/2)+1:end,1]) )); filterAmplification=abs(squeeze(lightSheetDeconvFilter(plotSliceXPosIdx,floor(end/2)+1,[floor(end/2)+1:end,1]))); mtfRestored=mtf.*filterAmplification; noiseLevel=0.01; noiseAmplification=noiseLevel*filterAmplification; ZOtfRange=-1e-6*ZOtf(floor(end/2)+1:-1:1); area(ZOtfRange,noiseAmplification,'LineWidth',3,'FaceColor',[.5 .5 .5],'EdgeColor','none'); hold on; plot(ZOtfRange,mtf,'Color',[.8 0 0],'LineWidth',3,'LineStyle','-'); plot(ZOtfRange,mtfRestored,'Color',[0 .75 .1],'LineWidth',2,'LineStyle','-'); xlim([0 ZOtfRange(end)]); ylim([0 1.1]); hold off; set(gca,'FontWeight','bold','FontName','Times','FontSize',18,'LineWidth',3); xlabel('\nu_z [cycles/\mum]','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); ylabel('MTF','Interpreter','Tex','FontWeight','bold','FontName','Times','FontSize',18); title(sprintf('%s Deconvolution MTF',lightSheetName),'FontWeight','bold','FontName','Times','FontSize',24); % showSlices(recordedImageStack./max(abs(recordedImageStack(:))),0.1,xRange,yRange,tRange); clear restoredDataCubeI; else if (nargout>4) lightSheetPsf=squeeze(lightSheetPsf(:,1+floor(end/2),:)); lightSheetOtf=squeeze(lightSheetOtf(:,1+floor(end/2),:)); lightSheetDeconvFilter=squeeze(lightSheetDeconvFilter(:,1+floor(end/2),:)); end end end function centerImageView() xlim([-50 50]); ylim([-20 20]); axis equal; set(gca,'XTick',[-50:10:50]); set(gca,'YTick',[-20:10:20]); end
github
mc225/Softwares_Tom-master
calcLightSheetPsf.m
.m
Softwares_Tom-master/LightSheet/calcLightSheetPsf.m
8,171
utf_8
6a6916b89b6b3dff245f22059eca0c83
% [psf psfTwoPhotonSwiped psfTwoPhotonCylindricalLens]=calcLightSheetPsf(xRange,yRange,zRange,tilt,excitation,alpha,openFractionOfRadius,refractiveIndexOfSample) % Calculates the 2D intensity profile created by a swiped light-sheet. % % Inputs: % tilt: a scalar indicating the tilt of the pupil, or thus the lateral % position of the light sheet. % excitation: struct with fields wavelength and objective, the latter % must contain the fields magnification, tubeLength, and optionally fractionOfNumericalApertureUsed % alpha: the alpha factor of the cubic phase modulation % openFractionOfRadius: the open fraction of the annular aperture % refractiveIndexOfSample: the refractive index of the sample medium % % Returns: % psf = the single photon point-spread function (PSF) % % TODO: Check if these arguments still work: % psfTwoPhotonSwiped = the two photon PSF assuming that the sheet is created by scanning the beam % psfTwoPhotonCylindricalLens = the two photon PSF assuming that the sheet is created with a cylindrical lens % % % Example: % zRange=[-50:.1:50]*1e-6; % xRange=zRange; % yRange=[0:20:100]*1e-6; % excitation=struct(); % excitation.wavelength=532e-9; % excitation.objective=struct(); % excitation.objective.numericalAperture=0.42; % excitation.objective.refractiveIndex=1.0; % excitation.objective.magnification=20; % excitation.objective.tubeLength=200e-3; % excitation.objective.illuminationClippingFactors=[1 1; 1 1]*0.0; % excitation.gaussianIlluminationStd=2/3; % % lightSheet=calcLightSheetPsf(xRange,yRange,zRange,0,excitation,0,1,1.4); % lightSheet=squeeze(lightSheet).'; % % lightSheetN=lightSheet./repmat(max(lightSheet),[length(zRange) 1]); % imagesc(yRange*1e6,zRange*1e6,lightSheetN); axis equal; % xlabel('y (propagation) [\mum]'); % ylabel('z (scan) [\mum]'); % % fwhm=[]; % for idx=1:length(yRange), % fwhm(idx)=calcFullWidthAtHalfMaximum(zRange,lightSheet(:,idx),'BiasedLinear'); % end; % close all; % plot(yRange*1e6,fwhm*1e6) % function [psf psfTwoPhotonSwiped psfTwoPhotonCylindricalLens]=calcLightSheetPsf(xRange,yRange,zRange,tilt,excitation,alpha,openFractionOfRadius,refractiveIndexOfSample) if (nargin<5 || isempty(excitation)) excitation=struct('wavelength',532e-9,... 'objective',struct('numericalAperture',0.80,'magnification',40,'tubeLength',200e-3),... 'fractionOfNumericalApertureUsed',1.0); end numericalAperture=excitation.objective.numericalAperture; if (isfield(excitation,'fractionOfNumericalApertureUsed')) numericalAperture=numericalAperture*excitation.fractionOfNumericalApertureUsed; end if (nargin<8 || isempty(refractiveIndexOfSample)) refractiveIndexOfSample=1.0; end if (nargin<1 || isempty(xRange)) xRange=(7.4*1e-6/excitation.objective.magnification)*[-200:199]; xRange=single(xRange); end if (nargin<2 || isempty(yRange)) yRange=(7.4*1e-6/excitation.objective.magnification)*[-200:199]; yRange=single(yRange); end if (nargin<3 || isempty(yRange)) stageTranslationStepSize=0.1*1e-6; zRange=(stageTranslationStepSize*refractiveIndexOfSample)*[-250:249]; %Translation range (along z-axis) zRange=single(zRange); end if (nargin<4 || isempty(tilt)) tilt=0; end if (nargin<6 || isempty(alpha)) alpha=0; end if (nargin<7 || isempty(openFractionOfRadius)) openFractionOfRadius=1; end % ! Code to support old data sets ! % Check if the SLM is smaller than the back aperture, if so, simulate the limited illumination if (~isfield(excitation,'illuminationClippingFactors')) illuminationClippingFactors=0*[1 1; 1 1]; else illuminationClippingFactors=excitation.illuminationClippingFactors; end if (~isfield(excitation,'gaussianIlluminationStd')) gaussianIlluminationStd=[]; else gaussianIlluminationStd=excitation.gaussianIlluminationStd; end if (~isfield(excitation,'beamAngle')) beamAngle=[]; else beamAngle=excitation.beamAngle; end projectionDimension=1; if (length(xRange)<=1) %Nyquist sampling is sufficient, we will do a projection later anyway projRangeLength=512; xRangeForProj=([1:projRangeLength]-floor(projRangeLength/2)-1)*0.5*0.5*excitation.wavelength/numericalAperture; else xRangeForProj=xRange; end if (openFractionOfRadius>0) crop=@(U,V) 1.0*(U>=-(1-illuminationClippingFactors(1,1))&U<=(1-illuminationClippingFactors(1,2)) & V>=-(1-illuminationClippingFactors(2,1))&V<=(1-illuminationClippingFactors(2,2))); if (~isempty(gaussianIlluminationStd)) apodization=@(U,V) exp(-(U.^2+V.^2)./(2*gaussianIlluminationStd^2)); else apodization=@(U,V) 1; end if (~isempty(beamAngle)) phaseMask=@(U,V) alpha*((cos(beamAngle)*U-sin(beamAngle)*V).^3 + (sin(beamAngle)*U+cos(beamAngle)*V).^3); else phaseMask=@(U,V) alpha*(U.^3+V.^3); end %Rotate the coordinate system so that X and Z are interchanged %pupilFunctor=@(U,V) crop(U,V).*(sqrt(U.^2+V.^2)>=(1-openFractionOfRadius)).*exp(2i*pi*(alpha*V.^3 + (tilt-alpha*3/5)*V)); pupilFunctor=@(U,V) crop(U,V).*apodization(U,V).*(sqrt(U.^2+V.^2)>=(1-openFractionOfRadius)).*exp(2i*pi*(phaseMask(U,V) + tilt*V)); %Assume circular polarization propagating along the x-axis cache=Cache(); % Get the default cache key={xRangeForProj,zRange,yRange,{excitation.wavelength,1/sqrt(2),1i/sqrt(2),illuminationClippingFactors,gaussianIlluminationStd,beamAngle,alpha,openFractionOfRadius,tilt},numericalAperture,refractiveIndexOfSample,excitation.objective.magnification,excitation.objective.tubeLength,projectionDimension}; if (isfield(cache,key)) logMessage('Loading PSF projection from cache...'); psf=cache(key); else startTime=clock(); psf=calcVectorialPsf(xRangeForProj,zRange,yRange,excitation.wavelength,@(U,V) pupilFunctor(U,V)/sqrt(2),@(U,V) 1i*pupilFunctor(U,V)/sqrt(2),numericalAperture,refractiveIndexOfSample,excitation.objective.magnification,excitation.objective.tubeLength,projectionDimension); if (etime(clock(),startTime)>10) % Only cache slow calculations cache(key)=psf; end end if (nargout>=2) keyTwoPhoton={key,'psfTwoPhotonSwiped'}; if (isfield(cache,keyTwoPhoton)) logMessage('Loading two photon PSF from cache...'); psfTwoPhotonSwiped=cache(keyTwoPhoton); else startTime=clock(); [psfTwoPhoton,~,psfTwoPhotonSwiped]=calcVectorialPsf(xRangeForProj,zRange,yRange,2*excitation.wavelength,@(U,V) pupilFunctor(U,V)/sqrt(2),@(U,V) 1i*pupilFunctor(U,V)/sqrt(2),numericalAperture,refractiveIndexOfSample,excitation.objective.magnification,excitation.objective.tubeLength,projectionDimension); if (nargout>=3) psfTwoPhotonCylindricalLens=psfTwoPhoton.^2; end clear psfTwoPhoton; if (etime(clock(),startTime)>10) % Only cache slow calculations cache(keyTwoPhoton)=psfTwoPhotonSwiped; end end end else error('calcLightSheetPsf.m Not implemented for openFractionOfRadius==0.'); end %Return to original coordinate system psf=permute(psf,[1 3 2]); if (nargout>=2) psfTwoPhotonSwiped=permute(psfTwoPhotonSwiped,[1 3 2]); if (nargout>=3) psfTwoPhotonCylindricalLens=permute(psfTwoPhotonCylindricalLens,[1 3 2]); end end if (nargout==0 && numel(psf)>100) figure; tmp=squeeze(psf(:,1,:)).'; tmp=tmp./repmat(max(tmp),[size(tmp,1) 1]); imagesc(xRange*1e6,zRange*1e6,tmp);axis equal clear psf; end end
github
mc225/Softwares_Tom-master
reconstructScannedImage.m
.m
Softwares_Tom-master/ImageScanningMicroscopy/reconstructScannedImage.m
13,515
utf_8
d449dfb15afa816baa9459a6e591f87b
% [imageScanningImage xRangeOutputImg yRangeOutputImg]=reconstructScannedImage(inputImages,pixelPitch,magnification,outputFileName) % function [imageScanningImage xRangeOutputImg yRangeOutputImg]=reconstructScannedImage(inputImages,samplePositions,pixelPitch,magnification,outputFileName) close all; % TODO: Remove this line when done testing if (nargin<3 || isempty(pixelPitch)) pixelPitch=[1 1]*7.4e-6; end if (length(pixelPitch)==1) pixelPitch(2)=pixelPitch; end if (nargin<4 || isempty(magnification)) magnification=100; end pixelPitchInSample=pixelPitch/magnification; pixelPitchForOutput=pixelPitchInSample/2; regionOfInterest=[]; if (nargin<1 || isempty(inputImages)) inputImages='C:\Users\Tom\Dropbox\ScansChris\12 aug scans\scan3\scanselectedROI'; regionOfInterest=[]; %[219-16 379-16 32 32]; % % Generate synthetic data % imgSize=[32 32]/2; % Pixel size of recorded image % rangeX=[-0.5:.05:0.5]*1e-6; % rangeY=[-0.5:.05:0.5]*1e-6; % [stagePositionsX stagePositionsY]=ndgrid(rangeX,rangeY); % clear rangeX rangeY; % % [inputImages samplePositions]=simulateImageScanningMicroscopy(imgSize,stagePositionsX,stagePositionsY,pixelPitchInSample); % clear imgSize stagePositionsX stagePositionsY; % % Test output % inputImages4D=reshape(inputImages,[size(inputImages,1) size(inputImages,2) [1 1]*sqrt(size(inputImages,3))]); % for (xIdx=1:size(inputImages4D,3)) % for (yIdx=1:size(inputImages4D,4)) % tmp([1:size(inputImages4D,1)]+size(inputImages4D,1)*(xIdx-1),[1:size(inputImages4D,2)]+size(inputImages4D,2)*(yIdx-1))=inputImages4D(:,:,xIdx,yIdx); % end % end % imagesc(tmp); end if (nargin==1 || (nargin>0 && isempty(samplePositions))) nbImagesXY=[floor(sqrt(nbImages)) ceil(nbImages/floor(sqrt(nbImages)))]; stepSize=pixelPitch./magnification; rangeX=([1:nbImagesXY(1)]-floor(nbImagesXY(1)/2))*stepSize(1); rangeY=([1:nbImagesXY(2)]-floor(nbImagesXY(2)/2))*stepSize(2); [stagePositionsX stagePositionsY]=ndgrid(rangeX,rangeY); clear nbSamples nbImagesXY stepSize rangeX rangeY; samplePositions=[stagePositionsX(:) stagePositionsY(:)]; end if (ischar(inputImages)) if (isdir(inputImages)) logMessage('Loading input images from folder %s',inputImages); [inputImages samplePositions]=loadInputImages(inputImages,regionOfInterest); else logMessage('%s is not a folder.',inputImages); return; end end if (nargin<5) outputFileName='recontructedImage.fig'; end % For deconvolution resolutionIllumination=400e-9; resolutionDetection=100e-9; % Process input inputSize=[size(inputImages,1) size(inputImages,2)]; nbSamples=size(inputImages,3); % Create output grid and empty output image xRangeInputImg=([1:inputSize(1)]-floor(inputSize(1)/2))*pixelPitchInSample(1); yRangeInputImg=([1:inputSize(2)]-floor(inputSize(2)/2))*pixelPitchInSample(2); [imgInX imgInY]=ndgrid(xRangeInputImg,yRangeInputImg); xRangeOutputImg=[xRangeInputImg(1)+min(samplePositions(:,1)):pixelPitchForOutput(1):xRangeInputImg(end)+max(samplePositions(:,1))]; yRangeOutputImg=[yRangeInputImg(2)+min(samplePositions(:,2)):pixelPitchForOutput(2):yRangeInputImg(end)+max(samplePositions(:,2))]; [imgOutX imgOutY]=ndgrid(xRangeOutputImg,yRangeOutputImg); %Calculate background backgroundImage=min(inputImages,[],3); inputImages=inputImages-repmat(backgroundImage,[1 1 nbSamples]); totalIntensities=squeeze(sum(sum(inputImages))); % Confocal pinhole pinholeRadius=3; % pixels confocalPinHole=imgInX.^2+imgInY.^2<=pinholeRadius^2; confocalIntensities=squeeze(sum(sum(inputImages.*repmat(confocalPinHole,[1 1 nbSamples])))); % % Reconstruct % interpolantLaserScanning=TriScatteredInterp(samplePositions(:,1),samplePositions(:,2),totalIntensities,'linear'); interpolatedLaserScanningImage = interpolantLaserScanning(imgOutX,imgOutY); interpolatedLaserScanningImage(isnan(interpolatedLaserScanningImage))=0; interpolantConfocal=TriScatteredInterp(samplePositions(:,1),samplePositions(:,2),confocalIntensities,'linear'); interpolatedConfocalImage = interpolantConfocal(imgOutX,imgOutY); interpolatedConfocalImage(isnan(interpolatedConfocalImage))=0; %Image scanning reconstruction imageScanningImage=0*imgOutX; for (imgIdx=1:nbSamples) fractionOfReconstruction=imgIdx/nbSamples samplePos=samplePositions(imgIdx,:); inputImageCenter=1+floor(inputSize./2); % inputImage=zeros(inputSize); % inputImage(inputImageCenter(1),inputImageCenter(2))=confocalIntensities(imgIdx); %totalIntensities(imgIdx); % newImage=interpn(imgInX+samplePos(1),imgInY+samplePos(2),inputImage,imgOutX,imgOutY,'*nearest',0); % show as squares % newImage(newImage<max(newImage(:)))=0; % newImage=interpn(imgInX+samplePos(1),imgInY+samplePos(2),inputImage,imgOutX,imgOutY,'*nearest',0); % Image Scanning Microscopy reconstruction newImage=interpn(imgInX./2+samplePos(1),imgInY./2+samplePos(2),inputImages(:,:,imgIdx),imgOutX,imgOutY,'*cubic',0); % imageScanningImage=imageScanningImage+newImage; imageScanningImage=max(imageScanningImage,newImage); end % Deconvolve cutOffSpatialFrequency=1/max(resolutionDetection,resolutionIllumination); %Only for the regularization [XOtf,YOtf,fRel]=calcOtfGridFromSampleFrequencies(1./[diff(imgOutX(1:2,1)) diff(imgOutY(1,1:2))],size(imgOutX)*2,cutOffSpatialFrequency); noiseToSignalLevel=100; % noiseToSignalPowerRatio=(fRel./noiseToSignalLevel).^2; imageScanningImagePadded=imageScanningImage([1:end, end*ones(1,ceil(end/2)), ones(1,floor(end/2))],[1:end, end*ones(1,ceil(end/2)), ones(1,floor(end/2))]); confocalImagePadded=interpolatedConfocalImage([1:end, end*ones(1,ceil(end/2)), ones(1,floor(end/2))],[1:end, end*ones(1,ceil(end/2)), ones(1,floor(end/2))]); otfDoubleIllum=max(0,(1-0.5*sqrt(XOtf.^2+YOtf.^2).*resolutionIllumination)); otfDoubleDetect=max(0,(1-0.5*sqrt(XOtf.^2+YOtf.^2).*resolutionDetection)); opticalTransferFunction=otfDoubleIllum.*otfDoubleDetect; filter=calcWienerFilter(opticalTransferFunction,noiseToSignalLevel^2,otfDoubleDetect); imageScanningDeconvolvedImage=ifft2(fft2(imageScanningImagePadded).*ifftshift(filter),'symmetric'); confocalDeconvolvedImage=ifft2(fft2(confocalImagePadded).*ifftshift(filter),'symmetric'); clear imageScanningImagePadded filter; imageScanningDeconvolvedImage=imageScanningDeconvolvedImage(1:end/2,1:end/2); % Crop padding again confocalDeconvolvedImage=confocalDeconvolvedImage(1:end/2,1:end/2); % Crop padding again % Make first and second coordinate Y and X for consistency with % functions such as imagesc tmp=xRangeOutputImg; xRangeOutputImg=yRangeOutputImg; yRangeOutputImg=tmp; clear tmp; % % Output % %If no output specified, display result if (nargout<1 || ~isempty(outputFileName)) fig=figure(); axs(1)=subplot(2,3,1); scatter(samplePositions(:,2)*1e6,samplePositions(:,1)*1e6,10,confocalIntensities,'s','filled'); title('confocal blocks'); set(gca,'Color',[0 0 .75]); axis image; xlabel('x [\mum]'); ylabel('y [\mum]'); axs(2)=subplot(2,3,2); imagesc(xRangeOutputImg*1e6,yRangeOutputImg*1e6,interpolatedLaserScanningImage); title('laser scan'); axis image; colormap(hot); colorbar(); xlabel('x [\mum]'); ylabel('y [\mum]'); axs(3)=subplot(2,3,3); imagesc(xRangeOutputImg*1e6,yRangeOutputImg*1e6,interpolatedConfocalImage); title('confocal'); axis image; colormap(hot); colorbar(); xlabel('x [\mum]'); ylabel('y [\mum]'); axs(4)=subplot(2,3,4); imagesc(xRangeOutputImg*1e6,yRangeOutputImg*1e6,imageScanningImage); title('image scan'); % hold on; % scatter(samplePositions(:,2)*1e6,samplePositions(:,1)*1e6,10,[0 0 .75],'+'); % hold off; axis image; colormap(hot); colorbar(); xlabel('x [\mum]'); ylabel('y [\mum]'); axs(5)=subplot(2,3,5); imagesc(xRangeOutputImg*1e6,yRangeOutputImg*1e6,confocalDeconvolvedImage); title('confocal deconvolved'); axis image; colormap(hot); colorbar(); xlabel('x [\mum]'); ylabel('y [\mum]'); axs(6)=subplot(2,3,6); imagesc(xRangeOutputImg*1e6,yRangeOutputImg*1e6,imageScanningDeconvolvedImage); title('image scan deconvolved'); axis image; colormap(hot); colorbar(); xlabel('x [\mum]'); ylabel('y [\mum]'); linkaxes(axs); % Save result if (~isempty(outputFileName)) saveas(fig,outputFileName); end clear imageScanningImage; % Avoid cluttering the command line end end function [recordedImages stagePositions]=simulateImageScanningMicroscopy(imgSize,samplePositionsX,samplePositionsY,pixelPitchInSample) stagePositions=[samplePositionsX(:),samplePositionsY(:)]; % sample=getSpokeTarget(256,256,12,1); % sample(1:end/2,1:end/2)=0; % sample(1:end/2,end/2:end)=sample(1:end/2,end/2:end)/2; % sample(end/2:end,1:end/2)=sample(end/2:end,1:end/2)/4; %sample=getTestImage('usaf_512x512.png'); sample=sample(1:4:end,1:4:end); sample=zeros(64); % sample(1+floor(end/2),1+floor(end/2))=1; sample(1+floor(end/2)-8+[1:3],1+floor(end/2)+[1:3])=1; sample(1+floor(end/2)+[1:3],1+floor(end/2)+[1:3]+8)=1; samplePixelPitch=[1 1]*25e-9; xRangeSample=([1:size(sample,1)]-floor(size(sample,1)/2))*samplePixelPitch(1); yRangeSample=([1:size(sample,2)]-floor(size(sample,2)/2))*samplePixelPitch(2); figure; imagesc(yRangeSample*1e6,xRangeSample*1e6,sample); axis image; xlabel('x [\mum]'); ylabel('y [\mum]'); [sampleX sampleY]=ndgrid(xRangeSample,yRangeSample); clear xRangeSample yRangeSample; xRangeImg=([1:imgSize(1)*2]-1-imgSize(1))*pixelPitchInSample(1); yRangeImg=([1:imgSize(2)*2]-1-imgSize(2))*pixelPitchInSample(2); [imgX imgY]=ndgrid(xRangeImg,yRangeImg); sigma=100e-9; illumination=exp(-(imgX.^2+imgY.^2)./(2*sigma^2)); otf=fft2(ifftshift(illumination)); otf=otf./otf(1); for posIdx=1:size(stagePositions,1), fractionOfInput=posIdx/size(stagePositions,1) stagePos=stagePositions(posIdx,:); %shift illuminatedSample=interpn(sampleX-stagePos(1),sampleY-stagePos(2),sample,imgX,imgY,'*cubic',0); %simulate illumination illuminatedSample=illuminatedSample.*illumination; % simulate detection img=ifft2(fft2(illuminatedSample).*otf,'symmetric'); % Crop padding again img=circshift(img,-ceil(size(img)./4)); img=img(1:end/2,1:end/2); %Add noise img=img+0.001*randn(size(img)); % Store in two large matrices if (posIdx>1) recordedImages(:,:,posIdx)=img; else recordedImages=img; end % showImage(img*100); % drawnow(); % pause(.02); end end function [recordedImages samplePositions]=loadInputImages(inputImageFolder,regionOfInterest) files=dir([inputImageFolder,'\*.png']); posIdx=1; for fileIdx=1:length(files), fractionOfInput=fileIdx/length(files) fileName=files(fileIdx).name; samplePos=regexpi(fileName,'x(\d+)y(\d+)\.png','tokens'); if (~isempty(samplePos)) try img=imread([inputImageFolder,'/',fileName]); img=double(img)./255; % normalize to dynamic range img=mean(img,3); % Convert to gray scale % Reduce the ROI and create a sub folder if requested if (~isempty(regionOfInterest)) img=img(regionOfInterest(1)+[1:regionOfInterest(3)]-1,regionOfInterest(2)+[1:regionOfInterest(4)]-1); selectedROIFolder=[inputImageFolder,'selectedROI']; if (~exist(selectedROIFolder,'dir')) mkdir(selectedROIFolder); end imwrite(img,[selectedROIFolder,'/',fileName]); end samplePos=samplePos{1}; samplePos=str2double(samplePos)*1e-9/10; % 1/10 nm units if (~all(samplePos==0)) % Ignorethe wide field image % Store in two large matrices if (posIdx>1) recordedImages(:,:,posIdx)=img; samplePositions(posIdx,:)=samplePos; else recordedImages=img; samplePositions=samplePos(:).'; end posIdx=posIdx+1; else logMessage('Skipping wide field image at coordinate (0,0).'); end catch Exc logMessage('Error reading file %s:',fileName); logMessage(Exc.message) end else logMessage('Skipping file %s, unrecognized file name.',fileName); end end end
github
mc225/Softwares_Tom-master
mainpart.m
.m
Softwares_Tom-master/OpticalEigenModes/mainpart.m
8,988
utf_8
9925c355a9196baf25c88edc2d95e695
%% function mainpart() lgct=[]; %% new %for na=namin:0.1:namax na=0.65; theta=asin(na); prModes=probemodes(5,16,theta); %% new end lambda=0.8e-6; q1=1.22*lambda/(2*na);%airy disk radius qb=2.4*lambda/2/pi/sin(theta); %BB radius first zero [x,y,z,t,nx,ny,nz,nt,ff]=probefields(5,16,theta); dx=((max(x)-min(x))/nx); %% efx=squeeze(ff(1,:,:)); efy=squeeze(ff(2,:,:)); efz=squeeze(ff(3,:,:)); hfx=squeeze(ff(4,:,:)); hfy=squeeze(ff(5,:,:)); hfz=squeeze(ff(6,:,:)); %figure(1) %ii=23; %imagesc(reshape(abs(efx(ii,:)).^2+abs(efz(ii,:)).^2+abs(efy(ii,:)).^2+... % abs(hfx(ii,:)).^2+abs(hfy(ii,:)).^2+abs(hfz(ii,:)).^2,nx,ny)) %% ii=0; rmax=3.65e-6; %rmax=.4e-6:.01e-6:.47e-6; dr=[];deff=[]; for roi=rmax rr=x.^2+y.^2; rmask=rr<(roi)^2; op=repmat(rmask,size(efx,1),1); maif=real((efx.*op)*hfy'-(efy.*op)*hfx'); [vec lam]=eig(maif); dlam=real(diag(lam)); idx=(dlam>1e-2*max(dlam)); iev=vec(:,idx); ilam=diag(1./sqrt(dlam(idx))); av=iev*ilam; op=repmat(rr.*rmask,size(efx,1),1); maif2=av'*real((efx.*op)*hfy'-(efy.*op)*hfx')*av; [vec2 lam2]=eig((maif2+maif2')/2); dr=[dr sqrt(lam2(1,1))/q1]; deff=[deff 1/max(dlam)/((av*vec2(:,1))'*(av*vec2(:,1)))]; [roi sqrt(lam2(1,1)) ] %new figure(11) qm=1;ii=ii+1; lgc=av*vec2(:,qm); lgc=lgc*sign(lgc(1)); lgct(ii,:)=lgc; nlgc=lgc/abs(lgc(end)); plot(abs(nlgc).^2);drawnow; thp0x=nlgc'*efx;thp0y=nlgc'*efy;thp0z=nlgc'*efz; thp1x=nlgc'*hfx;thp1y=nlgc'*hfy;thp1z=nlgc'*hfz; thp0=real(conj(thp0x).*thp1y-conj(thp0y).*thp1x); thp=reshape(thp0,nx,ny); ti2=sum(rmask.*thp0); figure(3) imagesc(thp);%title(['oei:' num2str(ti0/ti2)]) figure(4); subplot(4,3,1);imagesc(reshape(real(thp0x),nx,ny)); subplot(4,3,2);imagesc(reshape(real(thp0y),nx,ny)); subplot(4,3,3);imagesc(reshape(real(thp0z),nx,ny)); subplot(4,3,4);imagesc(reshape(imag(thp0x),nx,ny)); subplot(4,3,5);imagesc(reshape(imag(thp0y),nx,ny)); subplot(4,3,6);imagesc(reshape(imag(thp0z),nx,ny)); subplot(4,3,7);imagesc(reshape(real(thp1x),nx,ny)); subplot(4,3,8);imagesc(reshape(real(thp1y),nx,ny)); subplot(4,3,9);imagesc(reshape(real(thp1z),nx,ny)); subplot(4,3,10);imagesc(reshape(imag(thp1x),nx,ny)); subplot(4,3,11);imagesc(reshape(imag(thp1y),nx,ny)); subplot(4,3,12);imagesc(reshape(imag(thp1z),nx,ny)); %% return; [xslm,yslm]=meshgrid(1:800,1:600); rslm=sqrt((xslm-400).^2+(yslm-300).^2); irs=rslm<260; figure(4) ma1=0*xslm; ma1(irs)=interp1(0:260/(16-1):260,nlgc,rslm(irs)); imagesc(ma1) ma(1,:,:)=ma1; tname(1)={'OEi'}; efi(1)=sum(sum(abs(ma1).^2)); %save(['/Users/mm17/Desktop/oeimask.mat'],'ma','title'); %% %%new nroi=rmax/wave; kv=sin(prModes(:,2)); % [omega, gamma] end %%new end %additional masks ma1=0*xslm; ma1(irs)=1; ma(2,:,:)=ma1; tname(2)={'Dif. Limited'}; efi(2)=sum(sum(abs(ma1).^2)); irs=rslm<260*sqrt(.8); ma1=0*xslm; ma1(irs)=1; ma(3,:,:)=ma1; tname(3)={'Truncated R=80%'}; efi(3)=sum(sum(abs(ma1).^2)); efi/efi(2) irs=rslm<260*sqrt(.6); ma1=0*xslm; ma1(irs)=1; ma(4,:,:)=ma1; tname(4)={'Truncated R=60%'}; efi(4)=sum(sum(abs(ma1).^2)); efi/efi(2) irs=rslm<260*sqrt(.4); ma1=0*xslm; ma1(irs)=1; ma(5,:,:)=ma1; tname(5)={'Truncated R=40%'}; efi(5)=sum(sum(abs(ma1).^2)); efi/efi(2) stop %% for ii=1:16 lgc0=0*lgc;lgc0(ii)=1; thp0x=lgc0'*efx;thp0y=lgc0'*efy;thp0z=lgc0'*efz; thp1x=lgc0'*hfx;thp1y=lgc0'*hfy;thp1z=lgc0'*hfz; thp0=real(conj(thp0x).*thp1y-conj(thp0y).*thp1x); thp=reshape(thp0,nx,ny); figure(6);subplot(4,4,ii) imagesc(thp);axis equal end % %% qm=1; lgc=av*vec2(:,qm); thp0x=lgc'*efx;thp0y=lgc'*efy;thp0z=lgc'*efz; thp1x=lgc'*hfx;thp1y=lgc'*hfy;thp1z=lgc'*hfz; thp0=abs(thp0x.^2)+abs(thp0y.^2)+abs(thp0z.^2)+abs(thp1x.^2)+abs(thp1y.^2)+abs(thp1z.^2); ImageHandle=figure(2); thp=reshape(thp0,nx,ny); ma=reshape(rmask,nx,ny); xx=reshape(x,nx,ny); yy=reshape(y,nx,ny); zpos=thp;zpos(~ma)=NaN; zrgb=sc(zpos,'jet'); zpos2=thp;zpos2(ma)=NaN; zrgb2=sc(zpos2,'gray'); sh(1)=imagesc(zrgb2); %%%%%colorbar('location','east') hold on sh(2)=imagesc(zrgb); %%%%%set(sh,'edgecolor','none') set(sh(2),'alphadata',ma) axis equal; %colorbar('location','west') max((1-rmask).*thp0)/max((rmask).*thp0); set(ImageHandle,'units','centimeters','position',[5 5 15 15]) % set the screen size and position set(ImageHandle,'paperunits','centimeters','paperposition',[6 6 14 14]) % set size and position for printing set(gca,'units','normalized','position',[0 0 1 1]) % make sure axis fills entire figure %% rad=sqrt(max(rr(rmask)))/((max(x)-min(x))/nx); ImageHandle=figure(4); thp=reshape(thp0,nx,ny)/max(thp0); hold on;imshow(thp*256,jet(256));axis equal; plot((nx)/2+1+rad*cos(0:pi/30:2*pi),(ny)/2+1+rad*sin((0:pi/30:2*pi)),'--y','LineWidth',3);drawnow sqrt(2*sum(sum((abs(rmask.*(x.^2+y.^2).*thp0))))/sum(sum((abs(rmask.*thp0))))) set(ImageHandle,'units','centimeters','position',[5 5 15 15]) % set the screen size and position set(ImageHandle,'paperunits','centimeters','paperposition',[6 6 14 14]) % set size and position for printing set(gca,'units','normalized','position',[0 0 1 1]) % make sure axis fills entire figure stop %% figure(1) %quiver(reshape(real(thp0x),nx,ny),reshape(real(thp0y),nx,ny));axis equal; drawnow quiver(reshape(real(rmask.*thp0x),nx,ny),reshape(real(rmask.*thp0y),nx,ny));axis equal; drawnow figure(3) %quiver(reshape(real(thp0x),nx,ny),reshape(real(thp0y),nx,ny));axis equal; drawnow subplot(2,3,1);imagesc(reshape(real(thp0x),nx,ny));axis equal; subplot(2,3,2);imagesc(reshape(real(thp0y),nx,ny));axis equal; subplot(2,3,3);imagesc(reshape(real(thp0z),nx,ny));axis equal; subplot(2,3,4);imagesc(reshape(real(thp1x),nx,ny));axis equal; subplot(2,3,5);imagesc(reshape(real(thp1y),nx,ny));axis equal; subplot(2,3,6);imagesc(reshape(real(thp1z),nx,ny));axis equal; %% first intenisty eigemode figure(5) lgc=av(:,1); thp0x=lgc'*efx;thp0y=lgc'*efy;thp0z=lgc'*efz; thp1x=lgc'*hfx;thp1y=lgc'*hfy;thp1z=lgc'*hfz; thp0=abs(thp0x.^2)+abs(thp0y.^2)+abs(thp0z.^2)+abs(thp1x.^2)+abs(thp1y.^2)+abs(thp1z.^2); thp=reshape(rmask.*thp0,nx,ny); imagesc(thp);axis equal; drawnow sqrt(sum(sum((abs(rmask.*(x.^2+y.^2).*thp0))))/sum(sum((abs(rmask.*thp0))))) %% max Bessel ImageHandle=figure(6); lgc=zeros(size(av,1),1);lgc(end)=1; thp0x=lgc'*efx;thp0y=lgc'*efy;thp0z=lgc'*efz; thp1x=lgc'*hfx;thp1y=lgc'*hfy;thp1z=lgc'*hfz; thp0=abs(thp0x.^2)+abs(thp0y.^2)+abs(thp0z.^2)+abs(thp1x.^2)+abs(thp1y.^2)+abs(thp1z.^2); thp=reshape(thp0,nx,ny)/max(thp0); imshow(thp*256,jet(256));axis equal; hold on; rb=qb/dx; plot((nx)/2+1+rb*cos(0:pi/30:2*pi),(ny)/2+1+rb*sin((0:pi/30:2*pi)),'--y','LineWidth',3);drawnow hold off rmask=rr<(qb)^2; sqrt(2*sum(sum((abs(rmask.*(x.^2+y.^2).*thp0))))/sum(sum((abs(rmask.*thp0))))) set(ImageHandle,'units','centimeters','position',[6 6 15 15]) % set the screen size and position set(ImageHandle,'paperunits','centimeters','paperposition',[5 5 16 16]) % set size and position for printing set(gca,'units','normalized','position',[0 0 1 1]) % make sure axis fills entire figure Iseg = getframe(ImageHandle); imwrite(Iseg.cdata,'/Users/mm17/Documents/OLDmac/Desktop/QME-OPEX/maxbessel.1.png') %% Airy disk Bessel close(6) dx=((max(x)-min(x))/nx); ImageHandle=figure(6); thp0=(2*besselj(1,sqrt(rr)/q1*3.83)./sqrt(rr)).^2; thp=reshape(thp0,nx,ny)/max(thp0); imshow(thp*256,jet(256));axis equal; hold on rb=q1/dx; plot((nx)/2+1+rb*cos(0:pi/30:2*pi),(ny)/2+1+rb*sin((0:pi/30:2*pi)),'--y','LineWidth',3);drawnow hold off; set(ImageHandle,'units','centimeters','position',[6 6 15 15]) % set the screen size and position set(ImageHandle,'paperunits','centimeters','paperposition',[5 5 16 16]) % set size and position for printing set(gca,'units','normalized','position',[0 0 1 1]) % make sure axis fills entire figure Iseg = getframe(ImageHandle); imwrite(Iseg.cdata,'/Users/mm17/Documents/OLDmac/Desktop/QME-OPEX/airy.1.png') rmask=rr<(q1)^2; sqrt(2*sum(sum((abs(rmask.*(x.^2+y.^2).*thp0))))/sum(sum((abs(rmask.*thp0))))) end
github
mc225/Softwares_Tom-master
probemodes.m
.m
Softwares_Tom-master/OpticalEigenModes/probemodes.m
3,315
utf_8
6333da58fd1d9b68da4518baedffa662
%%% %type=1 bessel % Row vectors for each mode containing: % param(1)=omega %optical frequency :wavelength=2 pi c/(omega) % param(2)=gamma %cone angle % param(3)=pol %A polaraisation 1:vert; 2:horiz; 3:longi; % param(4)=L %L number % param(5)=n %index of refraction function prmodes=probemodes(type,num,theta) c=299792458; switch type case 1 param(1)=1.884e15; %optical frequency :wavelength=2 pi c/(omega) param(2)=.6; %cone anlge param(3)=1; %A polaraisation 1:vert; 2:horiz; 3:longi; param(4)=4; %L number param(5)=1; %index prmodes=[]; for j0=1:2 for j2=-0:0 for j1=1:num param(2)=(j1-1)/(num)*theta; param(3)=j0; param(4)=j2; prmodes=[prmodes;param]; end end end case 2 param(1)=1.884e15; %optical frequency :wavelength=2 pi c/(omega) param(2)=.6; %cone anlge param(3)=2; %A polaraisation 1:vert; 2:horiz; param(4)=4; %L number param(5)=1; %index prmodes=[]; for j0=1:1 % pol for j2=-0:0 % L for j1=1:num % param(2)=(j1-1)/(num)*theta; % param(2)=asin((j1-1)/(num-1)*sin(theta)); param(2)=asin((j1-.5)/(num-1)*sin(theta)); param(3)=j0; param(4)=j2; prmodes=[prmodes;param]; end end end case 4 param(1)=2*pi*3e8/0.8e-6; %optical frequency :wavelength=2 pi c/(omega) param(2)=.6; %cone anlge param(3)=2; %A polaraisation 1:vert; 2:horiz; param(4)=0; %L number param(5)=1; %index prmodes=[]; for j0=1:1 % pol for j2=-0:0 % L for j1=1:num % param(2)=(j1-1)/(num)*theta; % param(2)=asin((j1-1)/(num-1)*sin(theta)); param(2)=asin((j1-.5)/(num-1)*sin(theta)); param(3)=j0; param(4)=j2; prmodes=[prmodes;param]; end end end case 5 param(1)=2*pi*c/0.8e-6; %optical frequency :wavelength=2 pi c/(omega) param(2)=.6; %cone angle param(3)=2; %A polaraisation 1:vert; 2:horiz; param(4)=0; %L number param(5)=1; %index prmodes=[]; for j0=1:2 % pol for j2=-2:2 % L for j1=1:num % param(2)=(j1-1)/(num)*theta; % param(2)=asin((j1-1)/(num-1)*sin(theta)); param(2)=asin((j1-.5)/(num-1)*sin(theta)); param(3)=j0; param(4)=j2; prmodes=[prmodes;param]; end end end end end
github
mc225/Softwares_Tom-master
savejson.m
.m
Softwares_Tom-master/ThirdPartyDependencies/jsonlab/savejson.m
13,894
utf_8
e7cec5b8f38043b1b4c02348911ff07b
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 371 2012-06-20 12:43:06Z fangq $ % % input: % rootname: name of the root-object, if set to '', will use variable name % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output JSON data % opt: a struct for additional options, use [] if all use default % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt. % output: % json: a string in the JSON format (see http://json.org) % % examples: % a=struct('node',[1 9 10; 2 1 1.2], 'elem',[9 1;1 2;2 3],... % 'face',[9 01 2; 1 2 3; NaN,Inf,-Inf], 'author','FangQ'); % savejson('mesh',a) % savejson('',a,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % varname=inputname(2); if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s\n',json); else json=sprintf('{\n%s\n}\n',json); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);\n',jsonp,json); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); len=numel(item); % let's handle 1D cell first padding1=repmat(sprintf('\t'),1,level-1); padding0=repmat(sprintf('\t'),1,level); if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [\n',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[\n',padding0); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": null',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%snull',padding0); end end for i=1:len txt=sprintf('%s%s%s',txt,padding1,obj2json(name,item{i},level+(len>1),varargin{:})); if(i<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end end if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end len=numel(item); padding1=repmat(sprintf('\t'),1,level-1); padding0=repmat(sprintf('\t'),1,level); sep=','; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [\n',padding0,checkname(name,varargin{:})); end else if(len>1) txt=sprintf('%s[\n',padding0); end end for e=1:len names = fieldnames(item(e)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {\n',txt,repmat(sprintf('\t'),1,level+(len>1)), checkname(name,varargin{:})); else txt=sprintf('%s%s{\n',txt,repmat(sprintf('\t'),1,level+(len>1))); end if(~isempty(names)) for i=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{i},getfield(item(e),... names{i}),level+1+(len>1),varargin{:})); if(i<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,sprintf('\n')); end end txt=sprintf('%s%s}',txt,repmat(sprintf('\t'),1,level+(len>1))); if(e==len) sep=''; end if(e<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end end if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); sep=sprintf(',\n'); padding1=repmat(sprintf('\t'),1,level); padding0=repmat(sprintf('\t'),1,level+1); if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [\n',padding1,checkname(name,varargin{:})); end else if(len>1) txt=sprintf('%s[\n',padding1); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level),obj); else txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level+1),['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s\n%s%s',txt,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end padding1=repmat(sprintf('\t'),1,level); padding0=repmat(sprintf('\t'),1,level+1); if(length(size(item))>2 || issparse(item) || ~isreal(item) || jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',... padding1,padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') ); else txt=sprintf('%s"%s": {\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',... padding1,checkname(name,varargin{:}),padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') ); end else if(isempty(name)) txt=sprintf('%s%s',padding1,matdata2json(item,level+1,varargin{:})); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),matdata2json(item,level+1,varargin{:})); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n')); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sprintf(',\n')); if(find(size(item)==1)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), sprintf('\n')); else txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), sprintf('\n')); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), sprintf('\n')); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n')); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), sprintf('\n')); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[\n'); post=sprintf('\n%s]',repmat(sprintf('\t'),1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],\n')]]; if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(sprintf('\t'),1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-1:end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function val=jsonopt(key,default,varargin) val=default; if(nargin<=2) return; end opt=varargin{1}; if(isstruct(opt) && isfield(opt,key)) val=getfield(opt,key); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end
github
mc225/Softwares_Tom-master
loadjson.m
.m
Softwares_Tom-master/ThirdPartyDependencies/jsonlab/loadjson.m
15,312
ibm852
54a5e8d8b39c77904a572c96f3df77a5
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % date: 2011/09/09 % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % date: 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % date: 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % date: 2008/07/03 % % $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs. The param string is equivallent % to a field in opt. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rt'); string = fscanf(fid,'%c'); fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); else ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; if next_char ~= ']' [endpos e1l e1r maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(find(arraystr==sprintf('\n')))=[]; arraystr(find(arraystr==sprintf('\r')))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(find(astr==sprintf('\n')))=[]; astr(find(astr==sprintf('\r')))=[]; astr(find(astr==' '))=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(find(astr==' '))=''; [obj count errmsg nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(find(astr=='['))=''; astr(find(astr==']'))=''; astr(find(astr==' '))=''; [obj count errmsg nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end try object=cell2mat(object')'; if(size(object,1)>1 && ndims(object)==2) object=object'; end catch end parse_char(']'); %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mc225/Softwares_Tom-master
DataHash.m
.m
Softwares_Tom-master/ThirdPartyDependencies/DataHash/DataHash.m
15,429
utf_8
e725a80cb9180de1eb03e47b850a95dc
function Hash = DataHash(Data, Opt) % DATAHASH - Checksum for Matlab array of any type % This function creates a hash value for an input of any type. The type and % dimensions of the input are considered as default, such that UINT8([0,0]) and % UINT16(0) have different hash values. Nested STRUCTs and CELLs are parsed % recursively. % % Hash = DataHash(Data, Opt) % INPUT: % Data: Array of these built-in types: % (U)INT8/16/32/64, SINGLE, DOUBLE, (real or complex) % CHAR, LOGICAL, CELL (nested), STRUCT (scalar or array, nested), % function_handle. % Opt: Struct to specify the hashing algorithm and the output format. % Opt and all its fields are optional. % Opt.Method: String, known methods for Java 1.6 (Matlab 2009a): % 'SHA-1', 'SHA-256', 'SHA-384', 'SHA-512', 'MD2', 'MD5'. % Known methods for Java 1.3 (Matlab 6.5): % 'MD5', 'SHA-1'. % Default: 'MD5'. % Opt.Format: String specifying the output format: % 'hex', 'HEX': Lower/uppercase hexadecimal string. % 'double', 'uint8': Numerical vector. % 'base64': Base64 encoded string, only printable % ASCII characters, 33% shorter than 'hex'. % Default: 'hex'. % Opt.Input: Type of the input as string, not case-sensitive: % 'array': The contents, type and size of the input [Data] are % considered for the creation of the hash. Nested CELLs % and STRUCT arrays are parsed recursively. Empty arrays of % different type reply different hashs. % 'file': [Data] is treated as file name and the hash is calculated % for the files contents. % 'bin': [Data] is a numerical, LOGICAL or CHAR array. Only the % binary contents of the array is considered, such that % e.g. empty arrays of different type reply the same hash. % Default: 'array'. % % OUTPUT: % Hash: String, DOUBLE or UINT8 vector. The length depends on the hashing % method. % % EXAMPLES: % % Default: MD5, hex: % DataHash([]) % 7de5637fd217d0e44e0082f4d79b3e73 % % MD5, Base64: % Opt.Format = 'base64'; % Opt.Method = 'MD5'; % DataHash(int32(1:10), Opt) % bKdecqzUpOrL4oxzk+cfyg % % SHA-1, Base64: % S.a = uint8([]); % S.b = {{1:10}, struct('q', uint64(415))}; % Opt.Method = 'SHA-1'; % DataHash(S, Opt) % ZMe4eUAp0G9TDrvSW0/Qc0gQ9/A % % SHA-1 of binary values: % Opt.Method = 'SHA-1'; % Opt.Input = 'bin'; % DataHash(1:8, Opt) % 826cf9d3a5d74bbe415e97d4cecf03f445f69225 % % NOTE: % Function handles and user-defined objects cannot be converted uniquely: % - The subfunction ConvertFuncHandle uses the built-in function FUNCTIONS, % but the replied struct can depend on the Matlab version. % - It is tried to convert objects to UINT8 streams in the subfunction % ConvertObject. A conversion by STRUCT() might be more appropriate. % Adjust these subfunctions on demand. % % MATLAB CHARs have 16 bits! In consequence the string 'hello' is treated as % UINT16('hello') for the binary input method. % % DataHash uses James Tursa's smart and fast TYPECASTX, if it is installed: % http://www.mathworks.com/matlabcentral/fileexchange/17476 % As fallback the built-in TYPECAST is used automatically, but for large % inputs this can be more than 100 times slower. % For Matlab 6.5 installing typecastx is obligatory to run DataHash. % % Tested: Matlab 6.5, 7.7, 7.8, 7.13, WinXP/32, Win7/64 % Author: Jan Simon, Heidelberg, (C) 2011-2012 matlab.THISYEAR(a)nMINUSsimon.de % % See also: TYPECAST, CAST. % FEX: % Michael Kleder, "Compute Hash", no structs and cells: % http://www.mathworks.com/matlabcentral/fileexchange/8944 % Tim, "Serialize/Deserialize", converts structs and cells to a byte stream: % http://www.mathworks.com/matlabcentral/fileexchange/29457 % Jan Simon, "CalcMD5", MD5 only, faster C-mex, no structs and cells: % http://www.mathworks.com/matlabcentral/fileexchange/25921 % $JRev: R-k V:011 Sum:kZG25iszfKbg Date:28-May-2012 12:48:06 $ % $License: BSD (use/copy/change/redistribute on own risk, mention the author) $ % $File: Tools\GLFile\DataHash.m $ % History: % 001: 01-May-2011 21:52, First version. % 007: 10-Jun-2011 10:38, [Opt.Input], binary data, complex values considered. % 011: 26-May-2012 15:57, Fails for binary input and empty data. % Main function: =============================================================== % Java is needed: if ~usejava('jvm') error(['JSimon:', mfilename, ':NoJava'], ... '*** %s: Java is required.', mfilename); end % typecastx creates a shared data copy instead of the deep copy as Matlab's % TYPECAST - for a [1000x1000] DOUBLE array this is 100 times faster! persistent usetypecastx if isempty(usetypecastx) usetypecastx = ~isempty(which('typecastx')); % Run the slow WHICH once only end % Default options: ------------------------------------------------------------- Method = 'MD5'; OutFormat = 'hex'; isFile = false; isBin = false; % Check number and type of inputs: --------------------------------------------- nArg = nargin; if nArg == 2 if isa(Opt, 'struct') == 0 % Bad type of 2nd input: error(['JSimon:', mfilename, ':BadInput2'], ... '*** %s: 2nd input [Opt] must be a struct.', mfilename); end % Specify hash algorithm: if isfield(Opt, 'Method') Method = upper(Opt.Method); end % Specify output format: if isfield(Opt, 'Format') OutFormat = Opt.Format; end % Check if the Input type is specified - default: 'array': if isfield(Opt, 'Input') if strcmpi(Opt.Input, 'File') isFile = true; if ischar(Data) == 0 error(['JSimon:', mfilename, ':CannotOpen'], ... '*** %s: 1st input is not a file name', mfilename); end if exist(Data, 'file') ~= 2 error(['JSimon:', mfilename, ':FileNotFound'], ... '*** %s: File not found: %s.', mfilename, Data); end elseif strncmpi(Opt.Input, 'bin', 3) % Accept 'binary' isBin = true; if (isnumeric(Data) || ischar(Data) || islogical(Data)) == 0 error(['JSimon:', mfilename, ':BadDataType'], ... '*** %s: 1st input is not numeric, CHAR or LOGICAL.', mfilename); end end end elseif nArg ~= 1 % Bad number of arguments: error(['JSimon:', mfilename, ':BadNInput'], ... '*** %s: 1 or 2 inputs required.', mfilename); end % Create the engine: ----------------------------------------------------------- try Engine = java.security.MessageDigest.getInstance(Method); catch error(['JSimon:', mfilename, ':BadInput2'], ... '*** %s: Invalid algorithm: [%s].', mfilename, Method); end % Create the hash value: ------------------------------------------------------- if isFile % Read the file and calculate the hash: FID = fopen(Data, 'r'); if FID < 0 error(['JSimon:', mfilename, ':CannotOpen'], ... '*** %s: Cannot open file: %s.', mfilename, Data); end Data = fread(FID, Inf, '*uint8'); fclose(FID); Engine.update(Data); if usetypecastx Hash = typecastx(Engine.digest, 'uint8'); else Hash = typecast(Engine.digest, 'uint8'); end elseif isBin % Contents of an elementary array: if isempty(Data) % Nothing to do, Engine.update fails for empty input! Hash = typecastx(Engine.digest, 'uint8'); elseif usetypecastx % Faster typecastx: if isreal(Data) Engine.update(typecastx(Data(:), 'uint8')); else Engine.update(typecastx(real(Data(:)), 'uint8')); Engine.update(typecastx(imag(Data(:)), 'uint8')); end Hash = typecastx(Engine.digest, 'uint8'); else % Matlab's TYPECAST is less elegant: if isnumeric(Data) if isreal(Data) Engine.update(typecast(Data(:), 'uint8')); else Engine.update(typecast(real(Data(:)), 'uint8')); Engine.update(typecast(imag(Data(:)), 'uint8')); end elseif islogical(Data) % TYPECAST cannot handle LOGICAL Engine.update(typecast(uint8(Data(:)), 'uint8')); elseif ischar(Data) % TYPECAST cannot handle CHAR Engine.update(typecast(uint16(Data(:)), 'uint8')); Engine.update(typecast(Data(:), 'uint8')); end Hash = typecast(Engine.digest, 'uint8'); end elseif usetypecastx % Faster typecastx: Engine = CoreHash_(Data, Engine); Hash = typecastx(Engine.digest, 'uint8'); else % Slower built-in TYPECAST: Engine = CoreHash(Data, Engine); Hash = typecast(Engine.digest, 'uint8'); end % Convert hash specific output format: ----------------------------------------- switch OutFormat case 'hex' Hash = sprintf('%.2x', double(Hash)); case 'HEX' Hash = sprintf('%.2X', double(Hash)); case 'double' Hash = double(reshape(Hash, 1, [])); case 'uint8' Hash = reshape(Hash, 1, []); case 'base64' Hash = fBase64_enc(double(Hash)); otherwise error(['JSimon:', mfilename, ':BadOutFormat'], ... '*** %s: [Opt.Format] must be: HEX, hex, uint8, double, base64.', ... mfilename); end % return; % ****************************************************************************** function Engine = CoreHash_(Data, Engine) % This mothod uses the faster typecastx version. % Consider the type and dimensions of the array to distinguish arrays with the % same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2], % DOUBLE(0) and SINGLE([0,0]): Engine.update([uint8(class(Data)), typecastx(size(Data), 'uint8')]); if isstruct(Data) % Hash for all array elements and fields: F = sort(fieldnames(Data)); % Ignore order of fields Engine = CoreHash_(F, Engine); % Catch the fieldnames for iS = 1:numel(Data) % Loop over elements of struct array for iField = 1:length(F) % Loop over fields Engine = CoreHash_(Data(iS).(F{iField}), Engine); end end elseif iscell(Data) % Get hash for all cell elements: for iS = 1:numel(Data) Engine = CoreHash_(Data{iS}, Engine); end elseif isnumeric(Data) || islogical(Data) || ischar(Data) if isempty(Data) == 0 if isreal(Data) % TRUE for LOGICAL and CHAR also: Engine.update(typecastx(Data(:), 'uint8')); else % typecastx accepts complex input: Engine.update(typecastx(real(Data(:)), 'uint8')); Engine.update(typecastx(imag(Data(:)), 'uint8')); end end elseif isa(Data, 'function_handle') Engine = CoreHash(ConvertFuncHandle(Data), Engine); else % Most likely this is a user-defined object: try Engine = CoreHash(ConvertObject(Data), Engine); catch warning(['JSimon:', mfilename, ':BadDataType'], ... ['Type of variable not considered: ', class(Data)]); end end % return; % ****************************************************************************** function Engine = CoreHash(Data, Engine) % This methods uses the slower TYPECAST of Matlab % See CoreHash_ for comments. Engine.update([uint8(class(Data)), typecast(size(Data), 'uint8')]); if isstruct(Data) % Hash for all array elements and fields: F = sort(fieldnames(Data)); % Ignore order of fields Engine = CoreHash(F, Engine); % Catch the fieldnames for iS = 1:numel(Data) % Loop over elements of struct array for iField = 1:length(F) % Loop over fields Engine = CoreHash(Data(iS).(F{iField}), Engine); end end elseif iscell(Data) % Get hash for all cell elements: for iS = 1:numel(Data) Engine = CoreHash(Data{iS}, Engine); end elseif isempty(Data) elseif isnumeric(Data) if isreal(Data) Engine.update(typecast(Data(:), 'uint8')); else Engine.update(typecast(real(Data(:)), 'uint8')); Engine.update(typecast(imag(Data(:)), 'uint8')); end elseif islogical(Data) % TYPECAST cannot handle LOGICAL Engine.update(typecast(uint8(Data(:)), 'uint8')); elseif ischar(Data) % TYPECAST cannot handle CHAR Engine.update(typecast(uint16(Data(:)), 'uint8')); elseif isa(Data, 'function_handle') Engine = CoreHash(ConvertFuncHandle(Data), Engine); else % Most likely a user-defined object: try Engine = CoreHash(ConvertObject(Data), Engine); catch warning(['JSimon:', mfilename, ':BadDataType'], ... ['Type of variable not considered: ', class(Data)]); end end % return; % ****************************************************************************** function FuncKey = ConvertFuncHandle(FuncH) % The subfunction ConvertFuncHandle converts function_handles to a struct % using the Matlab function FUNCTIONS. The output of this function changes % with the Matlab version, such that DataHash(@sin) replies different hashes % under Matlab 6.5 and 2009a. % An alternative is using the function name and name of the file for % function_handles, but this is not unique for nested or anonymous functions. % If the MATLABROOT is removed from the file's path, at least the hash of % Matlab's toolbox functions is (usually!) not influenced by the version. % Finally I'm in doubt if there is a unique method to hash function handles. % Please adjust the subfunction ConvertFuncHandles to your needs. % The Matlab version influences the conversion by FUNCTIONS: % 1. The format of the struct replied FUNCTIONS is not fixed, % 2. The full paths of toolbox function e.g. for @mean differ. FuncKey = functions(FuncH); % ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox functions % is replaced such that the hash for @mean does not depend on the Matlab % version. % Drawbacks: Anonymous functions, nested functions... % funcStruct = functions(FuncH); % funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>'); % FuncKey = uint8([funcStruct.function, ' ', funcfile]); % Finally I'm afraid there is no unique method to get a hash for a function % handle. Please adjust this conversion to your needs. % return; % ****************************************************************************** function DataBin = ConvertObject(DataObj) % Convert a user-defined object to a binary stream. There cannot be a unique % solution, so this part is left for the user... % Perhaps a direct conversion is implemented: DataBin = uint8(DataObj); % Or perhaps this is better: % DataBin = struct(DataObj); % return; % ****************************************************************************** function Out = fBase64_enc(In) % Encode numeric vector of UINT8 values to base64 string. Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /] v8 = [128; 64; 32; 16; 8; 4; 2; 1]; v6 = [32, 16, 8, 4, 2, 1]; In = reshape(In, 1, []); X = rem(floor(In(ones(8, 1), :) ./ v8(:, ones(length(In), 1))), 2); Y = reshape([X(:); zeros(6 - rem(numel(X), 6), 1)], 6, []); Out = char(Pool(1 + v6 * Y)); % return;
github
mc225/Softwares_Tom-master
poisson.m
.m
Softwares_Tom-master/ThirdPartyDependencies/poisson/poisson.m
934
utf_8
1df23401d580bc81ca94c8e6aac9f1b5
function data = poisson(xm, seed) %function data = poisson(xm, seed) % % Generate Poisson random vector with mean xm. % For small, use poisson1.m % For large, use poisson2.m % see num. rec. C, P. 222 % % Copyright 1997-4-29, Jeff Fessler, The University of Michigan if nargin < 1, help(mfilename), error(mfilename), end if nargin == 1 && strcmp(xm, 'test'), poisson_test, return, end if ~isvar('seed') seed = []; end data = xm; xm = xm(:); small = xm < 12; data( small) = poisson1(xm( small), seed); data(~small) = poisson2(xm(~small), seed); % % run a timing race against matlab's poissrnd % function poisson_test n = 2^8; t = reshape(linspace(1, 1000, n^2), n, n); cpu tic poisson(t); cpu toc 'fessler poisson time' tic poissrnd(t); cpu toc 'matlab poissrnd time' if 0 % look for bad values? poisson(10^6 * ones(n,n)); poisson(1e-6 * ones(n,n)); poisson(linspace(11,13,2^10+1)); poisson(linspace(12700,91800,n^3)); end
github
mc225/Softwares_Tom-master
cpu.m
.m
Softwares_Tom-master/ThirdPartyDependencies/poisson/cpu.m
1,220
utf_8
63fff9efef6377a81db14161edbf486d
function out = cpu(arg, varargin) %function out = cpu(arg, varargin) % cpu tic % cpu toc % cpu toc printarg % work like tic/toc except they use cpu time instead of wall time. % also: % cpu etic % cpu etoc % for elapsed time if nargin < 1, help(mfilename), error(mfilename), end if streq(arg, 'test'), cpu_test, return, end % todo: add default behaviour persistent t if ~isvar('t') || isempty(t) t.tic = []; t.clock = []; end if streq(arg, 'tic') t.tic = cputime; if length(varargin), error 'tic takes no option', end return elseif streq(arg, 'etic') t.clock = clock; if length(varargin), error 'tic takes no option', end return end if streq(arg, 'toc') if isempty(t.tic) error 'must initialize cpu with tic first' end out = cputime - t.tic; elseif streq(arg, 'etoc') if isempty(t.clock) error 'must initialize cpu with etic first' end out = etime(clock, t.clock); else error 'bad argument' end if length(varargin) == 1 arg = varargin{1}; if ischar(arg) printf('%s %g', arg, out) end if ~nargout clear out end elseif length(varargin) > 1 error 'too many arguments' end function cpu_test cpu tic cpu toc cpu toc hello cpu etic cpu etoc cpu etoc goodbye out = cpu('etoc', 'test');
github
mc225/Softwares_Tom-master
poisson2.m
.m
Softwares_Tom-master/ThirdPartyDependencies/poisson/poisson2.m
1,274
utf_8
cc7f650c26ba423cb63b682beb1c27e4
function data = poisson2(xm, seed) %function data = poisson2(xm, seed) % Generate Poisson random column vector with mean xm. % Uses rejection method - good for large values of xm. % See "Numerical Recipes in C", P. 222. if nargin < 2, help(mfilename), error(mfilename), end if isvar('seed') & ~isempty(seed) rand('state', seed) end data = zeros(size(xm)); if any(xm < 0), error 'negative poisson means?', end data(xm > 0) = poisson2_positive(xm(xm > 0)); % % poisson2_positive() % function data = poisson2_positive(xm) sx = sqrt(2.0 * xm); lx = log(xm); gx = xm .* lx - gammaln(1 + xm); data = zeros(size(xm)); id = [1:length(xm)]'; % indicates which data left to do %factor = 0.9; % from num rec factor = 0.85; % seems to work better while any(id) Tss = sx(id); Tll = lx(id); Tgg = gx(id); Txx = xm(id); yy = zeros(size(id)); em = zeros(size(id)); ib = true(size(id)); while ib yy(ib) = tan(pi * rand(size(ib))); em(ib) = Tss(ib) .* yy(ib) + Txx(ib); ib = find(em < 0); end em = floor(em); tt = factor * (1+yy.*yy) .* exp(em .* Tll - gammaln(em+1) - Tgg); if any(tt > 1) % pr xm(tt > 1) % pr max(tt) error('factor is too large! please report xm value(s)') end ig = rand(size(id)) < tt; data(id(ig(:))) = em(ig); id = id(~ig(:)); end
github
mc225/Softwares_Tom-master
dftregistration.m
.m
Softwares_Tom-master/ThirdPartyDependencies/efficient_subpixel_registration/dftregistration.m
8,250
utf_8
93265582c4fb73f52c4000db5038f40f
% function [output Greg] = dftregistration(buf1ft,buf2ft,usfac); % % Efficient subpixel image registration by crosscorrelation. This code % gives the same precision as the FFT upsampled cross correlation in a % small fraction of the computation time and with reduced memory % requirements. It obtains an initial estimate of the crosscorrelation peak % by an FFT and then refines the shift estimation by upsampling the DFT % only in a small neighborhood of that estimate by means of a % matrix-multiply DFT. With this procedure all the image points are used to % compute the upsampled crosscorrelation. % Manuel Guizar - Dec 13, 2007 % % Portions of this code were taken from code written by Ann M. Kowalczyk % and James R. Fienup. % J.R. Fienup and A.M. Kowalczyk, "Phase retrieval for a complex-valued % object by using a low-resolution image," J. Opt. Soc. Am. A 7, 450-458 % (1990). % % Citation for this algorithm: % Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, % "Efficient subpixel image registration algorithms," Opt. Lett. 33, % 156-158 (2008). % % Inputs % buf1ft Fourier transform of reference image, % DC in (1,1) [DO NOT FFTSHIFT] % buf2ft Fourier transform of image to register, % DC in (1,1) [DO NOT FFTSHIFT] % usfac Upsampling factor (integer). Images will be registered to % within 1/usfac of a pixel. For example usfac = 20 means the % images will be registered within 1/20 of a pixel. (default = 1) % % Outputs % output = [error,diffphase,net_row_shift,net_col_shift] % error Translation invariant normalized RMS error between f and g % diffphase Global phase difference between the two images (should be % zero if images are non-negative). % net_row_shift net_col_shift Pixel shifts between images % Greg (Optional) Fourier transform of registered version of buf2ft, % the global phase difference is compensated for. % function [output Greg] = dftregistration(buf1ft,buf2ft,usfac) % Default usfac to 1 if exist('usfac')~=1, usfac=1; end % Compute error for no pixel shift if usfac == 0, CCmax = sum(sum(buf1ft.*conj(buf2ft))); rfzero = sum(abs(buf1ft(:)).^2); rgzero = sum(abs(buf2ft(:)).^2); error = 1.0 - CCmax.*conj(CCmax)/(rgzero*rfzero); error = sqrt(abs(error)); diffphase=atan2(imag(CCmax),real(CCmax)); output=[error,diffphase]; % Whole-pixel shift - Compute crosscorrelation by an IFFT and locate the % peak elseif usfac == 1, [m,n]=size(buf1ft); CC = ifft2(buf1ft.*conj(buf2ft)); [max1,loc1] = max(CC); [max2,loc2] = max(max1); rloc=loc1(loc2); cloc=loc2; CCmax=CC(rloc,cloc); rfzero = sum(abs(buf1ft(:)).^2)/(m*n); rgzero = sum(abs(buf2ft(:)).^2)/(m*n); error = 1.0 - CCmax.*conj(CCmax)/(rgzero(1,1)*rfzero(1,1)); error = sqrt(abs(error)); diffphase=atan2(imag(CCmax),real(CCmax)); md2 = fix(m/2); nd2 = fix(n/2); if rloc > md2 row_shift = rloc - m - 1; else row_shift = rloc - 1; end if cloc > nd2 col_shift = cloc - n - 1; else col_shift = cloc - 1; end output=[error,diffphase,row_shift,col_shift]; % Partial-pixel shift else % First upsample by a factor of 2 to obtain initial estimate % Embed Fourier data in a 2x larger array [m,n,o]=size(buf1ft); mlarge=m*2; nlarge=n*2; CC=zeros(mlarge,nlarge,o); CC(m+1-fix(m/2):m+1+fix((m-1)/2),n+1-fix(n/2):n+1+fix((n-1)/2),:) = ... fftshift(buf1ft).*conj(fftshift(buf2ft)); % Compute crosscorrelation and locate the peak CC = ifft2(ifftshift(CC)); % Calculate cross-correlation CC = mean(CC,3); [max1,loc1] = max(CC); [max2,loc2] = max(max1); rloc=loc1(loc2);cloc=loc2; CCmax=CC(rloc,cloc); % Obtain shift in original pixel grid from the position of the % crosscorrelation peak [m,n] = size(CC); md2 = fix(m/2); nd2 = fix(n/2); if rloc > md2 row_shift = rloc - m - 1; else row_shift = rloc - 1; end if cloc > nd2 col_shift = cloc - n - 1; else col_shift = cloc - 1; end row_shift=row_shift/2; col_shift=col_shift/2; % If upsampling > 2, then refine estimate with matrix multiply DFT if usfac > 2, %%% DFT computation %%% % Initial shift estimate in upsampled grid row_shift = round(row_shift*usfac)/usfac; col_shift = round(col_shift*usfac)/usfac; dftshift = fix(ceil(usfac*1.5)/2); %% Center of output array at dftshift+1 % Matrix multiply DFT around the current shift estimate CC = conj(dftups(buf2ft.*conj(buf1ft),ceil(usfac*1.5),ceil(usfac*1.5),usfac,... dftshift-row_shift*usfac,dftshift-col_shift*usfac))/(md2*nd2*usfac^2); % Locate maximum and map back to original pixel grid CC = mean(CC,3); [max1,loc1] = max(CC); [max2,loc2] = max(max1); rloc = loc1(loc2); cloc = loc2; CCmax = CC(rloc,cloc); rg00 = dftups(buf1ft.*conj(buf1ft),1,1,usfac)/(md2*nd2*usfac^2); rf00 = dftups(buf2ft.*conj(buf2ft),1,1,usfac)/(md2*nd2*usfac^2); rloc = rloc - dftshift - 1; cloc = cloc - dftshift - 1; row_shift = row_shift + rloc/usfac; col_shift = col_shift + cloc/usfac; % If upsampling = 2, no additional pixel shift refinement else rg00 = sum(sum( buf1ft.*conj(buf1ft) ))/m/n; rf00 = sum(sum( buf2ft.*conj(buf2ft) ))/m/n; end rg00 = mean(rg00,3); rf00 = mean(rf00,3); error = 1.0 - CCmax.*conj(CCmax)/(rg00*rf00); error = sqrt(abs(error)); diffphase=atan2(imag(CCmax),real(CCmax)); % If its only one row or column the shift along that dimension has no % effect. We set to zero. if md2 == 1, row_shift = 0; end if nd2 == 1, col_shift = 0; end output=[error,diffphase,row_shift,col_shift]; end % Compute registered version of buf2ft if (nargout > 1)&&(usfac > 0), [nr,nc,nBands]=size(buf2ft); Nr = ifftshift([-fix(nr/2):ceil(nr/2)-1]); Nc = ifftshift([-fix(nc/2):ceil(nc/2)-1]); [Nc,Nr] = meshgrid(Nc,Nr); Greg = buf2ft.*repmat(exp(i*2*pi*(-row_shift*Nr/nr-col_shift*Nc/nc)),[1 1 nBands]); Greg = Greg*exp(i*diffphase); elseif (nargout > 1)&&(usfac == 0) Greg = buf2ft*exp(i*diffphase); end return function out=dftups(in,nor,noc,usfac,roff,coff) % function out=dftups(in,nor,noc,usfac,roff,coff); % Upsampled DFT by matrix multiplies, can compute an upsampled DFT in just % a small region. % usfac Upsampling factor (default usfac = 1) % [nor,noc] Number of pixels in the output upsampled DFT, in % units of upsampled pixels (default = size(in)) % roff, coff Row and column offsets, allow to shift the output array to % a region of interest on the DFT (default = 0) % Recieves DC in upper left corner, image center must be in (1,1) % Manuel Guizar - Dec 13, 2007 % Modified from dftus, by J.R. Fienup 7/31/06 % This code is intended to provide the same result as if the following % operations were performed % - Embed the array "in" in an array that is usfac times larger in each % dimension. ifftshift to bring the center of the image to (1,1). % - Take the FFT of the larger array % - Extract an [nor, noc] region of the result. Starting with the % [roff+1 coff+1] element. % It achieves this result by computing the DFT in the output array without % the need to zeropad. Much faster and memory efficient than the % zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac] [nr,nc,nBands]=size(in); % Set defaults if exist('roff')~=1, roff=0; end if exist('coff')~=1, coff=0; end if exist('usfac')~=1, usfac=1; end if exist('noc')~=1, noc=nc; end if exist('nor')~=1, nor=nr; end % Compute kernels and obtain DFT by matrix products kernc=exp((-i*2*pi/(nc*usfac))*( ifftshift([0:nc-1]).' - floor(nc/2) )*( [0:noc-1] - coff )); kernr=exp((-i*2*pi/(nr*usfac))*( [0:nor-1].' - roff )*( ifftshift([0:nr-1]) - floor(nr/2) )); out=zeros(nor,noc,nBands); for (bandIdx=1:nBands), out(:,:,bandIdx)=kernr*in(:,:,bandIdx)*kernc; end return
github
mc225/Softwares_Tom-master
tutorial_filters.m
.m
Softwares_Tom-master/ThirdPartyDependencies/plot2svg/tutorial_filters.m
5,536
utf_8
ef877466a3cde2e45877aa3976c3b92c
function tutorial_filters file = 'matterhorn_small.jpg'; fig = figure; set(fig, 'DefaultAxesFontName', 'Arial') set(fig, 'DefaultAxesFontSize', 6) plotCounter = 1; xPlots = 3; yPlots = 4; % a) Original plot with a line, patch, and text object subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; title('a) Original') % b) Adding a Gaussian blur filter for each object that uses the standard % color channels for the blur operation. The bounding box is covering % the axis region for each object. Note: there is no bounding box % overlap specified. This would lead to some distortion at the border if % a offset filter followed the blur filter. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'off') svgGaussianBlur(h, 'SourceGraphic', 2, 'blur'); title('b) Blur on (S = SourceGraphic)') % c) Identical to b) but the blur filter uses the alpha channel. This mode % is very useful to create shadows. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'off') svgGaussianBlur(h, 'SourceAlpha', 2, 'blur'); title('c) Blur (S = SourceAlpha)') % d) Adding a image filter that covers the whole axis region. The filter % replaces the object as no other combine filter is defined. The image % is scaled to the bounding box. This leads to a distortion of the % aspect ratio. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'on') svgImage(h, file, 'none', 'pic'); title('d) Pict (BB = axes, none)') % e) Identical to d) but with correct aspect ratio of the image. The % setting 'xMidYMid slice' centers the image and scales x and y so that % both cover the bonding box region defined by the axis region. The % clipping of the axis object removes the overlap. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'on') svgImage(h, file, 'xMidYMid slice', 'pic'); title('e) Pict (BB = axes, xMidYMid slice)') % f) Identical to e) but with image scaling 'xMidYMid meet'. This setting % also conserves the aspect ratio. However, the image may no more cover % the whole bounding box. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'on') svgImage(h, file, 'xMidYMid meet', 'pic'); title('f) Pict (BB = axes, xMidYMid meet)') % h) Identical to f) but with bounding box defined by the object. The % bounding box may be larger than the object extension due to line % width and marker size. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'element', 0, 'on') svgImage(h, file, 'xMidYMid meet', 'pic'); title('g) Pict (BB = element, xMidYMid meet)') % g) Now we add a composite filter that combines the filter result from the % image filter and the source graphic. The keyword 'atop' restricts the % image filter to the object boundaries. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'on') svgImage(h, file, 'xMidYMid slice', 'pic'); svgComposite(h, 'pic', 'SourceGraphic', 'atop', 'obj'); title('h) Pict (BB = axes, xMidYMid slice)') % i) Identical to g) but with a filter bounding box defined by the object % extension. The image scaling 'xMidYMid meet' is not well suited for % this application. The image is not covering the whole object. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'element', 0, 'on') svgImage(h, file, 'xMidYMid meet', 'pic'); svgComposite(h, 'pic', 'SourceGraphic', 'atop', 'obj'); title('i) Pict (BB = element, xMidYMid meet)') % j) Identical to i) but with a better image scaling that conserves the % spect ratio and makes sure that the whole bounding box is covered. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'element', 0, 'on') svgImage(h, file, 'xMidYMid slice', 'pic'); svgComposite(h, 'pic', 'SourceGraphic', 'atop', 'obj'); title('j) Pict (BB = element, xMidYMid slice)') % k) Identical to j) but with a bounding box overlap of 5 pixel. This is % important to avoid distortions at the border. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'element', 5, 'on') svgImage(h, file, 'xMidYMid slice', 'pic'); svgComposite(h, 'pic', 'SourceGraphic', 'atop', 'obj'); title('k) Pict (BB = element, xMidYMid slice)') % l) Identical to k) but the composition is based on the image filter and a % blur filter. In addition, the image filter covers the whole axis % region. subplot(yPlots, xPlots, plotCounter) plotCounter = plotCounter + 1; h = create_plot; svgBoundingBox(h, 'axes', 0, 'on') svgImage(h, file, 'xMidYMid slice', 'pic'); svgGaussianBlur(h, 'SourceAlpha', 2, 'blur'); svgComposite(h, 'pic', 'blur', 'atop', 'obj'); title('l) Blur + Pict (BB = axes, xMidYMid slice)') % Save the result plot2svg('tutorial_filters.svg') function handles = create_plot % Helper function to plot the objects hold on s1 = text(3, 1, 'plot2svg', 'FontName', 'Arial', 'FontSize', 16, ... 'Color', 'red', 'FontWeight', 'bold', 'Margin', 0.01, 'Clipping', 'on'); s2 = plot([6 8], [3 6], 'b', 'LineWidth', 20); s3 = patch([1 2 3 4 3 2 1], [1 3 2 3 4 5 3],'black'); handles = [s1 s2 s3]; box on grid on axis([0 10 0 6])
github
mc225/Softwares_Tom-master
recordImagePerWavelength.m
.m
Softwares_Tom-master/PrincipalComponentAnalysis/recordImagePerWavelength.m
3,539
utf_8
08c86de060c5e8d386822d22b45d3920
% recordImagePerWavelength(sampledWavelengths,outputFolder,nbImagesPerWavelength) % % Function to record a series of speckle images for various sampledWavelengths % % sampledWavelengths: the range of sampledWavelengths (in meters) % outputFolder: a string indicating where the data is to be saved. Default: % measurement followed by the data and time. % nbImagesPerWavelength: the number of images to record per wavelength, % default: 100 % function recordImagePerWavelength(sampledWavelengths,outputFolder,nbImagesPerWavelength) if (nargin<1 || isempty(sampledWavelengths)) % sampledWavelengths=[695:.2:705 706:720]*1e-9; sampledWavelengths=[745:805]*1e-9; sampledWavelengths=unique(round(sampledWavelengths*1e15)*1e-15); %Remove doubles (upto fm) end if (nargin<2 || isempty(outputFolder)) outputFolder=strcat('D:\SpeckleWaveMeter\BroadBand\Alumina\measurement_',datestr(now(),'YYYY-mm-dd_HH_MM_ss')); end if (nargin<3 || isempty(nbImagesPerWavelength)) nbImagesPerWavelength=100; end logMessage('Measuring for %d wavelengths.',length(sampledWavelengths)); cam=PikeCam(); cam.regionOfInterest=[0 0 480 320]; cam.integrationTime=25e-3; % initial integration time only cam.gain=100; mkdir(outputFolder); images=[]; for wavelengthIdx=1:length(sampledWavelengths), wavelength=sampledWavelengths(wavelengthIdx); logMessage('Set laser wavelength to %0.6f nm and hit enter.',wavelength*1e9); input(''); logMessage('ACQUIRING! DON''T MOVE!'); images=acquireWithoutSaturating(cam,nbImagesPerWavelength); images=single(images); logMessage('Peak intensity %f, interframe error %f, rel. interframe error %f',[max(images(:)) mean(mean(std(images,0,3))) mean(mean(std(images,0,3)))/mean(images(:))]); % Save output outputFileName=strcat(outputFolder,sprintf('/imagesForWavelength%0.6fnm.mat',wavelength*1e9)); recordingTime=datestr(clock(),'dd-mmm-yyyy HH:MM:SS.FFF'); camGain=cam.gain; camIntegrationTime=cam.integrationTime; camRegionOfInterest=cam.regionOfInterest; save(outputFileName,'sampledWavelengths','images','recordingTime','camGain','camIntegrationTime','camRegionOfInterest'); logMessage('---------------------- %0.1f%% done ------------------------',100*wavelengthIdx/length(sampledWavelengths)); end end function img=acquireWithoutSaturating(cam,nbImagesPerWavelength) if (nargin<2 || isempty(nbImagesPerWavelength)) nbImagesPerWavelength=1; end shortestIntegrationTime=0.01e-3; longestIntegrationTime=2000e-3; cam.background=0; img=cam.acquire(); while ((max(img(:))>=1 && cam.integrationTime>shortestIntegrationTime*2) || (max(img(:))<.5 && cam.integrationTime<longestIntegrationTime/2)) if (max(img(:))>=1) cam.integrationTime=cam.integrationTime/2; else cam.integrationTime=cam.integrationTime*2; end % logMessage('Integration time %f ms',cam.integrationTime*1e3); img=cam.acquire(); end if (max(img(:))>=1) logMessage('Too bright!!!'); end if (max(img(:))<=.5) logMessage('Too dark!!!'); end if (nbImagesPerWavelength>1) img(:,:,nbImagesPerWavelength)=0; end for (imgIdx=2:nbImagesPerWavelength) img(:,:,imgIdx)=cam.acquire(); end img=img/cam.integrationTime; end
github
mc225/Softwares_Tom-master
scanVoltages.m
.m
Softwares_Tom-master/PrincipalComponentAnalysis/scanVoltages.m
5,341
utf_8
b90ef136aeea13d562314a19ada693d8
% scanVoltages(voltages,outputFolder,nbImagesPerWavelength,laserStabilizationTime) % % Function to record a series of speckle images for various wavelengths % automatically. % % voltages: the range of voltages to drive the Sacher laser % outputFolder: a string indicating where the data is to be saved. Default: % D:\SpeckleWaveMeter\NarrowBand\FabryPerot\withoutDiffuserAnd2F\measurement followed by the data and time. % nbImagesPerWavelength: the number of images to record per wavelength, % default: 50 % laserStabilizationTime: the number of seconds to wait after changing the wavelength % function scanVoltages(voltages,outputFolder,nbImagesPerWavelength,laserStabilizationTime) if (nargin<1 || isempty(voltages)) %voltages=[-5:0.5:-1 -0.9:0.1:0.9 1:.5:5]; voltages=[-5:0.1:5]; end if (nargin<2 || isempty(outputFolder)) outputFolder=strcat('D:\SpeckleWaveMeter\NarrowBand\FabryPerot\withoutDiffuserAnd2F\measurement_',datestr(now(),'YYYY-mm-dd_HH_MM_ss')); end if (nargin<3 || isempty(nbImagesPerWavelength)) nbImagesPerWavelength=100; end if (nargin<4 || isempty(laserStabilizationTime)) laserStabilizationTime=60; % in seconds end emailToInformOfProgress='[email protected]'; calibrationVoltages=[-5:5]; calibrationWavelengths=(785+[.067 .096 .139 .186 .239 .296 .357 .414 .473 .535 .596])*1e-9; voltageWavelengthModel=fit(calibrationVoltages.',calibrationWavelengths.','smoothingspline'); sampledWavelengths=voltageWavelengthModel(voltages); cam=PikeCam(); cam.regionOfInterest=[0 0 480 320]; cam.integrationTime=4000e-3; % initial integration time only cam.gain=630; startTime=clock(); for idx=1:4, img=cam.acquire(); end acquisitionTime=etime(clock(),startTime)/4; logMessage('Measuring %d images at %d wavelengths. This experiment will take approximately %.1f hours',[nbImagesPerWavelength length(sampledWavelengths),length(sampledWavelengths)*(laserStabilizationTime+nbImagesPerWavelength*acquisitionTime)/60/60]); DAQSession = daq.createSession('ni'); DAQSession.addAnalogOutputChannel('Dev2',0,'Voltage'); mkdir(outputFolder); logMessage('Setting the initial wavelength...'); % Move to beginning of range in one second for (fraction=[0:.01:1]) DAQSession.outputSingleScan(voltages(1)*fraction); pause(.01); end %Wait for user to start the experiment minutesToWait=input('Enter minutes to wait for before starting the experiment (default 0):'); try if (isempty(minutesToWait)) minutesToWait=0; else minutesToWait=minutesToWait(1); end if (minutesToWait>0) logMessage('Waiting for %0.1f minutes.',minutesToWait); pause(60*minutesToWait); end logMessage('Starting now...'); % Scan all wavelengths images=[]; for wavelengthIdx=1:length(sampledWavelengths), wavelength=sampledWavelengths(wavelengthIdx); logMessage('Setting the laser wavelength to %0.6f nm and waiting %0.1f seconds...',[wavelength*1e9 laserStabilizationTime]); DAQSession.outputSingleScan(voltages(wavelengthIdx)); pause(laserStabilizationTime); logMessage('Recording...'); for (imageIdx=1:nbImagesPerWavelength) img=cam.acquire(); if (isempty(images)) images=zeros([size(img,1) size(img,2) nbImagesPerWavelength],'single'); end images(:,:,imageIdx)=single(img); end logMessage('Peak intensity %f, interframe error %f, rel. interframe error %f',[max(images(:)) mean(mean(std(images,0,3))) mean(mean(std(images,0,3)))/mean(images(:))]); outputFileName=strcat(outputFolder,sprintf('/imagesForWavelength%0.6fnm.mat',wavelength*1e9)); recordingTime=datestr(clock(),'dd-mmm-yyyy HH:MM:SS.FFF'); camGain=cam.gain; camIntegrationTime=cam.integrationTime; camRegionOfInterest=cam.regionOfInterest; save(outputFileName,'sampledWavelengths','images','recordingTime','camGain','camIntegrationTime','camRegionOfInterest','voltages'); logMessage('---------------------- %0.1f%% done ------------------------',100*wavelengthIdx/length(sampledWavelengths)); if (mod(wavelengthIdx,10)==1) progressMessage=sprintf('%0.1f%% done ---------------------------------',100*wavelengthIdx/length(sampledWavelengths)); logMessage([progressMessage,'\n and written to file: %s'],outputFileName,'[email protected]'); end end logMessage('Returning to central wavelength...'); % Move back to center in one second for (fraction=[1:-.01:0]) DAQSession.outputSingleScan(voltages(end)*fraction); pause(.01); end delete(DAQSession); logMessage(['Sacher measurement - all done and written to folder ' strrep(outputFolder,'\','/')],[],emailToInformOfProgress); catch Exc logMessage('Sacher measurement - error: %s',Exc.message,emailToInformOfProgress); rethrow(Exc); end end
github
mc225/Softwares_Tom-master
determineWavelengthFromSpeckleImage.m
.m
Softwares_Tom-master/PrincipalComponentAnalysis/determineWavelengthFromSpeckleImage.m
2,776
utf_8
f28b7e4b3758bfb5f0e441b836206000
% [wavelength testImagesInPrincipleComponentSpace] = determineWavelengthFromSpeckleImage(img,calibration) % % Determines the wavelength corresponding to a speckle image given the % calibration data. % % Inputs: % img: a 2D image, or a 3D stack of speckle testImages % calibration: a struct with calibration data % % Outputs: % wavelength: the wavelength corresponding to the speckle image, or a % vector with values for each image in a stack. % testImagesInPrincipleComponentSpace: matrix with in the columns the % coordinates of the testImages in principal component basis % % function [wavelengths testImagesInPrincipleComponentSpace] = determineWavelengthFromSpeckleImage(testImages,calibration) testInputSize=size(testImages); if (length(testInputSize)<3) testInputSize(3)=1; end nbTrainingSamplesPerWavelength=numel(calibration.trainingWavelengths)/prod(testInputSize(4:end)); % Preprocess testImages=testImages./repmat(sqrt(sum(sum(testImages.^2))),[testInputSize(1:2) 1]); testImages=testImages-repmat(calibration.meanNormalizedImage,[1 1 testInputSize(3:end)]); % Vectorize the testImages testImages=reshape(testImages,[prod(testInputSize(1:2)) prod(testInputSize(3:end))]); % Classify the input testImagesInPrincipleComponentSpace=calibration.principalComponentsInImageSpace*testImages; %Nearest neighbor wavelengths=[]; for (imgIdx=1:prod(testInputSize(3:end))) ind=dsearchn(calibration.trainingImagesInPrincipalComponentSpace',testImagesInPrincipleComponentSpace(:,imgIdx)'); wavelengths(end+1)=calibration.trainingWavelengths(ind); detectedWavelengthIdx=1+floor((ind-1)/nbTrainingSamplesPerWavelength); end % %Linear % wavelengths = classify(testImagesInPrincipleComponentSpace',calibration.trainingImagesInPrincipalComponentSpace',calibration.trainingWavelengths,'linear'); % %Mahalanobis % wavelengths = classify(testImagesInPrincipleComponentSpace',calibration.trainingImagesInPrincipalComponentSpace',calibration.trainingWavelengths,'mahalanobis'); % %Support Vector Machine % wavelengthIndexes = multisvm(calibration.trainingImagesInPrincipalComponentSpace',calibration.trainingWavelengths(:),testImagesInPrincipleComponentSpace'); % wavelengths=calibration.trainingWavelengths(wavelengthIndexes); % Shape back to input dimensions if (length(testInputSize)>3) wavelengths=reshape(wavelengths,testInputSize(3:end)); end nbPrincipalComponents=size(calibration.principalComponentsInImageSpace,1); testImagesInPrincipleComponentSpace=reshape(testImagesInPrincipleComponentSpace,[nbPrincipalComponents testInputSize(3:end)]); end
github
mc225/Softwares_Tom-master
analyzeSpeckleImages.m
.m
Softwares_Tom-master/PrincipalComponentAnalysis/analyzeSpeckleImages.m
7,432
utf_8
b7afb1ec12c2e26235734dcf7fd22e27
% analyzeSpeckleImages(inputFolderName,outputFileName) % % inputFolderName: a string representing the input folder created by analyzeSpeckleImages.m % outputFileName: the filename of the output .mat file.# % Default: the same as the input folder. % function analyzeSpeckleImages(inputFolderName,outputFileName) close all; if (nargin<1 || isempty(inputFolderName)) % inputFolderName='measurement_2013-01-16_12_10_55_alumina1_50pm'; % inputFolderName='measurement2013-01-15_13_20_53_alumina1_10pm'; % inputFolderName='measurement_2013-01-16_12_40_07_beamprofile_50pm'; % inputFolderName='D:\alumina2\measurement_2013-01-17_17_21_20_longAndRedone'; % inputFolderName='D:\alumina2\measurement_2013-01-17_21_02_12_785.3032nm_repeated'; % inputFolderName='D:\SpeckleWaveMeter\NarrowBand\FabryPerot\withoutDiffuserAnd2F\measurement_2013-01-27_12_53_23_2Fsetup'; % inputFolderName='D:\SpeckleWaveMeter\BroadBand\Alumina\measurement_2013-01-27_21_28_41_gain0_100pm_695nm_705nm'; inputFolderName='D:\SpeckleWaveMeter\BroadBand\FabryPerot\measurement_2013-01-27_18_47_13_gain0_100pm_695nm_700nm_and_1000pm_700nm_720nm'; end if (nargin<2 || isempty(outputFileName)) outputFileName=strcat(inputFolderName,'.mat'); end % % Read measurement data from disk % % Detect which measurements have been done files=dir(strcat(inputFolderName,'/imagesForWavelength*nm.mat')); fileNames={files.name}; clear files; wavelengths=regexp(fileNames,'imagesForWavelength([\d]+(\.[\d]*)?)nm.mat','tokens','once'); wavelengths=cellfun(@(c) str2double(c)*1e-9,wavelengths); % Use all wavelengths wavelengthSelection=logical(ones(size(wavelengths))); % Handle only selected wavelengths %wavelengthSelection=wavelengths<=785.170e-9 & wavelengths>=785.160e-9; % wavelengthSelection=mod(wavelengths,5e-12)==0 | abs(wavelengths-785.174e-9)<1e-15; % Some configuration nbOfTrainingImages=50; nbOfTestImages=10; calibration={}; calibration.regionOfInterest=[100 0 300 300]; maxNumberOfPrincipalComponents=9; signalToNoise=10.0; % Read all files and pick out a smaller section allImages=single([]); testWavelengths=[]; for (fileIdx=find(wavelengthSelection)) currentFileName=strcat(inputFolderName,'/',fileNames{fileIdx}) load(currentFileName,'images'); images=images(calibration.regionOfInterest(1)+[1:calibration.regionOfInterest(3)],calibration.regionOfInterest(2)+[1:calibration.regionOfInterest(4)],1:(nbOfTrainingImages+nbOfTestImages)); newTrainingWavelengths=ones(1,nbOfTrainingImages)*wavelengths(fileIdx); newTestWavelengths=ones(1,nbOfTestImages)*wavelengths(fileIdx); % images=mean(images,3); % Average to safe memory if (~isempty(allImages)) allImages(:,:,:,end+1)=images; calibration.trainingWavelengths(end+[1:nbOfTrainingImages])=newTrainingWavelengths; testWavelengths(end+[1:nbOfTestImages])=newTestWavelengths; else allImages=images; calibration.trainingWavelengths=newTrainingWavelengths; testWavelengths=newTestWavelengths; end end wavelengths=wavelengths(wavelengthSelection); % % Show the intensity spot for the 2F system FP % figure; % plot(wavelengths*1e9,1000*squeeze(mean(mean(allImages(125:165,200:232,1,:)))).'); xlim(wavelengths([1 end])*1e9); % % Pre-process the data and split it in a training and a test data set % %Split data set in training and test set trainingImages=allImages(:,:,1:nbOfTrainingImages,:); testImages=allImages(:,:,nbOfTrainingImages+[1:nbOfTestImages],:); clear allImages; testInputSize=size(testImages); trainingInputSize=size(trainingImages); %Normalize the training images to L2 norm 1 and subtract the mean trainingImages=trainingImages./repmat(sqrt(sum(sum(trainingImages.^2))),[trainingInputSize(1:2) 1 1]); calibration.meanNormalizedImage=mean(trainingImages(:,:,:),3); trainingImages=trainingImages-repmat(calibration.meanNormalizedImage,[1 1 trainingInputSize(3:end)]); logMessage('Using %d images for training and %d for testing.',[trainingInputSize(3) testInputSize(3)]); % Vectorize the images, so each images is a column in a 2D matrix vectorizedImages=reshape(trainingImages,[prod(trainingInputSize(1:2)) prod(trainingInputSize(3:end))]).'; clear trainingImages; % % Calculate the principal components % [eigenVectors,eigenValues]=eig(vectorizedImages*vectorizedImages'); %Determine how many principal components we want to use energyPerEigenValue=cumsum(eigenValues(end:-1:1)); energyPerEigenValue=energyPerEigenValue/energyPerEigenValue(end); numberOfComponentsToUse=min(maxNumberOfPrincipalComponents,find(energyPerEigenValue>(1-1/signalToNoise),1,'first')); % Show the principle components in 'image' space numberOfProbesToShow=9; imagesInNormalizedPCBasis=diag(1./sqrt(diag(eigenValues)))*eigenVectors'*vectorizedImages; figure(); for (probeIdx=1:numberOfProbesToShow) subplot(floor(sqrt(numberOfProbesToShow)),ceil(numberOfProbesToShow/floor(sqrt(numberOfProbesToShow))),probeIdx); imagesc(reshape(imagesInNormalizedPCBasis(end+1-probeIdx,:),trainingInputSize(1:2))); drawnow(); end % Calculate the principal components and project the calibration images onto it calibration.principalComponentsInImageSpace=eigenVectors'*vectorizedImages; calibration.principalComponentsInImageSpace=calibration.principalComponentsInImageSpace(end-numberOfComponentsToUse+1:end,:); calibration.trainingImagesInPrincipalComponentSpace=calibration.principalComponentsInImageSpace*vectorizedImages'; % % Save the principal components and other relevant data % logMessage('Saving processed data to file %s.',outputFileName); save(outputFileName,'-struct','calibration'); % % Test % relativeEigenValues=diag(eigenValues)/sum(diag(eigenValues)); variabilityConsidered=sum(relativeEigenValues(end-numberOfComponentsToUse+1:end)) %% Check if we have test inputs if (nbOfTestImages>0) [detectedWavelengths testImagesInPrincipleComponentSpace] = determineWavelengthFromSpeckleImage(testImages,calibration); % % Output results % figure(); deltaLambda=diff(wavelengths(1:2)); wavelengthIndexMismatch=(detectedWavelengths(:).'-testWavelengths)/deltaLambda; detectionEfficiency=sum(wavelengthIndexMismatch<1)/length(wavelengthIndexMismatch) hist(wavelengthIndexMismatch(:),50) figure(); subplot(221);scatter(testImagesInPrincipleComponentSpace(end,:),testImagesInPrincipleComponentSpace(end-1,:),'+'); title('1-2'); subplot(222);scatter(testImagesInPrincipleComponentSpace(end,:),testImagesInPrincipleComponentSpace(end-2,:),'+'); title('1-3'); subplot(223);scatter(testImagesInPrincipleComponentSpace(end-1,:),testImagesInPrincipleComponentSpace(end-2,:),'+'); title('2-3'); subplot(224);scatter3(testImagesInPrincipleComponentSpace(end,:),testImagesInPrincipleComponentSpace(end-1,:),testImagesInPrincipleComponentSpace(end-2,:),'+'); title('1-2-3'); end %% end
github
mc225/Softwares_Tom-master
testDisorderSpectrometer.m
.m
Softwares_Tom-master/SpeckleSpectrometer/testDisorderSpectrometer.m
2,786
utf_8
dc177aec1ad2fe01958edbcf500e1f78
% % function testDisorderSpectrometer(transferMatrix,wavelengths,cam,slm,source) if (nargin<1) logMessage('Please specify the transferMatrix!'); return; end if (nargin<2 || isempty(wavelengths)) nbWavelengths=[size(transferMatrix,3) size(transferMatrix,4)]; wavelengths=[500+[1:prod(nbWavelengths)]]*1e-9; wavelengths=reshape(wavelengths,nbWavelengths); end if (nargin<3 || isempty(slm)) slm=PhaseSLM(1); %Use the whole of display 1 slm.referenceDeflectionFrequency=[1/10 1/10]; end if (nargin<4 || isempty(cam)) cam=BaslerGigECam(); cam.integrationTime=5e-3; cam.gain=1; end if (nargin<5 || isempty(source)) % Initialize the SuperK source=SuperK(); source.targetPower=0.50; % Half power end % Adjust the grating so that the first order diffraction always goes % through the same spot in the iris, independently of the wavelength baseWavelength=500e-9; baseDeflectionFrequency=slm.referenceDeflectionFrequency*baseWavelength; baseTwoPiEquivalent=slm.twoPiEquivalent/baseWavelength; % Calculate the final mask nbWavelengths=size(wavelengths); amplificationLimit=3; spectrometerSuperpositionMask=zeros(slm.regionOfInterest(3:4)); for (wavelengthIdx=1:prod(nbWavelengths)) pupilFunctionCorrection=calcCorrectionFromPupilFunction(transferMatrix(:,:,wavelengthIdx),amplificationLimit); spectrometerSuperpositionMask=spectrometerSuperpositionMask+pupilFunctionCorrection; end % Load the mask permanently onto the SLM slm.correctionFunction=spectrometerSuperpositionMask; % Display fig=figure; try wavelengthIdx=1; while(ishandle(fig)) wavelength=wavelengths(wavelengthIdx); %Adjust the SLM for the new wavelength slm.referenceDeflectionFrequency=baseDeflectionFrequency/wavelength; % Keep tilt the same on the sample slm.twoPiEquivalent=baseTwoPiEquivalent*wavelength; % Keep efficiency identical % slm.correctionFunction=calcCorrectionFromPupilFunction(transferMatrix(:,:,wavelengthIdx),amplificationLimit); slm.modulate(1); % Update the SLM with the new grating % Set the source wavelength now source.setWavelengths(wavelength); img=cam.acquire(); if (ishandle(fig)) figure(fig); showImage(img); title(sprintf('Wavelength: %0.1f nm',wavelength*1e9)); drawnow(); pause(.05); wavelengthIdx=1+mod(wavelengthIdx,numel(wavelengths)); end end catch Exc logMessage(Exc); end end
github
mc225/Softwares_Tom-master
calibrateDisorderSpectrometer.m
.m
Softwares_Tom-master/SpeckleSpectrometer/calibrateDisorderSpectrometer.m
5,646
utf_8
1251a14260a2d949e0a73769113d7f78
% calibrateSpectrometer(wavelengths,slm,cam,outputFileName) % % function calibrateDisorderSpectrometer(wavelengths,slm,cam,source,outputFileName,emailsToNotify) if (nargin<1 || isempty(wavelengths)) wavelengths=[550 650 600]*1e-9; % Put them in a rectangle factors=factor(numel(wavelengths)); gridSize(1)=prod(factors([1:floor(end/4) (floor(3*end/4)+1):end])); gridSize(2)=numel(wavelengths)/gridSize(1); wavelengths=reshape(wavelengths,gridSize).'; logMessage('Creating a grid of %dx%d for %d wavelengths.',[gridSize numel(wavelengths)]); end if (nargin<2 || isempty(slm)) slm=PhaseSLM(1); %Use the whole of display 1 slm.referenceDeflectionFrequency=[1/10 1/10]; end if (nargin<3 || isempty(cam)) cam=BaslerGigECam(); cam.integrationTime=3e-3; cam.gain=1; end if (nargin<4 || isempty(source)) % Initialize the SuperK source=SuperK(); source.targetPower=0.50; % Half power end if (nargin<5 || isempty(outputFileName)) outputFileName=[pwd(),'/spectrometerCalibration_',datestr(now(),'YYYY-mm-DD_HH-MM'),'.mat']; end progressEmailAddresses={'[email protected]','[email protected]'}; if (nargin<6 || isempty(emailsToNotify)) emailsToNotify=progressEmailAddresses; end nbWavelengths=size(wavelengths); baseWavelength=500e-9; probeGridSize=[25 25 3]; function cont=progressFunctor(fractionDone) cont=true; if (floor(fractionDone*100)>floor(prevFractionDone*100)) logMessage('%0.0f%% done.',100*fractionDone); prevFractionDone=fractionDone; end end baseDeflectionFrequency=slm.referenceDeflectionFrequency*baseWavelength; baseTwoPiEquivalent=slm.twoPiEquivalent/baseWavelength; initialCorrection=slm.correctionFunction; gridSpacing=[1 1]*min(cam.regionOfInterest(3)/nbWavelengths(1),cam.regionOfInterest(4)/nbWavelengths(2)); [targetPosY targetPosX]=ndgrid(round(cam.regionOfInterest(3)/2+([1:nbWavelengths(1)]-nbWavelengths(1)/2-1/2)*gridSpacing(1)),round(cam.regionOfInterest(4)/2+([1:nbWavelengths(2)]-nbWavelengths(2)/2-1/2)*gridSpacing(2))); minutesToWait=input('Enter the number of minutes to wait before starting the experiment: '); if (~isempty(minutesToWait)) logMessage('Waiting for %0.0f minutes to start experiment.',minutesToWait,emailsToNotify); originalSetPower=source.targetPower; pause(minutesToWait*60); logMessage('Starting measurement...'); source.targetPower=originalSetPower; else logMessage('Starting measurement immediately...'); end source.targetPower=0.50; % Half power transferMatrix=zeros([slm.regionOfInterest(3:4) nbWavelengths]); for (wavelengthIdx=1:prod(nbWavelengths)) wavelength=wavelengths(wavelengthIdx); targetPos=[targetPosY(wavelengthIdx) targetPosX(wavelengthIdx)]; %Adjust the SLM for the new wavelength slm.referenceDeflectionFrequency=baseDeflectionFrequency/wavelength; % Keep tilt the same on the sample slm.twoPiEquivalent=baseTwoPiEquivalent*wavelength; % Keep efficiency identical logMessage('Setting the wavelength to %0.3f nm',wavelength*1e9); source.setWavelengths(wavelength,0.5); % half the modulation amplitude prevFractionDone=0; [measuredPupilFunction eigenVector probeField4DMatrix sampleX sampleY]=aberrationMeasurement(slm,probeGridSize,@() probeFunctor(cam,targetPos),@progressFunctor); transferMatrix(:,:,wavelengthIdx)=measuredPupilFunction./initialCorrection; save(outputFileName,'wavelengths','transferMatrix'); logMessage('Probing for wavelength %0.0fnm done.',wavelength*1e9,progressEmailAddresses); logMessage('Partial output written to %s.',outputFileName); end % Calculate the final mask amplificationLimit=1; spectrometerSuperpositionMask=zeros(slm.regionOfInterest(3:4)); for (wavelengthIdx=1:prod(nbWavelengths)) pupilFunctionCorrection=calcCorrectionFromPupilFunction(transferMatrix(:,:,wavelengthIdx).*conj(initialCorrection),amplificationLimit); spectrometerSuperpositionMask=spectrometerSuperpositionMask+pupilFunctionCorrection; end spectrometerSuperpositionMask=spectrometerSuperpositionMask./max(abs(spectrometerSuperpositionMask(:))); % Save the results pupilFunctionCorrection=spectrometerSuperpositionMask; initialCorrection=slm.correctionFunction; referenceDeflectionFrequency=slm.referenceDeflectionFrequency; slmRegionOfInterest=slm.regionOfInterest; twoPiEquivalent=slm.twoPiEquivalent; save(outputFileName,'wavelengths','transferMatrix','pupilFunctionCorrection','referenceDeflectionFrequency','slmRegionOfInterest','twoPiEquivalent','initialCorrection','gridSpacing','targetPosX','targetPosY'); logMessage('Experiment done, output written to %s.',outputFileName,emailsToNotify); %,outputFileName); % logMessage('Done, displaying results now... (Close figure window to exit)'); % testDisorderSpectrometer(transferMatrix,wavelengths,cam,slm,source); source.delete(); % Shut down end function [value auxValues]=probeFunctor(cam,centerPos) probeSize=[3 3]; img=cam.acquire(); vals=img(centerPos(1)-cam.regionOfInterest(1)+[-floor(probeSize(1)/2):floor((probeSize(1)-1)/2)],centerPos(2)-cam.regionOfInterest(2)+[-floor(probeSize(1)/2):floor((probeSize(1)-1)/2)]); value=mean(vals(:)); auxValues=[]; end
github
mc225/Softwares_Tom-master
recordScannedWavelength.m
.m
Softwares_Tom-master/SpeckleSpectrometer/recordScannedWavelength.m
5,350
utf_8
a2019dd9e1e9d8b21f48c320b5657800
function recordScannedWavelength(wavelengths,slm,cam,source,outputFileName) if (nargin<1 || isempty(wavelengths)) wavelengths=[500:1:700]*1e-9; end if (nargin<2 || isempty(slm)) slm=PhaseSLM(1); %Use the whole of display 1 slm.referenceDeflectionFrequency=[1/10 1/10]; end if (nargin<3 || isempty(cam)) cam=BaslerGigECam(); cam.integrationTime=50e-3; cam.gain=50; cam.numberOfFramesToAverage=4; % cam.acquireBackground(); end if (nargin<4 || isempty(source)) % Initialize the SuperK source=SuperK(); source.targetPower=1.0; end if (nargin<5 || isempty(outputFileName)) outputFileName='scan500to700nmGaPGeEdgeScratch'; end emailsToNotify={'[email protected]','[email protected]'}; slmMask=@(X,Y) sqrt(X.^2+Y.^2)<200; % IC=load('C:\Users\nkt\Documents\MATLAB\intensityCorrectionOrig.mat'); % source.setIntensityCorrection(IC.wavelengths,IC.intensityCorrection); if (nargin==0) waitForUserSpecifiedTime(); end nbWavelengths=numel(wavelengths); % Adjust the grating so that the first order diffraction always goes % through the same spot in the iris, independently of the wavelength baseWavelength=500e-9; baseDeflectionFrequency=slm.referenceDeflectionFrequency*baseWavelength; baseTwoPiEquivalent=slm.twoPiEquivalent/baseWavelength; % Open the video output file recordingObj = VideoWriter([outputFileName,'.avi'],'Uncompressed AVI'); %'Motion JPEG AVI'); %'Uncompressed AVI'); recordingObj.FrameRate=25; open(recordingObj); detectorNoise=[]; differencesWithInitial=zeros(1,nbWavelengths); differencesWithPrevious=zeros(1,nbWavelengths); measuredIntensities=zeros(1,nbWavelengths); images=zeros([cam.regionOfInterest(3:4) nbWavelengths],'single'); for (wavelengthIdx=1:nbWavelengths) wavelength=wavelengths(wavelengthIdx); logMessage('Doing wavelength %0.1f.',wavelength*1e9); %Adjust the SLM for the new wavelength slm.referenceDeflectionFrequency=baseDeflectionFrequency/wavelength; % Keep tilt the same on the sample slm.twoPiEquivalent=baseTwoPiEquivalent*wavelength; % Keep efficiency identical slm.modulate(slmMask); % Set the source to the new wavelength source.setWavelengths(wavelength); img=cam.acquire(); writeVideo(recordingObj,max(0,img./max(img(:)))); images(:,:,wavelengthIdx)=img; measuredIntensities(wavelengthIdx)=mean(img(:)); if (~isempty(detectorNoise)) differenceImageWithInitial=img./norm(img(:))-initialImage./norm(initialImage(:)); differencesWithInitial(wavelengthIdx)=norm(differenceImageWithInitial(:)); differenceImageWithPrevious=img./norm(img(:))-previousImage./norm(previousImage(:)); differencesWithPrevious(wavelengthIdx)=norm(differenceImageWithPrevious(:)); else initialImage=img; nbNoiseImages=100; logMessage('Recording %d images to measure detection noise.',nbNoiseImages); noiseImages=initialImage; noiseImages(:,:,nbNoiseImages)=0; for imgIdx=2:nbNoiseImages, noiseImages(:,:,imgIdx)=cam.acquire(); end detectorNoise=mean(mean(std(noiseImages,0,3))); clear noiseImages; end previousImage=img; end amplificationLimit=10; measuredIntensitiesWithoutCorrection=measuredIntensities./source.intensityCorrection(wavelengths); maxIntensity=max(abs(measuredIntensitiesWithoutCorrection(:))); intensityCorrection=1./max(1,amplificationLimit*measuredIntensitiesWithoutCorrection./maxIntensity); save([outputFileName,'.mat'],'images','wavelengths','measuredIntensities','measuredIntensitiesWithoutCorrection','intensityCorrection','differencesWithInitial','differencesWithPrevious','detectorNoise'); close(recordingObj); logMessage('Wavelength range recording done.',[],emailsToNotify); % Normalize for power fluctuations intensityNorms=squeeze(sqrt(sum(sum(abs(images).^2)))); images=images./repmat(permute(intensityNorms,[3 2 1]),[size(images,1) size(images,2) 1]); meanImage=mean(images,3); images=images-repmat(meanImage,[1 1 size(images,3)]); unbiasedIntensityNorms=squeeze(sqrt(sum(sum(abs(images).^2)))); images=images./repmat(permute(unbiasedIntensityNorms,[3 2 1]),[size(images,1) size(images,2) 1]); images=reshape(images,[],size(images,3)); angleDeviationFromOrthogonal=pi/2-acos(max(-1,min(1,images'*images))); figure; showImage(angleDeviationFromOrthogonal/(pi/2)+1e-6i); axis equal; title('Deviation from orthogonal.'); save([outputFileName,'.mat'],'angleDeviationFromOrthogonal','-append'); end function waitForUserSpecifiedTime() minutesToWait=input('Enter the number of minutes to wait before starting the experiment: '); if (~isempty(minutesToWait)) logMessage('Waiting for %0.0f minutes to start experiment.',minutesToWait); pause(minutesToWait*60); logMessage('Starting measurement...'); else logMessage('Starting measurement immediately...'); end end
github
mc225/Softwares_Tom-master
calibrateAmplitude.m
.m
Softwares_Tom-master/SLMCalibration/calibrateAmplitude.m
2,946
utf_8
7a8671e841a487e10564b3aa4a14aec7
% % [graylevels,amplitudes]=calibrateAmplitude(slm,cam) % % This code is in a beta stage only! % % Attempts to measure the amplitude response for a Dual Head SLM. % % Input parameters: % slm: the DualHeadSLM object to measure % cam: the camera for the measurement % % Output parameters: % graylevels: the measured graylevels, normalized to the dynamic range % amplitudes: the measured amplitude for each graylevel (square root of the intensity) % function [graylevels,amplitudes]=calibrateAmplitude(slm,cam) if (nargin<1 || isempty(slm)) slm=DualHeadSLM(2,[1/18 1/18]); end referenceDeflectionFrequency=slm.referenceDeflectionFrequency; slm.referenceDeflectionFrequency=[0 0]; %Set to zero for now if (nargin<2 || isempty(cam)) cam=BaslerGigECam(); cam.integrationTime=25e-3; cam.defaultNumberOfFramesToAverage=10; end origTwoPiEquivalent=slm.twoPiEquivalent; slm.twoPiEquivalent=1.0; roiSize=[128 128]; % [height, width] %Find the zeroth order spot center on the CCD slm.modulate(1); zerothOrderImage=cam.acquire(); %Find the first order spot center on the CCD slm.referenceDeflectionFrequency=referenceDeflectionFrequency; %Set the deflection frequency we are interested in slm.modulate(1); initialImage=cam.acquire()-zerothOrderImage; [ign, maxIdx]=max(initialImage(:)); [maxRow, maxCol]=ind2sub(size(initialImage),maxIdx); centerPos=[maxRow,maxCol]; % [row, col] %Adjust the region of interest centerPos=min(max(centerPos,floor((roiSize+1)/2)),size(initialImage)-floor((roiSize+1)/2));%Make sure that the region of interest is on the CCD logMessage('Centering the region of interest around the coordinates [row,col]=[%u,%u].',centerPos); roi=[centerPos([2 1])-floor(roiSize([2 1])/2), roiSize([2 1])]; % [col, row, width, height] cam.regionOfInterest=roi; %Get dark image slm.modulate(0); %The CCD should be black in principle cam=cam.acquireBackground(100); graylevels=[0:4:255]./256; graylevels=fftshift(graylevels); %Start somewhere in the center where there is signal intensities=zeros(size(graylevels)); probeIdx=0; for (idx=1:length(graylevels)) slm.modulate(graylevels(idx)); img=cam.acquire(); % intensities(idx)=max(img(:)); if (probeIdx<=0) [ign probeIdx]=max(img(:)); end intensities(idx)=median(img(probeIdx+[-size(img,1)-1 -size(img,1) -size(img,1)+1 -1 0 1 size(img,1)-1 size(img,1) size(img,1)+1])); % imagesc(img); colorbar() % drawnow; end slm.twoPiEquivalent=origTwoPiEquivalent; graylevels=ifftshift(graylevels); intensities=ifftshift(intensities); intensities=max(0,intensities);%Negative intensities are just noise amplitudes=sqrt(intensities); plot(graylevels,amplitudes); end
github
mc225/Softwares_Tom-master
calibrateAmplitudeInducedPhase.m
.m
Softwares_Tom-master/SLMCalibration/calibrateAmplitudeInducedPhase.m
3,495
utf_8
8e6f2ccda46d0ad39fff1f004fd03b0d
% % [graylevels,phases]=calibrateAmplitudeInducedPhase(slm,cam) % % This code is in a beta stage only! % % Attempts to measure the phase error when doing amplitude modulation on a Dual Head SLM. % % Input parameters: % slm: the DualHeadSLM object to measure % cam: the camera for the measurement % % Output parameters: % graylevels: the measured graylevels, normalized to the dynamic range % phases: the measured phase error for each graylevel % function [graylevels,phases]=calibrateAmplitudeInducedPhase(slm,cam) if (nargin<1 || isempty(slm)) slm=DualHeadSLM(2,[1/18 1/18]); slm.twoPiEquivalent=1.0; end referenceDeflectionFrequency=slm.referenceDeflectionFrequency; slm.referenceDeflectionFrequency=[0 0]; %Set to zero for now if (nargin<2 || isempty(cam)) cam=BaslerGigECam(); cam.integrationTime=25e-3; cam.defaultNumberOfFramesToAverage=10; end roiSize=[128 128]; % [height, width] [X,Y]=meshgrid([1:slm.maxSize(2)],[1:slm.maxSize(1)]); referenceDeflection=exp(2i*pi*(X*slm.referenceDeflectionFrequency(2)+Y*slm.referenceDeflectionFrequency(1))); %Find the zeroth order spot center on the CCD slm.modulate(1); zerothOrderImage=cam.acquire(); %Find the first order spot center on the CCD slm.referenceDeflectionFrequency=referenceDeflectionFrequency; slm.modulate(1); initialImage=cam.acquire()-zerothOrderImage; [ign, maxIdx]=max(initialImage(:)); [maxRow, maxCol]=ind2sub(size(initialImage),maxIdx); centerPos=[maxRow,maxCol]; % [row, col] %Adjust the region of interest centerPos=min(max(centerPos,floor((roiSize+1)/2)),size(initialImage)-floor((roiSize+1)/2));%Make sure that the region of interest is on the CCD logMessage('Centering the region of interest around the coordinates [row,col]=[%u,%u].',centerPos); roi=[centerPos([2 1])-floor(roiSize([2 1])/2), roiSize([2 1])]; % [col, row, width, height] cam.regionOfInterest=roi; %Get dark image slm.modulate(0); %The CCD should be black in principle cam=cam.acquireBackground(100); graylevels=[0:16:255]./256; graylevels=fftshift(graylevels); %Start somewhere in the centre where there is signal values=zeros(size(graylevels)); probeIdx=0; for (idx=1:length(graylevels)) slm.modulate(graylevels(idx)*(angle(referenceDeflection)<0)); img=cam.acquire(); % values(idx)=max(img(:)); if (probeIdx<=0) [ign probeIdx]=max(img(:)); end valueTimesIntensity=median(img(probeIdx+[-size(img,1)-1 -size(img,1) -size(img,1)+1 -1 0 1 size(img,1)-1 size(img,1) size(img,1)+1])); %Compare with amplitude slm.modulate(graylevels(idx)); img=cam.acquire(); intensity=median(img(probeIdx+[-size(img,1)-1 -size(img,1) -size(img,1)+1 -1 0 1 size(img,1)-1 size(img,1) size(img,1)+1])); values(idx)=valueTimesIntensity./max(intensity,eps(1)); % imagesc(img); colorbar() % drawnow; end graylevels=ifftshift(graylevels); values=ifftshift(values); values=max(0,values);%Negative values are just noise phases=acos(1-2*sqrt(values(beginIdx:endIdx)./max(values(:)))); figure; plot(graylevels,phases); totalStroke=phases(end)+(phases(end)-phases(1))/(length(phases)-1) - phases(1); title(sprintf('total stroke: %.2fpi',totalStroke/pi)); end
github
mc225/Softwares_Tom-master
estimateTwoPiEquivalent.m
.m
Softwares_Tom-master/SLMCalibration/estimateTwoPiEquivalent.m
2,635
utf_8
a13759789434e2156382f5fea68e8eff
% [twoPiEquivalent slm]=estimateTwoPiEquivalent(slm,cam,probePos,probeSize) % % This code is in a beta stage only! % % Optimizes the mean intensity in the region of interest using direct search. % % Input parameters: % slm: the SLM object to measure % cam: the camera for the measurement % probePos: the position ([bottom,right]) of the focal spot where to measure the intensity change (default center) % probeSize: the area height and width to measure and take the median of (default [4 4]). % % Output parameters: % twoPiEquivalent: the detected value indicating the fraction of the dynamic range that corresponds to 2pi modulation % slm: the input slm object with the twoPiEquivalent property updated % function [twoPiEquivalent slm]=estimateTwoPiEquivalent(slm,cam,probePos,probeSize) if (nargin<3 || isempty(probePos)) probePos=cam.regionOfInterest(1:2)+1+floor(cam.regionOfInterest(3:4)/2); end if (nargin<4 || isempty(probeSize)) probeSize=[1 1]*5; end minIntensity=0.01; testIntensity=1.0; while testIntensity>minIntensity && isAlmostSaturated(slm,cam,testIntensity) testIntensity=testIntensity/2; end if (testIntensity>minIntensity) [twoPiEquivalent,fval,exitflag,output] = fminsearch(@(x) -measureEfficiency(slm,cam,probePos,probeSize,testIntensity,x),slm.twoPiEquivalent,optimset('TolX',0.001,'MaxIter',20,'Display','iter')); slm.twoPiEquivalent=twoPiEquivalent; else twoPiEquivalent=slm.twoPiEquivalent; logMessage('Couldn''t get phase estimate due to image saturation!'); end end function almostSaturated=isAlmostSaturated(slm,cam,testIntensity) slm.modulate(testIntensity); img=cam.acquire()+cam.background; almostSaturated=any(img(:)>.80); end function efficiency=measureEfficiency(slm,cam,probePos,probeSize,testIntensity,twoPiEquivalent) slm.twoPiEquivalent=twoPiEquivalent; slm.modulate(testIntensity); img=cam.acquire(); probePos=probePos-cam.regionOfInterest(1:2); probeRange1=probePos(1)+[-floor(probeSize(1)/2):floor((probeSize(1)-1)/2)]; probeRange2=probePos(2)+[-floor(probeSize(2)/2):floor((probeSize(2)-1)/2)]; img=img(probeRange1(probeRange1>0 & probeRange1<=size(img,1)),probeRange2(probeRange2>0 & probeRange2<=size(img,2)),:); efficiency=median(img(:)); end function value=defaultProbeFunctor(img) rng=[-5:5]; if (size(img,1)>length(rng)) img=img(1+floor(end/2)+rng,:,:); end if (size(img,2)>length(rng)) img=img(:,1+floor(end/2)+rng,:); end value=median(img(:)); end
github
playerkk/map-words-faster-rcnn-master
classification_demo.m
.m
map-words-faster-rcnn-master/caffe-fast-rcnn/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
playerkk/map-words-faster-rcnn-master
voc_eval.m
.m
map-words-faster-rcnn-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
svndl/rcaBase-master
textExportToRca.m
.m
rcaBase-master/functions/textExportToRca.m
9,408
utf_8
44fabe2307c472b1ad3601606eb67d23
function [cellData,indF,indB,noiseCell1,noiseCell2,freqLabels,binLabels,chanIncluded]=textExportToRca(pathname,dataType) if nargin<2 || isempty(dataType), dataType='RLS'; fprintf('Using RLS. '); end; if nargin<1, error('Path to datafiles is required'); end if ~strcmp(pathname(end),'/'), pathname=cat(2,pathname,'/'); end switch dataType % check for correct data type case {'DFT','RLS'} filenames=dir([pathname sprintf('%s*.txt',dataType)]); otherwise error('dataType must be ''RLS'' or ''DFT'''); end nFilenames=numel(filenames); if nFilenames<1 error('No %s files were found in %s',dataType,pathname); end cellData=cell(nFilenames,1); noiseCell1=cell(nFilenames,1); noiseCell2=cell(nFilenames,1); binLabels=cell(nFilenames,1); freqLabels=cell(nFilenames,1); indB=cell(nFilenames,1); indF=cell(nFilenames,1); for f=1:length(filenames) % check filename if ~strcmp(filenames(f).name(1:3),dataType) error('inputfile %s is not datatype %s',filenames(f).name,dataType); else end [~,freqCrnt,binLabelsCrnt,data]=getSweepDataFlex(fullfile(pathname,filenames(f).name)); % set values tempName = filenames(f).name; condIdx = str2num(tempName(end-6:end-4)); % grab condition number channelsToUse = unique(data(:,2)); freqsToUse = unique(data(:,3)); binsToUse = unique(data(:,4)); % note, this includes averaged bin nFreqs=numel(freqsToUse); nChannels=numel(channelsToUse); nBins=numel(binsToUse); % assign frequency and bin labels binLabels{condIdx} = binLabelsCrnt(1:nBins)'; freqLabels{condIdx} = freqCrnt(freqsToUse); if isempty(data) warning('No data found in %s',filenames(f).name) continue end %% check congruency of trials trials=data(:,1); trialInds=unique(trials(:)); nTrials=numel(trialInds); nEntriesPerTrialInd=zeros(nTrials,1); for tr=1:length(trialInds) trialData=data(trials==trialInds(tr),:); nEntriesPerTrialInd(tr)=numel(trialData(:)); end % only keep trials in which the number of entries is congruent trialIndsToKeep=trialInds(nEntriesPerTrialInd==mode(nEntriesPerTrialInd)); nTrialsToKeep=numel(trialIndsToKeep); %% organize in data eeg=nan(nFreqs*nBins*2,nChannels,nTrialsToKeep); noise1=nan(nFreqs*nBins*2,nChannels,nTrialsToKeep); noise2=nan(nFreqs*nBins*2,nChannels,nTrialsToKeep); for tr=1:nTrialsToKeep thisTrialInd=trialIndsToKeep(tr); trialData=data(trials==thisTrialInd,:); trialChannels=trialData(:,2); trialFreqs=trialData(:,3); trialBins=trialData(:,4); % freqs x bins for ch=1:nChannels theseReals=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),5); theseImags=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),6); % noise 1 theseNoiseReals1=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),7); theseNoiseImags1=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),8); % noise 2 theseNoiseReals2=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),9); theseNoiseImags2=trialData(trialChannels==channelsToUse(ch) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse),10); eeg(:,ch,tr)=[theseReals; theseImags]; noise1(:,ch,tr)=[theseNoiseReals1; theseNoiseImags1]; noise2(:,ch,tr)=[theseNoiseReals2; theseNoiseImags2]; end end cellData{condIdx}=eeg; noiseCell1{condIdx}=noise1; noiseCell2{condIdx}=noise2; indF{condIdx}=trialFreqs(trialChannels==channelsToUse(1) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse)); indB{condIdx}=trialBins(trialChannels==channelsToUse(1) & ismember(trialFreqs,freqsToUse) & ismember(trialBins,binsToUse)); end chanIncluded = channelsToUse; end %% function [colHdr, freqsAnalyzed, sweepVals, dataMatrix]=getSweepDataFlex(datafile) %% Imports Sweep Data from a Text File % % [colHdr, freqsAnalyzed, sweepVals, dataMatrix]=GetSweepDataFlex(datafile, chanToSave) % %% Inputs: % datafile string containing the data file % chanToSave the requested electrode(s) % %% Outputs: % colHdr is a string with column fields % freqsAnalyzed are the individual frequencies of the VEPs ('1F1' etc.) % sweepVals are the contrasts or stimulus values used % dataMatrix matrix containing the desired data fname=datafile; % SetUp import columns and data formats, from JA % Asterisk (*) after % exclude selected columns % hdrFields = { 'iSess' '%s\t' 0 %1 'iCond' '%f\t' 1 %2 'iTrial' '%f\t' 1 %3 'iCh' '%s\t' 1 %4 This becomes %f later in the function 'iFr' '%f\t' 1 %5 'AF' '%f\t' 1 %6 'xF1' '%f\t' 1 %7 'xF2' '%f\t' 1 %8 'Harm' '%s\t' 2 %9 'FK_Cond' '%f\t' 1 %10 'iBin' '%f\t' 1 %11 'SweepVal' '%f\t' 1 %12 'Sr' '%f\t' 1 %13 'Si' '%f\t' 1 %14 'N1r' '%f\t' 1 %15 'N1i' '%f\t' 1 %16 'N2r' '%f\t' 1 %17 'N2i' '%f\t' 1 %18 'Signal' '%f\t' 1 %19 'Phase' '%f\t' 1 %20 'Noise' '%f\t' 1 %21 'StdErr' '%f\t' 1 %22 'PVal' '%f\t' 1 %23 'SNR' '%f\t' 2 %24 'LSB' '%f\t' 2 %25 'RSB' '%f\t' 2 %26 'UserSc' '%s\t' 2 %27 'Thresh' '%f\t' 2 %28 'ThrBin' '%f\t' 2 %29 'Slope' '%f\t' 2 %30 'ThrInRange' '%s\t' 2 %31 'MaxSNR' '%f\t' 2 };%32 channelIx = 4; freqIx = 5; harmIx = 9; fid=fopen(fname); if fid == -1 error('File %s could not be opened.',fname); end tline=fgetl(fid); dati=textscan(fid, [hdrFields{:,2}], 'delimiter', '\t', 'EmptyValue', nan); fclose(fid); % Convert the channel identifier string into digit only for i=1:size(dati{1,channelIx}) chan{1,i}=sscanf(dati{1, channelIx}{i}, 'hc%d'); end dati{1,channelIx}=chan'; usCols=[3 4 5 11 13 14 15 16 17 18]; % Fill in essential matrix for s=1:length(usCols) o=usCols(s); if o ~= channelIx dataMatrix(:,s)=(dati{1, o}(:)); else if isempty(cell2mat((dati{1, o}(:)))) colHdr = {}; freqsAnalyzed ={}; sweepVals= nan; dataMatrix = nan; fprintf('ERROR! rawdata is empty..\n') return; else dataMatrix(:,s)=cell2mat((dati{1, o}(:))); end end end binIndices = unique(dataMatrix(:, 4)); % this will always include 0 sweepTemp=(dati{1, 12}(1:length(binIndices))); % the 12th column in dati are the bin levels, aka "SweepVal"s, include the zeroth bin, which has nan sweepTemp=sweepTemp'; sweepVals = arrayfun(@(x) num2str(x,'%.4f'), sweepTemp,'uni',false); sweepVals(1) = {'ave'}; %if ~isempty(chanToSave) % dataMatrix=dataMatrix(ismember(int16(dataMatrix(:, 2)),int16(chanToSave(:))),:); % Restricts the running matrix to the selected electrodes %end % dataMatrix=dataMatrix(dataMatrix(:, 4)>0, :); % Selects all bins but the 0th one (i.e. the average bin) dataMatrix=dataMatrix(dataMatrix(:, 1)>0, :); % Selects all trials but the 0th one (i.e. the average trial) [freqsAnalyzed,tmpIx]=unique(dati{1, harmIx}(:)); freqNum = nan(1,length(freqsAnalyzed)); for f = 1:length(freqsAnalyzed) freqNum(f) = dati{1,freqIx}(tmpIx(f)); end [tmp,tmpIx] = sort(freqNum); freqsAnalyzed = freqsAnalyzed(tmpIx); for m = 1:length(usCols) colHdr{m} = hdrFields{usCols(m),1}; end dataMatrix(:,end+1)=sqrt(dataMatrix(:,end-1).^2+dataMatrix(:,end).^2); % Computes amplitudes in final column % replace samples with zero amplitudes with NaN because 0 is PowerDiva's % indicator of a rejected epoch zeroAmpRows = dataMatrix(:,end)==0; dataMatrix(zeroAmpRows,5:end) = nan; colHdr{end+1} = 'ampl'; end
github
svndl/rcaBase-master
selectDataForTraining.m
.m
rcaBase-master/functions/selectDataForTraining.m
5,500
utf_8
ee35192a3b33549716213ec182ff17cc
function [signalDataSel,noise1Sel,noise2Sel,indFSel,indBSel,freqLabelsSel,binLabelsSel,trialsSel] = selectDataForTraining(sourceDataFileName,binsToUse,freqsToUse,condsToUse,trialsToUse) % % [signalData,noise1,noise2,indF,indB,,freqLabelsSel,binLevelsSel,trialsSel] = selectDataForTraining(sourceDataFileName,binsToUse,freqsToUse,condsToUse,trialsToUse) % % Return only the desired subset of data contained in sourceDataFileName % which contains only binsToUse, freqsToUse, condsToUse, trialsToUse load(sourceDataFileName); % should contain these variables: signalData,indF,indB,noise1,noise2,freqLabels,binLevels,chanIncluded if nargin < 5 trialsToUse = []; else end if nargin < 4 || isempty(condsToUse) condsToUse = 1:size(signalData,1); else end if nargin < 3 freqsToUse = []; else end if nargin < 2 binsToUse = []; else end nConds = length(condsToUse); signalDataSel = cell(nConds,1); noise1Sel = cell(nConds,1); noise2Sel = cell(nConds,1); binLabelsSel = cell(nConds,1); freqLabelsSel = cell(nConds,1); trialsSel = cell(nConds,1); indBSel = cell(nConds,1); indFSel = cell(nConds,1); for c = 1:nConds if condsToUse(c) > size(signalData,1) || isempty(signalData{condsToUse(c)}); signalDataSel{c} = []; noise1Sel{c} = []; noise2Sel{c} = []; indFSel{c} = []; indBSel{c} = []; freqLabelsSel{c} = []; binLabelsSel{c} = []; trialsSel{c} = []; else if isempty(binsToUse) % use all available bins % (note: canmot differ across conditions) binsToUse = unique(indB{condsToUse(c)}); %binsToUse = binsToUse(binsToUse>0); % use all bins except the average bin else end if isempty(freqsToUse) % use all available frequencies % (note: canmot differ across conditions) freqsToUse = unique(indF{condsToUse(c)}); else end selRowIx = ismember(indB{condsToUse(c)},binsToUse) & ismember(indF{condsToUse(c)},freqsToUse); if isempty(trialsToUse) % use all available trials % (note: can differ across conditions) curTrials = 1:size(signalData{condsToUse(c)},3); % use all trials else curTrials = trialsToUse; end missingIdx = find(~ismember(curTrials,1:size(signalData{condsToUse(c)},3))); if ~isempty(missingIdx) error('Input trial indices "%s" is not among set of trials',num2str(curTrials(missingIdx),'%d,')); else end signalDataSel{c} = signalData{condsToUse(c)}(repmat(selRowIx,[2,1]),:,curTrials); % repmat because the first half is real, second half is imag with same ordering noise1Sel{c} = noise1{condsToUse(c)}(repmat(selRowIx,[2,1]),:,curTrials); noise2Sel{c} = noise2{condsToUse(c)}(repmat(selRowIx,[2,1]),:,curTrials); % find non-empty frequency indices nonEmpty = find(cell2mat(cellfun(@(x) ~isempty(x),indF,'uni',false))); % find first among conditions to use nonEmpty = min(nonEmpty(ismember(nonEmpty,condsToUse))); % check if indices are unequal if any ( indF{nonEmpty} ~= indF{condsToUse(c)} ) error('frequency indices are not matched across conditions'); elseif any ( indB{nonEmpty} ~= indB{condsToUse(c)} ) error('bin indices are not matched across conditions'); else end % deal with NaNs in binLabels if any(contains(binLabels{condsToUse(c)}, 'NaN')) nan_idx = contains(binLabels{condsToUse(c)}, 'NaN') == 1; binLabels{condsToUse(c)}(nan_idx) = arrayfun(@(x) sprintf('bin%02d', (x)), 1:sum(nan_idx), 'uni' , false); else end % assign indices and labels of selected data features % grab bin indices indBSel{c} = indB{condsToUse(c)}(selRowIx)+1; % add one to turn into proper index % grab frequency indices indFSel{c} = indF{condsToUse(c)}(selRowIx); % grab bin labels binLabelsSel{c} = binLabels{condsToUse(c)}; % grap frequency labels freqLabelsSel{c} = freqLabels{condsToUse(c)}; % grap frequency labels trialsSel{c} = curTrials; end end % now replace missing conditions with NaNs, dude! signalDataSel = replaceEmpty(signalDataSel); noise1Sel = replaceEmpty(noise1Sel); noise2Sel = replaceEmpty(noise2Sel); indFSel = replaceEmpty(indFSel); indBSel = replaceEmpty(indBSel); freqLabelsSel = replaceEmpty(freqLabelsSel); binLabelsSel = replaceEmpty(binLabelsSel); trialsSel = replaceEmpty(trialsSel); end function cellOut = replaceEmpty(cellIn) nonEmpty = cell2mat(cellfun(@(x) ~isempty(x),cellIn,'uni',false)); repIdx = find(nonEmpty,1,'first'); cellOut = cellIn; cellOut(~nonEmpty) = {nan(size(cellIn{repIdx}))}; end
github
svndl/rcaBase-master
aggregateData.m
.m
rcaBase-master/functions/aggregateData.m
17,781
utf_8
701058e4e436f4b6df5f6d2851402505
function rca_struct = aggregateData(rca_struct, keep_conditions, error_type, trial_wise, do_nr) % rca_struct = aggregateData(rca_struct, keep_conditions, error_type, trial_wise, do_nr) % % input: % rca_struct: created during call to rcaSweep % keep_conditions: [true]/false % if false, will average over conditions % error_type: 'SEM'/'none'/'95CI' % or a string specifyingn a different percentage % CI formated following: '%.1fCI' % trial-wise: [true]/false % if true, will compute trial-wise errors and stats % do_nr: harmonic x rc x condition logical, % indicating when to do Naka-Rushton fitting % (only makes sense to do for sweep data) % default is not to do it anywhere % % output: function will return rca_struct, and add fields containing % aggregate statistics for all components (described below). % % Note that % (a) the comparison electrode data is automatically added as % as an additional component in the output. % (b) if there is more than one bin in the input (sweep data) the % vector average across bins will be added as a final bin. % (c) In the current iteration of rcaSweep, each rca_struct contains % only one harmonic, but harmonic is nonetheless preserved % as an output dimension % % "mean", with the following subfields: % real_signal: REAL coefficients, vector-averaged % imag_signal: IMAGINARY coefficients, vector-averaged % amp_signal: AMPLITUDES, vector-averaged % phase_signal: PHASES, vector-averaged % z_snr: Z_SNR % amp_noise: NOISE BAND AMPLITUDES, vector-averaged % all subfields are bin-by-harmonic-by-component-by-condition arrays % % "subjects", with the following subfields % amp_signal: AMPLITUDES % proj_amp_signal: PROJECTED AMPLITUDES % amp_noise: NOISE BAND AMPLITUDES % z_snr: Z_SNR % all subfields are bin-by-harmonic-by-component-by-subject-by-condition arrays % % "stats", with the following subfields % amp_err_up: upper error bars % % amp_err_lo: lower error bars % % t_sig: significance (true/false) for student's t-test against zero % run on projected amplitudes across subjects % % t_p: p-values for student's t-test against zero % % t_val: t-values for student's t-test against zero % % t2_sig: significance (true/false) for Hotelling's T2 against zero % run on real and imag coefficients across subjects % % t2_p: p-values for Hotelling's T2 against zero % % t2_val: t-values for Hotelling's T2 against zero % % ... all of the above are % bin-by-harmonic-by-component-by-condition arrays % % err_type: string, what type of error bar was computed % % naka_rushton: struct of naka-rushton outputs, pretty % self-explanatory % mk: changed mean phase calculation from atan to atan2 (05/18/2020) if nargin<2 keep_conditions=true; end if ( nargin<3 ) || isempty(error_type) error_type = 'SEM'; else end if ( nargin<4 ) || isempty(trial_wise) trial_wise = false; else end if nargin<5 do_nr=[]; else end rcaSettings = rca_struct.settings; % take care of case where subfield is named %'.data' rather than '.rca_data' if isfield(rca_struct,'comparisonData') rca_struct.rca_data = rca_struct.data; rca_struct = rmfield(rca_struct,'data') else end % add comparison data as last component if isfield(rca_struct,'comparisonData') rcaData = cellfun(@(x,y) cat(2,x,y), rca_struct.rca_data,rca_struct.comparisonData,'uni',false); else rcaData = rca_struct.rca_data; end nSubjects = size(rcaData,2); if ~keep_conditions % concatenate conditions, but keep everything else seperate rcaData = arrayfun(@(x) cat(3,rcaData{:,x}),1:nSubjects,'uni',false); else end nConditions = size(rcaData,1); % get freqs and bins from the data dataFreqs = unique(rcaSettings.freqIndices); dataBins = unique(rcaSettings.binIndices); nFreqs = length(dataFreqs); nBins = length(dataBins); nTrials = max(max(cellfun(@(x) size(x,3),rcaData))); nCompFromInputData = max(max(cellfun(@(x) size(x,2),rcaData))); % note, includes comparison data nSampFromInputData = max(max(cellfun(@(x) size(x,1),rcaData))); if nFreqs*nBins*2 ~= nSampFromInputData error('number of frequencies and bins does not match the number of samples'); else end if nBins > 1 % the average will be computed and added to the bin nBins = nBins + 1; else end % do the noise % add comparison data, and compute the amplitudes, which is all you need if isfield(rca_struct,'noiseLower') && isfield(rca_struct,'noiseHigher') ampNoiseBins = zeros(nBins,nFreqs,nCompFromInputData,nConditions); if trial_wise ampNoiseBinsSubjects = zeros(nBins,nFreqs,nCompFromInputData,nSubjects*nTrials,nConditions); else ampNoiseBinsSubjects = zeros(nBins,nFreqs,nCompFromInputData,nSubjects,nConditions); end for z = 1:2 if z == 1 % lower noiseStruct.rca_data = rca_struct.noiseLower; else noiseStruct.rca_data = rca_struct.noiseHigher; end noiseStruct.settings = rcaSettings; noiseStruct.Out = aggregateData(noiseStruct, keep_conditions, 'none', []); % do not compute NR or error ampNoiseBins = noiseStruct.Out.mean.amp_signal + ampNoiseBins; ampNoiseBinsSubjects = noiseStruct.Out.subjects.amp_signal + ampNoiseBinsSubjects; clear noiseStruct; end ampNoiseBins = ampNoiseBins./2; ampNoiseBinsSubjects = ampNoiseBinsSubjects./2; else ampNoiseBins = nan(nBins,nFreqs,nCompFromInputData,nConditions); ampNoiseBinsSubjects = nan(nBins,nFreqs,nCompFromInputData,nSubjects,nConditions); end % convert to real/imaginary [rcaDataReal,rcaDataImag] = getRealImag(rcaData); if ~strcmp(error_type,'none') ampErrBins = nan(nBins,nFreqs,nCompFromInputData,nConditions,2); tPval = nan(nBins,nFreqs,nCompFromInputData,nConditions); tSqrd = nan(nBins,nFreqs,nCompFromInputData,nConditions); tSig = nan(nBins,nFreqs,nCompFromInputData,nConditions); end % nBins + 1, room for average muRcaDataReal = nan(nBins,nFreqs,nCompFromInputData,nConditions); muRcaDataImag = nan(nBins,nFreqs,nCompFromInputData,nConditions); NR_Params = nan(5,nFreqs,nCompFromInputData,nConditions); NR_R2 = nan(1,nFreqs,nCompFromInputData,nConditions); NR_Range = nan(1,nFreqs,nCompFromInputData,nConditions); NR_hModel = []; NR_JK_SE = nan(5,nFreqs,nCompFromInputData,nConditions); NR_JK_Params = nan(5,nSubjects,nFreqs,nCompFromInputData,nConditions); % assign default value to do_nr if isempty(do_nr) do_nr = false(nFreqs,nCompFromInputData,nConditions); else end for condNum = 1:nConditions tempReal = []; tempImag = []; tempZ = []; for s=1:nSubjects if trial_wise if s == 1 nanSet = nan(nBins,nFreqs,nCompFromInputData,nSubjects*nTrials); else end % grab all subjects' data, without averaging over trials: tempReal = cat(3,tempReal,rcaDataReal{condNum,s}); tempImag = cat(3,tempImag,rcaDataImag{condNum,s}); else if s == 1 nanSet = nan(nBins,nFreqs,nCompFromInputData,nSubjects); else end % grab all subjects' data, averaging over trials: tempReal = cat(3,tempReal,nanmean(rcaDataReal{condNum,s},3)); tempImag = cat(3,tempImag,nanmean(rcaDataImag{condNum,s},3)); end tempZ = cat(3,tempZ, computeZsnr(rcaDataReal{condNum,s},rcaDataImag{condNum,s}) ); end muRcaDataRealAllSubj(:,:,:,:,condNum) = nanSet; muRcaDataImagAllSubj(:,:,:,:,condNum) = nanSet; zRcaDataAllSubj(:,:,:,:,condNum) = nanSet; % split bins and frequencies, and make sure only selected components are included binLabels = cell2mat(cellfun(@(x) str2num(x), rcaSettings.binLabels,'uni',false)); for rc = 1:nCompFromInputData for f = 1:nFreqs for b = 1:nBins if b == nBins && b > 1 % get the vector average over bins muRcaDataRealAllSubj(b,f,rc,1:size(tempReal(curIdx,rc,:),3),condNum) = nanmean(muRcaDataRealAllSubj(1:(nBins-1),f,rc,1:size(tempReal(curIdx,rc,:),3),condNum),1); muRcaDataImagAllSubj(b,f,rc,1:size(tempImag(curIdx,rc,:),3),condNum) = nanmean(muRcaDataImagAllSubj(1:(nBins-1),f,rc,1:size(tempReal(curIdx,rc,:),3),condNum),1); zRcaDataAllSubj(b,f,rc,1:size(tempZ(curIdx,rc,:),3),condNum) = nanmean(zRcaDataAllSubj(1:(nBins-1),f,rc,1:size(tempZ(curIdx,rc,:),3),condNum)); else curIdx = find(rcaSettings.freqIndices==dataFreqs(f) & rcaSettings.binIndices==dataBins(b)); muRcaDataRealAllSubj(b,f,rc,1:size(tempReal(curIdx,rc,:),3),condNum) = tempReal(curIdx,rc,:); muRcaDataImagAllSubj(b,f,rc,1:size(tempImag(curIdx,rc,:),3),condNum) = tempImag(curIdx,rc,:); zRcaDataAllSubj(b,f,rc,1:size(tempZ(curIdx,rc,:),3),condNum) = tempZ(curIdx,rc,:); end end end end % average over trials and subjects for each condition muRcaDataReal(:,:,:,condNum) = nanmean(muRcaDataRealAllSubj(:,:,:,:,condNum),4); % weights each trial equally muRcaDataImag(:,:,:,condNum) = nanmean(muRcaDataImagAllSubj(:,:,:,:,condNum),4); % weights each trial equally zRcaData(:,:,:,condNum) = nanmean(zRcaDataAllSubj(:,:,:,:,condNum),4); % weights each trial equally % compute projected amplitudes realVector = permute(muRcaDataRealAllSubj(:,:,:,:,condNum),[4,1,2,3]); imagVector = permute(muRcaDataImagAllSubj(:,:,:,:,condNum),[4,1,2,3]); tempProject = vectorProjection(realVector,imagVector); projectAmpAllSubj(:,:,:,:,condNum) = permute(tempProject,[2,3,4,1]); end % fit Naka Rushton on means for all conditions if any(do_nr(:)) % don't include average in fits fitData = sqrt(muRcaDataReal.^2+muRcaDataImag.^2); fitNoise = repmat(nanmean(ampNoiseBins,4),[1,1,1,nConditions]); % use same noise across conditions % [ NR_Params, NR_R2, NR_Range, NR_hModel ] = FitNakaRushton(binLabels, fitData, ampNoiseBins); % [ NR_Params, NR_R2, NR_hModel ] = FitNakaRushtonFixed(binLabels, fitData,ampNoiseBins); [ NR_Params, NR_R2, NR_hModel ] = FitNakaRushtonEq(binLabels, fitData(1:nBins,:,:,:)); % [ NR_Params, NR_R2, NR_hModel ] = FitNakaRushtonNoise(binLabels, fitData,fitNoise); clear fitData; else end if ~strcmp(error_type,'none') for condNum = 1:nConditions for rc=1:nCompFromInputData for f=1:nFreqs % do include averages when computing error bars testReal = reshape(muRcaDataRealAllSubj(:,f,rc,:,condNum), [], nSubjects); testImag = reshape(muRcaDataImagAllSubj(:,f,rc,:,condNum), [], nSubjects); for b=1:nBins xyData = [testReal(b,:)' testImag(b,:)']; if size(xyData,1)<2 keyboard; end nanVals = sum(isnan(xyData),2)>0; ampErrBins(b,f,rc,condNum,:) = fitErrorEllipse(xyData(~nanVals,:),error_type); % compute t2-statistic against zero tStruct = tSquaredFourierCoefs(xyData(~nanVals,:)); tPval(b,f,rc,condNum) = tStruct.pVal; tSqrd(b,f,rc,condNum) = tStruct.tSqrd; tSig(b,f,rc,condNum) = tStruct.H; end % do not include averages when computing fitting errors testReal = squeeze(muRcaDataRealAllSubj(1:(nBins-1),f,rc,:,condNum)); testImag = squeeze(muRcaDataImagAllSubj(1:(nBins-1),f,rc,:,condNum)); testNoise = nanmean(reshape(ampNoiseBinsSubjects(1:(nBins-1),f,rc,:,:),[],nSubjects, nConditions),3); if do_nr(f,rc,condNum) for s = 1:size(testReal,2) % number of subjects, or subject x trials sIdx = true(size(testReal,2),1); sIdx(s) = false; jkData(:,s) = sqrt( nanmean(testReal(:,sIdx),2).^2 + nanmean(testImag(:,sIdx),2).^2 ); jkNoise(:,s) = nanmean(testNoise(:,sIdx),2); end %jkParams = FitNakaRushton(binLabels, jkData,jkNoise); jkParams = FitNakaRushtonEq(binLabels, jkData); %jkParams = FitNakaRushtonNoise(binLabels, jkData,jkNoise); NR_JK_SE(:,f,rc,condNum) = jackKnifeErr( jkParams' ); NR_JK_Params(:,:,f,rc,condNum) = jkParams; clear jkParams; clear jkData; else end end end end else end % do averaging check project_mean = permute(mean(projectAmpAllSubj,4),[1,2,3,5,4]); real_imag_mean = sqrt(muRcaDataReal.^2+muRcaDataImag.^2); assert(all(real_imag_mean(:) - project_mean(:) < 10^-14)) mean_data.real_signal = muRcaDataReal; mean_data.imag_signal = muRcaDataImag; mean_data.amp_signal = real_imag_mean; % NEW: calculate phase with atan2 (four-quadrant inverse tangent) % instead of atan (gives phase between + - pi/2 only) % Old way: mean_data.phase_signal = atan(muRcaDataImag./muRcaDataReal); mean_data.phase_signal = atan2(muRcaDataImag,muRcaDataReal); mean_data.amp_noise = ampNoiseBins; mean_data.z_snr = zRcaData; rca_struct.mean = mean_data; sub_data.amp_signal = sqrt(muRcaDataRealAllSubj.^2+muRcaDataImagAllSubj.^2); sub_data.amp_noise = ampNoiseBinsSubjects; sub_data.proj_amp_signal = projectAmpAllSubj; sub_data.z_snr = zRcaDataAllSubj; rca_struct.subjects = sub_data; % Naka-Rushton output stat_data.naka_rushton.Params = NR_Params; stat_data.naka_rushton.R2 = NR_R2; stat_data.naka_rushton.hModel = NR_hModel; if ~strcmp(error_type,'none') % error bins stat_data.amp_lo_err = ampErrBins(:,:,:,:,1); stat_data.amp_up_err = ampErrBins(:,:,:,:,2); stat_data.err_type = error_type; % regular old t-test on projected amplitudes % one-tailed, would never be below zero t_params = {'alpha',0.05,'dim',4,'tail','right'}; [stat_data.t_sig, stat_data.t_p, ci, sts] = ttest(rca_struct.subjects.proj_amp_signal,0,t_params{:}); stat_data.t_sig = reshape(stat_data.t_sig, nBins, nFreqs, nCompFromInputData, []); stat_data.t_p = reshape(stat_data.t_p, nBins, nFreqs, nCompFromInputData, []); stat_data.t_val = reshape(sts.tstat, nBins, nFreqs, nCompFromInputData, []); % Hotelling's T2 stat_data.t2_sig = tSig; stat_data.t2_p = tPval; stat_data.t2_val = tSqrd; % Naka-Rushton stat_data.naka_rushton.JackKnife.SE = NR_JK_SE; stat_data.naka_rushton.JackKnife.Params = NR_JK_Params; end rca_struct.stats = stat_data; end function outZ = computeZsnr(realVals,imagVals) % move trial dimension to first realVals = permute(realVals,[3,2,1]); imagVals = permute(imagVals,[3,2,1]); nReal = size( realVals ); nImag = size( imagVals ); if any(nReal ~= nImag) error('real and imaginary values are not matched'); else end nSets = prod( nReal(2:end) ); outZ = nan( [1, nReal(2:end)]); for z = 1:nSets xyData = [realVals(:,z),imagVals(:,z)]; nanVals = sum(isnan(xyData),2)>0; % use standard deviation, to compute the zSNR if size( xyData(~nanVals,:) , 1 ) > 2 [ampErr,~,zSNR] = fitErrorEllipse(xyData(~nanVals,:),'1STD',false); else zSNR = NaN; end outZ(:,z) = zSNR; end % move trial dimension back to third outZ = permute(outZ,[3,2,1]); end % function pSE = getParSE( pJK ) % % function from Spero for computing jack-knifed SEs for NR parameters % nDim = ndims( pJK ); % nSubj = size( pJK, nDim ); % pSE = sqrt( ( nSubj - 1 ) / nSubj * sum( bsxfun( @minus, pJK, mean(pJK,nDim) ).^2, nDim ) ); % % p(:) = nSubj * p - ( nSubj - 1 ) * mean( pJK, nDim ); % unbiased estimate of mean. ???making things go negative???, bar graphs should match plot anyhow % end
github
svndl/rcaBase-master
ssdTrain.m
.m
rcaBase-master/ssdCode/ssdTrain.m
2,021
utf_8
6d6a6d13589cfda218a1706e7866e3cd
% define the ssd function for our application based on signal and noise % definitions in the fourier domain function [Wsub, A, W, dGenSort, K] = ssdTrain(C_s, C_n, nComp, K) % X_s: matrix containing the complex fourier coefficients at the frequency of interest extracted epoch-wise % X_n2, X_n2: matrix containing the complex fourier coefficients at the neighbor bins of the frequency of interest at different epochs % note that in this implementation, coefficients are only given for positive frequencies. parseval's theorem is met by % considering coefficients at negative fequencies as the conjugates of coefficients at positive frequencies % Soren: % X_s, X_n1, X_n2: dimensions are [epochs x channels x frequencies] % (i.e. [trials x channels x frequencies]). assert(~any(~(size(C_s) == size(C_n))), 'X_s, X_n1, X_n2 should have the same dimensions.'); if (mean(abs(imag(C_s(:))))>10^-10 ) | (mean(abs(imag(C_n(:))))>10^-10 ) warning('something went wrong!') end if sum(isnan(C_s(:)))~=0 || sum(isnan(C_n(:)))~=0 warning('Covariance matrices contain NaNs: setting to zero...'); C_s(isnan(C_s))=0; C_n(isnan(C_n))=0; end C_s = real(C_s); % When tested, max(imag(C_s(:))) was in the order of e-17. It is discarded as a numerical artifact. C_n = real(C_n); % regurlarized based on covariance of signal [Vpool,Dpool]=eig(C_s); [dPool,sortIndx]=sort(diag(Dpool),'ascend'); Vpool=Vpool(:,sortIndx); % in case eigenvectors/eigenvalues not sorted dPool=dPool(end-K:end); Rw = C_n \ Vpool(:,end-K:end)*diag(dPool)*Vpool(:,end-K:end)'; [Vgen,Dgen]=eig(Rw); % compute generalized eigenvalues/eigenvectors dGen=diag(Dgen); [dGenSort,b]=sort(abs(dGen)); W=Vgen(:,b(end:-1:1)); % in case not sorted if max(abs(imag(W))) > 10e-10 warning('W has imaginary part') end W=real(W); % ignore small imaginary component Wsub=W(:,1:nComp); % return only selected number of components A=C_s*Wsub / (Wsub'*C_s*Wsub); % return forward models (see Parra et al., 2005, Neuroimage) end
github
h2oai/mxnet-master
parse_json.m
.m
mxnet-master/matlab/+mxnet/private/parse_json.m
19,095
utf_8
2d934e0eae2779e69f5c3883b8f89963
function data = parse_json(fname,varargin) %PARSE_JSON parse a JSON (JavaScript Object Notation) file or string % % Based on jsonlab (https://github.com/fangq/jsonlab) created by Qianqian Fang. Jsonlab is lisonced under BSD or GPL v3. global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end function opt=varargin2struct(varargin) % % opt=varargin2struct('param1',value1,'param2',value2,...) % or % opt=varargin2struct(...,optstruct,...) % % convert a series of input parameters into a structure % % input: % 'param', value: the input parameters should be pairs of a string and a value % optstruct: if a parameter is a struct, the fields will be merged to the output struct % % output: % opt: a struct where opt.param1=value1, opt.param2=value2 ... % len=length(varargin); opt=struct; if(len==0) return; end i=1; while(i<=len) if(isstruct(varargin{i})) opt=mergestruct(opt,varargin{i}); elseif(ischar(varargin{i}) && i<len) opt=setfield(opt,lower(varargin{i}),varargin{i+1}); i=i+1; else error('input must be in the form of ...,''name'',value,... pairs or structs'); end i=i+1; end function val=jsonopt(key,default,varargin) % % val=jsonopt(key,default,optstruct) % % setting options based on a struct. The struct can be produced % by varargin2struct from a list of 'param','value' pairs % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $ % % input: % key: a string with which one look up a value from a struct % default: if the key does not exist, return default % optstruct: a struct where each sub-field is a key % % output: % val: if key exists, val=optstruct.key; otherwise val=default % val=default; if(nargin<=2) return; end opt=varargin{1}; if(isstruct(opt)) if(isfield(opt,key)) val=getfield(opt,key); elseif(isfield(opt,lower(key))) val=getfield(opt,lower(key)); end end function s=mergestruct(s1,s2) % % s=mergestruct(s1,s2) % % merge two struct objects into one % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % date: 2012/12/22 % % input: % s1,s2: a struct object, s1 and s2 can not be arrays % % output: % s: the merged struct object. fields in s1 and s2 will be combined in s. if(~isstruct(s1) || ~isstruct(s2)) error('input parameters contain non-struct'); end if(length(s1)>1 || length(s2)>1) error('can not merge struct arrays'); end fn=fieldnames(s2); s=s1; for i=1:length(fn) s=setfield(s,fn{i},getfield(s2,fn{i})); end function newdata=struct2jdata(data,varargin) % % newdata=struct2jdata(data,opt,...) % % convert a JData object (in the form of a struct array) into an array % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % input: % data: a struct array. If data contains JData keywords in the first % level children, these fields are parsed and regrouped into a % data object (arrays, trees, graphs etc) based on JData % specification. The JData keywords are % "_ArrayType_", "_ArraySize_", "_ArrayData_" % "_ArrayIsSparse_", "_ArrayIsComplex_" % opt: (optional) a list of 'Param',value pairs for additional options % The supported options include % 'Recursive', if set to 1, will apply the conversion to % every child; 0 to disable % % output: % newdata: the covnerted data if the input data does contain a JData % structure; otherwise, the same as the input. % % examples: % obj=struct('_ArrayType_','double','_ArraySize_',[2 3], % '_ArrayIsSparse_',1 ,'_ArrayData_',null); % ubjdata=struct2jdata(obj); fn=fieldnames(data); newdata=data; len=length(data); if(jsonopt('Recursive',0,varargin{:})==1) for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end
github
raalf/OPERA-master
alphavol.m
.m
OPERA-master/alphavol.m
6,537
utf_8
ef048ea526531f29fde44a729d4dd6a4
function [V,S] = alphavol(X,R,fig) %ALPHAVOL Alpha shape of 2D or 3D point set. % V = ALPHAVOL(X,R) gives the area or volume V of the basic alpha shape % for a 2D or 3D point set. X is a coordinate matrix of size Nx2 or Nx3. % % R is the probe radius with default value R = Inf. In the default case % the basic alpha shape (or alpha hull) is the convex hull. % % [V,S] = ALPHAVOL(X,R) outputs a structure S with fields: % S.tri - Triangulation of the alpha shape (Mx3 or Mx4) % S.vol - Area or volume of simplices in triangulation (Mx1) % S.rcc - Circumradius of simplices in triangulation (Mx1) % S.bnd - Boundary facets (Px2 or Px3) % % ALPHAVOL(X,R,1) plots the alpha shape. % % % 2D Example - C shape % t = linspace(0.6,5.7,500)'; % X = 2*[cos(t),sin(t)] + rand(500,2); % subplot(221), alphavol(X,inf,1); % subplot(222), alphavol(X,1,1); % subplot(223), alphavol(X,0.5,1); % subplot(224), alphavol(X,0.2,1); % % % 3D Example - Sphere % [x,y,z] = sphere; % [V,S] = alphavol([x(:),y(:),z(:)]); % trisurf(S.bnd,x,y,z,'FaceColor','blue','FaceAlpha',1) % axis equal % % % 3D Example - Ring % [x,y,z] = sphere; % ii = abs(z) < 0.4; % X = [x(ii),y(ii),z(ii)]; % X = [X; 0.8*X]; % subplot(211), alphavol(X,inf,1); % subplot(212), alphavol(X,0.5,1); % % See also DELAUNAY, TRIREP, TRISURF % Author: Jonas Lundgren <[email protected]> 2010 % 2010-09-27 First version of ALPHAVOL. % 2010-10-05 DelaunayTri replaced by DELAUNAYN. 3D plots added. % 2012-03-08 More output added. DELAUNAYN replaced by DELAUNAY. if nargin < 2 || isempty(R), R = inf; end if nargin < 3, fig = 0; end % Check coordinates dim = size(X,2); if dim < 2 || dim > 3 error('alphavol:dimension','X must have 2 or 3 columns.') end % Check probe radius if ~isscalar(R) || ~isreal(R) || isnan(R) error('alphavol:radius','R must be a real number.') end % Unique points [X,imap] = unique(X,'rows'); % Delaunay triangulation T = delaunay(X); % Remove zero volume tetrahedra since % these can be of arbitrary large circumradius if dim == 3 n = size(T,1); vol = volumes(T,X); epsvol = 1e-12*sum(vol)/n; T = T(vol > epsvol,:); holes = size(T,1) < n; end % Limit circumradius of simplices [~,rcc] = circumcenters(TriRep(T,X)); T = T(rcc < R,:); rcc = rcc(rcc < R); % Volume/Area of alpha shape vol = volumes(T,X); V = sum(vol); % Return? if nargout < 2 && ~fig return end % Turn off TriRep warning warning('off','MATLAB:TriRep:PtsNotInTriWarnId') % Alpha shape boundary if ~isempty(T) % Facets referenced by only one simplex B = freeBoundary(TriRep(T,X)); if dim == 3 && holes % The removal of zero volume tetrahedra causes false boundary % faces in the interior of the volume. Take care of these. B = trueboundary(B,X); end else B = zeros(0,dim); end % Plot alpha shape if fig if dim == 2 % Plot boundary edges and point set x = X(:,1); y = X(:,2); plot(x(B)',y(B)','r','linewidth',2), hold on plot(x,y,'k.'), hold off str = 'Area'; elseif ~isempty(B) % Plot boundary faces trisurf(TriRep(B,X),'FaceColor','red','FaceAlpha',1/3); str = 'Volume'; else cla str = 'Volume'; end axis equal str = sprintf('Radius = %g, %s = %g',R,str,V); title(str,'fontsize',12) end % Turn on TriRep warning warning('on','MATLAB:TriRep:PtsNotInTriWarnId') % Return structure if nargout == 2 S = struct('tri',imap(T),'vol',vol,'rcc',rcc,'bnd',imap(B)); end %-------------------------------------------------------------------------- function vol = volumes(T,X) %VOLUMES Volumes/areas of tetrahedra/triangles % Empty case if isempty(T) vol = zeros(0,1); return end % Local coordinates A = X(T(:,1),:); B = X(T(:,2),:) - A; C = X(T(:,3),:) - A; if size(X,2) == 3 % 3D Volume D = X(T(:,4),:) - A; BxC = cross(B,C,2); vol = dot(BxC,D,2); vol = abs(vol)/6; else % 2D Area vol = B(:,1).*C(:,2) - B(:,2).*C(:,1); vol = abs(vol)/2; end %-------------------------------------------------------------------------- function B = trueboundary(B,X) %TRUEBOUNDARY True boundary faces % Remove false boundary caused by the removal of zero volume % tetrahedra. The input B is the output of TriRep/freeBoundary. % Surface triangulation facerep = TriRep(B,X); % Find edges attached to two coplanar faces E0 = edges(facerep); E1 = featureEdges(facerep, 1e-6); E2 = setdiff(E0,E1,'rows'); % Nothing found if isempty(E2) return end % Get face pairs attached to these edges % The edges connects faces into planar patches facelist = edgeAttachments(facerep,E2); pairs = cell2mat(facelist); % Compute planar patches (connected regions of faces) n = size(B,1); C = sparse(pairs(:,1),pairs(:,2),1,n,n); C = C + C' + speye(n); [~,p,r] = dmperm(C); % Count planar patches iface = diff(r); num = numel(iface); % List faces and vertices in patches facelist = cell(num,1); vertlist = cell(num,1); for k = 1:num % Neglect singel face patches, they are true boundary if iface(k) > 1 % List of faces in patch k facelist{k} = p(r(k):r(k+1)-1); % List of unique vertices in patch k vk = B(facelist{k},:); vk = sort(vk(:))'; ik = [true,diff(vk)>0]; vertlist{k} = vk(ik); end end % Sort patches by number of vertices ivert = cellfun(@numel,vertlist); [ivert,isort] = sort(ivert); facelist = facelist(isort); vertlist = vertlist(isort); % Group patches by number of vertices p = [0;find(diff(ivert));num] + 1; ipatch = diff(p); % Initiate true boundary list ibound = true(n,1); % Loop over groups for k = 1:numel(ipatch) % Treat groups with at least two patches and four vertices if ipatch(k) > 1 && ivert(p(k)) > 3 % Find double patches (identical vertex rows) V = cell2mat(vertlist(p(k):p(k+1)-1)); [V,isort] = sortrows(V); id = ~any(diff(V),2); id = [id;0] | [0;id]; id(isort) = id; % Deactivate faces in boundary list for j = find(id') ibound(facelist{j-1+p(k)}) = 0; end end end % Remove false faces B = B(ibound,:);
github
raalf/OPERA-master
fcnSTLREAD.m
.m
OPERA-master/fcnSTLREAD.m
3,351
utf_8
2052a3e965c75c593c1432c122d7b11e
function [temp, isBinary] = fcnSTLREAD(stlfile) %{ % fgetl(fp); % Skipping header line % count = 1; % while ~feof(fp) % try % % Skip "facet normal" words % fscanf(fp,'%s',2); % % % Normal % temp(count,:,4) = fscanf(fp,'%f',3); % fgetl(fp); % Skip to new line % % % Skip "outer loop" line % fgetl(fp); % % % Skip "vertex" words % fscanf(fp,'%s',1); % % % Vertex 1 points % temp(count,:,1) = fscanf(fp,'%f',3); % fgetl(fp); % Skip to new line % % % Skip "vertex" words % fscanf(fp,'%s',1); % % % Vertex 2 points % temp(count,:,2) = fscanf(fp,'%f',3); % fgetl(fp); % Skip to new line % % % Skip "vertex" words % fscanf(fp,'%s',1); % % % Vertex 3 points % temp(count,:,3) = fscanf(fp,'%f',3); % fgetl(fp); % Skip to new line % % % Skip "endloop" line % fgetl(fp); % % % Skip "endfacet" line % fgetl(fp); % % count = count + 1; % catch % break; % end % end % fclose(fp); %} if nargin == 0 warning('No STL-file is specified'); end try % Try to read an STL ASCII file temp = stlAread(stlfile); isBinary=false; catch try % Try to read an STL binary file temp = stlBread(stlfile); isBinary=true; catch error('File could not be read!') end end function temp = stlAread(stlfile) % Reads an STL ASCII file fid=fopen(stlfile,'r'); fileTitle=sscanf(fgetl(fid),'%*s %s'); vnum=0; fclr=0; testASCII=true; lineCount=0; while feof(fid) == 0 stlLine=fgetl(fid); keyWord=sscanf(stlLine,'%s'); if strncmpi(keyWord,'c',1) == 1; fclr = sscanf(stlLine,'%*s %f %f %f'); elseif strncmpi(keyWord,'v',1) == 1; vnum = vnum+1; vertex(:,vnum) = sscanf(stlLine,'%*s %f %f %f'); clr(:,vnum) = fclr; elseif testASCII lineCount=lineCount+1; if lineCount>20 if vnum>2 testASCII=false; else error('File is not an STL ASCII file!') end end end end temp(:,1:3,1) = [vertex(1,1:3:end)' vertex(2,1:3:end)' vertex(3,1:3:end)']; temp(:,1:3,2) = [vertex(1,2:3:end)' vertex(2,2:3:end)' vertex(3,2:3:end)']; temp(:,1:3,3) = [vertex(1,3:3:end)' vertex(2,3:3:end)' vertex(3,3:3:end)']; fclose(fid); function temp = stlBread(stlfile) % Reads an STL binary file fid = fopen(stlfile,'r'); fileTitle = fread(fid,80,'uchar=>schar'); fnum = fread(fid,1,'int32'); temp = zeros(fnum,3,3); FVCD = uint8(zeros(3,fnum)); for i=1:fnum % if mod(fnum/100, i) == 0 % perc = 100*(i/fnum); % disp(perc); % end normal = fread(fid,3,'float32'); vertex1 = fread(fid,3,'float32'); vertex2 = fread(fid,3,'float32'); vertex3 = fread(fid,3,'float32'); clr = fread(fid,1,'uint16'); if bitget(clr,16) == 1 rd = bitshift(bitand(65535,clr),-10); grn = bitshift(bitand(2047,clr),-5); bl = bitand(63,clr); FVCD(:,i) = [rd;grn;bl]; end temp(i,1:3,1) = [vertex1(1) vertex1(2) vertex1(3)]; temp(i,1:3,2) = [vertex2(1) vertex2(2) vertex2(3)]; temp(i,1:3,3) = [vertex3(1) vertex3(2) vertex3(3)]; end fclose(fid);
github
raalf/OPERA-master
fcnHINTEGRAL.m
.m
OPERA-master/Misc/Old Functions/fcnHINTEGRAL.m
1,538
utf_8
0cc0c334c7b28ec183a94d8b1f67a708
function [H00, H10, H01, H20, H11, H02] = fcnHINTEGRAL(a,h,l1,l2) H00 = fcnH00(a,h,l2) - fcnH00(a,h,l1); H10 = fcnH10(a,h,l2) - fcnH10(a,h,l1); H01 = fcnH01(a,h,l2) - fcnH01(a,h,l1); H20 = fcnH20(a,h,l2) - fcnH20(a,h,l1); H11 = fcnH11(a,h,l2) - fcnH11(a,h,l1); H02 = fcnH02(a,h,l2) - fcnH02(a,h,l1); end function out = fcnH00(a,h,l) % out = (1./h).*atan((a.*l)./(a.^2 + h.^2 + h.*sqrt(l.^2 + a.^2 + h.^2))); out = (1./h).*atan2((a.*l), (a.^2 + h.^2 + h.*sqrt(l.^2 + a.^2 + h.^2))); end function out = fcnH10(a,h,l) out = (l./sqrt(l.^2 + a.^2)).*log(sqrt(l.^2 + a.^2 + h.^2) + sqrt(l.^2 + a.^2)) - log(l + sqrt(l.^2 + a.^2 + h.^2)) - ((l.*log(h))./(sqrt(l.^2 + a.^2))); end function out = fcnH01(a,h,l) out = (a./sqrt(l.^2 + a.^2)).*(log(h) - log(sqrt(l.^2 + a.^2 + h.^2) + sqrt(l.^2 + a.^2))); end function out = fcnH20(a,h,l) % out = ((a.*l.*(l.^2 + a.^2 + h.^2 - h.*sqrt(l.^2 + a.^2 + h.^2)))./((l.^2 + a.^2).*sqrt(l.^2 + a.^2 + h.^2))) - (h.*atan(l./a)) + h.*atan((h.*l)./(a.*sqrt(l.^2 + a.^2 + h.^2))); out = ((a.*l.*(l.^2 + a.^2 + h.^2 - h.*sqrt(l.^2 + a.^2 + h.^2)))./((l.^2 + a.^2).*sqrt(l.^2 + a.^2 + h.^2))) - (h.*atan2(l,a)) + h.*atan2((h.*l),(a.*sqrt(l.^2 + a.^2 + h.^2))); end function out = fcnH11(a,h,l) out = ((-a.^2).*(l.^2 + a.^2 + h.^2 - h.*sqrt(l.^2 + a.^2 + h.^2)))./((l.^2 + a.^2).*sqrt(l.^2 + a.^2 + h.^2)); end function out = fcnH02(a,h,l) % out = -h.*atan(l./a) + h.*atan((h.*l)./(a.*sqrt(l.^2 + a.^2 + h.^2))); out = -h.*atan2(l, a) + h.*atan2((h.*l), (a.*sqrt(l.^2 + a.^2 + h.^2))); end
github
gpeyre/2016-shannon-theory-master
load_image.m
.m
2016-shannon-theory-master/code/toolbox/load_image.m
20,275
utf_8
c700b54853577ab37402e27e4ca061b8
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; if iscell(type) for i=1:length(type) M{i} = load_image(type{i},n,options); end return; end type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = getoptions(options, 'eta', .1); gamma = getoptions(options, 'gamma', 1/sqrt(2)); radius = getoptions(options, 'radius', 10); center = getoptions(options, 'center', [0 0]); center1 = getoptions(options, 'center1', [0 0]); w = getoptions(options, 'tube_width', 0.06); nb_points = getoptions(options, 'nb_points', 9); scaling = getoptions(options, 'scaling', 1); theta = getoptions(options, 'theta', 30 * 2*pi/360); eccentricity = getoptions(options, 'eccentricity', 1.3); sigma = getoptions(options, 'sigma', 0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end if strcmp(type(1:min(12,end)), 'square-tube-') k = str2double(type(13:end)); c1 = [.22 .5]; c2 = [1-c1(1) .5]; eta = 1.5; r1 = [c1 c1] + .21*[-1 -eta 1 eta]; r2 = [c2 c2] + .21*[-1 -eta 1 eta]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); if mod(k,2)==0 sel = n/2-k/2+1:n/2+k/2; else sel = n/2-(k-1)/2:n/2+(k-1)/2; end M( round(.25*n:.75*n), sel ) = 1; return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case 'constant' M = ones(n); case 'ramp' x = linspace(0,1,n); [Y,M] = meshgrid(x,x); case 'bump' s = getoptions(options, 'bump_size', .5); c = getoptions(options, 'center', [0 0]); if length(s)==1 s = [s s]; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); X = (X-c(1))/s(1); Y = (Y-c(2))/s(2); M = exp( -(X.^2+Y.^2)/2 ); case 'periodic' x = linspace(-pi,pi,n)/1.1; [Y,X] = meshgrid(x,x); f = getoptions(options, 'freq', 6); M = (1+cos(f*X)).*(1+cos(f*Y)); case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} M = create_letter(type(8), radius, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.im = 0.09; M = load_image('square-tube', n, options); case 'polygon' theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' options.radius = 0.45; options.center = [.5 .5]; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T-pi/2)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end f = getoptions(options, 'frequency', 30); eta = getoptions(options, 'width', .3); x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' width = getoptions(options, 'width', round(n/16) ); [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'geometrical' J = getoptions(options, 'Jgeometrical', 4); sgeom = 100*n/256; options.bound = 'per'; A = ones(n); for j=0:J-1 B = A; for k=1:2^j I = find(B==k); U = perform_blurring(randn(n),sgeom,options); s = median(U(I)); I1 = find( (B==k) & (U>s) ); I2 = find( (B==k) & (U<=s) ); A(I1) = 2*k-1; A(I2) = 2*k; end end M = A; case 'lic-texture' disp('Computing random tensor field.'); options.sigma_tensor = getoptions(options, 'lic_regularity', 50*n/256); T = compute_tensor_field_random(n,options); Flow = perform_tensor_decomp(T); % extract eigenfield. options.isoriented = 0; % no orientation in streamlines % initial texture lic_width = getoptions(options, 'lic_width', 0); M0 = perform_blurring(randn(n),lic_width); M0 = perform_histogram_equalization( M0, 'linear'); options.histogram = 'linear'; options.dt = 0.4; options.M0 = M0; options.verb = 1; options.flow_correction = 1; options.niter_lic = 3; w = 30; M = perform_lic(Flow, w, options); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'tv-image' M = rand(n); tau = compute_total_variation(M); options.niter = 400; [M,err_tv,err_l2] = perform_tv_projection(M,tau/1000,options); M = perform_histogram_equalization(M,'linear'); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'line-windowed' x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); eta = .3; gamma = getoptions(options, 'gamma', pi/10); parabola = getoptions(options, 'parabola', 0); M = (X-eta) - gamma*Y - parabola*Y.^2 < 0; f = sin( pi*x ).^2; M = M .* ( f'*f ); case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); theta = getoptions(options, 'theta', .2); freq = getoptions(options, 'freq', .2); X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'twodisks' M = zeros(n); options.center = [.25 .25]; M = load_image('disk', n, options); options.center = [.75 .75]; M = M + load_image('disk', n, options); case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} alpha = getoptions(options, 'alpha', 1); M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian sigma = getoptions(options, 'sigma', 10); M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature c = getoptions(c, 'c', .1); % angle theta = getoptions(options, 'theta', pi/sqrt(2)); x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' nbr_periods = getoptions(options, 'nbr_periods', 8); theta = getoptions(options, 'theta', 1/sqrt(2)); skew = getoptions(options, 'skew', 1/sqrt(2) ); A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' sigma = getoptions(options, 'sigma', 1); M = randn(n) * sigma; case 'disk-corner' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); rho = .3; eta = .1; M1 = rho*X+eta<Y; c = [0 .2]; r = .85; d = (X-c(1)).^2 + (Y-c(2)).^2; M2 = d<r^2; M = M1.*M2; otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end if strcmp(type, 'peppers-bw') M(:,1) = M(:,2); M(1,:) = M(2,:); end if sigma>0 M = perform_blurring(M,sigma); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 M = perform_blurring(M,sigma); end M = rescale(M); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
gpeyre/2016-shannon-theory-master
plot_hufftree.m
.m
2016-shannon-theory-master/code/toolbox/plot_hufftree.m
869
utf_8
4e86eec0b29a5e46f1218e15a6318f5f
function plot_hufftree(T,offs) % plot_hufftree - plot a huffman tree % % plot_hufftree(T); % % Copyright (c) 2008 Gabriel Peyre if nargin<2 offs=0; end hold on; plot_tree(T{1},[0,0],1, offs); hold off; axis tight; axis off; end %% function plot_tree(T,x,j, offs) tw = 15; lw = 1.5; ms = 10; if not(iscell(T)) de = [-.02 -.2]; % display a string u = text(x(1)+de(1),x(2)+de(2),num2str(T+offs)); set(u,'FontSize',tw); else % display a split h0 = 1/2^j; h = 1 * h0; u = plot( [x(1) x(1)-h], [x(2) x(2)-1], '.-' ); set(u,'MarkerSize',ms); set(u,'LineWidth',lw); u = plot( [x(1) x(1)+h], [x(2) x(2)-1], '.-' ); set(u,'MarkerSize',ms); set(u,'LineWidth',lw); plot_tree(T{1},[x(1)-h x(2)-1],j+1, offs); plot_tree(T{2},[x(1)+h x(2)-1],j+1, offs); end end
github
gpeyre/2016-shannon-theory-master
perform_huffcoding.m
.m
2016-shannon-theory-master/code/toolbox/perform_huffcoding.m
1,491
utf_8
41a9144e1a2da192d37cf10a40add3e2
function y = perform_huffcoding(x,T,dir) % perform_huffcoding - perform huffman coding % % y = perform_huffcoding(x,T,dir); % % dir=+1 for coding % dir=-1 for decoding % % T is a Huffman tree, computed with compute_hufftree % % Copyright (c) 2008 Gabriel Peyre if dir==1 %%% CODING %%% C = huffman_gencode(T); m = length(C); x = round(x); if min(x)<1 || max(x)>m error('Too small or too large token'); end y = []; for i=1:length(x) y = [y C{x(i)}]; end else %%% DE-CODING %%% t = T{1}; y = []; while not(isempty(x)) if x(1)==0 t = t{1}; else t = t{2}; end x(1) = []; if not(iscell(t)) y = [y t]; t = T{1}; end end y = y(:); end %% function C = huffman_gencode(T) if not(iscell(T)) % || not(length(T)==2) C = {}; C{T} = -1; elseif length(T)==1 C = huffman_gencode(T{1}); % remove traling -1 for i=1:length(C) C{i} = C{i}(1:end-1); end elseif length(T)==2 C1 = huffman_gencode(T{1}); C2 = huffman_gencode(T{2}); C = {}; for i=1:length(C1) if not(isempty(C1{i})) C{i} = [0 C1{i}]; end end for i=1:length(C2) if not(isempty(C2{i})) C{i} = [1 C2{i}]; end end else error('Problem'); end
github
mowangphy/HOPE-CNN-master
cnn_cifar_hope.m
.m
HOPE-CNN-master/examples/cnn_cifar_hope.m
6,248
utf_8
7001f6382f537fb5735457262d9a42f5
function [net, info] = cnn_cifar_hope(varargin) % ------------ CNN Cifar-10 ------------------------ % iFLYTEK Laboratory for Neural Computing and Machine Learning (iNCML) @ York University % (https://wiki.eecs.yorku.ca/lab/MLL/start) % Based on MatconvNet (http://www.vlfeat.org/matconvnet/) % Coding by: Hengyue Pan ([email protected]), York University, Toronto % % If you hope to use this code, please cite: % @article{pan2016learning, % title={Learning Convolutional Neural Networks using Hybrid Orthogonal Projection and Estimation}, % author={Pan, Hengyue and Jiang, Hui}, % journal={arXiv preprint arXiv:1606.05929}, % year={2016} % } % License: MIT License % % Using HOPE model to improve the CNN performance % Without data augmentation: 7.44% error rate on the validation set run(fullfile(fileparts(mfilename('fullpath')), '../matlab/vl_setupnn.m')) ; opts.modelType = 'HOPE' ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.train.batchSize = 100 ; opts.train.numEpochs = 400 ; switch opts.modelType case 'HOPE' lr_schedule = zeros(1, opts.train.numEpochs); beta_schedule = zeros(1, opts.train.numEpochs); lr_init = 0.06; beta_init = 0.15; % the learning rate of the orthogonal penalty term for i = 1:opts.train.numEpochs if (mod(i, 25) == 0) lr_init = lr_init / 2; beta_init = beta_init / 1.75; end lr_schedule(i) = lr_init; beta_schedule(i) = beta_init; end opts.train.learningRate = lr_schedule; opts.train.beta = beta_schedule; opts.train.weightDecay = 0.0005 ; otherwise error('Unknown model type %s', opts.modelType) ; end opts.expDir = fullfile('data','cifar-hope') ; % output folder [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile('data','cifar') ; opts.dataClass = 0; % RGB: 0; YUV: 1 opts.whitenData = false ; % if whitening opts.contrastNormalization = false ; if (opts.dataClass == 0) opts.imdbPath = '/eecs/research/asr/hengyue/DFT_DNN/Data/cifar/imdb_cifar.mat'; % imdb data structure: % imdb.images.data: 32-by-32-by-3-by-60000 (all cifar data) % imdb.images.labels: 1-by-60000 (all labels) % imdb.images.set: 1-by-60000: if the ith image is an training sample, then imdb.images.set(i) = 1, otherwise imdb.images.set(i) = 3 else opts.imdbPath = '/eecs/research/asr/hengyue/dataset/imdb_YUV_normalized.mat'; end opts.train.continue = false ; opts.train.gpus = 1 ; opts.train.expDir = opts.expDir ; opts.train.momentum = 0.9 ; opts.train.isDropInput = 0; opts.train.dropInputRate = 0.0; opts.train.hopeMethod = 1; % 2, 1, 0 opts.train.isDataAug = 0; % we include rotation, scale, translation and color casting in the file cnn_train_hopefast opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Prepare data and model % -------------------------------------------------------------------- switch opts.modelType case 'HOPE', net = cnn_cifar_init_hope(opts) ; end if exist(opts.imdbPath, 'file') load(opts.imdbPath) ; if (opts.dataClass == 0) dataMean = mean(imdb.images.data(:,:,:,1:50000), 4); imdb.images.data = bsxfun(@minus, imdb.images.data, dataMean); end if opts.whitenData z = reshape(imdb.images.data,[],60000) ; sigma = z * transpose(z) / size(z, 2);%sigma is a n-by-n matrix %%perform SVD [U,S,V] = svd(sigma); disp('Image processing using ZCAwhitening'); epsilon = 0.01; z = U * diag(1./sqrt(diag(S) + epsilon)) * U' * z; imdb.images.data = reshape(z, 32, 32, 3, []) ; end else imdb = getCifarImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- imdb.images.data = single(imdb.images.data); [net, info] = cnn_train_hope(net, imdb, @getBatch, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; valError = min(info.val.error(1, :)); fprintf('Minimum validation error is %.6g \n', valError); % -------------------------------------------------------------------- function [im, labels] = getBatch(imdb, batch) % -------------------------------------------------------------------- im = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; %if rand > 0.5, im=fliplr(im) ; end % -------------------------------------------------------------------- function imdb = getCifarImdb(opts) % -------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat'); files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ... {'test_batch.mat'}]; files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false); file_set = uint8([ones(1, 5), 3]); if any(cellfun(@(fn) ~exist(fn, 'file'), files)) url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ; fprintf('downloading %s\n', url) ; untar(url, opts.dataDir) ; end data = cell(1, numel(files)); labels = cell(1, numel(files)); sets = cell(1, numel(files)); for fi = 1:numel(files) fd = load(files{fi}) ; data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ; labels{fi} = fd.labels' + 1; % Index from 1 sets{fi} = repmat(file_set(fi), size(labels{fi})); end set = cat(2, sets{:}); data = single(cat(4, data{:})); % remove mean in any case dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean); % normalize by image mean and std as suggested in `An Analysis of % Single-Layer Networks in Unsupervised Feature Learning` Adam % Coates, Honglak Lee, Andrew Y. Ng if opts.contrastNormalization z = reshape(data,[],60000) ; z = bsxfun(@minus, z, mean(z,1)) ; n = std(z,0,1) ; z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ; data = reshape(z, 32, 32, 3, []) ; end clNames = load(fullfile(unpackPath, 'batches.meta.mat')); imdb.images.data = data ; imdb.images.labels = single(cat(2, labels{:})) ; imdb.images.set = set; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = clNames.label_names;
github
mowangphy/HOPE-CNN-master
cnn_train_hope.m
.m
HOPE-CNN-master/examples/cnn_train_hope.m
20,562
utf_8
bd9dae5167b22459f3bf29a955c40bea
function [net, info] = cnn_train_hope(net, imdb, getBatch, varargin) % CNN_TRAIN_HOPE: developed based on cnn_train in matconvnet (by Andrea Vedaldi) % Do network training % The hope training method is implemented in the function 'map_gradients' % Data augmentation methods are implemented in the function 'process_epoch' opts.batchSize = 100 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.numEpochs = 300 ; opts.gpus = 1 ; % which GPU devices to use (none, one, or more) opts.learningRate = 0.001 ; opts.beta = 0.015; opts.continue = false ; opts.expDir = fullfile('data','exp') ; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.prefetch = false ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.momentum_hopefast = 0.9; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.isDropInput = 1; opts.dropInputRate = 0.1; opts.hopeMethod = 1; % 0: original; 1: new matrix1; 2: new matrix2 opts.isDataAug = 1; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- evaluateMode = isempty(opts.train) ; %save net.mat net; if ~evaluateMode for i=1:numel(net.layers) if isfield(net.layers{i}, 'weights') J = numel(net.layers{i}.weights) ; for j=1:J net.layers{i}.momentum{j} = zeros(size(net.layers{i}.weights{j}), 'single') ; end if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J, 'single') ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J, 'single') ; end end % Legacy code: will be removed if isfield(net.layers{i}, 'filters') net.layers{i}.momentum{1} = zeros(size(net.layers{i}.filters), 'single') ; net.layers{i}.momentum{2} = zeros(size(net.layers{i}.biases), 'single') ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, 2, 'single') ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = single([1 0]) ; end end end end %save net2.mat net; % setup GPUs numGpus = numel(opts.gpus) ; if numGpus > 1 if isempty(gcp('nocreate')), parpool('local',numGpus) ; spmd, gpuDevice(opts.gpus(labindex)), end end elseif numGpus == 1 gpuDevice(opts.gpus) end if exist(opts.memoryMapFile), delete(opts.memoryMapFile) ; end %save net3.mat net; % setup error calculation function if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1e', 'top5e'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'bine'} ; end otherwise error('Uknown error function ''%s''', opts.errorFunction) ; end end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- all_corr_collection = []; for epoch=1:opts.numEpochs learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; beta = opts.beta(min(epoch, numel(opts.beta))) ; % fast-forward to last checkpoint modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; if opts.continue if exist(modelPath(epoch),'file') if epoch == opts.numEpochs load(modelPath(epoch), 'net', 'info') ; end continue ; end if epoch > 1 fprintf('resuming by loading epoch %d\n', epoch-1) ; load(modelPath(epoch-1), 'net', 'info') ; end end % move CNN to GPU as needed if numGpus == 1 net = vl_simplenn_move(net, 'gpu') ; elseif numGpus > 1 spmd(numGpus) net_ = vl_simplenn_move(net, 'gpu') ; end end % train one epoch and validate train = opts.train(randperm(numel(opts.train))) ; % shuffle val = opts.val ; if numGpus <= 1 [net,stats.train,all_corr] = process_epoch(opts, getBatch, epoch, train, learningRate, beta, imdb, net) ; [~,stats.val] = process_epoch(opts, getBatch, epoch, val, 0, 0, imdb, net) ; else spmd(numGpus) [net_, stats_train_,all_corr] = process_epoch(opts, getBatch, epoch, train, learningRate, beta, imdb, net_) ; [~, stats_val_] = process_epoch(opts, getBatch, epoch, val, 0, 0, imdb, net_) ; end stats.train = sum([stats_train_{:}],2) ; stats.val = sum([stats_val_{:}],2) ; end all_corr_collection = [all_corr_collection, all_corr]; % save if evaluateMode, sets = {'val'} ; else sets = {'train', 'val'} ; end for f = sets f = char(f) ; n = numel(eval(f)) ; info.(f).speed(epoch) = n / stats.(f)(1) ; info.(f).objective(epoch) = stats.(f)(2) / n ; info.(f).error(:,epoch) = stats.(f)(3:end) / n ; end if numGpus > 1 spmd(numGpus) net_ = vl_simplenn_move(net_, 'cpu') ; end net = net_{1} ; else net = vl_simplenn_move(net, 'cpu') ; end if ~evaluateMode if (mod(epoch, 100) == 0) save(modelPath(epoch), 'net', 'info') ; end end figure(1) ; clf ; hasError = isa(opts.errorFunction, 'function_handle') ; hasHOPE = 1; subplot(1,1+hasError+hasHOPE,1) ; if ~evaluateMode plot(1:epoch, info.train.objective, '.-', 'linewidth', 2) ; hold on ; end plot(1:epoch, info.val.objective, '.--') ; xlabel('training epoch') ; ylabel('energy') ; grid on ; h=legend(sets) ; set(h,'color','none'); title('objective') ; if hasError subplot(1,2+hasHOPE,2) ; leg = {} ; if ~evaluateMode plot(1:epoch, info.train.error', '.-', 'linewidth', 2) ; hold on ; leg = horzcat(leg, strcat('train ', opts.errorLabels)) ; end plot(1:epoch, info.val.error', '.--') ; leg = horzcat(leg, strcat('val ', opts.errorLabels)) ; set(legend(leg{:}),'color','none') ; grid on ; xlabel('training epoch') ; ylabel('error') ; title('error') ; end if hasHOPE subplot(1,3,3) ; leg = {} ; nHOPE = size(all_corr_collection, 1); if ~evaluateMode for iHOPE = 1:nHOPE plot(1:epoch, all_corr_collection(iHOPE, :), '.-', 'linewidth', 2) ; hold on ; leg = horzcat(leg, strcat('HOPE ', iHOPE)) ; end end set(legend(leg{:}),'color','none') ; grid on ; xlabel('training epoch') ; ylabel('Correlation') ; title('Correlation') ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end % ------------------------------------------------------------------------- function err = error_multiclass(opts, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; error = ~bsxfun(@eq, predictions, reshape(labels, 1, 1, 1, [])) ; err(1,1) = sum(sum(sum(error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(min(error(:,:,1:5,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binaryclass(opts, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(opts, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net,stats,all_corr,prof] = process_epoch(opts, getBatch, epoch, subset, learningRate, beta, imdb, net) % ------------------------------------------------------------------------- % validation mode if learning rate is zero training = learningRate > 0 ; if training, mode = 'training' ; else, mode = 'validation' ; end if nargout > 3, mpiprofile on ; end numGpus = numel(opts.gpus) ; if numGpus >= 1 one = gpuArray(single(1)) ; else one = single(1) ; end res = [] ; mmap = [] ; stats = [] ; top_1_Error_collection = zeros(1, 2); for t=1:opts.batchSize:numel(subset) fprintf('%s: epoch %02d: batch %3d/%3d: ', mode, epoch, ... fix(t/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize)) ; batchSize = min(opts.batchSize, numel(subset) - t + 1) ; batchTime = tic ; numDone = 0 ; error = [] ; for s=1:opts.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+opts.batchSize-1, numel(subset)) ; batch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ; [im, labels] = getBatch(imdb, batch) ; if opts.prefetch if s==opts.numSubBatches batchStart = t + (labindex-1) + opts.batchSize ; batchEnd = min(t+2*opts.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ; getBatch(imdb, nextBatch) ; end % Do horizontal flip for 50% images if training if opts.isDataAug % && (epoch < (opts.numEpochs-100) ) fprintf('Do image augmentation (rotation+translation+scale+colorspace)... '); [H0, W0, C0, N0] = size(im); randIdx = randperm(N0); % translation randIdx2 = randperm(N0); % rotate randIdx3 = randperm(N0); % scale randIdx4 = randperm(N0); % RGB casting for iN = 1:N0 if (randIdx(iN) <= (N0/2)) transRangeX = (rand(1) - 0.5) * 10; transRangeY = (rand(1) - 0.5) * 10; im(:, :, :, iN) = imtranslate(im(:, :, :, iN),[transRangeX, transRangeY]); end if (randIdx2(iN) <= (N0/2)) angle = (rand(1) - 0.5) * 10; % -5 ~ 5 im(:, :, :, iN) = imrotate( im(:, :, :, iN), angle, 'bilinear', 'crop' ); end if (randIdx3(iN) <= (N0/2)) xmin = randperm(4); ymin = randperm(4); width = randperm(4) + 24; height = randperm(4) + 24; tmpIm = imcrop(im(:, :, :, iN), [xmin(1), ymin(1), width(1), height(1)]); im(:, :, :, iN) = imresize(tmpIm, [32, 32]); end if (randIdx4(iN) <= (N0/2)) tagR = rand(1); tagG = rand(1); tagB = rand(1); % [H0, W0, C0, N0] = size(im); maskRGB = ( rand(H0, W0, C0, N0)*0.1 - 0.05 ) + 1;% 0-1 -> 0.95-1.05 if (tagR < 0.5) im(:, :, 1, iN) = im(:, :, 1, iN) .* maskRGB(:, :, 1, iN); end if (tagG < 0.5) im(:, :, 2, iN) = im(:, :, 2, iN) .* maskRGB(:, :, 2, iN); end if (tagB < 0.5) im(:, :, 3, iN) = im(:, :, 3, iN) .* maskRGB(:, :, 3, iN); end end end fprintf('Done ... \n'); end end if opts.isDropInput if training fprintf('Do drop input '); [H, W, C, N] = size(im); mask = single(rand(H, W) >= opts.dropInputRate) ; im = bsxfun(@times, im, mask); else % im = im * (1 - opts.dropInputRate); end end if numGpus >= 1 im = gpuArray(im) ; end % evaluate CNN net.layers{end}.class = labels ; if training, dzdy = one; else, dzdy = [] ; end %'accumulate', s~=1, ... res = vl_simplenn(net, im, dzdy, res, ... 'accumulate', 0, ... 'disableDropout', ~training, ... 'conserveMemory', opts.conserveMemory, ... 'backPropDepth', opts.backPropDepth, ... 'sync', opts.sync) ; % accumulate training errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(opts.errorFunction(opts, labels, res),[],1) ; ]],2) ; numDone = numDone + numel(batch) ; end % gather and accumulate gradients across labs all_corr = 0; if training if numGpus <= 1 [net, all_corr] = accumulate_gradients(opts, learningRate, beta, batchSize, net, res) ; else if isempty(mmap) mmap = map_gradients(opts.memoryMapFile, net, res, numGpus) ; end write_gradients(mmap, net, res) ; labBarrier() ; [net, all_corr, res] = accumulate_gradients(opts, learningRate, beta, batchSize, net, res, mmap) ; end end % print learning statistics batchTime = toc(batchTime) ; stats = sum([stats,[batchTime ; error]],2); % works even when stats=[] speed = batchSize/batchTime ; fprintf(' %.2f s (%.1f data/s)', batchTime, speed) ; n = (t + batchSize - 1) / max(1,numlabs) ; fprintf(' obj:%.6g', stats(2)/n) ; for i=1:numel(opts.errorLabels) fprintf(' %s:%.3g', opts.errorLabels{i}, stats(i+2)/n) ; top_1_Error_collection(i) = top_1_Error_collection(i) + stats(i+2)/n; end fprintf(' [%d/%d]', numDone, batchSize); fprintf('\n') ; % debug info if opts.plotDiagnostics && numGpus <= 1 figure(2) ; vl_simplenn_diagnose(net,res) ; drawnow ; end end top_1_Error_collection = top_1_Error_collection ./ numel(subset); top_1_Error_collection = top_1_Error_collection .* opts.batchSize; fprintf(' Overall top-1 Error: %.6g, overall top-5 Error: %.6g \n', top_1_Error_collection(1), top_1_Error_collection(2)) ; if nargout > 3 prof = mpiprofile('info'); mpiprofile off ; end % ------------------------------------------------------------------------- function [net,all_corr,res] = accumulate_gradients(opts, lr, beta, batchSize, net, res, mmap) % ------------------------------------------------------------------------- nHOPE = 0; all_corr = []; for l=1:numel(net.layers) for j=1:numel(res(l).dzdw) if nargin >= 7 tag = sprintf('l%d_%d',l,j) ; tmp = zeros(size(mmap.Data(labindex).(tag)), 'single') ; for g = setdiff(1:numel(mmap.Data), labindex) tmp = tmp + mmap.Data(g).(tag) ; end res(l).dzdw{j} = res(l).dzdw{j} + tmp ; end end if isfield(net.layers{l}, 'weights') thisDecay(1) = opts.weightDecay * net.layers{l}.weightDecay(1) ; thisLR(1) = lr * net.layers{l}.learningRate(1) ; thisDecay(2) = opts.weightDecay * net.layers{l}.weightDecay(2) ; thisLR(2) = lr * net.layers{l}.learningRate(2) ; if ( strcmp(net.layers{l}.type, 'hope_fast') ) nHOPE = nHOPE + 1; if (opts.hopeMethod == 0) % slow L2_W = sqrt(sum(net.layers{l}.weights{1}.^2, 1)); %[1, W, C_in, C_out] %df_D = zeros(H, W, C_in, C_out, 'single'); %df_D = gpuArray(df_D); for i2 = 1:net.layers{l}.C_in for j2 = 1:net.layers{l}.C_out weight = net.layers{l}.weights{1}(:, :, i2, j2);% can be optimized % L2_W_S = L2_W_Square(:, :, i2, j2); L2_W_sub = L2_W(:, :, i2, j2); L2_W_S = transpose(L2_W_sub)*L2_W_sub; C_matrix = transpose(weight) * weight; G_matrix = C_matrix./L2_W_S; B = sign(C_matrix)./L2_W_S; % df_D(:, :, i2, j2) = weight*B - (weight./repmat(L2_W_sub.^2,[size(weight,1),1]))* diag(sum(G_matrix,1)); net.layers{l}.df_D(:, :, i2, j2) = weight*B - (bsxfun(@rdivide, weight, L2_W_sub.^2))* diag(sum(G_matrix,1)); end end elseif (opts.hopeMethod == 1) % this method that mentioned in our paper weight = reshape(net.layers{l}.weights{1}, [], net.layers{l}.C_out); L2_W = sqrt(sum(weight.^2, 1)); %[1, C_out] L2_W_S = transpose(L2_W)*L2_W; % C_out * C_out C_matrix = transpose(weight) * weight; % C_out * C_out G_matrix = C_matrix./L2_W_S; B = sign(C_matrix)./L2_W_S; net.layers{l}.df_D = weight*B - (bsxfun(@rdivide, weight, L2_W.^2))* diag(sum(G_matrix,1)); net.layers{l}.df_D = reshape(net.layers{l}.df_D, net.layers{l}.H, net.layers{l}.W, net.layers{l}.C_in, net.layers{l}.C_out); else for i = 1:net.layers{l}.C_out weight = net.layers{l}.weights{1}(:, :, :, i);% can be optimized weight = reshape(weight, [], 1); L2_W = sqrt(sum(weight.^2, 1)); L2_W_S = transpose(L2_W)*L2_W; C_matrix = transpose(weight) * weight; G_matrix = C_matrix./L2_W_S; B = sign(C_matrix)./L2_W_S; df_D0 = weight*B - (bsxfun(@rdivide, weight, L2_W.^2))* diag(sum(G_matrix,1)); net.layers{l}.df_D(:, :, :, i) = reshape(df_D0, net.layers{l}.H, net.layers{l}.W, net.layers{l}.C_in, 1); end end res(l).dzdw{1} = res(l).dzdw{1} + beta .* net.layers{l}.df_D; net.layers{l}.momentum{1} = ... opts.momentum_hopefast * net.layers{l}.momentum{1} ... - thisLR(1) * thisDecay(1) * net.layers{l}.weights{1} ... - thisLR(1) * (1 / batchSize) * res(l).dzdw{1} ; net.layers{l}.weights{1} = net.layers{l}.weights{1} + net.layers{l}.momentum{1} ; if (opts.hopeMethod == 0) %[H, W, C_in, C_out] = size(net.layers{l}.weights{1}); L2_W = sqrt(sum(net.layers{l}.weights{1}.^2,1));%[1, W, C_in, C_out] net.layers{l}.weights{1} = bsxfun(@rdivide, net.layers{l}.weights{1}, L2_W); correlation = sum(sum(abs(transpose(net.layers{l}.weights{1}(:, :, 1, 1) )*net.layers{l}.weights{1}(:, :, 1, 1) ),1),2)-size(net.layers{l}.weights{1}(:, :, 1, 1),2); elseif (opts.hopeMethod == 1) weight = reshape(net.layers{l}.weights{1}, [], net.layers{l}.C_out); L2_W = sqrt(sum(weight.^2, 1)); %[1, C_out] weight = bsxfun(@rdivide, weight, L2_W); net.layers{l}.weights{1} = reshape(weight, net.layers{l}.H, net.layers{l}.W, net.layers{l}.C_in, net.layers{l}.C_out); correlation = sum(sum(abs(transpose(weight)*weight),1),2)-net.layers{l}.C_out; else L2_W = sqrt(sum(net.layers{l}.weights{1}.^2,1));%[1, W, C_in, C_out] net.layers{l}.weights{1} = bsxfun(@rdivide, net.layers{l}.weights{1}, L2_W); weight2 = net.layers{l}.weights{1}(:, :, :, 1); weight2 = reshape(weight2, [], 1); correlation = sum(sum(abs(transpose(weight2)*weight2),1),2)-1; end fprintf(' corr %.4f, hopeMethod %d ', correlation, opts.hopeMethod); all_corr(nHOPE, 1) = gather(correlation); % clear L2_W; end if ( strcmp(net.layers{l}.type, 'conv') ) net.layers{l}.momentum{1} = ... opts.momentum * net.layers{l}.momentum{1} ... - thisLR(1) * thisDecay(1) * net.layers{l}.weights{1} ... - thisLR(1) * (1 / batchSize) * res(l).dzdw{1} ; net.layers{l}.weights{1} = net.layers{l}.weights{1} + net.layers{l}.momentum{1} ; net.layers{l}.momentum{2} = ... opts.momentum * net.layers{l}.momentum{2} ... - thisLR(2) * thisDecay(2) * net.layers{l}.weights{2} ... - thisLR(2) * (1 / batchSize) * res(l).dzdw{2} ; net.layers{l}.weights{2} = net.layers{l}.weights{2} + net.layers{l}.momentum{2} ; end if ( strcmp(net.layers{l}.type, 'bnorm') ) net.layers{l}.momentum{1} = ... opts.momentum * net.layers{l}.momentum{1} ... - thisLR(1) * thisDecay(1) * net.layers{l}.weights{1} ... - thisLR(1) * (1 / batchSize) * res(l).dzdw{1} ; net.layers{l}.weights{1} = net.layers{l}.weights{1} + net.layers{l}.momentum{1} ; net.layers{l}.momentum{2} = ... opts.momentum * net.layers{l}.momentum{2} ... - thisLR(2) * thisDecay(2) * net.layers{l}.weights{2} ... - thisLR(2) * (1 / batchSize) * res(l).dzdw{2} ; net.layers{l}.weights{2} = net.layers{l}.weights{2} + net.layers{l}.momentum{2} ; end end %end end % ------------------------------------------------------------------------- function mmap = map_gradients(fname, net, res, numGpus) % ------------------------------------------------------------------------- format = {} ; for i=1:numel(net.layers) for j=1:numel(res(i).dzdw) format(end+1,1:3) = {'single', size(res(i).dzdw{j}), sprintf('l%d_%d',i,j)} ; end end format(end+1,1:3) = {'double', [3 1], 'errors'} ; if ~exist(fname) && (labindex == 1) f = fopen(fname,'wb') ; for g=1:numGpus for i=1:size(format,1) fwrite(f,zeros(format{i,2},format{i,1}),format{i,1}) ; end end fclose(f) ; end labBarrier() ; mmap = memmapfile(fname, 'Format', format, 'Repeat', numGpus, 'Writable', true) ; % ------------------------------------------------------------------------- function write_gradients(mmap, net, res) % ------------------------------------------------------------------------- for i=1:numel(net.layers) for j=1:numel(res(i).dzdw) mmap.Data(labindex).(sprintf('l%d_%d',i,j)) = gather(res(i).dzdw{j}) ; end end
github
mowangphy/HOPE-CNN-master
vl_argparse.m
.m
HOPE-CNN-master/matlab/vl_argparse.m
3,148
utf_8
74459d2b851e027208bd7ca9ea999037
function [opts, args] = vl_argparse(opts, args) % VL_ARGPARSE Parse list of parameter-value pairs % OPTS = VL_ARGPARSE(OPTS, ARGS) updates the structure OPTS based on % the specified parameter-value pairs ARGS={PAR1, VAL1, ... PARN, % VALN}. The function produces an error if an unknown parameter name % is passed on. Values that are structures are copied recursively. % % Any of the PAR, VAL pairs can be replaced by a structure; in this % case, the fields of the structure are used as paramaters and the % field values as values. % % [OPTS, ARGS] = VL_ARGPARSE(OPTS, ARGS) copies any parameter in % ARGS that does not match OPTS back to ARGS instead of producing an % error. Options specified as structures are expaned back to PAR, % VAL pairs. % % Example:: % The function can be used to parse a list of arguments % passed to a MATLAB functions: % % function myFunction(x,y,z,varargin) % opts.parameterName = defaultValue ; % opts = vl_argparse(opts, varargin) % % If only a subset of the options should be parsed, for example % because the other options are interpreted by a subroutine, then % use the form % % [opts, varargin] = vl_argparse(opts, varargin) % % that copies back to VARARGIN any unknown parameter. % % See also: VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2015 Andrea Vedaldi. % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if ~isstruct(opts), error('OPTS must be a structure') ; end if ~iscell(args), args = {args} ; end % convert ARGS into a structure ai = 1 ; params = {} ; values = {} ; while ai <= length(args) if isstr(args{ai}) params{end+1} = args{ai} ; ai = ai + 1 ; values{end+1} = args{ai} ; ai = ai + 1 ; elseif isstruct(args{ai}) ; params = horzcat(params, fieldnames(args{ai})') ; values = horzcat(values, struct2cell(args{ai})') ; ai = ai + 1 ; else error('Expected either a param-value pair or a structure') ; end end args = {} ; % copy parameters in the opts structure, recursively for i = 1:numel(params) field = params{i} ; if ~isfield(opts, field) field = findfield(opts, field) ; end if ~isempty(field) if isstruct(values{i}) if ~isstruct(opts.(field)) error('The value of parameter %d is a structure in the arguments but not a structure in OPT.',field) ; end if nargout > 1 [opts.(field), rest] = vl_argparse(opts.(field), values{i}) ; args = horzcat(args, {field, cell2struct(rest(2:2:end), rest(1:2:end), 2)}) ; else opts.(field) = vl_argparse(opts.(field), values{i}) ; end else opts.(field) = values{i} ; end else if nargout <= 1 error('Uknown parameter ''%s''', params{i}) ; else args = horzcat(args, {params{i}, values{i}}) ; end end end function field = findfield(opts, field) fields=fieldnames(opts) ; i=find(strcmpi(fields, field)) ; if ~isempty(i) field=fields{i} ; else field=[] ; end
github
mowangphy/HOPE-CNN-master
vl_compilenn.m
.m
HOPE-CNN-master/matlab/vl_compilenn.m
24,645
utf_8
8ffdf03179d5108a10b46a7fee6410e9
function vl_compilenn( varargin ) % VL_COMPILENN Compile the MatConvNet toolbox % The `vl_compilenn()` function compiles the MEX files in the % MatConvNet toolbox. See below for the requirements for compiling % CPU and GPU code, respectively. % % `vl_compilenn('OPTION', ARG, ...)` accepts the following options: % % `EnableGpu`:: `false` % Set to true in order to enable GPU support. % % `Verbose`:: 0 % Set the verbosity level (0, 1 or 2). % % `Debug`:: `false` % Set to true to compile the binaries with debugging % information. % % `CudaMethod`:: Linux & Mac OS X: `mex`; Windows: `nvcc` % Choose the method used to compile the CUDA code. There are two % methods: % % * The **`mex`** method uses the MATLAB MEX command with the % configuration file % `<MatConvNet>/matlab/src/config/mex_CUDA_<arch>.[sh/xml]` % This configuration file is in XML format since MATLAB 8.3 % (R2014a) and is a Shell script for earlier versions. This % is, principle, the preferred method as it uses the % MATLAB-sanctioned compiler options. % % * The **`nvcc`** method calls the NVIDIA CUDA compiler `nvcc` % directly to compile CUDA source code into object files. % % This method allows to use a CUDA toolkit version that is not % the one that officially supported by a particular MATALB % version (see below). It is also the default method for % compilation under Windows and with CuDNN. % % `CudaRoot`:: guessed automatically % This option specifies the path to the CUDA toolkit to use for % compilation. % % `EnableImreadJpeg`:: `true` % Set this option to `true` to compile `vl_imreadjpeg`. % % `ImageLibrary`:: `libjpeg` (Linux), `gdiplus` (Windows), `quartz` (Mac) % The image library to use for `vl_impreadjpeg`. % % `ImageLibraryCompileFlags`:: platform dependent % A cell-array of additional flags to use when compiling % `vl_imreadjpeg`. % % `ImageLibraryLinkFlags`:: platform dependent % A cell-array of additional flags to use when linking % `vl_imreadjpeg`. % % `EnableCudnn`:: `false` % Set to `true` to compile CuDNN support. % % `CudnnRoot`:: `'local/'` % Directory containing the unpacked binaries and header files of % the CuDNN library. % % ## Compiling the CPU code % % By default, the `EnableGpu` option is switched to off, such that % the GPU code support is not compiled in. % % Generally, you only need a C/C++ compiler (usually Xcode, GCC or % Visual Studio for Mac, Linux, and Windows respectively). The % compiler can be setup in MATLAB using the % % mex -setup % % command. % % ## Compiling the GPU code % % In order to compile the GPU code, set the `EnableGpu` option to % `true`. For this to work you will need: % % * To satisfy all the requirement to compile the CPU code (see % above). % % * A NVIDIA GPU with at least *compute capability 2.0*. % % * The *MATALB Parallel Computing Toolbox*. This can be purchased % from Mathworks (type `ver` in MATLAB to see if this toolbox is % already comprised in your MATLAB installation; it often is). % % * A copy of the *CUDA Devkit*, which can be downloaded for free % from NVIDIA. Note that each MATLAB version requires a % particular CUDA Devkit version: % % | MATLAB version | Release | CUDA Devkit | % |----------------|---------|-------------| % | 2013b | 2013b | 5.5 | % | 2014a | 2014a | 5.5 | % | 2014b | 2014b | 6.0 | % % A different versions of CUDA may work using the hack described % above (i.e. setting the `CudaMethod` to `nvcc`). % % The following configurations have been tested successfully: % % * Windows 7 x64, MATLAB R2014a, Visual C++ 2010 and CUDA Toolkit % 6.5 (unable to compile with Visual C++ 2013). % * Windows 8 x64, MATLAB R2014a, Visual C++ 2013 and CUDA % Toolkit 6.5. % * Mac OS X 10.9 and 10.10, MATLAB R2013a and R2013b, Xcode, CUDA % Toolkit 5.5. % * GNU/Linux, MATALB R2014a, gcc, CUDA Toolkit 5.5. % % Furthermore your GPU card must have ComputeCapability >= 2.0 (see % output of `gpuDevice()`) in order to be able to run the GPU code. % To change the compute capabilities, for `mex` `CudaMethod` edit % the particular config file. For the 'nvcc' method, compute % capability is guessed based on the GPUDEVICE output. You can % override it by setting the 'CudaArch' parameter (e.g. in case of % multiple GPUs with various architectures). % % See also: [Compliling MatConvNet](../install.md#compiling), % [Compiling MEX files containing CUDA % code](http://mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html), % `vl_setup()`, `vl_imreadjpeg()`. % Copyright (C) 2014-15 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % Get MatConvNet root directory root = fileparts(fileparts(mfilename('fullpath'))) ; addpath(fullfile(root, 'matlab')) ; % -------------------------------------------------------------------- % Parse options % -------------------------------------------------------------------- opts.enableGpu = false; opts.enableImreadJpeg = true; opts.enableCudnn = false; opts.imageLibrary = [] ; opts.imageLibraryCompileFlags = {} ; opts.imageLibraryLinkFlags = [] ; opts.verbose = 0; opts.debug = false; opts.cudaMethod = [] ; opts.cudaRoot = [] ; opts.cudaArch = [] ; opts.defCudaArch = [... '-gencode=arch=compute_20,code=\"sm_20,compute_20\" '... '-gencode=arch=compute_30,code=\"sm_30,compute_30\"']; opts.cudnnRoot = 'local' ; opts = vl_argparse(opts, varargin); % -------------------------------------------------------------------- % Files to compile % -------------------------------------------------------------------- arch = computer('arch') ; if isempty(opts.imageLibrary) switch arch case 'glnxa64', opts.imageLibrary = 'libjpeg' ; case 'maci64', opts.imageLibrary = 'quartz' ; case 'win64', opts.imageLibrary = 'gdiplus' ; end end if isempty(opts.imageLibraryLinkFlags) switch opts.imageLibrary case 'libjpeg', opts.imageLibraryLinkFlags = {'-ljpeg'} ; case 'quartz', opts.imageLibraryLinkFlags = {'LDFLAGS=$LDFLAGS -framework Cocoa -framework ImageIO'} ; case 'gdiplus', opts.imageLibraryLinkFlags = {'-lgdiplus'} ; end end lib_src = {} ; mex_src = {} ; % Files that are compiled as CPP or CU depending on whether GPU support % is enabled. if opts.enableGpu, ext = 'cu' ; else, ext='cpp' ; end lib_src{end+1} = fullfile(root,'matlab','src','bits',['data.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['datamex.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnconv.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnfullyconnected.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnsubsample.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnpooling.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnnormalize.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbnorm.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbias.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconv.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconvt.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnpool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnnormalize.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbnorm.' ext]) ; % CPU-specific files lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','tinythread.cpp') ; % GPU-specific files if opts.enableGpu lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','datacu.cu') ; end % cuDNN-specific files if opts.enableCudnn lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnconv_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbias_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnpooling_cudnn.cu') ; end % Other files if opts.enableImreadJpeg mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src', 'bits', 'impl', ['imread_' opts.imageLibrary '.cpp']) ; end % -------------------------------------------------------------------- % Setup CUDA toolkit % -------------------------------------------------------------------- if opts.enableGpu opts.verbose && fprintf('%s: * CUDA configuration *\n', mfilename) ; if isempty(opts.cudaRoot), opts.cudaRoot = search_cuda_devkit(opts); end check_nvcc(opts.cudaRoot); opts.verbose && fprintf('%s:\tCUDA: using CUDA Devkit ''%s''.\n', ... mfilename, opts.cudaRoot) ; switch arch case 'win64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib', 'x64') ; case 'maci64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib') ; case 'glnxa64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end opts.nvccPath = fullfile(opts.cudaRoot, 'bin', 'nvcc') ; % CUDA arch string (select GPU architecture) if isempty(opts.cudaArch), opts.cudaArch = get_cuda_arch(opts) ; end opts.verbose && fprintf('%s:\tCUDA: NVCC architecture string: ''%s''.\n', ... mfilename, opts.cudaArch) ; % Make sure NVCC is visible by MEX by setting the corresp. env. var if ~strcmp(getenv('MW_NVCC_PATH'), opts.nvccPath) warning('Setting the ''MW_NVCC_PATH'' environment variable to ''%s''', ... opts.nvccPath) ; setenv('MW_NVCC_PATH', opts.nvccPath) ; end end % -------------------------------------------------------------------- % Compiler options % -------------------------------------------------------------------- % Build directories mex_dir = fullfile(root, 'matlab', 'mex') ; bld_dir = fullfile(mex_dir, '.build'); if ~exist(fullfile(bld_dir,'bits','impl'), 'dir') mkdir(fullfile(bld_dir,'bits','impl')) ; end % Compiler flags flags.cc = {} ; flags.link = {} ; if opts.verbose > 1 flags.cc{end+1} = '-v' ; flags.link{end+1} = '-v' ; end if opts.debug flags.cc{end+1} = '-g' ; else flags.cc{end+1} = '-DNDEBUG' ; end if opts.enableGpu, flags.cc{end+1} = '-DENABLE_GPU' ; end if opts.enableCudnn, flags.cc{end+1} = '-DENABLE_CUDNN' ; flags.cc{end+1} = ['-I' opts.cudnnRoot] ; end flags.link{end+1} = '-lmwblas' ; switch arch case {'maci64', 'glnxa64'} case {'win64'} % VisualC does not pass this even if available in the CPU architecture flags.cc{end+1} = '-D__SSSE3__' ; end if opts.enableImreadJpeg flags.cc = horzcat(flags.cc, opts.imageLibraryCompileFlags) ; flags.link = horzcat(flags.link, opts.imageLibraryLinkFlags) ; end if opts.enableGpu flags.link{end+1} = ['-L' opts.cudaLibDir] ; flags.link{end+1} = '-lcudart' ; flags.link{end+1} = '-lcublas' ; switch arch case {'maci64', 'glnxa64'} flags.link{end+1} = '-lmwgpu' ; case 'win64' flags.link{end+1} = '-lgpu' ; end if opts.enableCudnn flags.link{end+1} = ['-L' opts.cudnnRoot] ; flags.link{end+1} = '-lcudnn' ; end end % For the MEX command flags.link{end+1} = '-largeArrayDims' ; flags.mexcc = flags.cc ; flags.mexcc{end+1} = '-largeArrayDims' ; flags.mexcc{end+1} = '-cxx' ; if strcmp(arch, 'maci64') % CUDA prior to 7.0 on Mac require GCC libstdc++ instead of the native % Clang libc++. This should go away in the future. flags.mexcc{end+1} = 'CXXFLAGS=$CXXFLAGS -stdlib=libstdc++' ; flags.link{end+1} = 'LDFLAGS=$LDFLAGS -stdlib=libstdc++' ; if ~verLessThan('matlab', '8.5.0') % Complicating matters, MATLAB 8.5.0 links to Clang c++ by default % when linking MEX files overriding the option above. More force % is needed: flags.link{end+1} = 'LINKLIBS=$LINKLIBS -L"$MATLABROOT/bin/maci64" -lmx -lmex -lmat -lstdc++' ; end end if opts.enableGpu flags.mexcu = flags.cc ; flags.mexcu{end+1} = '-largeArrayDims' ; flags.mexcu{end+1} = '-cxx' ; flags.mexcu(end+1:end+2) = {'-f' mex_cuda_config(root)} ; flags.mexcu{end+1} = ['NVCCFLAGS=' opts.cudaArch '$NVCC_FLAGS'] ; end % For the cudaMethod='nvcc' if opts.enableGpu && strcmp(opts.cudaMethod,'nvcc') flags.nvcc = flags.cc ; flags.nvcc{end+1} = ['-I"' fullfile(matlabroot, 'extern', 'include') '"'] ; flags.nvcc{end+1} = ['-I"' fullfile(matlabroot, 'toolbox','distcomp','gpu','extern','include') '"'] ; if opts.debug flags.nvcc{end+1} = '-O0' ; end flags.nvcc{end+1} = '-Xcompiler' ; switch arch case {'maci64', 'glnxa64'} flags.nvcc{end+1} = '-fPIC' ; case 'win64' flags.nvcc{end+1} = '/MD' ; check_clpath(); % check whether cl.exe in path end flags.nvcc{end+1} = opts.cudaArch; end if opts.verbose fprintf('%s: * Compiler and linker configurations *\n', mfilename) ; fprintf('%s: \tintermediate build products directory: %s\n', mfilename, bld_dir) ; fprintf('%s: \tMEX files: %s/\n', mfilename, mex_dir) ; fprintf('%s: \tMEX compiler options: %s\n', mfilename, strjoin(flags.mexcc)) ; fprintf('%s: \tMEX linker options: %s\n', mfilename, strjoin(flags.link)) ; end if opts.verbose & opts.enableGpu fprintf('%s: \tMEX compiler options (CUDA): %s\n', mfilename, strjoin(flags.mexcu)) ; end if opts.verbose & opts.enableGpu & strcmp(opts.cudaMethod,'nvcc') fprintf('%s: \tNVCC compiler options: %s\n', mfilename, strjoin(flags.nvcc)) ; end if opts.verbose & opts.enableImreadJpeg fprintf('%s: * Reading images *\n', mfilename) ; fprintf('%s: \tvl_imreadjpeg enabled\n', mfilename) ; fprintf('%s: \timage library: %s\n', mfilename, opts.imageLibrary) ; fprintf('%s: \timage library compile flags: %s\n', mfilename, strjoin(opts.imageLibraryCompileFlags)) ; fprintf('%s: \timage library link flags: %s\n', mfilename, strjoin(opts.imageLibraryLinkFlags)) ; end % -------------------------------------------------------------------- % Compile % -------------------------------------------------------------------- % Intermediate object files srcs = horzcat(lib_src,mex_src) ; parfor i = 1:numel(horzcat(lib_src, mex_src)) [~,~,ext] = fileparts(srcs{i}) ; ext(1) = [] ; if strcmp(ext,'cu') if strcmp(opts.cudaMethod,'nvcc') nvcc_compile(opts, srcs{i}, toobj(bld_dir,srcs{i}), flags.nvcc) ; else mex_compile(opts, srcs{i}, toobj(bld_dir,srcs{i}), flags.mexcu) ; end else mex_compile(opts, srcs{i}, toobj(bld_dir,srcs{i}), flags.mexcc) ; end end % Link into MEX files parfor i = 1:numel(mex_src) [~,base,~] = fileparts(mex_src{i}) ; objs = toobj(bld_dir, {mex_src{i}, lib_src{:}}) ; mex_link(opts, objs, mex_dir, flags.link) ; end % Reset path adding the mex subdirectory just created vl_setupnn() ; % -------------------------------------------------------------------- % Utility functions % -------------------------------------------------------------------- % -------------------------------------------------------------------- function objs = toobj(bld_dir,srcs) % -------------------------------------------------------------------- str = fullfile('matlab','src') ; multiple = iscell(srcs) ; if ~multiple, srcs = {srcs} ; end for t = 1:numel(srcs) i = strfind(srcs{t},str); objs{t} = fullfile(bld_dir, srcs{t}(i+numel(str):end)) ; end if ~multiple, objs = objs{1} ; end objs = strrep(objs,'.cpp',['.' objext]) ; objs = strrep(objs,'.cu',['.' objext]) ; objs = strrep(objs,'.c',['.' objext]) ; % -------------------------------------------------------------------- function objs = mex_compile(opts, src, tgt, mex_opts) % -------------------------------------------------------------------- mopts = {'-outdir', fileparts(tgt), src, '-c', mex_opts{:}} ; opts.verbose && fprintf('%s: MEX CC: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function obj = nvcc_compile(opts, src, tgt, nvcc_opts) % -------------------------------------------------------------------- nvcc_path = fullfile(opts.cudaRoot, 'bin', 'nvcc'); nvcc_cmd = sprintf('"%s" -c "%s" %s -o "%s"', ... nvcc_path, src, ... strjoin(nvcc_opts), tgt); opts.verbose && fprintf('%s: NVCC CC: %s\n', mfilename, nvcc_cmd) ; status = system(nvcc_cmd); if status, error('Command %s failed.', nvcc_cmd); end; % -------------------------------------------------------------------- function mex_link(opts, objs, mex_dir, mex_flags) % -------------------------------------------------------------------- mopts = {'-outdir', mex_dir, mex_flags{:}, objs{:}} ; opts.verbose && fprintf('%s: MEX LINK: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function ext = objext() % -------------------------------------------------------------------- % Get the extension for an 'object' file for the current computer % architecture switch computer('arch') case 'win64', ext = 'obj'; case {'maci64', 'glnxa64'}, ext = 'o' ; otherwise, error('Unsupported architecture %s.', computer) ; end % -------------------------------------------------------------------- function conf_file = mex_cuda_config(root) % -------------------------------------------------------------------- % Get mex CUDA config file mver = [1e4 1e2 1] * sscanf(version, '%d.%d.%d') ; if mver <= 80200, ext = 'sh' ; else ext = 'xml' ; end arch = computer('arch') ; switch arch case {'win64'} config_dir = fullfile(matlabroot, 'toolbox', ... 'distcomp', 'gpu', 'extern', ... 'src', 'mex', arch) ; case {'maci64', 'glnxa64'} config_dir = fullfile(root, 'matlab', 'src', 'config') ; end conf_file = fullfile(config_dir, ['mex_CUDA_' arch '.' ext]); fprintf('%s:\tCUDA: MEX config file: ''%s''\n', mfilename, conf_file); % -------------------------------------------------------------------- function check_clpath() % -------------------------------------------------------------------- % Checks whether the cl.exe is in the path (needed for the nvcc). If % not, tries to guess the location out of mex configuration. status = system('cl.exe -help'); if status == 1 warning('CL.EXE not found in PATH. Trying to guess out of mex setup.'); cc = mex.getCompilerConfigurations('c++'); if isempty(cc) error('Mex is not configured. Run "mex -setup".'); end prev_path = getenv('PATH'); cl_path = fullfile(cc.Location, 'VC','bin','x86_amd64'); setenv('PATH', [prev_path ';' cl_path]); status = system('cl.exe'); if status == 1 setenv('PATH', prev_path); error('Unable to find cl.exe'); else fprintf('Location of cl.exe (%s) successfully added to your PATH.\n', ... cl_path); end end % ------------------------------------------------------------------------- function paths = which_nvcc(opts) % ------------------------------------------------------------------------- switch computer('arch') case 'win64' [~, paths] = system('where nvcc.exe'); paths = strtrim(paths); paths = paths(strfind(paths, '.exe')); case {'maci64', 'glnxa64'} [~, paths] = system('which nvcc'); paths = strtrim(paths) ; end % ------------------------------------------------------------------------- function cuda_root = search_cuda_devkit(opts) % ------------------------------------------------------------------------- % This function tries to to locate a working copy of the CUDA Devkit. opts.verbose && fprintf(['%s:\tCUDA: seraching for the CUDA Devkit' ... ' (use the option ''CudaRoot'' to override):\n'], mfilename); % Propose a number of candidate paths for NVCC paths = {getenv('MW_NVCC_PATH')} ; paths = [paths, which_nvcc(opts)] ; for v = {'5.5', '6.0', '6.5', '7.0'} switch computer('arch') case 'glnxa64' paths{end+1} = sprintf('/usr/local/cuda-%s/bin/nvcc', char(v)) ; case 'maci64' paths{end+1} = sprintf('/Developer/NVIDIA/CUDA-%s/bin/nvcc', char(v)) ; case 'win64' paths{end+1} = sprintf('C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v%s\\bin\\nvcc.exe', char(v)) ; end end paths{end+1} = sprintf('/usr/local/cuda/bin/nvcc') ; % Validate each candidate NVCC path for i=1:numel(paths) nvcc(i).path = paths{i} ; [nvcc(i).isvalid, nvcc(i).version] = validate_nvcc(opts,paths{i}) ; end if opts.verbose fprintf('\t| %5s | %5s | %-70s |\n', 'valid', 'ver', 'NVCC path') ; for i=1:numel(paths) fprintf('\t| %5d | %5d | %-70s |\n', ... nvcc(i).isvalid, nvcc(i).version, nvcc(i).path) ; end end % Pick an entry index = find([nvcc.isvalid]) ; if isempty(index) error('Could not find a valid NVCC executable\n') ; end nvcc = nvcc(index(1)) ; cuda_root = fileparts(fileparts(nvcc.path)) ; if opts.verbose fprintf('%s:\tCUDA: choosing NVCC compiler ''%s'' (version %d)\n', ... mfilename, nvcc.path, nvcc.version) ; end % ------------------------------------------------------------------------- function [valid, cuver] = validate_nvcc(opts, nvcc_path) % ------------------------------------------------------------------------- valid = false ; cuver = 0 ; if ~isempty(nvcc_path) [status, output] = system(sprintf('"%s" --version', nvcc_path)) ; valid = (status == 0) ; end if ~valid, return ; end match = regexp(output, 'V(\d+\.\d+\.\d+)', 'match') ; if isempty(match), valid = false ; return ; end cuver = [1e4 1e2 1] * sscanf(match{1}, 'V%d.%d.%d') ; % -------------------------------------------------------------------- function check_nvcc(cuda_root) % -------------------------------------------------------------------- % Checks whether the nvcc is in the path. If not, guessed out of CudaRoot. [status, ~] = system('nvcc --help'); if status ~= 0 warning('nvcc not found in PATH. Trying to guess out of CudaRoot.'); cuda_bin_path = fullfile(cuda_root, 'bin'); prev_path = getenv('PATH'); switch computer case 'PCWIN64', separator = ';'; case {'GLNXA64', 'MACI64'}, separator = ':'; end setenv('PATH', [prev_path separator cuda_bin_path]); [status, ~] = system('nvcc --help'); if status ~= 0 setenv('PATH', prev_path); error('Unable to find nvcc.'); else fprintf('Location of nvcc (%s) added to your PATH.\n', cuda_bin_path); end end % -------------------------------------------------------------------- function cudaArch = get_cuda_arch(opts) % -------------------------------------------------------------------- opts.verbose && fprintf('%s:\tCUDA: determining GPU compute capability (use the ''CudaArch'' option to override)\n', mfilename); try gpu_device = gpuDevice(); arch_code = strrep(gpu_device.ComputeCapability, '.', ''); cudaArch = ... sprintf('-gencode=arch=compute_%s,code=\\\"sm_%s,compute_%s\\\" ', ... arch_code, arch_code, arch_code) ; catch opts.verbose && fprintf(['%s:\tCUDA: cannot determine the capabilities of the installed GPU;' ... 'falling back to default\n'], mfilename); cudaArch = opts.defCudaArch; end
github
mowangphy/HOPE-CNN-master
vl_simplenn_display.m
.m
HOPE-CNN-master/matlab/simplenn/vl_simplenn_display.m
10,932
utf_8
c7ed88fccca92a96ffe9c36dcb72d278
function info = vl_simplenn_display(net, varargin) % VL_SIMPLENN_DISPLAY Simple CNN statistics % VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET. % % INFO=VL_SIMPLENN_DISPLAY(NET) returns instead a structure INFO % with several statistics for each layer of the network NET. % % The function accepts the following options: % % `inputSize`:: heuristically set % Specifies the size of the input tensor X that will be passed % to the network. This is used in order to estiamte the memory % required to process the network. If not specified, % VL_SIMPLENN_DISPLAY uses the value in % NET.NORMALIZATION.IMAGESIZE assuming a batch size of one % image, unless otherwise specified by the `batchSize` option. % % `batchSize`:: 1 % Specifies the number of data points in a batch in estimating % the memory consumption (see `inputSize`). % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.inputSize = [] ; opts.batchSize = 1 ; opts.maxNumColumns = 18 ; opts.format = 'ascii' ; opts = vl_argparse(opts, varargin) ; fields={'layer', 'type', 'name', '-', ... 'support', 'filtd', 'nfilt', 'stride', 'pad', '-', ... 'rfsize', 'rfoffset', 'rfstride', '-', ... 'dsize', 'ddepth', 'dnum', '-', ... 'xmem', 'wmem'}; % get the support, stride, and padding of the operators for l = 1:numel(net.layers) ly = net.layers{l} ; switch ly.type case 'conv' if isfield(ly, 'weights') info.support(1:2,l) = max([size(ly.weights{1},1) ; size(ly.weights{1},2)],1) ; else info.support(1:2,l) = max([size(ly.filters,1) ; size(ly.filters,2)],1) ; end case 'pool' info.support(1:2,l) = ly.pool(:) ; otherwise info.support(1:2,l) = [1;1] ; end if isfield(ly, 'stride') info.stride(1:2,l) = ly.stride(:) ; else info.stride(1:2,l) = 1 ; end if isfield(ly, 'pad') info.pad(1:4,l) = ly.pad(:) ; else info.pad(1:4,l) = 0 ; end % operator applied to the input image info.receptiveFieldSize(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... (info.support(1:2,1:l)-1),2) ; info.receptiveFieldOffset(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... ((info.support(1:2,1:l)-1)/2 - info.pad([1 3],1:l)),2) ; info.receptiveFieldStride = cumprod(info.stride,2) ; end % get the dimensions of the data if ~isempty(opts.inputSize) ; info.dataSize(1:4,1) = opts.inputSize(:) ; elseif isfield(net, 'normalization') && isfield(net.normalization, 'imageSize') info.dataSize(1:4,1) = [net.normalization.imageSize(:) ; opts.batchSize] ; else info.dataSize(1:4,1) = [NaN NaN NaN opts.batchSize] ; end for l = 1:numel(net.layers) ly = net.layers{l} ; if strcmp(ly.type, 'custom') && isfield(ly, 'getForwardSize') sz = ly.getForwardSize(ly, info.dataSize(:,l)) ; info.dataSize(:,l+1) = sz(:) ; continue ; end info.dataSize(1, l+1) = floor((info.dataSize(1,l) + ... sum(info.pad(1:2,l)) - ... info.support(1,l)) / info.stride(1,l)) + 1 ; info.dataSize(2, l+1) = floor((info.dataSize(2,l) + ... sum(info.pad(3:4,l)) - ... info.support(2,l)) / info.stride(2,l)) + 1 ; info.dataSize(3, l+1) = info.dataSize(3,l) ; info.dataSize(4, l+1) = info.dataSize(4,l) ; switch ly.type case 'conv' if isfield(ly, 'weights') f = ly.weights{1} ; else f = ly.filters ; end if size(f, 3) ~= 0 info.dataSize(3, l+1) = size(f,4) ; end case {'loss', 'softmaxloss'} info.dataSize(3:4, l+1) = 1 ; case 'custom' info.dataSize(3,l+1) = NaN ; end end if nargout > 0, return ; end % print table table = {} ; wmem = 0 ; xmem = 0 ; for wi=1:numel(fields) w = fields{wi} ; switch w case 'type', s = 'type' ; case 'stride', s = 'stride' ; case 'rfsize', s = 'rf size' ; case 'rfstride', s = 'rf stride' ; case 'rfoffset', s = 'rf offset' ; case 'dsize', s = 'data size' ; case 'ddepth', s = 'data depth' ; case 'dnum', s = 'data num' ; case 'nfilt', s = 'num filts' ; case 'filtd', s = 'filt dim' ; case 'wmem', s = 'param mem' ; case 'xmem', s = 'data mem' ; otherwise, s = char(w) ; end table{wi,1} = s ; % do input pseudo-layer for l=0:numel(net.layers) switch char(w) case '-', s='-' ; case 'layer', s=sprintf('%d', l) ; case 'dsize', s=pdims(info.dataSize(1:2,l+1)) ; case 'ddepth', s=sprintf('%d', info.dataSize(3,l+1)) ; case 'dnum', s=sprintf('%d', info.dataSize(4,l+1)) ; case 'xmem' a = prod(info.dataSize(:,l+1)) * 4 ; s = pmem(a) ; xmem = xmem + a ; otherwise if l == 0 if strcmp(char(w),'type'), s = 'input'; else s = 'n/a' ; end else ly=net.layers{l} ; switch char(w) case 'name' if isfield(ly, 'name') s=ly.name ; else s='' ; end case 'type' switch ly.type case 'normalize', s='norm'; case 'pool' if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end case 'softmax', s='softmx' ; case 'softmaxloss', s='softmxl' ; otherwise s=ly.type ; end case 'nfilt' switch ly.type case 'conv' if isfield(ly, 'weights'), a = size(ly.weights{1},4) ; else, a = size(ly.filters,4) ; end s=sprintf('%d',a) ; otherwise s='n/a' ; end case 'filtd' switch ly.type case 'conv' if isfield(ly, 'weights'), a = size(ly.weights{1},3) ; else, a = size(ly.filters,3) ; end s=sprintf('%d',a) ; otherwise s='n/a' ; end case 'support' s = pdims(info.support(:,l)) ; case 'stride' s = pdims(info.stride(:,l)) ; case 'pad' s = pdims(info.pad(:,l)) ; case 'rfsize' s = pdims(info.receptiveFieldSize(:,l)) ; case 'rfoffset' s = pdims(info.receptiveFieldOffset(:,l)) ; case 'rfstride' s = pdims(info.receptiveFieldStride(:,l)) ; case 'wmem' a = 0 ; if isfield(ly, 'weights') ; for j=1:numel(ly.weights) a = a + numel(ly.weights{j}) * 4 ; end end % Legacy code to be removed if isfield(ly, 'filters') ; a = a + numel(ly.filters) * 4 ; end if isfield(ly, 'biases') ; a = a + numel(ly.biases) * 4 ; end s = pmem(a) ; wmem = wmem + a ; end end end table{wi,l+2} = s ; end end for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; switch opts.format case 'ascii', pascii(table(:,[1 sel])) ; fprintf('\n') ; case 'latex', platex(table(:,[1 sel])) ; case 'csv', pcsv(table(:,[1 sel])) ; fprintf('\n') ; end end fprintf('parameter memory: %s (%.2g parameters)\n', pmem(wmem), wmem/4) ; fprintf('data memory: %s (for batch size %d)\n', pmem(xmem), info.dataSize(4,1)) ; % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end % ------------------------------------------------------------------------- function pascii(table) % ------------------------------------------------------------------------- sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end fprintf(fmt, s) ; end fprintf('\n') ; end % ------------------------------------------------------------------------- function pcsv(table) % ------------------------------------------------------------------------- sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds,', sizes(j)) ; fprintf(fmt, ['"' s '"']) ; end fprintf('\n') ; end % ------------------------------------------------------------------------- function platex(table) % ------------------------------------------------------------------------- sizes = max(cellfun(@(x) numel(x), table),[],1) ; fprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), fprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; fprintf(fmt, latexesc(s)) ; if j<size(table,2), fprintf('&') ; end end fprintf('\\\\\n') ; end fprintf('\\end{tabular}\n') ; % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; % ------------------------------------------------------------------------- function [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem) % ------------------------------------------------------------------------- if nargin <= 1 cpuMem = 0 ; gpuMem = 0 ; end if isstruct(s) for f=fieldnames(s)' f = char(f) ; for i=1:numel(s) [cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ; end end elseif iscell(s) for i=1:numel(s) [cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ; end elseif isnumeric(s) if isa(s, 'single') mult = 4 ; else mult = 8 ; end if isa(s,'gpuArray') gpuMem = gpuMem + mult * numel(s) ; else cpuMem = cpuMem + mult * numel(s) ; end end
github
mowangphy/HOPE-CNN-master
vl_test_economic_relu.m
.m
HOPE-CNN-master/matlab/xtest/vl_test_economic_relu.m
790
utf_8
35a3dbe98b9a2f080ee5f911630ab6f3
% VL_TEST_ECONOMIC_RELU function vl_test_economic_relu() x = randn(11,12,8,'single'); w = randn(5,6,8,9,'single'); b = randn(1,9,'single') ; net.layers{1} = struct('type', 'conv', ... 'filters', w, ... 'biases', b, ... 'stride', 1, ... 'pad', 0); net.layers{2} = struct('type', 'relu') ; res = vl_simplenn(net, x) ; dzdy = randn(size(res(end).x), 'like', res(end).x) ; clear res ; res_ = vl_simplenn(net, x, dzdy) ; res__ = vl_simplenn(net, x, dzdy, [], 'conserveMemory', true) ; a=whos('res_') ; b=whos('res__') ; assert(a.bytes > b.bytes) ; vl_testsim(res_(1).dzdx,res__(1).dzdx,1e-4) ; vl_testsim(res_(1).dzdw{1},res__(1).dzdw{1},1e-4) ; vl_testsim(res_(1).dzdw{2},res__(1).dzdw{2},1e-4) ;
github
qq8699444/DeepCascade-master
use_cimgmatlab.m
.m
DeepCascade-master/libs/CImg/examples/use_cimgmatlab.m
1,242
utf_8
c7cefea57d7bf6077ec6a77f3bdda6b6
/*----------------------------------------------------------------------- File : use_cimgmatlab.m Description: Example of use for the CImg plugin 'plugins/cimgmatlab.h' which allows to use CImg in order to develop matlab external functions (mex functions). User should be familiar with Matlab C/C++ mex function concepts, as this file is by no way a mex programming tutorial. This simple example implements a mex function that can be called as - v = cimgmatlab_cannyderiche(u,s) - v = cimgmatlab_cannyderiche(u,sx,sy) - v = cimgmatlab_cannyderiche(u,sx,sy,sz) The corresponding m-file is cimgmatlab_cannyderiche.m Copyright : Francois Lauze - http://www.itu.dk/people/francois This software is governed by the Gnu General Public License see http://www.gnu.org/copyleft/gpl.html The plugin home page is at http://www.itu.dk/people/francois/cimgmatlab.html for the compilation: using the mex utility provided with matlab, just remember to add the -I flags with paths to CImg.h and/or cimgmatlab.h. The default lcc cannot be used, it is a C compiler and not a C++ one! --------------------------------------------------------------------------*/ function v = cimgmatlab_cannyderiche(u,sx,sy,sz)
github
mubeipeng/focused_slam-master
VisibilityCheck.m
.m
focused_slam-master/FIRM/VisibilityCheck.m
1,580
utf_8
0cca7e618b1f8a8745dfd835e891f051
function Full_data = VisibilityCheck(Full_data) n_waypoints = size(Full_data.logged_data,1); for wayPoint_id = 1:n_waypoints for k = 1 : length(Full_data.logged_data(wayPoint_id,:)) if isempty(Full_data.logged_data(wayPoint_id,k).x) break end x = Full_data.logged_data(wayPoint_id,k).x; visibility{wayPoint_id,k} = CheckLandmarkVisibility(x,Full_data.landmark_map_GT, Full_data.obstacle_map); disp([wayPoint_id, k]) end end Full_data.visibility = visibility; end function YesNo = CheckLandmarkVisibility(x,landmark_map_GT, obstacle_map) for id_landmark = 1:length(landmark_map_GT) Lx = landmark_map_GT(1,id_landmark); Ly = landmark_map_GT(2,id_landmark); angle = atan2(Ly-x(2), Lx-x(1)) - x(3); front = 0; if angle >=-pi/2 && angle <=pi/2 %front = FrontOrBackOfRobot(Lx, Ly, line); front = 1; end YesNo(id_landmark) = 1; if ~front YesNo(id_landmark) = 0; else N_obst = size(obstacle_map,2); for ib=1:N_obst X_obs=[obstacle_map{ib}(:,1);obstacle_map{ib}(1,1)]; Y_obs=[obstacle_map{ib}(:,2);obstacle_map{ib}(1,2)]; X_ray=[x(1), Lx]; Y_ray= [x(2), Ly]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_ray,Y_ray); if ~isempty(x_inters) YesNo(id_landmark) = 0; break end end end end end
github
mubeipeng/focused_slam-master
GetStochasticMap.m
.m
focused_slam-master/FIRM/GetStochasticMap.m
2,095
utf_8
aefe6228bfc64bbe07099ffa88403a8c
function Map_of_landmarks = GetStochasticMap(varargin) % we overwrite the input map magnifying_focused_cov = 0.1; GT_landmarks = varargin{1}; lm_file = varargin{2}; % %%% generate_fake_map %%%% ========================================================== % for i = 1:size(GT_landmarks.landmarks,2) % focus_weight = is_focused(GT_landmarks.landmarks(:,i)); % map_landmarks_cov(2*i-1:2*i, 2*i-1:2*i) = eye(2)*magnifying_focused_cov^2*focus_weight^2; % end %%%% ========================================================== % map_landmarks_mean = GT_landmarks.landmarks; % % Map_of_landmarks.obsDim = GT_landmarks.obsDim; % Map_of_landmarks.landmarks = map_landmarks_mean; % Map_of_landmarks.covariances = map_landmarks_cov; GT_landmark = []; Map_of_landmarks.obsDim = size(GT_landmarks.landmarks,2)*2; map_landmarks_mean = GT_landmarks.landmarks; map_landmarks_mean(:,lm_file.id) = lm_file.pos; Map_of_landmarks.landmarks = map_landmarks_mean; map_landmarks_cov = eye(2*size(GT_landmarks.landmarks,2))*100; for i = 1:size(lm_file.id,2) id = 2*lm_file.id(i); % if ndims(lm_file.cov)==3 % map_landmarks_cov(id-1:id, id-1:id) = lm_file.cov(:,:,i)*magnifying_focused_cov; % else map_landmarks_cov(id-1,id-1) = magnifying_focused_cov* exp(-lm_file.entropy(i)/2); map_landmarks_cov(id,id) = map_landmarks_cov(id-1,id-1); % end % map_landmarks_cov(id-1:id, id-1:id) = BP_map_cov_update(GT_landmarks.landmarks(:,id/2), lm_file.cov(i)); end Map_of_landmarks.covariances = map_landmarks_cov; %% drawing the map for i = 1:size(map_landmarks_mean, 2) cov_i = Map_of_landmarks.covariances(2*i-1:2*i, 2*i-1:2*i); if cov_i(1,1) ~=100 mean_i = map_landmarks_mean(:,i); line_width = 3; plotUncertainEllip2D(cov_i , mean_i , 'g-', line_width , 0.5); else plot(map_landmarks_mean(1,i), map_landmarks_mean(2,i), 's', 'color', [0 0.1 0], 'markersize', 12) end end end function focusWeight = is_focused(landmark) focusWeight = 4; end
github
mubeipeng/focused_slam-master
plot_gaussian_ellipsoid.m
.m
focused_slam-master/FIRM/General_functions/plot_gaussian_ellipsoid.m
3,942
utf_8
cb6edb0cf621ca98f288aeee309948c9
function h = plot_gaussian_ellipsoid(m, C, sdwidth, npts, axh) % PLOT_GAUSSIAN_ELLIPSOIDS plots 2-d and 3-d Gaussian distributions % % H = PLOT_GAUSSIAN_ELLIPSOIDS(M, C) plots the distribution specified by % mean M and covariance C. The distribution is plotted as an ellipse (in % 2-d) or an ellipsoid (in 3-d). By default, the distributions are % plotted in the current axes. H is the graphics handle to the plotted % ellipse or ellipsoid. % % PLOT_GAUSSIAN_ELLIPSOIDS(M, C, SD) uses SD as the standard deviation % along the major and minor axes (larger SD => larger ellipse). By % default, SD = 1. Note: % * For 2-d distributions, SD=1.0 and SD=2.0 cover ~ 39% and 86% % of the total probability mass, respectively. % * For 3-d distributions, SD=1.0 and SD=2.0 cover ~ 19% and 73% % of the total probability mass, respectively. % % PLOT_GAUSSIAN_ELLIPSOIDS(M, C, SD, NPTS) plots the ellipse or % ellipsoid with a resolution of NPTS (ellipsoids are generated % on an NPTS x NPTS mesh; see SPHERE for more details). By % default, NPTS = 50 for ellipses, and 20 for ellipsoids. % % PLOT_GAUSSIAN_ELLIPSOIDS(M, C, SD, NPTS, AX) adds the plot to the % axes specified by the axis handle AX. % % Examples: % ------------------------------------------- % % Plot three 2-d Gaussians % figure; % h1 = plot_gaussian_ellipsoid([1 1], [1 0.5; 0.5 1]); % h2 = plot_gaussian_ellipsoid([2 1.5], [1 -0.7; -0.7 1]); % h3 = plot_gaussian_ellipsoid([0 0], [1 0; 0 1]); % set(h2,'color','r'); % set(h3,'color','g'); % % % "Contour map" of a 2-d Gaussian % figure; % for sd = [0.3:0.4:4], % h = plot_gaussian_ellipsoid([0 0], [1 0.8; 0.8 1], sd); % end % % % Plot three 3-d Gaussians % figure; % h1 = plot_gaussian_ellipsoid([1 1 0], [1 0.5 0.2; 0.5 1 0.4; 0.2 0.4 1]); % h2 = plot_gaussian_ellipsoid([1.5 1 .5], [1 -0.7 0.6; -0.7 1 0; 0.6 0 1]); % h3 = plot_gaussian_ellipsoid([1 2 2], [0.5 0 0; 0 0.5 0; 0 0 0.5]); % set(h2,'facealpha',0.6); % view(129,36); set(gca,'proj','perspective'); grid on; % grid on; axis equal; axis tight; % ------------------------------------------- % % Gautam Vallabha, Sep-23-2007, [email protected] % Revision 1.0, Sep-23-2007 % - File created % Revision 1.1, 26-Sep-2007 % - NARGOUT==0 check added. % - Help added on NPTS for ellipsoids if ~exist('sdwidth', 'var'), sdwidth = 1; end if ~exist('npts', 'var'), npts = []; end if ~exist('axh', 'var'), axh = gca; end if numel(m) ~= length(m), error('M must be a vector'); end if ~( all(numel(m) == size(C)) ) error('Dimensionality of M and C must match'); end if ~(isscalar(axh) && ishandle(axh) && strcmp(get(axh,'type'), 'axes')) error('Invalid axes handle'); end set(axh, 'nextplot', 'add'); switch numel(m) case 2, h=show2d(m(:),C,sdwidth,npts,axh); case 3, h=show3d(m(:),C,sdwidth,npts,axh); otherwise error('Unsupported dimensionality'); end if nargout==0, clear h; end %----------------------------- function h = show2d(means, C, sdwidth, npts, axh) if isempty(npts), npts=50; end % plot the gaussian fits tt=linspace(0,2*pi,npts)'; x = cos(tt); y=sin(tt); ap = [x(:) y(:)]'; [v,d]=eig(C); d = sdwidth * sqrt(d); % convert variance to sdwidth*sd bp = (v*d*ap) + repmat(means, 1, size(ap,2)); h = plot(bp(1,:), bp(2,:), '-', 'parent', axh); %----------------------------- function h = show3d(means, C, sdwidth, npts, axh) if isempty(npts), npts=20; end [x,y,z] = sphere(npts); ap = [x(:) y(:) z(:)]'; [v,d]=eig(C); if any(d(:) < 0) fprintf('warning: negative eigenvalues\n'); d = max(d,0); end d = 10*sdwidth * sqrt(d); % convert variance to sdwidth*sd bp = (v*d*ap) + repmat(means, 1, size(ap,2)); xp = reshape(bp(1,:), size(x)); yp = reshape(bp(2,:), size(y)); zp = reshape(bp(3,:), size(z)); % h = surf(axh, xp,yp,zp);
github
mubeipeng/focused_slam-master
user_GUI.m
.m
focused_slam-master/FIRM/General_functions/user_GUI.m
25,536
utf_8
67d6b4693e4b315f1a8c83eee8413f70
function varargout = user_GUI(varargin) % USER_GUI MATLAB code for user_GUI.fig % USER_GUI, by itself, creates a new USER_GUI or raises the existing % singleton*. % % H = USER_GUI returns the handle to a new USER_GUI or the handle to % the existing singleton*. % % USER_GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in USER_GUI.M with the given input arguments. % % USER_GUI('Property','Value',...) creates a new USER_GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before user_GUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to user_GUI_OpeningFcn via vararginan. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help user_GUI % Last Modified by GUIDE v2.5 01-Jan-2015 19:58:56 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @user_GUI_OpeningFcn, ... 'gui_OutputFcn', @user_GUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes during object creation, after setting all properties. function SFMP_GUI_fig_tag_CreateFcn(hObject, eventdata, handles) % hObject handle to SFMP_GUI_fig_tag (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called global New_LoadFileName handles.LoadFileName = New_LoadFileName; % The name of file, from which we want to load the parameters. if ~isempty(New_LoadFileName) load(handles.LoadFileName,'par') else par = []; end handles.old_par = par; % Update handles structure guidata(hObject, handles); % --- Executes just before user_GUI is made visible. function user_GUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to user_GUI (see VARARGIN) % Choose default command line output for user_GUI handles.output_GUI_figure_handle = hObject; Update_GUI_fields(handles, handles.old_par); % We initialize the GUI fields using this function, based on the latest user parameters. % Update handles structure guidata(hObject, handles); % UIWAIT makes user_GUI wait for user response (see UIRESUME) uiwait(handles.SFMP_GUI_fig_tag); % --- Outputs from this function are returned to the command line. function varargout = user_GUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output_GUI_figure_handle; % This is the handle of main GUI figure. This figure is gonna be deleted in next few lines, but this output is generated to keep the convention in Matlab that the first output in plotting something is the handle of figure. varargout{2} = handles.output_Ok_Cancel; % This output indicates that if the user is pressed Ok or Cancel. varargout{3} = handles.output_parameters; % This output is the main output and returns all the parameters needed in program execution. delete(handles.SFMP_GUI_fig_tag); % --- Executes on button press in OKbutton. function OKbutton_Callback(hObject, eventdata, handles) % hObject handle to OKbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback called when the OK button is pressed handles.output_Ok_Cancel ='Ok'; par = gather_parameteres_from_GUI( handles ); % This function gathers all parameters, provided by user in GUI. handles.output_parameters = par; % If the user presses the Cancel button, we do not return any parameters. % resume the execution of the GUI uiresume; guidata(hObject,handles) % delete(handles.SFMP_GUI_fig_tag); % Although we should close the GUI % window here, we do not do it here, because then the information stored in % handle is get cleared. Thus, we close the window in the % "user_GUI_OutputFcn" function, which is executed after this function, % because we have "uiresume" here. % --- Executes on button press in Cancelbutton. function Cancelbutton_Callback(hObject, eventdata, handles) % hObject handle to Cancelbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback called when the Cancel button is pressed handles.output_Ok_Cancel ='Cancel'; handles.output_parameters = []; % If the user presses the Cancel button, we do not return any parameters. uiresume; guidata(hObject,handles) % delete(handles.SFMP_GUI_fig_tag); % Although we should close the GUI % window here, we do not do it here, because then the information stored in % handle is get cleared. Thus, we close the window in the % "user_GUI_OutputFcn" function, which is executed after this function, % because we have "uiresume" here. % --- Executes when user attempts to close SFMP_GUI_fig_tag. function SFMP_GUI_fig_tag_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to SFMP_GUI_fig_tag (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback called when the Close button is pressed % Since the code for pressing the "close button" is exactly the same as the % code for pressing the cancel button, we just call the % "Cancelbutton_Callback" function. Cancelbutton_Callback(handles.Cancelbutton, eventdata, handles) % --- Executes on selection change in popupmenu_motion_model_selector. function popupmenu_motion_model_selector_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_motion_model_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_motion_model_selector contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_motion_model_selector % --- Executes during object creation, after setting all properties. function popupmenu_motion_model_selector_CreateFcn(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to popupmenu_motion_model_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function handles = Draw_state_space_panel(handles , state_space_param) % This function draws the state space panel in the GUI figure, based on % the selected model in the "popupmenu_state_space_selector". % following code is for initilizing the state of "pop-up" menu, based on % the selected state space. D = dir('All_state'); all_ss = {D([D.isdir]==0).name}; set(handles.popupmenu_state_space_selector, 'String', all_ss); if ~isempty(state_space_param) string_list = get(handles.popupmenu_state_space_selector, 'String'); % get list of possible state spaces from the pop-up menu val = find(strcmpi(string_list , state_space_param.label)); % see which state space is chosen set(handles.popupmenu_state_space_selector, 'Value', val) % set the pop-up menu to the selected state space. end function handles = Draw_motion_model_panel(handles , motion_model_param) % This function draws the motion model panel in the GUI figure, based on % the selected model in the "popupmenu_motion_model_selector". % following code is for initilizing the state of "pop-up" menu, based on % the selected motion model. D = dir('All_motion_models'); all_mm = {D([D.isdir]==0).name}; set(handles.popupmenu_motion_model_selector, 'String', all_mm); if ~isempty(motion_model_param) string_list = get(handles.popupmenu_motion_model_selector, 'String'); % get list of possible motion models from the pop-up menu val = find(strcmpi(string_list , motion_model_param.label)); % see which motion model is chosen set(handles.popupmenu_motion_model_selector, 'Value', val) % set the pop-up menu to the selected motion model. end function handles = Draw_observation_model_panel(handles , observation_model_param) % This function draws the observation model panel in the GUI figure, based on % the selected model in the "popupmenu_observation_model_selector". % following code is for initilizing the state of "pop-up" menu, based on % the selected oservation model. D = dir('All_observation_models'); all_om = {D([D.isdir]==0).name}; set(handles.popupmenu_observation_model_selector, 'String', all_om); if ~isempty(observation_model_param) string_list = get(handles.popupmenu_observation_model_selector, 'String'); % get list of possible motion models from the pop-up menu val = find(strcmpi(string_list , observation_model_param.label)); % see which motion model is chosen set(handles.popupmenu_observation_model_selector, 'Value', val) % set the pop-up menu to the selected motion model. end % This function draws the FIRM method panel (so far only a popup menu - not really a panel) in the GUI figure, based on % the selected method in the "popupmenu_FIRM_method_selector". function handles = Draw_FIRM_method_panel(handles,problem_param) D = dir('All_planning_problems'); all_planning = {D([D.isdir]==0).name}; set(handles.popupmenu_FIRM_method_selector, 'String', all_planning); if ~isempty(problem_param) % set up the buttons for offline or online phase selection set(handles.online_planning_phase_button,'Value',problem_param.Online_phase) % following code is for initilizing the state of "pop-up" menu, based on % the selected FIRM method. selected_FIRM_method = problem_param.solver; string_list = get(handles.popupmenu_FIRM_method_selector, 'String'); % get list of possible FIRM methods from the pop-up menu val = find(strcmpi(string_list , selected_FIRM_method.label)); % see which FIRM method is chosen set(handles.popupmenu_FIRM_method_selector, 'Value', val) % set the pop-up menu to the selected FIRM method. end % following code is useful if you want to give the user the freedom to set % some parameters of the FIRM method. You have to have a "panel" for the % FIRM method in your GUI. Then, design a edit box for each parameter and % let the user set its value. A "commented" example has been already done % for the "motion model panel". % all_objects_in_FIRM_method_panel = get(handles.panel_FIRM_method,'Children'); % set(all_objects_in_FIRM_method_panel,'visible','off'); % Here, we make all the objects in the motion model invisible. % For the rest of this code follow the convention in the design of the % "panel" for the motion model. function handles = Draw_simulator_panel(handles,simulator_param) D = dir('All_Simulators'); all_simulators = {D([D.isdir]==0).name}; set(handles.popupmenu_simulator, 'String', all_simulators); if ~isempty(simulator_param) % following code is for initilizing the state of "pop-up" menu, based on % the selected simulator method. selected_sim_label = simulator_param.label; string_list = get(handles.popupmenu_simulator, 'String'); % get list of possible FIRM methods from the pop-up menu val = find(strcmpi(string_list , selected_sim_label)); % see which FIRM method is chosen set(handles.popupmenu_simulator, 'Value', val) % set the pop-up menu to the selected FIRM method. end % --- Executes on key release with focus on SFMP_GUI_fig_tag or any of its controls. function SFMP_GUI_fig_tag_WindowKeyReleaseFcn(hObject, eventdata, handles) % hObject handle to SFMP_GUI_fig_tag (see GCBO) % eventdata structure with the following fields (see FIGURE) % Key: name of the key that was released, in lower case % Character: character interpretation of the key(s) that was released % Modifier: name(s) of the modifier key(s) (i.e., control, shift) released % handles structure with handles and user data (see GUIDATA) % For some reason, which is not known to me at this point, without this % function when we press a keyboard key on the GUI figure it returns an % error. So, I have to have this function here, although it is empty! I % guess it has to do something with the "uiwait" function. function edit_parameter_file_address_Callback(hObject, eventdata, handles) % hObject handle to edit_parameter_file_address (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_parameter_file_address as text % str2double(get(hObject,'String')) returns contents of edit_parameter_file_address as a double % --- Executes during object creation, after setting all properties. function edit_parameter_file_address_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_parameter_file_address (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton_browse. function pushbutton_browse_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_browse (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback called when the icon file selection button is pressed filespec = {'*.mat', 'MATLAB MAT files (*.mat)'}; [filename, pathname] = uigetfile(filespec, 'Pick a parameter file', 'output'); if ~isequal(filename,0) LoadFileName =fullfile(pathname, filename); set(handles.edit_parameter_file_address,'String',LoadFileName); load(LoadFileName, 'par') handles.LoadFileName = LoadFileName; handles.old_par = par; Update_GUI_fields(handles,par); % Update handles structure guidata(hObject, handles); end function Update_GUI_fields(handles,old_par) try old_state_space_param = old_par.state_parameters; catch %#ok<CTCH> old_state_space_param = []; end handles = Draw_state_space_panel(handles , old_state_space_param); % updates the "motion_model" panel (draws the panel based on initially selected motion model.) try old_motion_model_param = old_par.motion_model_parameters; catch %#ok<CTCH> old_motion_model_param = []; end handles = Draw_motion_model_panel(handles , old_motion_model_param); % updates the "motion_model" panel (draws the panel based on initially selected motion model.) try old_observation_model_param = old_par.observation_model_parameters; catch %#ok<CTCH> old_observation_model_param = []; end handles = Draw_observation_model_panel(handles , old_observation_model_param); % updates the "motion_model" panel (draws the panel based on initially selected motion model.) try planning_problem_parameters = old_par.planning_problem_parameters; catch %#ok<CTCH> planning_problem_parameters = []; end handles = Draw_FIRM_method_panel(handles , planning_problem_parameters); % Right now, we only have the "popup_menu"; so, there is no panel really. try old_simulator_parameters = old_par.simulator_parameters; catch %#ok<CTCH> old_simulator_parameters = []; end handles = Draw_simulator_panel(handles, old_simulator_parameters); guidata(gcf, handles); % --- Executes on button press in checkbox_obstacles. function checkbox_obstacles_Callback(hObject, eventdata, handles) % hObject handle to checkbox_obstacles (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_obstacles % --- Executes on selection change in popupmenu_observation_model_selector. function popupmenu_observation_model_selector_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_observation_model_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_observation_model_selector contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_observation_model_selector % --- Executes during object creation, after setting all properties. function popupmenu_observation_model_selector_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu_observation_model_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in checkbox_landmarks. function checkbox_landmarks_Callback(hObject, eventdata, handles) % hObject handle to checkbox_landmarks (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_landmarks % --- Executes on selection change in popupmenu_FIRM_method_selector. function popupmenu_FIRM_method_selector_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_FIRM_method_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_FIRM_method_selector contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_FIRM_method_selector % --- Executes during object creation, after setting all properties. function popupmenu_FIRM_method_selector_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu_FIRM_method_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % This function is for gathering the parameters from the user through GUI. function par_new = gather_parameteres_from_GUI(handles) %=========== State Space Parameters contents = cellstr(get(handles.popupmenu_state_space_selector,'String')); % returns popupmenu_state_space_selector contents as cell array par_new.state_parameters.label = contents{get(handles.popupmenu_state_space_selector,'Value')}; % returns selected item from popupmenu_state_space_selector %=========== Motion Model Parameters contents = cellstr(get(handles.popupmenu_motion_model_selector,'String')); % returns popupmenu_motion_model_selector contents as cell array par_new.motion_model_parameters.label = contents{get(handles.popupmenu_motion_model_selector,'Value')}; % returns selected item from popupmenu_motion_model_selector %=========== Observation Model Parameters contents = cellstr(get(handles.popupmenu_observation_model_selector,'String')); % returns popupmenu_motion_model_selector contents as cell array par_new.observation_model_parameters.label = contents{get(handles.popupmenu_observation_model_selector,'Value')}; % returns selected item from popupmenu_motion_model_selector par_new.observation_model_parameters.interactive_OM = get(handles.checkbox_landmarks,'Value'); %=========== Planning Problem (Solver) Parameters contents = cellstr(get(handles.popupmenu_FIRM_method_selector,'String')); % returns popupmenu_FIRM_Node_selector contents as cell array par_new.planning_problem_parameters.solver.label = contents{get(handles.popupmenu_FIRM_method_selector,'Value')}; % returns selected item from popupmenu_FIRM_Node_selector par_new.planning_problem_parameters.Offline_construction_phase = get(handles.offline_construction_phase_button,'Value'); par_new.planning_problem_parameters.Online_phase = get(handles.online_planning_phase_button,'Value'); %========== Simulator Parameters contents = cellstr(get(handles.popupmenu_simulator,'String')); % returns popupmenu_motion_model_selector contents as cell array par_new.simulator_parameters.label = contents{get(handles.popupmenu_simulator,'Value')}; % returns selected item from popupmenu_motion_model_selector par_new.simulator_parameters.intractive_obst = get(handles.checkbox_obstacles,'Value'); % returns toggle state of "checkbox_obstacles" par_new.simulator_parameters.interactive_PRM = get(handles.checkbox_manual_PRM_2D_nodes,'Value'); % returns toggle state of "checkbox_manual_PRM_2D_nodes" % --- Executes on button press in checkbox_manual_PRM_2D_nodes. function checkbox_manual_PRM_2D_nodes_Callback(hObject, eventdata, handles) % hObject handle to checkbox_manual_PRM_2D_nodes (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_manual_PRM_2D_nodes % --- Executes on selection change in popupmenu_simulator. function popupmenu_simulator_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_simulator (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_simulator contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_simulator % --- Executes during object creation, after setting all properties. function popupmenu_simulator_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu_simulator (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % simulator_lables = {D([D.isdir]==0).name}; % --- Executes on selection change in popupmenu_state_space_selector. function popupmenu_state_space_selector_Callback(hObject, eventdata, handles) % hObject handle to popupmenu_state_space_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_state_space_selector contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu_state_space_selector % --- Executes during object creation, after setting all properties. function popupmenu_state_space_selector_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu_state_space_selector (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
mubeipeng/focused_slam-master
Input_XML_reader.m
.m
focused_slam-master/FIRM/General_functions/Input_XML_reader.m
19,447
utf_8
1604fa089fac9096c424f92268f5e68e
function par_new = Input_XML_reader(old_par, par_new_from_GUI) % Parameters (they have to go into an XML) %======================================================================================= par_new = par_new_from_GUI; % first we copy the newly provided parameters from GUI %=========== Random seed seed = 502; rand('state',seed); %#ok<RAND> randn('state',seed); %#ok<RAND> par_new.seed = seed; %=========== Stabilizer Parameters par_new.stabilizer_parameters.max_stopping_time = 50; par_new.stabilizer_parameters.draw_cov_centered_on_nominal = 0; %=========== MonteCarlo Simulation par_new.par_n = 20; % number of particles par_new.cost_gain = 10; %=========== (LQR design) Node and Edge controller par_new.LQR_cost_coefs=[0.03*0.1 , 0.03*0.1 , 0.1]; % first entry is the "final state cost coeff". The second is the "state cost coeff", and the third is the "control cost coeff". par_new.state_cost_ratio_for_stationary_case = 5; % note that "state_cost" is for the trajectory tracking. Usually in point stabilization, we need more force on state and less on control. So, we multiply the "state_cost" to an appropriate ratio, i.e., "state_cost_ratio_for_stationary_case". Note that this ratio has to be greater than 1. par_new.control_cost_ratio_for_stationary_case = 1/5; % note that "control_cost" is for the trajectory tracking. Usually in point stabilization, we need more force on state and less on control. So, we multiply the "control_cost" to an appropriate ratio, i.e., "control_cost_ratio_for_stationary_case". Note that this ratio has to be LESS than 1. return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %============================================================================================================== %============================================================================================================== %============================================================================================================== %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmpi(par_new.motion_model_parameters.label,'Multi RandomWalk robots') n = par_new.state_parameters.num_robots; par_new.valid_linearization_domain = repmat([3;3]*4 , n , 1); elseif strcmpi(par_new.motion_model_parameters.label,'Multi Omni-directional robots') n = par_new.state_parameters.num_robots; par_new.valid_linearization_domain = repmat([3;3;75*pi/180]*3 , n , 1); elseif strcmpi(par_new.motion_model_parameters.label,'Revolute joint 8arm manipulator') par_new.valid_linearization_domain = ones(par_new.state_parameters.stateDim , 1)*75*pi/180; elseif strcmpi(par_new.motion_model_parameters.label,'Dynamical planar 8arm manipulator') par_new.valid_linearization_domain = [ones(par_new.state_parameters.stateDim/2 , 1)*75*pi/180; ones(par_new.state_parameters.stateDim/2 , 1)*1000*pi/180]; elseif strcmpi(par_new.motion_model_parameters.label, 'FixedWing Aircraft') par_new.valid_linearization_domain = [3;3;3;1;1;1;1]*3; elseif strcmpi(par_new.motion_model_parameters.label,'Quadrotor') par_new.valid_linearization_domain = [3;3;3;75*pi/180;75*pi/180;75*pi/180;inf;inf;inf;inf;inf;inf]; else par_new.valid_linearization_domain = [3;3;75*pi/180]*3; end %=========== HBRM cost par_new.alpha_for_HBRM_cost = [0.01,0.1,1]; % respectively, corresponding to "stopping_time", "success probability", and "filtering_cost". %=========== Roadmap Type and Construction par_new.RoadMap = 'FIRM'; % This parameter can be HBRM or FIRM par_new.No_history = 1; par_new.No_plot = 1; % this is for plots in construction phase. The execution phase plots are different. %=========== PRM parameters par_new.PRM_parameters.neighboring_distance_threshold = 30; %* 1.25 * 1000;% * 0.3; par_new.PRM_parameters.PRM_node_text = 1; % if this is one, the number of nodes will be written on the figure. par_new.PRM_parameters.PRM_node_plot_properties = {'RobotShape','triangle','robotSize',0.8};% {'RobotShape','triangle','robotSize',2}; par_new.PRM_parameters.draw_edges_flag = 1; % =========== Orbit parameters % par_new.PRM_parameters.orbit_text_size = 12; % Default value for "OrbitTextSize" property. % par_new.PRM_parameters.orbit_text_shift = 0.8; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, we return it back by this amount. % par_new.PRM_parameters.orbit_text_color = 'b'; % Default value for "OrbitTextColor" property. % par_new.PRM_parameters.orbit_robot_shape = 'triangle'; % The shape of robot (to draw trajectories and to show direction of edges and orbits) % par_new.PRM_parameters.orbit_robot_size = 1; % Robot size on orbits (to draw trajectories and to show direction of edges and orbits) par_new.PRM_parameters.node_to_orbit_trajectories_flag = 1; % Make it one if you want to see the node-to-orbit trajectories. Zero, otherwise. % par_new.PRM_parameters.orbit_color = 'k'; % User-provided value for "orbit_color" property. % par_new.PRM_parameters.orbit_width = 2; % User-provided value for "orbit_width" property. % par_new.PRM_parameters.orbit_trajectory_flag = 0; % Make it one if you want to see the orbit trajectories. Zero, otherwise. % par_new.PRM_parameters.edge_spec = '-b'; % edge line color and type % par_new.PRM_parameters.edge_width = 2; % edge line width par_new.PRM_parameters.num_nodes_on_orbits = 3; % number of nodes on each orbit % par_new.PRM_parameters.orbit_length = 50; % the length of orbit (orbit's time period) % par_new.PRM_parameters.orbit_radius = 4; %=========== Dynamic Programming parameters par_new.initial_values = 100; par_new.initial_value_goal = 500; par_new.failure_cost_to_go = 15; par_new.selected_nodes_for_plotting_feedback_pi = [];%setdiff(1:22, [4,7,19,17,8,20,12,3,6,21]); par_new.DP_convergence_threshold = 1e-2; %=========== Replanning par_new.replanning = 0; par_new.goBack_to_nearest_node = 0; % this does not work correctly, yet. %=========== FIRM Node Parameters if strcmpi(par_new.motion_model_parameters.label,'Multi RandomWalk robots') error('these parameters should go into the class') n = par_new.state_parameters.num_robots; tmp_vector = repmat( [0.08 ; 0.08 ] , n , 1); par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector elseif strcmpi(par_new.motion_model_parameters.label,'Multi Omni-directional robots') error('these parameters should go into the class') n = par_new.state_parameters.num_robots; tmp_vector = repmat( [0.08 ; 0.08 ; 3 *pi/180 ] , n , 1); par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector elseif strcmpi(par_new.motion_model_parameters.label,'Revolute joint 8arm manipulator') error('these parameters should go into the class') tmp_vector = ones(par_new.state_parameters.stateDim , 1)*5*pi/180; par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector elseif strcmpi(par_new.motion_model_parameters.label,'Dynamical planar 8arm manipulator') error('these parameters should go into the class') tmp_vector = [ones(par_new.state_parameters.stateDim/2 , 1)*5*pi/180;ones(par_new.state_parameters.stateDim/2 , 1)*10*pi/180]; par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector elseif strcmpi(par_new.motion_model_parameters.label,'FixedWing Aircraft') error('these parameters should go into the class') tmp_vector = repmat( [0.1 ; 0.1 ; 0.1; 0.1 ; 0.1 ; 0.1 ; 0.1] , 1 , 1); par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector elseif strcmpi(par_new.motion_model_parameters.label,'Quadrotor') error('these parameters should go into the class') tmp_vector = [1 ; 1 ; 1; 20*pi/180 ; 20*pi/180 ; 20*pi/180 ; inf ; inf ; inf ; inf ; inf ; inf]; par_new.FIRM_node_parameters.mean_neighborhood_size = tmp_vector*mean_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. par_new.FIRM_node_parameters.cov_neighborhood_size = tmp_vector*tmp_vector'*cov_neighb_magnifying_coeff ; % note that the last entry, ie theta's neighborhood, has to be in radian. % This is a matrix. % Hbliefe convergece-related parameters: GHb_conv_reg_thresh = tmp_vector*GHb_magnifyikng_coeff; % distance threshold for either Xg_mean or Xest_mean_mean; Xdist has to be a column vector else end %======================================================================================= %======================================================================================= % End of Parameters section! end function [motion_model_parameters , state_parameters] = gather_state_and_motion_model_parameters(old_par, selected_motion_model) % --- This function returns the parameters needed in the selected motion model. if strcmpi(selected_motion_model,'Omni-directional three wheel robot') elseif strcmpi(selected_motion_model,'Multi Omni-directional robots') error('these parameters should go into the class') n = 2; state_parameters.num_robots=n; state_parameters.stateDim = 3*n; state_parameters.sup_norm_weights_nonNormalized = repmat(1./[1 ; 1 ; inf] , n , 1); % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim=3*n; motion_model_parameters.robot_link_length = 0.2; %str2double(get(handles.edit_omni_link_length,'String')); motion_model_parameters.dt = 0.1; motion_model_parameters.V_const_path_team=ones(1,n); % nominal linear velocity motion_model_parameters.omega_const_path_team=ones(1,n)*90*pi/180; % nominal angular velocity % note that this is the turning angle in one second. So, it will be multiplied by "dt" to return the turning angle in "dt". motion_model_parameters.eta_u_omni_team = zeros(3*n,1); % %str2num(get(handles.edit_eta_u_omni,'String'))'; %#ok<ST2NM> % note that eta_u in this case is a three by one vector, reprensing eta for velocity of each of omni-dir wheels. motion_model_parameters.sigma_b_u_omni_team = zeros(3*n,1); % % note that sigma_b_u in this case is a three by one vector, reprensing sigma_b (bias variance) for linear velocity and angular velocity. P_rootsqaure_Wg_diags_team = repmat( [0.2 ; 0.2 ; 4*pi/180]*2, n ,1 ); % this is just a vector motion_model_parameters.P_Wg_team = diag(P_rootsqaure_Wg_diags_team.^2); elseif strcmpi(selected_motion_model,'Multi RandomWalk robots') error('these parameters should go into the class') n = 1; state_parameters.num_robots=n; state_parameters.stateDim = 2*n; state_parameters.sup_norm_weights_nonNormalized = repmat(1./[1 ; 1 ] , n , 1); % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim=2*n; motion_model_parameters.dt = 0.1; motion_model_parameters.V_const_path_team=ones(2*n,1)*20; % nominal linear velocity P_rootsqaure_Wg_diags_team = repmat( [0.2 ; 0.2]*2, n ,1 ); % this is just a vector motion_model_parameters.P_Wg_team = diag(P_rootsqaure_Wg_diags_team.^2); elseif strcmpi(selected_motion_model,'Unicycle') error('these parameters should go into the class') state_parameters.stateDim = 3; state_parameters.sup_norm_weights_nonNormalized = 1./[1 ; 1 ; inf]; % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim=2; motion_model_parameters.base_length = 13; %str2double(get(handles.edit_unicycle_base_length,'String')); motion_model_parameters.dt = 0.1; motion_model_parameters.V_const_path = 4; % nominal linear velocity motion_model_parameters.omega_const_path=25*pi/180; % nominal angular velocity motion_model_parameters.eta_u_unicycle = [0; 0]; % %str2num(get(handles.edit_eta_u_unicycle,'String'))'; %#ok<ST2NM> % note that eta_u in this case is a two by one vector, reprensing eta for linear velocity and angular velocity. motion_model_parameters.sigma_b_u_unicycle = [0; 0]; % % note that sigma_b_u in this case is a two by one vector, reprensing sigma_b (bias variance) for linear velocity and angular velocity. P_rootsqaure_Wg_diags=[0.2 ; 0.2 ; 4*pi/180]; motion_model_parameters.P_Wg=diag(P_rootsqaure_Wg_diags.^2); elseif strcmpi(selected_motion_model,'Revolute joint 8arm manipulator') error('these parameters should go into the class') n = 8; state_parameters.num_revolute_joints = n; state_parameters.stateDim = n; state_parameters.sup_norm_weights_nonNormalized = ones(n , 1); % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim=n; elseif strcmpi(selected_motion_model,'Dynamical planar 8arm manipulator') error('these parameters should go into the class') n = 16; state_parameters.num_revolute_joints = n/2; state_parameters.stateDim = n; state_parameters.sup_norm_weights_nonNormalized = ones(n , 1); % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim = n/2; elseif strcmpi(selected_motion_model,'FixedWing Aircraft') error('these parameters should go into the class') state_parameters.stateDim = 7; state_parameters.sup_norm_weights_nonNormalized = ones(state_parameters.stateDim , 1); disp('state norm for aircraft model needs to be fixed') motion_model_parameters.controlDim = 4; motion_model_parameters.dt = 0.1; motion_model_parameters.eta_u_aircraft = [0.005;0.005;0.005;0.005];%[0.01 ; deg2rad(0.025) ; deg2rad(0.025) ; deg2rad(0.025)]; motion_model_parameters.sigma_b_u_aircraft = [0.02; deg2rad(0.25);deg2rad(0.25); deg2rad(0.25)];%[0.01 ; deg2rad(0.2); deg2rad(0.2); deg2rad(0.2)]; P_rootsqaure_Wg_diags = [0.02 ; 0.02 ; 0.02 ; 0.01 ; 0.01 ; 0.01 ; 0.01]; motion_model_parameters.P_Wg = diag(P_rootsqaure_Wg_diags.^2); elseif strcmpi(selected_motion_model,'Kuka YouBot Base') error('these parameters should go into the class') state_parameters.stateDim = 3; state_parameters.sup_norm_weights_nonNormalized = 1./[1 ; 1 ; inf]; % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim = 4; motion_model_parameters.dt = 0.1; motion_model_parameters.eta_u_KukaBase = [0; 0; 0; 0]; motion_model_parameters.sigma_b_u_KukaBase = [0; 0; 0; 0]; P_rootsqaure_Wg_diags=[0.2 ; 0.2 ; 4*pi/180]*2; motion_model_parameters.P_Wg=diag(P_rootsqaure_Wg_diags.^2); motion_model_parameters.distBetweenFrontWheels = 0.158*2; % from YouBot datasheet motion_model_parameters.distBetweenFrontAndBackWheels = 0.228*2; % from YouBot datasheet elseif strcmpi(selected_motion_model,'Quadrotor') error('these parameters should go into the class') state_parameters.stateDim = 12; state_parameters.sup_norm_weights_nonNormalized = 1./[1 ; 1 ; 1; inf(9,1)]; % You can think of the right-most vector (in the denominator) as the ractangular neighborhood used in finding neighbor nodes in constructing PRM graph. Note that this must be a column vector. motion_model_parameters.controlDim = 4; motion_model_parameters.dt = 0.1; motion_model_parameters.eta_u_quadrotor = [0; 0; 0; 0]; % str2num(get(handles.eta_u_quadrotor,'String'))'; %#ok<ST2NM> % note that eta_u in this case is a four by one vector, reprensing the dependence of control noise on the magnitude of the control vector. motion_model_parameters.sigma_b_u_quadrotor = [0; 0; 0; 0]; % note that sigma_b_u in this case is a four by one vector, reprensing sigma_b (bias variance) for the control-independent part of the control noise. P_rootsqaure_Wg_diags=[0.2 ; 0.2 ; 0.2 ; 0.001 ; 0.001 ; 0.001; 4*pi/180 ; 4*pi/180 ; 4*pi/180 ; 0.001 ; 0.001 ; 0.001]; motion_model_parameters.P_Wg=diag(P_rootsqaure_Wg_diags.^2); else motion_model_parameters = []; % Here, we load the "old motion model parameters", so that the old information that we do not change, remains unaffected. state_parameters = []; end end
github
mubeipeng/focused_slam-master
read_wobj.m
.m
focused_slam-master/FIRM/ExternalToolboxes/WOBJ_toolbox_Version2b/read_wobj.m
14,274
utf_8
00b739173054009ea85cd8029e45dbdf
function OBJ=read_wobj(fullfilename) % Read the objects from a Wavefront OBJ file % % OBJ=read_wobj(filename); % % OBJ struct containing: % % OBJ.vertices : Vertices coordinates % OBJ.vertices_texture: Texture coordinates % OBJ.vertices_normal : Normal vectors % OBJ.vertices_point : Vertice data used for points and lines % OBJ.material : Parameters from external .MTL file, will contain parameters like % newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks, % example of an entry from the material object: % OBJ.material(i).type = newmtl % OBJ.material(i).data = 'vase_tex' % OBJ.objects : Cell object with all objects in the OBJ file, % example of a mesh object: % OBJ.objects(i).type='f' % OBJ.objects(i).data.vertices: [n x 3 double] % OBJ.objects(i).data.texture: [n x 3 double] % OBJ.objects(i).data.normal: [n x 3 double] % % Example, % OBJ=read_wobj('examples\example10.obj'); % FV.vertices=OBJ.vertices; % FV.faces=OBJ.objects(3).data.vertices; % figure, patch(FV,'facecolor',[1 0 0]); camlight % % Function is written by D.Kroon University of Twente (June 2010) verbose=true; if(exist('fullfilename','var')==0) [filename, filefolder] = uigetfile('*.obj', 'Read obj-file'); fullfilename = [filefolder filename]; end filefolder = fileparts( fullfilename); if(verbose),disp(['Reading Object file : ' fullfilename]); end % Read the DI3D OBJ textfile to a cell array file_words = file2cellarray( fullfilename); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Vertex data vertices=[]; nv=0; vertices_texture=[]; nvt=0; vertices_point=[]; nvp=0; vertices_normal=[]; nvn=0; material=[]; % Surface data no=0; % Loop through the Wavefront object file for iline=1:length(ftype) if(mod(iline,10000)==0), if(verbose),disp(['Lines processed : ' num2str(iline)]); end end type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'mtllib'} if(iscell(data)) datanew=[]; for i=1:length(data) datanew=[datanew data{i}]; if(i<length(data)), datanew=[datanew ' ']; end end data=datanew; end filename_mtl=fullfile(filefolder,data); material=readmtl(filename_mtl,verbose); case('v') % vertices nv=nv+1; if(length(data)==3) % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:3)=0; end % Add to vertices list X Y Z vertices(nv,1:3)=data; else % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:4)=0; end % Add to vertices list X Y Z W vertices(nv,1:4)=data; end case('vp') % Specifies a point in the parameter space of curve or surface nvp=nvp+1; if(length(data)==1) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1)=0; end % Add to vertices point list U vertices_point(nvp,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:2)=0; end % Add to vertices point list U V vertices_point(nvp,1:2)=data; else % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:3)=0; end % Add to vertices point list U V W vertices_point(nvp,1:3)=data; end case('vn') % A normal vector nvn=nvn+1; if(mod(nvn,10000)==1), vertices_normal(nvn+1:nvn+10001,1:3)=0; end % Add to vertices list I J K vertices_normal(nvn,1:3)=data; case('vt') % Vertices Texture Coordinate in photo % U V W nvt=nvt+1; if(length(data)==1) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1)=0; end % Add to vertices texture list U vertices_texture(nvt,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:2)=0; end % Add to vertices texture list U V vertices_texture(nvt,1:2)=data; else % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:3)=0; end % Add to vertices texture list U V W vertices_texture(nvt,1:3)=data; end case('l') no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end array_vertices=[]; array_texture=[]; for i=1:length(data), switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end objects(no).type='l'; objects(no).data.vertices=array_vertices; objects(no).data.texture=array_texture; case('f') no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end array_vertices=[]; array_texture=[]; array_normal=[]; for i=1:length(data); switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), if(isfinite(tvals(2))) val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end if(length(tvals)>2), val=tvals(3); if(val<0), val=val+1+nvn; end array_normal(i)=val; end end % A face of more than 3 indices is always split into % multiple faces of only 3 indices. objects(no).type='f'; findex=1:min (3,length(array_vertices)); objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end for i=1:length(array_vertices)-3; no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end findex=[1 2+i 3+i]; findex(findex>length(array_vertices))=findex(findex>length(array_vertices))-length(array_vertices); objects(no).type='f'; objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end end case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end % Initialize new object list, which will contain the "collapsed" objects objects2(no).data=0; index=0; i=0; while (i<no), i=i+1; type=objects(i).type; % First face found if((length(type)==1)&&(type(1)=='f')) % Get number of faces for j=i:no type=objects(j).type; if((length(type)~=1)||(type(1)~='f')) j=j-1; break; end end numfaces=(j-i)+1; index=index+1; objects2(index).type='f'; % Process last face first to allocate memory objects2(index).data.vertices(numfaces,:)= objects(i).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(numfaces,:) = objects(i).data.texture; else objects2(index).data.texture=[]; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(numfaces,:) = objects(i).data.normal; else objects2(index).data.normal=[]; end % All faces to arrays for k=1:numfaces objects2(index).data.vertices(k,:)= objects(i+k-1).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(k,:) = objects(i+k-1).data.texture; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(k,:) = objects(i+k-1).data.normal; end end i=j; else index=index+1; objects2(index).type=objects(i).type; objects2(index).data=objects(i).data; end end % Add all data to output struct OBJ.objects=objects2(1:index); OBJ.material=material; OBJ.vertices=vertices(1:nv,:); OBJ.vertices_point=vertices_point(1:nvp,:); OBJ.vertices_normal=vertices_normal(1:nvn,:); OBJ.vertices_texture=vertices_texture(1:nvt,:); if(verbose),disp('Finished Reading Object file'); end function twords=stringsplit(tline,tchar) % Get start and end position of all "words" separated by a char i=find(tline(2:end-1)==tchar)+1; i_start=[1 i+1]; i_end=[i-1 length(tline)]; % Create a cell array of the words twords=cell(1,length(i_start)); for j=1:length(i_start), twords{j}=tline(i_start(j):i_end(j)); end function file_words=file2cellarray(filename) % Open a DI3D OBJ textfile fid=fopen(filename,'r'); file_text=fread(fid, inf, 'uint8=>char')'; fclose(fid); file_lines = regexp(file_text, '\n+', 'split'); file_words = regexp(file_lines, '\s+', 'split'); function [ftype fdata]=fixlines(file_words) ftype=cell(size(file_words)); fdata=cell(size(file_words)); iline=0; jline=0; while(iline<length(file_words)) iline=iline+1; twords=removeemptycells(file_words{iline}); if(~isempty(twords)) % Add next line to current line when line end with '\' while(strcmp(twords{end},'\')&&iline<length(file_words)) iline=iline+1; twords(end)=[]; twords=[twords removeemptycells(file_words{iline})]; end % Values to double type=twords{1}; stringdold=true; j=0; switch(type) case{'#','$'} for i=2:length(twords) j=j+1; twords{j}=twords{i}; end otherwise for i=2:length(twords) str=twords{i}; val=str2double(str); stringd=~isfinite(val); if(stringd) j=j+1; twords{j}=str; else if(stringdold) j=j+1; twords{j}=val; else twords{j}=[twords{j} val]; end end stringdold=stringd; end end twords(j+1:end)=[]; jline=jline+1; ftype{jline}=type; if(length(twords)==1), twords=twords{1}; end fdata{jline}=twords; end end ftype(jline+1:end)=[]; fdata(jline+1:end)=[]; function b=removeemptycells(a) j=0; b={}; for i=1:length(a); if(~isempty(a{i})),j=j+1; b{j}=a{i}; end; end function objects=readmtl(filename_mtl,verbose) if(verbose),disp(['Reading Material file : ' filename_mtl]); end file_words=file2cellarray(filename_mtl); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Surface data objects.type(length(ftype))=0; objects.data(length(ftype))=0; no=0; % Loop through the Wavefront object file for iline=1:length(ftype) type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end objects=objects(1:no); if(verbose),disp('Finished Reading Material file'); end
github
mubeipeng/focused_slam-master
write_wobj.m
.m
focused_slam-master/FIRM/ExternalToolboxes/WOBJ_toolbox_Version2b/write_wobj.m
8,180
utf_8
0dc52399139f80c689fb89cddc5ebb19
function write_wobj(OBJ,fullfilename) % Write objects to a Wavefront OBJ file % % write_wobj(OBJ,filename); % % OBJ struct containing: % % OBJ.vertices : Vertices coordinates % OBJ.vertices_texture: Texture coordinates % OBJ.vertices_normal : Normal vectors % OBJ.vertices_point : Vertice data used for points and lines % OBJ.material : Parameters from external .MTL file, will contain parameters like % newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks, % example of an entry from the material object: % OBJ.material(i).type = newmtl % OBJ.material(i).data = 'vase_tex' % OBJ.objects : Cell object with all objects in the OBJ file, % example of a mesh object: % OBJ.objects(i).type='f' % OBJ.objects(i).data.vertices: [n x 3 double] % OBJ.objects(i).data.texture: [n x 3 double] % OBJ.objects(i).data.normal: [n x 3 double] % % example reading/writing, % % OBJ=read_wobj('examples\example10.obj'); % write_wobj(OBJ,'test.obj'); % % example isosurface to obj-file, % % % Load MRI scan % load('mri','D'); D=smooth3(squeeze(D)); % % Make iso-surface (Mesh) of skin % FV=isosurface(D,1); % % Calculate Iso-Normals of the surface % N=isonormals(D,FV.vertices); % L=sqrt(N(:,1).^2+N(:,2).^2+N(:,3).^2)+eps; % N(:,1)=N(:,1)./L; N(:,2)=N(:,2)./L; N(:,3)=N(:,3)./L; % % Display the iso-surface % figure, patch(FV,'facecolor',[1 0 0],'edgecolor','none'); view(3);camlight % % Invert Face rotation % FV.faces=[FV.faces(:,3) FV.faces(:,2) FV.faces(:,1)]; % % % Make a material structure % material(1).type='newmtl'; % material(1).data='skin'; % material(2).type='Ka'; % material(2).data=[0.8 0.4 0.4]; % material(3).type='Kd'; % material(3).data=[0.8 0.4 0.4]; % material(4).type='Ks'; % material(4).data=[1 1 1]; % material(5).type='illum'; % material(5).data=2; % material(6).type='Ns'; % material(6).data=27; % % % Make OBJ structure % clear OBJ % OBJ.vertices = FV.vertices; % OBJ.vertices_normal = N; % OBJ.material = material; % OBJ.objects(1).type='g'; % OBJ.objects(1).data='skin'; % OBJ.objects(2).type='usemtl'; % OBJ.objects(2).data='skin'; % OBJ.objects(3).type='f'; % OBJ.objects(3).data.vertices=FV.faces; % OBJ.objects(3).data.normal=FV.faces; % write_wobj(OBJ,'skinMRI.obj'); % % Function is written by D.Kroon University of Twente (June 2010) if(exist('fullfilename','var')==0) [filename, filefolder] = uiputfile('*.obj', 'Write obj-file'); fullfilename = [filefolder filename]; end [filefolder,filename] = fileparts( fullfilename); comments=cell(1,4); comments{1}=' Produced by Matlab Write Wobj exporter '; comments{2}=''; fid = fopen(fullfilename,'w'); write_comment(fid,comments); if(isfield(OBJ,'material')&&~isempty(OBJ.material)) filename_mtl=fullfile(filefolder,[filename '.mtl']); fprintf(fid,'mtllib %s\n',filename_mtl); write_MTL_file(filename_mtl,OBJ.material) end if(isfield(OBJ,'vertices')&&~isempty(OBJ.vertices)) write_vertices(fid,OBJ.vertices,'v'); end if(isfield(OBJ,'vertices_point')&&~isempty(OBJ.vertices_point)) write_vertices(fid,OBJ.vertices_point,'vp'); end if(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal)) write_vertices(fid,OBJ.vertices_normal,'vn'); end if(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture)) write_vertices(fid,OBJ.vertices_texture,'vt'); end for i=1:length(OBJ.objects) type=OBJ.objects(i).type; data=OBJ.objects(i).data; switch(type) case 'usemtl' fprintf(fid,'usemtl %s\n',data); case 'f' check1=(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture)); check2=(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal)); if(check1&&check2) for j=1:size(data.vertices,1) fprintf(fid,'f %d/%d/%d',data.vertices(j,1),data.texture(j,1),data.normal(j,1)); fprintf(fid,' %d/%d/%d', data.vertices(j,2),data.texture(j,2),data.normal(j,2)); fprintf(fid,' %d/%d/%d\n', data.vertices(j,3),data.texture(j,3),data.normal(j,3)); end elseif(check1) for j=1:size(data.vertices,1) fprintf(fid,'f %d/%d',data.vertices(j,1),data.texture(j,1)); fprintf(fid,' %d/%d', data.vertices(j,2),data.texture(j,2)); fprintf(fid,' %d/%d\n', data.vertices(j,3),data.texture(j,3)); end elseif(check2) for j=1:size(data.vertices,1) fprintf(fid,'f %d//%d',data.vertices(j,1),data.normal(j,1)); fprintf(fid,' %d//%d', data.vertices(j,2),data.normal(j,2)); fprintf(fid,' %d//%d\n', data.vertices(j,3),data.normal(j,3)); end else for j=1:size(data.vertices,1) fprintf(fid,'f %d %d %d\n',data.vertices(j,1),data.vertices(j,2),data.vertices(j,3)); end end otherwise fprintf(fid,'%s ',type); if(iscell(data)) for j=1:length(data) if(ischar(data{j})) fprintf(fid,'%s ',data{j}); else fprintf(fid,'%0.5g ',data{j}); end end elseif(ischar(data)) fprintf(fid,'%s ',data); else for j=1:length(data) fprintf(fid,'%0.5g ',data(j)); end end fprintf(fid,'\n'); end end fclose(fid); function write_MTL_file(filename,material) fid = fopen(filename,'w'); comments=cell(1,2); comments{1}=' Produced by Matlab Write Wobj exporter '; comments{2}=''; write_comment(fid,comments); for i=1:length(material) type=material(i).type; data=material(i).data; switch(type) case('newmtl') fprintf(fid,'%s ',type); fprintf(fid,'%s\n',data); case{'Ka','Kd','Ks'} fprintf(fid,'%s ',type); fprintf(fid,'%5.5f %5.5f %5.5f\n',data); case('illum') fprintf(fid,'%s ',type); fprintf(fid,'%d\n',data); case {'Ns','Tr','d'} fprintf(fid,'%s ',type); fprintf(fid,'%5.5f\n',data); otherwise fprintf(fid,'%s ',type); if(iscell(data)) for j=1:length(data) if(ischar(data{j})) fprintf(fid,'%s ',data{j}); else fprintf(fid,'%0.5g ',data{j}); end end elseif(ischar(data)) fprintf(fid,'%s ',data); else for j=1:length(data) fprintf(fid,'%0.5g ',data(j)); end end fprintf(fid,'\n'); end end comments=cell(1,2); comments{1}=''; comments{2}=' EOF'; write_comment(fid,comments); fclose(fid); function write_comment(fid,comments) for i=1:length(comments), fprintf(fid,'# %s\n',comments{i}); end function write_vertices(fid,V,type) switch size(V,2) case 1 for i=1:size(V,1) fprintf(fid,'%s %5.5f\n', type, V(i,1)); end case 2 for i=1:size(V,1) fprintf(fid,'%s %5.5f %5.5f\n', type, V(i,1), V(i,2)); end case 3 for i=1:size(V,1) fprintf(fid,'%s %5.5f %5.5f %5.5f\n', type, V(i,1), V(i,2), V(i,3)); end otherwise end switch(type) case 'v' fprintf(fid,'# %d vertices \n', size(V,1)); case 'vt' fprintf(fid,'# %d texture verticies \n', size(V,1)); case 'vn' fprintf(fid,'# %d normals \n', size(V,1)); otherwise fprintf(fid,'# %d\n', size(V,1)); end
github
mubeipeng/focused_slam-master
steerLinearSystembyLP.m
.m
focused_slam-master/FIRM/All_motion_models/steerLinearSystembyLP.m
3,471
utf_8
1386af9e186eab89e654ec5da01f1c1a
%%%%%%%%%% Solve an LP to steer a Linear System %%%%%%% function [x_seq,u_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,dt,numberOfSteps) % Get dimensions [stateDim,inputDim] = size(B); solDim = stateDim*numberOfSteps + inputDim*(numberOfSteps-1); % Initialize solution x_seq = zeros(stateDim,numberOfSteps); u_seq = zeros(inputDim,numberOfSteps-1); % Indexing goes like this % State vector, x = [x_1;x_2;...;x_stateDim] % Input Vector u = [u_1;u_2;...;u_inputDim] % sol_vector = [x_1(1),x_2(1),...,x_stateDim(1), % x_1(2),...,x_stateDim(numberOfSteps),u_1(1),u_2(1) % ,...,u_inputDim(1),....,u_inputDim(numberOfSteps-1)] % Formula for indexing % i^th state variable at time j, (j-1)*stateDim + i % k^th input variable at time l, offset + (l-1)*inputDim + k % offset = stateDim*numberOfSteps offset = stateDim*numberOfSteps; %% Set The Cost Function % Simply minimize x_final f = zeros(1,solDim); for i=(numberOfSteps-1)*stateDim+1:(numberOfSteps)*stateDim f(i) = 1; end % -- it turned out that we dont really need that % also weight the inputs, so that they don't blow up % % for i=offset +1:offset + (numberOfSteps-1)*inputDim % % f(i) = 1e6; % % end % % %% Inequality Constraints % Just bound the x_final Aineq = zeros(stateDim,solDim); bineq = -x_final; k=1; for state = 1:stateDim Aineq(k,(numberOfSteps-1)*stateDim+state) = -1; k = k+1; end %% Equality Constraints (this is the tricky part!!) Aeq = zeros(numberOfSteps*stateDim,solDim); beq = zeros(numberOfSteps*stateDim,1); % Initial conditions k=1; for i=1:stateDim Aeq(k,i) = 1; beq(i) = x_init(i); k = k+1; end % Now constrain the system to obey the dynamics constrainIndex= stateDim+1; for timeIndex=2:numberOfSteps for stateIndex=1:stateDim Aeq(constrainIndex,(timeIndex-1)*stateDim + stateIndex) = 1; for Index=1:stateDim if(Index==stateIndex) Aeq(constrainIndex,(timeIndex-2)*stateDim + Index) = -A(stateIndex,Index)*dt-1; else Aeq(constrainIndex,(timeIndex-2)*stateDim + Index) = -A(stateIndex,Index)*dt; end for inputIndex=1:inputDim Aeq(constrainIndex,offset+(timeIndex-2)*inputDim + inputIndex) = -B(stateIndex,inputIndex)*dt; end end constrainIndex = constrainIndex+1; end end %% Set the lower and upper bounds (copy-paste over variables) lb = zeros(solDim,1); ub = zeros(solDim,1); % for states for i=1:numberOfSteps for j=1:stateDim lb((i-1)*stateDim + j) = lower(j); ub((i-1)*stateDim + j) = upper(j); end end % for inputs for i=1:numberOfSteps-1 for j=1:inputDim lb(offset + (i-1)*inputDim + j) = lower(stateDim+j); ub(offset + (i-1)*inputDim + j) = upper(stateDim+j); end end %% Solve The LP and arrange the solution sol = linprog(f,Aineq,bineq,Aeq,beq,lb,ub); for i=1:numberOfSteps for j=1:stateDim x_seq(j,i) = sol((i-1)*stateDim + j); end end for i=1:numberOfSteps-1 for j=1:inputDim u_seq(j,i) = sol(offset+ (i-1)*inputDim + j); end end end
github
mubeipeng/focused_slam-master
Aircraft_Kinematic.m
.m
focused_slam-master/FIRM/All_motion_models/Aircraft_Kinematic.m
28,967
utf_8
5e8129f6bf8fe01b2bf5e822feafe195
%% Class Definition classdef Aircraft_Kinematic < MotionModel_interface properties (Constant = true) stDim = 7;%state.dim; % state dimension ctDim = 4; % control vector dimension wDim = 4; % Process noise (W) dimension % For the generality we also consider the additive noise on kinematics equation (3 dimension), but it most probably will set to zero. The main noise is a 2 dimensional noise which is added to the controls. dt = user_data_class.par.motion_model_parameters.dt; % base_length = user_data_class.par.motion_model_parameters.base_length; % distance between robot's rear wheels. sigma_b_u = [0.02; deg2rad(0.25);deg2rad(0.25); deg2rad(0.25)];%user_data_class.par.motion_model_parameters.sigma_b_u_aircraft ; eta_u = [0.005;0.005;0.005;0.005];%user_data_class.par.motion_model_parameters.eta_u_aircraft ; P_Wg = [0.2 ; 0.2 ; 0.2 ; 0.1 ; 0.1 ; 0.1 ; 0.1];%user_data_class.par.motion_model_parameters.P_Wg; Max_Roll_Rate = deg2rad(45); % try 45 Max_Pitch_Rate = deg2rad(45);% try 45 Max_Yaw_Rate = deg2rad(45);% try 45 Max_Velocity = 8.0; % m/s Min_Velocity = 2.5;% m/s zeroNoise = zeros(Aircraft_Kinematic.wDim,1); turn_radius_min = Aircraft_Kinematic.Min_Velocity/Aircraft_Kinematic.Max_Yaw_Rate; % indeed we need to define the minimum linear velocity in turnings (on orbits) and then find the minimum radius accordingly. But, we picked the more intuitive way. end methods (Static = true) function x_next = f_discrete(x,u,w) if u(1)> Aircraft_Kinematic.Max_Velocity u(1) = Aircraft_Kinematic.Max_Velocity; end if u(1) < Aircraft_Kinematic.Min_Velocity u(1) = Aircraft_Kinematic.Min_Velocity; end if u(2)> Aircraft_Kinematic.Max_Roll_Rate u(2) = Aircraft_Kinematic.Max_Roll_Rate; end if u(2) < -Aircraft_Kinematic.Max_Roll_Rate u(2) = -Aircraft_Kinematic.Max_Roll_Rate; end if u(3)> Aircraft_Kinematic.Max_Pitch_Rate u(3) = Aircraft_Kinematic.Max_Pitch_Rate; end if u(3) < -Aircraft_Kinematic.Max_Pitch_Rate u(3) = -Aircraft_Kinematic.Max_Pitch_Rate; end if u(4)> Aircraft_Kinematic.Max_Yaw_Rate u(4) = Aircraft_Kinematic.Max_Yaw_Rate; end if u(4) < -Aircraft_Kinematic.Max_Yaw_Rate u(4) = -Aircraft_Kinematic.Max_Yaw_Rate; end pos = [x(1) ; x(2) ; x(3)];% position state rot = [x(4) ; x(5) ; x(6) ; x(7)];% rotation state q_rot = Quaternion(rot); q_rot = unit(q_rot);% making a normalized quarternion, dont use quatnormalize p = q_rot.R; u_linear_ground = p *[u(1); 0; 0] ; w_linear_ground = p * [w(1); 0 ; 0]; x_next_pos = pos + Aircraft_Kinematic.dt * (u_linear_ground) + ((Aircraft_Kinematic.dt^0.5) * w_linear_ground); u_angular_ground = [u(2); u(3); u(4)];%p * [u(2); u(3); u(4)]; % u_angular_ground = [u_angular_ground(1); u_angular_ground(2); u_angular_ground(3)]; w_angular_ground = [w(2); w(3); w(4)]; % p * [w(2); w(3); w(4)] % w_angular_ground = [w_angular_ground(1); w_angular_ground(2); w_angular_ground(3)]; % q0 = x(4); % q1 = x(5); % q2 = x(6); % q3 = x(7); Amat = [-x(5), -x(6), -x(7); x(4) , -x(7), x(6); x(7) , x(4), -x(5); -x(6), x(5) , x(4)]; dq_dt_u = 0.5*Amat*u_angular_ground; dq_dt_w = 0.5*Amat*w_angular_ground; control = dq_dt_u * Aircraft_Kinematic.dt; noise = dq_dt_w * Aircraft_Kinematic.dt^0.5; x_next_rot = rot + control + noise; q_next = unit(x_next_rot); % Make a unit quaternion q_next = correct_quaternion(q_next); % %transition_quat = Aircraft_Kinematic.f_transquat(Aircraft_Kinematic.dt , u_angular ,w_angular); % x_next_q_rot = Quaternion(); % x_next_q_rot = unit(q_rot * transition_quat);% normalizing resultant quaternion) % x_next_rot = double(x_next_q_rot);% converting to matrix f x_next = [x_next_pos(1) x_next_pos(2) x_next_pos(3) q_next(1) q_next(2) q_next(3) q_next(4)]'; % augmenting state and rotational part end function J = df_dx_func(x,u,w) % state Jacobian pos = [x(1) , x(2) , x(3)];% position state rot = [x(4) , x(5) , x(6) , x(7)];% rotation state q_rot = Quaternion(rot); q_rot = unit(q_rot);% making a normalized quarternion p = q_rot.R; u_angular = [u(2); u(3); u(4)]; t3 = u_angular; % p * u_angular; u_angular_ground = [0 ;t3(1); t3(2); t3(3)]; w_angular = [w(2); w(3); w(4)]; t4 = w_angular; % p * w_angular; w_angular_ground = [0 ; t4(1); t4(2); t4(3)]; a_11 = 1 ; a_12 = - 0.5 * t3(1) * Aircraft_Kinematic.dt - 0.5 * t4(1) * (Aircraft_Kinematic.dt)^0.5; a_13 = - 0.5 * t3(2) * Aircraft_Kinematic.dt - 0.5 * t4(2) * (Aircraft_Kinematic.dt)^0.5; a_14 = - 0.5 * t3(3) * Aircraft_Kinematic.dt - 0.5 * t4(3) * (Aircraft_Kinematic.dt)^0.5; a_21 = 0.5 * t3(1) * Aircraft_Kinematic.dt + 0.5 * t4(1) * (Aircraft_Kinematic.dt)^0.5; a_22 = 1 ; a_23 = 0.5 * t3(3) * Aircraft_Kinematic.dt + 0.5 * t4(3) * (Aircraft_Kinematic.dt)^0.5; a_24 = - 0.5 * t3(2) * Aircraft_Kinematic.dt - 0.5 * t4(2) * (Aircraft_Kinematic.dt)^0.5; a_31 = 0.5 * t3(2) * Aircraft_Kinematic.dt + 0.5 * t4(2) * (Aircraft_Kinematic.dt)^0.5; a_32 = - 0.5 * t3(3) * Aircraft_Kinematic.dt - 0.5 * t4(3) * (Aircraft_Kinematic.dt)^0.5; a_33 = 1 ; a_34 = 0.5 * t3(1) * Aircraft_Kinematic.dt + 0.5 * t4(1) * (Aircraft_Kinematic.dt)^0.5; a_41 = 0.5 * t3(3) * Aircraft_Kinematic.dt + 0.5 * t4(3) * (Aircraft_Kinematic.dt)^0.5; a_42 = 0.5 * t3(2) * Aircraft_Kinematic.dt + 0.5 * t4(2) * (Aircraft_Kinematic.dt)^0.5; a_43 = -0.5 * t3(1) * Aircraft_Kinematic.dt - 0.5 * t4(1) * (Aircraft_Kinematic.dt)^0.5; a_44 = 1 ; A = [a_11 a_12 a_13 a_14; a_21 a_22 a_23 a_24; a_31 a_32 a_33 a_34; a_41 a_42 a_43 a_44]; % Calculating the jacobian of the linear components B qq = q_rot.double; % put it back in double form q0 = qq(1); q1 = qq(2); q2 = qq(3); q3 = qq(4); Vsum = (u(1)*Aircraft_Kinematic.dt + w(1)*Aircraft_Kinematic.dt^0.5); b_11 = 1; b_12 = 0; b_13 = 0; b_14 = 2*q0 * Vsum; b_15 = 2*q1 * Vsum; b_16 = -2*q2 * Vsum; b_17 = -2*q3 * Vsum; b_21 = 0; b_22 = 1; b_23 = 0; b_24 = 2*q3*Vsum; b_25 = 2*q2*Vsum; b_26 = 2*q1*Vsum; b_27 = 2*q0*Vsum; b_31 = 0; b_32 = 0; b_33 = 1; b_34 = -2*q2*Vsum; b_35 = 2*q3*Vsum; b_36 = -2*q0*Vsum; b_37 = 2*q1*Vsum; B = [b_11 b_12 b_13 b_14 b_15 b_16 b_17;b_21 b_22 b_23 b_24 b_25 b_26 b_27;b_31 b_32 b_33 b_34 b_35 b_36 b_37]; J = zeros(7,7); J(1:3,1:7) = B; J(4:7,4:7) = A; end function J = df_du_func(x,u,w) rot = [x(4) , x(5) , x(6) , x(7)];% rotation state q_rot = Quaternion(rot); q_rot = unit(q_rot);% making a normalized quarternion qq = q_rot.double; % put it back in double form R_gb = q_rot.R; q0 = qq(1); q1 = qq(2); q2 = qq(3); q3 = qq(4); b_11 = 0; b_12 = 0.5 *(-q1)* Aircraft_Kinematic.dt ; b_13 = 0.5 *(-q2)* Aircraft_Kinematic.dt ; b_14 = 0.5 *(-q3)* Aircraft_Kinematic.dt ; b_21 = 0 ; b_22 = 0.5 *(q0)* Aircraft_Kinematic.dt ; b_23 = 0.5 *(-q3)* Aircraft_Kinematic.dt ; b_24 = 0.5 *(q2)* Aircraft_Kinematic.dt ; b_31 = 0 ; b_32 = 0.5 *(q3)* Aircraft_Kinematic.dt ; b_33 = 0.5 *(q0)* Aircraft_Kinematic.dt ; b_34 = 0.5 *(-q1)* Aircraft_Kinematic.dt ; b_41 = 0; b_42 = 0.5 *(-q2)* Aircraft_Kinematic.dt ; b_43 = 0.5 *(q1) * Aircraft_Kinematic.dt ; b_44 = 0.5 *(q0) * Aircraft_Kinematic.dt ; B = [b_11 b_12 b_13 b_14; b_21 b_22 b_23 b_24; b_31 b_32 b_33 b_34; b_41 b_42 b_43 b_44]; % Jacobian calc for linear part a_11 = (q0^2+q1^2-q2^2-q3^2) * Aircraft_Kinematic.dt ; a_12 = 0; a_13 = 0; a_14 = 0; a_21 = 2*(q1*q2+q0*q3)* Aircraft_Kinematic.dt; a_22 = 0; a_23 = 0; a_24 = 0; a_31 = 2*(q1*q3-q0*q2) * Aircraft_Kinematic.dt; a_32 = 0; a_33 = 0; a_34 = 0; A = [a_11 a_12 a_13 a_14;a_21 a_22 a_23 a_24;a_31 a_32 a_33 a_34]; J = zeros(7,4); J(1:3,1:4) = A; J(4:7,1:4) = B; end function J = df_dw_func(x,u,w) % noise Jacobian rot = [x(4) , x(5) , x(6) , x(7)];% rotation state q_rot = Quaternion(rot); q_rot = unit(q_rot);% making a normalized quarternion qq = q_rot.double; % put it back in double form R_gb = q_rot.R; q0 = qq(1); q1 = qq(2); q2 = qq(3); q3 = qq(4); g_11 = 0; g_12 = 0.5 *(-q1)* sqrt(Aircraft_Kinematic.dt) ; g_13 = 0.5 *(-q2)* sqrt(Aircraft_Kinematic.dt) ; g_14 = 0.5 *(-q3)* sqrt(Aircraft_Kinematic.dt) ; g_21 = 0 ; g_22 = 0.5 *(q0)* sqrt(Aircraft_Kinematic.dt); g_23 = 0.5 *(-q3)* sqrt(Aircraft_Kinematic.dt); g_24 = 0.5 *(q2)* sqrt(Aircraft_Kinematic.dt) ; g_31 = 0 ; g_32 = 0.5 *(q3)* sqrt(Aircraft_Kinematic.dt) ; g_33 = 0.5 *(q0)* sqrt(Aircraft_Kinematic.dt) ; g_34 = 0.5 *(-q1)* sqrt(Aircraft_Kinematic.dt) ; g_41 = 0; g_42 = 0.5 *(-q2)* sqrt(Aircraft_Kinematic.dt) ; g_43 = 0.5 *(q1)* sqrt(Aircraft_Kinematic.dt) ; g_44 = 0.5 *(q0)* sqrt(Aircraft_Kinematic.dt) ; G = [g_11 g_12 g_13 g_14; g_21 g_22 g_23 g_24; g_31 g_32 g_33 g_34; g_41 g_42 g_43 g_44]; % Jacobian for linear part a_11 = (q0^2+q1^2-q2^2-q3^2) * (Aircraft_Kinematic.dt)^0.5 ; a_12 = 0; a_13 = 0; a_14 = 0; a_21 = 2*(q1*q2+q0*q3)* (Aircraft_Kinematic.dt)^0.5; a_22 = 0; a_23 = 0; a_24 = 0; a_31 = 2*(q1*q3-q0*q2) * (Aircraft_Kinematic.dt)^0.5; a_32 = 0; a_33 = 0; a_34 = 0; A = [a_11 a_12 a_13 a_14;a_21 a_22 a_23 a_24;a_31 a_32 a_33 a_34]; J = zeros(7,4); J(1:3,1:4) = A; J(4:7,1:4) = G; end function w = generate_process_noise(x,u) % simulate (generate) process noise based on the current poistion and controls [Un] = Aircraft_Kinematic.generate_control_and_indep_process_noise(u); w = [Un]; end function [Un] = generate_control_and_indep_process_noise(U) % generate Un indep_part_of_Un = randn(Aircraft_Kinematic.ctDim,1); P_Un = Aircraft_Kinematic.control_noise_covariance(U); Un = indep_part_of_Un.*diag(P_Un.^(1/2)); end function P_Un = control_noise_covariance(U) u_std=(Aircraft_Kinematic.eta_u).*U +(Aircraft_Kinematic.sigma_b_u); P_Un=diag(u_std.^2); end function Q_process_noise = process_noise_cov(x,u) % compute the covariance of process noise based on the current poistion and controls Q_process_noise = control_noise_covariance(u); end %THERE no validity checking, just implementing for tests sake function nominal_traj = generate_VALID_open_loop_point2point_traj(start,goal) nominal_traj = Aircraft_Kinematic.generate_open_loop_point2point_traj(start,goal); end function nominal_traj = generate_open_loop_point2point_traj(start,goal) % generates open-loop trajectories between two start and goal states % The MATLAB RVC ToolBox Must be loaded first % disp('Using RRT3D to connect points on two orbits'); % disp('Start point is:');start % disp('Goal point is:');goal % disp('Solving...'); if is_trajectory_valid(start, goal) veh = Aircraft_Kinematic(); rrt = RRT3D([], veh, 'start', start, 'range', 5,'npoints',500,'speed',2,'time', Aircraft_Kinematic.dt); rrt.plan('goal',goal) ; % create navigation tree nominal_traj.x = []; nominal_traj.u = []; nominal_traj = rrt.path(start, goal) ; % animate path from this start location % Code for plotting controls = []; nomXs = []; for i = 1:length(nominal_traj) p = nominal_traj(i); g = rrt.graph; data = g.data(p); if ~isempty(data) if i >= length(nominal_traj) || g.edgedir(p, nominal_traj(i+1)) > 0 controls = [controls,data.steer']; nomXs = [nomXs,data.path]; else controls = [controls,(data.steer(:,end:-1:1))']; nomXs = [nomXs,data.path]; end end end if ~isempty(nomXs) nominal_traj.x = [start,nomXs]; nominal_traj.u = controls; end disp('Done with RRT...'); else nominal_traj =[]; return; end end %% Generate open-loop Orbit-to-Orbit trajectory function nominal_traj = generate_VALID_open_loop_orbit2orbit_traj(start_orbit, end_orbit) % generates open-loop trajectories between two start and end orbits % check if both the orbits are turning in the same % direction or not. direction_start_orbit = sign(start_orbit.u(1,1))*sign(start_orbit.u(2,1)); direction_end_orbit = sign(end_orbit.u(1,1))*sign(end_orbit.u(2,1)); % finding the connecting edge between orbits. if direction_start_orbit == direction_end_orbit % both orbits turn in a same direction gamma = atan2( end_orbit.center.val(2) - start_orbit.center.val(2) , end_orbit.center.val(1) - start_orbit.center.val(1) ); temp_edge_start = start_orbit.radius * [ cos(gamma-pi/2) ; sin(gamma-pi/2);0 ] + start_orbit.center.val(1:3); temp_edge_end = end_orbit.radius* [ cos(gamma-pi/2) ; sin(gamma-pi/2);0 ] + end_orbit.center.val(1:3); else error('different directions have not been implemented in PNPRM yet.') end %temp_traj.x(:,1) = temp_edge_start; temp_traj.x(:,2) = temp_edge_end; % we generate this trajectory (only composed of start and end points) to check the collision probabilities before generating the edges. %collision = Unicycle_robot.is_constraints_violated(temp_traj); % checking intersection with obstacles % if collision == 1 % nominal_traj = []; % return % else % % construction edge trajectory roll_tmp_traj_start = 0; pitch_tmp_traj_start = 0; yaw_tmp_traj_start = gamma; q_tmp_traj_start = angle2quat(yaw_tmp_traj_start,pitch_tmp_traj_start,roll_tmp_traj_start); tmp_traj_start = [temp_edge_start ; q_tmp_traj_start' ]; tmp_traj_goal = [temp_edge_end; q_tmp_traj_start']; nominal_traj = MotionModel_class.generate_open_loop_point2point_traj(tmp_traj_start,tmp_traj_goal); end %% Sample a valid orbit (periodic trajectory) function orbit = sample_a_valid_orbit() orbit_center = state.sample_a_valid_state(); if isempty( orbit_center) orbit = []; return else orbit = Aircraft_Kinematic.generate_orbit(orbit_center); orbit = Aircraft_Kinematic.draw_orbit(orbit); end disp('fix the orbit drawing above in aircraft_kinematic.m Line 440') end %% Construct an orbit function orbit = generate_orbit(orbit_center) % minimum orbit radius resutls from dividing the minimum linear % velocity to maximum angular velocity. However, here we assume % that the linear velocity is constant. orbit.radius = Aircraft_Kinematic.turn_radius_min; orbit_length_meter = 2*pi*orbit.radius; orbit_length_time_continuous = orbit_length_meter/Aircraft_Kinematic.Min_Velocity; T_rational = orbit_length_time_continuous/Aircraft_Kinematic.dt; T = ceil(T_rational); orbit.period = T; orbit.center = orbit_center; % defining controls on the orbit if T_rational-floor(T_rational)==0 V_p = Aircraft_Kinematic.Min_Velocity * ones(1,T); % we traverse the orbit with minimum linear velocity omega_p = Aircraft_Kinematic.Max_Yaw_Rate * ones(1,T); % we traverse the orbit with maximum angular velocity else V_p = Aircraft_Kinematic.Min_Velocity * [ones(1,T-1) , T_rational-floor(T_rational)]; % we traverse the orbit with minimum linear velocity omega_p = Aircraft_Kinematic.Max_Yaw_Rate * [ones(1,T-1) , T_rational-floor(T_rational)]; % we traverse the orbit with maximum angular velocity end u_p = [V_p;zeros(1,T);zeros(1,T);omega_p]; w_zero = Aircraft_Kinematic.zeroNoise; % no noise % defining state steps on the orbit zeroQuaternion = state.zeroQuaternion; % The robot's angle in the start of orbit is zero x_p(:,1) = [orbit_center.val(1:3) - [0;orbit.radius;0] ; zeroQuaternion]; % initial x for k=1:T x_p(:,k+1) = MotionModel_class.f_discrete(x_p(:,k),u_p(:,k),w_zero); tempState = state(x_p(:,k+1)); if tempState.is_constraint_violated() error('The selected orbit is violating constraints'); return end end orbit.x = x_p(:,1:T); % "x_p" is of length T+1, but "x_p(:,T+1)" is equal to "x_p(:,1)" orbit.u = u_p; % "u_p" is of length T. orbit.plot_handle = []; end function point = point_on_orbit(orbit, point_angle) gamma = point_angle; point = orbit.radius * [ cos(gamma) ; sin(gamma);0 ] + orbit.center.val(1:3); yaw = gamma+pi/2; q = angle2quat(yaw,0,0); q = correct_quaternion(q); point = [point;q']; %start_orbit.radius*[cos(gamma_start_of_orbit_edge);sin(gamma_start_of_orbit_edge);0]+start_orbit.center.val; end %% Draw an orbit function orbit = draw_orbit(orbit,varargin) % This function draws the orbit. % default values orbit_color = 'b'; % Default value for "OrbitTextColor" property. % User-provided value for "OrbitTextColor" property. orbit_width = 2; % User-provided value for "orbit_width" property. % User-provided value for shifting the text a little bit to the left. % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. robot_shape = 'triangle'; % The shape of robot (to draw trajectories and to show direction of edges and orbits) robot_size = 1; % Robot size on orbits (to draw trajectories and to show direction of edges and orbits) orbit_trajectory_flag = 0; % Make it one if you want to see the orbit trajectories. Zero, otherwise. text_size = 12; text_color = 'b'; text_shift = 0.8; orbit_text = []; % parsing the varargin if ~isempty(varargin) for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotSize') robot_size = varargin{i+1}; case lower('OrbitWidth') orbit_width = varargin{i+1}; case lower('OrbitColor') orbit_color = varargin{i+1}; case lower('OrbitText') orbit_text = varargin{i+1}; end end end % start drawing if orbit_trajectory_flag == 1 orbit.plot_handle = []; for k=1:orbit.period Xstate = state(orbit.x(:,k)); Xstate = Xstate.draw('RobotShape',robot_shape,'robotsize',robot_size); orbit.plot_handle = [orbit.plot_handle,Xstate.head_handle,Xstate.text_handle,Xstate.tria_handle]; end tmp = plot(orbit.x(1,:) , orbit.x(2,:),orbit_color); orbit.plot_handle = [orbit.plot_handle,tmp]; else orbit.plot_handle = []; th_orbit_draw = [0:0.1:2*pi , 2*pi]; x_orbit_draw = orbit.center.val(1) + orbit.radius*cos(th_orbit_draw); y_orbit_draw = orbit.center.val(2) + orbit.radius*sin(th_orbit_draw); z_orbit_draw = orbit.center.val(3)*ones(1,size(x_orbit_draw,2)); tmp_h = plot3(x_orbit_draw,y_orbit_draw,z_orbit_draw,'lineWidth',orbit_width); Xstate = state(orbit.x(:,1)); Xstate = Xstate.draw('RobotShape',robot_shape,'robotsize',robot_size); orbit.plot_handle = [orbit.plot_handle,tmp_h,Xstate.head_handle,Xstate.text_handle,Xstate.tria_handle]; end if ~isempty(orbit_text) text_pos = orbit.center.val; text_pos(1) = text_pos(1) - text_shift; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. tmp_handle = text( text_pos(1), text_pos(2), orbit_text, 'fontsize', text_size, 'color', text_color); orbit.plot_handle = [orbit.plot_handle,tmp_handle]; end end function YesNo = is_constraints_violated(open_loop_traj) error('not yet implemented'); end function traj_plot_handle = draw_nominal_traj(nominal_traj, traj_flag, varargin) traj_plot_handle = []; if traj_flag == 1 for k = 1 : size(nominal_traj.x , 2) tmp_Xstate = state (nominal_traj.x(:,k) ); tmp_Xstate.draw(); % tmp_Xstate.draw('RobotShape','triangle','robotsize',1);%,'TriaColor',color(cycles)); %traj_plot_handle(k:k+2) = %[tmp_Xstate.head_handle,tmp_Xstate.text_handle,tmp_Xstate.tria_handle]; end elseif traj_flag == 2 tmp_handle = plot3(nominal_traj.x(1,:) , nominal_traj.x(2,:) , nominal_traj.x(3,:), 'LineWidth',4, 'color','g'); % traj_plot_handle = [traj_plot_handle , tmp_handle]; len = size( nominal_traj.x , 2); [yaw,pitch,roll] = quat2angle(nominal_traj.x(4:7,floor(len/2))'); pitch =0; roll =0; new_quat = angle2quat(yaw,pitch,roll); tmp_Xstate = state( [nominal_traj.x(1:3,floor(len/2)) ; new_quat']); % to plot the direction of the line. tmp_Xstate = tmp_Xstate.draw('RobotShape','triangle','robotsize',2); traj_plot_handle = [traj_plot_handle , tmp_Xstate.plot_handle , tmp_Xstate.head_handle , tmp_Xstate.tria_handle , tmp_Xstate.text_handle ]; drawnow elseif traj_flag == 3 tmp_handle = plot3(nominal_traj.x(1,:) , nominal_traj.x(2,:) , nominal_traj.x(3,:), 'LineWidth',4, 'color','r'); % traj_plot_handle = [traj_plot_handle , tmp_handle]; len = size( nominal_traj.x , 2); [yaw,pitch,roll] = quat2angle(nominal_traj.x(4:7,floor(len/2))'); pitch =0; roll =0; new_quat = angle2quat(yaw,pitch,roll); tmp_Xstate = state( [nominal_traj.x(1:3,floor(len/2)) ; new_quat']); % to plot the direction of the line. tmp_Xstate = tmp_Xstate.draw('RobotShape','triangle','robotsize',2); traj_plot_handle = [traj_plot_handle , tmp_Xstate.plot_handle , tmp_Xstate.head_handle , tmp_Xstate.tria_handle , tmp_Xstate.text_handle ]; drawnow else tmp_handle = plot3(nominal_traj.x(1,:) , nominal_traj.x(2,:) , nominal_traj.x(3,:), 'LineWidth',2); % traj_plot_handle = [traj_plot_handle , tmp_handle]; len = size( nominal_traj.x , 2); [yaw,pitch,roll] = quat2angle(nominal_traj.x(4:7,floor(len/2))'); pitch =0; roll =0; new_quat = angle2quat(yaw,pitch,roll); tmp_Xstate = state( [nominal_traj.x(1:3,floor(len/2)) ; new_quat']); % to plot the direction of the line. tmp_Xstate = tmp_Xstate.draw('RobotShape','triangle','robotsize',2); traj_plot_handle = [traj_plot_handle , tmp_Xstate.plot_handle , tmp_Xstate.head_handle , tmp_Xstate.tria_handle , tmp_Xstate.text_handle ]; drawnow end end function plot_handle = draw_orbit_neighborhood(orbit, scale) % not implemented yet plot_handle = []; end end end function qcorrected = correct_quaternion(q) qcorrected = q; if q(1) < 0 qcorrected = -q; end end function YesNo = is_trajectory_valid(start, goal) vel = (Aircraft_Kinematic.Min_Velocity + Aircraft_Kinematic.Max_Velocity)/2; nPointsOnSegment = ceil(( norm(goal(1:3)-start(1:3)) )/(vel*Aircraft_Kinematic.dt)); guidanceVector = goal(1:3) - start(1:3); for i=1:nPointsOnSegment+1 point = start(1:3) + (i/(nPointsOnSegment+1))*guidanceVector(1:3); tmp = state([point;1;0;0;0]); if tmp.is_constraint_violated YesNo=0; return; end end YesNo = 1; end %% Generating Control-dependent Noise Covariance % % $$ P^{U_n} = \left( % \begin{array}{cc} % (\eta_V V + \sigma_{b_V})^2 & 0\\ % 0 & (\eta_{\omega} \omega + \sigma_{b_{\omega}})^2\\ % \end{array}\right) $$, % % where, $\eta_u=(\eta_V,\eta_{\omega})^T$ and % $\sigma_{b_u}=(\sigma_{b_V},\sigma_{b_{\omega}})^T$. function P_Un = control_noise_covariance(U) u_std = (Aircraft_Kinematic.eta_u).*U+(Aircraft_Kinematic.sigma_b_u); P_Un = diag(u_std.^2); end
github
mubeipeng/focused_slam-master
Quadrotor_MM.m
.m
focused_slam-master/FIRM/All_motion_models/Quadrotor_MM.m
12,667
utf_8
eec425366f6ece9508fb7c5cb25d21dd
classdef Quadrotor_MM < MotionModel_interface % Note that because the class is defined as a handle class, the % properties must be defined such that they are do not change from an % object to another one. properties (Constant) stDim = state.dim; % state dimension ctDim = 4; % control vector dimension wDim = 16; % Process noise (W) dimension - 4 for control noise and 12 for additive state noise zeroControl = zeros(Quadrotor_MM.ctDim,1); zeroNoise = zeros(Quadrotor_MM.wDim,1); dt = user_data_class.par.motion_model_parameters.dt; g = 9.81; % (m/s^2) -- gravitational constant mass = 0.650; % (kg) quadrotor mass len = 0.23 % (m) length of the quadrotor EyeX = 0.0075; % (kg*m2) moments of intertia -- x coordinate EyeY = 0.0075; % (kg*m2) moments of intertia -- y coordinate EyeZ = 0.013; % (kg*m2) moments of intertia -- z coordinate sigma_b_u = user_data_class.par.motion_model_parameters.sigma_b_u_quadrotor; eta_u = user_data_class.par.motion_model_parameters.eta_u_quadrotor; P_Wg = user_data_class.par.motion_model_parameters.P_Wg; end methods (Static) function x_next = f_discrete(x,u,w) x_next = Quadrotor_MM.df_dx_func(x,u,w)*x+Quadrotor_MM.df_du_func(x,u,w)*u+Quadrotor_MM.df_dw_func(x,u,w)*w; end function A = df_dx_func(x,u,w) %#ok<INUSD> Acontin = zeros(12,12); Acontin(1:9,4:12)=diag([1,1,1,Quadrotor_MM.g,-Quadrotor_MM.g,0,1,1,1]); A = eye(12) + Acontin*Quadrotor_MM.dt; end function Bcontin = df_contin_du_func(x,u,w) %#ok<INUSD> Bcontin = zeros(12,4); Bcontin(6,1) = 1/Quadrotor_MM.mass; Bcontin(9:12, 1:4) = diag([0, Quadrotor_MM.len/Quadrotor_MM.EyeX, Quadrotor_MM.len/Quadrotor_MM.EyeY, 1/Quadrotor_MM.EyeZ]); end function B = df_du_func(x,u,w) B = Quadrotor_MM.df_contin_du_func(x,u,w)*Quadrotor_MM.dt; end function G = df_dw_func(x,u,w) Gcontin = [Quadrotor_MM.df_contin_du_func(x,u,w),eye(12)]; G = Gcontin*sqrt(Quadrotor_MM.dt); end function w = generate_process_noise(x,u) %#ok<INUSD> [Un,Wg] = generate_control_and_indep_process_noise(u); w = [Un;Wg]; end function Q_process_noise = process_noise_cov(x,u) %#ok<INUSD> P_Un = control_noise_covariance(u); Q_process_noise = blkdiag(P_Un,Quadrotor_MM.P_Wg); end function nominal_traj = generate_open_loop_point2point_traj(x_init,x_final) % generates open-loop trajectories between two start and goal states if isa(x_init,'state'), x_init=x_init.val; end % retrieve the value of the state vector if isa(x_final,'state'), x_final=x_final.val; end % retrieve the value of the state vector params.g = Quadrotor_MM.g; params.m = Quadrotor_MM.mass; % quadrotor mass kg params.Ix = Quadrotor_MM.EyeX; % Moment of Inertia kg*m2 params.Iy = Quadrotor_MM.EyeY; % Moment of Inertia kg*m2 params.Iz = Quadrotor_MM.EyeZ; % Moment of Inertia kg*m2 params.L = Quadrotor_MM.len; % Arm Length m params.dt = Quadrotor_MM.dt; %% Initial and Final States %%%%%%%%%% % Note that the convention in quadrotor state is: % P,PDOT,ATT, ATTDOT % Initial State p_init = x_init(1:3,1); pdot_init = x_init(4:6,1); att_init = x_init(7:9,1); attdot_init = x_init(10:12,1); % Final State p_final = x_final(1:3,1); pdot_final = x_final(4:6,1); att_final = x_final(7:9,1); attdot_final = x_final(10:12,1); n_steps = 30; % Reference States (X,Xdot and Y,Ydot) % Fit a second order polynomial path delta_x = p_final(1) -p_init(1); time = 0:params.dt:(n_steps-1)*params.dt; refs = zeros(10,n_steps); refs(1,:) = p_final(1); % px command refs(5,:) = p_final(2); % py command refs(9,:) = p_final(3); % pz command %% Propogate with FL Control laws states = zeros(12,n_steps); states(:,1) = x_init; u = zeros(4,n_steps-1); for time_index=2:n_steps % Control u(:,time_index-1) = QuadFeedbackLinearization(states(:,time_index-1),... refs(:,time_index-1),params); % Integration states(:,time_index) =... quadDyn(states(:,time_index-1),u(:,time_index-1),params)*params.dt +... states(:,time_index-1); end nominal_traj.x = states; nominal_traj.u = u; end function nominal_traj = generate_VALID_open_loop_point2point_traj(x_init,x_final) % generates open-loop trajectories between two start and goal states if isa(x_init,'state'), x_init=x_init.val; end % retrieve the value of the state vector if isa(x_final,'state'), x_final=x_final.val; end % retrieve the value of the state vector params.g = Quadrotor_MM.g; params.m = Quadrotor_MM.mass; % quadrotor mass kg params.Ix = Quadrotor_MM.EyeX; % Moment of Inertia kg*m2 params.Iy = Quadrotor_MM.EyeY; % Moment of Inertia kg*m2 params.Iz = Quadrotor_MM.EyeZ; % Moment of Inertia kg*m2 params.L = Quadrotor_MM.len; % Arm Length m params.dt = Quadrotor_MM.dt; %% Initial and Final States %%%%%%%%%% % Note that the convention in quadrotor state is: % P,PDOT,ATT, ATTDOT % Initial State p_init = x_init(1:3,1); pdot_init = x_init(4:6,1); att_init = x_init(7:9,1); attdot_init = x_init(10:12,1); % Final State p_final = x_final(1:3,1); pdot_final = x_final(4:6,1); att_final = x_final(7:9,1); attdot_final = x_final(10:12,1); n_steps = 30; % Reference States (X,Xdot and Y,Ydot) % Fit a second order polynomial path delta_x = p_final(1) -p_init(1); time = 0:params.dt:(n_steps-1)*params.dt; refs = zeros(10,n_steps); refs(1,:) = p_final(1); % px command refs(5,:) = p_final(2); % py command refs(9,:) = p_final(3); % pz command %% Propogate with FL Control laws states = zeros(12,n_steps); states(:,1) = x_init; u = zeros(4,n_steps-1); for time_index=2:n_steps % Control u(:,time_index-1) = QuadFeedbackLinearization(states(:,time_index-1),... refs(:,time_index-1),params); % Integration states(:,time_index) =... quadDyn(states(:,time_index-1),u(:,time_index-1),params)*params.dt +... states(:,time_index-1); end nominal_traj.x = states; nominal_traj.u = u; end function YesNo = is_constraints_violated(open_loop_traj) % this function checks if the "open_loop_traj" violates any constraints or not. For example it checks collision with obstacles. error('not implemented yet') % In this class the open loop trajectories are indeed straight % lines. So, we use following simplified procedure to check the % collisions. Obst=obstacles_class.obst; edge_start = open_loop_traj.x(1:2,1); edge_end = open_loop_traj.x(1:2,end); N_obst=size(Obst,2); intersection=0; for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; X_edge=[edge_start(1);edge_end(1)]; Y_edge=[edge_start(2);edge_end(2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_edge,Y_edge); if ~isempty(x_inters) intersection=intersection+1; end end if intersection>0 YesNo=1; else YesNo=0; end end function traj_plot_handle = draw_nominal_traj(nominal_traj, varargin) for k = 1:length(nominal_traj.x) xTmp = state(nominal_traj.x(:,k)); xTmp = xTmp.draw('robotshape','triangle'); end traj_plot_handle = []; % s_node_2D_loc = nominal_traj.x(1:2,1); % e_node_2D_loc = nominal_traj.x(1:2,end); % % retrieve PRM parameters provided by the user % disp('the varargin need to be parsed here') % % edge_spec = obj.par.edge_spec; % % edge_width = obj.par.edge_width; % edge_spec = '-b'; % edge_width = 2; % % % drawing the 2D edge line % traj_plot_handle = plot([s_node_2D_loc(1),e_node_2D_loc(1)],[s_node_2D_loc(2),e_node_2D_loc(2)],edge_spec,'linewidth',edge_width); end end methods (Static, Access = private) function nominal_traj = generate_open_loop_point2point_traj_turn_move_turn(obj , start_node_ind, end_node_ind) error('not implemented yet') end function d_yaw_seq = steerHeading(psi_init,psi_final,n_steps) % Heading Control sub-system (states: psi and r) A = [0,1;0 0]; B = [0;1/(Quadrotor_MM.EyeZ)]; lower = [-pi/2;-pi;-1]; upper = [pi/2;pi;1]; x_init = [psi_init,0]; x_final = [psi_final,0]; [~,d_yaw_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,Quadrotor_MM.dt,n_steps); end function d_roll_seq = steerX(px_init,px_final,n_steps) % X Control sub-system(states x xdot phi p) A = zeros(4,4); A(1,2) = 1; A(2,3) = Quadrotor_MM.g; A(3,4) = 1; B = zeros(4,1); B(4,1) = Quadrotor_MM.len/Quadrotor_MM.EyeX; lower = [-2;-2;-pi/2;-pi;-1]; upper = [2;2;pi/2;pi;1]; x_init = [px_init,0,0,0]; x_final = [px_final,0,0,0]; [~,d_roll_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,Quadrotor_MM.dt,n_steps); end function d_pitch_seq = steerY(py_init,py_final,n_steps) % X Control sub-system(states y ydot theta q) A = zeros(4,4); A(1,2) = 1; A(2,3) = -Quadrotor_MM.g; A(3,4) = 1; B = zeros(4,1); B(4,1) = Quadrotor_MM.len/Quadrotor_MM.EyeY; lower = [-2;-2;-pi/2;-pi;-1]; upper = [2;2;pi/2;pi;1]; x_init = [py_init,0,0,0]; x_final = [py_final,0,0,0]; [~,d_pitch_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,Quadrotor_MM.dt,n_steps); end end end function [Un,Wg] = generate_control_and_indep_process_noise(U) % generate Un indep_part_of_Un = randn(Quadrotor_MM.ctDim,1); P_Un = control_noise_covariance(U); Un = indep_part_of_Un.*diag(P_Un.^(1/2)); % generate Wg Wg = mvnrnd(zeros(Quadrotor_MM.stDim,1),Quadrotor_MM.P_Wg)'; end function P_Un = control_noise_covariance(U) u_std=(Quadrotor_MM.eta_u).*U+(Quadrotor_MM.sigma_b_u); P_Un=diag(u_std.^2); end
github
mubeipeng/focused_slam-master
Omni_directional_robot.m
.m
focused_slam-master/FIRM/All_motion_models/Omni_directional_robot.m
17,473
utf_8
98a3c0a20454a1d89bf3e2979909fcc2
classdef Omni_directional_robot < MotionModel_interface % Note that because the class is defined as a handle class, the % properties must be defined such that they are do not change from an % object to another one. properties (Constant) % numRobots = 1; % stateClassName = 'planar_robot_XYTheta_state'; stDim = 3; % state dimension ctDim = 3; % control vector dimension wDim = 6; % Process noise (W) dimension zeroControl = zeros(Omni_directional_robot.ctDim,1); zeroNoise = zeros(Omni_directional_robot.wDim,1); dt = 0.1000; %user_data_class.par.motion_model_parameters.dt; robot_link_length = 0.2000; %user_data_class.par.motion_model_parameters.robot_link_length; sigma_b_u = zeros(3,1); %user_data_class.par.motion_model_parameters.sigma_b_u_omni; eta_u = zeros(3,1); %user_data_class.par.motion_model_parameters.eta_u_omni; P_Wg = diag([0.16 0.16 0.0195]); %user_data_class.par.motion_model_parameters.P_Wg; end % properties (Constant = true, SetAccess = private) % UnDim = 3; % WgDim = 3; % end methods (Static) function x_next = f_discrete(x,u,w) Un = w(1:Omni_directional_robot.ctDim); % The size of Un may be different from ctDim in some other model. Wg = w(Omni_directional_robot.ctDim+1 : Omni_directional_robot.wDim); % The size of Wg may be different from stDim in some other model. Wc = Omni_directional_robot.f_contin(x,Un,Wg); x_next = x+Omni_directional_robot.f_contin(x,u,0)*Omni_directional_robot.dt+Wc*sqrt(Omni_directional_robot.dt); end function x_dot = f_contin(x,u,wg) % Do not call this function from outside of this class!! % The last input in this method should be w, instead of wg. But, since it is a only used in this class, it does not matter so much. th = x(3); r = Omni_directional_robot.robot_link_length; x_dot = (1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th),-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r,1/r,1/r]*u+wg; end function A = df_dx_func(x,u,w) un = w(1:Omni_directional_robot.ctDim); % The size of Un may be different from ctDim in some other model. wg = w(Omni_directional_robot.ctDim+1 : Omni_directional_robot.wDim); % The size of Wg may be different from stDim in some other model. A = eye(Omni_directional_robot.stDim) ... + Omni_directional_robot.df_contin_dx(x,u,zeros(Omni_directional_robot.stDim,1))*Omni_directional_robot.dt ... + Omni_directional_robot.df_contin_dx(x,un,wg)*sqrt(Omni_directional_robot.dt); end function Acontin = df_contin_dx(x,u,w) %#ok<INUSD> th = x(3); Acontin = (2/3)*[0 0 -cos(th)*u(1)+cos(pi/3-th)*u(2)+cos(pi/3+th)*u(3); 0 0 -sin(th)*u(1)-sin(pi/3-th)*u(2)+sin(pi/3+th)*u(3); 0 0 0]; end function B = df_du_func(x,u,w) %#ok<INUSD> th = x(3); r = Omni_directional_robot.robot_link_length; B = (1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th) ,-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r ,1/r ,1/r ]*Omni_directional_robot.dt; end function G = df_dw_func(x,u,w) %#ok<INUSD> th=x(3); r=Omni_directional_robot.robot_link_length; T_theta=(1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th) ,-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r ,1/r ,1/r ]; G = [T_theta,eye(Omni_directional_robot.stDim)]*sqrt(Omni_directional_robot.dt); end function w = generate_process_noise(x,u) %#ok<INUSD> [Un,Wg] = generate_control_and_indep_process_noise(u); w = [Un;Wg]; end function Q_process_noise = process_noise_cov(x,u) %#ok<INUSD> P_Un = control_noise_covariance(u); Q_process_noise = blkdiag(P_Un,Omni_directional_robot.P_Wg); end function nominal_traj = generate_VALID_open_loop_point2point_traj(X_initial,X_final,obst) % generates open-loop trajectories between two start and goal states if isa(X_initial,'state'), X_initial=X_initial.val; end % retrieve the value of the state vector if isa(X_final,'state'), X_final=X_final.val; end % retrieve the value of the state vector % parameters omega_path=1.5708; %user_data_class.par.motion_model_parameters.omega_const_path; % constant rotational velocity during turnings dt=Omni_directional_robot.dt; V_path=5; %user_data_class.par.motion_model_parameters.V_const_path; % constant translational velocity during straight movements stDim = Omni_directional_robot.stDim; ctDim=Omni_directional_robot.ctDim; r=Omni_directional_robot.robot_link_length; th_p = atan2( X_final(2)-X_initial(2) , X_final(1)-X_initial(1) ); % the angle of edge % note that "th_p" is already between -pi and pi, since it is the output of "atan2" %-------------- Rotation number of steps if abs(X_initial(3))>pi, X_initial(3)=(X_initial(3)-sign(X_initial(3))*2*pi); end % Here, we bound the initial angle "X_initial(3)" between -pi and pi if abs(X_final(3))>pi, X_final(3)=(X_final(3)-sign(X_final(3)*2*pi)); end % Here, we bound the final angle "X_final(3)" between -pi and pi delta_th_p = X_final(3) - X_initial(3); % turning angle if abs(delta_th_p)>pi, delta_th_p=(delta_th_p-sign(delta_th_p)*2*pi); end % Here, we bound "pre_delta_th_p" between -pi and pi rotation_steps = abs( delta_th_p/(omega_path*dt) ); %--------------Translation number of steps delta_disp = norm( X_final(1:2) - X_initial(1:2) ); translation_steps = abs(delta_disp/(V_path*dt)); %--------------Total number of steps kf_rational = max([rotation_steps , translation_steps]); kf = floor(kf_rational)+1; % note that in all following lines you cannot replace "floor(something)+1" by "ceil(something)", as it may be a whole number. %=====================Rotation steps of the path delta_theta_const = omega_path*sign(delta_th_p)*dt; delta_theta_nominal(: , 1:floor(rotation_steps)) = repmat( delta_theta_const , 1 , floor(rotation_steps)); delta_theta_const_end = omega_path*sign(delta_th_p)*dt*(rotation_steps-floor(rotation_steps)); delta_theta_nominal(:,floor(rotation_steps)+1) = delta_theta_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. delta_theta_nominal = [delta_theta_nominal , zeros(1 , kf - size(delta_theta_nominal,2))]; % augment zeros to the end of "delta_theta_nominal", to make its length equal to "kf". % u_const = ones(3,1)*r*omega_path*sign(delta_th_p); % u_p_rot(: , 1:floor(rotation_steps)) = repmat( u_const,1,floor(rotation_steps) ); % u_const_end = ones(3,1)*r*omega_path*sign(delta_th_p)*(rotation_steps-floor(rotation_steps)); % u_p_rot(:,floor(rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. %=====================Translations delta_xy_const = [V_path*cos(th_p);V_path*sin(th_p)]*dt; delta_xy_nominal( : , 1:floor(translation_steps) ) = repmat( delta_xy_const , 1 , floor(translation_steps)); delta_xy_const_end = [V_path*cos(th_p);V_path*sin(th_p)]*dt*(translation_steps - floor(translation_steps)); delta_xy_nominal( : , floor(translation_steps)+1 ) = delta_xy_const_end; delta_xy_nominal = [delta_xy_nominal , zeros(2 , kf - size(delta_xy_nominal,2))]; % augment zeros to the end of "delta_xy_nominal", to make its length equal to "kf". delta_state_nominal = [delta_xy_nominal;delta_theta_nominal]; %=====================Nominal control and state trajectory generation x_p = zeros(stDim,kf+1); theta = zeros(1,kf+1); u_p = zeros(stDim,kf); x_p(:,1) = X_initial; theta(1) = X_initial(3); for k = 1:kf theta(:,k+1) = theta(:,k) + delta_state_nominal(3,k); th_k = theta(:,k); T_inv_k = [-sin(th_k), cos(th_k) ,r; -sin(pi/3-th_k),-cos(pi/3-th_k) ,r; sin(pi/3+th_k) ,-cos(pi/3+th_k) ,r]; delta_body_velocities_k = delta_state_nominal(:,k)/dt; % x,y,and theta velocities in body coordinate at time step k u_p(:,k) = T_inv_k*delta_body_velocities_k; % "T_inv_k" maps the "velocities in body coordinate" to the control signal x_p(:,k+1) = x_p(:,k) + delta_state_nominal(:,k); % tmp = state(x_p(:,k+1)); tmp = planar_robot_XYTheta_state(x_p(:,k+1)); if tmp.is_constraint_violated(obst), nominal_traj =[]; return; end end % noiselss motion % for debug: if you uncomment the following % lines you have to get the same "x_p_copy" as the "x_p" % x_p_copy = zeros(stDim,kf+1); % x_p_copy(:,1) = X_initial; % for k = 1:kf % x_p_copy(:,k+1) = Omni_directional_robot.f_discrete(x_p_copy(:,k),u_p(:,k),zeros(Omni_directional_robot.wDim,1)); % end nominal_traj.x = x_p; nominal_traj.u = u_p; end function YesNo = is_constraints_violated(open_loop_traj) % this function checks if the "open_loop_traj" violates any constraints or not. For example it checks collision with obstacles. % In this class the open loop trajectories are indeed straight % lines. So, we use following simplified procedure to check the % collisions. Obst=obstacles_class.obst; edge_start = open_loop_traj.x(1:2,1); edge_end = open_loop_traj.x(1:2,end); N_obst=size(Obst,2); intersection=0; for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; X_edge=[edge_start(1);edge_end(1)]; Y_edge=[edge_start(2);edge_end(2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_edge,Y_edge); if ~isempty(x_inters) intersection=intersection+1; end end if intersection>0 YesNo=1; else YesNo=0; end end function traj_plot_handle = draw_nominal_traj(nominal_traj, varargin) s_node_2D_loc = nominal_traj.x(1:2,1); e_node_2D_loc = nominal_traj.x(1:2,end); % retrieve PRM parameters provided by the user disp('the varargin need to be parsed here') % edge_spec = obj.par.edge_spec; % edge_width = obj.par.edge_width; edge_spec = '-b'; edge_width = 2; % drawing the 2D edge line traj_plot_handle = plot([s_node_2D_loc(1),e_node_2D_loc(1)],[s_node_2D_loc(2),e_node_2D_loc(2)],edge_spec,'linewidth',edge_width); end end methods (Access = private) function nominal_traj = generate_open_loop_point2point_traj_turn_move_turn(obj , start_node_ind, end_node_ind) % I do not use this function anymore. But I kept it for future % references. X_initial = obj.nodes(start_node_ind).val; X_final = obj.nodes(end_node_ind).val; % parameters omega_path=user_data_class.par.motion_model_parameters.omega_const_path; % constant rotational velocity during turnings dt=user_data_class.par.motion_model_parameters.dt; V_path=user_data_class.par.motion_model_parameters.V_const_path; % constant translational velocity during straight movements stDim = Omni_directional_robot.stDim; ctDim=Omni_directional_robot.ctDim; r=Omni_directional_robot.robot_link_length; th_p = atan2( X_final(2)-X_initial(2) , X_final(1)-X_initial(1) ); % the angle of edge % note that "th_p" is already between -pi and pi, since it is the output of "atan2" %--------------Pre-Rotation number of steps if abs(X_initial(3))>pi, X_initial(3)=(X_initial(3)-sign(X_initial(3))*2*pi); end % Here, we bound the initial angle "X_initial(3)" between -pi and pi pre_delta_th_p = th_p - X_initial(3); % turning angle at the beginning of the edge (to align robot with edge) if abs(pre_delta_th_p)>pi, pre_delta_th_p=(pre_delta_th_p-sign(pre_delta_th_p)*2*pi); end % Here, we bound "pre_delta_th_p" between -pi and pi pre_rotation_steps = abs( pre_delta_th_p/(omega_path*dt) ); %--------------Translation number of steps delta_disp = norm( X_final(1:2) - X_initial(1:2) ); translation_steps = abs(delta_disp/(V_path*dt)); %--------------Post-Rotation number of steps if abs(X_final(3))>pi, X_final(3)=(X_final(3)-sign(X_final(3)*2*pi)); end % Here, we bound the initial angle "X_final(3)" between -pi and pi post_delta_th_p = X_final(3) - th_p; % turning angle at the end of the edge (to align robot with the end node) if abs(post_delta_th_p)>pi, post_delta_th_p=(post_delta_th_p-sign(post_delta_th_p)*2*pi); end % Here, we bound "post_delta_th_p" between -pi and pi post_rotation_steps = abs( post_delta_th_p/(omega_path*dt) ); %--------------Total number of steps kf = floor(pre_rotation_steps)+1+floor(translation_steps)+1+floor(post_rotation_steps)+1; u_p=nan(ctDim,kf+1); %=====================Pre-Rotation u_const = ones(3,1)*r*omega_path*sign(pre_delta_th_p); u_p(: , 1:floor(pre_rotation_steps)) = repmat( u_const,1,floor(pre_rotation_steps) ); u_const_end = ones(3,1)*r*omega_path*sign(pre_delta_th_p)*(pre_rotation_steps-floor(pre_rotation_steps)); u_p(:,floor(pre_rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. last_k = floor(pre_rotation_steps)+1; %=====================Translations T_inv = [-sin(th_p), cos(th_p) ,r; -sin(pi/3-th_p),-cos(pi/3-th_p) ,r; sin(pi/3+th_p) ,-cos(pi/3+th_p) ,r]; u_const=T_inv*[V_path*cos(th_p);V_path*sin(th_p);0]; u_p( : , last_k+1:last_k + floor(translation_steps) ) = repmat(u_const,1,floor(translation_steps)); %Note that in below line we are using "u_const", in which the "Inv_Dyn" %has been already accounted for. So, we do not need to multiply it with %"Inv_Dyn" again. u_const_end = u_const*(translation_steps - floor(translation_steps)); u_p( : , last_k + floor(translation_steps)+1 ) = u_const_end; %=====================Post-Rotation last_k = last_k + floor(translation_steps)+1; u_const = ones(3,1)*r*omega_path*sign(post_delta_th_p); u_p(: , last_k+1:last_k+floor(post_rotation_steps)) = repmat( u_const,1,floor(post_rotation_steps) ); u_const_end = ones(3,1)*r*omega_path*sign(post_delta_th_p)*(post_rotation_steps-floor(post_rotation_steps)); u_p(:,last_k+floor(post_rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. % noiselss motion x_p = zeros(stDim,kf+1); x_p(:,1) = X_initial; for k = 1:kf x_p(:,k+1) = Omni_directional_robot.f_discrete(x_p(:,k),u_p(:,k),zeros(Omni_directional_robot.wDim,1)); end nominal_traj.x = x_p; nominal_traj.u = u_p; end end end function [Un,Wg] = generate_control_and_indep_process_noise(U) % generate Un indep_part_of_Un = randn(Omni_directional_robot.ctDim,1); P_Un = control_noise_covariance(U); Un = indep_part_of_Un.*diag(P_Un.^(1/2)); % generate Wg Wg = mvnrnd(zeros(Omni_directional_robot.stDim,1),Omni_directional_robot.P_Wg)'; end function P_Un = control_noise_covariance(U) u_std=(Omni_directional_robot.eta_u).*U+(Omni_directional_robot.sigma_b_u); P_Un=diag(u_std.^2); end
github
mubeipeng/focused_slam-master
Unicycle_robot.m
.m
focused_slam-master/FIRM/All_motion_models/Unicycle_robot.m
38,881
utf_8
364ab552f2479dc26544c3b1eaa1dbf9
%% Class Definition classdef Unicycle_robot < MotionModel_interface %============================== UNICYCLE MOTION MODEL ========================================= % Note that because the class is defined as a handle class, the % properties must be defined such that they do not change from an % object to another one. %% Properties properties (Constant = true) stDim = state.dim; % state dimension ctDim = 2; % control vector dimension wDim = 5; % Process noise (W) dimension % For the generality we also consider the additive noise on kinematics equation (3 dimension), but it most probably will set to zero. The main noise is a 2 dimensional noise which is added to the controls. dt = user_data_class.par.motion_model_parameters.dt; base_length = user_data_class.par.motion_model_parameters.base_length; % distance between robot's rear wheels. sigma_b_u = user_data_class.par.motion_model_parameters.sigma_b_u_unicycle; eta_u = user_data_class.par.motion_model_parameters.eta_u_unicycle; P_Wg = user_data_class.par.motion_model_parameters.P_Wg; zeroNoise = zeros(Unicycle_robot.wDim,1); end properties (Constant = true) % orbit-related properties turn_radius_min = 1.5*0.1; % indeed we need to define the minimum linear velocity in turnings (on orbits) and then find the minimum radius accordingly. But, we picked the more intuitive way. angular_velocity_max = 90*pi/180; % degree per second (converted to radian per second) linear_velocity_min_on_orbit = Unicycle_robot.turn_radius_min*Unicycle_robot.angular_velocity_max; % note that on the straight line the minimum velocity can go to zero. But, in turnings (on orbit) the linear velocity cannot fall below this value. linear_velocity_max = 0.5*10; end %% Methods methods (Static = true) %% Continuous dynamics function x_dot = f_contin(x,u,w) %#ok<STOUT,INUSD> % This is not needed yet in unicycle model. end %% Discrete dynamics % $$ x_k = x_{k-1}+ [V_k\cos\theta_k, V_k\sin\theta_k, % \omega_k]^T\delta t + [V^n_k\cos\theta_k, V^n_k\sin\theta_k, % \omega^n_k]^T\sqrt{\delta t} + W^g\sqrt{\delta t}$$ function x_next = f_discrete(x,u,w) if length(u) ~= 2, error('SFMP: In this unicycle model, the dimension of control has to be 2'), end Un = w(1:Unicycle_robot.ctDim); % The size of Un may be different from ctDim in some other model. Wg = w(Unicycle_robot.ctDim+1 : Unicycle_robot.wDim); % The size of Wg may be different from stDim in some other model. c = cos(x(3)); s = sin(x(3)); d_t = Unicycle_robot.dt; x_next = x + [u(1)*c ; u(1)*s ; u(2)]*d_t + [Un(1)*c ; Un(1)*s ; Un(2)]*sqrt(d_t) + Wg*sqrt(d_t); end %% Matrix A: State Jacobian in Discrete dynamics % % $$ \mathbf{A} = \frac{\partial x_k}{\partial x_{k-1}} = I % + \left( % \begin{array}{ccc} % 0 & 0 & -V_k^p\sin\theta^p\\ % 0 & 0 & V_k^p\cos\theta^p\\ % 0 & 0 & 0 % \end{array}\right) \delta t % + \left( % \begin{array}{ccc} % 0 & 0 & -V_k^n\sin\theta^p\\ % 0 & 0 & V_k^n\cos\theta^p\\ % 0 & 0 & 0 % \end{array}\right)\sqrt{\delta t} $$ % % Note that in most cases, we assume that we do not have access to % the exact value of noises. Thus, we input $\mathbf{E}(V^n)$, which is zero to % compute the linearization matrices. function A = df_dx_func(x,u,w) if (length(u) ~= 2 || length(w) ~= 5), error('SFMP: In this unicycle model, the dimension of control has to be 2 and noise has to be 5'), end Un = w(1:Unicycle_robot.ctDim); % The size of Un may be different from ctDim in some other model. % Wg = w(Unicycle_robot.ctDim+1 : Unicycle_robot.wDim); % % The size of Wg may be different from stDim in some other % model. In this Jacobian "Wg" does not appear. c = cos(x(3)); s = sin(x(3)); d_t = Unicycle_robot.dt; A = eye(Unicycle_robot.stDim) + [0 0 -u(1)*s; 0 0 u(1)*c; 0 0 0] * d_t + [0 0 -Un(1)*s; 0 0 Un(1)*c; 0 0 0] * sqrt(d_t); end %% Matrix A: State Jacobian in Continuous dynamics function Acontin = df_contin_dx(x,u,w) %#ok<STOUT,INUSD> % Not yet implemented. end %% Matrix B: State to Control Jacobian in Discrete dynamics % % $$ \mathbf{B} = \frac{\partial x_k}{\partial u_{k-1}} = % \left( % \begin{array}{cc} % \cos\theta^p & 0\\ % \sin\theta^p & 0\\ % 0 & 1 % \end{array}\right) \delta t $$ % function B = df_du_func(x,u,w) %#ok<INUSD> th = x(3); B = [cos(th) , 0 ; sin(th) , 0 ; 0 , 1] * Unicycle_robot.dt; end %% Matrix G: State to noise Jacobian in Discrete dynamics % % $$ \mathbf{G} = \frac{\partial x_k}{\partial w_{k-1}} = % \left( % \begin{array}{ccccc} % \cos\theta^p & 0 & 1 & 0 & 0\\ % \sin\theta^p & 0 & 0 & 1 & 0\\ % 0 & 1 & 0 & 0 & 1 % \end{array}\right) \sqrt{\delta t} $$ % function G = df_dw_func(x,u,w) %#ok<INUSD> th=x(3); G = [cos(th) , 0 , 1 , 0 , 0 ; sin(th) , 0 , 0 ,1,0 ; 0 , 1 , 0 ,0,1] * sqrt(Unicycle_robot.dt); end %% Generating process noise % The whole process noise $w$ consists of control-dependent noise $U_n$ and % control-independent noise $W^g$. function w = generate_process_noise(x,u) %#ok<INUSD> [Un,Wg] = generate_control_and_indep_process_noise(u); w = [Un;Wg]; end %% Computing process noise covarinace function Q_process_noise = process_noise_cov(x,u) %#ok<INUSD> P_Un = control_noise_covariance(u); Q_process_noise = blkdiag(P_Un,Unicycle_robot.P_Wg); end %% Computing planned open-loop deterministic controls (or nominal controls) for unicycle model. function nominal_traj = generate_open_loop_point2point_traj(x_initial,x_final) % "x_initial" and "x_final" are vectors that indicate the start % and final position of the state trajectory, we are planning % the control "up" for. if isa(x_initial , 'state'), x_initial = x_initial.val; end if isa(x_final , 'state'), x_final = x_final.val; end % minimum turn radius resutls from dividing the minimum linear % velocity to maximum angular velocity. However, here we assume % that the linear velocity is constant. radius = Unicycle_robot.turn_radius_min; initial_circle_center = [radius*cos(x_initial(3)-pi/2) ; radius*sin(x_initial(3)-pi/2)] + x_initial(1:2); final_circle_center = [radius*cos(x_final(3)-pi/2) ; radius*sin(x_final(3)-pi/2)] + x_final(1:2); % tth = 0:0.1:2*pi+.1;plot(initial_circle_center(1)+radius*cos(tth), initial_circle_center(2)+radius*sin(tth)); %TO DEBUG - DONT DELETE % tth = 0:0.1:2*pi+.1;plot(final_circle_center(1)+radius*cos(tth), final_circle_center(2)+radius*sin(tth)); %TO DEBUG - DONT DELETE gamma_tangent = atan2( final_circle_center(2) - initial_circle_center(2) , final_circle_center(1) - initial_circle_center(1) ); % The angle of the tangent line gamma_start_of_tangent_line = gamma_tangent + pi/2; % the angle on which the starting point of the tangent line lies on orbit i. gamma_end_of_tangent_line = gamma_tangent + pi/2; % the angle on which the ending point of the tangent line lies on orbit i. initial_robot_gamma = x_initial(3) + pi/2; % Note that this is not robot's heading angle. This says that at which angle robot lies on the circle. final_robot_gamma = x_final(3) + pi/2; % Note that this is not robot's heading angle. This says that at which angle robot lies on the circle. % Turn part on the first circle entire_th_on_initial_circle = delta_theta_turn(initial_robot_gamma, gamma_start_of_tangent_line, 'cw'); % NOTE: this must be a negative number as we turn CLOCKWISE. delta_theta_on_turns = - Unicycle_robot.angular_velocity_max * Unicycle_robot.dt ; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. kf_pre_rational = entire_th_on_initial_circle/delta_theta_on_turns; kf_pre = ceil(kf_pre_rational); V_pre = Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; omega_pre = -Unicycle_robot.angular_velocity_max * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. u_pre = [V_pre ; omega_pre]; w_zero = zeros(Unicycle_robot.wDim,1); % no noise x_pre(:,1) = x_initial; for k=1:kf_pre x_pre(:,k+1) = Unicycle_robot.f_discrete(x_pre(:,k),u_pre(:,k),w_zero); % tmp = state(x_pre(:,k+1));tmp.draw(); % FOR DEBUGGING end % Line part tanget_line_length = norm ( final_circle_center - initial_circle_center ) ; step_length = Unicycle_robot.linear_velocity_max * Unicycle_robot.dt; kf_line_rational = tanget_line_length/step_length; kf_line = ceil(kf_line_rational); V_line = Unicycle_robot.linear_velocity_max * [ones(1,kf_line-1) , kf_line_rational-floor(kf_line_rational)]; omega_line = zeros(1,kf_line); u_line = [V_line;omega_line]; x_line(:,1) = x_pre(:,kf_pre+1); for k=1:kf_line x_line(:,k+1) = Unicycle_robot.f_discrete(x_line(:,k),u_line(:,k),w_zero); % tmp = state(x_line(:,k+1));tmp.draw(); % FOR DEBUGGING end % Turn part on the final circle th_on_final_circle = delta_theta_turn(gamma_end_of_tangent_line, final_robot_gamma, 'cw'); % NOTE: this must be a negative number as we turn CLOCKWISE. kf_post_rational = th_on_final_circle/delta_theta_on_turns; kf_post = ceil(kf_post_rational); V_post = Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; omega_post = -Unicycle_robot.angular_velocity_max * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. u_post = [V_post ; omega_post]; x_post(:,1) = x_line(:,kf_line+1); for k=1:kf_post x_post(:,k+1) = Unicycle_robot.f_discrete(x_post(:,k),u_post(:,k),w_zero); % tmp = state(x_post(:,k+1));tmp.draw(); % FOR DEBUGGING end nominal_traj.x = [x_pre(:,1:kf_pre) , x_line(:,1:kf_line) , x_post(:,1:kf_post+1)]; % This line is written very carefully. So, dont worry about its correctness! nominal_traj.u = [u_pre(:,1:kf_pre) , u_line(:,1:kf_line) , u_post(:,1:kf_post)]; % This line is written very carefully. So, dont worry about its correctness! end %% Computing planned open-loop deterministic controls (or nominal controls) for unicycle model. function nominal_traj = generate_VALID_open_loop_point2point_traj(x_initial,x_final) % "x_initial" and "x_final" are vectors that indicate the start % and final position of the state trajectory, we are planning % the control "up" for. if isa(x_initial , 'state'), x_initial = x_initial.val; end if isa(x_final , 'state'), x_final = x_final.val; end % minimum turn radius resutls from dividing the minimum linear % velocity to maximum angular velocity. However, here we assume % that the linear velocity is constant. radius = Unicycle_robot.turn_radius_min; initial_circle_center = [radius*cos(x_initial(3)-pi/2) ; radius*sin(x_initial(3)-pi/2)] + x_initial(1:2); final_circle_center = [radius*cos(x_final(3)-pi/2) ; radius*sin(x_final(3)-pi/2)] + x_final(1:2); % tth = 0:0.1:2*pi+.1;plot(initial_circle_center(1)+radius*cos(tth), initial_circle_center(2)+radius*sin(tth)); %TO DEBUG - DONT DELETE % tth = 0:0.1:2*pi+.1;plot(final_circle_center(1)+radius*cos(tth), final_circle_center(2)+radius*sin(tth)); %TO DEBUG - DONT DELETE gamma_tangent = atan2( final_circle_center(2) - initial_circle_center(2) , final_circle_center(1) - initial_circle_center(1) ); % The angle of the tangent line gamma_start_of_tangent_line = gamma_tangent + pi/2; % the angle on which the starting point of the tangent line lies on orbit i. gamma_end_of_tangent_line = gamma_tangent + pi/2; % the angle on which the ending point of the tangent line lies on orbit i. initial_robot_gamma = x_initial(3) + pi/2; % Note that this is not robot's heading angle. This says that at which angle robot lies on the circle. final_robot_gamma = x_final(3) + pi/2; % Note that this is not robot's heading angle. This says that at which angle robot lies on the circle. only_forward_motion = 0; % Turn part on the first circle entire_th_on_initial_circle = delta_theta_turn(initial_robot_gamma, gamma_start_of_tangent_line, 'cw'); % NOTE: this must be a negative number as we turn CLOCKWISE. if only_forward_motion || entire_th_on_initial_circle >= -pi % keep going forward, where heading direction points to the "clockwise" direction. delta_theta_on_turns = - Unicycle_robot.angular_velocity_max * Unicycle_robot.dt ; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. kf_pre_rational = entire_th_on_initial_circle/delta_theta_on_turns; kf_pre = ceil(kf_pre_rational); V_pre = Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; % In the forward motion, the linear velocity has to be positive omega_pre = -Unicycle_robot.angular_velocity_max * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. else % going backwards, where the heading direction still points to the "clockwise" direction. entire_th_on_initial_circle = 2*pi + entire_th_on_initial_circle; % Note that the "entire_th_on_final_circle" before summation is negative, and after summation gets positive. delta_theta_on_turns = Unicycle_robot.angular_velocity_max * Unicycle_robot.dt ; %VERY IMPORTANT: since we want to traverse the circles clockwise BUT BACKWARDS, the angular velocity has to be POSITIVE. kf_pre_rational = entire_th_on_initial_circle/delta_theta_on_turns; kf_pre = ceil(kf_pre_rational); V_pre = - Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; % In backwards motion, the linear velocity has to be negative omega_pre = Unicycle_robot.angular_velocity_max * [ones(1,kf_pre-1) , kf_pre_rational-floor(kf_pre_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise BUT BACKWARDS, the angular velocity has to be POSITIVE. end u_pre = [V_pre ; omega_pre]; w_zero = zeros(Unicycle_robot.wDim,1); % no noise x_pre(:,1) = x_initial; for k=1:kf_pre x_pre(:,k+1) = Unicycle_robot.f_discrete(x_pre(:,k),u_pre(:,k),w_zero); tmp = state(x_pre(:,k+1)); if tmp.is_constraint_violated, nominal_traj =[]; return; end % tmp.draw(); % FOR DEBUGGING end % Line part tanget_line_length = norm ( final_circle_center - initial_circle_center ) ; step_length = Unicycle_robot.linear_velocity_max * Unicycle_robot.dt; kf_line_rational = tanget_line_length/step_length; kf_line = ceil(kf_line_rational); V_line = Unicycle_robot.linear_velocity_max * [ones(1,kf_line-1) , kf_line_rational-floor(kf_line_rational)]; omega_line = zeros(1,kf_line); u_line = [V_line;omega_line]; x_line(:,1) = x_pre(:,kf_pre+1); for k=1:kf_line x_line(:,k+1) = Unicycle_robot.f_discrete(x_line(:,k),u_line(:,k),w_zero); tmp = state(x_line(:,k+1));%% if tmp.is_constraint_violated, nominal_traj =[]; return; end % tmp.draw(); % FOR DEBUGGING end % Turn part on the final circle entire_th_on_final_circle = delta_theta_turn(gamma_end_of_tangent_line, final_robot_gamma, 'cw'); % NOTE: this must be a negative number as we turn CLOCKWISE. if only_forward_motion || entire_th_on_final_circle >= -pi delta_theta_on_turns = - Unicycle_robot.angular_velocity_max * Unicycle_robot.dt ; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. kf_post_rational = entire_th_on_final_circle/delta_theta_on_turns; kf_post = ceil(kf_post_rational); V_post = Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; % In the forward motion, the linear velocity has to be positive omega_post = - Unicycle_robot.angular_velocity_max * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise, the angular velocity has to be NEGATIVE. else entire_th_on_final_circle = 2*pi + entire_th_on_final_circle; % Note that the "entire_th_on_final_circle" before summation is negative, and after summation gets positive. delta_theta_on_turns = Unicycle_robot.angular_velocity_max * Unicycle_robot.dt ; %VERY IMPORTANT: since we want to traverse the circles clockwise BUT BACKWARDS, the angular velocity has to be POSITIVE. kf_post_rational = entire_th_on_final_circle/delta_theta_on_turns; kf_post = ceil(kf_post_rational); V_post = - Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; % In backwards motion, the linear velocity has to be negative omega_post = Unicycle_robot.angular_velocity_max * [ones(1,kf_post-1) , kf_post_rational-floor(kf_post_rational)]; %VERY IMPORTANT: since we want to traverse the circles clockwise BUT BACKWARDS, the angular velocity has to be POSITIVE. end u_post = [V_post ; omega_post]; x_post(:,1) = x_line(:,kf_line+1); for k=1:kf_post x_post(:,k+1) = Unicycle_robot.f_discrete(x_post(:,k),u_post(:,k),w_zero); tmp = state(x_post(:,k+1)); if tmp.is_constraint_violated, nominal_traj =[]; return; end % tmp.draw(); % FOR DEBUGGING end nominal_traj.x = [x_pre(:,1:kf_pre) , x_line(:,1:kf_line) , x_post(:,1:kf_post+1)]; % This line is written very carefully. So, dont worry about its correctness! nominal_traj.u = [u_pre(:,1:kf_pre) , u_line(:,1:kf_line) , u_post(:,1:kf_post)]; % This line is written very carefully. So, dont worry about its correctness! end %% Computing planned open-loop deterministic state trajectory (or nominal trajectory) for unicycle model. % In computing the planned trajectory, system is assumed to be deterministic, so the noise is zero. % % $$ x^p_{K+1} = f (x^p_{K}, u^p_k, 0 ) $$ % function x_p = compute_planned_traj(x_initial,u_p,kf) % noiselss motion x_p = zeros(state.dim,kf+1); x_p(:,1) = x_initial; for k = 1:kf x_p(:,k+1) = Unicycle_robot.f_discrete(x_p(:,k),u_p(:,k),zeros(Unicycle_robot.wDim,1)); end end %% Sample a valid orbit (periodic trajectory) function orbit = sample_a_valid_orbit() orbit_center = state.sample_a_valid_state(); if isempty( orbit_center) orbit = []; return else orbit = Unicycle_robot.generate_orbit(orbit_center); orbit = Unicycle_robot.draw_orbit(orbit); end end %% Construct an orbit function orbit = generate_orbit(orbit_center) % minimum orbit radius resutls from dividing the minimum linear % velocity to maximum angular velocity. However, here we assume % that the linear velocity is constant. orbit.radius = Unicycle_robot.turn_radius_min; orbit_length_meter = 2*pi*orbit.radius; orbit_length_time_continuous = orbit_length_meter/Unicycle_robot.linear_velocity_min_on_orbit; T_rational = orbit_length_time_continuous/Unicycle_robot.dt; T = ceil(T_rational); orbit.period = T; orbit.center = orbit_center; % defining controls on the orbit V_p = Unicycle_robot.linear_velocity_min_on_orbit * [ones(1,T-1) , T_rational-floor(T_rational)]; % we traverse the orbit with minimum linear velocity omega_p = Unicycle_robot.angular_velocity_max * [ones(1,T-1) , T_rational-floor(T_rational)]; % we traverse the orbit with maximum angular velocity u_p = [V_p;omega_p]; w_zero = zeros(Unicycle_robot.wDim,1); % no noise % defining state steps on the orbit x_p(:,1) = [orbit_center.val(1:2) - [0;orbit.radius] ; 0*pi/180]; % initial x for k=1:T x_p(:,k+1) = Unicycle_robot.f_discrete(x_p(:,k),u_p(:,k),w_zero); end orbit.x = x_p(:,1:T); % "x_p" is of length T+1, but "x_p(:,T+1)" is equal to "x_p(:,1)" orbit.u = u_p; % "u_p" is of length T. orbit.plot_handle = []; end %% Draw an orbit function orbit = draw_orbit(orbit,varargin) % This function draws the orbit. % default values orbit_color = 'b'; % Default value for "OrbitTextColor" property. % User-provided value for "OrbitTextColor" property. orbit_width = 2; % User-provided value for "orbit_width" property. % User-provided value for shifting the text a little bit to the left. % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. robot_shape = 'triangle'; % The shape of robot (to draw trajectories and to show direction of edges and orbits) robot_size = 1; % Robot size on orbits (to draw trajectories and to show direction of edges and orbits) orbit_trajectory_flag = 0; % Make it one if you want to see the orbit trajectories. Zero, otherwise. text_size = 12; text_color = 'b'; text_shift = 0.8; orbit_text = []; % parsing the varargin if ~isempty(varargin) for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotSize') robot_size = varargin{i+1}; case lower('OrbitWidth') orbit_width = varargin{i+1}; case lower('OrbitColor') orbit_color = varargin{i+1}; case lower('OrbitText') orbit_text = varargin{i+1}; end end end % start drawing if orbit_trajectory_flag == 1 orbit.plot_handle = []; for k=1:orbit.period Xstate = state(orbit.x(:,k)); Xstate = Xstate.draw('RobotShape',robot_shape,'robotsize',robot_size); orbit.plot_handle = [orbit.plot_handle,Xstate.head_handle,Xstate.text_handle,Xstate.tria_handle]; end tmp = plot(orbit.x(1,:) , orbit.x(2,:),orbit_color); orbit.plot_handle = [orbit.plot_handle,tmp]; else orbit.plot_handle = []; th_orbit_draw = [0:0.1:2*pi , 2*pi]; x_orbit_draw = orbit.center.val(1) + orbit.radius*cos(th_orbit_draw); y_orbit_draw = orbit.center.val(2) + orbit.radius*sin(th_orbit_draw); tmp_h = plot(x_orbit_draw,y_orbit_draw,'lineWidth',orbit_width); Xstate = state(orbit.x(:,1)); Xstate = Xstate.draw('RobotShape',robot_shape,'robotsize',robot_size); orbit.plot_handle = [orbit.plot_handle,tmp_h,Xstate.head_handle,Xstate.text_handle,Xstate.tria_handle]; end if ~isempty(orbit_text) text_pos = orbit.center.val; text_pos(1) = text_pos(1) - text_shift; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. tmp_handle = text( text_pos(1), text_pos(2), orbit_text, 'fontsize', text_size, 'color', text_color); orbit.plot_handle = [orbit.plot_handle,tmp_handle]; end end %% Generate open-loop Orbit-to-Orbit trajectory function nominal_traj = generate_VALID_open_loop_orbit2orbit_traj(start_orbit, end_orbit) % generates open-loop trajectories between two start and end orbits % check if the both orbits are turning in the same % direction or not. direction_start_orbit = sign(start_orbit.u(1,1))*sign(start_orbit.u(2,1)); direction_end_orbit = sign(end_orbit.u(1,1))*sign(end_orbit.u(2,1)); % finding the connecting edge between orbits. if direction_start_orbit == direction_end_orbit % both orbits turn in a same direction gamma = atan2( end_orbit.center.val(2) - start_orbit.center.val(2) , end_orbit.center.val(1) - start_orbit.center.val(1) ); temp_edge_start = start_orbit.radius * [ cos(gamma-pi/2) ; sin(gamma-pi/2) ] + start_orbit.center.val(1:2); temp_edge_end = end_orbit.radius* [ cos(gamma-pi/2) ; sin(gamma-pi/2) ] + end_orbit.center.val(1:2); else error('different directions have not been implemented in PNPRM yet.') end %temp_traj.x(:,1) = temp_edge_start; temp_traj.x(:,2) = temp_edge_end; % we generate this trajectory (only composed of start and end points) to check the collision probabilities before generating the edges. %collision = Unicycle_robot.is_constraints_violated(temp_traj); % checking intersection with obstacles % if collision == 1 % nominal_traj = []; % return % else % % construction edge trajectory tmp_traj_start = [temp_edge_start ; gamma ]; V_p = start_orbit.u(1,1); step_length = V_p * Unicycle_robot.dt; edge_length = norm ( end_orbit.center.val - start_orbit.center.val ) ; edge_steps = floor(edge_length/step_length); omega_p = 0; u_p_single = [V_p;omega_p]; u_p = repmat(u_p_single ,1,edge_steps); w_zero = zeros(Unicycle_robot.wDim , 1); % no noise x_p(:,1) = tmp_traj_start; for k =1:edge_steps x_p(:,k+1) = Unicycle_robot.f_discrete(x_p(:,k),u_p(:,k),w_zero); tmp = state(x_p(:,k+1)); if tmp.is_constraint_violated, nominal_traj =[]; return; end % tmp.draw(); % FOR DEBUGGING end nominal_traj.x = x_p; nominal_traj.u = u_p; end %% check if the trajectory is collision-free or not function YesNo = is_constraints_violated(open_loop_traj) % this function checks if the "open_loop_traj" violates any constraints or not. For example it checks collision with obstacles. % In this class the open loop trajectories are indeed straight % lines. So, we use following simplified procedure to check the % collisions. error('This function is obsolete. Instead, we have the "generate_VALID_open_loop_point2point_traj" function') YesNo = 0; Obst = obstacles_class.obst; edge_start = open_loop_traj.x(1:2 , 1); edge_end = open_loop_traj.x(1:2 , end); N_obst = size(Obst,2); for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; X_edge=[edge_start(1);edge_end(1)]; Y_edge=[edge_start(2);edge_end(2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_edge,Y_edge); if ~isempty(x_inters) YesNo=1; return end end end %% Draw nominal trajectories function traj_plot_handle = draw_nominal_traj(nominal_traj, traj_flag) traj_plot_handle = []; if traj_flag == 1 for k = 1 : size(nominal_traj.x , 2) tmp_Xstate = state (nominal_traj.x(:,k) ); tmp_Xstate.draw('RobotShape','triangle','robotsize',1);%,'TriaColor',color(cycles)); %traj_plot_handle(k:k+2) = %[tmp_Xstate.head_handle,tmp_Xstate.text_handle,tmp_Xstate.tria_handle]; end else tmp_handle = plot(nominal_traj.x(1,:) , nominal_traj.x(2,:)); traj_plot_handle = [traj_plot_handle , tmp_handle]; len = size( nominal_traj.x , 2); tmp_Xstate = state( nominal_traj.x(:,floor(len/2)) ); % to plot the direction of the line. % tmp_Xstate = tmp_Xstate.draw('RobotShape','triangle','robotsize',2); % traj_plot_handle = [traj_plot_handle , tmp_Xstate.plot_handle , tmp_Xstate.head_handle , tmp_Xstate.tria_handle , tmp_Xstate.text_handle ]; drawnow end end %% Draw orbit neighborhood function plot_handle = draw_orbit_neighborhood(orbit, scale) tmp_th = 0:0.1:2*pi; x = orbit.center.val(1); y = orbit.center.val(2); plot_handle = plot(scale*cos(tmp_th) + x , scale*sin(tmp_th) + y, '--'); end end end %% Generating Control-dependent and independent noises % % $$ U'_n \sim \mathcal{N}(0_{2\times 1} , I_{2\times 2}), ~~~ U_n = % (P^{U_n})^{1/2}U'_n\sim\mathcal{N}(0_{2\times 1} , P^{Un}),~~~W^g \sim \mathcal{N}(0_{3\times 1} , P^{W^g})$$ % % The reason we do not use "mvnrnd" to generate $U_n$ is the speed. The way % we do here is much faster than using "mvnrnd". function [Un,Wg] = generate_control_and_indep_process_noise(U) % generate Un indep_part_of_Un = randn(Unicycle_robot.ctDim,1); P_Un = control_noise_covariance(U); Un = indep_part_of_Un.*diag(P_Un.^(1/2)); % generate Wg Wg = mvnrnd(zeros(Unicycle_robot.stDim,1),Unicycle_robot.P_Wg)'; end %% Generating Control-dependent Noise Covariance % % $$ P^{U_n} = \left( % \begin{array}{cc} % (\eta_V V + \sigma_{b_V})^2 & 0\\ % 0 & (\eta_{\omega} \omega + \sigma_{b_{\omega}})^2\\ % \end{array}\right) $$, % % where, $\eta_u=(\eta_V,\eta_{\omega})^T$ and % $\sigma_{b_u}=(\sigma_{b_V},\sigma_{b_{\omega}})^T$. function P_Un = control_noise_covariance(U) u_std=(Unicycle_robot.eta_u).*U+(Unicycle_robot.sigma_b_u); P_Un=diag(u_std.^2); end %% Generating deterministic open loop controls (nominal controls) % I think this function should go out of this class maybe. function [u_p,kf] = compute_planned_control_unicycle(X_initial,X_final) % inputs x_c=[X_initial(1),X_final(1)]; y_c=[X_initial(2),X_final(2)]; dt=user_data_class.par.motion_model_parameters.dt; omega_path=user_data_class.par.motion_model_parameters.omega_const_path; % constant rotational velocity during turnings V_path=user_data_class.par.motion_model_parameters.V_const_path; % constant translational velocity during straight movements %stDim=Unicycle_robot.stDim; ctDim=Unicycle_robot.ctDim; % preallocation th_p=zeros(1,length(x_c)); delta_th_p=zeros(1,length(x_c)); rotation_steps=zeros(length(x_c)-1,1); delta_disp=zeros(length(x_c)-1,1); translation_steps=zeros(length(x_c)-1,1); total_num_steps=0; % Dividing the motion to pure translations and rotations th_initial=X_initial(3); for i=1:length(x_c)-1 % rotations th_p(i)=atan2((y_c(i+1)-y_c(i)),(x_c(i+1)-x_c(i))); if i>1, delta_th_p(i)=th_p(i)-th_p(i-1); else delta_th_p(i)=th_p(i)-th_initial; end; rotation_steps(i)=abs(delta_th_p(i)/(omega_path*dt)); %translations delta_disp(i)=sqrt( (y_c(i+1)-y_c(i))^2+(x_c(i+1)-x_c(i))^2 ); translation_steps(i)=abs(delta_disp(i)/(V_path*dt)); total_num_steps=total_num_steps+ceil(rotation_steps(i))+ceil(translation_steps(i)); end kf=total_num_steps; % Computing Velocities along the path % omega_path=zeros(1,kf); % v_path=zeros(1,kf); u_p=nan(ctDim,kf+1); start_ind_w=1; % end_ind_w=start_ind_w+ceil(rotation_steps(1))-1; end_ind_w=start_ind_w+floor(rotation_steps(1)); for i=1:length(x_c)-1 %Rotation if end_ind_w~=0 u_const = [ 0 ; omega_path*sign(delta_th_p(i)) ]; u_p(:,start_ind_w:end_ind_w-1)=repmat(u_const,1,floor(rotation_steps(i))); u_const_end=u_const * (rotation_steps(i)-floor(rotation_steps(i))); u_p(:,end_ind_w)=u_const_end; end %Translations u_const = [ V_path ; 0 ]; u_p(:,end_ind_w+1:end_ind_w+ceil(translation_steps(i))-1)=repmat(u_const,1,floor(translation_steps(i))); u_const_end=u_const*(translation_steps(i)-floor(translation_steps(i))); u_p(:,end_ind_w+ceil(translation_steps(i)))=u_const_end; %Preparing for the next path segment if i~=length(x_c)-1 %% This "if" is just for avoiding the error massege that appears due to non-existence of rotation_steps(length(x_c)) start_ind_w=start_ind_w+ceil(rotation_steps(i))+ceil(translation_steps(i)); end_ind_w=start_ind_w+ceil(rotation_steps(i+1))-1; end end % u_p=[x_dot;theta_dot]; % u_p=[u_p,[nan;nan]]; end %% Generating deterministic open loop controls with bounded curvature (nominal controls) % I think this function should go out of this class maybe. function [u_p,kf] = compute_planned_control_unicycle_bounded_curvature(X_initial,X_final) % inputs x_c=[X_initial(1),X_final(1)]; y_c=[X_initial(2),X_final(2)]; dt=user_data_class.par.motion_model_parameters.dt; omega_path=user_data_class.par.motion_model_parameters.omega_const_path; % constant rotational velocity during turnings V_path=user_data_class.par.motion_model_parameters.V_const_path; % constant translational velocity during straight movements %stDim=Unicycle_robot.stDim; ctDim=Unicycle_robot.ctDim; % preallocation th_p=zeros(1,length(x_c)); delta_th_p=zeros(1,length(x_c)); rotation_steps=zeros(length(x_c)-1,1); delta_disp=zeros(length(x_c)-1,1); translation_steps=zeros(length(x_c)-1,1); total_num_steps=0; % Dividing the motion to pure translations and rotations th_initial=X_initial(3); for i=1:length(x_c)-1 % rotations th_p(i)=atan2((y_c(i+1)-y_c(i)),(x_c(i+1)-x_c(i))); if i>1, delta_th_p(i)=th_p(i)-th_p(i-1); else delta_th_p(i)=th_p(i)-th_initial; end; rotation_steps(i)=abs(delta_th_p(i)/(omega_path*dt)); %translations delta_disp(i)=sqrt( (y_c(i+1)-y_c(i))^2+(x_c(i+1)-x_c(i))^2 ); translation_steps(i)=abs(delta_disp(i)/(V_path*dt)); total_num_steps=total_num_steps+ceil(rotation_steps(i))+ceil(translation_steps(i)); end kf=total_num_steps; % Computing Velocities along the path % omega_path=zeros(1,kf); % v_path=zeros(1,kf); u_p=nan(ctDim,kf+1); start_ind_w=1; % end_ind_w=start_ind_w+ceil(rotation_steps(1))-1; end_ind_w=start_ind_w+floor(rotation_steps(1)); for i=1:length(x_c)-1 %Rotation if end_ind_w~=0 u_const = [ 0 ; omega_path*sign(delta_th_p(i)) ]; u_p(:,start_ind_w:end_ind_w-1)=repmat(u_const,1,floor(rotation_steps(i))); u_const_end=u_const * (rotation_steps(i)-floor(rotation_steps(i))); u_p(:,end_ind_w)=u_const_end; end %Translations u_const = [ V_path ; 0 ]; u_p(:,end_ind_w+1:end_ind_w+ceil(translation_steps(i))-1)=repmat(u_const,1,floor(translation_steps(i))); u_const_end=u_const*(translation_steps(i)-floor(translation_steps(i))); u_p(:,end_ind_w+ceil(translation_steps(i)))=u_const_end; %Preparing for the next path segment if i~=length(x_c)-1 %% This "if" is just for avoiding the error massege that appears due to non-existence of rotation_steps(length(x_c)) start_ind_w=start_ind_w+ceil(rotation_steps(i))+ceil(translation_steps(i)); end_ind_w=start_ind_w+ceil(rotation_steps(i+1))-1; end end % u_p=[x_dot;theta_dot]; % u_p=[u_p,[nan;nan]]; end
github
mubeipeng/focused_slam-master
youbot_base.m
.m
focused_slam-master/FIRM/All_motion_models/youbot_base.m
14,789
utf_8
8cb1348f049e23cf2bdb6ade776415b1
classdef youbot_base < MotionModel_interface % Note that because the class is defined as a handle class, the % properties must be defined such that they are do not change from an % object to another one. properties (Constant) stDim = state.dim; % state dimension ctDim = 4; % control vector dimension wDim = 7; % Process noise (W) dimension zeroControl = zeros(youbot_base.ctDim,1); zeroNoise = zeros(youbot_base.wDim,1); dt = user_data_class.par.motion_model_parameters.dt; l1 = 0.1585*2; % (meter) distance between right and left wheel l2 = 0.228*2; % (meter) distance between front and rear wheel vMax = 0.8 % m/s maximum speed for individual wheels and max base velocity sigma_b_u = user_data_class.par.motion_model_parameters.sigma_b_u_KukaBase; eta_u = user_data_class.par.motion_model_parameters.eta_u_KukaBase; P_Wg = user_data_class.par.motion_model_parameters.P_Wg; end % properties (Constant = true, SetAccess = private) % UnDim = 3; % WgDim = 3; % end methods (Static) function x_next = f_discrete(x,u,w) Un = w(1:youbot_base.ctDim); % The size of Un may be different from ctDim in some other model. Wg = w(youbot_base.ctDim+1 : youbot_base.wDim); % The size of Wg may be different from stDim in some other model. Wc = youbot_base.f_contin(x,Un,Wg); x_next = x+youbot_base.f_contin(x,u,0)*youbot_base.dt+Wc*sqrt(youbot_base.dt); end function x_dot = f_contin(x,u,wg) % Do not call this function from outside of this class!! % The last input in this method should be w, instead of wg. But, since it is a only used in this class, it does not matter so much. B = youbot_base.df_du_func(x,u,wg)/youbot_base.dt; % df_du_func is for the discrete model therefore it should be divided by dt to get the continuous B x_dot = B*u+wg; end function A = df_dx_func(x,u,w) un = w(1:youbot_base.ctDim); % The size of Un may be different from ctDim in some other model. wg = w(youbot_base.ctDim+1 : youbot_base.wDim); % The size of Wg may be different from stDim in some other model. A = eye(youbot_base.stDim) ... + youbot_base.df_contin_dx(x,u,zeros(youbot_base.stDim,1))*youbot_base.dt ... + youbot_base.df_contin_dx(x,un,wg)*sqrt(youbot_base.dt); end function Acontin = df_contin_dx(x,u,w) %#ok<INUSD> Acontin = zeros(3,3); end function B = df_du_func(x,u,w) %#ok<INUSD> gama1= 2/(youbot_base.l2-youbot_base.l1); B = (1/4)*[-1 1 1 -1;... 1 1 1 1;... gama1 -gama1 gama1 -gama1]*youbot_base.dt; %% this is the B for the continous system end function G = df_dw_func(x,u,w) %#ok<INUSD> B = youbot_base.df_du_func(x,u,w); G = [B,eye(youbot_base.stDim)]*sqrt(youbot_base.dt); % this calculation is for the discrete system end function w = generate_process_noise(x,u) %#ok<INUSD> [Un,Wg] = generate_control_and_indep_process_noise(u); w = [Un;Wg]; end function Q_process_noise = process_noise_cov(x,u) %#ok<INUSD> P_Un = control_noise_covariance(u); Q_process_noise = blkdiag(P_Un,youbot_base.P_Wg); end function nominal_traj = generate_open_loop_point2point_traj(X_initial,X_final) % generates open-loop trajectories between two start and goal states if isa(X_initial,'state'), X_initial=X_initial.val; end % retrieve the value of the state vector if isa(X_final,'state'), X_final=X_final.val; end % retrieve the value of the state vector B = youbot_base.df_du_func(0,0,0)/youbot_base.dt;; %% B matrix in the youbot robot does not depend on current state or input deltaX = abs(X_final - X_initial); t_interval = 0.8*max(deltaX)/youbot_base.vMax; % we move by 80 percent of the maxmimum velocity kf = ceil(t_interval/ youbot_base.dt); % number of steps needed to follow the trajectory uStar = (1/t_interval)*B'*inv(B*B')*deltaX; % %=====================Nominal control and state trajectory generation x_p = zeros(youbot_base.stDim,kf+1); u_p = zeros(youbot_base.ctDim,kf); x_p(:,1) = X_initial; for k = 1:kf u_p(:,k) = uStar; % "T_inv_k" maps the "velocities in body coordinate" to the control signal x_p(:,k+1) = youbot_base.f_discrete(x_p(:,k),u_p(:,k) ,zeros(youbot_base.wDim,1)); % generaating the trajectory end % noiselss motion % for debug: if you uncomment the following % lines you have to get the same "x_p_copy" as the "x_p" % x_p_copy = zeros(stDim,kf+1); % x_p_copy(:,1) = X_initial; % for k = 1:kf % x_p_copy(:,k+1) = youbot_base.f_discrete(x_p_copy(:,k),u_p(:,k),zeros(youbot_base.wDim,1)); % end nominal_traj.x = x_p; nominal_traj.u = u_p; end function nominal_traj = generate_VALID_open_loop_point2point_traj(X_initial,X_final) % generates open-loop trajectories between two start and goal states if isa(X_initial,'state'), X_initial=X_initial.val; end % retrieve the value of the state vector if isa(X_final,'state'), X_final=X_final.val; end % retrieve the value of the state vector B = youbot_base.df_du_func(0,0,0)/ youbot_base.dt;; %% B matrix in the youbot robot does not depend on current state or input deltaX = abs(X_final - X_initial); t_interval = 0.8*max(deltaX)/youbot_base.vMax; % we move by 80 percent of the maxmimum velocity kf = ceil(t_interval/ youbot_base.dt); % number of steps needed to follow the trajectory uStar = (1/t_interval)*B'*inv(B*B')*deltaX; % %=====================Nominal control and state trajectory generation x_p = zeros(youbot_base.stDim,kf+1); u_p = zeros(youbot_base.ctDim,kf); x_p(:,1) = X_initial; for k = 1:kf u_p(:,k) = uStar; % "T_inv_k" maps the "velocities in body coordinate" to the control signal x_p(:,k+1) = youbot_base.f_discrete(x_p(:,k),u_p(:,k) ,zeros(youbot_base.wDim,1)); % generaating the trajectory % tmp = state(x_p(:,k+1)); if tmp.is_constraint_violated(), nominal_traj =[]; return; end end % noiselss motion % for debug: if you uncomment the following % lines you have to get the same "x_p_copy" as the "x_p" % x_p_copy = zeros(stDim,kf+1); % x_p_copy(:,1) = X_initial; % for k = 1:kf % x_p_copy(:,k+1) = youbot_base.f_discrete(x_p_copy(:,k),u_p(:,k),zeros(youbot_base.wDim,1)); % end nominal_traj.x = x_p; nominal_traj.u = u_p; end function YesNo = is_constraints_violated(open_loop_traj) % this function checks if the "open_loop_traj" violates any constraints or not. For example it checks collision with obstacles. % In this class the open loop trajectories are indeed straight % lines. So, we use following simplified procedure to check the % collisions. Obst=obstacles_class.obst; edge_start = open_loop_traj.x(1:2,1); edge_end = open_loop_traj.x(1:2,end); N_obst=size(Obst,2); intersection=0; for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; X_edge=[edge_start(1);edge_end(1)]; Y_edge=[edge_start(2);edge_end(2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_edge,Y_edge); if ~isempty(x_inters) intersection=intersection+1; end end if intersection>0 YesNo=1; else YesNo=0; end end function traj_plot_handle = draw_nominal_traj(nominal_traj, varargin) s_node_2D_loc = nominal_traj.x(1:2,1); e_node_2D_loc = nominal_traj.x(1:2,end); % retrieve PRM parameters provided by the user disp('the varargin need to be parsed here') % edge_spec = obj.par.edge_spec; % edge_width = obj.par.edge_width; edge_spec = '-b'; edge_width = 2; % drawing the 2D edge line traj_plot_handle = plot([s_node_2D_loc(1),e_node_2D_loc(1)],[s_node_2D_loc(2),e_node_2D_loc(2)],edge_spec,'linewidth',edge_width); end end methods (Access = private) function nominal_traj = generate_open_loop_point2point_traj_turn_move_turn(obj , start_node_ind, end_node_ind) % I do not use this function anymore. But I kept it for future % references. X_initial = obj.nodes(start_node_ind).val; X_final = obj.nodes(end_node_ind).val; % parameters omega_path=user_data_class.par.motion_model_parameters.omega_const_path; % constant rotational velocity during turnings dt=user_data_class.par.motion_model_parameters.dt; V_path=user_data_class.par.motion_model_parameters.V_const_path; % constant translational velocity during straight movements stDim = youbot_base.stDim; ctDim=youbot_base.ctDim; r=youbot_base.robot_link_length; th_p = atan2( X_final(2)-X_initial(2) , X_final(1)-X_initial(1) ); % the angle of edge % note that "th_p" is already between -pi and pi, since it is the output of "atan2" %--------------Pre-Rotation number of steps if abs(X_initial(3))>pi, X_initial(3)=(X_initial(3)-sign(X_initial(3))*2*pi); end % Here, we bound the initial angle "X_initial(3)" between -pi and pi pre_delta_th_p = th_p - X_initial(3); % turning angle at the beginning of the edge (to align robot with edge) if abs(pre_delta_th_p)>pi, pre_delta_th_p=(pre_delta_th_p-sign(pre_delta_th_p)*2*pi); end % Here, we bound "pre_delta_th_p" between -pi and pi pre_rotation_steps = abs( pre_delta_th_p/(omega_path*dt) ); %--------------Translation number of steps delta_disp = norm( X_final(1:2) - X_initial(1:2) ); translation_steps = abs(delta_disp/(V_path*dt)); %--------------Post-Rotation number of steps if abs(X_final(3))>pi, X_final(3)=(X_final(3)-sign(X_final(3)*2*pi)); end % Here, we bound the initial angle "X_final(3)" between -pi and pi post_delta_th_p = X_final(3) - th_p; % turning angle at the end of the edge (to align robot with the end node) if abs(post_delta_th_p)>pi, post_delta_th_p=(post_delta_th_p-sign(post_delta_th_p)*2*pi); end % Here, we bound "post_delta_th_p" between -pi and pi post_rotation_steps = abs( post_delta_th_p/(omega_path*dt) ); %--------------Total number of steps kf = floor(pre_rotation_steps)+1+floor(translation_steps)+1+floor(post_rotation_steps)+1; u_p=nan(ctDim,kf+1); %=====================Pre-Rotation u_const = ones(3,1)*r*omega_path*sign(pre_delta_th_p); u_p(: , 1:floor(pre_rotation_steps)) = repmat( u_const,1,floor(pre_rotation_steps) ); u_const_end = ones(3,1)*r*omega_path*sign(pre_delta_th_p)*(pre_rotation_steps-floor(pre_rotation_steps)); u_p(:,floor(pre_rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. last_k = floor(pre_rotation_steps)+1; %=====================Translations T_inv = [-sin(th_p), cos(th_p) ,r; -sin(pi/3-th_p),-cos(pi/3-th_p) ,r; sin(pi/3+th_p) ,-cos(pi/3+th_p) ,r]; u_const=T_inv*[V_path*cos(th_p);V_path*sin(th_p);0]; u_p( : , last_k+1:last_k + floor(translation_steps) ) = repmat(u_const,1,floor(translation_steps)); %Note that in below line we are using "u_const", in which the "Inv_Dyn" %has been already accounted for. So, we do not need to multiply it with %"Inv_Dyn" again. u_const_end = u_const*(translation_steps - floor(translation_steps)); u_p( : , last_k + floor(translation_steps)+1 ) = u_const_end; %=====================Post-Rotation last_k = last_k + floor(translation_steps)+1; u_const = ones(3,1)*r*omega_path*sign(post_delta_th_p); u_p(: , last_k+1:last_k+floor(post_rotation_steps)) = repmat( u_const,1,floor(post_rotation_steps) ); u_const_end = ones(3,1)*r*omega_path*sign(post_delta_th_p)*(post_rotation_steps-floor(post_rotation_steps)); u_p(:,last_k+floor(post_rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. % noiselss motion x_p = zeros(stDim,kf+1); x_p(:,1) = X_initial; for k = 1:kf x_p(:,k+1) = youbot_base.f_discrete(x_p(:,k),u_p(:,k),zeros(youbot_base.wDim,1)); end nominal_traj.x = x_p; nominal_traj.u = u_p; end end end function [Un,Wg] = generate_control_and_indep_process_noise(U) % generate Un indep_part_of_Un = randn(youbot_base.ctDim,1); P_Un = control_noise_covariance(U); Un = indep_part_of_Un.*diag(P_Un.^(1/2)); % generate Wg Wg = mvnrnd(zeros(youbot_base.stDim,1),youbot_base.P_Wg)'; end function P_Un = control_noise_covariance(U) u_std=(youbot_base.eta_u).*U+(youbot_base.sigma_b_u); P_Un=diag(u_std.^2); end
github
mubeipeng/focused_slam-master
MotionModel_class_NotImplementedYet.m
.m
focused_slam-master/FIRM/All_motion_models/Multi_Omni_directional_robots/MotionModel_class_NotImplementedYet.m
14,853
utf_8
ad172bb4f2ce9155039355759020a5ea
classdef MotionModel_class < MotionModel_interface % Note that because the class is defined as a handle class, the % properties must be defined such that they are do not change from an % object to another one. properties (Constant) num_robots = user_data_class.par.state_parameters.num_robots; stDim = state.dim; % state dimension ctDim = state.dim; % control vector dimension wDim = 2*state.dim; % Process noise (W) dimension dt = user_data_class.par.motion_model_parameters.dt; robot_link_length = user_data_class.par.motion_model_parameters.robot_link_length; sigma_b_u = user_data_class.par.motion_model_parameters.sigma_b_u_omni_team; eta_u = user_data_class.par.motion_model_parameters.eta_u_omni_team; P_Wg = user_data_class.par.motion_model_parameters.P_Wg_team; end methods (Static) function x_next_team = f_discrete(x_team,u_team,w_team) for i = 1:MotionModel_class.num_robots x = x_team(3*i-2:3*i); u = u_team(3*i-2:3*i); Un = w_team(6*i-5:6*i-3); Wg = w_team(6*i-2:6*i); Wc = MotionModel_class.f_contin(x,Un,Wg); x_next = x+MotionModel_class.f_contin(x,u,0)*MotionModel_class.dt+Wc*sqrt(MotionModel_class.dt); x_next_team(3*i-2:3*i , 1) = x_next; % Note that the "x_next_team" must be a column vector end end function x_dot = f_contin(x,u,wg) % Do not call this function from outside of this class!! % The last input in this method should be w, instead of wg. But, since it is a only used in this class, it does not matter so much. % Note that this function should only work for a single robot, % Not for entire team. th = x(3); r = MotionModel_class.robot_link_length; x_dot = (1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th),-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r,1/r,1/r]*u+wg; end function A_team = df_dx_func(x_team,u_team,w_team) A_team = []; for i = 1:MotionModel_class.num_robots x = x_team(3*i-2:3*i); u = u_team(3*i-2:3*i); un = w_team(6*i-5:6*i-3); wg = w_team(6*i-2:6*i); A = eye(3) ... + MotionModel_class.df_contin_dx(x,u,zeros(3,1))*MotionModel_class.dt ... + MotionModel_class.df_contin_dx(x,un,wg)*sqrt(MotionModel_class.dt); A_team = blkdiag(A_team,A); end end function Acontin = df_contin_dx(x,u,w) %#ok<INUSD> % Note that this function should only work for a single robot, % Not for entire team. th = x(3); Acontin = (2/3)*[0 0 -cos(th)*u(1)+cos(pi/3-th)*u(2)+cos(pi/3+th)*u(3); 0 0 -sin(th)*u(1)-sin(pi/3-th)*u(2)+sin(pi/3+th)*u(3); 0 0 0]; end function B_team = df_du_func(x_team,u_team,w_team) %#ok<INUSD> B_team = []; for i = 1:MotionModel_class.num_robots th = x_team(3*i); r = MotionModel_class.robot_link_length; B = (1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th) ,-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r ,1/r ,1/r ]*MotionModel_class.dt; B_team = blkdiag(B_team,B); end end function G_team = df_dw_func(x_team,u_team,w_team) %#ok<INUSD> G_team = []; for i = 1:MotionModel_class.num_robots th=x_team(3*i); r=MotionModel_class.robot_link_length; T_theta=(1/3)*[-2*sin(th),-2*sin(pi/3-th),2*sin(pi/3+th); 2*cos(th) ,-2*cos(pi/3-th),-2*cos(pi/3+th); 1/r ,1/r ,1/r ]; G = [T_theta,eye(3)]*sqrt(MotionModel_class.dt); G_team = blkdiag(G_team,G); end end function w_team = generate_process_noise(x_team,u_team) %#ok<INUSD> [Un_team,Wg_team] = generate_control_and_indep_process_noise(u_team); w_team = []; for i = 1:MotionModel_class.num_robots w_team = [w_team ; Un_team(3*i-2:3*i);Wg_team(3*i-2:3*i)]; %#ok<AGROW> % in the full noise vector, for each robot we first store the Un and then Wg. end end function Q_process_noise_team = process_noise_cov(x_team,u_team) %#ok<INUSD> P_Un_team = control_noise_covariance(u_team); Q_process_noise_team = []; for i = 1:MotionModel_class.num_robots Q_process_noise_team = blkdiag(Q_process_noise_team , P_Un_team(3*i-2:3*i , 3*i-2:3*i),MotionModel_class.P_Wg(3*i-2:3*i , 3*i-2:3*i)); % in the full noise matrix, for each robot we first store the Un cov and then Wg cov. end end function nominal_traj_team = generate_open_loop_point2point_traj(X_initial_team,X_final_team) % generates open-loop trajectories between two start and goal states if isa(X_initial_team,'state'), X_initial_team=X_initial_team.val; end % retrieve the value of the state vector if isa(X_final_team,'state'), X_final_team=X_final_team.val; end % retrieve the value of the state vector % parameters (same for all team) dt=MotionModel_class.dt; stDim_team = MotionModel_class.stDim; ctDim_team = MotionModel_class.ctDim; r=MotionModel_class.robot_link_length; for i = 1:MotionModel_class.num_robots % parameters (possibly different for each robot) stDim = stDim_team/MotionModel_class.num_robots; ctDim = ctDim_team/MotionModel_class.num_robots; omega_path=user_data_class.par.motion_model_parameters.omega_const_path_team(i); % constant rotational velocity during turnings V_path=user_data_class.par.motion_model_parameters.V_const_path_team(i); % constant translational velocity during straight movements X_initial = X_initial_team(3*i-2:3*i); X_final = X_final_team(3*i-2:3*i); th_p = atan2( X_final(2)-X_initial(2) , X_final(1)-X_initial(1) ); % the angle of edge % note that "th_p" is already between -pi and pi, since it is the output of "atan2" %-------------- Rotation number of steps if abs(X_initial(3))>pi, X_initial(3)=(X_initial(3)-sign(X_initial(3))*2*pi); end % Here, we bound the initial angle "X_initial(3)" between -pi and pi if abs(X_final(3))>pi, X_final(3)=(X_final(3)-sign(X_final(3)*2*pi)); end % Here, we bound the final angle "X_final(3)" between -pi and pi delta_th_p = X_final(3) - X_initial(3); % turning angle if abs(delta_th_p)>pi, delta_th_p=(delta_th_p-sign(delta_th_p)*2*pi); end % Here, we bound "pre_delta_th_p" between -pi and pi rotation_steps = abs( delta_th_p/(omega_path*dt) ); %--------------Translation number of steps delta_disp = norm( X_final(1:2) - X_initial(1:2) ); translation_steps = abs(delta_disp/(V_path*dt)); %--------------Total number of steps kf_rational = max([rotation_steps , translation_steps]); kf = floor(kf_rational)+1; % note that in all following lines you cannot replace "floor(something)+1" by "ceil(something)", as it may be a whole number. %=====================Rotation steps of the path delta_theta_const = omega_path*sign(delta_th_p)*dt; delta_theta_nominal(: , 1:floor(rotation_steps)) = repmat( delta_theta_const , 1 , floor(rotation_steps)); delta_theta_const_end = omega_path*sign(delta_th_p)*dt*(rotation_steps-floor(rotation_steps)); delta_theta_nominal(:,floor(rotation_steps)+1) = delta_theta_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. delta_theta_nominal = [delta_theta_nominal , zeros(1 , kf - size(delta_theta_nominal,2))]; % augment zeros to the end of "delta_theta_nominal", to make its length equal to "kf". % u_const = ones(3,1)*r*omega_path*sign(delta_th_p); % u_p_rot(: , 1:floor(rotation_steps)) = repmat( u_const,1,floor(rotation_steps) ); % u_const_end = ones(3,1)*r*omega_path*sign(delta_th_p)*(rotation_steps-floor(rotation_steps)); % u_p_rot(:,floor(rotation_steps)+1)=u_const_end; % note that you cannot replace "floor(pre_rotation_steps)+1" by "ceil(pre_rotation_steps)", as it may be a whole number. %=====================Translations delta_xy_const = [V_path*cos(th_p);V_path*sin(th_p)]*dt; delta_xy_nominal( : , 1:floor(translation_steps) ) = repmat( delta_xy_const , 1 , floor(translation_steps)); delta_xy_const_end = [V_path*cos(th_p);V_path*sin(th_p)]*dt*(translation_steps - floor(translation_steps)); delta_xy_nominal( : , floor(translation_steps)+1 ) = delta_xy_const_end; delta_xy_nominal = [delta_xy_nominal , zeros(2 , kf - size(delta_xy_nominal,2))]; % augment zeros to the end of "delta_xy_nominal", to make its length equal to "kf". delta_state_nominal = [delta_xy_nominal;delta_theta_nominal]; %=====================Nominal control and state trajectory generation x_p = zeros(stDim,kf+1); theta = zeros(1,kf+1); u_p = zeros(stDim,kf); x_p(:,1) = X_initial; theta(1) = X_initial(3); for k = 1:kf theta(:,k+1) = theta(:,k) + delta_state_nominal(3,k); th_k = theta(:,k); T_inv_k = [-sin(th_k), cos(th_k) ,r; -sin(pi/3-th_k),-cos(pi/3-th_k) ,r; sin(pi/3+th_k) ,-cos(pi/3+th_k) ,r]; delta_body_velocities_k = delta_state_nominal(:,k)/dt; % x,y,and theta velocities in body coordinate at time step k u_p(:,k) = T_inv_k*delta_body_velocities_k; % "T_inv_k" maps the "velocities in body coordinate" to the control signal x_p(:,k+1) = x_p(:,k) + delta_state_nominal(:,k); end % noiselss motion % for debug: if you uncomment the following % lines you have to get the same "x_p_copy" as the "x_p" % x_p_copy = zeros(stDim,kf+1); % x_p_copy(:,1) = X_initial; % for k = 1:kf % x_p_copy(:,k+1) = MotionModel_class.f_discrete(x_p_copy(:,k),u_p(:,k),zeros(MotionModel_class.wDim,1)); % end x_p_team{i} = x_p; %#ok<AGROW> u_p_team{i} = u_p; %#ok<AGROW> kf_team(i) = kf; %#ok<AGROW> end max_kf = max(kf_team); nominal_traj_team.x = [];nominal_traj_team.u = []; for i = 1:MotionModel_class.num_robots nominal_traj_team.x = [nominal_traj_team.x ; [x_p_team{i} , repmat( x_p_team{i}(:,end) , 1 , max_kf+1-size(x_p_team{i},2))] ]; nominal_traj_team.u = [nominal_traj_team.u ; [u_p_team{i} , zeros(3,max_kf-size(u_p_team{i},2))] ]; end end function YesNo = is_constraints_violated(open_loop_traj) % this function checks if the "open_loop_traj" violates any constraints or not. For example it checks collision with obstacles. % In this class the open loop trajectories are indeed straight % lines. So, we use following simplified procedure to check the % collisions. YesNo=0; % initialization Obst=obstacles_class.obst; for j = 1:MotionModel_class.num_robots edge_start = open_loop_traj.x(3*j-2:3*j-1 , 1); edge_end = open_loop_traj.x(3*j-2:3*j-1 , end); N_obst=size(Obst,2); for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; X_edge=[edge_start(1);edge_end(1)]; Y_edge=[edge_start(2);edge_end(2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,X_edge,Y_edge); if ~isempty(x_inters) YesNo=1; return end end end end function traj_plot_handle = draw_nominal_traj(nominal_traj) traj_plot_handle = []; for i = 1:MotionModel_class.num_robots s_node_2D_loc = nominal_traj.x( 3*i-2:3*i-1 , 1); e_node_2D_loc = nominal_traj.x( 3*i-2:3*i-1 , end); % retrieve PRM parameters provided by the user disp('the varargin need to be parsed here') % edge_spec = obj.par.edge_spec; % edge_width = obj.par.edge_width; edge_spec = '-b'; edge_width = 2; % drawing the 2D edge line tmp_h = plot([s_node_2D_loc(1),e_node_2D_loc(1)],[s_node_2D_loc(2),e_node_2D_loc(2)],edge_spec,'linewidth',edge_width); traj_plot_handle = [traj_plot_handle , tmp_h]; %#ok<AGROW> end end end end function [Un_team,Wg_team] = generate_control_and_indep_process_noise(U_team) % generate Un indep_part_of_Un_team = randn(MotionModel_class.ctDim,1); P_Un_team = control_noise_covariance(U_team); Un_team = indep_part_of_Un_team.*diag(P_Un_team.^(1/2)); % generate Wg Wg_team = mvnrnd(zeros(MotionModel_class.stDim,1),MotionModel_class.P_Wg)'; end function P_Un_team = control_noise_covariance(U_team) u_std_team=(MotionModel_class.eta_u).*U_team+(MotionModel_class.sigma_b_u); % note that "MotionModel_class.eta_u" has to be the same size as the "U_team" P_Un_team=diag(u_std_team.^2); end
github
mubeipeng/focused_slam-master
quadDyn.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/quadDyn.m
818
utf_8
40737a280d40e345ede7fda2ceafd5eb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Continous quadrotor dynamics, % gives xdot for a given x and u % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xdot = quadDyn(x,u,params) % The state vector alphabet px = x(1); py = x(2); pz = x(3); pxdot = x(4); pydot = x(5); pzdot = x(6); phi = x(7); theta = x(8); psi = x(9); p = x(10); q = x(11); r = x(12); % The input vector alphabet d_collective = u(1); d_roll = u(2); d_pitch = u(3); d_yaw = u(4); % parameters g = params.g; Ix = params.Ix; Iy = params.Iy; Iz = params.Iz; L = params.L; m = params.m; % Dynamics xdot = zeros(12,1); xdot(1) = pxdot; xdot(2) = pydot; xdot(3) = pzdot; xdot(4) = g*phi; xdot(5) = -g*theta; xdot(6) = d_collective/m; xdot(7) = p; xdot(8) = q; xdot(9) = r; xdot(10) = L*d_roll/Ix; xdot(11) = L*d_pitch/Iy; xdot(12) = 1*d_yaw/Iz; end
github
mubeipeng/focused_slam-master
steerHeading.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/steerHeading.m
468
utf_8
7bc4050a782d8cd40a99cf93903976ac
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Steer heading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d_yaw_seq = steerHeading(psi_init,psi_final,n_steps,params) % Heading Control sub-system (states: psi and r) A = [0,1;0 0]; B = [0;1/(params.Iz)]; lower = [-pi/2;-pi;-1]; upper = [pi/2;pi;1]; x_init = [psi_init,0]; x_final = [psi_final,0]; [~,d_yaw_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,params.dt,n_steps); end
github
mubeipeng/focused_slam-master
steerLinearSystembyLP.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/steerLinearSystembyLP.m
3,471
utf_8
1386af9e186eab89e654ec5da01f1c1a
%%%%%%%%%% Solve an LP to steer a Linear System %%%%%%% function [x_seq,u_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,dt,numberOfSteps) % Get dimensions [stateDim,inputDim] = size(B); solDim = stateDim*numberOfSteps + inputDim*(numberOfSteps-1); % Initialize solution x_seq = zeros(stateDim,numberOfSteps); u_seq = zeros(inputDim,numberOfSteps-1); % Indexing goes like this % State vector, x = [x_1;x_2;...;x_stateDim] % Input Vector u = [u_1;u_2;...;u_inputDim] % sol_vector = [x_1(1),x_2(1),...,x_stateDim(1), % x_1(2),...,x_stateDim(numberOfSteps),u_1(1),u_2(1) % ,...,u_inputDim(1),....,u_inputDim(numberOfSteps-1)] % Formula for indexing % i^th state variable at time j, (j-1)*stateDim + i % k^th input variable at time l, offset + (l-1)*inputDim + k % offset = stateDim*numberOfSteps offset = stateDim*numberOfSteps; %% Set The Cost Function % Simply minimize x_final f = zeros(1,solDim); for i=(numberOfSteps-1)*stateDim+1:(numberOfSteps)*stateDim f(i) = 1; end % -- it turned out that we dont really need that % also weight the inputs, so that they don't blow up % % for i=offset +1:offset + (numberOfSteps-1)*inputDim % % f(i) = 1e6; % % end % % %% Inequality Constraints % Just bound the x_final Aineq = zeros(stateDim,solDim); bineq = -x_final; k=1; for state = 1:stateDim Aineq(k,(numberOfSteps-1)*stateDim+state) = -1; k = k+1; end %% Equality Constraints (this is the tricky part!!) Aeq = zeros(numberOfSteps*stateDim,solDim); beq = zeros(numberOfSteps*stateDim,1); % Initial conditions k=1; for i=1:stateDim Aeq(k,i) = 1; beq(i) = x_init(i); k = k+1; end % Now constrain the system to obey the dynamics constrainIndex= stateDim+1; for timeIndex=2:numberOfSteps for stateIndex=1:stateDim Aeq(constrainIndex,(timeIndex-1)*stateDim + stateIndex) = 1; for Index=1:stateDim if(Index==stateIndex) Aeq(constrainIndex,(timeIndex-2)*stateDim + Index) = -A(stateIndex,Index)*dt-1; else Aeq(constrainIndex,(timeIndex-2)*stateDim + Index) = -A(stateIndex,Index)*dt; end for inputIndex=1:inputDim Aeq(constrainIndex,offset+(timeIndex-2)*inputDim + inputIndex) = -B(stateIndex,inputIndex)*dt; end end constrainIndex = constrainIndex+1; end end %% Set the lower and upper bounds (copy-paste over variables) lb = zeros(solDim,1); ub = zeros(solDim,1); % for states for i=1:numberOfSteps for j=1:stateDim lb((i-1)*stateDim + j) = lower(j); ub((i-1)*stateDim + j) = upper(j); end end % for inputs for i=1:numberOfSteps-1 for j=1:inputDim lb(offset + (i-1)*inputDim + j) = lower(stateDim+j); ub(offset + (i-1)*inputDim + j) = upper(stateDim+j); end end %% Solve The LP and arrange the solution sol = linprog(f,Aineq,bineq,Aeq,beq,lb,ub); for i=1:numberOfSteps for j=1:stateDim x_seq(j,i) = sol((i-1)*stateDim + j); end end for i=1:numberOfSteps-1 for j=1:inputDim u_seq(j,i) = sol(offset+ (i-1)*inputDim + j); end end end
github
mubeipeng/focused_slam-master
steerY.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/steerY.m
543
utf_8
4dabac2f1131428e5d6cfd0753472897
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Steer heading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d_pitch_seq = steerY(py_init,py_final,n_steps,params) % X Control sub-system(states y ydot theta q) A = zeros(4,4); A(1,2) = 1; A(2,3) = -params.g; A(3,4) = 1; B = zeros(4,1); B(4,1) = params.L/params.Iy; lower = [-2;-2;-pi/2;-pi;-1]; upper = [2;2;pi/2;pi;1]; x_init = [py_init,0,0,0]; x_final = [py_final,0,0,0]; [~,d_pitch_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,params.dt,n_steps); end
github
mubeipeng/focused_slam-master
steerX.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/steerX.m
538
utf_8
bf981478069c31a7ffc15ebc80e00d8a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Steer heading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d_roll_seq = steerX(px_init,px_final,n_steps,params) % X Control sub-system(states x xdot phi p) A = zeros(4,4); A(1,2) = 1; A(2,3) = params.g; A(3,4) = 1; B = zeros(4,1); B(4,1) = params.L/params.Ix; lower = [-2;-2;-pi/2;-pi;-1]; upper = [2;2;pi/2;pi;1]; x_init = [px_init,0,0,0]; x_final = [px_final,0,0,0]; [~,d_roll_seq] = steerLinearSystembyLP(A,B,lower,upper,x_init,x_final,params.dt,n_steps); end
github
mubeipeng/focused_slam-master
trajectory2.m
.m
focused_slam-master/FIRM/All_motion_models/QuadRelated/trajectory2.m
11,511
utf_8
5b16be0eceaefd2ffbc39da0e1ccd002
function trajectory2(x,y,z,pitch,roll,yaw,scale_factor,step,varargin) % function trajectory2(x,y,z,pitch,roll,yaw,scale_factor,step,selector) % % % x,y,z center trajectory (vector) [m] % % pitch,roll,yaw euler's angles [rad] % % scale_factor normalization factor [scalar] % (related to body aircraft dimension) % % step attitude sampling factor [scalar] % (the points number between two body models) % OPTIONAL INPUT: % % selector select the body model [string] % A-10 A-10 Body Model % cessna Cessna Body Model % mig Mig Body Model % tomcat Tomcat Body Model % jet Generic jet body model % shuttle Space Shuttle body model % helicopter Helicopter Body Model % 747 Boeing 747 Body Model % biplane Generic Biplane body model % md90 Md90 body model % dc10 Dc10 Body Model % ah64 Ah64 helicopter body model % % NOTICE: if the selector is omitted, the version 2 use the same stylized % body model of versin 1 % % ******************************* % Function Version 2.0 % 2/04/2004 (dd/mm/yyyy) % Valerio Scordamaglia % [email protected] % ******************************* if nargin<8 disp(' Error:'); disp(' Error: Invalid Number Inputs!'); return; end if (length(x)~=length(y))|(length(x)~=length(z))|(length(y)~=length(z)) disp(' Error:'); disp(' Uncorrect Dimension of the center trajectory Vectors. Please Check the size'); return; end if ((length(pitch)~=length(roll))||(length(pitch)~=length(yaw))||(length(roll)~=length(yaw))) disp(' Error:'); disp(' Uncorrect Dimension of the euler''s angle Vectors. Please Check the size'); return; end if length(pitch)~=length(x) disp(' Error:'); disp(' Size mismatch between euler''s angle vectors and center trajectory vectors'); return end if step>=length(x) disp(' Error:'); disp(' Attitude samplig factor out of range. Reduce step'); return end if step<1 step=1; end if nargin>9 disp(' Error:'); disp(' too much input arguments!'); return end if nargin==8 trajectory_old(x,y,z,pitch,roll,yaw,scale_factor,step); return; else tmp=cell2mat(varargin(1)); selector=num2str(tmp); clear tmp; end; cur_dir=pwd; if strcmp(selector,'shuttle') load shuttle; V=[-V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'helicopter') load helicopter; V=[-V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'747') load boeing_747; V=[V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'biplane') load biplane; V=[-V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'md90') load md90; V=[-V(:,1) V(:,2) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'dc10') load dc10; V=[V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'ah64') load ah64; V=[V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'mig') load mig; V=[V(:,2) V(:,1) V(:,3)]; elseif strcmp(selector,'tomcat') load tomcat; V=[-V(:,2) V(:,1) V(:,3)]; V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); elseif strcmp(selector,'jet') load 80jet; V=[-V(:,2) V(:,1) V(:,3)]; elseif strcmp(selector,'cessna') load 83plane; V=[-V(:,2) V(:,1) V(:,3)]; elseif strcmp(selector,'A-10') load A-10; V=[V(:,3) V(:,1) V(:,2)]; else try eval(['load ' selector ';']); V(:,1)=V(:,1)-round(sum(V(:,1))/size(V,1)); V(:,2)=V(:,2)-round(sum(V(:,2))/size(V,1)); V(:,3)=V(:,3)-round(sum(V(:,3))/size(V,1)); catch str=strcat('Warning: ',selector,' not found. Default=A-10'); disp(str); load A-10; V=[V(:,3) V(:,1) V(:,2)]; end end correction=max(abs(V(:,1))); V=V./(scale_factor*correction); ii=length(x); resto=mod(ii,step); for i=1:step:(ii-resto) theta=pitch(i); phi=roll(i); psi=yaw(i); Tbe=[cos(psi)*cos(theta) sin(psi)*cos(theta) -sin(theta);((cos(psi)*sin(theta)*sin(phi))-(sin(psi)*cos(phi))) ((sin(psi)*sin(theta)*sin(phi))+(cos(psi)*cos(phi))) cos(theta)*sin(phi);((cos(psi)*sin(theta)*cos(phi))+(sin(psi)*sin(phi))) ((sin(psi)*sin(theta)*cos(phi))-(cos(psi)*sin(phi))) cos(theta)*cos(phi)]; %Tbe=Tbe'; Vnew=V*Tbe; rif=[x(i) y(i) z(i)]; X0=repmat(rif,size(Vnew,1),1); Vnew=Vnew+X0; p=patch('faces', F, 'vertices' ,Vnew); set(p, 'facec', [1 0 0]); set(p, 'FaceVertexCData', C); set(p, 'EdgeColor','none'); hold on; end hold on; plot3(x,y,z); light; grid on; view(82.50,2); daspect([1 1 1]) ; xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)'); cd (cur_dir); function trajectory_old(x,y,z,pitch,roll,yaw,scale_factor,step) if (length(x)~=length(y))||(length(x)~=length(z))||(length(y)~=length(z)) disp(' Error:'); disp(' Uncorrect Dimension of the center trajectory Vectors. Please Check the size'); return; end if ((length(pitch)~=length(roll))||(length(pitch)~=length(yaw))||(length(roll)~=length(yaw))) disp(' Error:'); disp(' Uncorrect Dimension of the euler''s angle Vectors. Please Check the size'); return; end if length(pitch)~=length(x) disp(' Error:'); disp(' Size mismatch between euler''s angle vectors and center trajectory vectors'); return end if step>=length(x) disp(' Error:'); disp(' Attitude samplig factor out of range. Reduce step'); return end if step<1 step=1; end [xxx,yyy,zzz]=miss_shape; correction=10; xxx = -xxx/(scale_factor*correction); yyy = yyy/(scale_factor*correction); zzz = zzz/(scale_factor*correction); ii=length(x); resto=mod(ii,step); for i=1:step:(ii-resto) theta=pitch(i); phi=roll(i); psi=yaw(i); Tbe=[cos(psi)*cos(theta) sin(psi)*cos(theta) -sin(theta);((cos(psi)*sin(theta)*sin(phi))-(sin(psi)*cos(phi))) ((sin(psi)*sin(theta)*sin(phi))+(cos(psi)*cos(phi))) cos(theta)*sin(phi);((cos(psi)*sin(theta)*cos(phi))+(sin(psi)*sin(phi))) ((sin(psi)*sin(theta)*cos(phi))-(cos(psi)*sin(phi))) cos(theta)*cos(phi)]; x_hat=0.*xxx; y_hat=0.*yyy; z_hat=0.*zzz; for iii=1:size(xxx,1) for jjj=1:size(xxx,2) tmp_b=[xxx(iii,jjj);yyy(iii,jjj);zzz(iii,jjj)]; tmp_e=Tbe*tmp_b; x_hat(iii,jjj)=x(i)+tmp_e(1,1); y_hat(iii,jjj)=y(i)+tmp_e(2,1); z_hat(iii,jjj)=z(i)+tmp_e(3,1); end end plot3(x_hat,y_hat,z_hat); hold on; patch(x_hat,y_hat,z_hat,[1 0 0]); end axis equal; %grid off hold on; plot3(x,y,z); light; grid on; view(82.50,2); xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)'); %the following function is a remake of the matlab function function [x,y,z]=miss_shape num=30; % Number of z-y segments to make the circle count=1; % Counter for number of individual patches theta=[360/2/num:360/num:(360+360/2/num)]*pi/180; len = 25.7; % Total Length (no units) radius = 1.5/2; % Radius of body s_fore = 5; % Start of main body (w.r.t. nose) thr_len = 1.4; % Length of Motor exit rad_throt = 1.3/2; % radius of motor exit l_fore=len-s_fore-thr_len; % Length of main body c_g = 14; % Position of c.g. w.r.t nose % % Fore Body Shape % yc_range = radius*sin(theta); zc_range = -radius*cos(theta); for i = 1:num xcraft{i}=[s_fore s_fore s_fore+l_fore s_fore+l_fore ]-c_g; ycraft{i}=[yc_range(i) yc_range(i+1) yc_range(i+1) yc_range(i)]; zcraft{i}=[zc_range(i) zc_range(i+1) zc_range(i+1) zc_range(i)]; end count=num+1; % % Throttle Shape % yc_range2 = rad_throt*sin(theta);axis zc_range2 = -rad_throt*cos(theta); for i = 1:num xcraft{count}=[len-thr_len len-thr_len len len]-c_g; ycraft{count}=[yc_range(i) yc_range(i+1) yc_range2(i+1) yc_range2(i)]; zcraft{count}=[zc_range(i) zc_range(i+1) zc_range2(i+1) zc_range2(i)]; count=count+1; end % % Nose Shape % for i = 1:num xcraft{count}=[s_fore s_fore 0 s_fore]-c_g; ycraft{count}=[yc_range(i) yc_range(i+1) 0 yc_range(i)]; zcraft{count}=[zc_range(i) zc_range(i+1) 0 zc_range(i)]; count=count+1; end % % Wing shapes % xcraft{count}=[10.2 13.6 14.6 15]-c_g; ycraft{count}=[-zc_range(1) -zc_range(1)+1.5 -zc_range(1)+1.5 -zc_range(1)]; zcraft{count}=[0 0 0 0 ]; xcraft{count+1}=xcraft{count}; ycraft{count+1}=-ycraft{count}; zcraft{count+1}=zcraft{count}; % xcraft{count+2}=xcraft{count}; % ycraft{count+2}=zcraft{count}; % zcraft{count+2}=ycraft{count}; % xcraft{count+3}=xcraft{count}; % ycraft{count+3}=zcraft{count}; % zcraft{count+3}=-ycraft{count}; % % Tail shapes % count=count+2; xcraft{count}=[22.1 22.9 23.3 23.3]-c_g; ycraft{count}=[-zc_range(1) -zc_range(1)+1.1 -zc_range(1)+1.1 -zc_range(1)]; zcraft{count}=[0 0 0 0]; xcraft{count+1}=xcraft{count}; ycraft{count+1}=-ycraft{count}; zcraft{count+1}=zcraft{count}; xcraft{count+2}=xcraft{count}; ycraft{count+2}=zcraft{count}; zcraft{count+2}=ycraft{count}; % xcraft{count+3}=xcraft{count}; % ycraft{count+3}=zcraft{count}; % zcraft{count+3}=-ycraft{count}; count=count+2; % % Combine individual objects into a single set of co-ordinates and roll through 45 degrees % x=[];y=[];z=[]; roll = [1 0 0;0 cos(0/180*pi) sin(0/180*pi);0 -sin(0/180*pi) cos(0/180*pi)]; for i = 1:count x = [x xcraft{i}']; y = [y ycraft{i}']; z = [z zcraft{i}']; end for i =1:4 dum = [x(i,:);y(i,:);z(i,:)]; dum = roll*dum; x(i,:)=dum(1,:); y(i,:)=dum(2,:); z(i,:)=dum(3,:); end % % Rescale vertices % % x = -x/len; % y = y/len; % z = z/len; % End miss_shape
github
mubeipeng/focused_slam-master
Six_DOF_robot_state.m
.m
focused_slam-master/FIRM/All_state/Six_DOF_robot_state.m
12,804
utf_8
d28bb6f56a79a2d7837de7d06cf94932
classdef Six_DOF_robot_state < state_interface % This class encapsulates the state of a 6DOF robot, described by its 3D location and orientation quaternion. properties (Constant) dim = 7; % state dimension [X,Y,Z,q0,q1,q2,q3] zeroQuaternion = [1 ; 0 ; 0 ; 0]; end properties val; % value of the state plot_handle; % handle for the "drawings" associated with the state head_handle; tria_handle; text_handle; % handle for the "displayed text" associated with the state end methods function obj = Six_DOF_robot_state(varargin) obj = obj@state_interface(varargin{:}); end function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distance" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_vector = x1-x2; % signed_dist_position = x1(1:3) - x2(1:3); % [X1-X2, Y1-Y2, Z1-Z2]' % signed_dist_quat = x1(4:7) - x2(4:7); % % if any(abs(signed_dist_quat) > 1) % signed_dist_quat = x1(4:7) + x2(4:7); % end % signed_dist_vector = [signed_dist_position;signed_dist_quat]; end function distance_for_control = compute_distance_for_control(obj,x2) % EST OF ERROR WITH QUAT PRODUCT % x1 = obj.val; % retrieve the value of the state vector if isa(x2,'state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_position = x1(1:3) - x2(1:3); % [X1-X2, Y1-Y2, Z1-Z2]' q_1 = x1(4:7)'; q_2 = x2(4:7)'; q21 = quatmultiply(q_1,quatinv(q_2)); % relative rotation quaternion from nominal to current signed_dist_vector = [signed_dist_position;q21']; distance_for_control = signed_dist_vector; distance_for_control(4)=0; % For quaternion control, we only need to control q1,q2,q3 because q1 is constrained by the normalization relation end function obj = draw(obj, varargin) % The full list of properties for this function is: % 'RobotShape', 'RobotSize', 'TriaColor', 'color', 'HeadShape', % 'HeadSize'. % default values robot_shape = 'point'; robot_size = 1; tria_color = 'b'; head_color = 'b'; head_shape = '*'; head_size = 6; robot_text = []; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotShape') robot_shape = varargin{i+1}; case lower('RobotSize') robot_size = varargin{i+1}; case lower('TriaColor') tria_color = varargin{i+1}; case lower('color') head_color = varargin{i+1}; case lower('HeadShape') head_shape = varargin{i+1}; case lower('HeadSize') head_size = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; otherwise error('This property does not exist.') end end x=obj.val; obj.head_handle = plot3(x(1),x(2),x(3),'Marker',head_shape,'MarkerSize',head_size,'MarkerEdgeColor',head_color,'MarkerFaceColor',head_color); robot_size = 4; vertices_x=[0,-robot_size,-robot_size,-robot_size,-robot_size/2,-robot_size,-robot_size,0]; vertices_y=[0,-robot_size/5,0,0,0,0,robot_size/5,0]; vertices_z=[0,0,0,robot_size/10,0,0,0,0]; q_rot = Quaternion(x(4:7)); % rotation quaternion q_rot = unit(q_rot);% making a normalized quarternion, dont use quatnormalize R = q_rot.R; vert=R*[vertices_x;vertices_y;vertices_z]; % plot the triangle body if strcmpi(robot_shape,'triangle') % strcmpi is not sensitive to letter scase. tmp=get(gca,'NextPlot'); hold on obj.tria_handle = plot3(vert(1,:)+x(1),vert(2,:)+x(2),vert(3,:)+x(3),'color',tria_color); set(gca,'NextPlot',tmp); end % write the text next to the robot % if ~isempty(robot_text) % robot_size_for_text=robot_size*1.5; % we need a slightly bigger robot so that the text does not interfere with actual robot. % vertices_x=[0,-robot_size_for_text,-robot_size_for_text,0]; % vertices_y=[0,-robot_size_for_text/5,robot_size_for_text/5,0]; % R=[cos(th),-sin(th);sin(th),cos(th)]; % vert=R*[vertices_x;vertices_y]; % % text_pos=(vert(:,2)+vert(:,3))/2 + x(1:2); % we add the mid-point of the base of this bigger robot to its heading position to find the text position, right behind the robot. % text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. % obj.text_handle = text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color); % end % obj.tria_handle = [obj.tria_handle,plot_3D_cone_in_2D(x,tria_color)]; end function obj = delete_plot(obj,varargin) % The list of properties for this function is: % 'triangle', 'head'. if isempty(varargin) try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle); obj.head_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end else for i = 1 : length(varargin) switch varargin{i} case 'triangle' try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end case 'head' try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle) obj.head_handle = []; end case 'text' try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end otherwise error('There is no such a handle to delete') end end end end function neighb_plot_handle = draw_neighborhood(obj, scale) tmp_th = 0:0.1:2*pi; x = obj.val(1); y = obj.val(2); neighb_plot_handle = plot3(scale*cos(tmp_th) + x , scale*sin(tmp_th) + y, obj.val(3)); end function YesNo = is_constraint_violated(obj) x = obj.val; YesNo = 0; % initialization obst = obstacles_class.obst; % for abbreviation for i_ob = 1:length(obst) if any(inpolygon(x(1,:),x(2,:),obst{i_ob}(:,1),obst{i_ob}(:,2))) YesNo =1; return end end end function old_limits = zoom_in(obj,zoom_ratio) old_limits = axis; % old_xlim = xlim; % old_ylim = ylim; % old_limits = [old_xlim,old_ylim]; % new_center = obj.val; % new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; % new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; % new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; % new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; % axis([new_xlim,new_ylim]) end function obj = apply_differentiable_constraints(obj) qnorm = norm(obj.val(4:7)); if qnorm ~=0 obj.val(4:7) = obj.val(4:7)/qnorm; end end function J = get_differentiable_constraints_jacobian(obj) q = obj.val(4:7); nq = norm(q); Jq = -nq^(-3)*(q*q')+nq^(-1)*eye(4); J = blkdiag(eye(3),Jq); end end methods (Static) function origin = SpaceOrigin() origin = [zeros(3,1);Six_DOF_robot_state.zeroQuaternion]; % note that the "state" class will be generated on the fly (using TypeDef) function. end function sampled_state = sample_a_valid_state() user_or_random = 'user'; xrange = [0.5 4]; yrange = [0.5 4]; zrange = user_data_class.par.sim.env_z_limits; if strcmp(user_or_random , 'user') [x,y]=ginput(1); if isempty(x) sampled_state = []; return else xyz = rand(1,3) .* [xrange(2)-xrange(1) yrange(2)-yrange(1) zrange(2)-zrange(1)] + ... [xrange(1) yrange(1) zrange(1)]; yaw = rand*2*pi; pitch = -pi/2 + rand*pi; roll = -pi/2 + rand*pi; quat = angle2quat(yaw,pitch,roll); sampled_state = state([x , y , xyz(3), quat]'); end if sampled_state.is_constraint_violated() sampled_state = user_samples_a_state(); end elseif strcmp(user_or_random , 'random') xyz = rand(1,3) .* [xrange(2)-xrange(1) yrange(2)-yrange(1) zrange(2)-zrange(1)] + ... [xrange(1) yrange(1) zrange(1)]; yaw = rand*2*pi; pitch = rand*2*pi; roll = rand*2*pi; quat = angle2quat(yaw,pitch,roll); sampled_state = [xyz, quat]'; else error('not correct!'); end end end end function plot_handle = plot_3D_cone_in_2D(x,color) size_ratio = 0.75; r = 1*size_ratio; h = 2*size_ratio; m = h/r; [R,A] = meshgrid(linspace(0,r,2),linspace(0,2*pi,20)); X = R .* cos(A); Y = R .* sin(A); Z = m*R; X_base = X; Y_base = Y; Z_base = h*ones(size(X_base)); % Cone around the z-axis, point at the origin % mesh(X,Y,Z) X = [X,X_base]; Y = [Y,Y_base]; Z = [Z,Z_base]; % mesh(X,Y,Z) % axis equal % axis([-3 3 -3 3 0 3]) phi = pi/2; X1 = X*cos(phi) - Z*sin(phi); Y1 = Y; Z1 = X*sin(phi) + Z*cos(phi); % Previous cone, rotated by angle phi about the y-axis %mesh(X1,Y1,Z1) % h_cone = surf(X1,Y1,Z1); % set(h_cone,'edgecolor','none','facecolor',color,'facelighting','gouraud'); rot = [x(4) ; x(5) ; x(6) ; x(7)];% rotation state q_rot = Quaternion(rot); q_rot = unit(q_rot);% making a normalized quarternion, dont use quatnormalize Pos = q_rot.R*[X1;Y1;Z1] + repmat(x(1:3),1,size(X1)); X2 = Pos(1,:); Y2 = Pos(2,:); Z2 = Pos(3,:); % Second cone rotated by angle theta about the z-axis plot_handle = mesh(X2,Y2,Z2); % axis equal % set(gca,'PlotBoxAspectRatio',[1 1 1]); % camlight(135,180); % view([30,25]); set(plot_handle,'edgecolor','none','facecolor',color,'facelighting','phong'); % xlabel('x') % ylabel('y') % zlabel('z') end
github
mubeipeng/focused_slam-master
revolute_joint_manipulator_state.m
.m
focused_slam-master/FIRM/All_state/revolute_joint_manipulator_state.m
9,225
utf_8
ff960810a44dc0b18ff184eae6a8abca
classdef revolute_joint_manipulator_state < state_interface % This class encapsulates the state of the system. properties (Constant) num_revolute_joints = user_data_class.par.state_parameters.num_revolute_joints; dim = revolute_joint_manipulator_state.num_revolute_joints; % state dimension link_length = 0.5; end properties val; % value of the state joint_2D_locations; % 2D locations of joints in the plane plot_handle; % handle for the "drawings" associated with the state text_handle; % handle for the "displayed text" associated with the state end methods function obj = revolute_joint_manipulator_state(varargin) % constructor function obj = obj@state_interface(varargin{:}); th = obj.val; sum_theta = 0; % initialization % since teh manipulator works in a plane, the rotation has to be a 2by2 matrix end_link = [0;0]; % this is the location in the plane that the beginning of the manipulator is attached to for i = 1:revolute_joint_manipulator_state.num_revolute_joints sum_theta = sum_theta + th(i); % at i-th iteration R_prod is the product of R1*R2*...*Ri start_link = end_link(:,max(i-1,1)); % 2D position of the start of i-th link in plane end_link(:,i) = obj.Rot_2D(sum_theta)*[obj.link_length;0] + start_link; % 2D position of the end of i-th link in plane % [obj.link_length;0] means that the length of the i-th joint is 1. end obj.joint_2D_locations = end_link; % Note that the i-th column of this matrix is the 2D location of the end of i-th link in the manipulator. end end methods function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distnace" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'revolute_joint_manipulator_state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_vector = x1 - x2; % Following part takes care of periodicity in heading angle representation. for i = 1:obj.num_revolute_joints th_dist = signed_dist_vector(i); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end signed_dist_vector(i) = th_dist_bounded; % updating the angle distance end end function obj = draw(obj, varargin) % draw state manip_color = 'b'; %default color robot_text = []; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('color') manip_color = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; end end all_joints = [ [0;0] , obj.joint_2D_locations ]; obj.plot_handle = plot( all_joints(1,:) , all_joints(2,:) , 'color', manip_color); if ~isempty(robot_text) text_pos = obj.joint_2D_locations(:,end); text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. obj.text_handle = text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color); end end function obj = delete_plot(obj,varargin) % delete state drawings try delete(obj.plot_handle); end obj.plot_handle =[]; end function neighb_plot_handle = draw_neighborhood(obj, scale) disp('Not yet implemented'); neighb_plot_handle = 'something'; end function YesNo = is_constraint_violated(obj) % this function checks if the "state" is a collilsion-free one or not. YesNo = 0; % initialization all_joints = [ [0;0] , obj.joint_2D_locations ]; % Actually, this is a polyline % first we check the self-intersections % [x_inters,~] = polyxpoly(all_joints(1,:),all_joints(2,:),all_joints(1,:),all_joints(2,:)); % the intersection points must be the vertices of the manipulator polygon % if length(x_inters)>size(all_joints,2) % if there is any more intersection points than the number of manipulator joints, that means that we have a self-intersection % YesNo=1; % return % end % now, we check the intersection with obstacls Obst = obstacles_class.obst; N_obst=size(Obst,2); for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,all_joints(1,:),all_joints(2,:)); if ~isempty(x_inters) YesNo=1; return end end end function old_limits = zoom_in(obj,zoom_ratio) old_xlim = xlim; old_ylim = ylim; old_limits = [old_xlim,old_ylim]; new_center = obj.joint_2D_locations(:,end); new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; axis([new_xlim,new_ylim]) end end methods (Static) function sampled_state = sample_a_valid_state() user_or_random = 'random'; if strcmp(user_or_random , 'user') sampled_state = user_samples_a_state(); elseif strcmp(user_or_random , 'random') sampled_state = randomly_sample_a_state(); else error('not correct!'); end end end methods (Access = private) function draw_link() end function R = Rot_2D(obj,th) R = [cos(th) -sin(th);sin(th) cos(th)]; end end end function sampled_state = user_samples_a_state() x_circle = cos(0:0.1:2*pi)*revolute_joint_manipulator_state.link_length; y_circle = sin(0:0.1:2*pi)*revolute_joint_manipulator_state.link_length; % to plot indicator (helper) circles end_link = [0;0]; % this is the location in the plane that the beginning of the manipulator is attached to for i = 1:revolute_joint_manipulator_state.num_revolute_joints circle_handle = plot(x_circle + end_link(1), y_circle + end_link(2)); circle_handle = [circle_handle , plot(end_link(1),end_link(2),'*')]; [x,y]=ginput(1); if isempty(x) delete(circle_handle); sampled_state = []; return else start_link = end_link; % 2D position of the start of i-th link in plane rel_vector = [x;y] - start_link; % relative vector rel_vector = rel_vector/norm(rel_vector)*revolute_joint_manipulator_state.link_length; % making the length of link equal to "state.link_length" end_link = rel_vector + start_link; tmp_h = plot( [start_link(1) , end_link(1)] , [start_link(2) , end_link(2)] ,'r'); delete(circle_handle); th_absolute(i) = atan2(end_link(2) - start_link(2) , end_link(1) - start_link(1)) ; end end th_joints = [th_absolute(1) , diff(th_absolute)]; for i = 1:revolute_joint_manipulator_state.num_revolute_joints th_dist = th_joints(i); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end th_joints(i) = th_dist_bounded; % updating the angle distance end sampled_state = revolute_joint_manipulator_state(th_joints); if sampled_state.is_constraint_violated() sampled_state = user_samples_a_state(); end end function sampled_state = randomly_sample_a_state() sampled_state_val = rand(revolute_joint_manipulator_state.dim,1)*2*pi-pi; sampled_state = revolute_joint_manipulator_state(sampled_state_val); if sampled_state.is_constraint_violated() sampled_state = randomly_sample_a_state(); end end
github
mubeipeng/focused_slam-master
multi_robot_positional_state.m
.m
focused_slam-master/FIRM/All_state/multi_robot_positional_state.m
10,155
utf_8
141d95173c43240a01ca1125454acd98
classdef multi_robot_positional_state < state_interface % This class encapsulates the state of a planar robot, described by its 2D location and heading angle. properties num_robots; dim; % state dimension val; % value of the state plot_handle=[]; % handle for the "drawings" associated with the state head_handle=[]; tria_handle=[]; text_handle=[]; % handle for the "displayed text" associated with the state end methods function obj = multi_robot_positional_state(varargin) % Note that the format (spacing and words) of this function must remain the same (as it is used in the typeDef function) obj = obj@state_interface(varargin{:}); num_robots_user = user_data_class.par.state_parameters.num_robots; obj.num_robots = num_robots_user; obj.dim = 2*num_robots_user; end function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distnace" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'multi_robot_positional_state'), x2=x2.val; end % retrieve the value of the state vector % Note that the format (spacing and words) of this function must remain the same (as it is used in the typeDef function) signed_dist_vector = x1 - x2; end function setNumRobots (num_robots_inp) obj.num_robots = num_robots_inp; end function obj = draw(obj, varargin) % The full list of properties for this function is: % 'RobotShape', 'RobotSize', 'TriaColor', 'color', 'HeadShape', % 'HeadSize'. % default values robot_shape = 'triangle'; robot_size = 0.5; robot_color = {'r','g','b'}; head_shape = {'s','o','d'}; head_size = 6; robot_text = {}; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotShape') robot_shape = varargin{i+1}; case lower('RobotSize') robot_size = varargin{i+1}; case lower('TriaColor') % robot_color = varargin{i+1}; case lower('color') % robot_color = varargin{i+1}; case lower('HeadShape') % head_shape = varargin{i+1}; case lower('HeadSize') head_size = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; otherwise error('This property does not exist.') end end tmp=get(gca,'NextPlot'); hold on for i = 1:obj.num_robots x = obj.val(2*i-1:2*i); obj.head_handle = [obj.head_handle,plot(x(1),x(2),'Marker',head_shape{i},'MarkerSize',head_size,'MarkerEdgeColor',robot_color{i},'MarkerFaceColor',robot_color{i})]; % write the text next to the robot if ~isempty(robot_text) text_pos= x(1:2)+2; % we shift the text a little bit away from the node. % we add the mid-point of the base of this bigger robot to its heading position to find the text position, right behind the robot. text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. obj.text_handle = [obj.text_handle,text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color)]; end end set(gca,'NextPlot',tmp); end function obj = delete_plot(obj,varargin) % The list of properties for this function is: % 'triangle', 'head'. if isempty(varargin) try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle); obj.head_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end else for i = 1 : length(varargin) switch varargin{i} case 'triangle' try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end case 'head' try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle) obj.head_handle = []; end case 'text' try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end otherwise error('There is no such a handle to delete') end end end end function neighb_plot_handle = draw_neighborhood(obj, scale) tmp_th = 0:0.1:2*pi; neighb_plot_handle = []; for i = 1:obj.num_robots x = obj.val(2*i-1); y = obj.val(2*i); tmp_h = plot(scale*cos(tmp_th) + x , scale*sin(tmp_th) + y); neighb_plot_handle = [neighb_plot_handle , tmp_h]; %#ok<AGROW> end end function YesNo = is_constraint_violated(obj) YesNo = 0; % initialization obst = obstacles_class.obst; % for abbreviation for j = 1:obj.num_robots x = obj.val(2*j-1:2*j); for i_ob = 1:length(obst) if any(inpolygon(x(1,:),x(2,:),obst{i_ob}(:,1),obst{i_ob}(:,2))) YesNo =1; return end end end end function old_limits = zoom_in(obj,zoom_ratio) %#ok<INUSD> old_xlim = xlim; old_ylim = ylim; old_limits = [old_xlim,old_ylim]; % new_center = obj.joint_2D_locations(:,end); % new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; % new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; % new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; % new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; % axis([new_xlim,new_ylim]) end end methods function sampled_state = sample_a_valid_state(obj) product_space_sampling_flag = 0; if product_space_sampling_flag == 1 sampled_state = product_space_sampling(); return end disp('we have to check the validity also') robots_val = []; for i = 1:obj.num_robots [x,y]=ginput(1); if isempty(x) sampled_state = []; return else robots_val = [robots_val ; [x ; y ] ]; %#ok<AGROW> end end sampled_state = feval(class(obj),robots_val, obj.num_robots); end end end function sampled_state_product_space = product_space_sampling() if state.dim ~= 6, error('this function only works for 3 planar (2D) robots'); end sampled_state = state.empty; finish_flag = 0; max_samples = 20; for i_samp = 1:max_samples %---------we select a VALID single joint sample while 1 [x1,y1]=ginput(1); if isempty(x1) finish_flag = 1; break end window_size = 5; x2 = x1+rand*window_size - window_size/2; x3 = x1+rand*window_size - window_size/2; y2 = y1+rand*window_size - window_size/2; y3 = y1+rand*window_size - window_size/2; tmp_state = state([x1;y1;x2;y2;x3;y3]); if ~tmp_state.is_constraint_violated() break end end %---------- if finish_flag == 1 break else tmp_state.draw(); sampled_state = [sampled_state , tmp_state]; end end %for i_rob = 1:state.num_robots n_s = length(sampled_state); sampled_state_product_space = state.empty(0,n_s^3); for i_samp = 1:n_s for j_samp = 1:n_s for k_samp = 1:n_s product_sample = state ( [sampled_state(i_samp).val(1:2) ; sampled_state(j_samp).val(3:4) ; sampled_state(k_samp).val(5:6)] ); sampled_state_product_space = [sampled_state_product_space , product_sample]; end end end end
github
mubeipeng/focused_slam-master
planar_robot_XYTheta_state.m
.m
focused_slam-master/FIRM/All_state/planar_robot_XYTheta_state.m
10,745
utf_8
4c5314bb8c6748c04648327554223ff7
classdef planar_robot_XYTheta_state < state_interface % This class encapsulates the state of a planar robot, described by its 2D location and heading angle. properties (Constant) label = 'planar_robot_XYTheta_state'; dim = 3; % state dimension sup_norm_weights_nonNormalized = 1./[1 ; 1 ; inf]; sup_norm_weights = planar_robot_XYTheta_state.sup_norm_weights_nonNormalized / norm(planar_robot_XYTheta_state.sup_norm_weights_nonNormalized); % we normalize the weights here. FIRM_node_mean_neighborhood_weights = [0.08 ; 0.08 ; 3 *pi/180 ] ; % this only works for 3D state spaces % note that the last entry, ie theta's neighborhood, has to be in radian. end properties val; % value of the state plot_handle; % handle for the "drawings" associated with the state head_handle; tria_handle; text_handle; % handle for the "displayed text" associated with the state end methods function obj = planar_robot_XYTheta_state(varargin) obj = obj@state_interface(varargin{:}); end function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distnace" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_vector = x1 - x2; % Following part takes care of periodicity in heading angle representation. th_dist = signed_dist_vector(3); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end signed_dist_vector(3) = th_dist_bounded; % updating the angle distance end function obj = draw(obj, varargin) % The full list of properties for this function is: % 'RobotShape', 'RobotSize', 'TriaColor', 'color', 'HeadShape', % 'HeadSize'. % default values robot_shape = 'point'; robot_size = 0.5; tria_color = 'b'; head_color = 'b'; head_shape = '*'; head_size = 6; robot_text = []; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotShape') robot_shape = varargin{i+1}; case lower('RobotSize') robot_size = varargin{i+1}; case lower('TriaColor') tria_color = varargin{i+1}; case lower('color') head_color = varargin{i+1}; case lower('HeadShape') head_shape = varargin{i+1}; case lower('HeadSize') head_size = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; otherwise error('This property does not exist.') end end x=obj.val; obj.head_handle = plot(x(1),x(2),'Marker',head_shape,'MarkerSize',head_size,'MarkerEdgeColor',head_color,'MarkerFaceColor',head_color); th=x(3); vertices_x=[0,-robot_size,-robot_size,0]; vertices_y=[0,-robot_size/5,robot_size/5,0]; R=[cos(th),-sin(th);sin(th),cos(th)]; vert=R*[vertices_x;vertices_y]; % plot the triangle body if strcmpi(robot_shape,'triangle') % strcmpi is not sensitive to letter scase. tmp=get(gca,'NextPlot'); hold on obj.tria_handle = plot(vert(1,:)+x(1),vert(2,:)+x(2),'color',tria_color); set(gca,'NextPlot',tmp); end % write the text next to the robot if ~isempty(robot_text) robot_size_for_text=robot_size*1.5; % we need a slightly bigger robot so that the text does not interfere with actual robot. vertices_x=[0,-robot_size_for_text,-robot_size_for_text,0]; vertices_y=[0,-robot_size_for_text/5,robot_size_for_text/5,0]; R=[cos(th),-sin(th);sin(th),cos(th)]; vert=R*[vertices_x;vertices_y]; text_pos=(vert(:,2)+vert(:,3))/2 + x(1:2); % we add the mid-point of the base of this bigger robot to its heading position to find the text position, right behind the robot. text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. obj.text_handle = text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color); end obj.tria_handle = [obj.tria_handle,plot_3D_cone_in_2D(x(1),x(2),th,tria_color)]; end function obj = delete_plot(obj,varargin) % The list of properties for this function is: % 'triangle', 'head'. if isempty(varargin) try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle); obj.head_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end else for i = 1 : length(varargin) switch varargin{i} case 'triangle' try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end case 'head' try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle) obj.head_handle = []; end case 'text' try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end otherwise error('There is no such a handle to delete') end end end end function neighb_plot_handle = draw_neighborhood(obj, scale) tmp_th = 0:0.1:2*pi; x = obj.val(1); y = obj.val(2); neighb_plot_handle = plot(scale*cos(tmp_th) + x , scale*sin(tmp_th) + y); end function YesNo = is_constraint_violated(obj,sim) x = obj.val; YesNo = 0; % initialization obst = sim.obstacle.obst; % for abbreviation for i_ob = 1:length(obst) if any(inpolygon(x(1,:),x(2,:),obst{i_ob}(:,1),obst{i_ob}(:,2))) YesNo =1; return end end end function old_limits = zoom_in(obj,zoom_ratio) old_xlim = xlim; old_ylim = ylim; old_limits = [old_xlim,old_ylim]; new_center = obj.val; new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; axis([new_xlim,new_ylim]) end end methods (Static) function sampled_state = sample_a_valid_state() user_or_random = 'user'; if strcmp(user_or_random , 'user') [x,y]=ginput(1); if isempty(x) sampled_state = []; return else random_theta = rand*2*pi - pi; % generates a random orientation between -pi and pi sampled_state = state([x ; y ; random_theta]); end if sampled_state.is_constraint_violated() sampled_state = user_samples_a_state(); end elseif strcmp(user_or_random , 'random') error('not yet implemented') else error('not correct!'); end end end end function plot_handle = plot_3D_cone_in_2D(x_robot,y_robot,theta_robot,color) size_ratio = 0.75; r = 1*size_ratio; h = 2*size_ratio; m = h/r; [R,A] = meshgrid(linspace(0,r,2),linspace(0,2*pi,20)); X = R .* cos(A); Y = R .* sin(A); Z = m*R; X_base = X; Y_base = Y; Z_base = h*ones(size(X_base)); % Cone around the z-axis, point at the origin % mesh(X,Y,Z) X = [X,X_base]; Y = [Y,Y_base]; Z = [Z,Z_base]; % mesh(X,Y,Z) % axis equal % axis([-3 3 -3 3 0 3]) phi = pi/2; X1 = X*cos(phi) - Z*sin(phi); Y1 = Y; Z1 = X*sin(phi) + Z*cos(phi); % Previous cone, rotated by angle phi about the y-axis %mesh(X1,Y1,Z1) % h_cone = surf(X1,Y1,Z1); % set(h_cone,'edgecolor','none','facecolor',color,'facelighting','gouraud'); X2 = X1*cos(theta_robot) - Y1*sin(theta_robot) + x_robot; Y2 = X1*sin(theta_robot) + Y1*cos(theta_robot) + y_robot; Z2 = Z1; % Second cone rotated by angle theta about the z-axis plot_handle = mesh(X2,Y2,Z2); % axis equal % set(gca,'PlotBoxAspectRatio',[1 1 1]); % camlight(135,180); % view([30,25]); set(plot_handle,'edgecolor','none','facecolor',color,'facelighting','phong'); % xlabel('x') % ylabel('y') % zlabel('z') end
github
mubeipeng/focused_slam-master
Multi_planar_robots_XYTheta_state.m
.m
focused_slam-master/FIRM/All_state/Multi_planar_robots_XYTheta_state.m
11,131
utf_8
536f5a239512b610e02ff2fee58a0af1
classdef Multi_planar_robots_XYTheta_state < state_interface % This class encapsulates the state of a planar robot, described by its 2D location and heading angle. properties (Constant) num_robots = user_data_class.par.state_parameters.num_robots; dim = 3*state.num_robots; % state dimension end properties val; % value of the state plot_handle=[]; % handle for the "drawings" associated with the state head_handle=[]; tria_handle=[]; text_handle=[]; % handle for the "displayed text" associated with the state end methods function obj = Multi_planar_robots_XYTheta_state(varargin) obj = obj@state_interface(varargin{:}); end function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distnace" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_vector = x1 - x2; % Following part takes care of periodicity in heading angle representation. for i = 1:obj.num_robots th_dist = signed_dist_vector(3*i); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end signed_dist_vector(3*i) = th_dist_bounded; % updating the angle distance end end function obj = draw(obj, varargin) % The full list of properties for this function is: % 'RobotShape', 'RobotSize', 'TriaColor', 'color', 'HeadShape', % 'HeadSize'. % default values robot_shape = 'triangle'; robot_size = 0.5; robot_color = 'b'; head_shape = '*'; head_size = 6; robot_text = {}; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('RobotShape') robot_shape = varargin{i+1}; case lower('RobotSize') robot_size = varargin{i+1}; case lower('TriaColor') robot_color = varargin{i+1}; case lower('color') robot_color = varargin{i+1}; case lower('HeadShape') head_shape = varargin{i+1}; case lower('HeadSize') head_size = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; otherwise error('This property does not exist.') end end if user_data_class.par.Lighting_and_3D_plots == 1 robot_shape = 'cone'; % we overwrite user's choice if the simulation has to be done in 3D and under camera light end tmp=get(gca,'NextPlot'); hold on for i = 1:obj.num_robots x = obj.val(3*i-2:3*i); obj.head_handle = [obj.head_handle,plot(x(1),x(2),'Marker',head_shape,'MarkerSize',head_size,'MarkerEdgeColor',robot_color,'MarkerFaceColor',robot_color)]; th = x(3); if strcmpi(robot_shape,'triangle') % strcmpi is not sensitive to letter scase. vertices_x = [0,-robot_size,-robot_size,0]; vertices_y = [0,-robot_size/5,robot_size/5,0]; R = [cos(th),-sin(th);sin(th),cos(th)]; vert = R*[vertices_x;vertices_y]; obj.tria_handle = [obj.tria_handle,plot(vert(1,:)+x(1),vert(2,:)+x(2),'color',robot_color)]; % plot the triangle body elseif strcmpi(robot_shape,'cone') % strcmpi is not sensitive to letter scase. obj.tria_handle = [obj.tria_handle,plot_3D_cone_in_2D(x(1),x(2),th,robot_color)]; % plot the 3D conde body end % write the text next to the robot if ~isempty(robot_text) robot_size_for_text=robot_size*1.5; % we need a slightly bigger robot so that the text does not interfere with actual robot. vertices_x=[0,-robot_size_for_text,-robot_size_for_text,0]; vertices_y=[0,-robot_size_for_text/5,robot_size_for_text/5,0]; R=[cos(th),-sin(th);sin(th),cos(th)]; vert=R*[vertices_x;vertices_y]; text_pos=(vert(:,2)+vert(:,3))/2 + x(1:2); % we add the mid-point of the base of this bigger robot to its heading position to find the text position, right behind the robot. text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. obj.text_handle = [obj.text_handle,text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color)]; end end set(gca,'NextPlot',tmp); end function obj = delete_plot(obj,varargin) % The list of properties for this function is: % 'triangle', 'head'. if isempty(varargin) try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle); obj.head_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end else for i = 1 : length(varargin) switch varargin{i} case 'triangle' try % Avoid errors if the graphic object has already been deleted delete(obj.tria_handle); obj.tria_handle = []; end case 'head' try % Avoid errors if the graphic object has already been deleted delete(obj.head_handle) obj.head_handle = []; end case 'text' try % Avoid errors if the graphic object has already been deleted delete(obj.text_handle); obj.text_handle = []; end otherwise error('There is no such a handle to delete') end end end end function neighb_plot_handle = draw_neighborhood(obj, scale) tmp_th = 0:0.1:2*pi; neighb_plot_handle = []; for i = 1:obj.num_robots x = obj.val(3*i-2); y = obj.val(3*i-1); tmp_h = plot(scale*cos(tmp_th) + x , scale*sin(tmp_th) + y); neighb_plot_handle = [neighb_plot_handle , tmp_h]; %#ok<AGROW> end end function YesNo = is_constraint_violated(obj) YesNo = 0; % initialization obst = obstacles_class.obst; % for abbreviation for j = 1:obj.num_robots x = obj.val(3*j-2:3*j-1); for i_ob = 1:length(obst) if any(inpolygon(x(1,:),x(2,:),obst{i_ob}(:,1),obst{i_ob}(:,2))) YesNo =1; return end end end end function old_limits = zoom_in(obj,zoom_ratio) old_xlim = xlim; old_ylim = ylim; old_limits = [old_xlim,old_ylim]; % new_center = obj.joint_2D_locations(:,end); % new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; % new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; % new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; % new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; % axis([new_xlim,new_ylim]) end end methods (Static) function sampled_state = sample_a_valid_state() disp('we have to check the validity also') robots_val = []; for i = 1:state.num_robots [x,y]=ginput(1); if isempty(x) sampled_state = []; return else random_theta = rand*2*pi - pi; % generates a random orientation between -pi and pi robots_val = [robots_val ; [x ; y ; random_theta] ]; %#ok<AGROW> end end sampled_state = state(robots_val); end end end function plot_handle = plot_3D_cone_in_2D(x_robot,y_robot,theta_robot,color) size_ratio = 0.75; r = 1*size_ratio; h = 2*size_ratio; m = h/r; [R,A] = meshgrid(linspace(0,r,2),linspace(0,2*pi,20)); X = R .* cos(A); Y = R .* sin(A); Z = m*R; X_base = X; Y_base = Y; Z_base = h*ones(size(X_base)); % Cone around the z-axis, point at the origin % mesh(X,Y,Z) X = [X,X_base]; Y = [Y,Y_base]; Z = [Z,Z_base]; % mesh(X,Y,Z) % axis equal % axis([-3 3 -3 3 0 3]) phi = pi/2; X1 = X*cos(phi) - Z*sin(phi); Y1 = Y; Z1 = X*sin(phi) + Z*cos(phi); % Previous cone, rotated by angle phi about the y-axis %mesh(X1,Y1,Z1) % h_cone = surf(X1,Y1,Z1); % set(h_cone,'edgecolor','none','facecolor',color,'facelighting','gouraud'); X2 = X1*cos(theta_robot) - Y1*sin(theta_robot) + x_robot; Y2 = X1*sin(theta_robot) + Y1*cos(theta_robot) + y_robot; Z2 = Z1; % Second cone rotated by angle theta about the z-axis plot_handle = mesh(X2,Y2,Z2); % axis equal % set(gca,'PlotBoxAspectRatio',[1 1 1]); % camlight(135,180); % view([30,25]); set(plot_handle,'edgecolor','none','facecolor',color,'facelighting','phong'); % xlabel('x') % ylabel('y') % zlabel('z') end
github
mubeipeng/focused_slam-master
Planar_dyn_manipulator_state.m
.m
focused_slam-master/FIRM/All_state/Planar_dyn_manipulator_state.m
9,738
utf_8
e63d596a57b2945029a1a83c631b976e
classdef Planar_dyn_manipulator_state < state_interface % This class encapsulates the state of the system. properties (Constant) num_revolute_joints = user_data_class.par.state_parameters.num_revolute_joints; dim = 2*Planar_dyn_manipulator_state.num_revolute_joints; % state dimension link_length = 0.5; end properties val; % value of the state joint_2D_locations; % 2D locations of joints in the plane plot_handle; % handle for the "drawings" associated with the state text_handle; % handle for the "displayed text" associated with the state end methods function obj = Planar_dyn_manipulator_state(varargin) % constructor function obj = obj@state_interface(varargin{:}); th = obj.val(1:Planar_dyn_manipulator_state.num_revolute_joints); sum_theta = 0; % initialization % since teh manipulator works in a plane, the rotation has to be a 2by2 matrix end_link = [0;0]; % this is the location in the plane that the beginning of the manipulator is attached to for i = 1:Planar_dyn_manipulator_state.num_revolute_joints sum_theta = sum_theta + th(i); % at i-th iteration R_prod is the product of R1*R2*...*Ri start_link = end_link(:,max(i-1,1)); % 2D position of the start of i-th link in plane end_link(:,i) = obj.Rot_2D(sum_theta)*[obj.link_length;0] + start_link; % 2D position of the end of i-th link in plane % [obj.link_length;0] means that the length of the i-th joint is 1. end obj.joint_2D_locations = end_link; % Note that the i-th column of this matrix is the 2D location of the end of i-th link in the manipulator. end end methods function signed_dist_vector = signed_element_wise_dist(obj,x2) % this function returns the "Signed element-wise distnace" between two states x1 and x2 x1 = obj.val; % retrieve the value of the state vector if isa(x2,'Planar_dyn_manipulator_state'), x2=x2.val; end % retrieve the value of the state vector signed_dist_vector = x1 - x2; % Following part takes care of periodicity in heading angle representation. for i = 1:obj.num_revolute_joints th_dist = signed_dist_vector(i); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end signed_dist_vector(i) = th_dist_bounded; % updating the angle distance end end function obj = draw(obj, varargin) % draw state manip_color = 'b'; %default color robot_text = []; font_size = 15; text_color = 'b'; for i = 1 : 2 : length(varargin) switch lower(varargin{i}) case lower('color') manip_color = varargin{i+1}; case lower('text') robot_text = varargin{i+1}; case lower('fontsize') font_size = varargin{i+1}; case lower('textcolor') text_color = varargin{i+1}; end end all_joints = [ [0;0] , obj.joint_2D_locations ]; obj.plot_handle = plot( all_joints(1,:) , all_joints(2,:) , 'color', manip_color); if ~isempty(robot_text) text_pos = obj.joint_2D_locations(:,end); text_pos(1) = text_pos(1) - 0.45; % for some reason MATLAB shifts the starting point of the text a little bit to the right. So, here we return it back. obj.text_handle = text(text_pos(1),text_pos(2),robot_text,'fontsize',font_size,'color',text_color); end end function obj = delete_plot(obj,varargin) % delete state drawings try delete(obj.plot_handle); end obj.plot_handle =[]; end function neighb_plot_handle = draw_neighborhood(obj, scale) disp('state.draw_neighborhood has not been implemented yet'); neighb_plot_handle = []; end function YesNo = is_constraint_violated(obj) % this function checks if the "state" is a collilsion-free one or not. YesNo = 0; % initialization all_joints = [ [0;0] , obj.joint_2D_locations ]; % Actually, this is a polyline % first we check the self-intersections [x_inters,~] = polyxpoly(all_joints(1,:),all_joints(2,:),all_joints(1,:),all_joints(2,:)); % the intersection points must be the vertices of the manipulator polygon if length(x_inters)>size(all_joints,2) % if there is any more intersection points than the number of manipulator joints, that means that we have a self-intersection YesNo=1; return end % now, we check the intersection with obstacls Obst = obstacles_class.obst; N_obst=size(Obst,2); for ib=1:N_obst X_obs=[Obst{ib}(:,1);Obst{ib}(1,1)]; Y_obs=[Obst{ib}(:,2);Obst{ib}(1,2)]; [x_inters,~] = polyxpoly(X_obs,Y_obs,all_joints(1,:),all_joints(2,:)); if ~isempty(x_inters) YesNo=1; return end end end function old_limits = zoom_in(obj,zoom_ratio) old_xlim = xlim; old_ylim = ylim; old_limits = [old_xlim,old_ylim]; new_center = obj.joint_2D_locations(:,end); new_x_length = (old_xlim(2)-old_xlim(1))/zoom_ratio; new_y_length = (old_ylim(2)-old_ylim(1))/zoom_ratio; new_xlim = new_center(1) + [-new_x_length,new_x_length]/2; new_ylim = new_center(2) + [-new_y_length,new_y_length]/2; axis([new_xlim,new_ylim]) end end methods (Static) function sampled_state = sample_a_valid_state() user_or_random = 'user'; if strcmp(user_or_random , 'user') sampled_state = user_samples_a_state(); elseif strcmp(user_or_random , 'random') sampled_state = randomly_sample_a_state(); else error('not correct!'); end end end methods (Access = private) function R = Rot_2D(obj,th) R = [cos(th) -sin(th);sin(th) cos(th)]; end end end function sampled_state = user_samples_a_state() x_circle = cos(0:0.1:2*pi)*Planar_dyn_manipulator_state.link_length; y_circle = sin(0:0.1:2*pi)*Planar_dyn_manipulator_state.link_length; % to plot indicator (helper) circles end_link = [0;0]; % this is the location in the plane that the beginning of the manipulator is attached to for i = 1:Planar_dyn_manipulator_state.num_revolute_joints circle_handle = plot(x_circle + end_link(1), y_circle + end_link(2)); circle_handle = [circle_handle , plot(end_link(1),end_link(2),'*')]; [x,y]=ginput(1); if isempty(x) delete(circle_handle); sampled_state = []; return else start_link = end_link; % 2D position of the start of i-th link in plane rel_vector = [x;y] - start_link; % relative vector rel_vector = rel_vector/norm(rel_vector)*Planar_dyn_manipulator_state.link_length; % making the length of link equal to "state.link_length" end_link = rel_vector + start_link; tmp_h = plot( [start_link(1) , end_link(1)] , [start_link(2) , end_link(2)] ,'r'); delete(circle_handle); th_absolute(i,1) = atan2(end_link(2) - start_link(2) , end_link(1) - start_link(1)) ; end end th_joints = [th_absolute(1) ; diff(th_absolute)]; for i = 1:Planar_dyn_manipulator_state.num_revolute_joints th_dist = th_joints(i); if th_dist >= 0 th_dist_bounded = mod( th_dist , 2*pi ); if th_dist_bounded > pi, th_dist_bounded = th_dist_bounded - 2*pi; end else th_dist_bounded = - mod( -th_dist , 2*pi ); if th_dist_bounded < -pi, th_dist_bounded = th_dist_bounded + 2*pi; end end th_joints(i) = th_dist_bounded; % updating the angle distance end velocities = zeros( Planar_dyn_manipulator_state.num_revolute_joints , 1); % we are sampling in the equilibrium space sampled_state = Planar_dyn_manipulator_state([th_joints;velocities]); if sampled_state.is_constraint_violated() sampled_state = user_samples_a_state(); end end function sampled_state = randomly_sample_a_state() random_configuration = rand(Planar_dyn_manipulator_state.dim/2,1)*2*pi-pi; zero_velocities = zeros( Planar_dyn_manipulator_state.num_revolute_joints , 1); % we are sampling in the equilibrium space sampled_state_val = [random_configuration;zero_velocities]; sampled_state = Planar_dyn_manipulator_state(sampled_state_val); link_stretch = norm(sampled_state.joint_2D_locations(:,end)); % if the base is not [0;0], we need to subtract the base before computing the norm if link_stretch<1.9 || sampled_state.is_constraint_violated() % The first condition tries to reject the samples that are not streched enough! sampled_state = randomly_sample_a_state(); end end
github
mubeipeng/focused_slam-master
generate_measurements.m
.m
focused_slam-master/focused_mapping/lib/generate_measurements.m
4,391
utf_8
aaa062480dd0541c1874d179f055ca46
function [lm_edge, t] = generate_measurements(name,J, lm_edge, variableList, focus_lm_list, N_select) tic switch name case 'focus_select' selectIdx = selection_focus(J, variableList, focus_lm_list, N_select, lm_edge); case 'full_select' selectIdx = selection_full(J, variableList, N_select, lm_edge); case 'down_select' selectIdx = selection_down(focus_lm_list, N_select, lm_edge); case 'down_all' selectIdx = false(length(lm_edge.id1),1); for i=1:length(focus_lm_list) selectIdx(lm_edge.id2==focus_lm_list(i))=true; end otherwise fprintf('unrecoginizable selection method'); end t = toc; % generate reduced set of measurements lm_edge.id1 = lm_edge.id1(selectIdx); lm_edge.id2 = lm_edge.id2(selectIdx); lm_edge.dpos = lm_edge.dpos(:,selectIdx); lm_edge.infoVec = lm_edge.infoVec(:,selectIdx); end %% function selectIdx = selection_down(lm_focus_list, N_select, landmark_edge) selectIdx = false(length(landmark_edge.id1),1); candidates=[]; for i=1:length(lm_focus_list) candidates=[candidates find(landmark_edge.id2==lm_focus_list(i))]; end N = length(candidates); delta = floor((N-1)/N_select); start = ceil(rand*(N - N_select*delta)); selectIdx(candidates(start:delta:N))=true; end %% function [selectIdx] = selection_focus(J, variableList, lm_focus_list, N, landmark_edge) % compute focus covariance matrix and marginal unfocused covariance matrix focusIdx = false(size(variableList)); for t=1:length(lm_focus_list) focusIdx(variableList==lm_focus_list(t))=true; end cov_full = inv(J); cov_cc = zeros(size(J)); cov_cc(~focusIdx,~focusIdx) = cov_full(~focusIdx,~focusIdx)... - cov_full(~focusIdx,focusIdx)/cov_full(focusIdx,focusIdx)*cov_full(focusIdx,~focusIdx); selectIdx = false(1, length(landmark_edge.id1)); fprintf('compute measure'); for i=1:N fprintf(' %i',i); % compute values edge_value = zeros(size(variableList)); parfor t=1:length(landmark_edge.id1) if ~selectIdx(t) vIdx1 = find(variableList==landmark_edge.id1(t)); vIdx2 = find(variableList==landmark_edge.id2(t)); vIdx = [vIdx1 vIdx2]; noise = landmark_edge.infoVec(1,t); edge_value(t) = log(1+noise*[1 -1]*cov_full(vIdx,vIdx)*[1;-1])... -log(1+noise*[1 -1]*cov_cc(vIdx,vIdx)*[1;-1]); end end [~,idx] = max(edge_value); selectIdx(idx)=true; vIdx1 = find(variableList==landmark_edge.id1(idx)); vIdx2 = find(variableList==landmark_edge.id2(idx)); vIdx = [vIdx1 vIdx2]; noise = landmark_edge.infoVec(1,idx); % update covariance matrix cov_full = cov_full - noise/(1+noise*[1 -1]*cov_full(vIdx,vIdx)*[1;-1])... *cov_full(:,vIdx)*[1 -1; -1 1]*cov_full(vIdx,:); %if(~focusIdx(vIdx1) && ~focusIdx(vIdx2)) cov_cc(~focusIdx,~focusIdx) = cov_full(~focusIdx,~focusIdx)... - cov_full(~focusIdx,focusIdx)/cov_full(focusIdx,focusIdx)*cov_full(focusIdx,~focusIdx); %end end fprintf('\n'); %% close loop on last pose for i=lm_focus_list idx = (selectIdx & landmark_edge.id2==i); if sum(idx)==1 selectIdx(idx)=false; end end end %% function [selectIdx] = selection_full(J, variableList, N_select, landmark_edge) cov_full = inv(J); selectIdx = false(length(landmark_edge.id1),1); fprintf('compute measure'); for i=1:N_select if mod(i,25)==0 fprintf(' %i\n',i); else fprintf(' %i',i); end % compute values edge_value = zeros(size(variableList)); parfor t=1:length(landmark_edge.id1) if ~selectIdx(t) vIdx1 = find(variableList==landmark_edge.id1(t)); vIdx2 = find(variableList==landmark_edge.id2(t)); vIdx = [vIdx1 vIdx2]; noise = landmark_edge.infoVec(1,t); edge_value(t) = log(1+noise*[1 -1]*cov_full(vIdx,vIdx)*[1;-1]); end end [~,idx] = max(edge_value); selectIdx(idx)=true; vIdx1 = find(variableList==landmark_edge.id1(idx)); vIdx2 = find(variableList==landmark_edge.id2(idx)); vIdx = [vIdx1 vIdx2]; noise = landmark_edge.infoVec(1,idx); % update covariance matrix cov_full = cov_full - noise/(1+noise*[1 -1]*cov_full(vIdx,vIdx)*[1;-1])... *cov_full(:,vIdx)*[1 -1; -1 1]*cov_full(vIdx,:); end fprintf('\n'); end
github
mubeipeng/focused_slam-master
generate_focused_landmark.m
.m
focused_slam-master/focused_mapping/lib/generate_focused_landmark.m
2,538
utf_8
6b50ff48ce6ff60d2887ae33c9df2931
function [lm_focused,t] = generate_focused_landmark(N,lm_edge,node_edge) tic; %% lm_list = unique(lm_edge.id2); lm_focused = []; N_odom = length(node_edge.id2); n_observed_lm = zeros(1,N_odom); % No. of landmarks observed at each odom node odom_count = zeros(1,N_odom); odom_list = unique(lm_edge.id1); odom_count(odom_list) = hist(lm_edge.id1,odom_list); %% %% process and measurement noise for riccate equation Q = 1/node_edge.infoVec(1); R_info = lm_edge.infoVec(1); R_prior=0.1; node_cov = 0.5*Q+0.5*sqrt( Q.^2+4.*Q./(R_prior+R_info*n_observed_lm) ); for n = 1:N+5 %% Mahalanobis distance dist_mahalanobis = node_edge.closeP./node_cov.*node_edge.closeP; min_dist = min(dist_mahalanobis(odom_count>0)); minDist = zeros(length(lm_list),1); for jj=1:length(lm_list) if ~any(lm_list(jj)==lm_focused) idx = lm_edge.id1( lm_edge.id2==lm_list(jj)); %odom idx observe landmark jj minDist(jj) = sum(dist_mahalanobis(idx)<1.2*min_dist); % minDist(jj) = min(dist_mahalanobis(idx)); end end [~, lm_idx] = max(minDist); lm_id = lm_list(lm_idx); lm_focused = [lm_focused lm_id]; %% update number of observed landmarks lm_meas_idx = lm_edge.id2==lm_id; odom_id = lm_edge.id1(lm_meas_idx); odom_count(odom_id) = odom_count(odom_id)-1; n_observed_lm(odom_id) = n_observed_lm(odom_id)+1; node_cov = 0.5*Q+0.5*sqrt( Q.^2+4.*Q./(R_prior+R_info*n_observed_lm) ); end t=toc; % %% select extra landmarks to cover the space % % process J % n_var = length(J); % for n=1:N % H = jaccobian(lm_meas,R_info,lm_focused(n),n_var,variablelist); % J = J+H*H'; % end % % Lambda = inv(J); % lm_id = unique(lm_meas.id2); % for i=1:10 % gap = zeros(length(lm_id),1); % parfor jj=1:length(lm_id) % if ~any(lm_focused==lm_id(jj)) % H = jaccobian(lm_meas,R_info,lm_id(jj),n_var,variablelist); % gap(jj)= log(1+H'*Lambda*H); % end % end % [~, idx]=max(gap); % lm_focused = [lm_focused lm_id(idx)]; % H = jaccobian(lm_meas, R_info, lm_id(idx), n_var, variablelist); % L = Lambda*H; % Lambda = Lambda - L/(1+H'*Lambda*H)* L'; % end end function H = jaccobian(lm_meas, R_info, lm_id, n_var,variableList) H=zeros(n_var,1); lm_idx = lm_id==variableList; n_meas = 0; for i=1:n_var if lm_meas.id2(i)==lm_id; odom_idx = variableList== lm_meas.id1(i); H(odom_idx) = -R_info; n_meas = n_meas+1; end end H(lm_idx) = R_info*n_meas; end
github
mubeipeng/focused_slam-master
estimateRigidTransform.m
.m
focused_slam-master/focused_mapping/lib/estimateRigidTransform.m
3,606
utf_8
8edf7adcc5d938488684040c13b16fb4
function [T, Eps] = estimateRigidTransform(x, y) % ESTIMATERIGIDTRANSFORM % [T, EPS] = ESTIMATERIGIDTRANSFORM(X, Y) estimates the rigid transformation % that best aligns x with y (in the least-squares sense). % % Reference: "Estimating Rigid Transformations" in % "Computer Vision, a modern approach" by Forsyth and Ponce (1993), page 480 % (page 717(?) of the newer edition) % % Input: % X: 3xN, N 3-D points (N>=3) % Y: 3xN, N 3-D points (N>=3) % % Output % T: the rigid transformation that aligns x and y as: xh = T * yh % (h denotes homogenous coordinates) % (corrspondence between points x(:,i) and y(:,i) is assumed) % % EPS: the smallest singular value. The closer this value it is % to 0, the better the estimate is. (large values mean that the % transform between the two data sets cannot be approximated % well with a rigid transform. % % Babak Taati, 2003 % (revised 2009) if nargin ~= 2 error('Requires two input arguments.') end if size(x,1)~=3 || size(y,1)~=3 error('Input point clouds must be a 3xN matrix.'); end if size(x, 2) ~= size(y,2) error('Input point clouds must be of the same size'); end if size(x,2)<3 || size(y,2)<3 error('At least 3 point matches are needed'); end pointCount = length(x); % since x has N=3+ points, length shows the number of points x_centroid = sum(x,2) / pointCount; y_centroid = sum(y,2) / pointCount; x_centrized = [x(1,:)-x_centroid(1) ; x(2,:)-x_centroid(2); x(3,:)-x_centroid(3)]; y_centrized = [y(1,:)-y_centroid(1) ; y(2,:)-y_centroid(2); y(3,:)-y_centroid(3)]; R12 = y_centrized' - x_centrized'; R21 = x_centrized - y_centrized; R22_1 = y_centrized + x_centrized; R22 = crossTimesMatrix(R22_1(1:3,:)); B = zeros(4, 4); A = zeros(4, 4, pointCount); for ii=1:pointCount A(1:4,1:4,ii) = [0, R12(ii,1:3); R21(1:3,ii), R22(1:3,1:3,ii)]; B = B + A(:,:,ii)' * A(:,:,ii); end [~, S, V] = svd(B); quat = V(:,4); rot = quat2rot(quat); T1 = [eye(3,3), -y_centroid ; 0 0 0 1]; T2 = [rot, [0; 0; 0]; 0 0 0 1]; T3 = [eye(3,3), x_centroid ; 0 0 0 1]; T = T3 * T2 * T1; Eps = S(4,4); end function V_times = crossTimesMatrix(V) % CROSSTIMESMATRIX % V_TIMES = CROSSTIMESMATRIX(V) returns a 3x3 (or a series of 3x3) cross times matrices of input vector(s) V % % Input: % V a 3xN matrix, rpresenting a series of 3x1 vectors % % Output: % V_TIMES (Vx) a series of 3x3 matrices where V_times(:,:,i) is the Vx matrix for the vector V(:,i) % % Babak Taati, 2003 % (revised 2009) [a,b] = size(V); V_times = zeros(a, 3, b); % V_times(1,1,:) = 0; V_times(1,2,:) = - V(3,:); V_times(1,3,:) = V(2,:); V_times(2,1,:) = V(3,:); % V_times(2,2,:) = 0; V_times(2,3,:) = - V(1,:); V_times(3,1,:) = - V(2,:); V_times(3,2,:) = V(1,:); % V_times(3,3,:) = 0; end function R = quat2rot(Q) % QUAT2ROT % R = QUAT2ROT(Q) converts a quaternion (4x1 or 1x4) into a 3x3 rotation mattrix q0 = Q(1); q1 = Q(2); q2 = Q(3); q3 = Q(4); R(1,1) = q0*q0 + q1*q1 - q2*q2 - q3*q3; R(1,2) = 2 * (q1*q2 - q0*q3); R(1,3) = 2 * (q1*q3 + q0*q2); R(2,1) = 2 * (q1*q2 + q0*q3); R(2,2) = q0*q0 - q1*q1 + q2*q2 - q3*q3; R(2,3) = 2 * (q2*q3 - q0*q1); R(3,1) = 2 * (q1*q3 - q0*q2); R(3,2) = 2 * (q2*q3 + q0*q1); R(3,3) = q0*q0 - q1*q1 - q2*q2 + q3*q3; end
github
markf94/QML_Thesis-master
bloch.m
.m
QML_Thesis-master/Octave/bloch.m
1,061
utf_8
2a9113b120276358d347c2d37793db53
%Project a two-level qubit state onto Bloch sphere function [x,y,z,theta,phi] = bloch(alpha, beta) % INPUT % alpha|0> + beta|1> % a and b are probability amplitudes from qubit % Find and eliminate global phase angle_alpha = angle(alpha) angle_beta = angle(beta) if angle_alpha < angle_beta alpha_new = alpha/exp(i*angle_beta) beta_new = beta/exp(i*angle_beta) else alpha_new = alpha/exp(i*angle_alpha) beta_new = beta/exp(i*angle_alpha) endif %Computing theta and phi from probability amplitudes theta = 2*acos(alpha_new); phi = -i*log(beta_new/sin(theta/2)); %Theta and phi %polar to cartesian conversion %disp("============================") %disp("x,y,z with imaginary part") %x = sin(abs(theta))*cos(abs(phi)); x = sin(theta)*cos(phi); %y = sin(abs(theta))*sin(abs(phi)); y = sin(theta)*sin(phi); %z = cos(abs(theta)); z = cos(theta); disp("============================") disp("Check for vector length one...") r = round(sqrt(x^2+y^2+z^2)*10)/10 if (round(sqrt(x^2+y^2+z^2)*10)/10==1) disp("ok") disp("============================") endif endfunction
github
markf94/QML_Thesis-master
f.m
.m
QML_Thesis-master/Octave/f.m
2,049
utf_8
efed95ffb8ca4100c49f6b71a56545aa
%% SCRIPT FOR CREATING A CONTROLLED-U QUANTUM GATE % THEOREM: % For any unitary matrix U we can find a decomposition into A,B,C such that: % A*B*C = I % exp(i*alpha)*A*X*B*X*C = U % where X is the first Pauli matrix (NOT gate) and alpha is some real number % The circuit goes C > CNOT > B > CNOT > A %% Function that computes ABC decomposition of any unitary matrix U: function [A, B, C, alpha, beta, gamma, delta] = decompose(U) %Compute beta and delta first function y = f(x) global U %x(1) is beta %x(2) is delta y(1) = exp(i*(x(1)+x(2)))-U(2,2)/U(1,1); y(2) = exp(i*(x(1)-x(2)))+U(2,1)/U(1,2); endfunction %% MIGHT NEED TO ADJUST THE STARTING VALUES OF FSOLVE! [x, info] = fsolve (@f, [pi,pi]); %correcting for imaginary round off error global beta = real(x(1)); global delta = real(x(2)); %Compute gamma function y = f(x) global delta global U %x(1) is gamma %y(1) = cos(x(1)/2)+sin(x(1)/2)*exp(delta)*(-U(1,1)/U(1,2)) y(1) = U(2,2)*exp(-i*delta)*tan(x(1)/2)-U(2,1) endfunction %% MIGHT NEED TO ADJUST THE STARTING VALUES OF FSOLVE! %not 100% sure about this one! [x, info] = fsolve (@f, [0]); global gamma = real(x); % Finally, find alpha function y = f(x) global beta global delta global gamma global U %x(1) is alpha y(1) = U(2,2)*exp(-i*(beta/2+delta/2))*1/(cos(gamma/2))-exp(i*x(1)) endfunction %% MIGHT NEED TO ADJUST THE STARTING VALUES OF FSOLVE! [x, info] = fsolve (@f, [pi]); global alpha = real(x); %Compute the A Matrix theta_z = beta theta_y = gamma/2 R_z = [exp(-i*theta_z/2) 0; 0 exp(i*theta_z/2)]; R_y = [cos(theta_y/2) -sin(theta_y/2); sin(theta_y/2) cos(theta_y/2)] A = R_z*R_y; %Compute the B Matrix theta_z = -(delta+beta)/2 theta_y = -gamma/2 R_z = [exp(-i*theta_z/2) 0; 0 exp(i*theta_z/2)]; R_y = [cos(theta_y/2) -sin(theta_y/2); sin(theta_y/2) cos(theta_y/2)]; B = R_y*R_z; %Compute the C Matrix theta_z = (delta-beta)/2 R_z = [exp(-i*theta_z/2) 0; 0 exp(i*theta_z/2)]; C = R_z; endfunction
github
markf94/QML_Thesis-master
ownnormdistr.m
.m
QML_Thesis-master/Octave/ownnormdistr.m
323
utf_8
304575e882204550698678db0124a4c0
%global sigma = 1 %global mu = 0 % Define function for normal distribution function y = f (x) %global sigma %global mu %sigma = 1 %mu = 0 y = 1/(1 .* sqrt(2 .*pi)).*exp(-(x).^2/(2)); %y = 1/(sigma .* sqrt(2 .*pi)).*exp(-(x-mu).^2/(2.*sigma.^2)); endfunction %x=[-4:0.1:4]; %for i=0:3 myprob = f(1) %endfor %plot(x,myprob)
github
optisimon/ft5406-capacitive-touch-master
analyze_raw_data.m
.m
ft5406-capacitive-touch-master/analyze_raw_data.m
3,577
utf_8
c01b6592a3ecd2a39350e1fe8f415f08
% % Process captures of raw capacitance values, and plot the mutual capacitance images. % % Assumes that the user previously % 1) captured a number of background mutual capacitance images (with nothing on % the touch screen): % for var in $(seq 1 10) ; do ./dump_raw_data.sh > background_$var.raw ; done % % 2) Captured a number of forground mutual capacitance images: % for var in $(seq 1 1000) ; do ./dump_raw_data.sh > frame_$var.raw ; done % % Will perform the following with that data % 1) Calculate the average background intensity. % 2) Normalize the intensities in each frame (individually) to fully span from % black (lowest mutual capacitance) to white (highest mutual capacitance). % 3) Plot the result, as well as save it to disk % % % Original author Simon Gustafsson (www.optisimon.com) % % Copyright (c) 2016 Simon Gustafsson (www.optisimon.com) % % Do whatever you like with this code, but please refer to me as the original author. % page_screen_output(0) % Background capacitance values bg_files_unsorted = glob("background_*.raw"); % Foreground capacitance values fg_files_unsorted = glob("frame_*.raw"); % Number of rows and columns in the capacitance matrix to use w = 12 h = 22 % Assumes filenames named similar to "background_5.raw" % (underscore before number, and dot after number) function output = customNumericSort(input) tmp = []; for n = 1:size(input, 1) fname = input{n}; numAsStr = strsplit(fname, {'_', '.' })(2){}; num = str2num(numAsStr); tmp = [tmp; num]; end [_, index] = sort(tmp); for n = 1:size(input, 1) output{n,1} = input{index(n)}; end endfunction bg_files = customNumericSort(bg_files_unsorted) fg_files = customNumericSort(fg_files_unsorted) % % Read raw capacitance values from dump file. % % A dumpfile (generated by dump_raw_data.sh) contains a number of lines similar to this one: % 0x2153 0x2114 0x2191 0x2195 0x20c7 0x2057 0x20b6 0x21c3 0x20ba 0x207c 0x2065 0x213d % function out = readRawData(filename) f = fopen(filename, 'r'); out = []; while (line = fgets(f)) ~= -1 data = sscanf(line, "%x")'; out = [ out; data]; endwhile fclose(f); endfunction % % Normalize in to span values between 0 and 1. % function out = normalize(in) span = max(in(:)) - min(in(:)); out = (in - min(in(:))) ./span; endfunction % % Average all the background samples % avg_bg = zeros(h, w); for n = 1:size(bg_files, 1) fname = bg_files{n}; X = readRawData(fname)(1:h, 1:w); avg_bg = avg_bg + X; end avg_bg = avg_bg / size(bg_files,1) % % Blow up the size of the image (using nearest neighbor) % function out = expand(in, factor) out = imresize(in, factor, 'nearest'); endfunction % % playback all the forground samples % global_max = -Inf; global_min = Inf; for n = 1:size(fg_files, 1) fname = fg_files{n}; raw = readRawData(fname)(1:h, 1:w); X = raw - avg_bg; % % Draw the capacitance image in a plot window % imagesc(X); sleep(0.01); global_max = max([global_max; X(:)]); global_min = min([global_min; X(:)]); % Normal way of normalizing each frame individually img = normalize(X); % Test normalizing all frames to the same amplitude % (coefficients needs to have been determined in an earlier run) %img = (X - (-163.83) + 0.01) / (386.44 - (-163.83) + 0.02); % % Save an up-scaled version of the capacitance image to disk. % out_fname = sprintf("out_%06d.png", n) imwrite(expand(img, 32), out_fname) end % Print global max and min capacitance value (after background correction) global_max global_min
github
Rathcke/uni-master
projfilter.m
.m
uni-master/ad/AAD/SIP/ass5/src/projfilter.m
535
utf_8
715dd7bb0a74b77728560e652abda084
% The code below takes a matrix of projections and returns % a matrix with filtered projections whose Fourier Transform % is |w|. By uncommenting the vairous filters, various aspects % of the reconstructed picture will be emphasized or lost. function FIL = projfilter(Image) [L,C]=size(Image); w = [-pi : (2*pi)/L : pi-(2*pi)/L]; Filt = abs(sin(w)); % Below we use the Fourier Slice Theorem to filter the image for i = 1:C, IMG = fft(Image(:,i)); FiltIMG = IMG.*Filt'; FIL(:,i) = ifft(FiltIMG); end FIL = real(FIL);
github
Rathcke/uni-master
q3_4.m
.m
uni-master/ad/AAD/SIP/src/q3_4.m
197
utf_8
107c8c55b87184a43d4a545f32cb5f04
I = imread('hand.tiff'); zeros(size(I, 1), size(I, 2), 100) for i = 1:100 subplot(1, 1, 1); imshow(I); end function res = dsa(x, y, t) t/(sqrt(2*pi*s^2))*1/(2*pi*(s^2+t^2))*exp(-x/(2* end
github
Rathcke/uni-master
math412demo.m
.m
uni-master/optimization/ass1/src/math412demo.m
12,929
utf_8
6761f8a78b28bbc2e332db4bcc7df2ac
function [f,x] = math412demo(fname,method,LStype,info,acc,... maxitns,LSlimit) % WARNING: THIS CODE IS FOR DEMONSTRATING THE BASIC PROPERTIES OF % VARIOUS ALGORITHM TYPES ONLY. USE AT OWN RISK. % [bestf,x] = math412demo(fname, search_direction_type, % line_search_method, info, accuracy, maxitns, LSlimit) % % eg [f,x] = math412demo('rosenbrock','N','BA',3,1e-5,30,45); % % The argument fname must contain the file name of the function to % be minimized, inside single quotation marks. The function fname % must be of the form [f] = fname(x); and return the initial point % if x is not specified. The variable accuracy gives the stopping % tolerance on the gradient estimate's norm. If accuracy < 0 it % is replaced with 10^accuracy. maxitns and LSlimit give the number % of iterations and number of function evaluations in a single line % search at which the algorithm automatically stops. % Choices of search_direction_type are: Steepest descent ('SD'), % Newton ('N'), modified Newton ('MN'), and quasi-Newton ('QN'), % Memoryless QN ('MQN'), and QN and MQN with initial diagonal % scaling ('QND' and 'MQND'). MQN and MQND are implemented using % matrices and are O(n) slower than vector only versions. % Choices of line_search_method types are: Back-tracking Armijo ('BA'), % forward- (and back-)tracking ('AF'), and Wolfe-Powell ('WP'). % The variable info gives the level of printout. If info < 0, its % absolute value is used, and the algorithm pauses after each printout. % If info = % 0 print out nothing. % 1 print out only at start and end. % 2 print out after every iteration. % 3 as for 2, but `H not PD using SD' means the Hessian is not positive % definite, so the steepest descent direction has been used, and % `adding mu.I to H' means that mu times the identity was added to the % Hessian to make it positive definite. 'no QN update' means % the BFGS update was abandoned due to loss of positive definiteness. % INITIALIZATION format compact; if nargin < 2, fprintf('FILE NAME OR METHOD NOT SPECIFIED: RUN ABANDONED \n'); return; end; if ~exist('LStype'), LStype = 'AF'; end; if ~exist('info'), info = 1; end; if info < 0, info = abs(info); printstop = 1; else printstop = 0; end; if ~exist('acc'), acc = 0.00001; elseif acc < 0, acc = 10^acc; end; if ~exist('LSlimit'), LSlimit = 45; end; if ~exist('maxitns'), switch method, case {'N','MN'}, maxitns = 30; case {'QN','MQN','QND','MQND','SD'}, maxitns = 150; end; end; % STEP 1: Initialize the variables stop = 0; itn = 0; nx = 1; % get the initial point no_x_0 = 0; if ~exist('x'), x = feval(fname); no_x_0 = 1; end; sizex = size(x); n = max(sizex); if sizex(2) > 1, x = x'; end; % initialize the remaining variables. g = zeros(n,1); oldg = g; p = zeros(n,1); oldp = p; D = ones(n,1); h = 1e-6; mu = 0; QNabort = 0; % evaluate the initial function value and gradient f = feval(fname,x); [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx); % Do the initial printout. initial_print(info,fname,method,LStype,n,maxitns,h,acc,f,no_x_0); % Get the Cholesky factors of the Hessian or its estimate switch method, case {'N','MN'}, [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop); case 'SD', HR = 0; case {'QN','MQN'}, HR = eye(n); case {'QND','MQND'}, HR = diag( sqrt( max(1e-8,D))); end; while stop == 0, % MAIN LOOP itn = itn+1; % Calculate the new search direction [p,oldp] = next_search_direction(p,g,oldg,D,HR,method); % Do a line search [x,f,nx,stop,alpha] = line_search(fname,LStype,x,f,p,g,LSlimit,nx,stop); % Do the printout for this iteration. if info >1, iteration_print(f,g,itn,nx,alpha,p,mu,QNabort,printstop,info); end; % estimate gradient at the new iterate. [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx); % Check the stopping conditions and do end of iteration print stop = check_stop(f,g,acc,itn,maxitns,info,stop); % Calculate the upper triangular Cholesky factor of the Hessian. switch method, case {'N','MN'}, [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop); case {'QN','MQN','MQND','QND'}, [HR,QNabort] = update_HChol(fname,method,n,f,g,oldg,D,HR,p,alpha,info); end; end; % MAIN LOOP % do the final printout. final_print(fname,method,LStype,info,x,f,g,itn,nx,n); switch method, case {'MQN','MQND'}, fprintf('WARNING: MQN AND MQND IMPLEMENTED USING MATRICES\n'); end; % -------------------------------------------------------------- function [stop] = check_stop(f,g,acc,itn,maxitns,info,stop); % CHECK THE STOPPING CONDITIONS if stop > 1, fprintf('\n HALT BECAUSE OF A LINE SEARCH FAILURE \n'); end; if norm(g) < min(1,acc*(1+abs(f))), if info > 0, fprintf('\n HALT BECAUSE GRADIENT RESTRICTION SATISFIED: normg = %12.6g\n',norm(g)); end; stop = 1; elseif itn >= maxitns, if info > 0, fprintf('\n HALT BECAUSE MAXIMUM NUMBER OF ITERATIONS REACHED: normg = %12.6g\n',norm(g)); end; stop = 1; end; % -------------------------------------------------------------- function [p,oldp] = next_search_direction(p,g,oldg,D,HR,method) oldp = p; switch method, case 'SD', p = -g; case {'QN','N','MN','MQN','MQND','QND'} p = -HR \ ( HR' \ g ); end; % -------------------------------------------------------------- function [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx) % Calculating the gradient using central differences on a MAXIMAL frame % aligned with the axes xx = x; oldg = g; fp = zeros(n,1); for ii=1:n, incr = ( abs(xx(ii)) + 1)*h; xx(ii) = xx(ii)+incr; fplus = feval(fname,xx); fp(ii) = fplus; xx(ii) = xx(ii)-2*incr; fminus = feval(fname,xx); xx(ii) = x(ii); g(ii) = (fplus - fminus)/(2*incr); D(ii) = (fplus + fminus - 2*f)/(incr*incr); end; nx = nx + 2*n; return; % ------------------------------------------------------------------ function [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop) % estimate the Hessian HH = diag(D); mu = 0; for ii = 1:n, for jj = ii+1:n, incii = ( abs(x(ii)) + 1)*h; incjj = ( abs(x(jj)) + 1)*h; xx = x; xx(ii) = x(ii) + incii; xx(jj) = x(jj) + incjj; HH(ii,jj) = (feval(fname,xx) - fp(ii) - fp(jj) + f)/(incii*incjj); HH(jj,ii) = HH(ii,jj); end; end; % do not count function evaluations if stopping as HR not needed then. if stop, HR = HH; return; else nx = nx + n*(n-1)/2; end; % Cholesky factor the Hessian [HR,notposdef] = chol(HH); % chol routine returns upper triangular factor. if ~notposdef, return; end; if method=='N', mu = -2; HR = eye(n); % change to steepest descent direction. else % method is MN mu = 1; while notposdef, [HR,notposdef] = chol(HH + mu*eye(n)); if notposdef, mu = mu*4; end; end; end; return; % ------------------------------------------------------------------ function [HR,QNabort] = update_HChol(fname,method,n,f,g,oldg,D,HR,p,alpha,info) % update the Cholesky factors of the estimate of the Hessian switch method, case 'MQN', HR = eye(n); case 'MQND', HR = diag( sqrt( max(1e-8,D))); end; oldHR = HR; QNabort = 0; y = g - oldg; s = alpha*p; yts = y'*s; if yts <= 0, QNabort = 1; return; end; % Add y y' / y's to B vec = y/sqrt(yts); HR = cholupdate(HR,vec,'+'); % Now subtract (B s s' B) / (s' B s) vec = oldHR*s; vec = (oldHR'*vec)/norm(vec); [HR,QNabort] = cholupdate(HR,vec,'-'); if QNabort, HR = oldHR; end; return; % -------------------------------------------------------------- function [x,f,nx,stop,alpha] = line_search(fname,LStype,x,f,p,g,LSlimit,nx,stop) rho = 1e-4; sigma = 0.9; lsnx = 0; alphaa = 1; xa = x + alphaa*p; fa = feval(fname,xa); lsnx = lsnx+1; ptg = p'*g; while fa >= f + rho*alphaa*ptg & ~stop, fb = fa; xb = xa; alphab = alphaa; alphaa = alphaa/2; xa = x + alphaa*p; fa = feval(fname,xa); lsnx = lsnx+1; if lsnx > LSlimit, stop = 2; end; end; % of while if LStype=='BA' | (LStype=='AF' & lsnx > 1), x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; if LStype=='AF' | (LStype=='WP' & lsnx < 2), % lsnx<2 means alpha = 1 gave descent, so do forward tracking. alphab = 4; xb = x + alphab*p; fb = feval(fname,xb); lsnx = lsnx+1; while fb < f+rho*alphab*ptg & lsnx<=LSlimit & (fb<fa | LStype=='WP'), alphaa = alphab; fa = fb; xa = xb; alphab = 4*alphab; xb = x + alphab*p; fb = feval(fname,xb); lsnx = lsnx+1; end; % of while end; if LStype=='AF', x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; % only the WP line search should reach this point. ptgalpha = get_ptg_at_alpha(fname,x,alphaa,p); lsnx = lsnx+2; if ptgalpha >= sigma*ptg, x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; lscontinue = 1; while lscontinue, alphac = (alphaa + alphab)/2; xc = x + alphac*p; fc = feval(fname,xc); lsnx = lsnx + 1; if fc >= f + rho*alphac*ptg, alphab = alphac; else ptgalpha = get_ptg_at_alpha(fname,x,alphac,p); lsnx = lsnx+2; if ptgalpha >= sigma*ptg, x = xc; f = fc; alpha = alphac; nx = nx + lsnx; lscontinue = 0; else alphaa = alphac; end; end; if lsnx > LSlimit, stop = 2; lscontinue = 0; alpha = alphac; nx = nx + lsnx; end; end; % -------------------------------------------------------------- function ptg_alpha = get_ptg_at_alpha(fname,x,alpha,p) xplus = x + (1 + 1e-6)*alpha*p; xminus = x + (1 - 1e-6)*alpha*p; fplus = feval(fname,xplus); fminus = feval(fname,xminus); ptg_alpha = (fplus - fminus)/(2e-6*alpha); return; % -------------------------------------------------------------- function iteration_print(f,g,itn,nx,alpha,p,mu,QNabort,printstop,info) fprintf(' %9i %12.6g %12i',itn,f,nx); fprintf(' %12.6g %12.6g %12.6g',norm(g),alpha,alpha*norm(p)); if info > 2 & mu > 0, fprintf(' Adding %8.2g.I to H',mu); end; if info > 2 & mu < 0, fprintf(' H not PD: Use SD'); end; if QNabort & info > 2, fprintf(' no QN update'); end; fprintf(' \n'); if itn/30 == floor(itn/30), fprintf('\n\n itn f value nr f evals ||g|| '); fprintf(' alpha steplength\n\n'); end; if printstop, pause; end; % -------------------------------------------------------------- function initial_print(info,fname,method,LStype,n,maxitns,h,acc,f,no_x_0); if info > 0, fprintf(' ----------------------------------------------\n'); fprintf(' File name of function is %c%c%c%c%c%c%c%c%c%c%c%c%c%c ',fname); fprintf('\n ----------------------------------------------\n\n'); end; if info > 0, if no_x_0, fprintf('No initial point: using initial pt from function\n\n'); end; fprintf(' number of variables = %9i \n',n); fprintf(' maximum of %9i iterations \n',maxitns); fprintf(' increment for gradient estimation = %12.4g \n',h); fprintf(' requested termination accuracy = %8.4g \n',acc); fprintf(' function value at initial point = %8.4g \n \n',f); fprintf(' itn f value nr f evals ||g|| '); fprintf(' alpha steplength \n'); end; % -------------------------------------------------------------- function final_print(fname,method,LStype,info,x,f,g,itn,nx,n); if info > 0, fprintf('\n'); fprintf(' --------------- FINAL SUMMARY ------------------\n'); fprintf(' File name of function is: %c%c%c%c%c%c%c%c%c%c%c%c%c%c',fname); fprintf(' \n'); fprintf('\n'); fprintf(' with function value %15.8g \n',f); fprintf(' after %6i iterations and %6i function evaluations\n',itn,nx); fprintf(' Magnitude of gradient at final iterate is %12.6g \n',norm(g)); if n < 7, fprintf(' Current x = %8.4g ',x(1)); for ii = 2:n, fprintf(' %8.4g ',x(ii)); end; end; fprintf(' \n'); fprintf(' \n'); fprintf(' Method type: %c%c%c%c%c',method); fprintf(' Line search type: %c%c',LStype); fprintf('\n'); fprintf('\n'); end; % ------------------------------------------------------------- function [f] = nzf1( x ) n = 13; if ~exist('x'), f = ones( n, 1 ); return; end; f = (3 * x(1) + 0.1 * ( x(2) - x(3) )^2 - 60)^2; temp = x(2)^2 + x(3)^2 + x(4)^2 * ( 1 + x(4)^2 ) + x(7); temp = temp + x(6) / ( 1 + x(5)^2 ) + sin( 0.001 * x(5) ); f = f + temp^2; f = f + (x(7) + x(8)-x(9)^2 + x(11))^2; f = f + (log( 1 + x(11)^2 ) + x(12) - 5 * x(13) + 20)^2; f = f + (x(5) + x(6) + x(5) * x(6) + 10*x(10) - 50)^2;
github
Rathcke/uni-master
math412demo.m
.m
uni-master/optimization/ass2/src/math412demo.m
13,089
utf_8
8d18ad82cf948542ea25b06b3854c046
function [f,x] = math412demo(fname,method,LStype,info,acc,... maxitns,LSlimit) % WARNING: THIS CODE IS FOR DEMONSTRATING THE BASIC PROPERTIES OF % VARIOUS ALGORITHM TYPES ONLY. USE AT OWN RISK. % [bestf,x] = math412demo(fname, search_direction_type, % line_search_method, info, accuracy, maxitns, LSlimit) % % eg [f,x] = math412demo('rosenbrock','N','BA',3,1e-5,30,45); % % The argument fname must contain the file name of the function to % be minimized, inside single quotation marks. The function fname % must be of the form [f] = fname(x); and return the initial point % if x is not specified. The variable accuracy gives the stopping % tolerance on the gradient estimate's norm. If accuracy < 0 it % is replaced with 10^accuracy. maxitns and LSlimit give the number % of iterations and number of function evaluations in a single line % search at which the algorithm automatically stops. % Choices of search_direction_type are: Steepest descent ('SD'), % Newton ('N'), modified Newton ('MN'), and quasi-Newton ('QN'), % Memoryless QN ('MQN'), and QN and MQN with initial diagonal % scaling ('QND' and 'MQND'). MQN and MQND are implemented using % matrices and are O(n) slower than vector only versions. % Choices of line_search_method types are: Back-tracking Armijo ('BA'), % forward- (and back-)tracking ('AF'), and Wolfe-Powell ('WP'). % The variable info gives the level of printout. If info < 0, its % absolute value is used, and the algorithm pauses after each printout. % If info = % 0 print out nothing. % 1 print out only at start and end. % 2 print out after every iteration. % 3 as for 2, but `H not PD using SD' means the Hessian is not positive % definite, so the steepest descent direction has been used, and % `adding mu.I to H' means that mu times the identity was added to the % Hessian to make it positive definite. 'no QN update' means % the BFGS update was abandoned due to loss of positive definiteness. % INITIALIZATION format compact; if nargin < 2, fprintf('FILE NAME OR METHOD NOT SPECIFIED: RUN ABANDONED \n'); return; end; if ~exist('LStype'), LStype = 'AF'; end; format compact; if nargin < 2, fprintf('FILE NAME OR METHOD NOT SPECIFIED: RUN ABANDONED \n'); return; end; if ~exist('LStype'), LStype = 'AF'; end;N if ~exist('info'), info = 1; end; if info < 0, info = abs(info); printstop = 1; else printstop = 0; end; if ~exist('acc'), acc = 0.00001; elseif acc < 0, acc = 10^acc; end; if ~exist('LSlimit'), LSlimit = 45; end; if ~exist('maxitns'), switch method, case {'N','MN'}, maxitns = 30; case {'QN','MQN','QND','MQND','SD'}, maxitns = 150; end; end; % STEP 1: Initialize the variables stop = 0; itn = 0; nx = 1; % get the initial point no_x_0 = 0; if ~exist('x'), x = feval(fname); no_x_0 = 1; end; sizex = size(x); n = max(sizex); if sizex(2) > 1, x = x'; end; % initialize the remaining variables. g = zeros(n,1); oldg = g; p = zeros(n,1); oldp = p; D = ones(n,1); h = 1e-6; mu = 0; QNabort = 0; % evaluate the initial function value and gradient f = feval(fname,x); [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx); % Do the initial printout. initial_print(info,fname,method,LStype,n,maxitns,h,acc,f,no_x_0); % Get the Cholesky factors of the Hessian or its estimate switch method, case {'N','MN'}, [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop); case 'SD', HR = 0; case {'QN','MQN'}, HR = eye(n); case {'QND','MQND'}, HR = diag( sqrt( max(1e-8,D))); end; while stop == 0, % MAIN LOOP itn = itn+1; % Calculate the new search direction [p,oldp] = next_search_direction(p,g,oldg,D,HR,method); % Do a line search [x,f,nx,stop,alpha] = line_search(fname,LStype,x,f,p,g,LSlimit,nx,stop); % Do the printout for this iteration. if info >1, iteration_print(f,g,itn,nx,alpha,p,mu,QNabort,printstop,info); end; % estimate gradient at the new iterate. [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx); % Check the stopping conditions and do end of iteration print stop = check_stop(f,g,acc,itn,maxitns,info,stop); % Calculate the upper triangular Cholesky factor of the Hessian. switch method, case {'N','MN'}, [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop); case {'QN','MQN','MQND','QND'}, [HR,QNabort] = update_HChol(fname,method,n,f,g,oldg,D,HR,p,alpha,info); end; end; % MAIN LOOP % do the final printout. final_print(fname,method,LStype,info,x,f,g,itn,nx,n); switch method, case {'MQN','MQND'}, fprintf('WARNING: MQN AND MQND IMPLEMENTED USING MATRICES\n'); end; % -------------------------------------------------------------- function [stop] = check_stop(f,g,acc,itn,maxitns,info,stop); % CHECK THE STOPPING CONDITIONS if stop > 1, fprintf('\n HALT BECAUSE OF A LINE SEARCH FAILURE \n'); end; if norm(g) < min(1,acc*(1+abs(f))), if info > 0, fprintf('\n HALT BECAUSE GRADIENT RESTRICTION SATISFIED: normg = %12.6g\n',norm(g)); end; stop = 1; elseif itn >= maxitns, if info > 0, fprintf('\n HALT BECAUSE MAXIMUM NUMBER OF ITERATIONS REACHED: normg = %12.6g\n',norm(g)); end; stop = 1; end; % -------------------------------------------------------------- function [p,oldp] = next_search_direction(p,g,oldg,D,HR,method) oldp = p; switch method, case 'SD', p = -g; case {'QN','N','MN','MQN','MQND','QND'} p = -HR \ ( HR' \ g ); end; % -------------------------------------------------------------- function [g,nx,D,oldg,fp] = estimate_g(fname,method,x,h,n,f,g,D,nx) % Calculating the gradient using central differences on a MAXIMAL frame % aligned with the axes xx = x; oldg = g; fp = zeros(n,1); for ii=1:n, incr = ( abs(xx(ii)) + 1)*h; xx(ii) = xx(ii)+incr; fplus = feval(fname,xx); fp(ii) = fplus; xx(ii) = xx(ii)-2*incr; fminus = feval(fname,xx); xx(ii) = x(ii); g(ii) = (fplus - fminus)/(2*incr); D(ii) = (fplus + fminus - 2*f)/(incr*incr); end; nx = nx + 2*n; return; % ------------------------------------------------------------------ function [HR,nx,mu] = get_HChol(fname,method,x,h,n,f,fp,D,nx,info,stop) % estimate the Hessian HH = diag(D); mu = 0; for ii = 1:n, for jj = ii+1:n, incii = ( abs(x(ii)) + 1)*h; incjj = ( abs(x(jj)) + 1)*h; xx = x; xx(ii) = x(ii) + incii; xx(jj) = x(jj) + incjj; HH(ii,jj) = (feval(fname,xx) - fp(ii) - fp(jj) + f)/(incii*incjj); HH(jj,ii) = HH(ii,jj); end; end; % do not count function evaluations if stopping as HR not needed then. if stop, HR = HH; return; else nx = nx + n*(n-1)/2; end; % Cholesky factor the Hessian [HR,notposdef] = chol(HH); % chol routine returns upper triangular factor. if ~notposdef, return; end; if method=='N', mu = -2; HR = eye(n); % change to steepest descent direction. else % method is MN mu = 1; while notposdef, [HR,notposdef] = chol(HH + mu*eye(n)); if notposdef, mu = mu*4; end; end; end; return; % ------------------------------------------------------------------ function [HR,QNabort] = update_HChol(fname,method,n,f,g,oldg,D,HR,p,alpha,info) % update the Cholesky factors of the estimate of the Hessian switch method, case 'MQN', HR = eye(n); case 'MQND', HR = diag( sqrt( max(1e-8,D))); end; oldHR = HR; QNabort = 0; y = g - oldg; s = alpha*p; yts = y'*s; if yts <= 0, QNabort = 1; return; end; % Add y y' / y's to B vec = y/sqrt(yts); HR = cholupdate(HR,vec,'+'); % Now subtract (B s s' B) / (s' B s) vec = oldHR*s; vec = (oldHR'*vec)/norm(vec); [HR,QNabort] = cholupdate(HR,vec,'-'); if QNabort, HR = oldHR; end; return; % -------------------------------------------------------------- function [x,f,nx,stop,alpha] = line_search(fname,LStype,x,f,p,g,LSlimit,nx,stop) rho = 1e-4; sigma = 0.9; lsnx = 0; alphaa = 1; xa = x + alphaa*p; fa = feval(fname,xa); lsnx = lsnx+1; ptg = p'*g; while fa >= f + rho*alphaa*ptg & ~stop, fb = fa; xb = xa; alphab = alphaa; alphaa = alphaa/2; xa = x + alphaa*p; fa = feval(fname,xa); lsnx = lsnx+1; if lsnx > LSlimit, stop = 2; end; end; % of while if LStype=='BA' | (LStype=='AF' & lsnx > 1), x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; if LStype=='AF' | (LStype=='WP' & lsnx < 2), % lsnx<2 means alpha = 1 gave descent, so do forward tracking. alphab = 4; xb = x + alphab*p; fb = feval(fname,xb); lsnx = lsnx+1; while fb < f+rho*alphab*ptg & lsnx<=LSlimit & (fb<fa | LStype=='WP'), alphaa = alphab; fa = fb; xa = xb; alphab = 4*alphab; xb = x + alphab*p; fb = feval(fname,xb); lsnx = lsnx+1; end; % of while end; if LStype=='AF', x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; % only the WP line search should reach this point. ptgalpha = get_ptg_at_alpha(fname,x,alphaa,p); lsnx = lsnx+2; if ptgalpha >= sigma*ptg, x = xa; f = fa; alpha = alphaa; nx = nx + lsnx; return; end; lscontinue = 1; while lscontinue, alphac = (alphaa + alphab)/2; xc = x + alphac*p; fc = feval(fname,xc); lsnx = lsnx + 1; if fc >= f + rho*alphac*ptg, alphab = alphac; else ptgalpha = get_ptg_at_alpha(fname,x,alphac,p); lsnx = lsnx+2; if ptgalpha >= sigma*ptg, x = xc; f = fc; alpha = alphac; nx = nx + lsnx; lscontinue = 0; else alphaa = alphac; end; end; if lsnx > LSlimit, stop = 2; lscontinue = 0; alpha = alphac; nx = nx + lsnx; end; end; % -------------------------------------------------------------- function ptg_alpha = get_ptg_at_alpha(fname,x,alpha,p) xplus = x + (1 + 1e-6)*alpha*p; xminus = x + (1 - 1e-6)*alpha*p; fplus = feval(fname,xplus); fminus = feval(fname,xminus); ptg_alpha = (fplus - fminus)/(2e-6*alpha); return; % -------------------------------------------------------------- function iteration_print(f,g,itn,nx,alpha,p,mu,QNabort,printstop,info) fprintf(' %9i %12.6g %12i',itn,f,nx); fprintf(' %12.6g %12.6g %12.6g',norm(g),alpha,alpha*norm(p)); if info > 2 & mu > 0, fprintf(' Adding %8.2g.I to H',mu); end; if info > 2 & mu < 0, fprintf(' H not PD: Use SD'); end; if QNabort & info > 2, fprintf(' no QN update'); end; fprintf(' \n'); if itn/30 == floor(itn/30), fprintf('\n\n itn f value nr f evals ||g|| '); fprintf(' alpha steplength \n\n'); end; if printstop, pause; end; % -------------------------------------------------------------- function initial_print(info,fname,method,LStype,n,maxitns,h,acc,f,no_x_0); if info > 0, fprintf(' ----------------------------------------------\n'); fprintf(' File name of function is %c%c%c%c%c%c%c%c%c%c%c%c%c%c ',fname); fprintf('\n ----------------------------------------------\n\n'); end; if info > 0, if no_x_0, fprintf('No initial point: using initial pt from function\n\n'); end; fprintf(' number of variables = %9i \n',n); fprintf(' maximum of %9i iterations \n',maxitns); fprintf(' increment for gradient estimation = %12.4g \n',h); fprintf(' requested termination accuracy = %8.4g \n',acc); fprintf(' function value at initial point = %8.4g \n \n',f); fprintf(' itn f value nr f evals ||g|| '); fprintf(' alpha steplength \n'); end; % -------------------------------------------------------------- function final_print(fname,method,LStype,info,x,f,g,itn,nx,n); if info > 0, fprintf('\n'); fprintf(' --------------- FINAL SUMMARY ------------------\n'); fprintf(' File name of function is: %c%c%c%c%c%c%c%c%c%c%c%c%c%c',fname); fprintf(' \n'); fprintf('\n'); fprintf(' with function value %15.8g \n',f); fprintf(' after %6i iterations and %6i function evaluations\n',itn,nx); fprintf(' Magnitude of gradient at final iterate is %12.6g \n',norm(g)); if n < 7, fprintf(' Current x = %8.4g ',x(1)); for ii = 2:n, fprintf(' %8.4g ',x(ii)); end; end; fprintf(' \n'); fprintf(' \n'); fprintf(' Method type: %c%c%c%c%c',method); fprintf(' Line search type: %c%c',LStype); fprintf('\n'); fprintf('\n'); end; % ------------------------------------------------------------- function [f] = nzf1( x ) n = 13; if ~exist('x'), f = ones( n, 1 ); return; end; f = (3 * x(1) + 0.1 * ( x(2) - x(3) )^2 - 60)^2; temp = x(2)^2 + x(3)^2 + x(4)^2 * ( 1 + x(4)^2 ) + x(7); temp = temp + x(6) / ( 1 + x(5)^2 ) + sin( 0.001 * x(5) ); f = f + temp^2; f = f + (x(7) + x(8)-x(9)^2 + x(11))^2; f = f + (log( 1 + x(11)^2 ) + x(12) - 5 * x(13) + 20)^2; f = f + (x(5) + x(6) + x(5) * x(6) + 10*x(10) - 50)^2;
github
Rathcke/uni-master
q2_4.m
.m
uni-master/sip/ass3/src/q2_4.m
316
utf_8
c531e726ae2dad95ce674f3c1ae9b300
function q2_4() for i = 1:6 res = scale((i-1)*3+1); subplot(2, 3, i); imshow(res); title(sprintf('With sigma = %d', (i-1)*3+1)); end end function res = scale(arg) I = imread('lena.tiff'); h = fspecial('gaussian', [arg arg], arg); res = imfilter(I, h); end
github
Rathcke/uni-master
q2_2.m
.m
uni-master/sip/ass3/src/q2_2.m
2,682
utf_8
ed9165b054f9d4749be6fc2984655dbc
function q2_2() %q2_2a() %q2_2b() q2_2c() end function q2_2a() I = imread('lena.tiff'); h = fspecial('gaussian'); A = nestedConv(h, I); B = fourConv(h, I); subplot(1, 3, 1); imagesc(I); colormap gray; title('Original image'); subplot(1, 3, 2); imagesc(A); colormap gray; title('Image after convolution'); subplot(1, 3, 3); imagesc(B); colormap gray; title('Image after convolution using FFT'); end function q2_2b() I = imread('lena.tiff'); fst = []; snd = []; for i = 1:7 h = fspecial('gaussian', [i*2+1 i*2+1]); tic; A = nestedConv(h, I); fst(i) = toc; tic B = fourConv(h, I); snd(i) = toc; end subplot(1, 1, 1); plot([3:2:15], fst, [3:2:15], snd); xlabel('Window size in n*n'); ylabel('Computation time in seconds'); title('Nested for-loop convolution vs. convolution using FFT'); end function q2_2c() I = imread('lena.tiff'); fst = []; snd = []; for i = 1:10 h = fspecial('gaussian'); I2 = imresize(I, i/10); tic; A = nestedConv(h, I2); fst(i) = toc; tic B = fourConv(h, I2); snd(i) = toc; end subplot(1, 1, 1); plot([0.1:0.1:1], fst, [0.1:0.1:1], snd); xlabel('Image size in scale = n/10'); ylabel('Computation time in seconds'); title('Nested for-loop convolution vs. convolution using FFT'); end function res = nestedConv(ker, img) x = size(img, 1); y = size(img, 2); x2 = size(ker, 1); y2 = size(ker, 2); x3 = fix(x2/2); y3 = fix(y2/2); res = zeros(x, y); for i = 1:x for j = 1:y acc = 0; for k = -x3:x3 for l = -y3:y3 if (i+k > 0 && i+k < x) if (j+l > 0 && j+l < y) acc = acc + ker(k+x3+1, l+y3+1) * img(i+k, j+l); else acc = acc + ker(k+x3+1, l+y3+1) * img(i+k, j-l); end elseif (j+l > 0 && j+l < y) acc = acc + ker(k+x3+1, l+y3+1) * img(i-k, j+l); else acc = acc + ker(k+x3+1, l+y3+1) * img(i-k, j-l); end end end res(i, j) = acc; end end end function res = fourConv(ker, img) cumSize = size(img) + size(ker) - 1; img(cumSize(1), cumSize(2)) = 0; ker(cumSize(1), cumSize(2)) = 0; res = ifft2(fft2(img).*fft2(ker)); end
github
Rathcke/uni-master
q2_3.m
.m
uni-master/sip/ass3/src/q2_3.m
850
utf_8
08a7a6fbb57427610672bdd8eeea1461
function q2_3() I = imread('lena.tiff'); I2 = addFunc(I, 50, 0.25, 0.25); subplot(2,2,1); imshow(I); title('Original image'); colormap gray; subplot(2,2,2); imshow(I2); title('Image with added function'); colormap gray; ps = 10*log10(fftshift(abs(fft2(I2)).^2)); subplot(2,2,3); imagesc(ps); title('Power Spectrum of modified image'); colormap gray; ps = fftshift(fft2(I2)); ps(105, 105) = 0; ps(123, 123) = 0; subplot(2,2,4); imagesc(abs(real(ifft2(ps)))); title('Image after removing cosine noise'); colormap gray; end function res = addFunc(img, a, v, w) x = size(img, 1); y = size(img, 2); for i = 1:x for j = 1:y res(i, j) = img(i, j) + a*cos(v*i+w*j); end end end
github
Rathcke/uni-master
q2_6.m
.m
uni-master/sip/ass3/src/q2_6.m
534
utf_8
1dcd1970ffdcab5ea4550620c5cc68d6
function q2_6() I = imread('lena.tiff'); for i = 0:2 for j = 0:2 A = deriveImg(I, i, j); subplot(3, 3, 3*i+j+1); imagesc(A); colormap gray; title(sprintf('With n = %d and m = %d', i, j)); end end end function res = deriveImg(img, n, m) ft = fft2(img); x = size(ft, 1); y = size(ft, 2); for i = 1:x for j = 1:x ftd(i, j)= (1j * i).^n *(1j * j).^m * ft(i, j); end end res = real(ifft2(ftd)); end
github
Rathcke/uni-master
SVM_soft.m
.m
uni-master/dataAnalysis/afl6/code/SVM_soft.m
1,011
utf_8
8f4c7fd36aa1ffa4d511447f87cd15ce
% N is number of datapoints % X is data in rows % Y is labels in a column % C is a number function u = SVM_soft(X, Y, C) % Get the datasample dimension [N, d]=size(X); % p: a column of N 0's followed by N C/N's p = [zeros(d+1,1); (C/N)*ones(N,1)]; % c: a column of N 1's followed by N 0's c = [ones(N,1); zeros(N,1)]; % Q is a (d+N+1)x(d+N+1) matrix with a dxd identity matrix in entry 2x2 Q = zeros(N+d+1,N+d+1); Q(2:d+1,2:d+1) = eye(d); % A: first a 2N x (d+N+1) matrix of 0's A = zeros(2*N, d+N+1); % The vector of labels A(1:N,1) = Y; % YX: labels multiplied by data matrix with a column of 1's to the left A(1:N,2:d+1) = (Y * ones(1, d)) .* X; % NIden: a NxN Identity matrix NIden = eye(N); % NIden is inserted to the right in A % both in the right top and bottom right corner % of A A(1:N,d+2:d+N+1) = NIden; A(N+1:2*N,d+2:d+N+1) = NIden; u = quadprog(Q,p,-A,-c); end
github
zhuhan1236/dhn-caffe-master
prepare_batch.m
.m
dhn-caffe-master/matlab/caffe/prepare_batch.m
1,298
utf_8
68088231982895c248aef25b4886eab0
% ------------------------------------------------------------------------ function images = prepare_batch(image_files,IMAGE_MEAN,batch_size) % ------------------------------------------------------------------------ if nargin < 2 d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; end num_images = length(image_files); if nargin < 3 batch_size = num_images; end IMAGE_DIM = 256; CROPPED_DIM = 227; indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; center = floor(indices(2) / 2)+1; num_images = length(image_files); images = zeros(CROPPED_DIM,CROPPED_DIM,3,batch_size,'single'); parfor i=1:num_images % read file fprintf('%c Preparing %s\n',13,image_files{i}); try im = imread(image_files{i}); % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % Transform GRAY to RGB if size(im,3) == 1 im = cat(3,im,im,im); end % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % Crop the center of the image images(:,:,:,i) = permute(im(center:center+CROPPED_DIM-1,... center:center+CROPPED_DIM-1,:),[2 1 3]); catch warning('Problems with file',image_files{i}); end end
github
zhuhan1236/dhn-caffe-master
matcaffe_demo_vgg.m
.m
dhn-caffe-master/matlab/caffe/matcaffe_demo_vgg.m
3,036
utf_8
f836eefad26027ac1be6e24421b59543
function scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % % Demo of the matlab wrapper using the networks described in the BMVC-2014 paper "Return of the Devil in the Details: Delving Deep into Convolutional Nets" % % INPUT % im - color image as uint8 HxWx3 % use_gpu - 1 to use the GPU, 0 to use the CPU % model_def_file - network configuration (.prototxt file) % model_file - network weights (.caffemodel file) % mean_file - mean BGR image as uint8 HxWx3 (.mat file) % % OUTPUT % scores 1000-dimensional ILSVRC score vector % % EXAMPLE USAGE % model_def_file = 'zoo/VGG_CNN_F_deploy.prototxt'; % model_file = 'zoo/VGG_CNN_F.caffemodel'; % mean_file = 'zoo/VGG_mean.mat'; % use_gpu = true; % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file); % % NOTES % the image crops are prepared as described in the paper (the aspect ratio is preserved) % % PREREQUISITES % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % init caffe network (spews logging info) matcaffe_init(use_gpu, model_def_file, model_file); % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im, mean_file)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; % size(scores) scores = squeeze(scores); % scores = mean(scores,2); % [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im, mean_file) % ------------------------------------------------------------------------ IMAGE_DIM = 256; CROPPED_DIM = 224; d = load(mean_file); IMAGE_MEAN = d.image_mean; % resize to fixed input size im = single(im); if size(im, 1) < size(im, 2) im = imresize(im, [IMAGE_DIM NaN]); else im = imresize(im, [NaN IMAGE_DIM]); end % RGB -> BGR im = im(:, :, [3 2 1]); % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices_y = [0 size(im,1)-CROPPED_DIM] + 1; indices_x = [0 size(im,2)-CROPPED_DIM] + 1; center_y = floor(indices_y(2) / 2)+1; center_x = floor(indices_x(2) / 2)+1; curr = 1; for i = indices_y for j = indices_x images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :)-IMAGE_MEAN, [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end images(:,:,:,5) = ... permute(im(center_y:center_y+CROPPED_DIM-1,center_x:center_x+CROPPED_DIM-1,:)-IMAGE_MEAN, ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);
github
zhuhan1236/dhn-caffe-master
matcaffe_demo.m
.m
dhn-caffe-master/matlab/caffe/matcaffe_demo.m
3,344
utf_8
669622769508a684210d164ac749a614
function [scores, maxlabel] = matcaffe_demo(im, use_gpu) % scores = matcaffe_demo(im, use_gpu) % % Demo of the matlab wrapper using the ILSVRC network. % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format: % % convert from uint8 to single % im = single(im); % % reshape to a fixed size (e.g., 227x227) % im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % permute from RGB to BGR and subtract the data mean (already in BGR) % im = im(:,:,[3 2 1]) - data_mean; % % flip width and height to make width the fastest dimension % im = permute(im, [2 1 3]); % If you have multiple images, cat them with cat(4, ...) % The actual forward function. It takes in a cell array of 4-D arrays as % input and outputs a cell array. % init caffe network (spews logging info) if exist('use_gpu', 'var') matcaffe_init(use_gpu); else matcaffe_init(); end if nargin < 1 % For demo purposes we will use the peppers image im = imread('peppers.png'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; size(scores) scores = squeeze(scores); scores = mean(scores,2); [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im) % ------------------------------------------------------------------------ d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; IMAGE_DIM = 256; CROPPED_DIM = 227; % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; curr = 1; for i = indices for j = indices images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end center = floor(indices(2) / 2)+1; images(:,:,:,5) = ... permute(im(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:), ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);