plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
UCL-SML/pilco-matlab-master
|
dynamics_cdp.m
|
.m
|
pilco-matlab-master/scenarios/cartDoublePendulum/dynamics_cdp.m
| 2,891 |
utf_8
|
8e34721756a5a3b7a6f8558a2e93b4b4
|
%% dynamics_cdp.m
% *Summary:* Implements ths ODE for simulating the cart-double pendulum
% dynamics.
%
% function dz = dynamics_cdp(t,z,f)
%
%
% *Input arguments:*
%
% t current time step (called from ODE solver)
% z state [6 x 1]
% f (optional): force f(t)
%
% *Output arguments:*
%
% dz if 3 input arguments: state derivative wrt time
% if only 2 input arguments: total mechanical energy
%
% Note: It is assumed that the state variables are of the following order:
% x: [m] position of cart
% dx: [m/s] velocity of cart
% dtheta1: [rad/s] angular velocity of inner pendulum
% dtheta2: [rad/s] angular velocity of outer pendulum
% theta1: [rad] angle of inner pendulum
% theta2: [rad] angle of outer pendulum
%
%
% A detailed derivation of the dynamics can be found in:
%
% M.P. Deisenroth:
% Efficient Reinforcement Learning Using Gaussian Processes, Appendix C,
% KIT Scientific Publishing, 2010.
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-05
function dz = dynamics_cdp(t,z,f)
%% Code
% set up the system
m1 = 0.5; % [kg] mass of cart
m2 = 0.5; % [kg] mass of 1st pendulum
m3 = 0.5; % [kg] mass of 2nd pendulum
l2 = 0.6; % [m] length of 1st pendulum
l3 = 0.6; % [m] length of 2nd pendulum
b = 0.1; % [Ns/m] coefficient of friction between cart and ground
g = 9.82; % [m/s^2] acceleration of gravity
if nargin == 3
A = [2*(m1+m2+m3) -(m2+2*m3)*l2*cos(z(5)) -m3*l3*cos(z(6))
-(3*m2+6*m3)*cos(z(5)) (2*m2+6*m3)*l2 3*m3*l3*cos(z(5)-z(6))
-3*cos(z(6)) 3*l2*cos(z(5)-z(6)) 2*l3];
b = [2*f(t)-2*b*z(2)-(m2+2*m3)*l2*z(3)^2*sin(z(5))-m3*l3*z(4)^2*sin(z(6))
(3*m2+6*m3)*g*sin(z(5))-3*m3*l3*z(4)^2*sin(z(5)-z(6))
3*l2*z(3)^2*sin(z(5)-z(6))+3*g*sin(z(6))];
x = A\b;
dz = zeros(6,1);
dz(1) = z(2);
dz(2) = x(1);
dz(3) = x(2);
dz(4) = x(3);
dz(5) = z(3);
dz(6) = z(4);
else
dz = (m1+m2+m3)*z(2)^2/2+(m2/6+m3/2)*l2^2*z(3)^2+m3*l3^2*z(4)^2/6 ...
-(m2/2+m3)*l2*z(2)*z(3)*cos(z(5))-m3*l3*z(2)*z(4)*cos(z(6))/2 ...
+m3*l2*l3*z(3)*z(4) *cos(z(5)-z(6))/2+(m2/2+m3)*l2*g*cos(z(5)) ...
+m3*l3*g*cos(z(6))/2;
% I2 = m2*l2^2/12; % moment of inertia around pendulum midpoint (1st link)
% I3 = m3*l3^2/12; % moment of inertia around pendulum midpoint (2nd link)
%
%
% dz = m1*z(2)^2/2 + m2/2*(z(2)^2-l2*z(2)*z(3)*cos(z(5))) ...
% + m3/2*(z(2)^2 - 2*l2*z(2)*z(3)*cos(z(5)) - l3*z(2)*z(4)*cos(z(6))) ...
% + m2*l2^2*z(3)^2/8 + I2*z(3)^2/2 ...
% + m3/2*(l2^2*z(3)^2 + l3^2*z(4)^2/4 + l2*l3*z(3)*z(4)*cos(z(5)-z(6))) ...
% + I3*z(4)^2/2 ...
% + m2*g*l2*cos(z(5))/2 + m3*g*(l2*cos(z(5))+l3*cos(z(6))/2);
end
|
github
|
UCL-SML/pilco-matlab-master
|
dynamics_pendulum.m
|
.m
|
pilco-matlab-master/scenarios/pendulum/dynamics_pendulum.m
| 1,302 |
utf_8
|
093b761dfe36df40ca96d15de3e6232d
|
%% dynamics_pendulum.m
% *Summary:* Implements ths ODE for simulating the pendulum dynamics, where
% an input torque f can be applied
%
% function dz = dynamics_pendulum(t,z,u)
%
%
% *Input arguments:*
%
% t current time step (called from ODE solver)
% z state [2 x 1]
% u (optional): torque f(t) applied to pendulum
%
% *Output arguments:*
%
% dz if 3 input arguments: state derivative wrt time
%
% Note: It is assumed that the state variables are of the following order:
% dtheta: [rad/s] angular velocity of pendulum
% theta: [rad] angle of pendulum
%
% A detailed derivation of the dynamics can be found in:
%
% M.P. Deisenroth:
% Efficient Reinforcement Learning Using Gaussian Processes, Appendix C,
% KIT Scientific Publishing, 2010.
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-18
function dz = dynamics_pendulum(t,z,u)
%% Code
l = 1; % [m] length of pendulum
m = 1; % [kg] mass of pendulum
g = 9.82; % [m/s^2] acceleration of gravity
b = 0.01; % [s*Nm/rad] friction coefficient
dz = zeros(2,1);
dz(1) = ( u(t) - b*z(1) - m*g*l*sin(z(2))/2 ) / (m*l^2/3);
dz(2) = z(1);
|
github
|
UCL-SML/pilco-matlab-master
|
loss_pendulum.m
|
.m
|
pilco-matlab-master/scenarios/pendulum/loss_pendulum.m
| 4,270 |
utf_8
|
919853b11632e5c459d540abf96e2219
|
%% loss_pendulum.m
% *Summary:* Pendulum loss function; the loss is
% $1-\exp(-0.5*d^2*a)$, where $a>0$ and $d^2$ is the squared difference
% between the actual and desired position of the tip of the pendulum.
% The mean and the variance of the loss are computed by averaging over the
% Gaussian distribution of the state $p(x) = \mathcal N(m,s)$ with mean $m$
% and covariance matrix $s$.
% Derivatives of these quantities are computed when desired.
%
%
% function [L, dLdm, dLds, S2] = loss_pendulum(cost, m, s)
%
%
% *Input arguments:*
%
% cost cost structure
% .p lengths of the pendulum [1 x 1 ]
% .width array of widths of the cost (summed together)
% .expl (optional) exploration parameter
% .angle (optional) array of angle indices
% .target target state [D x 1 ]
% m mean of state distribution [D x 1 ]
% s covariance matrix for the state distribution [D x D ]
%
% *Output arguments:*
%
% L expected cost [1 x 1 ]
% dLdm derivative of expected cost wrt. state mean vector [1 x D ]
% dLds derivative of expected cost wrt. state covariance matrix [1 x D^2]
% S2 variance of cost [1 x 1 ]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2014-01-05
%
%% High-Level Steps
% # Precomputations
% # Define static penalty as distance from target setpoint
% # Trigonometric augmentation
% # Calculate loss
function [L, dLdm, dLds, S2] = loss_pendulum(cost, m, s)
%% Code
if isfield(cost,'width'); cw = cost.width; else cw = 1; end
if ~isfield(cost,'expl') || isempty(cost.expl); b = 0; else b = cost.expl; end
% 1. Some precomputations
D0 = size(s,2); % state dimension
D1 = D0 + 2*length(cost.angle); % state dimension (with sin/cos)
M = zeros(D1,1); M(1:D0) = m; S = zeros(D1); S(1:D0,1:D0) = s;
Mdm = [eye(D0); zeros(D1-D0,D0)]; Sdm = zeros(D1*D1,D0);
Mds = zeros(D1,D0*D0); Sds = kron(Mdm,Mdm);
% 2. Define static penalty as distance from target setpoint
ell = cost.p;
Q = zeros(D1); Q(D0+1:D0+2,D0+1:D0+2) = eye(2)*ell^2;
% 3. Trigonometric augmentation
if D1-D0 > 0
target = [cost.target(:); ...
gTrig(cost.target(:), zeros(numel(cost.target)), cost.angle)];
i = 1:D0; k = D0+1:D1;
[M(k), S(k,k), C, mdm, sdm, Cdm, mds, sds, Cds] = ...
gTrig(M(i),S(i,i),cost.angle);
[S, Mdm, Mds, Sdm, Sds] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,i,k,D1);
end
% 4. Calculate loss
L = 0; dLdm = zeros(1,D0); dLds = zeros(1,D0*D0); S2 = 0;
for i = 1:length(cw) % scale mixture of immediate costs
cost.z = target; cost.W = Q/cw(i)^2;
[r, rdM, rdS, s2, s2dM, s2dS] = lossSat(cost, M, S);
L = L + r; S2 = S2 + s2;
dLdm = dLdm + rdM(:)'*Mdm + rdS(:)'*Sdm;
dLds = dLds + rdM(:)'*Mds + rdS(:)'*Sds;
if (b~=0 || ~isempty(b)) && abs(s2)>1e-12
L = L + b*sqrt(s2);
dLdm = dLdm + b/sqrt(s2) * ( s2dM(:)'*Mdm + s2dS(:)'*Sdm )/2;
dLds = dLds + b/sqrt(s2) * ( s2dM(:)'*Mds + s2dS(:)'*Sds )/2;
end
end
% normalize
n = length(cw); L = L/n; dLdm = dLdm/n; dLds = dLds/n; S2 = S2/n;
% Fill in covariance matrix...and derivatives ----------------------------
function [S, Mdm, Mds, Sdm, Sds] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,i,k,D)
X = reshape(1:D*D,[D D]); XT = X'; % vectorised indices
I=0*X; I(i,i)=1; ii=X(I==1)'; I=0*X; I(k,k)=1; kk=X(I==1)';
I=0*X; I(i,k)=1; ik=X(I==1)'; ki=XT(I==1)';
Mdm(k,:) = mdm*Mdm(i,:) + mds*Sdm(ii,:); % chainrule
Mds(k,:) = mdm*Mds(i,:) + mds*Sds(ii,:);
Sdm(kk,:) = sdm*Mdm(i,:) + sds*Sdm(ii,:);
Sds(kk,:) = sdm*Mds(i,:) + sds*Sds(ii,:);
dCdm = Cdm*Mdm(i,:) + Cds*Sdm(ii,:);
dCds = Cdm*Mds(i,:) + Cds*Sds(ii,:);
S(i,k) = S(i,i)*C; S(k,i) = S(i,k)'; % off-diagonal
SS = kron(eye(length(k)),S(i,i)); CC = kron(C',eye(length(i)));
Sdm(ik,:) = SS*dCdm + CC*Sdm(ii,:); Sdm(ki,:) = Sdm(ik,:);
Sds(ik,:) = SS*dCds + CC*Sds(ii,:); Sds(ki,:) = Sds(ik,:);
|
github
|
UCL-SML/pilco-matlab-master
|
draw_pendulum.m
|
.m
|
pilco-matlab-master/scenarios/pendulum/draw_pendulum.m
| 2,290 |
utf_8
|
c50e71f7b37fb137cfc5459d39c5c495
|
%% draw_pendulum.m
% *Summary:* Draw the pendulum system with reward, applied torque,
% and predictive uncertainty of the tips of the pendulums
%
% function draw_pendulum(theta, torque, cost, text1, text2, M, S)
%
%
% *Input arguments:*
%
% theta1 angle of inner pendulum
% theta2 angle of outer pendulum
% f1 torque applied to inner pendulum
% f2 torque applied to outer pendulum
% cost cost structure
% .fcn function handle (it is assumed to use saturating cost)
% .<> other fields that are passed to cost
% text1 (optional) text field 1
% text2 (optional) text field 2
% M (optional) mean of state
% S (optional) covariance of state
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-18
function draw_pendulum(theta, torque, cost, text1, text2, M, S)
%% Code
l = 0.6;
xmin = -1.2*l;
xmax = 1.2*l;
umax = 0.5;
height = 0;
% Draw pendulum
pendulum = [0, 0; l*sin(theta), -l*cos(theta)];
clf; hold on
plot(pendulum(:,1), pendulum(:,2),'r','linewidth',4)
% plot ellipses around tips of pendulum (if M, S exist)
try
if max(max(S))>0
err = linspace(-1,1,100)*sqrt(S(2,2));
plot(l*sin(M(2)+2*err),-l*cos(M(2)+2*err),'b','linewidth',1)
plot(l*sin(M(2)+err),-l*cos(M(2)+err),'b','linewidth',2)
plot(l*sin(M(2)),-l*cos(M(2)),'b.','markersize',20)
end
catch
end
% Draw useful information
% target location
plot(0,l,'k+','MarkerSize',20);
plot([xmin, xmax], [-height, -height],'k','linewidth',2)
% joint
plot(0,0,'k.','markersize',24)
plot(0,0,'y.','markersize',14)
% tip of pendulum
plot(l*sin(theta),-l*cos(theta),'k.','markersize',24)
plot(l*sin(theta),-l*cos(theta),'y.','markersize',14)
plot(0,-2*l,'.w','markersize',0.005)
% applied torque
plot([0 torque/umax*xmax],[-0.5, -0.5],'g','linewidth',10);
% immediate reward
reward = 1-cost.fcn(cost,[0, theta]',zeros(2));
plot([0 reward*xmax],[-0.7, -0.7],'y', 'linewidth',10);
text(0,-0.5,'applied torque')
text(0,-0.7,'immediate reward')
if exist('text1','var')
text(0,-0.9, text1)
end
if exist('text2','var')
text(0,-1.1, text2)
end
set(gca,'DataAspectRatio',[1 1 1],'XLim',[xmin xmax],'YLim',[-2*l 2*l]);
axis off;
drawnow;
|
github
|
UCL-SML/pilco-matlab-master
|
gp0d.m
|
.m
|
pilco-matlab-master/gp/gp0d.m
| 6,121 |
utf_8
|
d73ef5c95a55519268da282ffbc627ca
|
%% gp0d.m
% *Summary:* Compute joint predictions and derivatives for multiple GPs
% with uncertain inputs. Predictive variances contain uncertainty about the
% function, but no noise.
% If gpmodel.nigp exists, individial noise contributions are added.
%
%
% function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds] = gp0d(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
% dMdm output mean by input mean [ E x D ]
% dSdm output covariance by input mean [E*E x D ]
% dVdm inv(s)*input-output covariance by input mean [D*E x D ]
% dMds ouput mean by input covariance [ E x D*D]
% dSds output covariance by input covariance [E*E x D*D]
% dVds inv(s)*input-output covariance by input covariance [D*E x D*D]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-24
%
%% High-Level Steps
% # If necessary, compute kernel matrix and cache it
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
% # Vectorize derivatives
function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds] = gp0d(gpmodel, m, s)
%% Code
% If no derivatives required, call gp0
if nargout < 4; [M S V] = gp0(gpmodel, m, s); return; end
persistent K iK beta oldX oldn;
[n, D] = size(gpmodel.inputs); % number of examples and dimension of inputs
E = size(gpmodel.targets,2); % number of outputs
X = gpmodel.hyp; % short hand for hyperparameters
% 1) if necessary: re-compute cached variables
if numel(X) ~= numel(oldX) || isempty(iK) || sum(any(X ~= oldX)) || n ~= oldn
oldX = X; oldn = n;
iK = zeros(n,n,E); K = iK; beta = zeros(n,E);
for i=1:E % compute K and inv(K)
inp = bsxfun(@rdivide,gpmodel.inputs,exp(X(1:D,i)'));
K(:,:,i) = exp(2*X(D+1,i)-maha(inp,inp)/2);
if isfield(gpmodel,'nigp')
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n) + diag(gpmodel.nigp(:,i)))';
else
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n))';
end
iK(:,:,i) = L'\(L\eye(n));
beta(:,i) = L'\(L\gpmodel.targets(:,i));
end
end
k = zeros(n,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E); % initialize
dMds = zeros(E,D,D); dSdm = zeros(E,E,D);
dSds = zeros(E,E,D,D); dVds = zeros(D,E,D,D); T = zeros(D);
inp = bsxfun(@minus,gpmodel.inputs,m'); % centralize inputs
% 2) compute predicted mean and inv(s) times input-output covariance
for i=1:E
iL = diag(exp(-X(1:D,i))); % inverse length scales
in = inp*iL;
B = iL*s*iL+eye(D); LiBL = iL/B*iL;
t = in/B;
l = exp(-sum(in.*t,2)/2); lb = l.*beta(:,i);
tL = t*iL;
tlb = bsxfun(@times,tL,lb);
c = exp(2*X(D+1,i))/sqrt(det(B));
M(i) = c*sum(lb);
V(:,i) = tL'*lb*c; % inv(s) times input-output covariance
dMds(i,:,:) = c*tL'*tlb/2 - LiBL*M(i)/2;
for d = 1:D
dVds(d,i,:,:) = c*bsxfun(@times,tL,tL(:,d))'*tlb/2 - LiBL*V(d,i)/2 ...
- (V(:,i)*LiBL(d,:) + LiBL(:,d)*V(:,i)')/2;
end
k(:,i) = 2*X(D+1,i)-sum(in.*in,2)/2;
end
dMdm = V'; dVdm = 2*permute(dMds,[2 1 3]); % derivatives wrt m
iell2 = exp(-2*gpmodel.hyp(1:D,:));
inpiell2 = bsxfun(@times,inp,permute(iell2,[3,1,2])); % N-by-D-by-E
% 3) compute predictive covariance matrix, non-central moments
for i=1:E
ii = inpiell2(:,:,i);
for j=1:i
R = s*diag(iell2(:,i)+iell2(:,j))+eye(D);
t = 1/sqrt(det(R));
ij = inpiell2(:,:,j);
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
if i==j
iKL = iK(:,:,i).*L;
s1iKL = sum(iKL,1);
s2iKL = sum(iKL,2);
S(i,j) = t*(beta(:,i)'*L*beta(:,i) - sum(s1iKL));
zi = ii/R;
bibLi = L'*beta(:,i).*beta(:,i); cbLi = L'*bsxfun(@times, beta(:,i), zi);
r = (bibLi'*zi*2 - (s2iKL' + s1iKL)*zi)*t;
for d = 1:D
T(d,1:d) = 2*(zi(:,1:d)'*(zi(:,d).*bibLi) + ...
cbLi(:,1:d)'*(zi(:,d).*beta(:,i)) - zi(:,1:d)'*(zi(:,d).*s2iKL) ...
- zi(:,1:d)'*(iKL*zi(:,d)));
T(1:d,d) = T(d,1:d)';
end
else
zi = ii/R; zj = ij/R;
S(i,j) = beta(:,i)'*L*beta(:,j)*t;
S(j,i) = S(i,j);
bibLj = L*beta(:,j).*beta(:,i);
bjbLi = L'*beta(:,i).*beta(:,j);
cbLi = L'*bsxfun(@times, beta(:,i), zi);
cbLj = L*bsxfun(@times, beta(:,j), zj);
r = (bibLj'*zi+bjbLi'*zj)*t;
for d = 1:D
T(d,1:d) = zi(:,1:d)'*(zi(:,d).*bibLj) + ...
cbLi(:,1:d)'*(zj(:,d).*beta(:,j)) + zj(:,1:d)'*(zj(:,d).*bjbLi) + ...
cbLj(:,1:d)'*(zi(:,d).*beta(:,i));
T(1:d,d) = T(d,1:d)';
end
end
dSdm(i,j,:) = r - M(i)*dMdm(j,:)-M(j)*dMdm(i,:);
dSdm(j,i,:) = dSdm(i,j,:);
T = (t*T-S(i,j)*diag(iell2(:,i)+iell2(:,j))/R)/2;
T = T - reshape(M(i)*dMds(j,:,:) + M(j)*dMds(i,:,:),D,D);
dSds(i,j,:,:) = T;
dSds(j,i,:,:) = T;
end
S(i,i) = S(i,i) + exp(2*X(D+1,i));
end
% 4) centralize moments
S = S - M*M';
% 5) vectorize derivatives
dMds = reshape(dMds,[E D*D]);
dSds = reshape(dSds,[E*E D*D]); dSdm = reshape(dSdm,[E*E D]);
dVds = reshape(dVds,[D*E D*D]); dVdm = reshape(dVdm,[D*E D]);
|
github
|
UCL-SML/pilco-matlab-master
|
gp2d.m
|
.m
|
pilco-matlab-master/gp/gp2d.m
| 13,617 |
utf_8
|
25edf637a6e3ad389ac32a3c5547aa74
|
%% gp2d.m
% *Summary:* Compute joint predictions and derivatives for multiple GPs
% with uncertain inputs. Does not consider the uncertainty about the underlying
% function (in prediction), hence, only the GP mean function is considered.
% Therefore, this representation is equivalent to a regularized RBF
% network.
% If gpmodel.nigp exists, individial noise contributions are added.
%
%
% function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdi, dSdi, dVdi, ...
% dMdt, dSdt, dVdt, dMdX, dSdX, dVdX] = gp2d(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
% dMdm output mean by input mean [ E x D ]
% dSdm output covariance by input mean [E*E x D ]
% dVdm inv(s)*input-output covariance by input mean [D*E x D ]
% dMds ouput mean by input covariance [ E x D*D]
% dSds output covariance by input covariance [E*E x D*D]
% dVds inv(s)*input-output covariance by input covariance [D*E x D*D]
%
% dMdi output mean by inputs [ E x n*D]
% dSdi output covariance by inputs [E*E x n*D]
% dVdi inv(s) times input-output covariance by inputs [D*E x n*D]
% dMdt output mean by targets [ E x n*E]
% dSdt output covariance by targets [E*E x n*E]
% dVdt inv(s) times input-output covariance by targets [D*E x n*E]
% dMdX output mean by hyperparameters [ E x P*E]
% dSdX output covariance by hyperparameters [E*E x P*E]
% dVdX inv(s) times input-output covariance by hyper-par. [D*E x P*E]
%
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-24
%
%% High-Level Steps
% # If necessary, re-compute cached variables
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
% # Vectorize derivatives
function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdi, dSdi, dVdi, ...
dMdt, dSdt, dVdt, dMdX, dSdX, dVdX] = gp2d(gpmodel, m, s)
%% Code
input = gpmodel.inputs; target = gpmodel.targets; X = gpmodel.hyp;
if nargout < 4; [M, S, V] = gp2(gpmodel, m, s); return; end
persistent K iK oldX oldIn oldOut beta oldn; % cache some variables
D = size(input,2); % number of examples and dimension of input space
[n, E] = size(target); % number of examples and number of outputs
X = reshape(X, D+2, E);
% 1) If necessary, re-compute cached variables
if numel(X) ~= numel(oldX) || isempty(iK) || n ~= oldn || ...
sum(any(X ~= oldX)) || sum(any(oldIn ~= input)) || ...
sum(any(oldOut ~= target))
oldX = X; oldIn = input; oldOut = target; oldn = n;
K = zeros(n,n,E); iK = K; beta = zeros(n,E);
% compute K and inv(K) and beta
for i=1:E
inp = bsxfun(@rdivide,input,exp(X(1:D,i)'));
K(:,:,i) = exp(2*X(D+1,i)-maha(inp,inp)/2);
if isfield(gpmodel,'nigp')
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n) + diag(gpmodel.nigp(:,i)))';
else
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n))';
end
iK(:,:,i) = L'\(L\eye(n));
beta(:,i) = L'\(L\gpmodel.targets(:,i));
end
end
% initializations
k = zeros(n,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E);
dMds = zeros(E,D,D); dSdm = zeros(E,E,D); r = zeros(1,D);
dSds = zeros(E,E,D,D); dVds = zeros(D,E,D,D); T = zeros(D);
tlbdi = zeros(n,D); dMdi = zeros(E,n,D); dMdt = zeros(E,n,E);
dVdt = zeros(D,E,n,E); dVdi = zeros(D,E,n,D); dSdt = zeros(E,E,n,E);
dSdi = zeros(E,E,n,D); dMdX = zeros(E,D+2,E); dSdX = zeros(E,E,D+2,E);
dVdX = zeros(D,E,D+2,E); Z = zeros(n,D);
bdX = zeros(n,E,D); kdX = zeros(n,E,D+1);
% centralize training inputs
inp = bsxfun(@minus,input,m');
% 2) compute predicted mean and input-output covariance
for i = 1:E
% first some useful intermediate terms
K2 = K(:,:,i)+exp(2*X(D+2,i))*eye(n); % K + sigma^2*I
inp2 = bsxfun(@rdivide,input,exp(X(1:D,i)'));
ii = bsxfun(@rdivide,input,exp(2*X(1:D,i)'));
R = s+diag(exp(2*X(1:D,i)));
L = diag(exp(-X(1:D,i)));
B = L*s*L+eye(D); iR = L/B*L;
t = inp*iR;
l = exp(-sum(t.*inp,2)/2); lb = l.*beta(:,i);
tliK = t'*bsxfun(@times,l,iK(:,:,i));
liK = K2\l;
tlb = bsxfun(@times,t,lb);
c = exp(2*X(D+1,i))/sqrt(det(R))*exp(sum(X(1:D,i)));
detdX = diag(bsxfun(@times,det(R)*iR',2.*exp(2.*X(1:D,i)))); % d(det R)/dX
cdX = -0.5*c/det(R).*detdX'+ c.*ones(1,D); % derivs w.r.t length-scales
dldX = bsxfun(@times,l,bsxfun(@times,t,2.*exp(2*X(1:D,i)')).*t./2);
M(i) = sum(lb)*c; % predicted mean
iK2beta = K2\beta(:,i);
dMds(i,:,:) = c*t'*tlb/2-iR*M(i)/2;
dMdX(i,D+2,i) = -c*sum(l.*(2*exp(2*X(D+2,i))*iK2beta)); % OK
dMdX(i,D+1,i) = -dMdX(i,(i-1)*(D+2)+D+2);
dVdX(:,i,D+2,i) = -((l.*(2*exp(2*X(D+2,i))*iK2beta))'*t*c)';
dVdX(:,i,D+1,i) = -dVdX(:,i,D+2,i);
dsi = -bsxfun(@times,inp2,2.*inp2); % d(sum(inp2.*inp2,2))/dX
dslb = zeros(1,D);
for d = 1:D
sqdi = K(:,:,i).*bsxfun(@minus,ii(:,d),ii(:,d)');
sqdiBi = sqdi*beta(:,i);
tlbdi(:,d) = sqdi*liK.*beta(:,i) + sqdiBi.*liK;
tlbdi2 = -tliK*(-bsxfun(@times,sqdi,beta(:,i))'-diag(sqdiBi));
dVdi(:,i,:,d) = c*(iR(:,d)*lb' - bsxfun(@times,t,tlb(:,d))' + tlbdi2);
dsqdX = bsxfun(@plus,dsi(:,d),dsi(:,d)') + 4.*inp2(:,d)*inp2(:,d)';
dKdX = -K(:,:,i).*dsqdX./2; % dK/dX(1:D)
dKdXbeta = dKdX*beta(:,i);
bdX(:,i,d) = -K2\dKdXbeta; % dbeta/dX
dslb(d) = -liK'*dKdXbeta + beta(:,i)'*dldX(:,d);
dlb = dldX(:,d).*beta(:,i) + l.*bdX(:,i,d);
dtdX = inp*(-bsxfun(@times,iR(:,d),2.*exp(2*X(d,i))*iR(d,:)));
dlbt = lb'*dtdX + dlb'*t;
dVdX(:,i,d,i) = (dlbt'*c + cdX(d)*(lb'*t)');
end % d
dMdi(i,:,:) = c*(tlbdi - tlb);
dMdt(i,:,i) = c*liK';
dMdX(i,1:D,i) = cdX.*sum(beta(:,i).*l) + c.*dslb;
v = bsxfun(@rdivide,inp,exp(X(1:D,i)'));
k(:,i) = 2*X(D+1,i)-sum(v.*v,2)/2;
V(:,i) = t'*lb*c; % input-output covariance
for d = 1:D
dVds(d,i,:,:) = c*bsxfun(@times,t,t(:,d))'*tlb/2 - iR*V(d,i)/2 ...
- V(:,i)*iR(d,:)/2 -iR(:,d)*V(:,i)'/2;
kdX(:,i,d) = bsxfun(@times,v(:,d),v(:,d));
end % d
dVdt(:,i,:,i) = c*tliK;
kdX(:,i,D+1) = 2*ones(1,n); % pre-computation for later
end % i
dMdm = V'; % derivatives w.r.t m
dVdm = 2*permute(dMds,[2 1 3]);
% 3) predictive covariance matrix (non-central moments)
for i = 1:E
K2 = K(:,:,i)+exp(2*X(D+2,i))*eye(n);
ii = bsxfun(@rdivide,inp,exp(2*X(1:D,i)'));
for j = 1:i % if i==j: diagonal elements of S; see Marc's thesis around eq. (2.26)
R = s*diag(exp(-2*X(1:D,i))+exp(-2*X(1:D,j)))+eye(D); t = 1./sqrt(det(R));
if rcond(R) < 1e-15; fprintf('R-matrix in gp2d ill-conditioned'); keyboard; end
iR = R\eye(D);
ij = bsxfun(@rdivide,inp,exp(2*X(1:D,j)'));
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2)); % called Q in thesis
A = beta(:,i)*beta(:,j)'; A = A.*L; ssA = sum(sum(A));
S(i,j) = t*ssA; S(j,i) = S(i,j);
zzi = ii*(R\s);
zzj = ij*(R\s);
zi = ii/R; zj = ij/R;
tdX = -0.5*t*sum(iR'.*bsxfun(@times,s,-2*exp(-2*X(1:D,i)')-2*exp(-2*X(1:D,i)')));
tdXi = -0.5*t*sum(iR'.*bsxfun(@times,s,-2*exp(-2*X(1:D,i)')));
tdXj = -0.5*t*sum(iR'.*bsxfun(@times,s,-2*exp(-2*X(1:D,j)')));
bLiKi = iK(:,:,j)*(L'*beta(:,i)); bLiKj = iK(:,:,i)*(L*beta(:,j));
Q2 = R\s/2;
aQ = ii*Q2; bQ = ij*Q2;
for d = 1:D
Z(:,d) = exp(-2*X(d,i))*(A*zzj(:,d) + sum(A,2).*(zzi(:,d) - inp(:,d)))...
+ exp(-2*X(d,j))*((zzi(:,d))'*A + sum(A,1).*(zzj(:,d) - inp(:,d))')';
Q = bsxfun(@minus,inp(:,d),inp(:,d)');
B = K(:,:,i).*Q;
Z(:,d) = Z(:,d)+exp(-2*X(d,i))*(B*beta(:,i).*bLiKj+beta(:,i).*(B*bLiKj));
if i~=j; B = K(:,:,j).*Q; end
Z(:,d) = Z(:,d)+exp(-2*X(d,j))*(bLiKi.*(B*beta(:,j))+B*bLiKi.*beta(:,j));
B = bsxfun(@plus,zi(:,d),zj(:,d)').*A;
r(d) = sum(sum(B))*t;
T(d,1:d) = sum(zi(:,1:d)'*B,2) + sum(B*zj(:,1:d))';
T(1:d,d) = T(d,1:d)';
if i==j
RTi = bsxfun(@times,s,(-2*exp(-2*X(1:D,i)')-2*exp(-2*X(1:D,j)')));
diRi = -R\bsxfun(@times,RTi(:,d),iR(d,:));
else
RTi = bsxfun(@times,s,-2*exp(-2*X(1:D,i)'));
RTj = bsxfun(@times,s,-2*exp(-2*X(1:D,j)'));
diRi = -R\bsxfun(@times,RTi(:,d),iR(d,:));
diRj = -R\bsxfun(@times,RTj(:,d),iR(d,:));
QdXj = diRj*s/2; % dQ2/dXj
end
QdXi = diRi*s/2; % dQ2/dXj
if i==j
daQi = ii*QdXi + bsxfun(@times,-2*ii(:,d),Q2(d,:)); % d(ii*Q)/dXi
dsaQi = sum(daQi.*ii,2) - 2.*aQ(:,d).*ii(:,d); dsaQj = dsaQi;
dsbQi = dsaQi; dsbQj = dsbQi;
dm2i = -2*daQi*ii' + 2*(bsxfun(@times,aQ(:,d),ii(:,d)')...
+bsxfun(@times,ii(:,d),aQ(:,d)')); dm2j = dm2i; % -2*aQ*ij'/di
else
dbQi = ij*QdXi; % d(ij*Q)/dXi
dbQj = ij*QdXj + bsxfun(@times,-2*ij(:,d),Q2(d,:)); % d(ij*Q)/dXj
daQi = ii*QdXi + bsxfun(@times,-2*ii(:,d),Q2(d,:)); % d(ii*Q)/dXi
daQj = ii*QdXj; % d(ii*Q)/dXj
dsaQi = sum(daQi.*ii,2) - 2.*aQ(:,d).*ii(:,d);
dsaQj = sum(daQj.*ii,2);
dsbQi = sum(dbQi.*ij,2);
dsbQj = sum(dbQj.*ij,2) - 2.*bQ(:,d).*ij(:,d);
dm2i = -2*daQi*ij'; % second part of the maha(..) function wrt Xi
dm2j = -2*ii*(dbQj)'; % second part of the maha(..) function wrt Xj
end
dm1i = bsxfun(@plus,dsaQi,dsbQi'); % first part of the maha(..) function wrt Xi
dm1j = bsxfun(@plus,dsaQj,dsbQj'); % first part of the maha(..) function wrt Xj
dmahai = dm1i-dm2i;
dmahaj = dm1j-dm2j;
if i==j
LdXi = L.*(dmahai + bsxfun(@plus,kdX(:,i,d),kdX(:,j,d)'));
dSdX(i,i,d,i) = beta(:,i)'*LdXi*beta(:,j);
else
LdXi = L.*(dmahai + bsxfun(@plus,kdX(:,i,d),zeros(n,1)'));
LdXj = L.*(dmahaj + bsxfun(@plus,zeros(n,1),kdX(:,j,d)'));
dSdX(i,j,d,i) = beta(:,i)'*LdXi*beta(:,j);
dSdX(i,j,d,j) = beta(:,i)'*LdXj*beta(:,j);
end
end % d
if i==j
dSdX(i,i,1:D,i) = reshape(dSdX(i,i,1:D,i),D,1) + reshape(bdX(:,i,:),n,D)'*(L+L')*beta(:,i);
dSdX(i,i,1:D,i) = reshape(t*dSdX(i,i,1:D,i),D,1)' + tdX*ssA;
dSdX(i,i,D+2,i) = 2*exp(2*X(D+2,i))*t*(-sum(beta(:,i).*bLiKi)-sum(beta(:,i).*bLiKi));
else
dSdX(i,j,1:D,i) = reshape(dSdX(i,j,1:D,i),D,1) + reshape(bdX(:,i,:),n,D)'*(L*beta(:,j));
dSdX(i,j,1:D,j) = reshape(dSdX(i,j,1:D,j),D,1) + reshape(bdX(:,j,:),n,D)'*(L'*beta(:,i));
dSdX(i,j,1:D,i) = reshape(t*dSdX(i,j,1:D,i),D,1)' + tdXi*ssA;
dSdX(i,j,1:D,j) = reshape(t*dSdX(i,j,1:D,j),D,1)' + tdXj*ssA;
dSdX(i,j,D+2,i) = 2*exp(2*X(D+2,i))*t*(-beta(:,i)'*bLiKj);
dSdX(i,j,D+2,j) = 2*exp(2*X(D+2,j))*t*(-beta(:,j)'*bLiKi);
end
dSdm(i,j,:) = r - M(i)*dMdm(j,:)-M(j)*dMdm(i,:); dSdm(j,i,:) = dSdm(i,j,:);
T = (t*T-S(i,j)*diag(exp(-2*X(1:D,i))+exp(-2*X(1:D,j)))/R)/2;
T = T - reshape(M(i)*dMds(j,:,:) + M(j)*dMds(i,:,:),D,D);
dSds(i,j,:,:) = T; dSds(j,i,:,:) = T;
if i==j
dSdt(i,i,:,i) = (beta(:,i)'*(L+L'))/(K2)*t ...
- 2*dMdt(i,:,i)*M(i);
dSdX(i,j,:,i) = reshape(dSdX(i,j,:,i),1,D+2) - M(i)*dMdX(j,:,j)-M(j)*dMdX(i,:,i);
else
dSdt(i,j,:,i) = (beta(:,j)'*L')/(K2)*t ...
- dMdt(i,:,i)*M(j);
dSdt(i,j,:,j) = beta(:,i)'*L/(K(:,:,j)+exp(2*X(D+2,j))*eye(n))*t ...
- dMdt(j,:,j)*M(i);
dSdt(j,i,:,:) = dSdt(i,j,:,:);
dSdX(i,j,:,j) = reshape(dSdX(i,j,:,j),1,D+2) - M(i)*dMdX(j,:,j);
dSdX(i,j,:,i) = reshape(dSdX(i,j,:,i),1,D+2) - M(j)*dMdX(i,:,i);
end
dSdi(i,j,:,:) = Z*t - reshape(M(i)*dMdi(j,:,:) + dMdi(i,:,:)*M(j),n,D);
dSdi(j,i,:,:) = dSdi(i,j,:,:);
dSdX(j,i,:,:) = dSdX(i,j,:,:);
end % j
S(i,i) = S(i,i) + 1e-06; % add small diagonal jitter for numerical reasons
end % i
dSdX(:,:,D+1,:) = -dSdX(:,:,D+2,:);
dSdX(:,:,D+1,:) = -dSdX(:,:,D+2,:);
% 4) centralize moments
S = S - M*M';
%S(diag(S)<0,diag(S)<0) = 1e-6;
% 5) Vectorize derivatives
dMds=reshape(dMds,[E D*D]);
dSdm=reshape(dSdm,[E*E D]); dSds=reshape(dSds,[E*E D*D]);
dVdm=reshape(dVdm,[D*E D]); dVds=reshape(dVds,[D*E D*D]);
dMdi=reshape(dMdi,E,[]); dMdt=reshape(dMdt,E,[]); dMdX=reshape(dMdX,E,[]);
dSdi=reshape(dSdi,E*E,[]);dSdt=reshape(dSdt,E*E,[]);dSdX=reshape(dSdX,E*E,[]);
dVdi=reshape(dVdi,D*E,[]);dVdt=reshape(dVdt,D*E,[]);dVdX=reshape(dVdX,D*E,[]);
|
github
|
UCL-SML/pilco-matlab-master
|
hypCurb.m
|
.m
|
pilco-matlab-master/gp/hypCurb.m
| 2,378 |
utf_8
|
2aa8259c63afdfece72ccc8a31ef5e82
|
%% hypCurb.m
% *Summary:* Wrapper for GP training (via gpr.m), penalizing large SNR and
% extreme length-scales to avoid numerical instabilities
%
% function [f df] = hypCurb(lh, covfunc, x, y, curb)
%
% *Input arguments:*
%
% lh log-hyper-parameters [D+2 x E ]
% covfunc covariance function, e.g.,
% covfunc = {'covSum', {'covSEard', 'covNoise'}};
% x training inputs [ n x D ]
% y training targets [ n x E ]
% curb (optional) parameters to penalize extreme hyper-parameters
% .ls length-scales
% .snr signal-to-noise ratio (try to keep it below 500)
% .std additional parameter required for length-scale penalty
%
% *Output arguments:*
%
% f penalized negative log-marginal likelihood
% df derivative of penalized negative log-marginal likelihood wrt
% GP log-hyper-parameters
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2011-12-19
%
%% High-Level Steps
% # Compute the negative log-marginal likelihood (plus derivatives)
% # Add penalties and change derivatives accordingly
function [f df] = hypCurb(lh, covfunc, x, y, curb)
%% Code
if nargin < 5, curb.snr = 500; curb.ls = 100; curb.std = 1; end % set default
p = 30; % penalty power
D = size(x,2);
if size(lh,1) == 3*D+2; li = 1:2*D; sfi = 2*D+1:3*D+1; % 1D and DD terms
elseif size(lh,1) == 2*D+1; li = 1:D; sfi = D+1:2*D; % Just 1D terms
elseif size(lh,1) == D+2; li = 1:D; sfi = D+1; % Just DD terms
else error('Incorrect number of hyperparameters');
end
ll = lh(li); lsf = lh(sfi); lsn = lh(end);
% 1) compute the negative log-marginal likelihood (plus derivatives)
[f df] = gpr(lh, covfunc, x, y); % first, call gpr
% 2) add penalties and change derivatives accordingly
f = f + sum(((ll - log(curb.std'))./log(curb.ls)).^p); % length-scales
df(li) = df(li) + p*(ll - log(curb.std')).^(p-1)/log(curb.ls)^p;
f = f + sum(((lsf - lsn)/log(curb.snr)).^p); % signal to noise ratio
df(sfi) = df(sfi) + p*(lsf - lsn).^(p-1)/log(curb.snr)^p;
df(end) = df(end) - p*sum((lsf - lsn).^(p-1)/log(curb.snr)^p);
|
github
|
UCL-SML/pilco-matlab-master
|
gp1.m
|
.m
|
pilco-matlab-master/gp/gp1.m
| 4,916 |
utf_8
|
d5d2ccda21c8686f5c72a3b7dcba2d62
|
%% gp1.m
% *Summary:* Compute joint predictions for the FITC sparse approximation to
% multiple GPs with uncertain inputs.
% Predictive variances contain uncertainty about the function, but no noise.
% If gpmodel.nigp exists, individual noise contributions are added.
%
% function [M, S, V] = gp1d(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-05
%
%% High-Level Steps
% # If necessary, compute kernel matrix and cache it
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
function [M, S, V] = gp1(gpmodel, m, s)
%% Code
if ~isfield(gpmodel,'induce') || numel(gpmodel.induce)==0,
[M, S, V] = gp0(gpmodel, m, s); return; end
persistent iK iK2 beta oldX;
ridge = 1e-6; % jitter to make matrix better conditioned
[n, D] = size(gpmodel.inputs); % number of examples and dimension of inputs
E = size(gpmodel.targets,2); % number of examples and number of outputs
X = gpmodel.hyp; input = gpmodel.inputs; targets = gpmodel.targets;
[np pD pE] = size(gpmodel.induce); % number of pseudo inputs per dimension
pinput = gpmodel.induce; % all pseudo inputs
% 1) If necessary: re-compute cached variables
if numel(X) ~= numel(oldX) || isempty(iK) || isempty(iK2) || ... % if necessary
sum(any(X ~= oldX)) || numel(iK2) ~=E*np^2 || numel(iK) ~= n*np*E
oldX = X; % compute K, inv(K), inv(K2)
iK = zeros(np,n,E); iK2 = zeros(np,np,E); beta = zeros(np,E);
for i=1:E
pinp = bsxfun(@rdivide,pinput(:,:,min(i,pE)),exp(X(1:D,i)'));
inp = bsxfun(@rdivide,input,exp(X(1:D,i)'));
Kmm = exp(2*X(D+1,i)-maha(pinp,pinp)/2) + ridge*eye(np); % add small ridge
Kmn = exp(2*X(D+1,i)-maha(pinp,inp)/2);
L = chol(Kmm)';
V = L\Kmn; % inv(sqrt(Kmm))*Kmn
if isfield(gpmodel,'nigp')
G = exp(2*X(D+1,i))-sum(V.^2)+gpmodel.nigp(:,i)';
else
G = exp(2*X(D+1,i))-sum(V.^2);
end
G = sqrt(1+G/exp(2*X(D+2,i)));
V = bsxfun(@rdivide,V,G);
Am = chol(exp(2*X(D+2,i))*eye(np) + V*V')';
At = L*Am; % chol(sig*B) [thesis, p. 40]
iAt = At\eye(np);
% The following is not an inverse matrix, but we'll treat it as such: multiply
% the targets from right and the cross-covariances left to get predictive mean.
iK(:,:,i) = ((Am\(bsxfun(@rdivide,V,G)))'*iAt)';
beta(:,i) = iK(:,:,i)*targets(:,i);
iB = iAt'*iAt.*exp(2*X(D+2,i)); % inv(B), [Ed's thesis, p. 40]
iK2(:,:,i) = Kmm\eye(np) - iB; % covariance matrix for predictive variances
end
end
k = zeros(np,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E); % allocate
inp = zeros(np,D,E);
% 2) Compute predicted mean and inv(s) times input-output covariance
for i=1:E
inp(:,:,i) = bsxfun(@minus,pinput(:,:,min(i,pE)),m');
L = diag(exp(-X(1:D,i)));
in = inp(:,:,i)*L;
B = L*s*L+eye(D);
t = in/B;
l = exp(-sum(in.*t,2)/2); lb = l.*beta(:,i);
tL = t*L;
c = exp(2*X(D+1,i))/sqrt(det(B));
M(i) = sum(lb)*c; % predicted mean
V(:,i) = tL'*lb*c; % inv(s) times input-output covariance
k(:,i) = 2*X(D+1,i)-sum(in.*in,2)/2;
end
% 3) Compute predictive covariance matrix, non-central moments
for i=1:E
ii = bsxfun(@rdivide,inp(:,:,i),exp(2*X(1:D,i)'));
for j=1:i
R = s*diag(exp(-2*X(1:D,i))+exp(-2*X(1:D,j)))+eye(D); t = 1./sqrt(det(R));
ij = bsxfun(@rdivide,inp(:,:,j),exp(2*X(1:D,j)'));
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
if i==j
S(i,i) = t*(beta(:,i)'*L*beta(:,i) - sum(sum(iK2(:,:,i).*L)));
else
S(i,j) = beta(:,i)'*L*beta(:,j)*t; S(j,i) = S(i,j);
end
end
S(i,i) = S(i,i) + exp(2*X(D+1,i));
end
% 4) Centralize moments
S = S - M*M';
|
github
|
UCL-SML/pilco-matlab-master
|
covSEard.m
|
.m
|
pilco-matlab-master/gp/covSEard.m
| 1,734 |
utf_8
|
1f400b4ffc10975b4572164e889e177c
|
%% covSEard.m
% Squared Exponential covariance function with Automatic Relevance Detemination
% (ARD) distance measure. The covariance function is parameterized as:
%
% k(x^p,x^q) = sf2 * exp(-(x^p - x^q)'*inv(P)*(x^p - x^q)/2)
%
% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where
% D is the dimension of the input space and sf2 is the signal variance. The
% hyperparameters are:
%
% loghyper = [ log(ell_1)
% log(ell_2)
% .
% log(ell_D)
% log(sqrt(sf2)) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-24)
function [A, B] = covSEard(loghyper, x, z)
%% Code
if nargin == 0, A = '(D+1)'; return; end % report number of parameters
persistent K;
[n D] = size(x);
ell = exp(loghyper(1:D)); % characteristic length scale
sf2 = exp(2*loghyper(D+1)); % signal variance
if nargin == 2
K = sf2*exp(-sq_dist(diag(1./ell)*x')/2);
A = K;
elseif nargout == 2 % compute test set covariances
A = sf2*ones(size(z,1),1);
B = sf2*exp(-sq_dist(diag(1./ell)*x',diag(1./ell)*z')/2);
else % compute derivative matrix
% check for correct dimension of the previously calculated kernel matrix
if any(size(K)~=n)
K = sf2*exp(-sq_dist(diag(1./ell)*x')/2);
end
if z <= D % length scale parameters
A = K.*sq_dist(x(:,z)'/ell(z));
else % magnitude parameter
A = 2*K;
clear K;
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
gp1d.m
|
.m
|
pilco-matlab-master/gp/gp1d.m
| 7,391 |
utf_8
|
b53a266575ac4ef1f2678674efe61708
|
%% gp1d.m
% *Summary:* Compute joint predictions (and derivatives) for the FITC sparse
% approximation to multiple GPs with uncertain inputs.
% Predictive variances contain uncertainty about the function, but no noise.
% If gpmodel.nigp exists, individual noise contributions are added.
%
% function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds] = gp1d(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
% dMdm output mean by input mean [ E x D ]
% dSdm output covariance by input mean [E*E x D ]
% dVdm inv(s)*input-output covariance by input mean [D*E x D ]
% dMds ouput mean by input covariance [ E x D*D]
% dSds output covariance by input covariance [E*E x D*D]
% dVds inv(s)*input-output covariance by input covariance [D*E x D*D]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-24
%
%% High-Level Steps
% # If necessary, compute kernel matrix and cache it
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
% # Vectorize derivatives
function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds] = gp1d(gpmodel, m, s)
%% Code
% If no derivatives are required, call gp1
if nargout < 4; [M S V] = gp1(gpmodel, m, s); return; end
% If there are no inducing inputs, back off to gp0d (no sparse GP required)
if numel(gpmodel.induce) == 0
[M S V dMdm dSdm dVdm dMds dSds dVds] = gp0d(gpmodel, m, s); return;
end
% 1) If necessary: re-compute cached variables
persistent iK iK2 beta oldX;
ridge = 1e-6; % jitter to make matrix better conditioned
[n, D] = size(gpmodel.inputs); % number of examples and dimension of inputs
E = size(gpmodel.targets,2); % number of examples and number of outputs
X = gpmodel.hyp; input = gpmodel.inputs; targets = gpmodel.targets;
[np pD pE] = size(gpmodel.induce); % number of pseudo inputs per dimension
pinput = gpmodel.induce; % all pseudo inputs
if numel(X) ~= numel(oldX) || isempty(iK) || isempty(iK2) || ... % if necessary
sum(any(X ~= oldX)) || numel(iK2) ~=E*np^2 || numel(iK) ~= n*np*E
oldX = X; % compute K, inv(K), inv(K2)
iK = zeros(np,n,E); iK2 = zeros(np,np,E); beta = zeros(np,E);
for i = 1:E
pinp = bsxfun(@rdivide,pinput(:,:,min(i,pE)),exp(X(1:D,i)'));
inp = bsxfun(@rdivide,input,exp(X(1:D,i)'));
Kmm = exp(2*X(D+1,i)-maha(pinp,pinp)/2) + ridge*eye(np); % add small ridge
Kmn = exp(2*X(D+1,i)-maha(pinp,inp)/2);
L = chol(Kmm)';
V = L\Kmn; % inv(sqrt(Kmm))*Kmn
if isfield(gpmodel,'nigp')
G = exp(2*X(D+1,i))-sum(V.^2)+gpmodel.nigp(:,i)';
else
G = exp(2*X(D+1,i))-sum(V.^2);
end
G = sqrt(1+G/exp(2*X(D+2,i)));
V = bsxfun(@rdivide,V,G);
Am = chol(exp(2*X(D+2,i))*eye(np) + V*V')';
At = L*Am; % chol(sig*B) [Snelson's thesis, p. 40]
iAt = At\eye(np);
% The following is not an inverse matrix, but we'll treat it as such: multiply
% the targets from right and the cross-covariances left to get predictive mean.
iK(:,:,i) = ((Am\(bsxfun(@rdivide,V,G)))'*iAt)';
beta(:,i) = iK(:,:,i)*targets(:,i);
iB = iAt'*iAt.*exp(2*X(D+2,i)); % inv(B), [Snelson's thesis, p. 40]
iK2(:,:,i) = Kmm\eye(np) - iB; % covariance matrix for predictive variances
end
end
k = zeros(np,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E); % allocate
dMds = zeros(E,D,D); dSdm = zeros(E,E,D); r = zeros(1,D);
dSds = zeros(E,E,D,D); dVds = zeros(D,E,D,D); T = zeros(D);
inp = zeros(np,D,E);
% 2) Compute predicted mean and inv(s) times input-output covariance
for i = 1:E
inp(:,:,i) = bsxfun(@minus,pinput(:,:,min(i,pE)),m'); % centralize p-inputs
L = diag(exp(-X(1:D,i)));
in = inp(:,:,i)*L;
B = L*s*L+eye(D); LiBL = L/B*L; % iR = LiBL;
t = in/B;
l = exp(-sum(in.*t,2)/2); lb = l.*beta(:,i);
tL = t*L;
tlb = bsxfun(@times,tL,lb);
c = exp(2*X(D+1,i))/sqrt(det(B));
M(i) = c*sum(lb);
V(:,i) = tL'*lb*c; % inv(s) times input-output covariance
dMds(i,:,:) = c*tL'*tlb/2 - LiBL*M(i)/2;
for d = 1:D
dVds(d,i,:,:) = c*bsxfun(@times,tL,tL(:,d))'*tlb/2 - LiBL*V(d,i)/2 ...
- (V(:,i)*LiBL(d,:) + LiBL(:,d)*V(:,i)')/2;
end
k(:,i) = 2*X(D+1,i)-sum(in.*in,2)/2;
end
dMdm = V'; dVdm = 2*permute(dMds,[2 1 3]); % derivatives wrt m
iell2 = exp(-2*gpmodel.hyp(1:D,:));
inpiell2 = bsxfun(@times,inp,permute(iell2,[3,1,2])); % N-by-D-by-E
% 3) Compute predictive covariance matrix, non-central moments
for i=1:E
ii = inpiell2(:,:,i);
for j=1:i
R = s*diag(iell2(:,i)+iell2(:,j))+eye(D); t = 1/sqrt(det(R));
ij = inpiell2(:,:,j);
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
if i==j
iKL = iK2(:,:,i).*L; s1iKL = sum(iKL,1); s2iKL = sum(iKL,2);
S(i,j) = t*(beta(:,i)'*L*beta(:,i) - sum(s1iKL));
zi = ii/R;
bibLi = L'*beta(:,i).*beta(:,i); cbLi = L'*bsxfun(@times, beta(:,i), zi);
r = (bibLi'*zi*2 - (s2iKL' + s1iKL)*zi)*t;
for d = 1:D
T(d,1:d) = 2*(zi(:,1:d)'*(zi(:,d).*bibLi) + ...
cbLi(:,1:d)'*(zi(:,d).*beta(:,i)) - zi(:,1:d)'*(zi(:,d).*s2iKL) ...
- zi(:,1:d)'*(iKL*zi(:,d)));
T(1:d,d) = T(d,1:d)';
end
else
zi = ii/R; zj = ij/R;
S(i,j) = beta(:,i)'*L*beta(:,j)*t; S(j,i) = S(i,j);
bibLj = L*beta(:,j).*beta(:,i); bjbLi = L'*beta(:,i).*beta(:,j);
cbLi = L'*bsxfun(@times, beta(:,i), zi);
cbLj = L*bsxfun(@times, beta(:,j), zj);
r = (bibLj'*zi+bjbLi'*zj)*t;
for d = 1:D
T(d,1:d) = zi(:,1:d)'*(zi(:,d).*bibLj) + ...
cbLi(:,1:d)'*(zj(:,d).*beta(:,j)) + zj(:,1:d)'*(zj(:,d).*bjbLi) + ...
cbLj(:,1:d)'*(zi(:,d).*beta(:,i));
T(1:d,d) = T(d,1:d)';
end
end
dSdm(i,j,:) = r - M(i)*dMdm(j,:)-M(j)*dMdm(i,:); dSdm(j,i,:) = dSdm(i,j,:);
T = (t*T-S(i,j)*diag(iell2(:,i)+iell2(:,j))/R)/2;
T = T - squeeze(M(i)*dMds(j,:,:) + M(j)*dMds(i,:,:));
dSds(i,j,:,:) = T; dSds(j,i,:,:) = T;
end
S(i,i) = S(i,i) + exp(2*X(D+1,i));
end
% 4) Centralize moments
S = S - M*M';
% 5) Vectorize derivatives
dMds = reshape(dMds,[E D*D]);
dSds = reshape(dSds,[E*E D*D]); dSdm = reshape(dSdm,[E*E D]);
dVds = reshape(dVds,[D*E D*D]); dVdm = reshape(dVdm,[D*E D]);
|
github
|
UCL-SML/pilco-matlab-master
|
covSum.m
|
.m
|
pilco-matlab-master/gp/covSum.m
| 2,403 |
utf_8
|
bf6228b9460e36949e8a52e49b67666e
|
%% covSum.m
% *Summary:* Compose a covariance function as the sum of other covariance
% functions. This function doesn't actually compute very much on its own, it
% merely does some bookkeeping, and calls other covariance functions to do the
% actual work.
%
% function [A, B] = covSum(covfunc, logtheta, x, z)
%
% (C) Copyright 2006 by Carl Edward Rasmussen, 2006-03-20.
%
function [A, B] = covSum(covfunc, logtheta, x, z)
%% Code
for i = 1:length(covfunc) % iterate over covariance functions
f = covfunc(i);
if iscell(f{:}), f = f{:}; end % dereference cell array if necessary
j(i) = cellstr(feval(f{:}));
end
if nargin == 1, % report number of parameters
A = char(j(1)); for i=2:length(covfunc), A = [A, '+', char(j(i))]; end
return
end
[n, D] = size(x);
v = []; % v vector indicates to which covariance parameters belong
for i = 1:length(covfunc), v = [v repmat(i, 1, eval(char(j(i))))]; end
switch nargin
case 3 % compute covariance matrix
A = zeros(n, n); % allocate space for covariance matrix
for i = 1:length(covfunc) % iteration over summand functions
f = covfunc(i);
if iscell(f{:}), f = f{:}; end % dereference cell array if necessary
A = A + feval(f{:}, logtheta(v==i), x); % accumulate covariances
end
case 4 % compute derivative matrix or test set covariances
if nargout == 2 % compute test set cavariances
A = zeros(size(z,1),1); B = zeros(size(x,1),size(z,1)); % allocate space
for i = 1:length(covfunc)
f = covfunc(i);
if iscell(f{:}), f = f{:}; end % dereference cell array if necessary
[AA BB] = feval(f{:}, logtheta(v==i), x, z); % compute test covariances
A = A + AA; B = B + BB; % and accumulate
end
else % compute derivative matrices
i = v(z); % which covariance function
j = sum(v(1:z)==i); % which parameter in that covariance
f = covfunc(i);
if iscell(f{:}), f = f{:}; end % dereference cell array if necessary
A = feval(f{:}, logtheta(v==i), x, j); % compute derivative
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
gp2.m
|
.m
|
pilco-matlab-master/gp/gp2.m
| 3,808 |
utf_8
|
5483b52dac200a108b03fb1d9e43b9a8
|
%% gp2.m
% *Summary:* Compute joint predictions and derivatives for multiple GPs
% with uncertain inputs. Does not consider the uncertainty about the underlying
% function (in prediction), hence, only the GP mean function is considered.
% Therefore, this representation is equivalent to a regularized RBF
% network.
% If gpmodel.nigp exists, individial noise contributions are added.
%
%
% function [M, S, V] = gp2(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-05
%
%% High-Level Steps
% # If necessary, re-compute cached variables
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
function [M, S, V] = gp2(gpmodel, m, s)
%% Code
persistent iK oldX oldIn oldOut beta oldn;
D = size(gpmodel.inputs,2); % number of examples and dimension of inputs
[n, E] = size(gpmodel.targets); % number of examples and number of outputs
input = gpmodel.inputs; target = gpmodel.targets; X = gpmodel.hyp;
% 1) if necessary: re-compute cached variables
if numel(X) ~= numel(oldX) || isempty(iK) || n ~= oldn || ...
sum(any(X ~= oldX)) || sum(any(oldIn ~= input)) || ...
sum(any(oldOut ~= target))
oldX = X; oldIn = input; oldOut = target; oldn = n;
K = zeros(n,n,E); iK = K; beta = zeros(n,E);
for i=1:E % compute K and inv(K)
inp = bsxfun(@rdivide,gpmodel.inputs,exp(X(1:D,i)'));
K(:,:,i) = exp(2*X(D+1,i)-maha(inp,inp)/2);
if isfield(gpmodel,'nigp')
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n) + diag(gpmodel.nigp(:,i)))';
else
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n))';
end
iK(:,:,i) = L'\(L\eye(n));
beta(:,i) = L'\(L\gpmodel.targets(:,i));
end
end
k = zeros(n,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E);
inp = bsxfun(@minus,gpmodel.inputs,m'); % centralize inputs
% 2) Compute predicted mean and inv(s) times input-output covariance
for i=1:E
iL = diag(exp(-X(1:D,i))); % inverse length-scales
in = inp*iL;
B = iL*s*iL+eye(D);
t = in/B;
l = exp(-sum(in.*t,2)/2); lb = l.*beta(:,i);
tL = t*iL;
c = exp(2*X(D+1,i))/sqrt(det(B));
M(i) = sum(lb)*c; % predicted mean
V(:,i) = tL'*lb*c; % inv(s) times input-output covariance
k(:,i) = 2*X(D+1,i)-sum(in.*in,2)/2;
end
% 3) Compute predictive covariance, non-central moments
for i=1:E
ii = bsxfun(@rdivide,inp,exp(2*X(1:D,i)'));
for j=1:i
R = s*diag(exp(-2*X(1:D,i))+exp(-2*X(1:D,j)))+eye(D);
t = 1/sqrt(det(R));
ij = bsxfun(@rdivide,inp,exp(2*X(1:D,j)'));
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
S(i,j) = t*beta(:,i)'*L*beta(:,j); S(j,i) = S(i,j);
end
S(i,i) = S(i,i) + 1e-6; % add small jitter for numerical reasons
end
% 4) Centralize moments
S = S - M*M';
|
github
|
UCL-SML/pilco-matlab-master
|
gp0.m
|
.m
|
pilco-matlab-master/gp/gp0.m
| 3,761 |
utf_8
|
335c986e61bbf92aae2cc328b0d56a18
|
%% gp0.m
% *Summary:* Compute joint predictions for multiple GPs with uncertain inputs.
% If gpmodel.nigp exists, individial noise contributions are added.
% Predictive variances contain uncertainty about the function, but no noise.
%
% function [M, S, V] = gp0(gpmodel, m, s)
%
% *Input arguments:*
%
% gpmodel GP model struct
% hyp log-hyper-parameters [D+2 x E ]
% inputs training inputs [ n x D ]
% targets training targets [ n x E ]
% nigp (optional) individual noise variance terms [ n x E ]
% m mean of the test distribution [ D x 1 ]
% s covariance matrix of the test distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of pred. distribution [ E x 1 ]
% S covariance of the pred. distribution [ E x E ]
% V inv(s) times covariance between input and output [ D x E ]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-24
%
%% High-Level Steps
% # If necessary, compute kernel matrix and cache it
% # Compute predicted mean and inv(s) times input-output covariance
% # Compute predictive covariance matrix, non-central moments
% # Centralize moments
function [M, S, V] = gp0(gpmodel, m, s)
%% Code
persistent K iK beta oldX oldn;
[n, D] = size(gpmodel.inputs); % number of examples and dimension of inputs
[n, E] = size(gpmodel.targets); % number of examples and number of outputs
X = gpmodel.hyp; % short hand for hyperparameters
% 1) if necessary: re-compute cashed variables
if numel(X) ~= numel(oldX) || isempty(iK) || sum(any(X ~= oldX)) || n ~= oldn
oldX = X; oldn = n;
iK = zeros(n,n,E); K = zeros(n,n,E); beta = zeros(n,E);
for i=1:E % compute K and inv(K)
inp = bsxfun(@rdivide,gpmodel.inputs,exp(X(1:D,i)'));
K(:,:,i) = exp(2*X(D+1,i)-maha(inp,inp)/2);
if isfield(gpmodel,'nigp')
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n) + diag(gpmodel.nigp(:,i)))';
else
L = chol(K(:,:,i) + exp(2*X(D+2,i))*eye(n))';
end
iK(:,:,i) = L'\(L\eye(n));
beta(:,i) = L'\(L\gpmodel.targets(:,i));
end
end
k = zeros(n,E); M = zeros(E,1); V = zeros(D,E); S = zeros(E);
inp = bsxfun(@minus,gpmodel.inputs,m'); % centralize inputs
% 2) compute predicted mean and inv(s) times input-output covariance
for i=1:E
iL = diag(exp(-X(1:D,i))); % inverse length-scales
in = inp*iL;
B = iL*s*iL+eye(D);
t = in/B;
l = exp(-sum(in.*t,2)/2); lb = l.*beta(:,i);
tiL = t*iL;
c = exp(2*X(D+1,i))/sqrt(det(B));
M(i) = sum(lb)*c; % predicted mean
V(:,i) = tiL'*lb*c; % inv(s) times input-output covariance
k(:,i) = 2*X(D+1,i)-sum(in.*in,2)/2;
end
% 3) ompute predictive covariance, non-central moments
for i=1:E
ii = bsxfun(@rdivide,inp,exp(2*X(1:D,i)'));
for j=1:i
R = s*diag(exp(-2*X(1:D,i))+exp(-2*X(1:D,j)))+eye(D);
t = 1/sqrt(det(R));
ij = bsxfun(@rdivide,inp,exp(2*X(1:D,j)'));
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
if i==j
S(i,i) = t*(beta(:,i)'*L*beta(:,i) - sum(sum(iK(:,:,i).*L)));
else
S(i,j) = beta(:,i)'*L*beta(:,j)*t;
S(j,i) = S(i,j);
end
end
S(i,i) = S(i,i) + exp(2*X(D+1,i));
end
% 4) centralize moments
S = S - M*M';
|
github
|
UCL-SML/pilco-matlab-master
|
gpr.m
|
.m
|
pilco-matlab-master/gp/gpr.m
| 2,833 |
utf_8
|
3f1c270a5d7daccb9115e4d97f87bb61
|
%% gpr.m
% *Summary:* Gaussian process regression, with a named covariance function. Two
% modes are possible: training and prediction: if no test data are given, the
% function returns minus the log likelihood and its partial derivatives with
% respect to the hyperparameters; this mode is used to fit the hyperparameters.
% If test data are given, then (marginal) Gaussian predictions are computed,
% whose mean and variance are returned. Note that in cases where the covariance
% function has noise contributions, the variance returned in S2 is for noisy
% test targets; if you want the variance of the noise-free latent function, you
% must substract the noise variance.
%
% usage: [nlml dnlml] = gpr(logtheta, covfunc, x, y)
% or: [mu S2] = gpr(logtheta, covfunc, x, y, xstar)
%
% where:
%
% logtheta is a (column) vector of log hyperparameters
% covfunc is the covariance function
% x is a n by D matrix of training inputs
% y is a (column) vector (of size n) of targets
% xstar is a nn by D matrix of test inputs
% nlml is the returned value of the negative log marginal likelihood
% dnlml is a (column) vector of partial derivatives of the negative
% log marginal likelihood wrt each log hyperparameter
% mu is a (column) vector (of size nn) of prediced means
% S2 is a (column) vector (of size nn) of predicted variances
%
% For more help on covariance functions, see "help covFunctions".
%
% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-20).
function [out1, out2] = gpr(logtheta, covfunc, x, y, xstar)
%% Code
if ischar(covfunc), covfunc = cellstr(covfunc); end % convert to cell if needed
[n, D] = size(x);
if eval(feval(covfunc{:})) ~= size(logtheta, 1)
error('Error: Number of parameters do not agree with covariance function')
end
K = feval(covfunc{:}, logtheta, x); % compute training set covariance matrix
L = chol(K)'; % cholesky factorization of the covariance
alpha = solve_chol(L',y);
if nargin == 4 % if no test cases, compute the negative log marginal likelihood
out1 = 0.5*y'*alpha + sum(log(diag(L))) + 0.5*n*log(2*pi);
if nargout == 2 % ... and if requested, its partial derivatives
out2 = zeros(size(logtheta)); % set the size of the derivative vector
W = L'\(L\eye(n))-alpha*alpha'; % precompute for convenience
for i = 1:length(out2)
out2(i) = sum(sum(W.*feval(covfunc{:}, logtheta, x, i)))/2;
end
end
else % ... otherwise compute (marginal) test predictions ...
[Kss, Kstar] = feval(covfunc{:}, logtheta, x, xstar); % test covariances
out1 = Kstar' * alpha; % predicted means
if nargout == 2
v = L\Kstar;
out2 = Kss - sum(v.*v)';
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
fitc.m
|
.m
|
pilco-matlab-master/gp/fitc.m
| 4,699 |
utf_8
|
388c5581c035c02a82aa9b9526160dd8
|
%% fitc.m
% *Summary:* Compute the FITC negative log marginal likelihood and its
% derivatives with respect to the inducing inputs (we don't compute the
% derivatives with respect to the GP hyper-parameters)
%
% function [nml dnml] = fitc(induce, gpmodel)
%
% *Input arguments:*
%
% induce matrix of inducing inputs [M x D x uE]
% M: number of inducing inputs
% E: either 1 (inducing inputs are shared across target dim.)
% or E (different inducing inputs for each target dim.)
% gpmodel GP structure
% .hyp log-hyper-parameters [D+2 x E]
% .inputs training inputs [N x D]
% .targets training targets [N x E]
% .noise (opt) noise
%
%
% *Output arguments:*
%
% nlml negative log-marginal likelihood
% dnlml derivative of negative log-marginal likelihood wrt
% inducing inputs
%
% Adapted from Ed Snelson's SPGP code.
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-21
%
%% High-Level Steps
%
% # Compute FITC marginal likelihood
% # Compute corresponding gradients wrt the pseudo inputs
function [nlml dnlml] = fitc(induce, gpmodel)
%% Code
ridge = 1e-06; % jitter to make matrix better conditioned
[N D] = size(gpmodel.inputs); E = size(gpmodel.targets,2);
[M uD uE] = size(induce);
if uD ~= D || (uE~=1 && uE ~= E); error('Wrong size of inducing inputs'); end
nlml = 0; dfxb = zeros(M, D); dnlml = zeros(M, D, E); % zero and allocate outputs
for j = 1:E
if uE > 1; u = induce(:,:,j); else u = induce; end
b = exp(gpmodel.hyp(1:D,j)); % length-scales
c = gpmodel.hyp(D+1,j); % log signal std dev
sig = exp(2.*gpmodel.hyp(D+2,j)); % noise variance
xb = bsxfun(@rdivide,u,b'); % divide inducing by lengthscales
x = bsxfun(@rdivide,gpmodel.inputs,b'); % divide inputs by length-scales
y = gpmodel.targets(:,j); % training targets
Kmm = exp(2*c-maha(xb,xb)/2) + ridge*eye(M);
Kmn = exp(2*c-maha(xb,x)/2);
% Check whether Kmm is no longer positive definite. If so, return
try
L = chol(Kmm)';
catch
nlml = Inf; dnlml = zeros(size(params));
return;
end
V = L\Kmn; % inv(sqrt(Kmm))*Kmn
if isfield(gpmodel,'noise')
Gamma = 1 + (exp(2*c)-sum(V.^2)'+gpmodel.noise(:,j))/sig;
else
Gamma = 1 + (exp(2*c)-sum(V.^2)')/sig; % Gamma = diag(Knn-Qnn)/sig + I
end
V = bsxfun(@rdivide,V,sqrt(Gamma)'); % inv(sqrt(Kmm))*Kmn * inv(sqrt(Gamma))
y = y./sqrt(Gamma);
Am = chol(sig*eye(M) + V*V')'; % chol(inv(sqrt(Kmm))*A*inv(sqrt(Kmm)))
% V*V' = inv(chol(Kmm)')*K*inv(diag(Gamma))*K'*inv(chol(Kmm)')'
Vy = V*y;
beta = Am\Vy;
nlml = nlml + sum(log(diag(Am))) + (N-M)/2*log(sig) + sum(log(Gamma))/2 ...
+ (y'*y - beta'*beta)/2/sig + 0.5*N*log(2*pi);
if nargout == 2 % ... and if requested, its partial derivatives
At = L*Am; iAt = At\eye(M); % chol(sig*B) [Ed's thesis, p. 40]
iA = iAt'*iAt; % inv(sig*B)
iAmV = Am\V; % inv(Am)*V
B1 = At'\(iAmV);
b1 = At'\beta; % b1 = B1*y
iLV = L'\V; % inv(Kmm)*Kmn*inv(sqrt(Gamma))
iL = L\eye(M);
iKmm = iL'*iL;
mu = ((Am'\beta)'*V)';
bs = y.*(beta'*iAmV)'/sig - sum(iAmV.*iAmV)'/2 - (y.^2+mu.^2)/2/sig + 0.5;
TT = iLV*(bsxfun(@times,iLV',bs));
Kmn = bsxfun(@rdivide,Kmn,sqrt(Gamma)'); % overwrite Kmn
for i = 1:D % derivatives wrt inducing inputs
dsq_mm = bsxfun(@minus,xb(:,i),xb(:,i)').*Kmm;
dsq_mn = bsxfun(@minus,-xb(:,i),-x(:,i)').*Kmn;
dGamma = -2/sig*dsq_mn.*iLV;
dfxb(:,i) = -b1.*(dsq_mn*(y-mu)/sig + dsq_mm*b1) + dGamma*bs ...
+ sum((iKmm - iA*sig).*dsq_mm,2) - 2/sig*sum(dsq_mm.*TT,2);
dsq_mn = dsq_mn.*B1; % overwrite dsq_mn
dfxb(:,i) = dfxb(:,i) + sum(dsq_mn,2);
dfxb(:,i) = dfxb(:,i)/b(i);
end
dnlml(:,:,j) = dfxb;
end
end
if 1 == uE; dnlml = sum(dnlml,3); end % combine derivatives if sharing inducing
|
github
|
UCL-SML/pilco-matlab-master
|
train.m
|
.m
|
pilco-matlab-master/gp/train.m
| 4,025 |
utf_8
|
951ec2e880bdaaee127eb29562311025
|
%% train.m
% *Summary:* Train a GP model with SE covariance function (ARD). First, the
% hyper-parameters are trained using a full GP. Then, if gpmodel.induce exists,
% indicating sparse approximation, if enough training exmples are present,
% train the inducing inputs (hyper-parameters are taken from the full GP).
% If no inducing inputs are present, then initialize thme to be a
% random subset of the training inputs.
%
% function [gpmodel nlml] = train(gpmodel, dump, iter)
%
% *Input arguments:*
%
% gpmodel GP structure
% inputs GP training inputs [ N x D]
% targets GP training targets [ N x E]
% hyp (optional) GP log-hyper-parameters [D+2 x E]
% induce (optional) pseudo inputs for sparse GP
% dump not needed for this code, but required
% for compatibility reasons
% iter optimization iterations for training [1 x 2]
% [full GP, sparse GP]
%
% *Output arguments:*
%
% gpmodel updated GP structure
% nlml negative log-marginal likelihood
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2016-07-11
%
%% High-Level Steps
% # Initialization
% # Train full GP
% # If necessary: train sparse GP (FITC/SPGP)
function [gpmodel nlml] = train(gpmodel, dump, iter)
%% Code
% 1) Initialization
if nargin < 3, iter = [-500 -1000]; end % default training iterations
D = size(gpmodel.inputs,2); E = size(gpmodel.targets,2); % get variable sizes
covfunc = {'covSum', {'covSEard', 'covNoise'}}; % specify ARD covariance
curb.snr = 1000; curb.ls = 100; curb.std = std(gpmodel.inputs); % set hyp curb
if ~isfield(gpmodel,'hyp') % if we don't pass in hyper-parameters, define them
gpmodel.hyp = zeros(D+2,E); nlml = zeros(1,E);
lh = repmat([log(std(gpmodel.inputs)) 0 -1]',1,E); % init hyp length scales
lh(D+1,:) = log(std(gpmodel.targets)); % signal std dev
lh(D+2,:) = log(std(gpmodel.targets)/10); % noise std dev
else
lh = gpmodel.hyp; % GP hyper-parameters
end
% 2a) Train full GP (always)
fprintf('Train hyper-parameters of full GP ...\n');
for i = 1:E % train each GP separately
fprintf('GP %i/%i\n', i, E);
try % BFGS training
[gpmodel.hyp(:,i) v] = minimize(lh(:,i), @hypCurb, iter(1), covfunc, ...
gpmodel.inputs, gpmodel.targets(:,i), curb);
catch % conjugate gradients (BFGS can be quite aggressive)
[gpmodel.hyp(:,i) v] = minimize(lh(:,i), @hypCurb, ...
struct('length', iter(1), 'method', 'CG', 'verbosity', 1), covfunc, ...
gpmodel.inputs, gpmodel.targets(:,i), curb);
end
nlml(i) = v(end);
end
% 2b) If necessary: sparse training using FITC/SPGP (Snelson & Ghahramani, 2006)
if isfield(gpmodel,'induce') % are we using a sparse approximation?
[N D] = size(gpmodel.inputs);
[M uD uE] = size(gpmodel.induce);
if M >= N; return; end % if too few training examples, we don't need FITC
fprintf('Train pseudo-inputs of sparse GP ...\n');
if uD == 0 % we don't have inducing inputs yet?
gpmodel.induce = zeros(M,D,uE); % allocate space
iter = 3*iter; % train a lot for the first time (it's still cheap!)
% [cidx, ctrs] = kmeans(gpmodel.inputs, M); % kmeans: initialize pseudo inputs
for i = 1:uE
j = randperm(N);
gpmodel.induce(:,:,i) = gpmodel.inputs(j(1:M),:); % random subset
% gpmodel.induce(:,:,i) = ctrs;
end
end
% train sparse model
[gpmodel.induce nlml2] = minimize(gpmodel.induce, 'fitc', iter(end), gpmodel);
fprintf('GP NLML, full: %e, sparse: %e, diff: %e\n', ...
sum(nlml), nlml2(end), nlml2(end)-sum(nlml));
end
|
github
|
UCL-SML/pilco-matlab-master
|
covNoise.m
|
.m
|
pilco-matlab-master/gp/covNoise.m
| 1,086 |
utf_8
|
40d4e24e7127f8134528c2c8f8772626
|
%% covNoise.m
% Independent covariance function, ie "white noise", with specified variance.
% The covariance function is specified as:
%
% k(x^p,x^q) = s2 * \delta(p,q)
%
% where s2 is the noise variance and \delta(p,q) is a Kronecker delta function
% which is 1 iff p=q and zero otherwise. The hyperparameter is
%
% logtheta = [ log(sqrt(s2)) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% (C) Copyright 2006 by Carl Edward Rasmussen, 2006-03-24.
function [A, B] = covNoise(logtheta, x, z)
%% Code
if nargin == 0, A = '1'; return; end % report number of parameters
s2 = exp(2*logtheta); % noise variance
if nargin == 2 % compute covariance matrix
A = s2*eye(size(x,1));
elseif nargout == 2 % compute test set covariances
A = s2;
B = 0; % zeros cross covariance by independence
else % compute derivative matrix
A = 2*s2*eye(size(x,1));
end
|
github
|
UCL-SML/pilco-matlab-master
|
minimize.m
|
.m
|
pilco-matlab-master/util/minimize.m
| 13,669 |
utf_8
|
4532d014f593db54fa59610e074f6261
|
%% minimize.m
% minimize.m - minimize a smooth differentiable multivariate function using
% LBFGS (Limited memory LBFGS) or CG (Conjugate Gradients)
% Usage: [X, fX, i] = minimize(X, F, p, other, ... )
% where
% X is an initial guess (any type: vector, matrix, cell array, struct)
% F is the objective function (function pointer or name)
% p parameters - if p is a number, it corresponds to p.length below
% p.length allowed 1) # linesearches or 2) if -ve minus # func evals
% p.method minimization method, 'BFGS', 'LBFGS' or 'CG'
% p.verbosity 0 quiet, 1 line, 2 line + warnings (default), 3 graphical
% p.mem number of directions used in LBFGS (default 100)
% other, ... other parameters, passed to the function F
% X returned minimizer
% fX vector of function values showing minimization progress
% i final number of linesearches or function evaluations
% The function F must take the following syntax [f, df] = F(X, other, ...)
% where f is the function value and df its partial derivatives. The types of X
% and df must be identical (vector, matrix, cell array, struct, etc).
%
% Copyright (C) 1996 - 2011 by Carl Edward Rasmussen, 2013-02-12.
% Permission is hereby granted, free of charge, to any person OBTAINING A COPY
% OF THIS SOFTWARE AND ASSOCIATED DOCUMENTATION FILES (THE "SOFTWARE"), TO DEAL
% IN THE SOFTWARE WITHOUT RESTRICTION, INCLUDING WITHOUT LIMITATION THE RIGHTS
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
function [X, fX, i, p] = minimize(X, F, p, varargin)
if isnumeric(p), p = struct('length', p); end % convert p to struct
if p.length > 0, p.S = 'linesearch #'; else p.S = 'function evaluation #'; end;
x = unwrap(X); % convert initial guess to vector
if ~isfield(p,'method'), if length(x) > 1000, p.method = @LBFGS;
else p.method = @BFGS; end; end % set default method
if ~isfield(p,'verbosity'), p.verbosity = 1; end % default 1 line text output
if ~isfield(p,'MFEPLS'), p.MFEPLS = 10; end % Max Func Evals Per Line Search
if ~isfield(p,'MSR'), p.MSR = 100; end % Max Slope Ratio default
if isfield(p,'fh')&&~isempty(p.fh)&&ishandle(p.fh); clf(p.fh); end
f(F, X, varargin{:}); % set up the function f
[fx, dfx] = f(x); % initial function value and derivatives
if ~isscalar(fx); error('Objective function value must be a scalar'); end
if any(isnan(fx+dfx)) || any(isinf(fx+dfx));
error('Evaluating objective function with initial parameters returns NaN or Inf');
end
if p.verbosity, printf('Initial Function Value %4.6e\n', fx); end
if p.verbosity > 2,
ah = ahandles(p);
hold(ah(1),'on'); xlabel(ah(1),p.S); ylabel(ah(1),'function value');
plot(ah(1),p.length < 0, fx, '+'); drawnow;
end
[x, fX, i, p] = feval(p.method, x, fx, dfx, p); % minimize using direction method
X = rewrap(X, x); % convert answer to original representation
if p.verbosity, printf('\n'); end
function [x, fx, i, p] = CG(x0, fx0, dfx0, p)
if ~isfield(p, 'SIG'), p.SIG = 0.1; end % default for line search quality
i = p.length < 0; ok = 1; % initialize resource counter
r = -dfx0; s = -r'*r; b = -1/(s-1); bs = -1; fx = fx0; % steepest descent
while i < abs(p.length)
b = b*bs/min(b*s,bs/p.MSR); % suitable initial step size using slope ratio
b = min(b,1/norm(r)); % limit step size in parameter space
b = max(b,1e-7/norm(r));
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
if i < 0 % if line search failed
i = -i; if ok, ok = 0; r = -dfx; else break; end % try steepest or stop
else
ok = 1; bs = b*s; % record step times slope (for slope ratio method)
r = (dfx'*(dfx-dfx0))/(dfx0'*dfx0)*r - dfx; % Polack-Ribiere CG
end
s = r'*dfx; if s >= 0, r = -dfx; s = r'*dfx; ok = 0; end % slope must be -ve
x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace old values with new ones
end
function [x, fx, i, p] = BFGS(x0, fx0, dfx0, p)
if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality
i = p.length < 0; ok = 1; % initialize resource counter
x = x0; fx = fx0; r = -dfx0; s = -r'*r; b = -1/(s-1); H = eye(length(x0));
while i < abs(p.length)
b = min(b,1/norm(r)); % limit step size in parameter space
b = max(b,1e-7/norm(r));
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
if i < 0
i = -i; if ok, ok = 0; else break; end; % try steepest or stop
else
ok = 1; t = x - x0; y = dfx - dfx0; ty = t'*y; Hy = H*y;
H = H + (ty+y'*Hy)/ty^2*t*t' - 1/ty*Hy*t' - 1/ty*t*Hy'; % BFGS update
end
r = -H*dfx; s = r'*dfx; x0 = x; dfx0 = dfx; fx = [fx; fx0];
p.H = H;
end
function [x, fx, i, p] = LBFGS(x0, fx0, dfx0, p);
if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality
n = length(x0); k = 0; ok = 1; x = x0; fx = fx0; bs = -1/p.MSR;
if isfield(p, 'mem'), m = p.mem; else m = min(100, n); end % set memory size
a = zeros(1, m); t = zeros(n, m); y = zeros(n, m); % allocate memory
i = p.length < 0; % initialize resource counter
while i < abs(p.length)
q = dfx0;
for j = rem(k-1:-1:max(0,k-m),m)+1
a(j) = t(:,j)'*q/rho(j); q = q-a(j)*y(:,j);
end
if k == 0, r = -q/(q'*q); else r = -t(:,j)'*y(:,j)/(y(:,j)'*y(:,j))*q; end
for j = rem(max(0,k-m):k-1,m)+1
r = r-t(:,j)*(a(j)+y(:,j)'*r/rho(j));
end
s = r'*dfx0; if s >= 0, r = -dfx0; s = r'*dfx0; k = 0; ok = 0; end
b = bs/min(bs,s/p.MSR); % suitable initial step size (usually 1)
b = min(b,1/norm(r)); % limit step size in parameter space
b = max(b,1e-7/norm(r));
if isnan(r) | isinf(r) % if nonsense direction
i = -i; % try steepest or stop
else
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
end
if i < 0 % if line search failed
i = -i; if ok, ok = 0; k = 0; else break; end % try steepest or stop
else
j = rem(k,m)+1; t(:,j) = x-x0; y(:,j) = dfx-dfx0; rho(j) = t(:,j)'*y(:,j);
ok = 1; k = k+1; bs = b*s;
end
x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace and add values
end
function [x, a, fx, df, i] = lineSearch(x0, f0, df0, d, s, a, i, p)
if p.length < 0, LIMIT = min(p.MFEPLS, -i-p.length); else LIMIT = p.MFEPLS; end
p0.x = 0.0; p0.f = f0; p0.df = df0; p0.s = s; p1 = p0; % init p0 and p1
j = 0; p3.x = a; wp(p0, p.SIG, 0); % set step & Wolfe-Powell conditions
if p.verbosity > 2
A = [-a a]/5; nd = norm(d); ah = ahandles(p);
hold(ah(2),'off'); plot(ah(2),0, f0, 'k+'); hold(ah(2),'on'); plot(ah(2),nd*A, f0+s*A, 'k-');
xlabel(ah(2),'distance in line search direction'); ylabel(ah(2),'function value');
end
while 1 % keep extrapolating as long as necessary
ok = 0;
while ~ok && j < LIMIT
try % try, catch and bisect to safeguard extrapolation evaluation
j = j+1; [p3.f p3.df] = f(x0+p3.x*d); p3.s = p3.df'*d; ok = 1;
if isnan(p3.f+p3.s) || isinf(p3.f+p3.s)
error('Objective function returned Inf or NaN','');
end;
catch
if p.verbosity > 1, printf('\n'); warning(lasterr); end % warn or silence
p3.x = (p1.x+p3.x)/2; ok = 0; p3.f = NaN; p3.s = NaN;% bisect, and retry
end
end
if p.verbosity > 2
ah = ahandles(p); hold(ah(2),'on');
plot(ah(2),nd*p3.x, p3.f, 'b+'); plot(ah(2),nd*(p3.x+A), p3.f+p3.s*A, 'b-'); drawnow
end
if wp(p3) || j >= LIMIT, break; end % done?
p0 = p1; p1 = p3; % move points back one unit
p3.x = p0.x + minCubic(p1.x-p0.x, p1.f-p0.f, p0.s, p1.s, 1); % cubic extrap
end
while 1 % keep interpolating as long as necessary
if isnan(p3.f+p3.s) || isinf(p3.f+p3.s); p2 = p1; break; end % if final extrap failed
if p1.f > p3.f, p2 = p3; else p2 = p1; end % make p2 the best so far
if wp(p2) > 1 || j >= LIMIT, break; end % done?
p2.x = p1.x + minCubic(p3.x-p1.x, p3.f-p1.f, p1.s, p3.s, 0); % cubic interp
ok = 0;
while ~ok && j < LIMIT; % until function successfully evaluated or j = LIMIT
try % try to evaluate objective function
j = j+1; [p2.f p2.df] = f(x0+p2.x*d); p2.s = p2.df'*d; ok = 1;
if isnan(p2.f+p2.s) || isinf(p2.f+p2.s)
error('Objective function returned Inf or NaN','');
end
catch % failed to successfully evaluate function
if p.verbosity > 1, printf('\n'); warning(lasterr); end % warn or silence
p2.x = (p1.x+p2.x)/2; ok = 0; if LIMIT == j; p2 = p1; end
end
end
if p.verbosity > 2
ah = ahandles(p); hold(ah(2),'on');
plot(ah(2),nd*p2.x, p2.f, 'r+'); plot(ah(2),nd*(p2.x+A), p2.f+p2.s*A, 'r'); drawnow
end
if wp(p2) > -1 && p2.s > 0 || wp(p2) < -1, p3 = p2; else p1 = p2; end % bracket
end
x = x0+p2.x*d; fx = p2.f; df = p2.df; a = p2.x; % return the value found
if p.length < 0, i = i+j; else i = i+1; end % count func evals or line searches
if p.verbosity, printf('%s %6i; value %4.6e\r', p.S, i, fx); end
if wp(p2) < 2, i = -i; end % indicate faliure
if p.verbosity > 2
ah = ahandles(p); hold(ah(1),'on'); hold(ah(2),'on');
if i>0, plot(ah(2),norm(d)*p2.x, fx, 'go'); end
plot(ah(1),abs(i), fx, '+'); drawnow;
end
function z = minCubic(x, df, s0, s1, extr) % minimizer of approximating cubic
INT = 0.1; EXT = 5.0; % interpolate and extrapolation limits
A = -6*df+3*(s0+s1)*x; B = 3*df-(2*s0+s1)*x; z = -s0*x*x/(B+sqrt(B*B-A*s0*x));
if extr % are we extrapolating?
if ~isreal(z) | ~isfinite(z) | z < x | z > x*EXT, z = EXT*x; end % fix bad z
z = max(z, (1+INT)*x); % extrapolate by at least INT
else % else, we are interpolating
if ~isreal(z) | ~isfinite(z) | z < 0 | z > x, z = x/2; end; % fix bad z
z = min(max(z, INT*x), (1-INT)*x); % at least INT away from the boundaries
end
function y = wp(p, SIG, RHO)
persistent a b c sig rho;
if nargin == 3 % if three arguments, then set up the Wolfe-Powell conditions
a = RHO*p.s; b = p.f; c = -SIG*p.s; sig = SIG; rho = RHO; y = 0;
else
if p.f > a*p.x+b % function value too large?
if a > 0, y = -1; else y = -2; end
else
if p.s < -c, y = 0; elseif p.s > c, y = 1; else y = 2; end
% if sig*abs(p.s) > c, a = rho*p.s; b = p.f-a*p.x; c = sig*abs(p.s); end
end
end
function [fx, dfx] = f(varargin)
persistent F p;
if nargout == 0
p = varargin; if ischar(p{1}), F = str2func(p{1}); else F = p{1}; end
else
[fx, dfx] = F(rewrap(p{2}, varargin{1}), p{3:end}); dfx = unwrap(dfx);
end
function v = unwrap(s) % extract num elements of s (any type) into v (vector)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s) % cell array elements are
for i = 1:numel(s), v = [v; unwrap(s{i})]; end % handled sequentially
end % other types are ignored
function [s v] = rewrap(s, v) % map elements of v (vector) onto s (any type)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
function printf(varargin)
fprintf(varargin{:}); if exist('fflush','builtin') fflush(stdout); end
function ah = ahandles(p)
persistent fh
if isfield(p,'fh') && ~isempty(p.fh) && ishandle(p.fh); fh = p.fh;
elseif isempty(fh) || ~ishandle(fh); fh = figure;
end
ah(1) = subplot(2,1,1,'Parent',fh); ah(2) = subplot(2,1,2,'Parent',fh);
|
github
|
UCL-SML/pilco-matlab-master
|
gSat.m
|
.m
|
pilco-matlab-master/util/gSat.m
| 2,628 |
utf_8
|
fef6d775a326be1ea04c570d514a6c10
|
%% gSat.m
% *Summary:* Compute moments of the saturating function
% $e*(9*\sin(x(i))+\sin(3*x(i)))/8$,
% where $x \sim\mathcal N(m,v)$ and $i$ is a (possibly empty) set of $I$
% indices. The optional scaling factor $e$ is a vector of length $I$.
% Optionally, compute derivatives of the moments.
%
% function [M, S, C, dMdm, dSdm, dCdm, dMdv, dSdv, dCdv] = gSat(m, v, i, e)
%
% *Input arguments:*
%
% m mean vector of Gaussian [ d ]
% v covariance matrix [ d x d ]
% i vector of indices of elements to augment [ I x 1 ]
% e (optional) scale vector; default: 1 [ I x 1 ]
%
% *Output arguments:*
%
% M output means [ I ]
% V output covariance matrix [ I x I ]
% C inv(v) times input-output covariance [ d x I ]
% dMdm derivatives of M w.r.t m [ I x d ]
% dVdm derivatives of V w.r.t m [I*^2 x d ]
% dCdm derivatives of C w.r.t m [d*I x d ]
% dMdv derivatives of M w.r.t v [ I x d^2]
% dVdv derivatives of V w.r.t v [I^2 x d^2]
% dCdv derivatives of C w.r.t v [d*I x d^2]
%
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function [M, S, C, dMdm, dSdm, dCdm, dMdv, dSdv, dCdv] = gSat(m, v, i, e)
%% Code
d = length(m); I = length(i); i = i(:)';
if nargin < 4; e = ones(1, I); end; e = e(:)';
P = [eye(d); 3*eye(d)]; % augment inputs
ma = P*m; madm = P;
va = P*v*P'; vadv = kron(P,P); va = (va+va')/2;
% do the actual augmentation with the right parameters
[M2, S2, C2, Mdma, Sdma, Cdma, Mdva, Sdva, Cdva] ...
= gSin(ma, va, [i d+i], [9*e e]/8);
P = [eye(I) eye(I)]; Q = [eye(d) 3*eye(d)];
M = P*M2; % mean
S = P*S2*P'; S = (S+S')/2; % variance
C = Q*C2*P'; % inv(v) times input-output cov
if nargout > 3 % derivatives if required
dMdm = P*Mdma*madm; dMdv = P*Mdva*vadv;
dSdm = kron(P,P)*Sdma*madm; dSdv = kron(P,P)*Sdva*vadv;
dCdm = kron(P,Q)*Cdma*madm; dCdv = kron(P,Q)*Cdva*vadv;
end
|
github
|
UCL-SML/pilco-matlab-master
|
sq_dist.m
|
.m
|
pilco-matlab-master/util/sq_dist.m
| 2,207 |
utf_8
|
682c4b378252a4c8eeefa4439c364fc2
|
%% sq_dist.m
% sq_dist - a function to compute a matrix of all pairwise squared distances
% between two sets of vectors, stored in the columns of the two matrices, a
% (of size D by n) and b (of size D by m). If only a single argument is given
% or the second matrix is empty, the missing matrix is taken to be identical
% to the first.
%
% Special functionality: If an optional third matrix argument Q is given, it
% must be of size n by m, and in this case a vector of the traces of the
% product of Q' and the coordinatewise squared distances is returned.
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file sq_dist.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is avaiable, it automatically
% takes precendence over the matlab code in this file.
%
% Usage: C = sq_dist(a, b)
% or: C = sq_dist(a) or equiv.: C = sq_dist(a, [])
% or: c = sq_dist(a, b, Q)
% where the b matrix may be empty.
%
% where a is of size D by n, b is of size D by m (or empty), C and Q are of
% size n by m and c is of size D by 1.
%
% Copyright (c) 2003, 2004, 2005 and 2006 Carl Edward Rasmussen. 2006-03-09.
function C = sq_dist(a, b, Q);
%% Code
if nargin < 1 | nargin > 3 | nargout > 1
error('Wrong number of arguments.');
end
if nargin == 1 | isempty(b) % input arguments are taken to be
b = a; % identical if b is missing or empty
end
[D, n] = size(a);
[d, m] = size(b);
if d ~= D
error('Error: column lengths must agree.');
end
if nargin < 3
C = zeros(n,m);
for d = 1:D
C = C + (repmat(b(d,:), n, 1) - repmat(a(d,:)', 1, m)).^2;
end
% C = repmat(sum(a.*a)',1,m)+repmat(sum(b.*b),n,1)-2*a'*b could be used to
% replace the 3 lines above; it would be faster, but numerically less stable.
else
if [n m] == size(Q)
C = zeros(D,1);
for d = 1:D
C(d) = sum(sum((repmat(b(d,:), n, 1) - repmat(a(d,:)', 1, m)).^2.*Q));
end
else
error('Third argument has wrong size.');
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
unwrap.m
|
.m
|
pilco-matlab-master/util/unwrap.m
| 902 |
utf_8
|
3856da2312d3091678383d3130b7479d
|
%% unwrap.m
% *Summary:* Extract the numerical values from $s$ into the column vector $v$.
% The variable $sS can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
%
% v = unwrap(s)
%
% *Input arguments:*
%
% s structure, cell, or numeric values
%
%
% *Output arguments:*
%
% v structure, cell, or numeric values
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function v = unwrap(s)
%% Code
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
trigSquash_old.m
|
.m
|
pilco-matlab-master/util/trigSquash_old.m
| 4,316 |
utf_8
|
ea7d2aed20d2f2142502765686cf0a6a
|
% Augment a Gaussian with e*sin(x(i)), where i is a (possibly
% empty) set of I indices. The optional e scaling factor is a vector of length
% I. Optionally, compute derivatives of the parameters of the new Gaussian.
%
% Copyright (C) 2007, 2008 & 2009 by Carl Edward Rasmussen, 2009-07-07.
function [m, v, dmda, dmdb, dvda, dvdb] = trigSquash(a, b, i, e)
% a is the mean vector of length "d" of a Gaussian distribution
% b is the "d" by "d" covariance matrix
% i is a vector of length I of indices of elements to augment
% e is an optional scale vector of length I (defaults to unity)
%
% m is a vector of length "D" of means
% v is a "D" by "D" covariance matrix
% dmda is a "D" by "d" matrix of derivatives of "m" wrt "a"
% dmdb is a "D" by "d" by "d" matrix of derivatives of "m" wrt "b"
% dvda is a "D" by "D" by "d" matrix of derivatives of "v" wrt "a"
% dvdb is a "D" by "D" by "d" by "d" matrix of derivatives of "v" wrt "b"
%
% where the size "D" is "d+I".
d = length(a); I = length(i); D = d+I;
if nargin == 3, e = ones(I,1); else e = e(:); end % unit column default
ai(1:I,1) = a(i); bi = b(i,i); bii(1:I,1) = diag(bi); % short-hand notation
m = zeros(D,1); m(1:d) = a; % first the means
m(d+1:end) = e.*exp(-bii/2).*sin(ai);
v = zeros(D); v(1:d,1:d) = b; % the covariance
v(d+1:end,1:d) = b(i,:).*repmat(e.*exp(-bii/2).*cos(ai),1,d);
v(1:d,d+1:end) = v(d+1:end,1:d)'; % symmetric entries
for j=1:I
for k=1:I
if j==k
q = e(j)*e(k)*(1-exp(-bii(j)))/2;
v(d+j,d+j) = q*(1+exp(-bii(j))*cos(2*ai(j)));
else
q = e(j)*e(k)*exp(-(bii(j)+bii(k))/2)/2;
% for numerical reasons:
logq = log(e(j)) + log(e(k)) -(bii(j)+bii(k))/2 - log(2);
v(d+j,d+k) = (exp(logq + bi(j,k))-q)*cos(ai(j)-ai(k))...
- (exp(logq-bi(j,k))-q)*cos(ai(j)+ai(k));
end
end
end
if nargout > 2 % compute derivatives?
dmda = zeros(D,d); dmda(1:d,:) = eye(d);
dmda(d+1:end,i) = diag(e.*exp(-bii/2).*cos(ai));
dmdb = zeros(D,d,d);
for j=1:I
dmdb(d+j,i(j),i(j)) = -m(d+j)/2;
end
dvda = zeros(D,D,d);
for j=1:I
z = e(j)*b(:,i(j))*exp(-bii(j)/2);
dvda(d+j,1:d,i(j)) = -z'*sin(ai(j));
dvda(1:d,d+j,i(j)) = -z*sin(ai(j));
for k=1:I
if j==k
z = e(j)*e(k)*(1-exp(-bii(j)))*exp(-bii(j));
dvda(d+j,d+j,i(j)) = -z*sin(2*ai(j));
else
q = e(j)*e(k)*exp(-(bii(j)+bii(k))/2)/2;
logq = log(e(j)) + log(e(k)) -(bii(j)+bii(k))/2 - log(2);
dvda(d+j,d+k,i(j)) = -(exp(logq + bi(j,k))-q)*sin(ai(j)-ai(k)) + ...
(exp(logq - bi(j,k))-q)*sin(ai(j)+ai(k));
dvda(d+j,d+k,i(k)) = (exp(logq + bi(j,k))-q)*sin(ai(j)-ai(k)) + ...
(exp(logq - bi(j,k))-q)*sin(ai(j)+ai(k));
end
end
end
dvdb = zeros(D,D,d,d);
for j=1:d, for k=1:d, dvdb(j,k,j,k) = 0.5; dvdb(j,k,k,j) = dvdb(j,k,k,j) + 0.5; end, end
for j=1:I
dvdb(d+j,1:d,i(j),i(j)) = -v(d+j,1:d)/2;
dvdb(1:d,d+j,i(j),i(j)) = -v(d+j,1:d)'/2;
for k=1:I
% derivative of trig variance w.r.t. input variance
if j==k
% trig variance
q = e(j)*e(k)*exp(-bii(j))/2;
dvdb(d+j,d+j,i(j),i(j)) = q*(1+cos(2*ai(j))*(2*exp(-bii(j))-1));
else
% trig-trig covariance terms
logq = log(e(j)) + log(e(k)) -(bii(j)+bii(k))/2 - log(2);
dvdb(d+j,d+k,i(j),i(k)) = 0.5*((exp(logq+bi(j,k))*cos(ai(j)-ai(k)) + ...
exp(logq-bi(j,k))*cos(ai(j)+ai(k))));
dvdb(d+k,d+j,i(j),i(k)) = dvdb(d+j,d+k,i(j),i(k));
dvdb(d+j,d+k,i(j),i(j)) = -v(d+j,d+k)/2;
dvdb(d+j,d+k,i(k),i(k)) = -v(d+j,d+k)/2;
end
end
z = e(j)*exp(-bii(j)/2)/2; zz = e(j)*(1-bii(j)/2)*exp(-bii(j)/2);
for k = 1:d
% derivative of covariance of trig-nontrig w.r.t input variance
if k == i(j)
dvdb(k,d+j,k,k) = zz*cos(ai(j));
dvdb(d+j,k,k,k) = zz*cos(ai(j));
else
dvdb(k,d+j,k,i(j)) = z*cos(ai(j));
dvdb(d+j,k,k,i(j)) = z*cos(ai(j));
dvdb(k,d+j,i(j),k) = z*cos(ai(j));
dvdb(d+j,k,i(j),k) = z*cos(ai(j));
end
end
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
gTrig.m
|
.m
|
pilco-matlab-master/util/gTrig.m
| 4,963 |
utf_8
|
997f08390a915af387fa08125f79a454
|
%% gTrig.m
% *Summary:* Compute moments of the saturating function $e*sin(x(i))$ and $
% e*cos(x(i))$, where $x \sim\mathcal N(m,v)$ and $i$ is a (possibly empty)
% set of $I$ indices. The optional scaling factor $e$ is a vector of
% length $I$. Optionally, compute derivatives of the moments.
%
% [M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = gTrig(m, v, i, e)
%
% *Input arguments:*
%
% m mean vector of Gaussian [ d ]
% v covariance matrix [ d x d ]
% i vector of indices of elements to augment [ I x 1 ]
% e (optional) scale vector; default: 1 [ I x 1 ]
%
% *Output arguments:*
%
% M output means [ 2I ]
% V output covariance matrix [ 2I x 2I ]
% C inv(v) times input-output covariance [ d x 2I ]
% dMdm derivatives of M w.r.t m [ 2I x d ]
% dVdm derivatives of V w.r.t m [4II x d ]
% dCdm derivatives of C w.r.t m [2dI x d ]
% dMdv derivatives of M w.r.t v [ 2I x d^2 ]
% dVdv derivatives of V w.r.t v [4II x d^2 ]
% dCdv derivatives of C w.r.t v [2dI x d^2 ]
%
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function [M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = gTrig(m, v, i, e)
%% Code
d = length(m); I = length(i); Ic = 2*(1:I); Is = Ic-1;
if nargin == 3, e = ones(I,1); else e = e(:); end; ee = reshape([e e]',2*I,1);
mi(1:I,1) = m(i); vi = v(i,i); vii(1:I,1) = diag(vi); % short-hand notation
M(Is,1) = e.*exp(-vii/2).*sin(mi); M(Ic,1) = e.*exp(-vii/2).*cos(mi); % mean
lq = -bsxfun(@plus,vii,vii')/2; q = exp(lq);
U1 = (exp(lq+vi)-q).*sin(bsxfun(@minus,mi,mi'));
U2 = (exp(lq-vi)-q).*sin(bsxfun(@plus,mi,mi'));
U3 = (exp(lq+vi)-q).*cos(bsxfun(@minus,mi,mi'));
U4 = (exp(lq-vi)-q).*cos(bsxfun(@plus,mi,mi'));
V(Is,Is) = U3 - U4; V(Ic,Ic) = U3 + U4; V(Is,Ic) = U1 + U2;
V(Ic,Is) = V(Is,Ic)'; V = ee*ee'.*V/2; % variance
C = zeros(d,2*I); C(i,Is) = diag(M(Ic)); C(i,Ic) = diag(-M(Is)); % inv(v) * cov
if nargout > 3 % compute derivatives?
dVdm = zeros(2*I,2*I,d); dCdm = zeros(d,2*I,d); dVdv = zeros(2*I,2*I,d,d);
dCdv = zeros(d,2*I,d,d); dMdm = C';
for j = 1:I
u = zeros(I,1); u(j) = 1/2;
dVdm(Is,Is,i(j)) = e*e'.*(-U1.*bsxfun(@minus,u,u')+U2.*bsxfun(@plus,u,u'));
dVdm(Ic,Ic,i(j)) = e*e'.*(-U1.*bsxfun(@minus,u,u')-U2.*bsxfun(@plus,u,u'));
dVdm(Is,Ic,i(j)) = e*e'.*(U3.*bsxfun(@minus,u,u') +U4.*bsxfun(@plus,u,u'));
dVdm(Ic,Is,i(j)) = dVdm(Is,Ic,i(j))';
dVdv(Is(j),Is(j),i(j),i(j)) = exp(-vii(j)) * ...
(1+(2*exp(-vii(j))-1)*cos(2*mi(j)))*e(j)*e(j)/2;
dVdv(Ic(j),Ic(j),i(j),i(j)) = exp(-vii(j)) * ...
(1-(2*exp(-vii(j))-1)*cos(2*mi(j)))*e(j)*e(j)/2;
dVdv(Is(j),Ic(j),i(j),i(j)) = exp(-vii(j)) * ...
(1-2*exp(-vii(j)))*sin(2*mi(j))*e(j)*e(j)/2;
dVdv(Ic(j),Is(j),i(j),i(j)) = dVdv(Is(j),Ic(j),i(j),i(j));
for k = [1:j-1 j+1:I]
dVdv(Is(j),Is(k),i(j),i(k)) = (exp(lq(j,k)+vi(j,k)).*cos(mi(j)-mi(k)) ...
+ exp(lq(j,k)-vi(j,k)).*cos(mi(j)+mi(k)))*e(j)*e(k)/2;
dVdv(Is(j),Is(k),i(j),i(j)) = -V(Is(j),Is(k))/2;
dVdv(Is(j),Is(k),i(k),i(k)) = -V(Is(j),Is(k))/2;
dVdv(Ic(j),Ic(k),i(j),i(k)) = (exp(lq(j,k)+vi(j,k)).*cos(mi(j)-mi(k)) ...
- exp(lq(j,k)-vi(j,k)).*cos(mi(j)+mi(k)))*e(j)*e(k)/2;
dVdv(Ic(j),Ic(k),i(j),i(j)) = -V(Ic(j),Ic(k))/2;
dVdv(Ic(j),Ic(k),i(k),i(k)) = -V(Ic(j),Ic(k))/2;
dVdv(Ic(j),Is(k),i(j),i(k)) = -(exp(lq(j,k)+vi(j,k)).*sin(mi(j)-mi(k)) ...
+ exp(lq(j,k)-vi(j,k)).*sin(mi(j)+mi(k)))*e(j)*e(k)/2;
dVdv(Ic(j),Is(k),i(j),i(j)) = -V(Ic(j),Is(k))/2;
dVdv(Ic(j),Is(k),i(k),i(k)) = -V(Ic(j),Is(k))/2;
dVdv(Is(j),Ic(k),i(j),i(k)) = (exp(lq(j,k)+vi(j,k)).*sin(mi(j)-mi(k)) ...
- exp(lq(j,k)-vi(j,k)).*sin(mi(j)+mi(k)))*e(j)*e(k)/2;
dVdv(Is(j),Ic(k),i(j),i(j)) = -V(Is(j),Ic(k))/2;
dVdv(Is(j),Ic(k),i(k),i(k)) = -V(Is(j),Ic(k))/2;
end
dCdm(i(j),Is(j),i(j)) = -M(Is(j)); dCdm(i(j),Ic(j),i(j)) = -M(Ic(j));
dCdv(i(j),Is(j),i(j),i(j)) = -C(i(j),Is(j))/2;
dCdv(i(j),Ic(j),i(j),i(j)) = -C(i(j),Ic(j))/2;
end
dMdv = permute(dCdm,[2 1 3])/2;
dMdv = reshape(dMdv,[2*I d*d]);
dVdv = reshape(dVdv,[4*I*I d*d]); dVdm = reshape(dVdm,[4*I*I d]);
dCdv = reshape(dCdv,[d*2*I d*d]); dCdm = reshape(dCdm,[d*2*I d]);
end
|
github
|
UCL-SML/pilco-matlab-master
|
error_ellipse.m
|
.m
|
pilco-matlab-master/util/error_ellipse.m
| 8,229 |
utf_8
|
9f67e27c9f6218404167e7eb24c0cf57
|
%% error_ellipse.m
% ERROR_ELLIPSE - plot an error ellipse, or ellipsoid, defining confidence region
% ERROR_ELLIPSE(C22) - Given a 2x2 covariance matrix, plot the
% associated error ellipse, at the origin. It returns a graphics handle
% of the ellipse that was drawn.
%
% ERROR_ELLIPSE(C33) - Given a 3x3 covariance matrix, plot the
% associated error ellipsoid, at the origin, as well as its projections
% onto the three axes. Returns a vector of 4 graphics handles, for the
% three ellipses (in the X-Y, Y-Z, and Z-X planes, respectively) and for
% the ellipsoid.
%
% ERROR_ELLIPSE(C,MU) - Plot the ellipse, or ellipsoid, centered at MU,
% a vector whose length should match that of C (which is 2x2 or 3x3).
%
% ERROR_ELLIPSE(...,'Property1',Value1,'Name2',Value2,...) sets the
% values of specified properties, including:
% 'C' - Alternate method of specifying the covariance matrix
% 'mu' - Alternate method of specifying the ellipse (-oid) center
% 'conf' - A value betwen 0 and 1 specifying the confidence interval.
% the default is 0.5 which is the 50% error ellipse.
% 'scale' - Allow the plot the be scaled to difference units.
% 'style' - A plotting style used to format ellipses.
% 'clip' - specifies a clipping radius. Portions of the ellipse, -oid,
% outside the radius will not be shown.
%
% NOTES: C must be positive definite for this function to work properly.
%
%
% by AJ Johnson
% http://www.mathworks.de/matlabcentral/fileexchange/4705
function h=error_ellipse(varargin)
%% Code
default_properties = struct(...
'C', [], ... % The covaraince matrix (required)
'mu', [], ... % Center of ellipse (optional)
'conf', 0.95, ... % Percent confidence/100
'scale', 1, ... % Scale factor, e.g. 1e-3 to plot m as km
'style', '', ... % Plot style
'clip', inf); % Clipping radius
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.C = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.mu = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.conf = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.scale = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & ~ischar(varargin{1})
error('Invalid parameter/value pair arguments.')
end
prop = getopt(default_properties, varargin{:});
C = prop.C;
if isempty(prop.mu)
mu = zeros(length(C),1);
else
mu = prop.mu;
end
conf = prop.conf;
scale = prop.scale;
style = prop.style;
if conf <= 0 | conf >= 1
error('conf parameter must be in range 0 to 1, exclusive')
end
[r,c] = size(C);
if r ~= c | (r ~= 2 & r ~= 3)
error(['Don''t know what to do with ',num2str(r),'x',num2str(c),' matrix'])
end
x0=mu(1);
y0=mu(2);
% Compute quantile for the desired percentile
k = sqrt(qchisq(conf,r)); % r is the number of dimensions (degrees of freedom)
hold_state = get(gca,'nextplot');
if r==3 & c==3
z0=mu(3);
% Make the matrix has positive eigenvalues - else it's not a valid covariance matrix!
if any(eig(C) <=0)
error('The covariance matrix must be positive definite (it has non-positive eigenvalues)')
end
% C is 3x3; extract the 2x2 matricies, and plot the associated error
% ellipses. They are drawn in space, around the ellipsoid; it may be
% preferable to draw them on the axes.
Cxy = C(1:2,1:2);
Cyz = C(2:3,2:3);
Czx = C([3 1],[3 1]);
[x,y,z] = getpoints(Cxy,prop.clip);
h1=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style,'linewidth',2);hold on
[y,z,x] = getpoints(Cyz,prop.clip);
h2=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style,'linewidth',2);hold on
[z,x,y] = getpoints(Czx,prop.clip);
h3=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style,'linewidth',2);hold on
[eigvec,eigval] = eig(C);
[X,Y,Z] = ellipsoid(0,0,0,1,1,1);
XYZ = [X(:),Y(:),Z(:)]*sqrt(eigval)*eigvec';
X(:) = scale*(k*XYZ(:,1)+x0);
Y(:) = scale*(k*XYZ(:,2)+y0);
Z(:) = scale*(k*XYZ(:,3)+z0);
h4=surf(X,Y,Z);
colormap gray
alpha(0.3)
camlight
if nargout
h=[h1 h2 h3 h4];
end
elseif r==2 & c==2
% Make the matrix has positive eigenvalues - else it's not a valid covariance matrix!
if any(eig(C) <=0)
error('The covariance matrix must be positive definite (it has non-positive eigenvalues)')
end
[x,y,z] = getpoints(C,prop.clip);
h1=plot(scale*(x0+k*x),scale*(y0+k*y),prop.style,'linewidth',2);
set(h1,'zdata',z+1)
if nargout
h=h1;
end
else
error('C (covaraince matrix) must be specified as a 2x2 or 3x3 matrix)')
end
%axis equal
set(gca,'nextplot',hold_state);
%---------------------------------------------------------------
% getpoints - Generate x and y points that define an ellipse, given a 2x2
% covariance matrix, C. z, if requested, is all zeros with same shape as
% x and y.
function [x,y,z] = getpoints(C,clipping_radius)
n=100; % Number of points around ellipse
p=0:pi/n:2*pi; % angles around a circle
[eigvec,eigval] = eig(C); % Compute eigen-stuff
xy = [cos(p'),sin(p')] * sqrt(eigval) * eigvec'; % Transformation
x = xy(:,1);
y = xy(:,2);
z = zeros(size(x));
% Clip data to a bounding radius
if nargin >= 2
r = sqrt(sum(xy.^2,2)); % Euclidian distance (distance from center)
x(r > clipping_radius) = nan;
y(r > clipping_radius) = nan;
z(r > clipping_radius) = nan;
end
%---------------------------------------------------------------
function x=qchisq(P,n)
% QCHISQ(P,N) - quantile of the chi-square distribution.
if nargin<2
n=1;
end
s0 = P==0;
s1 = P==1;
s = P>0 & P<1;
x = 0.5*ones(size(P));
x(s0) = -inf;
x(s1) = inf;
x(~(s0|s1|s))=nan;
for ii=1:14
dx = -(pchisq(x(s),n)-P(s))./dchisq(x(s),n);
x(s) = x(s)+dx;
if all(abs(dx) < 1e-6)
break;
end
end
%---------------------------------------------------------------
function F=pchisq(x,n)
% PCHISQ(X,N) - Probability function of the chi-square distribution.
if nargin<2
n=1;
end
F=zeros(size(x));
if rem(n,2) == 0
s = x>0;
k = 0;
for jj = 0:n/2-1;
k = k + (x(s)/2).^jj/factorial(jj);
end
F(s) = 1-exp(-x(s)/2).*k;
else
for ii=1:numel(x)
if x(ii) > 0
F(ii) = quadl(@dchisq,0,x(ii),1e-6,0,n);
else
F(ii) = 0;
end
end
end
%---------------------------------------------------------------
function f=dchisq(x,n)
% DCHISQ(X,N) - Density function of the chi-square distribution.
if nargin<2
n=1;
end
f=zeros(size(x));
s = x>=0;
f(s) = x(s).^(n/2-1).*exp(-x(s)/2)./(2^(n/2)*gamma(n/2));
%---------------------------------------------------------------
function properties = getopt(properties,varargin)
%GETOPT - Process paired optional arguments as 'prop1',val1,'prop2',val2,...
%
% getopt(properties,varargin) returns a modified properties structure,
% given an initial properties structure, and a list of paired arguments.
% Each argumnet pair should be of the form property_name,val where
% property_name is the name of one of the field in properties, and val is
% the value to be assigned to that structure field.
%
% No validation of the values is performed.
%
% EXAMPLE:
% properties = struct('zoom',1.0,'aspect',1.0,'gamma',1.0,'file',[],'bg',[]);
% properties = getopt(properties,'aspect',0.76,'file','mydata.dat')
% would return:
% properties =
% zoom: 1
% aspect: 0.7600
% gamma: 1
% file: 'mydata.dat'
% bg: []
%
% Typical usage in a function:
% properties = getopt(properties,varargin{:})
% Process the properties (optional input arguments)
prop_names = fieldnames(properties);
TargetField = [];
for ii=1:length(varargin)
arg = varargin{ii};
if isempty(TargetField)
if ~ischar(arg)
error('Propery names must be character strings');
end
f = find(strcmp(prop_names, arg));
if length(f) == 0
error('%s ',['invalid property ''',arg,'''; must be one of:'],prop_names{:});
end
TargetField = arg;
else
% properties.(TargetField) = arg; % Ver 6.5 and later only
properties = setfield(properties, TargetField, arg); % Ver 6.1 friendly
TargetField = '';
end
end
if ~isempty(TargetField)
error('Property names and values must be specified in pairs.');
end
|
github
|
UCL-SML/pilco-matlab-master
|
rewrap.m
|
.m
|
pilco-matlab-master/util/rewrap.m
| 1,351 |
utf_8
|
af00755de2984f738e21e52712a59fc0
|
%% rewrap.m
% *Summary:* Map the numerical elements in the vector $v$ onto the variables
% $s$, which can be of any type. The number of numerical elements must match;
% on exit, $v$ should be empty. Non-numerical entries are just copied.
% See also the reverse unwrap.m.
%
% [s v] = rewrap(s, v)
%
% *Input arguments:*
%
% s structure, cell, or numeric values
% v structure, cell, or numeric values
%
%
% *Output arguments:*
%
% s structure, cell, or numeric values
% v [empty]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function [s v] = rewrap(s, v)
%% Code
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
solve_chol.m
|
.m
|
pilco-matlab-master/util/solve_chol.m
| 1,014 |
utf_8
|
675d515fffa67a72cb9cce4cc8c6374e
|
%% solve_chol.m
% solve_chol - solve linear equations from the Cholesky factorization.
% Solve A*X = B for X, where A is square, symmetric, positive definite. The
% input to the function is R the Cholesky decomposition of A and the matrix B.
% Example: X = solve_chol(chol(A),B);
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file solve_chol.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is avaiable, it automatically
% takes precendence over the matlab code in this file.
%
% Copyright (c) 2004, 2005, 2006 by Carl Edward Rasmussen. 2006-02-08.
%% Code
function x = solve_chol(A, B)
if nargin ~= 2 | nargout > 1
error('Wrong number of arguments.');
end
if size(A,1) ~= size(A,2) | size(A,1) ~= size(B,1)
error('Wrong sizes of matrix arguments.');
end
x = A\(A'\B);
|
github
|
UCL-SML/pilco-matlab-master
|
gaussian.m
|
.m
|
pilco-matlab-master/util/gaussian.m
| 793 |
utf_8
|
bc62e952d89ae7dfe8860f37a4f807b9
|
%% gaussian.m
% *Summary:* Generate n samples from a Gaussian $p(x)=\mathcal N(m,S).
% Sampling is based on the Cholesky factorization of the covariance matrix S
%
% function x = gaussian(m, S, n)
%
% *Input arguments:*
%
% m mean of Gaussian [D x 1]
% S covariance matrix of Gaussian [D x D]
% n (optional) number of samples; default: n=1
%
% *Output arguments:*
%
% x matrix of samples from Gaussian [D x n]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
function x = gaussian(m, S, n)
%% Code
if nargin < 3; n = 1; end
x = bsxfun(@plus, m(:), chol(S)'*randn(size(S,2),n));
|
github
|
UCL-SML/pilco-matlab-master
|
gSin.m
|
.m
|
pilco-matlab-master/util/gSin.m
| 3,391 |
utf_8
|
a002d13d7d48d976738abdba11c9344d
|
%% gSin.m
% *Summary:* Compute moments of the saturating function $e*sin(x(i))$,
% where $x \sim\mathcal N(m,v)$ and $i$ is a (possibly empty) set of $I$
% indices. The optional scaling factor $e$ is a vector of length $I$.
% Optionally, compute derivatives of the moments.
%
% function [M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = gSin(m, v, i, e)
%
% *Input arguments:*
%
% m mean vector of Gaussian [ d ]
% v covariance matrix [ d x d ]
% i vector of indices of elements to augment [ I x 1 ]
% e (optional) scale vector; default: 1 [ I x 1 ]
%
% *Output arguments:*
%
% M output means [ I ]
% V output covariance matrix [ I x I ]
% C inv(v) times input-output covariance [ d x I ]
% dMdm derivatives of M w.r.t m [ I x d ]
% dVdm derivatives of V w.r.t m [I^2 x d ]
% dCdm derivatives of C w.r.t m [d*I x d ]
% dMdv derivatives of M w.r.t v [ I x d^2]
% dVdv derivatives of V w.r.t v [I^2 x d^2]
% dCdv derivatives of C w.r.t v [d*I x d^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function [M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = gSin(m, v, i, e)
%% Code
d = length(m); I = length(i);
if nargin == 3, e = ones(I,1); else e = e(:); end % unit column default
mi(1:I,1) = m(i); vi = v(i,i); vii(1:I,1) = diag(vi); % short-hand notation
M = e.*exp(-vii/2).*sin(mi); % mean
lq = -bsxfun(@plus,vii,vii')/2; q = exp(lq);
V = (exp(lq+vi)-q).*cos(bsxfun(@minus,mi,mi')) - ...
(exp(lq-vi)-q).*cos(bsxfun(@plus,mi,mi'));
V = e*e'.*V/2; % variance
C = zeros(d,I); C(i,:) = diag(e.*exp(-vii/2).*cos(mi)); % inv(v) times cov
if nargout > 3 % compute derivatives?
dVdm = zeros(I,I,d); dCdm = zeros(d,I,d); dVdv = zeros(I,I,d,d);
dCdv = zeros(d,I,d,d); dMdm = C';
U1 = -(exp(lq+vi)-q).*sin(bsxfun(@minus,mi,mi'));
U2 = (exp(lq-vi)-q).*sin(bsxfun(@plus,mi,mi'));
for j = 1:I
u = zeros(I,1); u(j) = 1/2;
dVdm(:,:,i(j)) = e*e'.*(U1.*bsxfun(@minus,u,u') + U2.*bsxfun(@plus,u,u'));
dVdv(j,j,i(j),i(j)) = exp(-vii(j)) * ...
(1+(2*exp(-vii(j))-1)*cos(2*mi(j)))*e(j)*e(j)/2;
for k = [1:j-1 j+1:I]
dVdv(j,k,i(j),i(k)) = (exp(lq(j,k)+vi(j,k)).*cos(mi(j)-mi(k)) + ...
exp(lq(j,k)-vi(j,k)).*cos(mi(j)+mi(k)))*e(j)*e(k)/2;
dVdv(j,k,i(j),i(j)) = -V(j,k)/2;
dVdv(j,k,i(k),i(k)) = -V(j,k)/2;
end
dCdm(i(j),j,i(j)) = -M(j);
dCdv(i(j),j,i(j),i(j)) = -C(i(j),j)/2;
end
dMdv = permute(dCdm,[2 1 3])/2;
dMdv = reshape(dMdv,[I d*d]);
dVdv = reshape(dVdv,[I*I d*d]); dVdm = reshape(dVdm,[I*I d]);
dCdv = reshape(dCdv,[d*I d*d]); dCdm = reshape(dCdm,[d*I d]);
end
|
github
|
UCL-SML/pilco-matlab-master
|
maha.m
|
.m
|
pilco-matlab-master/util/maha.m
| 943 |
utf_8
|
78f272e79b5be527d48c9dad4abb8d5d
|
%% maha.m
% *Summary:* Point-wise squared Mahalanobis distance (a-b)*Q*(a-b)'.
% Vectors are row-vectors
%
% function K = maha(a, b, Q)
%
% *Input arguments:*
%
% a matrix containing n row vectors [n x D]
% b matrix containing n row vectors [n x D]
% Q weight matrix. Default: eye(D) [D x D]
%
%
% *Output arguments:*
% K point-wise squared distances [n x n]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
function K = maha(a, b, Q)
%% Code
if nargin == 2 % assume unit Q
K = bsxfun(@plus,sum(a.*a,2),sum(b.*b,2)')-2*a*b';
else
aQ = a*Q; K = bsxfun(@plus,sum(aQ.*a,2),sum(b*Q.*b,2)')-2*aQ*b';
end
|
github
|
UCL-SML/pilco-matlab-master
|
lossSat.m
|
.m
|
pilco-matlab-master/loss/lossSat.m
| 2,984 |
utf_8
|
19c52ddda1502850d6c1cbe4af044594
|
%% lossSat.m
% *Summary:* Compute expectation and variance of a saturating cost
% $1 - \exp(-(x-z)^T*W*(x-z)/2)$
% and their derivatives, where x ~ N(m,S), z is a (target state), and W
% is a weighting matrix
%
% function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossSat(cost, m, s)
%
% *Input arguments:*
%
% cost
% .z: target state [D x 1]
% .W: weight matrix [D x D]
% m mean of input distribution [D x 1]
% s covariance matrix of input distribution [D x D]
%
%
% *Output arguments:*
%
% L expected loss [1 x 1 ]
% dLdm derivative of L wrt input mean [1 x D ]
% dLds derivative of L wrt input covariance [1 x D^2]
% S variance of loss [1 x 1 ]
% dSdm derivative of S wrt input mean [1 x D ]
% dSds derivative of S wrt input covariance [1 x D^2]
% C inv(S) times input-output covariance [D x 1 ]
% dCdm derivative of C wrt input mean [D x D ]
% dCds derivative of C wrt input covariance [D x D^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-28
%
%% High-Level Steps
% # Expected cost
% # Variance of cost
% # inv(s)*cov(x,L)
function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossSat(cost, m, s)
%% Code
% some precomputations
D = length(m); % get state dimension
% set some defaults if necessary
if isfield(cost,'W'); W = cost.W; else W = eye(D); end
if isfield(cost,'z'); z = cost.z; else z = zeros(D,1); end
SW = s*W;
iSpW = W/(eye(D)+SW);
% 1. Expected cost
L = -exp(-(m-z)'*iSpW*(m-z)/2)/sqrt(det(eye(D)+SW)); % in interval [-1,0]
% 1a. derivatives of expected cost
if nargout > 1
dLdm = -L*(m-z)'*iSpW; % wrt input mean
dLds = L*(iSpW*(m-z)*(m-z)'-eye(D))*iSpW/2; % wrt input covariance matrix
end
% 2. Variance of cost
if nargout > 3
i2SpW = W/(eye(D)+2*SW);
r2 = exp(-(m-z)'*i2SpW*(m-z))/sqrt(det(eye(D)+2*SW));
S = r2 - L^2;
if S < 1e-12; S=0; end % for numerical reasons
end
% 2a. derivatives of variance of cost
if nargout > 4
% wrt input mean
dSdm = -2*r2*(m-z)'*i2SpW-2*L*dLdm;
% wrt input covariance matrix
dSds = r2*(2*i2SpW*(m-z)*(m-z)'-eye(D))*i2SpW-2*L*dLds;
end
% 3. inv(s)*cov(x,L)
if nargout > 6
t = W*z - iSpW*(SW*z+m);
C = L*t;
dCdm = t*dLdm - L*iSpW;
dCds = -L*(bsxfun(@times,iSpW,permute(t,[3,2,1])) + ...
bsxfun(@times,permute(iSpW,[1,3,2]),t'))/2;
dCds = bsxfun(@times,t,dLds(:)') + reshape(dCds,D,D^2);
end
L = 1+L; % bring cost to the interval [0,1]
|
github
|
UCL-SML/pilco-matlab-master
|
lossLin.m
|
.m
|
pilco-matlab-master/loss/lossLin.m
| 2,032 |
utf_8
|
420a72edfbc56bc050d2edb16c94c45e
|
%% lossLin.m
% *Summary:* Function to compute the expected loss and its derivatives, given an
% input distribution, under a linear loss function: L = a^T(x - b). Note, this
% loss function can return negative loss.
%
% [L dLdm dLds S dSdm dSds C dCdm dCds] = lossLin(cost,m,s)
%
% *Input arguments:*
%
% cost
% .a gradient of linear loss function, [D x 1]
% .b targets, the value of x for which there is zero loss [D x 1]
% m mean of input distribution [D x 1]
% s covariance matrix of input distribution [D x D]
%
% *Output arguments:*
%
% L expected loss [1 x 1 ]
% dLdm derivative of L wrt input mean [1 x D ]
% dLds derivative of L wrt input covariance [1 x D^2]
% S variance of loss [1 x 1 ]
% dSdm derivative of S wrt input mean [1 x D ]
% dSds derivative of S wrt input covariance [1 x D^2]
% C inv(S) times input-output covariance [D x 1 ]
% dCdm derivative of C wrt input mean [D x D ]
% dCds derivative of C wrt input covariance [D x D^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-05
%
%% High-Level Steps
% # Expected cost
% # Variance of cost
% # inv(s)* cov(x,L)
function [L dLdm dLds S dSdm dSds C dCdm dCds] = lossLin(cost,m,s)
%% Code
a = cost.a(:); b = cost.b(:); D = length(m);
if length(a) ~= D || length(b) ~= D;
error('a or b not the same length as m'); end
% 1) Mean
L = a'*(m - b);
dLdm = a';
dLds = zeros(D);
% 2) Variance
S = a'*s*a;
dSdm = zeros(1,D);
dSds = a*a';
% 3) inv(s) * input-output covariance cov(x,L)
C = a;
dCdm = zeros(D); dCds = zeros(D,D^2);
|
github
|
UCL-SML/pilco-matlab-master
|
reward.m
|
.m
|
pilco-matlab-master/loss/reward.m
| 2,084 |
utf_8
|
8908699b1c46fed8e1d75d6b2ebb4177
|
%% reward.m
% *Summary:* Compute expectation, variance, and their derivatives of an
% exponentiated negative quadratic cost $\exp(-(x-z)'W(x-z)/2)$,
% where $x\sim\mathcal N(m,S)$
%
% *Input arguments:*
%
% m: D-by-1 mean of the state distribution
% S: D-by-D covariance matrix of the state distribution
% z: D-by-1 target state
% W: D-by-D weight matrix
%
% *Output arguments:*
%
% muR: 1-by-1 expected reward
% dmuRdm: 1-by-D derivative of expected reward wrt input mean
% dmuRdS: D-by-D derivative of expected reward wrt input covariance matrix
% sR: 1-by-1 variance of reward
% dsRdm: 1-by-D derivative of variance of reward wrt input mean
% dsRdS: D-by-D derivative reward variance wrt input covariance matrix
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modification: 2013-01-20
%
%% High-Level Steps
% # Compute expected reward
% # Compute the derivatives of the expected reward with respect to the input
% distribution (optional)
% # Compute variance of reward
% # Compute the derivatives of the variance of the reward with
% respect to the input distribution (optional)
function [muR, dmuRdm, dmuRdS, sR, dsRdm, dsRdS] = reward(m, S, z, W)
%% Code
% some precomputations
D = length(m); % get state dimension
SW = S*W;
iSpW = W/(eye(D)+SW);
% 1. expected reward
muR = exp(-(m-z)'*iSpW*(m-z)/2)/sqrt(det(eye(D)+SW));
% 2. derivatives of expected reward
if nargout > 1
dmuRdm = -muR*(m-z)'*iSpW; % wrt input mean
dmuRdS = muR*(iSpW*(m-z)*(m-z)'-eye(D))*iSpW/2; % wrt input covariance matrix
end
% 3. reward variance
if nargout > 3
i2SpW = W/(eye(D)+2*SW);
r2 = exp(-(m-z)'*i2SpW*(m-z))/sqrt(det(eye(D)+2*SW));
sR = r2 - muR^2;
if sR < 1e-12; sR=0; end % for numerical reasons
end
% 4. derivatives of reward variance
if nargout > 4
% wrt input mean
dsRdm = -2*r2*(m-z)'*i2SpW-2*muR*dmuRdm;
% wrt input covariance matrix
dsRdS = r2*(2*i2SpW*(m-z)*(m-z)'-eye(D))*i2SpW-2*muR*dmuRdS;
end
|
github
|
UCL-SML/pilco-matlab-master
|
lossAdd.m
|
.m
|
pilco-matlab-master/loss/lossAdd.m
| 3,774 |
utf_8
|
52c5dfbd0b0cd5caa9c3dd7423fe832e
|
%% lossAdd.m
% *Summary:* Utility function to add a number of loss functions together, each of which
% can be using a different loss function and operating on a different part of
% the state.
%
% function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossAdd(cost, m, s)
%
% *Input arguments:*
%
% cost cost struct
% .fcn @lossAdd - called to arrive here
% .sub{n} cell array of sub-loss functions to add together
% .fcn handle to sub function
% .losi indices of variables to be passed to loss function
% .< > all fields in sub will be passed onto the sub function
% .expl (optional) if present cost.expl*sqrt(S) is added to the loss
%
% m mean of input distribution [D x 1]
% s covariance matrix of input distribution [D x D]
%
% *Output arguments:*
%
% L expected loss [1 x 1]
% dLdm derivative of L wrt input mean [1 x D]
% dLds derivative of L wrt input covariance [1 x D^2]
% S variance of loss [1 x 1]
% dSdm derivative of S wrt input mean [1 x D]
% dSds derivative of S wrt input covariance [1 x D^2]
% C inv(S) times input-output covariance [D x 1]
% dCdm derivative of C wrt input mean [D x D]
% dCds derivative of C wrt input covariance [D x D^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-05
function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossAdd(cost, m, s)
%% Code
% Dimensions and Initializations
Nlos = length(cost.sub); D = length(m);
L = 0; S = 0; C = zeros(D,1); dLdm = zeros(1,D); dSdm = zeros(1,D);
dLds = zeros(D); dSds = zeros(D); dCdm = zeros(D); dCds = zeros(D,D^2);
for n = 1:Nlos % Loop over each of the sub-functions
costi = cost.sub{n}; i = costi.losi; % slice
% Call the sub loss function
if nargout < 4 % Just the expected loss & derivs
[Li, Ldm, Lds] = costi.fcn(costi, m(i), s(i,i));
L = L + Li;
dLdm(i) = dLdm(i) + Ldm; dLds(i,i) = dLds(i,i) + Lds;
else % Also loss variance and IO covariance
[Li, Ldm, Lds, Si, Sdm, Sds, Ci, Cdm, Cds] = costi.fcn(costi, m(i), s(i,i));
L = L + Li;
S = S + Si + Ci'*s(i,:)*C + C'*s(:,i)*Ci; % V(a+b) = V(a)+V(b)+C(a,b)+C(b,a)
if nargout > 4 % derivatives
dLdm(i) = dLdm(i) + Ldm; dLds(i,i) = dLds(i,i) + Lds;
Cis = Ci'*(s(i,:) + s(:,i)'); Cs = C'*(s(:,i) + s(i,:)');
dSdm(i) = dSdm(i) + Sdm + Cs*Cdm; dSdm = dSdm + Cis*dCdm;
dSds(i,i) = dSds(i,i) + Sds + reshape(Cs*Cds,length(i),length(i));
dSds = dSds + reshape(Cis*dCds,D,D);
dSds(i,:) = dSds(i,:) + Ci*C'; dSds(:,i) = dSds(:,i) + C*Ci';
end
% Input - Output covariance update
C(i) = C(i) + Ci; % must be after S and its derivatives
ii = sub2ind2(D,i,i);
dCdm(i,i) = dCdm(i,i) + Cdm; % must be after dSdm & dSds
dCds(i,ii) = dCds(i,ii) + Cds;
end
end
% Exploration if required
if isfield(cost,'expl') && nargout > 3 && cost.expl ~= 0
L = L + cost.expl*sqrt(S);
dLdm = dLdm + cost.expl*0.5/sqrt(S)*dSdm;
dLds = dLds + cost.expl*0.5/sqrt(S)*dSds;
end
function idx = sub2ind2(D,i,j)
% D = #rows, i = row subscript, j = column subscript
i = i(:); j = j(:)';
idx = reshape(bsxfun(@plus,D*(j-1),i),1,[]);
|
github
|
UCL-SML/pilco-matlab-master
|
lossHinge.m
|
.m
|
pilco-matlab-master/loss/lossHinge.m
| 3,596 |
utf_8
|
8065572dbe7ba938d78649a31e3aa0b1
|
%% lossHinge.m
% *Summary:* Function to compute the moments and derivatives of the loss of a
% Gaussian distributed point under a double hinge loss function. The loss
% function has slope -/+a and corners b1 and b2. The function also calculates
% derivatives of the loss w.r.t. the state distribution.
%
% Graph:
% \ /
% \ /
% \ /
% \_____________/
% b1 b2
%
% To use a single hinge b1 or b2 can be set to -Inf or +Inf respectively.
%
% Note, this function is only analytic for 1D inputs. To apply this loss
% function to multiple variables, use the lossAdd function.
%
%
% function [L dLdm dLds S dSdm dSds C dCdm dCds dLdb] = lossHinge(cost, m, s)
%
%
% *Input arguments:*
%
% cost
% .fcn @lossHinge - called to get here
% .a slope of loss function
% .b corner points of loss function [1 x 2 ]
% m input mean [D x 1 ]
% S input covariance matrix [D x D ]
%
% *Output arguments:*
%
% L expected loss [1 x 1 ]
% dLdm derivative of L wrt input mean [1 x D ]
% dLds derivative of L wrt input covariance [1 x D^2]
% S variance of loss [1 x 1 ]
% dSdm derivative of S wrt input mean [1 x D ]
% dSds derivative of S wrt input covariance [1 x D^2]
% C inv(S) times input-output covariance [D x 1 ]
% dCdm derivative of C wrt input mean [D x D ]
% dCds derivative of C wrt input covariance [D x D^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-06
%
%% High-Level Steps
% # Expected cost
% # Variance of cost
% # inv(s)* cov(x,L)
function [L dLdm dLds S dSdm dSds C dCdm dCds dLdb] = lossHinge(cost, m, s)
%% Code
D = length(m);
if D > 1;
error(['lossHinge only defined for 1D inputs, use lossAdd to '...
'concatenate multiple 1D loss functions']);
end
a = cost.a;
b = cost.b(:)' - m(:)'; I = ~isinf(b); % centralize
eb = exp(-b.^2/2/s); erfb = erf(b/sqrt(2*s));
c = sqrt(s/pi/2);
% 1. Expected Loss
% int_{-inf}^{b1-m} -a*(x-b1+m)*N(0,S) + int_{b2-m}^inf a*(x-b2+m)*N(0,S)
L = a*(b/2.*erfb + c*eb + b.*[1,-1]/2);
L = sum(L(I));
if nargout > 1
% Derivative w.r.t. m
dLdb = a/2*(erfb + [1,-1]);
dLdm = sum(dLdb(I)*-1);
% Derivative w.r.t. S
dc = 1/(2*sqrt(2*pi*s));
dLds = a*sum(eb)*dc;
end
% 2. Variance of Loss
if nargout > 3
S = a^2*((b.^2+s).*(1+[1,-1].*erfb)/2 + [1,-1].*b*c.*eb);
S = sum(S(I)) - L^2;
erfbdm = -sqrt(2/pi/s)*eb; erfbds = -b.*eb/sqrt(2*pi*s^3);
dSdm = a^2*(-b.*(1+[1,-1].*erfb) + (b.^2+s).*[1,-1].*erfbdm/2 + ...
[1,-1]*c.*eb.*(-1+b.^2/s));
dSdm = sum(dSdm(I)) - 2*L*dLdm;
dSds = a^2/2*((1+[1,-1].*erfb) + (b.^2+s).*[1,-1].*erfbds + ...
[2,-2].*b*dc.*eb + [1,-1].*b.^3/s^2*c.*eb);
dSds = sum(dSds(I)) - 2*L*dLds;
end
% 3. inv(s)* covariance between input and cost
if nargout > 6
C = a*([-1 1] - erfb)/2;
C = sum(C);
dCdm = -a/2*sum(erfbdm);
dCds = -a/2*sum(erfbds(I));
end
|
github
|
UCL-SML/pilco-matlab-master
|
lossQuad.m
|
.m
|
pilco-matlab-master/loss/lossQuad.m
| 2,562 |
utf_8
|
d196478052135d8a9bd1201fdcdd8fa7
|
%% lossQuad.m
% *Summary:* Compute expectation and variance of a quadratic cost
% $(x-z)'*W*(x-z)$
% and their derivatives, where $x \sim N(m,S)$
%
%
% function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossQuad(cost, m, S)
%
%
%
% *Input arguments:*
%
% cost
% .z: target state [D x 1]
% .W: weight matrix [D x D]
% m mean of input distribution [D x 1]
% s covariance matrix of input distribution [D x D]
%
%
% *Output arguments:*
%
% L expected loss [1 x 1 ]
% dLdm derivative of L wrt input mean [1 x D ]
% dLds derivative of L wrt input covariance [1 x D^2]
% S variance of loss [1 x 1 ]
% dSdm derivative of S wrt input mean [1 x D ]
% dSds derivative of S wrt input covariance [1 x D^2]
% C inv(S) times input-output covariance [D x 1 ]
% dCdm derivative of C wrt input mean [D x D ]
% dCds derivative of C wrt input covariance [D x D^2]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-30
%
%% High-Level Steps
% # Expected cost
% # Variance of cost
% # inv(s)* cov(x,L)
function [L, dLdm, dLds, S, dSdm, dSds, C, dCdm, dCds] = lossQuad(cost, m, S)
%% Code
D = length(m); % get state dimension
% set some defaults if necessary
if isfield(cost,'W'); W = cost.W; else W = eye(D); end
if isfield(cost,'z'); z = cost.z; else z = zeros(D,1); end
% 1. expected cost
L = S(:)'*W(:) + (z-m)'*W*(z-m);
% 1a. derivatives of expected cost
if nargout > 1
dLdm = 2*(m-z)'*W; % wrt input mean
dLds = W'; % wrt input covariance matrix
end
% 2. variance of cost
if nargout > 3
S = trace(W*S*(W + W')*S) + (z-m)'*(W + W')*S*(W + W')*(z-m);
if S < 1e-12; S = 0; end % for numerical reasons
end
% 2a. derivatives of variance of cost
if nargout > 4
% wrt input mean
dSdm = -(2*(W+W')*S*(W+W)*(z-m))';
% wrt input covariance matrix
dSds = W'*S'*(W + W')'+(W + W')'*S'*W' + (W + W')*(z-m)*((W + W')*(z-m))';
end
% 3. inv(s) times IO covariance with derivatives
if nargout > 6
C = 2*W*(m-z);
dCdm = 2*W;
dCds = zeros(D,D^2);
end
|
github
|
UCL-SML/pilco-matlab-master
|
congp.m
|
.m
|
pilco-matlab-master/control/congp.m
| 3,929 |
utf_8
|
8a137598e0f056778e7c3ebeb2981c4a
|
%% congp.m
% *Summary:* Implements the mean-of-GP policy (equivalent to a regularized RBF
% network. Compute mean, variance and input-output covariance of
% the control $u$ using a mean-of-GP policy function, when the input $x$ is
% Gaussian. The GP is parameterized using a pseudo training set size N.
% Optionally, compute partial derivatives wrt the input parameters.
%
% This version sets the signal variance to 1, the noise to 0.01 and their
% respective lengthscales to zero. This results in only the lengthscales,
% inputs, and outputs being trained.
%
%
% function [M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp, dCdp] ...
% = congp(policy, m, s)
%
%
% *Input arguments:*
%
% policy policy (struct)
% .p parameters that are modified during training
% .hyp GP-log hyperparameters (Ph = (d+2)*D) [ Ph ]
% .inputs policy pseudo inputs [ N x d ]
% .targets policy pseudo targets [ N x D ]
% m mean of state distribution [ d x 1 ]
% s covariance matrix of state distribution [ d x d ]
%
%
% *Output arguments:*
%
% M mean of the predicted control [ D x 1 ]
% S covariance of predicted control [ D x D ]
% C inv(s)*covariance between input and control [ d x D ]
% dMdm deriv. of mean control wrt mean of state [ D x d ]
% dSdm deriv. of control variance wrt mean of state [D*D x d ]
% dCdm deriv. of covariance wrt mean of state [d*D x d ]
% dMds deriv. of mean control wrt variance [ D x d*d]
% dSds deriv. of control variance wrt variance [D*D x d*d]
% dCds deriv. of covariance wrt variance [d*D x d*d]
% dMdp deriv. of mean control wrt GP hyper-parameters [ D x P ]
% dSdp deriv. of control variance wrt GP hyper-parameters [D*D x P ]
% dCdp deriv. of covariance wrt GP hyper-parameters [d*D x P ]
%
% where P = (d+2)*D + n*(d+D) is the total number of policy parameters.
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-01-24
%
%% High-Level Steps
% # Extract policy parameters from policy structure
% # Compute predicted control u inv(s)*covariance between input and control
% # Set derivatives of non-free parameters to zero
% # Merge derivatives
function [M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp, dCdp] ...
= congp(policy, m, s)
%% Code
% 1. Extract policy parameters
policy.hyp = policy.p.hyp;
policy.inputs = policy.p.inputs;
policy.targets = policy.p.targets;
% fix policy signal and the noise variance
% (avoids some potential numerical problems)
policy.hyp(end-1,:) = log(1); % set signal variance to 1
policy.hyp(end,:) = log(0.01); % set noise standard dev to 0.01
% 2. Compute predicted control u inv(s)*covariance between input and control
if nargout < 4 % if no derivatives are required
[M, S, C] = gp2(policy, m, s);
else % else compute derivatives too
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdi, dSdi, dCdi, dMdt, ...
dSdt, dCdt, dMdh, dSdh, dCdh] = gp2d(policy, m, s);
% 3. Set derivatives of non-free parameters to zero: signal and noise variance
d = size(policy.inputs,2);
d2 = size(policy.hyp,1); dimU = size(policy.targets,2);
sidx = bsxfun(@plus,(d+1:d2)',(0:dimU-1)*d2);
dMdh(:,sidx(:)) = 0; dSdh(:,sidx(:)) = 0; dCdh(:,sidx(:)) = 0;
% 4. Merge derivatives
dMdp = [dMdh dMdi dMdt]; dSdp = [dSdh dSdi dSdt]; dCdp = [dCdh dCdi dCdt];
end
|
github
|
UCL-SML/pilco-matlab-master
|
conCat.m
|
.m
|
pilco-matlab-master/control/conCat.m
| 4,305 |
utf_8
|
e7135e1b0710f40b0ac1151ee1a6d88d
|
%% concat.m
% *Summary:* Compute a control signal $u$ from a state distribution
% $x\sim\mathcal N(x|m,s)$. Here, the predicted control distribution
% and its derivatives are computed by concatenating a controller "con" with
% a saturation function "sat", such as gSat.m.
%
% function [M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp, dCdp] ...
% = conCat(con, sat, policy, m, s)
%
% Example call: conCat(@congp, @gSat, policy, m, s)
%
% *Input arguments:*
%
% con function handle (controller)
% sat function handle (squashing function)
% policy policy structure
% .maxU maximum amplitude of control signal (after squashing)
% m mean of input distribution [D x 1]
% s covariance of input distribution [D x D]
%
% *Output arguments:*
%
% M control mean [E x 1]
% S control covariance [E x E]
% C inv(s)*cov(x,u) [D x E]
% dMdm deriv. of expected control wrt input mean [E x D]
% dSdm deriv. of control covariance wrt input mean [E*E x D]
% dCdm deriv. of C wrt input mean [D*E x D]
% dMds deriv. of expected control wrt input covariance [E x D*D]
% dSds deriv. of control covariance wrt input covariance [E*E x D*D]
% dCds deriv. of C wrt input covariance [D*E x D*D]
% dMdp deriv. of expected control wrt policy parameters [E x P]
% dSdp deriv. of control covariance wrt policy parameters [E*E x P]
% dCdp deriv. of C wrt policy parameters [D*E x P]
%
% where P is the total number of policy parameters
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2012-07-03
%
%% High-Level Steps
% # Compute unsquashed control signal
% # Compute squashed control signal
function [M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp, dCdp] ...
= conCat(con, sat, policy, m, s)
%% Code
maxU=policy.maxU; % amplitude limit of control signal
E=length(maxU); % dimension of control signal
D=length(m); % dimension of input
% pre-compute some indices
F=D+E; j=D+1:F; i=1:D;
% initialize M and S
M = zeros(F,1); M(i) = m; S = zeros(F); S(i,i) = s;
if nargout < 4 % without derivatives
[M(j), S(j,j), Q] = con(policy, m, s); % compute unsquashed control signal v
q = S(i,i)*Q; S(i,j) = q; S(j,i) = q'; % compute joint covariance S=cov(x,v)
[M, S, R] = sat(M, S, j, maxU); % compute squashed control signal u
C = [eye(D) Q]*R; % inv(s)*cov(x,u)
else % with derivatives
Mdm = zeros(F,D); Sdm = zeros(F*F,D); Mdm(1:D,1:D) = eye(D);
Mds = zeros(F,D*D); Sds = kron(Mdm,Mdm);
X = reshape(1:F*F,[F F]); XT = X'; % vectorized indices
I=0*X;I(j,j)=1; jj=X(I==1)'; I=0*X;I(i,j)=1;ij=X(I==1)'; ji=XT(I==1)';
% 1. Unsquashed controller --------------------------------------------------
[M(j), S(j,j), Q, Mdm(j,:), Sdm(jj,:), dQdm, Mds(j,:), ...
Sds(jj,:), dQds, Mdp, Sdp, dQdp] = con(policy, m, s);
q = S(i,i)*Q; S(i,j) = q; S(j,i) = q'; % compute joint covariance S=cov(x,v)
% update the derivatives
SS = kron(eye(E),S(i,i)); QQ = kron(Q',eye(D));
Sdm(ij,:) = SS*dQdm; Sdm(ji,:) = Sdm(ij,:);
Sds(ij,:) = SS*dQds + QQ; Sds(ji,:) = Sds(ij,:);
% 2. Apply Saturation -------------------------------------------------------
[M, S, R, MdM, SdM, RdM, MdS, SdS, RdS] = sat(M, S, j, maxU);
% apply chain-rule to compute derivatives after concatenation
dMdm = MdM*Mdm + MdS*Sdm; dMds = MdM*Mds + MdS*Sds;
dSdm = SdM*Mdm + SdS*Sdm; dSds = SdM*Mds + SdS*Sds;
dRdm = RdM*Mdm + RdS*Sdm; dRds = RdM*Mds + RdS*Sds;
dMdp = MdM(:,j)*Mdp + MdS(:,jj)*Sdp;
dSdp = SdM(:,j)*Mdp + SdS(:,jj)*Sdp;
dRdp = RdM(:,j)*Mdp + RdS(:,jj)*Sdp;
C = [eye(D) Q]*R; % inv(s)*cov(x,u)
% update the derivatives
RR = kron(R(j,:)',eye(D)); QQ = kron(eye(E),[eye(D) Q]);
dCdm = QQ*dRdm + RR*dQdm;
dCds = QQ*dRds + RR*dQds;
dCdp = QQ*dRdp + RR*dQdp;
end
|
github
|
UCL-SML/pilco-matlab-master
|
conlin.m
|
.m
|
pilco-matlab-master/control/conlin.m
| 3,409 |
utf_8
|
3c0856129195fa4c0ec010e933b345f9
|
%% conlin.m
% *Summary:* Affine controller $u = Wx + b$ with input dimension D and
% control dimension E.
% Compute mean and covariance of the control distribution $p(u)$ from a
% Gaussian distributed input $x\sim\mathcal N(x|m,s)$.
% Moreover, the $s^{-1}cov(x,u)$ is computed.
%
%
% function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdp, dSdp, dVdp] ...
% = conlin(policy, m, s)
%
%
% *Input arguments:*
%
% policy policy structure
% .p parameters that are modified during training
% .w linear weights [ E x D ]
% .b biases/offset [ E ]
% m mean of state distribution [ D ]
% s covariance matrix of state distribution [ D x D ]
%
% *Output arguments:*
%
% M mean of predicted control [ E ]
% S variance of predicted control [ E x E ]
% C inv(s) times input-output covariance [ D x E ]
% dMdm deriv. of mean control wrt input mean [ E x D ]
% dSdm deriv. of control covariance wrt input mean [E*E x D ]
% dCdm deriv. of C wrt input mean [D*E x D ]
% dMds deriv. of mean control wrt input covariance [ E x D*D]
% dSds deriv. of control covariance wrt input covariance [E*E x D*D]
% dCds deriv. of C wrt input covariance [D*E x D*D]
% dMdp deriv. of mean control wrt policy parameters [ E x P ]
% dSdp deriv. of control covariance wrt policy parameters [E*E x P ]
% dCdp deriv. of C wrt policy parameters [D*E x P ]
%
% where P = (D+1)*E is the total number of policy parameters
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2012-07-03
%
%% High-Level Steps
% # Extract policy parameters from policy structure
% # Predict control signal
% # Compute derivatives if required
%
function [M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdp, dSdp, dVdp] ...
= conlin(policy, m, s)
%% Code
% 1. Extract policy parameters from policy structure
w = policy.p.w; % weight matrix
b = policy.p.b; % bias/offset
[E D] = size(w); % dim of control and state
% 2. Predict control signal
M = w*m + b; % mean
S = w*s*w'; S = (S+S')/2; % covariance
V = w'; % inv(s)*input-output covariance
% 3. Compute derivatives if required
if nargout > 3
dMdm = w; dSdm = zeros(E*E,D); dVdm = zeros(D*E,D);
dMds = zeros(E,D*D); dSds = kron(w,w); dVds = zeros(D*E,D*D);
X=reshape(1:D*D,[D D]); XT=X'; dSds=(dSds+dSds(:,XT(:)))/2; % symmetrize
X=reshape(1:E*E,[E E]); XT=X'; dSds=(dSds+dSds(XT(:),:))/2;
wTdw =reshape(permute(reshape(eye(E*D),[E D E D]),[2 1 3 4]),[E*D E*D]);
dMdp = [eye(E) kron(m',eye(E))];
dSdp = [zeros(E*E,E) kron(eye(E),w*s)*wTdw + kron(w*s,eye(E))];
dSdp = (dSdp + dSdp(XT(:),:))/2; % symmetrize
dVdp = [zeros(D*E,E) wTdw];
end
|
github
|
UCL-SML/pilco-matlab-master
|
propagated.m
|
.m
|
pilco-matlab-master/base/propagated.m
| 6,815 |
utf_8
|
e9669f64759cea3c9fcef4e9f7e6ded3
|
%% propagated.m
% *Summary:* Propagate the state distribution one time step forward
% with derivatives
%
% function [Mnext, Snext, dMdm, dSdm, dMds, dSds, dMdp, dSdp] = ...
% propagated(m, s, plant, dynmodel, policy)
%
% *Input arguments:*
%
% m mean of the state distribution at time t [D x 1]
% s covariance of the state distribution at time t [D x D]
% plant plant structure
% dynmodel dynamics model structure
% policy policy structure
%
% *Output arguments:*
%
% Mnext predicted mean at time t+1 [E x 1]
% Snext predicted covariance at time t+1 [E x E]
% dMdm output mean wrt input mean [E x D]
% dMds output mean wrt input covariance matrix [E x D*D]
% dSdm output covariance matrix wrt input mean [E*E x D ]
% dSds output cov wrt input cov [E*E x D*D]
% dMdp output mean wrt policy parameters [E x P]
% dSdp output covariance matrix wrt policy parameters [E*E x P]
%
% where P is the number of policy parameters.
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, Henrik Ohlsson,
% and Carl Edward Rasmussen.
%
% Last modified: 2016-07-19
%
%% High-Level Steps
% # Augment state distribution with trigonometric functions
% # Compute distribution of the control signal
% # Compute dynamics-GP prediction
% # Compute distribution of the next state
%
function [Mnext, Snext, dMdm, dSdm, dMds, dSds, dMdp, dSdp] = ...
propagated(m, s, plant, dynmodel, policy)
%% Code
if nargout <= 2 % just predict, no derivatives
[Mnext, Snext] = propagate(m, s, plant, dynmodel, policy);
return
end
angi = plant.angi; poli = plant.poli; dyni = plant.dyni; difi = plant.difi;
D0 = length(m); % size of the input mean
D1 = D0 + 2*length(angi); % length after mapping all angles to sin/cos
D2 = D1 + length(policy.maxU); % length after computing control signal
D3 = D2 + D0; % length after predicting
M = zeros(D3,1); M(1:D0) = m; S = zeros(D3); S(1:D0,1:D0) = s; % init M and S
Mdm = [eye(D0); zeros(D3-D0,D0)]; Sdm = zeros(D3*D3,D0);
Mds = zeros(D3,D0*D0); Sds = kron(Mdm,Mdm);
X = reshape(1:D3*D3,[D3 D3]); XT = X'; Sds = (Sds + Sds(XT(:),:))/2;
X = reshape(1:D0*D0,[D0 D0]); XT = X'; Sds = (Sds + Sds(:,XT(:)))/2;
% 1) Augment state distribution with trigonometric functions ------------------
i = 1:D0; j = 1:D0; k = D0+1:D1;
[M(k) S(k,k) C mdm sdm Cdm mds sds Cds] = gTrig(M(i), S(i,i), angi);
[S Mdm Mds Sdm Sds] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,[ ],[ ],[ ],i,j,k,D3);
%sn2 = exp(2*dynmodel.hyp(end,:)); sn2(difi) = sn2(difi)/2;
mm=zeros(D1,1); mm(i)=M(i); ss(i,i)=S(i,i);%+diag(sn2);
[mm(k), ss(k,k) C] = gTrig(mm(i), ss(i,i), angi); % noisy state measurement
q = ss(j,i)*C; ss(j,k) = q; ss(k,j) = q';
% 2) Compute distribution of the control signal -------------------------------
i = poli; j = 1:D1; k = D1+1:D2;
[M(k) S(k,k) C mdm sdm Cdm mds sds Cds Mdp Sdp Cdp] = ...
policy.fcn(policy, mm(i), ss(i,i));
[S Mdm Mds Sdm Sds Mdp Sdp] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,Mdp,Sdp,Cdp,i,j,k,D3);
% 3) Compute distribution of the change in state ------------------------------
ii = [dyni D1+1:D2]; j = 1:D2;
if isfield(dynmodel,'sub'), Nf = length(dynmodel.sub); else Nf = 1; end
for n=1:Nf % potentially multiple dynamics models
[dyn i k] = sliceModel(dynmodel,n,ii,D1,D2,D3); j = setdiff(j,k);
[M(k) S(k,k) C mdm sdm Cdm mds sds Cds] = dyn.fcn(dyn, M(i), S(i,i));
[S Mdm Mds Sdm Sds Mdp Sdp] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,Mdp,Sdp,[ ],i,j,k,D3);
j = [j k]; % update 'previous' state vector
end
% 4) Compute distribution of the next state -----------------------------------
P = [zeros(D0,D2) eye(D0)]; P(difi,difi) = eye(length(difi)); P = sparse( P);
Mnext = P*M; Snext = P*S*P'; Snext = (Snext+Snext')/2;
PP = kron(P,P);
dMdm = P*Mdm; dMds = P*Mds; dMdp = P*Mdp;
dSdm = PP*Sdm; dSds = PP*Sds; dSdp = PP*Sdp;
X = reshape(1:D0*D0,[D0 D0]); XT = X'; % symmetrize dS
dSdm = (dSdm + dSdm(XT(:),:))/2; dMds = (dMds + dMds(:,XT(:)))/2;
dSds = (dSds + dSds(XT(:),:))/2; dSds = (dSds + dSds(:,XT(:)))/2;
dSdp = (dSdp + dSdp(XT(:),:))/2;
% A1) Separate multiple dynamics models ---------------------------------------
function [dyn i k] = sliceModel(dynmodel,n,ii,D1,D2,D3) % separate sub-dynamics
if isfield(dynmodel,'sub')
dyn = dynmodel.sub{n}; do = dyn.dyno; D = length(ii)+D1-D2;
if isfield(dyn,'dyni'), di=dyn.dyni; else di=[]; end
if isfield(dyn,'dynu'), du=dyn.dynu; else du=[]; end
if isfield(dyn,'dynj'), dj=dyn.dynj; else dj=[]; end
i = [ii(di) D1+du D2+dj]; k = D2+do;
dyn.inputs = [dynmodel.inputs(:,[di D+du]) dynmodel.target(:,dj)]; % inputs
dyn.target = dynmodel.target(:,do); % targets
else
dyn = dynmodel; k = D2+1:D3; i = ii;
end
% A2) Apply chain rule and fill out cross covariance terms --------------------
function [S Mdm Mds Sdm Sds Mdp Sdp] = ...
fillIn(S,C,mdm,sdm,Cdm,mds,sds,Cds,Mdm,Sdm,Mds,Sds,Mdp,Sdp,dCdp,i,j,k,D)
if isempty(k), return; end
X = reshape(1:D*D,[D D]); XT = X'; % vectorized indices
I=0*X; I(i,i)=1; ii=X(I==1)'; I=0*X; I(k,k)=1; kk=X(I==1)';
I=0*X; I(j,i)=1; ji=X(I==1)'; I=0*X; I(j,k)=1; jk=X(I==1)'; kj=XT(I==1)';
Mdm(k,:) = mdm*Mdm(i,:) + mds*Sdm(ii,:); % chainrule
Mds(k,:) = mdm*Mds(i,:) + mds*Sds(ii,:);
Sdm(kk,:) = sdm*Mdm(i,:) + sds*Sdm(ii,:);
Sds(kk,:) = sdm*Mds(i,:) + sds*Sds(ii,:);
dCdm = Cdm*Mdm(i,:) + Cds*Sdm(ii,:);
dCds = Cdm*Mds(i,:) + Cds*Sds(ii,:);
if isempty(dCdp) && nargout > 5
Mdp(k,:) = mdm*Mdp(i,:) + mds*Sdp(ii,:);
Sdp(kk,:) = sdm*Mdp(i,:) + sds*Sdp(ii,:);
dCdp = Cdm*Mdp(i,:) + Cds*Sdp(ii,:);
elseif nargout > 5
aa = length(k); bb = aa^2; cc = numel(C);
mdp = zeros(D,size(Mdp,2)); sdp = zeros(D*D,size(Mdp,2));
mdp(k,:) = reshape(Mdp,aa,[]); Mdp = mdp;
sdp(kk,:) = reshape(Sdp,bb,[]); Sdp = sdp;
Cdp = reshape(dCdp,cc,[]); dCdp = Cdp;
end
q = S(j,i)*C; S(j,k) = q; S(k,j) = q'; % off-diagonal
SS = kron(eye(length(k)),S(j,i)); CC = kron(C',eye(length(j)));
Sdm(jk,:) = SS*dCdm + CC*Sdm(ji,:); Sdm(kj,:) = Sdm(jk,:);
Sds(jk,:) = SS*dCds + CC*Sds(ji,:); Sds(kj,:) = Sds(jk,:);
if nargout > 5
Sdp(jk,:) = SS*dCdp + CC*Sdp(ji,:); Sdp(kj,:) = Sdp(jk,:);
end
|
github
|
UCL-SML/pilco-matlab-master
|
predcost.m
|
.m
|
pilco-matlab-master/base/predcost.m
| 1,226 |
utf_8
|
33b93e42bfaaba81a29a0106348021c5
|
%% predcost.m
% *Summary:* Compute trajectory of expected costs for a given set of
% state distributions
%
% inputs:
% m0 mean of states, D-by-1 or D-by-K for multiple means
% S covariance matrix of state distributions
% dynmodel (struct) for dynamics model (GP)
% plant (struct) of system parameters
% policy (struct) for policy to be implemented
% cost (struct) of cost function parameters
% H length of optimization horizon
%
% outputs:
% L expected cumulative (discounted) cost
% s standard deviation of cost
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2012-01-12
%
%% High-Level Steps
% # Predict successor state distribution
% # Predict corresponding cost distribution
function [L, s] = predcost(m0, S, dynmodel, plant, policy, cost, H)
%% Code
L = zeros(size(m0,2),H); s = zeros(size(m0,2),H);
for k = 1:size(m0,2);
m = m0(:,k);
for t = 1:H
[m, S] = plant.prop(m, S, plant, dynmodel, policy); % get next state
[L(k,t), d1, d2, v] = cost.fcn(cost, m, S); % compute cost
s(k,t) = sqrt(v);
end
end
L = mean(L,1); s = mean(s,1);
|
github
|
UCL-SML/pilco-matlab-master
|
propagate.m
|
.m
|
pilco-matlab-master/base/propagate.m
| 3,751 |
utf_8
|
981110574e60d83f95424a9b9489c04d
|
%% propagate.m
% *Summary:* Propagate the state distribution one time step forward.
%
% [Mnext, Snext] = propagate(m, s, plant, dynmodel, policy)
%
% *Input arguments:*
%
% m mean of the state distribution at time t [D x 1]
% s covariance of the state distribution at time t [D x D]
% plant plant structure
% dynmodel dynamics model structure
% policy policy structure
%
% *Output arguments:*
%
% Mnext mean of the successor state at time t+1 [E x 1]
% Snext covariance of the successor state at time t+1 [E x E]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, Henrik Ohlsson,
% and Carl Edward Rasmussen.
%
% Last modified: 2016-07-19
%
%% High-Level Steps
% # Augment state distribution with trigonometric functions
% # Compute distribution of the control signal
% # Compute dynamics-GP prediction
% # Compute distribution of the next state
%
function [Mnext, Snext] = propagate(m, s, plant, dynmodel, policy)
%% Code
% extract important indices from structures
angi = plant.angi; % angular indices
poli = plant.poli; % policy indices
dyni = plant.dyni; % dynamics-model indices
difi = plant.difi; % state indices where the model was trained on differences
D0 = length(m); % size of the input mean
D1 = D0 + 2*length(angi); % length after mapping all angles to sin/cos
D2 = D1 + length(policy.maxU); % length after computing control signal
D3 = D2 + D0; % length after predicting
M = zeros(D3,1); M(1:D0) = m; S = zeros(D3); S(1:D0,1:D0) = s; % init M and S
% 1) Augment state distribution with trigonometric functions ------------------
i = 1:D0; j = 1:D0; k = D0+1:D1;
[M(k), S(k,k) C] = gTrig(M(i), S(i,i), angi);
q = S(j,i)*C; S(j,k) = q; S(k,j) = q';
%sn2 = exp(2*dynmodel.hyp(end,:)); sn2(difi) = sn2(difi)/2;
mm=zeros(D1,1); mm(i)=M(i); ss(i,i)=S(i,i); %+diag(sn2);
[mm(k), ss(k,k) C] = gTrig(mm(i), ss(i,i), angi); % noisy state measurement
q = ss(j,i)*C; ss(j,k) = q; ss(k,j) = q';
% 2) Compute distribution of the control signal -------------------------------
i = poli; j = 1:D1; k = D1+1:D2;
[M(k) S(k,k) C] = policy.fcn(policy, mm(i), ss(i,i));
q = S(j,i)*C; S(j,k) = q; S(k,j) = q';
% 3) Compute dynamics-GP prediction ------------------------------
ii = [dyni D1+1:D2]; j = 1:D2;
if isfield(dynmodel,'sub'), Nf = length(dynmodel.sub); else Nf = 1; end
for n=1:Nf % potentially multiple dynamics models
[dyn i k] = sliceModel(dynmodel,n,ii,D1,D2,D3); j = setdiff(j,k);
[M(k), S(k,k), C] = dyn.fcn(dyn, M(i), S(i,i));
q = S(j,i)*C; S(j,k) = q; S(k,j) = q';
j = [j k]; % update 'previous' state vector
end
% 4) Compute distribution of the next state -----------------------------------
P = [zeros(D0,D2) eye(D0)]; P(difi,difi) = eye(length(difi));
Mnext = P*M; Snext = P*S*P'; Snext = (Snext+Snext')/2;
function [dyn i k] = sliceModel(dynmodel,n,ii,D1,D2,D3) % separate sub-dynamics
% A1) Separate multiple dynamics models ---------------------------------------
if isfield(dynmodel,'sub')
dyn = dynmodel.sub{n}; do = dyn.dyno; D = length(ii)+D1-D2;
if isfield(dyn,'dyni'), di=dyn.dyni; else di=[]; end
if isfield(dyn,'dynu'), du=dyn.dynu; else du=[]; end
if isfield(dyn,'dynj'), dj=dyn.dynj; else dj=[]; end
i = [ii(di) D1+du D2+dj]; k = D2+do;
dyn.inputs = [dynmodel.inputs(:,[di D+du]) dynmodel.target(:,dj)]; % inputs
dyn.target = dynmodel.target(:,do); % targets
else
dyn = dynmodel; k = D2+1:D3; i = ii;
end
|
github
|
UCL-SML/pilco-matlab-master
|
calcCost.m
|
.m
|
pilco-matlab-master/base/calcCost.m
| 1,329 |
utf_8
|
3f9d3c6f6845a8b673f95345f81c56b9
|
%% calcCost.m
% *Summary:* Function to calculate the incurred cost and its standard deviation,
% given a sequence of predicted state distributions and the cost struct
%
% [L sL] = calcCost(cost, M, S)
%
% *Input arguments:*
%
% cost cost structure
% M mean vectors of state trajectory (D-by-H matrix)
% S covariance matrices at each time step (D-by-D-by-H)
%
% *Output arguments:*
%
% L expected incurred cost of state trajectory
% sL standard deviation of incurred cost
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-01-23
%
%% High-Level Steps
% # Augment state distribution with trigonometric functions
% # Compute distribution of the control signal
% # Compute dynamics-GP prediction
% # Compute distribution of the next state
%
function [L sL] = calcCost(cost, M, S)
%% Code
H = size(M,2); % horizon length
L = zeros(1,H); SL = zeros(1,H);
% for each time step, compute the expected cost and its variance
for h = 1:H
[L(h),d1,d2,SL(h)] = cost.fcn(cost, M(:,h), S(:,:,h));
end
sL = sqrt(SL); % standard deviation
|
github
|
UCL-SML/pilco-matlab-master
|
simulate.m
|
.m
|
pilco-matlab-master/base/simulate.m
| 3,877 |
utf_8
|
2dfb96f96725ecbb27b0ec86d2aedc63
|
%% simulate.m
% *Summary:* Simulate dynamics using a given control scheme.
%
% function next = simulate(x0, f, plant)
%
% *Input arguments:*
%
% x0 start state (with additional control states if required)
% f the control setpoint for this time step
% plant plant structure
% .dt time discretization
% .dynamics system function
% .ctrl function defining control implementation
% @zoh - zero-order-hold control (ZOH)
% @foh - first-order-hold control (FOH)
% with optional rise time 0 < plant.tau <= dt
% @lag - lagged control with time constant 0 < plant.tau
% .delay continuous-time delay, in range [0 dt)
%
% *Output arguments:*
%
% next successor state (with additional control states if required)
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modification: 2012-06-30
%
%% High-Level Steps
% For each time step
% # Set up the control function
% # Simulate the dynamics (by calling ODE45)
% # Update control part of the state
function next = simulate(x0, f, plant)
%% Code
OPTIONS = odeset('RelTol', 1e-12, 'AbsTol', 1e-12); % accuracy of ode45
x0 = x0(:); f = f(:); nU = length(f);
dt = plant.dt; dynamics = plant.dynamics;
if isfield(plant,'delay'), delay = plant.delay; else delay = 0; end
if isfield(plant,'tau'), tau = plant.tau; else tau = dt; end
par.dt = dt; par.delay = delay; par.tau = tau;
% 1. Set up control function ------------------------------------------------
% f{t} = control setpoint over time t to d+dt (determined by policy)
% u{t} = control currently being applied at time t
con = functions(plant.ctrl); con = con.function;
if (strcmp(con,'zoh') && delay==0) % U = [f{t}]
x0s = x0;U = f; id = 0;
elseif strcmp(con,'zoh') || ... % U = [u{t} f{t}]
(strcmp(con,'foh') && tau+delay<=dt) || (strcmp(con,'lag') && delay==0)
x0s = x0(1:end-nU); U = [x0(end-nU+1:end) f]; id = 1;
else % U = [f{t-1} u{t} f{t}]
x0s=x0(1:end-2*nU); U=[reshape( x0(end-2*nU+1:end), [nU 2]) f]; id = 2;
end
ctrlfcn = str2func(con); u0 = cell(1,nU); % create control function
for j = 1:nU, u0{j} = @(t)ctrlfcn(U(j,:),t,par); end
% 2. Simulate dynamics ------------------------------------------------------
[T y] = ode45(dynamics, [0 dt/2 dt], x0s, OPTIONS, u0{:});
x1 = y(3,:)'; % next state
% 3. Update control part of the state ---------------------------------------
udt = zeros(nU,1); for j=1:nU, udt(j) = u0{j}(dt); end
if id==0, next = x1; % return augmented state
elseif id==1, next = [x1; udt];
else next = [x1; f; udt];
end
function u = zoh(f, t, par) % **************************** zero-order hold
d = par.delay;
if d==0
u = f;
else
e = d/100; t0=t-(d-e/2);
if t<d-e/2, u=f(1);
elseif t<d+e/2, u=(1-t0/e)*f(1) + t0/e*f(2); % prevents ODE stiffness
else u=f(2);
end
end
function u = foh(f, t, par) % *************************** first-order hold
d = par.delay; tau = par.tau; dt = par.dt;
if tau + d < dt
t0=t-d;
if t<d, u=f(1);
elseif t<tau+d, u=(1-t0/tau)*f(1) + t0/tau*f(2);
else u=f(2);
end
else
bit = d-(dt-tau);
if t<bit, u=(1-t/bit)*f(2) + t/tau*f(1);
elseif t<d, u=f(1);
else t0=t+d; u=(1-t0/tau)*f(1) + t0/tau*f(3);
end
end
function u = lag(f, t, par) % **************************** first-order lag
d = par.delay; tau = par.tau;
if d==0
u = f(1) + (f(2)-f(1))*exp(-t/tau);
else
bit = f(2) + (f(1)-f(2))*exp(-d/tau);
if t<d, u = f(2) + (f(1)-f(2))*exp(-t/tau);
else u = bit + (f(3)-bit )*exp(-t/tau);
end
end
|
github
|
UCL-SML/pilco-matlab-master
|
pred.m
|
.m
|
pilco-matlab-master/base/pred.m
| 1,166 |
utf_8
|
542ef9cd484a7b32fbcd49e6771eae0e
|
%% pred.m
% *Summary:* Compute predictive (marginal) distributions of a trajecory
%
% [M S] = pred(policy, plant, dynmodel, m, s, H)
%
% *Input arguments:*
%
% policy policy structure
% plant plant structure
% dynmodel dynamics model structure
% m D-by-1 mean of the initial state distribution
% s D-by-D covariance of the initial state distribution
% H length of prediction horizon
%
% *Output arguments:*
%
% M D-by-(H+1) sequence of predicted mean vectors
% S D-by-D-(H+1) sequence of predicted covariance
% matrices
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-01-23
%
%% High-Level Steps
% # Predict successor state distribution
function [M S] = pred(policy, plant, dynmodel, m, s, H)
%% Code
D = length(m); S = zeros(D,D,H+1); M = zeros(D,H+1);
M(:,1) = m; S(:,:,1) = s;
for i = 1:H
[m s] = plant.prop(m, s, plant, dynmodel, policy);
M(:,i+1) = m(end-D+1:end);
S(:,:,i+1) = s(end-D+1:end,end-D+1:end);
end
|
github
|
UCL-SML/pilco-matlab-master
|
value.m
|
.m
|
pilco-matlab-master/base/value.m
| 2,645 |
utf_8
|
bce8a1d93f7a603513a4b3820ac4e5a7
|
%% value.m
% *Summary:* Compute expected (discounted) cumulative cost for a given (set of) initial
% state distributions
%
% function [J, dJdp] = value(p, m0, S0, dynmodel, policy, plant, cost, H)
%
% *Input arguments:*
%
% p policy parameters chosen by minimize
% policy policy structure
% .fcn function which implements the policy
% .p parameters passed to the policy
% m0 matrix (D by k) of initial state means
% S0 covariance matrix (D by D) for initial state
% dynmodel dynamics model structure
% plant plant structure
% cost cost function structure
% .fcn function handle to the cost
% .gamma discount factor
% H length of prediction horizon
%
% *Output arguments:*
%
% J expected cumulative (discounted) cost
% dJdp (optional) derivative of J wrt the policy parameters
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modification: 2013-03-21
%
%% High-Level Steps
% # Compute distribution of next state
% # Compute corresponding expected immediate cost (discounted)
% # At end of prediction horizon: sum all immediate costs up
function [J, dJdp] = value(p, m0, S0, dynmodel, policy, plant, cost, H)
%% Code
policy.p = p; % overwrite policy.p with new parameters from minimize
p = unwrap(policy.p); dp = 0*p;
m = m0; S = S0; L = zeros(1,H);
if nargout <= 1 % no derivatives required
for t = 1:H % for all time steps in horizon
[m, S] = plant.prop(m, S, plant, dynmodel, policy); % get next state
L(t) = cost.gamma^t.*cost.fcn(cost, m, S); % expected discounted cost
end
else % otherwise, get derivatives
dmOdp = zeros([size(m0,1), length(p)]);
dSOdp = zeros([size(m0,1)*size(m0,1), length(p)]);
for t = 1:H % for all time steps in horizon
[m, S, dmdmO, dSdmO, dmdSO, dSdSO, dmdp, dSdp] = ...
plant.prop(m, S, plant, dynmodel, policy); % get next state
dmdp = dmdmO*dmOdp + dmdSO*dSOdp + dmdp;
dSdp = dSdmO*dmOdp + dSdSO*dSOdp + dSdp;
[L(t), dLdm, dLdS] = cost.fcn(cost, m, S); % predictive cost
L(t) = cost.gamma^t*L(t); % discount
dp = dp + cost.gamma^t*( dLdm(:)'*dmdp + dLdS(:)'*dSdp )';
dmOdp = dmdp; dSOdp = dSdp; % bookkeeping
end
end
J = sum(L); dJdp = rewrap(policy.p, dp);
|
github
|
UCL-SML/pilco-matlab-master
|
rollout.m
|
.m
|
pilco-matlab-master/base/rollout.m
| 4,299 |
utf_8
|
b1d2fdc6eb88a4e15beaa61e61a33041
|
%% rollout.m
% *Summary:* Generate a state trajectory using an ODE solver (and any additional
% dynamics) from a particular initial state by applying either a particular
% policy or random actions.
%
% function [x y L latent] = rollout(start, policy, H, plant, cost)
%
% *Input arguments:*
%
% start vector containing initial states (without controls) [nX x 1]
% policy policy structure
% .fcn policy function
% .p parameter structure (if empty: use random actions)
% .maxU vector of control input saturation values [nU x 1]
% H rollout horizon in steps
% plant the dynamical system structure
% .subplant (opt) additional discrete-time dynamics
% .augment (opt) augment state using a known mapping
% .constraint (opt) stop rollout if violated
% .poli indices for states passed to the policy
% .dyno indices for states passed to cost
% .odei indices for states passed to the ode solver
% .subi (opt) indices for states passed to subplant function
% .augi (opt) indices for states passed to augment function
% cost cost structure
%
% *Output arguments:*
%
% x matrix of observed states [H x nX+nU]
% y matrix of corresponding observed successor states [H x nX ]
% L cost incurred at each time step [ 1 x H ]
% latent matrix of latent states [H+1 x nX ]
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modification: 2013-05-21
%
%% High-Level Steps
%
% # Compute control signal $u$ from state $x$:
% either apply policy or random actions
% # Simulate the true dynamics for one time step using the current pair $(x,u)$
% # Check whether any constraints are violated (stop if true)
% # Apply random noise to the successor state
% # Compute cost (optional)
% # Repeat until end of horizon
function [x y L latent] = rollout(start, policy, H, plant, cost)
%% Code
if isfield(plant,'augment'), augi = plant.augi; % sort out indices!
else plant.augment = inline('[]'); augi = []; end
if isfield(plant,'subplant'), subi = plant.subi;
else plant.subplant = inline('[]',1); subi = []; end
odei = plant.odei; poli = plant.poli; dyno = plant.dyno; angi = plant.angi;
simi = sort([odei subi]);
nX = length(simi)+length(augi); nU = length(policy.maxU); nA = length(angi);
state(simi) = start; state(augi) = plant.augment(state); % initializations
x = zeros(H+1, nX+2*nA);
x(1,simi) = start' + randn(size(simi))*chol(plant.noise);
x(1,augi) = plant.augment(x(1,:));
u = zeros(H, nU); latent = zeros(H+1, size(state,2)+nU);
y = zeros(H, nX); L = zeros(1, H); next = zeros(1,length(simi));
for i = 1:H % --------------------------------------------- generate trajectory
s = x(i,dyno)'; sa = gTrig(s, zeros(length(s)), angi); s = [s; sa];
x(i,end-2*nA+1:end) = s(end-2*nA+1:end);
% 1. Apply policy ... or random actions --------------------------------------
if isfield(policy, 'fcn')
u(i,:) = policy.fcn(policy,s(poli),zeros(length(poli)));
else
u(i,:) = policy.maxU.*(2*rand(1,nU)-1);
end
latent(i,:) = [state u(i,:)]; % latent state
% 2. Simulate dynamics -------------------------------------------------------
next(odei) = simulate(state(odei), u(i,:), plant);
next(subi) = plant.subplant(state, u(i,:));
% 3. Stop rollout if constraints violated ------------------------------------
if isfield(plant,'constraint') && plant.constraint(next(odei))
H = i-1;
fprintf('state constraints violated...\n');
break;
end
% 4. Augment state and randomize ---------------------------------------------
state(simi) = next(simi); state(augi) = plant.augment(state);
x(i+1,simi) = state(simi) + randn(size(simi))*chol(plant.noise);
x(i+1,augi) = plant.augment(x(i+1,:));
% 5. Compute Cost ------------------------------------------------------------
if nargout > 2
L(i) = cost.fcn(cost,state(dyno)',zeros(length(dyno)));
end
end
y = x(2:H+1,1:nX); x = [x(1:H,:) u(1:H,:)];
latent(H+1, 1:nX) = state; latent = latent(1:H+1,:); L = L(1,1:H);
|
github
|
UCL-SML/pilco-matlab-master
|
valueT.m
|
.m
|
pilco-matlab-master/test/valueT.m
| 1,378 |
utf_8
|
3adc202d8e07edc1ea870c160bfe7451
|
%% valueT.m
% *Summary:* Test derivatives of the propagate function, which computes the
% mean and the variance of the successor state distribution, assuming that the
% current state is Gaussian distributed with mean m and covariance matrix
% s.
%
% [d dy dh] = valueT(p, delta, m, s, dynmodel, policy, plant, cost, H)
%
%
% *Input arguments:*
%
% p policy parameters (can be a structure)
% .<> fields that contain the policy parameters (nothing else)
% m mean of the input distribution
% s covariance of the input distribution
% dynmodel GP dynamics model (structure)
% policy policy structure
% plant plant structure
% cost cost structure
% H prediction horizon
% delta (optional) finite difference parameter. Default: 1e-4
%
%
% *Output arguments:*
%
% dd relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
function [d dy dh] = valueT(p, m, s, dynmodel, policy, plant, cost, H, delta)
%% Code
if nargin < 9; delta = 1e-4; end
if nargin < 8; H = 4; end
% call checkgrad directly
[d dy dh] = checkgrad('value',p,delta,m,s,dynmodel,policy,plant,cost,H);
|
github
|
UCL-SML/pilco-matlab-master
|
lossT.m
|
.m
|
pilco-matlab-master/test/lossT.m
| 4,104 |
utf_8
|
1d3ad31b497f7aa08f0bfb60ed4af10b
|
%% lossT.m
% *Summary:* Test derivatives of cost functions. It is assumed that
% the cost function computes (at least) the mean and the variance of the
% cost for a Gaussian distributed input $x\sim\mathcal N(m,s)$
%
%
% function [dd dy dh] = lossT(deriv, policy, m, s, delta)
%
%
% *Input arguments:*
%
% deriv desired derivative. options:
% (i) 'dMdm' - derivative of the mean of the predicted cost
% wrt the mean of the input distribution
% (ii) 'dMds' - derivative of the mean of the predicted cost
% wrt the variance of the input distribution
% (iii) 'dSdm' - derivative of the variance of the predicted cost
% wrt the mean of the input distribution
% (iv) 'dSds' - derivative of the variance of the predicted cost
% wrt the variance of the input distribution
% (v) 'dCdm' - derivative of inv(s)*(covariance of the input and the
% predicted cost) wrt the mean of the input distribution
% (vi) 'dCds' - derivative of inv(s)*(covariance of the input and the
% predicted cost) wrt the variance of the input distribution
% cost cost structure
% .fcn function handle to cost
% .<> other fields that are passed on to the cost
% m mean of the input distribution
% s covariance of the input distribution
% delta (optional) finite difference parameter. Default: 1e-4
%
%
% *Output arguments:*
%
% dd relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-30
function [d dy dh] = lossT(deriv, cost, m, S, delta)
%% Code
% create a default test if no input arguments are given
if nargin == 0;
D = 4;
m = randn(4,1);
S = randn(4); S = S*S';
cost.z = randn(4,1);
W = randn(4); W = W*W';
cost.W = W;
cost.fcn = @lossQuad;
deriv = 'dLdm';
end
D = length(m); if nargout < 5; delta = 1e-4; end
% check derivatives
switch deriv
case {'dLdm', 'dMdm'}
[d dy dh] = checkgrad(@losstest01, m, delta, cost, S);
case {'dLds', 'dMds'}
[d dy dh] = checkgrad(@losstest02, S(tril(ones(D))==1), delta, cost, m);
case 'dSdm'
[d dy dh] = checkgrad(@losstest03, m, delta, cost, S);
case 'dSds'
[d dy dh] = checkgrad(@losstest04, S(tril(ones(D))==1), delta, cost, m);
case {'dCdm', 'dVdm'}
[d dy dh] = checkgrad(@losstest05, m, delta, cost, S);
case {'dCds', 'dVds'}
[d dy dh] = checkgrad(@losstest06, S(tril(ones(D))==1), delta, cost, m);
end
%%
function [f, df] = losstest01(m, cost, S) % dLdm
[L dLdm] = cost.fcn(cost, m, S);
f = L; df = dLdm;
function [f, df] = losstest02(s, cost, m) % dLds
d = length(m);
ss(tril(ones(d))==1) = s; ss = reshape(ss,d,d); ss = ss + ss' - diag(diag(ss));
[L dLdm dLds] = cost.fcn(cost, m, ss);
f = L; df = dLds; df = 2*df-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = losstest03(m, cost, S) % dSdm
[L dLdm dLds S dSdm] = cost.fcn(cost, m, S);
f = S; df = dSdm;
function [f, df] = losstest04(s, cost, m) % dSds
d = length(m);
ss(tril(ones(d))==1) = s; ss = reshape(ss,d,d); ss = ss + ss' - diag(diag(ss));
[L dLdm dLds S dSdm dSds] = cost.fcn(cost, m, ss);
f = S; df = dSds; df = 2*df-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = losstest05(m, cost, S) % dCdm
[L dLdm dLds S dSdm dSds C dCdm] = cost.fcn(cost, m, S);
f = C; df = dCdm;
function [f, df] = losstest06(s, cost, m) % dCds
d = length(m);
ss(tril(ones(d))==1) = s; ss = reshape(ss,d,d); ss = ss + ss' - diag(diag(ss));
[L dLdm dLds S dSdm dSds C dCdm dCds] = cost.fcn(cost, m, ss);
f = C;
dCds = reshape(dCds,d,d,d); df = zeros(d,d*(d+1)/2);
for i=1:d;
dCdsi = squeeze(dCds(i,:,:)); dCdsi = dCdsi+dCdsi'-diag(diag(dCdsi));
df(i,:) = dCdsi(tril(ones(d))==1);
end;
|
github
|
UCL-SML/pilco-matlab-master
|
conT.m
|
.m
|
pilco-matlab-master/test/conT.m
| 6,499 |
utf_8
|
ed7e152cffd95ed992cd6686223561e1
|
%% conT.m
% *Summary:* Test derivatives of controller functions. It is assumed that
% the controller function computes the mean and the variance of the
% control signal for a Gaussian distributed input $x\sim\mathcal N(m,s)$
%
%
% function [dd dy dh] = conT(deriv, policy, m, s, delta)
%
%
% *Input arguments:*
%
% deriv desired derivative. options:
% (i) 'dMdm' - derivative of the mean of the predicted control
% wrt the mean of the input distribution
% (ii) 'dMds' - derivative of the mean of the predicted control
% wrt the variance of the input distribution
% (iii) 'dMdp' - derivative of the mean of the predicted control
% wrt the controller parameters
% (iv) 'dSdm' - derivative of the variance of the predicted control
% wrt the mean of the input distribution
% (v) 'dSds' - derivative of the variance of the predicted control
% wrt the variance of the input distribution
% (vi) 'dSdp' - derivative of the variance of the predicted control
% wrt the controller parameters
% (vii) 'dCdm' - derivative of inv(s)*(covariance of the input and the
% predicted control) wrt the mean of the input distribution
% (viii) 'dCds' - derivative of inv(s)*(covariance of the input and the
% predicted control) wrt the variance of the input distribution
% (ix) 'dCdp' - derivative of inv(s)*(covariance of the input and the
% predicted control) wrt the controller parameters
% policy policy structure
% .fcn function handle to policy
% .<> other fields that are passed on to the policy
% m mean of the input distribution
% s covariance of the input distribution
% delta (optional) finite difference parameter. Default: 1e-4
%
%
% *Output arguments:*
%
% dd relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-05-30
function [dd dy dh] = conT(deriv, policy, m, s, delta)
%% Code
if nargin < 5; delta = 1e-4; end % default value
% if no input arguments, create random policy parameters and check derivatives
if nargin == 0
D = 2;
d = 3;
policy.w = randn(D,d);
policy.b = randn(D,1);
m = randn(d,1);
s = randn(d); s = s*s';
policy.maxU = '2 3';
policy.fcn = @(policy, m, s)conCat(@conLin, @gSat, policy, m, s);
end
D = length(policy.maxU);
d = length(m);
switch deriv
case 'dMdm'
[dd dy dh] = checkgrad(@conT0, m, delta, policy, s);
case 'dSdm'
[dd dy dh] = checkgrad(@conT1, m, delta, policy, s);
case 'dCdm'
[dd dy dh] = checkgrad(@conT2, m, delta, policy, s);
case 'dMds'
[dd dy dh] = checkgrad(@conT3, s(tril(ones(d))==1), delta, policy, m);
case 'dSds'
[dd dy dh] = checkgrad(@conT4, s(tril(ones(d))==1), delta, policy, m);
case 'dCds'
[dd dy dh] = checkgrad(@conT5, s(tril(ones(d))==1), delta, policy, m);
case 'dMdp'
[dd dy dh] = checkgrad(@conT6, policy.p, delta, policy, m, s);
case 'dSdp'
[dd dy dh] = checkgrad(@conT7, policy.p, delta, policy, m, s);
case 'dCdp'
[dd dy dh] = checkgrad(@conT8, policy.p, delta, policy, m, s);
end
function [f, df] = conT0(m, policy, s) % dMdm
if nargout < 2
M = policy.fcn(policy, m, s);
else
[M, S, C, dMdm] = policy.fcn(policy, m, s);
df = dMdm;
end
f = M;
function [f, df] = conT1(m, policy, s) % dSdm
if nargout < 2
[M, S] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm] = policy.fcn(policy, m, s);
df = dSdm;
end
f = S;
function [f, df] = conT2(m, policy, s) % dCdm
if nargout < 2
[M, S, C] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm] = policy.fcn(policy, m, s);
df = dCdm;
end
f = C;
function [f, df] = conT3(s, policy, m) % dMds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout < 2
M = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds] = policy.fcn(policy, m, s);
dd = length(M); dMds = reshape(dMds,dd,d,d); df = zeros(dd,d*(d+1)/2);
for i=1:dd;
dMdsi(:,:) = dMds(i,:,:); dMdsi = dMdsi + dMdsi'-diag(diag(dMdsi));
df(i,:) = dMdsi(tril(ones(d))==1);
end
end
f = M;
function [f, df] = conT4(s, policy, m) % dSds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout < 2
[M, S] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds] = policy.fcn(policy, m, s);
dd = length(M); dSds = reshape(dSds,dd,dd,d,d); df = zeros(dd,dd,d*(d+1)/2);
for i=1:dd; for j=1:dd
dSdsi(:,:) = dSds(i,j,:,:); dSdsi = dSdsi+dSdsi'-diag(diag(dSdsi));
df(i,j,:) = dSdsi(tril(ones(d))==1);
end; end
end
f = S;
function [f, df] = conT5(s, policy, m) % dCds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout < 2
[M, S, C] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds] = policy.fcn(policy, m, s);
dd = length(M); dCds = reshape(dCds,d,dd,d,d); df = zeros(d,dd,d*(d+1)/2);
for i=1:d; for j=1:dd
dCdsi = squeeze(dCds(i,j,:,:)); dCdsi = dCdsi+dCdsi'-diag(diag(dCdsi));
df(i,j,:) = dCdsi(tril(ones(d))==1);
end; end
end
f = C;
function [f, df] = conT6(p, policy, m, s) % dMdp
policy.p = p;
if nargout < 2
M = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp] = policy.fcn(policy, m, s);
df = dMdp;
end
f = M;
function [f, df] = conT7(p, policy, m, s)
policy.p = p;
if nargout < 2
[M, S] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp] = policy.fcn(policy, m, s);
df = dSdp;
end
f = S;
function [f, df] = conT8(p, policy, m, s)
policy.p = p;
if nargout < 2
[M, S, C] = policy.fcn(policy, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds, dCds, dMdp, dSdp, dCdp] = ...
policy.fcn(policy, m, s);
df = dCdp;
end
f = C;
|
github
|
UCL-SML/pilco-matlab-master
|
gTrigT.m
|
.m
|
pilco-matlab-master/test/gTrigT.m
| 4,317 |
utf_8
|
903d6b160be13bf92b4b1a5231164f10
|
%% gTrigT.m
% *Summary:* Test the gTrig function, which computes (at least) the mean and
% the variance of the transformed variable for a Gaussian distributed input
% $x\sim\mathcal N(m,v)$. Check the outputs using Monte Carlo, and the
% derivatives using finite differences.
%
%
% function gTrigT(m, v, i, e)
%
%
% *Input arguments:*
%
% m mean vector of Gaussian [ d ]
% v covariance matrix [ d x d ]
% i vector of indices of elements to augment [ I x 1 ]
% e (optional) scale vector; default: 1 [ I x 1 ]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-25
function gTrigT(m, v, i, e)
%% Code
% create a default test if no input arguments are given
if ~nargin
D = 4;
m = randn(D,1);
v = randn(D); v = v*v'+eye(D);
i = [2; 4]; I = 2*length(i);
e = exp(randn(size(i)));
else
D = length(m);
end
n = 1e6; % Monte Carlo sample size
delta = 1e-4; % for finite difference approx
x = bsxfun(@plus, m, chol(v)'*randn(D,n));
y = bsxfun(@times, [e; e], [sin(x(i,:)); cos(x(i,:))]);
y = y(reshape(1:I,I/2,2)',:); % reorder rows
[M, V, C] = gTrig(m, v, i, e);
Q = cov([x' y']); Qv = Q(D+1:end,D+1:end); Qc = v\Q(1:D,D+1:end);
disp(['mean: gTrig Monte Carlo'])
disp([M mean(y,2)]); disp([' ']);
disp(['var: gTrig Monte Carlo'])
disp([V(:) Qv(:)]); disp([' ']);
disp(['cov: gTrig Monte Carlo'])
disp([C(:) Qc(:)]); disp(' ');
disp('dMdm')
for j = 1:I
checkgrad(@gTrigT0, m, delta, v, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I)]);
end
disp(' ');
disp('dVdm')
for j = 1:I*I
checkgrad(@gTrigT1, m, delta, v, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I*I)]);
end
disp(' ');
disp('dCdm')
for j = 1:I*D
checkgrad(@gTrigT2, m, delta, v, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I*D)]);
end
disp(' ');
disp('dMdv')
for j = 1:I
checkgrad(@gTrigT3, v(tril(ones(length(v)))==1), delta, m, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I)]);
end
disp(' ');
disp('dVdv')
for j = 1:I*I
checkgrad(@gTrigT4, v(tril(ones(length(v)))==1), delta, m, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I*I)]);
end
disp(' ');
disp('dCdv')
for j = 1:I*D
checkgrad(@gTrigT5, v(tril(ones(length(v)))==1), delta, m, i, e, j);
disp(['this was element # ' num2str(j) '/' num2str(I*D)]);
end
function [f, df] = gTrigT0(m, v, i, e, j)
[M, V, C, dMdm] = gTrig(m, v, i, e);
f = M(j); df = dMdm(j,:);
function [f, df] = gTrigT1(m, v, i, e, j)
[M, V, C, dMdm, dVdm] = gTrig(m, v, i, e);
dVdm = reshape(dVdm,[size(V) length(m)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = V(p,q); df = squeeze(dVdm(p,q,:));
function [f, df] = gTrigT2(m, v, i, e, j)
[M, V, C, dMdm, dVdm, dCdm] = gTrig(m, v, i, e);
dCdm = reshape(dCdm,[size(C) length(m)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = C(p,q); df = squeeze(dCdm(p,q,:));
function [f, df] = gTrigT3(v, m, i, e, j)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv] = gTrig(m, vv, i, e);
dMdv = reshape(dMdv,[length(M) size(v)]);
f = M(j); df = squeeze(dMdv(j,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = gTrigT4(v, m, i, e, j)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv] = gTrig(m, vv, i, e);
dVdv = reshape(dVdv,[size(V) size(v)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = V(p,q); df = squeeze(dVdv(p,q,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = gTrigT5(v, m, i, e, j)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = gTrig(m, vv, i, e);
dCdv = reshape(dCdv,[size(C) size(v)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = C(p,q); df = squeeze(dCdv(p,q,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
|
github
|
UCL-SML/pilco-matlab-master
|
checkgrad.m
|
.m
|
pilco-matlab-master/test/checkgrad.m
| 2,523 |
utf_8
|
2f83ec025d217dd2aa54a4df46e074c0
|
%% checkgrad.m
% *Summary:* checkgrad checks the derivatives in a function, by comparing them
% to finite differences approximations. The partial derivatives and the
% approximation are printed and the norm of the difference divided by the
% norm of the sum is returned as an indication of accuracy.
%
% function [d dy dh] = checkgrad(f, X, e, varargin)
%
%
% *Input arguments:*
%
% f function handle to function that needs to be checked.
% The function f should be of the type [fX, dfX] = f(X, varargin)
% where fX is the function value and dfX is the gradient of fX
% with respect to the parameters X
% X parameters (can be a vector or a struct)
% e small perturbation used for finite differences (1e-4 is good)
% varargin other arguments that are passed on to the function f
%
%
% *Output arguments:*
%
% d relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
%
%% High-Level Steps
% # Analytical gradient
% # Numerical gradient via finite differences
% # Relative error
function [d dy dh] = checkgrad(f, X, e, varargin)
%% Code
% 1. Analytical gradient
Z = unwrap(X); NZ = length(Z); % number of input variables
[y dy] = feval(f, X, varargin{:}); % get the partial derivatives dy
[D E] = size(y); y = y(:); Ny = length(y); % number of output variables
if iscell(dy) || isstruct(dy); dy = unwrap(dy); end;
dy = reshape(dy,Ny,NZ);
% 2. Finite difference approximation
dh = zeros(Ny,NZ);
for j = 1:NZ
dx = zeros(length(Z),1);
dx(j) = dx(j) + e; % perturb a single dimension
y2 = feval(f, rewrap(X,Z+dx), varargin{:});
y1 = feval(f, rewrap(X,Z-dx), varargin{:});
dh(:,j) = (y2(:) - y1(:))/(2*e);
end
% 3. Compute error
% norm of diff divided by norm of sum
d = sqrt(sum((dh-dy).^2,2)./sum((dh+dy).^2,2));
small = max(abs([dy dh]),[],2) < 1e-5; % small derivatives are poorly tested ...
d(d > 1e-3 & small) = NaN; % ... by finite differences
d = reshape(d,D,E);
disp(' Analytic Numerical');
for i=1:Ny;
disp([dy(i,:)' dh(i,:)']); % print the two vectors
fprintf('d = %e\n\n',d(i))
end
if Ny > 1; disp('For all outputs, d = '); disp(d); end; fprintf('\n');
|
github
|
UCL-SML/pilco-matlab-master
|
propagateT.m
|
.m
|
pilco-matlab-master/test/propagateT.m
| 6,891 |
utf_8
|
d716216e47aca62720d858232988f61b
|
%% propagateT.m
% *Summary:* Test derivatives of the propagate function, which computes the
% mean and the variance of the successor state distribution, assuming that the
% current state is Gaussian distributed with mean m and covariance matrix
% s.
%
% [dd dy dh] = propagateT(deriv, plant, dynmodel, policy, m, s, delta)
%
%
% *Input arguments:*
%
% deriv desired derivative. options:
% (i) 'dMdm' - derivative of the mean of the predicted state
% wrt the mean of the input distribution
% (ii) 'dMds' - derivative of the mean of the predicted state
% wrt the variance of the input distribution
% (iii) 'dMdp' - derivative of the mean of the predicted state
% wrt the controller parameters
% (iv) 'dSdm' - derivative of the variance of the predicted state
% wrt the mean of the input distribution
% (v) 'dSds' - derivative of the variance of the predicted state
% wrt the variance of the input distribution
% (vi) 'dSdp' - derivative of the variance of the predicted state
% wrt the controller parameters
% (vii) 'dCdm' - derivative of the inv(s)*(covariance of the input and
% the predicted state) wrt the mean of the input distribution
% (viii) 'dCds' - derivative of the inv(s)*(covariance of the input and
% the predicted state) wrt the variance of the input distribution
% (ix) 'dCdp' - derivative of the inv(s)*(covariance of the input and
% the predicted state) wrt the controller parameters
% plant plant structure
% .poli state indices: policy inputs
% .dyno state indices: predicted variables
% .dyni state indices: inputs to ODE solver
% .difi state indices that are learned via differences
% .angi state indices: angles
% .poli state indices: policy inputs
% .prop function handle to function responsible for state
% propagation. Here: @propagated
% dynmodel GP dynamics model (structure)
% .hyp log-hyper parameters
% .inputs training inputs
% .targets training targets
% policy policy structure
% .maxU maximum amplitude of control
% .fcn function handle to policy
% .p struct of policy parameters
% .p.<> policy-specific parameters are stored here
% m mean of the input distribution
% s covariance of the input distribution
% delta (optional) finite difference parameter. Default: 1e-4
%
%
% *Output arguments:*
%
% dd relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
function [dd dy dh] = propagateT(deriv, plant, dynmodel, policy, m, s, delta)
%% Code
if nargin < 2,
randn('seed',24)
nn = 10;
E = 4; F = 3;
m = randn(D,1);
s = randn(D); s = s*s';
% Plant ----------------------------------------------------------------
plant.poli = 1:E;
plant.dyno = 1:E;
plant.dyni = 1:E;
plant.difi = 1:E;
plant.angi = [];
plant.prop = @propagated;
% Policy ---------------------------------------------------------------
policy.p.w = randn(F,E);
policy.p.b = randn(F,1);
policy.fcn = @(policy,m,s)conCat(@conlin,@gSat,policy,m,s);
policy.maxU = 20*ones(1,F);
% Dynamics -------------------------------------------------------------
dynmodel.hyp = zeros(1,E);
dynmodel.inputs = randn(nn,E+F);
dynmodel.targets = randn(nn,E);
end
if nargin < 7; delta = 1e-4; end
D = length(m);
switch deriv
case 'dMdm'
[dd dy dh] = checkgrad(@propagateT0, m, delta, plant, dynmodel, policy, s);
case 'dSdm'
[dd dy dh] = checkgrad(@propagateT1, m, delta, plant, dynmodel, policy, s);
case 'dMds'
[dd dy dh] = checkgrad(@propagateT2, s(tril(ones(D))==1), delta, plant, ...
dynmodel, policy, m);
case 'dSds'
[dd dy dh] = checkgrad(@propagateT3, s(tril(ones(D))==1), delta, plant, ...
dynmodel, policy, m);
case 'dMdp'
p = unwrap(policy.p);
[dd dy dh] = checkgrad(@propagateT4, p, delta, plant, dynmodel, policy, m, s);
case 'dSdp'
p = unwrap(policy.p);
[dd dy dh] = checkgrad(@propagateT5, p, delta, plant, dynmodel, policy, m, s);
end
function [f, df] = propagateT0(m, plant, dynmodel, policy, s) % dMdm
if nargout == 1
M = plant.prop(m, s, plant, dynmodel, policy);
else
[M, S, dMdm] = plant.prop(m, s, plant, dynmodel, policy);
df = permute(dMdm,[1,3,2]);
end
f = M;
function [f, df] = propagateT1(m, plant, dynmodel, policy, s) % dSdm
if nargout == 1
[M, S] = plant.prop(m, s, plant, dynmodel, policy);
else
[M, S, dMdm, dSdm] = plant.prop(m, s, plant, dynmodel, policy);
dd = length(M); df = reshape(dSdm,dd,dd,[]);
end
f = S;
function [f, df] = propagateT2(s, plant, dynmodel, policy, m) % dMds
d = length(m);
ss(tril(ones(d))==1) = s; ss = reshape(ss,d,d); ss = ss + ss' - diag(diag(ss));
if nargout == 1
M = plant.prop(m, ss, plant, dynmodel, policy);
else
[M, S, dMdm, dSdm, dMds] = plant.prop(m, ss, plant, dynmodel, policy);
dd = length(M); dMds = reshape(dMds,dd,d,d); df = zeros(dd,1,d*(d+1)/2);
for i=1:dd;
dMdsi(:,:) = dMds(i,:,:); dMdsi = dMdsi + dMdsi'-diag(diag(dMdsi));
df(i,:) = dMdsi(tril(ones(d))==1);
end
end
f = M;
function [f, df] = propagateT3(s, plant, dynmodel, policy, m) % dSds
d = length(m);
ss(tril(ones(d))==1) = s; ss = reshape(ss,d,d); ss = ss + ss' - diag(diag(ss));
if nargout == 1
[M, S] = plant.prop(m, ss, plant, dynmodel, policy);
else
[M, S, dMdm, dSdm, dMds, dSds] = ...
plant.prop(m, ss, plant, dynmodel, policy);
dd = length(M); dSds = reshape(dSds,dd,dd,d,d); df = zeros(dd,dd,d*(d+1)/2);
for i=1:dd; for j=1:dd
dSdsi(:,:) = dSds(i,j,:,:); dSdsi = dSdsi+dSdsi'-diag(diag(dSdsi));
df(i,j,:) = dSdsi(tril(ones(d))==1);
end; end
end
f = S;
function [f, df] = propagateT4(p, plant, dynmodel, policy, m, s) % dMdp
policy.p = rewrap(policy.p, p);
if nargout == 1
M = plant.prop(m, s, plant, dynmodel, policy);
else
[M, S, dMdm, dSdm, dMds, dSds, dMdp] = plant.prop(m, s, plant, dynmodel, policy);
df = dMdp;
end
f = M;
function [f, df] = propagateT5(p, plant, dynmodel, policy, m, s) % dSdp
policy.p = rewrap(policy.p, p);
if nargout == 1
[M, S] = plant.prop(m, s, plant, dynmodel, policy);
else
[M, S, dMdm, dSdm, dMds, dSds, dMdp, dSdp] = ...
plant.prop(m, s, plant, dynmodel, policy);
df = dSdp;
end
f = S;
|
github
|
UCL-SML/pilco-matlab-master
|
gSinSatT.m
|
.m
|
pilco-matlab-master/test/gSinSatT.m
| 4,434 |
utf_8
|
1aaa7fdf4505735d6c5f4dc9e5936884
|
%% gSinSatT.m
% *Summary:* Test the gSin and gSat functions.
% Check the predictions using Monte Carlo and the derivatives by
% finite differences.
%
%
% function gSinSatT(fcn, m, v, i, e)
%
%
% *Input arguments:*
%
% fcn 'gSin' or 'gSat'
% m mean of input distribution [D x 1]
% v covariance matrix of input distribution [D x D]
% i vector of indices of elements to augment [I x 1]
% e (optional) scaling vector; default: 1 [I x 1]
%
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-03-21
function gSinSatT(fcn, m, v, i, e)
%% Code
if nargin < 2
D = 4;
m = randn(D,1);
v = randn(D); v = v*v'+eye(D);
i = [1;2; 4]; I = length(i);
e = exp(randn(size(i)));
else
D = length(m);
end
n = 1e6; % monte Carlo sample size
delta = 1e-4; % for finite difference approx
x = bsxfun(@plus, m, chol(v)'*randn(D,n));
switch func2str(fcn)
case 'gSin', y = bsxfun(@times, e, sin(x(i,:)));
case 'gSat', y = bsxfun(@times, e, 9*sin(x(i,:))/8+sin(3*x(i,:))/8);
otherwise, error('Can only handle gSin and gSat')
end
[M, V, C] = fcn(m, v, i, e);
Q = cov([x' y']); Qv = Q(D+1:end,D+1:end); Qc = v\Q(1:D,D+1:end);
disp(['mean: ', func2str(fcn), ' Monte Carlo'])
disp([M mean(y,2)]); disp([' ']);
disp(['var: ', func2str(fcn), ' Monte Carlo'])
disp([V(:) Qv(:)]); disp([' ']);
disp(['cov: ', func2str(fcn), ' Monte Carlo'])
disp([C(:) Qc(:)]); disp(' ');
disp('dMdm')
for j = 1:I
d = checkgrad(@gSinT0, m, delta, v, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I)]);
if d > 1e-6; keyboard; end
end
disp(' ');
disp('dVdm')
for j = 1:I*I
d = checkgrad(@gSinT1, m, delta, v, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I*I)]);
if d > 1e-6; keyboard; end
end
disp(' ');
disp('dCdm')
for j = 1:I*D
d= checkgrad(@gSinT2, m, delta, v, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I*D)]);
if d > 1e-6; keyboard; end
end
disp(' ');
disp('dMdv')
for j = 1:I
d = checkgrad(@gSinT3, v(tril(ones(length(v)))==1), delta, m, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I)]);
if d > 1e-6; keyboard; end
end
disp(' ');
disp('dVdv')
for j = 1:I*I
d = checkgrad(@gSinT4, v(tril(ones(length(v)))==1), delta, m, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I*I)]);
if d > 1e-6; keyboard; end
end
disp(' ');
disp('dCdv')
for j = 1:I*D
d = checkgrad(@gSinT5, v(tril(ones(length(v)))==1), delta, m, i, e, j, fcn);
disp(['this was element # ' num2str(j) '/' num2str(I*D)]);
if d > 1e-6; keyboard; end
end
function [f, df] = gSinT0(m, v, i, e, j, fcn)
[M, V, C, dMdm] = fcn(m, v, i, e);
f = M(j); df = dMdm(j,:);
function [f, df] = gSinT1(m, v, i, e, j, fcn)
[M, V, C, dMdm, dVdm] = fcn(m, v, i, e);
dVdm = reshape(dVdm,[size(V) length(m)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = V(p,q); df = squeeze(dVdm(p,q,:));
function [f, df] = gSinT2(m, v, i, e, j, fcn)
[M, V, C, dMdm, dVdm, dCdm] = fcn(m, v, i, e);
dCdm = reshape(dCdm,[size(C) length(m)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = C(p,q); df = squeeze(dCdm(p,q,:));
function [f, df] = gSinT3(v, m, i, e, j, fcn)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv] = fcn(m, vv, i, e);
dMdv = reshape(dMdv,[length(M) size(vv)]);
f = M(j); df = squeeze(dMdv(j,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = gSinT4(v, m, i, e, j, fcn)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv] = fcn(m, vv, i, e);
dVdv = reshape(dVdv,[size(V) size(vv)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = V(p,q); df = squeeze(dVdv(p,q,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
function [f, df] = gSinT5(v, m, i, e, j, fcn)
d = length(m);
vv(tril(ones(d))==1) = v; vv = reshape(vv,d,d);
vv = vv + vv' - diag(diag(vv));
[M, V, C, dMdm, dVdm, dCdm, dMdv, dVdv, dCdv] = fcn(m, vv, i, e);
dCdv = reshape(dCdv,[size(C) size(vv)]);
dd = length(M); p = fix((j+dd-1)/dd); q = j-(p-1)*dd;
f = C(p,q); df = squeeze(dCdv(p,q,:,:));
df = df+df'-diag(diag(df)); df = df(tril(ones(d))==1);
|
github
|
UCL-SML/pilco-matlab-master
|
gpT.m
|
.m
|
pilco-matlab-master/test/gpT.m
| 6,610 |
utf_8
|
f6bfd962ef044e7a89f5209e24aa9617
|
%% gpT.m
% *Summary:* Test derivatives of gp*-family of functions. It is assumed that
% the gp* function computes the mean and the variance of a GP prediction
% for a Gaussian distributed input $x\sim\mathcal N(m,s)$.
% The GP-family of functions is located in <rootDir>/gp and is called gp*.m
%
%
% function [dd dy dh] = gpT(deriv, gp, m, s, delta)
%
%
% *Input arguments:*
%
% deriv desired derivative. options:
% (i) 'dMdm' - derivative of the mean of the GP prediction
% wrt the mean of the input distribution
% (ii) 'dMds' - derivative of the mean of the GP prediction
% wrt the variance of the input distribution
% (iii) 'dMdp' - derivative of the mean of the GP prediction
% wrt the GP parameters
% (iv) 'dSdm' - derivative of the variance of the GP prediction
% wrt the mean of the input distribution
% (v) 'dSds' - derivative of the variance of the GP prediction
% wrt the variance of the input distribution
% (vi) 'dSdp' - derivative of the variance of the GP prediction
% wrt the GP parameters
% (vii) 'dVdm' - derivative of inv(s)*(covariance of the input and the
% GP prediction) wrt the mean of the input distribution
% (viii) 'dVds' - derivative of inv(s)*(covariance of the input and the
% GP prediction) wrt the variance of the input distribution
% (ix) 'dVdp' - derivative of inv(s)*(covariance of the input and the
% GP prediction) wrt the GP parameters
% gp GP structure
% .fcn function handle to the GP function used for predictions at
% uncertain inputs
% .<> other fields that are passed on to the GP function
% m mean of the input distribution
% s covariance of the input distribution
% delta (optional) finite difference parameter. Default: 1e-4
%
%
% *Output arguments:*
%
% dd relative error of analytical vs. finite difference gradient
% dy analytical gradient
% dh finite difference gradient
%
% Copyright (C) 2008-2013 by
% Marc Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.
%
% Last modified: 2013-06-07
function [dd dy dh] = gpT(deriv, gp, m, s, delta)
%% Code
% set up a default training set and input distribution if not passed in
if nargin < 2
nn = 1000; np = 100;
D = 5; E = 4; % input and predictive dimensions
gp.fcn = @gp0d;
gp.hyp = [randn(D+1,E); zeros(1,E)];
gp.inputs = randn(nn,D);
gp.targets = randn(nn,E);
gp.induce = randn(np,D,E);
end
if nargin < 3 % no input distribution specified
if isfield(gp, 'p') % if gp is a policy, extract targets/inputs
gp.inputs = gp.p.inputs; gp.targets = gp.p.targets;
end
D = size(gp.inputs, 2);
m = randn(D,1); s = randn(D); s = s*s';
end
if nargin < 5; delta = 1e-4; end
D = length(m); % input size
% check derivatives
switch deriv
case 'dMdm'
[dd dy dh] = checkgrad(@gpT0, m, delta, gp, s);
case 'dSdm'
[dd dy dh] = checkgrad(@gpT1, m, delta, gp, s);
case 'dVdm'
[dd dy dh] = checkgrad(@gpT2, m, delta, gp, s);
case 'dMds'
[dd dy dh] = checkgrad(@gpT3, s(tril(ones(D))==1), delta, gp, m);
case 'dSds'
[dd dy dh] = checkgrad(@gpT4, s(tril(ones(D))==1), delta, gp, m);
case 'dVds'
[dd dy dh] = checkgrad(@gpT5, s(tril(ones(D))==1), delta, gp, m);
case 'dMdp'
p = unwrap(gp);
[dd dy dh] = checkgrad(@gpT6, p, delta, gp, m, s) ;
case 'dSdp'
p = unwrap(gp);
[dd dy dh] = checkgrad(@gpT7, p, delta, gp, m, s) ;
case 'dVdp'
p = unwrap(gp);
[dd dy dh] = checkgrad(@gpT8, p, delta, gp, m, s) ;
end
function [f, df] = gpT0(m, gp, s) % dMdm
if nargout == 1
M = gp.fcn(gp, m, s);
else
[M, S, V, dMdm] = gp.fcn(gp, m, s);
df = dMdm;
end
f = M;
function [f, df] = gpT1(m, gp, s) % dSdm
if nargout == 1
[M, S] = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm] = gp.fcn(gp, m, s);
df = dSdm;
end
f = S;
function [f, df] = gpT2(m, gp, s) % dVdm
if nargout == 1
[M, S, V] = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm] = gp.fcn(gp, m, s);
df = dVdm;
end
f = V;
function [f, df] = gpT3(s, gp, m) % dMds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout == 1
M = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm, dMds] = gp.fcn(gp, m, s);
dd = length(M); dMds = reshape(dMds,dd,d,d); df = zeros(dd,d*(d+1)/2);
for i=1:dd;
dMdsi(:,:) = dMds(i,:,:); dMdsi = dMdsi + dMdsi'-diag(diag(dMdsi));
df(i,:) = dMdsi(tril(ones(d))==1);
end
end
f = M;
function [f, df] = gpT4(s, gp, m) % dSds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout == 1
[M, S] = gp.fcn(gp, m, s);
else
[M, S, C, dMdm, dSdm, dCdm, dMds, dSds] = gp.fcn(gp, m, s);
dd = length(M); dSds = reshape(dSds,dd,dd,d,d); df = zeros(dd,dd,d*(d+1)/2);
for i=1:dd; for j=1:dd
dSdsi(:,:) = dSds(i,j,:,:); dSdsi = dSdsi+dSdsi'-diag(diag(dSdsi));
df(i,j,:) = dSdsi(tril(ones(d))==1);
end; end
end
f = S;
function [f, df] = gpT5(s, gp, m) % dVds
d = length(m);
v(tril(ones(d))==1) = s; s = reshape(v,d,d); s = s+s'-diag(diag(s));
if nargout == 1
[M, S, V] = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds] = gp.fcn(gp, m, s);
dd = length(M); dVds = reshape(dVds,d,dd,d,d); df = zeros(d,dd,d*(d+1)/2);
for i=1:d; for j=1:dd
dCdsi = squeeze(dVds(i,j,:,:)); dCdsi = dCdsi+dCdsi'-diag(diag(dCdsi));
df(i,j,:) = dCdsi(tril(ones(d))==1);
end; end
end
f = V;
function [f, df] = gpT6(p, gp, m, s) % dMdp
gp = rewrap(gp, p);
if nargout == 1
M = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdp] = ...
gp.fcn(gp, m, s);
df = dMdp;
end
f = M;
function [f, df] = gpT7(p, gp, m, s) % dSdp
gp = rewrap(gp, p);
if nargout == 1
[M, S] = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdp, dSdp] = ...
gp.fcn(gp, m, s);
df = dSdp;
end
f = S;
function [f, df] = gpT8(p, gp, m, s)
gp = rewrap(gp, p);
if nargout == 1
[M, S, V] = gp.fcn(gp, m, s);
else
[M, S, V, dMdm, dSdm, dVdm, dMds, dSds, dVds, dMdp, dSdp, dVdp] = ...
gp.fcn(gp, m, s);
df = dVdp;
end
f = V;
|
github
|
iuriivoitenko/simpleMANET-master
|
ini2struct.m
|
.m
|
simpleMANET-master/functions/ini2struct.m
| 3,371 |
utf_8
|
3ca01220c3135789fd6a8393f0dd9233
|
% Copyright (c) 2014, freeb
% Copyright (c) 2008, Andriy Nych
% Copyright (c) 2009-2010, Evgeny Prilepin aka Iroln
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
% * Neither the name of the nor the names
% of its contributors may be used to endorse or promote products derived
% from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
function Struct = ini2struct(FileName)
% Parses .ini file
% Returns a structure with section names and keys as fields.
%
% Based on init2struct.m by Andriy Nych
% 2014/02/01
f = fopen(FileName,'r'); % open file
while ~feof(f) % and read until it ends
s = strtrim(fgetl(f)); % remove leading/trailing spaces
if isempty(s) || s(1)==';' || s(1)=='#' % skip empty & comments lines
continue
end
if s(1)=='[' % section header
Section = genvarname(strtok(s(2:end), ']'));
Struct.(Section) = []; % create field
continue
end
[Key,Val] = strtok(s, '='); % Key = Value ; comment
Val = strtrim(Val(2:end)); % remove spaces after =
if isempty(Val) || Val(1)==';' || Val(1)=='#' % empty entry
Val = [];
elseif Val(1)=='"' % double-quoted string
Val = strtok(Val, '"');
elseif Val(1)=='''' % single-quoted string
Val = strtok(Val, '''');
else
Val = strtok(Val, ';'); % remove inline comment
Val = strtok(Val, '#'); % remove inline comment
Val = strtrim(Val); % remove spaces before comment
[val, status] = str2num(Val); %#ok<ST2NM>
if status, Val = val; end % convert string to number(s)
end
if ~exist('Section', 'var') % No section found before
Struct.(genvarname(Key)) = Val;
else % Section found before, fill it
Struct.(Section).(genvarname(Key)) = Val;
end
end
fclose(f);
|
github
|
DeepCognition/Segmentation-Demo-master
|
classification_demo.m
|
.m
|
Segmentation-Demo-master/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
DeepCognition/Segmentation-Demo-master
|
MyVOCevalseg.m
|
.m
|
Segmentation-Demo-master/matlab/my_script/MyVOCevalseg.m
| 4,625 |
utf_8
|
128c24319d520c2576168d1cf17e068f
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
DeepCognition/Segmentation-Demo-master
|
MyVOCevalsegBoundary.m
|
.m
|
Segmentation-Demo-master/matlab/my_script/MyVOCevalsegBoundary.m
| 4,415 |
utf_8
|
1b648714e61bafba7c08a8ce5824b105
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w)
% get structural element
st_w = 2*w + 1;
se = strel('square', st_w);
% image test set
fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset);
fid = fopen(fn, 'r');
gtids = textscan(fid, '%s');
gtids = gtids{1};
fclose(fid);
%[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
% dilate gt
binary_gt = gtim == 255;
dilate_gt = imdilate(binary_gt, se);
target_gt = dilate_gt & (gtim~=255);
%pixel locations to include in computation
locs = target_gt;
%locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
else
class_count = class_count + 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
LocalWeightedMeanTransformation2D.m
|
.m
|
Imageprocesingtoobox-master/+geotrans/LocalWeightedMeanTransformation2D.m
| 9,665 |
utf_8
|
fb03604c551b06668ad51f81b45db77c
|
%images.geotrans.LocalWeightedMeanTransformation2D 2-D Local Weighted Mean Geometric Transformation
%
% An images.geotrans.LocalWeightedMeanTransformation2D object encapsulates a 2-D local weighted mean geometric transformation.
%
% images.geotrans.LocalWeightedMeanTransformation2D properties:
% Dimensionality - Dimensionality of geometric transformation
%
% images.geotrans.LocalWeightedMeanTransformation2D methods:
% LocalWeightedMeanTransformation2D - Construct images.geotrans.LocalWeightedMeanTransformation2D object
% outputLimits - Find output spatial limits given input spatial limits
% transformPointsInverse - Apply inverse 2-D geometric transformation to points
%
% Example 1
% ---------
% % Fit a local weighted mean transformation to a set of fixed and moving
% % control points that are actually related by a global second degree
% % polynomial transformation across the entire plane.
% x = [10, 12, 17, 14, 7, 10];
% y = [8, 2, 6, 10, 20, 4];
%
% a = [1 2 3 4 5 6];
% b = [2.3 3 4 5 6 7.5];
%
% u = a(1) + a(2).*x + a(3).*y + a(4) .*x.*y + a(5).*x.^2 + a(6).*y.^2;
% v = b(1) + b(2).*x + b(3).*y + b(4) .*x.*y + b(5).*x.^2 + b(6).*y.^2;
%
% movingPoints = [u',v'];
% fixedPoints = [x',y'];
%
% % Fit local weighted mean transformation to points.
% tformLocalWeightedMean = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,fixedPoints,6);
%
% % Verify the fit of our LocalWeightedMeanTransformation2D object at the control
% % points.
% movingPointsComputed = transformPointsInverse(tformLocalWeightedMean,fixedPoints);
%
% errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
% movingPointsComputed(:,2)-movingPoints(:,2))
%
% See also AFFINE2D, IMWARP
% Copyright 2012-2013 The MathWorks, Inc.
classdef LocalWeightedMeanTransformation2D < images.geotrans.internal.GeometricTransformation
properties (Access = private)
State
uvPoints
xyPoints
Degree
N
NumericPrecision
end
methods
function self = LocalWeightedMeanTransformation2D(uv,xy,N)
%LocalWeightedMeanTransformation2D Construct images.geotrans.LocalWeightedMeanTransformation2D object
%
% tform = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,fixedPoints,N)
% constructs an images.geotrans.LocalWeightedMeanTransformation2D object
% given Mx2 matrices movingPoints, and fixedPoints which
% define matched control points in the moving and fixed
% images, respectively. The local weighted mean
% transformation creates a mapping, by inferring a polynomial
% at each control point using neighboring control points. The
% mapping at any location depends on a weighted average of
% these polynomials. The N closest points are used to infer a
% second degree polynomial transformation for each control
% point pair. N can be as small as 6, but making N small
% risks generating ill-conditioned polynomials.
self.Dimensionality = 2;
self.Degree = 2;
M = size(xy,1);
K = (self.Degree+1)*(self.Degree+2)/2;
validateControlPoints(uv,xy,N);
self.NumericPrecision = 'double';
if ~isa(uv,'double') || ~isa(xy,'double')
% Underlying tformlocalmex module requires that properties
% are computed in double.
uv = double(uv);
xy = double(xy);
self.NumericPrecision = 'single';
end
self.uvPoints = uv;
self.xyPoints = xy;
self.N = N;
x = xy(:,1);
y = xy(:,2);
u = uv(:,1);
v = uv(:,2);
T = zeros(K,2,M);
radii = zeros(M,1);
for icp = 1:M
% find N closest points
distcp = sqrt( (x-x(icp)).^2 + (y-y(icp)).^2 );
[dist_sorted,indx] = sort(distcp);
radii(icp) = dist_sorted(N);
neighbors = indx(1:N);
neighbors = sort(neighbors);
xcp = x(neighbors);
ycp = y(neighbors);
ucp = u(neighbors);
vcp = v(neighbors);
% set up matrix equation for second degree polynomial.
X = [ones(N,1), xcp, ycp, xcp.*ycp, xcp.^2, ycp.^2];
if rank(X)>=K
% u = X*A, v = X*B, solve for A and B:
A = X\ucp;
B = X\vcp;
T(:,:,icp) = [A B];
else
error(message('images:geotrans:requiredNonCollinearPoints', K, 'polynomial'))
end
end
% State is a struct that we use to package up data to pass to
% the MEX module that computes the inverse transformation.
self.State = struct('LWMTData',[],'ControlPoints',[],'RadiiOfInfluence',[]);
self.State.LWMTData = T;
self.State.ControlPoints = xy;
self.State.RadiiOfInfluence = radii;
end
function varargout = transformPointsInverse(self,varargin)
%transformPointsInverse Apply inverse geometric transformation
%
% [u,v] = transformPointsInverse(tform,x,y)
% applies the inverse transformation of tform to the input 2-D
% point arrays x,y and outputs the point arrays u,v. The
% input point arrays x and y must be of the same size.
%
% U = transformPointsInverse(tform,X)
% applies the inverse transformation of tform to the input
% Nx2 point matrix X and outputs the Nx2 point matrix U.
% transformPointsFoward maps the point X(k,:) to the point
% U(k,:).
if numel(varargin) > 1
x = varargin{1};
y = varargin{2};
validateattributes(x,{'single','double'},{'real','nonsparse'},...
'transformPointsInverse','X');
validateattributes(y,{'single','double'},{'real','nonsparse'},...
'transformPointsInverse','Y');
if ~isequal(size(x),size(y))
error(message('images:geotrans:transformPointsSizeMismatch','transformPointsInverse','X','Y'));
end
inputPointDims = size(x);
x = reshape(x,numel(x),1);
y = reshape(y,numel(y),1);
X = [x,y];
U = images.geotrans.internal.inv_lwm(self.State,double(X));
% If class was constructed from single control points or if
% points passed to transformPointsInverse are single,
% return single to emulate MATLAB Math casting rules.
if isa(X,'single') || strcmp(self.NumericPrecision,'single')
U = single(U);
end
varargout{1} = reshape(U(:,1),inputPointDims);
varargout{2} = reshape(U(:,2), inputPointDims);
else
X = varargin{1};
validateattributes(X,{'single','double'},{'real','nonsparse','2d'},...
'transformPointsInverse','X');
if ~isequal(size(X,2),2)
error(message('images:geotrans:transformPointsPackedMatrixInvalidSize',...
'transformPointsInverse','X'));
end
U = images.geotrans.internal.inv_lwm(self.State,double(X));
% If class was constructed from single control points or if
% points passed to transformPointsInverse are single,
% return single to emulate MATLAB Math casting rules.
if isa(X,'single') || strcmp(self.NumericPrecision,'single')
U = single(U);
end
varargout{1} = U;
end
end
end
% saveobj and loadobj are implemented to ensure compatibility across
% releases even if architecture of geometric transformation classes
% changes.
methods (Hidden)
function S = saveobj(self)
S = struct('uvPoints',self.uvPoints,'xyPoints',self.xyPoints,'N',self.N);
end
end
methods (Static, Hidden)
function self = loadobj(S)
self = images.geotrans.LocalWeightedMeanTransformation2D(S.uvPoints,S.xyPoints,S.N);
end
end
end
function validateControlPoints(xy,uv,N)
images.geotrans.internal.validateControlPoints(uv,xy);
validateattributes(N,{'numeric'},{'real','nonsparse','scalar'},...
'LocalWeightedMeanTransformation2D','N');
if N < 6
error(message('images:geotrans:LWMSecondDegreePolynomialRequires6Points'));
end
if N > size(xy,1)
error(message('images:geotrans:LWMNGreaterThanNumPoints'));
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
PiecewiseLinearTransformation2D.m
|
.m
|
Imageprocesingtoobox-master/+geotrans/PiecewiseLinearTransformation2D.m
| 12,449 |
utf_8
|
d20232ab7aabeb3674c5ce7ca9145ace
|
%images.geotrans.PiecewiseLinearTransformation2D 2-D Piecewise Linear Geometric Transformation
%
% An images.geotrans.PiecewiseLinearTransformation2D object encapsulates a 2-D piecewise linear geometric transformation.
%
% images.geotrans.PiecewiseLinearTransformation2D properties:
% Dimensionality - Dimensionality of geometric transformation
%
% images.geotrans.PiecewiseLinearTransformation2D methods:
% PiecewiseLinearTransformation2D - Construct images.geotrans.PiecewiseLinearTransformation2D object
% outputLimits - Find output spatial limits given input spatial limits
% transformPointsInverse - Apply inverse 2-D geometric transformation to points
%
% Example 1
% ---------
% % Fit a piecewise linear transformation to a set of fixed and moving
% % control points that are actually related by a single global affine2d
% % transformation across the domain.
% theta = 10;
% tformAffine = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);
%
% % Arbitrarily choose 6 pairs of control points.
% fixedPoints = [10 20; 10 5; 2 3; 0 5; -5 3; -10 -20];
%
% % Apply forward geometric transformation to map fixed points to obtain
% % effect of fixed and moving points that are related by some geometric
% % transformation.
% movingPoints = transformPointsForward(tformAffine,fixedPoints);
%
% % Estimate piecewise linear transformation that maps movingPoints to fixedPoints.
% tformPiecewiseLinear = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,fixedPoints);
%
% % Verify the fit of our PiecewiseLinearTransformation2D object at the control
% % points.
% movingPointsComputed = transformPointsInverse(tformPiecewiseLinear,fixedPoints);
%
% errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
% movingPointsComputed(:,2)-movingPoints(:,2))
%
% See also AFFINE2D, IMWARP
% Copyright 2012-2013 The MathWorks, Inc.
classdef PiecewiseLinearTransformation2D < images.geotrans.internal.GeometricTransformation
methods
function self = PiecewiseLinearTransformation2D(uv,xy)
%PiecewiseLinearTransformation2D Construct images.geotrans.PiecewiseLinearTransformation2D object
%
% tform = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,fixedPoints)
% constructs an images.geotrans.PiecewiseLinearTransformation2D object
% given Mx2 matrices movingPoints, and fixedPoints which
% define matched control points in the moving and fixed
% images, respectively.
% Define required property from base class
self.Dimensionality = 2;
images.geotrans.internal.validateControlPoints(uv,xy);
% MEX module currently requires that computation is done in
% double
self.NumericPrecision = 'double';
if ~isa(uv,'double') || ~isa(xy,'double')
uv = double(uv);
xy = double(xy);
self.NumericPrecision = 'single';
end
self.UVVertices = uv;
self.XYVertices = xy;
x = xy(:,1);
y = xy(:,2);
tri = delaunay(x,y);
ntri = size(tri,1);
% Require 4 points (2 triangles).
minRequiredPoints = 4;
if (ntri<2)
error(message('images:geotrans:requiredNonCollinearPoints', minRequiredPoints, 'piecewise linear'));
end
% Find all inside-out triangles
bad_triangles = FindInsideOut(xy,uv,tri);
if ~isempty(bad_triangles)
[xy,uv,tri,ntri] = eliminateFoldOverTriangles(self,bad_triangles,xy,uv,tri);
end
% calculate reverse mapping for each triangle
T = zeros(3,2,ntri);
for itri = 1:ntri
X = [ xy( tri(itri,:), : ) ones(3,1)];
U = uv( tri(itri,:), : );
if (rank(X) >= 3)
T(:,:,itri) = X\U;
else
error(message('images:geotrans:requiredNonCollinearPoints', minRequiredPoints, 'piecewise linear'));
end
end
% Create TriangleGraph which is a sparse connectivity matrix
nxy = size(xy,1);
S = sparse( repmat((1:ntri)',1,3), tri, 1, ntri, nxy);
% Create OnHull to be 1 for ControlPoints on convex hull, 0 for
% interior points.
hull_indices = convhull(x,y);
self.State = struct('Triangles',[],...
'ControlPoints',[],...
'OnHull',[],...
'ConvexHullVertices',[],...
'TriangleGraph',[],...
'PiecewiseLinearTData',[]);
self.State.OnHull = zeros(size(x));
self.State.OnHull(hull_indices) = 1;
self.State.Triangles = tri;
self.State.ControlPoints = xy;
self.State.ConvexHullVertices = hull_indices;
self.State.TriangleGraph = S;
self.State.PiecewiseLinearTData = T;
end
function varargout = transformPointsInverse(self,varargin)
%transformPointsInverse Apply inverse geometric transformation
%
% [u,v] = transformPointsInverse(tform,x,y)
% applies the inverse transformation of tform to the input 2-D
% point arrays x,y and outputs the point arrays u,v. The
% input point arrays x and y must be of the same size.
%
% U = transformPointsInverse(tform,X)
% applies the inverse transformation of tform to the input
% Nx2 point matrix X and outputs the Nx2 point matrix U.
% transformPointsFoward maps the point X(k,:) to the point
% U(k,:).
if numel(varargin) > 1
x = varargin{1};
y = varargin{2};
validateattributes(x,{'single','double'},{'real','nonsparse'},...
'transformPointsInverse','X');
validateattributes(y,{'single','double'},{'real','nonsparse'},...
'transformPointsInverse','Y');
if ~isequal(size(x),size(y))
error(message('images:geotrans:transformPointsSizeMismatch','transformPointsInverse','X','Y'));
end
inputPointDims = size(x);
x = reshape(x,numel(x),1);
y = reshape(y,numel(y),1);
X = [x,y];
U = images.geotrans.internal.inv_piecewiselinear(self.State,double(X));
% If class was constructed from single control points or if
% points passed to transformPointsInverse are single,
% return single to emulate MATLAB Math casting rules.
if isa(X,'single') || strcmp(self.NumericPrecision,'single')
U = single(U);
end
varargout{1} = reshape(U(:,1),inputPointDims);
varargout{2} = reshape(U(:,2), inputPointDims);
else
X = varargin{1};
validateattributes(X,{'single','double'},{'real','nonsparse','2d'},...
'transformPointsInverse','X');
if ~isequal(size(X,2),2)
error(message('images:geotrans:transformPointsPackedMatrixInvalidSize',...
'transformPointsInverse','X'));
end
U = images.geotrans.internal.inv_piecewiselinear(self.State,double(X));
% If class was constructed from single control points or if
% points passed to transformPointsInverse are single,
% return single to emulate MATLAB Math casting rules.
if isa(X,'single') || strcmp(self.NumericPrecision,'single')
U = single(U);
end
varargout{1} = U;
end
end
end
properties (Access = 'private')
State
BadXYVertices
BadUVVertices
XYVertices
UVVertices
NumericPrecision
end
methods (Access = 'private')
function [xy,uv,tri,ntri] = eliminateFoldOverTriangles(self,bad_triangles,xy,uv,tri)
x = xy(:,1);
y = xy(:,2);
% find bad_vertices, eliminate bad_vertices
num_bad_triangles = length(bad_triangles);
bad_vertices = zeros(num_bad_triangles,1);
for i = 1:num_bad_triangles
bad_vertices(i) = FindBadVertex(x,y,tri(bad_triangles(i),:));
end
bad_vertices = unique(bad_vertices);
num_bad_vertices = length(bad_vertices);
% Cache bad vertices that were eliminated
self.BadXYVertices = xy(bad_vertices,:);
self.BadUVVertices = uv(bad_vertices,:);
xy(bad_vertices,:) = []; % eliminate bad ones
uv(bad_vertices,:) = [];
nvert = size(xy,1);
% Cache good vertices
self.XYVertices = xy;
self.UVVertices = uv;
minRequiredPoints = 4;
if (nvert < minRequiredPoints)
error(message('images:geotrans:deletedPointsNowInsufficientControlPoints', num_bad_vertices, nvert, minRequiredPoints, 'piecewise linear'))
end
x = xy(:,1);
y = xy(:,2);
tri = delaunay(x,y);
ntri = size(tri,1);
% Error if we cannot produce a valid piecewise linear correspondence
% after the second triangulation.
more_bad_triangles = FindInsideOut(xy,uv,tri);
if ~isempty(more_bad_triangles)
error(message('images:geotrans:foldoverTrianglesRemain', num_bad_vertices))
end
% Warn to report about triangles and how many points were eliminated
warning(message('images:geotrans:foldoverTriangles', sprintf( '%d ', bad_triangles ), sprintf( '%d ', bad_vertices )))
end
end
% saveobj and loadobj are implemented to ensure compatibility across
% releases even if architecture of geometric transformation classes
% changes.
methods (Hidden)
function S = saveobj(self)
S = struct('uvPoints',self.UVVertices,'xyPoints',self.XYVertices);
end
end
methods (Static, Hidden)
function self = loadobj(S)
self = images.geotrans.PiecewiseLinearTransformation2D(S.uvPoints,S.xyPoints);
end
end
end
function index = FindInsideOut(xy,uv,tri)
% look for inside-out triangles using line integrals
x = xy(:,1);
y = xy(:,2);
u = uv(:,1);
v = uv(:,2);
p = size(tri,1);
xx = reshape(x(tri),p,3)';
yy = reshape(y(tri),p,3)';
xysum = sum( (xx([2 3 1],:) - xx).* (yy([2 3 1],:) + yy), 1 );
uu = reshape(u(tri),p,3)';
vv = reshape(v(tri),p,3)';
uvsum = sum( (uu([2 3 1],:) - uu).* (vv([2 3 1],:) + vv), 1 );
index = find(xysum.*uvsum<0);
end
function vertex = FindBadVertex(x,y,vertices)
% Get middle vertex of triangle where "middle" means the largest angle,
% which will have the smallest cosine.
vx = x(vertices)';
vy = y(vertices)';
abc = [ vx - vx([3 1 2]); vy - vy([3 1 2]) ];
a = abc(:,1);
b = abc(:,2);
c = abc(:,3);
% find cosine of angle between 2 vectors
vcos(1) = get_cos(-a, b);
vcos(2) = get_cos(-b, c);
vcos(3) = get_cos( a,-c);
[~, index] = min(vcos);
vertex = vertices(index);
end
%-------------------------------
% Function get_cos
%
function vcos = get_cos(a,b)
mag_a = hypot(a(1),a(2));
mag_b = hypot(b(1),b(2));
vcos = dot(a,b) / (mag_a*mag_b);
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
iradon.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/iradon.m
| 12,101 |
utf_8
|
8bb1ec9847c30edc4795f7a6f6060c30
|
function [img,H] = iradon(varargin)
%IRADON Inverse Radon transform.
% I = iradon(R,THETA) reconstructs the image I from projection data in
% the 2-D gpuArray R. The columns of R are parallel beam projection
% data. IRADON assumes that the center of rotation is the center point of
% the projections, which is defined as ceil(size(R,1)/2).
%
% THETA describes the angles (in degrees) at which the projections were
% taken. It can be either a vector (or gpuArray vector) containing the
% angles or a scalar specifying D_theta, the incremental angle between
% projections. If THETA is a vector, it must contain angles with equal
% spacing between them. If THETA is a scalar specifying D_theta, the
% projections are taken at angles THETA = m * D_theta; m =
% 0,1,2,...,size(R,2)-1. If the input is the empty matrix ([]), D_theta
% defaults to 180/size(R,2).
%
% IRADON uses the filtered backprojection algorithm to perform the inverse
% Radon transform. The filter is designed directly in the frequency
% domain and then multiplied by the FFT of the projections. The
% projections are zero-padded to a power of 2 before filtering to prevent
% spatial domain aliasing and to speed up the FFT.
%
% I = IRADON(R,THETA,INTERPOLATION,FILTER,FREQUENCY_SCALING,OUTPUT_SIZE)
% specifies parameters to use in the inverse Radon transform. You can
% specify any combination of the last four arguments. IRADON uses default
% values for any of these arguments that you omit.
%
% INTERPOLATION specifies the type of interpolation to use in the
% backprojection. The default is linear interpolation. Available methods
% are:
%
% 'nearest' - nearest neighbor interpolation
% 'linear' - linear interpolation (default)
%
% FILTER specifies the filter to use for frequency domain filtering.
% FILTER is a string that specifies any of the following standard filters:
%
% 'Ram-Lak' The cropped Ram-Lak or ramp filter (default). The
% frequency response of this filter is |f|. Because this
% filter is sensitive to noise in the projections, one of
% the filters listed below may be preferable.
% 'Shepp-Logan' The Shepp-Logan filter multiplies the Ram-Lak filter by
% a sinc function.
% 'Cosine' The cosine filter multiplies the Ram-Lak filter by a
% cosine function.
% 'Hamming' The Hamming filter multiplies the Ram-Lak filter by a
% Hamming window.
% 'Hann' The Hann filter multiplies the Ram-Lak filter by a
% Hann window.
% 'none' No filtering is performed.
%
% FREQUENCY_SCALING is a scalar in the range (0,1] that modifies the
% filter by rescaling its frequency axis. The default is 1. If
% FREQUENCY_SCALING is less than 1, the filter is compressed to fit into
% the frequency range [0,FREQUENCY_SCALING], in normalized frequencies;
% all frequencies above FREQUENCY_SCALING are set to 0.
%
% OUTPUT_SIZE is a scalar that specifies the number of rows and columns in
% the reconstructed image. If OUTPUT_SIZE is not specified, the size is
% determined from the length of the projections:
%
% OUTPUT_SIZE = 2*floor(size(R,1)/(2*sqrt(2)))
%
% If you specify OUTPUT_SIZE, IRADON reconstructs a smaller or larger
% portion of the image, but does not change the scaling of the data.
%
% If the projections were calculated with the RADON function, the
% reconstructed image may not be the same size as the original image.
%
% [I,H] = iradon(...) returns the frequency response of the filter in the
% vector H.
%
% Class Support
% -------------
% R can be a gpuArray of underlying class double or single. All other
% numeric input arguments must be double or gpuArray of underlying class
% double. I has the same class as R. H is a gpuArray of underlying class
% double.
%
% Notes
% -----
% The GPU implementation of this function supports only nearest neighbor
% and linear interpolation methods for the backprojection.
%
% Examples
% --------
% Compare filtered and unfiltered backprojection.
%
% P = gpuArray(phantom(128));
% R = radon(P,0:179);
% I1 = iradon(R,0:179);
% I2 = iradon(R,0:179,'linear','none');
% subplot(1,3,1), imshow(P), title('Original')
% subplot(1,3,2), imshow(I1), title('Filtered backprojection')
% subplot(1,3,3), imshow(I2,[]), title('Unfiltered backprojection')
%
% Compute the backprojection of a single projection vector. The IRADON
% syntax does not allow you to do this directly, because if THETA is a
% scalar it is treated as an increment. You can accomplish the task by
% passing in two copies of the projection vector and then dividing the
% result by 2.
%
% P = gpuArray(phantom(128));
% R = radon(P,0:179);
% r45 = R(:,46);
% I = iradon([r45 r45], [45 45])/2;
% imshow(I, [])
% title('Backprojection from the 45-degree projection')
%
% See also FAN2PARA, FANBEAM, IFANBEAM, PARA2FAN, PHANTOM,
% GPUARRAY/RADON,GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
% References:
% A. C. Kak, Malcolm Slaney, "Principles of Computerized Tomographic
% Imaging", IEEE Press 1988.
narginchk(2,6);
%Dispatch to CPU if needed.
if ~isa(varargin{1},'gpuArray')
varargin = gatherIfNecessary(varargin{:});
[img,H] = iradon(varargin{:});
return;
end
[p,theta,filter,d,interp,N] = parse_inputs(varargin{:});
[p,H] = filterProjections(p, filter, d);
% Zero pad the projections to size 1+2*ceil(N/sqrt(2)) if this
% quantity is greater than the length of the projections
imgDiag = 2*ceil(N/sqrt(2))+1; % largest distance through image.
if size(p,1) < imgDiag
rz = imgDiag - size(p,1); % how many rows of zeros
top = gpuArray.zeros(ceil(rz/2),size(p,2));
bot = gpuArray.zeros(floor(rz/2),size(p,2));
p = [top; p; bot];
end
% Backprojection
switch interp
case 'nearest neighbor'
img = iradongpumex(N, theta, p, false);
case 'linear'
img = iradongpumex(N, theta, p, true);
end
%======================================================================
function [p,H] = filterProjections(p, filter, d)
% Design the filter
len = size(p,1);
H = designFilter(filter, len, d);
if strcmpi(filter, 'none')
return;
end
% faster to put padding directly into FFT below
% p(length(H),1)=0; % Zero pad projections
% In the code below, I continuously reuse the array p so as to
% save memory. This makes it harder to read, but the comments
% explain what is going on.
p = fft(p,length(H)); % p holds fft of projections
% for i = 1:size(p,2)
% p(:,i) = p(:,i).*H; % frequency domain filtering
% end
p = bsxfun(@times, p, H); % faster than for-loop
p = ifft(p,'symmetric');
% p = p(1:len,:) % MCOS overload issue so directly form subsref
p = subsref(p,substruct('()', {1:len ':'}));
%----------------------------------------------------------------------
%======================================================================
function filt = designFilter(filter, len, d)
% Returns the Fourier Transform of the filter which will be
% used to filter the projections
%
% INPUT ARGS: filter - either the string specifying the filter
% len - the length of the projections
% d - the fraction of frequencies below the nyquist
% which we want to pass
%
% OUTPUT ARGS: filt - the filter to use on the projections
order = max(64,2^nextpow2(2*len));
if strcmpi(filter, 'none')
filt = ones(1, order);
return;
end
% First create a bandlimited ramp filter (Eqn. 61 Chapter 3, Kak and
% Slaney) - go up to the next highest power of 2.
n = 0:(order/2); % 'order' is always even.
filtImpResp = zeros(1,(order/2)+1); % 'filtImpResp' is the bandlimited ramp's impulse response (values for even n are 0)
filtImpResp(1) = 1/4; % Set the DC term
filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).^2); % Set the values for odd n
filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];
filt = 2*real(fft(filtImpResp));
filt = filt(1:(order/2)+1);
w = 2*pi*(0:size(filt,2)-1)/order; % frequency axis up to Nyquist
switch filter
case 'ram-lak'
% Do nothing
case 'shepp-logan'
% be careful not to divide by 0:
filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d)));
case 'cosine'
filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d));
case 'hamming'
filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d));
case 'hann'
filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2;
otherwise
error(message('images:iradon:invalidFilter'))
end
filt(w>pi*d) = 0; % Crop the frequency response
filt = [filt' ; filt(end-1:-1:2)']; % Symmetry of the filter
%----------------------------------------------------------------------
%======================================================================
function [p,theta,filter,d,interp,N] = parse_inputs(varargin)
% Parse the input arguments and retun things
%
% Inputs: varargin - Cell array containing all of the actual inputs
%
% Outputs: p - Projection data
% theta - the angles at which the projections were taken
% filter - string specifying filter or the actual filter
% d - a scalar specifying normalized freq. at which to crop
% the frequency response of the filter
% interp - the type of interpolation to use
% N - The size of the reconstructed image
p = varargin{1};
theta = gather(varargin{2});
hValidateAttributes(p,{'single','double'},{'real','2d'},...
mfilename,'R',1);
validateattributes (theta,{'double'},{'real','nonsparse'},...
mfilename,'theta',2);
% Convert to radians
theta = pi*theta/180;
% Default values
N = 0; % Size of the reconstructed image
d = 1; % Defaults to no cropping of filters frequency response
filter = 'ram-lak'; % The ramp filter is the default
interp = 'linear'; % default interpolation is linear
interp_strings = {'nearest neighbor', 'linear'};
filter_strings = {'ram-lak','shepp-logan','cosine','hamming', 'hann', 'none'};
string_args = [interp_strings filter_strings];
for i=3:nargin
arg = gather(varargin{i});
if ischar(arg)
str = validatestring(arg,string_args,mfilename,'interpolation or filter');
idx = find(strcmp(str,string_args),1,'first');
if idx <= numel(interp_strings)
% interpolation method
interp = string_args{idx};
else %if (idx > numel(interp_strings)) && (idx <= numel(string_args))
% filter type
filter = string_args{idx};
end
elseif numel(arg)==1
if arg <=1
% frequency scale
validateattributes(arg,{'numeric','logical'},...
{'positive','real','nonsparse'},...
mfilename,'frequency_scaling');
d = arg;
else
% output size
validateattributes(arg,{'numeric'},...
{'real','finite','nonsparse','integer'},...
mfilename,'output_size');
N = arg;
end
else
error(message('images:iradon:invalidInputParameters'))
end
end
% If the user didn't specify the size of the reconstruction, so
% deduce it from the length of projections
if N==0
N = 2*floor( size(p,1)/(2*sqrt(2)) ); % This doesn't always jive with RADON
end
% for empty theta, choose an intelligent default delta-theta
if isempty(theta)
theta = pi / size(p,2); % TODO convert to degrees
end
% If the user passed in delta-theta, build the vector of theta values
if numel(theta)==1
theta = (0:(size(p,2)-1))* theta; % TODO radian conversion
end
if length(theta) ~= size(p,2)
error(message('images:iradon:thetaNotMatchingProjectionNumber'))
end
%----------------------------------------------------------------------
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
corr2.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/corr2.m
| 2,249 |
utf_8
|
697b0fa98d14ca82f9891dd9fee48123
|
function r = corr2(varargin)
%CORR2 2-D correlation coefficient.
% R = CORR2(A,B) computes the correlation coefficient between A
% and B, where A and B are 2-D gpuArrays of the same size.
%
% Class Support
% -------------
% A and B must be real, 2-D gpuArrays. If either one of A or B is not a
% gpuArray, it must be numeric or logical and non-sparse. Any data not
% already on the GPU is moved to GPU memory. R is a scalar double
% gpuArray.
%
% Example
% -------
% I = gpuArray(imread('pout.tif'));
% J = stdfilt(I);
% R = corr2(I,J)
%
% See also CORRCOEF, GPUARRAY/STD2, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
[a,b] = ParseInputs(varargin{:});
ma = sum(sum(a,'double'));
mb = sum(sum(b,'double'));
np = numel(a);
[ab,aa,bb] = arrayfun(@findDotProducts,a,b);
r = sum(sum(ab))/sqrt(sum(sum(aa))*sum(sum(bb)));
function [ab_ij,aa_ij,bb_ij] = findDotProducts(a_ij,b_ij)
%Nested function to compute (a-mean2(a)).*(b-mean2(b)),
%(a-mean2(a))^2 and (b-mean2l(b))^2 element-wise.
a_ij = double(a_ij) - ma/np;
b_ij = double(b_ij) - mb/np;
ab_ij = a_ij*b_ij;
aa_ij = a_ij*a_ij;
bb_ij = b_ij*b_ij;
end
end
%--------------------------------------------------------
function [A,B] = ParseInputs(varargin)
narginchk(2,2);
A = varargin{1};
B = varargin{2};
if isa(A,'gpuArray')
hValidateAttributes(A,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'},...
{'real','2d'},mfilename,'A',1);
else
% GPU implementation does not support sparse matrices.
validateattributes(A, {'logical' 'numeric'},...
{'real','2d','nonsparse'}, mfilename, 'A', 1);
end
if isa(B,'gpuArray')
hValidateAttributes(B,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'},...
{'real','2d'},mfilename,'B',2);
else
% GPU implementation does not support sparse matrices.
validateattributes(B, {'logical' 'numeric'},...
{'real','2d','nonsparse'}, mfilename, 'B', 2);
end
if any(size(A)~=size(B))
error(message('images:corr2:notSameSize'))
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
padarray.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/padarray.m
| 3,889 |
utf_8
|
81f12ae408cd7788076ab6e2de0efe89
|
function b = padarray(varargin)
%PADARRAY Pad array.
% B = PADARRAY(A,PADSIZE) pads gpuArray A with PADSIZE(k) number of zeros
% along the k-th dimension of A. PADSIZE should be a vector of
% nonnegative integers.
%
% B = PADARRAY(A,PADSIZE,PADVAL) pads gpuArray A with PADVAL (a scalar)
% instead of with zeros.
%
% B = PADARRAY(A,PADSIZE,PADVAL,DIRECTION) pads gpuArray A in the
% direction specified by the string DIRECTION. DIRECTION can be one of
% the following strings.
%
% String values for DIRECTION
% 'pre' Pads before the first array element along each
% dimension .
% 'post' Pads after the last array element along each
% dimension.
% 'both' Pads before the first array element and after the
% last array element along each dimension.
%
% By default, DIRECTION is 'both'.
%
% B = PADARRAY(A,PADSIZE,METHOD,DIRECTION) pads gpuArray A using the
% specified METHOD. METHOD can be one of these strings:
%
% String values for METHOD
% 'circular' Pads with circular repetition of elements.
% 'replicate' Repeats border elements of A.
% 'symmetric' Pads array with mirror reflections of itself.
%
% Class Support
% -------------
% When padding with a constant value, A can be numeric or logical.
% When padding using the 'circular', 'replicate', or 'symmetric'
% methods, A can be of any class. B is of the same class as A.
%
% Example
% -------
% Add three elements of padding to the beginning of a vector. The
% padding elements contain mirror copies of the array.
%
% b = padarray([1 2 3 4],3,'symmetric','pre')
%
% Add three elements of padding to the end of the first dimension of
% the array and two elements of padding to the end of the second
% dimension. Use the value of the last array element as the padding
% value.
%
% B = padarray([1 2; 3 4],[3 2],'replicate','post')
%
% Add three elements of padding to each dimension of a
% three-dimensional array. Each pad element contains the value 0.
%
% A = [1 2; 3 4];
% B = [5 6; 7 8];
% C = cat(3,A,B)
% D = padarray(C,[3 3],0,'both')
%
% See also CIRCSHIFT, GPUARRAY/IMFILTER, GPUARRAY.
% Copyright 1993-2013 The MathWorks, Inc.
[a, method, padSize, padVal, direction] = ParseInputs(varargin{:});
b = padarray_algo(a, padSize, method, padVal, direction);
%%%
%%% ParseInputs
%%%
function [a, method, padSize, padVal, direction] = ParseInputs(varargin)
narginchk(2,4);
% fixed syntax args
a = varargin{1};
padSize = varargin{2};
% default values
method = 'constant';
padVal = 0;
direction = 'both';
validateattributes(padSize, {'double'}, {'real' 'vector' 'nonnan' 'nonnegative' ...
'integer'}, mfilename, 'PADSIZE', 2);
% Preprocess the padding size
if (numel(padSize) < ndims(a))
padSize = padSize(:);
padSize(ndims(a)) = 0;
end
if nargin > 2
firstStringToProcess = 3;
if ~ischar(varargin{3})
% Third input must be pad value.
padVal = varargin{3};
validateattributes(padVal, {'numeric' 'logical'}, {'scalar'}, ...
mfilename, 'PADVAL', 3);
firstStringToProcess = 4;
end
for k = firstStringToProcess:nargin
validStrings = {'circular' 'replicate' 'symmetric' 'pre' ...
'post' 'both'};
string = validatestring(varargin{k}, validStrings, mfilename, ...
'METHOD or DIRECTION', k);
switch string
case {'circular' 'replicate' 'symmetric'}
method = string;
case {'pre' 'post' 'both'}
direction = string;
otherwise
error(message('images:padarray:unexpectedError'))
end
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
rgb2gray.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/rgb2gray.m
| 2,907 |
utf_8
|
2bb015f8740348907dd5af4650c9ca6c
|
function I = rgb2gray(X)
%RGB2GRAY Convert RGB gpuArray image or colormap to grayscale.
% RGB2GRAY converts RGB gpuArray images to grayscale by eliminating the
% hue and saturation information while retaining the
% luminance.
%
% I = RGB2GRAY(RGB) converts the truecolor gpuArray image RGB to the
% grayscale intensity image I.
%
% NEWMAP = RGB2GRAY(MAP) returns a grayscale colormap
% equivalent to MAP.
%
% Class Support
% -------------
% If the input is an RGB gpuArray image, it can be uint8, uint16, double,
% or single. The output gpuArray image I has the same class as the input
% image. If the input is a colormap, the input and output colormaps are
% both of class double.
%
% Example
% -------
% I = gpuArray(imread('board.tif'));
% J = rgb2gray(I);
% figure, imshow(I), figure, imshow(J);
%
% [X,map] = gpuArray(imread('trees.tif'));
% gmap = rgb2gray(map);
% figure, imshow(X,map), figure, imshow(X,gmap);
%
% See also IND2GRAY, NTSC2RGB, RGB2IND, RGB2NTSC, GPUARRAY/MAT2GRAY,
% GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
X = parse_inputs(X);
origSize = size(X);
% Determine if input includes a 3-D array
threeD = (ndims(X)==3);
% Calculate transformation matrix
T = inv([1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703]);
coef = T(1,:);
if threeD
% RGB
if(isfloat(X))
% Shape input matrix so that it is a n x 3 array
X = reshape(X,origSize(1)*origSize(2),3);
sizeOutput = [origSize(1), origSize(2)];
I = X * coef';
I = min(max(I,0),1);
%Make sure that the output matrix has the right size
I = reshape(I,sizeOutput);
else
%I = X(:,:,1)*coef(1) + X(:,:,2)*coef(2) + X(:,:,3)*coef(3);
s1.type = '()' ; s2.type ='()'; s3.type ='()';
s1.subs = {':',':',1}; s2.subs = {':',':',2}; s3.subs = {':',':',3};
I = arrayfun(@multiplyCoef,subsref(X,s1), subsref(X,s2), subsref(X,s3));
I = cast(I, classUnderlying(X));
end
else
% MAP
I = X * coef';
I = min(max(I,0),1);
I = [I,I,I];
end
%----------------------------------
function eOut = multiplyCoef(r,g,b)
eOut = double(r)*coef(1) + double(g)*coef(2) + double(b)*coef(3);
end
end
%%%
%Parse Inputs
%%%
function X = parse_inputs(X)
if ismatrix(X)
% colormap
if (size(X,2) ~=3 || size(X,1) < 1)
error(message('images:rgb2gray:invalidSizeForColormap'))
end
if ~strcmp(classUnderlying(X),'double')
error(message('images:rgb2gray:notAValidColormap'))
end
elseif (ndims(X)==3)
% rgb
if ((size(X,3) ~= 3))
error(message('images:rgb2gray:invalidInputSizeRGB'))
end
else
error(message('images:rgb2gray:invalidInputSize'))
end
%no logical arrays
if islogical(X)
error(message('images:rgb2gray:invalidType'))
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imgradientxy.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imgradientxy.m
| 7,437 |
utf_8
|
1879c6d1684e8f81b5079775dcb44db8
|
function [Gx, Gy] = imgradientxy(varargin)
%IMGRADIENTXY Find the directional gradients of an image.
% [Gx, Gy] = IMGRADIENTXY(I) takes a grayscale or binary gpuArray image I
% as input and returns the gradient along the X axis, Gx, and the Y axis,
% Gy. X axis points in the direction of increasing column subscripts and
% Y axis points in the direction of increasing row subscripts. Gx and Gy
% are the same size as the input gpuArray image I.
%
% [Gx, Gy] = IMGRADIENTXY(I, METHOD) calculates the directional gradients
% of the gpuArray image I using the specified METHOD.
%
% Supported METHODs are:
%
% 'Sobel' : Sobel gradient operator (default)
%
% 'Prewitt' : Prewitt gradient operator
%
% 'CentralDifference' : Central difference gradient dI/dx = (I(x+1)- I(x-1))/ 2
%
% 'IntermediateDifference': Intermediate difference gradient dI/dx = I(x+1) - I(x)
%
% Class Support
% -------------
% The input gpuArray image I can be numeric or logical two-dimensional
% matrix. Both Gx and Gy are of class double, unless the input gpuArray
% image I is of class single, in which case Gx and Gy will be of class
% single.
%
% Notes
% -----
% 1. When applying the gradient operator at the boundaries of the image,
% values outside the bounds of the image are assumed to equal the
% nearest image border value. This is similar to the 'replicate'
% boundary option in IMFILTER.
%
% Example 1
% ---------
% This example computes and displays the directional gradients of the
% image coins.png using Prewitt's gradient operator.
%
% I = gpuArray(imread('coins.png'));
% imshow(I)
%
% [Gx, Gy] = imgradientxy(I,'prewitt');
%
% figure, imshow(Gx, []), title('Directional gradient: X axis')
% figure, imshow(Gy, []), title('Directional gradient: Y axis')
%
% Example 2
% ---------
% This example computes and displays both the directional gradients and the
% gradient magnitude and gradient direction for the image coins.png.
%
% I = gpuArray(imread('coins.png'));
% imshow(I)
%
% [Gx, Gy] = imgradientxy(I);
% [Gmag, Gdir] = imgradient(Gx, Gy);
%
% figure, imshow(Gmag, []), title('Gradient magnitude')
% figure, imshow(Gdir, []), title('Gradient direction')
% figure, imshow(Gx, []), title('Directional gradient: X axis')
% figure, imshow(Gy, []), title('Directional gradient: Y axis')
%
% See also GPUARRAY/EDGE, FSPECIAL, GPUARRAY/IMGRADIENT, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
narginchk(1,2);
[I, method] = parse_inputs(varargin{:});
if ~isfloat(I)
I = double(I);
end
switch method
case 'sobel'
h = -fspecial('sobel'); % Align mask correctly along the x- and y- axes
Gx = imfilter(I,h','replicate');
if nargout > 1
Gy = imfilter(I,h,'replicate');
end
case 'prewitt'
h = -fspecial('prewitt'); % Align mask correctly along the x- and y- axes
Gx = imfilter(I,h','replicate');
if nargout > 1
Gy = imfilter(I,h,'replicate');
end
case 'centraldifference'
if isrow(I)
Gx = gradient2(I);
if nargout > 1
Gy = gpuArray.zeros(size(I),classUnderlying(I));
end
elseif iscolumn(I)
Gx = gpuArray.zeros(size(I),classUnderlying(I));
if nargout > 1
Gy = gradient2(I);
end
else
[Gx, Gy] = gradient2(I);
end
case 'intermediatedifference'
Gx = gpuArray.zeros(size(I),classUnderlying(I));
if (size(I,2) > 1)
subsRight(1).type = '()';
subsRight(1).subs = {':',2:size(I,2)};
subsLeft(1).type = '()';
subsLeft(1).subs = {':',1:size(I,2)-1};
subsGx(1).type = '()';
subsGx(1).subs = {':',1:size(Gx,2)-1};
Gx = subsasgn(Gx,...
subsGx,...
subsref(I,subsRight) - subsref(I,subsLeft));
end
if nargout > 1
Gy = gpuArray.zeros(size(I),classUnderlying(I));
if (size(I,1) > 1)
subsLower(1).type = '()';
subsLower(1).subs = {2:size(I,1),':'};
subsUpper(1).type = '()';
subsUpper(1).subs = {1:size(I,1)-1,':'};
subsGy(1).type = '()';
subsGy(1).subs = {1:size(I,1)-1,':'};
Gy = subsasgn(Gy,...
subsGy,...
subsref(I,subsLower) - subsref(I,subsUpper));
end
end
end
end
%======================================================================
function [I, method] = parse_inputs(varargin)
I = varargin{1};
hValidateAttributes(I,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'}, ...
{'2d','real'},mfilename,'I',1);
method = 'sobel'; % Default method
if (nargin > 1)
methodstrings = {'sobel','prewitt','centraldifference', ...
'intermediatedifference'};
method = validatestring(varargin{2}, methodstrings, ...
mfilename, 'Method', 2);
end
end
%----------------------------------------------------------------------
%======================================================================
function varargout = gradient2(in_0)
%Approximate 2d gradient.
narginchk(1,1);
nargoutchk(1,2);
if iscolumn(in_0)
in = in_0';
else
in = in_0;
end
[m,n] = size(in);
out = gpuArray.zeros([m,n],classUnderlying(in));
% Take forward differences on left and right edges
if n > 1
%out(:,1) = in(:,2)-in(:,1);
out = subsasgn(out,substruct('()',{':',1}),...
subsref(in,substruct('()',{':',2}))-subsref(in,substruct('()',{':',1})));
%out(:,n) = in(:,n) - in(:,n-1);
out = subsasgn(out,substruct('()',{':',n}),...
subsref(in,substruct('()',{':',n}))-subsref(in,substruct('()',{':',n-1})));
end
% Take centered differences on interior points
if n > 2
%out(:,2:n-1) = ( in(:,3:n)-in(:,1:n-2) )./2;
out = subsasgn(out,substruct('()',{':',2:n-1}),...
( subsref(in,substruct('()',{':',3:n}))-subsref(in,substruct('()',{':',1:n-2})) )./2);
end
if iscolumn(in_0)
varargout{1} = out';
else
varargout{1} = out;
end
if nargout == 2
out2 = gpuArray.zeros([m,n],classUnderlying(in));
% Take forward differences on top and bottom edges
if m > 1
%out2(1,:) = in(2,:)-in(1,:);
out2 = subsasgn(out2,substruct('()',{1,':'}),...
subsref(in,substruct('()',{2,':'}))-subsref(in,substruct('()',{1,':'})));
%out2(m,:) = in(m,:)-in(m-1,:);
out2 = subsasgn(out2,substruct('()',{m,':'}),...
subsref(in,substruct('()',{m,':'}))-subsref(in,substruct('()',{m-1,':'})));
end
% Take centered differences on interior points
if m > 2
%out2(2:m-1,:) = ( in(3:m,:)-in(1:m-2,:) )./2;
out2 = subsasgn(out2,substruct('()',{2:m-1,':'}),...
( subsref(in,substruct('()',{3:m,':'}))-subsref(in,substruct('()',{1:m-2,':'})) )./2);
end
varargout{2} = out2;
end
end
%----------------------------------------------------------------------
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imrotate.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imrotate.m
| 8,201 |
utf_8
|
aa5b7a3a9d5251ee694943abefe820f7
|
function varargout = imrotate(varargin)
%IMROTATE Rotate image.
% B = IMROTATE(A, ANGLE) rotates the image in gpuArray A by ANGLE degrees
% in a counterclockwise direction around its center point. To rotate the
% image clockwise, specify a negative value for ANGLE. IMROTATE makes the
% output gpuArray B large enough to contain the entire rotated image.
% IMROTATE uses nearest neighbor interpolation, setting the values of
% pixels in B that are outside the rotated image to 0 (zero).
%
% B = IMROTATE(A,ANGLE,METHOD) rotates the image in gpuArray A, using the
% interpolation method specified by METHOD. METHOD is a string that can
% have one of the following values. The default value is enclosed in
% braces ({}).
%
% {'nearest'} Nearest neighbor interpolation
%
% 'bilinear' Bilinear interpolation
%
% 'bicubic' Bicubic interpolation. Note: This interpolation
% method can produce pixel values outside the original
% range.
%
% B = IMROTATE(A,ANGLE,METHOD,BBOX) rotates image in gpuArray A, where
% BBOX specifies the size of the output gpuArray B. BBOX is a text string
% that can have either of the following values. The default value is
% enclosed in braces
% ({}).
%
% {'loose'} Make output gpuArray B large enough to contain the
% entire rotated image. B is generally larger than A.
%
% 'crop' Make output gpuArray B the same size as the input
% gpuArray A, cropping the rotated image to fit.
%
% Class Support
% -------------
% The input gpuArray image can contain uint8, uint16, single-precision
% floating-point, or logical pixels. The output image is of the same
% class as the input image.
%
% Note
% ----
% The 'bicubic' interpolation mode used in the GPU implementation of this
% function differs from the default (CPU) bicubic mode. The GPU and CPU
% versions of this function are expected to give slightly different
% results.
%
% Example
% -------
% X = gpuArray(imread('pout.tif'));
% Y = imrotate(X, 37, 'loose', 'bilinear');
% figure; imshow(Y)
%
% See also IMCROP, GPUARRAY/IMRESIZE, IMTRANSFORM, TFORMARRAY, GPUARRAY.
% Copyright 2012-2013 The MathWorks, Inc.
[A,angle,method,bbox] = parse_inputs(varargin{:});
if (isempty(A))
B = A; % No rotation needed
else
so = size(A);
twod_size = so(1:2);
thirdD = prod(so(3:end));
r = rem(angle, 360);
switch (r)
case {0}
B = A;
case {90, 270}
A = reshape(A,[twod_size thirdD]);
not_square = twod_size(1) ~= twod_size(2);
multiple_of_ninety = mod(floor(angle/90), 4);
if strcmpi(bbox, 'crop') && not_square
% center rotated image and preserve size
if ndims(A)>2 %#ok<ISMAT>
dim = 3;
else
dim = ndims(A);
end
v = repmat({':'},[1 dim]);
imbegin = (max(twod_size) == so)*abs(diff(floor(twod_size/2)));
vec = 1:min(twod_size);
v(1) = {imbegin(1)+vec};
v(2) = {imbegin(2)+vec};
new_size = [twod_size thirdD];
% pre-allocate array
if islogical(A)
B = gpuArray.false(new_size);
else
B = gpuArray.zeros(new_size,classUnderlying(A));
end
s.type = '()';
s.subs = v;
for k = 1:thirdD
s.subs{3} = k;
% B(:,:,k) = rot90(A(:,:,k),multiple_of_ninety);
B = subsasgn(B, s, rot90(subsref(A, s), multiple_of_ninety));
end
else
% don't preserve original size
new_size = [fliplr(twod_size) thirdD];
B = pagefun(@rot90,A,multiple_of_ninety);
end
B = reshape(B,[new_size(1) new_size(2) so(3:end)]);
case {180}
v = repmat({':'},[1 ndims(A)]);
v(1) = {twod_size(1):-1:1};
v(2) = {twod_size(2):-1:1};
s.type = '()';
s.subs = v;
B = subsref(A, s);
otherwise
padSize = [2 2];
if (~ismatrix(A))
padSize(ndims(A)) = 0;
end
%pad input gpuArray to overcome different edge behavior in NPP.
A = padarray_algo(A, padSize, 'constant', 0, 'both');
[~,~,~,~,outputSize] = getOutputBound(angle,twod_size,bbox);
if (isreal(A))
B = imrotategpumex(A, angle, method, outputSize);
else
B = complex(imrotategpumex(real(A), angle, method, outputSize),...
imrotategpumex(imag(A), angle, method, outputSize));
end
end
end
varargout{1} = B;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function to parse inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [A,ang,method,bbox] = parse_inputs(varargin)
% Outputs: A the input gpuArray
% ang the angle by which to rotate the input image
% method interpolation method (nearest,bilinear,bicubic)
% bbox bounding box option 'loose' or 'crop'
% Defaults:
method = 'n';
bbox = 'l';
narginchk(2,4)
switch nargin
case 2, % imrotate(A,ang)
A = varargin{1};
ang=varargin{2};
case 3, % imrotate(A,ang,method) or
A = varargin{1}; % imrotate(A,ang,box)
ang=varargin{2};
method=varargin{3};
case 4, % imrotate(A,ang,method,box)
A = varargin{1};
ang=varargin{2};
method=varargin{3};
bbox=varargin{4};
otherwise,
error(message('images:imrotate:invalidInputs'))
end
% Check validity of the input parameters
if ischar(method) && ischar(bbox),
strings = {'nearest','bilinear','bicubic','crop','loose'};
idx = strmatch(lower(method),strings);
if isempty(idx),
error(message('images:imrotate:unrecognizedInterpolationMethod', method))
elseif length(idx)>1,
error(message('images:imrotate:ambiguousInterpolationMethod', method))
else
if idx==4,bbox=strings{4};method=strings{1};
elseif idx==5,bbox = strings{5};method=strings{1};
else method = strings{idx};
end
end
idx = strmatch(lower(bbox),strings(4:5));
if isempty(idx),
error(message('images:imrotate:unrecognizedBBox', bbox))
elseif length(idx)>1,
error(message('images:imrotate:ambiguousBBox', bbox))
else
bbox = strings{3+idx};
end
else
error(message('images:imrotate:expectedString'))
end
hValidateAttributes(A,...
{'uint8','uint16','logical','single'},{},mfilename,'input image',1);
% Ang must always be double.
ang = double(ang);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function: getOutputBound
%
function [loA,hiA,loB,hiB,outputSize] = getOutputBound(angle,twod_size,bbox)
% Coordinates from center of A
hiA = (twod_size-1)/2;
loA = -hiA;
if strcmpi(bbox, 'loose') % Determine limits for rotated image
% Compute bounding box of roated image
phi = angle*pi/180; % Convert to radians
sinPhi = sin(phi);
cosPhi = cos(phi);
T = [ cosPhi sinPhi 0
-sinPhi cosPhi 0
0 0 1 ];
rotate = affine2d(T);
[x,y] = rotate.outputLimits([loA(1) hiA(1)], [hiA(2) hiA(2)]);
hiB = ceil(max(abs([x' y']))/2)*2;
loB = -hiB;
outputSize = hiB - loB + 1;
else % Cropped image
hiB = hiA;
loB = loA;
outputSize = twod_size;
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imnoise.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imnoise.m
| 11,566 |
utf_8
|
5c907a664971c69a29354a8539437f37
|
function b = imnoise(varargin)
%IMNOISE Add noise to gpuArray image.
% J = IMNOISE(I,TYPE,...) Add noise of a given TYPE to the gpuArray
% intensity image I. TYPE is a string that can have one of these values:
%
% 'gaussian' Gaussian white noise with constant
% mean and variance
%
% 'localvar' Zero-mean Gaussian white noise
% with an intensity-dependent variance
%
% 'poisson' Poisson noise
%
% 'salt & pepper' "On and Off" pixels
%
% 'speckle' Multiplicative noise
%
% Depending on TYPE, you can specify additional parameters to IMNOISE.
% All numerical parameters are normalized; they correspond to operations
% with images with intensities ranging from 0 to 1.
%
% J = IMNOISE(I,'gaussian',M,V) adds Gaussian white noise of mean M and
% variance V to the gpuArray image I. When unspecified, M and V default
% to 0 and 0.01 respectively.
%
% J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of
% local variance, V, to the gpuArray image I. V is an array of the same
% size as I.
%
% J = imnoise(I,'localvar',IMAGE_INTENSITY,VAR) adds zero-mean, Gaussian
% noise to a gpuArray image, I, where the local variance of the noise is
% a function of the image intensity values in I. IMAGE_INTENSITY and VAR
% are vectors of the same size, and PLOT(IMAGE_INTENSITY,VAR) plots the
% functional relationship between noise variance and image intensity.
% IMAGE_INTENSITY must contain normalized intensity values ranging from 0
% to 1.
%
% J = IMNOISE(I,'poisson') generates Poisson noise from the data instead
% of adding artificial noise to the data. If I is double precision,
% then input pixel values are interpreted as means of Poisson
% distributions scaled up by 1e12. For example, if an input pixel has
% the value 5.5e-12, then the corresponding output pixel will be
% generated from a Poisson distribution with mean of 5.5 and then scaled
% back down by 1e12. If I is single precision, the scale factor used is
% 1e6. If I is uint8 or uint16, then input pixel values are used
% directly without scaling. For example, if a pixel in a uint8 input
% has the value 10, then the corresponding output pixel will be
% generated from a Poisson distribution with mean 10.
%
% J = IMNOISE(I,'salt & pepper',D) adds "salt and pepper" noise to the
% gpuArray image I, where D is the noise density. This affects
% approximately D*numel(I) pixels. The default for D is 0.05.
%
% J = IMNOISE(I,'speckle',V) adds multiplicative noise to the gpuArray
% image I, using the equation J = I + n*I, where n is uniformly
% distributed random noise with mean 0 and variance V. The default for V
% is 0.04.
%
% Note
% ----
% The mean and variance parameters for 'gaussian', 'localvar', and
% 'speckle' noise types are always specified as if for a double gpuArray
% image in the range [0, 1]. If the input image is of class uint8 or
% uint16, the imnoise function converts the gpuArray image to double,
% adds noise according to the specified type and parameters, and then
% converts the noisy gpuArray image back to the same class as the input.
%
% Class Support
% -------------
% For most noise types, input gpuArray I can have underlying class be
% uint8, uint16, double, int16, or single. For Poisson noise, int16 is
% not allowed. The output gpuArray image J has the same class as I. If I
% has more than two dimensions it is treated as a multidimensional
% intensity image and not as an RGB gpuArray image.
%
% Example
% -------
% I = gpuArray(imread('eight.tif'));
% J = imnoise(I,'salt & pepper', 0.02);
% figure, imshow(I), figure, imshow(J)
%
% See also GPUARRAY/RAND, GPUARRAY/RANDN, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
% Check the input-array type.
if(~isa(varargin{1},'gpuArray'))
% CPU code path if the first input is not a gpuArray
b = imnoise(gatherIfNecessary(varargin));
return;
end
[a, code, classIn, classChanged, p3, p4] = ParseInputs(varargin{:});
clear varargin;
sizeA = size(a);
switch code
case 'gaussian' % Gaussian white noise
%b = a + sqrt(p4)*randn(sizeA) + p3;
p4 = sqrt(p4);
r = gpuArray.randn(sizeA);
b = arrayfun(@applyGaussian, a,r);
b = images.internal.changeClass(classIn, b);
case 'localvar_1' % Gaussian white noise with variance varying locally
b = images.internal.algimnoise(a, code, classIn, classChanged, p3, p4);
case 'localvar_2' % Gaussian white noise with variance varying locally
b = images.internal.algimnoise(a, code, classIn, classChanged, p3, p4);
case 'poisson' % Poisson noise
b = images.internal.algimnoise(a, code, classIn, classChanged, p3, p4);
case 'salt & pepper' % Salt & pepper noise
r = gpuArray.rand(sizeA);
p3by2 = p3/2;
b = arrayfun(@applysnp, a, r);
b = images.internal.changeClass(classIn, b);
case 'speckle' % Speckle (multiplicative) noise
p3factor = sqrt(12*p3);
r = gpuArray.rand(sizeA);
b = arrayfun(@applySpeckle, a, r);
b = images.internal.changeClass(classIn, b);
end
function pixout = applyGaussian(pixin, r)
%b = a + sqrt(p4)*randn(sizeA) + p3;
pixout = pixin + r*p4+p3;
pixout = max(0, min(pixout,1));
end
function pixout = applysnp(pixin,r)
%b(r < p3/2) = 0; % Minimum value
%b(r >= p3/2 & r < p3) = 1; % Maximum (saturated) value
pixout = (r>=p3by2)*( (r<p3) + pixin*(r>=p3));
pixout = max(0, min(pixout,1));
end
function pixout = applySpeckle(pixin,r)
%b = a + sqrt(12*p3)*a.*(rand(sizeA)-.5);
pixout = pixin + p3factor*pixin*(r-0.5);
pixout = max(0, min(pixout,1));
end
end
%%%
%%% ParseInputs
%%%
function [a, code, classIn, classChanged, p3, p4, msg] = ParseInputs(varargin)
% Initialization
p3 = [];
p4 = [];
msg = '';
% Check the number of input arguments.
narginchk(1,4);
% Check the input-array type.
a = varargin{1};
hValidateAttributes(a,...
{'uint8','uint16','double','int16','single'}, ...
{},mfilename,'I',1);
gatheredVarargin = gatherIfNecessary(varargin{2:end});
varargin = {a, gatheredVarargin{:}};
% Change class to double
classIn = classUnderlying(a);
classChanged = 0;
if ~strcmp(classIn, 'double');
a = im2double(a);
classChanged = 1;
else
% Clip so a is between 0 and 1.
a = max(min(a,1),0);
end
% Check the noise type.
if nargin > 1
if ~ischar(varargin{2})
error(message('images:imnoise:invalidNoiseType'))
end
% Preprocess noise type string to detect abbreviations.
allStrings = {'gaussian', 'salt & pepper', 'speckle', 'poisson','localvar'};
idx = find(strncmpi(varargin{2}, allStrings, numel(varargin{2})));
switch length(idx)
case 0
error(message('images:imnoise:unknownNoiseType', varargin{ 2 }))
case 1
code = allStrings{idx};
otherwise
error(message('images:imnoise:ambiguousNoiseType', varargin{ 2 }))
end
else
code = 'gaussian'; % default noise type
end
switch code
case 'poisson'
if nargin > 2
error(message('images:imnoise:tooManyPoissonInputs'))
end
if isa(a, 'int16')
error(message('images:imnoise:badClassForPoisson'));
end
case 'gaussian'
p3 = 0; % default mean
p4 = 0.01; % default variance
if nargin > 2
p3 = varargin{3};
if ~isRealScalar(p3)
error(message('images:imnoise:invalidMean'))
end
end
if nargin > 3
p4 = varargin{4};
if ~isNonnegativeRealScalar(p4)
error(message('images:imnoise:invalidVariance', 'gaussian'))
end
end
case 'salt & pepper'
p3 = 0.05; % default density
if nargin > 2
p3 = varargin{3};
if ~isNonnegativeRealScalar(p3) || (p3 > 1)
error(message('images:imnoise:invalidNoiseDensity'))
end
if nargin > 3
error(message('images:imnoise:tooManySaltAndPepperInputs'))
end
end
case 'speckle'
p3 = 0.05; % default variance
if nargin > 2
p3 = varargin{3};
if ~isNonnegativeRealScalar(p3)
error(message('images:imnoise:invalidVariance', 'speckle'))
end
end
if nargin > 3
error(message('images:imnoise:tooManySpeckleInputs'))
end
case 'localvar'
if nargin < 3
error(message('images:imnoise:toofewLocalVarInputs'))
elseif nargin == 3
% IMNOISE(a,'localvar',v)
code = 'localvar_1';
p3 = varargin{3};
if ~isNonnegativeReal(p3) || ~isequal(size(p3),size(a))
error(message('images:imnoise:invalidLocalVarianceValueAndSize'))
end
elseif nargin == 4
% IMNOISE(a,'localvar',IMAGE_INTENSITY,NOISE_VARIANCE)
code = 'localvar_2';
p3 = varargin{3};
p4 = varargin{4};
if ~isNonnegativeRealVector(p3) || (any(p3) > 1)
error(message('images:imnoise:invalidImageIntensity'))
end
if ~isNonnegativeRealVector(p4)
error(message('images:imnoise:invalidLocalVariance'))
end
if ~isequal(size(p3),size(p4))
error(message('images:imnoise:invalidSize'))
end
% Intensity values should be in increasing order for gpu
[p3, sInds] = sort(p3);
p4 = p4(sInds);
else
error(message('images:imnoise:tooManyLocalVarInputs'))
end
end
end
%%%
%%% isReal
%%%
function t = isReal(P)
% isReal(P) returns 1 if P contains only real
% numbers and returns 0 otherwise.
%
isFinite = all(isfinite(P(:)));
t = isreal(P) && isFinite && ~isempty(P);
end
%%%
%%% isNonnegativeReal
%%%
function t = isNonnegativeReal(P)
% isNonnegativeReal(P) returns 1 if P contains only real
% numbers greater than or equal to 0 and returns 0 otherwise.
%
t = isReal(P) && all(P(:)>=0);
end
%%%
%%% isRealScalar
%%%
function t = isRealScalar(P)
% isRealScalar(P) returns 1 if P is a real,
% scalar number and returns 0 otherwise.
%
t = isReal(P) && (numel(P)==1);
end
%%%
%%% isNonnegativeRealScalar
%%%
function t = isNonnegativeRealScalar(P)
% isNonnegativeRealScalar(P) returns 1 if P is a real,
% scalar number greater than 0 and returns 0 otherwise.
%
t = isReal(P) && all(P(:)>=0) && (numel(P)==1);
end
%%%
%%% isVector
%%%
function t = isVector(P)
% isVector(P) returns 1 if P is a vector and returns 0 otherwise.
%
t = ((numel(P) >= 2) && ((size(P,1) == 1) || (size(P,2) == 1)));
end
%%%
%%% isNonnegativeRealVector
%%%
function t = isNonnegativeRealVector(P)
% isNonnegativeRealVector(P) returns 1 if P is a real,
% vector greater than 0 and returns 0 otherwise.
%
t = isReal(P) && all(P(:)>=0) && isVector(P);
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
normxcorr2.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/normxcorr2.m
| 7,447 |
utf_8
|
83737fbfe2ae6f1fbd16a1bf0a0c4392
|
function C = normxcorr2(varargin)
%NORMXCORR2 Normalized two-dimensional cross-correlation.
% C = NORMXCORR2(TEMPLATE,A) computes the normalized cross-correlation of
% gpuArray TEMPLATE and A. The gpuArray A must be larger than the
% gpuArray TEMPLATE for the normalization to be meaningful. The values of
% TEMPLATE cannot all be the same. The resulting matrix C contains
% correlation coefficients and its values may range from -1.0 to 1.0.
%
% Class Support
% -------------
% The input matrices are numeric. The class underlying output matrix C is
% double.
%
% Remarks
% -------
% Normalized cross correlation is an undefined operation in regions where
% A has zero variance over the full extent of the template. In these
% regions, we assign correlation coefficients of zero to the output C.
%
% Example
% -------
% template = .2*gpuArray.ones(11);
% % Make light gray plus on dark gray background
% template(6,3:9) = .6;
% template(3:9,6) = .6;
% % Make white plus on black background
% BW = template > 0.5;
% figure, imshow(BW), figure, imshow(template)
% % Make new image that offsets the template
% offsetTemplate = .2*gpuArray.ones(21);
% offset = [3 5]; % shift by 3 rows, 5 columns
% offsetTemplate( (1:size(template,1))+offset(1),...
% (1:size(template,2))+offset(2) ) = template;
% figure, imshow(offsetTemplate)
%
% % cross-correlate BW and offsetTemplate to recover offset
% cc = normxcorr2(BW,offsetTemplate);
% [max_cc, imax] = max(abs(cc(:)));
% [ypeak, xpeak] = ind2sub(size(cc),imax(1));
% corr_offset = [ (ypeak-size(template,1)) (xpeak-size(template,2)) ];
% isequal(corr_offset,offset) % 1 means offset was recovered
%
% See also CORRCOEF.
% Copyright 2013 The MathWorks, Inc.
% Input-output specs
% ------------------
% T: 2-D, real, full matrix
% logical, uint8, uint16, or double
% no NaNs, no Infs
% prod(size(T)) >= 2
% std(T(:))~=0
%
% A: 2-D, real, full matrix
% logical, uint8, uint16, or double
% no NaNs, no Infs
% size(A,1) >= size(T,1)
% size(A,2) >= size(T,2)
%
% C: double
[T, A] = ParseInputs(varargin{:});
% We normalize the cross correlation to get correlation coefficients using the
% definition of Haralick and Shapiro, Volume II (p. 317), generalized to
% two-dimensions.
%
% Lewis explicitly defines the normalized cross-correlation in two-dimensions
% in this paper (equation 2):
%
% "Fast Normalized Cross-Correlation", by J. P. Lewis, Industrial Light & Magic.
%
% Our technical reference document on NORMXCORR2 shows how to get from
% equation 2 of the Lewis paper to the code below.
xcorr_TA = xcorr2_fast(T,A);
[m,n] = size(T);
mn = m*n;
local_sum_A = local_sum(A,m,n);
local_sum_A2 = local_sum(A.*A,m,n);
% Note: diff_local_sums should be nonnegative, but may have negative
% values due to round off errors. Below, we use max to ensure the
% radicand is nonnegative.
% diff_local_sums = ( local_sum_A2 - (local_sum_A.^2)/mn );
% denom_A = sqrt( max(diff_local_sums,0) );
% denom = denom_T*denom_A;
% numerator = (xcorr_TA - local_sum_A*sum(reshape(T,numel(T),1))/mn );
Tcol = reshape(T,numel(T),1);
sumT = sum(Tcol);
stdT = std(Tcol);
denom_T = sqrt(mn-1)*stdT;
[numerator,denom] = arrayfun(@computeNumDen,local_sum_A,local_sum_A2,xcorr_TA);
function [num,den] = computeNumDen(local_sum_a,local_sum_a2,xcorr_ta)
diff_local_sum = local_sum_a2 - (local_sum_a^2)/mn;
denom_A = sqrt(max(diff_local_sum,0));
den = denom_T*denom_A;
num = xcorr_ta - local_sum_a*sumT/mn;
end
% We know denom_T~=0 from input parsing;
% so denom is only zero where denom_A is zero, and in
% these locations, C is also zero.
% C = zeros(size(numerator));
% i_nonzero = find(denom > tol);
% C(i_nonzero) = numerator(i_nonzero) ./ denom(i_nonzero);
% Another numerics backstop. If any of the coefficients are outside the
% range [-1 1], the numerics are unstable to small variance in A or T. In
% these cases, set C to zero to reflect undefined 0/0 condition.
% C( ( abs(C) - 1 ) > sqrt(eps(1)) ) = 0;
tol = sqrt( eps( max(abs(reshape(denom,numel(denom),1)))) );
C = arrayfun(@computeNCC,numerator,denom);
function c = computeNCC(num,den)
c = 0;
if(den>tol)
c = num/den;
end
c = (abs(c)-1<=sqrt(eps(1)))*c;
end
end
%-------------------------------
% Function local_sum
%
function local_sum_A = local_sum(A,m,n)
% We thank Eli Horn for providing this code, used with his permission,
% to speed up the calculation of local sums. The algorithm depends on
% precomputing running sums as described in "Fast Normalized
% Cross-Correlation", by J. P. Lewis, Industrial Light & Magic.
B = padarray(A,[m n]);
s = cumsum(B,1);
% c = s(1+m:end-1,:)-s(1:end-m-1,:);
c = subsref(s,substruct('()',{1+m:size(s,1)-1 ,':'})) ...
- subsref(s,substruct('()',{1 :size(s,1)-m-1,':'}));
s = cumsum(c,2);
% local_sum_A = s(:,1+n:end-1)-s(:,1:end-n-1);
local_sum_A = subsref(s,substruct('()',{':',1+n:size(s,2)-1 })) ...
- subsref(s,substruct('()',{':',1 :size(s,2)-n-1}));
end
%-------------------------------
% Function xcorr2_fast
%
function cross_corr = xcorr2_fast(T,A)
T_size = size(T);
A_size = size(A);
outsize = A_size + T_size - 1;
if (numel(T)<2500)
cross_corr = conv2(rot90(T,2),A);
else
cross_corr = freqxcorr(T,A,outsize);
end
end
%-------------------------------
% Function freqxcorr
%
function xcorr_ab = freqxcorr(a,b,outsize)
% calculate correlation in frequency domain
Fa = fft2(rot90(a,2),outsize(1),outsize(2));
Fb = fft2(b, outsize(1),outsize(2));
xcorr_ab = ifft2(Fa .* Fb, 'symmetric');
end
%-----------------------------------------------------------------------------
function [T, A] = ParseInputs(varargin)
narginchk(2,2)
T = gpuArray(varargin{1});
A = gpuArray(varargin{2});
hValidateAttributes(T,{'logical','numeric'},{'real','2d', 'finite'},...
mfilename,'T',1);
hValidateAttributes(A,{'logical','numeric'},{'real','2d', 'finite'},...
mfilename,'A',2);
checkSizesTandA(T,A)
% See geck 342320. If either A or T has a minimum value which is negative, we
% need to shift the array so all values are positive to ensure numerically
% robust results for the normalized cross-correlation.
A = shiftData(A);
T = shiftData(T);
checkIfFlat(T);
end
%-----------------------------------------------------------------------------
function B = shiftData(A)
B = double(A);
is_unsigned = strcmp(classUnderlying(A),'uint8') || ...
strcmp(classUnderlying(A),'uint16') || ...
strcmp(classUnderlying(A),'uint32');
if ~is_unsigned
min_B = min(reshape(B,numel(B),1));
if min_B < 0
B = B - min_B;
end
end
end
%-----------------------------------------------------------------------------
function checkSizesTandA(T,A)
if numel(T) < 2
error(message('images:normxcorr2:invalidTemplate'))
end
if size(A,1)<size(T,1) || size(A,2)<size(T,2)
error(message('images:normxcorr2:invalidSizeForA'))
end
end
%-----------------------------------------------------------------------------
function checkIfFlat(T)
s.type = '()'; s.subs = {1};
oneElement = subsref(T, s);
if all(oneElement==reshape(T,numel(T),1))
error(message('images:normxcorr2:sameElementsInTemplate'))
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
im2uint8.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/im2uint8.m
| 4,843 |
utf_8
|
e110587eea6c78c6845e415550224b50
|
function u = im2uint8(img, varargin)
%IM2UINT8 Convert gpuArray image to 8-bit unsigned integers.
% IM2UINT8 takes a gpuArray image as input, and returns a gpuArray image
% of underying class uint8. If the input gpuArray is of class uint8, the
% output gpuArray is identical to it. If the input gpuArray is not
% uint8, IM2UINT8 returns the equivalent gpuArray of underlying class
% uint8, rescaling or offsetting the data as necessary.
%
% I2 = IM2UINT8(I1) converts the intensity gpuArray image I1 to uint8,
% rescaling the data if necessary.
%
% RGB2 = IM2UINT8(RGB1) converts the truecolor gpuArray image RGB1 to
% uint8, rescaling the data if necessary.
%
% I = IM2UINT8(BW) converts the binary gpuArray image BW to a uint8
% intensity image, changing one-valued elements to 255.
%
% X2 = IM2UINT8(X1,'indexed') converts the indexed gpuArray image X1 to
% uint8, offsetting the data if necessary. Note that it is not always
% possible to convert an indexed gpuArray image to uint8. If X1 is
% double, then the maximum value of X1 must be 256 or less. If X1 is
% uint16, the maximum value of X1 must be 255 or less.
%
% Class Support
% -------------
% Intensity and truecolor gpuArray images can be uint8, uint16, double,
% logical, single, or int16. Indexed gpuArray images can be uint8,
% uint16, double or logical. Binary input gpuArray images must be
% logical. The output gpuArray is uint8.
%
% Example
% -------
% I1 = gpuArray(reshape(uint16(linspace(0,65535,25)),[5 5]))
% I2 = im2uint8(I1)
%
% See also GPUARRAY/IM2DOUBLE, GPUARRAY/IM2INT16, GPUARRAY/IM2SINGLE,
% GPUARRAY/IM2UINT16, GPUARRAY/UINT8, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
%% inputs
narginchk(1,2);
classImg = classUnderlying(img);
hValidateAttributes(img,...
{'double','logical','uint8','uint16','single','int16'}, ...
{},mfilename,'Image',1);
if(~isreal(img))
warning(message('images:im2uint8:ignoringImaginaryPartOfInput'));
img = real(img);
end
if nargin == 2
validatestring(varargin{1},{'indexed'},mfilename,'type',2);
end
%% process
if strcmp(classImg, 'uint8')
u = img;
elseif strcmp(classImg, 'logical')
u = uint8(img) * 255;
else %double, single, uint16, or int16
if nargin == 1
if strcmp(classImg, 'int16')
z = uint16(int32(img) + 32768);
u = uint8(double(z)*1/257);
end
% intensity image
if strcmp(classImg, 'double')
u = arrayfun(@grayto8double,img);
elseif strcmp(classImg, 'single')
u = arrayfun(@grayto8single,img);
elseif strcmp(classImg, 'uint16')
u = arrayfun(@grayto8uint8,img);
end
else
s.type = '()';
s.subs = {':'};
if strcmp(classImg, 'int16')
error(message('images:im2uint8:invalidIndexedImage'))
elseif strcmp(classImg, 'uint16')
if (max(subsref(img,s)) > 255)
error(message('images:im2uint8:tooManyColorsFor8bitStorage'))
else
u = uint8(img);
end
else %double or single
if any(max(subsref(img,s)) >= 257)
error(message('images:im2uint8:tooManyColorsFor8bitStorage'))
elseif any(min(subsref(img,s)) < 1)
error(message('images:im2uint8:invalidIndexValue'))
else
u = uint8(img-1);
end
end
end
end
function b = grayto8double(img)
%GRAYTO8 Scale and convert grayscale image to uint8.
% B = GRAYTO8(A) converts the double array A to uint8 by
% scaling A by 255 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 255;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint8(0);
else
% uint8() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto8 MEX code
img = img * 255;
if img > 255
img = 255;
elseif img < 0
img = 0;
end
b = uint8(img);
end
function b = grayto8single(img)
%GRAYTO8 Scale and convert grayscale image to uint8.
% B = GRAYTO8(A) converts the double array A to uint8 by
% scaling A by 255 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 255;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint8(0);
else
% uint8() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto8 MEX code
maxVal = single(255);
minVal = single(0);
img = img * maxVal;
if img > maxVal
img = maxVal;
elseif img < minVal
img = minVal;
end
b = uint8(img);
end
function b = grayto8uint8(img)
b = uint8(double(img) * 1/257);
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
im2int16.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/im2int16.m
| 4,101 |
utf_8
|
b82817abcde17bfebd5fe10f09ce4a93
|
function J = im2int16(I)
%IM2INT16 Convert gpuArray image to 16-bit signed integers.
% IM2INT16 takes a gpuArray image I as input, and returns a gpuArray
% image J of underlying class int16. If I is int16, then J is identical
% to it. If I is not int16 then IM2INT16 returns the equivalent gpuArray
% image J of underlying class int16, rescaling the data as necessary.
%
% I2 = IM2INT16(I1) converts the gpuArray intensity image I1 to int16,
% rescaling the data if necessary.
%
% RGB2 = IM2INT16(RGB1) converts the truecolor image RGB1 to
% int16, rescaling the data if necessary.
%
% I = IM2INT16(BW) converts the binary gpuArray image BW to an int16
% gpuArray intensity image, changing false-valued elements to -32768 and
% true-valued elements to 32767.
%
% Class Support
% -------------
% Intensity and truecolor gpuArray images can be uint8, uint16, double,
% logical, single, or int16. Binary input gpuArray images must be
% logical. The output image is a gpuArray with underlying class int16.
%
% Example
% -------
% I1 = gpuArray(reshape(linspace(0,1,20),[5 4]))
% I2 = im2int16(I1)
%
% See also GPUARRAY/IM2DOUBLE, GPUARRAY/IM2SINGLE, GPUARRAY/IM2UINT8,
% GPUARRAY/IM2UINT16, GPUARRAY/INT16, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
%% inputs
narginchk(1,1);
classIn = classUnderlying(I);
hValidateAttributes(I,...
{'int16','uint16','uint8','double','single','logical'}, ...
{},mfilename,'I',1);
if(~isreal(I))
warning(message('images:im2int16:ignoringImaginaryPartOfInput'));
I = real(I);
end
%% process
if strcmp(classIn,'int16')
J = I;
elseif islogical(I)
J = arrayfun(@scaleLogicalToint16,I);
else
% double, single, uint8, or uint16
if ~strcmp(classIn, 'uint16')
if strcmp(classIn, 'double')
J = arrayfun(@grayto16double,I);
elseif strcmp(classIn, 'single')
J = arrayfun(@grayto16single,I);
elseif strcmp(classIn, 'uint8')
J = arrayfun(@grayto16uint8,I);
end
else
J = I;
end
% Convert uint16 to int16.
J = arrayfun(@uint16toint16,J);
end
function pixout = scaleLogicalToint16(pixin)
% J = int16(I)*int16(32767) + int16(~I)*int16(-32768);
pixout = int16(pixin)*int16(32767) + int16(pixin==0)*int16(-32768);
function b = grayto16uint8(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the uint8 array A by scaling the
% elements of A by 257 and then casting to uint8.
b = bitor(bitshift(uint16(img),8),uint16(img));
function b = grayto16double(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the double array A to uint16 by
% scaling A by 65535 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 65535;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint16(0);
else
% uint16() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto16 MEX code
img = img * 65535;
if img > 65535
img = 65535;
elseif img < 0
img = 0;
end
b = uint16(img);
end
function b = grayto16single(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the double array A to uint16 by
% scaling A by 65535 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 65535;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint16(0);
else
% uint16() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto16 MEX code
maxVal = single(65535);
minVal = single(0);
img = img * maxVal;
if img > maxVal
img = maxVal;
elseif img < minVal
img = minVal;
end
b = uint16(img);
end
function z = uint16toint16(img)
%UINT16TOINT16 converts uint16 to int16
% Z = UINT16TOINT16(I) converts uint16 data (range = 0 to 65535) to int16
% data (range = -32768 to 32767).
z = int16(int32(img)-int32(32768));
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imabsdiff.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imabsdiff.m
| 3,734 |
utf_8
|
c96891b3d506862c1b4e86aaf541d921
|
function Z = imabsdiff(varargin)
%IMABSDIFF Absolute difference of two images.
% Z = IMABSDIFF(X,Y) subtracts each element in gpuArray Y from the
% corresponding element in gpuArray X and returns the absolute difference
% in the corresponding element of the output array Z. X and Y are real,
% nonsparse, numeric or logical arrays with the same class and size. Z
% has the same class and size as X and Y. If X and Y are integer
% arrays, elements in the output that exceed the range of the integer
% type are truncated. At least one of the inputs must be a gpuArray.
%
% If X and Y are single or double arrays, you can use the expression
% ABS(X-Y) instead of this function. If X and Y are logical arrays, you
% can use the expression XOR(A,B) instead of this function.
%
% Example
% -------
% Display the absolute difference between a filtered image and the
% original.
%
% I = gpuArray(imread('cameraman.tif'));
% J = imfilter(I,fspecial('gaussian'));
% K = imabsdiff(I,J);
% figure, imshow(K,[])
%
% See also IMADD, IMCOMPLEMENT, IMDIVIDE, GPUARRAY/IMLINCOMB, IMSUBTRACT,
% GPUARRAY.
% Copyright 2012-2013 The MathWorks, Inc.
narginchk(2,2);
X = varargin{1};
Y = varargin{2};
% Both inputs must be real.
if ~(isreal(X) && isreal(Y))
error(message('images:imabsdiff:gpuArrayReal'));
end
% Convert both inputs to gpuArray's.
if ~isa(X,'gpuArray')
X = gpuArray(X);
end
if ~isa(Y,'gpuArray')
Y = gpuArray(Y);
end
% Both inputs need to be of the same size and class.
checkForSameSizeAndClass(X, Y);
datatype = classUnderlying(X);
if isempty(X)
if strcmp(datatype,'logical')
Z = gpuArray.false(size(X));
else
Z = gpuArray.zeros(size(X), datatype);
end
else
switch datatype
case 'int8'
Z = arrayfun(@imabsdiffint8,X,Y);
case 'uint8'
Z = arrayfun(@imabsdiffuint8,X,Y);
case 'int16'
Z = arrayfun(@imabsdiffint16,X,Y);
case 'uint16'
Z = arrayfun(@imabsdiffuint16,X,Y);
case 'int32'
Z = arrayfun(@imabsdiffint32,X,Y);
case 'uint32'
Z = arrayfun(@imabsdiffuint32,X,Y);
case 'single'
Z = arrayfun(@imabsdifffloatingpoint,X,Y);
case 'double'
Z = arrayfun(@imabsdifffloatingpoint,X,Y);
case 'logical'
Z = xor(X,Y);
otherwise
error(message('images:imabsdiff:unsupportedDataType'));
end
end
end
function z = imabsdiffint8(x,y)
%IMABSDIFFINT8 compute absolute difference between pixels of type
% int8.
z = int8( abs( int16(x) - int16(y) ) );
end
function z = imabsdiffuint8(x,y)
%IMABSDIFFUINT8 compute absolute difference between pixels of type
% uint8.
z = uint8( abs( int16(x) - int16(y) ) );
end
function z = imabsdiffint16(x,y)
%IMABSDIFFINT16 compute absolute difference between pixels of type
% int16.
z = int16( abs( int32(x) - int32(y) ) );
end
function z = imabsdiffuint16(x,y)
%IMABSDIFFUINT16 compute absolute difference between pixels of type
% uint16.
z = uint16( abs( int32(x) - int32(y) ) );
end
function z = imabsdiffint32(x,y)
%IMABSDIFFINT32 compute absolute difference between pixels of type
% int32.
z = int32( abs( double(x) - double(y) ) );
end
function z = imabsdiffuint32(x,y)
%IMABSDIFFUINT32 compute absolute difference between pixels of type
% uint32.
z = uint32( abs( double(x) - double(y) ) );
end
function z = imabsdifffloatingpoint(x,y)
%IMABSDIFFFLOAT compute absolute difference between pixels of type
% single/double.
z = abs( x - y );
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imlincomb.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imlincomb.m
| 6,507 |
utf_8
|
6adf6a3d5cb2c9c40c860bffc30868b8
|
function Z = imlincomb(varargin)
%IMLINCOMB Linear combination of images.
% Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An) computes K1*A1 + K2*A2 + ... +
% Kn*An. A1, A2, ..., An are gpuArray's with the same class and size,
% and K1, K2, ..., Kn are real double scalars. Z has the same size and
% class as A1 unless A1 is logical, in which case Z is double.
%
% Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An,K) computes K1*A1 + K2*A2 +
% ... + Kn*An + K.
%
% Z = IMLINCOMB(..., OUTPUT_CLASS) lets you specify the class of Z.
% OUTPUT_CLASS is a string containing the name of a numeric class.
%
% Use IMLINCOMB to perform a series of arithmetic operations on a pair
% of images, rather than nesting calls to individual arithmetic
% functions, such as IMADD and IMMULTIPLY. When you nest calls to the
% arithmetic functions, and the input arrays have integer class, then
% each function truncates and rounds the result before passing it to
% the next function, thus losing accuracy in the final result.
% IMLINCOMB performs all the arithmetic operations at once before
% truncating and rounding the final result.
%
% Each element of the output, Z, is computed individually in
% double-precision floating point. When Z is an integer array, elements
% of Z that exceed the range of the integer type are truncated, and
% fractional values are rounded. At least one of the images A1, A2, ...
% An needs to be a gpuArray for computation to be performed on the GPU.
% The scalars can also be gpuArray's.
%
% Note:
% -----
% IMLINCOMB is a convenience function, enabling functions/scripts which
% call it to accept gpuArray objects. If your images are already on the
% GPU, consider using ARRAYFUN to cast the pixels to a larger datatype,
% compute the linear combination of the series of images directly, and
% cast the data to the output type. This will likely be more efficient
% than using IMLINCOMB, which is a general purpose function.
%
% For example, to perform the linear combination specified below on 3
% uint8 images,
%
% Z = 0.299*R + 0.587*G + 0.114*B
%
% use the following:
%
% fHandle = @(r,g,b) uint8( 0.299*double(r) + 0.587*double(g) +...
% 0.114*double(b) );
%
% Z = arrayfun( fHandle, R,G,B );
%
%
% Example 1
% ---------
% Scale an image by a factor of two.
%
% I = gpuArray(imread('cameraman.tif'));
% J = imlincomb(2,I);
% figure, imshow(J)
%
% Example 2
% ---------
% Form a difference image with the zero value shifted to 128.
%
% I = gpuArray(imread('cameraman.tif'));
% J = imfilter(I, fspecial('gaussian'));
% K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
% figure, imshow(K)
%
% Example 3
% ---------
% Add two images with a specified output class.
%
% I = gpuArray(imread('rice.png'));
% J = gpuArray(imread('cameraman.tif'));
% K = imlincomb(1,I,1,J,'uint16');
% figure, imshow(K,[])
%
% See also IMADD, IMCOMPLEMENT, IMDIVIDE, IMMULTIPLY, IMSUBTRACT,
% GPUARRAY.
% Copyright 2012-2013 The MathWorks, Inc.
[ims, scalars, outputClass] = ParseInputs(varargin{:});
num_images = numel(ims);
if any(cellfun('isclass',ims,'gpuArray'))
if num_images == 2
% two image arrayfun.
Z = imlincomb_twoImage(ims, scalars, outputClass);
elseif num_images == 3
% three image arrayfun.
Z = imlincomb_threeImage(ims, scalars, outputClass);
else
% lazy evaluation.
Z = imlincomb_lazyEval(ims, scalars, outputClass);
end
else
% if no images are gpuArrays, do work on the CPU.
Z = images.internal.imlincombc(ims,scalars,outputClass);
end
%--------------------------------------------------------------------------
function out = imlincomb_twoImage(images, scalars, outputClass)
if numel(scalars)==2
out = cast( arrayfun(@lincombTwoImage,...
images{1},images{2},...
scalars(1),scalars(2),0), outputClass );
else
out = cast( arrayfun(@lincombTwoImage,...
images{1},images{2},...
scalars(1),scalars(2),scalars(3)), outputClass );
end
%--------------------------------------------------------------------------
function out = imlincomb_threeImage(images, scalars, outputClass)
if numel(scalars)==3
out = cast( arrayfun(@lincombThreeImage,...
images{1},images{2},images{3},...
scalars(1),scalars(2),scalars(3),0), outputClass );
else
out = cast( arrayfun(@lincombThreeImage,...
images{1},images{2},images{3},...
scalars(1),scalars(2),scalars(3),scalars(4)), outputClass );
end
%--------------------------------------------------------------------------
function out = imlincomb_lazyEval(images, scalars, outputClass)
% rely on lazy evaluation to chain this loop.
out = scalars(1).*double(images{1});
for n = 2 : numel(images)
out = out + scalars(n).*double(images{n});
end
if numel(images)==numel(scalars)
out = cast(out,outputClass);
else
out = cast(out + scalars(end),outputClass);
end
%--------------------------------------------------------------------------
function [ims, scalars, output_class] = ParseInputs(varargin)
narginchk(2, Inf);
% get and check input type.
if strcmp(class(varargin{2}),'gpuArray') %#ok<*STISA>
input_class = classUnderlying(varargin{2});
else
input_class = class(varargin{2});
end
% determine output type.
if ischar(varargin{end})
valid_strings = {'uint8' 'uint16' 'uint32' 'int8' 'int16' 'int32' ...
'single' 'double'};
output_class = validatestring(varargin{end}, valid_strings, mfilename, ...
'OUTPUT_CLASS', 3);
varargin(end) = [];
else
if islogical(varargin{2})
output_class = 'double';
else
output_class = input_class;
end
end
% check images.
ims = varargin(2:2:end);
% check and gather scalars.
for p = 1:2:length(varargin)
varargin{p} = gather(varargin{p});
validateattributes(varargin{p}, {'double'}, {'real' 'nonsparse' 'scalar'}, ...
mfilename, sprintf('K%d', (p+1)/2), p);
end
scalars = [varargin{1:2:end}];
% check image size and class.
for n = 2 : numel(ims)
if ~isequal( size(ims{n}),size(ims{1}) )
error(message('images:imlincomb:mismatchedSize'));
end
if strcmp(class(ims{n}),'gpuArray') && ~strcmp(classUnderlying(ims{n}),input_class)...
||( ~strcmp(class(ims{n}),'gpuArray') && ~(strcmp(class(ims{n}),input_class)) )
error(message('images:imlincomb:mismatchedType'));
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imfilter.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imfilter.m
| 9,498 |
utf_8
|
f661bcffae73194f86e2efb63c4ec74c
|
function b = imfilter(varargin)
%IMFILTER N-D filtering of multidimensional images.
% B = IMFILTER(A,H) filters the multidimensional array A with the
% filter H. A can be logical or it can be a nonsparse numeric
% array of any class and dimension. The result, B, has the same
% size and class as A. When A is a gpuArray object, H must be a
% vector or 2-D matrix.
%
% Each element of the output, B, is computed using either single-
% or double-precision floating point, depending on the data type
% of A. When A contains double-precision or UINT32 values, the
% computations are performed using double-precision values. All
% other data types use single-precision. If A is an integer or
% logical array, then output elements that exceed the range of
% the given type are truncated, and fractional values are rounded.
%
% B = IMFILTER(A,H,OPTION1,OPTION2,...) performs multidimensional
% filtering according to the specified options. Option arguments can
% have the following values:
%
% - Boundary options
%
% X Input array values outside the bounds of the array
% are implicitly assumed to have the value X. When no
% boundary option is specified, IMFILTER uses X = 0.
%
% 'symmetric' Input array values outside the bounds of the array
% are computed by mirror-reflecting the array across
% the array border.
%
% 'replicate' Input array values outside the bounds of the array
% are assumed to equal the nearest array border
% value.
%
% 'circular' Input array values outside the bounds of the array
% are computed by implicitly assuming the input array
% is periodic.
%
% - Output size options
% (Output size options for IMFILTER are analogous to the SHAPE option
% in the functions CONV2 and FILTER2.)
%
% 'same' The output array is the same size as the input
% array. This is the default behavior when no output
% size options are specified.
%
% 'full' The output array is the full filtered result, and so
% is larger than the input array.
%
% - Correlation and convolution
%
% 'corr' IMFILTER performs multidimensional filtering using
% correlation, which is the same way that FILTER2
% performs filtering. When no correlation or
% convolution option is specified, IMFILTER uses
% correlation.
%
% 'conv' IMFILTER performs multidimensional filtering using
% convolution.
%
% Example
% -------------
% originalRGB = gpuArray(imread('peppers.png'));
% h = fspecial('motion',50,45);
% filteredRGB = imfilter(originalRGB,h);
% figure, imshow(originalRGB)
% figure, imshow(filteredRGB)
% boundaryReplicateRGB = imfilter(originalRGB,h,'replicate');
% figure, imshow(boundaryReplicateRGB)
%
% See also FSPECIAL, GPUARRAY/CONV2, GPUARRAY/CONVN, GPUARRAY/FILTER2,
% GPUARRAY.
% Copyright 1993-2013 The MathWorks, Inc.
[a, h, boundary, sameSize] = parse_inputs(varargin{:});
[finalSize, pad] = computeSizes(a, h, sameSize);
%Empty Inputs
% 'Same' output then size(b) = size(a)
% 'Full' output then size(b) = size(h)+size(a)-1
if isempty(a)
b = handleEmptyImage(a, sameSize, finalSize);
return
elseif isempty(h)
b = handleEmptyFilter(a, sameSize, finalSize);
return
end
boundaryStr = boundary;
padVal = 0;
if(~ischar(boundary))
boundaryStr = 'constant';
padVal = boundary;
end
%Special case
if(ismatrix(a) && isequal(size(h),[3 3]) && sameSize...
&& isreal(a) && isreal(h) && ~strcmp(boundaryStr,'circular'))
h = gpuArray(double(h));
padVal = cast(gather(padVal), classUnderlying(a));
b = imfiltergpumex(a, h, boundaryStr, padVal);
return;
end
% Zero-pad input based on dimensions of filter kernel.
a = padarray_algo(a,pad,boundaryStr,padVal,'both');
[separableFlag, u, s, v] = isSeparable(a, h);
if (separableFlag)
% Separable - Extract the components of the separable filter
hcol = u(:,1) * sqrt(s(1));
hrow = v(:,1)' * sqrt(s(1));
b = filterPartOrWhole(a, finalSize, hrow, hcol, pad+1, sameSize);
else % non-separable filter case
b = filterPartOrWhole(a, finalSize, h, [], pad+1, sameSize);
end
%--------------------------------------------------------------
function [a, h, boundary, sameSize] = parse_inputs(a, h, varargin)
narginchk(2,5);
if ~isa(a, 'gpuArray')
error(message('images:imfilter:gpuImageType'))
end
if (~ismatrix(h))
error(message('images:imfilter:gpuFilterKernelDims'))
end
%Assign defaults
boundary = 0; %Scalar value of zero
output = 'same';
do_fcn = 'corr';
allStrings = {'replicate', 'symmetric', 'circular', 'conv', 'corr', ...
'full','same'};
for k = 1:length(varargin)
if ischar(varargin{k})
string = validatestring(varargin{k}, allStrings,...
mfilename, 'OPTION',k+2);
switch string
case {'replicate', 'symmetric', 'circular'}
boundary = string;
case {'full','same'}
output = string;
case {'conv','corr'}
do_fcn = string;
end
else
validateattributes(varargin{k},{'numeric'},{'nonsparse'},mfilename,'OPTION',k+2);
boundary = varargin{k};
end %else
end
sameSize = strcmp(output,'same');
convMode = strcmp(do_fcn,'conv');
%
if isa(h, 'gpuArray')
if ~convMode
h = rot90(h,2);
end
else
if convMode
h = gpuArray(h);
else
% For convMode, filter must be rotated. Do this on the CPU for small sizes, as
% it is likely to be slow.
if numel(h) < 100000
h = gpuArray(rot90(h,2));
else
h = rot90(gpuArray(h),2);
end
end
end
%--------------------------------------------------------------
function [separable, u, s, v] = isSeparable(a, h)
% check for filter separability only if the kernel has enough
% elements to make it worthwhile, both the image and the filter
% kernel are two-dimensional and the kernel is not a row or column
% vector, nor does it contain any NaNs of Infs.
if strcmp(classUnderlying(a),'double')
sep_threshold = 150;
else
sep_threshold = 900;
end
subs.type = '()';
subs.subs = {':'};
if ((numel(h) >= sep_threshold) && ...
(ismatrix(a)) && ...
(ismatrix(h)) && ...
all(size(h) ~= 1) && ...
all(isfinite(subsref(h,subs))))
[u, s, v] = svd(gather(h));
s = diag(s);
tol = length(h) * s(1) * eps;
rank = sum(s > tol);
if (rank == 1)
separable = true;
else
separable = false;
end
else
separable = false;
u = [];
s = [];
v = [];
end
%--------------------------------------------------------------
function b = handleEmptyImage(a, sameSize, im_size)
if (sameSize)
b = a;
else
if all(im_size >= 0)
b = zeros(im_size, class(a));
else
error(message('images:imfilter:negativeDimensionBadSizeB'))
end
end
%--------------------------------------------------------------
function b = handleEmptyFilter(a, sameSize, im_size)
if (sameSize)
b = zeros(size(a), class(a));
else
if all(im_size>=0)
b = zeros(im_size, class(a));
else
error(message('images:imfilter:negativeDimensionBadSizeB'))
end
end
%--------------------------------------------------------------
function [finalSize, pad] = computeSizes(a, h, sameSize)
rank_a = ndims(a);
rank_h = ndims(h);
% Pad dimensions with ones if filter and image rank are different
size_h = [size(h) ones(1,rank_a-rank_h)];
size_a = [size(a) ones(1,rank_h-rank_a)];
if (sameSize)
%Same output
finalSize = size_a;
%Calculate the number of pad pixels
filter_center = floor((size_h + 1)/2);
pad = size_h - filter_center;
else
%Full output
finalSize = size_a+size_h-1;
pad = size_h - 1;
end
%--------------------------------------------------------------
function a = filterPartOrWhole(a, outSize, h1, h2, outputStartIdx, sameSize)
% intermediate results should be stored in doubles in order to
% maintain sufficient precision
origClass = classUnderlying(a);
switch (origClass)
case {'double', 'uint32'}
sameClass = strcmp(origClass, 'double');
if (~sameClass)
a = double(a);
end
otherwise
sameClass = strcmp(origClass, 'single');
if (~sameClass)
a = single(a);
end
end
% Perform the filter.
if (sameSize)
sizeFlag = 'same';
else
sizeFlag = 'full';
end
if (isempty(h2))
% Nonseparable.
a = convn(a, h1, sizeFlag);
else
% Separable - isSeparable() already checks for 2-D image and kernel.
a = conv2(h1, h2, a, sizeFlag);
end
% Retrieve the part of the image that's required.
sRHS.type = '()';
sRHS.subs = {outputStartIdx(1):(outputStartIdx(1) + outSize(1) - 1), ...
outputStartIdx(2):(outputStartIdx(2) + outSize(2) - 1), ...
':'};
a = subsref(a, sRHS);
% Cast the data as appropriate.
if (~sameClass)
a = castData(a, origClass);
end
%--------------------------------------------------------------
function result = castData(result, origClass)
if (strcmp(origClass, 'logical'))
result = result >= 0.5;
else
result = cast(result, origClass);
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
bwmorph.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/bwmorph.m
| 16,608 |
utf_8
|
096f4eb02067e14b48c5853808f0bfa3
|
function bwout = bwmorph(bwin,opStr,n)
%BWMORPH Morphological operations on binary image.
% BW2 = BWMORPH(BW1,OPERATION) applies a specific
% morphological operation to the binary gpuArray image BW1.
%
% BW2 = BWMORPH(BW1,OPERATION,N) applies the operation N
% times. N can be Inf, in which case the operation is repeated
% until the image no longer changes.
%
% OPERATION is a string that can have one of these values:
% 'bothat' Subtract the input image from its closing
% 'branchpoints' Find branch points of skeleton
% 'bridge' Bridge previously unconnected pixels
% 'clean' Remove isolated pixels (1's surrounded by 0's)
% 'close' Perform binary closure (dilation followed by
% erosion)
% 'diag' Diagonal fill to eliminate 8-connectivity of
% background
% 'endpoints' Find end points of skeleton
% 'fill' Fill isolated interior pixels (0's surrounded by
% 1's)
% 'hbreak' Remove H-connected pixels
% 'majority' Set a pixel to 1 if five or more pixels in its
% 3-by-3 neighborhood are 1's
% 'open' Perform binary opening (erosion followed by
% dilation)
% 'remove' Set a pixel to 0 if its 4-connected neighbors
% are all 1's, thus leaving only boundary
% pixels
% 'shrink' With N = Inf, shrink objects to points; shrink
% objects with holes to connected rings
% 'skel' With N = Inf, remove pixels on the boundaries
% of objects without allowing objects to break
% apart
% 'spur' Remove end points of lines without removing
% small objects completely
% 'thicken' With N = Inf, thicken objects by adding pixels
% to the exterior of objects without connected
% previously unconnected objects
% 'thin' With N = Inf, remove pixels so that an object
% without holes shrinks to a minimally
% connected stroke, and an object with holes
% shrinks to a ring halfway between the hole
% and outer boundary
% 'tophat' Subtract the opening from the input image
%
% Class Support
% -------------
% The input gpuArray image BW1 can be numeric or logical.
% It must be 2-D, real and non-sparse. The output gpuArray image
% BW2 is logical.
%
% Remarks
% -------
% To perform erosion or dilation using the structuring element ones(3),
% use IMERODE or IMDILATE.
%
% Examples
% --------
% BW1 = gpuArray(imread('circles.png'));
% figure, imshow(BW1)
% BW2 = bwmorph(BW1,'remove');
% BW3 = bwmorph(BW1,'skel',Inf);
% figure, imshow(BW2)
% figure, imshow(BW3)
%
% See also GPUARRAY/IMERODE, GPUARRAY/IMDILATE, GPUARRAY, BWEULER,
% BWPERIM.
% Copyright 2012-2013 The MathWorks, Inc.
%% Input argument parsing
narginchk(2,3)
if (nargin < 3)
n = 1;
end
hValidateAttributes(bwin,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'},...
{'real','2d'},mfilename,'BW',1);
if ~islogical(bwin)
bwin = (bwin ~= 0);
end
validOperations = {'bothat',...
'branchpoints',...
'bridge',...
'clean',...
'close',...
'diag',...
'dilate',...
'endpoints',...
'erode',...
'fatten',...
'fill',...
'hbreak',...
'majority',...
'perim4',...
'perim8',...
'open',...
'remove',...
'shrink',...
'skeleton',...
'spur',...
'thicken',...
'thin',...
'tophat'};
opStr = validatestring(opStr,validOperations, 'bwmorph');
%% Call the core function
if(isempty(bwin))
bwout = bwin;
return;
end
if(n<1)
% nothing to do
bwout = bwin;
elseif(n==1)
bwout = bwmorphApplyOnce(bwin,opStr);
else
% Repeat N times or till output stops changing
iter = 0;
bwout = bwin;
while(iter<n)
last_aout = bwout;
bwout = bwmorphApplyOnce(bwout,opStr);
iter = iter+1;
if(isequal(last_aout, bwout))
% the output is not changing anymore
break
end
end
end
if (nargout == 0)
imshow(bwout);
end
end
function bw = bwmorphApplyOnce(bw, opStr)
switch opStr
%
% Function BOTHAT
%
case 'bothat'
bwc = bwlookupgpumex(bw, gpuArray(images.internal.lutdilate()));
bwc = bwlookupgpumex(bwc, gpuArray(images.internal.luterode()));
bw = bwc & ~bw;
%
% Function BRANCHPOINTS
%
case 'branchpoints'
% Initial branch point candidates
C = bwlookupgpumex(bw, gpuArray(images.internal.lutbranchpoints()));
% Background 4-Connected Object Count (Vp)
B = bwlookupgpumex(bw, gpuArray(uint8(images.internal.lutbackcount4())));
% End Points (Vp = 1)
E = (B == 1);
% Final branch point candidates
FC = ~E .* C;
% Generate mask that defines pixels for which Vp = 2 and no
% foreground neighbor q for which Vq > 2
% Vp = 2 Mask
Vp = ((B == 2) & ~E);
% Vq > 2 Mask
Vq = ((B > 2) & ~E);
% Dilate Vq
D = bwlookupgpumex(Vq, gpuArray(images.internal.lutdilate()));
% Intersection between dilated Vq and final candidates w/ Vp = 2
M = (FC & Vp) & D;
% Final Branch Points
bw = FC & ~M;
%
% Function BRIDGE
%
case 'bridge'
lut = images.internal.lutbridge();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function CLEAN
%
case 'clean'
lut = images.internal.lutclean();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function CLOSE
%
case 'close'
bwd = bwlookupgpumex(bw, gpuArray(images.internal.lutdilate()));
bw = bwlookupgpumex(bwd, gpuArray(images.internal.luterode()));
%
% Function DIAG
%
case 'diag'
lut = images.internal.lutdiag();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function DILATE
%
case 'dilate'
lut = images.internal.lutdilate();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function ENDPOINTS
%
case 'endpoints'
lut = images.internal.lutendpoints();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function ERODE
%
case 'erode'
lut = images.internal.luterode();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function FATTEN
%
case 'fatten'
lut = images.internal.lutfatten();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function FILL
%
case 'fill'
lut = images.internal.lutfill();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function HBREAK
%
case 'hbreak'
lut = images.internal.luthbreak();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function MAJORITY
%
case 'majority'
lut = images.internal.lutmajority();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function OPEN
%
case 'open'
bw = bwlookupgpumex(bw,gpuArray(images.internal.luterode()));
bw = bwlookupgpumex(bw,gpuArray(images.internal.lutdilate()));
%
% Function PERIM4
%
case 'perim4'
lut = images.internal.lutper4();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function PERIM8
%
case 'perim8'
lut = images.internal.lutper8();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function REMOVE
%
case 'remove'
lut = images.internal.lutremove();
bw = bwlookupgpumex(bw, gpuArray(lut));
%
% Function SHRINK
%
case 'shrink'
table = images.internal.lutshrink();
% First subiteration
m = bwlookupgpumex(bw, gpuArray(table));
sub = bw & ~m;
%bw(1:2:end,1:2:end) = sub(1:2:end,1:2:end);
subStruct.type = '()';
subStruct.subs = {1:2:size(bw,1), 1:2:size(bw,2)};
bw = subsasgn(bw, subStruct, subsref(sub, subStruct));
% Second subiteration
m = bwlookupgpumex(bw, gpuArray(table));
sub = bw & ~m;
%bw(2:2:end,2:2:end) = sub(2:2:end,2:2:end);
subStruct.type = '()';
subStruct.subs = {2:2:size(bw,1), 2:2:size(bw,2)};
bw = subsasgn(bw, subStruct, subsref(sub, subStruct));
% Third subiteration
m = bwlookupgpumex(bw, gpuArray(table));
sub = bw & ~m;
%bw(1:2:end,2:2:end) = sub(1:2:end,2:2:end);
subStruct.type = '()';
subStruct.subs = {1:2:size(bw,1), 2:2:size(bw,2)};
bw = subsasgn(bw, subStruct, subsref(sub, subStruct));
% Fourth subiteration
m = bwlookupgpumex(bw, gpuArray(table));
sub = bw & ~m;
%bw(2:2:end,1:2:end) = sub(2:2:end,1:2:end);
subStruct.type = '()';
subStruct.subs = {2:2:size(bw,1), 1:2:size(bw,2)};
bw = subsasgn(bw, subStruct, subsref(sub, subStruct));
%
% Function SKEL
%
case 'skeleton'
for i = 1:8
bw = bwlookupgpumex(bw, gpuArray(images.internal.lutskel(i)));
end
%
% Function SPUR
%
case 'spur'
%SPUR Remove parasitic spurs.
% [C,LUT] = spur(A, numIterations) removes parasitic spurs from
% the binary image A that are shorter than numIterations.
lut = images.internal.lutspur();
% Start by complementing the image. The lookup table is designed
% to remove endpoints in a complemented image, where 0-valued
% pixels are considered to be foreground pixels. That way,
% because bwlookup assumes that pixels outside the image are 0,
% spur removal takes place as if the image were completely
% surrounded by foreground pixels. That way, lines that
% intersect the edge of the image aren't pruned at the edge.
bw = ~bw;
% Identify all end points. These form the entire set of
% pixels that can be removed in this iteration. However,
% some of these points may not be removed.
endPoints = bwlookupgpumex(bw, gpuArray(images.internal.lutspur()));
% Remove end points in the first field.
%bw(1:2:end, 1:2:end) = xor(bw(1:2:end, 1:2:end), ...
% endPoints(1:2:end, 1:2:end));
subStruct.type = '()';
subStruct.subs = {1:2:size(bw,1), 1:2:size(bw,2)};
ff = xor(subsref(bw, subStruct), subsref(endPoints, subStruct));
bw = subsasgn(bw, subStruct, ff);
% In the second field, remove any of the original end points
% that are still end points.
newEndPoints = endPoints & bwlookupgpumex(bw, gpuArray(lut));
%bw(1:2:end, 2:2:end) = xor(bw(1:2:end, 2:2:end), ...
% newEndPoints(1:2:end, 2:2:end));
subStruct.type = '()';
subStruct.subs = {1:2:size(bw,1), 2:2:size(bw,2)};
ff = xor(subsref(bw, subStruct), subsref(newEndPoints, subStruct));
bw = subsasgn(bw, subStruct, ff);
% In the third field, remove any of the original end points
% that are still end points.
newEndPoints = endPoints & bwlookupgpumex(bw, gpuArray(lut));
%bw(2:2:end, 1:2:end) = xor(bw(2:2:end, 1:2:end), ...
% newEndPoints(2:2:end, 1:2:end));
subStruct.type = '()';
subStruct.subs = {2:2:size(bw,1), 1:2:size(bw,2)};
ff = xor(subsref(bw, subStruct), subsref(newEndPoints, subStruct));
bw = subsasgn(bw, subStruct, ff);
% In the fourth field, remove any of the original end points
% that are still end points.
newEndPoints = endPoints & bwlookupgpumex(bw, gpuArray(lut));
%bw(2:2:end, 2:2:end) = xor(bw(2:2:end, 2:2:end), ...
% newEndPoints(2:2:end, 2:2:end));
subStruct.type = '()';
subStruct.subs = {2:2:size(bw,1), 2:2:size(bw,2)};
ff = xor(subsref(bw, subStruct), subsref(newEndPoints, subStruct));
bw = subsasgn(bw, subStruct, ff);
% Now that we're finished, we need to complement the image once
% more.
bw = ~bw;
%
% Function THIN
%
case 'thin'
% Louisa Lam, Seong-Whan Lee, and Ching Y. Wuen, "Thinning Methodologies-A
% Comprehensive Survey," IEEE TrPAMI, vol. 14, no. 9, pp. 869-885, 1992. The
% algorithm is described at the bottom of the first column and the top of the
% second column on page 879.
lut1 = images.internal.lutthin1();
image_iter1 = bwlookupgpumex(bw, gpuArray(lut1));
lut2 = images.internal.lutthin2();
bw = bwlookupgpumex(image_iter1, gpuArray(lut2));
%
% Function TOPHAT
%
case 'tophat'
bwe = bwlookupgpumex(bw,gpuArray(images.internal.luterode()));
bwd = bwlookupgpumex(bwe,gpuArray(images.internal.lutdilate()));
bw = bw&~bwd;
%
% Function THICKEN
%
case 'thicken'
% Isolated pixels are going to need a "jump-start" to get
% them going; otherwise, they won't "thicken".
% First, identify the isolated pixels.
iso = bwlookupgpumex(bw, gpuArray(images.internal.lutiso()));
if (any(any(iso(:))))
% Identify possible pixels to maybe change to one.
growMaybe = bwlookupgpumex(iso, gpuArray(images.internal.lutdilate()));
% Identify pixel locations in the original image
% with only one on pixel in the 3-by-3 neighborhood.
oneNeighbor = bwlookupgpumex(bw, gpuArray(images.internal.lutsingle()));
% If a pixel is adjacent to an isolated pixel, *and* it
% doesn't also have another neighbor, set it to one.
bw = bw | (oneNeighbor & growMaybe);
end
% Create a padded logical array
[m,n] = size(bw);
m = m+4;
n = n+4;
c = true([m,n], 'like', bw);
%c(3:(m-2),3:(n-2)) = ~bw;
subStruct.type = '()';
subStruct.subs = {3:(m-2), 3:(n-2)};
c = subsasgn(c, subStruct, ~bw);
% thin
lut1 = images.internal.lutthin1();
image_iter1 = bwlookupgpumex(c, gpuArray(lut1));
lut2 = images.internal.lutthin2();
cc = bwlookupgpumex(image_iter1, gpuArray(lut2));
% diag
lutd = images.internal.lutdiag();
d = bwlookupgpumex(cc, gpuArray(lutd));
c = (c & ~cc & d) | cc;
%c(1:m, 1:2) = true;
subStruct.type = '()';
subStruct.subs = {1:m, 1:2};
c = subsasgn(c, subStruct, true);
%c(1:m, (n-1):n) = true;
subStruct.type = '()';
subStruct.subs = {1:m, (n-1):n};
c = subsasgn(c, subStruct, true);
%c(1:2, 1:n) = true;
subStruct.type = '()';
subStruct.subs = {1:2, 1:n};
c = subsasgn(c, subStruct, true);
%c((m-1):m, 1:n) = true;
subStruct.type = '()';
subStruct.subs = {(m-1):m, 1:n};
c = subsasgn(c, subStruct, true);
%c = ~c(3:(m-2),3:(n-2));
subStruct.type = '()';
subStruct.subs = {3:(m-2), 3:(n-2)};
c = subsref(c, subStruct);
c = ~c;
bw = c;
otherwise
error(message('images:bwmorph:unknownOperation',opStr));
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imgradient.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imgradient.m
| 6,769 |
utf_8
|
d569bf9873ebf2e6d435c7558ab2ae1c
|
function [Gmag, Gdir] = imgradient(varargin)
%IMGRADIENT Find the gradient magnitude and direction of an image.
% [Gmag, Gdir] = IMGRADIENT(I) takes a grayscale or binary gpuArray image
% I as input and returns the gradient magnitude, Gmag, and the gradient
% direction, Gdir as gpuArray's. Gmag and Gdir are the same size as the
% input image I. Gdir contains angles in degrees within the range [-180
% 180] measured counterclockwise from the positive X axis (X axis points
% in the direction of increasing column subscripts).
%
% [Gmag, Gdir] = IMGRADIENT(I, METHOD) calculates the gradient magnitude
% and direction using the specified METHOD. Supported METHODs are:
%
% 'Sobel' : Sobel gradient operator (default)
%
% 'Prewitt' : Prewitt gradient operator
%
% 'CentralDifference' : Central difference gradient dI/dx = (I(x+1)- I(x-1))/ 2
%
% 'IntermediateDifference': Intermediate difference gradient dI/dx = I(x+1) - I(x)
%
% 'Roberts' : Roberts gradient operator
%
% [Gmag, Gdir] = IMGRADIENT(Gx, Gy) calculates the gradient magnitude and
% direction from the directional gradients along the X axis, Gx, and
% Y axis, Gy, such as that returned by IMGRADIENTXY. X axis points in the
% direction of increasing column subscripts and Y axis points in the
% direction of increasing row subscripts.
%
% Class Support
% -------------
% The input gpuArray image I and the input directional gradients Gx and
% Gy can be numeric or logical two-dimensional matrices. Both Gmag and
% Gdir are of underlying class double in all cases, except when the input
% gpuArray image I or either one or both of the directional gradients Gx
% and Gy is of underlying class single. In that case Gmag and Gdir will
% be of class single.
%
% Notes
% -----
% 1. When applying the gradient operator at the boundaries of the image,
% values outside the bounds of the image are assumed to equal the
% nearest image border value. This is similar to the 'replicate'
% boundary option in IMFILTER.
%
% Example 1
% ---------
% This example computes and displays the gradient magnitude and direction
% of the image coins.png using Prewitt's gradient operator.
%
% I = gpuArray(imread('coins.png'));
% imshow(I)
%
% [Gmag, Gdir] = imgradient(I,'prewitt');
%
% figure, imshow(Gmag, []), title('Gradient magnitude')
% figure, imshow(Gdir, []), title('Gradient direction')
%
% Example 2
% ---------
% This example computes and displays both the directional gradients and the
% gradient magnitude and gradient direction for the image coins.png.
%
% I = gpuArray(imread('coins.png'));
% imshow(I)
%
% [Gx, Gy] = imgradientxy(I);
% [Gmag, Gdir] = imgradient(Gx, Gy);
%
% figure, imshow(Gmag, []), title('Gradient magnitude')
% figure, imshow(Gdir, []), title('Gradient direction')
% figure, imshow(Gx, []), title('Directional gradient: X axis')
% figure, imshow(Gy, []), title('Directional gradient: Y axis')
%
% See also GPUARRAY/EDGE, FSPECIAL, GPUARRAY/IMGRADIENTXY, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
narginchk(1,2);
[I, Gx, Gy, method] = parse_inputs(varargin{:});
% Compute directional gradients
if (isempty(I))
% Gx, Gy are given as inputs
if ~isfloat(Gx)
Gx = double(Gx);
end
if ~isfloat(Gy)
Gy = double(Gy);
end
else
% If Gx, Gy not given, compute them. For all others except Roberts
% method, use IMGRADIENTXY to compute Gx and Gy.
if (strcmpi(method,'roberts'))
if ~isfloat(I)
I = double(I);
end
Gx = imfilter(I,[1 0; 0 -1],'replicate');
Gy = imfilter(I,[0 1; -1 0],'replicate');
else
[Gx, Gy] = imgradientxy(I,method);
end
end
% Compute gradient direction and magnitude
if (nargout <= 1)
Gmag = hypot(Gx,Gy);
else
toradian = 180/pi; % up-level indexing
if (strcmpi(method,'roberts'))
% For pixels with zero gradient (both Gx and Gy zero), Gdir is set
% to 0. Compute direction only for pixels with non-zero gradient.
% arrayfun is used to leverage element-wise computation speed-up.
% up-level indexing
pibyfour = pi/4;
twopi = 2*pi;
pii = pi;
[Gmag,Gdir] = arrayfun(@computeDirectionAndMagnitudeGradientRoberts,Gx,Gy);
else
[Gmag,Gdir] = arrayfun(@computeDirectionAndMagnitudeGradient,Gx,Gy);
end
end
% Nested function to compute gradient magnitude and direction for
% 'roberts'.
function [gmag,gdir] = computeDirectionAndMagnitudeGradientRoberts(gx,gy)
if gx==0 && gy==0
gdir = 0;
else
gdir = atan2(gy,-gx) - pibyfour;
if gdir < -pii
gdir = gdir + twopi;
end
gdir = gdir*toradian;
end
gmag = hypot(gx,gy);
end
% Nested function to compute gradient magnitude and direction for
% 'sobel' and 'prewitt'.
function [gmag,gdir] = computeDirectionAndMagnitudeGradient(gx,gy)
gdir = atan2(-gy,gx)*toradian;
gmag = hypot(gx,gy);
end
end
%======================================================================
function [I, Gx, Gy, method] = parse_inputs(varargin)
methodstrings = {'sobel','prewitt','roberts','centraldifference', ...
'intermediatedifference'};
I = [];
Gx = [];
Gy = [];
method = 'sobel'; % Default method
if (nargin == 1)
I = gpuArray( varargin{1} );
hValidateAttributes(I,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'}, ...
{'2d','real'},mfilename,'I',1);
else % (nargin == 2)
if ischar(varargin{2})
I = gpuArray( varargin{1} );
hValidateAttributes(I,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'}, ...
{'2d','real'},mfilename,'I',1);
method = validatestring(varargin{2}, methodstrings, ...
mfilename, 'Method', 2);
else
Gx = gpuArray( varargin{1} );
Gy = gpuArray( varargin{2} );
hValidateAttributes(Gx,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'}, ...
{'2d','real'},mfilename,'Gx',1);
hValidateAttributes(Gy,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'}, ...
{'2d','real'},mfilename,'Gy',2);
if (~isequal(size(Gx),size(Gy)))
error(message('images:validate:unequalSizeMatrices','Gx','Gy'));
end
end
end
end
%----------------------------------------------------------------------
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
histeq.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/histeq.m
| 7,854 |
utf_8
|
ae69fd5e7b0c95431671b9653bb91967
|
function [out,T] = histeq(varargin)
%HISTEQ Enhance contrast using histogram equalization.
% HISTEQ enhances the contrast of images by transforming the values in an
% intensity image so that the histogram of the output image approximately
% matches a specified histogram.
%
% J = HISTEQ(I,HGRAM) transforms the gpuArray intensity image I so that
% the histogram of the output gpuArray image J with length(HGRAM) bins
% approximately matches HGRAM. The gpuArray vector HGRAM should contain
% integer counts for equally spaced bins with intensity values in the
% appropriate range: [0,1] for images of class double or single, [0,255]
% for images of class uint8, [0,65535] for images of class uint16, and
% [-32768, 32767] for images of class int16. HISTEQ automatically scales
% HGRAM so that sum(HGRAM) = NUMEL(I). The histogram of J will better
% match HGRAM when length(HGRAM) is much smaller than the number of
% discrete levels in I.
%
% J = HISTEQ(I,N) transforms the gpuArray intensity image I, returning in
% J a gpuArray intensity image with N discrete levels. A roughly equal
% number of pixels is mapped to each of the N levels in J, so that the
% histogram of J is approximately flat. (The histogram of J is flatter
% when N is much smaller than the number of discrete levels in I.) The
% default value for N is 64.
%
% [J,T] = HISTEQ(I) returns the gray scale transformation that maps gray
% levels in the intensity image I to gray levels in J.
%
% Class Support
% -------------
% For syntaxes that include a gpuArray intensity image I as input, I can
% be uint8, uint16, int16, double or single. The output gpuArray image J
% has the same class as I.
%
% Also, the optional output T (the gray level transform) is always a
% gpuArray of class double.
%
% Example
% -------
% Enhance the contrast of an intensity image using histogram
% equalization.
%
% I = gpuArray(imread('tire.tif'));
% J = histeq(I);
% figure, imshow(I), figure, imshow(J)
%
% See also ADAPTHISTEQ, BRIGHTEN, GPUARRAY/IMADJUST, GPUARRAY/IMHIST,
% IMHISTMATCH, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
narginchk(1,2);
nargoutchk(0,2);
im = varargin{1};
%Dispatch to CPU
if ~isa(im,'gpuArray')
args = gatherIfNecessary(varargin{:});
switch nargout
case 0
histeq(args{:});
return;
case 1
out = histeq(args{:});
return;
case 2
[out,T] = histeq(args{:});
return;
end
end
%Check image
hValidateAttributes(im,...
{'uint8','uint16','int16','single','double'}, ...
{'real','2d'},mfilename,'I',1);
nLevelsIn = 256; %Number of levels used in computing histogram over
%input image.
if nargin == 1
%HISTEQ(I)
nLevelsSpec = 64; %Default number of levels for histogram equalization.
hgramSpec = gpuArray.ones(nLevelsSpec,1)*(numel(im)/nLevelsSpec);
elseif nargin == 2
if isscalar(varargin{2})
%HISTEQ(I,N)
nLevelsSpec = gather(varargin{2});
validateattributes(nLevelsSpec,{'single','double'},...
{'nonsparse','integer','real','positive','scalar'},...
mfilename,'N',2);
hgramSpec = gpuArray.ones(nLevelsSpec,1)*(numel(im)/nLevelsSpec);
else
%HISTEQ(I,HGRAM)
hgramSpec = varargin{2};
nLevelsSpec = numel(hgramSpec);
if isa(hgramSpec,'gpuArray')
hValidateAttributes(hgramSpec,...
{'single','double'},...
{'real','vector','nonempty'},mfilename,'hgram',2);
else
validateattributes(hgramSpec,...
{'single','double'},...
{'real','nonsparse','vector','nonempty'},...
mfilename,'hgram',2);
end
%Convert hgram to a column vector.
if ~iscolumn(hgramSpec)
hgramSpec = hgramSpec';
end
%Normalize hgram so sum(hgram)=numel(im)
hgramSpec = hgramSpec*(numel(im)/sum(hgramSpec));
end
end
classChanged = false;
if strcmp(classUnderlying(im),'int16')
classChanged = true;
im = im2uint16(im);
end
%Compute imput image histogram and CDF.
hgramIn = (imhist(im,nLevelsIn))';
cumIn = cumsum(hgramIn);
T = createTransformationToIntensityImage(im,hgramSpec,nLevelsSpec,nLevelsIn,hgramIn,cumIn);
imout = applyTransformation(im,T);
if classChanged
imout = im2int16(imout);
end
if nargout == 0
imshow(imout);
return;
else
out = imout;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function T = createTransformationToIntensityImage(a,hgramSpec,nSpec,nIn,hgramIn,cumIn)
%Compute the gray-level transformation needed to match histogram of input
%image hgramIn with specified histogram hgramSpec.
num_a = numel(a);
cumSpec = cumsum(hgramSpec);
tol_val = num_a*sqrt(eps);
%hgramIn(1)=0,hgramIn(end)=0;
hgramIn = subsasgn(hgramIn,substruct('()',{[1 nIn]}),0);
if nSpec~=nIn
% Rely on arrayfun to do a repmat-like expansion.
err = arrayfun(@computeTransformation,cumSpec,cumIn,hgramIn);
else
% Do the repmat ourselves when m==n
err = arrayfun(@computeTransformation,repmat(cumSpec,1,nSpec),cumIn,hgramIn);
end
[~,T] = min(err);
T = (T-1)/(nSpec-1);
%Nested function to compute Transformation matrix.
function e = computeTransformation(cd,c,t)
e = cd-c + t/2;
if e < -tol_val
e = num_a;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = applyTransformation(im,T)
%Apply gray-level transformation defined in T to im.
classname = classUnderlying(im);
nLevels = 255;
switch classname
case 'uint8'
scale = nLevels / 255;
if nLevels == 255
out = arrayfun(@grayxformUint8,im);
else
out = arrayfun(@grayxformUint8Scale,im);
end
case 'uint16'
scale = nLevels / 65535;
if nLevels == 65535
out = arrayfun(@grayxformUint16,im);
else
out = arrayfun(@grayxformUint16Scale,im);
end
case 'single'
out = arrayfun(@grayxformSingleScale,im);
case 'double'
out = arrayfun(@grayxformDoubleScale,im);
otherwise
error(message('images:grayxform:unsupportedInputClass'));
end
% Nested functions for pixel-wise computation.
function pix_out = grayxformUint8(pix_in)
%GRAYXFORMUINT8 pixel-wise mapping for uint8 images with standard
%mapping.
pix_out = uint8(255.0*T(uint32(pix_in)+1));
end
function pix_out = grayxformUint16(pix_in)
%GRAYXFORMUINT16 pixel-wise mapping for uint16 images with standard
%mapping.
pix_out = uint16(65535.0*T(uint32(pix_in)+1));
end
function pix_out = grayxformUint8Scale(pix_in)
%GRAYXFORMUINT8SCALE general pixel-wise mapping for uint8 images.
index = ceil(scale*double(pix_in) + 0.5);
pix_out = uint8( 255.0*T(index) );
end
function pix_out = grayxformUint16Scale(pix_in)
%GRAYXFORMUINT8SCALE general pixel-wise mapping for uint16 images.
index = ceil(scale*double(pix_in) + 0.5);
pix_out = uint16( 65535.0*T(index) );
end
function pix_out = grayxformDoubleScale(pix_in)
%GRAYXFORMDOUBLESCALE general pixel-wise mapping for double images.
if pix_in>=0 && pix_in<=1
index = floor(pix_in*nLevels+.5)+1;
pix_out = T(index);
elseif pix_in >1
pix_out = T(nLevels+1);
else
pix_out = T(1);
end
end
function pix_out = grayxformSingleScale(pix_in)
%GRAYXFORMSINGLESCALE general pixel-wise mapping for single images.
if pix_in>=0 && pix_in<=1
index = floor(pix_in*nLevels+.5)+1;
pix_out = single(T(index));
elseif pix_in >1
pix_out = single(T(nLevels+1));
else
pix_out = single(T(1));
end
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
stretchlim.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/stretchlim.m
| 3,803 |
utf_8
|
092c68e2e1f03b7f2edd0bef10399c08
|
function lowhigh = stretchlim(varargin)
%STRETCHLIM Find limits to contrast stretch a gpuArray image.
% LOW_HIGH = STRETCHLIM(I,TOL) returns a pair of gray values that can be
% used by IMADJUST to increase the contrast of a gpuArray image.
%
% TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of gpuArray image to
% saturate at low and high pixel values.
%
% If TOL is a scalar, TOL = LOW_FRACT, and HIGH_FRACT = 1 - LOW_FRACT,
% which saturates equal fractions at low and high pixel values.
%
% If you omit the argument, TOL defaults to [0.01 0.99], saturating 2%.
%
% If TOL = 0, LOW_HIGH = [min(I(:)); max(I(:))].
%
% LOW_HIGH = STRETCHLIM(RGB,TOL) returns a 2-by-3 matrix of pixel value
% pairs to saturate each plane of the RGB image. TOL specifies the same
% fractions of saturation for each plane.
%
% Class Support
% -------------
% The input image can be uint8, uint16, int16, double, or single, and must
% be real and nonsparse. The output limits are double and have values
% between 0 and 1.
%
% Note
% ----
% If TOL is too big, such that no pixels would be left after saturating
% low and high pixel values, then STRETCHLIM returns [0; 1].
%
% Example
% -------
% I = gpuArray(imread('pout.tif'));
% J = imadjust(I,stretchlim(I),[]);
% figure, imshow(I), figure, imshow(J)
%
% See also BRIGHTEN, DECORRSTRETCH, GPUARRAY/HISTEQ, GPUARRAY/IMADJUST.
% Copyright 2013 The MathWorks, Inc.
if ~isa(varargin{1},'gpuArray') || strcmp(classUnderlying(varargin{1}),'uint8')
% Dispatch to CPU
args = gatherIfNecessary(varargin{:});
lowhigh = gpuArray(stretchlim(args{:}));
return;
end
[img,tol] = ParseInputs(varargin{:});
if strcmp(classUnderlying(img),'uint8')
nbins = 256;
else
nbins = 65536;
end
tol_low = tol(1);
tol_high = tol(2);
p = size(img,3);
if tol_low < tol_high
ilowhigh = gpuArray.zeros(2,p);
for i = 1:p % Find limits, one plane at a time
sIdx.type = '()';
sIdx.subs = {':',':',i};
N = imhistgpumex(subsref(img,sIdx),nbins);
cdf = cumsum(N)/sum(N); %cumulative distribution function
ilow = find(cdf > tol_low, 1, 'first');
ihigh = find(cdf >= tol_high, 1, 'first');
lhIdx.type = '()';
lhIdx.subs = {':',i};
if ilow == ihigh % this could happen if img is flat
ilowhigh = subsasgn(ilowhigh,lhIdx, [1;nbins]);
else
ilowhigh = subsasgn(ilowhigh,lhIdx, [ilow; ihigh]);
end
end
lowhigh = (ilowhigh - 1)/(nbins-1); % convert to range [0 1]
else
% tol_low >= tol_high, this tolerance does not make sense. For example, if
% the tolerance is .5 then no pixels would be left after saturating
% low and high pixel values. In all of these cases, STRETCHLIM
% returns [0; 1]. See gecks 278249 and 235648.
lowhigh = repmat(gpuArray([0;1]),1,p);
end
%-----------------------------------------------------------------------------
function [img,tol] = ParseInputs(varargin)
narginchk(1, 2);
img = varargin{1};
hValidateAttributes(img,...
{'uint8', 'uint16', 'double', 'int16', 'single'},...
{'real'},mfilename, 'I or RGB', 1);
if (ndims(img) > 3)
error(message('images:stretchlim:dimTooHigh'))
end
tol = [.01 .99]; %default
if nargin == 2
tol = gather(varargin{2});
switch numel(tol)
case 1
tol(2) = 1 - tol;
case 2
if (tol(1) >= tol(2))
error(message('images:stretchlim:invalidTolOrder'))
end
otherwise
error(message('images:stretchlim:invalidTolSize'))
end
end
if ( any(tol < 0) || any(tol > 1) || any(isnan(tol)) )
error(message('images:stretchlim:tolOutOfRange'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
imfill.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/imfill.m
| 9,187 |
utf_8
|
63688d92d55590f72ada05025b677cb1
|
function [I2,locations] = imfill(varargin)
%IMFILL Fill image regions and holes.
% BW2 = IMFILL(BW1,LOCATIONS) performs a flood-fill operation on
% background pixels of the 2-D input binary gpuArray image BW1, starting
% from the points specified in LOCATIONS. LOCATIONS can be a P-by-1
% vector, in which case it contains the linear indices of the starting
% locations. LOCATIONS can also be a P-by-2 matrix, in which case each
% row contains the array indices of one of the starting locations.
%
% BW2 = IMFILL(BW1,'holes') fills holes in the 2-D binary gpuArray image,
% BW1. A hole is a set of background pixels that cannot be reached by
% filling in the background from the edge of the image.
%
% I2 = IMFILL(I1) fills holes in an 2-D intensity gpuArray image, I1. In
% this case a hole is an area of dark pixels surrounded by lighter
% pixels.
%
% Specifying Connectivity
% -----------------------
% By default, IMFILL uses 4-connected background neighbors for the 2-D
% inputs. You can override the default connectivity with these syntaxes:
%
% BW2 = IMFILL(BW1,LOCATIONS,CONN)
% BW2 = IMFILL(BW1,CONN,'holes')
% I2 = IMFILL(I1,CONN)
%
% CONN may have the following scalar values:
%
% 4 two-dimensional four-connected neighborhood
% 8 two-dimensional eight-connected neighborhood
%
% Performance Note
% -----------------------
% With IMFILL computations on the GPU, better performance can be
% achieved with syntaxes where the LOCATIONS input is used:
%
% BW2 = IMFILL(BW1,LOCATIONS)
% BW2 = IMFILL(BW1,LOCATIONS,CONN)
%
% Interactive Use
% -----------------------
% Interactive syntaxes are not supported on the GPU:
%
% BW2 = IMFILL(BW1)
% [BW2,LOCATIONS] = IMFILL(BW1)
% BW2 = IMFILL(BW1,0,CONN)
%
% Class Support
% -------------
% The input gpuArray image can have its underlying class being logical or
% numeric (excluding uint64 or int64), and it must be real and 2-D. The
% output image has the same class as the input image.
%
% Examples
% --------
% Fill in the background of a binary gpuArray image from a specified
% starting location:
%
% BW1 = logical([1 0 0 0 0 0 0 0
% 1 1 1 1 1 0 0 0
% 1 0 0 0 1 0 1 0
% 1 0 0 0 1 1 1 0
% 1 1 1 1 0 1 1 1
% 1 0 0 1 1 0 1 0
% 1 0 0 0 1 0 1 0
% 1 0 0 0 1 1 1 0]);
% BW1 = gpuArray(BW1);
% BW2 = imfill(BW1,[3 3],8)
%
% Fill in the holes of a binary gpuArray image:
%
% BW4 = gpuArray(im2bw(imread('coins.png')));
% BW5 = imfill(BW4,'holes');
% figure, imshow(BW4), figure, imshow(BW5)
%
% Fill in the holes of an intensity gpuArray image:
%
% I = gpuArray(imread('tire.tif'));
% I2 = imfill(I);
% figure, imshow(I), figure, imshow(I2)
%
% See also BWSELECT, GPUARRAY/IMRECONSTRUCT, ROIFILL.
% Copyright 2013 The MathWorks, Inc.
% Grandfathered syntaxes:
% IMFILL(I1,'holes') - no longer necessary to use 'holes'
% IMFILL(I1,CONN,'holes') - no longer necessary to use 'holes'
% Testing notes
% =============
% I - real, full, nonsparse, numeric array, 2-d
% - Infs OK
% - NaNs not allowed
%
% CONN - valid 2-d min and max connectivity specifier
%
% LOCATIONS - can be either a P-by-1 double vector containing
% valid linear indices into the input image, or a
% P-by-ndims(I) array. In the second case, each row
% of LOCATIONS must contain a set of valid array indices
% into the input image.
%
% 'holes' - match is case-insensitive; partial match allowed.
%
% CPU dispatch if necessary
if ~isa(varargin{1}, 'gpuArray')
args = gatherIfNecessary(varargin{:});
[I2,locations] = imfill(args{:});
return;
end
[I,locations,conn,do_fillholes] = parse_inputs(varargin{:});
% Return now if no hole to fill
if isempty(I) || (~do_fillholes && isempty(locations))
I2 = I;
return
end
if do_fillholes
if islogical(I)
mask = uint8(I);
else
mask = I;
end
mask = padarray(mask, ones(1,ndims(mask)), -Inf, 'both');
mask = imcomplement(mask);
marker = mask;
idx = cell(1,ndims(I));
for k = 1:ndims(I)
idx{k} = 2:(size(marker,k) - 1);
end
sIdx.type = '()';
sIdx.subs = idx;
marker = subsasgn(marker,sIdx,cast(-Inf, 'like', marker));
I2 = imreconstruct(marker, mask, conn);
I2 = imcomplement(I2);
I2 = subsref(I2,sIdx);
if islogical(I)
I2 = logical(I2);
end
else
mask = imcomplement(I);
marker = gpuArray.false(size(mask));
sIdx.type = '()';
sIdx.subs = {locations};
marker = subsasgn(marker, sIdx, subsref(mask, sIdx));
marker = imreconstruct(marker, mask, conn);
I2 = I | marker;
end
%%%
%%% Subfunction ParseInputs
%%%
function [IM,locations,conn,do_fillholes] = parse_inputs(varargin)
narginchk(1,3);
IM = varargin{1};
do_interactive = false;
do_fillholes = false;
conn = 4; % default to minimal 2-D connectivity
do_conn_check = false;
locations = [];
do_location_check = false;
hValidateAttributes(IM,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'},...
{'real', '2d', 'nonnan'},mfilename,'I1 or BW1',1);
switch nargin
case 1
if islogical(IM)
% IMFILL(BW1)
do_interactive = true;
else
% IMFILL(I1)
do_fillholes = true;
end
case 2
if islogical(IM)
if ischar(varargin{2})
% IMFILL(BW1, 'holes')
validatestring(varargin{2}, {'holes'}, mfilename, 'OPTION', 2);
do_fillholes = true;
else
% IMFILL(BW1, LOCATIONS)
locations = varargin{2};
do_location_check = true;
end
else
if ischar(varargin{2})
% IMFILL(I1, 'holes')
validatestring(varargin{2}, {'holes'}, mfilename, 'OPTION', 2);
do_fillholes = true;
else
% IMFILL(I1, CONN)
conn = varargin{2};
do_conn_check = true;
do_fillholes = true;
end
end
case 3
if islogical(IM)
if ischar(varargin{3})
% IMFILL(BW1,CONN,'holes')
validatestring(varargin{3}, {'holes'}, mfilename, 'OPTION', 3);
do_fillholes = true;
conn = varargin{2};
do_conn_check = true;
else
if isequal(varargin{2}, 0)
% IMFILL(BW1,0,CONN)
do_interactive = true;
else
% IMFILL(BW1,LOCATIONS,CONN)
locations = varargin{2};
do_location_check = true;
conn = varargin{3};
do_conn_check = true;
end
end
else
% IMFILL(I1,CONN,'holes')
validatestring(varargin{3}, {'holes'}, mfilename, 'OPTION', 3);
do_fillholes = true;
conn = varargin{2};
do_conn_check = true;
end
end
if do_conn_check
% Preprocess conn
conn = gather(conn);
if isscalar(conn)
if (conn~=4 && conn~=8)
error(message('images:imfill:unsupportedConnForGPU'));
end
else
if isequal(conn,conndef(2,'min'))
conn = 4;
elseif isequal(conn,conndef(2,'max'))
conn = 8;
else
error(message('images:imfill:unsupportedConnForGPU'));
end
end
else
% Default to maximal 2D connectivity
conn = 4;
end
if do_location_check
% locations are checked on the CPU
locations = gather(locations);
locations = check_locations(locations, size(IM));
elseif do_interactive
error(message('images:imfill:noInteractiveOnGPU'));
end
% Convert to linear indices if necessary.
if ~do_fillholes && (size(locations,2) ~= 1)
idx = cell(1,ndims(IM));
for k = 1:ndims(IM)
idx{k} = locations(:,k);
end
locations = sub2ind(size(IM), idx{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function locations = check_locations(locations, image_size)
% Checks validity of LOCATIONS. Converts LOCATIONS to linear index
% form. Warns if any locations are out of range.
validateattributes(locations, {'double'}, {'real' 'positive' 'integer' '2d'}, ...
mfilename, 'LOCATIONS', 2);
num_dims = length(image_size);
if (size(locations,2) ~= 1) && (size(locations,2) ~= num_dims)
error(message('images:imfill:badLocationSize', iptnum2ordinal( 2 )));
end
if size(locations,2) == 1
bad_pix = (locations < 1) | (locations > prod(image_size));
else
bad_pix = zeros(size(locations,1),1);
for k = 1:num_dims
bad_pix = bad_pix | ((locations(:,k) < 1) | ...
(locations(:,k) > image_size(k)));
end
end
if any(bad_pix)
warning(message('images:imfill:outOfRange'));
locations(bad_pix,:) = [];
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
im2uint16.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/im2uint16.m
| 4,853 |
utf_8
|
2c8a1a3f84d6d73ff8553d05927578d8
|
function u = im2uint16(img, varargin)
%IM2UINT16 Convert gpuArray image to 16-bit unsigned integers.
% IM2UINT16 takes a gpuArray image as input, and returns a gpuArray image
% of underlying class uint16. If the input gpuArray image is of class
% uint16, the output gpuArray is identical to it. If the input gpuArray
% image is not uint16, IM2UINT16 returns the equivalent gpuArray image of
% underlying class uint16, rescaling or offsetting the data as necessary.
%
% I2 = IM2UINT16(I1) converts the intensity gpuArray image I1 to uint16,
% rescaling the data if necessary.
%
% RGB2 = IM2UINT16(RGB1) converts the truecolor gpuArray image RGB1 to
% uint16, rescaling the data if necessary.
%
% X2 = IM2UINT16(X1,'indexed') converts the indexed gpuArray image X1 to
% uint16, offsetting the data if necessary. If X1 is double, then the
% maximum value of X1 must be 65536 or less.
%
% I = IM2UINT16(BW) converts the binary image BW to a uint16 gpuArray
% intensity image, changing one-valued elements to 65535.
%
% Class Support
% -------------
% Intensity and truecolor gpuArray images can be uint8, uint16, double,
% logical, single, or int16. Indexed images can be uint8, uint16, double
% or logical. Binary input images must be logical. The output image is
% uint16.
%
% Example
% -------
% I1 = gpuArray(reshape(linspace(0,1,20),[5 4]))
% I2 = im2uint16(I1)
%
% See also GPUARRAY/IM2DOUBLE, GPUARRAY/IM2INT16, GPUARRAY/IM2SINGLE,
% GPUARRAY/IM2UINT8, GPUARRAY/UINT16, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
%% inputs
narginchk(1,2);
classIn = classUnderlying(img);
hValidateAttributes(img,...
{'double','logical','uint8','uint16','int16','single'}, ...
{},mfilename,'IMG',1);
if(~isreal(img))
warning(message('images:im2uint16:ignoringImaginaryPartOfInput'));
img = real(img);
end
if nargin == 2
validatestring(varargin{1}, {'indexed'}, mfilename, 'type', 2);
end
%% process
if strcmp(classIn, 'uint16')
u = img;
elseif islogical(img)
u = uint16(img) * 65535;
elseif strcmp(classIn,'int16')
if nargin == 1
u = arrayfun(@int16touint16,img);
else
error(message('images:im2uint16:invalidIndexedImage'))
end
else %double, single, or uint8
if nargin==1
% intensity image
if strcmp(classIn, 'double')
u = arrayfun(@grayto16double,img);
elseif strcmp(classIn, 'single')
u = arrayfun(@grayto16single,img);
elseif strcmp(classIn, 'uint8')
u = arrayfun(@grayto16uint8,img);
end
else
if strcmp(classIn, 'uint8')
u = uint16(img);
else
% img is double or single
s.type = '()';
s.subs = {':'};
if any(max(subsref(img,s)) >= 65537)
error(message('images:im2uint16:tooManyColors'))
elseif any(min(subsref(img,s)) < 1)
error(message('images:im2uint16:invalidIndex'))
else
u = uint16(img-1);
end
end
end
end
function b = grayto16uint8(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the uint8 array A by scaling the
% elements of A by 257 and then casting to uint8.
b = bitor(bitshift(uint16(img),8),uint16(img));
function b = grayto16double(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the double array A to uint16 by
% scaling A by 65535 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 65535;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint16(0);
else
% uint16() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto16 MEX code
img = img * 65535;
if img > 65535
img = 65535;
elseif img < 0
img = 0;
end
b = uint16(img);
end
function b = grayto16single(img)
%GRAYTO16 Scale and convert grayscale image to uint16.
% B = GRAYTO16(A) converts the double array A to uint16 by
% scaling A by 65535 and then rounding. NaN's in A are converted
% to 0. Values in A greater than 1.0 are converted to 65535;
% values less than 0.0 are converted to 0.
if isnan(img)
b = uint16(0);
else
% uint16() rounds DOUBLE and SINGLE values. No need to add 0.5 as in
% grayto16 MEX code
maxVal = single(65535);
minVal = single(0);
img = img * maxVal;
if img > maxVal
img = maxVal;
elseif img < minVal
img = minVal;
end
b = uint16(img);
end
function z = int16touint16(img)
%INT16TOUINT16 converts int16 to uint16
% Z = INT16TOUINT16(I) converts int16 data (range = -32768 to 32767) to uint16
% data (range = 0 to 65535).
z = uint16(int32(img) + 32768);
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
std2.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/std2.m
| 1,043 |
utf_8
|
13e5093bb1ad70d0e551119e820649a5
|
function s = std2(a)
%STD2 Standard deviation of matrix elements.
% B = STD2(A) computes the standard deviation of the values in
% gpuArray A.
%
% Class Support
% -------------
% A can be a numeric or logical gpuArray. B is a scalar double gpuArray.
%
% Example
% -------
% I = gpuArray(imread('liftingbody.png'));
% val = std2(I)
%
% See also GPUARRAY/CORR2, MEAN2, MEAN, STD, GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
if isempty(a)
s = gpuArray(NaN);
return;
end
n = numel(a);
% convert to column-vector.
a = reshape(a,n,1);
% set up normalization factor and image mean.
norm_factor = 1/(max(n-1,1));
mean_a = sum(a,'double')/n;
a = arrayfun(@computeSquaredDifferences,a);
% std is sqrt of sum of normalized square difference from mean.
s = sqrt(norm_factor*sum(a));
%nested function to allow up-level indexing of mean.
function aout = computeSquaredDifferences(ain)
% compute squared difference from mean.
aout = (abs(double(ain)-mean_a))^2; % abs guarantees a real result
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
edge.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/edge.m
| 13,182 |
utf_8
|
a4f38fd1dac4f529479a1b113102769a
|
function [eout,thresh,gv_45,gh_135] = edge(varargin)
%EDGE Find edges in intensity image.
% EDGE takes an intensity or a binary gpuArray image I as its input, and
% returns a binary gpuArray image BW of the same size as I, with 1's
% where the function finds edges in I and 0's elsewhere.
%
% EDGE supports five different edge-finding methods:
%
% The Sobel method finds edges using the Sobel approximation to the
% derivative. It returns edges at those points where the gradient of
% I is maximum.
%
% The Prewitt method finds edges using the Prewitt approximation to
% the derivative. It returns edges at those points where the gradient
% of I is maximum.
%
% The Roberts method finds edges using the Roberts approximation to
% the derivative. It returns edges at those points where the gradient
% of I is maximum.
%
% The Laplacian of Gaussian method finds edges by looking for zero
% crossings after filtering I with a Laplacian of Gaussian filter.
%
% The zero-cross method finds edges by looking for zero crossings
% after filtering I with a filter you specify.
%
% The parameters you can supply differ depending on the method you
% specify. If you do not specify a method, EDGE uses the Sobel method.
%
% Sobel Method
% ------------
% BW = EDGE(I,'sobel') specifies the Sobel method.
%
% BW = EDGE(I,'sobel',THRESH) specifies the sensitivity threshold for
% the Sobel method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% BW = EDGE(I,'sobel',THRESH,DIRECTION) specifies directionality for the
% Sobel method. DIRECTION is a string specifying whether to look for
% 'horizontal' or 'vertical' edges, or 'both' (the default).
%
% BW = EDGE(I,'sobel',...,OPTIONS) provides an optional string
% input. String 'nothinning' speeds up the operation of the algorithm by
% skipping the additional edge thinning stage. By default, or when
% 'thinning' string is specified, the algorithm applies edge thinning.
%
% [BW,thresh] = EDGE(I,'sobel',...) returns the threshold value.
%
% Prewitt Method
% --------------
% BW = EDGE(I,'prewitt') specifies the Prewitt method.
%
% BW = EDGE(I,'prewitt',THRESH) specifies the sensitivity threshold for
% the Prewitt method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% BW = EDGE(I,'prewitt',THRESH,DIRECTION) specifies directionality for
% the Prewitt method. DIRECTION is a string specifying whether to look
% for 'horizontal' or 'vertical' edges, or 'both' (the default).
%
% BW = EDGE(I,'prewitt',...,OPTIONS) provides an optional string
% input. String 'nothinning' speeds up the operation of the algorithm by
% skipping the additional edge thinning stage. By default, or when
% 'thinning' string is specified, the algorithm applies edge thinning.
%
% [BW,thresh] = EDGE(I,'prewitt',...) returns the threshold value.
%
% Roberts Method
% --------------
% BW = EDGE(I,'roberts') specifies the Roberts method.
%
% BW = EDGE(I,'roberts',THRESH) specifies the sensitivity threshold for
% the Roberts method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% BW = EDGE(I,'roberts',...,OPTIONS) provides an optional string
% input. String 'nothinning' speeds up the operation of the algorithm by
% skipping the additional edge thinning stage. By default, or when
% 'thinning' string is specified, the algorithm applies edge thinning.
%
% [BW,thresh] = EDGE(I,'roberts',...) returns the threshold value.
%
% Laplacian of Gaussian Method
% ----------------------------
% BW = EDGE(I,'log') specifies the Laplacian of Gaussian method.
%
% BW = EDGE(I,'log',THRESH) specifies the sensitivity threshold for the
% Laplacian of Gaussian method. EDGE ignores all edges that are not
% stronger than THRESH. If you do not specify THRESH, or if THRESH is
% empty ([]), EDGE chooses the value automatically.
%
% BW = EDGE(I,'log',THRESH,SIGMA) specifies the Laplacian of Gaussian
% method, using SIGMA as the standard deviation of the LoG filter. The
% default SIGMA is 2; the size of the filter is N-by-N, where
% N=CEIL(SIGMA*3)*2+1.
%
% [BW,thresh] = EDGE(I,'log',...) returns the threshold value.
%
% Zero-cross Method
% -----------------
% BW = EDGE(I,'zerocross',THRESH,H) specifies the zero-cross method,
% using the specified filter H. If THRESH is empty ([]), EDGE chooses
% the sensitivity threshold automatically.
%
% [BW,THRESH] = EDGE(I,'zerocross',...) returns the threshold value.
%
%
% Class Support
% -------------
% I is a gpuArray. BW is a gpuArray with underlying class logical.
%
% Remarks
% -------
% For the 'log' and 'zerocross' methods, if you specify a
% threshold of 0, the output image has closed contours because
% it includes all of the zero crossings in the input image.
%
% Example
% -------
% Find the edges of the circuit.tif image using the Prewitt and Canny
% methods:
%
% I = gpuArray(imread('circuit.tif'));
% BW1 = edge(I,'prewitt');
% BW2 = edge(I,'sobel');
% figure, imshow(BW1)
% figure, imshow(BW2)
%
% See also FSPECIAL, GPUARRAY/IMGRADIENT, GPUARRAY/IMGRADIENTXY,
% GPUARRAY.
% Copyright 2013 The MathWorks, Inc.
% [BW,thresh,gv,gh] = EDGE(I,'sobel',...) returns vertical and
% horizontal edge responses to Sobel gradient operators. You can
% also use these expressions to obtain gradient responses:
% if ~(isa(I,'double') || isa(I,'single')); I = im2single(I); end
% gh = imfilter(I,fspecial('sobel') /8,'replicate'); and
% gv = imfilter(I,fspecial('sobel')'/8,'replicate');
%
% [BW,thresh,gv,gh] = EDGE(I,'prewitt',...) returns vertical and
% horizontal edge responses to Prewitt gradient operators. You can
% also use these expressions to obtain gradient responses:
% if ~(isa(I,'double') || isa(I,'single')); I = im2single(I); end
% gh = imfilter(I,fspecial('prewitt') /6,'replicate'); and
% gv = imfilter(I,fspecial('prewitt')'/6,'replicate');
%
% [BW,thresh,g45,g135] = EDGE(I,'roberts',...) returns 45 degree and
% 135 degree edge responses to Roberts gradient operators. You can
% also use these expressions to obtain gradient responses:
% if ~(isa(I,'double') || isa(I,'single')); I = im2single(I); end
% g45 = imfilter(I,[1 0; 0 -1]/2,'replicate'); and
% g135 = imfilter(I,[0 1;-1 0]/2,'replicate');
narginchk(1,5)
% Dispatch to CPU if needed
if ~isa(varargin{1},'gpuArray')
% Gather the inputs.
for i = 2 : nargin
varargin{i} = gather(varargin{i});
end
% Call the CPU implementation
switch nargout
case 0
edge(varargin{:});
case 1
eout = edge(varargin{:});
case 2
[eout,thresh] = edge(varargin{:});
case 3
[eout,thresh,gv_45] = edge(varargin{:});
case 4
[eout,thresh,gv_45,gh_135] = edge(varargin{:});
end
return;
end
% Parse inputs
[a,method,thresh,sigma,thinning,H,kx,ky] = parse_inputs(varargin{:});
% Check that the user specified a valid number of output arguments
if ~any(strcmp(method,{'sobel','roberts','prewitt'})) && (nargout>2)
error(message('images:edge:tooManyOutputs'));
end
% Transform to a double precision intensity image if necessary
if ~isfloat(a)
a = im2single(a);
end
[m,n] = size(a);
if any(strcmp(method, {'log','zerocross'}))
% We don't use image blocks here
if isempty(H),
fsize = ceil(sigma*3) * 2 + 1; % choose an odd fsize > 6*sigma;
op = fspecial('log',fsize,sigma);
else
op = H;
end
op = op - sum(op(:))/numel(op); % make the op to sum to zero
b = imfilter(a,op,'replicate');
if isempty(thresh)
thresh = .75*mean2(abs(b));
end
% detect zero-crossings by looking for [+-],[-+],[+-]' and [-+]'
% transitions in b that are greater than thresh. also look for
% [+0-],[-0+],[+0-]' and [-0+]' transitions.
e = zerocrossinggpumex(b,gather(thresh));
% to stay consistent with CPU behavior, set boundary pixels to zero.
if ~isempty(e)
e = subsasgn(e,substruct('()',{1,':'}),gpuArray.false);%e(1 ,: ) = false;
e = subsasgn(e,substruct('()',{m,':'}),gpuArray.false);%e(end,: ) = false;
e = subsasgn(e,substruct('()',{':',1}),gpuArray.false);%e(: ,1 ) = false;
e = subsasgn(e,substruct('()',{':',n}),gpuArray.false);%e(: ,end) = false;
end
else % one of the easy methods (roberts,sobel,prewitt)
if strcmp(method,'sobel')
op = fspecial('sobel')/8; % Sobel approximation to derivative
x_mask = op'; % gradient in the X direction
y_mask = op;
scale = 4; % for calculating the automatic threshold
isroberts = false;
elseif strcmp(method,'prewitt')
op = fspecial('prewitt')/6; % Prewitt approximation to derivative
x_mask = op';
y_mask = op;
scale = 4;
isroberts = false;
elseif strcmp(method, 'roberts')
x_mask = [1 0; 0 -1]/2; % Roberts approximation to diagonal derivative
y_mask = [0 1;-1 0]/2;
scale = 6;
isroberts = true;
else
error(message('images:edge:invalidEdgeDetectionMethod', method))
end
% compute the gradient in x and y direction
bx = imfilter(a,x_mask,'replicate');
by = imfilter(a,y_mask,'replicate');
if (nargout > 2) % if gradients are requested
gv_45 = bx;
gh_135 = by;
end
% compute the magnitude
b = arrayfun(@computegradientmagnitude,bx,by);
% determine the threshold; see page 514 of "Digital Imaging Processing" by
% William K. Pratt
if isempty(thresh), % Determine cutoff based on RMS estimate of noise
% Mean of the magnitude squared image is a
% value that's roughly proportional to SNR
cutoff = scale*mean2(b);
thresh = sqrt(cutoff);
else % Use relative tolerance specified by the user
cutoff = (thresh).^2;
end
if thinning
e = computeedgegpumex(b,bx,by,kx,ky,isroberts,100*eps,gather(cutoff));
else
e = b > cutoff;
end
end
if nargout==0,
imshow(e);
else
eout = e;
end
% nested function to compute pixel-wise gradient magnitude
function bmag = computegradientmagnitude(b_x,b_y)
bmag = kx*b_x*b_x + ky*b_y*b_y;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Local Function : parse_inputs
%
function [I,Method,Thresh,Sigma,Thinning,H,kx,ky] = parse_inputs(varargin)
% OUTPUTS:
% I Image Data
% Method Edge detection method
% Thresh Threshold value
% Sigma standard deviation of Gaussian
% H Filter for Zero-crossing detection
% kx,ky From Directionality vector
I = varargin{1};
hValidateAttributes(I,...
{'logical','uint8','int8','uint16','int16','uint32','int32','single','double'},...
{'real','2d'},mfilename,'I',1);
% Defaults
Method = 'sobel';
Direction = 'both';
Thinning = true;
methods = {'canny','canny_old','prewitt','sobel','marr-hildreth','log','roberts','zerocross'};
directions = {'both','horizontal','vertical'};
options = {'thinning','nothinning'};
% Now parse the nargin-1 remaining input arguments
% First get the strings - we do this because the interpretation of the
% rest of the arguments will depend on the method.
nonstr = []; % ordered indices of non-string arguments
for i = 2:nargin
if ischar(varargin{i})
str = lower(varargin{i});
j = find(strcmp(str,methods));
k = find(strcmp(str,directions));
l = find(strcmp(str,options));
if ~isempty(j)
Method = methods{j(1)};
if strcmp(Method,'marr-hildreth')
error(message('images:removed:syntax','EDGE(I,''marr-hildreth'',...)','EDGE(I,''log'',...)'))
end
% Canny is not supported on the GPU.
if strcmp(Method,'canny') || strcmp(Method,'canny_old')
error(message('images:edge:cannyUnsupportedOnGpu', Method));
end
elseif ~isempty(k)
Direction = directions{k(1)};
elseif ~isempty(l)
if strcmp(options{l(1)},'thinning')
Thinning = true;
else
Thinning = false;
end
else
error(message('images:edge:invalidInputString', varargin{ i }))
end
else
% gather if necessary.
varargin{i} = gather(varargin{i});
nonstr = [nonstr i]; %#ok<AGROW>
end
end
% Now get the rest of the arguments
[Thresh,Sigma,H,kx,ky] = images.internal.parseNonStringInputsEdge(varargin,Method,Direction,nonstr);
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
morphopAlgo.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/morphopAlgo.m
| 5,840 |
utf_8
|
d007ed841fa1001d56781cac5ae81054
|
function B = morphopAlgo(A,se,padfull,unpad,op_type)
%MORPHOPALGO Algorithmic core for gpuArray image dilation/erosion. Intended
%for use with morphopInputParser in functions like IMDILATE, IMERODE,
%IMOPEN, IMCLOSE, IMTOPHAT and IMBOTHAT.
% Copyright 2013 The MathWorks, Inc.
num_strels = length(se);
ndims_A = ndims(A);
size_A = size(A);
centers = zeros(num_strels,2);
pad_size = zeros(num_strels,2);
dst_size = zeros(num_strels,2);
additional_offset = zeros(num_strels,2); % additional offset to account
% for effective mask size being
% smaller.
% Get the center location and neighborhood sizes.
for k = 1 : num_strels
[centers(k,:),pad_size(k,:)] = getcenterandsize(se(k));
end
% Cast pad_val to the input image class
pad_val = cast(getPadValue(A,op_type),classUnderlying(A));
if padfull
% Pad the input for 'full' option.
% Find the array offsets and centers for each structuring element in
% the sequence. Use these values to update the extent of the effective
% mask and the additional offsets needed.
min_extent = zeros(num_strels,2);
max_extent = zeros(num_strels,2);
for k = 1 : num_strels
% Get the array offsets
offset_k = getneighbors(se(k));
% This is the upper-left corner of the effective mask.
min_offset = min([offset_k;[0 0]]); %include the center
% This is the lower-right corner of the effective mask.
max_offset = max([offset_k;[0 0]]); %include the center
% Find the new extent of the effective mask.
min_extent(k,:) = centers(k,:) + min_offset;
max_extent(k,:) = centers(k,:) + max_offset;
additional_offset(k,:) = pad_size(k,:)-max_extent(k,:);
end
% Pad the input by the sum of padding needed for each structuring
% element.
max_pad_size = sum((pad_size-1),1);
if numel(max_pad_size) < ndims_A
max_pad_size(ndims_A) = 0;
end
A = constantpaduint8mex(A,max_pad_size,pad_val,'both');
% Compute the destination size for each dilation/erosion output.
% Corresponding to each successive structuring element, the destination
% size is the previous destination size minus the padding for that
% structuing element. The padding needs to be reduced according to the
% effective size of the mask.
if num_strels>0
dst_size(1,:) = [size(A,1) size(A,2)]-2*(pad_size(1,:)-1)+(max_extent(1,:)-min_extent(1,:));
end
for k = 2 : num_strels
dst_size(k,:) = dst_size(k-1,:) - 2*(pad_size(k,:)-1) + (max_extent(k,:)-min_extent(k,:));
end
else
% Pad the input for 'same' option.
[max_pad_size, k] = max(pad_size,[],1);
prepad_size = centers(k(1),:) - 1;
postpad_size = max_pad_size - centers(k(1),:);
if numel(prepad_size) < ndims_A
prepad_size(ndims_A) = 0;
postpad_size(ndims_A) = 0;
end
A = constantpaduint8mex(A,[prepad_size;postpad_size],pad_val,'both');
dst_size = repmat([size_A(1) size_A(2)],[num_strels,1]);
end
% Zero-based offset from starting pixel.
centers_offset = centers - 1;
% Create gpuArray's from the STREL objects
mask = cell(1,num_strels);
for k = 1 : num_strels
mask{k} = gpuArray(cast(getnhood(se(k)),classUnderlying(A)));
end
% Apply the operation (dilation/erosion) on the image with the sequence of
% structuring elements.
B = A;
if strcmp(op_type,'dilate')
for k = 1 : num_strels
B = morphmexgpu(B,mask{k},centers_offset(k,:),...
additional_offset(k,:),dst_size(k,:),'dilate');
end
else
for k = 1 : num_strels
B = morphmexgpu(B,mask{k},centers_offset(k,:),...
additional_offset(k,:),dst_size(k,:),'erode');
end
% Special case: If input is logical and atleast one mask has an empty
% neighborhood, handle it.
if strcmp(classUnderlying(B),'logical') && ...
any(arrayfun(@(x) all(~any(getnhood(x))), se))
B = (B~=0);
end
end
% Unpad the image if needed.
if unpad
% Note:
% * This went through the padfull codepath. We crop accordingly.
% * Call to SUBSREF needs to be explicit from within @gpuArray
% directory.
idx = cell(1,ndims_A);
sum_centers = zeros(1,2);
for k = 1 : num_strels
sum_centers = sum_centers + (size(mask{k}) - centers(k,:));
end
sum_addoffs = sum(additional_offset,1);
for k = 1:2
first = 1 + sum_centers(k) - sum_addoffs(k);
last = first + size_A(k) - 1;
idx{k} = first:last;
end
for k = 3:ndims_A
idx{k} = ':';
end
subscripts.type = '()';
subscripts.subs = idx;
B = subsref(B,subscripts);
end
%--------------------------------------------------------------------------
%==========================================================================
function pad_value = getPadValue(A, op_type)
% Returns the appropriate pad value, depending on whether we are performing
% erosion or dilation, and whether or not A is logical (binary).
if strcmp(op_type, 'dilate')
pad_value = -Inf;
else
pad_value = Inf;
end
if islogical(A)
% Use 0s and 1s instead of plus/minus Inf.
pad_value = max(min(pad_value, 1), 0);
end
%--------------------------------------------------------------------------
%==========================================================================
function [center,sz] = getcenterandsize(se)
% Compute center of the structuring element.
sz = size(se.getnhood());
center = floor((sz+1)/2);
%--------------------------------------------------------------------------
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
morphopInputParser.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/morphopInputParser.m
| 3,065 |
utf_8
|
7bea034bd4ddfe28d541ef78b5578b38
|
function [A,se,padfull,unpad,op_type] = morphopInputParser(A,se,op_type,func_name,varargin)
%MORPHOPINPUTPARSER Parse and validate inputs to morphology family of
%functions and determine padding requirements. Intended for use with
%morphopAlgo in functions IMDILATE, IMERODE, IMOPEN, IMCLOSE, IMTOPHAT and
%IMBOTHAT.
% Copyright 2013 The MathWorks, Inc.
narginchk(4,5);
% Get required inputs and check for validity.
A = checkInputImage(A);
se = strelcheck(se,func_name,'SE',2);
% Process optional arguments.
padopt = processOptionalArguments(func_name,varargin{:});
% Get sequence of structuring elements.
se = getsequence(se);
% Find conditionals needed to determing padding requirements.
num_strels = length(se);
strel_is_single = num_strels == 1;
output_is_full = strcmp(padopt,'full');
% Check structuring element error conditions. Only 2D, flat structuring
% elements are allowed.
strel_is_all_2d = true;
for k = 1:num_strels
if (ndims(getnhood(se(k))) > 2) %#ok<ISMAT>
strel_is_all_2d = false;
break;
end
end
if ~strel_is_all_2d
error(message('images:morphop:gpuStrelNot2D'));
end
strel_is_all_flat = all(isflat(se));
if ~strel_is_all_flat
error(message('images:morphop:gpuStrelNotFlat'));
end
% Reflect the structuring element if dilating.
if strcmp(op_type,'dilate')
se = reflect2dFlatStrel(se);
else
% If a structuring element is empty, pad a zero by reflecting. This is
% required because the underlying GPU implementation does not accept empty
% neighbohoods.
for k = 1:num_strels
if isempty(getnhood(se(k)))
se(k)=reflect2dFlatStrel(se(k));
end
end
end
% Determine whether padding and unpadding is necessary.
% Pad the input when the pad option is'full' or the structuring element is
% not single.
padfull = output_is_full || (~strel_is_single);
% Unpad only if the pad option is 'same' and the structuring element is
% not single.
unpad = (~strel_is_single) && (~output_is_full);
%--------------------------------------------------------------------------
%==========================================================================
function A = checkInputImage(A)
%Check input image validity
% The input image must be a gpuArray holding real data of type UINT8 or
% LOGICAL.
if ~isreal(A)
error(message('images:morphop:gpuImageComplexity'));
end
if ~(strcmp(classUnderlying(A),'uint8') || strcmp(classUnderlying(A),'logical'))
error(message('images:morphop:gpuUnderlyingClassTypeImage'));
end
%--------------------------------------------------------------------------
%==========================================================================
function padopt = processOptionalArguments(func_name, varargin)
% Process padding option.
% Default value
padopt = 'same';
if ~isempty(varargin)
allowed_strings = {'same','full'};
padopt = validatestring(varargin{1},allowed_strings, func_name,...
'OPTION',3);
end
%--------------------------------------------------------------------------
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
iptcheckmap.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/iptcheckmap.m
| 1,759 |
utf_8
|
3366775bec56f6d92f2168538604b0b1
|
function iptcheckmap(map, function_name, variable_name, argument_position)
%IPTCHECKMAP Check validity of colormap.
% IPTCHECKMAP(MAP,FUNC_NAME,VAR_NAME,ARG_POS) checks to see if
% MAP is a valid MATLAB colormap and issues a formatted error
% message if it is invalid.
%
% FUNC_NAME is a string that specifies the name used in the formatted
% error message to identify the function checking the colormap.
%
% VAR_NAME is a string that specifies the name used in the formatted
% error message to identify the argument being checked.
%
% ARG_POS is a positive integer that indicates the position of
% the argument being checked in the function argument list.
% IPTCHECKMAP includes this information in the formatted error message.
%
% Example
% -------
%
% bad_map = ones(10);
% iptcheckmap(bad_map,'func_name','var_name',2)
%
% See also IPTCHECKHANDLE
% Copyright 2013 The MathWorks, Inc.
mapClass = classUnderlying(map);
if ~strcmp(mapClass,'double') || isempty(map) || ...
(~ismatrix(map)) || (size(map,2) ~= 3) || ...
issparse(map)
compose_error('images:validate:badMapMatrix', upper( function_name ), argument_position, variable_name)
end
if any(any(map(:) < 0) | any(map(:) > 1))>0
compose_error('images:validate:badMapValues', upper( function_name ), argument_position, variable_name)
end
%-----------------------------------------------------------------------------------
function specific_msg = compose_error(id, function_name, arg_position, variable_name)
bad_map_msg = message('images:validate:badMap', upper(function_name), arg_position, variable_name);
specific_msg = message(id,bad_map_msg.getString());
ME = MException(id,'%s',specific_msg.getString());
ME.throwAsCaller()
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
intlut.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/intlut.m
| 2,267 |
utf_8
|
42bf30d9a236bfee8fa4717e1f2be9a7
|
function B = intlut(varargin)
%INTLUT Convert integer values using lookup table.
% B = INTLUT(A,LUT) converts values in array A based on lookup table
% LUT and returns these new values in array B.
%
% For example, if A is a uint8 vector whose kth element is equal
% to alpha, then B(k) is equal to the LUT value corresponding
% to alpha, i.e., LUT(alpha+1).
%
% Class Support
% -------------
% A can be uint8, uint16, or int16. If A is uint8, LUT must be
% a uint8 vector with 256 elements. If A is uint16 or int16,
% LUT must be a vector with 65536 elements that has the same class
% as A. B has the same size and class as A.
%
% Example
% -------
% A = uint8([1 2 3 4; 5 6 7 8;9 10 11 12])
% LUT = repmat(uint8([0 150 200 255]),1,64);
% B = intlut(A,LUT)
% Copyright 2013 The MathWorks, Inc.
narginchk(2,2);
[A, classA, LUT, ~] = parseInputs(varargin{:});
%% B = LUT(A)
if strcmp(classA,'int16')
B = arrayfun(@lookupInt16,A);
else
B = arrayfun(@lookup,A);
end
%----------------------------------------------------------------------
function out = lookup(img)
% 1-based indexing
out = LUT(int32(img)+int32(1));
end
%----------------------------------------------------------------------
function out = lookupInt16(img)
% 1-based indexing
% int16 special case for negative index value lookup
out = LUT(int32(img)+int32(1)+int32(32768));
end
end
function [A, classA, LUT, classLUT] = parseInputs(varargin)
A = gpuArray(varargin{1});
LUT = gpuArray(varargin{2});
hValidateAttributes(A,...
{'uint8','uint16','int16'},...
{'real'},mfilename, 'A', 1);
hValidateAttributes(LUT,...
{'uint8','uint16','int16'},...
{'vector','real'},mfilename, 'LUT', 2);
classA = classUnderlying(A);
classLUT = classUnderlying(LUT);
if ~isequal(classA,classLUT)
error(message('images:intlut:inputsHaveDifferentClasses'))
end
if strcmp(classLUT,'uint8') && length(LUT) ~= 256
error(message('images:intlut:wrongNumberOfElementsInLUT8Bit'))
end
if (strcmp(classLUT,'uint16') || strcmp(classLUT,'int16')) && ...
length(LUT) ~= 65536
error(message('images:intlut:wrongNumberOfElementsInLUT16Bit'))
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
padarray_algo.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/padarray_algo.m
| 1,870 |
utf_8
|
f4489e1c4fa1070e1f9750171d3f64bf
|
function b = padarray_algo(a, padSize, method, padVal, direction)
%PADARRAY_ALGO Pad array.
% B = PADARRAY_AGLO(A,PADSIZE,METHOD,PADVAL,DIRECTION) internal helper
% function for PADARRAY, which performs no input validation. See the
% help for PADARRAY for the description of input arguments, class
% support, and examples.
% Copyright 2012 The MathWorks, Inc.
if isempty(a)
% treat empty matrix similar for any method
if strcmp(direction,'both')
sizeB = size(a) + 2*padSize;
else
sizeB = size(a) + padSize;
end
b = mkconstarray(classUnderlying(a), padVal, sizeB);
elseif strcmpi(method,'constant')
% constant value padding with padVal
b = ConstantPad(a, padSize, padVal, direction);
else
% compute indices then index into input image
aSize = size(a);
aIdx = getPaddingIndices(aSize,padSize,method,direction);
s.type = '()';
s.subs = aIdx;
b = subsref(a, s);
end
%%%
%%% ConstantPad
%%%
function b = ConstantPad(a, padSize, padVal, direction)
numDims = numel(padSize);
% Form index vectors to subsasgn input array into output array.
% Also compute the size of the output array.
idx = cell(1,numDims);
sizeB = zeros(1,numDims);
for k = 1:numDims
M = size(a,k);
switch direction
case 'pre'
idx{k} = (1:M) + padSize(k);
sizeB(k) = M + padSize(k);
case 'post'
idx{k} = 1:M;
sizeB(k) = M + padSize(k);
case 'both'
idx{k} = (1:M) + padSize(k);
sizeB(k) = M + 2*padSize(k);
end
end
% Initialize output array with the padding value. Make sure the
% output array is the same type as the input.
b = mkconstarray(classUnderlying(a), padVal, sizeB);
%b(idx{:}) = a;
s.type = '()';
s.subs = idx;
b = subsasgn(b, s, a);
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
getPaddingIndices.m
|
.m
|
Imageprocesingtoobox-master/@gpuArray/private/getPaddingIndices.m
| 2,951 |
utf_8
|
5d150a985dc5ac9e143c045184767e14
|
function aIdx = getPaddingIndices(aSize,padSize,method,direction)
%getPaddingIndices is used by padarray and blockproc.
% Computes padding indices of input image. This is function is used to
% handle padding of in-memory images (via padarray) as well as
% arbitrarily large images (via blockproc).
%
% aSize : result of size(I) where I is the image to be padded
% padSize : padding amount in each dimension.
% numel(padSize) can be greater than numel(aSize)
% method : X or a 'string' padding method
% direction : pre, post, or both.
%
% See the help for padarray for additional information.
% Copyright 2010 The MathWorks, Inc.
% make sure we have enough image dims for the requested padding
if numel(padSize) > numel(aSize)
singleton_dims = numel(padSize) - numel(aSize);
aSize = [aSize ones(1,singleton_dims)];
end
switch method
case 'circular'
aIdx = CircularPad(aSize, padSize, direction);
case 'symmetric'
aIdx = SymmetricPad(aSize, padSize, direction);
case 'replicate'
aIdx = ReplicatePad(aSize, padSize, direction);
end
%%%
%%% CircularPad
%%%
function idx = CircularPad(aSize, padSize, direction)
numDims = numel(padSize);
% Form index vectors to subsasgn input array into output array.
% Also compute the size of the output array.
idx = cell(1,numDims);
for k = 1:numDims
M = aSize(k);
dimNums = uint32(1:M);
p = padSize(k);
switch direction
case 'pre'
idx{k} = dimNums(mod(-p:M-1, M) + 1);
case 'post'
idx{k} = dimNums(mod(0:M+p-1, M) + 1);
case 'both'
idx{k} = dimNums(mod(-p:M+p-1, M) + 1);
end
end
%%%
%%% SymmetricPad
%%%
function idx = SymmetricPad(aSize, padSize, direction)
numDims = numel(padSize);
% Form index vectors to subsasgn input array into output array.
% Also compute the size of the output array.
idx = cell(1,numDims);
for k = 1:numDims
M = aSize(k);
dimNums = uint32([1:M M:-1:1]);
p = padSize(k);
switch direction
case 'pre'
idx{k} = dimNums(mod(-p:M-1, 2*M) + 1);
case 'post'
idx{k} = dimNums(mod(0:M+p-1, 2*M) + 1);
case 'both'
idx{k} = dimNums(mod(-p:M+p-1, 2*M) + 1);
end
end
%%%
%%% ReplicatePad
%%%
function idx = ReplicatePad(aSize, padSize, direction)
numDims = numel(padSize);
% Form index vectors to subsasgn input array into output array.
% Also compute the size of the output array.
idx = cell(1,numDims);
for k = 1:numDims
M = aSize(k);
p = padSize(k);
onesVector = uint32(ones(1,p));
switch direction
case 'pre'
idx{k} = [onesVector 1:M];
case 'post'
idx{k} = [1:M M*onesVector];
case 'both'
idx{k} = [onesVector 1:M M*onesVector];
end
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
conformalShowCircles.m
|
.m
|
Imageprocesingtoobox-master/imdemos/conformalShowCircles.m
| 1,286 |
utf_8
|
1e66322d244ab24885284ee330cab774
|
function conformalShowCircles(axIn, axOut, t1, t2)
% conformalShowCircles Plot packed circles before/after transformation.
%
% Supports conformal transformation example, ConformalMappingImageExample.m
% ("Exploring a Conformal Mapping").
% Copyright 2005-2013 The MathWorks, Inc.
sep = 0.002; % Separation between circles
d = 1/8; % Center-to-center distance
radius = (d - sep)/2; % Radius of circles
for u = -(5/4 - d/2) : d : (5/4 - d/2)
for v = -(3/4 - d/2) : d : (3/4 - d/2)
% Draw circle on input axes
[uc,vc] = Circle(u,v,radius);
line(uc,vc,'Parent',axIn,'Color',[0.3 0.3 0.3]);
% Apply z = w + sqrt(w^2-1), draw circle on output axes
[xc,yc] = tformfwd(t1,uc,vc);
line(xc,yc,'Parent',axOut,'Color',[0 0.8 0]);
% Apply z = w - sqrt(w^2-1), draw circle on output axes
[xc,yc] = tformfwd(t2,uc,vc);
line(xc,yc,'Parent',axOut,'Color',[0 0 0.9]);
end
end
%-------------------------------------------------------------
function [x, y] = Circle(xCenter, yCenter, radius)
% Returns vectors containing the coordinates of a circle
% with the specified center and radius.
n = 32;
theta = (0 : n)' * (2 * pi / n);
x = xCenter + radius * cos(theta);
y = yCenter + radius * sin(theta);
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
conformalShowLines.m
|
.m
|
Imageprocesingtoobox-master/imdemos/conformalShowLines.m
| 1,812 |
utf_8
|
5d8b9afc8b7fae13318411bd1a2022cd
|
function conformalShowLines(axIn, axOut, t1, t2)
% conformalShowLines Plot a grid of lines before/after transformation.
%
% Supports conformal transformation example, ConformalMappingImageExample.m
% ("Exploring a Conformal Mapping").
% Copyright 2005-2013 The MathWorks, Inc.
d = 1/16;
u1 = [-5/4 : d : -d, -1e-6];
u2 = 0 : d : 5/4;
v1 = [-3/4 : d : -d, -1e-6];
v2 = 0 : d : 3/4;
% Lower left quadrant
[U,V] = meshgrid(u1,v1);
color = [0.3 0.3 0.3];
plotMesh(axIn,U,V,color);
plotMesh(axOut,tformfwd(t1,U,V),color);
plotMesh(axOut,tformfwd(t2,U,V),color);
% Upper left quadrant
[U,V] = meshgrid(u1,v2);
color = [0 0 0.8];
plotMesh(axIn,U,V,color);
plotMesh(axOut,tformfwd(t1,U,V),color);
plotMesh(axOut,tformfwd(t2,U,V),color);
% Lower right quadrant
[U,V] = meshgrid(u2,v1);
color = [0 0.8 0];
plotMesh(axIn,U,V,color);
plotMesh(axOut,tformfwd(t1,U,V),color);
plotMesh(axOut,tformfwd(t2,U,V),color);
% Upper right quadrant
[U,V] = meshgrid(u2,v2);
color = [0 0.7 0.7];
plotMesh(axIn,U,V,color);
plotMesh(axOut,tformfwd(t1,U,V),color);
plotMesh(axOut,tformfwd(t2,U,V),color);
%-------------------------------------------------------------
function plotMesh(varargin)
% Plots a mesh on the axes AX with color COLOR, via calls
% to 'LINE'.
%
% PLOTMESH(AX,X,Y,COLOR) accepts two M-by-N arrays X and Y
% -- like the output of MESHGRID.
%
% PLOTMESH(AX,XY,COLOR) accepts a single M-by-N-by-2 array XY
% -- like the output of TFORMFWD.
if nargin == 3
ax = varargin{1};
XY = varargin{2};
color = varargin{3};
X = XY(:,:,1);
Y = XY(:,:,2);
else
ax = varargin{1};
X = varargin{2};
Y = varargin{3};
color = varargin{4};
end
for k = 1:size(X,1)
line(X(k,:),Y(k,:),'Parent',ax,'Color',color);
end
for k = 1:size(X,2)
line(X(:,k),Y(:,k),'Parent',ax,'Color',color);
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
rgb2ycbcr.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/rgb2ycbcr.m
| 4,738 |
utf_8
|
854b189ad37b73ba4dcf25e79dd82052
|
function ycbcr = rgb2ycbcr(varargin)
%RGB2YCBCR Convert RGB color values to YCbCr color space.
% YCBCRMAP = RGB2YCBCR(MAP) converts the RGB values in MAP to the YCBCR
% color space. MAP must be a M-by-3 array. YCBCRMAP is a M-by-3 matrix
% that contains the YCBCR luminance (Y) and chrominance (Cb and Cr) color
% values as columns. Each row represents the equivalent color to the
% corresponding row in the RGB colormap.
%
% YCBCR = RGB2YCBCR(RGB) converts the truecolor image RGB to the
% equivalent image in the YCBCR color space. RGB must be a M-by-N-by-3
% array.
%
% If the input is uint8, then YCBCR is uint8 where Y is in the range [16
% 235], and Cb and Cr are in the range [16 240]. If the input is a double,
% then Y is in the range [16/255 235/255] and Cb and Cr are in the range
% [16/255 240/255]. If the input is uint16, then Y is in the range [4112
% 60395] and Cb and Cr are in the range [4112 61680].
%
% Class Support
% -------------
% If the input is an RGB image, it can be uint8, uint16, or double. If the
% input is a colormap, then it must be double. The output has the same class
% as the input.
%
% Examples
% --------
% Convert RGB image to YCbCr.
%
% RGB = imread('board.tif');
% YCBCR = rgb2ycbcr(RGB);
%
% Convert RGB color space to YCbCr.
%
% map = jet(256);
% newmap = rgb2ycbcr(map);
%
% See also NTSC2RGB, RGB2NTSC, YCBCR2RGB.
% Copyright 1993-2010 The MathWorks, Inc.
% References:
% C.A. Poynton, "A Technical Introduction to Digital Video", John Wiley
% & Sons, Inc., 1996, p. 175
%
% Rec. ITU-R BT.601-5, "STUDIO ENCODING PARAMETERS OF DIGITAL TELEVISION
% FOR STANDARD 4:3 AND WIDE-SCREEN 16:9 ASPECT RATIOS",
% (1982-1986-1990-1992-1994-1995), Section 3.5.
rgb = parse_inputs(varargin{:});
%initialize variables
isColormap = false;
%must reshape colormap to be m x n x 3 for transformation
if (ndims(rgb) == 2)
%colormap
isColormap=true;
colors = size(rgb,1);
rgb = reshape(rgb, [colors 1 3]);
end
% This matrix comes from a formula in Poynton's, "Introduction to
% Digital Video" (p. 176, equations 9.6).
% T is from equation 9.6: ycbcr = origT * rgb + origOffset;
origT = [65.481 128.553 24.966;...
-37.797 -74.203 112; ...
112 -93.786 -18.214];
origOffset = [16;128;128];
% The formula ycbcr = origT * rgb + origOffset, converts a RGB image in the range
% [0 1] to a YCbCr image where Y is in the range [16 235], and Cb and Cr
% are in that range [16 240]. For each class type (double,uint8,
% uint16), we must calculate scaling factors for origT and origOffset so that
% the input image is scaled between 0 and 1, and so that the output image is
% in the range of the respective class type.
scaleFactor.double.T = 1/255; % scale output so in range [0 1].
scaleFactor.double.offset = 1/255; % scale output so in range [0 1].
scaleFactor.uint8.T = 1/255; % scale input so in range [0 1].
scaleFactor.uint8.offset = 1; % output is already in range [0 255].
scaleFactor.uint16.T = 257/65535; % scale input so it is in range [0 1]
% and scale output so it is in range
% [0 65535] (255*257 = 65535).
scaleFactor.uint16.offset = 257; % scale output so it is in range [0 65535].
% The formula ycbcr = origT*rgb + origOffset is rewritten as
% ycbcr = scaleFactorForT * origT * rgb + scaleFactorForOffset*origOffset.
% To use imlincomb, we rewrite the formula as ycbcr = T * rgb + offset, where T and
% offset are defined below.
classIn = class(rgb);
T = scaleFactor.(classIn).T * origT;
offset = scaleFactor.(classIn).offset * origOffset;
%initialize output
ycbcr = zeros(size(rgb),classIn);
for p = 1:3
ycbcr(:,:,p) = imlincomb(T(p,1),rgb(:,:,1),T(p,2),rgb(:,:,2), ...
T(p,3),rgb(:,:,3),offset(p));
end
if isColormap
ycbcr = reshape(ycbcr, [colors 3 1]);
end
%%%
%Parse Inputs
%%%
function X = parse_inputs(varargin)
narginchk(1,1);
X = varargin{1};
if ndims(X)==2
% For backward compatibility, this function handles uint8 and uint16
% colormaps. This usage will be removed in a future release.
validateattributes(X,{'uint8','uint16','double'},{'nonempty'},mfilename,'MAP',1);
if (size(X,2) ~=3 || size(X,1) < 1)
error(message('images:rgb2ycbcr:invalidSizeForColormap'))
end
if ~isa(X,'double')
warning(message('images:rgb2ycbcr:notAValidColormap'))
X = im2double(X);
end
elseif ndims(X)==3
validateattributes(X,{'uint8','uint16','double'},{},mfilename,'RGB',1);
if (size(X,3) ~=3)
error(message('images:rgb2ycbcr:invalidTruecolorImage'))
end
else
error(message('images:rgb2ycbcr:invalidInputSize'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
iccwrite.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/iccwrite.m
| 50,643 |
utf_8
|
6bb53c9105cc85db41e22336563abc3e
|
function p_new = iccwrite(p, filename)
%ICCWRITE Write ICC color profile.
% P_NEW = ICCWRITE(P, FILENAME) writes the International Color Consortium
% (ICC) color profile data from the profile structure specified by P to
% the file specified by FILENAME.
%
% P is a structure representing an ICC profile in the data format
% returned by ICCREAD and used by MAKECFORM and APPLYCFORM to compute
% color-space transformations. It must contain all tags and fields
% required by the ICC profile specification. Some fields may be
% inconsistent, however, because of interactive changes to the structure.
% For instance, the tag table may not be correct because tags may have
% been added, deleted, or modified since the tag table was constructed.
% Hence, any necessary corrections will be made to the profile structure
% before the profile is written to the file. The corrected structure
% is returned as P_NEW.
%
% The VERSION field in P.HEADER is used to determine which version of the
% ICC spec to follow in formatting the profile for output. Both Version
% 2 and Version 4 are supported.
%
% The reference page for ICCREAD has additional information about the
% fields of the structure P. For complete details, see the
% specification ICC.1:2001-04 for Version 2 and ICC.1:2001-12 for
% Version 4 (www.color.org).
%
% Example
% -------
% Write a monitor profile.
%
% P = iccread('monitor.icm');
% pmon = iccwrite(P, 'monitor2.icm');
%
% See also ISICC, ICCREAD, MAKECFORM, APPLYCFORM.
% Copyright 2003-2013 The MathWorks, Inc.
% Check input arguments
narginchk(2, 2);
validateattributes(filename, {'char'}, {'nonempty'}, 'iccwrite', 'FILENAME', 2);
if ~isicc (p)
error(message('images:iccwrite:invalidProfile'))
end
% Open (create) file for writing
[fid, msg] = fopen(filename, 'w+', 'b');
if (fid < 0)
error(message('images:iccwrite:errorOpeningFile', filename, msg));
end
% Write profile data to file and update structure
p_new = write_profile(fid, p);
fclose(fid);
p_new.Filename = filename;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pnew = write_profile(fid, p)
% WRITE_PROFILE(FID, P) writes ICC profile data to the file with
% identifier FID from input structure P and returns updated structure
% PNEW.
% Initialize output structure
pnew = p;
% Determine version of ICC spec
version = sscanf(p.Header.Version(1), '%d%');
% Encode tags in byte vector and construct new tag table
[tagtable, tagheap] = encode_tags(p, version);
if isempty(tagheap)
fclose(fid);
error(message('images:iccwrite:InvalidTags'))
end
% Compute and update sizes and offsets
numtags = size(tagtable, 1);
base_offset = 128 + 4 + 12 * numtags;
% = length(header) + length(tag table)
for k = 1:numtags
tagtable{k, 2} = tagtable{k, 2} + base_offset;
end
pnew.Header.Size = base_offset + length(tagheap);
pnew.TagTable = tagtable;
% Encode header and tag table as byte vectors
headerheap = uint8(encode_header(pnew.Header));
if isempty(headerheap)
fclose(fid);
error(message('images:iccwrite:InvalidHeader'))
end
tableheap = uint8(encode_tagtable(tagtable));
if isempty(tableheap)
fclose(fid);
error(message('images:iccwrite:InvalidTagTable'))
end
% Assemble profile as byte vector and write to file
profileheap = uint8([headerheap, tableheap, tagheap]);
if version > 2
% Compute MD5 checksum for profile; see clause 6.1.13.
% Spec says to compute the checksum after setting bytes
% 44-47 (indexed from 0), 64-67, and 84-99 to 0.
tempheap = profileheap;
tempheap([45:48 65:68 85:100]) = 0;
pnew.Header.ProfileID = compute_md5(tempheap);
profileheap(85:100) = pnew.Header.ProfileID;
end
fwrite_check(fid, profileheap, 'uint8');
%-----------------------------------------------------
function out = encode_tagtable(tagtable)
% Convert TagTable field into byte stream for profile
% Allocate space; insert tag count
numtags = size(tagtable, 1);
out = uint8(zeros(1, 4 + 12 * numtags));
out(1:4) = longs2bytes(uint32(numtags));
offset = 4;
% Insert signature, offset, and data_size for each tag
for k = 1:numtags
% iccread deblanks signatures. Make sure the signature here
% has four characters, padded with blanks if necessary.
sig = ' ';
P = length(tagtable{k, 1});
sig(1:P) = tagtable{k, 1};
out((offset + 1):(offset + 4)) = uint8(sig);
out((offset + 5):(offset + 8)) = longs2bytes(uint32(tagtable{k, 2}));
out((offset + 9):(offset + 12)) = longs2bytes(uint32(tagtable{k, 3}));
offset = offset + 12;
end
%-----------------------------------------------------
%%% encode_tags
function [tag_table, tagheap] = encode_tags(p, version)
% Encode all public and private tags into byte stream,
% recording their locations, etc., in a new tag table
% Count public tags -- all fields except Filename,
% Header, TagTable, and PrivateTags should count
profile_fields = fieldnames(p);
if isfield(p, 'MatTRC')
mattrc_fields = fieldnames(p.MatTRC);
else
mattrc_fields = {};
end
public_tagnames = get_public_tagnames(version);
mattrc_tagnames = get_mattrc_tagnames(version);
publiccount = count_matching_fields(profile_fields, public_tagnames(:, 2)) + ...
count_matching_fields(mattrc_fields, mattrc_tagnames(:, 2));
% Count private tags
privatecount = size(p.PrivateTags, 1);
% Allocate space
tag_table = cell(publiccount + privatecount, 3);
tagrow = 1;
tagheap = uint8(zeros(1, 0)); % empty 1-row array
offset = 0;
% Process public tags
for k = 1:length(profile_fields)
pdx = strmatch(profile_fields{k}, public_tagnames(:, 2), 'exact');
if ~isempty(pdx)
signature = public_tagnames{pdx, 1};
tag = encode_public_tag(signature, p.(profile_fields{k}), ...
p.Header.ConnectionSpace, version);
if isempty(tag)
warning(message('images:iccwrite:DefectiveTag', profile_fields{ k }))
tagheap = [];
return;
end
data_size = length(tag); % without padding
sigmatch = find_signature_matches(signature, tagrow, tag_table);
% ==> sigmatch contains row numbers of possible matching tags
matchrow = find_matching_tags(sigmatch, tag, tag_table, tagheap);
% Add row to Tag Table, either for alias or new tag:
if matchrow ~= 0 % alias to previous tag
tag_table{tagrow, 1} = signature;
tag_table{tagrow, 2} = tag_table{matchrow, 2};
tag_table{tagrow, 3} = tag_table{matchrow, 3};
else % add new tag
tag = bump(tag); % pad to 32-bit boundary
% append to heap
tagheap = [tagheap, tag]; %#ok<AGROW>
tag_table{tagrow, 1} = signature;
tag_table{tagrow, 2} = offset;
tag_table{tagrow, 3} = data_size; % unpadded length
offset = offset + length(tag); % includes padding
end
tagrow = tagrow + 1;
end
end
for k = 1:length(mattrc_fields)
mdx = strmatch(mattrc_fields{k}, mattrc_tagnames(:, 2), 'exact');
if ~isempty(mdx)
signature = mattrc_tagnames{mdx, 1};
tag = encode_public_tag(signature, p.MatTRC.(mattrc_fields{k}), ...
p.Header.ConnectionSpace, version);
if isempty(tag)
error(message('images:iccwrite:DefectiveTag', mattrc_fields{ k }))
end
data_size = length(tag);
tag = bump(tag);
tagheap = [tagheap, tag]; %#ok<AGROW>
tag_table{tagrow, 1} = signature;
tag_table{tagrow, 2} = offset;
tag_table{tagrow, 3} = data_size;
offset = offset + length(tag);
tagrow = tagrow + 1;
end
end
% Process private tags
for k = 1:privatecount
signature = p.PrivateTags{k, 1};
tag = encode_private_tag(p.PrivateTags{k, 2});
if isempty(tag)
warning(message('images:iccwrite:DefectiveTagPrivate', signature))
tagheap = [];
return;
end
data_size = length(tag);
tag = bump(tag);
tagheap = [tagheap, tag]; %#ok<AGROW>
tag_table{tagrow, 1} = signature;
tag_table{tagrow, 2} = offset;
tag_table{tagrow, 3} = data_size;
offset = offset + length(tag);
tagrow = tagrow + 1;
end
%-----------------------------------------------------
function count = count_matching_fields(fields, tagnames)
% Return a count of the number of profile fields that match one or more
% entries in the provided list if tagnames.
count = 0;
for k = 1:length(fields)
idx = strmatch(fields{k}, tagnames, 'exact');
if ~isempty(idx)
count = count + 1;
end
end
%-----------------------------------------------------
function sigmatch = find_signature_matches(signature, tag_row, tag_table)
% If signature starts with 'A2B', find other tags in the first tag_row-1
% entries in the tag table starting with 'A2B'.
%
% If signature starts with 'B2A', find other tags in the first tag_row-1
% entries in the tag table starting with 'B2A'.
%
% sigmatch is a vector of indices into the tag table.
if strcmp(signature(1 : 3), 'A2B')
sigmatch = strmatch('A2B', tag_table(1 : tag_row - 1, 1));
elseif strcmp(signature(1 : 3), 'B2A')
sigmatch = strmatch('B2A', tag_table(1 : tag_row - 1, 1));
else
sigmatch = [];
end
%-----------------------------------------------------
function idx = find_matching_tags(signature_matches, tag, tag_table, tag_heap)
% Test tag data against other tags in the tag_table with matching
% signatures. signature_matches is a vector of indices into tag_table. tag
% is the tag data being tested. tag_heap is the binary table of all tag
% data constructed so far.
%
% Returns idx, a scalar value. If a match was found, idx is the index into
% tag_table of the corresponding tag. If no match is found, idx is 0.
tag_size = numel(tag);
idx = 0;
for j = 1:numel(signature_matches)
matchoff = tag_table{signature_matches(j), 2};
if tag_table{signature_matches(j), 3} == tag_size && ...
all(tag_heap(matchoff + 1 : matchoff + tag_size) == tag)
idx = signature_matches(j);
break
end
end
%-----------------------------------------------------
function out = encode_header(header)
% Encode header fields in byte stream for profile
out = uint8(zeros(1, 128)); % fixed-length header
% Clause 6.1.1 - Profile size
out(1:4) = longs2bytes(uint32(header.Size));
% Clause 6.1.2 - CMM Type
out(5:8) = uint8(header.CMMType);
% Clause 6.1.3 - Profile Version
% Byte 0: Major Revision in BCD
% Byte 1: Minor Revision & Bug Fix Revision in each nibble in BCD
% Byte 2: Reserved; expected to be 0
% Byte 3: Reserved; expected to be 0
version_numbers = sscanf(header.Version, '%d.%d.%d');
out(9) = uint8(version_numbers(1));
out(10) = uint8(16 * version_numbers(2) + version_numbers(3));
% Clause 6.1.4 - Profile/Device Class signature
% Device Class Signature
% ------------ ---------
% Input Device profile 'scnr'
% Display Device profile 'mntr'
% Output Device profile 'prtr'
device_classes = get_device_classes(version_numbers(1));
idx = strmatch(header.DeviceClass, device_classes(:, 2), 'exact');
if isempty(idx)
out = [];
return;
end
out(13:16) = uint8(device_classes{idx, 1});
% Clause 6.1.5 - Color Space signature
% Four-byte string, although some of signatures have a blank
% space at the end.
colorspaces = get_colorspaces(version_numbers(1));
idx = strmatch(header.ColorSpace, colorspaces(:, 2), 'exact');
if isempty(idx)
out = [];
return;
end
out(17:20) = uint8(colorspaces{idx, 1});
% Clause 6.1.6 - Profile connection space signature
% Either 'XYZ' or 'Lab'. However, if the profile is a DeviceLink
% profile, the connection space signature is taken from the
% colorspace signatures table.
idx = strmatch(header.ConnectionSpace, colorspaces(:, 2), 'exact');
if isempty(idx)
out = [];
return;
elseif ~strcmp(header.DeviceClass, 'device link') && idx > 2
out = []; % for non-DeviceLink, must be PCS
return;
else
out(21:24) = uint8(colorspaces{idx, 1});
end
date_time_num = datevec(header.CreationDate);
out(25:36) = encode_date_time_number(uint16(date_time_num));
if ~strcmp(header.Signature, 'acsp')
out = [];
return;
else
out(37:40) = uint8('acsp');
end
% Clause 6.1.7 - Primary platform signature
% Four characters, though one code ('SGI ') ends with a space.
% Zeros if there is no primary platform.
switch header.PrimaryPlatform
case 'none'
out(41:44) = uint8([0 0 0 0]);
case 'SGI'
out(41:44) = uint8('SGI ');
case 'Apple'
out(41:44) = uint8('APPL');
case 'Microsoft'
out(41:44) = uint8('MSFT');
case 'Sun'
out(41:44) = uint8('SUNW');
case 'Taligent'
out(41:44) = uint8('TGNT');
otherwise
if numel(header.PrimaryPlatform) == 4
out(41:44) = uint8(header.PrimaryPlatform);
warning(message('images:iccwrite:invalidPrimaryPlatform'));
else
out = [];
return;
end
end
% Clause 6.1.8 - Profile flags
% Flags containing CMM hints. The least-significant 16 bits are reserved
% by ICC, which currently defines position 0 as "0 if not embedded profile,
% 1 if embedded profile" and position 1 as "1 if profile cannot be used
% independently of embedded color data, otherwise 0."
out(45:48) = uint8(longs2bytes(uint32(header.Flags)));
% Clause 6.1.9 - Device manufacturer and model
out(49:52) = uint8(header.DeviceManufacturer);
out(53:56) = uint8(header.DeviceModel);
% Clause 6.1.10 - Attributes
% Device setup attributes, such as media type. The least-significant 32
% bits of this 64-bit value are reserved for ICC, which currently defines
% bit positions 0 and 1.
% UPDATE FOR ICC:1:2001-04 Clause 6.1.10 -- Bit positions 2 and 3
% POSITION 2: POSITIVE=0, NEGATIVE=1
% POSITION 3: COLOR=0, BLACK AND WHT=1
out(57:60) = uint8([0 0 0 0]);
out(61:64) = longs2bytes(uint32(header.Attributes));
% Clause 6.1.11 - Rendering intent
switch header.RenderingIntent
case 'perceptual'
value = 0;
case 'relative colorimetric'
value = 1;
case 'saturation'
value = 2;
case 'absolute colorimetric'
value = 3;
otherwise
out = [];
return;
end
out(65:68) = longs2bytes(uint32(value));
% Clause 6.1 - Table 9
out(69:80) = encode_xyz_number(header.Illuminant);
% Clause 6.12 - Profile creator
out(81:84) = uint8(header.Creator);
%---------------------------------------
%%% encode_public_tag
function out = encode_public_tag(signature, public_tag, pcs, version)
lut_types = {'A2B0','A2B1','A2B2','B2A0','B2A1','B2A2',...
'gamt','pre0','pre1','pre2'};
xyz_types = {'bkpt','bXYZ','gXYZ','lumi','rXYZ','wtpt'};
curve_types = {'bTRC','gTRC','kTRC','rTRC'};
text_desc_types = {'desc','dmdd','dmnd','scrd','vued'};
text_types = {'targ'};
non_interpreted_types = {'bfd ','devs',...
'psd0','psd1','psd2','psd3',...
'ps2s','ps2i','scrn'};
if version <= 2
text_types = [text_types, {'cprt'}];
non_interpreted_types = [non_interpreted_types, {'ncol'}];
else
text_desc_types = [text_desc_types, {'cprt'}];
% non_interpreted_types = [non_interpreted_types, {'clrt'}];
end
% Handle any tags that couldn't be interpreted on input
if strcmp(class(public_tag), 'uint8')
out = public_tag;
return;
end
% Handle interpreted tags
switch char(signature)
case lut_types
% See Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
if public_tag.MFT < 1 % for backwards compatibility
out = encode_private_tag(public_tag.Data);
else
out = encode_lut_type(public_tag);
end
case xyz_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
out = encode_xyz_type(public_tag);
case curve_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
out = encode_curve_type(public_tag);
case text_desc_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
if version > 2
out = encode_mluc(public_tag);
else
out = encode_text_description_type(public_tag);
end
case text_types
% Clauses 6.4.* (v. 2) and 9.2.10 (v. 4.2)
out = encode_text_type(public_tag);
case non_interpreted_types % treat as private tag
% Clauses 6.4.* (v. 2)
out = encode_private_tag(public_tag);
case 'calt'
% Clause 6.4.9 (v. 2) and 9.2.9 (v. 4.2)
out = encode_date_time_type(public_tag);
case 'chad'
% Clause 6.4.11 (v. 2) and 9.2.11 (v. 4.2)
out = encode_sf32_type(public_tag);
case 'chrm'
% Clause 9.2.12 (v. 4.2)
out = encode_chromaticity_type(public_tag);
case 'clro'
% Clause 9.2.13 (v. 4.2)
out = encode_colorant_order_type(public_tag);
case {'clrt', 'clot'}
% Clause 9.2.14 (v. 4.2)
out = encode_colorant_table_type(public_tag, pcs);
case 'crdi'
% Clause 6.4.14 (v. 2) or 6.4.16 (v. 4.0)
out = encode_crd_info_type(public_tag);
case 'meas'
% Clause 9.2.23 (v. 4.2)
out = encode_measurement_type(public_tag);
case 'ncl2'
% Clause 9.2.26 (v. 4.2)
out = encode_named_color_type(public_tag, pcs);
case 'pseq'
% Clause 9.2.32 (v. 4.2)
out = encode_profile_sequence_type(public_tag, version);
case 'resp'
% Clause 9.2.27 (v. 4.2)
out = encode_response_curve_set16_type(public_tag);
case 'tech'
% Clause 9.2.35 (v. 4.2)
out = encode_signature_type(public_tag);
case 'view'
% viewingConditionsTag clause 6.4.47 (v. 2) or 9.2.37 (v. 4.2)
out = encode_viewing_conditions(public_tag);
end
%------------------------------------------
%%% encode_private_tag
function out = encode_private_tag(tagdata)
out = uint8(tagdata);
%------------------------------------------
%%% encode_sf32_type
function out = encode_sf32_type(vals)
% Clause 6.5.14 (v. 2) or 10.18 (v. 4.2)
% 0-3 'sf32'
% 4-7 reserved, must be 0
% 8-n array of s15Fixed16Number values
numvals = numel(vals);
data_size = numvals * 4 + 8;
out = uint8(zeros(1, data_size));
out(1:4) = uint8('sf32');
longs = int32(round(65536 * vals'));
out(9:data_size) = longs2bytes(longs);
%------------------------------------------
%%% encode_xyz_number
function out = encode_xyz_number(xyz)
% Clause 5.3.10 (v. 2) and 5.1.11 (v. 4.2)
% 0-3 CIE X s15Fixed16Number
% 4-7 CIE Y s15Fixed16Number
% 8-11 CIE Z s15Fixed16Number
out = longs2bytes(int32(round(65536 * xyz)));
%------------------------------------------
%%% encode_xyz_type
function out = encode_xyz_type(xyzs)
% Clause 6.5.26 (v. 2) or 10.27 (v. 4.2)
% 0-3 'XYZ '
% 4-7 reserved, must be 0
% 8-n array of XYZ numbers
numxyzs = size(xyzs, 1);
data_size = numxyzs * 3 * 4 + 8;
out = uint8(zeros(1, data_size));
out(1:4) = uint8('XYZ ');
longs = int32(round(65536 * xyzs'));
out(9:data_size) = longs2bytes(longs);
%------------------------------------------
%%% encode_chromaticity_type
function out = encode_chromaticity_type(chrm)
% Clause 10.2 (v. 4.2)
% 0-3 'chrm'
% 4-7 reserved, must be 0
% 8-9 number of device channels
% 10-11 encoded phosphor/colorant type
% 12-19 CIE xy coordinates of 1st channel
% 20-end CIE xy coordinates of remaining channels
numchan = size(chrm.xy, 1); % number of colorants
out = uint8(zeros(1, 12 + 8 * numchan));
out(1 : 4) = uint8('chrm');
out(9 : 10) = shorts2bytes(uint16(numchan));
out(11 : 12) = shorts2bytes(uint16(chrm.ColorantCode));
current = 12;
for i = 1 : numchan
out(current + 1 : current + 4) = ...
longs2bytes(uint32(round(65536.0 * chrm.xy(i, 1))));
out(current + 5 : current + 8) = ...
longs2bytes(uint32(round(65536.0 * chrm.xy(i, 2))));
current = current + 8;
end
%------------------------------------------
%%% encode_colorant_order_type
function out = encode_colorant_order_type(clro)
% Clause 10.3 (v. 4.2)
% 0-3 'clro'
% 4-7 reserved, must be 0
% 8-11 number of colorants n
% 12 index of first colorant in laydown
% 13-end remaining (n - 1) indices, in laydown order
numchan = length(clro);
out = uint8(zeros(1, 12 + numchan));
out(1 : 4) = uint8('clro');
out(9 : 12) = longs2bytes(uint32(numchan));
for i = 1 : numchan
out(12 + i) = uint8(clro(i));
end
%------------------------------------------
%%% encode_colorant_table_type
function out = encode_colorant_table_type(clrt, pcs)
% Clause 10.4 (v. 4.2)
% 0-3 'clrt'
% 4-7 reserved, must be 0
% 8-11 number of colorants n
% 12-43 name of first colorant, NULL terminated
% 44-49 PCS values of first colorant as uint16
% 50-end name and PCS values of remaining colorants
numchan = size(clrt, 1);
out = uint8(zeros(1, 12 + 38 * numchan));
out(1 : 4) = uint8('clrt');
out(9 : 12) = longs2bytes(uint32(numchan));
next = 13;
for i = 1 : numchan
% Insert name, leaving space for at least one NULL at end
lstring = min(length(clrt{i, 1}), 31);
out(next : next + lstring - 1) = ...
uint8(clrt{i, 1}(1 : lstring));
% Convert PCS coordinates to uint16 and insert
pcs16 = encode_color(clrt{i, 2}, pcs, 'double', 'uint16');
out(next + 32 : next + 37) = shorts2bytes(pcs16);
next = next + 38;
end
%------------------------------------------
%%% encode_curve_type
function out = encode_curve_type(curve)
% Clause 6.5.3 (v. 2) or 10.5 (v. 4.2)
% 0-3 'curv'
% 4-7 reserved, must be 0
% 8-11 count value, uint32
% 12-end curve values, uint16
% For v. 4 can also be 'para'; see Clause 10.15 (v. 4.2)
if isnumeric(curve) % Encode curveType
% Allocate space
count = length(curve);
if count == 1 && curve(1) == uint16(256)
count = 0; % gamma == 1, ==> identity
end
out = uint8(zeros(1, 2 * count + 12));
% Insert signature and count
out(1:4) = uint8('curv');
out(9:12) = longs2bytes(uint32(count));
% Encode curve data
if count > 0
out(13:end) = shorts2bytes(uint16(curve));
end
elseif isstruct(curve) && isfield(curve, 'FunctionType') ...
&& isfield(curve, 'Params') % Encode parametricCurveType
% Allocate space
out = uint8(zeros(1, 12 + 4 * length(curve.Params)));
% Insert signature and function index
out(1:4) = uint8('para');
out(9:10) = shorts2bytes(uint16(curve.FunctionType));
% Encode function parameters
out(13:end) = longs2bytes(int32(round(65536 * curve.Params)));
else % error return
out = [];
end
%------------------------------------------
%%% encode viewingConditionsType
function out = encode_viewing_conditions(conditions)
% Clause 6.5.25 (v. 2) or 10.26 (v. 4.2)
% 0-3 'view'
% 4-7 reserved, must be 0
% 8-19 absolute XYZ for illuminant in cd/m^2
% 20-31 absolute XYZ for surround in cd/m^2
% 32-35 illuminant type
illuminant_table = {'Unknown', 'D50', 'D65', 'D93', 'F2', ...
'D55', 'A', 'EquiPower', 'F8'};
out = uint8(zeros(1, 36));
out(1:4) = uint8('view');
out(9:20) = encode_xyz_number(conditions.IlluminantXYZ);
out(21:32) = encode_xyz_number(conditions.SurroundXYZ);
illum_idx = strmatch(conditions.IlluminantType, illuminant_table, 'exact');
out(33:36) = longs2bytes(uint32(illum_idx - 1));
%------------------------------------------
%%% encode_lut_type
function out = encode_lut_type(lut)
% Clauses 6.5.8 and 6.5.7 (v. 2) or 10.9 and 10.8 (v. 4.2)
% 0-3 'mft1', 'mft2'
% 4-7 reserved, must be 0
% 8 number of input channels, uint8
% 9 number of output channels, uint8
% 10 number of CLUT grid points, uint8
% 11 reserved for padding, must be 0
% 12-47 3-by-3 E matrix, stored row-major, each value s15Fixed16Number
% 16-bit LUT type ('mft2'):
% 48-49 number of input table entries, uint16
% 50-51 number of output table entries, uint16
% 52-n input tables, uint16
% CLUT values, uint16
% output tables, uint16
% 8-bit LUT type ('mft1'):
% 48- input tables, uint8
% CLUT values, uint8
% output tables, uint8
% New v. 4 LUT types, Clauses 10.10 and 10.11 (v. 4.2)
% 0-3 'mAB ', 'mBA '
% 4-7 reserved, must be 0
% 8 number of input channels, uint8
% 9 number of output channels, uint8
% 10-11 reserved for padding, must be 0
% 12-15 offset to first B-curve, uint32
% 16-19 offset to 3-by-4 matrix, uint32
% 20-23 offset to first M-curve, uint32
% 24-27 offset to CLUT values, uint32
% 28-31 offset to first A-curve, uint32
% 32-n data: curves stored as 'curv' or 'para' tags,
% matrix stored as s15Fixed16Number[12],
% CLUT stored as follows:
% 0-15 number of grid points in each dimension, uint8
% 16 precision in bytes (1 or 2), uint8
% 17-19 reserved for padding, must be 0
% 20-n CLUT data points, uint8 or uint16
% Insert signature
if lut.MFT == 1
out(1:4) = uint8('mft1');
elseif lut.MFT == 2
out(1:4) = uint8('mft2');
elseif lut.MFT == 3
out(1:4) = uint8('mAB ');
elseif lut.MFT == 4
out(1:4) = uint8('mBA ');
else
out = [];
return;
end
% Insert reserved padding bytes
out(5:8) = uint8(zeros(1, 4));
% Determine input-output connectivity
[num_input_channels, num_output_channels] = luttagchans(lut);
if lut.MFT < 3 % older lut types
% Determine lut dimensions and allocate space
for i = 1 : num_input_channels
itbl(:, i) = lut.InputTables{i}; %#ok<AGROW>
end
num_input_table_entries = size(itbl, 1);
for i = 1 : num_output_channels
otbl(:, i) = lut.OutputTables{i}; %#ok<AGROW>
end
num_output_table_entries = size(otbl, 1);
num_clut_grid_points = size(lut.CLUT, 1);
ndims_clut = num_output_channels;
clut_size = ones(1, num_input_channels) * num_clut_grid_points;
num_clut_elements = prod(clut_size);
nbytesInput = num_input_table_entries * num_input_channels * lut.MFT;
nbytesOutput = num_output_table_entries * num_output_channels * lut.MFT;
nbytesCLUT = num_clut_elements * ndims_clut * lut.MFT;
nbytes = 48 + nbytesInput + nbytesOutput + nbytesCLUT;
if lut.MFT == 2
nbytes = nbytes + 4; % variable table sizes
end
out(9:nbytes) = uint8(zeros(1, nbytes - 8));
% Insert table dimensions
out(9) = uint8(num_input_channels);
out(10) = uint8(num_output_channels);
out(11) = uint8(num_clut_grid_points);
% Insert matrix
out(13:48) = ...
longs2bytes(int32(round ...
(65536 * reshape(lut.PreMatrix(1:3, 1:3)', 1, 9))));
% Insert lut contents
itbl = reshape(itbl, 1, num_input_channels * num_input_table_entries);
otbl = reshape(otbl, 1, num_output_channels * num_output_table_entries);
clut = reshape(lut.CLUT, num_clut_elements, ndims_clut)';
clut = reshape(clut, 1, ndims_clut * num_clut_elements);
switch lut.MFT
case 2 % Means 16-bit CLUT
out(49:50) = shorts2bytes(uint16(num_input_table_entries));
out(51:52) = shorts2bytes(uint16(num_output_table_entries));
out(53:(52 + nbytesInput)) = shorts2bytes(uint16(itbl));
out((53 + nbytesInput):(52 + nbytesInput + nbytesCLUT)) = ...
shorts2bytes(uint16(clut));
out((53 + nbytesInput + nbytesCLUT):(52 + nbytesInput + nbytesCLUT + nbytesOutput)) = ...
shorts2bytes(uint16(otbl));
case 1 % Means 8-bit CLUT
out(49:(48 + nbytesInput)) = uint8(itbl);
out((49 + nbytesInput):(48 + nbytesInput + nbytesCLUT)) = uint8(clut);
out((49 + nbytesInput + nbytesCLUT):(48 + nbytesInput + nbytesCLUT + nbytesOutput)) = ...
uint8(otbl);
end
else % new v. 4 lut types
out(9) = uint8(num_input_channels);
out(10) = uint8(num_output_channels);
out(11:12) = uint8(zeros(1, 2)); % required padding
out(13:32) = uint8(zeros(1, 20)); % leave space for offsets
% Identify storage elements
if lut.MFT == 3 % lutAtoBType
Acurve = lut.InputTables;
ndlut = lut.CLUT;
Mcurve = lut.OutputTables;
PMatrix = lut.PostMatrix;
Bcurve = lut.PostShaper;
elseif lut.MFT == 4 % lutBtoAType
Bcurve = lut.PreShaper;
PMatrix = lut.PreMatrix;
Mcurve = lut.InputTables;
ndlut = lut.CLUT;
Acurve = lut.OutputTables;
end
% Store B-curves (required)
if isempty(Bcurve)
out = [];
return;
else
boffset = 32;
current = boffset;
numchan = size(Bcurve, 2);
for i = 1 : numchan
curve = encode_curve_type(Bcurve{i});
curve = bump(curve);
out = [out, curve]; %#ok<AGROW>
current = current + length(curve);
end
end
% Store PCS-side matrix (optional)
if isempty(PMatrix)
xoffset = 0;
else
xoffset = current;
mat3by3 = PMatrix(1:3, 1:3);
out(current + 1 : current + 9 * 4) = longs2bytes(int32(round(mat3by3' * 65536)));
current = current + 9 * 4;
out(current + 1 : current + 3 * 4) = longs2bytes(int32(round(PMatrix(:, 4)' * 65536)));
current = current + 3 * 4;
end
% Store M-curves (optional)
if isempty(Mcurve)
moffset = 0;
else
moffset = current;
numchan = size(Mcurve, 2);
for i = 1 : numchan
curve = encode_curve_type(Mcurve{i});
curve = bump(curve);
out = [out, curve]; %#ok<AGROW>
current = current + length(curve);
end
end
% Store n-dimensional LUT (optional)
if isempty(ndlut)
coffset = 0;
else
coffset = current;
% Store grid dimensions
size_ndlut = size(ndlut);
clut_size = size_ndlut(1, 1 : num_input_channels);
for i = 1 : num_input_channels
out(current + i) = uint8(clut_size(num_input_channels + 1 - i));
end % reverse order of dimensions for ICC spec
for i = num_input_channels + 1 : 16 % unused channel dimensions
out(current + i) = uint8(0);
end
current = current + 16;
% Store data size (in bytes) and add padding
if isa(ndlut, 'uint8')
datasize = 1;
else % 'uint16'
datasize = 2;
end
out(current + 1) = uint8(datasize);
out(current + 2 : current + 4) = uint8(zeros(1, 3));
current = current + 4;
% Store multidimensional table
num_clut_elements = prod(clut_size);
ndims_clut = num_output_channels;
ndlut = reshape(ndlut, num_clut_elements, ndims_clut);
ndlut = ndlut';
ndlut = reshape(ndlut, 1, num_clut_elements * ndims_clut);
if datasize == 1
luttag = uint8(ndlut);
else
luttag = shorts2bytes(uint16(ndlut));
end
luttag = bump(luttag);
out = [out, luttag];
current = current + length(luttag);
end
% Store A-curves (optional)
if isempty(Acurve)
aoffset = 0;
else
aoffset = current;
numchan = size(Acurve, 2);
for i = 1 : numchan
curve = encode_curve_type(Acurve{i});
curve = bump(curve);
out = [out, curve]; %#ok<AGROW>
current = current + length(curve);
end
end
% Store offsets
out(13:16) = longs2bytes(uint32(boffset));
out(17:20) = longs2bytes(uint32(xoffset));
out(21:24) = longs2bytes(uint32(moffset));
out(25:28) = longs2bytes(uint32(coffset));
out(29:32) = longs2bytes(uint32(aoffset));
end
%------------------------------------------
%%% encode_measurement_type
function out = encode_measurement_type(meas)
% Clause 10.12 (v. 4.2)
% 0-3 'meas'
% 4-7 reserved, must be 0
% 8-11 encoded standard observer
% 12-23 XYZ of measurement backing
% 24-27 encoded measurement geometry
% 28-31 encoded measurement flare
% 32-35 encoded standard illuminant
out = zeros(1, 36);
out(1 : 4) = uint8('meas');
out(9 : 12) = longs2bytes(uint16(meas.ObserverCode));
out(13 : 24) = encode_xyz_number(meas.MeasurementBacking);
out(25 : 28) = longs2bytes(uint16(meas.GeometryCode));
out(29 : 32) = longs2bytes(uint16(meas.FlareCode));
out(33 : 36) = longs2bytes(uint16(meas.IlluminantCode));
%------------------------------------------
%%% encode_named_color_type
function out = encode_named_color_type(named, pcs)
% Clause 10.14 (v. 4.2)
% 0-3 'ncl2' (namedColor2Type signature)
% 4-7 reserved, must be 0
% 8-11 vendor-specific flag
% 12-15 count of named colours (n)
% 16-19 number m of device coordinates
% 20-51 prefix (including NULL terminator)
% 52-83 suffix (including NULL terminator)
% 84-115 first colour name (including NULL terminator)
% 116-121 first colour's PCS coordinates
% 122-(121 + 2m) first colour's device coordinates
% . . . and so on for remaining (n - 1) colours
n = size(named.NameTable, 1);
m = named.DeviceCoordinates;
out = zeros(1, 84 + n * (38 + 2 * m));
out(1:4) = uint8('ncl2');
out(9:12) = longs2bytes(uint32(hex2dec(named.VendorFlag)));
out(13:16) = longs2bytes(uint32(n));
out(17:20) = longs2bytes(uint32(m));
lstring = min(length(named.Prefix), 31); % leave space for NULL
out(21 : 20 + lstring) = uint8(named.Prefix(1:lstring));
lstring = min(length(named.Suffix), 31);
out(53 : 52 + lstring) = uint8(named.Suffix(1:lstring));
next = 85;
for i = 1 : n
% Insert name, leaving space for at least one NULL at end
lstring = min(length(named.NameTable{i, 1}), 31);
out(next : next + lstring - 1) = ...
uint8(named.NameTable{i, 1}(1 : lstring));
% Convert PCS coordinates to uint16 and insert
pcs16 = encode_color(named.NameTable{i, 2}, pcs, ...
'double', 'uint16');
out(next + 32 : next + 37) = shorts2bytes(pcs16);
% Convert any device coordinates to uint16 and insert
if size(named.NameTable, 2) > 2
device16 = encode_color(named.NameTable{i, 3}, 'color_n', ...
'double', 'uint16');
out(next + 38 : next + 37 + 2 * m) = shorts2bytes(device16);
end
next = next + 38 + 2 * m;
end
%------------------------------------------
%%% encode_profile_sequence_type
function out = encode_profile_sequence_type(seq, version)
% Clause 10.16 (v. 4.2)
% 0-3 'pseq'
% 4-7 reserved, must be 0
% 8-11 count of profile description structures
% 12- profile description structures
% Initialize output array with signature and count
out = uint8(zeros(1, 12));
out(1:4) = uint8('pseq');
n = length(seq);
out(9:12) = longs2bytes(uint32(n));
% Append profile description structures
technologies = get_technologies;
for p = 1:n
pdesc(1:4) = uint8(seq(p).DeviceManufacturer);
pdesc(5:8) = uint8(seq(p).DeviceModel);
pdesc(9:12) = uint8(zeros(1, 4));
pdesc(13:16) = longs2bytes(seq(p).Attributes);
if strcmp(seq(p).Technology, 'Unspecified')
pdesc(17:20) = uint8(zeros(1, 4));
else
idx = strmatch(seq(p).Technology, technologies(:, 2));
if isempty(idx)
pdesc(17:20) = uint8(zeros(1, 4));
else
pdesc(17:20) = uint8(technologies{idx, 1});
end
end
out = [out, pdesc]; %#ok<AGROW>
if version <= 2
if strcmp(seq(p).DeviceMfgDesc.String, 'Unavailable')
blank.String = '';
blank.Optional = uint8(zeros(1, 78));
dmnd = encode_text_description_type(blank);
else
dmnd = encode_text_description_type(seq(p).DeviceMfgDesc);
end
else
if strcmp(seq(p).DeviceMfgDesc.String, 'Unavailable')
seq(p).DeviceMfgDesc.String = '';
end
dmnd = encode_mluc(seq(p).DeviceMfgDesc);
end
out = [out, dmnd]; %#ok<AGROW>
if version <= 2
if strcmp(seq(p).DeviceModelDesc.String, 'Unavailable')
blank.String = '';
blank.Optional = uint8(zeros(1, 78));
dmdd = encode_text_description_type(blank);
else
dmdd = encode_text_description_type(seq(p).DeviceModelDesc);
end
else
if strcmp(seq(p).DeviceModelDesc.String, 'Unavailable')
seq(p).DeviceModelDesc.String = '';
end
dmdd = encode_mluc(seq(p).DeviceModelDesc);
end
out = [out, dmdd]; %#ok<AGROW>
end
%------------------------------------------
%%% encode_response_curve_set16_type
function out = encode_response_curve_set16_type(rcs2)
% Clause 10.17 (v. 4.2)
% 0-3 'rcs2'
% 4-7 reserved, must be 0
% 8-9 number of channels n
% 10-11 number of measurement types m
% 12-(11+4m) array of offsets
% (12+4m)-end m response-curve structures
numtypes = length(rcs2); % 1D structure array
numchan = size(rcs2(1).SolidXYZs, 1);
out = uint8(zeros(1, 12 + 4 * numtypes));
out(1 : 4) = uint8('rcs2');
out(9 : 10) = shorts2bytes(uint16(numchan));
out(11 : 12) = shorts2bytes(uint16(numtypes));
current = 12 + 4 * numtypes; % start of response-curve structures
% response-curve structure
% 0-3 measurement-type signature
% 4-(3+4n) number of measurements for each channel
% (4+4n)-(3+16n) XYZ of solid-colorant patches
% (4+16n)-end n response arrays
for i = 1 : numtypes
out(9 + 4 * i : 12 + 4 * i) = longs2bytes(uint16(current));
out(current + 1 : current + 4) = uint8(rcs2(i).MeasurementCode);
current = current + 4;
nmeas = zeros(1, numchan);
for j = 1 : numchan
nmeas(j) = size(rcs2(i).ResponseArray{j}, 1);
out(current + 1 : current + 4) = longs2bytes(uint32(nmeas(j)));
current = current + 4;
end
for j = 1 : numchan
out(current + 1 : current + 12) = ...
encode_xyz_number(rcs2(i).SolidXYZs(j, :));
current = current + 12;
end
for j = 1 : numchan
responsearray = [];
for k = 1 : nmeas(j)
devcode = 65535.0 * rcs2(i).ResponseArray{j}(k, 1);
measure = 65536.0 * rcs2(i).ResponseArray{j}(k, 2);
response(1 : 2) = shorts2bytes(uint16(round(devcode)));
response(5 : 8) = longs2bytes(uint32(round(measure)));
responsearray = [responsearray response]; %#ok<AGROW>
end
out(current + 1 : current + 8 * nmeas(j)) = responsearray;
current = current + 8 * nmeas(j);
end
end
%------------------------------------------
%%% encode_signature_type
function out = encode_signature_type(technology)
% Clause 10.19 (v. 4.2)
% 0-3 'sig '
% 4-7 reserved, must be 0
% 8-11 four-byte signature
out = uint8(zeros(1, 12));
out(1:4) = uint8('sig ');
if ~strcmp(technology, 'Unspecified')
technologies = get_technologies;
idx = strmatch(technology, technologies(:, 2));
if isempty(idx)
return;
else
out(9:12) = uint8(technologies{idx, 1});
end
end
%------------------------------------------
%%% encode_text_description_type
function out = encode_text_description_type(description)
% Clause 6.5.17 (v. 2 only)
% 0-3 'desc'
% 4-7 reserved, must be 0
% 8-11 ASCII invariant description count, with terminating NULL
% 12-(n-1) ASCII invariant description
% followed by optional Unicode and ScriptCode descriptions, which we
% replace with new text if the ASCII description has changed.
% n-(n+3) Unicode language code (uint32)
% (n+4)-(n+7) Unicode description count with NULL (uint32)
% (n+8)-(m-1) Unicode description (2 bytes per character)
% m-(m+1) ScriptCode code (uint16)
% m+2 ScriptCode description count with NULL (uint8)
% (m+3)-(m+69) ScriptCode description
% Note: Unicode code and count are always required, as are
% ScriptCode code, count, and description. These can
% all be zeros, but they consume at least 78 bytes even
% if no textual information is encoded.
% Handle v. 2 type interpreted by older iccread
if ~isfield(description, 'Plain') && ~isfield(description, 'String')
description.String = description;
description.Optional = uint8(zeros(1, 78));
% minimal data (no Unicode or ScriptCode)
end
if isfield(description, 'Plain')
description.String = description.Plain;
end
if ~isfield(description, 'Optional')
description.Optional = uint8(zeros(1, 78));
end
% Allocate minimal space
asciicount = length(description.String) + 1;
optionalcount = length(description.Optional);
out = uint8(zeros(1, 12 + asciicount + 78));
% Insert signature and ASCII character count
out(1:4) = uint8('desc');
out(9:12) = longs2bytes(uint32(asciicount));
% Insert ASCII text description, with terminating NULL
newstring = description.String;
newstring(asciicount) = char(uint8(0)); % add null terminator
out(13:(12 + asciicount)) = uint8(newstring);
% Adjust Unicode & ScriptCode description, if any, to agree
% with ASCII string, which may have been modified
unicount = double(description.Optional(5 : 8));
unilength = bitshift(unicount(1), 24) + bitshift(unicount(2), 16) + ...
bitshift(unicount(3), 8) + unicount(4);
scriptsection = description.Optional(9 + 2 * unilength : end);
% ScriptCode section is always 70 bytes. The first 3 are
% reserved for code and count, leaving 67 for the string.
% But some v. 2 profiles violate this rule, so we must make
% allowances. The output profile will conform to the rule.
sclength = length(scriptsection);
if sclength < 70
scriptsection(sclength + 1 : 70) = uint8(zeros(1, 70 - sclength));
optionalcount = optionalcount + 70 - sclength;
end
scriptlength = double(scriptsection(3)); % actual string length
scripttext = scriptsection(4 : 3 + scriptlength);
% Replace any existing Unicode if it doesn't match ASCII String
if unilength > 0 % there is a Unicode string
% Compare with ASCII String
unistring = native2unicode(description.Optional(9 : (8 + 2 * unilength)), ...
'utf-16be');
unistart = strfind(unistring, description.String); % skip leading characters
if ~isempty(unistart)
match = strcmp(unistring(unistart : end), description.String);
else
match = false;
end
if ~match
% Replace with new Unicode string, keeping original FEFF
% or other special character at beginning
newunistring = unicode2native(newstring, 'utf-16be');
if description.Optional(9) ~= 0 % special character
description.Optional(5 : 8) = longs2bytes(uint32(asciicount + 1));
description.Optional(11 : 10 + 2 * asciicount) = newunistring;
optionalcount = 80 + 2 * asciicount;
else % presumably, no leading special character
description.Optional(5 : 8) = longs2bytes(uint32(asciicount));
description.Optional(9 : 8 + 2 * asciicount) = newunistring;
optionalcount = 78 + 2 * asciicount;
end
end
end
% Replace any existing ScriptCode if it doesn't match ASCII String
if scriptlength > 0 % there is a ScriptCode string
% Compare with ASCII
scriptstart = strfind(scripttext, newstring);
if isempty(scriptstart) % it doesn't match
% Replace ScriptCode, if it fits
if asciicount < 68
scriptsection(3) = uint8(asciicount);
scriptsection(4 : 3 + asciicount) = uint8(newstring);
scriptsection(4 + asciicount : 70) = ...
uint8(zeros(1, 67 - asciicount));
end
end
end
% Whether replaced or not, reinsert ScriptCode into Optional after
% Unicode (which may have changed)
description.Optional(optionalcount - 69 : optionalcount) = ...
scriptsection(1 : 70);
% Insert optional Unicode and ScriptCode data into output array
out((12 + asciicount + 1):(12 + asciicount + optionalcount)) ...
= uint8(description.Optional(1 : optionalcount));
%------------------------------------------
function out = encode_mluc(description)
% Clause 10.13 (v. 4.2)
% 0-3 'mluc'
% 4-7 reserved, must be 0
% 8-11 number of name records that follow (n)
% 12-15 name-record length (currently 12)
% 16-17 first-name language code (ISO-639)
% 18-19 first-name country code (ISO-3166)
% 20-23 first-name length
% 24-27 first-name offset
% 28-(28+12n) [n should be (n - 1) - rfp]
% additional name records, if any
% (28+12n)-end [n should be (n - 1) - rfp]
% Unicode characters (2 bytes each)
% Allocate space in output array and initialize to zero
first_unicode_character_offset = 16 + 12*numel(description);
nbytes = first_unicode_character_offset;
for k = 1 : numel(description)
nbytes = nbytes + 2 * numel(description(k).String);
end % Two bytes per Unicode character in each string
out = uint8(zeros(1, nbytes));
% Insert signature, number of records, and record length
out(1:4) = uint8('mluc');
out(9:12) = longs2bytes(uint32(numel(description)));
out(13:16) = longs2bytes(uint32(12));
% Insert "name" records
total_unicode_bytes = 0;
current = 16;
for k = 1:numel(description)
out(current + 1 : current + 2) = ...
shorts2bytes(uint16(description(k).LanguageCode));
out(current + 3 : current + 4) = ...
shorts2bytes(uint16(description(k).CountryCode));
num_bytes = 2 * numel(description(k).String);
out(current + 5 : current + 8) = longs2bytes(uint32(num_bytes));
out(current + 9 : current + 12) = ...
longs2bytes(uint32(first_unicode_character_offset + total_unicode_bytes));
total_unicode_bytes = total_unicode_bytes + num_bytes;
current = current + 12;
end
% Insert "names" in Unicode
for k = 1:numel(description)
unibytes = unicode2native(description(k).String, 'utf-16be');
lengthk = length(unibytes);
out(current + 1 : current + lengthk) = unibytes;
current = current + lengthk;
end
%------------------------------------------
%%% encode_text_type
function out = encode_text_type(textstring)
% Clause 6.5.18 (v. 2) or 10.20 (v. 4.2)
% 0-3 'text'
% 4-7 reserved, must be 0
% 8- string of (data_size - 8) 7-bit ASCII characters, including NULL
out = uint8(zeros(1, length(textstring) + 9));
out(1:4) = uint8('text');
out(9:(8 + length(textstring))) = uint8(textstring);
out(9 + length(textstring)) = uint8(0); % Unnecessary, but explicit
%------------------------------------------
%%% encode_date_time_type
function out = encode_date_time_type(dtnumber)
% Clause 6.5.5 (v. 2) or 10.7 (v. 4.2)
% 0-3 'dtim'
% 4-7 reserved, must be 0
% 8-19 DateTimeNumber
% Verify that dtnumber is an array of six 16-bit integers
out = uint8(zeros(1, 20));
out(1:4) = uint8('dtim');
out(9:20) = encode_date_time_number(dtnumber);
%------------------------------------------
%%% encode_crd_info_type
function out = encode_crd_info_type(crd_info)
% Clause 6.5.2 (v. 2) or 6.5.4 (v. 4.0)
% 0-3 'crdi'
% 4-7 reserved, must be 0
% 8-11 PostScript product name character count, uint32
% PostScript product name, 7-bit ASCII
% Rendering intent 0 CRD name character count, uint32
% Rendering intent 0 CRD name, 7-bit ASCII
% Rendering intent 1 CRD name character count, uint32
% Rendering intent 1 CRD name, 7-bit ASCII
% Rendering intent 2 CRD name character count, uint32
% Rendering intent 2 CRD name, 7-bit ASCII
% Rendering intent 3 CRD name character count, uint32
% Rendering intent 3 CRD name, 7-bit ASCII
% Verify that psproductname is a string and that crdnames is
% a cell array of strings, of length 4.
psproductname = crd_info.PostScriptProductName;
crdnames = crd_info.RenderingIntentCRDNames;
% Allocate space required, including NULL terminators
lenp = length(psproductname) + 1;
lencrd = zeros(1, 4);
for k = 1:4
lencrd(k) = length(crdnames{k}) + 1;
end
out = uint8(zeros(1, 28 + lenp + sum(lencrd)));
% Insert signature, lengths, and names
out(1:4) = uint8('crdi');
last = 8; % 4 bytes reserved (= 0)
out((last + 1):(last + 4)) = longs2bytes(uint32(lenp));
last = last + 4;
out((last + 1):(last + lenp - 1)) = uint8(psproductname);
out(last + lenp) = uint8(0);
last = last + lenp;
for k = 1:4
out((last + 1):(last + 4)) = longs2bytes(uint32(lencrd(k)));
last = last + 4;
out((last + 1):(last + lencrd(k) - 1)) = uint8(crdnames{k});
out(last + lencrd(k)) = uint8(0);
last = last + lencrd(k);
end
%------------------------------------------
%%% encode_date_time_number
function out = encode_date_time_number(dtn)
% Clause 5.3.1 (v. 2) and 5.1.1 (v. 4.2)
out = shorts2bytes(uint16(dtn));
%------------------------------------------
%%% bump -- add zeros to byte array to reach
% next 32-bit boundary
function tag = bump(tag)
padding = mod(-length(tag), 4);
if padding ~= 0
tag = [tag, uint8(zeros(1, padding))];
end
%------------------------------------------
%%% shorts2bytes
function bytes = shorts2bytes(shorts)
% Convert signed to unsigned
if isa(shorts, 'int16')
ushorts = uint16(zeros(size(shorts)));
negs = find(shorts < 0);
nonnegs = find(shorts >= 0);
two16 = double(intmax('uint16')) + 1.0;
base16 = ones(size(shorts)) * two16;
ushorts(nonnegs) = uint16(shorts(nonnegs));
ushorts(negs) = uint16(double(shorts(negs)) + base16(negs));
shorts = ushorts;
end
numshorts = numel(shorts);
shorts = reshape(shorts, 1, numshorts);
bytes = uint8(zeros(2, numshorts));
bytes(1, :) = uint8(bitshift(shorts, -8));
bytes(2, :) = uint8(bitand(shorts, 255));
bytes = reshape(bytes, 1, 2 * numshorts);
%------------------------------------------
%%% longs2bytes
function bytes = longs2bytes(longs)
% Convert signed to unsigned
if isa(longs, 'int32')
ulongs = uint32(zeros(size(longs)));
negs = find(longs < 0);
nonnegs = find(longs >= 0);
two32 = double(intmax('uint32')) + 1.0;
base32 = ones(size(longs)) * two32;
ulongs(nonnegs) = uint32(longs(nonnegs));
ulongs(negs) = uint32(double(longs(negs)) + base32(negs));
longs = ulongs;
end
numlongs = numel(longs);
longs = reshape(longs, 1, numlongs);
bytes = uint8(zeros(4, numlongs));
bytes(1, :) = uint8(bitshift(longs, -24));
bytes(2, :) = uint8(bitand(bitshift(longs, -16), 255));
bytes(3, :) = uint8(bitand(bitshift(longs, -8), 255));
bytes(4, :) = uint8(bitand(longs, 255));
bytes = reshape(bytes, 1, 4 * numlongs);
%------------------------------------------
%%% fwrite_check
function fwrite_check(fid, a, precision)
count = fwrite(fid, a, precision);
if count ~= numel(a)
pos = ftell(fid) - count;
fclose(fid);
error(message('images:iccwrite:fileWriteFailed', n, pos))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
ntsc2rgb.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/ntsc2rgb.m
| 2,732 |
utf_8
|
54f4fadb9dc61419dff96920bfaa7a8f
|
function varargout = ntsc2rgb(varargin)
%NTSC2RGB Convert NTSC color values to RGB color space.
% RGBMAP = NTSC2RGB(YIQMAP) converts the M-by-3 NTSC
% (television) values in the colormap YIQMAP to RGB color
% space. If YIQMAP is M-by-3 and contains the NTSC luminance
% (Y) and chrominance (I and Q) color components as columns,
% then RGBMAP is an M-by-3 matrix that contains the red, green,
% and blue values equivalent to those colors. Both RGBMAP and
% YIQMAP contain intensities in the range 0.0 to 1.0. The
% intensity 0.0 corresponds to the absence of the component,
% while the intensity 1.0 corresponds to full saturation of the
% component.
%
% RGB = NTSC2RGB(YIQ) converts the NTSC image YIQ to the
% equivalent truecolor image RGB.
%
% Class Support
% -------------
% The input image or colormap must be of class double. The
% output is of class double.
%
% Example
% -------
% Convert RGB image to NTSC and back.
%
% RGB = imread('board.tif');
% NTSC = rgb2ntsc(RGB);
% RGB2 = ntsc2rgb(NTSC);
%
% See also RGB2NTSC, RGB2IND, IND2RGB, IND2GRAY.
% Copyright 1992-2010 The MathWorks, Inc.
A = parse_inputs(varargin{:});
T = [1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703];
threeD = (ndims(A)==3); % Determine if input includes a 3-D array.
if threeD % A is YIQ, M-by-N-by-3
m = size(A,1);
n = size(A,2);
A = reshape(A(:),m*n,3)*T';
% Make sure the rgb values are between 0.0 and 1.0
A = max(0,A);
d = find(any(A'>1));
A(d,:) = A(d,:) ./ (max(A(d,:), [], 2) * ones(1,3));
A = reshape(A,m,n,3);
else % A is YIQMAP, M-by-3
A = A*T';
% Make sure the rgb values are between 0.0 and 1.0
A = max(0,A);
d = find(any(A'>1));
A(d,:) = A(d,:) ./ (max(A(d,:), [], 2) * ones(1,3));
end
% Output
if nargout < 2,% RGBMAP = NTSC2RGB(YIQMAP)
varargout{1} = A;
else
error(message('images:ntsc2rgb:wrongNumberOfOutputArguments', nargout))
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function: parse_inputs
%
function A = parse_inputs(varargin)
narginchk(1,1);
% ntsc2rgb(YIQ) or ntsc2rgb(YIQMAP)
A = varargin{1};
%no logical
if islogical(A)
error(message('images:ntsc2rgb:invalidType'))
end
% Check validity of the input parameters. A is converted to double because YIQ
% colorspace can contain negative values.
if ndims(A)==2
% Check colormap
if ( size(A,2)~=3 || size(A,1) < 1 )
error(message('images:ntsc2rgb:invalidYIQMAP'))
end
if ~isa(A,'double')
warning(message('images:ntsc2rgb:rangeYIQMAP'));
A = im2double(A);
end
elseif ndims(A)==3 && size(A,3)==3
% Check YIQ
A = im2double(A);
else
error(message('images:ntsc2rgb:invalidSize'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
makecform.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/makecform.m
| 40,214 |
utf_8
|
cc693b52b96528419278ee0160c717a7
|
function c = makecform(varargin)
%MAKECFORM Create a color transformation structure.
% C = MAKECFORM(TYPE) creates the color transformation structure, C,
% that defines the color space conversion specified by TYPE. To
% perform the transformation, pass the color transformation structure
% as an argument to the APPLYCFORM function. TYPE should be one of
% these strings:
%
% 'lab2lch' 'lch2lab' 'upvpl2xyz' 'xyz2upvpl'
% 'uvl2xyz' 'xyz2uvl' 'xyl2xyz' 'xyz2xyl'
% 'xyz2lab' 'lab2xyz' 'srgb2xyz' 'xyz2srgb'
% 'srgb2lab' 'lab2srgb' 'srgb2cmyk' 'cmyk2srgb'
%
% (The color space table below defines these abbreviations.)
%
% For the xyz2lab and lab2xyz transforms, you can optionally specify the value
% of the reference white point. Use the syntax C =
% MAKECFORM(TYPE,'WhitePoint',WP), where WP is a 1-by-3 vector of XYZ values
% scaled so that Y = 1. The default is whitepoint('ICC'). You can use the
% WHITEPOINT function to create the WP vector.
%
% For the srgb2lab, lab2srgb, srgb2xyz, and xyz2srgb transforms, you can
% optionally specify the adapted white point using the syntax C =
% MAKECFORM(TYPE, 'AdaptedWhitePoint', WP). As above, WP is a row vector
% of XYZ values scaled so that Y = 1. If not specified, the default
% adapated white point is whitepoint('ICC'). NOTE: To get answers
% consistent with some published sRGB equations, specify
% whitepoint('D65') for the adapted white point.
%
% The srgb2cmyk and cmyk2srgb transforms convert data between sRGB
% IEC61966-2.1 and "Specifications for Web Offset Publications" (SWOP)
% CMYK. You can optionally specify the rendering intent for this type of
% transform. Use the syntax:
%
% C = MAKECFORM('srgb2cmyk', 'RenderingIntent', INTENT)
% C = MAKECFORM('cmyk2srgb', 'RenderingIntent', INTENT)
%
% where INTENT must be one of these strings:
%
% 'AbsoluteColorimetric' 'Perceptual'
% 'RelativeColorimetric' 'Saturation'
%
% 'Perceptual' is the default rendering intent. See the MAKECFORM
% reference page for more information about rendering intents.
%
% C = MAKECFORM('adapt', 'WhiteStart', WPS, 'WhiteEnd', WPE, 'AdaptModel',
% MODELNAME) creates a linear chromatic-adaptation transform. WPS and
% WPE are row vectors of XYZ values, scaled so that Y = 1, specifying
% the starting and ending white points. MODELNAME is either 'vonKries'
% or 'Bradford' and specifies the type of chromatic-adaptation model to
% be employed. If 'AdaptModel' is not specified, it defaults to
% 'Bradford'.
%
% C = MAKECFORM('icc', SRC_PROFILE, DEST_PROFILE) creates a color
% transformation based on two ICC profiles. SRC_PROFILE and
% DEST_PROFILE are ICC profile structures returned by ICCREAD.
%
% C = MAKECFORM('icc', SRC_PROFILE, DEST_PROFILE,
% 'SourceRenderingIntent', SRC_INTENT, 'DestRenderingIntent',
% DEST_INTENT) creates a color transformation based on two ICC color
% profiles. SRC_INTENT and DEST_INTENT specify the rendering intent
% corresponding to the source and destination profiles. (See the table
% above for the list of rendering intent strings.) 'Perceptual' is the
% default rendering intent for both source and destination.
%
% CFORM = MAKECFORM('clut', PROFILE, LUTTYPE) creates a color transform
% based on a Color Lookup Table (CLUT) contained in an ICC color
% profile. PROFILE is an ICC profile structure returned by ICCREAD.
% LUTTYPE specifies which CLUT in the PROFILE structure is to be used.
% It may be one of these strings:
%
% 'AToB0' 'AToB1' 'AToB2' 'AToB3' 'BToA0'
% 'BToA1' 'BToA2' 'BToA3' 'Gamut' 'Preview0'
% 'Preview1' 'Preview2'
%
% and defaults to 'AToB0'.
%
% CFORM = MAKECFORM('mattrc', MATTRC, 'Direction', DIR) creates a color
% transform based on the structure MATTRC, containing an RGB-to-XYZ
% matrix and RGB Tone Reproduction Curves. MATTRC is typically the
% 'MatTRC' field of an ICC profile structure returned by ICCREAD, based
% on tags contained in an ICC color profile. DIR is either 'forward' or
% 'inverse' and specifies whether the MatTRC is to be applied in the
% forward (RGB to XYZ) or inverse (XYZ to RGB) direction.
%
% CFORM = MAKECFORM('mattrc', PROFILE, 'Direction', DIR) creates a color
% transform based on the 'MatTRC' field of the given ICC profile
% structure PROFILE. DIR is either 'forward' or 'inverse' and specifies
% whether the MatTRC is to be applied in the forward (RGB to XYZ) or
% inverse (XYZ to RGB) direction.
%
% CFORM = MAKECFORM('mattrc', PROFILE, 'Direction', DIR,
% 'RenderingIntent', INTENT) is similar, but adds the option of
% specifying the rendering intent. INTENT must be one of the strings:
%
% 'RelativeColorimetric' [default]
% 'AbsoluteColorimetric'
%
% When 'AbsoluteColorimetric' is specified, the colorimetry is referenced
% to a perfect diffuser, rather than to the Media White Point of the
% profile.
%
% CFORM = MAKECFORM('graytrc', PROFILE, 'Direction', DIR) creates a
% monochrome transform based on a single-channel Tone Reproduction
% Curve contained as the 'GrayTRC' field of the ICC profile structure
% PROFILE. DIR is either 'forward' or 'inverse' and specifies whether
% the transform is to be applied in the forward (device to PCS) or
% inverse (PCS to device) direction. ("Device" here refers to the
% grayscale signal communicating with the monochrome device. "PCS" is
% the Profile Connection Space of the ICC profile and can be either XYZ
% or Lab, depending on the 'ConnectionSpace' field in PROFILE.Header.)
%
% CFORM = MAKECFORM('graytrc', PROFILE, 'Direction', DIR,
% 'RenderingIntent', INTENT) is similar, but adds the option of
% specifying the rendering intent. INTENT must be one of the strings:
%
% 'RelativeColorimetric' [default]
% 'AbsoluteColorimetric'
%
% When 'AbsoluteColorimetric' is specified, the colorimetry is referenced
% to a perfect diffuser, rather than to the Media White Point of the
% profile.
%
% CFORM = MAKECFORM('named', PROFILE, SPACE) creates a transform
% from color names to color-space coordinates. PROFILE must be
% a profile structure for a Named Color profile (with a NamedColor2
% field). SPACE is either 'PCS' or 'Device'. The 'PCS' option is
% always available and will return Lab or XYZ coordinates, depending
% on the 'ConnectionSpace' field in PROFILE.Header, in 'double'
% format. The 'Device' option, when active, will return device
% coordinates, the dimension depending on the 'ColorSpace' field
% in PROFILE.Header, also in 'double' format.
%
% For more information about 'clut' transformations, see Section 6.5.7
% of ICC.1:2001-04 (Version 2) or Section 6.5.9 of ICC.1:2001-12 (Version 4).
% For more information about 'mattrc' transformations, see Section 6.3.1.2
% ICC.1:2001-04 or ICC.1:2001-12. These specifications are available
% at www.color.org.
%
%
% Color space abbreviations
% -------------------------
%
% Abbreviation Description
%
% xyz 1931 CIE XYZ tristimulus values (2 degree observer)
% xyl 1931 CIE xyY chromaticity values (2 degree observer)
% uvl 1960 CIE uvL values
% upvpl 1976 CIE u'v'L values
% lab 1976 CIE L*a*b* values
% lch Polar transformation of L*a*b* values; c = chroma
% and h = hue
% srgb Standard computer monitor RGB values
% (IEC 61966-2-1)
%
% Example
% -------
% Convert RGB image to L*a*b*, assuming input image is sRGB.
%
% rgb = imread('peppers.png');
% cform = makecform('srgb2lab');
% lab = applycform(rgb, cform);
%
% See also APPLYCFORM, LAB2DOUBLE, LAB2UINT8, LAB2UINT16, WHITEPOINT,
% XYZ2DOUBLE, XYZ2UINT16, ISICC, ICCREAD, ICCWRITE.
% Copyright 2002-2010 The MathWorks, Inc.
% Poe
% Author: Scott Gregory, Toshia McCabe 10/18/02
narginchk(1, Inf);
valid_strings = {'lab2lch', 'lch2lab', ...
'upvpl2xyz', 'xyz2upvpl',...
'uvl2xyz', 'xyz2uvl', ...
'xyl2xyz', 'xyz2xyl', ...
'xyz2lab', 'lab2xyz', ...
'srgb2xyz', 'xyz2srgb', ...
'srgb2lab', 'lab2srgb', ...
'srgb2cmyk', 'cmyk2srgb', ...
'clut', 'mattrc', 'graytrc', 'icc', 'named', 'adapt', ...
'makeabsolute', 'makeblackfix'};
transform_type = validatestring(varargin{1}, valid_strings, mfilename, ...
'TRANSFORMTYPE', 1);
switch lower(transform_type)
case {'lab2lch', 'lch2lab', 'upvpl2xyz', 'xyz2upvpl',...
'uvl2xyz', 'xyz2uvl', 'xyl2xyz', 'xyz2xyl'}
c = make_simple_cform(varargin{:});
case {'xyz2lab', 'lab2xyz'}
c = make_xyz2lab_or_lab2xyz_cform(varargin{:});
case 'clut'
c = make_clut_cform(varargin{2:end});
case 'mattrc'
c = make_mattrc_cform(varargin{2:end});
case 'graytrc'
c = make_graytrc_cform(varargin{2:end});
case 'named'
c = make_named_cform(varargin{2:end});
case 'icc'
c = make_icc_cform(varargin{2:end});
case 'adapt'
c = make_adapt_cform(varargin{:});
case 'makeabsolute'
c = make_absolute_cform(varargin{2:end});
case 'makeblackfix'
c = make_blackpoint_cform(varargin{2:end});
case {'srgb2xyz', 'xyz2srgb'}
c = make_srgb2xyz_or_xyz2srgb_cform(varargin{:});
case 'srgb2lab'
c = make_srgb2lab_cform(varargin{:});
case 'lab2srgb'
c = make_lab2srgb_cform(varargin{:});
case 'srgb2cmyk'
c = make_srgb2swop_cform(varargin{:});
case 'cmyk2srgb'
c = make_swop2srgb_cform(varargin{:});
end
%------------------------------------------------------------
function c = make_simple_cform(varargin)
% Build a simple cform structure
% Check for valid input
narginchk(1, 1);
validateattributes(varargin{1},{'char'},{'nonempty'},mfilename,'TRANSFORMTYPE',1);
xform = lower(varargin{1});
% Construct a look up table for picking atomic functions
cinfo = {'lab2lch', @lab2lch, 'lab','lch';
'lch2lab', @lch2lab,'lch','lab';
'upvpl2xyz', @upvpl2xyz,'upvpl','xyz';
'xyz2upvpl',@xyz2upvpl,'xyz','upvpl';
'uvl2xyz', @uvl2xyz, 'uvl', 'xyz';
'xyz2uvl', @xyz2uvl,'xyz','uvl';
'xyl2xyz', @xyl2xyz,'xyl','xyz';
'xyz2xyl', @xyz2xyl,'xyz','xyl'};
persistent function_table;
if isempty(function_table)
for k = 1:size(cinfo,1)
s.function = cinfo{k,2};
s.in_space = cinfo{k,3};
s.out_space = cinfo{k,4};
function_table.(cinfo{k,1}) = s;
end
end
t = function_table.(xform);
c = assigncform(t.function,t.in_space,t.out_space,'double',struct);
%----------------------------------------------------------
function c = make_xyz2lab_or_lab2xyz_cform(varargin)
wp = parseWPInputs('WhitePoint', varargin{:});
cdata.whitepoint = wp;
% Construct a look up table for picking atomic functions
cinfo = {'lab2xyz', @lab2xyz, 'lab','xyz';
'xyz2lab', @xyz2lab,'xyz','lab'};
persistent labxyz_function_table;
if isempty(labxyz_function_table)
for k = 1:size(cinfo,1)
s.function = cinfo{k,2};
s.in_space = cinfo{k,3};
s.out_space = cinfo{k,4};
labxyz_function_table.(cinfo{k,1}) = s;
end
end
xform = lower(varargin{1});
t = labxyz_function_table.(xform);
c = assigncform(t.function,t.in_space,t.out_space,'double',cdata);
%----------------------------------------------------------
function c = make_srgb2swop_cform(varargin)
% Check input args
narginchk(1, 3);
if nargin == 2
error(message('images:makecform:wrongNumInputs'));
end
% Set default rendering intents
args.renderingintent = 'perceptual';
% Get Rendering intent information if it's given
valid_property_strings = {'renderingintent'};
valid_value_strings = {'perceptual','relativecolorimetric', 'saturation',...
'absolutecolorimetric'};
if nargin > 1
prop_string = validatestring(varargin{2}, valid_property_strings, ...
mfilename, 'PARAM', 2);
value_string = validatestring(varargin{3}, valid_value_strings, ...
mfilename, 'PARAM', 3);
args.(prop_string) = value_string;
end
sRGB_profile = load_sRGB_profile();
swop_profile = load_swop_profile();
c = makecform('icc', sRGB_profile, swop_profile, 'SourceRenderingIntent',...
args.renderingintent, 'DestRenderingIntent',args.renderingintent);
%----------------------------------------------------------
function c = make_swop2srgb_cform(varargin)
% Check input args
narginchk(1, 3);
if nargin == 2
error(message('images:makecform:wrongNumInputs'));
end
% Set default rendering intents
args.renderingintent = 'perceptual';
% Get Rendering intent information if it's given
valid_property_strings = {'renderingintent'};
valid_value_strings = {'perceptual','relativecolorimetric', 'saturation',...
'absolutecolorimetric'};
if nargin > 1
prop_string = validatestring(varargin{2}, valid_property_strings, ...
mfilename, 'PARAM', 2);
value_string = validatestring(varargin{3}, valid_value_strings, ...
mfilename, 'PARAM', 3);
args.(prop_string) = value_string;
end
sRGB_profile = load_sRGB_profile();
swop_profile = load_swop_profile();
c = makecform('icc', swop_profile, sRGB_profile, 'SourceRenderingIntent',...
args.renderingintent, 'DestRenderingIntent',args.renderingintent);
%----------------------------------------------------------
function c = make_srgb2lab_cform(varargin)
wp = parseWPInputs('AdaptedWhitePoint', varargin{:});
srgb2xyz = makecform('srgb2xyz', 'AdaptedWhitePoint', wp);
xyz2lab = makecform('xyz2lab', 'WhitePoint', wp);
cdata.cforms = {srgb2xyz, xyz2lab};
c = assigncform(@applycformsequence, 'rgb', 'lab', 'double', cdata);
%----------------------------------------------------------
function c = make_lab2srgb_cform(varargin)
wp = parseWPInputs('AdaptedWhitePoint', varargin{:});
xyz2srgb = makecform('xyz2srgb', 'AdaptedWhitePoint', wp);
lab2xyz = makecform('lab2xyz', 'WhitePoint', wp);
cdata.forms = {lab2xyz, xyz2srgb};
c = assigncform(@applycformsequence, 'lab', 'rgb', 'double', cdata);
%------------------------------------
function wp = parseWPInputs(param_name, varargin)
narginchk(2, 4);
switch nargin
case 2
wp = whitepoint;
case 3
error(message('images:makecform:paramValueIncomplete'))
case 4
valid_strings = {param_name};
wp = parseWPInput(varargin{2}, varargin{3}, valid_strings, 'WP', 2);
end
%------------------------------------
function wp = parseWPInput(propname, propvalue, valid_strings, varname, varpos)
narginchk(5, 5);
if isempty(propname) || isempty(propvalue)
wp = whitepoint;
else
validatestring(propname, valid_strings, mfilename, 'PROPERTYNAME', varpos);
wp = propvalue;
validateattributes(wp, {'double'}, ...
{'real', '2d', 'nonsparse', 'finite', 'row', 'positive'}, ...
mfilename, varname, varpos + 1);
if size(wp, 2) ~= 3
error(message('images:makecform:invalidWhitePointData'))
end
end
%------------------------------------------------------------
function c = make_clut_cform(profile,luttype)
narginchk(1, 2);
if nargin < 2
luttype = 'AToB0';
end
% Check for valid input arguments
if ~isicc(profile)
error(message('images:makecform:invalidProfileNotICC'))
end
valid_luttag_strings = {'AToB0','AToB1','AToB2','AToB3','BToA0','BToA1','BToA2',....
'BToA3','Gamut','Preview0','Preview1','Preview2'};
luttype = validatestring(luttype, lower(valid_luttag_strings), ...
mfilename, 'LUTTYPE', 3);
% Handle Abstract Profile as special case
if strcmp(profile.Header.DeviceClass, 'abstract')
luttype = 'atob0';
end
% Since absolute rendering uses the rel. colorimetric tag, re-assign
% luttype and set a flag.
is_a2b3 = false;
is_b2a3 = false;
L = length(luttype);
if strncmpi(luttype,'atob3',L)
luttype = 'atob1';
is_a2b3 = true;
elseif strncmpi(luttype,'btoa3',L)
luttype = 'btoa1';
is_b2a3 = true;
end
% Get case sensitive luttag string
luttype_idx = strmatch(luttype,lower(valid_luttag_strings),'exact');
luttype = valid_luttag_strings{luttype_idx};
% Check that the profile actually has the luttag
if ~isfield(profile,luttype)
error(message('images:makecform:invalidLutTag'))
end
c_fcn = @applyclut;
luttag = profile.(luttype);
cdata.luttag = luttag;
% Figure out input/output colorspaces based on the name of the luttag
starts_in_pcs = {'BToA0','BToA1','BToA2','BToA3','Gamut'};
starts_in_device_space = {'AToB0','AToB1','AToB2','AToB3'};
starts_and_ends_in_pcs = {'Preview0','Preview1','Preview2'};
switch luttype
case starts_in_pcs
inputcolorspace = profile.Header.ConnectionSpace;
outputcolorspace = profile.Header.ColorSpace;
case starts_in_device_space
inputcolorspace = profile.Header.ColorSpace;
outputcolorspace = profile.Header.ConnectionSpace;
case starts_and_ends_in_pcs
inputcolorspace = profile.Header.ConnectionSpace;
outputcolorspace = inputcolorspace;
end
% Special case: Abstract Profile has A2B0, but starts and ends in PCS.
if strcmp(profile.Header.DeviceClass, 'abstract')
inputcolorspace = outputcolorspace; % PCS -> PCS
end
if strcmpi(inputcolorspace, 'xyz')
cdata.isxyzin = true;
else
cdata.isxyzin = false;
end
if strcmpi(outputcolorspace, 'xyz')
cdata.isxyzout = true;
else
cdata.isxyzout = false;
end
% Set up encoding
if luttag.MFT == 1 % mft1
encoding = 'uint8';
elseif luttag.MFT <= 4 % mft2, mAB , mBA
encoding = 'uint16';
else
error(message('images:makecform:unsupportedTagType'))
end
% Make a sequence of cforms if they ask for absolute rendering
if is_a2b3
% First insert the clut
clut_cform = assigncform(c_fcn,inputcolorspace, outputcolorspace,encoding,cdata);
seq_cdata.sequence.clut_cform = clut_cform;
% Then insert the makeabsolute cform
absolute_cform = makecform('makeabsolute',profile.Header.ConnectionSpace,'double',...
profile.MediaWhitePoint,whitepoint);
seq_cdata.sequence.convert_absolute = absolute_cform;
% Make an icc sequence
c = assigncform(@applyiccsequence,inputcolorspace,outputcolorspace,'uint16',seq_cdata);
elseif is_b2a3
% First insert the makeabsolute cform
clut_cform = assigncform(c_fcn,inputcolorspace, outputcolorspace,encoding,cdata);
absolute_cform = makecform('makeabsolute',profile.Header.ConnectionSpace,'double',...
whitepoint,profile.MediaWhitePoint);
seq_cdata.sequence.convert_absolute = absolute_cform;
% Then insert the clut
seq_cdata.sequence.clut_cform = clut_cform;
% Make an icc sequence
c = assigncform(@applyiccsequence,inputcolorspace,outputcolorspace,'uint16',seq_cdata);
else
% Just make a clut cform
c = assigncform(c_fcn, inputcolorspace, outputcolorspace, encoding, cdata);
end
% ------------------------------------------------------------
function c = make_mattrc_cform(varargin)
narginchk(3, 5);
% Check Profile or MatTRC argument
if isicc(varargin{1})
pf = varargin{1};
if isfield(pf, 'MatTRC') && isstruct(pf.MatTRC)
mattrc = pf.MatTRC;
else
error(message('images:makecform:missingMattrc'))
end
elseif isstruct(varargin{1})
mattrc = varargin{1};
pf = [];
else
error(message('images:makecform:invalidArgument'))
end
% Replace v. 4 fieldnames with v. 2 fieldnames
if isfield(mattrc, 'RedMatrixColumn')
mattrc.RedColorant = mattrc.RedMatrixColumn;
end
if isfield(mattrc, 'GreenMatrixColumn')
mattrc.GreenColorant = mattrc.GreenMatrixColumn;
end
if isfield(mattrc, 'BlueMatrixColumn')
mattrc.BlueColorant = mattrc.BlueMatrixColumn;
end
if ~is_valid_mattrc(mattrc)
error(message('images:makecform:invalidMattrc'))
end
% Check direction arguments
valid_propname_strings = {'direction'};
valid_propvalue_strings = {'forward', 'inverse'};
validatestring(varargin{2}, valid_propname_strings, ...
mfilename, 'PROPERTYNAME', 2);
direction = validatestring(varargin{3}, valid_propvalue_strings, ...
mfilename, 'PROPERTYVALUE', 3);
% Check (optional) rendering-intent arguments
if nargin == 4
error(message('images:makecform:paramValueIncomplete'))
elseif nargin > 4
valid_propname_strings = {'renderingintent'};
valid_propvalue_strings = {'relativecolorimetric', ...
'absolutecolorimetric'};
validatestring(varargin{4}, valid_propname_strings, ...
mfilename, 'PROPERTYNAME', 4);
intent = validatestring(varargin{5}, valid_propvalue_strings, ...
mfilename, 'PROPERTYVALUE', 5);
else
intent = 'relativecolorimetric';
end
% Assign correct atomic function and color spaces,
% depending on direction.
if strcmp(direction, 'forward')
c_fcn = @applymattrc_fwd;
space_in = 'rgb';
space_out ='xyz';
else
c_fcn = @applymattrc_inv;
space_in = 'xyz';
space_out = 'rgb';
end
cdata.MatTRC = mattrc;
% Make a sequence of cforms for absolute rendering
if strcmpi(intent, 'absolutecolorimetric')
if isempty(pf)
error(message('images:makecform:absoluteRequiresProfile'))
else
mwp = pf.MediaWhitePoint;
end
mattrc_cform = assigncform(c_fcn, space_in, space_out, 'double', cdata);
if strcmpi(direction, 'forward') % mattrc followed by makeabsolute
seq_cdata.sequence.mattrc_cform = mattrc_cform;
absolute_cform = makecform('makeabsolute', 'XYZ', 'double',...
mwp, whitepoint);
seq_cdata.sequence.convert_absolute = absolute_cform;
else % makeabsolute followed by mattrc
absolute_cform = makecform('makeabsolute', 'XYZ','double',...
whitepoint, mwp);
seq_cdata.sequence.convert_absolute = absolute_cform;
seq_cdata.sequence.mattrc_cform = mattrc_cform;
end
% Make "icc" sequence
c = assigncform(@applyiccsequence, space_in, space_out, ...
'uint16', seq_cdata);
else
% Make simple mattrc cform
c = assigncform(c_fcn, space_in, space_out, 'double', cdata);
end
%------------------------------------------------------------
function c = make_graytrc_cform(varargin)
narginchk(3, 5);
pf = varargin{1};
if ~isicc(pf)
error(message('images:makecform:invalidProfileNotICC'))
end
if ~isfield(pf, 'GrayTRC')
error(message('images:makecform:missingGraytrc'))
else
graytrc = pf.GrayTRC;
end
invalidGraytrc = isempty(graytrc) || ...
~(isa(graytrc, 'uint16') || isa(graytrc, 'struct'));
if invalidGraytrc
error(message('images:makecform:invalidGraytrc'))
end
% Check direction arguments
valid_propname_strings = {'direction'};
valid_propvalue_strings = {'forward', 'inverse'};
validatestring(varargin{2}, valid_propname_strings, ...
mfilename, 'PROPERTYNAME', 2);
direction = validatestring(varargin{3}, valid_propvalue_strings, ...
mfilename, 'PROPERTYVALUE', 3);
% check (optional) rendering-intent arguments
if nargin == 4
error(message('images:makecform:paramValueIncomplete'))
elseif nargin > 4
valid_propname_strings = {'renderingintent'};
valid_propvalue_strings = {'relativecolorimetric', ...
'absolutecolorimetric'};
validatestring(varargin{4}, valid_propname_strings, ...
mfilename, 'PROPERTYNAME', 4);
intent = validatestring(varargin{5}, valid_propvalue_strings, ...
mfilename, 'PROPERTYVALUE', 5);
else
intent = 'relativecolorimetric';
end
% Assign correct atomic function and color spaces,
% depending on direction.
if strcmp(direction, 'forward')
c_fcn = @applygraytrc_fwd;
space_in = 'gray';
space_out = pf.Header.ConnectionSpace;
else
c_fcn = @applygraytrc_inv;
space_in = pf.Header.ConnectionSpace;
space_out = 'gray';
end
cdata.GrayTRC = graytrc;
cdata.ConnectionSpace = pf.Header.ConnectionSpace;
% Make a sequence of cforms for absolute rendering
if strcmpi(intent, 'absolutecolorimetric')
graytrc_cform = assigncform(c_fcn, space_in, space_out, 'double', cdata);
mwp = pf.MediaWhitePoint;
if strcmpi(direction, 'forward') % graytrc followed by makeabsolute
seq_cdata.sequence.graytrc_cform = graytrc_cform;
absolute_cform = makecform('makeabsolute', cdata.ConnectionSpace, ...
'double', mwp, whitepoint);
seq_cdata.sequence.convert_absolute = absolute_cform;
else % makeabsolute followed by graytrc
absolute_cform = makecform('makeabsolute', cdata.ConnectionSpace, ...
'double', whitepoint, mwp);
seq_cdata.sequence.convert_absolute = absolute_cform;
seq_cdata.sequence.graytrc_cform = graytrc_cform;
end
% Make "icc" sequence
c = assigncform(@applyiccsequence, space_in, space_out, ...
'uint16', seq_cdata);
else
% Make simple graytrc cform
c = assigncform(c_fcn, space_in, space_out, 'double', cdata);
end
%------------------------------------------------------------
function c = make_named_cform(varargin)
narginchk(1, 2);
pf = varargin{1};
if ~isfield(pf, 'NamedColor2')
error(message('images:makecform:missingNamedColor2'))
elseif ~isfield(pf.NamedColor2, 'NameTable')
error(message('images:makecform:missingNameTable'))
else
cdata.NameTable = pf.NamedColor2.NameTable;
end
cdata.Space = varargin{2};
c_fcn = @applynamedcolor;
space_in = 'char';
if strcmpi(cdata.Space, 'pcs')
space_out = pf.Header.ConnectionSpace;
elseif strcmpi(cdata.Space, 'device')
space_out = pf.Header.ColorSpace;
else
error(message('images:makecform:invalidInputData'))
end
c = assigncform(c_fcn, space_in, space_out, 'name', cdata);
%------------------------------------------------------------
function c = make_icc_cform(varargin)
narginchk(2, 6);
% Set default rendering intents
args.sourcerenderingintent ='perceptual';
args.destrenderingintent = 'perceptual';
% Get rendering intent information if it's given
valid_property_strings = {'sourcerenderingintent', 'destrenderingintent'};
valid_value_strings = {'perceptual', 'relativecolorimetric', 'saturation',...
'absolutecolorimetric'};
if nargin > 2
for k=3:2:nargin
prop_string = validatestring(varargin{k}, valid_property_strings, ...
mfilename, 'PROPERTYNAME', k);
value_string = validatestring(varargin{k+1}, valid_value_strings, ...
mfilename, 'PROPERTYVALUE', k+1);
args.(prop_string) = value_string;
end
end
source_intent_num = int2str(strmatch(args.sourcerenderingintent,valid_value_strings)-1);
dest_intent_num = int2str(strmatch(args.destrenderingintent,valid_value_strings)-1);
% Get the source profile
source_pf = varargin{1};
if ~isicc(source_pf)
error(message('images:makecform:invalidSourceProfile'))
end
if strcmp(source_pf.Header.DeviceClass, 'device link')
error(message('images:makecform:invalidSourceProfileDeviceLink'))
end
% Get the destination profile
dest_pf = varargin{2};
if ~isicc(dest_pf)
error(message('images:makecform:invalidDestinationProfile'))
end
if strcmp(dest_pf.Header.DeviceClass, 'device link')
error(message('images:makecform:invalidDestinationProfileDeviceLink'))
end
% Flags that are used later to determine connection space
source_isMatTRC = false;
dest_isMatTRC = false;
% Select transform from source profile according to priority rule
first_try = strcat('AToB', source_intent_num);
second_try = strcat('MatTRC');
if isfield(source_pf, first_try)
source_cform = makecform('clut', source_pf, first_try);
elseif strcmp(first_try, 'AToB3') && isfield(source_pf, 'AToB1')
source_cform = makecform('clut', source_pf, 'AToB1');
elseif isfield(source_pf, 'AToB0') % fallback strategy: perceptual
source_cform = makecform('clut', source_pf, 'AToB0');
elseif isfield(source_pf, second_try)
source_isMatTRC = true;
source_cform = makecform('mattrc',source_pf.(second_try),'Direction','forward');
elseif isfield(source_pf, 'GrayTRC')
source_cform = makecform('graytrc', source_pf, 'Direction', 'forward');
else
error(message('images:makecform:missingAToBxMatTRCGrayTRC'))
end
% Select transform from destination profile according to priority rule
first_try = strcat('BToA', dest_intent_num);
second_try = strcat('MatTRC');
if isfield(dest_pf,first_try)
dest_cform = makecform('clut', dest_pf, first_try);
elseif strcmp(first_try, 'BToA3') && isfield(dest_pf, 'BToA1')
dest_cform = makecform('clut', dest_pf, 'BToA1');
elseif isfield(dest_pf, 'BToA0')
dest_cform = makecform('clut', dest_pf, 'BToA0');
elseif strcmp(dest_pf.Header.DeviceClass, 'abstract') && ...
isfield(dest_pf, 'AToB0')
dest_cform = makecform('clut', dest_pf, 'AToB0');
elseif isfield(dest_pf,second_try)
dest_isMatTRC = true;
dest_cform = makecform('mattrc',dest_pf.(second_try),'Direction','inverse');
elseif isfield(dest_pf, 'GrayTRC')
dest_cform = makecform('graytrc', dest_pf, 'Direction', 'inverse');
else
error(message('images:makecform:invalidDestProfile'))
end
% Set flags for absolute-colorimetric rendering.
% Make sure the user didn't ask for absolute on the source and relative on
% the destination profile. In any event, if the destination is absolute,
% the entire path is absolute.
source_absolute = strncmp(args.sourcerenderingintent, ...
'absolutecolorimetric',...
length(args.sourcerenderingintent));
dest_absolute = strncmp(args.destrenderingintent, ...
'absolutecolorimetric',...
length(args.destrenderingintent));
if source_absolute && ~dest_absolute
error(message('images:makecform:invalidRenderingIntents'))
else
path_is_absolute = dest_absolute;
end
% Check to see if PCS's match. If not, the PCS's will have to be
% reconciled with a third cform that connects the two.
source_pcs_is_xyz = source_isMatTRC || ...
strcmp(deblank(lower(source_pf.Header.ConnectionSpace)), 'xyz');
dest_pcs_is_xyz = dest_isMatTRC || ...
strcmp(deblank(lower(dest_pf.Header.ConnectionSpace)), 'xyz');
needs_gendermender = (source_pcs_is_xyz ~= dest_pcs_is_xyz);
% Check for mismatch in PCS interpretation due to profile version mismatch
% (non-colorimetric intents only). Reference-medium black point has Y = 0
% in Version 2 (and preceding) and has Y = 0.0034731 in Version 4.
L = length(args.destrenderingintent);
if strncmp(args.destrenderingintent, 'perceptual', L) || ...
strncmp(args.destrenderingintent, 'saturation', L)
source_version = sscanf(source_pf.Header.Version(1), '%d%');
dest_version = sscanf(dest_pf.Header.Version(1), '%d%');
if source_version <= 2 && dest_version > 2
upconvert_blackpoint = 1; % convert version 2 to version 4
elseif source_version > 2 && dest_version <= 2
upconvert_blackpoint = -1; % convert version 4 to version 2
else
upconvert_blackpoint = 0; % no mismatch, no conversion
end
else
upconvert_blackpoint = 0; % colorimetric intent, no conversion
end
% Now construct the sequence of cforms to be packed into the cdata
% of this main cform. The sequence might require some xyz2lab or lab2xyz
% cforms to accommodate a mismatch in PCSs between the profiles. In
% addition, a 'makeabsolute' cform may be inserted if the user asks for
% the absolute rendering intent.
% Put the source profile first in the sequence. It's always first.
cdata.sequence.source = source_cform;
% Set sequence encoding to fixed value of 'uint16'. MathWorks developers -
% see correspondence from Bob Poe in devel/ip/ipt/tech_refs/makecform.
sequence_encoding = 'uint16';
% Do PCS corrections preferentially in XYZ, as needed.
if source_pcs_is_xyz
% Insert a cform to convert to absolute if needed.
if path_is_absolute
absolute_cform = makecform('makeabsolute', 'xyz', 'double',...
source_pf.MediaWhitePoint, dest_pf.MediaWhitePoint);
cdata.sequence.convert_absolute = absolute_cform;
% Insert a cform to convert black point if needed.
elseif upconvert_blackpoint ~= 0
fix_black_cform = makecform('makeblackfix', 'xyz', 'double', ...
upconvert_blackpoint);
cdata.sequence.fix_black = fix_black_cform;
end
end
% Insert a lab2xyz or xyz2lab if needed
if needs_gendermender
if source_pcs_is_xyz
fix_pcs_cform = makecform('xyz2lab', 'whitepoint', whitepoint);
else
fix_pcs_cform = makecform('lab2xyz', 'whitepoint', whitepoint);
end
cdata.sequence.fix_pcs = fix_pcs_cform;
% Do PCS corrections preferentially in XYZ, as needed.
if dest_pcs_is_xyz
% Insert a cform to convert to absolute if needed.
if path_is_absolute
absolute_cform = makecform('makeabsolute', 'xyz', 'double',...
source_pf.MediaWhitePoint,dest_pf.MediaWhitePoint);
cdata.sequence.convert_absolute = absolute_cform;
% Insert a cform to convert black point if needed.
elseif upconvert_blackpoint ~= 0
fix_black_cform = makecform('makeblackfix', 'xyz', 'double', ...
upconvert_blackpoint);
cdata.sequence.fix_black = fix_black_cform;
end
end
end
% If neither PCS is XYZ, resort to Lab conversions as needed.
if ~source_pcs_is_xyz && ~dest_pcs_is_xyz
% Insert absolute conversion if needed.
if path_is_absolute
absolute_cform = makecform('makeabsolute', 'lab', 'double',...
source_pf.MediaWhitePoint,dest_pf.MediaWhitePoint);
cdata.sequence.convert_absolute = absolute_cform;
% Insert black-point conversion if needed.
elseif upconvert_blackpoint ~= 0
fix_black_cform = makecform('makeblackfix', 'lab', 'double', ...
upconvert_blackpoint);
cdata.sequence.fix_black = fix_black_cform;
end
end
% Insert the destination profile into the sequence.
cdata.sequence.destination = dest_cform;
% Assign c_fcn
c_fcn = @applyiccsequence;
% Make the main cform
c = assigncform(c_fcn,source_pf.Header.ColorSpace,dest_pf.Header.ColorSpace,...
sequence_encoding,cdata);
%------------------------------------------------------------
function c = make_adapt_cform(varargin)
% Check input args:
narginchk(5, 7);
% Get white-point XYZs, starting and ending:
wps = parseWPInput(varargin{2}, varargin{3}, {'WhiteStart'}, 'WPS', 2);
wpe = parseWPInput(varargin{4}, varargin{5}, {'WhiteEnd'}, 'WPE', 4);
% Get chromatic-adaptation-model name:
if nargin < 6
adapttype = 'bradford';
else
validatestring(varargin{6}, {'AdaptModel'}, mfilename, 'PROPERTYNAME', 6);
if nargin < 7
adapttype = 'bradford';
else
adapttype = validatestring(varargin{7}, {'VonKries' 'Bradford'}, ...
mfilename, 'MODELNAME', 7);
end
end
% Get adaptation-model matrix (XYZ -> primaries):
if strcmpi(adapttype, 'Bradford')
chad = [ 0.8951 0.2664 -0.1614; ...
-0.7502 1.7135 0.0367; ...
0.0389 -0.0685 1.0296 ];
elseif strcmpi(adapttype, 'VonKries')
chad = [ 0.40024 0.70760 -0.08081; ...
-0.22630 1.16532 0.04570; ...
0.0 0.0 0.91822 ];
else
error(message('images:makecform:AdaptModelNotSupported', adapttype))
end
% Convert white points from XYZ to primaries:
rgbs = wps * chad';
rgbe = wpe * chad';
% Construct chromatic-adaptation matrix:
rgbscale = diag(rgbe ./ rgbs);
cdata.adapter = chad \ rgbscale * chad;
% Construct cform:
c = assigncform(@applychad, 'XYZ', 'XYZ', 'double', cdata);
%------------------------------------------------------------
function c = make_absolute_cform(cspace,encoding,source_wp,dest_wp)
% This is a private cform. It is only constructed under the hood. No doc for
% this type of cform needed.
cdata.colorspace = cspace;
cdata.source_whitepoint = source_wp;
cdata.dest_whitepoint = dest_wp;
c = assigncform(@applyabsolute,cspace,cspace,encoding,cdata);
%------------------------------------------------------------
function c = make_blackpoint_cform(cspace, encoding, upconvert_blackpoint)
% This is a private cform. It is only constructed under the hood. No doc for
% this type of cform needed.
cdata.colorspace = cspace;
cdata.upconvert = upconvert_blackpoint;
c = assigncform(@applyblackpoint, cspace, cspace, encoding, cdata);
%------------------------------------------------------------
function c = make_srgb2xyz_or_xyz2srgb_cform(varargin)
wp = parseWPInputs('AdaptedWhitePoint', varargin{:});
sRGB_profile = load_sRGB_profile();
if strcmpi(varargin{1}, 'srgb2xyz')
direction = 'forward';
else
direction = 'inverse';
end
main_cform = makecform('mattrc', sRGB_profile.MatTRC, 'Direction', direction);
if isequal(wp, whitepoint('D50'))
c = main_cform;
else
if strcmp(direction, 'forward')
adapt = makecform('adapt', 'WhiteStart', whitepoint('D50'), ...
'WhiteEnd', wp, ...
'AdaptModel', 'Bradford');
cdata.cforms = {main_cform, adapt};
c = assigncform(@applycformsequence, 'rgb', 'xyz', 'double', cdata);
else
adapt = makecform('adapt', 'WhiteStart', wp, ...
'WhiteEnd', whitepoint('D50'), ...
'AdaptModel', 'Bradford');
cdata.cforms = {adapt, main_cform};
c = assigncform(@applycformsequence, 'xyz', 'rgb', 'double', cdata);
end
end
% ------------------------------------------------------------
function c = assigncform(c_func,space_in,space_out,encoding,cdata)
% make the cform struct
c.c_func = c_func;
c.ColorSpace_in = space_in;
c.ColorSpace_out = space_out;
c.encoding = encoding;
c.cdata = cdata;
% ------------------------------------------------------------
function out = is_valid_mattrc(mattrc)
has_redc = isfield(mattrc,'RedColorant');
has_greenc = isfield(mattrc,'GreenColorant');
has_bluec = isfield(mattrc,'BlueColorant');
has_redtrc = isfield(mattrc,'RedTRC');
has_greentrc = isfield(mattrc,'GreenTRC');
has_bluetrc = isfield(mattrc,'BlueTRC');
if (has_redc && has_greenc && has_bluec && has_redtrc && has_greentrc ...
&& has_bluetrc)
out = true;
% Check data types
if isempty(mattrc.RedColorant) || ~isa(mattrc.RedColorant,'double')
out = false;
elseif isempty(mattrc.GreenColorant) || ~isa(mattrc.GreenColorant,'double')
out = false;
elseif isempty(mattrc.BlueColorant) || ~isa(mattrc.BlueColorant,'double')
out = false;
elseif isempty(mattrc.RedTRC) || (~isa(mattrc.RedTRC,'uint16') && ~isa(mattrc.RedTRC,'struct'))
out = false;
elseif isempty(mattrc.GreenTRC) || (~isa(mattrc.GreenTRC,'uint16') && ~isa(mattrc.GreenTRC,'struct'))
out = false;
elseif isempty(mattrc.BlueTRC) || (~isa(mattrc.BlueTRC,'uint16') && ~isa(mattrc.BlueTRC,'struct'))
out = false;
end
else
out = false;
end
% ------------------------------------------------------------
function out = load_sRGB_profile()
persistent sRGB_profile
if isempty(sRGB_profile)
sRGB_profile = iccread('sRGB.icm');
end
out = sRGB_profile;
% ------------------------------------------------------------
function out = load_swop_profile()
persistent swop_profile
if isempty(swop_profile)
swop_profile = iccread('swopcmyk.icm');
end
out = swop_profile;
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
rgb2ntsc.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/rgb2ntsc.m
| 2,155 |
utf_8
|
c1817a124ab55d7f48380db742b39eda
|
function varargout = rgb2ntsc(varargin)
%RGB2NTSC Convert RGB color values to NTSC color space.
% YIQMAP = RGB2NTSC(RGBMAP) converts the M-by-3 RGB values in RGBMAP to NTSC
% colorspace. YIQMAP is an M-by-3 matrix that contains the NTSC luminance
% (Y) and chrominance (I and Q) color components as columns that are
% equivalent to the colors in the RGB colormap.
%
% YIQ = RGB2NTSC(RGB) converts the truecolor image RGB to the equivalent
% NTSC image YIQ.
%
% Class Support
% -------------
% RGB can be uint8, uint16, int16, double, or single. RGBMAP can be double.
% The output is double.
%
% Examples
% --------
% I = imread('board.tif');
% J = rgb2ntsc(I);
%
% map = jet(256);
% newmap = rgb2ntsc(map);
%
% See also NTSC2RGB, RGB2IND, IND2RGB, IND2GRAY.
% Copyright 1992-2010 The MathWorks, Inc.
A = parse_inputs(varargin{:});
T = [1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703].';
[so(1) so(2) thirdD] = size(A);
if thirdD == 1,% A is RGBMAP, M-by-3 colormap
A = A/T;
else % A is truecolor image RBG
A = reshape(reshape(A,so(1)*so(2),thirdD)/T,so(1),so(2),thirdD);
end;
% Output
if nargout < 2,% YIQMAP = RGB2NTSC(RGBMAP)
varargout{1} = A;
else
error(message('images:rgb2ntsc:wrongNumberOfOutputArguments', nargout));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function: parse_inputs
%
function A = parse_inputs(varargin)
narginchk(1,1);
% rgb2ntsc(RGB) or rgb2ntsc(RGBMAP)
A = varargin{1};
%no logical
if islogical(A)
error(message('images:rgb2ntsc:invalidType'))
end
% Check validity of the input parameters. A is converted to double because YIQ
% colorspace can contain negative values.
if ndims(A)==2
% Check colormap
if ( size(A,2)~=3 || size(A,1) < 1 )
error(message('images:rgb2ntsc:invalidColormap'))
end
if ~isa(A,'double')
warning(message('images:rgb2ntsc:colormapRange'))
A = im2double(A);
end
elseif ndims(A)==3
% Check RGB
if size(A,3)~=3
error(message('images:rgb2ntsc:invalidTruecolorImage'))
end
A = im2double(A);
else
error(message('images:rgb2ntsc:invalidSize'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
iccfind.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/iccfind.m
| 2,347 |
utf_8
|
c8d16b35ecb58d37c771a8ad23299421
|
function [profiles, descriptions] = iccfind(directory, pattern)
%ICCFIND Search for ICC profiles by description.
% [PROFILES, DESCRIPTIONS] = ICCFIND(DIRECTORY, PATTERN) searches for all
% of the ICC profiles in the specified DIRECTORY with a given PATTERN in
% their Description fields. PROFILES is a cell array of profile
% structures. DESCRIPTIONS is a cell array of matching Description
% fields. ICCFIND performs case-insensitive pattern matching.
%
% [PROFILES, DESCRIPTIONS] = ICCFIND(DIRECTORY) returns all of the
% profiles and their descriptions for the given directory.
%
% Note:
%
% To improve performance, ICCFIND caches copies of the ICC profiles in
% memory. Adding or modifying profiles may not change the results of
% ICCFIND. Issuing the "clear functions" command will clear the
% cache.
%
% Examples:
%
% % (1) Get all of the ICC profiles in the default location.
% profiles = iccfind(iccroot);
%
% % (2) Find the profiles whose descriptions contain "RGB".
% [profiles, descriptions] = iccfind(iccroot, 'rgb');
%
% See also ICCREAD, ICCROOT, ICCWRITE.
% Copyright 1993-2011 The MathWorks, Inc.
% Process input arguments.
narginchk(1, 2)
% Get all of the profiles from the specified directory.
allProfiles = iccProfileCache(directory);
allDescriptions = getDescriptions(allProfiles);
% If no pattern was given, return all profiles.
if (nargin == 1)
profiles = allProfiles;
descriptions = allDescriptions;
return
end
% Find all of the profiles with the given pattern in their description.
matchIndices = strfind(lower(allDescriptions), lower(pattern));
descriptions = {};
profiles = {};
for idx = 1:numel(matchIndices)
if (~isempty(matchIndices{idx}))
% Store matching profiles in the output.
descriptions{end + 1} = allDescriptions{idx};
profiles{end + 1} = allProfiles{idx};
end
end
% For readability return a columnar cell array.
descriptions = descriptions';
profiles = profiles';
function allDescriptions = getDescriptions(allProfiles)
%getDescriptions Return a cell array of the profiles' descriptions.
allDescriptions = cell(numel(allProfiles), 1);
for idx = 1:numel(allProfiles)
allDescriptions{idx} = allProfiles{idx}.Description.String;
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
ycbcr2rgb.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/ycbcr2rgb.m
| 4,415 |
utf_8
|
bd91bb3c97671f4fc9756eca73a1f0c9
|
function rgb = ycbcr2rgb(varargin)
%YCBCR2RGB Convert YCbCr color values to RGB color space.
% RGBMAP = YCBCR2RGB(YCBCRMAP) converts the YCbCr values in the colormap
% YCBCRMAP to the RGB color space. If YCBCRMAP is M-by-3 and contains the
% YCbCr luminance (Y) and chrominance (Cb and Cr) color values as columns,
% then RGBMAP is an M-by-3 matrix that contains the red, green, and blue
% values equivalent to those colors.
%
% RGB = YCBCR2RGB(YCBCR) converts the YCbCr image to the equivalent
% truecolor image RGB.
%
% Class Support
% -------------
% If the input is a YCbCr image, it can be of class uint8, uint16, or
% double; the output image is of the same class as the input image. If the
% input is a colormap, the input and output colormaps are both of class
% double.
%
% Example
% -------
% Convert image from RGB space to YCbCr space and back.
%
% rgb = imread('board.tif');
% ycbcr = rgb2ycbcr(rgb);
% rgb2 = ycbcr2rgb(ycbcr);
%
% See also NTSC2RGB, RGB2NTSC, RGB2YCBCR.
% Copyright 1993-2010 The MathWorks, Inc.
% References:
% Charles A. Poynton, "A Technical Introduction to Digital Video",
% John Wiley & Sons, Inc., 1996, p. 175-176
%
% Rec. ITU-R BT.601-5, "STUDIO ENCODING PARAMETERS OF DIGITAL TELEVISION
% FOR STANDARD 4:3 AND WIDE-SCREEN 16:9 ASPECT RATIOS",
% (1982-1986-1990-1992-1994-1995), Section 3.5.
ycbcr = parse_inputs(varargin{:});
isColormap = false;
%must reshape colormap to be m x n x 3 for transformation
if ndims(ycbcr) == 2
isColormap = true;
colors = size(ycbcr,1);
ycbcr = reshape(ycbcr, [colors 1 3]);
end
% This matrix comes from a formula in Poynton's, "Introduction to
% Digital Video" (p. 176, equations 9.6 and 9.7).
% T is from equation 9.6: ycbcr = T * rgb + offset;
T = [65.481 128.553 24.966;...
-37.797 -74.203 112; ...
112 -93.786 -18.214];
% We can rewrite the equation in terms of ycbcr which is
% T ^-1 * (ycbcr - offset) = rgb. This is equation 9.7 in the book.
Tinv = T^-1;
% Tinv = [0.00456621 0. 0.00625893;...
% 0.00456621 -0.00153632 -0.00318811;...
% 0.00456621 0.00791071 0.]
offset = [16;128;128];
% The formula Tinv * (ycbcr - offset) = rgb converts 8-bit YCbCr data to a RGB
% image that is scaled between 0 and one. For each class type (double,uint8,
% uint16), we must calculate scaling factors for Tinv and offset so that
% the input image is scaled between 0 and 255, and so that the output image is
% in the range of the respective class type.
scaleFactor.double.T = 255; % scale input so it is in range [0 255].
scaleFactor.double.offset = 1; % output already in range [0 1].
scaleFactor.uint8.T = 255; % scale output so it is in range [0 255].
scaleFactor.uint8.offset = 255; % scale output so it is in range [0 255].
scaleFactor.uint16.T = 65535/257; % scale input so it is in range [0 255]
% (65535/257 = 255),
% and scale output so it is in range
% [0 65535].
scaleFactor.uint16.offset = 65535; % scale output so it is in range [0 65535].
% The formula Tinv * (ycbcr - offset) = rgb is rewritten as
% scaleFactorForT*Tinv*ycbcr - scaleFactorForOffset*Tinv*offset = rgb.
% To use imlincomb, we rewrite the formula as T * ycbcr - offset, where
% T and offset are defined below.
classIn = class(ycbcr);
T = scaleFactor.(classIn).T * Tinv;
offset = scaleFactor.(classIn).offset * Tinv * offset;
rgb = zeros(size(ycbcr),classIn);
for p = 1:3
rgb(:,:,p) = imlincomb(T(p,1),ycbcr(:,:,1),T(p,2),ycbcr(:,:,2), ...
T(p,3),ycbcr(:,:,3),-offset(p));
end
if isColormap
rgb = reshape(rgb, [colors 3 1]);
end
if isa(rgb,'double')
rgb = min(max(rgb,0.0),1.0);
end
%%%
%Parse Inputs
%%%
function X = parse_inputs(varargin)
narginchk(1,1);
X = varargin{1};
if ndims(X) == 2
validateattributes(X,{'uint8','uint16','double'},{'real' 'nonempty'}, ...
mfilename,'MAP',1);
if (size(X,2) ~=3 || size(X,1) < 1)
error(message('images:ycbcr2rgb:invalidSizeForColormap'))
end
elseif ndims(X) == 3
validateattributes(X,{'uint8','uint16','double'},{'real'},mfilename,'RGB',1);
if (size(X,3) ~=3)
error(message('images:ycbcr2rgb:invalidTruecolorImage'))
end
else
error(message('images:ycbcr2rgb:invalidInputSize'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
applycform.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/applycform.m
| 5,745 |
utf_8
|
58e0ec6842bc76e39002893354a82217
|
function out = applycform(in,c)
%APPLYCFORM Apply device-independent color space transformation.
% B = APPLYCFORM(A, C) converts the color values in A to the color space
% specified in the color transformation structure, C. The color
% transformation structure specifies various parameters of the
% transformation. See MAKECFORM for details.
%
% If A is two-dimensional, APPLYCFORM interprets each row in A as a color
% unless the color transformation structure contains a grayscale ICC
% profile (see Note for this case). A may have 1 or more columns,
% depending on the input color space. B has the same number of rows and
% 1 or more columns, depending on the output color space. (The ICC spec
% currently supports up to 15-channel device spaces.)
%
% If A is three-dimensional, APPLYCFORM interprets each row-column
% location as a color, and SIZE(A, 3) may be 1 or more, depending on the
% input color space. B has the same number of rows and columns as A, and
% SIZE(B, 3) is 1 or more, depending on the output color space.
%
% Note
% ----
% If the color transformation structure C contains a grayscale ICC
% profile, APPLYCFORM interprets each pixel in A as a color. A can have
% any number of columns. B has the same size as A.
%
% Class Support
% -------------
% A is a real, nonsparse array of class uint8, uint16, or double or a
% string. A is only a string if C was created with the following syntax:
%
% C = makecform('named', profile, space)
%
% B has the same class as A unless the output color space is XYZ. Since
% there is no standard 8-bit representation of XYZ values, B is of class
% uint16 if the input is of class uint8.
%
% Example
% -------
% Convert RGB image to L*a*b*, assuming input image is sRGB.
%
% rgb = imread('peppers.png');
% cform = makecform('srgb2lab');
% lab = applycform(rgb, cform);
%
% See also MAKECFORM, LAB2DOUBLE, LAB2UINT8, LAB2UINT16, WHITEPOINT,
% XYZ2DOUBLE, XYZ2UINT16.
% Copyright 2002-2010 The MathWorks, Inc.
% Original Authors: Scott Gregory, Toshia McCabe 10/18/02
% Check color transformation structure
check_cform(c);
% Handle color-name data as special case
if ischar(in)
if strcmp(c.encoding, 'name')
cdata = struct2cell(c.cdata)';
out = c.c_func(in, cdata{:});
return;
else
error(message('images:applycform:invalidNamedColorCform'));
end
end
% Check to make sure IN is of correct class and attributes
validateattributes(in,{'double','uint8','uint16'}, ...
{'real','nonsparse','finite'},'applycform','IN',1);
% Get dimensions of input data, then rearrange data so that columns
% correspond to color channels. Each row is a color vector.
[num_rows input_color_dim] = check_input_image_dimensions(in, c);
num_input_color_channels = size(in, input_color_dim);
columndata = reshape(in, [], num_input_color_channels);
% Check the encoding of the data against what's expected
% in the atomic functions and convert the data appropriately
% to the right encoding.
input_encoding = class(in);
columndata = encode_color(columndata, c.ColorSpace_in,...
input_encoding, c.encoding);
% Get arguments to atomic function from c.cdata
cdata = struct2cell(c.cdata)';
% Call the function with the argument list
state = warning('off', 'images:encode_color:outputEncodingIgnored');
try
out = c.c_func(columndata, cdata{:});
catch ME
% We want to restore warning state even if the function errors
warning(state)
rethrow(ME);
end
warning(state);
% Make sure output encoding is the same as input encoding.
% The only exception occurs when uint8 data are processed through
% a cform that results in PCS XYZ. In this case, the result
% will be uint16 XYZ values, since there is no uint8 encoding
% defined for XYZ.
if ~strcmp(class(out), input_encoding)
if strcmpi(c.ColorSpace_out, 'xyz') && ...
~strcmpi(input_encoding, 'double')
out = encode_color(out, 'xyz', lower(class(out)), 'uint16');
else
out = encode_color(out, lower(c.ColorSpace_out), ...
lower(class(out)), input_encoding);
end
end
% Reshape the output data if needed to restore input geometry
if input_color_dim == 3 && ~strcmpi(c.ColorSpace_in, 'gray')
out = reshape(out, num_rows, [], size(out,2));
end
%--------------------------------------------------------------------------
function [nrows color_dim] = check_input_image_dimensions(in, c)
nrows = size(in, 1);
if ndims(in) == 2
color_dim = 2;
if strcmpi(c.ColorSpace_in, 'gray')
%special case: only 1 color channel;size(2dImage,3) is 1
color_dim = 3;
end
elseif ndims(in) == 3
color_dim = 3;
else
error(message('images:applycform:wrongDataDimensions'));
end
%--------------------------------------------------------------------------
function check_cform(c)
if isstruct(c)
proper_fields = isfield(c, ...
{'c_func', 'ColorSpace_in', 'ColorSpace_out', 'encoding', 'cdata'});
if all(proper_fields)
bad_c_func = isempty(c.c_func) || ~isa(c.c_func,'function_handle');
isStringInvalid = @(stringValue) isempty(stringValue) || ~ischar(stringValue);
bad_ColorSpace_in = isStringInvalid(c.ColorSpace_in);
bad_ColorSpace_out = isStringInvalid(c.ColorSpace_out);
bad_encoding = isStringInvalid(c.encoding);
bad_cdata = isempty(c.cdata) || ~isstruct(c.cdata);
bad_data = any([bad_c_func, bad_ColorSpace_in, bad_ColorSpace_out, bad_encoding, bad_cdata]);
else
bad_data = true;
end
else
bad_data = true;
end
if bad_data
error(message('images:applycform:invalidCform'));
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
iccread.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/iccread.m
| 54,080 |
utf_8
|
f0e7a81484e12539e0c6849c6ab93e62
|
function s = iccread(filename)
%ICCREAD Read ICC color profile.
% P = ICCREAD(FILENAME) reads the International Color Consortium (ICC)
% color profile data from the file specified by FILENAME. The file can
% be either an ICC profile file or a TIFF file containing an embedded
% ICC profile. ICCREAD returns the profile information in the
% structure P, which can be used by MAKECFORM and APPLYCFORM to compute
% color space transformations. P can also be written to a new
% ICC profile file by ICCWRITE. Both Version 2 and Version 4
% of the ICC specification are supported.
%
% The reference page for ICCREAD has additional information about the
% fields of the structure P. For complete details, see the
% specifications ICC.1:2001-04 for Version 2 and ICC.1:2001-12
% for Version 4.0 or ICC.1:2004-10 for Version 4.2.0.0 (available
% at www.color.org).
%
% Example
% -------
% Read in the sRGB profile.
%
% P = iccread('sRGB.icm');
%
% See also ISICC, ICCWRITE, MAKECFORM, APPLYCFORM.
% Copyright 2002-2013 The MathWorks, Inc.
% Check input argument
narginchk(1,1);
validateattributes(filename,{'char'},{'nonempty'},'iccread','FILENAME',1);
% Check to see that FILENAME is actually a file that exists
if exist(filename,'file') ~= 2
% Look in the system's ICC profile repository.
try
repository = iccroot;
catch
repository = '';
end
if (exist(fullfile(repository, filename), 'file'))
filename = fullfile(iccroot, filename);
else
error(message('images:iccread:fileNotFound'))
end
end
if istif(filename)
info = imfinfo(filename);
if ~isfield(info,'ICCProfileOffset')
error(message('images:iccread:noProfileInTiffFile'))
end
start = info.ICCProfileOffset;
elseif isiccprof(filename)
start = 0;
else
error(message('images:iccread:unrecognizedFileType'))
end
% "All profile data must be encoded as big-endian." Clause 6
[fid,msg] = fopen(filename,'r','b');
if (fid < 0)
error(message('images:iccread:errorOpeningProfile', filename, msg));
end
s = iccread_embedded(fid, start);
fclose(fid);
s.Filename = filename;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = isiccprof(filename)
tf = false;
fid = fopen(filename, 'r', 'b');
if (fid < 0)
fclose(fid);
return;
end
[~, count] = fread(fid, 3, 'uint32');
if count ~= 3
fclose(fid);
return;
end
[device_class_code, count] = fread(fid, 4, 'uchar');
if count ~= 4
fclose(fid);
return;
end
valid_device_classes = get_device_classes;
if any(strcmp(char(device_class_code'), valid_device_classes(:, 1)))
tf = true;
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = istif(filename)
fid = fopen(filename, 'r', 'ieee-le');
if (fid < 0)
tf = false;
else
sig = fread(fid, 4, 'uint8');
fclose(fid);
tf = isequal(sig, [73; 73; 42; 0]) | isequal(sig, [77; 77; 0; 42]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = iccread_embedded(fid, start)
% ICCREAD_EMBEDDED(FID, START) reads ICC profile data using the file
% identifier FID, starting at byte offset location START, as measured
% from the beginning of the file.
fseek_check(fid, start, 'bof');
s.Header = read_header(fid);
version = sscanf(s.Header.Version(1), '%d%');
% Skip past header -- 128 bytes (Clause 6.1)
fseek_check(fid, start + 128, 'bof'); % Use fixed length of header
% Read the Tag Table
tag_count = fread_check(fid, 1, 'uint32');
tag_table = cell(tag_count,3);
for k = 1:tag_count
tag_table{k,1} = char(fread_check(fid, 4, '*uint8'))';
tag_table{k,2} = fread_check(fid, 1, 'uint32');
tag_table{k,3} = fread_check(fid, 1, 'uint32');
end
s.TagTable = tag_table;
% Build up a list of defined public tags
public_tagnames = get_public_tagnames(version);
mattrc_tagnames = get_mattrc_tagnames(version);
private_tags = cell(0,0);
has_mattrc = false;
% Go through each tag in the tag table
for k = 1:size(s.TagTable,1)
signature = deblank(s.TagTable{k,1});
offset = s.TagTable{k,2};
data_size = s.TagTable{k,3};
pub_idx = strmatch(signature,public_tagnames,'exact');
mattrc_idx = strmatch(signature,mattrc_tagnames,'exact');
% Check to see if the tag is public, a mattrc tag, or private
if ~isempty(pub_idx)
% A public tag is found
tagname = public_tagnames{pub_idx, 2};
s.(tagname) = get_public_tag(fid, signature, offset + start, ...
data_size, version, s.Header.ConnectionSpace, tagname);
elseif ~isempty(mattrc_idx)
% A Mattrc element is found... and the MatTRC struct will
% now be generated or appended.
has_mattrc = true;
tagname = mattrc_tagnames{mattrc_idx, 2};
MatTRC.(tagname) = get_public_tag(fid, signature, offset + start, ...
data_size, version, s.Header.ConnectionSpace, tagname);
else
% The tag is a private tag
data = get_private_tag(fid,offset+start,data_size);
current_row = size(private_tags,1)+1;
private_tags{current_row,1} = signature;
private_tags{current_row,2} = data;
end
end
% Generate the MatTRC field
if has_mattrc
s.MatTRC = MatTRC;
end
% Populate the private tags
s.PrivateTags = private_tags;
% Verify the checksum if present and nonzero.
if isfield(s.Header, 'ProfileID') && any(s.Header.ProfileID)
fseek_check(fid, start, 'bof');
bytes = fread_check(fid, s.Header.Size, '*uint8');
% See clause 6.1.13. The checksum is computed after setting bytes
% 44-47 (indexed from 0), 64-67, and 84-99 to 0.
bytes([45:48 65:68 85:100]) = 0;
digest = compute_md5(bytes);
if ~isequal(digest, s.Header.ProfileID)
warning(message('images:iccread:badChecksum'));
end
end
%------------------------------------------
function header = read_header(fid)
% Clause 6.1.1 - Profile size
header.Size = fread_check(fid, 1, 'uint32');
% Clause 6.1.2 - CMM Type
header.CMMType = char(fread_check(fid, 4, 'uint8'))';
% Clause 6.1.3 - Profile Version
% Byte 0: Major Revision in BCD
% Byte 1: Minor Revision & Bug Fix Revision in each nibble in BCD
% Byte 2: Reserved; expected to be 0
% Byte 3: Reserved; expected to be 0
version_bytes = fread_check(fid, 4, 'uint8');
major_version = version_bytes(1);
% Minor version and bug fix version are in the two nibbles
% of the second version byte.
minor_version = bitshift(version_bytes(2), -4);
bugfix_version = bitand(version_bytes(2), 15);
header.Version = sprintf('%d.%d.%d', major_version, minor_version, ...
bugfix_version);
% Clause 6.1.4 - Profile/Device Class signature
% Profile/Device Class Signature
% ------------ ---------
% Input Device profile 'scnr'
% Display Device profile 'mntr'
% Output Device profile 'prtr'
% DeviceLink profile 'link'
% ColorSpace Conversion profile 'spac'
% Abstract profile 'abst'
% Named Color profile 'nmcl'
device_classes = get_device_classes(major_version);
device_class_char = char(fread_check(fid, 4, '*uint8'))';
idx = strmatch(device_class_char, device_classes(:, 1), 'exact');
if isempty(idx)
fclose(fid);
error(message('images:iccread:invalidProfileClass'))
end
header.DeviceClass = device_classes{idx, 2};
% Clause 6.1.5 - Color Space signature
% Four-byte string, although some signatures have a blank
% space at the end. Translate into more readable string.
colorspaces = get_colorspaces(major_version);
signature = char(fread_check(fid, 4, '*uint8'))';
idx = strmatch(signature, colorspaces(:, 1), 'exact');
if isempty(idx)
fclose(fid);
error(message('images:iccread:invalidColorSpaceSignature'));
else
header.ColorSpace = colorspaces{idx, 2};
end
% Clause 6.1.6 - Profile connection space signature
% Either 'XYZ ' or 'Lab '. However, for a DeviceLink
% profile, the connection space signature is taken from the
% colorspace signatures table.
signature = char(fread_check(fid, 4, '*uint8'))';
if strcmp(header.DeviceClass, 'device link')
idx = strmatch(signature, colorspaces(:, 1), 'exact');
if isempty(idx)
fclose(fid);
error(message('images:iccread:invalidConnectionSpaceSignature'));
else
header.ConnectionSpace = colorspaces{idx, 2};
end
else
switch signature
case 'XYZ '
header.ConnectionSpace = 'XYZ';
case 'Lab ';
header.ConnectionSpace = 'Lab';
otherwise
fclose(fid);
error(message('images:iccread:invalidConnectionSpaceSignature'));
end
end
date_time_num = read_date_time_number(fid);
n = datenum(date_time_num(1), date_time_num(2), date_time_num(3), ...
date_time_num(4), date_time_num(5), date_time_num(6));
header.CreationDate = datestr(n,0);
header.Signature = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(header.Signature, 'acsp')
fclose(fid);
error(message('images:iccread:invalidFileSignature'));
end
% Clause 6.1.7 - Primary platform signature
% Four characters, though one code ('SGI ') ends with a blank space.
% Zeros if there is no primary platform.
signature = char(fread_check(fid, 4, '*uint8'))';
if isequal(double(signature), [0 0 0 0])
header.PrimaryPlatform = 'none';
else
switch signature
case 'APPL'
header.PrimaryPlatform = 'Apple';
case 'MSFT'
header.PrimaryPlatform = 'Microsoft';
case 'SGI '
header.PrimaryPlatform = 'SGI';
case 'SUNW'
header.PrimaryPlatform = 'Sun';
case 'TGNT'
header.PrimaryPlatform = 'Taligent';
otherwise
header.PrimaryPlatform = signature;
warning(message('images:iccwrite:invalidPrimaryPlatform'))
end
end
% Clause 6.1.8 - Profile flags
% Flags containing CMM hints. The least-significant 16 bits are reserved
% by ICC, which currently defines position 0 as "0 if not embedded profile,
% 1 if embedded profile" and position 1 as "1 if profile cannot be used
% independently of embedded color data, otherwise 0."
header.Flags = fread_check(fid, 1, 'uint32');
header.IsEmbedded = bitget(header.Flags, 1) == 1;
header.IsIndependent = bitget(header.Flags, 2) == 0;
% Clause 6.1.9 - Device manufacturer and model
header.DeviceManufacturer = char(fread_check(fid, 4, '*uint8'))';
header.DeviceModel = char(fread_check(fid, 4, '*uint8'))';
% Clause 6.1.10 - Attributes
% Device setup attributes, such as media type. The least-significant 32
% bits of this 64-bit value are reserved for ICC, which currently defines
% bit positions 0 and 1.
% UPDATE FOR ICC:1:2001-0 Clause 6.1.10 -- Bit positions 2 and 3
% POSITION 2: POSITIVE=0, NEGATIVE=1
% POSITION 3: COLOR=0, BLACK AND WHT=1
fseek_check(fid, 4, 'cof');
header.Attributes = fread_check(fid, 1, 'uint32')';
header.IsTransparency = bitget(header.Attributes, 1) == 1;
header.IsMatte = bitget(header.Attributes, 2) == 1;
header.IsNegative = bitget(header.Attributes, 3) == 1;
header.IsBlackandWhite = bitget(header.Attributes, 4) == 1;
% Clause 6.1.11 - Rendering intent
value = fread_check(fid, 1, 'uint32');
% Only check the first two bits.
value = bitand(value, 3);
switch value
case 0
header.RenderingIntent = 'perceptual';
case 1
header.RenderingIntent = 'relative colorimetric';
case 2
header.RenderingIntent = 'saturation';
case 3
header.RenderingIntent = 'absolute colorimetric';
end
% Clause 6.1 - Table 9
header.Illuminant = read_xyz_number(fid);
% Clause 6.1.12 - Profile creator
header.Creator = char(fread_check(fid, 4, '*uint8'))';
% Clause 6.1.13 (v. 4) - Profile ID
if major_version > 2
header.ProfileID = fread_check(fid, 16, '*uint8')';
end
%------------------------------------------
% Read public Tags
function out = get_public_tag(fid, signature, offset, data_size, ...
version, pcs, tagname)
lut_types = {'A2B0','A2B1','A2B2','B2A0','B2A1','B2A2',...
'gamt','pre0','pre1','pre2'};
xyz_types = {'bkpt','bXYZ','gXYZ','lumi','rXYZ','wtpt'};
curve_types = {'bTRC','gTRC','kTRC','rTRC'};
text_desc_types = {'desc','dmdd','dmnd','scrd','vued'};
non_interpreted_types = {'bfd ','devs',...
'psd0','psd1','psd2','psd3',...
'ps2s','ps2i','scrn'};
text_types = {'targ'};
if version <= 2
text_types = [text_types, {'cprt'}];
non_interpreted_types = [non_interpreted_types, {'ncol'}];
else
text_desc_types = [text_desc_types, {'cprt'}];
% non_interpreted_types = [non_interpreted_types, {'clrt'}];
end
switch signature
case lut_types
% See Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
out = read_lut_type(fid, offset, data_size, version, tagname);
case xyz_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
out = read_xyz_type(fid, offset, data_size, tagname);
case curve_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
out = read_curve_type(fid, offset, data_size, version, tagname);
case text_desc_types
% Clauses 6.4.* (v. 2) and 9.2.* (v. 4.2)
if version <= 2
out = read_text_description_type(fid, offset, data_size, tagname);
else
out = read_unicode_type(fid, offset, data_size, tagname);
end
case text_types
% Clauses 6.4.* (v. 2) and 9.2.10 (v. 4.2)
out = read_text_type(fid, offset, data_size, tagname);
case non_interpreted_types
% Clauses 6.4.* (v. 2)
fseek_check(fid, offset, 'bof');
out = fread_check(fid, data_size, '*uint8')';
case 'calt'
% Clause 6.4.9 (v. 2) and 9.2.9 (v. 4.2)
out = read_date_time_type(fid, offset, data_size, tagname);
case 'chad'
% Clause 6.4.11 (v. 2) and 9.2.11 (v. 4.2)
out = read_sf32_type(fid, offset, data_size, tagname);
case 'chrm'
% Clause 9.2.12 (v. 4.2)
out = read_chromaticity_type(fid, offset, data_size, tagname);
case 'clro'
% Clause 9.2.13 (v. 4.2)
out = read_colorant_order_type(fid, offset, data_size, tagname);
case {'clrt', 'clot'}
% Clause 9.2.14 (v. 4.2)
out = read_colorant_table_type(fid, offset, data_size, pcs, tagname);
case 'crdi'
% Clause 6.4.14 (v. 2) or 6.4.16 (v. 4.0)
out = read_crd_info_type(fid, offset, data_size, tagname);
case 'meas'
% Clause 9.2.23 (v. 4.2)
out = read_measurement_type(fid, offset, data_size, tagname);
case 'ncl2'
% Clause 9.2.26 (v. 4.2)
out = read_named_color_type(fid, offset, data_size, pcs, tagname);
case 'pseq'
% Clause 9.2.32 (v. 4.2)
out = read_profile_sequence_type(fid, offset, data_size, ...
version, tagname);
case 'resp'
% Clause 9.2.27 (v. 4.2)
out = read_response_curve_set16_type(fid, offset, data_size, tagname);
case 'tech'
% Clause 9.2.35 (v. 4.2)
out = read_signature_type(fid, offset, data_size, tagname);
case 'view'
% Clause 6.4.47 (v. 2) or 9.2.37 (v. 4.2)
out = read_viewing_conditions(fid, offset, data_size, tagname);
otherwise
fseek_check(fid, offset, 'bof');
out = fread_check(fid, data_size, '*uint8')';
end
% If there was a problem, treat as uninterpreted
if isempty(out)
fseek_check(fid, offset, 'bof');
out = fread_check(fid, data_size, '*uint8')';
end
%------------------------------------------
% Read private tags
function out = get_private_tag(fid,offset,data_size)
fseek_check(fid, offset, 'bof');
out = fread_check(fid, data_size, '*uint8')';
%------------------------------------------
%%% read_sf32_type
function out = read_sf32_type(fid, offset, data_size, tagname)
% Clause 6.5.14 (v. 2) or 10.18 (v. 4.2)
% 0-3 'sf32'
% 4-7 reserved, must be 0
% 8-n array of s15Fixed16Number values
if data_size < 8
warning(message('images:iccread:invalidDataSize', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'sf32')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''sf32''', 'Clause 6.5.14 (v. 2) or 6.5.19 (v. 4)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
num_values = (data_size - 8) / 4;
out = fread_check(fid, num_values, 'int32') / 65536;
out = reshape(out, 3, num_values/3)';
%------------------------------------------
% read_xyz_number
function out = read_xyz_number(fid)
% Clause 5.3.10 (v. 2) and 5.1.11 (v. 4.2)
% 0-3 CIE X s15Fixed16Number
% 4-7 CIE Y s15Fixed16Number
% 8-11 CIE Z s15Fixed16Number
out = fread_check(fid, 3, 'int32')' / 65536;
%------------------------------------------
%%% read_xyz_type
function out = read_xyz_type(fid, offset, data_size, tagname)
% Clause 6.5.26 (v. 2) or 10.27 (v. 4.2)
% 0-3 'XYZ '
% 4-7 reserved, must be 0
% 8-n array of XYZ numbers
if data_size < 8
fclose(fid);
error(message('images:iccread:invalidTagSize1', tagname));
end
fseek_check(fid, offset, 'bof');
xyztype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(xyztype, 'XYZ ')
fclose(fid);
error(message('images:iccread:invalidTagType', tagname, '''XYZ '''))
end
fseek_check(fid, offset + 8, 'bof');
num_values = (data_size - 8) / 4;
if rem(num_values,3) ~= 0
fclose(fid);
error(message('images:iccread:invalidTagSize2', tagname, 'Clauses 5.3.10 and 6.5.26 for v. 2 or 6.5.30 for v. 4'))
end
out = fread_check(fid, num_values, 'int32') / 65536;
out = reshape(out, 3, num_values/3)';
%------------------------------------------
%%% read_chromaticity_type
function out = read_chromaticity_type(fid, offset, data_size, tagname)
% Clause 10.2 (v. 4.2)
% 0-3 'chrm'
% 4-7 reserved, must be 0
% 8-9 number of device channels
% 10-11 encoded phosphor/colorant type
% 12-19 CIE xy coordinates of 1st channel
% 20-end CIE xy coordinates of remaining channels
if data_size < 12
fclose(fid);
error(message('images:iccread:invalidTagSize1', tagname));
end
fseek_check(fid, offset, 'bof');
signature = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(signature, 'chrm')
fclose(fid);
error(message('images:iccread:invalidTagType', tagname, '''chrm'''))
end
out = struct('ColorantCode', [], 'ColorantType', [], 'xy', []);
fseek_check(fid, offset + 8, 'bof');
numchan = fread_check(fid, 1, 'uint16');
out.xy = zeros(numchan, 2);
colorantcode = fread_check(fid, 1, '*uint16');
out.ColorantCode = colorantcode;
switch colorantcode
case 1
out.ColorantType = 'ITU-R BT.709';
case 2
out.ColorantType = 'SMPTE RP145-1994';
case 3
out.ColorantType = 'EBU Tech.3213-E';
case 4
out.ColorantType = 'P22';
otherwise
out.ColorantType = 'unknown';
end
for i = 1 : numchan
out.xy(i, 1) = fread_check(fid, 1, 'uint32') / 65536.0;
out.xy(i, 2) = fread_check(fid, 1, 'uint32') / 65536.0;
end
%------------------------------------------
%%% read_colorant_order_type
function out = read_colorant_order_type(fid, offset, data_size, tagname)
% Clause 10.3 (v. 4.2)
% 0-3 'clro'
% 4-7 reserved, must be 0
% 8-11 number of colorants n
% 12 index of first colorant in laydown
% 13-end remaining (n - 1) indices, in laydown order
if data_size < 12
fclose(fid);
error(message('images:iccread:invalidTagSize1', tagname));
end
fseek_check(fid, offset, 'bof');
signature = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(signature, 'clro')
fclose(fid);
error(message('images:iccread:invalidTagType', tagname, '''clro'''))
end
fseek(fid, offset + 8, 'bof');
numchan = fread_check(fid, 1, 'uint32');
out = zeros(1, numchan);
for i = 1 : numchan
out(i) = fread_check(fid, 1, 'uint8');
end
%------------------------------------------
%%% read_colorant_table_type
function out = read_colorant_table_type(fid, offset, data_size, pcs, tagname)
% Clause 10.4 (v. 4.2)
% 0-3 'clrt'
% 4-7 reserved, must be 0
% 8-11 number of colorants n
% 12-43 name of first colorant, NULL terminated
% 44-49 PCS values of first colorant as uint16
% 50-end name and PCS values of remaining colorants
if data_size < 12
fclose(fid);
error(message('images:iccread:invalidTagSize1', tagname));
end
fseek_check(fid, offset, 'bof');
signature = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(signature, 'clrt')
fclose(fid);
error(message('images:iccread:invalidTagType', tagname, '''clrt'''))
end
fseek_check(fid, offset + 8, 'bof');
numchan = fread_check(fid, 1, 'uint32');
out = cell(numchan, 2);
for i = 1 : numchan
name = fread_check(fid, 32, '*uint8')';
out{i, 1} = trim_string(name); % remove trailing zeros
pcs16 = fread_check(fid, 3, '*uint16')';
% Convert from uint16 to double
out{i, 2} = encode_color(pcs16, pcs, 'uint16', 'double');
end
%------------------------------------------
%%% read_curve_type
function out = read_curve_type(fid, offset, ~, version, tagname)
% Clause 6.5.3 (v. 2) or 10.5 (v. 4.2)
% 0-3 'curv'
% 4-7 reserved, must be 0
% 8-11 count value, uint32
% 12-end curve values, uint16
% For v. 4 can also be 'para'; see Clause 10.15 (v. 4.2)
% Note: Since this function can be called for a curveType
% embedded in another tag (lutAtoBType, lutBtoAType), the
% data_size field may be invalid -- e.g., zero. Therefore,
% there is no check for sufficient size (= 12 + 2n bytes).
fseek_check(fid, offset, 'bof');
% Check for curv or para signature
curvetype = char(fread_check(fid, 4, '*uint8'))';
if strcmp(curvetype, 'curv')
out = uint16(256); % Default: gamma = 1 for empty curve
fseek_check(fid, offset + 8, 'bof');
count = fread_check(fid, 1, 'uint32');
if count > 0
out = fread_check(fid, count, '*uint16');
end
elseif strcmp(curvetype, 'para') && (version > 2) % New v. 4 type
out = struct('FunctionType', [], 'Params', []);
fseek_check(fid, offset + 8, 'bof');
out.FunctionType = fread_check(fid, 1, 'uint16');
switch out.FunctionType
case 0
n = 1;
case 1
n = 3;
case 2
n = 4;
case 3
n = 5;
case 4
n = 7;
otherwise
error(message('images:iccread:invalidFunctionType', out.FunctionType, tagname))
end
fseek_check(fid, offset + 12, 'bof');
out.Params = fread_check(fid, n, 'int32')' / 65536;
else
fclose(fid);
error(message('images:iccread:invalidTagTypeWithReference', tagname, '''curv''', 'Clauses 6.5.3 (v. 2) or 6.5.5 and 6.5.16 (v. 4).'))
end
%------------------------------------------
%%% Read viewingConditionsType
function out = read_viewing_conditions(fid,offset,data_size, tagname)
% Clause 6.5.25 (v. 2) or 10.26 (v. 4.2)
% 0-3 'view'
% 4-7 reserved, must be 0
% 8-19 absolute XYZ for illuminant in cd/m^2
% 20-31 absolute XYZ for surround in cd/m^2
% 32-35 illuminant type
if data_size < 36
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'view')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''view''', 'Clause 6.5.25 (v. 2) or 6.5.29 (v. 4)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
out.IlluminantXYZ = read_xyz_number(fid);
out.SurroundXYZ = read_xyz_number(fid);
illum_idx = fread_check(fid,1,'uint32');
illuminant_table = {'Unknown','D50','D65','D93','F2',...
'D55','A','EquiPower','F8'};
out.IlluminantType = illuminant_table{illum_idx+1};
%------------------------------------------
%%% read_lut_type
function out = read_lut_type(fid, offset, data_size, version, tagname)
% Clauses 6.5.8 and 6.5.7 (v. 2) or 10.9 and 10.8 (v. 4.2)
% 0-3 'mft1', 'mft2'
% 4-7 reserved, must be 0
% 8 number of input channels, uint8
% 9 number of output channels, uint8
% 10 number of CLUT grid points, uint8
% 11 reserved for padding, must be 0
% 12-47 3-by-3 E matrix, stored row-major, each value s15Fixed16Number
% 16-bit LUT type ('mft2'):
% 48-49 number of input table entries, uint16
% 50-51 number of output table entries, uint16
% 52-n input tables, uint16
% CLUT values, uint16
% output tables, uint16
% 8-bit LUT type ('mft1'):
% 48- input tables, uint8
% CLUT values, uint8
% output tables, uint8
% New v. 4 LUT types, Clauses 10.10 and 10.11 (v. 4.2)
% 0-3 'mAB ', 'mBA '
% 4-7 reserved, must be 0
% 8 number of input channels, uint8
% 9 number of output channels, uint8
% 10-11 reserved for padding, must be 0
% 12-15 offset to first B-curve, uint32
% 16-19 offset to 3-by-4 matrix, uint32
% 20-23 offset to first M-curve, uint32
% 24-27 offset to CLUT values, uint32
% 28-31 offset to first A-curve, uint32
% 32-n data: curves stored as 'curv' or 'para' tags,
% matrix stored as s15Fixed16Number[12],
% CLUT stored as follows:
% 0-15 number of grid points in each dimension, uint8
% 16 precision in bytes (1 or 2), uint8
% 17-19 reserved for padding, must be 0
% 20-n CLUT data points, uint8 or uint16
if data_size < 32
fclose(fid);
error(message('images:iccread:invalidTagSize1', tagname));
end
fseek_check(fid, offset, 'bof');
% Check for signature
luttype = char(fread_check(fid, 4, '*uint8'))';
if strcmp(luttype, 'mft1')
out.MFT = 1;
elseif strcmp(luttype, 'mft2')
out.MFT = 2;
elseif strcmp(luttype, 'mAB ') && (version > 2) % New v. 4 lut type
out.MFT = 3;
elseif strcmp(luttype, 'mBA ') && (version > 2) % New v. 4 lut type
out.MFT = 4;
else
fclose(fid);
error(message('images:iccread:invalidTagTypeWithReference', tagname, '''mft1'', ''mft2'', ''mAB '' (v. 4), or ''mBA '' (v. 4)', 'Clauses 6.5.7 and 6.5.8 for v. 2 or 6.5.9, 6.5.10, 6.5.11, 6.5.12 for v. 4'))
end
% Skip past reserved padding bytes
fseek_check(fid, 4, 'cof');
num_input_channels = fread_check(fid, 1, 'uint8');
num_output_channels = fread_check(fid, 1, 'uint8');
% Handle older lut8Type and lut16Type
if out.MFT < 3
% Unused elements
out.PreShaper = [];
out.PostMatrix = [];
out.PostShaper = [];
% Get matrix
num_clut_grid_points = fread_check(fid, 1, 'uint8');
fseek_check(fid, 1, 'cof'); % skip padding byte
out.PreMatrix = reshape(fread_check(fid, 9, 'int32') / 65536, 3, 3)';
out.PreMatrix(:, 4) = zeros(3, 1);
% Get tables
if out.MFT == 2 % lut16Type
num_input_table_entries = fread_check(fid, 1, 'uint16');
num_output_table_entries = fread_check(fid, 1, 'uint16');
dataformat = '*uint16';
else % lut8Type
num_input_table_entries = 256;
num_output_table_entries = 256;
dataformat = '*uint8';
end
itbl = reshape(fread_check(fid, num_input_channels * ...
num_input_table_entries, ...
dataformat), ...
num_input_table_entries, ...
num_input_channels);
for k = 1 : num_input_channels
out.InputTables{k} = itbl(:, k);
end
clut_size = ones(1, num_input_channels) * num_clut_grid_points;
num_clut_elements = prod(clut_size);
ndims_clut = num_output_channels;
out.CLUT = reshape(fread_check(fid, num_clut_elements * ndims_clut, dataformat), ...
ndims_clut, num_clut_elements)';
out.CLUT = reshape( out.CLUT, [ clut_size ndims_clut ]);
otbl = reshape(fread_check(fid, num_output_channels * ...
num_output_table_entries, ...
dataformat), ...
num_output_table_entries, ...
num_output_channels);
for k = 1 : num_output_channels
out.OutputTables{k} = otbl(:, k);
end
else
% Handle newer lutAtoBType and lutBtoAType
fseek_check(fid, 2, 'cof'); % skip padding bytes
boffset = fread_check(fid, 1, 'uint32');
xoffset = fread_check(fid, 1, 'uint32');
moffset = fread_check(fid, 1, 'uint32');
coffset = fread_check(fid, 1, 'uint32');
aoffset = fread_check(fid, 1, 'uint32');
% Get B-curves (required)
if boffset == 0
fclose(fid);
error(message('images:iccread:invalidLuttagBcurve', tagname))
end
if out.MFT == 3
numchan = num_output_channels;
else
numchan = num_input_channels;
end
Bcurve = cell(1, numchan);
Bcurve{1} = read_curve_type(fid, offset + boffset, 0, version, tagname);
for chan = 2 : numchan
current = ftell(fid);
if mod(current, 4) ~= 0
current = current + 4 - mod(current, 4);
end
Bcurve{chan} = read_curve_type(fid, current, 0, version, tagname);
end
% Get PCS-side matrix (optional)
if xoffset == 0
PMatrix = [];
else
fseek_check(fid, offset + xoffset, 'bof');
PMatrix = reshape(fread_check(fid, 9, 'int32') / 65536, 3, 3)';
PMatrix(:, 4) = fread_check(fid, 3, 'int32') / 65536;
end
% Get M-curves (optional)
if moffset == 0
Mcurve = [];
elseif xoffset == 0
fclose(fid);
error(message('images:iccread:invalidLuttagMatrix', tagname))
else
Mcurve = cell(1, numchan);
Mcurve{1} = read_curve_type(fid, offset + moffset, 0, version, tagname);
for chan = 2 : numchan
current = ftell(fid);
if mod(current, 4) ~= 0
current = current + 4 - mod(current, 4);
end
Mcurve{chan} = read_curve_type(fid, current, 0, version, tagname);
end
end
% Get n-dimensional LUT (optional)
if coffset == 0
ndlut = [];
else
fseek(fid, offset + coffset, 'bof');
gridsize = fread(fid, num_input_channels, 'uint8')';
% Reverse order of dimensions for MATLAB
clut_size = zeros(1, num_input_channels);
for i = 1 : num_input_channels
clut_size(i) = gridsize(num_input_channels + 1 - i);
end
num_clut_elements = prod(clut_size);
ndims_clut = num_output_channels;
fseek(fid, 16 - num_input_channels, 'cof'); % skip unused channels
datasize = fread(fid, 1, 'uint8');
if datasize == 1
dataformat = '*uint8';
elseif datasize == 2
dataformat = '*uint16';
else
fclose(fid);
error(message('images:iccread:invalidLuttagPrecision', tagname))
end
fseek(fid, 3, 'cof'); % skip over padding
ndlut = reshape(fread_check(fid, num_clut_elements * ndims_clut, dataformat), ...
ndims_clut, num_clut_elements)';
ndlut = reshape(ndlut, [ clut_size ndims_clut ]);
end
% Get A-curves (optional)
if aoffset == 0
Acurve = [];
elseif coffset == 0
fclose(fid);
error(message('images:iccread:invalidLuttagAcurve', tagname))
else
Acurve = cell(1, numchan);
Acurve{1} = read_curve_type(fid, offset + aoffset, 0, version, tagname);
if out.MFT == 3
numchan = num_input_channels;
else
numchan = num_output_channels;
end
for chan = 2 : numchan
current = ftell(fid);
if mod(current, 4) ~= 0
current = current + 4 - mod(current, 4);
end
Acurve{chan} = read_curve_type(fid, current, 0, version, tagname);
end
end
% Assemble elements in proper sequence
if out.MFT == 3 % lutAtoBType
out.PreShaper = [];
out.PreMatrix = [];
out.InputTables = Acurve;
out.CLUT = ndlut;
out.OutputTables = Mcurve;
out.PostMatrix = PMatrix;
out.PostShaper = Bcurve;
elseif out.MFT == 4 % lutBtoAType
out.PreShaper = Bcurve;
out.PreMatrix = PMatrix;
out.InputTables = Mcurve;
out.CLUT = ndlut;
out.OutputTables = Acurve;
out.PostMatrix = [];
out.PostShaper = [];
end
end
%------------------------------------------
%%% read_measurement_type
function out = read_measurement_type(fid, offset, data_size, tagname)
% Clause 10.12 (v. 4.2)
% 0-3 'meas'
% 4-7 reserved, must be 0
% 8-11 encoded standard observer
% 12-23 XYZ of measurement backing
% 24-27 encoded measurement geometry
% 28-31 encoded measurement flare
% 32-35 encoded standard illuminant
if data_size < 36
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'meas')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''meas''', 'Clause 10.12 (v. 4.2)'))
out = [];
return;
end
out = struct('ObserverCode', [], 'StandardObserver', [], ...
'GeometryCode', [], 'MeasurementGeometry', [], ...
'FlareCode', [], 'MeasurementFlare', [], ...
'IlluminantCode', [], 'StandardIlluminant', [], ...
'MeasurementBacking', []);
fseek_check(fid, offset + 8, 'bof');
out.ObserverCode = fread_check(fid, 1, 'uint32');
switch out.ObserverCode
case 1
out.StandardObserver = 'CIE 1931';
case 2
out.StandardObserver = 'CIE 1964';
otherwise
out.StandardObserver = 'unknown';
end
out.MeasurementBacking = read_xyz_number(fid);
out.GeometryCode = fread_check(fid, 1, 'uint32');
switch out.GeometryCode
case 1
out.MeasurementGeometry = '0/45 or 45/0';
case 2
out.MeasurementGeometry = '0/d or d/0';
otherwise
out.MeasurementGeometry = 'unknown';
end
out.FlareCode = fread_check(fid, 1, 'uint32');
out.MeasurementFlare = sprintf('%d%%', ...
round(double(out.FlareCode) / 655.36));
out.IlluminantCode = fread_check(fid, 1, 'uint32');
switch out.IlluminantCode
case 1
out.StandardIlluminant = 'D50';
case 2
out.StandardIlluminant = 'D65';
case 3
out.StandardIlluminant = 'D93';
case 4
out.StandardIlluminant = 'F2';
case 5
out.StandardIlluminant = 'D55';
case 6
out.StandardIlluminant = 'A';
case 7
out.StandardIlluminant = 'E';
case 8
out.StandardIlluminant = 'F8';
otherwise
out.StandardIlluminant = 'unknown';
end
%------------------------------------------
%%% read_named_color_type
function out = read_named_color_type(fid, offset, ~, pcs, tagname)
% Clause 10.14 (v. 4.2)
% 0-3 'ncl2' (namedColor2Type signature)
% 4-7 reserved, must be 0
% 8-11 vendor-specific flag
% 12-15 count of named colours (n)
% 16-19 number m of device coordinates
% 20-51 prefix (including NULL terminator)
% 52-83 suffix (including NULL terminator)
% 84-115 first colour name (including NULL terminator)
% 116-121 first colour's PCS coordinates
% 122-(121 + 2m) first colour's device coordinates
% . . . and so on for remaining (n - 1) colours
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'ncl2')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''ncl2''', 'Clause 10.14 (v. 4.2)'))
out = [];
return;
end
out = struct('VendorFlag', [], ...
'DeviceCoordinates', [], ...
'Prefix', [], ...
'Suffix', [], ...
'NameTable', []);
fseek_check(fid, offset + 8, 'bof');
out.VendorFlag = dec2hex(fread_check(fid, 1, '*uint32'));
n = fread_check(fid, 1, 'uint32');
m = fread_check(fid, 1, 'uint32');
out.DeviceCoordinates = m;
prefix = fread_check(fid, 32, '*uint8')';
out.Prefix = trim_string(prefix);
suffix = fread_check(fid, 32, '*uint8')';
out.Suffix = trim_string(suffix);
if m > 0
out.NameTable = cell(n, 3);
else
out.NameTable = cell(n, 2); % no device coordinates
end
for i = 1 : n
name = fread_check(fid, 32, '*uint8')';
out.NameTable{i, 1} = trim_string(name);
pcs16 = fread_check(fid, 3, '*uint16')';
out.NameTable{i, 2} = encode_color(pcs16, pcs, 'uint16', 'double');
if m > 0
dev16 = fread_check(fid, m, '*uint16')';
out.NameTable{i, 3} = encode_color(dev16, ...
'color_n', 'uint16', 'double');
end
end
%------------------------------------------
%%% read_profile_sequence_type
function out = read_profile_sequence_type(fid, offset, data_size, ...
version, tagname)
% Clause 10.16 (v. 4.2)
% 0-3 'pseq'
% 4-7 reserved, must be 0
% 8-11 count of profile description structures
% 12- profile description structures
if data_size < 12
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'pseq')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''pseq''', 'Clause 10.16 (v. 4.2)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
n = fread_check(fid, 1, 'uint32');
out = struct('DeviceManufacturer', {}, ...
'DeviceModel', {}, ...
'Attributes', {}, ...
'IsTransparency', {}, ...
'IsMatte', {}, ...
'IsNegative', {}, ...
'IsBlackandWhite', {}, ...
'Technology', {}, ...
'DeviceMfgDesc', {}, ...
'DeviceModelDesc', {});
technologies = get_technologies;
for p = 1:n
out(p).DeviceManufacturer = char(fread_check(fid, 4, '*uint8'))';
out(p).DeviceModel = char(fread_check(fid, 4, '*uint8'))';
fseek_check(fid, 4, 'cof');
out(p).Attributes = fread_check(fid, 1, 'uint32')';
out(p).IsTransparency = bitget(out(p).Attributes, 1) == 1;
out(p).IsMatte = bitget(out(p).Attributes, 2) == 1;
out(p).IsNegative = bitget(out(p).Attributes, 3) == 1;
out(p).IsBlackandWhite = bitget(out(p).Attributes, 4) == 1;
techsig = char(fread_check(fid, 4, '*uint8'))';
if strcmp(techsig, char(uint8([0 0 0 0])))
out(p).Technology = 'Unspecified';
else
idx = strmatch(techsig, technologies(:, 1), 'exact');
if isempty(idx)
warning(message('images:iccread:invalidTechnologySignature', tagname))
out(p).Technology = techsig;
else
out(p).Technology = technologies{idx, 2};
end
end
current = ftell(fid);
if version <= 2
out(p).DeviceMfgDesc ...
= read_text_description_type(fid, current, 0, 'DeviceMfgDesc');
if isempty(out(p).DeviceMfgDesc) % try v. 4 type
out(p).DeviceMfgDesc ...
= read_unicode_type(fid, current, 0, 'DeviceMfgDesc');
end
else
out(p).DeviceMfgDesc ...
= read_unicode_type(fid, current, 0, 'DeviceMfgDesc');
if isempty(out(p).DeviceMfgDesc) % try v. 2 type
out(p).DeviceMfgDesc ...
= read_text_description_type(fid, current, 0, 'DeviceMfgDesc');
end
end
if isempty(out(p).DeviceMfgDesc)
out = [];
return;
elseif isempty(out(p).DeviceMfgDesc.String)
out(p).DeviceMfgDesc.String = 'Unavailable';
end
current = ftell(fid);
if version <= 2
out(p).DeviceModelDesc ...
= read_text_description_type(fid, current, 0, 'DeviceModelDesc');
if isempty(out(p).DeviceModelDesc) % try v. 4 type
out(p).DeviceModelDesc = ...
read_unicode_type(fid, current, 0, 'DeviceModelDesc');
end
else
out(p).DeviceModelDesc ...
= read_unicode_type(fid, current, 0, 'DeviceModelDesc');
if isempty(out(p).DeviceModelDesc) % try v. 2 type
out(p).DeviceModelDesc = ...
read_text_description_type(fid, current, 0, 'DeviceModelDesc');
end
end
if isempty(out(p).DeviceModelDesc)
out = [];
return;
elseif isempty(out(p).DeviceModelDesc.String)
out(p).DeviceModelDesc.String = 'Unavailable';
end
end
%------------------------------------------
%%% read_response_curve_set16_type
function out = read_response_curve_set16_type(fid, offset, data_size, ...
tagname)
% Clause 10.17 (v. 4.2)
% 0-3 'rcs2'
% 4-7 reserved, must be 0
% 8-9 number of channels n
% 10-11 number of measurement types m
% 12-(11+4m) array of offsets
% (12+4m)-end m response-curve structures
if data_size < 12
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'rcs2')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''rcs2''', 'Clause 10.17 (v. 4.2)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
numchan = fread_check(fid, 1, 'uint16');
numtypes = fread_check(fid, 1, 'uint16');
soffset = zeros(1, numtypes);
for i = 1 : numtypes
soffset(i) = fread_check(fid, 1, 'uint32');
end
% response-curve structure
% 0-3 measurement-type signature
% 4-(3+4n) number of measurements for each channel
% (4+4n)-(3+16n) XYZ of solid-colorant patches
% (4+12n)-end n response arrays
emptyInitializer = cell(1,numtypes);
out = struct('MeasurementCode', emptyInitializer, ...
'MeasurementType', emptyInitializer, ...
'SolidXYZs', emptyInitializer, ...
'ResponseArray', emptyInitializer);
for i = 1 : numtypes
fseek(fid, offset + soffset(i), 'bof');
out(i).MeasurementCode = char(fread_check(fid, 4, '*uint8'))';
switch out(i).MeasurementCode
case 'StaA'
out(i).MeasurementType = 'Status A';
case 'StaE'
out(i).MeasurementType = 'Status E';
case 'StaI'
out(i).MeasurementType = 'Status I';
case 'StaT'
out(i).MeasurementType = 'Status T';
case 'StaM'
out(i).MeasurementType = 'Status M';
case 'DN '
out(i).MeasurementType = 'DIN E, no polarizing filter';
case 'DN P'
out(i).MeasurementType = 'DIN E, with polarizing filter';
case 'DNN '
out(i).MeasurementType = 'DIN I, no polarizing filter';
case 'DNNP'
out(i).MeasurementType = 'DIN I, with polarizing filter';
otherwise
out(i).MeasurementType = 'unknown';
end
nmeas = zeros(1, numchan);
for j = 1 : numchan
nmeas(j) = fread_check(fid, 1, 'uint32');
end
for j = 1 : numchan
out(i).SolidXYZs(j, :) = read_xyz_number(fid);
end
for j = 1 : numchan
out(i).ResponseArray{j} = zeros(nmeas(j), 2);
for k = 1 : nmeas(j)
out(i).ResponseArray{j}(k, 1) = ...
fread_check(fid, 1, 'uint16') / 65535.0;
fseek(fid, 2, 'cof');
out(i).ResponseArray{j}(k, 2) = ...
fread_check(fid, 1, 'uint32') / 65536.0;
end
end
end
%------------------------------------------
%%% read_signature_type
function out = read_signature_type(fid, offset, data_size, tagname)
% Clause 10.19 (v. 4.2)
% 0-3 'sig '
% 4-7 reserved, must be 0
% 8-11 four-byte signature
if data_size < 12
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
typesig = char(fread_check(fid, 4, '*uint8'))';
if strcmp(typesig, 'sig ')
fseek_check(fid, offset + 8, 'bof');
techsig = char(fread_check(fid, 4, '*uint8'))';
if strmatch(techsig, char(uint8([0 0 0 0])))
out = 'Unspecified';
else
technologies = get_technologies;
idx = strmatch(techsig, technologies(:, 1), 'exact');
if isempty(idx)
warning(message('images:iccread:invalidTechnologySignature', tagname))
out = [];
else
out = technologies{idx, 2};
end
end
else
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''sig ''', 'Clause 10.19 (v. 4.2)'))
out = [];
end
%------------------------------------------
%%% read_text_description_type
function out = read_text_description_type(fid, offset, data_size, tagname)
% Clause 6.5.17 (v. 2 only; replaced by Unicode in v. 4)
% 0-3 'desc'
% 4-7 reserved, must be 0
% 8-11 ASCII invariant description count, including terminating NULL
% 12- ASCII invariant description
% followed by optional Unicode and ScriptCode descriptions, which we
% preserve.
% Note: Since this function can be called for a textDescriptionType
% embedded in another tag (profileSequenceDescType), the
% data_size field may be invalid -- e.g., zero. Therefore,
% there is no check for sufficient size (= 12 bytes).
% Check for desc signature
fseek_check(fid, offset, 'bof');
chartype = char(fread_check(fid, 4, '*uint8'))';
if strcmp(chartype, 'desc')
% read ASCII string
fseek_check(fid, offset + 8, 'bof');
count = fread_check(fid, 1, 'uint32'); % ASCII count
% count includes the trailing NULL, which we don't need.
% Note that profiles have been found in which the expected
% trailing NULL is not present, in which case count is 0.
out.String = char(fread_check(fid, count, '*uint8'))';
if ~isempty(out.String)
% Remove the trailing NULL.
out.String = out.String(1:end-1);
end
% read or construct optional data
if data_size > count + 12 % assume data_size correct
out.Optional = fread_check(fid, data_size - 12 - count, '*uint8')';
elseif data_size == count + 12 % no optional data
out.Optional = uint8(zeros(1, 78)); % supply minimal data
else % improper data_size; investigate
% read Unicode string
out.Optional(1:8) = fread_check(fid, 8, '*uint8')';
unicount = double(out.Optional(5:8)); % Unicode count
ucount = bitshift(unicount(1), 24) + bitshift(unicount(2), 16) + ...
bitshift(unicount(3), 8) + unicount(4);
if ucount > 0
out.Optional(9:8+2*ucount) = fread_check(fid, 2 * ucount, '*uint8')';
end
% read ScriptCode string
out.Optional(9+2*ucount:78+2*ucount) = ...
fread_check(fid, 70, '*uint8')';
end
% optional Unicode or ScriptCode data, saved but not interpreted
else
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''desc''', 'Clause 6.5.17'))
out = [];
end
%------------------------------------------
%%% read_unicode_type
function out = read_unicode_type(fid, offset, ~, tagname)
% Clause 10.13 (v. 4.2)
% 0-3 'mluc'
% 4-7 reserved, must be 0
% 8-11 number of name records that follow (n)
% 12-15 name-record length (currently 12)
% 16-17 first-name language code (ISO-639)
% 18-19 first-name country code (ISO-3166)
% 20-23 first-name length
% 24-27 first-name offset
% 28-(28+12n) [n should be (n - 1) - rfp]
% additional name records, if any
% (28+12n)-end [n should be (n - 1) - rfp]
% Unicode characters (2 bytes each)
% Note: Since this function can be called for a multiLocalized-
% UnicodeType embedded in another tag (profileSequenceDescType),
% the data_size field may be invalid -- e.g., zero. Therefore,
% there is no check for sufficient size (= 16 bytes).
% Check for mluc signature
fseek_check(fid, offset, 'bof');
chartype = char(fread_check(fid, 4, '*uint8'))';
if strcmp(chartype, 'mluc') % New v. 4 type
out = read_mluc(fid, offset);
else
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''mluc''', 'Clause 6.5.14'))
out = [];
end
%------------------------------------------
%%% read_text_type
function out = read_text_type(fid, offset, data_size, tagname)
% Clause 6.5.18 (v. 2) or 10.20 (v. 4.2)
% 0-3 'text'
% 4-7 reserved, must be 0
% 8- string of (data_size - 8) 7-bit ASCII characters, including NULL
if data_size < 8
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'text')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''text''', 'Clause 6.5.18 (v. 2) or 6.5.22 (v. 4)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
out = char(fread_check(fid, data_size-9, '*uint8'))';
%------------------------------------------
%%% read_date_time_type
function out = read_date_time_type(fid, offset, data_size, tagname)
% Clause 6.5.5 (v. 2) or 10.7 (v. 4.2)
% 0-3 'dtim'
% 4-7 reserved, must be 0
% 8-19 DateTimeNumber
if data_size < 20
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'dtim')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''dtim''', 'Clause 6.5.5 (v. 2) or 6.5.7 (v. 4)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
out = read_date_time_number(fid);
%------------------------------------------
%%% read_crd_info_type
function out = read_crd_info_type(fid, offset, data_size, tagname)
% Clause 6.5.2 (v. 2) or 6.5.4 (v. 4.0)
% 0-3 'crdi'
% 4-7 reserved, must be 0
% 8-11 PostScript product name character count, uint32
% PostScript product name, 7-bit ASCII
% Rendering intent 0 CRD name character count, uint32
% Rendering intent 0 CRD name, 7-bit ASCII
% Rendering intent 1 CRD name character count, uint32
% Rendering intent 1 CRD name, 7-bit ASCII
% Rendering intent 2 CRD name character count, uint32
% Rendering intent 2 CRD name, 7-bit ASCII
% Rendering intent 3 CRD name character count, uint32
% Rendering intent 3 CRD name, 7-bit ASCII
if data_size < 12
warning(message('images:iccread:invalidTagSize1', tagname));
out = [];
return;
end
fseek_check(fid, offset, 'bof');
tagtype = char(fread_check(fid, 4, '*uint8'))';
if ~strcmp(tagtype, 'crdi')
warning(message('images:iccread:invalidTagTypeWithReference', tagname, '''crdi''', 'Clause 6.5.2 (v. 2) or 6.5.4 (v. 4)'))
out = [];
return;
end
fseek_check(fid, offset + 8, 'bof');
count = fread_check(fid, 1, 'uint32');
name = char(fread_check(fid, count, '*uint8'))';
out.PostScriptProductName = name(1:end-1);
out.RenderingIntentCRDNames = cell(4,1);
for k = 1:4
count = fread_check(fid, 1, 'uint32');
name = char(fread_check(fid, count, '*uint8'))';
out.RenderingIntentCRDNames{k} = name(1:end-1);
end
%------------------------------------------
%%% read_date_time_number
function out = read_date_time_number(fid)
% Clause 5.3.1 (v. 2) and 5.1.1 (v. 4.2)
out = fread_check(fid, 6, 'uint16');
%---------------------------------------------
%%% read_mluc
function mluc = read_mluc(fid, offset)
%READ_MLUC Read multiLocalizedUnicodeType tag from ICC profile.
% MLUC = READ_MLUC(FID, OFFSET) reads a multiLocalizedUnicodeType tag
% located at OFFSET (in bytes from the beginning of the file) using the
% file identifier FID. MLUC is a structure array containing the fields:
%
% String Unicode characters stored as a MATLAB char array.
% LanguageCode ISO-639 language code.
% CountryCode ISO-3166 country code.
%
% The number of elements in the structure array is the number of names
% stored in the tag.
%
% See section 6.5.12 of the ICC specification "File Format for Color
% Profiles," version 4.1.0.
% Skip past first four bytes ('mluc') and second four bytes (all 0).
fseek_check(fid, offset + 8, 'bof');
num_names = fread_check(fid, 1, 'uint32');
fread_check(fid, 1, 'uint32');
% Initialize the output structure to fix the desired field order.
emptyInitializer = cell(1, num_names);
mluc = struct('String', emptyInitializer, ...
'LanguageCode', emptyInitializer, ...
'CountryCode', emptyInitializer);
temp = struct('NameLength', emptyInitializer, ...
'NameOffset', emptyInitializer);
for k = 1:num_names
mluc(k).LanguageCode = fread_check(fid, 1, 'uint16');
mluc(k).CountryCode = fread_check(fid, 1, 'uint16');
% Name length and offset are using for reading in the Unicode
% characters, but they aren't needed in the output structure mluc.
temp(k).NameLength = fread_check(fid, 1, 'uint32');
temp(k).NameOffset = fread_check(fid, 1, 'uint32');
end
for k = 1:num_names
fseek_check(fid, offset + temp(k).NameOffset, 'bof');
str = fread_check(fid, temp(k).NameLength, '*uint8');
str = reshape(str, [1 numel(str)]);
mluc(k).String = native2unicode(str, 'utf-16be');
end
%------------------------------
%%% trim_string
function string = trim_string(bytes)
if ~strcmp(class(bytes), 'uint8')
error(message('images:iccread:invalidInputData'))
end
endbyte = strfind(bytes, 0);
string = char(bytes(1 : endbyte - 1));
%------------------------------
%%% fseek_check
function fseek_check(fid, n, origin)
if fseek(fid, n, origin) < 0
pos = ftell(fid);
fclose(fid);
error(message('images:iccread:fseekFailed', n, pos))
end
%------------------------------
%%% fread_check
function out = fread_check(fid, n, precision)
[out,count] = fread(fid, n, precision);
if count ~= n
pos = ftell(fid) - count;
fclose(fid);
error(message('images:iccread:fileReadFailed', n, pos))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
rgb2ycbcr.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/@gpuArray/rgb2ycbcr.m
| 5,800 |
utf_8
|
ed436581c4079fe3ce18c0bea32f2ec2
|
function ycbcr = rgb2ycbcr(varargin)
%RGB2YCBCR Convert RGB color values to YCbCr color space.
% YCBCRMAP = RGB2YCBCR(MAP) converts the RGB values in MAP to the YCBCR
% color space. MAP must be a M-by-3 gpuArray. YCBCRMAP is a M-by-3
% gpuArray that contains the YCBCR luminance (Y) and chrominance
% (Cb and Cr) color values as columns. Each row represents the equivalent
% color to the corresponding row in the RGB colormap.
%
% YCBCR = RGB2YCBCR(RGB) converts the truecolor image RGB to the
% equivalent image in the YCBCR color space. RGB must be a M-by-N-by-3
% gpuArray.
%
% If the input gpuArray contains uint8, then YCBCR contains uint8 where Y
% is in the range [16 235], and Cb and Cr are in the range [16 240]. If
% the input gpuArray contains a double, then Y is in the range
% [16/255 235/255] and Cb and Cr are in the range [16/255 240/255]. If
% the input gpuArray contains uint16, then Y is in the range [4112
% 60395] and Cb and Cr are in the range [4112 61680].
%
% Class Support
% -------------
% If the input gpuArray is an RGB image, it can contain uint8, uint16,
% single or double. If the input gpuArray is a colormap, then it must
% contain single or double. The output has the same class as the input.
%
% Examples
% --------
% Convert RGB image to YCbCr.
%
% RGB = imread('board.tif');
% YCBCR = rgb2ycbcr(gpuArray(RGB));
%
% Convert RGB color space to YCbCr.
%
% map = jet(256);
% newmap = rgb2ycbcr(gpuArray(map));
%
% See also NTSC2RGB, RGB2NTSC, GPUARRAY/YCBCR2RGB.
% Copyright 1993-2013 The MathWorks, Inc.
% References:
% C.A. Poynton, "A Technical Introduction to Digital Video", John Wiley
% & Sons, Inc., 1996, p. 175
%
% Rec. ITU-R BT.601-5, "STUDIO ENCODING PARAMETERS OF DIGITAL TELEVISION
% FOR STANDARD 4:3 AND WIDE-SCREEN 16:9 ASPECT RATIOS",
% (1982-1986-1990-1992-1994-1995), Section 3.5.
rgb = parseInputs(varargin{:});
% Initialize variables
isColormap = false;
% Reshape colormap to be m x n x 3 for transformation
if (ismatrix(rgb))
% Colormap
isColormap=true;
colors = size(rgb,1);
rgb = reshape(rgb, [colors 1 3]);
end
% This matrix comes from a formula in Poynton's, "Introduction to
% Digital Video" (p. 176, equations 9.6).
% T is from equation 9.6: ycbcr = origT * rgb + origOffset;
origT = [65.481 128.553 24.966;...
-37.797 -74.203 112; ...
112 -93.786 -18.214];
origOffset = [16;128;128];
% The formula ycbcr = origT * rgb + origOffset, converts a RGB image in the range
% [0 1] to a YCbCr image where Y is in the range [16 235], and Cb and Cr
% are in that range [16 240]. For each class type (double,uint8,
% uint16), we must calculate scaling factors for origT and origOffset so that
% the input image is scaled between 0 and 1, and so that the output image is
% in the range of the respective class type.
scaleFactor.double.T = 1/255; % scale output so in range [0 1].
scaleFactor.double.offset = 1/255; % scale output so in range [0 1].
scaleFactor.uint8.T = 1/255; % scale input so in range [0 1].
scaleFactor.uint8.offset = 1; % output is already in range [0 255].
scaleFactor.uint16.T = 257/65535; % scale input so it is in range [0 1]
% and scale output so it is in range
% [0 65535] (255*257 = 65535).
scaleFactor.uint16.offset = 257; % scale output so it is in range [0 65535].
scaleFactor.single.T = single(1/255); % scale output so in range [0 1].
scaleFactor.single.offset = single(1/255); % scale output so in range [0 1].
% The formula ycbcr = origT*rgb + origOffset is rewritten as
% ycbcr = scaleFactorForT * origT * rgb + scaleFactorForOffset*origOffset.
% To use imlincomb, we rewrite the formula as ycbcr = T * rgb + offset, where T and
% offset are defined below.
classIn = classUnderlying(rgb);
if strcmp(classIn,'single')
origT = cast(origT,'single');
origOffset = cast(origOffset,'single');
end
T = scaleFactor.(classIn).T * origT;
offset = scaleFactor.(classIn).offset * origOffset;
% Initialize output
ycbcr = gpuArray.zeros(size(rgb),classIn);
if strcmp(classIn,'uint8')
ycbcr = rgb2ycbcrgpumex(rgb);
else
subR.type = '()';
subR.subs = {':',':',1};
subG.type = '()';
subG.subs = {':',':',2};
subB.type = '()';
subB.subs = {':',':',3};
r = subsref(rgb,subR);
g = subsref(rgb,subG);
b = subsref(rgb,subB);
if ~strcmp(classIn,'single') ||...
~strcmp(classIn,'double')
r = cast(r,'double');
g = cast(g,'double');
b = cast(b,'double');
end
for p = 1:3
sycbcr.type = '()';
sycbcr.subs = {':',':',p};
TR = T(p,1);
TG = T(p,2);
TB = T(p,3);
offsetp = offset(p);
% Use private function lincomb to calculate YCbCr output
ycbcr = subsasgn(ycbcr, sycbcr ,...
arrayfun(@lincomb,r,g,b,TR,TG,TB,offsetp));
end
end
if isColormap
ycbcr = reshape(ycbcr, [colors 3 1]);
end
if ~strcmp(classIn,'single') ||...
~strcmp(classIn,'double')
ycbcr = cast(ycbcr,classIn);
end
%%%
%Parse Inputs
%%%
function X = parseInputs(varargin)
narginchk(1,1);
X = varargin{1};
if ismatrix(X)
images.internal.gpu.gpuValidateAttributes(X,{'double','single'},mfilename,'MAP',1);
if (size(X,2) ~=3 || size(X,1) < 1)
error(message('images:rgb2ycbcr:invalidSizeForColormap'))
end
elseif ndims(X)==3
images.internal.gpu.gpuValidateAttributes(X,{'uint8','uint16','double','single'},mfilename,'RGB',1);
if (size(X,3) ~=3)
error(message('images:rgb2ycbcr:invalidTruecolorImage'))
end
else
error(message('images:rgb2ycbcr:invalidInputSize'))
end
|
github
|
wangsuyuan/Imageprocesingtoobox-master
|
ycbcr2rgb.m
|
.m
|
Imageprocesingtoobox-master/colorspaces/@gpuArray/ycbcr2rgb.m
| 6,012 |
utf_8
|
69a2cde70d14e4eda4fe22a4929b40e4
|
function rgb = ycbcr2rgb(varargin)
%YCBCR2RGB Convert YCbCr color values to RGB color space.
% RGBMAP = YCBCR2RGB(YCBCRMAP) converts the YCbCr values in the colormap
% YCBCRMAP to the RGB color space. If YCBCRMAP is an M-by-3 gpuArray and
% contains the YCbCr luminance (Y) and chrominance (Cb and Cr) color
% values as columns, then RGBMAP is an M-by-3 gpuArray that contains the
% red, green, and blue values equivalent to those colors.
%
% RGB = YCBCR2RGB(YCBCR) converts the YCbCr gpuArray image to the
% equivalent truecolor gpuArray image RGB.
%
% Class Support
% -------------
% If the input is a YCbCr gpuArray image, it can contain uint8, uint16,
% single or double; the output image contains the same class as the input
% image. If the input is a colormap, the input and output gpuArray
% colormaps can contain single or double.
%
% Example
% -------
% Convert a gpuArray image from RGB space to YCbCr space and back.
%
% rgb = gpuArray(imread('board.tif'));
% ycbcr = rgb2ycbcr(rgb);
% rgb2 = ycbcr2rgb(ycbcr);
%
% See also NTSC2RGB, RGB2NTSC, GPUARRAY/RGB2YCBCR.
% Copyright 1993-2013 The MathWorks, Inc.
% References:
% Charles A. Poynton, "A Technical Introduction to Digital Video",
% John Wiley & Sons, Inc., 1996, p. 175-176
%
% Rec. ITU-R BT.601-5, "STUDIO ENCODING PARAMETERS OF DIGITAL TELEVISION
% FOR STANDARD 4:3 AND WIDE-SCREEN 16:9 ASPECT RATIOS",
% (1982-1986-1990-1992-1994-1995), Section 3.5.
ycbcr = parseInputs(varargin{:});
classIn = classUnderlying(ycbcr);
if strcmp(classIn,'uint8')
rgb = ycbcr2rgbgpumex(ycbcr);
else
isColormap = false;
%must reshape colormap to be m x n x 3 for transformation
if ismatrix(ycbcr)
isColormap = true;
colors = size(ycbcr,1);
ycbcr = reshape(ycbcr, [colors 1 3]);
end
% This matrix comes from a formula in Poynton's, "Introduction to
% Digital Video" (p. 176, equations 9.6 and 9.7).
% T is from equation 9.6: ycbcr = T * rgb + offset;
T = [65.481 128.553 24.966;...
-37.797 -74.203 112; ...
112 -93.786 -18.214];
% We can rewrite the equation in terms of ycbcr which is
% T ^-1 * (ycbcr - offset) = rgb. This is equation 9.7 in the book.
Tinv = T^-1;
% Tinv = [0.00456621 0. 0.00625893;...
% 0.00456621 -0.00153632 -0.00318811;...
% 0.00456621 0.00791071 0.]
offset = [16;128;128];
% The formula Tinv * (ycbcr - offset) = rgb converts 8-bit YCbCr data to a RGB
% image that is scaled between 0 and one. For each class type (double,single,
% uint8,uint16), we must calculate scaling factors for Tinv and offset so that
% the input image is scaled between 0 and 255, and so that the output image is
% in the range of the respective class type.
scaleFactor.double.T = 255; % scale input so it is in range [0 255].
scaleFactor.double.offset = 1; % output already in range [0 1].
scaleFactor.uint8.T = 255; % scale output so it is in range [0 255].
scaleFactor.uint8.offset = 255; % scale output so it is in range [0 255].
scaleFactor.uint16.T = 65535/257; % scale input so it is in range [0 255]
% (65535/257 = 255),
% and scale output so it is in range
% [0 65535].
scaleFactor.uint16.offset = 65535; % scale output so it is in range [0 65535].
scaleFactor.single.T = single(255); % scale output so in range [0 1].
scaleFactor.single.offset = single(1); % scale output so in range [0 1].
% The formula Tinv * (ycbcr - offset) = rgb is rewritten as
% scaleFactorForT*Tinv*ycbcr - scaleFactorForOffset*Tinv*offset = rgb.
% To use lincomb, we rewrite the formula as T * ycbcr - offset, where
% T and offset are defined below.
if strcmp(classIn,'single')
Tinv = cast(Tinv,'single');
offset = cast(offset,'single');
end
T = scaleFactor.(classIn).T * Tinv;
offset = scaleFactor.(classIn).offset * Tinv * offset;
rgb = gpuArray.zeros(size(ycbcr),classIn);
subY.type = '()';
subY.subs = {':',':',1};
subCb.type = '()';
subCb.subs = {':',':',2};
subCr.type = '()';
subCr.subs = {':',':',3};
y = subsref(ycbcr,subY);
cb = subsref(ycbcr,subCb);
cr = subsref(ycbcr,subCr);
for p = 1:3
srgb.type = '()';
srgb.subs = {':',':',p};
TY = T(p,1);
TCb = T(p,2);
TCr = T(p,3);
offsetp = -offset(p);
if strcmp(classIn,'uint16')
% Use private function lincombuint16 to calculate RGB output
% for uint16 input
rgb = subsasgn(rgb, srgb ,...
arrayfun(@lincombuint16,y,cb,cr,TY,TCb,TCr,offsetp));
else
% Use private function lincomb to calculate RGB output
rgb = subsasgn(rgb, srgb ,...
arrayfun(@lincomb,y,cb,cr,TY,TCb,TCr,offsetp));
end
end
if isColormap
rgb = reshape(rgb, [colors 3 1]);
end
if strcmp(classIn,'double') || ...
strcmp(classIn,'single')
rgb = min(max(rgb,0.0),1.0);
end
end
%%%
%Parse Inputs
%%%
function X = parseInputs(varargin)
narginchk(1,1);
X = varargin{1};
if ismatrix(X)
images.internal.gpu.gpuValidateAttributes(X,{'double','single','real','nonempty'},...
mfilename,'MAP',1);
if (size(X,2) ~=3 || size(X,1) < 1)
error(message('images:ycbcr2rgb:invalidSizeForColormap'))
end
elseif ndims(X) == 3
images.internal.gpu.gpuValidateAttributes(X,{'real','uint8','uint16','double','single'},...
mfilename,'YCBCR',1);
if (size(X,3) ~=3)
error(message('images:ycbcr2rgb:invalidTruecolorImage'))
end
else
error(message('images:ycbcr2rgb:invalidInputSize'))
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.