plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
lcnbeapp/beapp-master
|
pop_importegimat.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_importegimat.m
| 6,094 |
utf_8
|
dba75d9338bed4f93159796aecef4717
|
% pop_importegimat() - import EGI Matlab segmented file
%
% Usage:
% >> EEG = pop_importegimat(filename, srate, latpoint0);
%
% Inputs:
% filename - Matlab file name
% srate - sampling rate
% latpoint0 - latency in sample ms of stimulus presentation.
% When data files are exported using Netstation, the user specify
% a time range (-100 ms to 500 ms for instance). In this
% case, the latency of the stimulus is 100 (ms). Default is 0 (ms)
%
% Output:
% EEG - EEGLAB dataset structure
%
% Authors: Arnaud Delorme, CERCO/UCSD, Jan 2010
% Copyright (C) Arnaud Delorme, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [EEG com] = pop_importegimat(filename, srate, latpoint0, dataField);
EEG = [];
com = '';
if nargin < 3, latpoint0 = 0; end;
if nargin < 4, dataField = 'Session'; end;
if nargin < 1
% ask user
[filename, filepath] = uigetfile('*.mat', 'Choose a Matlab file from Netstation -- pop_importegimat()');
if filename == 0 return; end;
filename = fullfile(filepath, filename);
tmpdata = load('-mat', filename);
fieldValues = fieldnames(tmpdata);
sessionPos = strmatch('Session', fieldValues);
posFieldData = 1;
if ~isempty(sessionPos), posFieldData = sessionPos; end;
if ~isfield(tmpdata, 'samplingRate'), srate = 250; else srate = tmpdata.samplingRate; end;
% epoch data files only
promptstr = { { 'style' 'text' 'string' 'Sampling rate (Hz)' } ...
{ 'style' 'edit' 'string' int2str(srate) } ...
{ 'style' 'text' 'string' 'Sample latency for stimulus (ms)' } ...
{ 'style' 'edit' 'string' '0' } ...
{ 'style' 'text' 'string' 'Field containing data' } ...
{ 'style' 'popupmenu' 'string' fieldValues 'value' posFieldData } ...
};
geometry = { [1 1] [1 1] [1 1] };
result = inputgui( 'geometry', geometry, 'uilist', promptstr, ...
'helpcom', 'pophelp(''pop_importegimat'')', ...
'title', 'Import a Matlab file from Netstation -- pop_importegimat()');
if length(result) == 0 return; end;
srate = str2num(result{1});
latpoint0 = str2num(result{2});
dataField = fieldValues{result{3}};
if isempty(latpoint0), latpoint0 = 0; end;
end;
EEG = eeg_emptyset;
fprintf('Reading EGI Matlab file %s\n', filename);
tmpdata = load('-mat', filename);
if isfield(tmpdata, 'samplingRate') % continuous file
srate = tmpdata.samplingRate;
end;
fieldValues = fieldnames(tmpdata);
if all(cellfun(@(x)isempty(findstr(x, 'Segment')), fieldValues))
EEG.srate = srate;
indData = strmatch(dataField, fieldValues);
EEG.data = tmpdata.(fieldValues{indData(1)});
EEG = eeg_checkset(EEG);
EEG = readegilocs(EEG);
com = sprintf('EEG = pop_importegimat(''%s'');', filename);
else
% get data types
% --------------
allfields = fieldnames(tmpdata);
for index = 1:length(allfields)
allfields{index} = allfields{index}(1:findstr(allfields{index}, 'Segment')-2);
end;
datatypes = unique_bc(allfields);
datatypes(cellfun(@isempty, datatypes)) = [];
% read all data
% -------------
counttrial = 1;
EEG.srate = srate;
latency = (latpoint0/1000)*EEG.srate+1;
for index = 1:length(datatypes)
tindex = 1;
for tindex = 1:length(allfields)
if isfield(tmpdata, sprintf('%s_Segment%d', datatypes{index}, tindex))
datatrial = getfield(tmpdata, sprintf('%s_Segment%d', datatypes{index}, tindex));
if counttrial == 1
EEG.pnts = size(datatrial,2);
EEG.data = repmat(single(0), [size(datatrial,1), size(datatrial,2), 1000]);
end;
EEG.data(:,:,counttrial) = datatrial;
EEG.event(counttrial).type = datatypes{index};
EEG.event(counttrial).latency = latency;
EEG.event(counttrial).epoch = counttrial;
counttrial = counttrial+1;
latency = latency + EEG.pnts;
end;
end;
end;
fprintf('%d trials read\n', counttrial-1);
EEG.data(:,:,counttrial:end) = [];
EEG.setname = filename(1:end-4);
EEG.nbchan = size(EEG.data,1);
EEG.trials = counttrial-1;
if latpoint0 ~= 1
EEG.xmin = -latpoint0/1000;
end;
EEG = eeg_checkset(EEG);
% channel location
% ----------------
if all(EEG.data(end,1:10) == 0)
disp('Deleting empty data reference channel (reference channel location is retained)');
EEG.data(end,:) = [];
EEG.nbchan = size(EEG.data,1);
EEG = eeg_checkset(EEG);
end;
EEG = readegilocs(EEG);
com = sprintf('EEG = pop_importegimat(''%s'', %3.2f, %3.2f, %d);', filename, srate, latpoint0, dataField);
end;
|
github
|
lcnbeapp/beapp-master
|
pop_rejepoch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_rejepoch.m
| 2,957 |
utf_8
|
a252e31365db94282bc48a802d83b48b
|
% pop_rejepoch() - Reject pre-labeled trials in a EEG dataset.
% Ask for confirmation and accept the rejection
%
% Usage:
% >> OUTEEG = pop_rejepoch( INEEG, trialrej, confirm)
%
% Inputs:
% INEEG - Input dataset
% trialrej - Array of 0s and 1s (depicting rejected trials) (size is
% number of trials)
% confirm - Display rejections and ask for confirmation. (0=no. 1=yes;
% default is 1).
% Outputs:
% OUTEEG - output dataset
%
% Example:
% >> data2 = pop_rejepoch( EEG, [1 1 1 0 0 0] );
% % reject the 3 first trials of a six-trial dataset
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: eeglab(), eegplot()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 01-25-02 reformated help & license -ad
function [EEG, com] = pop_rejepoch( EEG, tmprej, confirm);
com = '';
if nargin < 1
help pop_rejepoch;
return;
end;
if nargin < 2
tmprej = find(EEG.reject.rejglobal);
end;
if nargin < 3
confirm = 1;
end;
if islogical(tmprej), tmprej = tmprej+0; end;
uniquerej = double(sort(unique(tmprej)));
if length(tmprej) > 0 && length(uniquerej) <= 2 && ...
ismember(uniquerej(1), [0 1]) && ismember(uniquerej(end), [0 1]) && any(~tmprej)
format0_1 = 1;
fprintf('%d/%d trials rejected\n', sum(tmprej), EEG.trials);
else
format0_1 = 0;
fprintf('%d/%d trials rejected\n', length(tmprej), EEG.trials);
end;
if confirm ~= 0
ButtonName=questdlg2('Are you sure, you want to reject the labeled trials ?', ...
'Reject pre-labelled epochs -- pop_rejepoch()', 'NO', 'YES', 'YES');
switch ButtonName,
case 'NO',
disp('Operation cancelled');
return;
case 'YES',
disp('Compute new dataset');
end % switch
end;
% create a new set if set_out is non nul
% --------------------------------------
if format0_1
tmprej = find(tmprej > 0);
end;
EEG = pop_select( EEG, 'notrial', tmprej);
%com = sprintf( '%s = pop_rejepoch( %s, find(%s.reject.rejglobal), 0);', inputname(1), ...
% inputname(1), inputname(1));
com = sprintf( '%s = pop_rejepoch( %s, %s);', inputname(1), inputname(1), vararg2str({ tmprej 0 }));
return;
|
github
|
lcnbeapp/beapp-master
|
pop_loadeeg.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_loadeeg.m
| 5,829 |
utf_8
|
1009f8be42d7b9ae13a7b487334378c9
|
% pop_loadeeg() - load a Neuroscan .EEG file (via a pop-up window if no
% arguments). Calls loadeeg().
%
% Usage:
% >> EEG = pop_loadeeg; % pop-up data entry window
% >> EEG = pop_loadeeg( filename, filepath, range_chan, range_trials, ...
% range_typeeeg, range_response, format); % no pop-up window
%
% Graphic interface:
% "Data precision in bits..." - [edit box] data binary format length
% in bits. Command line equivalent: 'format'
% "Trial range subset" - [edit box] integer array.
% Command line equivalent: 'range_trials'
% "Type range subset" - [edit box] integer array.
% Command line equivalent: 'range_typeeeg'
% "Electrode subset" - [edit box] integer array.
% Command line equivalent: 'range_chan'
% "Response range subset" - [edit box] integer array.
% Command line equivalent: 'range_response'
%
% Inputs:
% filename - ['string'] file name
% filepath - ['string'] file path
% range_chan - [integer array] Import only selected electrodes
% Ex: 3,4:10; {Default: [] -> import all}
% range_trials - [integer array] Import only selected trials
% { Default: [] -> import all}
% range_typeeeg - [integer array] Import only trials of selected type
% {Default: [] -> import all}
% range_response - [integer array] Import only trials with selected
% response values {Default: [] -> import all}
% format - ['short'|'int32'] data binary format (Neuroscan 4.3
% saves data as 'int32'; earlier versions save data as
% 'short'. Default is 'short'.
% Outputs:
% EEG - eeglab() data structure
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: loadeeg(), eeglab()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 01-25-02 reformated help & license -ad
% uses calls to eeg_emptyset and loadeeg
% popup loadeeg file
% ------------------
function [EEG, command] = pop_loadeeg(filename, filepath, range_chan, range_sweeps, range_typeeeg, range_response, datformat);
EEG = [];
command = '';
if nargin < 1
% ask user
[filename, filepath] = uigetfile('*.eeg;*.EEG', 'Choose an EEG file -- pop_loadeeg()');
if filename == 0 return; end;
% popup window parameters
% -----------------------
promptstr = { 'Data precision in bits (16 / 32 bit or Auto for NS v4.3):', ...
'Trial range subset:', ...
'Type range subset:', ...
'Electrodes subset:', ...
'Response range subset:'};
inistr = { 'Auto' '' '' '' '' };
pop_title = sprintf('Load an EEG dataset');
result = inputdlg2( promptstr, pop_title, 1, inistr, 'pop_loadeeg');
if size( result,1 ) == 0 return; end;
% decode parameters
% -----------------
precision = lower(strtrim(result{1}));
if strcmpi(precision, '16')
datformat = 'short';
elseif strcmpi(precision, '32')
datformat = 'int32';
elseif (strcmpi(precision, '0') || strcmpi(precision, 'auto'))
datformat = 'auto'
end;
range_sweeps = eval( [ '[' result{2} ']' ] );
range_typeeeg = eval( [ '[' result{3} ']' ] );
range_chan = eval( [ '[' result{4} ']' ] );
range_response = eval( [ '[' result{5} ']' ] );
else
if exist('filepath') ~= 1
filepath = '';
end;
end;
if exist('datformat') ~= 1, datformat = 'auto'; end;
if exist('range_chan') ~= 1 | isempty(range_chan) , range_chan = 'all'; end;
if exist('range_sweeps') ~= 1 | isempty(range_sweeps) , range_sweeps = 'all'; end;
if exist('range_typeeeg') ~= 1 | isempty(range_typeeeg) , range_typeeeg = 'all'; end;
if exist('range_response') ~= 1 | isempty(range_response), range_response = 'all'; end;
% load datas
% ----------
EEG = eeg_emptyset;
if ~isempty(filepath)
if filepath(end) ~= '/' & filepath(end) ~= '\' & filepath(end) ~= ':'
error('The file path last character must be a delimiter');
end;
fullFileName = sprintf('%s%s', filepath, filename);
else
fullFileName = filename;
end;
[EEG.data, accept, eegtype, rt, eegresp, namechan, EEG.pnts, EEG.trials, EEG.srate, EEG.xmin, EEG.xmax] = ...
loadeeg( fullFileName, range_chan, range_sweeps, range_typeeeg, 'all', 'all', range_response, datformat);
EEG.comments = [ 'Original file: ' fullFileName ];
EEG.setname = 'Neuroscan EEG data';
EEG.nbchan = size(EEG.data,1);
for index = 1:size(namechan,1)
EEG.chanlocs(index).labels = deblank(char(namechan(index,:)));
end;
EEG = eeg_checkset(EEG);
if any(rt)
EEG = pop_importepoch( EEG, [rt(:)*1000 eegtype(:) accept(:) eegresp(:)], { 'RT' 'type' 'accept' 'response'}, {'RT'}, 1E-3, 0, 1);
else
EEG = pop_importepoch( EEG, [eegtype(:) accept(:) eegresp(:)], { 'type' 'accept' 'response'}, { }, 1E-3, 0, 1);
end;
command = sprintf('EEG = pop_loadeeg(''%s'', ''%s'', %s);', filename, filepath, ...
vararg2str({range_chan range_sweeps range_typeeeg range_response datformat }));
return;
|
github
|
lcnbeapp/beapp-master
|
pop_importdata.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_importdata.m
| 18,140 |
utf_8
|
55023f12445bd132394251c54b2b62e5
|
% pop_importdata() - import data from a Matlab variable or disk file by calling
% importdata().
% Usage:
% >> EEGOUT = pop_importdata(); % pop-up a data entry window
% >> EEGOUT = pop_importdata( 'key', val,...); % no pop-up window
%
% Graphic interface (refer to a previous version of the GUI):
% "Data file/array" - [Edit box] Data file or Matlab variable name to import
% to EEGLAB. Command line equivalent: 'data'
% "Data file/array" - [list box] select data format from listbox. If you
% browse for a data file, the graphical interface might be
% able to detect the file format from the file extension and
% his list box accordingly. Note that you have to click on
% the option to make it active. Command line equivalent is
% 'dataformat'
% "Dataset name" - [Edit box] Name for the new dataset.
% In the last column of the graphic interface, the "EEG.setname"
% text indicates which field of the EEG structure this parameter
% is corresponding to (in this case 'setname').
% Command line equivalent: 'setname'.
% "Data sampling rate" - [Edit box] In Hz. Command line equivalent: 'srate'
% "Time points per epoch" - [Edit box] Number of data frames (points) per epoch.
% Changing this value will change the number of data epochs.
% Command line equivalent: 'pnts'.
% "Start time" - [Edit box] This edit box is only present for
% data epoch and specify the epochs start time in ms. Epoch upper
% time limit is automatically calculated.
% Command line equivalent: 'xmin'
% "Number of channels" - [Edit box] Number of data channels. Command line
% equivalent: 'nbchan'. This edit box cannot be edited.
% "Ref. channel indices or mode" - [edit box] current reference. This edit box
% cannot be edited. To change data reference, use menu
% Tools > Re-reference calling function pop_reref(). The reference
% can be a string, 'common' indicating an unknow common reference,
% 'averef' indicating average reference, or an array of integer
% containing the indices of the reference channels.
% "Subject code" - [Edit box] subject code. For example, 'S01'. The command
% line equivalent is 'subject'.
% "Task Condition" - [Edit box] task condition. For example, 'Targets'. The
% command line equivalent is 'condition'.
% "Session number" - [Edit box] session number (from the same subject). All datasets
% from the same subject and session will be assumed to use the
% same ICA decomposition. The command line equivalent is 'session'.
% "Subject group" - [Edit box] subject group. For example 'Patients' or 'Control'.
% Command line equivalent is 'group'.
% "About this dataset" - [Edit box] Comments about the dataset. Command line
% equivalent is 'comments'.
% "Channel locations file or array" - [Edit box] For channel data formats, see
% >> readlocs help Command line equivalent: 'chanlocs'
% "ICA weights array or text/binary file" - [edit box] Import ICA weights from other
% decompositions (e.g., same data, different conditions).
% To use the ICA weights from another loaded dataset (n), enter
% ALLEEG(n).icaweights. Command line equivalent: 'icaweights'
% "ICA sphere array or text/binary file" - [edit box] Import ICA sphere matrix.
% In EEGLAB, ICA decompositions require a sphere matrix
% and an unmixing weight matrix (see above). To use the sphere
% matrix from another loaded dataset (n), enter ALLEEG(n).icasphere
% Command line equivalent: 'icasphere'.
% "From other dataset" - [push button] Press this button and enter the index
% of another dataset. This will update the channel location or the
% ICA edit box.
%
% Optional inputs:
% 'setname' - Name of the EEG dataset
% 'data' - ['varname'|'filename'] Import data from a Matlab variable or file
% into an EEG data structure
% 'dataformat' - ['array|matlab|ascii|float32le|float32be'] Input data format.
% 'array' is a Matlab array in the global workspace.
% 'matlab' is a Matlab file (which must contain a single variable).
% 'ascii' is an ascii file. 'float32le' and 'float32be' are 32-bit
% float data files with little-endian and big-endian byte order.
% Data must be organised as (channels, timepoints) i.e.
% channels = rows, timepoints = columns; else, as 3-D (channels,
% timepoints, epochs). For convenience, the data file is transposed
% if the number of rows is larger than the number of columns as the
% program assumes that there is more channel than data points.
% 'subject' - [string] subject code. For example, 'S01'.
% {default: none -> each dataset from a different subject}
% 'condition' - [string] task condition. For example, 'Targets'
% {default: none -> all datasets from one condition}
% 'group' - [string] subject group. For example 'Patients' or 'Control'.
% {default: none -> all subjects in one group}
% 'session' - [integer] session number (from the same subject). All datasets
% from the same subject and session will be assumed to use the
% same ICA decomposition {default: none -> each dataset from
% a different session}
% 'chanlocs' - ['varname'|'filename'] Import a channel location file.
% For file formats, see >> help readlocs
% 'nbchan' - [int] Number of data channels.
% 'xmin' - [real] Data epoch start time (in seconds).
% {default: 0}
% 'pnts' - [int] Number of data points per data epoch. The number of trial
% is automatically calculated.
% {default: length of the data -> continuous data assumed}
% 'srate' - [real] Data sampling rate in Hz {default: 1Hz}
% 'ref' - [string or integer] reference channel indices. 'averef' indicates
% average reference. Note that this does not perform referencing
% but only sets the initial reference when the data is imported.
% 'icaweight' - [matrix] ICA weight matrix.
% 'icasphere' - [matrix] ICA sphere matrix. By default, the sphere matrix
% is initialized to the identity matrix if it is left empty.
% 'comments' - [string] Comments on the dataset, accessible through the EEGLAB
% main menu using (Edit > About This Dataset). Use this to attach
% background information about the experiment or data to the dataset.
% Outputs:
% EEGOUT - modified EEG dataset structure
%
% Note: This function calls pop_editset() to modify parameter values.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: pop_editset(), pop_select(), eeglab()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 01-25-02 reformated help & license -ad
% 03-16-02 text interface editing -sm & ad
% 03-16-02 remove EEG.xmax et EEG.xmin (for continuous) -ad & sm
% 04-02-02 debugging command line calls -ad & lf
function [EEGOUT, com] = pop_importdata( varargin);
com = '';
EEGOUT = eeg_emptyset;
if nargin < 1 % if several arguments, assign values
% popup window parameters
% -----------------------
geometry = { [1.4 0.7 .8 0.5] [2 3.02] [1] [2.5 1 1.5 1.5] [2.5 1 1.5 1.5] [2.5 1 1.5 1.5] [2.5 1 1.5 1.5] [2.5 1 1.5 1.5] ...
[1] [1.4 0.7 .8 0.5] [1] [1.4 0.7 .8 0.5] [1.4 0.7 .8 0.5] };
editcomments = [ 'tmp = pop_comments(get(gcbf, ''userdata''), ''Edit comments of current dataset'');' ...
'if ~isempty(tmp), set(gcf, ''userdata'', tmp); end; clear tmp;' ];
commandload = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ...
'if filename(1) ~=0,' ...
' set(findobj(''parent'', gcbf, ''tag'', tagtest), ''string'', [ filepath filename ]);' ...
'end;' ...
'clear filename filepath tagtest;' ];
commandsetfiletype = [ 'filename = get( findobj(''parent'', gcbf, ''tag'', ''globfile''), ''string'');' ...
'tmpext = findstr(filename,''.'');' ...
'if ~isempty(tmpext),' ...
' tmpext = lower(filename(tmpext(end)+1:end));' ...
' switch tmpext, ' ...
' case ''mat'', set(findobj(gcbf,''tag'', ''loclist''), ''value'',5);' ...
' case ''fdt'', set(findobj(gcbf,''tag'', ''loclist''), ''value'',3);' ...
' case ''txt'', set(findobj(gcbf,''tag'', ''loclist''), ''value'',2);' ...
' end;' ...
'end; clear tmpext filename;' ];
commandselica = [ 'res = inputdlg2({ ''Enter dataset number'' }, ''Select ICA weights and sphere from other dataset'', 1, { ''1'' });' ...
'if ~isempty(res),' ...
' set(findobj( ''parent'', gcbf, ''tag'', ''weightfile''), ''string'', sprintf(''ALLEEG(%s).icaweights'', res{1}));' ...
' set(findobj( ''parent'', gcbf, ''tag'', ''sphfile'') , ''string'', sprintf(''ALLEEG(%s).icasphere'' , res{1}));' ...
'end;' ];
commandselchan = [ 'res = inputdlg2({ ''Enter dataset number'' }, ''Select channel information from other dataset'', 1, { ''1'' });' ...
'if ~isempty(res),' ...
' set(findobj( ''parent'', gcbf, ''tag'', ''chanfile''), ' ...
' ''string'', sprintf(''{ ALLEEG(%s).chanlocs ALLEEG(%s).chaninfo ALLEEG(%s).urchanlocs }'', res{1}, res{1}, res{1}));' ...
'end;' ];
if isstr(EEGOUT.ref)
curref = EEGOUT.ref;
else
if length(EEGOUT.ref) > 1
curref = [ int2str(abs(EEGOUT.ref)) ];
else
curref = [ int2str(abs(EEGOUT.ref)) ];
end;
end;
uilist = { ...
{ 'Style', 'text', 'string', 'Data file/array (click on the selected option)', 'horizontalalignment', 'right', 'fontweight', 'bold' }, ...
{ 'Style', 'popupmenu', 'string', 'Matlab variable|ASCII text file|float32 le file|float32 be file|Matlab .mat file', ...
'fontweight', 'bold', 'tag','loclist' } ...
{ 'Style', 'edit', 'string', '', 'horizontalalignment', 'left', 'tag', 'globfile' }, ...
{ 'Style', 'pushbutton', 'string', 'Browse', 'callback', ...
[ 'tagtest = ''globfile'';' commandload commandsetfiletype ] }, ...
...
{ 'Style', 'text', 'string', 'Dataset name', 'horizontalalignment', 'right', ...
'fontweight', 'bold' }, { 'Style', 'edit', 'string', '' }, { } ...
...
{ 'Style', 'text', 'string', 'Data sampling rate (Hz)', 'horizontalalignment', 'right', 'fontweight', ...
'bold' }, { 'Style', 'edit', 'string', num2str(EEGOUT.srate) }, ...
{ 'Style', 'text', 'string', 'Subject code', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', '' }, ...
{ 'Style', 'text', 'string', 'Time points per epoch (0->continuous)', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', num2str(EEGOUT.pnts) }, ...
{ 'Style', 'text', 'string', 'Task condition', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', '' }, ...
{ 'Style', 'text', 'string', 'Start time (sec) (only for data epochs)', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', num2str(EEGOUT.xmin) }, ...
{ 'Style', 'text', 'string', 'Session number', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', '' }, ...
{ 'Style', 'text', 'string', 'Number of channels (0->set from data)', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', '0' }, ...
{ 'Style', 'text', 'string', 'Subject group', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', '' }, ...
{ 'Style', 'text', 'string', 'Ref. channel indices or mode (see help)', 'horizontalalignment', 'right', ...
}, { 'Style', 'edit', 'string', curref }, ...
{ 'Style', 'text', 'string', 'About this dataset', 'horizontalalignment', 'right', ...
}, { 'Style', 'pushbutton', 'string', 'Enter comments' 'callback' editcomments }, ...
{ } ...
{ 'Style', 'text', 'string', 'Channel location file or info', 'horizontalalignment', 'right', 'fontweight', ...
'bold' }, {'Style', 'pushbutton', 'string', 'From other dataset', 'callback', commandselchan }, ...
{ 'Style', 'edit', 'string', '', 'horizontalalignment', 'left', 'tag', 'chanfile' }, ...
{ 'Style', 'pushbutton', 'string', 'Browse', 'callback', [ 'tagtest = ''chanfile'';' commandload ] }, ...
...
{ 'Style', 'text', 'string', ...
' (note: autodetect file format using file extension; use menu "Edit > Channel locations" for more importing options)', ...
'horizontalalignment', 'right' }, ...
...
{ 'Style', 'text', 'string', 'ICA weights array or text/binary file (if any):', 'horizontalalignment', 'right' }, ...
{ 'Style', 'pushbutton' 'string' 'from other dataset' 'callback' commandselica }, ...
{ 'Style', 'edit', 'string', '', 'horizontalalignment', 'left', 'tag', 'weightfile' }, ...
{ 'Style', 'pushbutton', 'string', 'Browse', 'callback', [ 'tagtest = ''weightfile'';' commandload ] }, ...
...
{ 'Style', 'text', 'string', 'ICA sphere array or text/binary file (if any):', 'horizontalalignment', 'right' }, ...
{ 'Style', 'pushbutton' 'string' 'from other dataset' 'callback' commandselica }, ...
{ 'Style', 'edit', 'string', '', 'horizontalalignment', 'left', 'tag', 'sphfile' } ...
{ 'Style', 'pushbutton', 'string', 'Browse', 'callback', [ 'tagtest = ''sphfile'';' commandload ] } };
[ results newcomments ] = inputgui( geometry, uilist, 'pophelp(''pop_importdata'');', 'Import dataset info -- pop_importdata()');
if length(results) == 0, return; end;
args = {};
% specific to importdata (not identical to pop_editset
% ----------------------------------------------------
switch results{1}
case 1, args = { args{:}, 'dataformat', 'array' };
case 2, args = { args{:}, 'dataformat', 'ascii' };
case 3, args = { args{:}, 'dataformat', 'float32le' };
case 4, args = { args{:}, 'dataformat', 'float32be' };
case 5, args = { args{:}, 'dataformat', 'matlab' };
end;
i = 3;
if ~isempty( results{i+7} ) , args = { args{:}, 'nbchan', str2num(results{i+7}) }; end;
if ~isempty( results{2} ) , args = { args{:}, 'data', results{2} }; end;
if ~isempty( results{i } ) , args = { args{:}, 'setname', results{i } }; end;
if ~isempty( results{i+1} ) , args = { args{:}, 'srate', str2num(results{i+1}) }; end;
if ~isempty( results{i+2} ) , args = { args{:}, 'subject', results{i+2} }; end;
if ~isempty( results{i+3} ) , args = { args{:}, 'pnts', str2num(results{i+3}) }; end;
if ~isempty( results{i+4} ) , args = { args{:}, 'condition', results{i+4} }; end;
if ~isempty( results{i+5} ) , args = { args{:}, 'xmin', str2num(results{i+5}) }; end;
if ~isempty( results{i+6} ) , args = { args{:}, 'session', str2num(results{i+6}) }; end;
if ~isempty( results{i+8} ) , args = { args{:}, 'group', results{i+8} }; end;
if ~isempty( results{i+9} ) , args = { args{:}, 'ref', str2num(results{i+9}) }; end;
if ~isempty( newcomments ) , args = { args{:}, 'comments', newcomments }; end;
if abs(str2num(results{i+5})) > 10,
fprintf('WARNING: are you sure the epoch start time (%3.2f) is in seconds\n');
end;
if ~isempty( results{i+10} ) , args = { args{:}, 'chanlocs' , results{i+10} }; end;
if ~isempty( results{i+11} ), args = { args{:}, 'icaweights', results{i+11} }; end;
if ~isempty( results{i+12} ) , args = { args{:}, 'icasphere', results{i+12} }; end;
% generate the output command
% ---------------------------
EEGOUT = pop_editset(EEGOUT, args{:});
com = sprintf( 'EEG = pop_importdata(%s);', vararg2str(args) );
%com = '';
%for i=1:2:length(args)
% if ~isempty( args{i+1} )
% if isstr( args{i+1} ) com = sprintf('%s, ''%s'', ''%s''', com, args{i}, char(args{i+1}) );
% else com = sprintf('%s, ''%s'', [%s]', com, args{i}, num2str(args{i+1}) );
% end;
% else
% com = sprintf('%s, ''%s'', []', com, args{i} );
% end;
%end;
%com = [ 'EEG = pop_importdata(' com(2:end) ');'];
else % no interactive inputs
EEGOUT = pop_editset(EEGOUT, varargin{:});
end;
return;
|
github
|
lcnbeapp/beapp-master
|
pop_newtimef.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_newtimef.m
| 17,862 |
utf_8
|
5299a688b12982118ec8c0a8b74b7567
|
% pop_newtimef() - Returns estimates and plots of event-related (log) spectral
% perturbation (ERSP) and inter-trial coherence (ITC) phenomena
% timelocked to a set of single-channel input epochs
%
% Usage:
% >> pop_newtimef(EEG, typeplot); % pop_up window
% >> pop_newtimef(EEG, typeplot, lastcom); % pop_up window
% >> pop_newtimef(EEG, typeplot, channel); % do not pop-up window
% >> pop_newtimef(EEG, typeproc, num, tlimits,cycles,
% 'key1',value1,'key2',value2, ... );
%
% Graphical interface:
% "Channel/component number" - [edit box] this is the index of the data
% channel or the index of the component for which to plot the
% time-frequency decomposition.
% "Sub-epoch time limits" - [edit box] sub epochs may be extracted (note that
% this function aims at plotting data epochs not continuous data).
% You may select the new epoch limits in this edit box.
% "Use n time points" - [muliple choice list] this is the number of time
% points to use for the time-frequency decomposition. The more
% time points, the longer the time-frequency decomposition
% takes to compute.
% "Frequency limits" - [edit box] these are the lower and upper
% frequency limit of the time-frequency decomposition. Instead
% of limits, you may also enter a sequence of frequencies. For
% example to compute the time-frequency decomposition at all
% frequency between 5 and 50 hertz with 1 Hz increment, enter "1:50"
% "Use limits, padding n" - [muliple choice list] "using limits" means
% to use the upper and lower limits in "Frequency limits" with
% a specific padding ratio (padratio argument of newtimef).
% The last option "use actual frequencies" forces newtimef to
% ignore the padratio argument and use the vector of frequencies
% given as input in the "Frequency limits" edit box.
% "Log spaced" - [checkbox] you may check this box to compute log-spaced
% frequencies. Note that this is only relevant if you specify
% frequency limits (in case you specify actual frequencies,
% this parameter is ignored).
% "Use divisive baseline" - [muliple choice list] there are two types of
% baseline correction, additive (the baseline is subtracted)
% or divisive (the data is divided by the baseline values).
% The choice is yours. There is also the option to perform
% baseline correction in single trials. See the 'trialbase' "full"
% option in the newtimef.m documentation for more information.
% "No baseline" - [checkbox] check this box to compute the raw time-frequency
% decomposition with no baseline removal.
% "Wavelet cycles" - [edit box] specify the number of cycle at the lowest
% and highest frequency. Instead of specifying the number of cycle
% at the highest frequency, you may also specify a wavelet
% "factor" (see newtimef help message). In addition, it is
% possible to specify actual wavelet cycles for each frequency
% by entering a sequence of numbers.
% "Use FFT" - [checkbox] check this checkbox to use FFT instead of
% wavelet decomposition.
% "ERSP color limits" - [edit box] set the upper and lower limit for the
% ERSP image.
% "see log power" - [checkbox] the log power values (in dB) are plotted.
% Uncheck this box to plot the absolute power values.
% "ITC color limits" - [edit box] set the upper and lower limit for the
% ITC image.
% "plot ITC phase" - [checkbox] check this box plot plot (overlayed on
% the ITC amplitude) the polarity of the ITC complex value.
% "Bootstrap significance level" - [edit box] use this edit box to enter
% the p-value threshold for masking both the ERSP and the ITC
% image for significance (masked values appear as light green)
% "FDR correct" - [checkbox] this correct the p-value for multiple comparisons
% (accross all time and frequencies) using the False Discovery
% Rate method. See the fdr.m function for more details.
% "Optional newtimef arguments" - [edit box] addition argument for the
% newtimef function may be entered here in the 'key', value
% format.
% "Plot Event Related Spectral Power" - [checkbox] plot the ERSP image
% showing event related spectral stimulus induced changes
% "Plot Inter Trial Coherence" - [checkbox] plot the ITC image.
% "Plot Curve at each frequency" - [checkbox] instead of plotting images,
% it is also possible to display curves at each frequency.
% This functionality is beta and might not work in all cases.
%
% Inputs:
% INEEG - input EEG dataset
% typeproc - type of processing: 1 process the raw channel data
% 0 process the ICA component data
% num - component or channel number
% tlimits - [mintime maxtime] (ms) sub-epoch time limits to plot
% cycles - > 0 --> Number of cycles in each analysis wavelet
% = 0 --> Use FFTs (with constant window length
% at all frequencies)
%
% Optional inputs:
% See the newtimef() function.
%
% Outputs: Same as newtimef(); no outputs are returned when a
% window pops-up to ask for additional arguments
%
% Saving the ERSP and ITC output values:
% Simply look up the history using the eegh function (type eegh).
% Then copy and paste the pop_newtimef() command and add output args.
% See the newtimef() function for a list of outputs. For instance,
% >> [ersp itc powbase times frequencies] = pop_newtimef( EEG, ....);
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: newtimef(), eeglab()
% Copyright (C) 2002 University of California San Diego
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 01-25-02 reformated help & license -ad
% 03-08-02 add eeglab option & optimize variable sizes -ad
% 03-10-02 change newtimef call -ad
% 03-18-02 added title -ad & sm
% 04-04-02 added outputs -ad & sm
function varargout = pop_newtimef(EEG, typeproc, num, tlimits, cycles, varargin );
varargout{1} = '';
% display help if not enough arguments
% ------------------------------------
if nargin < 2
help pop_newtimef;
return;
end;
lastcom = [];
if nargin < 3
popup = 1;
else
popup = isstr(num) | isempty(num);
if isstr(num)
lastcom = num;
end;
end;
% pop up window
% -------------
if popup
[txt vars] = gethelpvar('newtimef.m');
g = [1 0.3 0.6 0.4];
geometry = { g g g g g g g g [0.975 1.27] [1] [1.2 1 1.2]};
uilist = { ...
{ 'Style', 'text', 'string', fastif(typeproc, 'Channel number', 'Component number'), 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', getkeyval(lastcom,3,[],'1') 'tag' 'chan'} {} {} ...
...
{ 'Style', 'text', 'string', 'Sub epoch time limits [min max] (msec)', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', getkeyval(lastcom,4,[],[ int2str(EEG.xmin*1000) ' ' int2str(EEG.xmax*1000) ]) 'tag' 'tlimits' } ...
{ 'Style', 'popupmenu', 'string', 'Use 50 time points|Use 100 time points|Use 150 time points|Use 200 time points|Use 300 time points|Use 400 time points' 'tag' 'ntimesout' 'value' 4} { } ...
...
{ 'Style', 'text', 'string', 'Frequency limits [min max] (Hz) or sequence', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', '' 'tag' 'freqs' } ...
{ 'Style', 'popupmenu', 'string', 'Use limits, padding 1|Use limits, padding 2|Use limits, padding 4|Use actual freqs.' 'tag' 'nfreqs' } ...
{ 'Style', 'checkbox', 'string' 'Log spaced' 'value' 0 'tag' 'freqscale' } ...
...
{ 'Style', 'text', 'string', 'Baseline limits [min max] (msec) (0->pre-stim.)', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', '0' 'tag' 'baseline' } ...
{ 'Style', 'popupmenu', 'string', 'Use divisive baseline (DIV)|Use standard deviation (STD)|Use single trial DIV baseline|Use single trial STD baseline' 'tag' 'basenorm' } ...
{ 'Style', 'checkbox', 'string' 'No baseline' 'tag' 'nobase' } ...
...
{ 'Style', 'text', 'string', 'Wavelet cycles [min max/fact] or sequence', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', getkeyval(lastcom,5,[],'3 0.5') 'tag' 'cycle' } ...
{ 'Style', 'checkbox', 'string' 'Use FFT' 'value' 0 'tag' 'fft' } ...
{ } ...
...
{ 'Style', 'text', 'string', 'ERSP color limits [max] (min=-max)', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', '' 'tag' 'erspmax'} ...
{ 'Style', 'checkbox', 'string' 'see log power (set)' 'tag' 'scale' 'value' 1} {} ...
...
{ 'Style', 'text', 'string', 'ITC color limits [max]', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', '' 'tag' 'itcmax'} ...
{ 'Style', 'checkbox', 'string' 'plot ITC phase (set)' 'tag' 'plotphase' } {} ...
...
{ 'Style', 'text', 'string', 'Bootstrap significance level (Ex: 0.01 -> 1%)', 'fontweight', 'bold' } ...
{ 'Style', 'edit', 'string', getkeyval(lastcom,'alpha') 'tag' 'alpha'} ...
{ 'Style', 'checkbox', 'string' 'FDR correct (set)' 'tag' 'fdr' } {} ...
...
{ 'Style', 'text', 'string', 'Optional newtimef() arguments (see Help)', 'fontweight', 'bold', ...
'tooltipstring', 'See newtimef() help via the Help button on the right...' } ...
{ 'Style', 'edit', 'string', '' 'tag' 'options' } ...
{} ...
{ 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotersp','present',0), 'string', ...
'Plot Event Related Spectral Power', 'tooltipstring', ...
'Plot log spectral perturbation image in the upper panel' 'tag' 'plotersp' } ...
{ 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotitc','present',0), 'string', ...
'Plot Inter Trial Coherence', 'tooltipstring', ...
'Plot the inter-trial coherence image in the lower panel' 'tag' 'plotitc' } ...
{ 'Style', 'checkbox', 'value', 0, 'string', ...
'Plot curve at each frequency' 'tag' 'plotcurve' } ...
};
% { 'Style', 'edit', 'string', '''padratio'', 4, ''plotphase'', ''off''' } ...
%{ 'Style', 'text', 'string', '[set] -> Plot ITC phase sign', 'fontweight', 'bold', ...
% 'tooltipstring', ['Plot the sign (+/-) of inter-trial coherence phase' 10 ...
% 'as red (+) or blue (-)'] } ...
% { 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotphase','present',1) } { } ...
[ tmp1 tmp2 strhalt result ] = inputgui( geometry, uilist, 'pophelp(''pop_newtimef'');', ...
fastif(typeproc, 'Plot channel time frequency -- pop_newtimef()', ...
'Plot component time frequency -- pop_newtimef()'));
if length( tmp1 ) == 0 return; end;
if result.fft, result.cycle = '0'; end;
if result.nobase, result.baseline = 'NaN'; end;
num = eval( [ '[' result.chan ']' ] );
tlimits = eval( [ '[' result.tlimits ']' ] );
cycles = eval( [ '[' result.cycle ']' ] );
freqs = eval( [ '[' result.freqs ']' ] );
%result.ncycles == 2 is ignored
% add topoplot
% ------------
options = [];
if isfield(EEG.chanlocs, 'theta') && ~isempty(EEG.chanlocs(num).theta)
if ~isfield(EEG, 'chaninfo'), EEG.chaninfo = []; end;
if typeproc == 1
if isempty(EEG.chanlocs), caption = [ 'Channel ' int2str(num) ]; else caption = EEG.chanlocs(num).labels; end;
options = [options ', ''topovec'', ' int2str(num) ...
', ''elocs'', EEG.chanlocs, ''chaninfo'', EEG.chaninfo, ''caption'', ''' caption '''' ];
else
options = [options ', ''topovec'', EEG.icawinv(:,' int2str(num) ...
'), ''elocs'', EEG.chanlocs, ''chaninfo'', EEG.chaninfo, ''caption'', [''IC ' num2str(num) ''']' ];
end;
end;
if ~isempty( result.baseline ), options = [ options ', ''baseline'',[' result.baseline ']' ]; end;
if ~isempty( result.alpha ), options = [ options ', ''alpha'',' result.alpha ]; end;
if ~isempty( result.options ), options = [ options ',' result.options ]; end;
if ~isempty( result.freqs ), options = [ options ', ''freqs'', [' result.freqs ']' ]; end;
if ~isempty( result.erspmax ), options = [ options ', ''erspmax'', [' result.erspmax ']' ]; end;
if ~isempty( result.itcmax ), options = [ options ', ''itcmax'',' result.itcmax ]; end;
if ~result.plotersp, options = [ options ', ''plotersp'', ''off''' ]; end;
if ~result.plotitc, options = [ options ', ''plotitc'' , ''off''' ]; end;
if result.plotcurve, options = [ options ', ''plottype'', ''curve''' ]; end;
if result.fdr, options = [ options ', ''mcorrect'', ''fdr''' ]; end;
if result.freqscale, options = [ options ', ''freqscale'', ''log''' ]; end;
if ~result.plotphase, options = [ options ', ''plotphase'', ''off''' ]; end;
if ~result.scale, options = [ options ', ''scale'', ''abs''' ]; end;
if result.ntimesout == 1, options = [ options ', ''ntimesout'', 50' ]; end;
if result.ntimesout == 2, options = [ options ', ''ntimesout'', 100' ]; end;
if result.ntimesout == 3, options = [ options ', ''ntimesout'', 150' ]; end;
if result.ntimesout == 5, options = [ options ', ''ntimesout'', 300' ]; end;
if result.ntimesout == 6, options = [ options ', ''ntimesout'', 400' ]; end;
if result.nfreqs == 1, options = [ options ', ''padratio'', 1' ]; end;
if result.nfreqs == 2, options = [ options ', ''padratio'', 2' ]; end;
if result.nfreqs == 3, options = [ options ', ''padratio'', 4' ]; end;
if result.nfreqs == 4, options = [ options ', ''nfreqs'', ' int2str(length(freqs)) ]; end;
if result.basenorm == 2, options = [ options ', ''basenorm'', ''on''' ]; end;
if result.basenorm == 4, options = [ options ', ''basenorm'', ''on''' ]; end;
if result.basenorm >= 3, options = [ options ', ''trialbase'', ''full''' ]; end;
% add title
% ---------
if isempty( findstr( '''title''', result.options))
if ~isempty(EEG.chanlocs) & typeproc
chanlabel = EEG.chanlocs(num).labels;
else
chanlabel = int2str(num);
end;
end;
% compute default winsize
% -----------------------
if EEG.xmin < 0 && isempty(findstr( '''winsize''', result.options)) && isempty( result.freqs )
fprintf('Computing window size in pop_newtimef based on half of the length of the baseline period');
options = [ options ', ''winsize'', ' int2str(-EEG.xmin*EEG.srate) ];
end;
figure; try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end;
else
options = [ ',' vararg2str(varargin) ];
end;
% compute epoch limits
% --------------------
if isempty(tlimits)
tlimits = [EEG.xmin, EEG.xmax]*1000;
end;
pointrange1 = round(max((tlimits(1)/1000-EEG.xmin)*EEG.srate, 1));
pointrange2 = round(min((tlimits(2)/1000-EEG.xmin)*EEG.srate, EEG.pnts));
pointrange = [pointrange1:pointrange2];
% call function sample either on raw data or ICA data
% ---------------------------------------------------
if typeproc == 1
tmpsig = EEG.data(num,pointrange,:);
else
if ~isempty( EEG.icasphere )
if ~isempty(EEG.icaact)
tmpsig = EEG.icaact(num,pointrange,:);
else
tmpsig = (EEG.icaweights(num,:)*EEG.icasphere)*reshape(EEG.data(:,pointrange,:), EEG.nbchan, EEG.trials*length(pointrange));
end;
else
error('You must run ICA first');
end;
end;
tmpsig = reshape( tmpsig, length(num), size(tmpsig,2)*size(tmpsig,3));
% outputs
% -------
outstr = '';
if ~popup
for io = 1:nargout, outstr = [outstr 'varargout{' int2str(io) '},' ]; end;
if ~isempty(outstr), outstr = [ '[' outstr(1:end-1) '] =' ]; end;
end;
% plot the datas and generate output command
% --------------------------------------------
if length( options ) < 2
options = '';
end;
if nargin < 4
varargout{1} = sprintf('figure; pop_newtimef( %s, %d, %d, [%s], [%s] %s);', inputname(1), typeproc, num, ...
int2str(tlimits), num2str(cycles), options);
end;
com = sprintf('%s newtimef( tmpsig(:, :), length(pointrange), [tlimits(1) tlimits(2)], EEG.srate, cycles %s);', outstr, options);
eval(com)
return;
% get contextual help
% -------------------
function txt = context(var, allvars, alltext);
loc = strmatch( var, allvars);
if ~isempty(loc)
txt= alltext{loc(1)};
else
disp([ 'warning: variable ''' var ''' not found']);
txt = '';
end;
|
github
|
lcnbeapp/beapp-master
|
pop_comperp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_comperp.m
| 24,065 |
utf_8
|
0e8f83142764654afb0ecb8f592a7953
|
% pop_comperp() - Compute the grand average ERP waveforms of multiple datasets
% currently loaded into EEGLAB, with optional ERP difference-wave
% plotting and t-tests. Creates a plotting figure.
% Usage:
% >> pop_comperp( ALLEEG, flag ); % pop-up window, interactive mode
% >> [erp1 erp2 erpsub time sig] = pop_comperp( ALLEEG, flag, ...
% datadd, datsub, 'key', 'val', ...);
% Inputs:
% ALLEEG - Array of loaded EEGLAB EEG structure datasets
% flag - [0|1] 0 -> Use ICA components; 1 -> use data channels {default: 1}
% datadd - [integer array] List of ALLEEG dataset indices to average to make
% an ERP grand average and optionally to compare with 'datsub' datasets.
%
% Optional inputs:
% datsub - [integer array] List of ALLEEG dataset indices to average and then
% subtract from the 'datadd' result to make an ERP grand mean difference.
% Together, 'datadd' and 'datsub' may be used to plot and compare grand mean
% responses across subjects or conditions. Both arrays must contain the same
% number of dataset indices and entries must be matched pairwise (Ex:
% 'datadd' indexes condition A datasets from subjects 1:n, and 'datsub',
% condition B datasets from the same subjects 1:n). {default: []}
% 'alpha' - [0 < float < 1] Apply two-tailed t-tests for p < alpha. If 'datsub' is
% not empty, perform t-tests at each latency. If 'datasub' is empty,
% perform two-tailed t-tests against a 0 mean dataset with same variance.
% Significant time regions are highlighted in the plotted data.
% 'chans' - [integer array] Vector of chans. or comps. to use {default: all}
% 'geom' - ['scalp'|'array'] Plot erps in a scalp array (plottopo())
% or as a rectangular array (plotdata()). Note: Only channels
% (see 'chans' above) can be plotted in a 'scalp' array.
% 'tlim' - [min max] Time window (ms) to plot data {default: whole time range}
% 'title' - [string] Plot title {default: none}
% 'ylim' - [min max] y-axis limits {default: auto from data limits}
% 'mode' - ['ave'|'rms'] Plotting mode. Plot either grand average or RMS
% (root mean square) time course(s) {default: 'ave' -> grand average}.
% 'std' - ['on'|'off'|'none'] 'on' -> plot std. devs.; 'none' -> do not
% interact with other options {default:'none'}
%
% Vizualisation options:
% 'addavg' - ['on'|'off'] Plot grand average (or RMS) of 'datadd' datasets
% {default: 'on' if 'datsub' empty, otherwise 'off'}
% 'subavg' - ['on'|'off'] Plot grand average (or RMS) of 'datsub' datasets
% {default:'off'}
% 'diffavg' - ['on'|'off'] Plot grand average (or RMS) difference
% 'addall' - ['on'|'off'] Plot the ERPs for all 'dataadd' datasets only {default:'off'}
% 'suball' - ['on'|'off'] Plot the ERPs for all 'datasub datasets only {default:'off'}
% 'diffall' - ['on'|'off'] Plot all the 'datadd'-'datsub' ERP differences {default:'off'}
% 'addstd' - ['on'|'off'] Plot std. dev. for 'datadd' datasets only
% {default: 'on' if 'datsub' empty, otherwise 'off'}
% 'substd' - ['on'|'off'] Plot std. dev. of 'datsub' datasets only {default:'off'}
% 'diffstd' - ['on'|'off'] Plot std. dev. of 'datadd'-'datsub' differences {default:'on'}
% 'diffonly' - ['on'|'off'|'none'] 'on' -> plot difference only; 'none' -> do not affect
% other options {default:'none'}
% 'allerps' - ['on'|'off'|'none'] 'on' -> show ERPs for all conditions;
% 'none' -> do not affect other options {default:'none'}
% 'tplotopt' - [cell array] Pass 'key', val' plotting options to plottopo()
%
% Output:
% erp1 - Grand average (or rms) of the 'datadd' datasets
% erp2 - Grand average (or rms) of the 'datsub' datasets
% erpsub - Grand average (or rms) 'datadd' minus 'datsub' difference
% times - Vector of epoch time indices
% sig - T-test significance values (chans,times).
%
% Author: Arnaud Delorme, CNL / Salk Institute, 15 March 2003
%
% Note: t-test functions were adapted for matrix preprocessing from C functions
% by Press et al. See the description in the pttest() code below
% for more information.
%
% See also: eeglab(), plottopo()
% Copyright (C) 15 March 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [erp1, erp2, erpsub, times, pvalues] = pop_comperp( ALLEEG, flag, datadd, datsub, varargin);
erp1 = '';
if nargin < 1
help pop_comperp;
return;
end;
if isempty(ALLEEG)
error('pop_comperp: cannot process empty sets of data');
end;
if nargin < 2
flag = 1;
end;
allcolors = { 'b' 'r' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' ...
'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm'};
erp1 = '';
if nargin < 3
gtmp = [1.1 0.8 .21 .21 .21 0.1]; gtmp2 = [1.48 1.03 1];
uigeom = { [2.6 0.95] gtmp gtmp gtmp [1] gtmp2 gtmp2 [1.48 0.25 1.75] gtmp2 gtmp2 };
commulcomp= ['if get(gcbo, ''value''),' ...
' set(findobj(gcbf, ''tag'', ''multcomp''), ''enable'', ''on'');' ...
'else,' ...
' set(findobj(gcbf, ''tag'', ''multcomp''), ''enable'', ''off'');' ...
'end;'];
uilist = { { } ...
{ 'style' 'text' 'string' 'avg. std. all ERPs' } ...
{ 'style' 'text' 'string' 'Datasets to average (ex: 1 3 4):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'checkbox' 'string' '' 'value' 1 } ...
{ 'style' 'checkbox' 'string' '' } ...
{ 'style' 'checkbox' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Datasets to average and subtract (ex: 5 6 7):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'checkbox' 'string' '' 'value' 1 } ...
{ 'style' 'checkbox' 'string' '' } ...
{ 'style' 'checkbox' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Plot difference' } { } ...
{ 'style' 'checkbox' 'string' '' 'value' 1 } ...
{ 'style' 'checkbox' 'string' '' } ...
{ 'style' 'checkbox' 'string' '' } { } ...
{ } ...
{ 'style' 'text' 'string' fastif(flag, 'Channels subset ([]=all):', ...
'Components subset ([]=all):') } ...
{ 'style' 'edit' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Highlight significant regions (.01 -> p=.01)' } ...
{ 'style' 'edit' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Use RMS instead of average (check):' } { 'style' 'checkbox' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Low pass (Hz) (for display only)' } ...
{ 'style' 'edit' 'string' '' } { } ...
{ 'style' 'text' 'string' 'Plottopo options (''key'', ''val''):' } ...
{ 'style' 'edit' 'string' '''ydir'', -1' } ...
{ 'style' 'pushbutton' 'string' 'Help' 'callback', 'pophelp(''plottopo'')' } ...
};
% remove geometry textbox for ICA components
result = inputgui( uigeom, uilist, 'pophelp(''pop_comperp'')', 'ERP grand average/RMS - pop_comperp()');
if length(result) == 0, return; end;
%decode parameters list
options = {};
datadd = eval( [ '[' result{1} ']' ]);
if result{2}, options = { options{:} 'addavg' 'on' }; else, options = { options{:} 'addavg' 'off' }; end;
if result{3}, options = { options{:} 'addstd' 'on' }; else, options = { options{:} 'addstd' 'off' }; end;
if result{4}, options = { options{:} 'addall' 'on' }; end;
datsub = eval( [ '[' result{5} ']' ]);
if result{6}, options = { options{:} 'subavg' 'on' }; end;
if result{7}, options = { options{:} 'substd' 'on' }; end;
if result{8}, options = { options{:} 'suball' 'on' }; end;
if result{9}, options = { options{:} 'diffavg' 'on' }; else, options = { options{:} 'diffavg' 'off' }; end;
if result{10}, options = { options{:} 'diffstd' 'on' }; else, options = { options{:} 'diffstd' 'off' }; end;
if result{11}, options = { options{:} 'diffall' 'on' }; end;
if result{12}, options = { options{:} 'chans' eval( [ '[' result{12} ']' ]) }; end;
if ~isempty(result{13}), options = { options{:} 'alpha' str2num(result{13}) }; end;
if result{14}, options = { options{:} 'mode' 'rms' }; end;
if ~isempty(result{15}), options = { options{:} 'lowpass' str2num(result{15}) }; end;
if ~isempty(result{16}), options = { options{:} 'tplotopt' eval([ '{ ' result{16} ' }' ]) }; end;
else
options = varargin;
end;
if nargin == 3
datsub = []; % default
end
% decode inputs
% -------------
if isempty(datadd), error('First edit box (datasets to add) can not be empty'); end;
g = finputcheck( options, ...
{ 'chans' 'integer' [] [1:ALLEEG(datadd(1)).nbchan];
'title' 'string' [] '';
'alpha' 'float' [] [];
'geom' 'string' {'scalp';'array'} fastif(flag, 'scalp', 'array');
'addstd' 'string' {'on';'off'} fastif(isempty(datsub), 'on', 'off');
'substd' 'string' {'on';'off'} 'off';
'diffstd' 'string' {'on';'off'} 'on';
'addavg' 'string' {'on';'off'} fastif(isempty(datsub), 'on', 'off');
'subavg' 'string' {'on';'off'} 'off';
'diffavg' 'string' {'on';'off'} 'on';
'addall' 'string' {'on';'off'} 'off';
'suball' 'string' {'on';'off'} 'off';
'diffall' 'string' {'on';'off'} 'off';
'std' 'string' {'on';'off';'none'} 'none';
'diffonly' 'string' {'on';'off';'none'} 'none';
'allerps' 'string' {'on';'off';'none'} 'none';
'lowpass' 'float' [0 Inf] [];
'tlim' 'float' [] [];
'ylim' 'float' [] [];
'tplotopt' 'cell' [] {};
'mode' 'string' {'ave';'rms'} 'ave';
'multcmp' 'integer' [0 Inf] [] });
if isstr(g), error(g); end;
if length(datadd) == 1
disp('Cannot perform statistics using only 1 dataset');
g.alpha = [];
end;
h = figure; axcopy
try, icadefs; set(h, 'color', BACKCOLOR); axis off; catch, end;
% backward compatibility of param
% -------------------------------
if ~strcmpi(g.diffonly, 'none')
if strcmpi(g.diffonly, 'off'), g.addavg = 'on'; g.subavg = 'on'; end;
end;
if ~strcmpi(g.allerps, 'none')
if isempty(datsub)
g.addall = g.allerps;
else g.diffall = g.allerps;
end;
end;
if ~strcmpi(g.std, 'none')
if isempty(datsub)
g.addstd = g.std;
else g.diffstd = g.std;
end;
end;
% check consistency
% -----------------
if length(datsub) > 0 & length(datadd) ~= length(datsub)
error('The number of component to subtract must be the same as the number of components to add');
end;
% if only 2 dataset entered, toggle average to single trial
% ---------------------------------------------------------
if length(datadd) == 1 &strcmpi(g.addavg, 'on')
g.addavg = 'off';
g.addall = 'on';
end;
if length(datsub) == 1 &strcmpi(g.subavg, 'on')
g.subavg = 'off';
g.suball = 'on';
end;
if length(datsub) == 1 & length(datadd) == 1 &strcmpi(g.diffavg, 'on')
g.diffavg = 'off';
g.diffall = 'on';
end;
regions = {};
pnts = ALLEEG(datadd(1)).pnts;
srate = ALLEEG(datadd(1)).srate;
xmin = ALLEEG(datadd(1)).xmin;
xmax = ALLEEG(datadd(1)).xmax;
nbchan = ALLEEG(datadd(1)).nbchan;
chanlocs = ALLEEG(datadd(1)).chanlocs;
unionIndices = union_bc(datadd, datsub);
for index = unionIndices(:)'
if ALLEEG(index).pnts ~= pnts, error(['Dataset ' int2str(index) ' does not have the same number of points as others']); end;
if ALLEEG(index).xmin ~= xmin, error(['Dataset ' int2str(index) ' does not have the same xmin as others']); end;
if ALLEEG(index).xmax ~= xmax, error(['Dataset ' int2str(index) ' does not have the same xmax as others']); end;
if ALLEEG(index).nbchan ~= nbchan, error(['Dataset ' int2str(index) ' does not have the same number of channels as others']); end;
end;
if ~isempty(g.alpha) & length(datadd) == 1
error([ 'T-tests require more than one ''' datadd ''' dataset' ]);
end
% compute ERPs for add
% --------------------
for index = 1:length(datadd)
TMPEEG = eeg_checkset(ALLEEG(datadd(index)),'loaddata');
if flag == 1, erp1ind(:,:,index) = mean(TMPEEG.data,3);
else erp1ind(:,:,index) = mean(eeg_getdatact(TMPEEG, 'component', [1:size(TMPEEG.icaweights,1)]),3);
end;
addnames{index} = [ '#' int2str(datadd(index)) ' ' TMPEEG.setname ' (n=' int2str(TMPEEG.trials) ')' ];
clear TMPEEG;
end;
% optional: subtract
% ------------------
colors = {}; % color aspect for curves
allcolors = { 'b' 'r' 'g' 'c' 'm' 'y' [0 0.5 0] [0.5 0 0] [0 0 0.5] [0.5 0.5 0] [0 0.5 0.5] [0.5 0 0.5] [0.5 0.5 0.5] };
allcolors = { allcolors{:} allcolors{:} allcolors{:} allcolors{:} allcolors{:} allcolors{:} };
allcolors = { allcolors{:} allcolors{:} allcolors{:} allcolors{:} allcolors{:} allcolors{:} };
if length(datsub) > 0 % dataset to subtract
% compute ERPs for sub
% --------------------
for index = 1:length(datsub)
TMPEEG = eeg_checkset(ALLEEG(datsub(index)),'loaddata');
if flag == 1, erp2ind(:,:,index) = mean(TMPEEG.data,3);
else erp2ind(:,:,index) = mean(eeg_getdatact(TMPEEG, 'component', [1:size(TMPEEG.icaweights,1)]),3);
end;
subnames{index} = [ '#' int2str(datsub(index)) ' ' TMPEEG.setname '(n=' int2str(TMPEEG.trials) ')' ];
clear TMPEEG
end;
l1 = size(erp1ind,3);
l2 = size(erp2ind,3);
allcolors1 = allcolors(3:l1+2);
allcolors2 = allcolors(l1+3:l1+l2+3);
allcolors3 = allcolors(l1+l2+3:end);
[erps1, erpstd1, colors1, colstd1, legend1] = preparedata( erp1ind , g.addavg , g.addstd , g.addall , g.mode, 'Add ' , addnames, 'b', allcolors1 );
[erps2, erpstd2, colors2, colstd2, legend2] = preparedata( erp2ind , g.subavg , g.substd , g.suball , g.mode, 'Sub ' , subnames, 'r', allcolors2 );
[erps3, erpstd3, colors3, colstd3, legend3] = preparedata( erp1ind-erp2ind, g.diffavg, g.diffstd, g.diffall, g.mode, 'Diff ', ...
{ addnames subnames }, 'k', allcolors3 );
% handle special case of std
% --------------------------
erptoplot = [ erps1 erps2 erps3 erpstd1 erpstd2 erpstd3 ];
colors = { colors1{:} colors2{:} colors3{:} colstd1{:} colstd2{:} colstd3{:}};
legend = { legend1{:} legend2{:} legend3{:} };
% highlight significant regions
% -----------------------------
if ~isempty(g.alpha)
pvalues = pttest(erp1ind(g.chans,:,:), erp2ind(g.chans,:,:), 3);
regions = p2regions(pvalues, g.alpha, [xmin xmax]*1000);
else
pvalues= [];
end;
else
[erptoplot, erpstd, colors, colstd, legend] = preparedata( erp1ind, g.addavg, g.addstd, g.addall, g.mode, '', addnames, 'k', allcolors);
erptoplot = [ erptoplot erpstd ];
colors = { colors{:} colstd{:} };
% highlight significant regions
% -----------------------------
if ~isempty(g.alpha)
pvalues = ttest(erp1ind, 0, 3);
regions = p2regions(pvalues, g.alpha, [xmin xmax]*1000);
else
pvalues= [];
end;
end;
% lowpass data
% ------------
if ~isempty(g.lowpass)
if exist('filtfilt') == 2
erptoplot = eegfilt(erptoplot, srate, 0, g.lowpass);
else
erptoplot = eegfiltfft(erptoplot, srate, 0, g.lowpass);
end;
end;
if strcmpi(g.geom, 'array') | flag == 0, chanlocs = []; end;
if ~isfield(chanlocs, 'theta'), chanlocs = []; end;
% select time range
% -----------------
if ~isempty(g.tlim)
pointrange = round(eeg_lat2point(g.tlim/1000, [1 1], srate, [xmin xmax]));
g.tlim = eeg_point2lat(pointrange, [1 1], srate, [xmin xmax]);
erptoplot = reshape(erptoplot, size(erptoplot,1), pnts, size(erptoplot,2)/pnts);
erptoplot = erptoplot(:,[pointrange(1):pointrange(2)],:);
pnts = size(erptoplot,2);
erptoplot = reshape(erptoplot, size(erptoplot,1), pnts*size(erptoplot,3));
xmin = g.tlim(1);
xmax = g.tlim(2);
end;
% plot data
% ---------
set(0, 'CurrentFigure', h);
plottopo( erptoplot, 'chanlocs', chanlocs, 'frames', pnts, ...
'limits', [xmin xmax 0 0]*1000, 'title', g.title, 'colors', colors, ...
'chans', g.chans, 'legend', legend, 'regions', regions, 'ylim', g.ylim, g.tplotopt{:});
% outputs
% -------
times = linspace(xmin, xmax, pnts);
erp1 = mean(erp1ind,3);
if length(datsub) > 0 % dataset to subtract
erp2 = mean(erp2ind,3);
erpsub = erp1-erp2;
else
erp2 = [];
erpsub = [];
end;
if nargin < 3 & nargout == 1
erp1 = sprintf('pop_comperp( %s, %d, %s);', inputname(1), ...
flag, vararg2str({ datadd datsub options{:} }) );
end;
return;
% convert significance values to alpha
% ------------------------------------
function regions = p2regions( pvalues, alpha, limits);
for index = 1:size(pvalues,1)
signif = diff([1 pvalues(index,:) 1] < alpha);
pos = find([signif] > 0);
pos = pos/length(pvalues)*(limits(2) - limits(1))+limits(1);
neg = find([signif(2:end)] < 0);
neg = neg/length(pvalues)*(limits(2) - limits(1))+limits(1);
if length(pos) ~= length(neg), signif, pos, neg, error('Region error'); end;
regions{index} = [neg;pos];
end;
% process data
% ------------
function [erptoplot, erpstd, colors, colstd, legend] = preparedata( erpind, plotavg, plotstd, plotall, mode, tag, dataset, coloravg, allcolors);
colors = {};
legend = {};
erptoplot = [];
erpstd = [];
colstd = {};
% plot individual differences
% ---------------------------
if strcmpi(plotall, 'on')
erptoplot = [ erptoplot erpind(:,:) ];
for index=1:size(erpind,3)
if iscell(dataset)
if strcmpi(tag, 'Diff ')
legend = { legend{:} [ dataset{1}{index} ' - ' dataset{2}{index} ] };
else
legend = { legend{:} dataset{index} };
end;
else
legend = { legend{:} [ 'Dataset ' int2str(dataset(index)) ] };
end;
colors = { colors{:} allcolors{index} };
end;
end;
% plot average
% ------------
if strcmpi( plotavg, 'on')
if strcmpi(mode, 'ave')
granderp = mean(erpind,3);
legend = { legend{:} [ tag 'Average' ] };
else granderp = sqrt(mean(erpind.^2,3));
legend = { legend{:} [ tag 'RMS' ] };
end;
colors = { colors{:} {coloravg;'linewidth';2 }};
erptoplot = [ erptoplot granderp];
end;
% plot standard deviation
% -----------------------
if strcmpi(plotstd, 'on')
if strcmpi(plotavg, 'on')
std1 = std(erpind, [], 3);
erptoplot = [ erptoplot granderp+std1 ];
erpstd = granderp-std1;
legend = { legend{:} [ tag 'Standard dev.' ] };
colors = { colors{:} { coloravg;'linestyle';':' } };
colstd = { { coloravg 'linestyle' ':' } };
else
disp('Warning: cannot show standard deviation without showing average');
end;
end;
% ------------------------------------------------------------------
function [p, t, df] = pttest(d1, d2, dim)
%PTTEST Student's paired t-test.
% PTTEST(X1, X2) gives the probability that Student's t
% calculated on paired data X1 and X2 is higher than
% observed, i.e. the "significance" level. This is used
% to test whether two paired samples have significantly
% different means.
% [P, T] = PTTEST(X1, X2) gives this probability P and the
% value of Student's t in T. The smaller P is, the more
% significant the difference between the means.
% E.g. if P = 0.05 or 0.01, it is very likely that the
% two sets are sampled from distributions with different
% means.
%
% This works for PAIRED SAMPLES, i.e. when elements of X1
% and X2 correspond one-on-one somehow.
% E.g. residuals of two models on the same data.
% Ref: Press et al. 1992. Numerical recipes in C. 14.2, Cambridge.
if size(d1,dim) ~= size(d2, dim)
error('PTTEST: paired samples must have the same number of elements !')
end
if size(d1,dim) == 1
close; error('Cannot compute paired t-test for a single ERP difference')
end;
a1 = mean(d1, dim);
a2 = mean(d2, dim);
v1 = std(d1, [], dim).^2;
v2 = std(d2, [], dim).^2;
n1 = size(d1,dim);
df = n1 - 1;
disp(['Computing t-values, df:' int2str(df) ]);
d1 = d1-repmat(a1, [ones(1,dim-1) size(d1,3)]);
d2 = d2-repmat(a2, [ones(1,dim-1) size(d2,3)]);
%cab = (x1 - a1)' * (x2 - a2) / (n1 - 1);
cab = sum(d1.*d2,3)/(n1-1);
% use abs to avoid numerical errors for very similar data
% for which v1+v2-2cab may be close to 0.
t = (a1 - a2) ./ sqrt(abs(v1 + v2 - 2 * cab) / n1) ;
p = betainc( df ./ (df + t.*t), df/2, 0.5) ;
% ------------------------------------------------------------------
function [p, t] = ttest(d1, d2, dim)
%TTEST Student's t-test for equal variances.
% TTEST(X1, X2) gives the probability that Student's t
% calculated on data X1 and X2, sampled from distributions
% with the same variance, is higher than observed, i.e.
% the "significance" level. This is used to test whether
% two sample have significantly different means.
% [P, T] = TTEST(X1, X2) gives this probability P and the
% value of Student's t in T. The smaller P is, the more
% significant the difference between the means.
% E.g. if P = 0.05 or 0.01, it is very likely that the
% two sets are sampled from distributions with different
% means.
%
% This works if the samples are drawn from distributions with
% the SAME VARIANCE. Otherwise, use UTTEST.
%
%See also: UTTEST, PTTEST.
if size(d1,dim) == 1
close; error('Cannot compute t-test for a single ERP')
end;
a1 = mean(d1, dim);
v1 = std(d1, [], dim).^2;
n1 = size(d1,dim);
if length(d2) == 1 & d2 == 0
a2 = 0;
n2 = n1;
df = n1 + n2 - 2;
pvar = (2*(n1 - 1) * v1) / df ;
else
a2 = mean(d2, dim);
v2 = std(d2, [], dim).^2;
n2 = size(d2,dim);
df = n1 + n2 - 2;
pvar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df ;
end;
disp(['Computing t-values, df:' int2str(df) ]);
t = (a1 - a2) ./ sqrt( pvar * (1/n1 + 1/n2)) ;
p = betainc( df ./ (df + t.*t), df/2, 0.5) ;
|
github
|
lcnbeapp/beapp-master
|
pop_jointprob.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/pop_jointprob.m
| 11,856 |
utf_8
|
2e52771f3ef70d7a913563e5c3d2a0d9
|
% pop_jointprob() - reject artifacts in an EEG dataset using joint
% probability of the recorded electrode or component
% activities observed at each time point. e.g., Observing
% large absoluate values at most electrodes or components
% is improbable and may well mark the presence of artifact.
% Usage:
% >> pop_jointprob( INEEG, typerej) % pop-up interative window mode
% >> [OUTEEG, locthresh, globthresh, nrej] = ...
% = pop_jointprob( INEEG, typerej, elec_comp, ...
% locthresh, globthresh, superpose, reject, vistype);
%
% Graphic interface:
% "Electrode|Component" - [edit box] electrodes or components indices to take
% into consideration for rejection. Same as the 'elec_comp'
% parameter in the command line call (see below).
% "Single-channel limit|Single-component limit" - [edit box] activity
% probability limit(s) (in std. dev.) Sets the 'locthresh'
% command line parameter. If more than one, defined individual
% electrode|channel limits. If fewer values than the number
% of electrodes|components specified above, the last input
% value is used for all remaining electrodes|components.
% "All-channel limit|All-component limit" - [edit box] activity probability
% limit(s) (in std. dev.) for all channels (grouped).
% Sets the 'globthresh' command line parameter.
% "visualization type" - [popup menu] can be either 'REJECTRIALS'|'EEGPLOT'.
% This correspond to the command line input option 'vistype'
% "Display with previous rejection(s)" - [checkbox] This checkbox set the
% command line input option 'superpose'.
% "Reject marked trial(s)" - [checkbox] This checkbox set the command
% line input option 'reject'.
% Inputs:
% INEEG - input dataset
% typerej - [1|0] data to reject on (0 = component activations;
% 1 = electrode data). {Default: 1 = electrode data}.
% elec_comp - [n1 n2 ...] electrode|component number(s) to take into
% consideration for rejection
% locthresh - activity probability limit(s) (in std. dev.) See "Single-
% channel limit(s)" above.
% globthresh - global limit(s) (all activities grouped) (in std. dev.)
% superpose - [0|1] 0 = Do not superpose rejection marks on previously
% marks stored in the dataset: 1 = Show both current and
% previous marks using different colors. {Default: 0}.
% reject - 0 = do not reject marked trials (but store the marks:
% 1 = reject marked trials {Default: 1}.
% vistype - Visualization type. [0] calls rejstatepoch() and [1] calls
% eegplot() default is [0].When added to the command line
% call it will not display the plots if the option 'plotflag'
% is not set.
% topcommand - [] Deprecated argument , keep to ensure backward compatibility
% plotflag - [1,0] [1]Turns plots 'on' from command line, [0] off.
% (Note for developers: When called from command line
% it will make 'calldisp = plotflag') {Default: 0}
%
% Outputs:
% OUTEEG - output dataset with updated joint probability array
% locthresh - electrodes probability of activity thresholds in terms
% of standard-dev.
% globthresh - global threshold (where all electrode activity are
% regrouped).
% nrej - number of rejected sweeps
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: jointprob(), rejstatepoch(), eegplot(), eeglab(), pop_rejepoch()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 01-25-02 reformated help & license -ad
% 03-07-02 added srate argument to eegplot call -ad
% 03-08-02 add eeglab options -ad
function [EEG, locthresh, globthresh, nrej, com] = pop_jointprob( EEG, icacomp, elecrange, ...
locthresh, globthresh, superpose, reject, vistype, topcommand,plotflag);
nrej = []; com = '';
if nargin < 1
help pop_jointprob;
return;
end;
if nargin < 2
icacomp = 1;
end;
if icacomp == 0
if isempty( EEG.icasphere )
ButtonName=questdlg( 'Do you want to run ICA now ?', ...
'Confirmation', 'NO', 'YES', 'YES');
switch ButtonName,
case 'NO', disp('Operation cancelled'); return;
case 'YES', [ EEG com ] = pop_runica(EEG);
end % switch
end;
end;
if exist('reject') ~= 1
reject = 1;
end;
if nargin < 3
% which set to save
% -----------------
promptstr = { [ fastif(icacomp, 'Electrode', 'Component') ' (indices; Ex: 2 6:8 10):' ], ...
[ fastif(icacomp, 'Single-channel', 'Single-component') ' limit(s) (std. dev(s).: Ex: 2 2 2.5):'], ...
[ fastif(icacomp, 'All-channel', 'All-component') ' limit(s) (std. dev(s).: Ex: 2 2.1 2):'], ...
'Visualization type',...
'Display previous rejection marks', ...
'Reject marked trial(s)'};
inistr = { fastif(icacomp, ['1:' int2str(EEG.nbchan)], ['1:' int2str(size(EEG.icaweights,1))])...
fastif(icacomp, '3', '5'), ...
fastif(icacomp, '3', '5'), ...
'',...
'1', ...
'0'};
vismodelist= {'REJECTTRIALS','EEGPLOT'};
g1 = [1 0.1 0.75];
g2 = [1 0.26 0.9];
g3 = [1 0.22 0.85];
geometry = {g1 g1 g1 g2 [1] g3 g3};
uilist = {...
{ 'Style', 'text', 'string', promptstr{1}} {} { 'Style','edit' , 'string' ,inistr{1} 'tag' 'cpnum'}...
{ 'Style', 'text', 'string', promptstr{2}} {} { 'Style','edit' , 'string' ,inistr{2} 'tag' 'singlelimit'}...
{ 'Style', 'text', 'string', promptstr{3}} {} { 'Style','edit' , 'string' ,inistr{3} 'tag' 'alllimit'}...
{ 'Style', 'text', 'string', promptstr{4}} {} { 'Style','popupmenu' , 'string' , vismodelist 'tag' 'specmethod' }...
{}...
{ 'Style', 'text', 'string', promptstr{5}} {} { 'Style','checkbox' ,'string' , ' ' 'value' str2double(inistr{5}) 'tag','rejmarks' }...
{ 'Style', 'text', 'string', promptstr{6}} {} { 'Style','checkbox' ,'string' ,' ' 'value' str2double(inistr{6}) 'tag' 'rejtrials'} ...
};
figname = fastif( ~icacomp, 'Reject. improbable comp. -- pop_jointprob()', 'Reject improbable data -- pop_jointprob()');
result = inputgui( geometry,uilist,'pophelp(''pop_jointprob'');', figname);
size_result = size( result );
if size_result(1) == 0, locthresh = []; globthresh = []; return; end;
elecrange = result{1};
locthresh = result{2};
globthresh = result{3};
switch result{4}, case 1, vistype=0; otherwise, vistype=1; end;
superpose = result{5};
reject = result{6};
end;
if ~exist('vistype' ,'var'), vistype = 0; end;
if ~exist('reject' ,'var'), reject = 0; end;
if ~exist('superpose','var'), superpose = 1; end;
if isstr(elecrange) % convert arguments if they are in text format
calldisp = 1;
elecrange = eval( [ '[' elecrange ']' ] );
locthresh = eval( [ '[' locthresh ']' ] );
globthresh = eval( [ '[' globthresh ']' ] );
else
calldisp = 0;
end;
if exist('plotflag','var') && ismember(plotflag,[1,0])
calldisp = plotflag;
else
plotflag = 0;
end
if isempty(elecrange)
error('No electrode selectionned');
end;
% compute the joint probability
% -----------------------------
if icacomp == 1
fprintf('Computing joint probability for channels...\n');
tmpdata = eeg_getdatact(EEG);
if isempty(EEG.stats.jpE)
[ EEG.stats.jpE rejE ] = jointprob( tmpdata, locthresh, EEG.stats.jpE, 1);
end;
[ tmp rejEtmp ] = jointprob( tmpdata(elecrange,:,:), locthresh, EEG.stats.jpE(elecrange,:), 1);
rejE = zeros(EEG.nbchan, size(rejEtmp,2));
rejE(elecrange,:) = rejEtmp;
fprintf('Computing all-channel probability...\n');
tmpdata2 = permute(tmpdata, [3 1 2]);
tmpdata2 = reshape(tmpdata2, size(tmpdata2,1), size(tmpdata2,2)*size(tmpdata2,3));
[ EEG.stats.jp rej ] = jointprob( tmpdata2, globthresh, EEG.stats.jp, 1);
clear tmpdata2;
else
tmpdata = eeg_getica(EEG);
fprintf('Computing joint probability for components...\n');
if isempty(EEG.stats.icajpE)
[ EEG.stats.icajpE rejE ] = jointprob( tmpdata, locthresh, EEG.stats.icajpE, 1);
end;
[ tmp rejEtmp ] = jointprob( tmpdata(elecrange,:), locthresh, EEG.stats.icajpE(elecrange,:), 1);
rejE = zeros(size(tmpdata,1), size(rejEtmp,2));
rejE(elecrange,:) = rejEtmp;
fprintf('Computing global joint probability...\n');
tmpdata2 = permute(tmpdata, [3 1 2]);
tmpdata2 = reshape(tmpdata2, size(tmpdata2,1), size(tmpdata2,2)*size(tmpdata2,3));
[ EEG.stats.icajp rej] = jointprob( tmpdata2, globthresh, EEG.stats.icajp, 1);
clear tmpdata2;
end;
rej = rej' | max(rejE, [], 1);
fprintf('%d/%d trials marked for rejection\n', sum(rej), EEG.trials);
if calldisp
if vistype == 1 % EEGPLOT -------------------------
if icacomp == 1 macrorej = 'EEG.reject.rejjp';
macrorejE = 'EEG.reject.rejjpE';
else macrorej = 'EEG.reject.icarejjp';
macrorejE = 'EEG.reject.icarejjpE';
end;
colrej = EEG.reject.rejjpcol;
eeg_rejmacro; % script macro for generating command and old rejection arrays
if icacomp == 1
eegplot( tmpdata(elecrange,:,:), 'srate', ...
EEG.srate, 'limits', [EEG.xmin EEG.xmax]*1000 , 'command', command, eegplotoptions{:});
else
eegplot( tmpdata(elecrange,:,:), 'srate', ...
EEG.srate, 'limits', [EEG.xmin EEG.xmax]*1000 , 'command', command, eegplotoptions{:});
end;
else % REJECTRIALS -------------------------
if icacomp == 1
[ rej, rejE, n, locthresh, globthresh] = ...
rejstatepoch( tmpdata(elecrange,:,:), EEG.stats.jpE(elecrange,:), 'global', 'on', 'rejglob', EEG.stats.jp, ...
'threshold', locthresh, 'thresholdg', globthresh, 'normalize', 'off' );
else
[ rej, rejE, n, locthresh, globthresh] = ...
rejstatepoch( tmpdata(elecrange,:,:), EEG.stats.icajpE(elecrange,:), 'global', 'on', 'rejglob', EEG.stats.icajp, ...
'threshold', locthresh, 'thresholdg', globthresh, 'normalize', 'off' );
end;
nrej = n;
end;
else
% compute rejection locally
rejtmp = max(rejE(elecrange,:),[],1);
rej = rejtmp | rej;
nrej = sum(rej);
fprintf('%d trials marked for rejection\n', nrej);
end;
if ~isempty(rej)
if icacomp == 1
EEG.reject.rejjp = rej;
EEG.reject.rejjpE = rejE;
else
EEG.reject.icarejjp = rej;
EEG.reject.icarejjpE = rejE;
end;
if reject
EEG = pop_rejepoch(EEG, rej, 0);
end;
end;
nrej = sum(rej);
com = [ com sprintf('%s = pop_jointprob(%s,%s);', inputname(1), ...
inputname(1), vararg2str({icacomp,elecrange,locthresh,globthresh,superpose,reject, vistype, [],plotflag})) ];
if nargin < 3 & nargout == 2
locthresh = com;
end;
return;
|
github
|
lcnbeapp/beapp-master
|
eeg_lat2point.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/eeg_lat2point.m
| 4,019 |
utf_8
|
fc612a716877495d005080fab259effb
|
% eeg_lat2point() - convert latencies in time units relative to the
% time locking event of an eeglab() data epoch to
% latencies in data points (assuming concatenated epochs).
% Usage:
% >> [newlat] = eeg_lat2point( lat_array, epoch_array,...
% srate, timelimits, timeunit);
% >> [newlat] = eeg_lat2point( lat_array, epoch_array,...
% srate, timelimits, '','outrange',1);
% Inputs:
% lat_array - latency array in 'timeunit' units (see below)
% epoch_array - epoch number for each latency
% srate - data sampling rate in Hz
% timelimits - [min max] epoch timelimits in 'timeunit' units (see below)
% timeunit - time unit relative to seconds. Default is 1 = seconds.
%
% Optional inputs:
% outrange - [1/0] Replace the points out of the range with the value of
% the maximun point in the valid range or raise an error.
% Default [1] : Replace point.
%
% Outputs:
% newlat - converted latency values in points assuming concatenated
% data epochs (see eeglab() event structure)
% flag - 1 if any point out of range was replaced.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2 Mai 2002
%
% See also: eeg_point2lat(), eeglab()
% Copyright (C) 2 Mai 2002 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [newlat,flag] = eeg_lat2point( lat_array, epoch_array, srate, timewin, timeunit, varargin);
% -------------------------------------------------------------------------
try
options = varargin;
if ~isempty( varargin ),
for i = 1:2:numel(options)
g.(options{i}) = options{i+1};
end
else g= []; end;
catch
error('std_checkdatasession() error: calling convention {''key'', value, ... } error');
end;
try, g.outrange; catch, g.outrange = 1; end; %
flag = 0;
% -------------------------------------------------------------------------
if nargin <4
help eeg_lat2point;
return;
end;
if nargin <5 | isempty(timeunit)
timeunit = 1;
end;
if length(lat_array) ~= length(epoch_array)
if length(epoch_array)~= 1
disp('eeg_lat2point: latency and epochs must have the same length'); return;
else
epoch_array = ones(1,length(lat_array))*epoch_array;
end;
end;
if length(timewin) ~= 2
disp('eeg_lat2point: timelimits must have length 2'); return;
end;
if iscell(epoch_array)
epoch_array = [ epoch_array{:} ];
end;
if iscell(lat_array)
lat_array = [ lat_array{:} ];
end
timewin = timewin*timeunit;
pnts = (timewin(2)-timewin(1))*srate+1;
newlat = (lat_array*timeunit-timewin(1))*srate+1 + (epoch_array-1)*pnts;
% Detecting points out of range (RMC)
% Note: This is neccesary since the double precision multiplication could lead to the
% shifting in one sample out of the valid range
if and(~isempty(newlat),~isempty(epoch_array)) && max(newlat(:)) > max((epoch_array)*pnts)
if g.outrange == 1
IndxOut = find(newlat(:) > max((epoch_array)*pnts));
newlat(IndxOut) = max((epoch_array)*pnts);
flag = 1;
warning('eeg_lat2point(): Points out of range detected. Points replaced with maximum value');
elseif g.outrange == 0
error('Error in eeg_lat2point(): Points out of range detected');
end
end
|
github
|
lcnbeapp/beapp-master
|
eeg_addnewevents.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/popfunc/eeg_addnewevents.m
| 7,648 |
utf_8
|
ffc9194217c3e26d7b32be5361c7163b
|
% eeg_addnewevents() Add new events to EEG structure. Both EEG.event and
% EEG.urevent are updated.
%
% Usage:
% >> EEG = eeg_addnewevents(EEG, latencies, types, fieldNames, fieldValues);
%
% Inputs:
% EEG - input dataset
% latencies - cell containing numerical arrays for latencies of new
% events, each array corresponds to a different event type.
% type - cell array containing name of event types.
%
% Optional Inputs
% fieldNames - cell array containing names of fields to be added to event structure.
% fieldValues - A cell containing arrays for field values corresponding to fieldNames.
% Number of values for each field should be equal to the total number of
% latencies (new events) added to dataset.
% Outputs:
% EEG - EEG dataset with updated event and urevent fields
%
% Example:
% EEG = eeg_addnewevents(EEG, {[100 200] [300 400 500]}, {'type1' 'type2'}, {'field1' 'field2'}, {[1 2 3 4 5] [6 7 8 9]});
%
% Author: Nima Bigdely Shamlo, SCCN/INC/UCSD, 2008
function EEG = eeg_addnewevents(EEG, eventLatencyArrays, types, fieldNames, fieldValues);
if ~isfield(EEG, 'event')
EEG.event = [];
EEG.urevent = [];
EEG.event(1).type = 'dummy';
EEG.event(1).latency = 1;
EEG.event(1).duration = 0;
EEG.event(1).urevent = 1;
EEG.urevent(1).type = 'dummy';
EEG.urevent(1).latency = 1;
EEG.urevent(1).duration = 0;
end;
% add duration field if it does not exist
if length(EEG.event)>0 && ~isfield(EEG.event(1),'duration')
EEG.event(1).duration = 0;
EEG.urevent(1).duration = 0;
end;
if nargin<4
fieldNames = [];
fieldValues = [];
end;
newEventLatency = [];
for i=1:length(eventLatencyArrays)
newEventLatency = [newEventLatency eventLatencyArrays{i}];
end;
newEventType = [];
for i=1:length(eventLatencyArrays{1})
newEventType{i} = types{1};
end;
for j=2:length(eventLatencyArrays)
startIndex = length(newEventType);
for i=1:length(eventLatencyArrays{j})
newEventType{startIndex+i} = types{j};
end;
end;
% mix new and old events, sort them by latency and put them back in EEG
originalEventLatency = [];
originalEventType = [];
originalFieldNames = [];
for i=1:length(EEG.event)
originalEventLatency(i) = EEG.event(i).latency;
originalEventType{i} = EEG.event(i).type;
originalEventFields(i) = EEG.event(i);
end;
% make sure that originalEventFields has all the new field names
if ~isempty(EEG.event)
originalFieldNames = fields(originalEventFields);
for f= 1:length(fieldNames)
if ~isfield(originalEventFields, fieldNames{f})
originalEventFields(length(originalEventFields)).(fieldNames{f}) = NaN;
end;
end;
end;
% make sure that newEventFields has all the original field names
for i=1:length(originalFieldNames)
newEventFields(length(newEventLatency)).(originalFieldNames{i}) = NaN;
end;
for i=1:length(newEventLatency)
newEventFields(i).latency = newEventLatency(i);
newEventFields(i).type = newEventType{i};
newEventFields(i).duration = 0;
for f= 1:length(fieldNames)
newEventFields(i).(fieldNames{f}) = fieldValues{f}(i);
end;
end;
if ~isempty(EEG.event)
%newEventFields = struct('latency', num2cell(newEventLatency), 'type', newEventType);
combinedFields = [originalEventFields newEventFields];
combinedLatencies = [originalEventLatency newEventLatency];
combinedType = [originalEventType newEventType];
else
combinedFields = newEventFields;
combinedLatencies = newEventLatency;
combinedType = newEventType;
end
[sortedEventLatency order] = sort(combinedLatencies,'ascend');
sortedEventType = combinedType(order);
combinedFields = combinedFields(order);
% put events in eeg
%EEG.urevent = [];
%EEG.event = [];
EEG = rmfield(EEG,'event');
for i=1:length(sortedEventLatency)
% EEG.urevent(i).latency = sortedEventLatency(i);
% EEG.urevent(i).type = sortedEventType{i};
% combinedFields(order(i)).urevent = i;
EEG.event(i) = combinedFields(i);
% EEG.event(i).urevent = i;
end;
%% adding new urevents
originalUreventNumber = 1:length(EEG.urevent);
originalUreventLatency = zeros(1, length(EEG.urevent));
originalUreventFields= cell(1, length(EEG.urevent));
for i=1:length(EEG.urevent)
originalUreventLatency(i) = EEG.urevent(i).latency;
originalUreventFields{i} = EEG.urevent(i);
end;
newUreventLatency = [];
newUreventType = [];
for i=1:length(EEG.event)
if ~isfield(EEG.event,'urevent') || length(EEG.event(i).urevent) == 0 || isnan(EEG.event(i).urevent)
% newUreventLatency = [newUreventLatency newEventUrEventLatency(EEG, combinedFields, i)];
% use eeg_urlatency to calculate the original latency based on
% EEG.event duartions
newUreventLatency = [newUreventLatency eeg_urlatency(EEG.event, EEG.event(i).latency)];
else
newUreventLatency = [newUreventLatency EEG.urevent(EEG.event(i).urevent).latency];
end;
newUreventFields{i} = EEG.event(i);
newUreventEventNumber(i) = i;
end;
combinedEventNumber = newUreventEventNumber;%[NaN(1,length(EEG.urevent)) newUreventEventNumber];
combinedUrEventLatencies = newUreventLatency;%[originalUreventLatency newUreventLatency];
[sortedUrEventLatency order] = sort(combinedUrEventLatencies,'ascend');
% make urvent stucture ready
EEG.urevent = [];
EEG.urevent= newUreventFields{order(1)};
for i=1:length(order)
%if ~isnan(newUreventEventNumber(i))
EEG.urevent(i) = newUreventFields{order(i)};
EEG.urevent(i).latency = combinedUrEventLatencies(order(i));
EEG.event(newUreventEventNumber(i)).urevent = i;
%end;
end;
if isfield(EEG.urevent,'urevent')
EEG.urevent = rmfield(EEG.urevent,'urevent'); % remove urevent field
end;
% turn empty event durations into 0
for i=1:length(EEG.event)
if isempty(EEG.event(i).duration)
EEG.event(i).duration = 0;
end;
end;
for i=1:length(EEG.urevent)
if isempty(EEG.urevent(i).duration)
EEG.urevent(i).duration = 0;
end;
end;
%
% function latency = newEventUrEventLatency(EEG, combinedFields, i)
%
% %% looks for an event with urvent before the new event
% urlatencyBefore = [];
% currentEventNumber = i;
%
% while isempty(urlatencyBefore) && currentEventNumber > 1
% currentEventNumber = currentEventNumber - 1;
% if ~(~isfield(combinedFields(currentEventNumber),'urevent') || isempty(combinedFields(currentEventNumber).urevent) || isnan(combinedFields(currentEventNumber).urevent))
% urlatencyBefore = EEG.urevent(combinedFields(currentEventNumber).urevent).latency;
% end;
% end
%
% %% if no event with urevent is found before, look for an event with urvent after the new event
% if isempty(urlatencyBefore)
% urlatencyAfter = [];
% currentEventNumber = i;
%
% while isempty(urlatencyAfter) && currentEventNumber < length(combinedFields)
% currentEventNumber = currentEventNumber + 1;
% if ~(~isfield(combinedFields(currentEventNumber),'urevent') || isempty(combinedFields(currentEventNumber).urevent) || isnan(combinedFields(currentEventNumber).urevent))
% urlatencyAfter = EEG.urevent(combinedFields(currentEventNumber).urevent).latency;
% end;
% end
% end;
% %%
% if ~isempty(urlatencyBefore)
% latency = urlatencyBefore + combinedFields(i).latency - combinedFields(currentEventNumber).latency;
% elseif ~isempty(urlatencyAfter)
% latency = urlatencyAfter + combinedFields(currentEventNumber).latency - combinedFields(i).latency;
% else
% latency = [];
% end;
|
github
|
lcnbeapp/beapp-master
|
fmins.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/octavefunc/optim/fmins.m
| 3,181 |
utf_8
|
775abc7aa3b9020a0c2080db64070155
|
% Copyright (C) 2003 Andy Adler
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% -*- texinfo -*-
% @deftypefn {Function File} {[@var{x}] =} fmins(@var{f},@var{X0},@var{options},@var{grad},@var{P1},@var{P2}, ...)
%
% Find the minimum of a funtion of several variables.
% By default the method used is the Nelder&Mead Simplex algorithm
%
% Example usage:
% fmins(inline('(x(1)-5).^2+(x(2)-8).^4'),[0;0])
%
% @strong{Inputs}
% @table @var
% @item f
% A string containing the name of the function to minimize
% @item X0
% A vector of initial parameters fo the function @var{f}.
% @item options
% Vector with control parameters (not all parameters are used)
% @verbatim
% options(1) - Show progress (if 1, default is 0, no progress)
% options(2) - Relative size of simplex (default 1e-3)
% options(6) - Optimization algorithm
% if options(6)==0 - Nelder & Mead simplex (default)
% if options(6)==1 - Multidirectional search Method
% if options(6)==2 - Alternating Directions search
% options(5)
% if options(6)==0 && options(5)==0 - regular simplex
% if options(6)==0 && options(5)==1 - right-angled simplex
% Comment: the default is set to "right-angled simplex".
% this works better for me on a broad range of problems,
% although the default in nmsmax is "regular simplex"
% options(10) - Maximum number of function evaluations
% @end verbatim
% @item grad
% Unused (For compatibility with Matlab)
% @item P1,P2, ...
% Optional parameters for function @var{f}
%
% @end table
% @end deftypefn
function ret=fmins(funfun, X0, options, grad, varargin)
if ismatlab
if license('test','optim_toolbox')
p = fileparts(which('fmins'));
error( [ 'Octave functions should not run on Matlab' 10 'remove path to ' p ]);
end;
end;
stopit = [1e-3, inf, inf, 1, 0, -1];
minfun = 'nmsmax';
if nargin < 3; options=[]; end
if length(options)>=1; stopit(5)= options(1); end
if length(options)>=2; stopit(1)= options(2); end
if length(options)>=5;
if options(6)==0; minfun= 'nmsmax';
if options(5)==0; stopit(4)= 0;
elseif options(5)==1; stopit(4)= 1;
else error('options(5): no associated simple strategy');
end
elseif options(6)==1; minfun= 'mdsmax';
elseif options(6)==2; minfun= 'adsmax';
else error('options(6) does not correspond to known algorithm');
end
end
if length(options)>=10; stopit(2)= options(10); end
ret = feval(minfun, funfun, X0, stopit, [], varargin{:});
|
github
|
lcnbeapp/beapp-master
|
fminsearch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/octavefunc/optim/fminsearch.m
| 2,386 |
utf_8
|
24a86640354f4abf5e4d1e15a97b9a27
|
% Copyright (C) 2006 Sylvain Pelissier <[email protected]>
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% -*- texinfo -*-
% @deftypefn {Function File} {[@var{x}] =} fminsearch(@var{f},@var{X0},@var{options},@var{grad},@var{P1},@var{P2}, ...)
%
% Find the minimum of a funtion of several variables.
% By default the method used is the Nelder&Mead Simplex algorithm
% @seealso{fmin,fmins,nmsmax}
% @end deftypefn
function varargout = fminsearch(funfun, X0, varargin)
if ismatlab
p1 = fileparts(which('fminsearch'));
rmpath(p1);
p2 = fileparts(which('fminsearch'));
if ~isequal(p1, p2)
disp( [ 'Some Octave functions should not run on Matlab' 10 'removing path to Octave fminsearch and using Matlab fminsearch' ]);
switch nargout
case 1, varargout{1} = fminsearch(funfun, X0, varargin{:});
case 2, [varargout{1} varargout{2}] = fminsearch(funfun, X0, varargin{:});
case 3, [varargout{1} varargout{2} varargout{3}] = fminsearch(funfun, X0, varargin{:});
case 4, [varargout{1} varargout{2} varargout{3} varargout{4}]= fminsearch(funfun, X0, varargin{:});
end;
else
disp( [ 'Octave functions should not run on Matlab' 10 'remove path ' p1 ]);
end;
return;
end;
if (nargin == 0); usage('[x fval] = fminsearch(funfun, X0, options, grad, varargin)'); end
if length(varargin) > 0, options = varargin{1}; varargin(1) = []; end;
if length(varargin) > 0, grad = varargin{1}; varargin(1) = []; end;
if (nargin < 3); options=[]; end
if (nargin < 4); grad=[]; end
if (nargin < 5); varargin={}; end
varargout{1} = fmins(funfun, X0, options, grad, varargin{:});
varargout{2} = feval(funfun, x, varargin{:});
|
github
|
lcnbeapp/beapp-master
|
pwelch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/octavefunc/signal/pwelch.m
| 37,809 |
utf_8
|
360a005a779e4d7ad6b92dc49ec8c04c
|
% Copyright (C) 2006 Peter V. Lanspeary
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2,
% or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
%
% USAGE:
% [spectra,freq] = pwelch(x,window,overlap,Nfft,Fs,
% range,plot_type,detrend,sloppy)
% Estimate power spectral density of data "x" by the Welch (1967)
% periodogram/FFT method. All arguments except "x" are optional.
% The data is divided into segments. If "window" is a vector, each
% segment has the same length as "window" and is multiplied by "window"
% before (optional) zero-padding and calculation of its periodogram. If
% "window" is a scalar, each segment has a length of "window" and a
% Hamming window is used.
% The spectral density is the mean of the periodograms, scaled so that
% area under the spectrum is the same as the mean square of the
% data. This equivalence is supposed to be exact, but in practice there
% is a mismatch of up to 0.5% when comparing area under a periodogram
% with the mean square of the data.
%
% [spectra,freq] = pwelch(x,y,window,overlap,Nfft,Fs,
% range,plot_type,detrend,sloppy,results)
% Two-channel spectrum analyser. Estimate power spectral density, cross-
% spectral density, transfer function and/or coherence functions of time-
% series input data "x" and output data "y" by the Welch (1967)
% periodogram/FFT method.
% pwelch treats the second argument as "y" if there is a control-string
% argument "cross", "trans", "coher" or "ypower"; "power" does not force
% the 2nd argument to be treated as "y". All other arguments are
% optional. All spectra are returned in matrix "spectra".
%
% [spectra,Pxx_ci,freq] = pwelch(x,window,overlap,Nfft,Fs,conf,
% range,plot_type,detrend,sloppy)
% [spectra,Pxx_ci,freq] = pwelch(x,y,window,overlap,Nfft,Fs,conf,
% range,plot_type,detrend,sloppy,results)
% Estimates confidence intervals for the spectral density.
% See Hint (7) below for compatibility options. Confidence level "conf"
% is the 6th or 7th numeric argument. If "results" control-string
% arguments are used, one of them must be "power" when the "conf"
% argument is present; pwelch can estimate confidence intervals only for
% the power spectrum of the "x" data. It does not know how to estimate
% confidence intervals of the cross-power spectrum, transfer function or
% coherence; if you can suggest a good method, please send a bug report.
%
% ARGUMENTS
% All but the first argument are optional and may be empty, except that
% the "results" argument may require the second argument to be "y".
%
% x % [non-empty vector] system-input time-series data
% y % [non-empty vector] system-output time-series data
%
% window % [real vector] of window-function values between 0 and 1; the
% % data segment has the same length as the window.
% % Default window shape is Hamming.
% % [integer scalar] length of each data segment. The default
% % value is window=sqrt(length(x)) rounded up to the
% % nearest integer power of 2; see 'sloppy' argument.
%
% overlap % [real scalar] segment overlap expressed as a multiple of
% % window or segment length. 0 <= overlap < 1,
% % The default is overlap=0.5 .
%
% Nfft % [integer scalar] Length of FFT. The default is the length
% % of the "window" vector or has the same value as the
% % scalar "window" argument. If Nfft is larger than the
% % segment length, "seg_len", the data segment is padded
% % with "Nfft-seg_len" zeros. The default is no padding.
% % Nfft values smaller than the length of the data
% % segment (or window) are ignored silently.
%
% Fs % [real scalar] sampling frequency (Hertz); default=1.0
%
% conf % [real scalar] confidence level between 0 and 1. Confidence
% % intervals of the spectral density are estimated from
% % scatter in the periodograms and are returned as Pxx_ci.
% % Pxx_ci(:,1) is the lower bound of the confidence
% % interval and Pxx_ci(:,2) is the upper bound. If there
% % are three return values, or conf is an empty matrix,
% % confidence intervals are calculated for conf=0.95 .
% % If conf is zero or is not given, confidence intervals
% % are not calculated. Confidence intervals can be
% % obtained only for the power spectral density of x;
% % nothing else.
%
% CONTROL-STRING ARGUMENTS -- each of these arguments is a character string.
% Control-string arguments must be after the other arguments but can be in
% any order.
%
% range % 'half', 'onesided' : frequency range of the spectrum is
% % zero up to but not including Fs/2. Power from
% % negative frequencies is added to the positive side of
% % the spectrum, but not at zero or Nyquist (Fs/2)
% % frequencies. This keeps power equal in time and
% % spectral domains. See reference [2].
% % 'whole', 'twosided' : frequency range of the spectrum is
% % -Fs/2 to Fs/2, with negative frequencies
% % stored in "wrap around" order after the positive
% % frequencies; e.g. frequencies for a 10-point 'twosided'
% % spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1
% % 'shift', 'centerdc' : same as 'whole' but with the first half
% % of the spectrum swapped with second half to put the
% % zero-frequency value in the middle. (See "help
% % fftshift".
% % If data (x and y) are real, the default range is 'half',
% % otherwise default range is 'whole'.
%
% plot_type % 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':
% % specifies the type of plot. The default is 'plot', which
% % means linear-linear axes. 'squared' is the same as 'plot'.
% % 'dB' plots "10*log10(psd)". This argument is ignored and a
% % spectrum is not plotted if the caller requires a returned
% % value.
%
% detrend % 'no-strip', 'none' -- do NOT remove mean value from the data
% % 'short', 'mean' -- remove the mean value of each segment from
% % each segment of the data.
% % 'linear', -- remove linear trend from each segment of
% % the data.
% % 'long-mean' -- remove the mean value from the data before
% % splitting it into segments. This is the default.
%
% sloppy % 'sloppy': FFT length is rounded up to the nearest integer
% % power of 2 by zero padding. FFT length is adjusted
% % after addition of padding by explicit Nfft argument.
% % The default is to use exactly the FFT and window/
% % segment lengths specified in argument list.
%
% results % specifies what results to return (in the order specified
% % and as many as desired).
% % 'power' calculate power spectral density of "x"
% % 'cross' calculate cross spectral density of "x" and "y"
% % 'trans' calculate transfer function of a system with
% % input "x" and output "y"
% % 'coher' calculate coherence function of "x" and "y"
% % 'ypower' calculate power spectral density of "y"
% % The default is 'power', with argument "y" omitted.
%
% RETURNED VALUES:
% If return values are not required by the caller, the results are
% plotted and nothing is returned.
%
% spectra % [real-or-complex matrix] columns of the matrix contain results
% % in the same order as specified by "results" arguments.
% % Each column contains one of the result vectors.
%
% Pxx_ci % [real matrix] estimate of confidence interval for power
% % spectral density of x. First column is the lower
% % bound. Second column is the upper bound.
%
% freq % [real column vector] frequency values
%
% HINTS
% 1) EMPTY ARGS:
% if you don't want to use an optional argument you can leave it empty
% by writing its value as [].
% 2) FOR BEGINNERS:
% The profusion of arguments may make pwelch difficult to use, and an
% unskilled user can easily produce a meaningless result or can easily
% mis-interpret the result. With real data "x" and sampling frequency
% "Fs", the easiest and best way for a beginner to use pwelch is
% probably "pwelch(x,[],[],[],Fs)". Use the "window" argument to
% control the length of the spectrum vector. For real data and integer
% scalar M, "pwelch(x,2*M,[],[],Fs)" gives an M+1 point spectrum.
% Run "demo pwelch" (octave only).
% 3) WINDOWING FUNCTIONS:
% Without a window function, sharp spectral peaks can have strong
% sidelobes because the FFT of a data in a segment is in effect convolved
% with a rectangular window. A window function which tapers off
% (gradually) at the ends produces much weaker sidelobes in the FFT.
% Hann (hanning), hamming, bartlett, blackman, flattopwin etc are
% available as separate Matlab/sigproc or Octave functions. The sidelobes
% of the Hann window have a roll-off rate of 60dB/decade of frequency.
% The first sidelobe of the Hamming window is suppressed and is about 12dB
% lower than the first Hann sidelobe, but the roll-off rate is only
% 20dB/decade. You can inspect the FFT of a Hann window by plotting
% "abs(fft(postpad(hanning(256),4096,0)))".
% The default window is Hamming.
% 4) ZERO PADDING:
% Zero-padding reduces the frequency step in the
% spectrum, and produces an artificially smoothed spectrum. For example,
% "Nfft=2*length(window)" gives twice as many frequency values, but
% adjacent PSD (power spectral density) values are not independent;
% adjacent PSD values are independent if "Nfft=length(window)", which is
% the default value of Nfft.
% 5) REMOVING MEAN FROM SIGNAL:
% If the mean is not removed from the signal there is a large spectral
% peak at zero frequency and the sidelobes of this peak are likely to
% swamp the rest of the spectrum. For this reason, the default behaviour
% is to remove the mean. However, the matlab pwelch does not do this.
% 6) WARNING ON CONFIDENCE INTERVALS
% Confidence intervals are obtained by measuring the sample variance of
% the periodograms and assuming that the periodograms have a Gaussian
% probability distribution. This assumption is not accurate. If, for
% example, the data (x) is Gaussian, the periodogram has a Rayleigh
% distribution. However, the confidence intervals may still be useful.
%
% 7) COMPATIBILITY WITH Matlab R11, R12, etc
% When used without the second data (y) argument, arguments are compatible
% with the pwelch of Matlab R12, R13, R14, 2006a and 2006b except that
% 1) overlap is expressed as a multiple of window length ---
% effect of overlap scales with window length
% 2) default values of length(window), Nfft and Fs are more sensible, and
% 3) Goertzel algorithm is not available so Nfft cannot be an array of
% frequencies as in Matlab 2006b.
% Pwelch has four persistent Matlab-compatibility levels. Calling pwelch
% with an empty first argument sets the order of arguments and defaults
% specified above in the USAGE and ARGUMENTS section of this documentation.
% prev_compat=pwelch([]);
% [Pxx,f]=pwelch(x,window,overlap,Nfft,Fs,conf,...);
% Calling pwelch with a single string argument (as described below) gives
% compatibility with Matlab R11 or R12, or the R14 spectrum.welch
% defaults. The returned value is the PREVIOUS compatibility string.
%
% Matlab R11: For compatibility with the Matlab R11 pwelch:
% prev_compat=pwelch('R11-');
% [Pxx,f]=pwelch(x,Nfft,Fs,window,overlap,conf,range,units);
% % units of overlap are "number of samples"
% % defaults: Nfft=min(length(x),256), Fs=2*pi, length(window)=Nfft,
% % window=Hanning, do not detrend,
% % N.B. "Sloppy" is not available.
%
% Matlab R12: For compatibility with Matlab R12 to 2006a pwelch:
% prev_compat=pwelch('R12+');
% [Pxx,f]=pwelch(x,window,overlap,nfft,Fs,...);
% % units of overlap are "number of samples"
% % defaults: length(window)==length(x)/8, window=Hamming,
% % Nfft=max(256,NextPow2), Fs=2*pi, do not detrend
% % NextPow2 is the next power of 2 greater than or equal to the
% % window length. "Sloppy", "conf" are not available. Default
% % window length gives very poor amplitude resolution.
%
% To adopt defaults of the Matlab R14 "spectrum.welch" spectrum object
% associated "psd" method.
% prev_compat=pwelch('psd');
% [Pxx,f] = pwelch(x,window,overlap,Nfft,Fs,conf,...);
% % overlap is expressed as a percentage of window length,
% % defaults: length(window)==64, Nfft=max(256,NextPow2), Fs=2*pi
% % do not detrend
% % NextPow2 is the next power of 2 greater than or equal to the
% % window length. "Sloppy" is not available.
% % Default window length gives coarse frequency resolution.
%
%
% REFERENCES
% [1] Peter D. Welch (June 1967):
% "The use of fast Fourier transform for the estimation of power spectra:
% a method based on time averaging over short, modified periodograms."
% IEEE Transactions on Audio Electroacoustics, Vol AU-15(6), pp 70-73
%
% [2] William H. Press and Saul A. Teukolsky and William T. Vetterling and
% Brian P. Flannery",
% "Numerical recipes in C, The art of scientific computing", 2nd edition,
% Cambridge University Press, 2002 --- Section 13.7.
% [3] Paul Kienzle (1999-2001): "pwelch", http://octave.sourceforge.net/
function [varargout] = pwelch(x,varargin)
checkfunctionmatlab('pwelch', 'signal_toolbox')
%
% COMPATIBILITY LEVEL
% Argument positions and defaults depend on compatibility level selected
% by calling pwelch without arguments or with a single string argument.
% native: compatib=1; prev_compat=pwelch(); prev_compat=pwelch([]);
% matlab R11: compatib=2; prev_compat=pwelch('R11-');
% matlab R12: compatib=3; prev_compat=pwelch('R12+');
% spectrum.welch defaults: compatib=4; prev_compat=pwelch('psd');
% In each case, the returned value is the PREVIOUS compatibility string.
%
compat_str = {[]; 'R11-'; 'R12+'; 'psd'};
persistent compatib;
if ( isempty(compatib) || compatib<=0 || compatib>4 )
% legal values are 1, 2, 3, 4
compatib = 1;
end
if ( nargin <= 0 )
error( 'pwelch: Need at least 1 arg. Use "help pwelch".' );
elseif ( nargin==1 && (ischar(x) || isempty(x)) )
varargout{1} = compat_str{compatib};
if ( isempty(x) ) % native
compatib = 1;
elseif ( strcmp(x,'R11-') )
compatib = 2;
elseif ( strcmp(x,'R12+') )
compatib = 3;
elseif ( strcmp(x,'psd') )
compatib = 4;
else
error( 'pwelch: compatibility arg must be empty, R11-, R12+ or psd' );
end
% return
%
% Check fixed argument
elseif ( isempty(x) || ~isvector(x) )
error( 'pwelch: arg 1 (x) must be vector.' );
else
% force x to be COLUMN vector
if ( size(x,1)==1 )
x=x(:);
end
%
% Look through all args to check if cross PSD, transfer function or
% coherence is required. If yes, the second arg is data vector "y".
arg2_is_y = 0;
x_len = length(x);
nvarargin = length(varargin);
for iarg=1:nvarargin
arg = varargin{iarg};
if ( ~isempty(arg) && ischar(arg) && ...
( strcmp(arg,'cross') || strcmp(arg,'trans') || ...
strcmp(arg,'coher') || strcmp(arg,'ypower') ))
% OK. Need "y". Grab it from 2nd arg.
arg = varargin{1};
if ( nargin<2 || isempty(arg) || ~isvector(arg) || length(arg)~=x_len )
error( 'pwelch: arg 2 (y) must be vector, same length as x.' );
end
% force COLUMN vector
y = varargin{1}(:);
arg2_is_y = 1;
break;
end
end
%
% COMPATIBILITY
% To select default argument values, "compatib" is used as an array index.
% Index values are 1=native, 2=R11, 3=R12, 4=spectrum.welch
%
% argument positions:
% arg_posn = varargin index of window, overlap, Nfft, Fs and conf
% args respectively, a value of zero ==>> arg does not exist
arg_posn = [1 2 3 4 5; % native
3 4 1 2 5; % Matlab R11- pwelch
1 2 3 4 0; % Matlab R12+ pwelch
1 2 3 4 5]; % spectrum.welch defaults
arg_posn = arg_posn(compatib,:) + arg2_is_y;
%
% SPECIFY SOME DEFAULT VALUES for (not all) optional arguments
% Use compatib as array index.
% Fs = sampling frequency
Fs = [ 1.0 2*pi 2*pi 2*pi ];
Fs = Fs(compatib);
% plot_type: 1='plot'|'squared'; 5='db'|'dB'
plot_type = [ 1 5 5 5 ];
plot_type = plot_type(compatib);
% rm_mean: 3='long-mean'; 0='no-strip'|'none'
rm_mean = [ 3 0 0 0 ];
rm_mean = rm_mean(compatib);
% use max_overlap=x_len-1 because seg_len is not available yet
% units of overlap are different for each version:
% fraction, samples, or percent
max_overlap = [ 0.95 x_len-1 x_len-1 95];
max_overlap = max_overlap(compatib);
% default confidence interval
% if there are more than 2 return values and if there is a "conf" arg
conf = 0.95 * (nargout>2) * (arg_posn(5)>0);
%
is_win = 0; % =0 means valid window arg is not provided yet
Nfft = []; % default depends on segment length
overlap = []; % WARNING: units can be #samples, fraction or percentage
range = ~isreal(x) || ( arg2_is_y && ~isreal(y) );
is_sloppy = 0;
n_results = 0;
do_power = 0;
do_cross = 0;
do_trans = 0;
do_coher = 0;
do_ypower = 0;
%
% DECODE AND CHECK OPTIONAL ARGUMENTS
end_numeric_args = 0;
for iarg = 1+arg2_is_y:nvarargin
arg = varargin{iarg};
if ( ischar(arg) )
% first string arg ==> no more numeric args
% non-string args cannot follow a string arg
end_numeric_args = 1;
%
% decode control-string arguments
if ( strcmp(arg,'sloppy') )
is_sloppy = ~is_win || is_win==1;
elseif ( strcmp(arg,'plot') || strcmp(arg,'squared') )
plot_type = 1;
elseif ( strcmp(arg,'semilogx') )
plot_type = 2;
elseif ( strcmp(arg,'semilogy') )
plot_type = 3;
elseif ( strcmp(arg,'loglog') )
plot_type = 4;
elseif ( strcmp(arg,'db') || strcmp(arg,'dB') )
plot_type = 5;
elseif ( strcmp(arg,'half') || strcmp(arg,'onesided') )
range = 0;
elseif ( strcmp(arg,'whole') || strcmp(arg,'twosided') )
range = 1;
elseif ( strcmp(arg,'shift') || strcmp(arg,'centerdc') )
range = 2;
elseif ( strcmp(arg,'long-mean') )
rm_mean = 3;
elseif ( strcmp(arg,'linear') )
rm_mean = 2;
elseif ( strcmp(arg,'short') || strcmp(arg,'mean') )
rm_mean = 1;
elseif ( strcmp(arg,'no-strip') || strcmp(arg,'none') )
rm_mean = 0;
elseif ( strcmp(arg, 'power' ) )
if ( ~do_power )
n_results = n_results+1;
do_power = n_results;
end
elseif ( strcmp(arg, 'cross' ) )
if ( ~do_cross )
n_results = n_results+1;
do_cross = n_results;
end
elseif ( strcmp(arg, 'trans' ) )
if ( ~do_trans )
n_results = n_results+1;
do_trans = n_results;
end
elseif ( strcmp(arg, 'coher' ) )
if ( ~do_coher )
n_results = n_results+1;
do_coher = n_results;
end
elseif ( strcmp(arg, 'ypower' ) )
if ( ~do_ypower )
n_results = n_results+1;
do_ypower = n_results;
end
else
error( 'pwelch: string arg %d illegal value: %s', iarg+1, arg );
end
% end of processing string args
%
elseif ( end_numeric_args )
if ( ~isempty(arg) )
% found non-string arg after a string arg ... oops
error( 'pwelch: control arg must be string' );
end
%
% first 4 optional arguments are numeric -- in fixed order
%
% deal with "Fs" and "conf" first because empty arg is a special default
% -- "Fs" arg -- sampling frequency
elseif ( iarg == arg_posn(4) )
if ( isempty(arg) )
Fs = 1;
elseif ( ~isscalar(arg) || ~isreal(arg) || arg<0 )
error( 'pwelch: arg %d (Fs) must be real scalar >0', iarg+1 );
else
Fs = arg;
end
%
% -- "conf" arg -- confidence level
% guard against the "it cannot happen" iarg==0
elseif ( arg_posn(5) && iarg == arg_posn(5) )
if ( isempty(arg) )
conf = 0.95;
elseif ( ~isscalar(arg) || ~isreal(arg) || arg < 0.0 || arg >= 1.0 )
error( 'pwelch: arg %d (conf) must be real scalar, >=0, <1',iarg+1 );
else
conf = arg;
end
%
% skip all empty args from this point onward
elseif ( isempty(arg) )
1;
%
% -- "window" arg -- window function
elseif ( iarg == arg_posn(1) )
if ( isscalar(arg) )
is_win = 1;
elseif ( isvector(arg) )
is_win = length(arg);
if ( size(arg,2)>1 ) % vector must be COLUMN vector
arg = arg(:);
end
else
is_win = 0;
end
if ( ~is_win )
error( 'pwelch: arg %d (window) must be scalar or vector', iarg+1 );
elseif ( is_win==1 && ( ~isreal(arg) || fix(arg)~=arg || arg<=3 ) )
error( 'pwelch: arg %d (window) must be integer >3', iarg+1 );
elseif ( is_win>1 && ( ~isreal(arg) || any(arg<0) ) )
error( 'pwelch: arg %d (window) vector must be real and >=0',iarg+1);
end
window = arg;
is_sloppy = 0;
%
% -- "overlap" arg -- segment overlap
elseif ( iarg == arg_posn(2) )
if (~isscalar(arg) || ~isreal(arg) || arg<0 || arg>max_overlap )
error( 'pwelch: arg %d (overlap) must be real from 0 to %f', ...
iarg+1, max_overlap );
end
overlap = arg;
%
% -- "Nfft" arg -- FFT length
elseif ( iarg == arg_posn(3) )
if ( ~isscalar(arg) || ~isreal(arg) || fix(arg)~=arg || arg<0 )
error( 'pwelch: arg %d (Nfft) must be integer >=0', iarg+1 );
end
Nfft = arg;
%
else
error( 'pwelch: arg %d must be string', iarg+1 );
end
end
if ( conf>0 && (n_results && ~do_power ) )
error('pwelch: can give confidence interval for x power spectrum only' );
end
%
% end DECODE AND CHECK OPTIONAL ARGUMENTS.
%
% SETUP REMAINING PARAMETERS
% default action is to calculate power spectrum only
if ( ~n_results )
n_results = 1;
do_power = 1;
end
need_Pxx = do_power || do_trans || do_coher;
need_Pxy = do_cross || do_trans || do_coher;
need_Pyy = do_coher || do_ypower;
log_two = log(2);
nearly_one = 0.99999999999;
%
% compatibility-options
% provides exact compatibility with Matlab R11 or R12
%
% Matlab R11 compatibility
if ( compatib==2 )
if ( isempty(Nfft) )
Nfft = min( 256, x_len );
end
if ( is_win > 1 )
seg_len = min( length(window), Nfft );
window = window(1:seg_len);
else
if ( is_win )
% window arg is scalar
seg_len = window;
else
seg_len = Nfft;
end
% make Hann window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.5 - 0.5 * cos( (2*pi/xx)*[0:xx].' );
end
%
% Matlab R12 compatibility
elseif ( compatib==3 )
if ( is_win > 1 )
% window arg provides window function
seg_len = length(window);
else
% window arg does not provide window function; use Hamming
if ( is_win )
% window arg is scalar
seg_len = window;
else
% window arg not available; use R12 default, 8 windows
% ignore overlap arg; use overlap=50% -- only choice that makes sense
% this is the magic formula for 8 segments with 50% overlap
seg_len = fix( (x_len-3)*2/9 );
end
% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
if ( isempty(Nfft) )
Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
end
%
% Matlab R14 psd(spectrum.welch) defaults
elseif ( compatib==4 )
if ( is_win > 1 )
% window arg provides window function
seg_len = length(window);
else
% window arg does not provide window function; use Hamming
if ( is_win )
% window arg is scalar
seg_len = window;
else
% window arg not available; use default seg_len = 64
seg_len = 64;
end
% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
% Now we know segment length,
% so we can set default overlap as number of samples
if ( ~isempty(overlap) )
overlap = fix(seg_len * overlap / 100 );
end
if ( isempty(Nfft) )
Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
end
%
% default compatibility level
else %if ( compatib==1 )
% calculate/adjust segment length, window function
if ( is_win > 1 )
% window arg provides window function
seg_len = length(window);
else
% window arg does not provide window function; use Hamming
if ( is_win ) % window arg is scalar
seg_len = window;
else
% window arg not available; use default length:
% = sqrt(length(x)) rounded up to nearest integer power of 2
if ( isempty(overlap) )
overlap=0.5;
end
seg_len = 2 ^ ceil( log(sqrt(x_len/(1-overlap)))*nearly_one/log_two );
end
% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
% Now we know segment length,
% so we can set default overlap as number of samples
if ( ~isempty(overlap) )
overlap = fix(seg_len * overlap);
end
%
% calculate FFT length
if ( isempty(Nfft) )
Nfft = seg_len;
end
if ( is_sloppy )
Nfft = 2 ^ ceil( log(Nfft) * nearly_one / log_two );
end
end
% end of compatibility options
%
% minimum FFT length is seg_len
Nfft = max( Nfft, seg_len );
% Mean square of window is required for normalising PSD amplitude.
win_meansq = (window.' * window) / seg_len;
%
% Set default or check overlap.
if ( isempty(overlap) )
overlap = fix(seg_len /2);
elseif ( overlap >= seg_len )
error( 'pwelch: arg (overlap=%d) too big. Must be <length(window)=%d',...
overlap, seg_len );
end
%
% Pad data with zeros if shorter than segment. This should not happen.
if ( x_len < seg_len )
x = [x; zeros(seg_len-x_len,1)];
if ( arg2_is_y )
y = [y; zeros(seg_len-x_len,1)];
end
x_len = seg_len;
end
% end SETUP REMAINING PARAMETERS
%
%
% MAIN CALCULATIONS
% Remove mean from the data
if ( rm_mean == 3 )
n_ffts = max( 0, fix( (x_len-seg_len)/(seg_len-overlap) ) ) + 1;
x_len = min( x_len, (seg_len-overlap)*(n_ffts-1)+seg_len );
if ( need_Pxx || need_Pxy )
x = x - sum( x(1:x_len) ) / x_len;
end
if ( arg2_is_y || need_Pxy)
y = y - sum( y(1:x_len) ) / x_len;
end
end
%
% Calculate and accumulate periodograms
% xx and yy are padded data segments
% Pxx, Pyy, Pyy are periodogram sums, Vxx is for confidence interval
xx = zeros(Nfft,1);
yy = xx;
Pxx = xx;
Pxy = xx;
Pyy = xx;
if ( conf>0 )
Vxx = xx;
else
Vxx = [];
end
n_ffts = 0;
for start_seg = [1:seg_len-overlap:x_len-seg_len+1]
end_seg = start_seg+seg_len-1;
% Don't truncate/remove the zero padding in xx and yy
if ( need_Pxx || need_Pxy )
if ( rm_mean==1 ) % remove mean from segment
xx(1:seg_len) = window .* ( ...
x(start_seg:end_seg) - sum(x(start_seg:end_seg)) / seg_len);
elseif ( rm_mean == 2 ) % remove linear trend from segment
xx(1:seg_len) = window .* detrend( x(start_seg:end_seg) );
else % rm_mean==0 or 3
xx(1:seg_len) = window .* x(start_seg:end_seg);
end
fft_x = fft(xx);
end
if ( need_Pxy || need_Pyy )
if ( rm_mean==1 ) % remove mean from segment
yy(1:seg_len) = window .* ( ...
y(start_seg:end_seg) - sum(y(start_seg:end_seg)) / seg_len);
elseif ( rm_mean == 2 ) % remove linear trend from segment
yy(1:seg_len) = window .* detrend( y(start_seg:end_seg) );
else % rm_mean==0 or 3
yy(1:seg_len) = window .* y(start_seg:end_seg);
end
fft_y = fft(yy);
end
if ( need_Pxx )
% force Pxx to be real; pgram = periodogram
pgram = real(fft_x .* conj(fft_x));
Pxx = Pxx + pgram;
% sum of squared periodograms is required for confidence interval
if ( conf>0 )
Vxx = Vxx + pgram .^2;
end
end
if ( need_Pxy )
% Pxy (cross power spectrum) is complex. Do not force to be real.
Pxy = Pxy + fft_y .* conj(fft_x);
end
if ( need_Pyy )
% force Pyy to be real
Pyy = Pyy + real(fft_y .* conj(fft_y));
end
n_ffts = n_ffts +1;
end
%
% Calculate confidence interval
% -- incorrectly assumes that the periodogram has Gaussian probability
% distribution (actually, it has a single-sided (e.g. exponential)
% distribution.
% Sample variance of periodograms is (Vxx-Pxx.^2/n_ffts)/(n_ffts-1).
% This method of calculating variance is more susceptible to round-off
% error, but is quicker, and for double-precision arithmetic and the
% inherently noisy periodogram (variance==mean^2), it should be OK.
if ( conf>0 && need_Pxx )
if ( n_ffts<2 )
Vxx = zeros(Nfft,1);
else
% Should use student distribution here (for unknown variance), but tinv
% is not a core Matlab function (is in statistics toolbox. Grrr)
Vxx = (erfinv(conf)*sqrt(2*n_ffts/(n_ffts-1))) * sqrt(Vxx-Pxx.^2/n_ffts);
end
end
%
% Convert two-sided spectra to one-sided spectra (if range == 0).
% For one-sided spectra, contributions from negative frequencies are added
% to the positive side of the spectrum -- but not at zero or Nyquist
% (half sampling) frequencies. This keeps power equal in time and spectral
% domains, as required by Parseval theorem.
%
if ( range == 0 )
if ( ~ rem(Nfft,2) ) % one-sided, Nfft is even
psd_len = Nfft/2+1;
if ( need_Pxx )
Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1); 0];
if ( conf>0 )
Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1); 0];
end
end
if ( need_Pxy )
Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1); 0]);
end
if ( need_Pyy )
Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1); 0];
end
else % one-sided, Nfft is odd
psd_len = (Nfft+1)/2;
if ( need_Pxx )
Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1)];
if ( conf>0 )
Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1)];
end
end
if ( need_Pxy )
Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1)]);
end
if ( need_Pyy )
Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1)];
end
end
else % two-sided (and shifted)
psd_len = Nfft;
end
% end MAIN CALCULATIONS
%
% SCALING AND OUTPUT
% Put all results in matrix, one row per spectrum
% Pxx, Pxy, Pyy are sums of periodograms, so "n_ffts"
% in the scale factor converts them into averages
spectra = zeros(psd_len,n_results);
spect_type = zeros(n_results,1);
scale = n_ffts * seg_len * Fs * win_meansq;
if ( do_power )
spectra(:,do_power) = Pxx / scale;
spect_type(do_power) = 1;
if ( conf>0 )
Vxx = [Pxx-Vxx Pxx+Vxx]/scale;
end
end
if ( do_cross )
spectra(:,do_cross) = Pxy / scale;
spect_type(do_cross) = 2;
end
if ( do_trans )
spectra(:,do_trans) = Pxy ./ Pxx;
spect_type(do_trans) = 3;
end
if ( do_coher )
% force coherence to be real
spectra(:,do_coher) = real(Pxy .* conj(Pxy)) ./ Pxx ./ Pyy;
spect_type(do_coher) = 4;
end
if ( do_ypower )
spectra(:,do_ypower) = Pyy / scale;
spect_type(do_ypower) = 5;
end
freq = [0:psd_len-1].' * ( Fs / Nfft );
%
% range='shift': Shift zero-frequency to the middle
if ( range == 2 )
len2 = fix((Nfft+1)/2);
spectra = [ spectra(len2+1:Nfft,:); spectra(1:len2,:)];
freq = [ freq(len2+1:Nfft)-Fs; freq(1:len2)];
if ( conf>0 )
Vxx = [ Vxx(len2+1:Nfft,:); Vxx(1:len2,:)];
end
end
%
% RETURN RESULTS or PLOT
if ( nargout>=2 && conf>0 )
varargout{2} = Vxx;
end
if ( nargout>=(2+(conf>0)) )
% frequency is 2nd or 3rd return value,
% depends on if 2nd is confidence interval
varargout{2+(conf>0)} = freq;
end
if ( nargout>=1 )
varargout{1} = spectra;
else
%
% Plot the spectra if there are no return variables.
plot_title=['power spectrum x ';
'cross spectrum ';
'transfer function';
'coherence ';
'power spectrum y ' ];
for ii = 1: n_results
if ( conf>0 && spect_type(ii)==1 )
Vxxxx = Vxx;
else
Vxxxx = [];
end
if ( n_results > 1 )
figure();
end
if ( plot_type == 1 )
plot(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 2 )
semilogx(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 3 )
semilogy(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 4 )
loglog(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 5 ) % db
ylabel( 'amplitude (dB)' );
plot(freq,[10*log10(abs(spectra(:,ii))) 10*log10(abs(Vxxxx))]);
end
title( char(plot_title(spect_type(ii),:)) );
ylabel( 'amplitude' );
% Plot phase of cross spectrum and transfer function
if ( spect_type(ii)==2 || spect_type(ii)==3 )
figure();
if ( plot_type==2 || plot_type==4 )
semilogx(freq,180/pi*angle(spectra(:,ii)));
else
plot(freq,180/pi*angle(spectra(:,ii)));
end
title( char(plot_title(spect_type(ii),:)) );
ylabel( 'phase' );
end
end %for
end
end
end
%!demo
%! fflush(stdout);
%! rand('seed',2038014164);
%! a = [ 1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746 ];
%! white = rand(1,16384);
%! signal = detrend(filter(0.70181,a,white));
%! % frequency shift by modulating with exp(j.omega.t)
%! skewed = signal.*exp(2*pi*i*2/25*[1:16384]);
%! Fs = 25; % sampling frequency
%! hold off
%! pwelch([]);
%! pwelch(signal);
%! disp('Default settings: Fs=1Hz, overlap=0.5, no padding' )
%! input('Onesided power spectral density (real data). Press ENTER', 's' );
%! hold on
%! pwelch(skewed);
%! disp('Frequency-shifted complex data. Twosided wrap-around spectrum.' );
%! input('Area is same as one-sided spectrum. Press ENTER', 's' );
%! pwelch(signal,'shift','semilogy');
%! input('Twosided, centred zero-frequency, lin-log plot. Press ENTER', 's' );
%! hold off
%! figure();
%! pwelch(skewed,[],[],[],Fs,'shift','semilogy');
%! input('Actual Fs=25 Hz. Note change of scales. Press ENTER', 's' );
%! pwelch(skewed,[],[],[],Fs,0.95,'shift','semilogy');
%! input('Spectral density with 95% confidence interval. Press ENTER', 's' );
%! pwelch('R12+');
%! pwelch(signal,'squared');
%! input('Spectral density with Matlab R12 defaults. Press ENTER', 's' );
%! figure();
%! pwelch([]);
%! pwelch(signal,3640,[],4096,2*pi,[],'no-strip');
%! input('Same spectrum with 95% confidence interval. Press ENTER', 's' );
%! figure();
%! pwelch(signal,[],[],[],2*pi,0.95,'no-strip');
%! input('95% confidence interval with native defaults. Press ENTER', 's' );
%! pwelch(signal,64,[],[],2*pi,'no-strip');
%! input('Only 32 frequency values in this spectrum. Press ENTER', 's' );
%! hold on
%! pwelch(signal,64,[],256,2*pi,'no-strip');
%! input('4:1 zero padding gives artificial smoothing. Press ENTER', 's' );
%! figure();
%! pwelch('psd');
%! pwelch(signal,'squared');
%! input('Just like Matlab spectrum.welch(...) defaults. Press ENTER', 's' );
%! hold off
%! pwelch({});
%! pwelch(white,signal,'trans','coher','short')
%! input('Transfer and coherence functions. Press ENTER', 's' );
%! disp('Use "close all" to remove plotting windows.' );
|
github
|
lcnbeapp/beapp-master
|
filtfilt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/octavefunc/signal/filtfilt.m
| 4,430 |
iso_8859_1
|
011f993ef23add46147387112d313898
|
% Copyright (C) 1999 Paul Kienzle
% Copyright (C) 2007 Francesco Potortì
% Copyright (C) 2008 Luca Citi
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: y = filtfilt(b, a, x)
%
% Forward and reverse filter the signal. This corrects for phase
% distortion introduced by a one-pass filter, though it does square the
% magnitude response in the process. That's the theory at least. In
% practice the phase correction is not perfect, and magnitude response
% is distorted, particularly in the stop band.
%%
% Example
% [b, a]=butter(3, 0.1); % 10 Hz low-pass filter
% t = 0:0.01:1.0; % 1 second sample
% x=sin(2*pi*t*2.3)+0.25*randn(size(t)); % 2.3 Hz sinusoid+noise
% y = filtfilt(b,a,x); z = filter(b,a,x); % apply filter
% plot(t,x,';data;',t,y,';filtfilt;',t,z,';filter;')
% Changelog:
% 2000 02 [email protected]
% - pad with zeros to load up the state vector on filter reverse.
% - add example
% 2007 12 [email protected]
% - use filtic to compute initial and final states
% - work for multiple columns as well
% 2008 12 [email protected]
% - fixed instability issues with IIR filters and noisy inputs
% - initial states computed according to Likhterov & Kopeika, 2003
% - use of a 'reflection method' to reduce end effects
% - added some basic tests
% TODO: (pkienzle) My version seems to have similar quality to matlab,
% but both are pretty bad. They do remove gross lag errors, though.
function y = filtfilt(b, a, x)
checkfunctionmatlab('filtfilt', 'signal_toolbox')
if (nargin ~= 3)
usage('y=filtfilt(b,a,x)');
end
rotflag = 0;
if size(x,1) == 1
rotflag == 1;
x = x'; % make it a column vector
end;
lx = size(x,1);
a = a(:).';
b = b(:).';
lb = length(b);
la = length(a);
n = max(lb, la);
lrefl = 3 * (n - 1);
if la < n, a(n) = 0; end
if lb < n, b(n) = 0; end
% Compute a the initial state taking inspiration from
% Likhterov & Kopeika, 2003. 'Hardware-efficient technique for
% minimizing startup transients in Direct Form II digital filters'
kdc = sum(b) / sum(a);
if (abs(kdc) < inf) % neither NaN nor +/- Inf
si = fliplr(cumsum(fliplr(b - kdc * a)));
else
si = zeros(size(a)); % fall back to zero initialization
end
si(1) = [];
for (c = 1:size(x,2)) % filter all columns, one by one
v = [2*x(1,c)-x((lrefl+1):-1:2,c); x(:,c);
2*x(end,c)-x((end-1):-1:end-lrefl,c)]; % a column vector
% Do forward and reverse filtering
v = filter(b,a,v,si*v(1)); % forward filter
v = flipud(filter(b,a,flipud(v),si*v(end))); % reverse filter
y(:,c) = v((lrefl+1):(lx+lrefl));
end
if (rotflag) % x was a row vector
y = y'; % rotate it back
end
%!error filtfilt ();
%!error filtfilt (1, 2, 3, 4);
%!test
%! randn('state',0);
%! r = randn(1,200);
%! [b,a] = butter(10, [.2, .25]);
%! yfb = filtfilt(b, a, r);
%! assert (size(r), size(yfb));
%! assert (mean(abs(yfb)) < 1e3);
%! assert (mean(abs(yfb)) < mean(abs(r)));
%! ybf = fliplr(filtfilt(b, a, fliplr(r)));
%! assert (mean(abs(ybf)) < 1e3);
%! assert (mean(abs(ybf)) < mean(abs(r)));
%!test
%! randn('state',0);
%! r = randn(1,1000);
%! s = 10 * sin(pi * 4e-2 * (1:length(r)));
%! [b,a] = cheby1(2, .5, [4e-4 8e-2]);
%! y = filtfilt(b, a, r+s);
%! assert (size(r), size(y));
%! assert (mean(abs(y)) < 1e3);
%! assert (corrcoef(s(250:750), y(250:750)) > .95)
%! [b,a] = butter(2, [4e-4 8e-2]);
%! yb = filtfilt(b, a, r+s);
%! assert (mean(abs(yb)) < 1e3);
%! assert (corrcoef(y, yb) > .99)
%!test
%! randn('state',0);
%! r = randn(1,1000);
%! s = 10 * sin(pi * 4e-2 * (1:length(r)));
%! [b,a] = butter(2, [4e-4 8e-2]);
%! y = filtfilt(b, a, [r.' s.']);
%! yr = filtfilt(b, a, r);
%! ys = filtfilt(b, a, s);
%! assert (y, [yr.' ys.']);
%! y2 = filtfilt(b.', a.', [r.' s.']);
%! assert (y, y2);
|
github
|
lcnbeapp/beapp-master
|
firls.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/octavefunc/signal/firls.m
| 4,078 |
utf_8
|
2ce6c9bc19a003aceeafdb9fae59f52e
|
% Copyright (C) 2006 Quentin Spencer
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% b = firls(N, F, A);
% b = firls(N, F, A, W);
%
% FIR filter design using least squares method. Returns a length N+1
% linear phase filter such that the integral of the weighted mean
% squared error in the specified bands is minimized.
%
% F specifies the frequencies of the band edges, normalized so that
% half the sample frequency is equal to 1. Each band is specified by
% two frequencies, to the vector must have an even length.
%
% A specifies the amplitude of the desired response at each band edge.
%
% W is an optional weighting function that contains one value for each
% band that weights the mean squared error in that band. A must be the
% same length as F, and W must be half the length of F.
% The least squares optimization algorithm for computing FIR filter
% coefficients is derived in detail in:
%
% I. Selesnick, 'Linear-Phase FIR Filter Design by Least Squares,'
% http://cnx.org/content/m10577
function coef = firls(N, frequencies, pass, weight, str);
checkfunctionmatlab('firls', 'signal_toolbox')
if nargin<3 | nargin>6
usage('');
end
if nargin==3
weight = ones(1, length(pass)/2);
str = [];
end
if nargin==4
if ischar(weight)
str = weight;
weight = ones(size(pass));
else
str = [];
end
end
if length(frequencies) ~= length(pass)
error('F and A must have equal lengths.');
end
if 2 * length(weight) ~= length(pass)
error('W must contain one weight per band.');
end
if ischar(str)
error('This feature is implemented yet');
else
M = N/2;
w = kron(weight(:), [-1; 1]);
omega = frequencies * pi;
i1 = 1:2:length(omega);
i2 = 2:2:length(omega);
% Generate the matrix Q
% As illustrated in the above-cited reference, the matrix can be
% expressed as the sum of a Hankel and Toeplitz matrix. A factor of
% 1/2 has been dropped and the final filter coefficients multiplied
% by 2 to compensate.
warning off MATLAB:colon:nonIntegerIndex
cos_ints = [omega; sin((1:N)' * omega)];
q = [1, 1./(1:N)]' .* (cos_ints * w);
Q = toeplitz(q(1:M+1)) + hankel(q(1:M+1), q(M+1:end));
% The vector b is derived from solving the integral:
%
% _ w
% / 2
% b = / W(w) D(w) cos(kw) dw
% k / w
% - 1
%
% Since we assume that W(w) is constant over each band (if not, the
% computation of Q above would be considerably more complex), but
% D(w) is allowed to be a linear function, in general the function
% W(w) D(w) is linear. The computations below are derived from the
% fact that:
% _
% / a ax + b
% / (ax + b) cos(nx) dx = --- cos (nx) + ------ sin(nx)
% / 2 n
% - n
%
cos_ints2 = [omega(i1).^2 - omega(i2).^2; ...
cos((1:M)' * omega(i2)) - cos((1:M)' * omega(i1))] ./ ...
([2, 1:M]' * (omega(i2) - omega(i1)));
d = [-weight .* pass(i1); weight .* pass(i2)];
d = d(:);
b = [1, 1./(1:M)]' .* ((kron(cos_ints2, [1, 1]) + cos_ints(1:M+1,:)) * d);
% Having computed the components Q and b of the matrix equation,
% solve for the filter coefficients.
a = Q \ b;
coef = [ a(end:-1:2); 2 * a(1); a(2:end) ];
warning on MATLAB:colon:nonIntegerIndex
end
|
github
|
lcnbeapp/beapp-master
|
supergui.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/supergui.m
| 21,074 |
utf_8
|
05da62a5889eab777551326464481bdf
|
% supergui() - a comprehensive gui automatic builder. This function help
% to create GUI very fast without bothering about the
% positions of the elements. After creating a geometry,
% elements just place themselves into the predefined
% locations. It is especially usefull for figure where you
% intend to put text button and descriptions.
%
% Usage:
% >> [handles, height, allhandles ] = ...
% supergui( 'key1', 'val1', 'key2', 'val2', ... );
%
% Inputs:
% 'fig' - figure handler, if not given, create a new figure.
% 'geom' - cell array of cell array of integer vector. Each cell
% array defines the coordinate of a given input in the following
% manner: { nb_row nb_col [x_topcorner y_topcorner]
% [x_bottomcorner y_bottomcorner] };
% 'geomhoriz' - integer vector or cell array of numerical vectors describing the
% geometry of the elements in the figure.
% - if integer vector, vector length is the number of rows and vector
% values are the number of 'uilist' elements in each row.
% For example, [2 3 2] means that the
% figures will have 3 rows, with 2 elements in the first
% and last row and 3 elements in the second row.
% - if cell array, each vector describes the relative widths
% of items in each row. For example, { [2 8] [1 2 3] } which means
% that figures will have 2 rows, the first one with 2
% elements of relative width 2 and 8 (20% and 80%). The
% second row will have 3 elements of relative size 1, 2
% and 3 (1/6 2/6 and 3/6).
% 'geomvert' - describting geometry for the rows. For instance
% [1 2 1] means that the second row will be twice the height
% of the other ones. If [], all the lines have the same height.
% 'uilist' - list of uicontrol lists describing elements properties
% { { ui1 }, { ui2 }... }, { 'uiX' } being GUI matlab
% uicontrol arguments such as { 'style', 'radiobutton',
% 'String', 'hello' }. See Matlab function uicontrol() for details.
% 'borders' - [left right top bottom] GUI internal borders in normalized
% units (0 to 1). Default values are
% 'title' - optional figure title
% 'userdata' - optional userdata input for the figure
% 'inseth' - horizontal space between elements. Default is 2%
% of window size.
% 'insetv' - vertical space between elements. Default is 2%
% of window height.
% 'spacing' - [horiz vert] spacing in normalized units. Default
% 'spacingtype' - ['absolute'|'proportional'] abolute means that the
% spacing values are fixed. Proportional means that they
% depend on the number of element in a line.
% 'minwidth' - [integer] minimal width in pixels. Default is none.
% 'screenpos' - [x y] position of the right top corner of the graphic
% interface. 'center' may also be used to center the GUI on
% the screen.
% 'adjustbuttonwidth' - ['on'|'off'] adjust button width in the GUI.
% Default is 'off'.
%
% Hint:
% use 'print -mfile filemane' to save a matlab file of the figure.
%
% Output:
% handles - all the handles of the elements (in the same order as the
% uilist input).
% height - adviced height for the figure (so the text look nice).
% allhandles - all the handles in object format
%
% Example:
% figure;
% supergui( 'geomhoriz', { 1 1 }, 'uilist', { ...
% { 'style', 'radiobutton', 'string', 'radio' }, ...
% { 'style', 'pushbutton' , 'string', 'push' } } );
%
% Author: Arnaud Delorme, CNL / Salk Institute, La Jolla, 2001-
%
% See also: eeglab()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [handlers, outheight, allhandlers] = supergui( varargin);
% handlers cell format
% allhandlers linear format
handlers = {};
outheight = 0;
if nargin < 2
help supergui;
return;
end;
% get version and
% set additional parameters
% -------------------------
v = version;
indDot = find(v == '.');
versnum = str2num(v(1:indDot(2)-1));
if versnum >= 7.14
addParamFont = { 'fontsize' 12 };
else addParamFont = { };
end;
warning off MATLAB:hg:uicontrol:ParameterValuesMustBeValid
% decoding input and backward compatibility
% -----------------------------------------
if isstr(varargin{1})
options = varargin;
else
options = { 'fig' varargin{1} 'geomhoriz' varargin{2} ...
'geomvert' varargin{3} 'uilist' varargin(4:end) };
end
g = finputcheck(options, { 'geomhoriz' 'cell' [] {};
'fig' '' [] 0;
'geom' 'cell' [] {};
'uilist' 'cell' [] {};
'title' 'string' [] '';
'userdata' '' [] [];
'adjustbuttonwidth' 'string' { 'on' 'off' } 'off';
'geomvert' 'real' [] [];
'screenpos' { 'real' 'string' } [] [];
'horizontalalignment' 'string' { 'left','right','center' } 'left';
'minwidth' 'real' [] 10;
'borders' 'real' [] [0.05 0.04 0.07 0.06];
'spacing' 'real' [] [0.02 0.01];
'inseth' 'real' [] 0.02; % x border absolute (5% of width)
'insetv' 'real' [] 0.02 }, 'supergui');
if isstr(g), error(g); end
if ~isempty(g.geomhoriz)
maxcount = sum(cellfun('length', g.geomhoriz));
if maxcount ~= length(g.uilist)
warning('Wrong size for ''geomhoriz'' input');
end;
if ~isempty(g.geomvert)
if length(g.geomvert) ~= length(g.geomhoriz)
warning('Wrong size for ''geomvert'' input');
end;
end;
g.insetv = g.insetv/length(g.geomhoriz);
end;
if ~isempty(g.geom)
if length(g.geom) ~= length(g.uilist)
warning('Wrong size for ''geom'' input');
end;
maxcount = length(g.geom);
end;
% create new figure
% -----------------
if g.fig == 0
g.fig = figure('visible','off');
end
% converting the geometry formats
% -------------------------------
if ~isempty(g.geomhoriz) & ~iscell( g.geomhoriz )
oldgeom = g.geomhoriz;
g.geomhoriz = {};
for row = 1:length(oldgeom)
g.geomhoriz = { g.geomhoriz{:} ones(1, oldgeom(row)) };
end;
end
if isempty(g.geomvert)
g.geomvert = ones(1, length(g.geomhoriz));
end
% converting to the new format
% ----------------------------
if isempty(g.geom)
count = 1;
incy = 0;
sumvert = sum(g.geomvert);
maxhoriz = 1;
for row = 1:length(g.geomhoriz)
incx = 0;
maxhoriz = max(maxhoriz, length(g.geomhoriz{row}));
ratio = length(g.geomhoriz{row})/sum(g.geomhoriz{row});
for column = 1:length(g.geomhoriz{row})
g.geom{count} = { length(g.geomhoriz{row}) sumvert [incx incy] [g.geomhoriz{row}(column)*ratio g.geomvert(row)] };
incx = incx+g.geomhoriz{row}(column)*ratio;
count = count+1;
end;
incy = incy+g.geomvert(row);
end;
g.borders(1:2) = g.borders(1:2)/maxhoriz*5;
g.borders(3:4) = g.borders(3:4)/sumvert*10;
g.spacing(1) = g.spacing(1)/maxhoriz*5;
g.spacing(2) = g.spacing(2)/sumvert*10;
end;
% disp new geometry
% -----------------
if 0
fprintf('{ ...\n');
for index = 1:length(g.geom)
fprintf('{ %g %g [%g %g] [%g %g] } ...\n', g.geom{index}{1}, g.geom{index}{2}, ...
g.geom{index}{3}(1), g.geom{index}{3}(2), g.geom{index}{4}(1), g.geom{index}{3}(2));
end;
fprintf('};\n');
end;
% get axis coordinates
% --------------------
try
set(g.fig, 'menubar', 'none', 'numbertitle', 'off');
catch
end
pos = [0 0 1 1]; % plot relative to current axes
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)]; % allow to use normalized position [0 100] for x and y
axis('off');
% creating guis
% -------------
row = 1; % count the elements
column = 1; % count the elements
factmultx = 0;
factmulty = 0; %zeros(length(g.geomhoriz));
for counter = 1:maxcount
% init
clear rowhandle;
gm = g.geom{counter};
[posx posy width height] = getcoord(gm{1}, gm{2}, gm{3}, gm{4}, g.borders, g.spacing);
try
currentelem = g.uilist{ counter };
catch
fprintf('Warning: not all boxes were filled\n');
return;
end;
if ~isempty(currentelem)
% decode metadata
% ---------------
if strcmpi(currentelem{1}, 'link2lines'),
currentelem(1) = [];
hf1 = 3.6/2-0.3;
hf2 = 0.7/2-0.3;
allhandlers{counter} = uicontrol(g.fig, 'unit', 'normalized', 'position', ...
[posx-width/2 posy+hf1*height width/2 0.005].*s+q, 'style', 'pushbutton', 'string', '');
allhandlers{counter} = uicontrol(g.fig, 'unit', 'normalized', 'position', ...
[posx-width/2 posy+hf2*height width/2 0.005].*s+q, 'style', 'pushbutton', 'string', '');
allhandlers{counter} = uicontrol(g.fig, 'unit', 'normalized', 'position', ...
[posx posy+hf2*height 0.005 (hf1-hf2+0.1)*height].*s+q, 'style', 'pushbutton', 'string', '');
allhandlers{counter} = uicontrol(g.fig, 'unit', 'normalized', 'position', ...
[posx posy+(hf1+hf2)/2*height width/2 0.005].*s+q, 'style', 'pushbutton', 'string', '');
allhandlers{counter} = 0;
else
if strcmpi(currentelem{1}, 'width'),
curwidth = currentelem{2};
currentelem(1:2) = [];
else curwidth = 0;
end;
if strcmpi(currentelem{1}, 'align'),
align = currentelem{2};
currentelem(1:2) = [];
else align = 'right';
end;
if strcmpi(currentelem{1}, 'stickto'),
stickto = currentelem{2};
currentelem(1:2) = [];
else stickto = 'none';
end;
if strcmpi(currentelem{1}, 'vertshift'), currentelem(1) = []; addvert = -height/2;
else addvert = 0;
end;
if strcmpi(currentelem{1}, 'vertexpand'), heightfactor = currentelem{2}; addvert = -(heightfactor-1)*height; currentelem(1:2) = [];
else heightfactor = 1;
end;
% position adjustment depending on GUI type
if isstr(currentelem{2}) && strcmpi(currentelem{2}, 'popupmenu')
posy = posy-height/10;
end;
if isstr(currentelem{2}) && strcmpi(currentelem{2}, 'text')
posy = posy+height/5;
end;
if strcmpi(currentelem{1}, 'function'),
% property grid argument
panel = uipanel('Title','','FontSize',12,'BackgroundColor','white','Position',[posx posy+addvert width height*heightfactor].*s+q);
allhandlers{counter} = arg_guipanel(panel, currentelem{:});
else
allhandlers{counter} = uicontrol(g.fig, 'unit', 'normalized', 'position', ...
[posx posy+addvert width height*heightfactor].*s+q, currentelem{:}, addParamFont{:});
% this simply compute a factor so that all uicontrol will be visible
% ------------------------------------------------------------------
style = get( allhandlers{counter}, 'style');
set( allhandlers{counter}, 'units', 'pixels');
curpos = get(allhandlers{counter}, 'position');
curext = get(allhandlers{counter}, 'extent');
if curwidth ~= 0
curwidth = curwidth/((factmultx-1)/1.85+1);
if strcmpi(align, 'right')
curpos(1) = curpos(1)+curpos(3)-curwidth;
elseif strcmpi(align, 'center')
curpos(1) = curpos(1)+curpos(3)/2-curwidth/2;
end;
set(allhandlers{counter}, 'position', [ curpos(1) curpos(2) curwidth curpos(4) ]);
if strcmpi(stickto, 'on')
set( allhandlers{counter-1}, 'units', 'pixels');
curpos2 = get(allhandlers{counter-1}, 'position');
set(allhandlers{counter-1}, 'position', [ curpos(1)-curpos2(3)-10 curpos2(2) curpos2(3) curpos2(4) ]);
set( allhandlers{counter-1}, 'units', 'normalized');
end;
curext(3) = curwidth;
end;
set( allhandlers{counter}, 'units', 'normalized');
end;
if ~strcmp(style, 'edit') && (~strcmp(style, 'pushbutton') || strcmpi(g.adjustbuttonwidth, 'on'))
%tmp = curext(3)/curpos(3);
%if tmp > 3*factmultx && factmultx > 0, adsfasd; end;
factmultx = max(factmultx, curext(3)/curpos(3));
if strcmp(style, 'pushbutton'), factmultx = factmultx*1.1; end;
end;
if ~strcmp(style, 'listbox')
factmulty = max(factmulty, curext(4)/curpos(4));
end;
% Uniformize button text aspect (first letter must be upercase)
% -----------------------------
if strcmp(style, 'pushbutton')
tmptext = get(allhandlers{counter}, 'string');
if length(tmptext) > 1
if upper(tmptext(1)) ~= tmptext(1) || lower(tmptext(2)) ~= tmptext(2) && ~strcmpi(tmptext, 'STATS')
tmptext = lower(tmptext);
try, tmptext(1) = upper(tmptext(1)); catch, end;
end;
end;
set(allhandlers{counter}, 'string', tmptext);
end;
end;
else
allhandlers{counter} = 0;
end;
end;
% adjustments
% -----------
factmultx = factmultx*1.02;% because some text was still hidden
%factmultx = factmultx*1.2;
if factmultx < 0.1
factmultx = 0.1;
end;
% for MAC (magnify figures that have edit fields)
% -------
warning off;
try,
comp = computer;
if length(comp) > 2 && strcmpi(comp(1:3), 'MAC')
factmulty = factmulty*1.5;
elseif ~isunix % windows
factmulty = factmulty*1.08;
end;
catch, end;
factmulty = factmulty*0.9; % global shinking
warning on;
% scale and replace the figure in the screen
% -----------------------------------------
pos = get(g.fig, 'position');
if factmulty > 1
pos(2) = max(0,pos(2)+pos(4)-pos(4)*factmulty);
end;
pos(1) = pos(1)+pos(3)*(1-factmultx)/2;
pos(3) = max(pos(3)*factmultx, g.minwidth);
pos(4) = pos(4)*factmulty;
set(g.fig, 'position', pos);
% vertical alignment to bottom for text (isnumeric by ishanlde was changed here)
% ---------------------------------------
for index = 1:length(allhandlers)
if allhandlers{index} ~= 0 && ishandle(allhandlers{index})
if strcmp(get(allhandlers{index}, 'style'), 'text')
set(allhandlers{index}, 'unit', 'pixel');
curpos = get(allhandlers{index}, 'position');
curext = get(allhandlers{index}, 'extent');
set(allhandlers{index}, 'position', [curpos(1) curpos(2)-4 curpos(3) curext(4)]);
set(allhandlers{index}, 'unit', 'normalized');
end;
end;
end;
% setting defaults colors
%------------------------
try, icadefs;
catch,
GUIBACKCOLOR = [.8 .8 .8];
GUIPOPBUTTONCOLOR = [.8 .8 .8];
GUITEXTCOLOR = [0 0 0];
end;
numobjects = cellfun(@ishandle, allhandlers); % (isnumeric by ishanlde was changed here)
allhandlersnum = [ allhandlers{numobjects} ];
hh = findobj(allhandlersnum, 'parent', g.fig, 'style', 'text');
%set(hh, 'BackgroundColor', get(g.fig, 'color'), 'horizontalalignment', 'left');
set(hh, 'Backgroundcolor', GUIBACKCOLOR);
set(hh, 'foregroundcolor', GUITEXTCOLOR);
try
set(g.fig, 'color',GUIBACKCOLOR );
catch
end
set(hh, 'horizontalalignment', g.horizontalalignment);
hh = findobj(allhandlersnum, 'style', 'edit');
set(hh, 'BackgroundColor', [1 1 1]); %, 'horizontalalignment', 'right');
hh =findobj(allhandlersnum, 'parent', g.fig, 'style', 'pushbutton');
comp = computer;
if length(comp) < 3 || ~strcmpi(comp(1:3), 'MAC') % this puts the wrong background on macs
set(hh, 'backgroundcolor', GUIPOPBUTTONCOLOR);
set(hh, 'foregroundcolor', GUITEXTCOLOR);
end;
hh =findobj(allhandlersnum, 'parent', g.fig, 'style', 'popupmenu');
set(hh, 'backgroundcolor', GUIPOPBUTTONCOLOR);
set(hh, 'foregroundcolor', GUITEXTCOLOR);
hh =findobj(allhandlersnum, 'parent', g.fig, 'style', 'checkbox');
set(hh, 'backgroundcolor', GUIBACKCOLOR);
set(hh, 'foregroundcolor', GUITEXTCOLOR);
hh =findobj(allhandlersnum, 'parent', g.fig, 'style', 'listbox');
set(hh, 'backgroundcolor', GUIPOPBUTTONCOLOR);
set(hh, 'foregroundcolor', GUITEXTCOLOR);
hh =findobj(allhandlersnum, 'parent', g.fig, 'style', 'radio');
set(hh, 'foregroundcolor', GUITEXTCOLOR);
set(hh, 'backgroundcolor', GUIPOPBUTTONCOLOR);
set(g.fig, 'visible', 'on');
% screen position
% ---------------
if ~isempty(g.screenpos)
pos = get(g.fig, 'position');
if isnumeric(g.screenpos)
set(g.fig, 'position', [ g.screenpos pos(3) pos(4)]);
else
screenSize = get(0, 'screensize');
pos(1) = (screenSize(3)-pos(3))/2;
pos(2) = (screenSize(4)-pos(4))/2+pos(4);
set(g.fig, 'position', pos);
end;
end;
% set userdata and title
% ----------------------
if ~isempty(g.userdata), set(g.fig, 'userdata', g.userdata); end;
if ~isempty(g.title ), set(g.fig, 'name', g.title ); end;
return;
function [posx posy width height] = getcoord(geom1, geom2, coord1, sz, borders, spacing);
coord2 = coord1+sz;
borders(1:2) = borders(1:2)-spacing(1);
borders(3:4) = borders(3:4)-spacing(2);
% absolute positions
posx = coord1(1)/geom1;
posy = coord1(2)/geom2;
posx2 = coord2(1)/geom1;
posy2 = coord2(2)/geom2;
width = posx2-posx;
height = posy2-posy;
% add spacing
posx = posx+spacing(1)/2;
width = max(posx2-posx-spacing(1), 0.001);
height = max(posy2-posy-spacing(2), 0.001);
posy = max(0, 1-posy2)+spacing(2)/2;
% add border
posx = posx*(1-borders(1)-borders(2))+borders(1);
posy = posy*(1-borders(3)-borders(4))+borders(4);
width = width*( 1-borders(1)-borders(2));
height = height*(1-borders(3)-borders(4));
function [posx posy width height] = getcoordold(geom1, geom2, coord1, sz);
coord2 = coord1+sz;
horiz_space = 0.05/geom1;
vert_space = 0.05/geom2;
horiz_border = min(0.1, 1/geom1)-horiz_space;
vert_border = min(0.2, 1.5/geom2)-vert_space;
% absolute positions
posx = coord1(1)/geom1;
posy = coord1(2)/geom2;
posx2 = coord2(1)/geom1;
posy2 = coord2(2)/geom2;
width = posx2-posx;
height = posy2-posy;
% add spacing
posx = posx+horiz_space/2;
width = max(posx2-posx-horiz_space, 0.001);
height = max(posy2-posy- vert_space, 0.001);
posy = max(0, 1-posy2)+vert_space/2;
% add border
posx = posx*(1-horiz_border)+horiz_border/2;
posy = posy*(1- vert_border)+vert_border/2;
width = width*(1-horiz_border);
height = height*(1-vert_border);
% posx = coord1(1)/geom1+horiz_border*1/geom1/2;
% posy = 1-(coord1(2)/geom2+vert_border*1/geom2/2)-1/geom2;
%
% posx2 = coord2(1)/geom1+horiz_border*1/geom1/2;
% posy2 = 1-(coord2(2)/geom2+vert_border*1/geom2/2)-1/geom2;
%
% width = posx2-posx;
% height = posy-posy2;
%h = axes('unit', 'normalized', 'position', [ posx posy width height ]);
%h = axes('unit', 'normalized', 'position', [ coordx/geom1 1-coordy/geom2-1/geom2 1/geom1 1/geom2 ]);
|
github
|
lcnbeapp/beapp-master
|
warndlg2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/warndlg2.m
| 1,031 |
utf_8
|
4d58c147c6515911a93ba2375203951d
|
% warndlg2() - same as warndlg for eeglab()
%
% Author: Arnaud Delorme, CNL / Salk Institute, 12 August 2002
%
% See also: inputdlg2(), questdlg2()
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function warndlg2(Prompt, Title);
if nargin <2
Title = 'Warning';
end;
questdlg2(Prompt, Title, 'OK', 'OK');
|
github
|
lcnbeapp/beapp-master
|
pophelp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/pophelp.m
| 4,248 |
utf_8
|
bde4cd43c45ca121c2aa18c04083fe00
|
% pophelp() - Same as matlab HTHELP but does not crash under windows.
%
% Usage: >> pophelp( function );
% >> pophelp( function, nonmatlab );
%
% Inputs:
% function - string for a Matlab function name
% (with or without the '.m' extension).
% nonmatlab - [0|1], 1 the file is not a Matlab file
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: eeglab()
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function pophelp( funct, nonmatlab );
if nargin <1
help pophelp;
return;
end;
if nargin <2
nonmatlab = 0;
end;
if exist('help2html')
if length(funct) > 3 && strcmpi(funct(end-3:end), '.txt')
web(funct);
else
pathHelpHTML = fileparts(which('help2html'));
if ~isempty(findstr('NFT', pathHelpHTML)), rmpath(pathHelpHTML); end;
text1 = help2html(funct);
if length(funct) > 4 & strcmpi(funct(1:4), 'pop_')
try,
text2 = help2html(funct(5:end));
text1 = [text1 '<br><pre>___________________________________________________________________' 10 ...
' ' 10 ...
' The ''pop'' function above calls the eponymous Matlab function below' 10 ...
' and could use some of its optional parameters' 10 ...
'___________________________________________________________________</pre><br><br>' text2 ];
catch, end;
end;
web([ 'text://' text1 ]);
end;
else
if isempty(funct), return; end;
doc1 = readfunc(funct, nonmatlab);
if length(funct) > 4 & strcmpi(funct(1:4), 'pop_')
try,
doc2 = readfunc(funct(5:end), nonmatlab);
doc1 = { doc1{:} ' _________________________________________________________________ ' ...
' ' ...
' The ''pop'' function above calls the eponymous Matlab function below, ' ...
' which may contain more information for some parameters. '...
' ' ...
' _________________________________________________________________ ' ...
' ' ...
doc2{:} };
catch, end;
end;
textgui(doc1);1000
h = findobj('parent', gcf, 'style', 'slider');
try, icadefs; catch,
GUIBUTTONCOLOR = [0.8 0.8 0.8];
GUITEXTCOLOR = 'k';
end;
set(h, 'backgroundcolor', GUIBUTTONCOLOR);
h = findobj('parent', gcf, 'style', 'pushbutton');
set(h, 'backgroundcolor', GUIBUTTONCOLOR);
h = findobj('parent', gca);
set(h, 'color', GUITEXTCOLOR);
set(gcf, 'color', BACKCOLOR);
end;
return;
function [doc] = readfunc(funct, nonmatlab)
doc = {};
if iseeglabdeployed
if isempty(find(funct == '.')), funct = [ funct '.m' ]; end;
funct = fullfile(eeglabexefolder, 'help', funct);
end;
if nonmatlab
fid = fopen( funct, 'r');
else
if findstr( funct, '.m')
fid = fopen( funct, 'r');
else
fid = fopen( [funct '.m'], 'r');
end;
end;
if fid == -1
error('File not found');
end;
sub = 1;
try,
if ~isunix, sub = 0; end;
catch, end;
if nonmatlab
str = fgets( fid );
while ~feof(fid)
str = deblank(str(1:end-sub));
doc = { doc{:} str(1:end) };
str = fgets( fid );
end;
else
str = fgets( fid );
while (str(1) == '%')
str = deblank(str(1:end-sub));
doc = { doc{:} str(2:end) };
str = fgets( fid );
end;
end;
fclose(fid);
|
github
|
lcnbeapp/beapp-master
|
errordlg2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/errordlg2.m
| 1,467 |
utf_8
|
710e811cd40d8f506b5264089f50c95c
|
% errordlg2() - Makes a popup dialog box with the specified message and (optional)
% title.
%
% Usage:
% errordlg2(Prompt, Title);
%
% Example:
% errordlg2('Explanation of error','title of error');
%
% Input:
% Prompt - A text string explaning why the user is seeing this error message.
% Title _ A text string that appears in the title bar of the error message.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 12 August 2002
%
% See also: inputdlg2(), questdlg2()
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function errordlg2(Prompt, Title);
if exist('beep') == 5
beep;
else
disp(char(7));
end;
if nargin <2
Title = 'Error';
end;
if ~ismatlab, error(Prompt); end;
questdlg2(Prompt, Title, 'OK', 'OK');
|
github
|
lcnbeapp/beapp-master
|
questdlg2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/questdlg2.m
| 3,133 |
utf_8
|
d94e219e87da50c5af28fe1007906abc
|
% questdlg2() - questdlg function clone with coloring and help for
% eeglab().
%
% Usage: same as questdlg()
%
% Warning:
% Case of button text and result might be changed by the function
%
% Author: Arnaud Delorme, CNL / Salk Institute, La Jolla, 11 August 2002
%
% See also: inputdlg2(), errordlg2(), supergui(), inputgui()
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [result] = questdlg2(Prompt,Title,varargin);
result = '';
if nargin < 2
help questdlg2;
return;
end;
if isempty(varargin)
varargin = { 'Yes' 'No' 'Cancel' 'Yes' };
end;
result = varargin{end};
if Prompt(end) == 10, Prompt(end) = []; end;
if Prompt(end) == 10, Prompt(end) = []; end;
if Prompt(end) == 10, Prompt(end) = []; end;
if Prompt(end) == 10, Prompt(end) = []; end;
fig = figure('visible', 'off');
set(gcf, 'name', Title);
listui = {};
geometry = {};
if ~isempty(find(Prompt == 10))
indlines = find(Prompt == 10);
if indlines(1) ~= 1, indlines = [ 0 indlines ]; end;
if indlines(end) ~= length(Prompt), indlines = [ indlines length(Prompt)+1 ]; end;
for index = 1:length(indlines)-1
geometry{index} = [1];
listui{index} = { 'Style', 'text', 'string' Prompt(indlines(index)+1:indlines(index+1)-1) };
end;
else
for index = 1:size(Prompt,1)
geometry{index} = [1];
listui{index} = { 'Style', 'text', 'string' Prompt(index,:) };
end;
end;
listui{end+1} = {};
geometry = { geometry{:} 1 ones(1,length(varargin)-1) };
for index = 1:length(varargin)-1 % ignoring default val
listui = {listui{:} { 'width',80,'align','center','Style', 'pushbutton', 'string', varargin{index}, 'callback', ['set(gcbf, ''userdata'', ''' varargin{index} ''');'] } };
if strcmp(varargin{index}, varargin{end})
listui{end}{end+1} = 'fontweight';
listui{end}{end+1} = 'bold';
end;
end;
%cr = length(find(Prompt == char(10)))+1;
%if cr == 1
% cr = size(Prompt,1);
%end;
%cr = cr^(7/);
%if cr >= 8, cr = cr-1; end;
%if cr >= 4, cr = cr-1; end;
%[tmp tmp2 allobj] = supergui( 'fig', fig, 'geomhoriz', geometry, 'geomvert', [cr 1 1], 'uilist', listui, ...
[tmp tmp2 allobj] = supergui( 'fig', fig, 'geomhoriz', geometry, 'uilist', listui, ...
'borders', [0.02 0.015 0.08 0.06], 'spacing', [0 0], 'horizontalalignment', 'left', 'adjustbuttonwidth', 'on' );
waitfor( fig, 'userdata');
try,
result = get(fig, 'userdata');
close(fig);
drawnow;
end;
|
github
|
lcnbeapp/beapp-master
|
listdlg2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/listdlg2.m
| 3,771 |
utf_8
|
a0820fcb823bcb9968afa377c5582498
|
% listdlg2() - listdlg function clone with coloring and help for
% eeglab().
%
% Usage: same as listdlg()
%
% Author: Arnaud Delorme, CNL / Salk Institute, La Jolla, 16 August 2002
%
% See also: inputdlg2(), errordlg2(), supergui(), inputgui()
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [vals, okornot, strval] = listdlg2(varargin);
if nargin < 2
help listdlg2;
return;
end;
for index = 1:length(varargin)
if iscell(varargin{index}), varargin{index} = { varargin{index} }; end;
if isstr(varargin{index}), varargin{index} = lower(varargin{index}); end;
end;
g = struct(varargin{:});
try, g.promptstring; catch, g.promptstring = ''; end;
try, g.liststring; catch, error('''liststring'' must be defined'); end;
try, g.selectionmode; catch, g.selectionmode = 'multiple'; end;
try, g.listsize; catch, g.listsize = []; end;
try, g.initialvalue; catch, g.initialvalue = []; end;
try, g.name; catch, g.name = ''; end;
fig = figure('visible', 'off');
set(gcf, 'name', g.name);
if isstr(g.liststring)
allstr = g.liststring;
else
allstr = '';
for index = 1:length(g.liststring)
allstr = [ allstr '|' g.liststring{index} ];
end;
allstr = allstr(2:end);
end;
geometry = {[1] [1 1]};
geomvert = [min(length(g.liststring), 10) 1];
if ~strcmpi(g.selectionmode, 'multiple') | ...
(iscell(g.liststring) & length(g.liststring) == 1) | ...
(isstr (g.liststring) & size (g.liststring,1) == 1 & isempty(find(g.liststring == '|')))
if isempty(g.initialvalue), g.initialvalue = 1; end;
minval = 1;
maxval = 1;
else
minval = 0;
maxval = 2;
end;
listui = {{ 'Style', 'listbox', 'tag', 'listboxvals', 'string', allstr, 'max', maxval, 'min', minval } ...
{ 'Style', 'pushbutton', 'string', 'Cancel', 'callback', ['set(gcbf, ''userdata'', ''cancel'');'] } ...
{ 'Style', 'pushbutton', 'string', 'Ok' , 'callback', ['set(gcbf, ''userdata'', ''ok'');'] } };
if ~isempty(g.promptstring)
geometry = {[1] geometry{:}};
geomvert = [1 geomvert];
listui = { { 'Style', 'text', 'string', g.promptstring } listui{:}};
end;
[tmp tmp2 allobj] = supergui( fig, geometry, geomvert, listui{:} );
% assign value to listbox
% must be done after creating it
% ------------------------------
lstbox = findobj(fig, 'tag', 'listboxvals');
set(lstbox, 'value', g.initialvalue);
if ~isempty(g.listsize)
pos = get(gcf, 'position');
set(gcf, 'position', [ pos(1:2) g.listsize]);
end;
h = findobj( 'parent', fig, 'tag', 'listboxvals');
okornot = 0;
strval = '';
vals = [];
figure(fig);
drawnow;
waitfor( fig, 'userdata');
try,
vals = get(h, 'value');
strval = '';
if iscell(g.liststring)
for index = vals
strval = [ strval ' ' g.liststring{index} ];
end;
else
for index = vals
strval = [ strval ' ' g.liststring(index,:) ];
end;
end;
strval = strval(2:end);
if strcmp(get(fig, 'userdata'), 'cancel')
okornot = 0;
else
okornot = 1;
end;
close(fig);
drawnow;
end;
|
github
|
lcnbeapp/beapp-master
|
finputcheck.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/finputcheck.m
| 9,133 |
utf_8
|
fe838fecdd60e76a4006a13c7c1b20e4
|
% finputcheck() - check Matlab function {'key','value'} input argument pairs
%
% Usage: >> result = finputcheck( varargin, fieldlist );
% >> [result varargin] = finputcheck( varargin, fieldlist, ...
% callingfunc, mode, verbose );
% Input:
% varargin - Cell array 'varargin' argument from a function call using 'key',
% 'value' argument pairs. See Matlab function 'varargin'.
% May also be a structure such as struct(varargin{:})
% fieldlist - A 4-column cell array, one row per 'key'. The first
% column contains the key string, the second its type(s),
% the third the accepted value range, and the fourth the
% default value. Allowed types are 'boolean', 'integer',
% 'real', 'string', 'cell' or 'struct'. For example,
% {'key1' 'string' { 'string1' 'string2' } 'defaultval_key1'}
% {'key2' {'real' 'integer'} { minint maxint } 'defaultval_key2'}
% callingfunc - Calling function name for error messages. {default: none}.
% mode - ['ignore'|'error'] ignore keywords that are either not specified
% in the fieldlist cell array or generate an error.
% {default: 'error'}.
% verbose - ['verbose', 'quiet'] print information. Default: 'verbose'.
%
% Outputs:
% result - If no error, structure with 'key' as fields and 'value' as
% content. If error this output contain the string error.
% varargin - residual varagin containing unrecognized input arguments.
% Requires mode 'ignore' above.
%
% Note: In case of error, a string is returned containing the error message
% instead of a structure.
%
% Example (insert the following at the beginning of your function):
% result = finputcheck(varargin, ...
% { 'title' 'string' [] ''; ...
% 'percent' 'real' [0 1] 1 ; ...
% 'elecamp' 'integer' [1:10] [] });
% if isstr(result)
% error(result);
% end
%
% Note:
% The 'title' argument should be a string. {no default value}
% The 'percent' argument should be a real number between 0 and 1. {default: 1}
% The 'elecamp' argument should be an integer between 1 and 10 (inclusive).
%
% Now 'g.title' will contain the title arg (if any, else the default ''), etc.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 10 July 2002
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, 10 July 2002, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [g, varargnew] = finputcheck( vararg, fieldlist, callfunc, mode, verbose )
if nargin < 2
help finputcheck;
return;
end;
if nargin < 3
callfunc = '';
else
callfunc = [callfunc ' ' ];
end;
if nargin < 4
mode = 'do not ignore';
end;
if nargin < 5
verbose = 'verbose';
end;
NAME = 1;
TYPE = 2;
VALS = 3;
DEF = 4;
SIZE = 5;
varargnew = {};
% create structure
% ----------------
if ~isempty(vararg)
if isstruct(vararg)
g = vararg;
else
for index=1:length(vararg)
if iscell(vararg{index})
vararg{index} = {vararg{index}};
end;
end;
try
g = struct(vararg{:});
catch
vararg = removedup(vararg, verbose);
try
g = struct(vararg{:});
catch
g = [ callfunc 'error: bad ''key'', ''val'' sequence' ]; return;
end;
end;
end;
else
g = [];
end;
for index = 1:size(fieldlist,NAME)
% check if present
% ----------------
if ~isfield(g, fieldlist{index, NAME})
g = setfield( g, fieldlist{index, NAME}, fieldlist{index, DEF});
end;
tmpval = getfield( g, {1}, fieldlist{index, NAME});
% check type
% ----------
if ~iscell( fieldlist{index, TYPE} )
res = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}, ...
fieldlist{index, VALS}, tmpval, callfunc );
if isstr(res), g = res; return; end;
else
testres = 0;
tmplist = fieldlist;
for it = 1:length( fieldlist{index, TYPE} )
if ~iscell(fieldlist{index, VALS})
res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ...
fieldlist{index, VALS}, tmpval, callfunc );
else res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ...
fieldlist{index, VALS}{it}, tmpval, callfunc );
end;
if ~isstr(res{it}), testres = 1; end;
end;
if testres == 0,
g = res{1};
for tmpi = 2:length(res)
g = [ g 10 'or ' res{tmpi} ];
end;
return;
end;
end;
end;
% check if fields are defined
% ---------------------------
allfields = fieldnames(g);
for index=1:length(allfields)
if isempty(strmatch(allfields{index}, fieldlist(:, 1)', 'exact'))
if ~strcmpi(mode, 'ignore')
g = [ callfunc 'error: undefined argument ''' allfields{index} '''']; return;
end;
varargnew{end+1} = allfields{index};
varargnew{end+1} = getfield(g, {1}, allfields{index});
end;
end;
function g = fieldtest( fieldname, fieldtype, fieldval, tmpval, callfunc );
NAME = 1;
TYPE = 2;
VALS = 3;
DEF = 4;
SIZE = 5;
g = [];
switch fieldtype
case { 'integer' 'real' 'boolean' 'float' },
if ~isnumeric(tmpval) && ~islogical(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be numeric' ]; return;
end;
if strcmpi(fieldtype, 'boolean')
if tmpval ~=0 && tmpval ~= 1
g = [ callfunc 'error: argument ''' fieldname ''' must be 0 or 1' ]; return;
end;
else
if strcmpi(fieldtype, 'integer')
if ~isempty(fieldval)
if (any(isnan(tmpval(:))) && ~any(isnan(fieldval))) ...
&& (~ismember(tmpval, fieldval))
g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return;
end;
end;
else % real or float
if ~isempty(fieldval) && ~isempty(tmpval)
if any(tmpval < fieldval(1)) || any(tmpval > fieldval(2))
g = [ callfunc 'error: value out of range for argument ''' fieldname '''' ]; return;
end;
end;
end;
end;
case 'string'
if ~isstr(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a string' ]; return;
end;
if ~isempty(fieldval)
if isempty(strmatch(lower(tmpval), lower(fieldval), 'exact'))
g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return;
end;
end;
case 'cell'
if ~iscell(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a cell array' ]; return;
end;
case 'struct'
if ~isstruct(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a structure' ]; return;
end;
case 'function_handle'
if ~isa(tmpval, 'function_handle')
g = [ callfunc 'error: argument ''' fieldname ''' must be a function handle' ]; return;
end;
case '';
otherwise, error([ 'finputcheck error: unrecognized type ''' fieldname '''' ]);
end;
% remove duplicates in the list of parameters
% -------------------------------------------
function cella = removedup(cella, verbose)
% make sure if all the values passed to unique() are strings, if not, exist
%try
[tmp indices] = unique_bc(cella(1:2:end));
if length(tmp) ~= length(cella)/2
myfprintf(verbose,'Note: duplicate ''key'', ''val'' parameter(s), keeping the last one(s)\n');
end;
cella = cella(sort(union(indices*2-1, indices*2)));
%catch
% some elements of cella were not string
% error('some ''key'' values are not string.');
%end;
function myfprintf(verbose, varargin)
if strcmpi(verbose, 'verbose')
fprintf(varargin{:});
end;
|
github
|
lcnbeapp/beapp-master
|
inputdlg2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/inputdlg2.m
| 2,497 |
utf_8
|
f37d94d5821140270d3242f0d5d06659
|
% inputdlg2() - inputdlg function clone with coloring and help for
% eeglab().
%
% Usage:
% >> Answer = inputdlg2(Prompt,Title,LineNo,DefAns,funcname);
%
% Inputs:
% Same as inputdlg. Using the optional additionnal funcname parameter
% the function will create a help button. The help message will be
% displayed using the pophelp() function.
%
% Output:
% Same as inputdlg
%
% Note: The advantage of this function is that the color of the window
% can be changed and that it displays an help button. Edit
% supergui to change window options. Also the parameter LineNo
% can only be one.
%
% Author: Arnaud Delorme, CNL / Salk Institute, La Jolla, 11 August 2002
%
% See also: supergui(), inputgui()
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [result] = inputdlg2(Prompt,Title,LineNo,DefAns,funcname);
if nargin < 4
help inputdlg2;
return;
end;
if nargin < 5
funcname = '';
end;
if length(Prompt) ~= length(DefAns)
error('inputdlg2: prompt and default answer cell array must have the smae size');
end;
geometry = {};
listgui = {};
% determine if vertical or horizontal
% -----------------------------------
geomvert = [];
for index = 1:length(Prompt)
geomvert = [geomvert size(Prompt{index},1) 1]; % default is vertical geometry
end;
if all(geomvert == 1) & length(Prompt) > 1
geomvert = []; % horizontal
end;
for index = 1:length(Prompt)
if ~isempty(geomvert) % vertical
geometry = { geometry{:} [ 1] [1 ]};
else
geometry = { geometry{:} [ 1 0.6 ]};
end;
listgui = { listgui{:} { 'Style', 'text', 'string', Prompt{index}} ...
{ 'Style', 'edit', 'string', DefAns{index} } };
end;
result = inputgui(geometry, listgui, ['pophelp(''' funcname ''');'], Title, [], 'normal', geomvert);
|
github
|
lcnbeapp/beapp-master
|
inputgui.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/functions/guifunc/inputgui.m
| 13,049 |
utf_8
|
4d1fcb532034d20d2ab20e9c28f5da11
|
% inputgui() - A comprehensive gui automatic builder. This function helps
% to create GUI very quickly without bothering about the
% positions of the elements. After creating a geometry,
% elements just place themselves in the predefined
% locations. It is especially useful for figures in which
% you intend to put text buttons and descriptions.
%
% Usage:
% >> [ outparam ] = inputgui( 'key1', 'val1', 'key2', 'val2', ... );
% >> [ outparam userdat strhalt outstruct] = ...
% inputgui( 'key1', 'val1', 'key2', 'val2', ... );
%
% Inputs:
% 'geom' - cell array of cell array of integer vector. Each cell
% array defines the coordinate of a given input in the
% following manner: { nb_row nb_col [x_topcorner y_topcorner]
% [x_bottomcorner y_bottomcorner] };
% 'geometry' - cell array describing horizontal geometry. This corresponds
% to the supergui function input 'geomhoriz'
% 'geomvert' - vertical geometry argument, this argument is passed on to
% the supergui function
% 'uilist' - list of uicontrol lists describing elements properties
% { { ui1 }, { ui2 }... }, { 'uiX' } being GUI matlab
% uicontrol arguments such as { 'style', 'radiobutton',
% 'String', 'hello' }. See Matlab function uicontrol() for details.
% 'helpcom' - optional help command
% 'helpbut' - text for help button
% 'title' - optional figure title
% 'userdata' - optional userdata input for the figure
% 'mode' - ['normal'|'noclose'|'plot' fignumber]. Either wait for
% user to press OK or CANCEL ('normal'), return without
% closing window input ('noclose'), only draw the gui ('plot')
% or process an existing window which number is given as
% input (fignumber). Default is 'normal'.
% 'eval' - [string] command to evaluate at the end of the creation
% of the GUI but before waiting for user input.
% 'screenpos' - see supergui.m help message.
% 'skipline' - ['on'|'off'] skip a row before the "OK" and "Cancel"
% button. Default is 'on'.
%
% Output:
% outparam - list of outputs. The function scans all lines and
% add up an output for each interactive uicontrol, i.e
% edit box, radio button, checkbox and listbox.
% userdat - 'userdata' value of the figure.
% strhalt - the function returns when the 'userdata' field of the
% button with the tag 'ok' is modified. This returns the
% new value of this field.
% outstruct - returns outputs as a structure (only tagged ui controls
% are considered). The field name of the structure is
% the tag of the ui and contain the ui value or string.
% instruct - resturn inputs provided in the same format as 'outstruct'
% This allow to compare in/outputs more easy.
%
% Note: the function also adds three buttons at the bottom of each
% interactive windows: 'CANCEL', 'HELP' (if callback command
% is provided) and 'OK'.
%
% Example:
% res = inputgui('geometry', { 1 1 }, 'uilist', ...
% { { 'style' 'text' 'string' 'Enter a value' } ...
% { 'style' 'edit' 'string' '' } });
%
% res = inputgui('geom', { {2 1 [0 0] [1 1]} {2 1 [1 0] [1 1]} }, 'uilist', ...
% { { 'style' 'text' 'string' 'Enter a value' } ...
% { 'style' 'edit' 'string' '' } });
%
% Author: Arnaud Delorme, CNL / Salk Institute, La Jolla, 1 Feb 2002
%
% See also: supergui(), eeglab()
% Copyright (C) Arnaud Delorme, CNL/Salk Institute, 27 Jan 2002, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [result, userdat, strhalt, resstruct, instruct] = inputgui( varargin);
if nargin < 2
help inputgui;
return;
end;
% decoding input and backward compatibility
% -----------------------------------------
if isstr(varargin{1})
options = varargin;
else
options = { 'geometry' 'uilist' 'helpcom' 'title' 'userdata' 'mode' 'geomvert' };
options = { options{1:length(varargin)}; varargin{:} };
options = options(:)';
end;
% checking inputs
% ---------------
g = finputcheck(options, { 'geom' 'cell' [] {}; ...
'geometry' {'cell','integer'} [] []; ...
'uilist' 'cell' [] {}; ...
'helpcom' { 'string','cell' } { [] [] } ''; ...
'title' 'string' [] ''; ...
'eval' 'string' [] ''; ...
'helpbut' 'string' [] 'Help'; ...
'skipline' 'string' { 'on' 'off' } 'on'; ...
'addbuttons' 'string' { 'on' 'off' } 'on'; ...
'userdata' '' [] []; ...
'getresult' 'real' [] []; ...
'minwidth' 'real' [] 200; ...
'screenpos' '' [] []; ...
'mode' '' [] 'normal'; ...
'geomvert' 'real' [] [] ...
}, 'inputgui');
if isstr(g), error(g); end;
if isempty(g.getresult)
if isstr(g.mode)
fig = figure('visible', 'off');
set(fig, 'name', g.title);
set(fig, 'userdata', g.userdata);
if ~iscell( g.geometry )
oldgeom = g.geometry;
g.geometry = {};
for row = 1:length(oldgeom)
g.geometry = { g.geometry{:} ones(1, oldgeom(row)) };
end;
end
% skip a line
if strcmpi(g.skipline, 'on'),
g.geometry = { g.geometry{:} [1] };
if ~isempty(g.geom)
for ind = 1:length(g.geom)
g.geom{ind}{2} = g.geom{ind}{2}+1; % add one row
end;
g.geom = { g.geom{:} {1 g.geom{1}{2} [0 g.geom{1}{2}-2] [1 1] } };
end;
g.uilist = { g.uilist{:}, {} };
end;
% add buttons
if strcmpi(g.addbuttons, 'on'),
g.geometry = { g.geometry{:} [1 1 1 1] };
if ~isempty(g.geom)
for ind = 1:length(g.geom)
g.geom{ind}{2} = g.geom{ind}{2}+1; % add one row
end;
g.geom = { g.geom{:} ...
{4 g.geom{1}{2} [0 g.geom{1}{2}-1] [1 1] }, ...
{4 g.geom{1}{2} [1 g.geom{1}{2}-1] [1 1] }, ...
{4 g.geom{1}{2} [2 g.geom{1}{2}-1] [1 1] }, ...
{4 g.geom{1}{2} [3 g.geom{1}{2}-1] [1 1] } };
end;
if ~isempty(g.helpcom)
if ~iscell(g.helpcom)
g.uilist = { g.uilist{:}, { 'width' 80 'align' 'left' 'Style', 'pushbutton', 'string', g.helpbut, 'tag', 'help', 'callback', g.helpcom } {} };
else
g.uilist = { g.uilist{:}, { 'width' 80 'align' 'left' 'Style', 'pushbutton', 'string', 'Help gui', 'callback', g.helpcom{1} } };
g.uilist = { g.uilist{:}, { 'width' 80 'align' 'left' 'Style', 'pushbutton', 'string', 'More help', 'callback', g.helpcom{2} } };
end;
else
g.uilist = { g.uilist{:}, {} {} };
end;
g.uilist = { g.uilist{:}, { 'width' 80 'align' 'right' 'Style', 'pushbutton', 'string', 'Cancel', 'tag' 'cancel' 'callback', 'close gcbf' } };
g.uilist = { g.uilist{:}, { 'width' 80 'align' 'right' 'stickto' 'on' 'Style', 'pushbutton', 'tag', 'ok', 'string', 'OK', 'callback', 'set(gcbo, ''userdata'', ''retuninginputui'');' } };
end;
% add the three buttons (CANCEL HELP OK) at the bottom of the GUI
% ---------------------------------------------------------------
if ~isempty(g.geom)
[tmp tmp2 allobj] = supergui( 'fig', fig, 'minwidth', g.minwidth, 'geom', g.geom, 'uilist', g.uilist, 'screenpos', g.screenpos );
elseif isempty(g.geomvert)
[tmp tmp2 allobj] = supergui( 'fig', fig, 'minwidth', g.minwidth, 'geomhoriz', g.geometry, 'uilist', g.uilist, 'screenpos', g.screenpos );
else
if strcmpi(g.skipline, 'on'), g.geomvert = [g.geomvert(:)' 1]; end;
if strcmpi(g.addbuttons, 'on'),g.geomvert = [g.geomvert(:)' 1]; end;
[tmp tmp2 allobj] = supergui( 'fig', fig, 'minwidth', g.minwidth, 'geomhoriz', g.geometry, 'uilist', g.uilist, 'screenpos', g.screenpos, 'geomvert', g.geomvert(:)' );
end;
else
fig = g.mode;
set(findobj('parent', fig, 'tag', 'ok'), 'userdata', []);
allobj = findobj('parent',fig);
allobj = allobj(end:-1:1);
end;
% evaluate command before waiting?
% --------------------------------
if ~isempty(g.eval), eval(g.eval); end;
instruct = outstruct(allobj); % Getting default values in the GUI.
% create figure and wait for return
% ---------------------------------
if isstr(g.mode) & (strcmpi(g.mode, 'plot') | strcmpi(g.mode, 'return') )
if strcmpi(g.mode, 'plot')
return; % only plot and returns
end;
else
waitfor( findobj('parent', fig, 'tag', 'ok'), 'userdata');
end;
else
fig = g.getresult;
allobj = findobj('parent',fig);
allobj = allobj(end:-1:1);
end;
result = {};
userdat = [];
strhalt = '';
resstruct = [];
if ~(ishandle(fig)), return; end % Check if figure still exist
% output parameters
% -----------------
strhalt = get(findobj('parent', fig, 'tag', 'ok'), 'userdata');
[resstruct,result] = outstruct(allobj); % Output parameters
userdat = get(fig, 'userdata');
% if nargout >= 4
% resstruct = myguihandles(fig, g);
% end;
if isempty(g.getresult) && isstr(g.mode) && ( strcmp(g.mode, 'normal') || strcmp(g.mode, 'return') )
close(fig);
end;
drawnow; % for windows
% function for gui res (deprecated)
% --------------------
% function g = myguihandles(fig, g)
% h = findobj('parent', fig);
% if ~isempty(get(h(index), 'tag'))
% try,
% switch get(h(index), 'style')
% case 'edit', g = setfield(g, get(h(index), 'tag'), get(h(index), 'string'));
% case { 'value' 'radio' 'checkbox' 'listbox' 'popupmenu' 'radiobutton' }, ...
% g = setfield(g, get(h(index), 'tag'), get(h(index), 'value'));
% end;
% catch, end;
% end;
function [resstructout, resultout] = outstruct(allobj)
counter = 1;
resultout = {};
resstructout = [];
for index=1:length(allobj)
if isnumeric(allobj), currentobj = allobj(index);
else currentobj = allobj{index};
end;
if isnumeric(currentobj) | ~isprop(currentobj,'GetPropertySpecification') % To allow new object handles
try,
objstyle = get(currentobj, 'style');
switch lower( objstyle )
case { 'listbox', 'checkbox', 'radiobutton' 'popupmenu' 'radio' }
resultout{counter} = get( currentobj, 'value');
if ~isempty(get(currentobj, 'tag')), resstructout = setfield(resstructout, get(currentobj, 'tag'), resultout{counter}); end;
counter = counter+1;
case 'edit'
resultout{counter} = get( currentobj, 'string');
if ~isempty(get(currentobj, 'tag')), resstructout = setfield(resstructout, get(currentobj, 'tag'), resultout{counter}); end;
counter = counter+1;
end;
catch, end;
else
ps = currentobj.GetPropertySpecification;
resultout{counter} = arg_tovals(ps,false);
count = 1;
while isfield(resstructout, ['propgrid' int2str(count)])
count = count + 1;
end;
resstructout = setfield(resstructout, ['propgrid' int2str(count)], arg_tovals(ps,false));
end;
end;
|
github
|
lcnbeapp/beapp-master
|
ft_channelselection.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_channelselection.m
| 21,836 |
utf_8
|
28496cbe0aca921c174ce4c277f55e6a
|
function [channel] = ft_channelselection(desired, datachannel, senstype)
% FT_CHANNELSELECTION makes a selection of EEG and/or MEG channel labels.
% This function translates the user-specified list of channels into channel
% labels as they occur in the data. This channel selection procedure can be
% used throughout FieldTrip.
%
% Use as:
% channel = ft_channelselection(desired, datachannel)
%
% You can specify a mixture of real channel labels and of special strings,
% or index numbers that will be replaced by the corresponding channel
% labels. Channels that are not present in the raw datafile are
% automatically removed from the channel list.
%
% E.g. the input 'channel' can be:
% 'all' is replaced by all channels in the datafile
% 'gui' a graphical user interface will pop up to select the channels
% 'C*' is replaced by all channels that match the wildcard, e.g. C1, C2, C3, ...
% '*1' is replaced by all channels that match the wildcard, e.g. C1, P1, F1, ...
% 'M*1' is replaced by all channels that match the wildcard, e.g. MEG0111, MEG0131, MEG0131, ...
% 'meg' is replaced by all MEG channels (works for CTF, 4D, Neuromag and Yokogawa)
% 'megref' is replaced by all MEG reference channels (works for CTF and 4D)
% 'meggrad' is replaced by all MEG gradiometer channels (works for Yokogawa and Neuromag-306)
% 'megmag' is replaced by all MEG magnetometer channels (works for Yokogawa and Neuromag-306)
% 'eeg' is replaced by all recognized EEG channels (this is system dependent)
% 'eeg1020' is replaced by 'Fp1', 'Fpz', 'Fp2', 'F7', 'F3', ...
% 'eog' is replaced by all recognized EOG channels
% 'ecg' is replaced by all recognized ECG channels
% 'nirs' is replaced by all channels recognized as NIRS channels
% 'emg' is replaced by all channels in the datafile starting with 'EMG'
% 'lfp' is replaced by all channels in the datafile starting with 'lfp'
% 'mua' is replaced by all channels in the datafile starting with 'mua'
% 'spike' is replaced by all channels in the datafile starting with 'spike'
% 10 is replaced by the 10th channel in the datafile
%
% Other channel groups are
% 'EEG1010' with approximately 90 electrodes
% 'EEG1005' with approximately 350 electrodes
% 'EEGCHWILLA' for Dorothee Chwilla's electrode caps (used at the DCC)
% 'EEGBHAM' for the 128 channel EEG system used in Birmingham
% 'EEGREF' for mastoid and ear electrodes (M1, M2, LM, RM, A1, A2)
% 'MZ' for MEG zenith
% 'ML' for MEG left
% 'MR' for MEG right
% 'MLx', 'MRx' and 'MZx' with x=C,F,O,P,T for left/right central, frontal, occipital, parietal and temporal
%
% You can also exclude channels or channel groups using the following syntax
% {'all', '-POz', '-Fp1', -EOG'}
%
% See also FT_PREPROCESSING, FT_SENSLABEL, FT_MULTIPLOTER, FT_MULTIPLOTTFR,
% FT_SINGLEPLOTER, FT_SINGLEPLOTTFR
% Note that the order of channels that is returned should correspond with
% the order of the channels in the data.
% Copyright (C) 2003-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this is to avoid a recursion loop
persistent recursion
if isempty(recursion)
recursion = false;
end
if nargin<3
senstype = ft_senstype(datachannel);
end
if ~iscell(datachannel)
if ischar(datachannel)
datachannel = {datachannel};
else
error('please specify the data channels as a cell-array');
end
end
if ~ischar(desired) && ~isnumeric(desired) && ~iscell(desired)
error('please specify the desired channels as a cell-array or a string');
end
% start with the list of desired channels, this will be pruned/expanded
channel = desired;
if length(datachannel)~=length(unique(datachannel))
warning('discarding non-unique channel names');
sel = false(size(datachannel));
for i=1:length(datachannel)
sel(i) = sum(strcmp(datachannel, datachannel{i}))==1;
end
datachannel = datachannel(sel);
end
if any(size(channel) == 0)
% there is nothing to do if it is empty
return
end
if ~iscell(datachannel)
% ensure that a single input argument like 'all' also works
datachannel = {datachannel};
end
if isnumeric(channel)
% remove channels tha fall outside the range
channel = channel(channel>=1 & channel<=numel(datachannel));
% change index into channelname
channel = datachannel(channel);
return
end
if ~iscell(channel)
% ensure that a single input argument like 'all' also works
% the case of a vector with channel indices has already been dealt with
channel = {channel};
end
% ensure that both inputs are column vectors
channel = channel(:);
datachannel = datachannel(:);
% remove channels that occur more than once, this sorts the channels alphabetically
[channel, indx] = unique(channel);
% undo the sorting, make the order identical to that of the data channels
[dum, indx] = sort(indx);
channel = channel(indx);
[dataindx, chanindx] = match_str(datachannel, channel);
if length(chanindx)==length(channel)
% there is a perfect match between the channels and the datachannels, only some reordering is needed
channel = channel(chanindx);
% no need to look at channel groups
return
end
% define the known groups with channel labels
labelall = datachannel;
label1020 = ft_senslabel('eeg1020'); % use external helper function
label1010 = ft_senslabel('eeg1010'); % use external helper function
label1005 = ft_senslabel('eeg1005'); % use external helper function
labelchwilla = {'Fz', 'Cz', 'Pz', 'F7', 'F8', 'LAT', 'RAT', 'LT', 'RT', 'LTP', 'RTP', 'OL', 'OR', 'FzA', 'Oz', 'F7A', 'F8A', 'F3A', 'F4A', 'F3', 'F4', 'P3', 'P4', 'T5', 'T6', 'P3P', 'P4P'}';
labelbham = {'P9', 'PPO9h', 'PO7', 'PPO5h', 'PPO3h', 'PO5h', 'POO9h', 'PO9', 'I1', 'OI1h', 'O1', 'POO1', 'PO3h', 'PPO1h', 'PPO2h', 'POz', 'Oz', 'Iz', 'I2', 'OI2h', 'O2', 'POO2', 'PO4h', 'PPO4h', 'PO6h', 'POO10h', 'PO10', 'PO8', 'PPO6h', 'PPO10h', 'P10', 'P8', 'TPP9h', 'TP7', 'TTP7h', 'CP5', 'TPP7h', 'P7', 'P5', 'CPP5h', 'CCP5h', 'CP3', 'P3', 'CPP3h', 'CCP3h', 'CP1', 'P1', 'Pz', 'CPP1h', 'CPz', 'CPP2h', 'P2', 'CPP4h', 'CP2', 'CCP4h', 'CP4', 'P4', 'P6', 'CPP6h', 'CCP6h', 'CP6', 'TPP8h', 'TP8', 'TPP10h', 'T7', 'FTT7h', 'FT7', 'FC5', 'FCC5h', 'C5', 'C3', 'FCC3h', 'FC3', 'FC1', 'C1', 'CCP1h', 'Cz', 'FCC1h', 'FCz', 'FFC1h', 'Fz', 'FFC2h', 'FC2', 'FCC2h', 'CCP2h', 'C2', 'C4', 'FCC4h', 'FC4', 'FC6', 'FCC6h', 'C6', 'TTP8h', 'T8', 'FTT8h', 'FT8', 'FT9', 'FFT9h', 'F7', 'FFT7h', 'FFC5h', 'F5', 'AFF7h', 'AF7', 'AF5h', 'AFF5h', 'F3', 'FFC3h', 'F1', 'AF3h', 'Fp1', 'Fpz', 'Fp2', 'AFz', 'AF4h', 'F2', 'FFC4h', 'F4', 'AFF6h', 'AF6h', 'AF8', 'AFF8h', 'F6', 'FFC6h', 'FFT8h', 'F8', 'FFT10h', 'FT10'};
labelref = {'M1', 'M2', 'LM', 'RM', 'A1', 'A2'}';
labeleog = datachannel(strncmp('EOG', datachannel, length('EOG'))); % anything that starts with EOG
labeleog = [labeleog(:); {'HEOG', 'VEOG', 'VEOG-L', 'VEOG-R', 'hEOG', 'vEOG', 'Eye_Ver', 'Eye_Hor'}']; % or any of these
labelecg = datachannel(strncmp('ECG', datachannel, length('ECG')));
labelemg = datachannel(strncmp('EMG', datachannel, length('EMG')));
labellfp = datachannel(strncmp('lfp', datachannel, length('lfp')));
labelmua = datachannel(strncmp('mua', datachannel, length('mua')));
labelspike = datachannel(strncmp('spike', datachannel, length('spike')));
labelnirs = datachannel(~cellfun(@isempty, regexp(datachannel, sprintf('%s%s', regexptranslate('wildcard','Rx*-Tx*[*]'), '$'))));
% use regular expressions to deal with the wildcards
labelreg = false(size(datachannel));
findreg = [];
for i=1:length(channel)
if length(channel{i}) < 1
continue;
end
if strcmp((channel{i}(1)), '-')
% skip channels to be excluded
continue;
end
rexp = sprintf('%s%s%s', '^', regexptranslate('wildcard',channel{i}), '$');
lreg = ~cellfun(@isempty, regexp(datachannel, rexp));
if any(lreg)
labelreg = labelreg | lreg;
findreg = [findreg; i];
end
end
if ~isempty(findreg)
findreg = unique(findreg); % remove multiple occurances due to multiple wildcards
labelreg = datachannel(labelreg);
end
% initialize all the system-specific variables to empty
labelmeg = [];
labelmeggrad = [];
labelmegref = [];
labelmegmag = [];
labeleeg = [];
switch senstype
case {'yokogawa', 'yokogawa160', 'yokogawa160_planar', 'yokogawa64', 'yokogawa64_planar', 'yokogawa440', 'yokogawa440_planar'}
% Yokogawa axial gradiometers channels start with AG, hardware planar gradiometer
% channels start with PG, magnetometers start with M
megax = strncmp('AG', datachannel, length('AG'));
megpl = strncmp('PG', datachannel, length('PG'));
megmag = strncmp('M', datachannel, length('M' ));
megind = logical( megax + megpl + megmag);
labelmeg = datachannel(megind);
labelmegmag = datachannel(megmag);
labelmeggrad = datachannel(megax | megpl);
case {'ctf64'}
labelml = datachannel(~cellfun(@isempty, regexp(datachannel, '^SL'))); % left MEG channels
labelmr = datachannel(~cellfun(@isempty, regexp(datachannel, '^SR'))); % right MEG channels
labelmeg = cat(1, labelml, labelmr);
labelmegref = [datachannel(strncmp('B' , datachannel, 1));
datachannel(strncmp('G' , datachannel, 1));
datachannel(strncmp('P' , datachannel, 1));
datachannel(strncmp('Q' , datachannel, 1));
datachannel(strncmp('R' , datachannel, length('G' )))];
case {'ctf', 'ctf275', 'ctf151', 'ctf275_planar', 'ctf151_planar'}
% all CTF MEG channels start with "M"
% all CTF reference channels start with B, G, P, Q or R
% all CTF EEG channels start with "EEG"
labelmeg = datachannel(strncmp('M' , datachannel, length('M' )));
labelmegref = [datachannel(strncmp('B' , datachannel, 1));
datachannel(strncmp('G' , datachannel, 1));
datachannel(strncmp('P' , datachannel, 1));
datachannel(strncmp('Q' , datachannel, 1));
datachannel(strncmp('R' , datachannel, length('G' )))];
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
% Not sure whether this should be here or outside the switch or
% whether these specifications should be supported for systems
% other than CTF.
labelmz = datachannel(strncmp('MZ' , datachannel, length('MZ' ))); % central MEG channels
labelml = datachannel(strncmp('ML' , datachannel, length('ML' ))); % left MEG channels
labelmr = datachannel(strncmp('MR' , datachannel, length('MR' ))); % right MEG channels
labelmlc = datachannel(strncmp('MLC', datachannel, length('MLC')));
labelmlf = datachannel(strncmp('MLF', datachannel, length('MLF')));
labelmlo = datachannel(strncmp('MLO', datachannel, length('MLO')));
labelmlp = datachannel(strncmp('MLP', datachannel, length('MLP')));
labelmlt = datachannel(strncmp('MLT', datachannel, length('MLT')));
labelmrc = datachannel(strncmp('MRC', datachannel, length('MRC')));
labelmrf = datachannel(strncmp('MRF', datachannel, length('MRF')));
labelmro = datachannel(strncmp('MRO', datachannel, length('MRO')));
labelmrp = datachannel(strncmp('MRP', datachannel, length('MRP')));
labelmrt = datachannel(strncmp('MRT', datachannel, length('MRT')));
labelmzc = datachannel(strncmp('MZC', datachannel, length('MZC')));
labelmzf = datachannel(strncmp('MZF', datachannel, length('MZF')));
labelmzo = datachannel(strncmp('MZO', datachannel, length('MZO')));
labelmzp = datachannel(strncmp('MZP', datachannel, length('MZP')));
case {'bti', 'bti248', 'bti248grad', 'bti148', 'bti248_planar', 'bti148_planar'}
% all 4D-BTi MEG channels start with "A"
% all 4D-BTi reference channels start with M or G
labelmeg = datachannel(myregexp('^A[0-9]+$', datachannel));
labelmegref = [datachannel(myregexp('^M[CLR][xyz][aA]*$', datachannel)); datachannel(myregexp('^G[xyz][xyz]A$', datachannel)); datachannel(myregexp('^M[xyz][aA]*$', datachannel))];
labelmegrefa = datachannel(~cellfun(@isempty,strfind(datachannel, 'a')));
labelmegrefc = datachannel(strncmp('MC', datachannel, 2));
labelmegrefg = datachannel(myregexp('^G[xyz][xyz]A$', datachannel));
labelmegrefl = datachannel(strncmp('ML', datachannel, 2));
labelmegrefr = datachannel(strncmp('MR', datachannel, 2));
labelmegrefm = datachannel(myregexp('^M[xyz][aA]*$', datachannel));
case {'neuromag122' 'neuromag122alt'}
% all neuromag MEG channels start with MEG
% all neuromag EEG channels start with EEG
labelmeg = datachannel(strncmp('MEG', datachannel, length('MEG')));
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
case {'neuromag306' 'neuromag306alt'}
% all neuromag MEG channels start with MEG
% all neuromag EEG channels start with EEG
% all neuromag-306 gradiometers follow pattern MEG*2,MEG*3
% all neuromag-306 magnetometers follow pattern MEG*1
labelmeg = datachannel(strncmp('MEG', datachannel, length('MEG')));
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
labelmeggrad = labelmeg(~cellfun(@isempty, regexp(labelmeg, '^MEG.*[23]$')));
labelmegmag = labelmeg(~cellfun(@isempty, regexp(labelmeg, '^MEG.*1$')));
case {'ant128', 'biosemi64', 'biosemi128', 'biosemi256', 'egi32', 'egi64', 'egi128', 'egi256', 'eeg1020', 'eeg1010', 'eeg1005', 'ext1020'}
% use an external helper function to define the list with EEG channel names
labeleeg = ft_senslabel(ft_senstype(datachannel));
case {'itab153' 'itab28' 'itab28_old'}
% all itab MEG channels start with MAG
labelmeg = datachannel(strncmp('MAG', datachannel, length('MAG')));
end % switch ft_senstype
% figure out if there are bad channels or channel groups that should be excluded
findbadchannel = strncmp('-', channel, length('-')); % bad channels start with '-'
badchannel = channel(findbadchannel);
if ~isempty(badchannel)
for i=1:length(badchannel)
badchannel{i} = badchannel{i}(2:end); % remove the '-' from the channel label
end
badchannel = ft_channelselection(badchannel, datachannel); % support exclusion of channel groups
end
% determine if any of the known groups is mentioned in the channel list
findall = find(strcmp(channel, 'all'));
% findreg (for the wildcards) is dealt with in the channel group specification above
findmeg = find(strcmpi(channel, 'MEG'));
findemg = find(strcmpi(channel, 'EMG'));
findecg = find(strcmpi(channel, 'ECG'));
findeeg = find(strcmpi(channel, 'EEG'));
findeeg1020 = find(strcmpi(channel, 'EEG1020'));
findeeg1010 = find(strcmpi(channel, 'EEG1010'));
findeeg1005 = find(strcmpi(channel, 'EEG1005'));
findeegchwilla = find(strcmpi(channel, 'EEGCHWILLA'));
findeegbham = find(strcmpi(channel, 'EEGBHAM'));
findeegref = find(strcmpi(channel, 'EEGREF'));
findmegref = find(strcmpi(channel, 'MEGREF'));
findmeggrad = find(strcmpi(channel, 'MEGGRAD'));
findmegmag = find(strcmpi(channel, 'MEGMAG'));
findmegrefa = find(strcmpi(channel, 'MEGREFA'));
findmegrefc = find(strcmpi(channel, 'MEGREFC'));
findmegrefg = find(strcmpi(channel, 'MEGREFG'));
findmegrefl = find(strcmpi(channel, 'MEGREFL'));
findmegrefr = find(strcmpi(channel, 'MEGREFR'));
findmegrefm = find(strcmpi(channel, 'MEGREFM'));
findeog = find(strcmpi(channel, 'EOG'));
findmz = find(strcmp(channel, 'MZ' ));
findml = find(strcmp(channel, 'ML' ));
findmr = find(strcmp(channel, 'MR' ));
findmlc = find(strcmp(channel, 'MLC'));
findmlf = find(strcmp(channel, 'MLF'));
findmlo = find(strcmp(channel, 'MLO'));
findmlp = find(strcmp(channel, 'MLP'));
findmlt = find(strcmp(channel, 'MLT'));
findmrc = find(strcmp(channel, 'MRC'));
findmrf = find(strcmp(channel, 'MRF'));
findmro = find(strcmp(channel, 'MRO'));
findmrp = find(strcmp(channel, 'MRP'));
findmrt = find(strcmp(channel, 'MRT'));
findmzc = find(strcmp(channel, 'MZC'));
findmzf = find(strcmp(channel, 'MZF'));
findmzo = find(strcmp(channel, 'MZO'));
findmzp = find(strcmp(channel, 'MZP'));
findnirs = find(strcmpi(channel, 'NIRS'));
findlfp = find(strcmpi(channel, 'lfp'));
findmua = find(strcmpi(channel, 'mua'));
findspike = find(strcmpi(channel, 'spike'));
findgui = find(strcmpi(channel, 'gui'));
% remove any occurences of groups in the channel list
channel([
findall
findreg
findmeg
findemg
findecg
findeeg
findeeg1020
findeeg1010
findeeg1005
findeegchwilla
findeegbham
findeegref
findmegref
findmeggrad
findmegmag
findeog
findmz
findml
findmr
findmlc
findmlf
findmlo
findmlp
findmlt
findmrc
findmrf
findmro
findmrp
findmrt
findmzc
findmzf
findmzo
findmzp
findlfp
findmua
findspike
findnirs
findgui
]) = [];
% add the full channel labels to the channel list
if findall, channel = [channel; labelall]; end
if findreg, channel = [channel; labelreg]; end
if findmeg, channel = [channel; labelmeg]; end
if findecg, channel = [channel; labelecg]; end
if findemg, channel = [channel; labelemg]; end
if findeeg, channel = [channel; labeleeg]; end
if findeeg1020, channel = [channel; label1020]; end
if findeeg1010, channel = [channel; label1010]; end
if findeeg1005, channel = [channel; label1005]; end
if findeegchwilla, channel = [channel; labelchwilla]; end
if findeegbham, channel = [channel; labelbham]; end
if findeegref, channel = [channel; labelref]; end
if findmegref, channel = [channel; labelmegref]; end
if findmeggrad, channel = [channel; labelmeggrad]; end
if findmegmag, channel = [channel; labelmegmag]; end
if findmegrefa, channel = [channel; labelmegrefa]; end
if findmegrefc, channel = [channel; labelmegrefc]; end
if findmegrefg, channel = [channel; labelmegrefg]; end
if findmegrefl, channel = [channel; labelmegrefl]; end
if findmegrefr, channel = [channel; labelmegrefr]; end
if findmegrefm, channel = [channel; labelmegrefm]; end
if findeog, channel = [channel; labeleog]; end
if findmz , channel = [channel; labelmz ]; end
if findml , channel = [channel; labelml ]; end
if findmr , channel = [channel; labelmr ]; end
if findmlc, channel = [channel; labelmlc]; end
if findmlf, channel = [channel; labelmlf]; end
if findmlo, channel = [channel; labelmlo]; end
if findmlp, channel = [channel; labelmlp]; end
if findmlt, channel = [channel; labelmlt]; end
if findmrc, channel = [channel; labelmrc]; end
if findmrf, channel = [channel; labelmrf]; end
if findmro, channel = [channel; labelmro]; end
if findmrp, channel = [channel; labelmrp]; end
if findmrt, channel = [channel; labelmrt]; end
if findmzc, channel = [channel; labelmzc]; end
if findmzf, channel = [channel; labelmzf]; end
if findmzo, channel = [channel; labelmzo]; end
if findmzp, channel = [channel; labelmzp]; end
if findlfp, channel = [channel; labellfp]; end
if findmua, channel = [channel; labelmua]; end
if findspike, channel = [channel; labelspike]; end
if findnirs, channel = [channel; labelnirs]; end
% remove channel labels that have been excluded by the user
badindx = match_str(channel, badchannel);
channel(badindx) = [];
% remove channel labels that are not present in the data
chanindx = match_str(channel, datachannel);
channel = channel(chanindx);
if findgui
indx = select_channel_list(datachannel, match_str(datachannel, channel), 'Select channels');
channel = datachannel(indx);
end
% remove channels that occur more than once, this sorts the channels alphabetically
channel = unique(channel);
if isempty(channel) && ~recursion
% try whether only lowercase channel labels makes a difference
recursion = true;
channel = ft_channelselection(desired, lower(datachannel));
recursion = false;
% undo the conversion to lowercase, this sorts the channels alphabetically
[c, ia, ib] = intersect(channel, lower(datachannel));
channel = datachannel(ib);
end
if isempty(channel) && ~recursion
% try whether only uppercase channel labels makes a difference
recursion = true;
channel = ft_channelselection(desired, upper(datachannel));
recursion = false;
% undo the conversion to uppercase, this sorts the channels alphabetically
[c, ia, ib] = intersect(channel, lower(datachannel));
channel = datachannel(ib);
end
% undo the sorting, make the order identical to that of the data channels
[tmp, indx] = match_str(datachannel, channel);
channel = channel(indx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function match = myregexp(pat, list)
match = false(size(list));
for i=1:numel(list)
match(i) = ~isempty(regexp(list{i}, pat, 'once'));
end
|
github
|
lcnbeapp/beapp-master
|
ft_prepare_layout.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_prepare_layout.m
| 41,723 |
utf_8
|
f9b5585b829110b574694613d0a47fab
|
function [layout, cfg] = ft_prepare_layout(cfg, data)
% FT_PREPARE_LAYOUT loads or creates a 2-D layout of the channel locations.
% This layout is required for plotting the topographical distribution of
% the potential or field distribution, or for plotting timecourses in a
% topographical arrangement.
%
% Use as
% layout = ft_prepare_layout(cfg, data)
%
% There are several ways in which a 2-D layout can be made: it can be read
% directly from a *.mat file containing a variable 'lay', it can be created
% based on 3-D electrode or gradiometer positions in the configuration or
% in the data, or it can be created based on the specification of an
% electrode or gradiometer file. Layouts can also come from an ASCII *.lay
% file, but this type of layout is no longer recommended.
%
% You can specify any one of the following configuration options
% cfg.layout filename containg the layout (.mat or .lay file)
% can also be a layout structure, which is simply
% returned as-is (see below for details)
% cfg.rotate number, rotation around the z-axis in degrees (default = [], which means automatic)
% cfg.projection string, 2D projection method can be 'stereographic', 'orthographic',
% 'polar', 'gnomic' or 'inverse' (default = 'polar')
% cfg.elec structure with electrode definition, or
% cfg.elecfile filename containing electrode definition
% cfg.grad structure with gradiometer definition, or
% cfg.gradfile filename containing gradiometer definition
% cfg.opto structure with optode structure definition, or
% cfg.optofile filename containing optode structure definition
% cfg.output filename (ending in .mat or .lay) to which the layout
% will be written (default = [])
% cfg.montage 'no' or a montage structure (default = 'no')
% cfg.image filename, use an image to construct a layout (e.g. useful for ECoG grids)
% cfg.bw if an image is used and bw = 1 transforms the image in
% black and white (default = 0, do not transform)
% cfg.overlap string, how to deal with overlapping channels when
% layout is constructed from a sensor configuration
% structure (can be 'shift' (shift the positions in 2D
% space to remove the overlap (default)), 'keep' (don't
% shift, retain the overlap), 'no' (throw error when
% overlap is present))
% cfg.skipscale 'yes' or 'no', whether the scale should be included in the layout or not (default = 'no')
% cfg.skipcomnt 'yes' or 'no', whether the comment should be included in the layout or not (default = 'no')
%
% Alternatively the layout can be constructed from either
% data.elec structure with electrode positions
% data.grad structure with gradiometer definition
% data.opto structure with optode structure definition
%
% Alternatively you can specify the following layouts which will be
% generated for all channels present in the data. Note that these layouts
% are suitable for multiplotting, but not for topoplotting.
% cfg.layout = 'ordered' will give you a NxN ordered layout
% cfg.layout = 'vertical' will give you a Nx1 ordered layout
% cfg.layout = 'butterfly' will give you a layout with all channels on top of each other
% cfg.layout = 'circular' will distribute the channels on a circle
%
% The output layout structure will contain the following fields
% layout.label = Nx1 cell-array with channel labels
% layout.pos = Nx2 matrix with channel positions
% layout.width = Nx1 vector with the width of each box for multiplotting
% layout.height = Nx1 matrix with the height of each box for multiplotting
% layout.mask = optional cell-array with line segments that determine the area for topographic interpolation
% layout.outline = optional cell-array with line segments that represent
% the head, nose, ears, sulci or other anatomical features
%
% See also FT_TOPOPLOTER, FT_TOPOPLOTTFR, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_PLOT_LAY
% undocumented and non-recommended option (for SPM only)
% cfg.style string, '2d' or '3d' (default = '2d')
% Copyright (C) 2007-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input argument or can be read from disk
hasdata = exist('data', 'var');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% basic check/initialization of input arguments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~hasdata
data = struct([]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set default configuration options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cfg.rotate = ft_getopt(cfg, 'rotate', []); % [] => rotation is determined based on the type of sensors
cfg.style = ft_getopt(cfg, 'style', '2d');
cfg.projection = ft_getopt(cfg, 'projection', 'polar');
cfg.layout = ft_getopt(cfg, 'layout', []);
cfg.grad = ft_getopt(cfg, 'grad', []);
cfg.elec = ft_getopt(cfg, 'elec', []);
cfg.opto = ft_getopt(cfg, 'opto', []);
cfg.gradfile = ft_getopt(cfg, 'gradfile', []);
cfg.elecfile = ft_getopt(cfg, 'elecfile', []);
cfg.optofile = ft_getopt(cfg, 'optofile', []);
cfg.output = ft_getopt(cfg, 'output', []);
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
cfg.montage = ft_getopt(cfg, 'montage', 'no');
cfg.image = ft_getopt(cfg, 'image', []);
cfg.mesh = ft_getopt(cfg, 'mesh', []); % experimental, should only work with meshes defined in 2D
cfg.bw = ft_getopt(cfg, 'bw', 0);
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.skipscale = ft_getopt(cfg, 'skipscale', 'no');
cfg.skipcomnt = ft_getopt(cfg, 'skipcomnt', 'no');
cfg.overlap = ft_getopt(cfg, 'overlap', 'shift');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% try to generate the layout structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
skipscale = strcmp(cfg.skipscale, 'yes'); % in general a scale is desired
skipcomnt = strcmp(cfg.skipcomnt, 'yes'); % in general a comment desired
if isa(cfg.layout, 'config')
% convert the nested config-object back into a normal structure
cfg.layout = struct(cfg.layout);
end
% ensure that there is a label field in the data, which is needed for
% ordered/vertical/butterfly modes
if hasdata && ~isfield(data, 'label') && isfield(data, 'labelcmb')
data.label = unique(data.labelcmb(:));
end
% check whether cfg.layout already contains a valid layout structure (this can
% happen when higher level plotting functions are called with cfg.layout set to
% a layout structure)
if isstruct(cfg.layout) && isfield(cfg.layout, 'pos') && isfield(cfg.layout, 'label') && isfield(cfg.layout, 'width') && isfield(cfg.layout, 'height')
layout = cfg.layout;
elseif isstruct(cfg.layout) && isfield(cfg.layout, 'pos') && isfield(cfg.layout, 'label') && (~isfield(cfg.layout, 'width') || ~isfield(cfg.layout, 'height'))
layout = cfg.layout;
% add width and height for multiplotting
d = dist(layout.pos');
nchans = length(layout.label);
for i=1:nchans
d(i,i) = inf; % exclude the diagonal
end
mindist = min(d(:));
layout.width = ones(nchans,1) * mindist * 0.8;
layout.height = ones(nchans,1) * mindist * 0.6;
elseif isequal(cfg.layout, 'circular')
rho = ft_getopt(cfg, 'rho', []);
if hasdata && ~isempty(data)
% look at the data to determine the overlapping channels
cfg.channel = ft_channelselection(cfg.channel, data.label);
chanindx = match_str(data.label, cfg.channel);
nchan = length(data.label(chanindx));
layout.label = data.label(chanindx);
else
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
end
if isempty(rho)
% do an equally spaced layout, starting at 12 o'clock, going clockwise
rho = linspace(0,1,nchan+1);
rho = 2.*pi.*rho(1:end-1);
else
if numel(rho) ~= nchan
error('the number of elements in the polar angle vector should be equal to the number of channels');
end
% convert to radians
rho = 2.*pi.*rho./360;
end
x = sin(rho);
y = cos(rho);
layout.pos = [x(:) y(:)];
layout.width = ones(nchan,1) * 0.01;
layout.height = ones(nchan,1) * 0.01;
layout.mask = {};
layout.outline = {};
skipscale = true; % a scale is not desired
skipcomnt = true; % a comment is initially not desired, or at least requires more thought
elseif isequal(cfg.layout, 'butterfly')
if hasdata && ~isempty(data)
% look at the data to determine the overlapping channels
cfg.channel = ft_channelselection(cfg.channel, data.label);
chanindx = match_str(data.label, cfg.channel);
nchan = length(data.label(chanindx));
layout.label = data.label(chanindx);
else
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
end
layout.pos = zeros(nchan,2); % centered at (0,0)
layout.width = ones(nchan,1) * 1.0;
layout.height = ones(nchan,1) * 1.0;
layout.mask = {};
layout.outline = {};
skipscale = true; % a scale is not desired
skipcomnt = true; % a comment is initially not desired, or at least requires more thought
elseif isequal(cfg.layout, 'vertical')
if hasdata && ~isempty(data)
% look at the data to determine the overlapping channels
data = ft_checkdata(data);
originalorder = cfg.channel;
cfg.channel = ft_channelselection(cfg.channel, data.label);
if iscell(originalorder) && length(originalorder)==length(cfg.channel)
% try to keep the order identical to that specified in the configuration
[sel1, sel2] = match_str(originalorder, cfg.channel);
% re-order them according to the cfg specified by the user
cfg.channel = cfg.channel(sel2);
end
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
else
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
end
for i=1:(nchan+2)
x = 0.5;
y = 1-i/(nchan+1+2);
layout.pos (i,:) = [x y];
layout.width (i,1) = 0.9;
layout.height(i,1) = 0.9 * 1/(nchan+1+2);
if i==(nchan+1)
layout.label{i} = 'SCALE';
elseif i==(nchan+2)
layout.label{i} = 'COMNT';
end
end
layout.mask = {};
layout.outline = {};
elseif any(strcmp(cfg.layout, {'1column', '2column', '3column', '4column', '5column', '6column', '7column', '8column', '9column'}))
% it can be 2column, 3column, etcetera
% note that this code (in combination with the code further down) fails for 1column
if hasdata && ~isempty(data)
% look at the data to determine the overlapping channels
data = ft_checkdata(data);
originalorder = cfg.channel;
cfg.channel = ft_channelselection(cfg.channel, data.label);
if iscell(originalorder) && length(originalorder)==length(cfg.channel)
% try to keep the order identical to that specified in the configuration
[sel1, sel2] = match_str(originalorder, cfg.channel);
% re-order them according to the cfg specified by the user
cfg.channel = cfg.channel(sel2);
end
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
else
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
end
ncol = find(strcmp(cfg.layout, {'1column', '2column', '3column', '4column', '5column', '6column', '7column', '8column', '9column'}));
nrow = ceil(nchan/ncol);
k = 0;
for i=1:ncol
for j=1:nrow
k = k+1;
if k>nchan
continue
end
x = i/ncol - 1/(ncol*2);
y = 1-j/(nrow+1);
layout.pos (k,:) = [x y];
layout.width (k,1) = 0.85/ncol;
layout.height(k,1) = 0.9 * 1/(nrow+1);
end
end
layout.mask = {};
layout.outline = {};
skipscale = true; % a scale is not desired
skipcomnt = true; % a comment is initially not desired, or at least requires more thought
elseif isequal(cfg.layout, 'ordered')
if hasdata && ~isempty(data)
% look at the data to determine the overlapping channels
data = ft_checkdata(data);
cfg.channel = ft_channelselection(cfg.channel, data.label);
chanindx = match_str(data.label, cfg.channel);
nchan = length(data.label(chanindx));
layout.label = data.label(chanindx);
else
assert(iscell(cfg.channel), 'cfg.channel should be a valid set of channels');
nchan = length(cfg.channel);
layout.label = cfg.channel;
end
ncol = ceil(sqrt(nchan))+1;
nrow = ceil(sqrt(nchan))+1;
k = 0;
for i=1:nrow
for j=1:ncol
k = k+1;
if k<=nchan
x = (j-1)/ncol;
y = (nrow-i-1)/nrow;
layout.pos(k,:) = [x y];
layout.width(k,1) = 0.8 * 1/ncol;
layout.height(k,1) = 0.8 * 1/nrow;
end
end
end
layout.label{end+1} = 'SCALE';
layout.width(end+1) = 0.8 * 1/ncol;
layout.height(end+1) = 0.8 * 1/nrow;
x = (ncol-2)/ncol;
y = 0/nrow;
layout.pos(end+1,:) = [x y];
layout.label{end+1} = 'COMNT';
layout.width(end+1) = 0.8 * 1/ncol;
layout.height(end+1) = 0.8 * 1/nrow;
x = (ncol-1)/ncol;
y = 0/nrow;
layout.pos(end+1,:) = [x y];
% try to generate layout from other configuration options
elseif ischar(cfg.layout)
% layout file name specified
if isempty(strfind(cfg.layout, '.'))
cfg.layout = [cfg.layout '.mat'];
if exist(cfg.layout, 'file')
fprintf('layout file without .mat (or .lay) extension specified, appending .mat\n');
layout = ft_prepare_layout(cfg);
return;
else
cfg.layout = [cfg.layout(1:end-3) 'lay'];
layout = ft_prepare_layout(cfg);
return;
end
elseif ft_filetype(cfg.layout, 'matlab')
fprintf('reading layout from file %s\n', cfg.layout);
if ~exist(cfg.layout, 'file')
error('the specified layout file %s was not found', cfg.layout);
end
tmp = load(cfg.layout, 'lay*');
if isfield(tmp, 'layout')
layout = tmp.layout;
elseif isfield(tmp, 'lay')
layout = tmp.lay;
else
error('mat file does not contain a layout');
end
elseif ft_filetype(cfg.layout, 'layout')
if exist(cfg.layout, 'file')
fprintf('reading layout from file %s\n', cfg.layout);
layout = readlay(cfg.layout);
else
ft_warning(sprintf('layout file %s was not found on your path, attempting to use a similarly named .mat file instead',cfg.layout));
cfg.layout = [cfg.layout(1:end-3) 'mat'];
layout = ft_prepare_layout(cfg);
return;
end
elseif ~ft_filetype(cfg.layout, 'layout')
% assume that cfg.layout is an electrode file
fprintf('creating layout from electrode file %s\n', cfg.layout);
layout = sens2lay(ft_read_sens(cfg.layout), cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
end
elseif ischar(cfg.elecfile)
fprintf('creating layout from electrode file %s\n', cfg.elecfile);
layout = sens2lay(ft_read_sens(cfg.elecfile), cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif ~isempty(cfg.elec) && isstruct(cfg.elec)
fprintf('creating layout from cfg.elec\n');
layout = sens2lay(cfg.elec, cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif isfield(data, 'elec') && isstruct(data.elec)
fprintf('creating layout from data.elec\n');
data = ft_checkdata(data);
layout = sens2lay(data.elec, cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif ischar(cfg.gradfile)
fprintf('creating layout from gradiometer file %s\n', cfg.gradfile);
layout = sens2lay(ft_read_sens(cfg.gradfile), cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif ~isempty(cfg.grad) && isstruct(cfg.grad)
fprintf('creating layout from cfg.grad\n');
layout = sens2lay(cfg.grad, cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif isfield(data, 'grad') && isstruct(data.grad)
fprintf('creating layout from data.grad\n');
data = ft_checkdata(data);
layout = sens2lay(data.grad, cfg.rotate, cfg.projection, cfg.style, cfg.overlap);
elseif ischar(cfg.optofile)
fprintf('creating layout from optode file %s\n', cfg.optofile);
opto = ft_read_sens(cfg.optofile);
if (hasdata)
layout = opto2lay(opto, data.label);
else
layout = opto2lay(opto, opto.label);
end
elseif ~isempty(cfg.opto) && isstruct(cfg.opto)
fprintf('creating layout from cfg.opto\n');
opto = cfg.opto;
if (hasdata)
layout = opto2lay(opto, data.label);
else
layout = opto2lay(opto, opto.label);
end;
elseif isfield(data, 'opto') && isstruct(data.opto)
fprintf('creating layout from data.opto\n');
opto = data.opto;
if (hasdata)
layout = opto2lay(opto, data.label);
else
layout = opto2lay(opto, opto.label);
end;
elseif (~isempty(cfg.image) || ~isempty(cfg.mesh)) && isempty(cfg.layout)
% deal with image file
if ~isempty(cfg.image)
fprintf('reading background image from %s\n', cfg.image);
[p,f,e] = fileparts(cfg.image);
switch e
case '.mat'
tmp = load(cfg.image);
fnames = fieldnames(tmp);
if numel(fnames)~=1
error('there is not just a single variable in %s', cfg.image);
else
img = tmp.(fname{1});
end
otherwise
img = imread(cfg.image);
end
img = flipdim(img, 1); % in combination with "axis xy"
figure
bw = cfg.bw;
if bw
% convert to greyscale image
img = mean(img, 3);
imagesc(img);
colormap gray
else
% plot as RGB image
image(img);
end
elseif ~isempty(cfg.mesh)
if isfield(cfg.mesh, 'sulc')
ft_plot_mesh(cfg.mesh, 'edgecolor','none','vertexcolor',cfg.mesh.sulc);colormap gray;
else
ft_plot_mesh(cfg.mesh, 'edgecolor','none');
end
end
hold on
axis equal
axis off
axis xy
% get the electrode positions
pos = zeros(0,2);
electrodehelp = [ ...
'-----------------------------------------------------\n' ...
'specify electrode locations\n' ...
'press the right mouse button to add another electrode\n' ...
'press backspace on the keyboard to remove the last electrode\n' ...
'press "q" on the keyboard to continue\n' ...
];
again = 1;
while again
fprintf(electrodehelp)
disp(round(pos)); % values are integers/pixels
try
[x, y, k] = ginput(1);
catch
% this happens if the figure is closed
return;
end
switch k
case 1
pos = cat(1, pos, [x y]);
% add it to the figure
plot(x, y, 'b.');
plot(x, y, 'yo');
case 8
if size(pos,1)>0
% remove the last point
pos = pos(1:end-1,:);
% completely redraw the figure
cla
if ~isempty(cfg.image)
h = image(img);
else
h = ft_plot_mesh(cfg.mesh,'edgecolor','none','vertexcolor',cfg.mesh.sulc);
end
hold on
axis equal
axis off
plot(pos(:,1), pos(:,2), 'b.');
plot(pos(:,1), pos(:,2), 'yo');
end
case 'q'
again = 0;
otherwise
warning('invalid button (%d)', k);
end
end
% get the mask outline
polygon = {};
thispolygon = 1;
polygon{thispolygon} = zeros(0,2);
maskhelp = [ ...
'------------------------------------------------------------------------\n' ...
'specify polygons for masking the topgraphic interpolation\n' ...
'press the right mouse button to add another point to the current polygon\n' ...
'press backspace on the keyboard to remove the last point\n' ...
'press "c" on the keyboard to close this polygon and start with another\n' ...
'press "q" on the keyboard to continue\n' ...
];
again = 1;
while again
fprintf(maskhelp);
fprintf('\n');
for i=1:length(polygon)
fprintf('polygon %d has %d points\n', i, size(polygon{i},1));
end
try
[x, y, k] = ginput(1);
catch
% this happens if the figure is closed
return;
end
switch k
case 1
polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]);
% add the last line segment to the figure
if size(polygon{thispolygon},1)>1
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
end
plot(x, y, 'g.-');
case 8 % backspace
if size(polygon{thispolygon},1)>0
% remove the last point
polygon{thispolygon} = polygon{thispolygon}(1:end-1,:);
% completely redraw the figure
cla
if ~isempty(cfg.image)
h = image(img);
else
h = ft_plot_mesh(cfg.mesh,'edgecolor','none','vertexcolor',cfg.mesh.sulc);
end
hold on
axis equal
axis off
% plot the electrode positions
plot(pos(:,1), pos(:,2), 'b.');
plot(pos(:,1), pos(:,2), 'yo');
for i=1:length(polygon)
x = polygon{i}(:,1);
y = polygon{i}(:,2);
if i~=thispolygon
% close the polygon in the figure
x(end) = x(1);
y(end) = y(1);
end
plot(x, y, 'g.-');
end
end
case 'c'
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
% switch to the next polygon
thispolygon = thispolygon + 1;
polygon{thispolygon} = zeros(0,2);
end
case 'q'
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
end
again = 0;
otherwise
warning('invalid button (%d)', k);
end
end
% remember this set of polygons as the mask
mask = polygon;
% get the outline, e.g. head shape and sulci
polygon = {};
thispolygon = 1;
polygon{thispolygon} = zeros(0,2);
maskhelp = [ ...
'-----------------------------------------------------------------------------------\n' ...
'specify polygons for adding outlines (e.g. head shape and sulci) to the layout\n' ...
'press the right mouse button to add another point to the current polygon\n' ...
'press backspace on the keyboard to remove the last point\n' ...
'press "c" on the keyboard to close this polygon and start with another\n' ...
'press "n" on the keyboard to start with another without closing the current polygon\n' ...
'press "q" on the keyboard to continue\n' ...
];
again = 1;
while again
fprintf(maskhelp);
fprintf('\n');
for i=1:length(polygon)
fprintf('polygon %d has %d points\n', i, size(polygon{i},1));
end
try
[x, y, k] = ginput(1);
catch
% this happens if the figure is closed
return;
end
switch k
case 1
polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]);
% add the last line segment to the figure
if size(polygon{thispolygon},1)>1
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
end
plot(x, y, 'm.-');
case 8 % backspace
if size(polygon{thispolygon},1)>0
% remove the last point
polygon{thispolygon} = polygon{thispolygon}(1:end-1,:);
% completely redraw the figure
cla
if ~isempty(cfg.image)
h = image(img);
else
h = ft_plot_mesh(cfg.mesh,'edgecolor','none','vertexcolor',cfg.mesh.sulc);
end
hold on
axis equal
axis off
% plot the electrode positions
plot(pos(:,1), pos(:,2), 'b.');
plot(pos(:,1), pos(:,2), 'yo');
for i=1:length(polygon)
x = polygon{i}(:,1);
y = polygon{i}(:,2);
if i~=thispolygon
% close the polygon in the figure
x(end) = x(1);
y(end) = y(1);
end
plot(x, y, 'm.-');
end
end
case 'c'
if size(polygon{thispolygon},1)>0
x = polygon{thispolygon}(1,1);
y = polygon{thispolygon}(1,2);
polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]);
% add the last line segment to the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'm.-');
% switch to the next polygon
thispolygon = thispolygon + 1;
polygon{thispolygon} = zeros(0,2);
end
case 'n'
if size(polygon{thispolygon},1)>0
% switch to the next polygon
thispolygon = thispolygon + 1;
polygon{thispolygon} = zeros(0,2);
end
case 'q'
again = 0;
otherwise
warning('invalid button (%d)', k);
end
end
% remember this set of polygons as the outline
outline = polygon;
% convert electrode positions into a layout structure
layout.pos = pos;
nchans = size(pos,1);
for i=1:nchans
layout.label{i,1} = sprintf('chan%03d', i);
end
% add width and height for multiplotting
d = dist(pos');
for i=1:nchans
d(i,i) = inf; % exclude the diagonal
end
mindist = min(d(:));
layout.width = ones(nchans,1) * mindist * 0.8;
layout.height = ones(nchans,1) * mindist * 0.6;
% add mask and outline polygons
layout.mask = mask;
layout.outline = outline;
else
error('no layout detected, please specify cfg.layout')
end
% FIXME there is a conflict between the use of cfg.style here and in topoplot
if ~strcmp(cfg.style, '3d')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check whether outline and mask are available
% if not, add default "circle with triangle" to resemble the head
% in case of "circle with triangle", the electrode positions should also be
% scaled
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(layout, 'outline') || ~isfield(layout, 'mask')
rmax = 0.5;
l = 0:2*pi/100:2*pi;
HeadX = cos(l).*rmax;
HeadY = sin(l).*rmax;
NoseX = [0.18*rmax 0 -0.18*rmax];
NoseY = [rmax-.004 rmax*1.15 rmax-.004];
EarX = [.497 .510 .518 .5299 .5419 .54 .547 .532 .510 .489];
EarY = [.0555 .0775 .0783 .0746 .0555 -.0055 -.0932 -.1313 -.1384 -.1199];
% Scale the electrode positions to fit within a unit circle, i.e. electrode radius = 0.45
ind_scale = strmatch('SCALE', layout.label);
ind_comnt = strmatch('COMNT', layout.label);
sel = setdiff(1:length(layout.label), [ind_scale ind_comnt]); % these are excluded for scaling
x = layout.pos(sel,1);
y = layout.pos(sel,2);
xrange = range(x);
yrange = range(y);
% First scale the width and height of the box for multiplotting
layout.width = layout.width./xrange;
layout.height = layout.height./yrange;
% Then shift and scale the electrode positions
layout.pos(:,1) = 0.9*((layout.pos(:,1)-min(x))/xrange-0.5);
layout.pos(:,2) = 0.9*((layout.pos(:,2)-min(y))/yrange-0.5);
% Define the outline of the head, ears and nose
layout.outline{1} = [HeadX(:) HeadY(:)];
layout.outline{2} = [NoseX(:) NoseY(:)];
layout.outline{3} = [ EarX(:) EarY(:)];
layout.outline{4} = [-EarX(:) EarY(:)];
% Define the anatomical mask based on a circular head
layout.mask{1} = [HeadX(:) HeadY(:)];
end
end
% make the subset as specified in cfg.channel
cfg.channel = ft_channelselection(cfg.channel, setdiff(layout.label, {'COMNT', 'SCALE'})); % COMNT and SCALE are not really channels
chansel = match_str(layout.label, cat(1, cfg.channel(:), 'COMNT', 'SCALE')); % include COMNT and SCALE, keep all channels in the order of the layout
% return the layout for the subset of channels
layout.pos = layout.pos(chansel,:);
layout.label = layout.label(chansel);
if ~strcmp(cfg.style, '3d')
% these don't exist for the 3D layout
layout.width = layout.width(chansel);
layout.height = layout.height(chansel);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% apply the montage, i.e. combine bipolar channels into a new representation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~strcmp(cfg.montage, 'no')
Norg = length(cfg.montage.labelorg);
Nnew = length(cfg.montage.labelnew);
for i=1:Nnew
cfg.montage.tra(i,:) = abs(cfg.montage.tra(i,:));
cfg.montage.tra(i,:) = cfg.montage.tra(i,:) ./ sum(cfg.montage.tra(i,:));
end
% pretend it is a sensor structure, this achieves averaging after channel matching
tmp.tra = layout.pos;
tmp.label = layout.label;
new = ft_apply_montage(tmp, cfg.montage);
layout.pos = new.tra;
layout.label = new.label;
% do the same for the width and height
tmp.tra = layout.width(:);
new = ft_apply_montage(tmp, cfg.montage);
layout.width = new.tra;
tmp.tra = layout.height(:);
new = ft_apply_montage(tmp, cfg.montage);
layout.height = new.tra;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% add axes positions for comments and scale information if required
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~any(strcmp('COMNT', layout.label)) && strcmpi(cfg.style, '2d') && ~skipcomnt
% add a placeholder for the comment in the upper left corner
layout.label{end+1} = 'COMNT';
layout.width(end+1) = mean(layout.width);
layout.height(end+1) = mean(layout.height);
if ~isempty(layout.pos)
XY = layout.pos;
else
XY = cat(1, layout.outline{:}, layout.mask{:});
end
layout.pos(end+1,:) = [min(XY(:,1)) min(XY(:,2))];
elseif any(strcmp('COMNT', layout.label)) && skipcomnt
% remove the scale entry
sel = find(strcmp('COMNT', layout.label));
layout.label(sel) = [];
layout.pos(sel,:) = [];
layout.width(sel) = [];
layout.height(sel) = [];
end
if ~any(strcmp('SCALE', layout.label)) && strcmpi(cfg.style, '2d') && ~skipscale
% add a placeholder for the scale in the upper right corner
layout.label{end+1} = 'SCALE';
layout.width(end+1) = mean(layout.width);
layout.height(end+1) = mean(layout.height);
if ~isempty(layout.pos)
XY = layout.pos;
else
XY = cat(1, layout.outline{:}, layout.mask{:});
end
layout.pos(end+1,:) = [max(XY(:,1)) min(XY(:,2))];
elseif any(strcmp('SCALE', layout.label)) && skipscale
% remove the scale entry
sel = find(strcmp('SCALE', layout.label));
layout.label(sel) = [];
layout.pos(sel,:) = [];
layout.width(sel) = [];
layout.height(sel) = [];
end
% ensure proper format of some of label (see bug 1909 -roevdmei)
layout.label = layout.label(:);
% to plot the layout for debugging, you can use this code snippet
if strcmp(cfg.feedback, 'yes') && strcmpi(cfg.style, '2d')
tmpcfg = [];
tmpcfg.layout = layout;
ft_layoutplot(tmpcfg);
end
% to write the layout to a .mat or text file, you can use this code snippet
if ~isempty(cfg.output) && strcmpi(cfg.style, '2d')
fprintf('writing layout to ''%s''\n', cfg.output);
if strcmpi(cfg.output((end-3):end), '.mat')
save(cfg.output,'layout');
else
fid = fopen(cfg.output, 'wt');
for i=1:numel(layout.label)
fprintf(fid, '%d %f %f %f %f %s\n', i, layout.pos(i,1), layout.pos(i,2), ...
layout.width(i), layout.height(i), layout.label{i});
end
fclose(fid);
end
elseif ~isempty(cfg.output) && strcmpi(cfg.style, '3d')
% the layout file format does not support 3D positions, furthermore for
% a 3D layout the width and height are currently set to NaN
error('writing a 3D layout to an output file is not supported');
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble provenance
ft_postamble previous data
ft_postamble history layout
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% read the layout information from the ascii file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function layout = readlay(filename)
if ~exist(filename, 'file')
error(sprintf('could not open layout file: %s', filename));
end
fid=fopen(filename);
lay_string=fread(fid,inf,'char=>char')';
fclose(fid);
% pattern to match is integer, than 4 numeric values followed by a
% string that can contain whitespaces and plus characters, followed by
% newline
integer='(\d+)';
float='([\d\.-]+)';
space='\s+';
channel_label='([\w \t\r\f\v\-\+]+)';
single_newline='\n';
pat=[integer, space, ...
float, space, ...
float, space, ...
float, space, ...
float, space, ...
channel_label, single_newline];
matches=regexp(sprintf('%s\n',lay_string),pat,'tokens');
% convert to (nchannel x 6) matrix
layout_matrix=cat(1,matches{:});
% convert values in first five columns to numeric
num_values_cell=layout_matrix(:,1:5)';
str_values=sprintf('%s %s %s %s %s; ', num_values_cell{:});
num_values=str2num(str_values);
% store layout information (omit channel number in first column)
layout.pos = num_values(:,2:3);
layout.width = num_values(:,4);
layout.height = num_values(:,5);
% trim whitespace around channel names
label=layout_matrix(:,6);
label=regexprep(label,'^\s*','');
label=regexprep(label,'\s*$','');
layout.label = label;
return % function readlay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% convert 3D electrode positions into 2D layout
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function layout = sens2lay(sens, rz, method, style, overlap)
% ensure that the sens structure is according to the latest conventions,
% i.e. deal with backward compatibility
sens = ft_datatype_sens(sens);
% remove the balancing from the sensor definition, e.g. 3rd order gradients, PCA-cleaned data or ICA projections
% this not only removed the linear projections, but also ensures that the channel labels are correctly named
if isfield(sens, 'chanposorg')
chanposorg = sens.chanposorg;
else
chanposorg = [];
end
if isfield(sens, 'balance') && ~strcmp(sens.balance.current, 'none')
sens = undobalancing(sens);
if size(chanposorg, 1) == numel(sens.label)
sens.chanpos = chanposorg;
end
% In case not all the locations have NaNs it might still be useful to plot them
% But perhaps it'd be better to have any(any
elseif any(all(isnan(sens.chanpos)))
[sel1, sel2] = match_str(sens.label, sens.labelorg);
sens.chanpos = chanposorg(sel2, :);
sens.label = sens.labelorg(sel2);
end
fprintf('creating layout for %s system\n', ft_senstype(sens));
% apply rotation
if isempty(rz)
switch ft_senstype(sens)
case {'ctf151', 'ctf275', 'bti148', 'bti248', 'ctf151_planar', 'ctf275_planar', 'bti148_planar', 'bti248_planar', 'yokogawa160', 'yokogawa160_planar', 'yokogawa64', 'yokogawa64_planar', 'yokogawa440', 'yokogawa440_planar', 'magnetometer', 'meg'}
rz = 90;
case {'neuromag122', 'neuromag306'}
rz = 0;
case 'electrode'
rz = 90;
otherwise
rz = 0;
end
end
sens.chanpos = ft_warp_apply(rotate([0 0 rz]), sens.chanpos, 'homogenous');
% determine the 3D channel positions
pnt = sens.chanpos;
label = sens.label;
if strcmpi(style, '3d')
layout.pos = pnt;
layout.label = label;
else
prj = elproj(pnt, method);
% this copy will be used to determine the minimum distance between channels
% we need a copy because prj retains the original positions, and
% prjForDist might need to be changed if the user wants to keep
% overlapping channels
prjForDist = prj;
% check whether many channels occupy identical positions, if so shift
% them around if requested
if size(unique(prj,'rows'),1) / size(prj,1) < 0.8
if strcmp(overlap, 'shift')
ft_warning('the specified sensor configuration has many overlapping channels, creating a layout by shifting them around (use a template layout for better control over the positioning)');
prj = shiftxy(prj', 0.2)';
prjForDist = prj;
elseif strcmp(overlap, 'no')
error('the specified sensor configuration has many overlapping channels, you specified not to allow that');
elseif strcmp(overlap, 'keep')
prjForDist = unique(prj, 'rows');
else
error('unknown value for cfg.overlap = ''%s''', overlap);
end
end
d = dist(prjForDist');
d(logical(eye(size(d)))) = inf;
% This is a fix for .sfp files, containing positions of 'fiducial
% electrodes'. Their presence determines the minimum distance between
% projected electrode positions, leading to very small boxes.
% This problem has been detected and reported by Matt Mollison.
% FIXME: consider changing the box-size being determined by mindist
% by a mean distance or so; this leads to overlapping boxes, but that
% also exists for some .lay files
if any(strmatch('Fid', label))
tmpsel = strmatch('Fid', label);
d(tmpsel, :) = inf;
d(:, tmpsel) = inf;
end
if any(isfinite(d(:)))
% take mindist as the median of the first quartile of closest channel pairs with non-zero distance
mindist = min(d); % get closest neighbour for all channels
mindist = sort(mindist(mindist>1e-6),'ascend');
mindist = mindist(1:round(numel(label)/4));
mindist = median(mindist);
else
mindist = eps; % not sure this is a good value but it's just to prevent crashes when
% the EEG sensor definition is meaningless
end
X = prj(:,1);
Y = prj(:,2);
Width = ones(size(X)) * mindist * 0.8;
Height = ones(size(X)) * mindist * 0.6;
layout.pos = [X Y];
layout.width = Width;
layout.height = Height;
layout.label = label;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% convert 2D optode positions into 2D layout
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function layout = opto2lay(opto, label)
layout = [];
layout.pos = [];
layout.label = {};
layout.width = [];
layout.height = [];
[rxnames, rem] = strtok(label, {'-', ' '});
[txnames, rem] = strtok(rem, {'-', ' '});
for i=1:numel(label)
% create average positions
rxid = ismember(opto.fiberlabel, rxnames(i));
txid = ismember(opto.fiberlabel, txnames(i));
layout.pos(i, :) = opto.fiberpos(rxid, :)/2 + opto.fiberpos(txid, :)/2;
layout.label(end+1) = label(i);
layout.width(end+1) = 1;
layout.height(end+1) = 1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% shift 2D positions around so that the minimum distance between any pair
% is mindist
%
% Credit for this code goes to Laurence Hunt at UCL.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function xy = shiftxy(xy,mindist)
x = xy(1,:);
y = xy(2,:);
l=1;
i=1; %filler
mindist = mindist/0.999; % limits the number of loops
while (~isempty(i) && l<50)
xdiff = repmat(x,length(x),1) - repmat(x',1,length(x));
ydiff = repmat(y,length(y),1) - repmat(y',1,length(y));
xydist= sqrt(xdiff.^2 + ydiff.^2); %euclidean distance between all sensor pairs
[i,j] = find(xydist<mindist*0.999);
rm=(i<=j); i(rm)=[]; j(rm)=[]; %only look at i>j
for m = 1:length(i);
if (xydist(i(m),j(m)) == 0)
diffvec = [mindist./sqrt(2) mindist./sqrt(2)];
else
xydiff = [xdiff(i(m),j(m)) ydiff(i(m),j(m))];
diffvec = xydiff.*mindist./xydist(i(m),j(m)) - xydiff;
end
x(i(m)) = x(i(m)) - diffvec(1)/2;
y(i(m)) = y(i(m)) - diffvec(2)/2;
x(j(m)) = x(j(m)) + diffvec(1)/2;
y(j(m)) = y(j(m)) + diffvec(2)/2;
end
l = l+1;
end
xy = [x; y];
|
github
|
lcnbeapp/beapp-master
|
ft_analysispipeline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_analysispipeline.m
| 26,488 |
utf_8
|
6bafec86c50ded1898215065e0d9da10
|
function [pipeline] = ft_analysispipeline(cfg, data)
% FT_ANALYSIPIPELINE reconstructs the complete analysis pipeline that was used to create
% the input FieldTrip data structure. The pipeline will be visualized as a flowchart.
% In the future it will be possible to output the complete pipeline as a MATLAB script
% or in a specialized pipeline format (e.g. PSOM, JIST, LONI, Taverna).
%
% Use as
% output = ft_analysispipeline(cfg, data)
%
% The first cfg input contains the settings that apply to the behaviour of this
% particular function and the second data input argument can be the output of any
% FieldTrip function, e.g. FT_PREPROCESSING, FT_TIMELOCKANALYSIS, FT_SOURCEANALYSIS,
% FT_FREQSTATISTICS or whatever you like.
%
% Alternatively, for the second input argument you can also only give the configuration
% of the processed data (i.e. "data.cfg") instead of the full data.
%
% The configuration options that apply to the behaviour of this function are
% cfg.filename = string, filename without the extension
% cfg.filetype = string, can be 'matlab', 'html' or 'dot'
% cfg.feedback = string, 'no', 'text', 'gui' or 'yes', whether text and/or
% graphical feedback should be presented (default = 'yes')
% cfg.showinfo = string or cell array of strings, information to display
% in the gui boxes, can be any combination of
% 'functionname', 'revision', 'matlabversion',
% 'computername', 'username', 'calltime', 'timeused',
% 'memused', 'workingdir', 'scriptpath' (default =
% 'functionname', only display function name). Can also
% be 'all', show all pipeline. Please note that if you want
% to show a lot of information, this will require a lot
% of screen real estate.
% cfg.remove = cell-array with strings, determines which objects will
% be removed from the configuration prior to writing it to
% file. For readibility of the script, you may want to
% remove the large objectssuch as event structure, trial
% definition, source positions
% cfg.keepremoved = 'yes' or 'no', determines whether removed fields are
% completely removed, or only replaced by a short textual
% description (default = 'no')
%
% This function uses the nested cfg and cfg.previous that are present in
% the data structure. It will use the configuration and the nested previous
% configurations to climb all the way back into the tree. This funtction
% will print a complete MATLAB script to screen (and optionally to file).
% Furthermore, it will show an interactive graphical flowchart
% representation of the steps taken during the pipeline(i). In the flowchart
% you can click on one of the steps to see the configuration details of
% that pipeline(i).
%
% Note that the nested cfg and cfg.previous in your data might not contain
% all details that are required to reconstruct a complete and valid
% analysis script.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this, the input data will be read from a *.mat file on disk. The
% file should contain only a single variable, corresponding with the input structure.
%
% See also FT_PREPROCESSING, FT_TIMELOCKANALYSIS, FT_FREQANALYSIS, FT_SOURCEANALYSIS,
% FT_CONNECTIVITYANALYSIS, FT_NETWORKANALYSIS
% Copyright (C) 2014-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% callinfo feedback is highly annoying in this recursive function
% do this here, otherwise ft_defaults will override our setting
if ~isfield(cfg, 'showcallinfo'), cfg.showcallinfo = 'no'; end
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% set the defaults
cfg.filename = ft_getopt(cfg, 'filename');
cfg.showinfo = ft_getopt(cfg, 'showinfo', {'functionname'});
cfg.keepremoved = ft_getopt(cfg, 'keepremoved', 'no');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.prune = ft_getopt(cfg, 'prune', 'yes');
cfg.filetype = ft_getopt(cfg, 'filetype');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 10);
if isempty(cfg.filetype) && ~isempty(cfg.filename)
[p, f, x] = fileparts(cfg.filename);
switch x
case '.m'
cfg.filetype = 'matlab';
case '.html'
cfg.filetype = 'html';
case '.dot'
cfg.filetype = 'dot';
otherwise
error('cannot determine filetype');
end
end
if ~isfield(cfg, 'remove')
% this is the default list of configuration elements to be removed. These
% elements would be very large to print and make the script difficult to
% read. To get a correctly behaving script, you may have to change this.
cfg.remove = {
'sgncmb'
'channelcmb'
'event'
'trl'
'trlold'
'artfctdef.eog.trl'
'artfctdef.jump.trl'
'artfctdef.muscle.trl'
'pos'
'inside'
'outside'
'grid.pos'
'grid.inside'
'grid.outside'
'vol.bnd.pos'
'vol.bnd.tri'
'headmodel.bnd.pos'
'headmodel.bnd.tri'
};
elseif ~iscell(cfg.remove)
cfg.remove = {cfg.remove};
end
if strcmp(cfg.showinfo, 'all')
cfg.showinfo = {
'functionname'
'revision'
'matlabversion'
'computername'
'architecture'
'username'
'calltime'
'timeused'
'memused'
'workingdir'
'scriptpath'
};
end
if ~isfield(cfg, 'showinfo')
cfg.showinfo = {'functionname'};
elseif ~iscell(cfg.showinfo)
cfg.showinfo = {cfg.showinfo};
end
% we are only interested in the cfg-part of the data
if isfield(data, 'cfg')
datacfg = data.cfg;
else
datacfg = data;
end
clear data
% walk the tree, gather information about each node
ft_progress('init', cfg.feedback, 'parsing provenance...');
pipeline = walktree(datacfg);
ft_progress('close');
% convert the cell array into a structure array
for i=1:length(pipeline)
tmp(i) = pipeline{i};
end
pipeline = tmp;
if istrue(cfg.prune)
% prune the double occurences
[dummy, indx] = unique({pipeline.this});
pipeline = pipeline(sort(indx));
end
% start at the end of the tree and determine the level of each of the parents
hasparent = false(size(pipeline));
haschild = false(size(pipeline));
for i=1:length(pipeline)
hasparent(i) = ~isempty(pipeline(i).parent);
haschild(i) = any(strcmp(pipeline(i).this, [pipeline.parent]));
end
% construct a matrix with all pipeline steps
width = zeros(size(pipeline));
height = zeros(size(pipeline));
level = 1;
% the items without children start at height 1
sel = find(~haschild);
while ~isempty(sel)
height(sel) = level;
% find the parents of the items at this level
sel = match_str({pipeline.this}, [pipeline(sel).parent]);
% the parents should be at least one level higher
height(sel) = level + 1;
% continue with the next level
level = level + 1;
end
for i=1:max(height)
sel = find(height==i);
width(sel) = 1:length(sel);
end
for i=1:length(pipeline)
pipeline(i).position = [height(i) width(i)];
end
% sort according to a decreasing level, i.e. the last pipeline(i) at the end
[dummy, indx] = sortrows(-[height(:) width(:)]);
pipeline = pipeline(indx);
if isempty(cfg.filename)
pipeline2matlabfigure(cfg, pipeline);
else
switch cfg.filetype
case 'matlab'
pipeline2matlabscript(cfg, pipeline);
case 'dot'
pipeline2dotfile(cfg, pipeline);
case 'html'
pipeline2htmlfile(cfg, pipeline);
otherwise
error('unsupported filetype');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for recursive walking along the cfg.previous.previous info
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function info = walktree(cfg)
if isempty(cfg) || (isstruct(cfg) && numel(fieldnames(cfg))==0)
info = [];
return
end
this = getnode(cfg);
% parse all previous steps
if isfield(cfg, 'previous') && ~isempty(cfg.previous) && iscell(cfg.previous)
previous = cellfun(@walktree, cfg.previous, 'UniformOutput', false);
if iscell(previous{1})
previous = cat(2, previous{:});
end
elseif isfield(cfg, 'previous') && ~isempty(cfg.previous) && isstruct(cfg.previous)
previous = walktree(cfg.previous);
elseif isfield(cfg, 'previous') && ~isempty(cfg.previous)
error('unexpected content in cfg.previous');
else
previous = {};
end
% parse the side branches, e.g. cfg.vol/cfg.headmodel and cfg.layout
fn = fieldnames(cfg);
branch = {};
for i=1:numel(fn)
if isstruct(cfg.(fn{i})) && isfield(cfg.(fn{i}), 'cfg')
branch = [walktree(cfg.(fn{i}).cfg) branch];
this.parent{end+1} = branch{1}.this; % the start of the branch is a parent to this element
end
end
ft_progress(rand(1), 'parsing provenance for %s\n', this.name); % FIXME no percentage complete known
drawnow
% the order of the output elements matters for the recursion
info = [{this} branch previous];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for gathering the information about each pipeline
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function node = getnode(cfg)
[p, f, x] = myfileparts(getvalue(cfg, 'version.name'));
node.cfg = cfg;
node.name = f;
node.id = getvalue(cfg, 'version.id');
node.this = ft_hash(cfg);
if isfield(cfg, 'previous') && ~isempty(cfg.previous) && iscell(cfg.previous)
% skip the entries that are empty
cfg.previous = cfg.previous(~cellfun(@isempty, cfg.previous));
node.parent = cellfun(@ft_hash, cfg.previous, 'UniformOutput', false);
elseif isfield(cfg, 'previous') && ~isempty(cfg.previous) && isstruct(cfg.previous)
node.parent = {ft_hash(cfg.previous)};
elseif isfield(cfg, 'previous') && ~isempty(cfg.previous)
error('unexpected content in cfg.previous');
else
node.parent = {};
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v = getvalue(s, f)
if issubfield(s, f)
v = getsubfield(s, f);
else
v = 'unknown';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [p, f, x] = myfileparts(filename)
if ispc
filename(filename=='/') = filesep;
else
filename(filename=='\') = filesep;
end
[p, f, x] = fileparts(filename);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = button(h, eventdata, handles, varargin)
pos = get(get(gcbo, 'CurrentAxes'), 'CurrentPoint');
x = pos(1,1);
y = pos(1,2);
pipeline = guidata(h);
for i=1:numel(pipeline)
if (x >= pipeline(i).x(1) && x <= pipeline(i).x(2) && y >= pipeline(i).y(1) && y <= pipeline(i).y(3))
cfg = pipeline(i).cfg;
if isfield(cfg, 'previous')
cfg = rmfield(cfg, 'previous');
end
% use a helper function to remove uninteresting fields
cfg = removefields(cfg, ignorefields('pipeline'), 'recursive', 'yes');
% use a helper function to remove too large fields
cfg.checksize = 3000;
cfg = ft_checkconfig(cfg, 'checksize', 'yes');
cfg = rmfield(cfg, 'checksize');
script = printstruct('cfg', cfg);
uidisplaytext(script, pipeline(i).name);
break;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pipeline2matlabfigure(cfg, pipeline)
fprintf('plotting pipeline as MATLAB figure\n');
layout = cell(numel(pipeline));
for i=1:length(pipeline)
% get the vertical and horizontal position in integer values
% high numbers are towards the begin, low numbers are towards the end of the pipeline
v = pipeline(i).position(1);
h = pipeline(i).position(2);
layout{v,h} = pipeline(i).this;
end
% remove the empty columns
maxheight = max(sum(~cellfun(@isempty, layout),1));
maxwidth = max(sum(~cellfun(@isempty, layout),2));
layout = layout(1:maxheight,1:maxwidth);
fig = figure;
hold on
axis manual; % the axis should not change during the contruction of the arrows, otherwise the arrowheads will be distorted
set(gca,'Units','normalized'); % use normalized units
set(gcf, 'ToolBar', 'none');
axis([0 1 0 1])
axis off;
axis tight;
for i=1:numel(pipeline)
label = makelabel(pipeline(i), cfg.showinfo);
% dublicate backslashes to escape tex interpreter (in case of windows filenames)
label = strrep(label, '\', '\\');
label = strrep(label, '{\\bf', '{\bf'); % undo for bold formatting
% escape underscores
label = strrep(label, '_', '\_');
% strip blank line if present and not needed
if strcmp(label{end},'')
label(end) = [];
end
% compute width and height of each box, note that axis Units are set to Normalized
boxsize = 1./[maxwidth+1 maxheight+3];
% create the 4 corners for our patch, close the patch by returning to the start point
x = ([0 1 1 0 0]-0.5) .* boxsize(1);
y = ([0 0 1 1 0]-0.5) .* boxsize(2);
% position the patch
location = pipeline(i).position([2 1]);
location(1) = (location(1)-0.5)/maxwidth;
location(2) = (location(2)-0.5)/maxheight;
% the location specifies the center of the patch
x = x + location(1);
y = y + location(2);
p = patch(x', y', 0);
set(p, 'Facecolor', [1 1 0.6])
pipeline(i).x = x;
pipeline(i).y = y;
guidata(fig, pipeline);
if length(label)==1
textloc = location;
l = text(textloc(1), textloc(2), label);
set(l, 'HorizontalAlignment', 'center');
set(l, 'VerticalAlignment', 'middle');
set(l, 'fontUnits', 'points');
set(l, 'fontSize', cfg.fontsize);
set(l, 'interpreter', 'tex');
else
textloc = location;
textloc(1) = textloc(1)-boxsize(1)/2;
textloc(2) = textloc(2)+boxsize(2)/2;
l = text(textloc(1), textloc(2), label);
set(l, 'HorizontalAlignment', 'left');
set(l, 'VerticalAlignment', 'top');
set(l, 'fontUnits', 'points');
set(l, 'fontSize', cfg.fontsize);
set(l, 'interpreter', 'tex');
end
% draw an arrow if appropriate
n = length(pipeline(i).parent);
for j=1:n
[parentlocation(2), parentlocation(1)] = ind2sub([maxheight, maxwidth], find(strcmp(layout(:), pipeline(i).parent{j}), 1, 'first'));
% parentlocation = info(find(strcmp({pipeline.this}, analysis.parent{j}), 1, 'first')).position;
parentlocation(1) = (parentlocation(1)-0.5)/maxwidth;
parentlocation(2) = (parentlocation(2)-0.5)/maxheight;
base = parentlocation + [0 -0.5].*boxsize;
if false % n>1
% distribute the inputs evenly over the box
rel = 2*(j+n-1)/(n-1)-1; % relative location between -1.0 and 1.0
rel = rel*(n-1)/(n+3); % compress the relative location
tip = location + [0 0.5].*boxsize + [rel 0].*boxsize/2;
else
% put it in the centre
tip = location + [0 0.5].*boxsize;
end
arrow(base, tip, 'length', 8, 'lineWidth', 1);
end
end % for numel(info)
set(fig, 'WindowButtonUpFcn', @button);
% set(fig, 'KeyPressFcn', @key);
% add a context menu to the figure
% ftmenu = uicontextmenu; set(gcf, 'uicontextmenu', ftmenu)
% add a regular menu item to the figure
ftmenu = uimenu(fig, 'Label', 'FieldTrip');
% ftmenu1 = uimenu(ftmenu, 'Label', 'Save pipeline');
% ftmenu2 = uimenu(ftmenu, 'Label', 'Share pipeline');
uimenu(ftmenu, 'Label', 'About', 'Separator', 'on', 'Callback', @menu_about);
% uimenu(ftmenu1, 'Label', 'Save as MATLAB script');
% uimenu(ftmenu1, 'Label', 'Save as PSOM pipeline');
% uimenu(ftmenu1, 'Label', 'Save as HTML page');
% uimenu(ftmenu2, 'Label', 'Share within DCCN');
% uimenu(ftmenu2, 'Label', 'Share on PasteBin.com');
% uimenu(ftmenu2, 'Label', 'Share on MyExperiment.org');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label = makelabel(pipeline, showinfo)
% create the text information to display
label = {};
for k = 1:numel(showinfo)
switch showinfo{k}
case 'functionname'
% label{end+1} = ['{\bf ' pipeline(i).name '}'];
label{end+1} = pipeline.name;
if k == 1 % add blank line if function name is on top, looks nice
label{end+1} = '';
end
case 'revision'
if isfield(pipeline.cfg, 'version') && isfield(pipeline.cfg.version, 'id')
label{end+1} = pipeline.cfg.version.id;
else
label{end+1} = '<revision unknown>';
end
case 'matlabversion'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'matlab')
label{end+1} = ['MATLAB ' pipeline.cfg.callinfo.matlab];
else
label{end+1} = '<MATLAB version unknown>';
end
case 'computername'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'hostname')
label{end+1} = ['Hostname: ' pipeline.cfg.callinfo.hostname];
else
label{end+1} = '<hostname unknown>';
end
case 'architecture'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'hostname')
label{end+1} = ['Architecture: ' pipeline.cfg.callinfo.computer];
else
label{end+1} = '<architecture unknown>';
end
case 'username'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'user')
label{end+1} = ['Username: ' pipeline.cfg.callinfo.user];
else
label{end+1} = '<username unknown>';
end
case 'calltime'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'calltime')
label{end+1} = ['Function called at ' datestr(pipeline.cfg.callinfo.calltime)];
else
label{end+1} = '<function call time unknown>';
end
case 'timeused'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'proctime')
label{end+1} = sprintf('Function call required %d seconds', round(pipeline.cfg.callinfo.proctime));
else
label{end+1} = '<processing time unknown>';
end
case 'memused'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'procmem')
label{end+1} = sprintf('Function call required %d MB', round(pipeline.cfg.callinfo.procmem/1024/1024));
else
label{end+1} = '<memory requirement unknown>';
end
case 'workingdir'
if isfield(pipeline.cfg, 'callinfo') && isfield(pipeline.cfg.callinfo, 'pwd')
label{end+1} = sprintf('Working directory was %s', pipeline.cfg.callinfo.pwd);
else
label{end+1} = '<working directory unknown>';
end
case 'scriptpath'
if isfield(pipeline.cfg, 'version') && isfield(pipeline.cfg.version, 'name')
label{end+1} = sprintf('Full path to script was %s', pipeline.cfg.version.name);
else
label{end+1} = '<script path unknown>';
end
end
end % for numel(showinfo)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pipeline2matlabscript(cfg, pipeline)
[p, f, x] = fileparts(cfg.filename);
filename = fullfile(p, [f '.m']);
fprintf('exporting MATLAB script to file ''%s''\n', filename);
varname = {};
varhash = {};
for i=1:length(pipeline)
varname{end+1} = sprintf('variable_%d_%d', pipeline(i).position(1), pipeline(i).position(2));
varhash{end+1} = pipeline(i).this;
end
for i=1:length(pipeline)
pipeline(i).inputvar = {};
pipeline(i).outputvar = varname{strcmp(varhash, pipeline(i).this)};
for j=1:length(pipeline(i).parent)
pipeline(i).inputvar{j} = varname{strcmp(varhash, pipeline(i).parent{j})};
end
end
sep = sprintf('\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n');
script = sep;
for i=1:length(pipeline)
thiscfg = pipeline(i).cfg;
if isfield(thiscfg, 'previous')
thiscfg = rmfield(thiscfg, 'previous');
end
cfgstr = printstruct('cfg', thiscfg);
if ~isempty(pipeline(i).inputvar)
inputvar = sprintf(', %s', pipeline(i).inputvar{:});
else
inputvar = '';
end
cmd = sprintf('\n%s = %s(cfg%s);', pipeline(i).outputvar, pipeline(i).name, inputvar);
script = cat(2, script, cfgstr, cmd, sep);
end
% write the complete script to file
fid = fopen(filename, 'wb');
fprintf(fid, '%s', script);
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pipeline2dotfile(cfg, pipeline)
[p, f, x] = fileparts(cfg.filename);
filename = fullfile(p, [f '.dot']);
fprintf('exporting DOT file to ''%s''\n', filename);
% write the complete script to file
fid = fopen(filename, 'wb');
fprintf(fid, 'digraph {\n');
varhash = {pipeline.this};
for i=1:length(pipeline)
for j=1:length(pipeline(i).parent)
fprintf(fid, '%d -> %d\n', find(strcmp(varhash, pipeline(i).parent{j})), i);
end
end
for i=1:length(pipeline)
label = makelabel(pipeline(i), cfg.showinfo);
if numel(label)>2
% left justified
label = sprintf('%s\\l', label{:});
label = label(1:end-2);
else
% centered
label = sprintf('%s\\n', label{:});
label = label(1:end-2);
end
fprintf(fid, '%d [label="%s",shape=box,fontsize=%d,URL="http://www.fieldtriptoolbox.org/reference/%s"]\n', i, label, cfg.fontsize, pipeline(i).name);
end
fprintf(fid, '}\n');
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pipeline2htmlfile(cfg, pipeline)
[p, f, x] = fileparts(cfg.filename);
filename = fullfile(p, [f '.html']);
% skip the data-like fields and the fields that probably were not added by the user himself
skipfields = {'previous', 'grid', 'headmodel', 'event', 'warning', 'progress', 'trackconfig', 'checkconfig', 'checksize', 'showcallinfo', 'debug', 'outputfilepresent', 'trackcallinfo', 'trackdatainfo', 'trackusage'};
fprintf('exporting HTML file to ''%s''\n', filename);
html = '';
totalproctime = 0;
ft_progress('init', cfg.feedback, 'serialising cfg-structures...');
for k = 1:numel(pipeline)
ft_progress(k/numel(pipeline), 'serialising cfg-structure %d from %d', k, numel(pipeline));
% strip away the cfg.previous fields, and all data-like fields
tmpcfg = removefields(pipeline(k).cfg, skipfields);
usercfg = [];
% record the usercfg and proctime if present
if isfield(tmpcfg, 'callinfo')
if isfield(tmpcfg.callinfo, 'usercfg')
usercfg = removefields(tmpcfg.callinfo.usercfg, skipfields);
% avoid processing usercfg twice
tmpcfg.callinfo = rmfield(tmpcfg.callinfo, 'usercfg');
end
if isfield(tmpcfg.callinfo, 'proctime')
totalproctime = totalproctime + tmpcfg.callinfo.proctime;
end
end
html = [html sprintf('nodes["%s"] = {"id": "%s", "name": "%s", "cfg": "%s", "usercfg": "%s", "parentIds": [',...
pipeline(k).this, pipeline(k).this, pipeline(k).name, escapestruct(tmpcfg), escapestruct(usercfg))];
if ~isempty(pipeline(k).parent)
for j = 1:numel(pipeline(k).parent)
html = [html '"' pipeline(k).parent{j} '"'];
if j < numel(pipeline(k).parent)
html = [html ','];
end
end
end
html = [html sprintf(']};\n')];
if k == numel(pipeline)
% we are at the single leaf node
html = [html sprintf('var leafId = "%s";\n', pipeline(k).this)];
end
end
ft_progress('close');
html = [html(1:end-2) sprintf('\n')];
% load the skeleton and put in the html code
thispath = fileparts(mfilename('fullpath'));
htmlfile = fileread([thispath '/private/pipeline-skeleton.html']);
timestamp = [datestr(now(), 'ddd') ' ' datestr(now())];
proctimestr = print_tim(totalproctime);
htmlfile = strrep(htmlfile, '${TIMESTAMP}', timestamp);
htmlfile = strrep(htmlfile, '${PIPELINE}', html);
htmlfile = strrep(htmlfile, '${USER}', getusername());
htmlfile = strrep(htmlfile, '${PROCTIME}', proctimestr);
% write the file
fid = fopen(filename, 'w');
fwrite(fid, htmlfile, 'uchar');
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cfghtml = escapestruct(tmpcfg)
% convert the cfg structure to a suitable string (escape newlines and
% quotes)
% strip away big numeric fields
if isstruct(tmpcfg)
fields = fieldnames(tmpcfg);
for k = 1:numel(fields)
if isnumeric(tmpcfg.(fields{k})) && numel(tmpcfg.(fields{k})) > 400
tmpcfg.(fields{k}) = '[numeric data of >400 elements stripped]';
end
end
end
cfghtml = strrep(printstruct('cfg', tmpcfg), '\', '\\');
cfghtml = strrep(cfghtml, sprintf('\r'), '\r');
cfghtml = strrep(cfghtml, sprintf('\n'), '\n');
cfghtml = strrep(cfghtml, sprintf('\t'), '\t');
cfghtml = strrep(cfghtml, '"', '\"');
|
github
|
lcnbeapp/beapp-master
|
ft_freqbaseline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_freqbaseline.m
| 6,802 |
utf_8
|
e4e887917081deb423ef3b59f99497b1
|
function [freq] = ft_freqbaseline(cfg, freq)
% FT_FREQBASELINE performs baseline normalization for time-frequency data
%
% Use as
% [freq] = ft_freqbaseline(cfg, freq)
% where the freq data comes from FT_FREQANALYSIS and the configuration
% should contain
% cfg.baseline = [begin end] (default = 'no')
% cfg.baselinetype = 'absolute', 'relative', 'relchange', 'normchange' or 'db' (default = 'absolute')
% cfg.parameter = field for which to apply baseline normalization, or
% cell array of strings to specify multiple fields to normalize
% (default = 'powspctrm')
%
% See also FT_FREQANALYSIS, FT_TIMELOCKBASELINE, FT_FREQCOMPARISON,
% FT_FREQGRANDAVERAGE
% Undocumented local options:
% cfg.inputfile = one can specifiy preanalysed saved data as input
% cfg.outputfile = one can specify output as file to save to disk
% Copyright (C) 2004-2006, Marcel Bastiaansen
% Copyright (C) 2005-2006, Robert Oostenveld
% Copyright (C) 2011, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar freq
ft_preamble provenance freq
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
freq = ft_checkdata(freq, 'datatype', {'freq+comp', 'freq'}, 'feedback', 'yes');
% update configuration fieldnames
cfg = ft_checkconfig(cfg, 'renamed', {'param', 'parameter'});
% set the defaults
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute');
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
% check validity of input options
cfg = ft_checkopt(cfg, 'baseline', {'char', 'doublevector'});
cfg = ft_checkopt(cfg, 'baselinetype', 'char', {'absolute', 'relative', 'relchange','db', 'vssum'});
cfg = ft_checkopt(cfg, 'parameter', {'char', 'charcell'});
% make sure cfg.parameter is a cell array of strings
if (~isa(cfg.parameter, 'cell'))
cfg.parameter = {cfg.parameter};
end
% is input consistent?
if ischar(cfg.baseline) && strcmp(cfg.baseline, 'no') && ~isempty(cfg.baselinetype)
warning('no baseline correction done');
end
% process possible yes/no value of cfg.baseline
if ischar(cfg.baseline) && strcmp(cfg.baseline, 'yes')
% default is to take the prestimulus interval
cfg.baseline = [-inf 0];
elseif ischar(cfg.baseline) && strcmp(cfg.baseline, 'no')
% nothing to do
return
end
% check if the field of interest is present in the data
if (~all(isfield(freq, cfg.parameter)))
error('cfg.parameter should be a string or cell array of strings referring to (a) field(s) in the freq input structure')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computation of output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% initialize output structure
freqOut = [];
freqOut.label = freq.label;
freqOut.freq = freq.freq;
freqOut.dimord = freq.dimord;
freqOut.time = freq.time;
freqOut = copyfields(freq, freqOut,...
{'grad', 'elec', 'trialinfo','topo', 'topolabel', 'unmixing'});
% loop over all fields that should be normalized
for k = 1:numel(cfg.parameter)
par = cfg.parameter{k};
if strcmp(freq.dimord, 'chan_freq_time')
freqOut.(par) = ...
performNormalization(freq.time, freq.(par), cfg.baseline, cfg.baselinetype);
elseif strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'chan_chan_freq_time') || strcmp(freq.dimord, 'subj_chan_freq_time')
freqOut.(par) = zeros(size(freq.(par)));
% loop over trials, perform normalization per trial
for l = 1:size(freq.(par), 1)
tfdata = freq.(par)(l,:,:,:);
siz = size(tfdata);
tfdata = reshape(tfdata, siz(2:end));
freqOut.(par)(l,:,:,:) = ...
performNormalization(freq.time, tfdata, cfg.baseline, cfg.baselinetype);
end
else
error('unsupported data dimensions: %s', freq.dimord);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Output scaffolding
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if numel(cfg.parameter)==1
% convert from cell-array to string
cfg.parameter = cfg.parameter{1};
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous freq
% rename the output variable to accomodate the savevar postamble
freq = freqOut;
ft_postamble provenance freq
ft_postamble history freq
ft_postamble savevar freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that actually performs the normalization on an arbitrary quantity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = performNormalization(timeVec, data, baseline, baselinetype)
baselineTimes = (timeVec >= baseline(1) & timeVec <= baseline(2));
if length(size(data)) ~= 3,
error('time-frequency matrix should have three dimensions (chan,freq,time)');
end
% compute mean of time/frequency quantity in the baseline interval,
% ignoring NaNs, and replicate this over time dimension
meanVals = repmat(nanmean(data(:,:,baselineTimes), 3), [1 1 size(data, 3)]);
if (strcmp(baselinetype, 'absolute'))
data = data - meanVals;
elseif (strcmp(baselinetype, 'relative'))
data = data ./ meanVals;
elseif (strcmp(baselinetype, 'relchange'))
data = (data - meanVals) ./ meanVals;
elseif (strcmp(baselinetype, 'normchange')) || (strcmp(baselinetype, 'vssum'))
data = (data - meanVals) ./ (data + meanVals);
elseif (strcmp(baselinetype, 'db'))
data = 10*log10(data ./ meanVals);
else
error('unsupported method for baseline normalization: %s', baselinetype);
end
|
github
|
lcnbeapp/beapp-master
|
ft_sourceinterpolate.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sourceinterpolate.m
| 26,491 |
utf_8
|
1e48e1da73c6a1582abf8378c324f996
|
function [interp] = ft_sourceinterpolate(cfg, functional, anatomical)
% FT_SOURCEINTERPOLATE interpolates source activity or statistical maps onto the
% voxels or vertices of an anatomical description of the brain. Both the functional
% and the anatomical data can either describe a volumetric 3D regular grid, a
% triangulated description of the cortical sheet or an arbitrary cloud of points.
%
% The functional data in the output data will be interpolated at the locations at
% which the anatomical data are defined. For example, if the anatomical data was
% volumetric, the output data is a volume-structure, containing the resliced source
% and the anatomical volume that can be visualized using FT_SOURCEPLOT or written to
% file using FT_SOURCEWRITE.
%
% The following scenarios are possible:
%
% - Both functional data and anatomical data are defined on 3D regular grids, for
% example with a low-res grid for the functional data and a high-res grid for the
% anatomy.
%
% - The functional data is defined on a 3D regular grid of source positions
% and the anatomical data is defined on an irregular point cloud, which can be a
% 2D triangulated mesh.
%
% - The functional data is defined on an irregular point cloud, which can be a 2D
% triangulated mesh, and the anatomical data is defined on a 3D regular grid.
%
% - Both the functional and the anatomical data are defined on an irregular
% point cloud, which can be a 2D triangulated mesh.
%
% - The functional data is defined on a low resolution 2D triangulated mesh and the
% anatomical data is defined on a high resolution mesh, where the low-res vertices
% form a subset of the high-res vertices. This allows for mesh based interpolation.
% The algorithm currently implemented is so-called 'smudging' as it is also applied
% by the MNE-suite software.
%
% Use as
% [interp] = ft_sourceinterpolate(cfg, source, anatomy)
% [interp] = ft_sourceinterpolate(cfg, stat, anatomy)
% where
% source is the output of FT_SOURCEANALYSIS
% stat is the output of FT_SOURCESTATISTICS
% anatomy is the output of FT_READ_MRI or one of the FT_VOLUMExxx functions,
% a cortical sheet that was read with FT_READ_HEADSHAPE, or a regular
% 3D grid created with FT_PREPARE_SOURCEMODEL.
% and cfg is a structure with any of the following fields
% cfg.parameter = string (or cell-array) of the parameter(s) to be interpolated
% cfg.downsample = integer number (default = 1, i.e. no downsampling)
% cfg.interpmethod = string, can be 'nearest', 'linear', 'cubic', 'spline', 'sphere_avg' or 'smudge' (default = 'linear for interpolating two 3D volumes, 'nearest' for all other cases)
%
% The supported interpolation methods are 'nearest', 'linear', 'cubic' or 'spline'
% for interpolating two 3D volumes onto each other. For all other cases the supported
% interpolation methods are 'nearest', 'sphere_avg' or 'smudge'.
%
% The functional and anatomical data should be expressed in the same
% coordinate sytem, i.e. either both in MEG headcoordinates (NAS/LPA/RPA)
% or both in SPM coordinates (AC/PC).
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_READ_MRI, FT_SOURCEANALYSIS, FT_SOURCESTATISTICS,
% FT_READ_HEADSHAPE, FT_SOURCEPLOT, FT_SOURCEWRITE
% Copyright (C) 2003-2007, Robert Oostenveld
% Copyright (C) 2011-2014, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar functional anatomical
ft_preamble provenance functional anatomical
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% this is not supported any more as of 26/10/2011
if ischar(anatomical),
error('please use cfg.inputfile instead of specifying the input variable as a sting');
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'keepinside' 'voxelcoord'});
cfg = ft_checkconfig(cfg, 'deprecated', {'sourceunits', 'mriunits'});
cfg = ft_checkconfig(cfg, 'required', 'parameter');
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.coh', 'coh'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.mom', 'mom'});
% set the defaults
cfg.downsample = ft_getopt(cfg, 'downsample', 1);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% cfg.interpmethod depends on how the interpolation should be done and will be specified below
% replace pnt by pos
anatomical = fixpos(anatomical);
functional = fixpos(functional);
% ensure the functional data to be in double precision
functional = ft_struct2double(functional);
if isfield(anatomical, 'transform') && isfield(anatomical, 'dim')
% anatomical volume
isUnstructuredAna = false;
elseif isfield(anatomical, 'pos') && isfield(anatomical, 'dim')
% positions that can be mapped onto a 3D regular grid
isUnstructuredAna = false;
elseif isfield(anatomical, 'pos')
% anatomical data that consists of a mesh, but no smudging possible
isUnstructuredAna = true;
end
if isfield(functional, 'transform') && isfield(functional, 'dim')
% functional volume
isUnstructuredFun = false;
elseif isfield(functional, 'pos') && isfield(functional, 'dim')
% positions that can be mapped onto a 3D regular grid
isUnstructuredFun = false;
else
isUnstructuredFun = true;
end
if isUnstructuredAna
anatomical = ft_checkdata(anatomical, 'datatype', 'source', 'inside', 'logical', 'feedback', 'yes', 'hasunit', 'yes');
else
anatomical = ft_checkdata(anatomical, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunit', 'yes');
end
if isUnstructuredFun
functional = ft_checkdata(functional, 'datatype', 'source', 'inside', 'logical', 'feedback', 'yes', 'hasunit', 'yes');
else
functional = ft_checkdata(functional, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunit', 'yes');
end
if ~isa(cfg.parameter, 'cell')
cfg.parameter = {cfg.parameter};
end
% try to select all relevant parameters present in the data
if any(strcmp(cfg.parameter, 'all'))
cfg.parameter = parameterselection('all', functional);
for k = numel(cfg.parameter):-1:1
% check whether the field is numeric
tmp = getsubfield(functional, cfg.parameter{k});
if iscell(tmp)
cfg.parameter(k) = [];
elseif strcmp(cfg.parameter{k}, 'pos')
cfg.parameter(k) = [];
end
end
end
% ensure that the functional data has the same unit as the anatomical data
functional = ft_convert_units(functional, anatomical.unit);
if isfield(functional, 'coordsys') && isfield(anatomical, 'coordsys') && ~isequal(functional.coordsys, anatomical.coordsys)
% FIXME is this different when smudged or not?
% warning('the coordinate systems are not aligned');
% error('the coordinate systems are not aligned');
end
if ~isUnstructuredAna && cfg.downsample~=1
% downsample the anatomical volume
tmpcfg = keepfields(cfg, {'downsample'});
orgcfg.parameter = cfg.parameter;
tmpcfg.parameter = 'anatomy';
anatomical = ft_volumedownsample(tmpcfg, anatomical);
% restore the provenance information
[cfg, anatomical] = rollback_provenance(cfg, anatomical);
% restore the original parameter, it should not be 'anatomy'
cfg.parameter = orgcfg.parameter;
end
% collect the functional volumes that should be converted
dat_name = {};
dat_array = {};
for i=1:length(cfg.parameter)
if ~iscell(getsubfield(functional, cfg.parameter{i}))
dat_name{end+1} = cfg.parameter{i};
dat_array{end+1} = getsubfield(functional, cfg.parameter{i});
else
fprintf('not interpolating %s, since it is represented in a cell-array\n', cfg.parameter{i});
end
end
% hmmmm, if the input data contains a time and/or freq dimension, then the output
% may be terribly blown up; most convenient would be to output only the
% smudging matrix, and project the data when plotting
if isUnstructuredFun && isUnstructuredAna && isfield(anatomical, 'orig') && isfield(anatomical.orig, 'pos') && isfield(anatomical.orig, 'tri')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functional data defined on subset of vertices in an anatomical mesh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FIXME this should not be decided on the basis of the data structures but on the basis of the cfg.interpmethod option
% FIXME the distribution of 3 geometries over the 2 structures is weird
% FIXME a (perhaps extreme) application of this would be to interpolate data from parcels on the sheet, i.e. an inverse parcellation
% anatomical data consists of a decimated triangulated mesh, containing
% the original description, allowing for smudging.
% smudge the low resolution functional data according to the strategy in
% MNE-suite (chapter 8.3 of the manual)
interpmat = interp_ungridded(anatomical.pos, anatomical.orig.pos, 'projmethod', 'smudge', 'triout', anatomical.orig.tri);
interpmat(~anatomical.inside(:), :) = 0;
% start with an empty structure, keep only some fields
interp = keepfields(functional, {'time', 'freq'});
interp = copyfields(anatomical, interp, {'coordsys', 'unit'});
interp = copyfields(anatomical.orig, interp, {'pos', 'tri'});
% identify the inside voxels after interpolation
nzeros = sum(interpmat~=0,2);
newinside = (nzeros~=0);
newoutside = (nzeros==0);
interp.inside = false(size(anatomical.pos,1),1);
interp.inside(newinside) = true;
% interpolate all functional data
for i=1:length(dat_name)
fprintf('interpolating %s\n', dat_name{i});
dimord = getdimord(functional, dat_name{i});
dimtok = tokenize(dimord, '_');
dimf = getdimsiz(functional, dat_name{i});
dimf(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
% should be 3-D array, can have trailing singleton dimensions
if numel(dimf)<2
dimf(2) = 1;
end
if numel(dimf)<3
dimf(3) = 1;
end
allav = zeros([size(anatomical.orig.pos,1), dimf(2:end)]);
for k=1:dimf(2)
for m=1:dimf(3)
fv = dat_array{i}(:,k,m);
av = interpmat*fv;
av(newoutside) = nan;
allav(:,k,m) = av;
end
end
interp = setsubfield(interp, dat_name{i}, allav);
end
elseif isUnstructuredFun && isUnstructuredAna
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functional data defined on a point cloud/mesh, anatomy on a volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set default interpmethod for this situation
cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'nearest');
cfg.sphereradius = ft_getopt(cfg, 'sphereradius', 0.5);
cfg.power = ft_getopt(cfg, 'power', 1);
interpmat = interp_ungridded(functional.pos, anatomical.pos, 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius, 'power', cfg.power); % FIXME include other key-value pairs as well
interpmat(~anatomical.inside(:), :) = 0;
% start with an empty structure, keep only some fields
interp = keepfields(functional, {'time', 'freq'});
interp = copyfields(anatomical, interp, {'pos', 'tri', 'dim', 'transform', 'coordsys', 'unit'});
% identify the inside voxels after interpolation
nzeros = sum(interpmat~=0,2);
newinside = (nzeros~=0);
newoutside = (nzeros==0);
interp.inside = false(size(anatomical.pos,1),1);
interp.inside(newinside) = true;
% interpolate all functional data
for i=1:length(dat_name)
fprintf('interpolating %s\n', dat_name{i});
dimord = getdimord(functional, dat_name{i});
dimtok = tokenize(dimord, '_');
dimf = getdimsiz(functional, dat_name{i});
dimf(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
% should be 3-D array, can have trailing singleton dimensions
if numel(dimf)<2
dimf(2) = 1;
end
if numel(dimf)<3
dimf(3) = 1;
end
allav = zeros([size(anatomical.pos,1), dimf(2:end)]);
for k=1:dimf(2)
for m=1:dimf(3)
fv = dat_array{i}(:,k,m);
av = interpmat*fv;
av(newoutside) = nan;
allav(:,k,m) = av;
end
end
interp = setsubfield(interp, dat_name{i}, allav);
end
elseif isUnstructuredFun && ~isUnstructuredAna
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functional data defined on a point cloud/mesh, anatomy on a point cloud/mesh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set default interpmethod for this situation
cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'nearest');
cfg.sphereradius = ft_getopt(cfg, 'sphereradius', 0.5);
cfg.power = ft_getopt(cfg, 'power', 1);
[ax, ay, az] = voxelcoords(anatomical.dim, anatomical.transform);
anatomical.pos = [ax(:) ay(:) az(:)];
clear ax ay az
interpmat = interp_ungridded(functional.pos, anatomical.pos, 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius, 'power', cfg.power); % FIXME include other key-value pairs as well
interpmat(~anatomical.inside(:), :) = 0;
% start with an empty structure, keep only some fields
interp = keepfields(functional, {'time', 'freq'});
interp = copyfields(anatomical, interp, {'pos', 'tri', 'dim', 'transform', 'coordsys', 'unit', 'anatomy'});
% identify the inside voxels after interpolation
nzeros = sum(interpmat~=0,2);
newinside = (nzeros~=0);
newoutside = (nzeros==0);
interp.inside = false(anatomical.dim);
interp.inside(newinside) = true;
% interpolate all functional data
for i=1:length(dat_name)
fprintf('interpolating %s\n', dat_name{i});
dimord = getdimord(functional, dat_name{i});
dimtok = tokenize(dimord, '_');
dimf = getdimsiz(functional, dat_name{i});
dimf(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
% should be 3-D array, can have trailing singleton dimensions
if numel(dimf)<2
dimf(2) = 1;
end
if numel(dimf)<3
dimf(3) = 1;
end
av = zeros([anatomical.dim ]);
allav = zeros([anatomical.dim dimf(2:end)]);
for k=1:dimf(2)
for m=1:dimf(3)
fv = dat_array{i}(:,k,m);
av(:) = interpmat*fv;
av(newoutside) = nan;
allav(:,:,:,k,m) = av;
end
end
if isfield(interp, 'freq') || isfield(interp, 'time')
% the output should be a source representation, not a volume
allav = reshape(allav, prod(anatomical.dim), dimf(2), dimf(3));
end
interp = setsubfield(interp, dat_name{i}, allav);
end
if ~isfield(interp, 'freq') && ~isfield(interp, 'time')
% the output should be a volume representation, not a source
interp = rmfield(interp, 'pos');
end
elseif ~isUnstructuredFun && isUnstructuredAna
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functional data defined on a volume, anatomy on a point cloud/mesh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set default interpmethod for this situation
cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'nearest');
cfg.sphereradius = ft_getopt(cfg, 'sphereradius', []);
cfg.power = ft_getopt(cfg, 'power', 1);
% interpolate the 3D volume onto the anatomy
if ~strcmp(cfg.interpmethod, 'project')
% use interp_gridded
[interpmat, dummy] = interp_gridded(functional.transform, zeros(functional.dim), anatomical.pos, 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius, 'inside', functional.inside, 'power', cfg.power);
% use interp_ungridded
% interpmat = interp_ungridded(functional.pos, anatomical.pos, 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius, 'inside', functional.inside, 'power', cfg.power);
else
% do the interpolation below, the current implementation of the
% 'project' method does not output an interpmat (and is therefore quite
% inefficient
% set the defaults
cfg.projvec = ft_getopt(cfg, 'projvec', 1);
cfg.projweight = ft_getopt(cfg, 'projweight', ones(size(cfg.projvec)));
cfg.projcomb = ft_getopt(cfg, 'projcomb', 'mean'); % or max
cfg.projthresh = ft_getopt(cfg, 'projthresh', []);
end
% start with an empty structure, keep some fields
interp = keepfields(functional, {'time', 'freq'});
interp = copyfields(anatomical, interp, {'pos', 'tri', 'dim', 'transform', 'coordsys', 'unit'});
% identify the inside voxels after interpolation
interp.inside = true(size(anatomical.pos,1),1);
% interpolate all functional data
for i=1:length(dat_name)
fprintf('interpolating %s\n', dat_name{i});
dimord = getdimord(functional, dat_name{i});
dimtok = tokenize(dimord, '_');
dimf = getdimsiz(functional, dat_name{i});
dimf(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
if prod(functional.dim)==dimf(1)
% convert into 3-D, 4-D or 5-D array
dimf = [functional.dim dimf(2:end)];
dat_array{i} = reshape(dat_array{i}, dimf);
end
% should be 5-D array, can have trailing singleton dimensions
if numel(dimf)<4
dimf(4) = 1;
end
if numel(dimf)<5
dimf(5) = 1;
end
allav = zeros([size(anatomical.pos,1), dimf(4:end)]);
if ~strcmp(cfg.interpmethod, 'project')
for k=1:dimf(4)
for m=1:dimf(5)
fv = dat_array{i}(:,:,:,k,m);
fv = fv(functional.inside(:));
av = interpmat*fv;
allav(:,k,m) = av;
end
end
else
for k=1:dimf(4)
for m=1:dimf(5)
fv = dat_array{i}(:,:,:,k,m);
av = interp_gridded(functional.transform, fv, anatomical.pos, 'dim', functional.dim, 'projmethod', 'project', 'projvec', cfg.projvec, 'projweight', cfg.projweight, 'projcomb', cfg.projcomb, 'projthresh', cfg.projthresh);
allav(:,k,m) = av;
end
end
end
interp = setsubfield(interp, dat_name{i}, allav);
end
elseif ~isUnstructuredFun && ~isUnstructuredAna
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functional data defined on a volume, anatomy on a differently sampled volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set default interpmethod for this situation
cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'linear');
% start with an empty structure, keep some fields
interp = keepfields(functional, {'time', 'freq'});
interp = copyfields(anatomical, interp, {'pos', 'tri', 'dim', 'transform', 'coordsys', 'unit', 'anatomy'});
% convert the anatomical voxel positions into voxel indices into the functional volume
anatomical.transform = functional.transform \ anatomical.transform;
functional.transform = eye(4);
[fx, fy, fz] = voxelcoords(functional.dim, functional.transform);
[ax, ay, az] = voxelcoords(anatomical.dim, anatomical.transform);
% estimate the subvolume of the anatomy that is spanned by the functional volume
minfx = 1;
minfy = 1;
minfz = 1;
maxfx = functional.dim(1);
maxfy = functional.dim(2);
maxfz = functional.dim(3);
sel = ax(:)>=minfx & ...
ax(:)<=maxfx & ...
ay(:)>=minfy & ...
ay(:)<=maxfy & ...
az(:)>=minfz & ...
az(:)<=maxfz;
fprintf('selecting subvolume of %.1f%%\n', 100*sum(sel)./prod(anatomical.dim));
if all(functional.inside(:))
% keep all voxels marked as inside
interp.inside = true(anatomical.dim);
else
% reslice and interpolate inside
interp.inside = zeros(anatomical.dim);
% interpolate with method nearest
interp.inside( sel) = my_interpn(double(functional.inside), ax(sel), ay(sel), az(sel), 'nearest', cfg.feedback);
interp.inside(~sel) = 0;
interp.inside = logical(interp.inside);
end
% prepare the grid that is used in the interpolation
fg = [fx(:) fy(:) fz(:)];
clear fx fy fz
% reslice and interpolate all functional volumes
for i=1:length(dat_name)
fprintf('reslicing and interpolating %s\n', dat_name{i});
dimord = getdimord(functional, dat_name{i});
dimtok = tokenize(dimord, '_');
dimf = getdimsiz(functional, dat_name{i});
dimf(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
if prod(functional.dim)==dimf(1)
% convert into 3-D, 4-D or 5-D array
dimf = [functional.dim dimf(2:end)];
dat_array{i} = reshape(dat_array{i}, dimf);
end
% should be 5-D array, can have trailing singleton dimensions
if numel(dimf)<4
dimf(4) = 1;
end
if numel(dimf)<5
dimf(5) = 1;
end
av = zeros([anatomical.dim ]);
allav = zeros([anatomical.dim dimf(4:end)]);
functional.inside = functional.inside(:,:,:,1,1);
if any(dimf(4:end)>1) && ~strcmp(cfg.feedback, 'none')
% this is needed to prevent feedback to be displayed for every time-frequency point
warning('disabling feedback');
cfg.feedback = 'none';
end
for k=1:dimf(4)
for m=1:dimf(5)
fv = dat_array{i}(:,:,:,k,m);
if ~isa(fv, 'double')
% only convert if needed, this saves memory
fv = double(fv);
end
% av( sel) = my_interpn(fx, fy, fz, fv, ax(sel), ay(sel), az(sel), cfg.interpmethod, cfg.feedback);
if islogical(dat_array{i})
% interpolate always with method nearest
av( sel) = my_interpn(fv, ax(sel), ay(sel), az(sel), 'nearest', cfg.feedback);
av = logical(av);
else
if ~all(functional.inside(:))
% extrapolate the outside of the functional volumes for better interpolation at the edges
fv(~functional.inside) = griddatan(fg(functional.inside(:), :), fv(functional.inside(:)), fg(~functional.inside(:), :), 'nearest');
end
% interpolate functional onto anatomical grid
av( sel) = my_interpn(fv, ax(sel), ay(sel), az(sel), cfg.interpmethod, cfg.feedback);
av(~sel) = nan;
av(~interp.inside) = nan;
end
allav(:,:,:,k,m) = av;
end
end
if isfield(interp, 'freq') || isfield(interp, 'time')
% the output should be a source representation, not a volume
allav = reshape(allav, prod(anatomical.dim), dimf(4), dimf(5));
end
interp = setsubfield(interp, dat_name{i}, allav);
end
end % computing the interpolation according to the input data
if isfield(interp, 'freq') || isfield(interp, 'time')
% the output should be a source representation, not a volumetric representation
if ~isfield(interp, 'pos')
[x, y, z] = voxelcoords(interp.dim, interp.transform);
interp.pos = [x(:) y(:) z(:)];
end
end
if exist('interpmat', 'var')
cfg.interpmat = interpmat;
cfg.interpmat; % access it once to fool the cfg-tracking
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous functional anatomical
ft_postamble provenance interp
ft_postamble history interp
ft_postamble savevar interp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION this function computes the location of all voxels in head
% coordinates in a memory efficient manner
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, y, z] = voxelcoords(dim, transform)
xgrid = 1:dim(1);
ygrid = 1:dim(2);
zgrid = 1:dim(3);
npix = prod(dim(1:2)); % number of voxels in a single slice
x = zeros(dim);
y = zeros(dim);
z = zeros(dim);
X = zeros(1,npix);
Y = zeros(1,npix);
Z = zeros(1,npix);
E = ones(1,npix);
% determine the voxel locations per slice
for i=1:dim(3)
[X(:), Y(:), Z(:)] = ndgrid(xgrid, ygrid, zgrid(i));
tmp = transform*[X; Y; Z; E];
x((1:npix)+(i-1)*npix) = tmp(1,:);
y((1:npix)+(i-1)*npix) = tmp(2,:);
z((1:npix)+(i-1)*npix) = tmp(3,:);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for memory efficient interpolation
% the only reason for this function is that it does the interpolation in smaller chuncks
% this prevents memory problems that I often encountered here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [av] = my_interpn(fx, fy, fz, fv, ax, ay, az, interpmethod, feedback);
function [av] = my_interpn(fv, ax, ay, az, interpmethod, feedback)
num = numel(ax); % total number of voxels
blocksize = floor(num/20); % number of voxels to interpolate at once, split it into 20 chuncks
lastblock = 0; % boolean flag for while loop
sel = 1:blocksize; % selection of voxels that are interpolated, this is the first chunck
av = zeros(size(ax));
ft_progress('init', feedback, 'interpolating');
while (1)
ft_progress(sel(1)/num, 'interpolating %.1f%%\n', 100*sel(1)/num);
if sel(end)>=num
sel = sel(1):num;
lastblock = 1;
end
av(sel) = interpn(fv, ax(sel), ay(sel), az(sel), interpmethod);
if lastblock
break
end
sel = sel + blocksize;
end
ft_progress('close');
|
github
|
lcnbeapp/beapp-master
|
ft_megplanar.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_megplanar.m
| 16,100 |
utf_8
|
018d90ee64dbbd703cf6575665f3e5f1
|
function [data] = ft_megplanar(cfg, data)
% FT_MEGPLANAR computes planar MEG gradients gradients for raw data or average
% event-related field data. It can also convert frequency-domain data that was computed
% using FT_FREQANALYSIS, as long as it contains the complex-valued fourierspcrm and not
% only the powspctrm.
%
% Use as
% [interp] = ft_megplanar(cfg, data)
% where the input data corresponds to the output from FT_PREPROCESSING,
% FT_TIMELOCKANALYSIS or FT_FREQANALYSIS (with output='fourierspcrm').
%
% The configuration should contain
% cfg.planarmethod = string, can be 'sincos', 'orig', 'fitplane', 'sourceproject' (default = 'sincos')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'MEG'), see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% The methods orig, sincos and fitplane are all based on a neighbourhood interpolation.
% For these methods you need to specify
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS
%
% In the 'sourceproject' method a minumum current estimate is done using a large number
% of dipoles that are placed in the upper layer of the brain surface, followed by a
% forward computation towards a planar gradiometer array. This requires the
% specification of a volume conduction model of the head and of a source model. The
% 'sourceproject' method is not supported for frequency domain data.
%
% A dipole layer representing the brain surface must be specified with
% cfg.inwardshift = depth of the source layer relative to the head model surface (default = 2.5 cm, which is appropriate for a skin-based head model)
% cfg.spheremesh = number of dipoles in the source layer (default = 642)
% cfg.pruneratio = for singular values, default is 1e-3
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
% If no headshape is specified, the dipole layer will be based on the inner compartment
% of the volume conduction model.
%
% The volume conduction model of the head should be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% The following cfg fields are optional:
% cfg.feedback
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_COMBINEPLANAR, FT_NEIGHBOURSELECTION
% Copyright (C) 2004, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% store the original input representation of the data, this is used later on to convert it back
isfreq = ft_datatype(data, 'freq');
israw = ft_datatype(data, 'raw');
istlck = ft_datatype(data, 'timelock'); % this will be temporary converted into raw
% check if the input data is valid for this function, this converts the data if needed
data = ft_checkdata(data, 'datatype', {'raw' 'freq'}, 'feedback', 'yes', 'hassampleinfo', 'yes', 'ismeg', 'yes', 'senstype', {'ctf151', 'ctf275', 'bti148', 'bti248', 'itab153', 'yokogawa160', 'yokogawa64'});
if istlck
% the timelocked data has just been converted to a raw representation
% and will be converted back to timelocked at the end of this function
israw = true;
end
if isfreq,
if ~isfield(data, 'fourierspctrm'), error('freq data should contain Fourier spectra'); end
end
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% set the default configuration
cfg.channel = ft_getopt(cfg, 'channel', 'MEG');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.planarmethod = ft_getopt(cfg, 'planarmethod', 'sincos');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'headshape', 'headmodel', []});
if ~strcmp(cfg.planarmethod, 'sourceproject')
cfg = ft_checkconfig(cfg, 'required', {'neighbours'});
end
if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config')
% convert the nested config-object back into a normal structure
cfg.headshape = struct(cfg.headshape);
end
if isfield(cfg, 'neighbours') && isa(cfg.neighbours, 'config')
% convert the nested config-object back into a normal structure
cfg.neighbours = struct(cfg.neighbours);
end
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
% select trials of interest
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.channel = cfg.channel;
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
if strcmp(cfg.planarmethod, 'sourceproject')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Do an inverse computation with a simplified distributed source model
% and compute forward again with the axial gradiometer array replaced by
% a planar one.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% method specific configuration options
cfg.headshape = ft_getopt(cfg, 'headshape', []);
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 2.5); % this number assumes that all other inputs are in cm
cfg.pruneratio = ft_getopt(cfg, 'pruneratio', 1e-3);
cfg.spheremesh = ft_getopt(cfg, 'spheremesh', 642);
if isfreq
error('the method ''sourceproject'' is not supported for frequency data as input');
end
Nchan = length(data.label);
Ntrials = length(data.trial);
% FT_PREPARE_VOL_SENS will match the data labels, the gradiometer labels and the
% volume model labels (in case of a localspheres model) and result in a gradiometer
% definition that only contains the gradiometers that are present in the data.
[headmodel, axial.grad, cfg] = prepare_headmodel(cfg, data);
% determine the dipole layer that represents the surface of the brain
if isempty(cfg.headshape)
% construct from the inner layer of the volume conduction model
pos = headsurface(headmodel, axial.grad, 'surface', 'cortex', 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
else
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
headshape.pos = unique(headshape.pos, 'rows');
headshape.tri = projecttri(headshape.pos);
end
% construct from the head surface
pos = headsurface([], [], 'headshape', headshape, 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
end
% compute the forward model for the axial gradiometers
fprintf('computing forward model for %d dipoles\n', size(pos,1));
lfold = ft_compute_leadfield(pos, axial.grad, headmodel);
% construct the planar gradient definition and compute its forward model
% this will not work for a localspheres model, compute_leadfield will catch
% the error
planar.grad = constructplanargrad([], axial.grad);
lfnew = ft_compute_leadfield(pos, planar.grad, headmodel);
% compute the interpolation matrix
transform = lfnew * prunedinv(lfold, cfg.pruneratio);
planarmontage = [];
planarmontage.tra = transform;
planarmontage.labelorg = axial.grad.label;
planarmontage.labelnew = planar.grad.label;
% apply the linear transformation to the data
interp = ft_apply_montage(data, planarmontage, 'keepunused', 'yes');
% also apply the linear transformation to the gradiometer definition
interp.grad = ft_apply_montage(data.grad, planarmontage, 'balancename', 'planar', 'keepunused', 'yes');
% ensure there is a type string describing the gradiometer definition
if ~isfield(interp.grad, 'type')
% put the original gradiometer type in (will get _planar appended)
interp.grad.type = ft_senstype(data.grad);
end
interp.grad.type = [interp.grad.type '_planar'];
% % interpolate the data towards the planar gradiometers
% for i=1:Ntrials
% fprintf('interpolating trial %d to planar gradiometer\n', i);
% interp.trial{i} = transform * data.trial{i}(dataindx,:);
% end % for Ntrials
%
% % all planar gradiometer channels are included in the output
% interp.grad = planar.grad;
% interp.label = planar.grad.label;
%
% % copy the non-gradiometer channels back into the output data
% other = setdiff(1:Nchan, dataindx);
% for i=other
% interp.label{end+1} = data.label{i};
% for j=1:Ntrials
% interp.trial{j}(end+1,:) = data.trial{j}(i,:);
% end
% end
%
else
sens = ft_convert_units(data.grad);
chanposnans = any(isnan(sens.chanpos(:))) || any(isnan(sens.chanori(:)));
if chanposnans
if isfield(sens, 'chanposorg')
% temporarily replace chanpos and chanorig with the original values
sens.chanpos = sens.chanposorg;
sens.chanori = sens.chanoriorg;
sens.label = sens.labelorg;
sens = rmfield(sens, {'chanposorg', 'chanoriorg', 'labelorg'});
else
error('The channel positions (and/or orientations) contain NaNs; this prohibits correct behavior of the function. Please replace the input channel definition with one that contains valid channel positions');
end
end
cfg.channel = ft_channelselection(cfg.channel, sens.label);
cfg.channel = ft_channelselection(cfg.channel, data.label);
% ensure channel order according to cfg.channel (there might be one check
% too much in here somewhere or in the subfunctions, but I don't care.
% Better one too much than one too little - JMH @ 09/19/12
cfg = struct(cfg);
[neighbsel] = match_str({cfg.neighbours.label}, cfg.channel);
cfg.neighbours = cfg.neighbours(neighbsel);
cfg.neighbsel = channelconnectivity(cfg);
% determine
fprintf('average number of neighbours is %.2f\n', mean(sum(cfg.neighbsel)));
Ngrad = length(sens.label);
distance = zeros(Ngrad,Ngrad);
for i=1:size(cfg.neighbsel,1)
j=find(cfg.neighbsel(i, :));
d = sqrt(sum((sens.chanpos(j,:) - repmat(sens.chanpos(i, :), numel(j), 1)).^2, 2));
distance(i,j) = d;
distance(j,i) = d;
end
fprintf('minimum distance between neighbours is %6.2f %s\n', min(distance(distance~=0)), sens.unit);
fprintf('maximum distance between gradiometers is %6.2f %s\n', max(distance(distance~=0)), sens.unit);
% The following does not work when running in deployed mode because the
% private functions that compute the planar montage are not recognized as
% such and won't be compiled, unless explicitly specified.
% % generically call megplanar_orig megplanar_sincos or megplanar_fitplane
%fun = ['megplanar_' cfg.planarmethod];
%if ~exist(fun, 'file')
% error('unknown method for computation of planar gradient');
%end
%planarmontage = eval([fun '(cfg, data.grad)']);
switch cfg.planarmethod
case 'sincos'
planarmontage = megplanar_sincos(cfg, sens);
case 'orig'
% method specific info that is needed
cfg.distance = distance;
planarmontage = megplanar_orig(cfg, sens);
case 'fitplane'
planarmontage = megplanar_fitplane(cfg, sens);
otherwise
fun = ['megplanar_' cfg.planarmethod];
if ~exist(fun, 'file')
error('unknown method for computation of planar gradient');
end
planarmontage = eval([fun '(cfg, data.grad)']);
end
% apply the linear transformation to the data
interp = ft_apply_montage(data, planarmontage, 'keepunused', 'yes', 'feedback', cfg.feedback);
% also apply the linear transformation to the gradiometer definition
interp.grad = ft_apply_montage(sens, planarmontage, 'balancename', 'planar', 'keepunused', 'yes');
% ensure there is a type string describing the gradiometer definition
if ~isfield(interp.grad, 'type')
% put the original gradiometer type in (will get _planar appended)
interp.grad.type = ft_senstype(sens);
end
interp.grad.type = [interp.grad.type '_planar'];
% add the chanpos info back into the gradiometer description
tmplabel = interp.grad.label;
for k = 1:numel(tmplabel)
if ~isempty(strfind(tmplabel{k}, '_dV')) || ~isempty(strfind(tmplabel{k}, '_dH'))
tmplabel{k} = tmplabel{k}(1:end-3);
end
end
[ix,iy] = match_str(tmplabel, sens.label);
interp.grad.chanpos(ix,:) = sens.chanpos(iy,:);
% if the original chanpos contained nans, make sure to put nans in the
% updated one as well, and move the updated chanpos values to chanposorg
if chanposnans
interp.grad.chanposorg = sens.chanpos;
interp.grad.chanoriorg = sens.chanori;
interp.grad.labelorg = sens.label;
interp.grad.chanpos = nan(size(interp.grad.chanpos));
interp.grad.chanori = nan(size(interp.grad.chanori));
end
end
if istlck
% convert the raw structure back into a timelock structure
interp = ft_checkdata(interp, 'datatype', 'timelock');
israw = false;
end
% copy the trial specific information into the output
if isfield(data, 'trialinfo')
interp.trialinfo = data.trialinfo;
end
% copy the sampleinfo field as well
if isfield(data, 'sampleinfo')
interp.sampleinfo = data.sampleinfo;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
% rename the output variable to accomodate the savevar postamble
data = interp;
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the inverse using a pruned SVD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [lfi] = prunedinv(lf, r)
[u, s, v] = svd(lf);
p = find(s<(s(1,1)*r) & s~=0);
fprintf('pruning %d out of %d singular values\n', length(p), min(size(s)));
s(p) = 0;
s(find(s~=0)) = 1./s(find(s~=0));
lfi = v * s' * u';
|
github
|
lcnbeapp/beapp-master
|
ft_movieplotTFR.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_movieplotTFR.m
| 17,026 |
utf_8
|
76fa25699ee966caae0c04b52d9eabea
|
function [cfg] = ft_movieplotTFR(cfg, data)
% FT_MOVIEPLOTTFR makes a movie of the time-frequency representation of power or
% coherence.
%
% Use as
% ft_movieplotTFR(cfg, data)
% where the input data comes from FT_FREQANALYSIS or FT_FREQDESCRIPTIVES and the
% configuration is a structure that can contain
% cfg.parameter = string, parameter that is color coded (default = 'avg')
% cfg.xlim = selection boundaries over first dimension in data (e.g., time)
% 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = selection boundaries over second dimension in data (e.g., freq)
% 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.zlim = plotting limits for color dimension, 'maxmin',
% 'maxabs', 'zeromax', 'minzero', or [zmin zmax] (default = 'maxmin')
% cfg.samperframe = number, samples per fram (default = 1)
% cfg.framespersec = number, frames per second (default = 5)
% cfg.framesfile = [] (optional), no file saved, or 'string', filename of saved frames.mat (default = []);
% cfg.moviefreq = number, movie frames are all time points at the fixed frequency moviefreq (default = []);
% cfg.movietime = number, movie frames are all frequencies at the fixed time movietime (default = []);
% cfg.layout = specification of the layout, see below
% cfg.interactive = 'no' or 'yes', make it interactive
% cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_TIMELOCKBASELINE or FT_FREQBASELINE
% cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute')
% cfg.colorbar = 'yes', 'no' (default = 'no')
%
% the layout defines how the channels are arranged. you can specify the
% layout in a variety of ways:
% - you can provide a pre-computed layout structure (see prepare_layout)
% - you can give the name of an ascii layout file with extension *.mat
% - you can give the name of an electrode file
% - you can give an electrode definition, i.e. "elec" structure
% - you can give a gradiometer definition, i.e. "grad" structure
% if you do not specify any of these and the data structure contains an
% electrode or gradiometer structure, that will be used for creating a
% layout. if you want to have more fine-grained control over the layout
% of the subplots, you should create your own layout file.
%
% to facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% if you specify this option the input data will be read from a *.mat
% file on disk. this mat files should contain only a single variable named 'data',
% corresponding to the input structure.
% Copyright (c) 2009, Ingrid Nieuwenhuis
% Copyright (c) 2011, jan-Mathijs Schoffelen, Robert Oostenveld, Cristiano Micheli
%
% this file is part of fieldtrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the gnu general public license as published by
% the free software foundation, either version 3 of the license, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but without any warranty; without even the implied warranty of
% merchantability or fitness for a particular purpose. see the
% gnu general public license for more details.
%
% you should have received a copy of the gnu general public license
% along with fieldtrip. if not, see <http://www.gnu.org/licenses/>.
%
% $id: ft_movieploter.m 4354 2011-10-05 15:06:02z crimic $
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
% note that this function is also called from ft_movieplotER
data = ft_checkdata(data, 'datatype', {'timelock', 'freq'});
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam'});
% set the defaults
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm'); % use power as default
cfg.inputfile = ft_getopt(cfg, 'inputfile', []);
cfg.samperframe = ft_getopt(cfg, 'samperframe', 1);
cfg.framespersec = ft_getopt(cfg, 'framespersec', 5);
cfg.framesfile = ft_getopt(cfg, 'framesfile', []);
cfg.moviefreq = ft_getopt(cfg, 'moviefreq', []);
cfg.movietime = ft_getopt(cfg, 'movietime', []);
cfg.movierpt = ft_getopt(cfg, 'movierpt', 1);
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'no');
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
dointeractive = istrue(cfg.interactive);
xparam = 'time';
if isfield(data, 'freq')
yparam = 'freq';
end
% read or create the layout that will be used for plotting:
layout = ft_prepare_layout(cfg, data);
% apply optional baseline correction
if ~strcmp(cfg.baseline, 'no')
tmpcfg = keepfields(cfg, {'baseline', 'baselinetype', 'parameter'});
data = ft_freqbaseline(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xvalues = data.(xparam);
parameter = data.(cfg.parameter);
if exist('yparam', 'var')
yvalues = data.(yparam);
end
% check consistency of xparam and yparam
% NOTE: i set two different defaults for the 'chan_time' and the 'chan_freq_time' case
if isfield(data,'dimord')
if strcmp(data.dimord,'chan_freq_time')
if length(xvalues)~=size(parameter,3)
error('inconsistent size of "%s" compared to "%s"', cfg.parameter, xparam);
end
if length(yvalues)~=size(parameter,2)
error('inconsistent size of "%s" compared to "%s"', cfg.parameter, yparam);
end
elseif strcmp(data.dimord,'chan_time')
if length(xvalues)~=size(parameter,2)
error('inconsistent size of "%s" compared to "%s"', cfg.parameter, xparam);
end
else
error('input data is incompatible')
end
end
if ischar(cfg.xlim) && strcmp(cfg.xlim, 'maxmin')
cfg.xlim = [];
cfg.xlim(1) = min(xvalues);
cfg.xlim(2) = max(xvalues);
end
xbeg = nearest(xvalues, cfg.xlim(1));
xend = nearest(xvalues, cfg.xlim(2));
% update the configuration
cfg.xlim = xvalues([xbeg xend]);
if exist('yparam', 'var')
if ischar(cfg.ylim) && strcmp(cfg.ylim, 'maxmin')
cfg.ylim = [];
cfg.ylim(1) = min(yvalues);
cfg.ylim(2) = max(yvalues);
end
ybeg = nearest(yvalues, cfg.ylim(1));
yend = nearest(yvalues, cfg.ylim(2));
% update the configuration
cfg.ylim = yvalues([ybeg yend]);
hasyparam = true;
else
% this allows us not to worry about the yparam any more
yvalues = nan;
yparam = nan;
ybeg = 1;
yend = 1;
cfg.ylim = [];
hasyparam = false;
end
% select the channels in the data that match with the layout:
[seldat, sellay] = match_str(data.label, layout.label);
if isempty(seldat)
error('labels in data and labels in layout do not match');
end
% make a subselection of the data
xvalues = xvalues(xbeg:xend);
yvalues = yvalues(ybeg:yend);
if all(isnan(yvalues))
parameter = parameter(seldat, xbeg:xend);
else
parameter = parameter(seldat, ybeg:yend, xbeg:xend);
end
clear xbeg xend ybeg yend
% get the x and y coordinates and labels of the channels in the data
chanx = layout.pos(sellay,1);
chany = layout.pos(sellay,2);
% get the z-range
if ischar(cfg.zlim) && strcmp(cfg.zlim, 'maxmin')
cfg.zlim = [];
cfg.zlim(1) = min(parameter(:));
cfg.zlim(2) = max(parameter(:));
elseif ischar(cfg.zlim) && strcmp(cfg.zlim,'maxabs')
cfg.zlim = [];
cfg.zlim(1) = -max(abs(parameter(:)));
cfg.zlim(2) = max(abs(parameter(:)));
elseif ischar(cfg.zlim) && strcmp(cfg.zlim,'zeromax')
cfg.zlim = [];
cfg.zlim(1) = 0;
cfg.zlim(2) = max(parameter(:));
elseif ischar(cfg.zlim) && strcmp(cfg.zlim,'minzero')
cfg.zlim = [];
cfg.zlim(1) = min(parameter(:));
cfg.zlim(2) = 0;
end
h = gcf;
pos = get(gcf, 'position');
set(h, 'toolbar', 'figure');
if dointeractive
% add the gui elements for changing the speed
p = uicontrol('style', 'text');
set(p, 'position', [20 75 50 20]);
set(p, 'string', 'speed')
button_slower = uicontrol('style', 'pushbutton');
set(button_slower, 'position', [75 75 20 20]);
set(button_slower, 'string', '-')
set(button_slower, 'callback', @cb_speed);
button_faster = uicontrol('style', 'pushbutton');
set(button_faster, 'position', [100 75 20 20]);
set(button_faster, 'string', '+')
set(button_faster, 'callback', @cb_speed);
% add the gui elements for changing the color limits
p = uicontrol('style', 'text');
set(p, 'position', [20 100 50 20]);
set(p, 'string', 'zlim')
button_slower = uicontrol('style', 'pushbutton');
set(button_slower, 'position', [75 100 20 20]);
set(button_slower, 'string', '-')
set(button_slower, 'callback', @cb_zlim);
button_faster = uicontrol('style', 'pushbutton');
set(button_faster, 'position', [100 100 20 20]);
set(button_faster, 'string', '+')
set(button_faster, 'callback', @cb_zlim);
sx = uicontrol('style', 'slider');
set(sx, 'position', [20 5 pos(3)-160 20]);
% note that "sx" is needed further down
sy = uicontrol('style', 'slider');
set(sy, 'position', [20 30 pos(3)-160 20]);
% note that "sy" is needed further down
p = uicontrol('style', 'pushbutton');
set(p, 'position', [20 50 50 20]);
set(p, 'string', 'play')
% note that "p" is needed further down
hx = uicontrol('style', 'text');
set(hx, 'position', [pos(3)-140 5 120 20]);
set(hx, 'string', sprintf('%s = ', xparam));
set(hx, 'horizontalalignment', 'left');
hy = uicontrol('style', 'text');
set(hy, 'position', [pos(3)-140 30 120 20]);
set(hy, 'string', sprintf('%s = ', yparam));
set(hy, 'horizontalalignment', 'left');
if ~hasyparam
set(hy, 'visible', 'off')
set(sy, 'visible', 'off')
end
t = timer;
set(t, 'timerfcn', {@cb_timer, h}, 'period', 0.1, 'executionmode', 'fixedspacing');
% collect the data and the options to be used in the figure
opt.lay = layout;
opt.chanx = chanx;
opt.chany = chany;
opt.xvalues = xvalues; % freq
opt.yvalues = yvalues; % time
opt.xparam = xparam;
opt.yparam = yparam;
opt.dat = parameter;
opt.zlim = cfg.zlim;
opt.speed = 1;
opt.cfg = cfg;
opt.sx = sx; % slider freq
opt.sy = sy; % slider time
opt.p = p;
opt.t = t;
opt.colorbar = istrue(cfg.colorbar);
if ~hasyparam
opt.timdim = 2;
else
opt.timdim = 3;
end
[dum, hs] = ft_plot_topo(chanx, chany, zeros(numel(chanx),1), 'mask', layout.mask, 'outline', layout.outline, 'interpmethod', 'v4', 'interplim', 'mask');
caxis(cfg.zlim);
axis off;
if opt.colorbar
colorbar
end
% add sum stuff at a higher level for quicker access in the callback
% routine
opt.xdata = get(hs, 'xdata');
opt.ydata = get(hs, 'ydata');
opt.nanmask = get(hs, 'cdata');
% add the handle to the mesh
opt.hs = hs;
% add the text-handle to the guidata
opt.hx = hx;
opt.hy = hy;
guidata(h, opt);
% from now it is safe to hand over the control to the callback function
set(sx, 'callback', @cb_slider);
set(sy, 'callback', @cb_slider);
% from now it is safe to hand over the control to the callback function
set(p, 'callback', @cb_playbutton);
else
% non interactive mode
[tmp, hs] = ft_plot_topo(chanx, chany, zeros(numel(chanx),1), 'mask', layout.mask, 'outline', layout.outline, 'interpmethod', 'v4');
caxis(cfg.zlim);
axis off;
xdata = get(hs, 'xdata');
ydata = get(hs, 'ydata');
nanmask = get(hs, 'cdata');
% frequency/time selection
if exist('yparam', 'var') && any(~isnan(yvalues))
if ~isempty(cfg.movietime)
indx = cfg.movietime;
for iFrame = 1:floor(size(parameter, 2)/cfg.samperframe)
indy = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
datavector = reshape(mean(parameter(:, indy,indx), 2), [size(parameter,1) 1]);
datamatrix = griddata(chanx, chany, datavector, xdata, ydata, 'v4');
set(hs, 'cdata', datamatrix + nanmask);
F(iFrame) = getframe;
end
elseif ~isempty(cfg.moviefreq)
indy = cfg.moviefreq;
for iFrame = 1:floor(size(parameter, 3)/cfg.samperframe)
indx = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
datavector = reshape(mean(parameter(:, indy,indx), 3), [size(parameter,1) 1]);
datamatrix = griddata(chanx, chany, datavector, xdata, ydata, 'v4');
set(hs, 'cdata', datamatrix + nanmask);
F(iFrame) = getframe;
end
else
error('Either moviefreq or movietime should contain a bin number')
end
else
for iFrame = 1:floor(size(parameter, 2)/cfg.samperframe)
indx = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
datavector = mean(parameter(:, indx), 2);
datamatrix = griddata(chanx, chany, datavector, xdata, ydata, 'v4');
set(hs, 'cdata', datamatrix + nanmask);
F(iFrame) = getframe;
end
end
% save movie
if ~isempty(cfg.framesfile)
save(cfg.framesfile, 'F');
end
% play movie
movie(F, cfg.movierpt, cfg.framespersec);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance data
ft_postamble history data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_slider(h, eventdata)
opt = guidata(h);
xdim = opt.timdim;
valx = get(opt.sx, 'value');
valx = round(valx*(size(opt.dat,xdim)-1))+1;
valx = min(valx, size(opt.dat,xdim));
valx = max(valx, 1);
if valx>size(opt.dat,opt.timdim)
valx = size(opt.dat,opt.timdim)-1;
end
if length(size(opt.dat))>2
ydim = 2;
valy = get(opt.sy, 'value');
valy = round(valy*(size(opt.dat,ydim)-1))+1;
valy = min(valy, size(opt.dat,ydim));
valy = max(valy, 1);
set(opt.hx, 'string', sprintf('%s = %f\n', opt.xparam, opt.xvalues(valx)));
set(opt.hy, 'string', sprintf('%s = %f\n', opt.yparam, opt.yvalues(valy)));
% update data, interpolate and render
datamatrix = griddata(opt.chanx, opt.chany, opt.dat(:,valy,valx), opt.xdata, opt.ydata, 'v4');
else
set(opt.hx, 'string', sprintf('%s = %f\n', opt.xparam, opt.xvalues(valx)));
% update data, interpolate and render
datamatrix = griddata(opt.chanx, opt.chany, opt.dat(:,valx), opt.xdata, opt.ydata, 'v4');
end
set(opt.hs, 'cdata', datamatrix + opt.nanmask);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_playbutton(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
switch get(h, 'string')
case 'play'
set(h, 'string', 'stop');
start(opt.t);
case 'stop'
set(h, 'string', 'play');
stop(opt.t);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_timer(obj, event, h)
if ~ishandle(h)
return
end
opt = guidata(h);
delta = opt.speed/size(opt.dat,opt.timdim);
val = get(opt.sx, 'value');
val = val + delta;
% to avoid the slider to go out of range when the speed is too high
if val+delta>2
val = get(opt.sx, 'value');
end
if val>1
val = val-1;
end
set(opt.sx, 'value', val);
cb_slider(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_zlim(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
switch get(h, 'string')
case '+'
caxis(caxis*sqrt(2));
case '-'
caxis(caxis/sqrt(2));
end % switch
guidata(h, opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_speed(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
switch get(h, 'string')
case '+'
opt.speed = opt.speed*sqrt(2);
case '-'
opt.speed = opt.speed/sqrt(2);
% opt.speed = max(opt.speed, 1); % should not be smaller than 1
end % switch
guidata(h, opt);
|
github
|
lcnbeapp/beapp-master
|
ft_volumerealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_volumerealign.m
| 81,513 |
utf_8
|
3af8300d106ef74f24d3ed3a77669407
|
function [realign, snap] = ft_volumerealign(cfg, mri, target)
% FT_VOLUMEREALIGN spatially aligns an anatomical MRI with head coordinates based on
% external fiducials or anatomical landmarks. This function does not change the
% anatomical MRI volume itself, but only adjusts the homogeneous transformation
% matrix that describes the mapping from voxels to the coordinate system. It also
% appends a coordsys-field to the output data, or it updates it. This field specifies
% how the x/y/z-axes of the coordinate system should be interpreted.
%
% For spatial normalisation and deformation (i.e. warping) an MRI to a template brain
% you should use the FT_VOLUMENORMALISE function.
%
% Different methods for aligning the anatomical MRI to a coordinate system are
% implemented, which are described in detail below:
%
% INTERACTIVE - Use a graphical user interface to click on the location of anatomical
% fiducials. The coordinate system is updated according to the definition of the
% coordinates of these fiducials.
%
% FIDUCIAL - The coordinate system is updated according to the definition of the
% coordinates of fiducials that are specified in the configuration.
%
% HEADSHAPE - Match the head surface from the MRI with a measured head surface using
% an iterative closest point procedure. The MRI will be updated to match the measured
% head surface. This includes an optional manual coregistration of the two head
% surfaces.
%
% SPM - align the individual MRI to the coordinate system of a target or template MRI
% by matching the two volumes.
%
% FSL - align the individual MRI to the coordinate system of a target or template MRI
% by matching the two volumes.
%
% Use as
% [mri] = ft_volumerealign(cfg, mri)
% or
% [mri] = ft_volumerealign(cfg, mri, target)
% where the input MRI should be an anatomical or functional MRI volume and the third
% input argument is the the target anatomical MRI for SPM or FSL.
%
% The configuration can contain the following options
% cfg.method = string representing the method for aligning
% 'interactive' use the GUI to specify the fiducials
% 'fiducial' use pre-specified fiducials
% 'headshape' match the MRI surface to a headshape
% 'spm' match to template anatomical MRI
% 'fsl' match to template anatomical MRI
% cfg.coordsys = string specifying the origin and the axes of the coordinate
% system. Supported coordinate systems are 'ctf', '4d',
% 'bti', 'yokogawa', 'asa', 'itab', 'neuromag', 'spm',
% 'tal' and 'paxinos'. See http://tinyurl.com/ojkuhqz
% cfg.clim = [min max], scaling of the anatomy color (default
% is to adjust to the minimum and maximum)
% cfg.parameter = 'anatomy' the parameter which is used for the
% visualization
% cfg.viewresult = string, 'yes' or 'no', whether or not to visualize aligned volume(s)
% after realignment (default = 'no')
%
% When cfg.method = 'fiducial' and a coordinate system that is based on external
% facial anatomical landmarks (common for EEG and MEG), the following is required to
% specify the voxel indices of the fiducials:
% cfg.fiducial.nas = [i j k], position of nasion
% cfg.fiducial.lpa = [i j k], position of LPA
% cfg.fiducial.rpa = [i j k], position of RPA
% cfg.fiducial.zpoint = [i j k], a point on the positive z-axis. This is
% an optional 'fiducial', and can be used to determine
% whether the input voxel coordinate axes are left-handed
% (i.e. flipped in one of the dimensions). If this additional
% point is specified, and the voxel coordinate axes are left
% handed, the volume is flipped to yield right handed voxel
% axes.
%
% When cfg.method = 'fiducial' and cfg.coordsys = 'spm' or 'tal', the following
% is required to specify the voxel indices of the fiducials:
% cfg.fiducial.ac = [i j k], position of anterior commissure
% cfg.fiducial.pc = [i j k], position of posterior commissure
% cfg.fiducial.xzpoint = [i j k], point on the midsagittal-plane with a
% positive Z-coordinate, i.e. an interhemispheric
% point above ac and pc
% The coordinate system will be according to the RAS_Tal convention i.e.
% the origin corresponds with the anterior commissure the Y-axis is along
% the line from the posterior commissure to the anterior commissure the
% Z-axis is towards the vertex, in between the hemispheres the X-axis is
% orthogonal to the YZ-plane, positive to the right
%
% When cfg.method = 'interactive', a user interface allows for the specification of
% the fiducials or landmarks using the mouse, cursor keys and keyboard.The fiducials
% can be specified by pressing the corresponding key on the keyboard (n/l/r or
% a/p/z). When pressing q the interactive mode will stop and the transformation
% matrix is computed. This method supports the following options:
% cfg.viewmode = 'ortho' or 'surface', visualize the anatomical MRI as three
% slices or visualize the extracted head surface (default = 'ortho')
% cfg.snapshot = 'no' ('yes'), making a snapshot of the image once a
% fiducial or landmark location is selected. The optional second
% output argument to the function will contain the handles to these
% figures.
% cfg.snapshotfile = 'ft_volumerealign_snapshot' or string, the root of
% the filename for the snapshots, including the path. If no path
% is given the files are saved to the pwd. The consecutive
% figures will be numbered and saved as png-file.
%
% When cfg.method = 'headshape', the function extracts the scalp surface from the
% anatomical MRI, and aligns this surface with the user-supplied headshape.
% Additional options pertaining to this method should be defined in the subcfg
% cfg.headshape. The following option is required:
% cfg.headshape.headshape = string pointing to a file describing a headshape or a
% FieldTrip-structure describing a headshape, see FT_READ_HEADSHAPE
% The following options are optional:
% cfg.headshape.scalpsmooth = scalar, smoothing parameter for the scalp
% extraction (default = 2)
% cfg.headshape.scalpthreshold = scalar, threshold parameter for the scalp
% extraction (default = 0.1)
% cfg.headshape.interactive = 'yes' or 'no', use interactive realignment to
% align headshape with scalp surface (default =
% 'yes')
% cfg.headshape.icp = 'yes' or 'no', use automatic realignment
% based on the icp-algorithm. If both 'interactive'
% and 'icp' are executed, the icp step follows the
% interactive realignment step (default = 'yes')
%
% When cfg.method is 'fsl', a third input argument is required. The input volume is
% coregistered to this target volume, using FSL-flirt. Additional options pertaining
% to this method should be defined in the sub-structure cfg.fsl and can include:
% cfg.fsl.path = string, specifying the path to fsl
% cfg.fsl.costfun = string, specifying the cost-function used for
% coregistration
% cfg.fsl.interpmethod = string, specifying the interpolation method, can be
% 'trilinear', 'nearestneighbour', or 'sinc'
% cfg.fsl.dof = scalar, specifying the number of parameters for the
% affine transformation. 6 (rigid body), 7 (global
% rescale), 9 (traditional) or 12.
% cfg.fsl.reslice = string, specifying whether the output image will be
% resliced conform the target image (default = 'yes')
%
% When cfg.method = 'spm', a third input argument is required. The input volume is
% coregistered to this target volume, using SPM. Additional options pertaining
% to this method should be defined in the sub-structure cfg.spm and can include:
% cfg.spm.regtype = 'subj', 'rigid'
% cfg.spm.smosrc = scalar value
% cfg.spm.smoref = scalar value
% When cfg.spmversion is 'spm12', the following options apply:
% cfg.spm.sep = optimisation sampling steps (mm), default: [4 2]
% cfg.spm.params = starting estimates (6 elements), default: [0 0 0 0 0 0]
% cfg.spm.cost_fun = cost function string:
% 'mi' - Mutual Information (default)
% 'nmi' - Normalised Mutual Information
% 'ecc' - Entropy Correlation Coefficient
% 'ncc' - Normalised Cross Correlation
% cfg.spm.tol = tolerences for accuracy of each param, default: [0.02 0.02 0.02 0.001 0.001 0.001]
% cfg.spm.fwhm = smoothing to apply to 256x256 joint histogram, default: [7 7]
%
% With the 'interactive' and 'fiducial' methods it is possible to define an
% additional point (with the key 'z'), which should be a point on the positive side
% of the xy-plane, i.e. with a positive z-coordinate in world coordinates. This point
% will subsequently be used to check whether the input coordinate system is left or
% right-handed. For the 'interactive' method you can also specify an additional
% control point (with the key 'r'), that should be a point with a positive coordinate
% on the left-right axis.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a
% *.mat file on disk and/or the output data will be written to a *.mat
% file. These mat files should contain only a single variable,
% corresponding with the input/output structure.
%
% See also FT_READ_MRI, FT_ELECTRODEREALIGN, FT_DETERMINE_COORDSYS, SPM_AFFREG,
% SPM_NORMALISE, SPM_COREG
% Undocumented options:
%
% cfg.weights = vector of weights that is used to weight the individual headshape
% points in the icp algorithm. Used optionally in cfg.method = 'headshape'. If not
% specified, weights are put on points with z-coordinate<0 (assuming those to be eye
% rims and nose ridges, i.e. important points.
% Copyright (C) 2006-2014, Robert Oostenveld, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation, either version 3 of the License, or (at your
% option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar mri
ft_preamble provenance mri
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input argument or can be read from disk
hastarget = exist('target', 'var');
% check if the input data is valid for this function
mri = ft_checkdata(mri, 'datatype', 'volume', 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'});
cfg = ft_checkconfig(cfg, 'renamed', {'landmark', 'fiducial'}); % cfg.landmark -> cfg.fiducial
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=2837
cfg = ft_checkconfig(cfg, 'renamed', {'viewdim', 'axisratio'});
% set the defaults
cfg.coordsys = ft_getopt(cfg, 'coordsys', []);
cfg.method = ft_getopt(cfg, 'method', []); % deal with this below
cfg.fiducial = ft_getopt(cfg, 'fiducial', []);
cfg.parameter = ft_getopt(cfg, 'parameter', 'anatomy');
cfg.clim = ft_getopt(cfg, 'clim', []);
cfg.viewmode = ft_getopt(cfg, 'viewmode', 'ortho'); % for method=interactive
cfg.snapshot = ft_getopt(cfg, 'snapshot', false);
cfg.snapshotfile = ft_getopt(cfg, 'snapshotfile', fullfile(pwd, 'ft_volumerealign_snapshot'));
cfg.spmversion = ft_getopt(cfg, 'spmversion', 'spm8');
cfg.voxelratio = ft_getopt(cfg, 'voxelratio', 'data'); % display size of the voxel, 'data' or 'square'
cfg.axisratio = ft_getopt(cfg, 'axisratio', 'data'); % size of the axes of the three orthoplots, 'square', 'voxel', or 'data'
cfg.viewresult = ft_getopt(cfg, 'viewresult', 'no');
%
viewresult = istrue(cfg.viewresult);
if isempty(cfg.method)
if isempty(cfg.fiducial)
% fiducials have not yet been specified
cfg.method = 'interactive';
else
% fiducials have already been specified
cfg.method = 'fiducial';
end
end
if isempty(cfg.coordsys)
if isstruct(cfg.fiducial) && all(ismember(fieldnames(cfg.fiducial), {'lpa', 'rpa', 'nas', 'zpoint'}))
cfg.coordsys = 'ctf';
elseif isstruct(cfg.fiducial) && all(ismember(fieldnames(cfg.fiducial), {'ac', 'pc', 'xzpoint', 'right'}))
cfg.coordsys = 'spm';
elseif strcmp(cfg.method, 'interactive')
cfg.coordsys = 'ctf';
else
error('you should specify the desired head coordinate system in cfg.coordsys')
end
warning('defaulting to %s coordinate system', cfg.coordsys);
end
% these two have to be simultaneously true for a snapshot to be taken
dosnapshot = istrue(cfg.snapshot);
if dosnapshot,
% create an empty array of handles
snap = [];
end
% select the parameter that should be displayed
cfg.parameter = parameterselection(cfg.parameter, mri);
if iscell(cfg.parameter) && ~isempty(cfg.parameter)
cfg.parameter = cfg.parameter{1};
elseif iscell(cfg.parameter) && isempty(cfg.parameter)
% cfg.parameter has been cleared by parameterselection due to a
% dimensionality mismatch. Most probable cause here is the fact that a 4D
% volume (e.g. DTI data) is in the input. This needs to be patched in a
% more structural way at some point, but for the time being we'll use a
% workaround here.
% assume anatomy to be the parameter of interest
siz = size(mri.anatomy);
if all(siz(1:3)==mri.dim) && numel(siz)==4,
% it's OK
cfg.parameter= 'anatomy';
else
error('there''s an unexpected dimension mismatch');
end
end
% start with an empty transform and coordsys
transform = [];
coordsys = [];
if any(strcmp(cfg.method, {'fiducial', 'interactive'}))
switch cfg.coordsys
case {'ctf' '4d' 'bti' 'yokogawa' 'asa' 'itab' 'neuromag'}
fidlabel = {'nas', 'lpa', 'rpa', 'zpoint'};
fidletter = {'n', 'l', 'r', 'z'};
fidexplanation1 = ' press n for nas, l for lpa, r for rpa\n';
fidexplanation2 = ' press z for an extra control point that should have a positive z-value\n';
case {'spm' 'tal'}
fidlabel = {'ac', 'pc', 'xzpoint', 'right'};
fidletter = {'a', 'p', 'z', 'r'};
fidexplanation1 = ' press a for ac, p for pc, z for xzpoint\n';
fidexplanation2 = ' press r for an extra control point that should be on the right side\n';
case 'paxinos'
fidlabel = {'bregma', 'lambda', 'yzpoint'};
fidletter = {'b', 'l', 'z'};
fidexplanation1 = ' press b for bregma, l for lambda, z for yzpoint\n';
fidexplanation2 = '';
otherwise
error('unknown coordinate system "%s"', cfg.coordsys);
end
for i=1:length(fidlabel)
if ~isfield(cfg.fiducial, fidlabel{i}) || isempty(cfg.fiducial.(fidlabel{i}))
cfg.fiducial.(fidlabel{i}) = [nan nan nan];
end
end
end % interactive or fiducial
switch cfg.method
case 'fiducial'
% the actual coordinate transformation will be done further down
case 'landmark'
% the actual coordinate transformation will be done further down
case 'interactive'
switch cfg.viewmode
case 'ortho'
% start building the figure
h = figure;
%set(h, 'color', [1 1 1]);
set(h, 'visible', 'on');
% axes settings
if strcmp(cfg.axisratio, 'voxel')
% determine the number of voxels to be plotted along each axis
axlen1 = mri.dim(1);
axlen2 = mri.dim(2);
axlen3 = mri.dim(3);
elseif strcmp(cfg.axisratio, 'data')
% determine the length of the edges along each axis
[cp_voxel, cp_head] = cornerpoints(mri.dim, mri.transform);
axlen1 = norm(cp_head(2,:)-cp_head(1,:));
axlen2 = norm(cp_head(4,:)-cp_head(1,:));
axlen3 = norm(cp_head(5,:)-cp_head(1,:));
elseif strcmp(cfg.axisratio, 'square')
% the length of the axes should be equal
axlen1 = 1;
axlen2 = 1;
axlen3 = 1;
end
% this is the size reserved for subplot h1, h2 and h3
h1size(1) = 0.82*axlen1/(axlen1 + axlen2);
h1size(2) = 0.82*axlen3/(axlen2 + axlen3);
h2size(1) = 0.82*axlen2/(axlen1 + axlen2);
h2size(2) = 0.82*axlen3/(axlen2 + axlen3);
h3size(1) = 0.82*axlen1/(axlen1 + axlen2);
h3size(2) = 0.82*axlen2/(axlen2 + axlen3);
if strcmp(cfg.voxelratio, 'square')
voxlen1 = 1;
voxlen2 = 1;
voxlen3 = 1;
elseif strcmp(cfg.voxelratio, 'data')
% the size of the voxel is scaled with the data
[cp_voxel, cp_head] = cornerpoints(mri.dim, mri.transform);
voxlen1 = norm(cp_head(2,:)-cp_head(1,:))/norm(cp_voxel(2,:)-cp_voxel(1,:));
voxlen2 = norm(cp_head(4,:)-cp_head(1,:))/norm(cp_voxel(4,:)-cp_voxel(1,:));
voxlen3 = norm(cp_head(5,:)-cp_head(1,:))/norm(cp_voxel(5,:)-cp_voxel(1,:));
end
%% the figure is interactive, add callbacks
set(h, 'windowbuttondownfcn', @cb_buttonpress);
set(h, 'windowbuttonupfcn', @cb_buttonrelease);
set(h, 'windowkeypressfcn', @cb_keyboard);
set(h, 'CloseRequestFcn', @cb_cleanup);
% axis handles will hold the anatomical functional if present, along with labels etc.
h1 = axes('position', [0.06 0.06+0.06+h3size(2) h1size(1) h1size(2)]);
h2 = axes('position', [0.06+0.06+h1size(1) 0.06+0.06+h3size(2) h2size(1) h2size(2)]);
h3 = axes('position', [0.06 0.06 h3size(1) h3size(2)]);
set(h1, 'Tag', 'ik', 'Visible', 'off', 'XAxisLocation', 'top');
set(h2, 'Tag', 'jk', 'Visible', 'off', 'YAxisLocation', 'right'); % after rotating in ft_plot_ortho this becomes top
set(h3, 'Tag', 'ij', 'Visible', 'off');
set(h1, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h2, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h3, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
xc = round(mri.dim(1)/2); % start with center view
yc = round(mri.dim(2)/2);
zc = round(mri.dim(3)/2);
dat = double(mri.(cfg.parameter));
dmin = min(dat(:));
dmax = max(dat(:));
dat = (dat-dmin)./(dmax-dmin);
if isfield(cfg, 'pnt')
pnt = cfg.pnt;
else
pnt = zeros(0,3);
end
markerpos = zeros(0,3);
markerlabel = {};
markercolor = {};
% determine clim if empty (setting to [0 1] could be done at the top, but not sure yet if it interacts with the other visualizations -roevdmei)
if isempty(cfg.clim)
cfg.clim = [min(dat(:)) min([.5 max(dat(:))])]; %
end
% determine apprioriate [left bottom width height] of intensity range sliders
posbase = [];
posbase(1) = h1size(1) + h2size(1)/2 + 0.06*2; % horizontal center of the second plot
posbase(2) = h3size(2)/2 + 0.06; % vertical center of the third plot
posbase(3) = 0.01; % width of the sliders is not so important, if it falls below a certain value, it's a vertical slider, otherwise a horizontal one
posbase(4) = h3size(2)/3 + 0.06; % a third of the height of the third plot
%
posh45text = [posbase(1)-posbase(3)*5 posbase(2)-.1 posbase(3)*10 posbase(4)+0.07];
posh4text = [posbase(1)-.04-posbase(3)*2 posbase(2)-.1 posbase(3)*5 posbase(4)+0.035];
posh5text = [posbase(1)+.04-posbase(3)*2 posbase(2)-.1 posbase(3)*5 posbase(4)+0.035];
posh4slid = [posbase(1)-.04 posbase(2)-.1 posbase(3) posbase(4)];
posh5slid = [posbase(1)+.04 posbase(2)-.1 posbase(3) posbase(4)];
% intensity range sliders
h45text = uicontrol('Style', 'text',...
'String', 'Intensity',...
'Units', 'normalized', ...
'Position',posh45text,... % text is centered, so height adjust vertical position
'HandleVisibility', 'on');
h4text = uicontrol('Style', 'text',...
'String', 'Min',...
'Units', 'normalized', ...
'Position',posh4text,...
'HandleVisibility', 'on');
h5text = uicontrol('Style', 'text',...
'String', 'Max',...
'Units', 'normalized', ...
'Position',posh5text,...
'HandleVisibility', 'on');
h4 = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(1), ...
'Units', 'normalized', ...
'Position', posh4slid, ...
'Callback', @cb_minslider);
h5 = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(2), ...
'Units', 'normalized', ...
'Position', posh5slid, ...
'Callback', @cb_maxslider);
% instructions to the user
fprintf(strcat(...
'1. To change the slice viewed in one plane, either:\n',...
' a. click (left mouse) in the image on a different plane. Eg, to view a more\n',...
' superior slice in the horizontal plane, click on a superior position in the\n',...
' coronal plane, or\n',...
' b. use the arrow keys to increase or decrease the slice number by one\n',...
'2. To mark a fiducial position or anatomical landmark, do BOTH:\n',...
' a. select the position by clicking on it in any slice with the left mouse button\n',...
' b. identify it by pressing the letter corresponding to the fiducial/landmark:\n', fidexplanation1, fidexplanation2, ...
' You can mark the fiducials multiple times, until you are satisfied with the positions.\n',...
'3. To change the display:\n',...
' a. press c on keyboard to toggle crosshair visibility\n',...
' b. press f on keyboard to toggle fiducial visibility\n',...
' c. press + or - on (numeric) keyboard to change the color range''s upper limit\n',...
'4. To finalize markers and quit interactive mode, press q on keyboard\n'));
% create structure to be passed to gui
opt = [];
opt.viewresult = false; % flag to use for certain keyboard/redraw calls
opt.twovol = false; % flag to use for certain options of viewresult
opt.dim = mri.dim;
opt.ijk = [xc yc zc];
opt.h1size = h1size;
opt.h2size = h2size;
opt.h3size = h3size;
opt.handlesaxes = [h1 h2 h3];
opt.handlesfigure = h;
opt.quit = false;
opt.ana = dat;
opt.update = [1 1 1];
opt.init = true;
opt.tag = 'ik';
opt.mri = mri;
opt.showcrosshair = true;
opt.showmarkers = false;
opt.markers = {markerpos markerlabel markercolor};
opt.clim = cfg.clim;
opt.fiducial = cfg.fiducial;
opt.fidlabel = fidlabel;
opt.fidletter = fidletter;
opt.pnt = pnt;
if isfield(mri, 'unit') && ~strcmp(mri.unit, 'unknown')
opt.unit = mri.unit; % this is shown in the feedback on screen
else
opt.unit = ''; % this is not shown
end
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'surface'
% make a mesh from the skin surface
cfg.headshape = ft_getopt(cfg, 'headshape');
cfg.headshape.scalpsmooth = ft_getopt(cfg.headshape, 'scalpsmooth', 2, 1); % empty is OK
cfg.headshape.scalpthreshold = ft_getopt(cfg.headshape, 'scalpthreshold', 0.1);
if ~isfield(mri, 'scalp') || ~islogical(mri.scalp)
% extract the scalp surface from the anatomical image
tmpcfg = [];
tmpcfg.output = 'scalp';
tmpcfg.scalpsmooth = cfg.headshape.scalpsmooth;
tmpcfg.scalpthreshold = cfg.headshape.scalpthreshold;
if isfield(cfg, 'template')
tmpcfg.template = cfg.template;
end
seg = ft_volumesegment(tmpcfg, mri);
else
% use the scalp segmentation that is provided
seg = mri;
end
tmpcfg = [];
tmpcfg.tissue = 'scalp';
tmpcfg.method = 'isosurface';
tmpcfg.numvertices = inf;
scalp = ft_prepare_mesh(tmpcfg, seg);
scalp = ft_convert_units(scalp, 'mm');
fprintf('\n');
fprintf(strcat(...
'1. To change the orientation of the head surface, use the\n',...
'"Rotate 3D" option in the figure toolbar\n',...
'2. To mark a fiducial position or anatomical landmark, do BOTH:\n',...
' a. select the position by clicking on it with the left mouse button\n',...
' b. specify it by pressing the letter corresponding to the fiducial/landmark:\n', fidexplanation1, fidexplanation2, ...
' You can mark the fiducials multiple times, until you are satisfied with the positions.\n',...
'3. To finalize markers and quit interactive mode, press q on keyboard\n'));
% start building the figure
h = figure;
set(h, 'color', [1 1 1]);
set(h, 'visible', 'on');
% add callbacks
set(h, 'windowkeypressfcn', @cb_keyboard_surface);
set(h, 'CloseRequestFcn', @cb_cleanup);
% create figure handles
h1 = axes;
% create structure to be passed to gui
opt = [];
opt.viewresult = false; % flag to use for certain keyboard/redraw calls
opt.handlesfigure = h;
opt.handlesaxes = h1;
opt.handlesfigure = h;
opt.handlesmarker = [];
opt.camlighthandle = [];
opt.init = true;
opt.quit = false;
opt.scalp = scalp;
opt.showmarkers = false;
opt.mri = mri;
opt.fiducial = cfg.fiducial;
opt.fidlabel = fidlabel;
opt.fidletter = fidletter;
opt.fidexplanation1 = fidexplanation1;
if isfield(scalp, 'unit') && ~strcmp(scalp.unit, 'unknown')
opt.unit = scalp.unit; % this is shown in the feedback on screen
else
opt.unit = ''; % this is not shown
end
setappdata(h, 'opt', opt);
cb_redraw_surface(h);
end % switch viewmode
while(opt.quit==0)
uiwait(h);
opt = getappdata(h, 'opt');
end
delete(h);
% store the interactively determined fiducials in the configuration
% the actual coordinate transformation will be done further down
cfg.fiducial = opt.fiducial;
case 'headshape'
if isa(cfg.headshape, 'config')
cfg.headshape = struct(cfg.headshape);
end
if ischar(cfg.headshape)
% old-style specification, convert cfg into new representation
cfg.headshape = struct('headshape', cfg.headshape);
if isfield(cfg, 'scalpsmooth'),
cfg.headshape.scalpsmooth = cfg.scalpsmooth;
cfg = rmfield(cfg, 'scalpsmooth');
end
if isfield(cfg, 'scalpthreshold'),
cfg.headshape.scalpthreshold = cfg.scalpthreshold;
cfg = rmfield(cfg, 'scalpthreshold');
end
elseif isstruct(cfg.headshape) && isfield(cfg.headshape, 'pos')
% old-style specification, convert into new representation
cfg.headshape = struct('headshape', cfg.headshape);
if isfield(cfg, 'scalpsmooth'),
cfg.headshape.scalpsmooth = cfg.scalpsmooth;
cfg = rmfield(cfg, 'scalpsmooth');
end
if isfield(cfg, 'scalpthreshold'),
cfg.headshape.scalpthreshold = cfg.scalpthreshold;
cfg = rmfield(cfg, 'scalpthreshold');
end
elseif isstruct(cfg.headshape)
% new-style specification, do nothing
else
error('incorrect specification of cfg.headshape');
end
if ischar(cfg.headshape.headshape)
shape = ft_read_headshape(cfg.headshape.headshape);
else
shape = cfg.headshape.headshape;
end
shape = ft_convert_units(shape, mri.unit); % make the units of the headshape consistent with the MRI
cfg.headshape.interactive = ft_getopt(cfg.headshape, 'interactive', true);
cfg.headshape.icp = ft_getopt(cfg.headshape, 'icp', true);
cfg.headshape.scalpsmooth = ft_getopt(cfg.headshape, 'scalpsmooth', 2, 1); % empty is OK
cfg.headshape.scalpthreshold = ft_getopt(cfg.headshape, 'scalpthreshold', 0.1);
dointeractive = istrue(cfg.headshape.interactive);
doicp = istrue(cfg.headshape.icp);
if ~isfield(mri, 'scalp') || ~islogical(mri.scalp)
% extract the scalp surface from the anatomical image
tmpcfg = [];
tmpcfg.output = 'scalp';
tmpcfg.scalpsmooth = cfg.headshape.scalpsmooth;
tmpcfg.scalpthreshold = cfg.headshape.scalpthreshold;
if isfield(cfg, 'template')
tmpcfg.template = cfg.template;
end
seg = ft_volumesegment(tmpcfg, mri);
else
% use the scalp segmentation that is provided
seg = mri;
end
tmpcfg = [];
tmpcfg.tissue = 'scalp';
tmpcfg.method = 'projectmesh';%'isosurface';
tmpcfg.numvertices = 20000;
scalp = ft_prepare_mesh(tmpcfg, seg);
if dointeractive,
fprintf('doing interactive realignment with headshape\n');
tmpcfg = [];
tmpcfg.template.elec = shape; % this is the Polhemus recorded headshape
tmpcfg.template.elec.chanpos = shape.pos; % ft_interactiverealign needs the field chanpos
tmpcfg.template.elec.label = cellstr(num2str((1:size(shape.pos,1))'));
tmpcfg.individual.headshape = scalp; % this is the headshape extracted from the anatomical MRI
tmpcfg.individual.headshapestyle = 'surface';
tmpcfg = ft_interactiverealign(tmpcfg);
M = tmpcfg.m;
cfg.transform_interactive = M;
% touch it to survive trackconfig
cfg.transform_interactive;
% update the relevant geometrical info
scalp = ft_transform_geometry(M, scalp);
end % dointeractive
% always perform an icp-step, because this will give an estimate of the
% initial distance of the corresponding points. depending on the value
% for doicp, deal with the output differently
if doicp,
numiter = 50;
else
numiter = 1;
end
if ~isfield(cfg, 'weights')
w = ones(size(shape.pos,1),1);
else
w = cfg.weights(:);
if numel(w)~=size(shape.pos,1),
error('number of weights should be equal to the number of points in the headshape');
end
end
% the icp function wants this as a function handle.
weights = @(x)assignweights(x,w);
ft_hastoolbox('fileexchange',1);
% construct the coregistration matrix
nrm = normals(scalp.pos, scalp.tri, 'vertex');
[R, t, err, dummy, info] = icp(scalp.pos', shape.pos', numiter, 'Minimize', 'plane', 'Normals', nrm', 'Weight', weights, 'Extrapolation', true, 'WorstRejection', 0.05);
if doicp,
fprintf('doing iterative closest points realignment with headshape\n');
% create the additional transformation matrix and compute the
% distance between the corresponding points, both prior and after icp
% this one transforms from scalp 'headspace' to shape 'headspace'
M2 = inv([R t;0 0 0 1]);
% warp the extracted scalp points to the new positions
scalp.pos = ft_warp_apply(M2, scalp.pos);
target = scalp;
target.pos = target.pos;
target.inside = (1:size(target.pos,1))';
functional = rmfield(shape, 'pos');
functional.distance = info.distanceout(:);
functional.pos = info.qout';
tmpcfg = [];
tmpcfg.parameter = 'distance';
tmpcfg.interpmethod = 'sphere_avg';
tmpcfg.sphereradius = 10;
tmpcfg.feedback = 'none';
smoothdist = ft_sourceinterpolate(tmpcfg, functional, target);
scalp.distance = smoothdist.distance(:);
functional.pow = info.distancein(:);
smoothdist = ft_sourceinterpolate(tmpcfg, functional, target);
scalp.distancein = smoothdist.distance(:);
cfg.icpinfo = info;
cfg.transform_icp = M2;
% touch it to survive trackconfig
cfg.icpinfo;
cfg.transform_icp;
else
% compute the distance between the corresponding points, prior to icp:
% this corresponds to the final result after interactive only
M2 = eye(4); % this is needed later on
target = scalp;
target.pos = target.pos;
target.inside = (1:size(target.pos,1))';
functional = rmfield(shape, 'pos');
functional.pow = info.distancein(:);
functional.pos = info.qout';
tmpcfg = [];
tmpcfg.parameter = 'pow';
tmpcfg.interpmethod = 'sphere_avg';
tmpcfg.sphereradius = 10;
smoothdist = ft_sourceinterpolate(tmpcfg, functional, target);
scalp.distance = smoothdist.pow(:);
end % doicp
% create headshape structure for mri-based surface point cloud
if isfield(mri, 'coordsys')
scalp.coordsys = mri.coordsys;
% coordsys is the same as input mri
coordsys = mri.coordsys;
else
coordsys = 'unknown';
end
% update the cfg
cfg.headshape.headshape = shape;
cfg.headshape.headshapemri = scalp;
% touch it to survive trackconfig
cfg.headshape;
if doicp && dointeractive
transform = M2*M;
elseif doicp
transform = M2;
elseif dointeractive
transform = M;
end
case 'fsl'
if ~isfield(cfg, 'fsl'), cfg.fsl = []; end
cfg.fsl.path = ft_getopt(cfg.fsl, 'path', '');
cfg.fsl.costfun = ft_getopt(cfg.fsl, 'costfun', 'corratio');
cfg.fsl.interpmethod = ft_getopt(cfg.fsl, 'interpmethod', 'trilinear');
cfg.fsl.dof = ft_getopt(cfg.fsl, 'dof', 6);
cfg.fsl.reslice = ft_getopt(cfg.fsl, 'reslice', 'yes');
cfg.fsl.searchrange = ft_getopt(cfg.fsl, 'searchrange', [-180 180]);
% write the input and target to a temporary file
% and create some additional temporary file names to contain the output
tmpname1 = tempname;
tmpname2 = tempname;
tmpname3 = tempname;
tmpname4 = tempname;
tmpcfg = [];
tmpcfg.parameter = 'anatomy';
tmpcfg.filename = tmpname1;
tmpcfg.filetype = 'nifti';
fprintf('writing the input volume to a temporary file: %s\n', [tmpname1, '.nii']);
ft_volumewrite(tmpcfg, mri);
tmpcfg.filename = tmpname2;
fprintf('writing the target volume to a temporary file: %s\n', [tmpname2, '.nii']);
ft_volumewrite(tmpcfg, target);
% create the command to call flirt
fprintf('using flirt for the coregistration\n');
r1 = num2str(cfg.fsl.searchrange(1));
r2 = num2str(cfg.fsl.searchrange(2));
str = sprintf('%s/flirt -in %s -ref %s -out %s -omat %s -bins 256 -cost %s -searchrx %s %s -searchry %s %s -searchrz %s %s -dof %s -interp %s',...
cfg.fsl.path, tmpname1, tmpname2, tmpname3, tmpname4, cfg.fsl.costfun, r1, r2, r1, r2, r1, r2, num2str(cfg.fsl.dof), cfg.fsl.interpmethod);
if isempty(cfg.fsl.path), str = str(2:end); end % remove the first filesep, assume path to flirt to be known
% system call
system(str);
% process the output
if ~istrue(cfg.fsl.reslice)
% get the transformation that corresponds to the coregistration and
% reconstruct the mapping from the target's world coordinate system
% to the input's voxel coordinate system
vox = fopen(tmpname4);
tmp = textscan(vox, '%f');
fclose(vox);
% this transforms from input voxels to target voxels
vox2vox = reshape(tmp{1},4,4)';
if det(target.transform(1:3,1:3))>0
% flirt apparently flips along the x-dim if the det < 0
% if images are not radiological, the x-axis is flipped, see:
% https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind0810&L=FSL&P=185638
% https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind0903&L=FSL&P=R93775
% flip back
flipmat = eye(4); flipmat(1,1) = -1; flipmat(1,4) = target.dim(1);
vox2vox = flipmat*vox2vox;
end
if det(mri.transform(1:3,1:3))>0
% flirt apparently flips along the x-dim if the det < 0
% flip back
flipmat = eye(4); flipmat(1,1) = -1; flipmat(1,4) = mri.dim(1);
vox2vox = vox2vox*flipmat;
end
% very not sure about this (e.g. is vox2vox really doing what I think
% it is doing? should I care about 0 and 1 based conventions?)
% changing handedness?
mri.transform = target.transform*vox2vox;
transform = eye(4);
if isfield(target, 'coordsys')
coordsys = target.coordsys;
else
coordsys = 'unknown';
end
else
% get the updated anatomy
mrinew = ft_read_mri([tmpname3, '.nii.gz']);
mri.anatomy = mrinew.anatomy;
mri.transform = mrinew.transform;
mri.dim = mrinew.dim;
transform = eye(4);
if isfield(target, 'coordsys')
coordsys = target.coordsys;
else
coordsys = 'unknown';
end
end
delete([tmpname1, '.nii']);
delete([tmpname2, '.nii']);
delete([tmpname3, '.nii.gz']);
delete(tmpname4);
case 'spm'
% ensure that SPM is on the path
if strcmpi(cfg.spmversion, 'spm2'),
ft_hastoolbox('SPM2',1);
elseif strcmpi(cfg.spmversion, 'spm8'),
ft_hastoolbox('SPM8',1);
elseif strcmpi(cfg.spmversion, 'spm12'),
ft_hastoolbox('SPM12',1);
end
if strcmpi(cfg.spmversion, 'spm2') || strcmpi(cfg.spmversion, 'spm8')
if ~isfield(cfg, 'spm'), cfg.spm = []; end
cfg.spm.regtype = ft_getopt(cfg.spm, 'regtype', 'subj');
cfg.spm.smosrc = ft_getopt(cfg.spm, 'smosrc', 2);
cfg.spm.smoref = ft_getopt(cfg.spm, 'smoref', 2);
if ~isfield(mri, 'coordsys'),
mri = ft_convert_coordsys(mri);
else
fprintf('Input volume has coordinate system ''%s''\n', mri.coordsys);
end
if ~isfield(target, 'coordsys'),
target = ft_convert_coordsys(target);
else
fprintf('Target volume has coordinate system ''%s''\n', target.coordsys);
end
if strcmp(mri.coordsys, target.coordsys)
% this should hopefully work
else
% only works when it is possible to approximately align the input to
% the target coordsys
if strcmp(target.coordsys, 'spm')
mri = ft_convert_coordsys(mri, 'spm');
else
error('The coordinate systems of the input and target volumes are different, coregistration is not possible');
end
end
% flip and permute the 3D volume itself, so that the voxel and
% headcoordinates approximately correspond
[tmp, pvec_mri, flip_mri, T] = align_ijk2xyz(mri);
[target] = align_ijk2xyz(target);
tname1 = [tempname, '.img'];
tname2 = [tempname, '.img'];
V1 = ft_write_mri(tname1, mri.anatomy, 'transform', mri.transform, 'spmversion', spm('ver'), 'dataformat', 'nifti_spm');
V2 = ft_write_mri(tname2, target.anatomy, 'transform', target.transform, 'spmversion', spm('ver'), 'dataformat', 'nifti_spm');
flags = cfg.spm;
flags.nits = 0; %set number of non-linear iterations to zero
params = spm_normalise(V2,V1, [], [], [],flags);
%mri.transform = (target.transform/params.Affine)/T;
transform = (target.transform/params.Affine)/T/mri.transform;
% transform = eye(4);
elseif strcmpi(cfg.spmversion, 'spm12')
if ~isfield(cfg, 'spm'), cfg.spm = []; end
tname1 = [tempname, '.nii'];
tname2 = [tempname, '.nii'];
V1 = ft_write_mri(tname1, mri.anatomy, 'transform', mri.transform, 'spmversion', spm('ver'), 'dataformat', 'nifti_spm'); % source (moved) image
V2 = ft_write_mri(tname2, target.anatomy, 'transform', target.transform, 'spmversion', spm('ver'), 'dataformat', 'nifti_spm'); % reference image
flags = cfg.spm;
x = spm_coreg(V2,V1,flags); % spm_realign does within modality rigid body movement parameter estimation
transform = inv(spm_matrix(x(:)')); % from V1 to V2, to be multiplied still with the original transform (mri.transform), see below
end
if isfield(target, 'coordsys')
coordsys = target.coordsys;
else
coordsys = 'unknown';
end
% delete the temporary files
delete(tname1);
delete(tname2);
otherwise
error('unsupported method "%s"', cfg.method);
end
if any(strcmp(cfg.method, {'fiducial', 'interactive'}))
% the fiducial locations are specified in voxels, convert them to head
% coordinates according to the existing transform matrix
fid1_vox = cfg.fiducial.(fidlabel{1});
fid2_vox = cfg.fiducial.(fidlabel{2});
fid3_vox = cfg.fiducial.(fidlabel{3});
fid1_head = ft_warp_apply(mri.transform, fid1_vox);
fid2_head = ft_warp_apply(mri.transform, fid2_vox);
fid3_head = ft_warp_apply(mri.transform, fid3_vox);
if length(fidlabel)>3
% the 4th point is optional
fid4_vox = cfg.fiducial.(fidlabel{4});
fid4_head = ft_warp_apply(mri.transform, fid4_vox);
else
fid4_head = [nan nan nan];
end
if ~any(isnan(fid4_head))
[transform, coordsys] = ft_headcoordinates(fid1_head, fid2_head, fid3_head, fid4_head, cfg.coordsys);
else
[transform, coordsys] = ft_headcoordinates(fid1_head, fid2_head, fid3_head, cfg.coordsys);
end
end
% copy the input anatomical or functional volume
realign = mri;
if ~isempty(transform) && ~any(isnan(transform(:)))
% combine the additional transformation with the original one
realign.transformorig = mri.transform;
realign.transform = transform * mri.transform;
realign.coordsys = coordsys;
else
warning('no coordinate system realignment has been done');
end
% visualize result
% all plotting for the realignment is done in voxel space
% for view the results however, it needs be in coordinate system space (necessary for the two volume case below)
% to be able to reuse all the plotting code, several workarounds are in place, which convert the indices
% from voxel space to the target coordinate system space
if viewresult
% set flags for one or twovol case
if hastarget
twovol = true; % input was two volumes, base to be plotted on is called target, the aligned mri is named realign
basevol = target;
else
twovol = false; % input was one volumes, base is called realign
basevol = realign;
end
% input was a single vol
% start building the figure
h = figure('numbertitle', 'off', 'name', 'realignment result');
set(h, 'visible', 'on');
% axes settings
if strcmp(cfg.axisratio, 'voxel')
% determine the number of voxels to be plotted along each axis
axlen1 = basevol.dim(1);
axlen2 = basevol.dim(2);
axlen3 = basevol.dim(3);
elseif strcmp(cfg.axisratio, 'data')
% determine the length of the edges along each axis
[cp_voxel, cp_head] = cornerpoints(basevol.dim, basevol.transform);
axlen1 = norm(cp_head(2,:)-cp_head(1,:));
axlen2 = norm(cp_head(4,:)-cp_head(1,:));
axlen3 = norm(cp_head(5,:)-cp_head(1,:));
elseif strcmp(cfg.axisratio, 'square')
% the length of the axes should be equal
axlen1 = 1;
axlen2 = 1;
axlen3 = 1;
end
% this is the size reserved for subplot h1, h2 and h3
h1size(1) = 0.82*axlen1/(axlen1 + axlen2);
h1size(2) = 0.82*axlen3/(axlen2 + axlen3);
h2size(1) = 0.82*axlen2/(axlen1 + axlen2);
h2size(2) = 0.82*axlen3/(axlen2 + axlen3);
h3size(1) = 0.82*axlen1/(axlen1 + axlen2);
h3size(2) = 0.82*axlen2/(axlen2 + axlen3);
if strcmp(cfg.voxelratio, 'square')
voxlen1 = 1;
voxlen2 = 1;
voxlen3 = 1;
elseif strcmp(cfg.voxelratio, 'data')
% the size of the voxel is scaled with the data
[cp_voxel, cp_head] = cornerpoints(basevol.dim, basevol.transform);
voxlen1 = norm(cp_head(2,:)-cp_head(1,:))/norm(cp_voxel(2,:)-cp_voxel(1,:));
voxlen2 = norm(cp_head(4,:)-cp_head(1,:))/norm(cp_voxel(4,:)-cp_voxel(1,:));
voxlen3 = norm(cp_head(5,:)-cp_head(1,:))/norm(cp_voxel(5,:)-cp_voxel(1,:));
end
%% the figure is interactive, add callbacks
set(h, 'windowbuttondownfcn', @cb_buttonpress);
set(h, 'windowbuttonupfcn', @cb_buttonrelease);
set(h, 'windowkeypressfcn', @cb_keyboard);
set(h, 'CloseRequestFcn', @cb_cleanup);
% axis handles will hold the anatomical functional if present, along with labels etc.
h1 = axes('position', [0.06 0.06+0.06+h3size(2) h1size(1) h1size(2)]);
h2 = axes('position', [0.06+0.06+h1size(1) 0.06+0.06+h3size(2) h2size(1) h2size(2)]);
h3 = axes('position', [0.06 0.06 h3size(1) h3size(2)]);
set(h1, 'Tag', 'ik', 'Visible', 'off', 'XAxisLocation', 'top');
set(h2, 'Tag', 'jk', 'Visible', 'off', 'YAxisLocation', 'right'); % after rotating in ft_plot_ortho this becomes top
set(h3, 'Tag', 'ij', 'Visible', 'off');
set(h1, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h2, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h3, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
% start with center view
xc = round(basevol.dim(1)/2);
yc = round(basevol.dim(2)/2);
zc = round(basevol.dim(3)/2);
% normalize data to go from 0 to 1
dat = double(basevol.(cfg.parameter));
dmin = min(dat(:));
dmax = max(dat(:));
dat = (dat-dmin)./(dmax-dmin);
if hastarget % do the same for the target
realigndat = double(realign.(cfg.parameter));
dmin = min(realigndat(:));
dmax = max(realigndat(:));
realigndat = (realigndat-dmin)./(dmax-dmin);
end
if isfield(cfg, 'pnt')
pnt = cfg.pnt;
else
pnt = zeros(0,3);
end
markerpos = zeros(0,3);
markerlabel = {};
markercolor = {};
% determine clim if empty (setting to [0 1] could be done at the top, but not sure yet if it interacts with the other visualizations -roevdmei)
if isempty(cfg.clim)
cfg.clim = [min(dat(:)) min([.5 max(dat(:))])]; %
end
% determine apprioriate [left bottom width height] of intensity range sliders
posbase = [];
posbase(1) = h1size(1) + h2size(1)/2 + 0.06*2; % horizontal center of the second plot
posbase(2) = h3size(2)/2 + 0.06; % vertical center of the third plot
posbase(3) = 0.01; % width of the sliders is not so important, if it falls below a certain value, it's a vertical slider, otherwise a horizontal one
posbase(4) = h3size(2)/3 + 0.06; % a third of the height of the third plot
%
posh45text = [posbase(1)-posbase(3)*5 posbase(2)-.1 posbase(3)*10 posbase(4)+0.07];
posh4text = [posbase(1)-.04-posbase(3)*2 posbase(2)-.1 posbase(3)*5 posbase(4)+0.035];
posh5text = [posbase(1)+.04-posbase(3)*2 posbase(2)-.1 posbase(3)*5 posbase(4)+0.035];
posh4slid = [posbase(1)-.04 posbase(2)-.1 posbase(3) posbase(4)];
posh5slid = [posbase(1)+.04 posbase(2)-.1 posbase(3) posbase(4)];
% intensity range sliders
if twovol
h45texttar = uicontrol('Style', 'text',...
'String', 'Intensity target volume (red)',...
'Units', 'normalized', ...
'Position',posh45text,...
'HandleVisibility', 'on');
h4texttar = uicontrol('Style', 'text',...
'String', 'Min',...
'Units', 'normalized', ...
'Position',posh4text,...
'HandleVisibility', 'on');
h5texttar = uicontrol('Style', 'text',...
'String', 'Max',...
'Units', 'normalized', ...
'Position',posh5text,...
'HandleVisibility', 'on');
h4tar = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(1), ...
'Units', 'normalized', ...
'Position', posh4slid, ...
'Callback', @cb_minslider,...
'tag', 'tar');
h5tar = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(2), ...
'Units', 'normalized', ...
'Position', posh5slid, ...
'Callback', @cb_maxslider,...
'tag', 'tar');
end
% intensity range sliders
if ~twovol
str = 'Intensity realigned volume';
else
str = 'Intensity realigned volume (blue)';
end
h45textrel = uicontrol('Style', 'text',...
'String',str,...
'Units', 'normalized', ...
'Position',posh45text,...
'HandleVisibility', 'on');
h4textrel = uicontrol('Style', 'text',...
'String', 'Min',...
'Units', 'normalized', ...
'Position',posh4text,...
'HandleVisibility', 'on');
h5textrel = uicontrol('Style', 'text',...
'String', 'Max',...
'Units', 'normalized', ...
'Position',posh5text,...
'HandleVisibility', 'on');
h4rel = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(1), ...
'Units', 'normalized', ...
'Position', posh4slid, ...
'Callback', @cb_minslider,...
'tag', 'rel');
h5rel = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(2), ...
'Units', 'normalized', ...
'Position', posh5slid, ...
'Callback', @cb_maxslider,...
'tag', 'rel');
% create structure to be passed to gui
opt = [];
opt.twovol = twovol;
opt.viewresult = true; % flag to use for certain keyboard/redraw calls
opt.dim = basevol.dim;
opt.ijk = [xc yc zc];
opt.h1size = h1size;
opt.h2size = h2size;
opt.h3size = h3size;
opt.handlesaxes = [h1 h2 h3];
opt.handlesfigure = h;
opt.quit = false;
opt.ana = dat; % keep this as is, to avoid making exceptions for opt.viewresult all over the plotting code
if twovol
opt.realignana = realigndat;
% set up the masks in an intelligent way based on the percentile of the anatomy (this avoids extremely skewed data making one of the vols too transparent)
sortana = sort(dat(:));
cutoff = sortana(find(cumsum(sortana ./ sum(sortana(:)))>.99,1));
mask = dat;
mask(mask>cutoff) = cutoff;
mask = (mask ./ cutoff) .* .5;
opt.targetmask = mask;
sortana = sort(realigndat(:));
cutoff = sortana(find(cumsum(sortana ./ sum(sortana(:)))>.99,1));
mask = realigndat;
mask(mask>cutoff) = cutoff;
mask = (mask ./ cutoff) .* .5;
opt.realignmask = mask;
end
opt.update = [1 1 1];
opt.init = true;
opt.tag = 'ik';
opt.mri = basevol;
if twovol
opt.realignvol = realign;
end
opt.showcrosshair = true;
opt.showmarkers = false;
opt.markers = {markerpos markerlabel markercolor};
if ~twovol
opt.realignclim = cfg.clim;
else
opt.realignclim = cfg.clim;
opt.targetclim = cfg.clim;
end
opt.fiducial = [];
opt.fidlabel = [];
opt.fidletter = [];
opt.pnt = pnt;
if isfield(mri, 'unit') && ~strcmp(mri.unit, 'unknown')
opt.unit = mri.unit; % this is shown in the feedback on screen
else
opt.unit = ''; % this is not shown
end
% add to figure and start initial draw
setappdata(h, 'opt', opt);
cb_redraw(h);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous mri
ft_postamble provenance realign
ft_postamble history realign
ft_postamble savevar realign
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = assignweights(x, w)
% x is an indexing vector with the same number of arguments as w
y = w(:)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw_surface(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
markercolor = {'r', 'g', 'b', 'y'};
if opt.init
ft_plot_mesh(opt.scalp, 'edgecolor', 'none', 'facecolor', 'skin')
hold on
end
% recreate the camera lighting
delete(opt.camlighthandle);
opt.camlighthandle = camlight;
% remove the previous fiducials
delete(opt.handlesmarker(opt.handlesmarker(:)>0));
opt.handlesmarker = [];
% redraw the fiducials
for i=1:length(opt.fidlabel)
lab = opt.fidlabel{i};
pos = ft_warp_apply(opt.mri.transform, opt.fiducial.(lab));
if all(~isnan(pos))
opt.handlesmarker(i,1) = plot3(pos(1), pos(2), pos(3), 'marker', 'o', 'color', markercolor{i});
opt.handlesmarker(i,2) = text(pos(1), pos(2), pos(3), lab);
end
end
opt.init = false;
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard_surface(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get the most recent surface position that was clicked with the mouse
pos = select3d(opt.handlesaxes);
sel = find(strcmp(opt.fidletter, key));
if ~isempty(sel)
% update the corresponding fiducial
opt.fiducial.(opt.fidlabel{sel}) = ft_warp_apply(inv(opt.mri.transform), pos(:)');
end
fprintf('==================================================================================\n');
for i=1:length(opt.fidlabel)
lab = opt.fidlabel{i};
vox = opt.fiducial.(lab);
ind = sub2ind(opt.mri.dim(1:3), round(vox(1)), round(vox(2)), round(vox(3)));
pos = ft_warp_apply(opt.mri.transform, vox);
switch opt.unit
case 'mm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.1f %.1f %.1f] %s\n', lab, ind, round(vox), pos, opt.unit);
case 'cm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.2f %.2f %.2f] %s\n', lab, ind, round(vox), pos, opt.unit);
case 'm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.4f %.4f %.4f] %s\n', lab, ind, round(vox), pos, opt.unit);
otherwise
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%f %f %f] %s\n', lab, ind, round(vox), pos, opt.unit);
end
end
setappdata(h, 'opt', opt);
if isequal(key, 'q')
cb_cleanup(h);
else
cb_redraw_surface(h);
end
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
mri = opt.mri;
h1 = opt.handlesaxes(1);
h2 = opt.handlesaxes(2);
h3 = opt.handlesaxes(3);
% extract to-be-plotted/clicked location and check whether inside figure
xi = opt.ijk(1);
yi = opt.ijk(2);
zi = opt.ijk(3);
if any([xi yi zi] > mri.dim) || any([xi yi zi] <= 0)
return;
end
% transform here to coordinate system space instead of voxel space if viewing results
% the code were this transform will impact fiducial/etc coordinates is unaffected, as it is switched off
% (note: fiducial/etc coordinates are transformed into coordinate space in the code dealing with realignment)
if opt.viewresult
tmp = ft_warp_apply(mri.transform, [xi yi zi]);
xi = tmp(1);
yi = tmp(2);
zi = tmp(3);
end
if opt.init
% create the initial figure
if ~opt.viewresult
% if realigning, plotting is done in voxel space
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', [xi yi zi], 'style', 'subplot', 'parents', [h1 h2 h3], 'update', opt.update, 'doscale', false, 'clim', opt.clim);
else
% if viewing result, plotting is done in head coordinate system space
if ~opt.twovol
% one vol case
ft_plot_ortho(opt.ana, 'transform', mri.transform, 'location', [xi yi zi], 'style', 'subplot', 'parents', [h1 h2 h3], 'update', opt.update, 'doscale', false, 'clim', opt.realignclim);
else
% two vol case
% base volume, with color red
hbase = []; % need the handle for the individual surfs
[hbase(1), hbase(2), hbase(3)] = ft_plot_ortho(opt.ana, 'transform', mri.transform, 'unit', mri.unit, 'location', [xi yi zi], 'style', 'subplot', 'parents', [h1 h2 h3], 'update', opt.update, 'doscale', false, 'clim', opt.targetclim, 'datmask',opt.targetmask, 'opacitylim', [0 1]);
for ih = 1:3
col = get(hbase(ih), 'CData');
col(:,:,2:3) = 0;
set(hbase(ih), 'CData',col);
end
% aligned volume, with color blue
hreal = []; % need the handle for the individual surfs
[hreal(1), hreal(2), hreal(3)] = ft_plot_ortho(opt.realignana, 'transform', opt.realignvol.transform, 'unit', opt.realignvol.unit, 'location', [xi yi zi], 'style', 'subplot', 'parents', [h1 h2 h3], 'update', opt.update, 'doscale', false, 'clim', opt.realignclim, 'datmask',opt.realignmask, 'opacitylim', [0 1]);
for ih = 1:3
col = get(hreal(ih), 'CData');
col(:,:,1:2) = 0;
set(hreal(ih), 'CData',col);
end
end
end % if ~opt.viewresult
% fetch surf objects, set ana tag, and put in surfhandles
if ~opt.viewresult || (opt.viewresult && ~opt.twovol)
opt.anahandles = findobj(opt.handlesfigure, 'type', 'surface')';
parenttag = get(opt.anahandles, 'parent');
parenttag{1} = get(parenttag{1}, 'tag');
parenttag{2} = get(parenttag{2}, 'tag');
parenttag{3} = get(parenttag{3}, 'tag');
[i1,i2,i3] = intersect(parenttag, {'ik';'jk';'ij'});
opt.anahandles = opt.anahandles(i3(i2)); % seems like swapping the order
opt.anahandles = opt.anahandles(:)';
set(opt.anahandles, 'tag', 'ana');
else
% this should do the same as the above
set(hbase, 'tag', 'ana');
set(hreal, 'tag', 'ana');
opt.anahandles = {hbase, hreal};
end
else
% update the existing figure
if ~opt.viewresult
% if realigning, plotting is done in voxel space
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', [xi yi zi], 'style', 'subplot', 'surfhandle', opt.anahandles, 'update', opt.update, 'doscale', false, 'clim', opt.clim);
else
% if viewing result, plotting is done in head coordinate system space
if ~opt.twovol
% one vol case
ft_plot_ortho(opt.ana, 'transform', mri.transform, 'unit', mri.unit, 'location', [xi yi zi], 'style', 'subplot', 'surfhandle', opt.anahandles, 'update', opt.update, 'doscale', false, 'clim', opt.realignclim);
else
% two vol case
% base volume, with color red
hbase = []; % need the handle for the individual surfs
[hbase(1), hbase(2), hbase(3)] = ft_plot_ortho(opt.ana, 'transform', mri.transform, 'unit', mri.unit, 'location', [xi yi zi], 'style', 'subplot', 'surfhandle', opt.anahandles{1}, 'update', opt.update, 'doscale', false, 'clim', opt.targetclim, 'datmask', opt.targetmask, 'opacitylim', [0 1]);
for ih = 1:3
col = get(hbase(ih), 'CData');
col(:,:,2:3) = 0;
set(hbase(ih), 'CData', col);
end
% aligned volume, with color blue
hreal = []; % need the handle for the individual surfs
[hreal(1), hreal(2), hreal(3)] = ft_plot_ortho(opt.realignana, 'transform', opt.realignvol.transform, 'unit', opt.realignvol.unit, 'location', [xi yi zi], 'style', 'subplot', 'surfhandle', opt.anahandles{2}, 'update', opt.update, 'doscale', false, 'clim', opt.realignclim, 'datmask', opt.realignmask, 'opacitylim', [0 1]);
for ih = 1:3
col = get(hreal(ih), 'CData');
col(:,:,1:2) = 0;
set(hreal(ih), 'CData', col);
end
end
end % if ~opt.viewresult
% display current location
if ~opt.viewresult
% if realigning, plotting is done in voxel space
if all(round([xi yi zi])<=mri.dim) && all(round([xi yi zi])>0)
fprintf('==================================================================================\n');
lab = 'crosshair';
vox = [xi yi zi];
ind = sub2ind(mri.dim(1:3), round(vox(1)), round(vox(2)), round(vox(3)));
pos = ft_warp_apply(mri.transform, vox);
switch opt.unit
case 'mm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.1f %.1f %.1f] %s\n', lab, ind, vox, pos, opt.unit);
case 'cm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.2f %.2f %.2f] %s\n', lab, ind, vox, pos, opt.unit);
case 'm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.4f %.4f %.4f] %s\n', lab, ind, vox, pos, opt.unit);
otherwise
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%f %f %f] %s\n', lab, ind, vox, pos, opt.unit);
end
end
for i=1:length(opt.fidlabel)
lab = opt.fidlabel{i};
vox = opt.fiducial.(lab);
ind = sub2ind(mri.dim(1:3), round(vox(1)), round(vox(2)), round(vox(3)));
pos = ft_warp_apply(mri.transform, vox);
switch opt.unit
case 'mm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.1f %.1f %.1f] %s\n', lab, ind, vox, pos, opt.unit);
case 'cm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.2f %.2f %.2f] %s\n', lab, ind, vox, pos, opt.unit);
case 'm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.4f %.4f %.4f] %s\n', lab, ind, vox, pos, opt.unit);
otherwise
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%f %f %f] %s\n', lab, ind, vox, pos, opt.unit);
end
end
else
% if viewing result, plotting is done in head coordinate system space
lab = 'crosshair';
pos = [xi yi zi];
switch opt.unit
case 'mm'
fprintf('%10s: head = [%.1f %.1f %.1f] %s\n', lab, pos, opt.unit);
case 'cm'
fprintf('%10s: head = [%.2f %.2f %.2f] %s\n', lab, pos, opt.unit);
case 'm'
fprintf('%10s: head = [%.4f %.4f %.4f] %s\n', lab, pos, opt.unit);
otherwise
fprintf('%10s: head = [%f %f %f] %s\n', lab, pos, opt.unit);
end
end % if ~opt.viewresult
end % if opt.init
set(opt.handlesaxes(1), 'Visible', 'on');
set(opt.handlesaxes(2), 'Visible', 'on');
set(opt.handlesaxes(3), 'Visible', 'on');
if opt.viewresult
set(opt.handlesaxes(1), 'color', [.94 .94 .94]);
set(opt.handlesaxes(2), 'color', [.94 .94 .94]);
set(opt.handlesaxes(3), 'color', [.94 .94 .94]);
end
% make the last current axes current again
sel = findobj('type', 'axes', 'tag',tag);
if ~isempty(sel)
set(opt.handlesfigure, 'currentaxes', sel(1));
end
% set crosshair coordinates dependent on voxel/system coordinate space
% crosshair needs to be plotted 'towards' the viewing person, i.e. with a little offset
% i.e. this is the coordinate of the 'flat' axes with a little bit extra in the direction of the axis
% this offset cannot be higher than the to be plotted data, or it will not be visible (i.e. be outside of the visible axis)
if ~opt.viewresult
crossoffs = opt.dim;
crossoffs(2) = 1; % workaround to use the below
else
% because the orientation of the three slices are determined by eye(3) (no orientation is specified above),
% the direction of view is always:
% h1 -to+
% h2 +to-
% h3 -to+
% use this to create the offset for viewing the crosshair
mincoordstep = abs(ft_warp_apply(mri.transform, [1 1 1]) - ft_warp_apply(mri.transform, [2 2 2]));
crossoffs = [xi yi zi] + [1 -1 1].*mincoordstep;
end
if opt.init
% draw the crosshairs for the first time
hch1 = crosshair([xi crossoffs(2) zi], 'parent', h1, 'color', 'yellow');
hch2 = crosshair([crossoffs(1) yi zi], 'parent', h2, 'color', 'yellow');
hch3 = crosshair([xi yi crossoffs(3)], 'parent', h3, 'color', 'yellow');
opt.handlescross = [hch1(:)';hch2(:)';hch3(:)'];
opt.handlesmarker = [];
else
% update the existing crosshairs, don't change the handles
crosshair([xi crossoffs(2) zi], 'handle', opt.handlescross(1, :));
crosshair([crossoffs(1) yi zi], 'handle', opt.handlescross(2, :));
crosshair([xi yi crossoffs(3)], 'handle', opt.handlescross(3, :));
end
% For some unknown god-awful reason, the line command 'disables' all transparency.
% The below command resets it. It was the only axes property that I (=roemei) could
% find that changed after adding the crosshair, and putting it back to 'childorder'
% instead of 'depth' fixes the problem. Lucky, the line command only 'disables' in
% the new graphics system introduced in 2014b (any version below is fine, and does
% not contain the sortmethod property --> crash)
if ~verLessThan('matlab', '8.4') % 8.4 = 2014b
set(h1, 'sortMethod', 'childorder')
set(h2, 'sortMethod', 'childorder')
set(h3, 'sortMethod', 'childorder')
end
if opt.showcrosshair
set(opt.handlescross, 'Visible', 'on');
else
set(opt.handlescross, 'Visible', 'off');
end
markercolor = {'r', 'g', 'b', 'y'};
delete(opt.handlesmarker(opt.handlesmarker(:)>0));
opt.handlesmarker = [];
if ~opt.viewresult
for i=1:length(opt.fidlabel)
pos = opt.fiducial.(opt.fidlabel{i});
% if any(isnan(pos))
% continue
% end
posi = pos(1);
posj = pos(2);
posk = pos(3);
subplot(h1);
hold on
opt.handlesmarker(i,1) = plot3(posi, 1, posk, 'marker', 'o', 'color', markercolor{i});
hold off
subplot(h2);
hold on
opt.handlesmarker(i,2) = plot3(opt.dim(1), posj, posk, 'marker', 'o', 'color', markercolor{i});
hold off
subplot(h3);
hold on
opt.handlesmarker(i,3) = plot3(posi, posj, opt.dim(3), 'marker', 'o', 'color', markercolor{i});
hold off
end % for each fiducial
end
if opt.showmarkers
set(opt.handlesmarker, 'Visible', 'on');
else
set(opt.handlesmarker, 'Visible', 'off');
end
opt.init = false;
setappdata(h, 'opt', opt);
set(h, 'currentaxes', curr_ax);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
if isempty(key)
% this happens if you press the apple key
key = '';
end
% the following code is largely shared with FT_SOURCEPLOT
switch key
case {'' 'shift+shift' 'alt-alt' 'control+control' 'command-0'}
% do nothing
case '1'
subplot(opt.handlesaxes(1));
case '2'
subplot(opt.handlesaxes(2));
case '3'
subplot(opt.handlesaxes(3));
case opt.fidletter
if ~opt.viewresult
sel = strcmp(key, opt.fidletter);
fprintf('==================================================================================\n');
fprintf('selected %s\n', opt.fidlabel{sel});
opt.fiducial.(opt.fidlabel{sel}) = opt.ijk;
setappdata(h, 'opt', opt);
cb_redraw(h);
end
case 'q'
setappdata(h, 'opt', opt);
cb_cleanup(h);
case {'i' 'j' 'k' 'm' 28 29 30 31 'leftarrow' 'rightarrow' 'uparrow' 'downarrow'} % TODO FIXME use leftarrow rightarrow uparrow downarrow
% update the view to a new position
if strcmp(tag,'ik') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag,'ik') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag,'ik') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag,'ik') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
elseif strcmp(tag,'ij') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag,'ij') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag,'ij') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag,'ij') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag,'jk') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
else
% do nothing
end;
setappdata(h, 'opt', opt);
cb_redraw(h);
% contrast scaling
case {43 'shift+equal'} % numpad +
% disable if viewresult
if ~opt.viewresult
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% reduce color scale range by 10%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)+cscalefactor;
opt.clim(2) = opt.clim(2)-cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
end
case {45 'shift+hyphen'} % numpad -
% disable if viewresult
if ~opt.viewresult
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% increase color scale range by 10%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)-cscalefactor;
opt.clim(2) = opt.clim(2)+cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
end
case 99 % 'c'
opt.showcrosshair = ~opt.showcrosshair;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 102 % 'f'
if ~opt.viewresult
opt.showmarkers = ~opt.showmarkers;
setappdata(h, 'opt', opt);
cb_redraw(h);
end
case 3 % right mouse click
% add point to a list
l1 = get(get(gca, 'xlabel'), 'string');
l2 = get(get(gca, 'ylabel'), 'string');
switch l1,
case 'i'
xc = d1;
case 'j'
yc = d1;
case 'k'
zc = d1;
end
switch l2,
case 'i'
xc = d2;
case 'j'
yc = d2;
case 'k'
zc = d2;
end
pnt = [pnt; xc yc zc];
case 2 % middle mouse click
l1 = get(get(gca, 'xlabel'), 'string');
l2 = get(get(gca, 'ylabel'), 'string');
% remove the previous point
if size(pnt,1)>0
pnt(end,:) = [];
end
if l1=='i' && l2=='j'
updatepanel = [1 2 3];
elseif l1=='i' && l2=='k'
updatepanel = [2 3 1];
elseif l1=='j' && l2=='k'
updatepanel = [3 1 2];
end
otherwise
% do nothing
end % switch key
if ~opt.viewresult
uiresume(h)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonpress(h, eventdata)
h = getparent(h);
cb_getposition(h);
switch get(h, 'selectiontype')
case 'normal'
% just update to new position, nothing else to be done here
cb_redraw(h);
case 'alt'
set(h, 'windowbuttonmotionfcn', @cb_tracemouse);
cb_redraw(h);
otherwise
end
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonrelease(h, eventdata)
set(h, 'windowbuttonmotionfcn', '');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_tracemouse(h, eventdata)
h = getparent(h);
cb_getposition(h);
cb_redraw(h);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
pos = mean(get(curr_ax, 'currentpoint'));
tag = get(curr_ax, 'tag');
% transform pos from coordinate system space to voxel space if viewing results
if opt.viewresult
pos = ft_warp_apply(inv(opt.mri.transform),pos); % not sure under which circumstances the transformation matrix is not invertible...
end
if ~isempty(tag) && ~opt.init
if strcmp(tag, 'ik')
opt.ijk([1 3]) = round(pos([1 3]));
opt.update = [1 1 1];
elseif strcmp(tag, 'ij')
opt.ijk([1 2]) = round(pos([1 2]));
opt.update = [1 1 1];
elseif strcmp(tag, 'jk')
opt.ijk([2 3]) = round(pos([2 3]));
opt.update = [1 1 1];
end
end
opt.ijk = min(opt.ijk(:)', opt.dim);
opt.ijk = max(opt.ijk(:)', [1 1 1]);
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cleanup(h, eventdata)
opt = getappdata(h, 'opt');
if ~opt.viewresult
opt.quit = true;
setappdata(h, 'opt', opt);
uiresume
else
% not part of interactive process requiring output handling, quite immediately
delete(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_minslider(h4, eventdata)
tag = get(h4, 'tag');
newlim = get(h4, 'value');
h = getparent(h4);
opt = getappdata(h, 'opt');
if isempty(tag)
opt.clim(1) = newlim;
elseif strcmp(tag, 'rel')
opt.realignclim(1) = newlim;
elseif strcmp(tag, 'tar')
opt.targetclim(1) = newlim;
end
if isempty(tag)
fprintf('contrast limits updated to [%.03f %.03f]\n', opt.clim);
elseif strcmp(tag, 'rel')
fprintf('realigned contrast limits updated to [%.03f %.03f]\n', opt.realignclim);
elseif strcmp(tag, 'tar')
fprintf('target cfontrast limits updated to [%.03f %.03f]\n', opt.targetclim);
end
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_maxslider(h5, eventdata)
tag = get(h5, 'tag');
newlim = get(h5, 'value');
h = getparent(h5);
opt = getappdata(h, 'opt');
if isempty(tag)
opt.clim(2) = newlim;
elseif strcmp(tag, 'rel')
opt.realignclim(2) = newlim;
elseif strcmp(tag, 'tar')
opt.targetclim(2) = newlim;
end
if isempty(tag)
fprintf('contrast limits updated to [%.03f %.03f]\n', opt.clim);
elseif strcmp(tag, 'rel')
fprintf('realigned contrast limits updated to [%.03f %.03f]\n', opt.realignclim);
elseif strcmp(tag, 'tar')
fprintf('target contrast limits updated to [%.03f %.03f]\n', opt.targetclim);
end
setappdata(h, 'opt', opt);
cb_redraw(h);
|
github
|
lcnbeapp/beapp-master
|
ft_qualitycheck.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_qualitycheck.m
| 25,590 |
utf_8
|
a401e78252691eab2e35c944b5a3c39b
|
function [varargout] = ft_qualitycheck(cfg)
% FT_QUALITYCHECK performs a quality inspection of a given MEG/EEG dataset,
% stores (.mat), and visualizes the result (.png and .pdf).
%
% This function segments the data into 10-second pieces and performs the
% following analyses:
% 1) reads the properties of the dataset
% 2) computes the headpositions and distance covered from recording onset (CTF only)
% 3) computes the mean, max, min, and range of the signal amplitude
% 4) detects trigger events
% 5) detects jump artifacts
% 6) computes the powerspectrum
% 7) estimates the low-frequency (<2 Hz) and line noise (~50 Hz)
%
% Use as
% [info, timelock, freq, summary, headpos] = ft_qualitycheck(cfg)
% where info contains the dataset properties, timelock the timelocked data,
% freq the powerspectra, summary the mean descriptives, and headpos the
% headpositions throughout the recording
%
% The configuration should contain:
% cfg.dataset = a string (e.g. 'dataset.ds')
%
% The following parameters can be used:
% cfg.analyze = string, 'yes' or 'no' to analyze the dataset (default = 'yes')
% cfg.savemat = string, 'yes' or 'no' to save the analysis (default = 'yes')
% cfg.matfile = string, filename (e.g. 'previousoutput.mat'), preferably in combination
% with analyze = 'no'
% cfg.visualize = string, 'yes' or 'no' to visualize the analysis (default = 'yes')
% cfg.saveplot = string, 'yes' or 'no' to save the visualization (default = 'yes')
% cfg.linefreq = scalar, frequency of power line (default = 50)
% cfg.plotunit = scalar, the length of time to be plotted in one panel (default = 3600)
%
% See also FT_PREPROCESSING, FT_READ_HEADER, FT_READ_DATA, FT_READ_EVENT
% Copyright (C) 2010-2011, Arjen Stolk, Bram Daams, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id:%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% set the defaults
cfg.analyze = ft_getopt(cfg, 'analyze', 'yes');
cfg.savemat = ft_getopt(cfg, 'savemat', 'yes');
cfg.matfile = ft_getopt(cfg, 'matfile', []);
cfg.visualize = ft_getopt(cfg, 'visualize', 'yes');
cfg.saveplot = ft_getopt(cfg, 'saveplot', 'yes');
cfg.linefreq = ft_getopt(cfg, 'linefreq', 50);
cfg.plotunit = ft_getopt(cfg, 'plotunit', 3600);
%% ANALYSIS
if strcmp(cfg.analyze,'yes')
tic
% checks
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); % translate into datafile+headerfile
% these will be replaced by more appropriate values
info.datasetname = 'unknown';
info.starttime = 'unknown';
info.startdate = 'unknown';
info.stoptime = 'unknown';
info.stopdate = 'unknown';
% the exportname is also used in the cron job
exportname = qualitycheck_exportname(cfg.dataset);
[iseeg, ismeg, isctf, fltp] = filetyper(cfg.dataset);
if isctf
try
% update the info fields
info = read_ctf_hist(cfg.dataset);
end
end
% add info
info.event = ft_read_event(cfg.dataset);
info.hdr = ft_read_header(cfg.dataset);
info.filetype = fltp;
% trial definition
cfgdef = [];
cfgdef.dataset = cfg.dataset;
cfgdef.trialdef.triallength = 10;
%cfgdef.trialdef.ntrials = 3;
cfgdef.continuous = 'yes';
cfgdef = ft_definetrial(cfgdef);
ntrials = size(cfgdef.trl,1)-1; % remove last trial
timeunit = cfgdef.trialdef.triallength;
% channelselection for jump detection (all) and for FFT (brain)
if ismeg
allchans = ft_channelselection({'MEG','MEGREF'}, info.hdr.label);
chans = ft_channelselection('MEG', info.hdr.label); % brain
allchanindx = match_str(info.hdr.label, allchans);
chanindx = match_str(chans, allchans);
jumpthreshold = 1e-10;
elseif iseeg
allchans = ft_channelselection('EEG', info.hdr.label);
chans = allchans; % brain
allchanindx = match_str(info.hdr.label, allchans);
chanindx = match_str(chans, allchans);
jumpthreshold = 1e4;
end
% find headcoil channels
if isctf % this fails for older CTF data sets
Nx = strmatch('HLC0011', info.hdr.label); % x nasion coil
Ny = strmatch('HLC0012', info.hdr.label); % y nasion
Nz = strmatch('HLC0013', info.hdr.label); % z nasion
Lx = strmatch('HLC0021', info.hdr.label); % x left coil
Ly = strmatch('HLC0022', info.hdr.label); % y left
Lz = strmatch('HLC0023', info.hdr.label); % z left
Rx = strmatch('HLC0031', info.hdr.label); % x right coil
Ry = strmatch('HLC0032', info.hdr.label); % y right
Rz = strmatch('HLC0033', info.hdr.label); % z right
headpos.dimord = 'chan_time';
headpos.time = (timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2);
headpos.label = {'Nx';'Ny';'Nz';'Lx';'Ly';'Lz';'Rx';'Ry';'Rz'};
headpos.avg = NaN(length(headpos.label), ntrials);
headpos.grad = info.hdr.grad;
if numel(cat(1,Nx,Ny,Nz,Lx,Ly,Lz,Rx,Ry,Rz))==9
hasheadpos = true;
else
hasheadpos = false;
end
end % if
% analysis settings
cfgredef = [];
cfgredef.length = 1;
cfgredef.overlap = 0;
cfgfreq = [];
cfgfreq.output = 'pow';
cfgfreq.channel = allchans;
cfgfreq.method = 'mtmfft';
cfgfreq.taper = 'hanning';
cfgfreq.keeptrials = 'no';
cfgfreq.foilim = [0 min(info.hdr.Fs/2, 400)];
% output variables
timelock.dimord = 'chan_time';
timelock.label = allchans;
timelock.time = (timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2);
timelock.avg = NaN(length(allchans), ntrials); % updated in loop
timelock.median = NaN(length(allchans), ntrials); % updated in loop
timelock.jumps = NaN(length(allchans), ntrials); % updated in loop
timelock.range = NaN(length(allchans), ntrials); % updated in loop
timelock.min = NaN(length(allchans), ntrials); % updated in loop
timelock.max = NaN(length(allchans), ntrials); % updated in loop
freq.dimord = 'chan_freq_time';
freq.label = allchans;
freq.freq = (cfgfreq.foilim(1):cfgfreq.foilim(2));
freq.time = (timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2);
freq.powspctrm = NaN(length(allchans), length(freq.freq), ntrials); % updated in loop
summary.dimord = 'chan_time';
summary.time = (timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2);
summary.label = {'Mean';'Median';'Min';'Max';'Range';'HmotionN';'HmotionL';'HmotionR';'LowFreqPower';'LineFreqPower';'Jumps'};
summary.avg = NaN(length(summary.label), ntrials); % updated in loop
% try add gradiometer info
if isfield(info.hdr, 'grad'),
timelock.grad = info.hdr.grad;
freq.grad = info.hdr.grad;
summary.grad = info.hdr.grad;
end
% process trial by trial
for t = 1:ntrials
fprintf('analyzing trial %s of %s \n', num2str(t), num2str(ntrials));
% preprocess
cfgpreproc = cfgdef;
cfgpreproc.trl = cfgdef.trl(t,:);
data = ft_preprocessing(cfgpreproc); clear cfgpreproc;
% determine headposition
if isctf && hasheadpos
headpos.avg(1,t) = mean(data.trial{1,1}(Nx,:) * 100); % meter to cm
headpos.avg(2,t) = mean(data.trial{1,1}(Ny,:) * 100);
headpos.avg(3,t) = mean(data.trial{1,1}(Nz,:) * 100);
headpos.avg(4,t) = mean(data.trial{1,1}(Lx,:) * 100);
headpos.avg(5,t) = mean(data.trial{1,1}(Ly,:) * 100);
headpos.avg(6,t) = mean(data.trial{1,1}(Lz,:) * 100);
headpos.avg(7,t) = mean(data.trial{1,1}(Rx,:) * 100);
headpos.avg(8,t) = mean(data.trial{1,1}(Ry,:) * 100);
headpos.avg(9,t) = mean(data.trial{1,1}(Rz,:) * 100);
end
% update values
timelock.avg(:,t) = mean(data.trial{1}(allchanindx,:),2);
timelock.median(:,t) = median(data.trial{1}(allchanindx,:),2);
timelock.range(:,t) = max(data.trial{1}(allchanindx,:),[],2) - min(data.trial{1}(allchanindx,:),[],2);
timelock.min(:,t) = min(data.trial{1}(allchanindx,:),[],2);
timelock.max(:,t) = max(data.trial{1}(allchanindx,:),[],2);
% detect jumps
for c = 1:size(data.trial{1}(allchanindx,:),1)
timelock.jumps(c,t) = length(find(diff(data.trial{1,1}(allchanindx(c),:)) > jumpthreshold));
end
% FFT and noise estimation
redef = ft_redefinetrial(cfgredef, data); clear data;
FFT = ft_freqanalysis(cfgfreq, redef); clear redef;
freq.powspctrm(:,:,t) = FFT.powspctrm;
summary.avg(9,t) = mean(mean(findpower(0, 2, FFT, chanindx))); % Low Freq Power
summary.avg(10,t) = mean(mean(findpower(cfg.linefreq-1, cfg.linefreq+1, FFT, chanindx))); clear FFT; % Line Freq Power
toc
end % end of trial loop
% determine headmotion: distance from initial trial (in cm)
if isctf && hasheadpos
summary.avg(6,:) = sqrt(sum((headpos.avg(1:3,:)-repmat(headpos.avg(1:3,1),1,size(headpos.avg,2))).^2,1)); % N
summary.avg(7,:) = sqrt(sum((headpos.avg(4:6,:)-repmat(headpos.avg(4:6,1),1,size(headpos.avg,2))).^2,1)); % L
summary.avg(8,:) = sqrt(sum((headpos.avg(7:9,:)-repmat(headpos.avg(7:9,1),1,size(headpos.avg,2))).^2,1)); % R
end
% summarize/mean and store variables of brain info only
summary.avg(1,:) = mean(timelock.avg(chanindx,:),1);
summary.avg(2,:) = mean(timelock.median(chanindx,:),1);
summary.avg(3,:) = mean(timelock.min(chanindx,:),1);
summary.avg(4,:) = mean(timelock.max(chanindx,:),1);
summary.avg(5,:) = mean(timelock.range(chanindx,:),1);
summary.avg(11,:) = mean(timelock.jumps(chanindx,:),1);
% save to .mat
if strcmp(cfg.savemat, 'yes')
if isctf && hasheadpos
headpos.cfg = cfg;
save(exportname, 'info','timelock','freq','summary','headpos');
else
save(exportname, 'info','timelock','freq','summary');
end
end
end % end of analysis
%% VISUALIZATION
if strcmp(cfg.visualize, 'yes')
% load data
if strcmp(cfg.analyze, 'no')
if ~isempty(cfg.matfile)
exportname = cfg.matfile;
else
exportname = qualitycheck_exportname(cfg.dataset);
end
fprintf('loading %s \n', exportname);
load(exportname);
end
% determine number of 1-hour plots to be made
nplots = ceil(length(freq.time)/(cfg.plotunit/10));
% create GUI-like figure(s)
for p = 1:nplots
fprintf('visualizing %s of %s \n', num2str(p), num2str(nplots));
toi = [p*cfg.plotunit-(cfg.plotunit-5) p*cfg.plotunit-5]; % select 1-hour chunks
tmpcfg.toi = toi;
temp_timelock = ft_selectdata(tmpcfg, timelock);
temp_timelock.cfg = cfg; % be sure to add the cfg here
temp_freq = ft_selectdata(tmpcfg, freq);
temp_summary = ft_selectdata(tmpcfg, summary);
if exist('headpos','var')
temp_headpos = ft_selectdata(tmpcfg, headpos);
draw_figure(info, temp_timelock, temp_freq, temp_summary, temp_headpos, toi);
clear temp_timelock; clear temp_freq; clear temp_summary; clear temp_headpos; clear toi;
else
draw_figure(info, temp_timelock, temp_freq, temp_summary, toi);
clear temp_timelock; clear temp_freq; clear temp_summary; clear toi;
end
% export to .PNG and .PDF
if strcmp(cfg.saveplot, 'yes')
[pathstr,name,extr] = fileparts(exportname);
if p == 1
exportfilename = name;
else
exportfilename = strcat(name,'_pt',num2str(p));
end
fprintf('exporting %s of %s \n', num2str(p), num2str(nplots));
set(gcf, 'PaperType', 'a4');
print(gcf, '-dpng', strcat(exportfilename,'.png'));
orient landscape;
print(gcf, '-dpdf', strcat(exportfilename,'.pdf'));
close
end
end % end of nplots
end % end of visualization
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble history timelock % add the input cfg to multiple outputs
ft_postamble history freq % add the input cfg to multiple outputs
ft_postamble history summary % add the input cfg to multiple outputs
%% VARARGOUT
if nargout>0
mOutputArgs{1} = info;
mOutputArgs{2} = timelock;
mOutputArgs{3} = freq;
mOutputArgs{4} = summary;
try
mOutputArgs{5} = headpos;
end
[varargout{1:nargout}] = mOutputArgs{:};
clearvars -except varargout
else
clear
end
%%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%
function [x] = clipat(x, v, v2)
v = [v v2]; % clip between value v and v2
if length(v) == 1
x(x>v) = v;
elseif length(v) == 2
x(x<v(1)) = v(1);
x(x>v(2)) = v(2);
end
%%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%
function [iseeg, ismeg, isctf, fltp] = filetyper(dataset)
fltp = ft_filetype(dataset);
iseeg = ft_filetype(dataset,'brainvision_eeg') | ...
ft_filetype(dataset,'ns_eeg') | ...
ft_filetype(dataset,'bci2000_dat') | ...
ft_filetype(dataset,'neuroprax_eeg') | ...
ft_filetype(dataset,'egi_sbin') | ...
ft_filetype(dataset,'biosemi_bdf');
ismeg = ft_filetype(dataset,'ctf_ds') | ...
ft_filetype(dataset,'4d') | ...
ft_filetype(dataset,'neuromag_fif') | ...
ft_filetype(dataset,'itab_raw');
isctf = ft_filetype(dataset, 'ctf_ds');
if ~ismeg && ~iseeg % if none found, try less strict checks
[p, f, ext] = fileparts(dataset);
if strcmp(ext, '.eeg')
fltp = 'brainvision_eeg';
iseeg = 1;
elseif strcmp(ext, '.bdf')
fltp = 'biosemi_bdf';
iseeg = 1;
elseif strcmp(ext, '.ds')
fltp = 'ctf_ds';
ismeg = 1;
else % otherwise use eeg settings for stability reasons
iseeg = 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%
function [power, freq] = findpower(low, high, freqinput, chans)
% replace value with the index of the nearest bin
xmin = nearest(getsubfield(freqinput, 'freq'), low);
xmax = nearest(getsubfield(freqinput, 'freq'), high);
% select the freq range
power = freqinput.powspctrm(chans, xmin:xmax);
freq = freqinput.freq(:, xmin:xmax);
%%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%
function draw_figure(varargin)
% deal with input
if nargin == 6
info = varargin{1};
timelock = varargin{2};
freq = varargin{3};
summary = varargin{4};
headpos = varargin{5};
toi = varargin{6};
elseif nargin == 5
info = varargin{1};
timelock = varargin{2};
freq = varargin{3};
summary = varargin{4};
toi = varargin{5};
end
% determine whether it is EEG or MEG
try
[iseeg, ismeg, isctf, fltp] = filetyper(timelock.cfg.dataset);
catch % in case the input is a matfile (and the dataset field does not exist): ugly workaround
[iseeg, ismeg, isctf, fltp] = filetyper(headpos.cfg.dataset);
end
if ismeg
scaling = 1e15; % assuming data is in T and needs to become fT
powscaling = scaling^2;
ylab = 'fT';
elseif iseeg
scaling = 1e0; % assuming data is in muV already
powscaling = scaling^2;
ylab = '\muV';
end
% PARENT FIGURE
h.MainFigure = figure(...
'MenuBar','none',...
'Name','ft_qualitycheck',...
'Units','normalized',...
'color','white',...
'Position',[0.01 0.01 .99 .99]); % nearly fullscreen
if strcmp(info.startdate,'unknown')
tmp = 'unknown';
else
[d,w] = weekday(info.startdate);
tmp = [w ' ' info.startdate];
end
h.MainText = uicontrol(...
'Parent',h.MainFigure,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',tmp,...
'Backgroundcolor','white',...
'Position',[.06 .96 .15 .02]);
h.MainText2 = uicontrol(...
'Parent',h.MainFigure,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String','Jump artefacts',...
'Backgroundcolor','white',...
'Position',[.08 .46 .12 .02]);
h.MainText3 = uicontrol(...
'Parent',h.MainFigure,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String','Mean powerspectrum',...
'Backgroundcolor','white',...
'Position',[.4 .3 .15 .02]);
h.MainText4 = uicontrol(...
'Parent',h.MainFigure,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String','Timecourses',...
'Backgroundcolor','white',...
'Position',[.5 .96 .11 .02]);
h.MainText5 = uicontrol(...
'Parent',h.MainFigure,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String','Events',...
'Backgroundcolor','white',...
'Position',[.81 .3 .06 .02]);
% HEADMOTION PANEL
h.HmotionPanel = uipanel(...
'Parent',h.MainFigure,...
'Units','normalized',...
'Backgroundcolor','white',...
'Position',[.01 .5 .25 .47]);
h.DataText = uicontrol(...
'Parent',h.HmotionPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',info.datasetname,...
'Backgroundcolor','white',...
'Position',[.01 .85 .99 .1]);
h.TimeText = uicontrol(...
'Parent',h.HmotionPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',[info.starttime ' - ' info.stoptime],...
'Backgroundcolor','white',...
'Position',[.01 .78 .99 .1]);
if ismeg
allchans = ft_senslabel(ft_senstype(timelock));
misschans = setdiff(ft_channelselection('MEG', info.hdr.label), allchans);
nchans = num2str(size(ft_channelselection('MEG', info.hdr.label),1));
else
misschans = '';
nchans = num2str(size(ft_channelselection('EEG', info.hdr.label),1));
end
h.DataText2 = uicontrol(...
'Parent',h.HmotionPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',[fltp ', fs: ' num2str(info.hdr.Fs) ', nchans: ' nchans],...
'Backgroundcolor','white',...
'Position',[.01 .71 .99 .1]);
h.DataText3 = uicontrol(...
'Parent',h.HmotionPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',['missing chans: ' misschans'],...
'Backgroundcolor','white',...
'Position',[.01 .64 .99 .1]);
% boxplot headmotion (*10; cm-> mm) per coil
if exist('headpos','var')
h.HmotionAxes = axes(...
'Parent',h.HmotionPanel,...
'Units','normalized',...
'color','white',...
'Position',[.05 .08 .9 .52]);
hmotions = ([summary.avg(8,:)' summary.avg(7,:)' summary.avg(6,:)'])*10;
boxplot(h.HmotionAxes, hmotions, 'orientation', 'horizontal', 'notch', 'on');
set(h.HmotionAxes,'YTick',1:3);
set(h.HmotionAxes,'YTickLabel',{'R','L','N'});
xlim(h.HmotionAxes, [0 10]);
xlabel(h.HmotionAxes, 'Headmotion from start [mm]');
end
% TIMECOURSE PANEL
h.SignalPanel = uipanel(...
'Parent',h.MainFigure,...
'Units','normalized',...
'Backgroundcolor','white',...
'Position',[.28 .34 .71 .63]);
h.SignalAxes = axes(...
'Parent',h.SignalPanel,...
'Units','normalized',...
'color','white',...
'Position',[.08 .36 .89 .3]);
h.LinenoiseAxes = axes(...
'Parent',h.SignalPanel,...
'Units','normalized',...
'color','white',...
'Position',[.08 .23 .89 .1]);
h.LowfreqnoiseAxes = axes(...
'Parent',h.SignalPanel,...
'Units','normalized',...
'color','white',...
'Position',[.08 .1 .89 .1]);
% plot hmotion timecourses per coil (*10; cm-> mm)
if exist('headpos','var')
h.HmotionTimecourseAxes = axes(...
'Parent',h.SignalPanel,...
'Units','normalized',...
'color','white',...
'Position',[.08 .73 .89 .22]);
plot(h.HmotionTimecourseAxes, summary.time, clipat(summary.avg(6,:)*10, 0, 10), ...
summary.time, clipat(summary.avg(7,:)*10, 0, 10), ...
summary.time, clipat(summary.avg(8,:)*10, 0, 10), 'LineWidth',2);
ylim(h.HmotionTimecourseAxes,[0 10]);
ylabel(h.HmotionTimecourseAxes, 'Coil distance [mm]');
xlim(h.HmotionTimecourseAxes,toi);
grid(h.HmotionTimecourseAxes,'on');
legend(h.HmotionTimecourseAxes, 'N','L','R');
end
% plot mean and range of the raw signal
plot(h.SignalAxes, summary.time, summary.avg(5,:)*scaling, summary.time, summary.avg(1,:)*scaling, 'LineWidth', 2);
set(h.SignalAxes,'Nextplot','add');
plot(h.SignalAxes, summary.time, summary.avg(3,:)*scaling, summary.time, summary.avg(4,:)*scaling, 'LineWidth', 1, 'Color', [255/255 127/255 39/255]);
grid(h.SignalAxes,'on');
ylabel(h.SignalAxes, ['Amplitude [' ylab ']']);
xlim(h.SignalAxes,toi);
legend(h.SignalAxes,'Range','Mean','Min','Max');
set(h.SignalAxes,'XTickLabel','');
% plot linenoise
semilogy(h.LinenoiseAxes, summary.time, clipat(summary.avg(10,:)*powscaling, 1e2, 1e4), 'LineWidth',2);
grid(h.LinenoiseAxes,'on');
legend(h.LinenoiseAxes, ['LineFreq [' ylab '^2/Hz]']);
set(h.LinenoiseAxes,'XTickLabel','');
xlim(h.LinenoiseAxes,toi);
ylim(h.LinenoiseAxes,[1e2 1e4]); % before april 28th this was 1e0 - 1e3
% plot lowfreqnoise
semilogy(h.LowfreqnoiseAxes, summary.time, clipat(summary.avg(9,:)*powscaling, 1e10, 1e12), 'LineWidth',2);
grid(h.LowfreqnoiseAxes,'on');
xlim(h.LowfreqnoiseAxes,toi);
ylim(h.LowfreqnoiseAxes,[1e10 1e12]);
legend(h.LowfreqnoiseAxes, ['LowFreq [' ylab '^2/Hz]']);
xlabel(h.LowfreqnoiseAxes, 'Time [seconds]'); % before april 28th this was 1e0 - 1e10
% EVENT PANEL
h.EventPanel = uipanel(...
'Parent',h.MainFigure,...
'Units','normalized',...
'Backgroundcolor','white',...
'Position',[.7 .01 .29 .3]);
% event details
eventtypes = {};
eventtriggers = {};
eventvalues = {};
if ~isempty(info.event)
[a,b,c] = unique({info.event.type});
for j=1:length(a)
eventtypes{j,1} = a{j};
eventtriggers{j,1} = sum(c==j);
eventvalues{j,1} = length(unique([info.event(c==j).value]));
end
end
if isempty(eventtypes)
eventtypes{1,1} = 'no triggers found';
end
h.EventText = uicontrol(...
'Parent',h.EventPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',['Types'; ' '; eventtypes],...
'Backgroundcolor','white',...
'Position',[.05 .05 .4 .85]);
h.EventText2 = uicontrol(...
'Parent',h.EventPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',['Triggers'; ' '; eventtriggers],...
'Backgroundcolor','white',...
'Position',[.55 .05 .2 .85]);
h.EventText3 = uicontrol(...
'Parent',h.EventPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',['Values'; ' '; eventvalues],...
'Backgroundcolor','white',...
'Position',[.8 .05 .15 .85]);
% POWERSPECTRUM PANEL
h.SpectrumPanel = uipanel(...
'Parent',h.MainFigure,...
'Units','normalized',...
'Backgroundcolor','white',...
'Position',[.28 .01 .4 .3]);
h.SpectrumAxes = axes(...
'Parent',h.SpectrumPanel,...
'Units','normalized',...
'color','white',...
'Position',[.15 .2 .8 .7]);
% plot powerspectrum
loglog(h.SpectrumAxes, freq.freq, mean(mean(freq.powspctrm,1),3)*powscaling,'r','LineWidth',2);
xlabel(h.SpectrumAxes, 'Frequency [Hz]');
ylabel(h.SpectrumAxes, ['Power [' ylab '^2/Hz]']);
% ARTEFACT PANEL
h.JumpPanel = uipanel(...
'Parent',h.MainFigure,...
'Units','normalized',...
'Backgroundcolor','white',...
'Position',[.01 .01 .25 .46]);
% jump details
jumpchans = {};
jumpcounts = {};
[jumps,i] = find(timelock.jumps>0); % find all jumps
[a,b,c] = unique(jumps);
for j=1:length(a)
jumpchans{j,1} = timelock.label{a(j)};
jumpcounts{j,1} = sum(c==j);
end
if isempty(jumpchans)
jumpchans{1,1} = 'no jumps detected';
end
h.JumpText = uicontrol(...
'Parent',h.JumpPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',jumpchans,...
'Backgroundcolor','white',...
'Position',[.15 .5 .25 .4]);
h.JumpText2 = uicontrol(...
'Parent',h.JumpPanel,...
'Style','text',...
'Units','normalized',...
'FontSize',10,...
'String',jumpcounts,...
'Backgroundcolor','white',...
'Position',[.65 .5 .2 .4]);
% plot jumps on the dewar sensors
if ismeg
h.TopoMEG = axes(...
'Parent',h.JumpPanel,...
'color','white',...
'Units','normalized',...
'Position',[0.4 0.05 0.55 0.4]);
MEGchans = ft_channelselection('MEG', timelock.label);
MEGchanindx = match_str(timelock.label, MEGchans);
cfgtopo = [];
cfgtopo.marker = 'off';
cfgtopo.colorbar = 'no';
cfgtopo.comment = 'no';
cfgtopo.style = 'blank';
cfgtopo.layout = ft_prepare_layout(timelock);
cfgtopo.highlight = 'on';
cfgtopo.highlightsymbol = '.';
cfgtopo.highlightsize = 14;
cfgtopo.highlightchannel = find(sum(timelock.jumps(MEGchanindx,:),2)>0);
data.label = MEGchans;
data.powspctrm = sum(timelock.jumps(MEGchanindx,:),2);
data.dimord = 'chan_freq';
data.freq = 1;
axes(h.TopoMEG);
ft_topoplotTFR(cfgtopo, data); clear data;
end
|
github
|
lcnbeapp/beapp-master
|
ft_denoise_pca.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_denoise_pca.m
| 17,813 |
utf_8
|
ae42782c1e01befe56fb6dfb726bdc5e
|
function data = ft_denoise_pca(cfg, varargin)
% FT_DENOISE_PCA performs a principal component analysis (PCA) on specified reference
% channels and subtracts the projection of the data of interest onto this orthogonal
% basis from the data of interest. This is the algorithm which is applied by 4D to
% compute noise cancellation weights on a dataset of interest. This function has been
% designed for 4D MEG data, but can also be applied to data from other MEG systems.
%
% Use as
% [dataout] = ft_denoise_pca(cfg, data)
% or as
% [dataout] = ft_denoise_pca(cfg, data, refdata)
% where "data" is a raw data structure that was obtained with FT_PREPROCESSING. If
% you specify the additional input "refdata", the specified reference channels for
% the regression will be taken from this second data structure. This can be useful
% when reference-channel specific preprocessing needs to be done (e.g. low-pass
% filtering).
%
% The output structure dataout contains the denoised data in a format that is
% consistent with the output of FT_PREPROCESSING.
%
% The configuration should be according to
% cfg.refchannel = the channels used as reference signal (default = 'MEGREF')
% cfg.channel = the channels to be denoised (default = 'MEG')
% cfg.truncate = optional truncation of the singular value spectrum (default = 'no')
% cfg.zscore = standardise reference data prior to PCA (default = 'no')
% cfg.pertrial = 'no' (default) or 'yes'. Regress out the references on a per trial basis
% cfg.trials = list of trials that are used (default = 'all')
%
% if cfg.truncate is integer n > 1, n will be the number of singular values kept.
% if 0 < cfg.truncate < 1, the singular value spectrum will be thresholded at the
% fraction cfg.truncate of the largest singular value.
%
% See also FT_PREPROCESSING, FT_DENOISE_SYNTHETIC
% Undocumented cfg-option: cfg.pca the output structure of an earlier call
% to the function. Can be used regress out the reference channels from
% another data set.
% Copyright (c) 2008-2009, Jan-Mathijs Schoffelen, CCNi Glasgow
% Copyright (c) 2010-2011, Jan-Mathijs Schoffelen, DCCN Nijmegen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'raw');
end
% set the defaults
cfg.refchannel = ft_getopt(cfg, 'refchannel', 'MEGREF');
cfg.channel = ft_getopt(cfg, 'channel', 'MEG');
cfg.truncate = ft_getopt(cfg, 'truncate', 'no');
cfg.zscore = ft_getopt(cfg, 'zscore', 'no');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.pertrial = ft_getopt(cfg, 'pertrial', 'no');
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
if strcmp(cfg.pertrial, 'yes'),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% iterate over trials
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tmpcfg = keepfields(cfg, 'trials');
% select trials of interest
for i=1:numel(varargin)
varargin{i} = ft_selectdata(tmpcfg, varargin{i});
[cfg, varargin{i}] = rollback_provenance(cfg, varargin{i});
end
tmp = cell(numel(varargin{1}.trial),1);
tmpcfg = cfg;
tmpcfg.pertrial = 'no';
for k = 1:numel(varargin{1}.trial)
tmpcfg.trials = k; % select a single trial
tmp{k} = ft_denoise_pca(tmpcfg, varargin{:});
[dum, tmp{k}] = rollback_provenance(tmpcfg, tmp{k});
end
data = ft_appenddata([], tmp{:});
[cfg, data] = rollback_provenance(cfg, data);
else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute it for the data concatenated over all trials
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
computeweights = ~isfield(cfg, 'pca');
if length(varargin)==1,
% channel data and reference channel data are in 1 data structure
data = varargin{1};
megchan = ft_channelselection(cfg.channel, data.label);
refchan = ft_channelselection(cfg.refchannel, data.label);
% split data into data and refdata
tmpcfg = [];
tmpcfg.channel = refchan;
tmpcfg.feedback = cfg.feedback;
refdata = ft_preprocessing(tmpcfg, data);
tmpcfg.channel = megchan;
data = ft_preprocessing(tmpcfg, data);
else
% channel data and reference channel data are in 2 data structures
data = varargin{1};
refdata = varargin{2};
megchan = ft_channelselection(cfg.channel, data.label);
refchan = ft_channelselection(cfg.refchannel, refdata.label);
% split data into data and refdata
tmpcfg = [];
tmpcfg.channel = refchan;
tmpcfg.feedback = cfg.feedback;
refdata = ft_preprocessing(tmpcfg, refdata);
tmpcfg.channel = megchan;
data = ft_preprocessing(tmpcfg, data);
% FIXME do compatibility check on data vs refdata with respect to dimensions (time-trials)
end
% select trials of interest
tmpcfg = keepfields(cfg, 'trials');
data = ft_selectdata(tmpcfg, data);
refdata = ft_selectdata(tmpcfg, refdata);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
[dum, refdata] = rollback_provenance(cfg, refdata);
refchan = ft_channelselection(cfg.refchannel, refdata.label);
refindx = match_str(refdata.label, refchan);
megchan = ft_channelselection(cfg.channel, data.label);
megindx = match_str(data.label, megchan);
nref = length(refindx);
ntrl = length(data.trial);
if ischar(cfg.truncate) && strcmp(cfg.truncate, 'no')
cfg.truncate = length(refindx);
elseif ischar(cfg.truncate) || (cfg.truncate>1 && cfg.truncate/round(cfg.truncate)~=1) || cfg.truncate>length(refindx)
error('cfg.truncate should be either ''no'', an integer number <= the number of references, or a number between 0 and 1');
% FIXME the default truncation applied by 4D is 1x10^-8
end
% compute and remove mean from data
fprintf('removing the mean from the channel data and reference channel data\n');
m = cellmean(data.trial, 2);
data.trial = cellvecadd(data.trial, -m);
m = cellmean(refdata.trial, 2);
refdata.trial = cellvecadd(refdata.trial, -m);
% compute std of data before the regression
stdpre = cellstd(data.trial, 2);
if computeweights,
% zscore
if strcmp(cfg.zscore, 'yes'),
fprintf('zscoring the reference channel data\n');
[refdata.trial, sdref] = cellzscore(refdata.trial, 2, 0); %forced demeaned already
else
sdref = ones(nref, 1);
end
% compute covariance of refchannels and do svd
fprintf('performing pca on the reference channel data\n');
crefdat = cellcov(refdata.trial, [], 2, 0);
[u,s,v] = svd(crefdat);
% determine the truncation and rotation
if cfg.truncate<1
% keep all singular vectors with singular values >= cfg.truncate*s(1,1)
s1 = s./max(s(:));
keep = find(diag(s1)>cfg.truncate);
else
keep = 1:cfg.truncate;
end
fprintf('keeping %d out of %d components\n',numel(keep),size(u,2));
rotmat = u(:, keep)';
% rotate the refdata
fprintf('projecting the reference data onto the pca-subspace\n');
refdata.trial = cellfun(@mtimes, repmat({rotmat}, 1, ntrl), refdata.trial, 'UniformOutput', 0);
% project megdata onto the orthogonal basis
fprintf('computing the regression weights\n');
nom = cellcov(data.trial, refdata.trial, 2, 0);
denom = cellcov(refdata.trial, [], 2, 0);
rw = (pinv(denom)*nom')';
% subtract projected data
fprintf('subtracting the reference channel data from the channel data\n');
for k = 1:ntrl
data.trial{k} = data.trial{k} - rw*refdata.trial{k};
end
% rotate back and 'unscale'
pca.w = rw*rotmat*diag(1./sdref);
pca.label = data.label;
pca.reflabel = refdata.label;
pca.rotmat = rotmat;
cfg.pca = pca;
else
fprintf('applying precomputed weights to the data\n');
% check whether the weight table contains the specified references
% ensure the ordering of the meg-data to be consistent with the weights
% ensure the ordering of the ref-data to be consistent with the weights
[i1,i2] = match_str(refchan, cfg.pca.reflabel);
[i3,i4] = match_str(megchan, cfg.pca.label);
if length(i2)~=length(cfg.pca.reflabel),
error('you specified fewer references to use as there are in the precomputed weight table');
end
refindx = refindx(i1);
megindx = megindx(i3);
cfg.pca.w = cfg.pca.w(i4,i2);
cfg.pca.label = cfg.pca.label(i4);
cfg.pca.reflabel= cfg.pca.reflabel(i2);
if isfield(cfg.pca, 'rotmat'),
cfg.pca = rmfield(cfg.pca, 'rotmat'); % dont know
end
for k = 1:ntrl
data.trial{k} = data.trial{k} - cfg.pca.w*refdata.trial{k};
end
pca = cfg.pca;
end
% compute std of data after
stdpst = cellstd(data.trial, 2);
% demean FIXME is this needed
m = cellmean(data.trial, 2);
data.trial = cellvecadd(data.trial, -m);
% apply weights to the gradiometer-array
if isfield(data, 'grad')
fprintf('applying the weights to the gradiometer balancing matrix\n');
montage = [];
labelnew = pca.label;
nlabelnew = length(labelnew);
% add columns of refchannels not yet present in labelnew
% [id, i1] = setdiff(pca.reflabel, labelnew);
% labelorg = [labelnew; pca.reflabel(sort(i1))];
labelorg = data.grad.label;
nlabelorg = length(labelorg);
% start with identity
montage.tra = eye(nlabelorg);
% subtract weights
[i1, i2] = match_str(labelorg, pca.reflabel);
[i3, i4] = match_str(labelorg, pca.label);
montage.tra(i3,i1) = montage.tra(i3,i1) - pca.w(i4,i2);
montage.labelorg = labelorg;
montage.labelnew = labelorg;
data.grad = ft_apply_montage(data.grad, montage, 'keepunused', 'yes', 'balancename', 'pca');
% order the fields
fnames = fieldnames(data.grad.balance);
tmp = false(1,numel(fnames));
for k = 1:numel(fnames)
tmp(k) = isstruct(data.grad.balance.(fnames{k}));
end
[tmp, ix] = sort(tmp,'descend');
data.grad.balance = orderfields(data.grad.balance, fnames(ix));
else
warning('fieldtrip:ft_denoise_pca:WeightsNotAppliedToSensors', 'weights have been applied to the data only, not to the sensors');
end
end % if pertrial
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%
%-----cellcov
function [c] = cellcov(x, y, dim, flag)
% [C] = CELLCOV(X, DIM) computes the covariance, across all cells in x along
% the dimension dim. When there are three inputs, covariance is computed between
% all cells in x and y
%
% X (and Y) should be linear cell-array(s) of matrices for which the size in at
% least one of the dimensions should be the same for all cells
if nargin==2,
flag = 1;
dim = y;
y = [];
elseif nargin==3,
flag = 1;
end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if nargin==1,
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute covariance for');
end
end
if flag,
mx = cellmean(x, 2);
x = cellvecadd(x, -mx);
if ~isempty(y),
my = cellmean(y, 2);
y = cellvecadd(y, -my);
end
end
nx = max(nx);
nsmp = cellfun('size', x, dim);
if isempty(y),
csmp = cellfun(@covc, x, repmat({dim},1,nx), 'UniformOutput', 0);
else
csmp = cellfun(@covc, x, y, repmat({dim},1,nx), 'UniformOutput', 0);
end
nc = size(csmp{1});
c = sum(reshape(cell2mat(csmp), [nc(1) nc(2) nx]), 3)./sum(nsmp);
function [c] = covc(x, y, dim)
if nargin==2,
dim = y;
y = x;
end
if dim==1,
c = x'*y;
elseif dim==2,
c = x*y';
end
%-----cellmean
function [m] = cellmean(x, dim)
% [M] = CELLMEAN(X, DIM) computes the mean, across all cells in x along
% the dimension dim.
%
% X should be an linear cell-array of matrices for which the size in at
% least one of the dimensions should be the same for all cells
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if nargin==1,
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute mean for');
end
end
nx = max(nx);
nsmp = cellfun('size', x, dim);
ssmp = cellfun(@sum, x, repmat({dim},1,nx), 'UniformOutput', 0);
m = sum(cell2mat(ssmp), dim)./sum(nsmp);
%-----cellstd
function [sd] = cellstd(x, dim, flag)
% [M] = CELLSTD(X, DIM, FLAG) computes the standard deviation, across all cells in x along
% the dimension dim, normalising by the total number of samples
%
% X should be an linear cell-array of matrices for which the size in at
% least one of the dimensions should be the same for all cells. If flag==1, the mean will
% be subtracted first (default behaviour, but to save time on already demeaned data, it
% can be set to 0).
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellstd');
end
if nargin<2,
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute mean for');
end
elseif nargin==2,
flag = 1;
end
if flag,
m = cellmean(x, dim);
x = cellvecadd(x, -m);
end
nx = max(nx);
nsmp = cellfun('size', x, dim);
ssmp = cellfun(@sumsq, x, repmat({dim},1,nx), 'UniformOutput', 0);
sd = sqrt(sum(cell2mat(ssmp), dim)./sum(nsmp));
function [s] = sumsq(x, dim)
s = sum(x.^2, dim);
%-----cellvecadd
function [y] = cellvecadd(x, v)
% [Y]= CELLVECADD(X, V) - add vector to all rows or columns of each matrix
% in cell-array X
% check once and for all to save time
persistent bsxfun_exists;
if isempty(bsxfun_exists);
bsxfun_exists=exist('bsxfun','builtin');
if ~bsxfun_exists;
error('bsxfun not found.');
end
end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if ~iscell(v),
v = repmat({v}, nx);
end
y = cellfun(@bsxfun, repmat({@plus}, nx), x, v, 'UniformOutput', 0);
%-----cellvecmult
function [y] = cellvecmult(x, v)
% [Y]= CELLVECMULT(X, V) - multiply vectors in cell-array V
% to all rows or columns of each matrix in cell-array X
% V can be a vector or a cell-array of vectors
% check once and for all to save time
persistent bsxfun_exists;
if isempty(bsxfun_exists);
bsxfun_exists=exist('bsxfun','builtin');
if ~bsxfun_exists;
error('bsxfun not found.');
end
end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if ~iscell(v),
v = repmat({v}, nx);
end
sx1 = cellfun('size', x, 1);
sx2 = cellfun('size', x, 2);
sv1 = cellfun('size', v, 1);
sv2 = cellfun('size', v, 2);
if all(sx1==sv1) && all(sv2==1),
elseif all(sx2==sv2) && all(sv1==1),
elseif all(sv1==1) && all(sv2==1),
else error('inconsistent input');
end
y = cellfun(@bsxfun, repmat({@times}, nx), x, v, 'UniformOutput', 0);
%-----cellzscore
function [z, sd, m] = cellzscore(x, dim, flag)
% [Z, SD] = CELLZSCORE(X, DIM, FLAG) computes the zscore, across all cells in x along
% the dimension dim, normalising by the total number of samples
%
% X should be an linear cell-array of matrices for which the size in at
% least one of the dimensions should be the same for all cells. If flag==1, the mean will
% be subtracted first (default behaviour, but to save time on already demeaned data, it
% can be set to 0). SD is a vector containing the standard deviations, used for the normalisation.
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellstd');
end
if nargin<2,
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute mean for');
end
elseif nargin==2,
flag = 1;
end
if flag,
m = cellmean(x, dim);
x = cellvecadd(x, -m);
end
sd = cellstd(x, dim, 0);
z = cellvecmult(x, 1./sd);
|
github
|
lcnbeapp/beapp-master
|
ft_sensorrealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sensorrealign.m
| 35,660 |
utf_8
|
72c147097c88c1c750a4b90386ece4b4
|
function [elec_realigned] = ft_sensorrealign(cfg, elec_original)
% FT_SENSORREALIGN rotates and translates electrode and gradiometer
% sensor positions to template electrode positions or towards the head
% surface. It can either perform a rigid body transformation, in which only
% the coordinate system is changed, or it can apply additional deformations
% to the input sensors. Different methods for aligning the input electrodes
% to the subjects head are implemented, which are described in detail
% below.
%
% FIDUCIAL - You can apply a rigid body realignment based on three fiducial
% locations. After realigning, the fiducials in the input electrode set
% (typically nose, left and right ear) are along the same axes as the
% fiducials in the template electrode set.
%
% TEMPLATE - You can apply a spatial transformation/deformation that
% automatically minimizes the distance between the electrodes or
% gradiometers and a template or sensor array. The warping methods use a
% non-linear search to minimize the distance between the input sensor
% positions and the corresponding template sensors.
%
% INTERACTIVE - You can display the skin surface together with the
% electrode or gradiometer positions, and manually (using the graphical
% user interface) adjust the rotation, translation and scaling parameters,
% so that the electrodes correspond with the skin.
%
% MANUAL - You can display the skin surface and manually determine the
% electrode positions by clicking on the skin surface.
%
% HEADSHAPE - You can apply a spatial transformation/deformation that
% automatically minimizes the distance between the electrodes and the head
% surface. The warping methods use a non-linear search to minimize the
% distance between the input sensor positions and the projection of the
% electrodes on the head surface.
%
% Use as
% [sensor] = ft_sensorrealign(cfg) or
% [sensor] = ft_sensorrealign(cfg, sensor)
% where you specify the electrodes or gradiometers in the configuration
% structure (see below) or as the second input argument.
%
% The configuration can contain the following options
% cfg.method = string representing the method for aligning or placing the electrodes
% 'fiducial' realign using three fiducials (e.g. NAS, LPA and RPA)
% 'template' realign the sensors to match a template set
% 'interactive' realign manually using a graphical user interface
% 'manual' manual positioning of the electrodes by clicking in a graphical user interface
% 'headshape' realign the sensors to fit the head surface
% cfg.warp = string describing the spatial transformation for the template method
% 'rigidbody' apply a rigid-body warp (default)
% 'globalrescale' apply a rigid-body warp with global rescaling
% 'traditional' apply a rigid-body warp with individual axes rescaling
% 'nonlin1' apply a 1st order non-linear warp
% 'nonlin2' apply a 2nd order non-linear warp
% 'nonlin3' apply a 3rd order non-linear warp
% 'nonlin4' apply a 4th order non-linear warp
% 'nonlin5' apply a 5th order non-linear warp
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.fiducial = cell-array with the name of three fiducials used for
% realigning (default = {'nasion', 'lpa', 'rpa'})
% cfg.casesensitive = 'yes' or 'no', determines whether string comparisons
% between electrode labels are case sensitive (default = 'yes')
% cfg.feedback = 'yes' or 'no' (default = 'no')
%
% The EEG or MEG sensor positions can be present in the second input argument or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% To realign the sensors using the fiducials, the target has to contain the
% three template fiducials, e.g.
% cfg.target.pos(1,:) = [110 0 0] % location of the nose
% cfg.target.pos(2,:) = [0 90 0] % location of the left ear
% cfg.target.pos(3,:) = [0 -90 0] % location of the right ear
% cfg.target.label = {'NAS', 'LPA', 'RPA'}
%
% To align the sensors to a single template set or to multiple electrode
% sets (which will be averaged), you should specify the target as
% cfg.target = single electrode or gradiometer set that serves as standard
% or
% cfg.target(1..N) = list of electrode or gradiometer sets that are averaged into the standard
% The target electrode or gradiometer sets can be specified either as
% structures (i.e. when they are already read in memory) or as file names.
%
% To align existing electrodes to the head surface, or to manually position
% new electrodes using the head surface, you should specify
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
%
% See also FT_READ_SENS, FT_VOLUMEREALIGN, FT_INTERACTIVEREALIGN
% Copyright (C) 2005-2011, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% DEPRECATED by roboos on 11 November 2015
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1830
% support for this functionality can be removed mid 2016
warning('FT_SENSORREALIGN is deprecated, please use FT_ELECTRODEREALIGN instead.')
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance elec_original
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the interactive method uses a global variable to get the data from the figure when it is closed
global norm
% set the defaults
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'coordsys'), cfg.coordsys = []; end
if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end
if ~isfield(cfg, 'casesensitive'), cfg.casesensitive = 'yes'; end
if ~isfield(cfg, 'warp'), cfg.warp = 'rigidbody'; end
if ~isfield(cfg, 'label'), cfg.label = 'off'; end
cfg = ft_checkconfig(cfg, 'renamed', {'template', 'target'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducials', 'fiducial'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'});
cfg = ft_checkconfig(cfg, 'renamedval', {'warp', 'homogenous', 'rigidbody'});
cfg = ft_checkconfig(cfg, 'forbidden', 'outline');
if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config')
% convert the nested config-object back into a normal structure
cfg.headshape = struct(cfg.headshape);
end
if ~isempty(cfg.coordsys)
switch lower(cfg.coordsys)
case 'ctf'
cfg.target = [];
cfg.target.pos(1,:) = [100 0 0];
cfg.target.pos(2,:) = [0 80 0];
cfg.target.pos(3,:) = [0 -80 0];
cfg.target.label{1} = 'NAS';
cfg.target.label{2} = 'LPA';
cfg.target.label{3} = 'RPA';
otherwise
error('the %s coordinate system is not automatically supported, please specify the details in cfg.target')
end
end
% ensure that the right cfg options have been set corresponding to the method
switch cfg.method
case 'template' % realign the sensors to match a template set
cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape');
case 'headshape' % realign the sensors to fit the head surface
cfg = ft_checkconfig(cfg, 'required', 'headshape', 'forbidden', 'target');
case 'fiducial' % realign using the NAS, LPA and RPA fiducials
cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape');
case 'interactive' % realign manually using a graphical user interface
cfg = ft_checkconfig(cfg, 'required', 'headshape');
case 'manual' % manual positioning of the electrodes by clicking in a graphical user interface
cfg = ft_checkconfig(cfg, 'required', 'headshape', 'forbidden', 'target');
end % switch cfg.method
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
% get the electrode definition that should be warped
if ~hasdata
try % try to get the description from the cfg
elec_original = ft_fetch_sens(cfg);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
% start with an empty set of electrodes, this is useful for manual positioning
elec_original = [];
elec_original.pos = zeros(0,3);
elec_original.label = cell(0,1);
elec_original.unit = 'mm';
warning(me.message, me.identifier);
end
else
% the input electrodes were specified as second input argument
% or read from cfg.inputfile
end
% ensure that the units are specified
elec_original = ft_convert_units(elec_original);
elec_original = ft_datatype_sens(elec_original); % ensure up-to-date sensor description (Oct 2011)
% remember the original electrode locations and labels and do all the work
% with a temporary copy, this involves channel selection and changing to
% lower case
elec = elec_original;
if strcmp(cfg.method, 'fiducial') && isfield(elec, 'fid')
% instead of working with all sensors, only work with the fiducials
% this is useful for gradiometer structures
fprintf('using the fiducials instead of the sensor positions\n');
elec.fid.unit = elec.unit;
elec = elec.fid;
end
usetemplate = isfield(cfg, 'target') && ~isempty(cfg.target);
useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape);
if usetemplate
% get the template electrode definitions
if ~iscell(cfg.target)
cfg.target = {cfg.target};
end
Ntemplate = length(cfg.target);
for i=1:Ntemplate
if isstruct(cfg.target{i})
template(i) = cfg.target{i};
else
template(i) = ft_read_sens(cfg.target{i});
end
end
clear tmp
for i=1:Ntemplate
tmp(i) = ft_datatype_sens(template(i)); % ensure up-to-date sensor description
tmp(i) = ft_convert_units(template(i), elec.unit); % ensure that the units are consistent with the electrodes
end
template = tmp;
end
if useheadshape
% get the surface describing the head shape
if isstruct(cfg.headshape)
% use the headshape surface specified in the configuration
headshape = fixpos(cfg.headshape);
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
headshape.pos = unique(headshape.pos, 'rows');
headshape.tri = projecttri(headshape.pos);
end
headshape = ft_convert_units(headshape, elec.unit); % ensure that the units are consistent with the electrodes
end
% convert all labels to lower case for string comparisons
% this has to be done AFTER keeping the original labels and positions
if strcmp(cfg.casesensitive, 'no')
for i=1:length(elec.label)
elec.label{i} = lower(elec.label{i});
end
for j=1:length(template)
for i=1:length(template(j).label)
template(j).label{i} = lower(template(j).label{i});
end
end
end
if strcmp(cfg.feedback, 'yes')
% create an empty figure, continued below...
figure
axis equal
axis vis3d
hold on
xlabel('x')
ylabel('y')
zlabel('z')
end
% start with an empty structure, this will be returned at the end
norm = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(cfg.method, 'template')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = ft_channelselection(cfg.channel, elec.label);
for i=1:Ntemplate
cfg.channel = ft_channelselection(cfg.channel, template(i).label);
end
% make consistent subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.chanpos = elec.chanpos(datsel,:);
for i=1:Ntemplate
[cfgsel, datsel] = match_str(cfg.channel, template(i).label);
template(i).label = template(i).label(datsel);
template(i).pos = template(i).pos(datsel,:);
end
% compute the average of the template electrode positions
average = ft_average_sens(template);
fprintf('warping electrodes to average template... '); % the newline comes later
[norm.chanpos, norm.m] = ft_warp_optim(elec.chanpos, average.chanpos, cfg.warp);
norm.label = elec.label;
dpre = mean(sqrt(sum((average.chanpos - elec.chanpos).^2, 2)));
dpost = mean(sqrt(sum((average.chanpos - norm.chanpos).^2, 2)));
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% plot all electrodes before warping
ft_plot_sens(elec, 'r*');
% plot all electrodes after warping
ft_plot_sens(norm, 'm.', 'label', 'label');
% plot the template electrode locations
ft_plot_sens(average, 'b.');
% plot lines connecting the input and the realigned electrode locations with the template locations
my_line3(elec.chanpos, average.chanpos, 'color', 'r');
my_line3(norm.chanpos, average.chanpos, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'headshape')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = ft_channelselection(cfg.channel, elec.label);
% make subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.chanpos = elec.chanpos(datsel,:);
fprintf('warping electrodes to skin surface... '); % the newline comes later
[norm.chanpos, norm.m] = ft_warp_optim(elec.chanpos, headshape, cfg.warp);
norm.label = elec.label;
dpre = ft_warp_error([], elec.chanpos, headshape, cfg.warp);
dpost = ft_warp_error(norm.m, elec.chanpos, headshape, cfg.warp);
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'fiducial')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the fiducials have to be present in the electrodes and in the template set
label = intersect(lower(elec.label), lower(template.label));
if ~isfield(cfg, 'fiducial') || isempty(cfg.fiducial)
% try to determine the names of the fiducials automatically
option1 = {'nasion' 'left' 'right'};
option2 = {'nasion' 'lpa' 'rpa'};
option3 = {'nz' 'left' 'right'};
option4 = {'nz' 'lpa' 'rpa'};
option5 = {'nas' 'left' 'right'};
option6 = {'nas' 'lpa' 'rpa'};
if length(match_str(label, option1))==3
cfg.fiducial = option1;
elseif length(match_str(label, option2))==3
cfg.fiducial = option2;
elseif length(match_str(label, option3))==3
cfg.fiducial = option3;
elseif length(match_str(label, option4))==3
cfg.fiducial = option4;
elseif length(match_str(label, option5))==3
cfg.fiducial = option5;
elseif length(match_str(label, option6))==3
cfg.fiducial = option6;
else
error('could not determine consistent fiducials in the input and the target, please specify cfg.fiducial or cfg.coordsys')
end
end
fprintf('matching fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3});
% determine electrode selection
cfg.channel = ft_channelselection(cfg.channel, elec.label);
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.chanpos = elec.chanpos(datsel,:);
if length(cfg.fiducial)~=3
error('you must specify three fiducials');
end
% do case-insensitive search for fiducial locations
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error('not all fiducials were found in the electrode set');
end
elec_nas = elec.chanpos(nas_indx,:);
elec_lpa = elec.chanpos(lpa_indx,:);
elec_rpa = elec.chanpos(rpa_indx,:);
% FIXME change the flow in the remainder
% if one or more template electrode sets are specified, then align to the average of those
% if no template is specified, then align so that the fiducials are along the axis
% find the matching fiducials in the template and average them
templ_nas = nan(Ntemplate,3);
templ_lpa = nan(Ntemplate,3);
templ_rpa = nan(Ntemplate,3);
for i=1:Ntemplate
nas_indx = match_str(lower(template(i).label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error(sprintf('not all fiducials were found in template %d', i));
end
templ_nas(i,:) = template(i).pos(nas_indx,:);
templ_lpa(i,:) = template(i).pos(lpa_indx,:);
templ_rpa(i,:) = template(i).pos(rpa_indx,:);
end
templ_nas = mean(templ_nas,1);
templ_lpa = mean(templ_lpa,1);
templ_rpa = mean(templ_rpa,1);
% realign both to a common coordinate system
elec2common = ft_headcoordinates(elec_nas, elec_lpa, elec_rpa);
templ2common = ft_headcoordinates(templ_nas, templ_lpa, templ_rpa);
% compute the combined transform and realign the electrodes to the template
norm = [];
norm.m = elec2common * inv(templ2common);
norm.chanpos = ft_warp_apply(norm.m, elec.chanpos, 'homogeneous');
norm.label = elec.label;
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
dpre = mean(sqrt(sum((elec.chanpos([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2)));
nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3}));
dpost = mean(sqrt(sum((norm.chanpos([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2)));
fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% plot the first three electrodes before transformation
my_plot3(elec.chanpos(1,:), 'r*');
my_plot3(elec.chanpos(2,:), 'r*');
my_plot3(elec.chanpos(3,:), 'r*');
my_text3(elec.chanpos(1,:), elec.label{1}, 'color', 'r');
my_text3(elec.chanpos(2,:), elec.label{2}, 'color', 'r');
my_text3(elec.chanpos(3,:), elec.label{3}, 'color', 'r');
% plot the template fiducials
my_plot3(templ_nas, 'b*');
my_plot3(templ_lpa, 'b*');
my_plot3(templ_rpa, 'b*');
my_text3(templ_nas, ' nas', 'color', 'b');
my_text3(templ_lpa, ' lpa', 'color', 'b');
my_text3(templ_rpa, ' rpa', 'color', 'b');
% plot all electrodes after transformation
my_plot3(norm.chanpos, 'm.');
my_plot3(norm.chanpos(1,:), 'm*');
my_plot3(norm.chanpos(2,:), 'm*');
my_plot3(norm.chanpos(3,:), 'm*');
my_text3(norm.chanpos(1,:), norm.label{1}, 'color', 'm');
my_text3(norm.chanpos(2,:), norm.label{2}, 'color', 'm');
my_text3(norm.chanpos(3,:), norm.label{3}, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'interactive')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% give the user instructions
disp('Use the mouse to rotate the head and the electrodes around, and click "redisplay"');
disp('Close the figure when you are done');
% open a figure
fig = figure;
% add the data to the figure
set(fig, 'CloseRequestFcn', @cb_close);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', eye(4));
if useheadshape
setappdata(fig, 'headshape', headshape);
end
if usetemplate
% FIXME interactive realigning to template electrodes is not yet supported
% this requires a consistent handling of channel selection etc.
setappdata(fig, 'template', template);
end
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
rotate3d on
waitfor(fig);
% get the data from the figure that was left behind as global variable
tmp = norm;
clear global norm
norm = tmp;
clear tmp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'manual')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% give the user instructions
disp('Use the mouse to click on the desired electrode positions');
disp('Afterwards you manually have to assign the electrode names to "elec.label"');
disp('Close the figure or press "q" when you are done');
% open a figure
figure;
% plot the faces of the 2D or 3D triangulation
skin = [255 213 119]/255;
ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',0.7);
lighting gouraud
material shiny
camlight
% rotate3d on
xyz = ft_select_point3d(headshape, 'multiple', true);
norm.chanpos = xyz;
for i=1:size(norm.chanpos,1)
norm.label{i,1} = sprintf('%d', i);
end
else
error('unknown method');
end
% apply the spatial transformation to all electrodes, and replace the
% electrode labels by their case-sensitive original values
switch cfg.method
case {'template', 'headshape'}
try
% convert the vector with fitted parameters into a 4x4 homogenous transformation
% apply the transformation to the original complete set of sensors
elec_realigned = ft_transform_sens(feval(cfg.warp, norm.m), elec_original);
catch
% the previous section will fail for nonlinear transformations
elec_realigned.label = elec_original.label;
elec_realigned.chanpos = ft_warp_apply(norm.m, elec_original.chanpos, cfg.warp);
end
% remember the transformation
elec_realigned.(cfg.warp) = norm.m;
case {'fiducial', 'interactive'}
% the transformation is a 4x4 homogenous matrix
homogenous = norm.m;
% apply the transformation to the original complete set of sensors
elec_realigned = ft_transform_sens(homogenous, elec_original);
% remember the transformation
elec_realigned.homogenous = norm.m;
case 'manual'
% the positions are already assigned in correspondence with the mesh
elec_realigned = norm;
otherwise
error('unknown method');
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous elec_original
ft_postamble provenance elec_realigned
ft_postamble history elec_realigned
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% some simple SUBFUNCTIONs that facilitate 3D plotting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = my_plot3(xyz, varargin)
h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function h = my_text3(xyz, varargin)
h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function my_line3(xyzB, xyzE, varargin)
for i=1:size(xyzB,1)
line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:})
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(hObject, eventdata, handles)
% % define the position of each GUI element
fig = get(hObject, 'parent');
% constants
CONTROL_WIDTH = 0.05;
CONTROL_HEIGHT = 0.06;
CONTROL_HOFFSET = 0.7;
CONTROL_VOFFSET = 0.5;
% rotateui
uicontrol('tag', 'rotateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'rotate', 'callback', [])
uicontrol('tag', 'rx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ry', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'rz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'rotateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'rx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'ry', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'rz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
% scaleui
uicontrol('tag', 'scaleui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'scale', 'callback', [])
uicontrol('tag', 'sx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sy', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'scaleui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sy', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
% translateui
uicontrol('tag', 'translateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'translate', 'callback', [])
uicontrol('tag', 'tx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ty', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'tz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'translateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'ty', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
% control buttons
uicontrol('tag', 'redisplaybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'redisplay', 'value', [], 'callback', @cb_redraw);
uicontrol('tag', 'applybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'apply', 'value', [], 'callback', @cb_apply);
uicontrol('tag', 'toggle labels', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle label', 'value', 0, 'callback', @cb_redraw);
uicontrol('tag', 'toggle axes', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle axes', 'value', 0, 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'redisplaybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-3*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'applybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle labels', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle axes', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
% alpha ui (somehow not implemented, facealpha is fixed at 0.7
uicontrol('tag', 'alphaui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'alpha', 'value', [], 'callback', []);
uicontrol('tag', 'alpha', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0.7', 'value', [], 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'alphaui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-7*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'alpha', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-7*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(hObject, eventdata, handles)
fig = get(hObject, 'parent');
headshape = getappdata(fig, 'headshape');
elec = getappdata(fig, 'elec');
template = getappdata(fig, 'template');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec = ft_transform_sens(H, elec);
axis vis3d; cla
xlabel('x')
ylabel('y')
zlabel('z')
if ~isempty(template)
disp('Plotting the template electrodes in blue');
if size(template.chanpos, 2)==2
hs = plot(template.chanpos(:,1), template.chanpos(:,2), 'b.', 'MarkerSize', 20);
else
hs = plot3(template.chanpos(:,1), template.chanpos(:,2), template.chanpos(:,3), 'b.', 'MarkerSize', 20);
end
end
if ~isempty(headshape)
% plot the faces of the 2D or 3D triangulation
skin = [255 213 119]/255;
ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',0.7);
lighting gouraud
material shiny
camlight
end
if isfield(elec, 'fid') && ~isempty(elec.fid.pos)
disp('Plotting the fiducials in red');
ft_plot_sens(elec.fid,'style', 'r*');
end
if get(findobj(fig, 'tag', 'toggle axes'), 'value')
axis on
grid on
else
axis off
grid on
end
hold on
if get(findobj(fig, 'tag', 'toggle labels'), 'value')
ft_plot_sens(elec,'label', 'on');
else
ft_plot_sens(elec,'label', 'off');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_apply(hObject, eventdata, handles)
fig = get(hObject, 'parent');
elec = getappdata(fig, 'elec');
transform = getappdata(fig, 'transform');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec = ft_transform_headshape(H, elec);
transform = H * transform;
set(findobj(fig, 'tag', 'rx'), 'string', 0);
set(findobj(fig, 'tag', 'ry'), 'string', 0);
set(findobj(fig, 'tag', 'rz'), 'string', 0);
set(findobj(fig, 'tag', 'tx'), 'string', 0);
set(findobj(fig, 'tag', 'ty'), 'string', 0);
set(findobj(fig, 'tag', 'tz'), 'string', 0);
set(findobj(fig, 'tag', 'sx'), 'string', 1);
set(findobj(fig, 'tag', 'sy'), 'string', 1);
set(findobj(fig, 'tag', 'sz'), 'string', 1);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', transform);
cb_redraw(hObject);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_close(hObject, eventdata, handles)
% make the current transformation permanent and subsequently allow deleting the figure
cb_apply(gca);
% get the updated electrode from the figure
fig = hObject;
% hmmm, this is ugly
global norm
norm = getappdata(fig, 'elec');
norm.m = getappdata(fig, 'transform');
set(fig, 'CloseRequestFcn', @delete);
delete(fig);
|
github
|
lcnbeapp/beapp-master
|
ft_databrowser.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_databrowser.m
| 95,614 |
utf_8
|
24d0f781128b15ffc93ac40b8f45feff
|
function [cfg] = ft_databrowser(cfg, data)
% FT_DATABROWSER can be used for visual inspection of data. Artifacts that were
% detected by artifact functions (see FT_ARTIFACT_xxx functions where xxx is the type
% of artifact) are marked. Additionally data pieces can be marked and unmarked as
% artifact by manual selection. The output cfg contains the updated specification of
% the artifacts.
%
% Use as
% cfg = ft_databrowser(cfg)
% cfg = ft_databrowser(cfg, data)
% If you only specify the configuration structure, it should contain the name of the
% dataset on your hard disk (see below). If you specify input data, it should be a
% data structure as obtained from FT_PREPROCESSING or from FT_COMPONENTANALYSIS.
%
% If you want to browse data that is on disk, you have to specify
% cfg.dataset = string with the filename
% Instead of specifying the dataset, you can also explicitely specify the name of the
% file containing the header information and the name of the file containing the
% data, using
% cfg.datafile = string with the filename
% cfg.headerfile = string with the filename
%
% The following configuration options are supported:
% cfg.ylim = vertical scaling, can be 'maxmin', 'maxabs' or [ymin ymax] (default = 'maxabs')
% cfg.zlim = color scaling to apply to component topographies, 'minmax', 'maxabs' (default = 'maxmin')
% cfg.blocksize = duration in seconds for cutting the data up
% cfg.trl = structure that defines the data segments of interest, only applicable for trial-based data
% cfg.continuous = 'yes' or 'no' whether the data should be interpreted as continuous or trial-based
% cfg.channel = cell-array with channel labels, see FT_CHANNELSELECTION
% cfg.plotlabels = 'yes' (default), 'no', 'some'; whether to plot channel labels in vertical
% viewmode ('some' plots one in every ten labels; useful when plotting a
% large number of channels at a time)
% cfg.ploteventlabels = 'type=value', 'colorvalue' (default = 'type=value');
% cfg.plotevents = 'no' or 'yes', whether to plot event markers. (default is 'yes')
% cfg.viewmode = string, 'butterfly', 'vertical', 'component' for visualizing components e.g. from an ICA (default is 'butterfly')
% cfg.artfctdef.xxx.artifact = Nx2 matrix with artifact segments see FT_ARTIFACT_xxx functions
% cfg.selectfeature = string, name of feature to be selected/added (default = 'visual')
% cfg.selectmode = 'markartifact', 'markpeakevent', 'marktroughevent' (default = 'markartifact')
% cfg.colorgroups = 'sequential' 'allblack' 'labelcharx' (x = xth character in label), 'chantype' or
% vector with length(data/hdr.label) defining groups (default = 'sequential')
% cfg.channelcolormap = COLORMAP (default = customized lines map with 15 colors)
% cfg.verticalpadding = number or 'auto', padding to be added to top and bottom of plot to avoid channels largely dissappearing when viewmode = 'vertical'/'component' (default = 'auto')
% padding is expressed as a proportion of the total height added to the top, and bottom) ('auto' adds padding depending on the number of channels being plotted)
% cfg.selfun = string, name of function which is evaluated using the right-click context menu
% The selected data and cfg.selcfg are passed on to this function.
% cfg.selcfg = configuration options for function in cfg.selfun
% cfg.seldat = 'selected' or 'all', specifies whether only the currently selected or all channels
% will be passed to the selfun (default = 'selected')
% cfg.renderer = string, 'opengl', 'zbuffer', 'painters', see MATLAB Figure Properties.
% If the databrowser crashes, set to 'painters'.
%
% The following options for the scaling of the EEG, EOG, ECG, EMG and MEG channels is
% optional and can be used to bring the absolute numbers of the different channel
% types in the same range (e.g. fT and uV). The channel types are determined from the
% input data using FT_CHANNELSELECTION.
% cfg.eegscale = number, scaling to apply to the EEG channels prior to display
% cfg.eogscale = number, scaling to apply to the EOG channels prior to display
% cfg.ecgscale = number, scaling to apply to the ECG channels prior to display
% cfg.emgscale = number, scaling to apply to the EMG channels prior to display
% cfg.megscale = number, scaling to apply to the MEG channels prior to display
% cfg.gradscale = number, scaling to apply to the MEG gradiometer channels prior to display (in addition to the cfg.megscale factor)
% cfg.magscale = number, scaling to apply to the MEG magnetometer channels prior to display (in addition to the cfg.megscale factor)
% cfg.mychanscale = number, scaling to apply to the channels specified in cfg.mychan
% cfg.mychan = Nx1 cell-array with selection of channels
% cfg.chanscale = Nx1 vector with scaling factors, one per channel specified in cfg.channel
% cfg.compscale = string, 'global' or 'local', defines whether the colormap for the topographic scaling is
% applied per topography or on all visualized components (default 'global')
%
% You can specify preprocessing options that are to be applied to the data prior to
% display. Most options from FT_PREPROCESSING are supported. They should be specified
% in the sub-structure cfg.preproc like these examples
% cfg.preproc.lpfilter = 'no' or 'yes' lowpass filter (default = 'no')
% cfg.preproc.lpfreq = lowpass frequency in Hz
% cfg.preproc.demean = 'no' or 'yes', whether to apply baseline correction (default = 'no')
% cfg.preproc.detrend = 'no' or 'yes', remove linear trend from the data (done per trial) (default = 'no')
% cfg.preproc.baselinewindow = [begin end] in seconds, the default is the complete trial (default = 'all')
%
% In case of component viewmode, a layout is required. If no layout is specified, an
% attempt is made to construct one from the sensor definition that is present in the
% data or specified in the configuration.
% cfg.layout = filename of the layout, see FT_PREPARE_LAYOUT
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% The default font size might be too small or too large, depending on the number of
% channels. You can use the following options to change the size of text inside the
% figure and along the axes.
% cfg.fontsize = number, fontsize inside the figure (default = 0.03)
% cfg.fontunits = string, can be 'normalized', 'points', 'pixels', 'inches' or 'centimeters' (default = 'normalized')
% cfg.axisfontsize = number, fontsize along the axes (default = 10)
% cfg.axisfontunits = string, can be 'normalized', 'points', 'pixels', 'inches' or 'centimeters' (default = 'points')
% cfg.linewidth = number, width of plotted lines (default = 0.5)
%
% When visually selection data, a right-click will bring up a context-menu containing
% functions to be executed on the selected data. You can use your own function using
% cfg.selfun and cfg.selcfg. You can use multiple functions by giving the names/cfgs
% as a cell-array.
%
% In butterfly and vertical mode, you can use the "identify" button to reveal the name of a
% channel. Please be aware that it searches only vertically. This means that it will
% return the channel with the amplitude closest to the point you have clicked at the
% specific time point. This might be counterintuitive at first.
%
% The "cfg.artifact" field in the output cfg is a Nx2 matrix comparable to the
% "cfg.trl" matrix of FT_DEFINETRIAL. The first column of which specifying the
% beginsamples of an artifact period, the second column contains the endsamples of
% the artifactperiods.
%
% Note for debugging: in case the databrowser crashes, use delete(gcf) to kill the
% figure.
%
% See also FT_PREPROCESSING, FT_REJECTARTIFACT, FT_ARTIFACT_EOG, FT_ARTIFACT_MUSCLE,
% FT_ARTIFACT_JUMP, FT_ARTIFACT_MANUAL, FT_ARTIFACT_THRESHOLD, FT_ARTIFACT_CLIP,
% FT_ARTIFACT_ECG, FT_COMPONENTANALYSIS
% Copyright (C) 2009-2015, Robert Oostenveld, Ingrid Nieuwenhuis
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% FIXME these should be removed or documented
% cfg.preproc
% cfg.channelcolormap
% cfg.colorgroups
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
hascomp = hasdata && ft_datatype(data, 'comp'); % can be 'raw+comp' or 'timelock+comp'
% for backward compatibility
cfg = ft_checkconfig(cfg, 'unused', {'comps', 'inputfile', 'outputfile'});
cfg = ft_checkconfig(cfg, 'renamed', {'zscale', 'ylim'});
cfg = ft_checkconfig(cfg, 'renamedval', {'ylim', 'auto', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'selectmode', 'mark', 'markartifact'});
% ensure that the preproc specific options are located in the cfg.preproc substructure
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'});
% set the defaults
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxabs');
cfg.artfctdef = ft_getopt(cfg, 'artfctdef', struct);
cfg.selectfeature = ft_getopt(cfg, 'selectfeature','visual'); % string or cell-array
cfg.selectmode = ft_getopt(cfg, 'selectmode', 'markartifact');
cfg.blocksize = ft_getopt(cfg, 'blocksize'); % now used for both continuous and non-continuous data, defaulting done below
cfg.preproc = ft_getopt(cfg, 'preproc'); % see preproc for options
cfg.selfun = ft_getopt(cfg, 'selfun'); % default functions: 'simpleFFT', 'multiplotER', 'topoplotER', 'topoplotVAR', 'movieplotER'
cfg.selcfg = ft_getopt(cfg, 'selcfg'); % defaulting done below, requires layouts/etc to be processed
cfg.seldat = ft_getopt(cfg, 'seldat', 'current');
cfg.colorgroups = ft_getopt(cfg, 'colorgroups', 'sequential');
cfg.channelcolormap = ft_getopt(cfg, 'channelcolormap', [0.75 0 0;0 0 1;0 1 0;0.44 0.19 0.63;0 0.13 0.38;0.5 0.5 0.5;1 0.75 0;1 0 0;0.89 0.42 0.04;0.85 0.59 0.58;0.57 0.82 0.31;0 0.69 0.94;1 0 0.4;0 0.69 0.31;0 0.44 0.75]);
cfg.eegscale = ft_getopt(cfg, 'eegscale');
cfg.eogscale = ft_getopt(cfg, 'eogscale');
cfg.ecgscale = ft_getopt(cfg, 'ecgscale');
cfg.emgscale = ft_getopt(cfg, 'emgscale');
cfg.megscale = ft_getopt(cfg, 'megscale');
cfg.magscale = ft_getopt(cfg, 'magscale');
cfg.gradscale = ft_getopt(cfg, 'gradscale');
cfg.chanscale = ft_getopt(cfg, 'chanscale');
cfg.mychanscale = ft_getopt(cfg, 'mychanscale');
cfg.layout = ft_getopt(cfg, 'layout');
cfg.plotlabels = ft_getopt(cfg, 'plotlabels', 'some');
cfg.event = ft_getopt(cfg, 'event'); % this only exists for backward compatibility and should not be documented
cfg.continuous = ft_getopt(cfg, 'continuous'); % the default is set further down in the code, conditional on the input data
cfg.ploteventlabels = ft_getopt(cfg, 'ploteventlabels', 'type=value');
cfg.plotevents = ft_getopt(cfg, 'plotevents', 'yes');
cfg.precision = ft_getopt(cfg, 'precision', 'double');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.compscale = ft_getopt(cfg, 'compscale', 'global');
cfg.renderer = ft_getopt(cfg, 'renderer');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 12);
cfg.fontunits = ft_getopt(cfg, 'fontunits', 'points'); % inches, centimeters, normalized, points, pixels
cfg.editfontsize = ft_getopt(cfg, 'editfontsize', 12);
cfg.editfontunits = ft_getopt(cfg, 'editfontunits', 'points'); % inches, centimeters, normalized, points, pixels
cfg.axisfontsize = ft_getopt(cfg, 'axisfontsize', 10);
cfg.axisfontunits = ft_getopt(cfg, 'axisfontunits', 'points'); % inches, centimeters, normalized, points, pixels
cfg.linewidth = ft_getopt(cfg, 'linewidth', 0.5);
cfg.verticalpadding = ft_getopt(cfg, 'verticalpadding', 'auto');
if ~isfield(cfg, 'viewmode')
% butterfly, vertical, component
if hascomp
cfg.viewmode = 'component';
else
cfg.viewmode = 'butterfly';
end
end
if ~isempty(cfg.chanscale)
if ~isfield(cfg, 'channel')
warning('ignoring cfg.chanscale; this should only be used when an explicit channel selection is being made');
cfg.chanscale = [];
elseif numel(cfg.channel) ~= numel(cfg.chanscale)
error('cfg.chanscale should have the same number of elements as cfg.channel');
end
% make sure chanscale is a column vector, not a row vector
if size(cfg.chanscale,2) > size(cfg.chanscale,1)
cfg.chanscale = cfg.chanscale';
end
end
if ~isempty(cfg.mychanscale) && ~isfield(cfg, 'mychan')
warning('ignoring cfg.mychanscale; no channels specified in cfg.mychan');
cfg.mychanscale = [];
end
if ~isfield(cfg, 'channel'),
if hascomp
if size(data.topo,2)>9
cfg.channel = 1:10;
else
cfg.channel = 1:size(data.topo,2);
end
else
cfg.channel = 'all';
end
end
if strcmp(cfg.viewmode, 'component')
% read or create the layout that will be used for the topoplots
if ~isempty(cfg.layout)
tmpcfg = [];
tmpcfg.layout = cfg.layout;
cfg.layout = ft_prepare_layout(tmpcfg);
else
warning('No layout specified - will try to construct one using sensor positions');
tmpcfg = [];
try, tmpcfg.elec = cfg.elec; end
try, tmpcfg.grad = cfg.grad; end
try, tmpcfg.elecfile = cfg.elecfile; end
try, tmpcfg.gradfile = cfg.gradfile; end
if hasdata
cfg.layout = ft_prepare_layout(tmpcfg, data);
else
cfg.layout = ft_prepare_layout(tmpcfg);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set the defaults and do some preparation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if hasdata
% save whether data came from a timelock structure
istimelock = strcmp(ft_datatype(data), 'timelock');
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes');
% fetch the header from the data structure in memory
hdr = ft_fetch_header(data);
if isfield(data, 'cfg') && ~isempty(ft_findcfg(data.cfg, 'origfs'))
% don't use the events in case the data has been resampled
warning('the data has been resampled, not showing the events');
event = [];
elseif isfield(data, 'cfg') && isfield(data.cfg, 'event')
% use the event structure from the data as per bug #2501
event = data.cfg.event;
elseif ~isempty(cfg.event)
% use the events that the user passed in the configuration
event = cfg.event;
else
% fetch the events from the data structure in memory
%event = ft_fetch_event(data);
event = [];
end
cfg.channel = ft_channelselection(cfg.channel, hdr.label);
chansel = match_str(data.label, cfg.channel);
Nchans = length(chansel);
if isempty(cfg.continuous)
if numel(data.trial) == 1 && ~istimelock
cfg.continuous = 'yes';
else
cfg.continuous = 'no';
end
else
if strcmp(cfg.continuous, 'yes') && (numel(data.trial) > 1)
warning('interpreting trial-based data as continous, time-axis is no longer appropriate. t(0) now corresponds to the first sample of the first trial, and t(end) to the last sample of the last trial')
end
end
% this is how the input data is segmented
trlorg = zeros(numel(data.trial), 3);
trlorg(:, [1 2]) = data.sampleinfo;
% recreate offset vector (databrowser depends on this for visualisation)
for ntrl = 1:numel(data.trial)
trlorg(ntrl,3) = time2offset(data.time{ntrl}, data.fsample);
end
Ntrials = size(trlorg, 1);
else
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes');
cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'});
cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'});
cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'});
% read the header from file
hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat);
if isempty(cfg.continuous)
if hdr.nTrials==1
cfg.continuous = 'yes';
else
cfg.continuous = 'no';
end
end
if ~isempty(cfg.event)
% use the events that the user passed in the configuration
event = cfg.event;
else
% read the events from file
event = ft_read_event(cfg.dataset);
end
cfg.channel = ft_channelselection(cfg.channel, hdr.label);
chansel = match_str(hdr.label, cfg.channel);
Nchans = length(chansel);
if strcmp(cfg.continuous, 'yes')
Ntrials = 1;
else
Ntrials = hdr.nTrials;
end
% FIXME in case of continuous=yes the trl should be [1 hdr.nSamples*nTrials 0]
% and a scrollbar should be used
% construct trl-matrix for data from file on disk
trlorg = zeros(Ntrials,3);
if strcmp(cfg.continuous, 'yes')
trlorg(1, [1 2]) = [1 hdr.nSamples*hdr.nTrials];
else
for k = 1:Ntrials
trlorg(k, [1 2]) = [1 hdr.nSamples] + [hdr.nSamples hdr.nSamples] .* (k-1);
end
end
end % if hasdata
if strcmp(cfg.continuous, 'no') && isempty(cfg.blocksize)
cfg.blocksize = (trlorg(1,2) - trlorg(1,1)+1) ./ hdr.Fs;
elseif strcmp(cfg.continuous, 'yes') && isempty(cfg.blocksize)
cfg.blocksize = 1;
end
% FIXME make a check for the consistency of cfg.continous, cfg.blocksize, cfg.trl and the data header
if Nchans == 0
error('no channels to display');
end
if Ntrials == 0
error('no trials to display');
end
if ischar(cfg.selectfeature)
% ensure that it is a cell array
cfg.selectfeature = {cfg.selectfeature};
end
if ~isempty(cfg.selectfeature)
for i=1:length(cfg.selectfeature)
if ~isfield(cfg.artfctdef, cfg.selectfeature{i})
cfg.artfctdef.(cfg.selectfeature{i}) = [];
cfg.artfctdef.(cfg.selectfeature{i}).artifact = zeros(0,2);
end
end
end
% determine the vertical scaling
if ischar(cfg.ylim)
if hasdata
% the first trial is used to determine the vertical scaling
dat = data.trial{1}(chansel,:);
else
% one second of data is read from file to determine the vertical scaling
dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', 1, 'endsample', round(hdr.Fs), 'chanindx', chansel, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat, 'headerformat', cfg.headerformat);
end % if hasdata
% convert the data to another numeric precision, i.e. double, single or int32
if ~isempty(cfg.precision)
dat = cast(dat, cfg.precision);
end
minval = min(dat(:));
maxval = max(dat(:));
switch cfg.ylim
case 'maxabs'
maxabs = max(abs([minval maxval]));
scalefac = 10^(fix(log10(maxabs)));
if scalefac==0
% this happens if the data is all zeros
scalefac=1;
end
maxabs = (round(maxabs / scalefac * 100) / 100) * scalefac;
cfg.ylim = [-maxabs maxabs];
case 'maxmin'
if minval==maxval
% this happens if the data is constant, e.g. all zero or clipping
minval = minval - eps;
maxval = maxval + eps;
end
cfg.ylim = [minval maxval];
otherwise
error('unsupported value for cfg.ylim');
end % switch ylim
% zoom in a bit when viemode is vertical
if strcmp(cfg.viewmode, 'vertical')
cfg.ylim = cfg.ylim/10;
end
else
if (numel(cfg.ylim) ~= 2) || ~isnumeric(cfg.ylim)
error('cfg.ylim needs to be a 1x2 vector [ymin ymax], describing the upper and lower limits')
end
end
% determine coloring of channels
if hasdata
labels_all = data.label;
else
labels_all= hdr.label;
end
if size(cfg.channelcolormap,2) ~= 3
error('cfg.channelcolormap is not valid, size should be Nx3')
end
if isnumeric(cfg.colorgroups)
% groups defined by user
if length(labels_all) ~= length(cfg.colorgroups)
error('length(cfg.colorgroups) should be length(data/hdr.label)')
end
R = cfg.channelcolormap(:,1);
G = cfg.channelcolormap(:,2);
B = cfg.channelcolormap(:,3);
chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))];
elseif strcmp(cfg.colorgroups, 'allblack')
chancolors = zeros(length(labels_all),3);
elseif strcmp(cfg.colorgroups, 'chantype')
type = ft_chantype(labels_all);
[tmp1 tmp2 cfg.colorgroups] = unique(type);
fprintf('%3d colorgroups were identified\n',length(tmp1))
R = cfg.channelcolormap(:,1);
G = cfg.channelcolormap(:,2);
B = cfg.channelcolormap(:,3);
chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))];
elseif strcmp(cfg.colorgroups(1:9), 'labelchar')
% groups determined by xth letter of label
labelchar_num = str2double(cfg.colorgroups(10));
vec_letters = num2str(zeros(length(labels_all),1));
for iChan = 1:length(labels_all)
vec_letters(iChan) = labels_all{iChan}(labelchar_num);
end
[tmp1 tmp2 cfg.colorgroups] = unique(vec_letters);
fprintf('%3d colorgroups were identified\n',length(tmp1))
R = cfg.channelcolormap(:,1);
G = cfg.channelcolormap(:,2);
B = cfg.channelcolormap(:,3);
chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))];
elseif strcmp(cfg.colorgroups, 'sequential')
% no grouping
chancolors = lines(length(labels_all));
else
error('do not understand cfg.colorgroups')
end
% collect the artifacts that have been detected from cfg.artfctdef.xxx.artifact
artlabel = fieldnames(cfg.artfctdef);
sel = zeros(size(artlabel));
artifact = cell(size(artlabel));
for i=1:length(artlabel)
sel(i) = isfield(cfg.artfctdef.(artlabel{i}), 'artifact');
if sel(i)
artifact{i} = cfg.artfctdef.(artlabel{i}).artifact;
fprintf('detected %3d %s artifacts\n', size(artifact{i}, 1), artlabel{i});
end
end
% get the subset of the artfctdef fields that seem to contain artifacts
artifact = artifact(sel==1);
artlabel = artlabel(sel==1);
if length(artlabel) > 9
error('only up to 9 artifacts groups supported')
end
% make artdata representing all artifacts in a "raw data" format
datendsample = max(trlorg(:,2));
artdata = [];
artdata.trial{1} = convert_event(artifact, 'boolvec', 'endsample', datendsample); % every artifact is a "channel"
artdata.time{1} = offset2time(0, hdr.Fs, datendsample);
artdata.label = artlabel;
artdata.fsample = hdr.Fs;
artdata.cfg.trl = [1 datendsample 0];
% determine amount of unique event types (for cfg.ploteventlabels)
if ~isempty(event) && isstruct(event)
eventtypes = unique({event.type});
else
eventtypes = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set up default functions to be available in the right-click menu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cfg.selfun - labels that are presented in rightclick menu, and is appended using ft_getuserfun(..., 'browse') later on to create a function handle
% cfg.selcfg - cfgs for functions to be executed
defselfun = {};
defselcfg = {};
% add defselfuns to user-specified defselfuns
if ~iscell(cfg.selfun) && ~isempty(cfg.selfun)
cfg.selfun = {cfg.selfun};
cfg.selfun = [cfg.selfun defselfun];
% do the same for the cfgs
cfg.selcfg = {cfg.selcfg}; % assume the cfg is not a cell-array
cfg.selcfg = [cfg.selcfg defselcfg];
else
% simplefft
defselcfg{1} = [];
defselcfg{1}.chancolors = chancolors;
defselfun{1} = 'simpleFFT';
% multiplotER
defselcfg{2} = [];
defselcfg{2}.layout = cfg.layout;
defselfun{2} = 'multiplotER';
% topoplotER
defselcfg{3} = [];
defselcfg{3}.layout = cfg.layout;
defselfun{3} = 'topoplotER';
% topoplotVAR
defselcfg{4} = [];
defselcfg{4}.layout = cfg.layout;
defselfun{4} = 'topoplotVAR';
% movieplotER
defselcfg{5} = [];
defselcfg{5}.layout = cfg.layout;
defselcfg{5}.interactive = 'yes';
defselfun{5} = 'movieplotER';
% audiovideo
defselcfg{6} = [];
defselcfg{6}.audiofile = ft_getopt(cfg, 'audiofile');
defselcfg{6}.videofile = ft_getopt(cfg, 'videofile');
defselcfg{6}.anonimize = ft_getopt(cfg, 'anonimize');
defselfun{6} = 'audiovideo';
cfg.selfun = defselfun;
cfg.selcfg = defselcfg;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set up the data structures used in the GUI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% opt represents the global data/settings, it should contain
% - the original data, epoched or continuous
% - the artifacts represented as continuous data
% - the redraw_cb settings
% - the preproc settings
% - the select_range_cb settings (also used in keyboard_cb)
% these elements are stored inside the figure so that the callback routines can modify them
opt = [];
if hasdata
opt.orgdata = data;
else
opt.orgdata = []; % this means that it will look in cfg.dataset
end
if strcmp(cfg.continuous, 'yes')
opt.trialviewtype = 'segment';
else
opt.trialviewtype = 'trial';
end
opt.artdata = artdata;
opt.hdr = hdr;
opt.event = event;
opt.trlop = 1; % the active trial being displayed
opt.ftsel = find(strcmp(artlabel,cfg.selectfeature)); % current artifact/feature being selected
opt.trlorg = trlorg;
opt.fsample = hdr.Fs;
opt.artcolors = [0.9686 0.7608 0.7686; 0.7529 0.7098 0.9647; 0.7373 0.9725 0.6824;0.8118 0.8118 0.8118; 0.9725 0.6745 0.4784; 0.9765 0.9176 0.5686; 0.6863 1 1; 1 0.6863 1; 0 1 0.6000];
opt.chancolors = chancolors;
opt.cleanup = false; % this is needed for a corrent handling if the figure is closed (either in the corner or by "q")
opt.chanindx = []; % this is used to check whether the component topographies need to be redrawn
opt.eventtypes = eventtypes;
opt.eventtypescolors = [0 0 0; 1 0 0; 0 0 1; 0 1 0; 1 0 1; 0.5 0.5 0.5; 0 1 1; 1 1 0];
opt.eventtypecolorlabels = {'black', 'red', 'blue', 'green', 'cyan', 'grey', 'light blue', 'yellow'};
opt.nanpaddata = []; % this is used to allow horizontal scaling to be constant (when looking at last segment continous data, or when looking at segmented/zoomed-out non-continous data)
opt.trllock = []; % this is used when zooming into trial based data
% save original layout when viewmode = component
if strcmp(cfg.viewmode, 'component')
opt.layorg = cfg.layout;
end
% determine labelling of channels
if strcmp(cfg.plotlabels, 'yes')
opt.plotLabelFlag = 1;
elseif strcmp(cfg.plotlabels, 'some')
opt.plotLabelFlag = 2;
else
opt.plotLabelFlag = 0;
end
% set changedchanflg as true for initialization
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
% create fig
h = figure;
% put appdata in figure
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
if ~isempty(cfg.renderer)
set(h, 'renderer', cfg.renderer);
end
% set interruptible to off, see bug 3123
set(h,'Interruptible','off','BusyAction', 'queue'); % enforce busyaction to queue to be sure
% enable custom data cursor text
dcm = datacursormode(h);
set(dcm, 'updatefcn', @datacursortext);
% set the figure window title
funcname = mfilename();
if ~hasdata
if isfield(cfg, 'dataset')
dataname = cfg.dataset;
elseif isfield(cfg, 'datafile')
dataname = cfg.datafile;
else
dataname = [];
end
elseif isfield(cfg, 'inputfile') && ~isempty(cfg.inputfile)
dataname = cfg.inputfile;
else
dataname = inputname(2);
end
set(gcf, 'Name', sprintf('%d: %s: %s', double(gcf), funcname, join_str(', ',dataname)));
set(gcf, 'NumberTitle', 'off');
% set zoom option to on
% zoom(h, 'on')
% set(zoom(h), 'actionPostCallback', @zoom_drawlabels_cb)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set up the figure and callbacks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
set(h, 'KeyPressFcn', @keyboard_cb);
set(h, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'contextmenu', cfg.selfun, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonDownFcn'});
set(h, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'contextmenu', cfg.selfun, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonUpFcn'});
set(h, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'contextmenu', cfg.selfun, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonMotionFcn'});
if any(strcmp(cfg.viewmode, {'component', 'vertical'}))
set(h, 'ReSizeFcn', @winresize_cb); % resize will now trigger redraw and replotting of labels
end
% make the user interface elements for the data view
uicontrol('tag', 'labels', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', opt.trialviewtype, 'userdata', 't')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'leftarrow')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'rightarrow')
if strcmp(cfg.viewmode, 'component')
uicontrol('tag', 'labels', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'component', 'userdata', 'c')
else
uicontrol('tag', 'labels', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'channel', 'userdata', 'c')
end
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'uparrow')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'downarrow')
uicontrol('tag', 'labels', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'horizontal', 'userdata', 'h')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+leftarrow')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+rightarrow')
uicontrol('tag', 'labels', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'vertical', 'userdata', 'v')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+downarrow')
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+uparrow')
% legend artifacts/features
for iArt = 1:length(artlabel)
uicontrol('tag', 'artifactui', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', artlabel{iArt}, 'userdata', num2str(iArt), 'position', [0.91, 0.9 - ((iArt-1)*0.09), 0.08, 0.04], 'backgroundcolor', opt.artcolors(iArt,:))
uicontrol('tag', 'artifactui', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', ['shift+' num2str(iArt)], 'position', [0.91, 0.855 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcolors(iArt,:))
uicontrol('tag', 'artifactui', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', ['control+' num2str(iArt)], 'position', [0.96, 0.855 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcolors(iArt,:))
end
if length(artlabel)>1 % highlight the first one as active
arth = findobj(h,'tag','artifactui');
arth = arth(end:-1:1); % order is reversed so reverse it again
hsel = [1 2 3] + (opt.ftsel-1) .*3;
set(arth(hsel),'fontweight','bold')
end
if true % strcmp(cfg.viewmode, 'butterfly')
% button to find label of nearest channel to datapoint
uicontrol('tag', 'buttons', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'identify', 'userdata', 'i', 'position', [0.91, 0.1, 0.08, 0.05], 'backgroundcolor', [1 1 1])
end
% 'edit preproc'-button
uicontrol('tag', 'preproccfg', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'preproc cfg', 'position', [0.91, 0.55 - ((iArt-1)*0.09), 0.08, 0.04], 'callback', @preproc_cfg1_cb)
ft_uilayout(h, 'tag', 'labels', 'width', 0.10, 'height', 0.05);
ft_uilayout(h, 'tag', 'buttons', 'width', 0.05, 'height', 0.05);
ft_uilayout(h, 'tag', 'labels', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'buttons', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'artifactui', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'labels', 'retag', 'viewui');
ft_uilayout(h, 'tag', 'buttons', 'retag', 'viewui');
ft_uilayout(h, 'tag', 'viewui', 'BackgroundColor', [0.8 0.8 0.8], 'hpos', 'auto', 'vpos', 0);
definetrial_cb(h);
redraw_cb(h);
% %% Scrollbar
%
% % set initial scrollbar value
% dx = maxtime;
%
% % set scrollbar position
% fig_pos=get(gca, 'position');
% scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02];
%
% % define callback
% S=['set(gca, ''xlim'',get(gcbo, ''value'')+[ ' num2str(mintime) ', ' num2str(maxtime) '])'];
%
% % Creating Uicontrol
% s=uicontrol('style', 'slider',...
% 'units', 'normalized', 'position',scroll_pos,...
% 'callback',S, 'min',0, 'max',0, ...
% 'visible', 'off'); %'value', xmin
% set initial scrollbar value
% dx = maxtime;
%
% % set scrollbar position
% fig_pos=get(gca, 'position');
% scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02];
%
% % define callback
% S=['set(gca, ''xlim'',get(gcbo, ''value'')+[ ' num2str(mintime) ', ' num2str(maxtime) '])'];
%
% % Creating Uicontrol
% s=uicontrol('style', 'slider',...
% 'units', 'normalized', 'position',scroll_pos,...
% 'callback',S, 'min',0, 'max',0, ...
% 'visible', 'off'); %'value', xmin
%initialize postion of plot
% set(gca, 'xlim', [xmin xmin+dx]);
if nargout
% wait until the user interface is closed, get the user data with the updated artifact details
set(h, 'CloseRequestFcn', @cleanup_cb);
while ishandle(h)
uiwait(h);
opt = getappdata(h, 'opt');
if opt.cleanup
delete(h);
end
end
% add the updated artifact definitions to the output cfg
for i=1:length(opt.artdata.label)
cfg.artfctdef.(opt.artdata.label{i}).artifact = convert_event(opt.artdata.trial{1}(i,:), 'artifact');
end
% add the updated preproc to the output
try
browsecfg = getappdata(h, 'cfg');
cfg.preproc = browsecfg.preproc;
end
% add the update event to the output cfg
cfg.event = opt.event;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance
end % if nargout
end % main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cleanup_cb(h, eventdata)
opt = getappdata(h, 'opt');
opt.cleanup = true;
setappdata(h, 'opt', opt);
uiresume
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function definetrial_cb(h, eventdata)
opt = getappdata(h, 'opt');
cfg = getappdata(h, 'cfg');
if strcmp(cfg.continuous, 'no')
% when zooming in, lock the trial! one can only go to the next trial when horizontal scaling doesn't segment the data - from ft-meeting: this might be relaxed later on - roevdmei
if isempty(opt.trllock)
opt.trllock = opt.trlop;
end
locktrllen = ((opt.trlorg(opt.trllock,2)-opt.trlorg(opt.trllock,1)+1) ./ opt.fsample);
% if cfg.blocksize is close to the length of the locked trial, set it to that
if (abs(locktrllen-cfg.blocksize) / locktrllen) < 0.1
cfg.blocksize = locktrllen;
end
%%%%%%%%%
% trial is locked, change subdivision of trial
if cfg.blocksize < locktrllen
% lock the trial if it wasn't locked (and thus trlop refers to the actual trial)
if isempty(opt.trllock)
opt.trllock = trlop;
end
% save current position if already
if isfield(opt, 'trlvis')
thissegbeg = opt.trlvis(opt.trlop,1);
end
datbegsample = min(opt.trlorg(opt.trllock,1));
datendsample = max(opt.trlorg(opt.trllock,2));
smpperseg = round(opt.fsample * cfg.blocksize);
begsamples = datbegsample:smpperseg:datendsample;
endsamples = datbegsample+smpperseg-1:smpperseg:datendsample;
offset = (((1:numel(begsamples))-1)*smpperseg) + opt.trlorg(opt.trllock,3);
if numel(endsamples)<numel(begsamples)
endsamples(end+1) = datendsample;
end
trlvis = [];
trlvis(:,1) = begsamples';
trlvis(:,2) = endsamples';
trlvis(:,3) = offset;
% determine length of each trial, and determine the offset with the current requested zoom-level
trllen = (trlvis(:,2) - trlvis(:,1)+1);
sizediff = smpperseg - trllen;
opt.nanpaddata = sizediff;
if isfield(opt, 'trlvis')
% update the current trial counter and try to keep the current sample the same
opt.trlop = nearest(begsamples, thissegbeg);
end
% update trialviewtype
opt.trialviewtype = 'trialsegment';
% update button
set(findobj(get(h, 'children'), 'string', 'trial'), 'string', 'segment');
%%%%%%%%%
%%%%%%%%%
% trial is not locked, go to original trial division and zoom out
elseif cfg.blocksize >= locktrllen
trlvis = opt.trlorg;
% set current trlop to locked trial if it was locked before
if ~isempty(opt.trllock)
opt.trlop = opt.trllock;
end
smpperseg = round(opt.fsample * cfg.blocksize);
% determine length of each trial, and determine the offset with the current requested zoom-level
trllen = (trlvis(:,2) - trlvis(:,1)+1);
sizediff = smpperseg - trllen;
opt.nanpaddata = sizediff;
% update trialviewtype
opt.trialviewtype = 'trial';
% update button
set(findobj(get(h, 'children'), 'string', 'trialsegment'), 'string',opt.trialviewtype);
% release trial lock
opt.trllock = [];
%%%%%%%%%
end
% save trlvis
opt.trlvis = trlvis;
else
% construct a trial definition for visualisation
if isfield(opt, 'trlvis') % if present, remember where we were
thistrlbeg = opt.trlvis(opt.trlop,1);
end
% look at cfg.blocksize and make opt.trl accordingly
datbegsample = min(opt.trlorg(:,1));
datendsample = max(opt.trlorg(:,2));
smpperseg = round(opt.fsample * cfg.blocksize);
begsamples = datbegsample:smpperseg:datendsample;
endsamples = datbegsample+smpperseg-1:smpperseg:datendsample;
if numel(endsamples)<numel(begsamples)
endsamples(end+1) = datendsample;
end
trlvis = [];
trlvis(:,1) = begsamples';
trlvis(:,2) = endsamples';
% compute the offset. In case if opt.trlorg has multiple trials, the first sample is t=0, otherwise use the offset in opt.trlorg
if size(opt.trlorg,1)==1
offset = begsamples - repmat(begsamples(1), [1 numel(begsamples)]); % offset for all segments compared to the first
offset = offset + opt.trlorg(1,3);
trlvis(:,3) = offset;
else
offset = begsamples - repmat(begsamples(1), [1 numel(begsamples)]);
trlvis(:,3) = offset;
end
if isfield(opt, 'trlvis')
% update the current trial counter and try to keep the current sample the same
% opt.trlop = nearest(round((begsamples+endsamples)/2), thissample);
opt.trlop = nearest(begsamples, thistrlbeg);
end
opt.trlvis = trlvis;
% NaN-padding when horizontal scaling is bigger than the data
% two possible situations, 1) zoomed out so far that all data is one segment, or 2) multiple segments but last segment is smaller than the rest
sizediff = smpperseg-(endsamples-begsamples+1);
opt.nanpaddata = sizediff;
end % if continuous
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function help_cb(h, eventdata)
fprintf('------------------------------------------------------------------------------------\n')
fprintf('You can use the following keyboard buttons in the databrowser\n')
fprintf('1-9 : select artifact type 1-9\n');
fprintf('shift 1-9 : select previous artifact of type 1-9\n');
fprintf(' (does not work with numpad keys)\n');
fprintf('control 1-9 : select next artifact of type 1-9\n');
fprintf('alt 1-9 : select next artifact of type 1-9\n');
fprintf('arrow-left : previous trial\n');
fprintf('arrow-right : next trial\n');
fprintf('shift arrow-up : increase vertical scaling\n');
fprintf('shift arrow-down : decrease vertical scaling\n');
fprintf('shift arrow-left : increase horizontal scaling\n');
fprintf('shift arrow-down : decrease horizontal scaling\n');
fprintf('s : toggles between cfg.selectmode options\n');
fprintf('q : quit\n');
fprintf('------------------------------------------------------------------------------------\n')
fprintf('\n')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_range_cb(h, range, cmenulab) %range 1X4 in sec relative to current trial
opt = getappdata(h, 'opt');
cfg = getappdata(h, 'cfg');
% the range should be in the displayed box
range(1) = max(opt.hpos-opt.width/2, range(1));
range(2) = max(opt.hpos-opt.width/2, range(2));
range(1) = min(opt.hpos+opt.width/2, range(1));
range(2) = min(opt.hpos+opt.width/2, range(2));
range = (range-(opt.hpos-opt.width/2)) / opt.width; % left side of the box becomes 0, right side becomes 1
range = range * (opt.hlim(2) - opt.hlim(1)) + opt.hlim(1); % 0 becomes hlim(1), 1 becomes hlim(2)
begsample = opt.trlvis(opt.trlop,1);
endsample = opt.trlvis(opt.trlop,2);
offset = opt.trlvis(opt.trlop,3);
% determine the selection
begsel = round(range(1)*opt.fsample+begsample-offset-1);
endsel = round(range(2)*opt.fsample+begsample-offset);
% artifact selection is now always based on begsample/endsample/offset
% -roevdmei
% the selection should always be confined to the current trial
begsel = max(begsample, begsel);
endsel = min(endsample, endsel);
% mark or execute selfun
if isempty(cmenulab)
% the left button was clicked INSIDE a selected range, update the artifact definition or event
if strcmp(cfg.selectmode, 'markartifact')
% mark or unmark artifacts
artval = opt.artdata.trial{1}(opt.ftsel, begsel:endsel);
artval = any(artval,1);
if any(artval)
fprintf('there is overlap with the active artifact (%s), disabling this artifact\n',opt.artdata.label{opt.ftsel});
opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 0;
else
fprintf('there is no overlap with the active artifact (%s), marking this as a new artifact\n',opt.artdata.label{opt.ftsel});
opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 1;
end
% redraw only when marking (so the focus doesn't go back to the databrowser after calling selfuns
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h);
elseif strcmp(cfg.selectmode, 'markpeakevent') || strcmp(cfg.selectmode, 'marktroughevent')
%mark or unmark events, marking at peak/trough of window
if any(intersect(begsel:endsel, [opt.event.sample]))
fprintf('there is overlap with one or more event(s), disabling this/these event(s)\n');
ind_rem = intersect(begsel:endsel, [opt.event.sample]);
for iRemove = 1:length(ind_rem)
opt.event([opt.event.sample]==ind_rem(iRemove)) = [];
end
else
fprintf('there is no overlap with any event, adding an event to the peak/trough value\n');
% check if only 1 chan, other wise not clear max in which channel. %
% ingnie: would be cool to add the option to select the channel when multiple channels
if size(opt.curdata.trial{1},1) > 1
error('cfg.selectmode = ''markpeakevent'' and ''marktroughevent'' only supported with 1 channel in the data')
end
if strcmp(cfg.selectmode, 'markpeakevent')
[dum ind_minmax] = max(opt.curdata.trial{1}(begsel-begsample+1:endsel-begsample+1));
val = 'peak';
elseif strcmp(cfg.selectmode, 'marktroughevent')
[dum ind_minmax] = min(opt.curdata.trial{1}(begsel-begsample+1:endsel-begsample+1));
val = 'trough';
end
samp_minmax = begsel + ind_minmax - 1;
event_new.type = 'ft_databrowser_manual';
event_new.sample = samp_minmax;
event_new.value = val;
event_new.duration = 1;
event_new.offset = 0;
% add new event to end opt.event
% check if events are in order now
if min(diff([opt.event.sample]))>0
% add new event in line with old ones
nearest_event = nearest([opt.event.sample], samp_minmax);
if opt.event(nearest_event).sample > samp_minmax
%place new event before nearest
ind_event_new = nearest_event;
else
%place new event after nearest
ind_event_new = nearest_event +1;
end
event_lastpart = opt.event(ind_event_new:end);
opt.event(ind_event_new) = event_new;
opt.event(ind_event_new+1:end+1) = event_lastpart;
else
%just add to end
opt.event(end+1) = event_new;
end
clear event_new ind_event_new event_lastpart val dum ind_minmax
end
% redraw only when marking (so the focus doesn't go back to the databrowser after calling selfuns
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h);
end
else
% the right button was used to activate the context menu and the user made a selection from that menu
% execute the corresponding function
% get index into cfgs
selfunind = strcmp(cfg.selfun, cmenulab);
% cut out the requested data segment
switch cfg.seldat
case 'current'
seldata = keepfields(opt.curdata, {'label', 'grad', 'elec', 'hdr'});
seldata.trial{1} = ft_fetch_data(opt.curdata, 'begsample', begsel, 'endsample', endsel);
case 'all'
seldata = keepfields(opt.org, {'label', 'grad', 'elec', 'hdr'});
seldata.trial{1} = ft_fetch_data(opt.orgdata, 'begsample', begsel, 'endsample', endsel);
end
seldata.time{1} = offset2time(offset+begsel-begsample, opt.fsample, endsel-begsel+1);
seldata.fsample = opt.fsample;
seldata.sampleinfo = [begsel endsel offset];
% prepare input
funhandle = ft_getuserfun(cmenulab, 'browse');
funcfg = cfg.selcfg{selfunind};
% get windowname and give as input (can be used for the other functions as well, not implemented yet)
if ~strcmp(opt.trialviewtype, 'trialsegment')
str = sprintf('%s %d/%d, time from %g to %g s', opt.trialviewtype, opt.trlop, size(opt.trlvis,1), seldata.time{1}(1), seldata.time{1}(end));
else
str = sprintf('trial %d/%d: segment: %d/%d , time from %g to %g s', opt.trllock, size(opt.trlorg,1), opt.trlop, size(opt.trlvis,1), seldata.time{1}(1), seldata.time{1}(end));
end
funcfg.figurename = [cmenulab ': ' str];
feval(funhandle, funcfg, seldata);
end
end % function select_range_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function preproc_cfg1_cb(h,eventdata)
parent = get(h, 'parent');
cfg = getappdata(parent, 'cfg');
editfontsize = cfg.editfontsize;
editfontunits = cfg.editfontunits;
% parse cfg.preproc
if ~isempty(cfg.preproc)
code = printstruct('cfg.preproc', cfg.preproc);
else
code = '';
end
% add descriptive lines
code = {
'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'
'% Add or change options for on-the-fly preprocessing'
'% Use as cfg.preproc.option=value'
'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'
code
};
% make figure displaying the edit box
pph = figure;
axis off
% add save button
uicontrol('tag', 'preproccfg_l2', 'parent', pph, 'units', 'normalized', 'style', 'pushbutton', 'string', 'save and close', 'position', [0.81, 0.6 , 0.18, 0.10], 'callback', @preproc_cfg2_cb);
% add edit box
ppeh = uicontrol('style', 'edit');
set(pph, 'toolBar', 'none')
set(pph, 'menuBar', 'none')
set(pph, 'Name', 'cfg.preproc editor')
set(pph, 'NumberTitle', 'off')
set(ppeh, 'Units', 'normalized');
set(ppeh, 'Position', [0 0 .8 1]);
set(ppeh, 'backgroundColor', [1 1 1]);
set(ppeh, 'horizontalAlign', 'left');
set(ppeh, 'max', 2);
set(ppeh, 'min', 0);
set(ppeh, 'FontName', 'Courier', 'FontSize', editfontsize, 'FontUnits', editfontunits);
set(ppeh, 'string', code);
% add handle for the edit style to figure
setappdata(pph, 'superparent', parent); % superparent is the main ft_databrowser window
setappdata(pph, 'ppeh', ppeh);
end % function preproc_cfg1_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function preproc_cfg2_cb(h,eventdata)
parent = get(h, 'parent');
superparent = getappdata(parent, 'superparent');
ppeh = getappdata(parent, 'ppeh');
code = get(ppeh, 'string');
% get rid of empty lines and white space
skip = [];
for iline = 1:numel(code)
code{iline} = strtrim(code{iline});
if isempty(code{iline})
skip = [skip iline];
continue
end
if code{iline}(1)=='%'
skip = [skip iline];
continue
end
end
code(skip) = [];
if ~isempty(code)
ispreproccfg = strncmp(code, 'cfg.preproc.',12);
if ~all(ispreproccfg)
errordlg('cfg-options must be specified as cfg.preproc.xxx', 'cfg.preproc editor', 'modal')
end
% eval the code
for icomm = 1:numel(code)
eval([code{icomm} ';']);
end
% check for cfg and output into the original appdata-window
if ~exist('cfg', 'var')
cfg = [];
cfg.preproc = [];
end
maincfg = getappdata(superparent, 'cfg');
maincfg.preproc = cfg.preproc;
setappdata(superparent, 'cfg', maincfg)
end
close(parent)
redraw_cb(superparent)
end % function preproc_cfg2_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function keyboard_cb(h, eventdata)
if (isempty(eventdata) && ft_platform_supports('matlabversion',-Inf, '2014a')) || isa(eventdata, 'matlab.ui.eventdata.ActionData')
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
cfg = getappdata(h, 'cfg');
switch key
case {'1' '2' '3' '4' '5' '6' '7' '8' '9'}
% switch to another artifact type
opt.ftsel = str2double(key);
numart = size(opt.artdata.trial{1}, 1);
if opt.ftsel > numart
fprintf('data has no artifact type %i \n', opt.ftsel)
else
% bold the active one
arth = findobj(h,'tag','artifactui');
arth = arth(end:-1:1); % order is reversed so reverse it again
hsel = [1 2 3] + (opt.ftsel-1) .*3 ;
set(arth(hsel),'fontweight','bold')
% unbold the passive ones
set(arth(setdiff(1:numel(arth),hsel)),'fontweight','normal')
% redraw
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
fprintf('switching to the "%s" artifact\n', opt.artdata.label{opt.ftsel});
redraw_cb(h, eventdata);
end
case {'shift+1' 'shift+2' 'shift+3' 'shift+4' 'shift+5' 'shift+6' 'shift+7' 'shift+8' 'shift+9'}
% go to previous artifact
opt.ftsel = str2double(key(end));
numart = size(opt.artdata.trial{1}, 1);
if opt.ftsel > numart
fprintf('data has no artifact type %i \n', opt.ftsel)
else
% find the previous occuring artifact, keeping in mind that:
% 1) artifacts can cross trial boundaries
% 2) artifacts might not occur inside a trial boundary (when data is segmented differently than during artifact detection)
% fetch trl representation of current artifact type
arttrl = convert_event(opt.artdata.trial{1}(opt.ftsel,:),'trl');
% discard artifacts in the future
curvisend = opt.trlvis(opt.trlop,2);
arttrl(arttrl(:,1) > curvisend,:) = [];
% find nearest artifact by searching in each trl (we have to do this here everytime, because trlvis can change on the fly because of x-zooming)
newtrlop = [];
for itrlvis = opt.trlop-1:-1:1
% is either the start or the end of any artifact present?
if any(any(opt.trlvis(itrlvis,1)<=arttrl(:,1:2) & opt.trlvis(itrlvis,2)>=arttrl(:,1:2)))
% if so, we're done
newtrlop = itrlvis;
break
end
end
if isempty(newtrlop)
fprintf('no earlier %s with "%s" artifact found\n', opt.trialviewtype, opt.artdata.label{opt.ftsel});
else
fprintf('going to previous %s with "%s" artifact\n', opt.trialviewtype, opt.artdata.label{opt.ftsel});
opt.trlop = newtrlop;
% other artifact type potentially selected, bold the active one
arth = findobj(h,'tag','artifactui');
arth = arth(end:-1:1); % order is reversed so reverse it again
hsel = [1 2 3] + (opt.ftsel-1) .*3 ;
set(arth(hsel),'fontweight','bold')
% unbold the passive ones
set(arth(setdiff(1:numel(arth),hsel)),'fontweight','normal')
% export into fig and continue
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
end
end
case {'control+1' 'control+2' 'control+3' 'control+4' 'control+5' 'control+6' 'control+7' 'control+8' 'control+9' 'alt+1' 'alt+2' 'alt+3' 'alt+4' 'alt+5' 'alt+6' 'alt+7' 'alt+8' 'alt+9'}
% go to next artifact
opt.ftsel = str2double(key(end));
numart = size(opt.artdata.trial{1}, 1);
if opt.ftsel > numart
fprintf('data has no artifact type %i \n', opt.ftsel)
else
% find the next occuring artifact, keeping in mind that:
% 1) artifacts can cross trial boundaries
% 2) artifacts might not occur inside a trial boundary (when data is segmented differently than during artifact detection)
% fetch trl representation of current artifact type
arttrl = convert_event(opt.artdata.trial{1}(opt.ftsel,:),'trl');
% discard artifacts in the past
curvisbeg = opt.trlvis(opt.trlop,1);
arttrl(arttrl(:,2) < curvisbeg,:) = [];
% find nearest artifact by searching in each trl (we have to do this here everytime, because trlvis can change on the fly because of x-zooming)
newtrlop = [];
for itrlvis = opt.trlop+1:size(opt.trlvis,1)
% is either the start or the end of any artifact present?
if any(any(opt.trlvis(itrlvis,1)<=arttrl(:,1:2) & opt.trlvis(itrlvis,2)>=arttrl(:,1:2)))
% if so, we're done
newtrlop = itrlvis;
break
end
end
if isempty(newtrlop)
fprintf('no later %s with "%s" artifact found\n', opt.trialviewtype, opt.artdata.label{opt.ftsel});
else
fprintf('going to next %s with "%s" artifact\n', opt.trialviewtype, opt.artdata.label{opt.ftsel});
opt.trlop = newtrlop;
% other artifact type potentially selected, bold the active one
arth = findobj(h,'tag','artifactui');
arth = arth(end:-1:1); % order is reversed so reverse it again
hsel = [1 2 3] + (opt.ftsel-1) .*3 ;
set(arth(hsel),'fontweight','bold')
% unbold the passive ones
set(arth(setdiff(1:numel(arth),hsel)),'fontweight','normal')
% export into fig and continue
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
end
end
case 'leftarrow'
opt.trlop = max(opt.trlop - 1, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
case 'rightarrow'
opt.trlop = min(opt.trlop + 1, size(opt.trlvis,1)); % should not be larger than the number of trials
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
case 'uparrow'
chansel = match_str(opt.hdr.label, cfg.channel);
minchan = min(chansel);
numchan = length(chansel);
chansel = minchan - numchan : minchan - 1;
if min(chansel)<1
chansel = chansel - min(chansel) + 1;
end
% convert numeric array into cell-array with channel labels
cfg.channel = opt.hdr.label(chansel);
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
delete(findobj(h, 'tag', 'chanlabel')); % remove channel labels here, and not in redrawing to save significant execution time (see bug 2065)
redraw_cb(h, eventdata);
case 'downarrow'
chansel = match_str(opt.hdr.label, cfg.channel);
maxchan = max(chansel);
numchan = length(chansel);
chansel = maxchan + 1 : maxchan + numchan;
if max(chansel)>length(opt.hdr.label)
chansel = chansel - (max(chansel) - length(opt.hdr.label));
end
% convert numeric array into cell-array with channel labels
cfg.channel = opt.hdr.label(chansel);
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
delete(findobj(h, 'tag', 'chanlabel')); % remove channel labels here, and not in redrawing to save significant execution time (see bug 2065)
redraw_cb(h, eventdata);
case 'shift+leftarrow'
cfg.blocksize = cfg.blocksize*sqrt(2);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
definetrial_cb(h, eventdata);
redraw_cb(h, eventdata);
case 'shift+rightarrow'
cfg.blocksize = cfg.blocksize/sqrt(2);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
definetrial_cb(h, eventdata);
redraw_cb(h, eventdata);
case 'shift+uparrow'
cfg.ylim = cfg.ylim/sqrt(2);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
case 'shift+downarrow'
cfg.ylim = cfg.ylim*sqrt(2);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
case 'q'
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
cleanup_cb(h);
case 't'
% select the trial to display
if ~strcmp(opt.trialviewtype, 'trialsegment')
str = sprintf('%s to display (current trial = %d/%d)', opt.trialviewtype, opt.trlop, size(opt.trlvis,1));
else
str = sprintf('segment to display (current segment = %d/%d)', opt.trlop, size(opt.trlvis,1));
end
response = inputdlg(str, 'specify', 1, {num2str(opt.trlop)});
if ~isempty(response)
opt.trlop = str2double(response);
opt.trlop = min(opt.trlop, size(opt.trlvis,1)); % should not be larger than the number of trials
opt.trlop = max(opt.trlop, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
end
case 'h'
% select the horizontal scaling
response = inputdlg('horizontal scale', 'specify', 1, {num2str(cfg.blocksize)});
if ~isempty(response)
cfg.blocksize = str2double(response);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
definetrial_cb(h, eventdata);
redraw_cb(h, eventdata);
end
case 'v'
% select the vertical scaling
response = inputdlg('vertical scale, [ymin ymax], ''maxabs'' or ''maxmin''', 'specify', 1, {['[ ' num2str(cfg.ylim) ' ]']});
if ~isempty(response)
if strcmp(response, 'maxmin')
minval = min(opt.curdata.trial{1}(:));
maxval = max(opt.curdata.trial{1}(:));
cfg.ylim = [minval maxval];
elseif strcmp(response, 'maxabs')
minval = min(opt.curdata.trial{1}(:));
maxval = max(opt.curdata.trial{1}(:));
cfg.ylim = [-max(abs([minval maxval])) max(abs([minval maxval]))];
else
% convert to string and add brackets, just to ensure that str2num will work
tmp = str2num(['[' response{1} ']']);
if numel(tmp)==2
cfg.ylim = tmp;
else
warning('incorrect specification of cfg.ylim, not changing the limits for the vertical axes')
end
end
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
end
case 'c'
% select channels
select = match_str(opt.hdr.label, cfg.channel);
select = select_channel_list(opt.hdr.label, select);
cfg.channel = opt.hdr.label(select);
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
delete(findobj(h, 'tag', 'chanlabel')); % remove channel labels here, and not in redrawing to save significant execution time (see bug 2065)
redraw_cb(h, eventdata);
case 'i'
delete(findobj(h, 'tag', 'identify'));
% click in data and get name of nearest channel
fprintf('click in the figure to identify the name of the closest channel\n');
val = ginput(1);
pos = val(1);
if strcmp(cfg.viewmode, 'butterfly') || strcmp(cfg.viewmode, 'vertical')
switch cfg.viewmode
case 'butterfly'
% transform 'val' to match data
val(1) = val(1) * range(opt.hlim) + opt.hlim(1);
val(2) = val(2) * range(opt.vlim) + opt.vlim(1);
channame = val2nearestchan(opt.curdata,val);
channb = match_str(opt.curdata.label,channame);
% set chanposind
chanposind = 1; % butterfly mode, pos is the first for all channels
case 'vertical'
% find channel identity by extracting timecourse objects and finding the time course closest to the cursor
% this is a lot easier than the reverse, determining the y value of each time course scaled by the layout and vlim
tcobj = findobj(h,'tag','timecourse');
tmpydat = get(tcobj,'ydata');
tmpydat = cat(1,tmpydat{:});
tmpydat = tmpydat(end:-1:1,:); % order of timecourse objects is reverse of channel order
tmpxdat = get(tcobj(1),'xdata');
% first find closest sample on x
xsmp = nearest(tmpxdat,val(1));
% then find closes y sample, being the channel number
channb = nearest(tmpydat(:,xsmp),val(2));
channame = opt.curdata.label{channb};
% set chanposind
chanposind = match_str(opt.laytime.label,channame);
end
fprintf('channel name: %s\n',channame);
redraw_cb(h, eventdata);
if strcmp(cfg.viewmode,'vertical')
ypos = opt.laytime.pos(chanposind,2)+opt.laytime.height(chanposind)*3;
if ypos>.9 % don't let label fall on plot boundary
ypos = opt.laytime.pos(chanposind,2)-opt.laytime.height(chanposind)*3;
end
else
ypos = .9;
end
ft_plot_text(pos, ypos, channame, 'FontSize', cfg.fontsize, 'FontUnits', cfg.fontunits, 'tag', 'identify', 'interpreter', 'none', 'FontSize', cfg.fontsize, 'FontUnits', cfg.fontunits);
if ~ishold
hold on
ft_plot_vector(opt.curdata.time{1}, opt.curdata.trial{1}(channb,:), 'box', false, 'tag', 'identify', 'hpos', opt.laytime.pos(chanposind,1), 'vpos', opt.laytime.pos(chanposind,2), 'width', opt.laytime.width(chanposind), 'height', opt.laytime.height(chanposind), 'hlim', opt.hlim, 'vlim', opt.vlim, 'color', 'k', 'linewidth', 2);
hold off
else
ft_plot_vector(opt.curdata.time{1}, opt.curdata.trial{1}(channb,:), 'box', false, 'tag', 'identify', 'hpos', opt.laytime.pos(chanposind,1), 'vpos', opt.laytime.pos(chanposind,2), 'width', opt.laytime.width(chanposind), 'height', opt.laytime.height(chanposind), 'hlim', opt.hlim, 'vlim', opt.vlim, 'color', 'k', 'linewidth', 2);
end
else
warning('only supported with cfg.viewmode=''butterfly/vertical''');
end
case 's'
% toggle between selectmode options: switch from 'markartifact', to 'markpeakevent' to 'marktroughevent' and back with on screen feedback
curstate = find(strcmp(cfg.selectmode, {'markartifact', 'markpeakevent', 'marktroughevent'}));
if curstate == 1
cfg.selectmode = 'markpeakevent';
elseif curstate == 2
cfg.selectmode = 'marktroughevent';
elseif curstate == 3
cfg.selectmode = 'markartifact';
end
fprintf('switching to selectmode = %s\n',cfg.selectmode);
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
redraw_cb(h, eventdata);
case 'control+control'
% do nothing
case 'shift+shift'
% do nothing
case 'alt+alt'
% do nothing
otherwise
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
help_cb(h);
end
uiresume(h);
end % function keyboard_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function toggle_viewmode_cb(h, eventdata, varargin)
% FIXME should be used
opt = guidata(getparent(h));
if ~isempty(varargin) && ischar(varargin{1})
cfg.viewmode = varargin{1};
end
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
guidata(getparent(h), opt);
delete(findobj(h, 'tag', 'chanlabel')); % remove channel labels here, and not in redrawing to save significant execution time (see bug 2065)
redraw_cb(h);
end % function toggle_viewmode_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
end % function getparent
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function redraw_cb(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
cfg = getappdata(h, 'cfg');
figure(h); % ensure that the calling figure is in the front
%fprintf('redrawing with viewmode %s\n', cfg.viewmode);
begsample = opt.trlvis(opt.trlop, 1);
endsample = opt.trlvis(opt.trlop, 2);
offset = opt.trlvis(opt.trlop, 3);
chanindx = match_str(opt.hdr.label, cfg.channel);
% parse opt.changedchanflg, and rese
changedchanflg = false;
if opt.changedchanflg
changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
opt.changedchanflg = false;
end
if ~isempty(opt.event) && isstruct(opt.event)
% select only the events in the current time window
event = opt.event;
evtsample = [event(:).sample];
event = event(evtsample>=begsample & evtsample<=endsample);
else
event = [];
end
if isempty(opt.orgdata)
dat = ft_read_data(cfg.datafile, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat, 'headerformat', cfg.headerformat);
else
dat = ft_fetch_data(opt.orgdata, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'allowoverlap', true); % ALLOWING OVERLAPPING TRIALS
end
art = ft_fetch_data(opt.artdata, 'begsample', begsample, 'endsample', endsample);
% convert the data to another numeric precision, i.e. double, single or int32
if ~isempty(cfg.precision)
dat = cast(dat, cfg.precision);
end
% apply preprocessing and determine the time axis
[dat, lab, tim] = preproc(dat, opt.hdr.label(chanindx), offset2time(offset, opt.fsample, size(dat,2)), cfg.preproc);
% add NaNs to data for plotting purposes. NaNs will be added when requested horizontal scaling is longer than the data.
nsamplepad = opt.nanpaddata(opt.trlop);
if nsamplepad>0
dat = [dat NaN(numel(lab), opt.nanpaddata(opt.trlop))];
tim = [tim linspace(tim(end),tim(end)+nsamplepad*mean(diff(tim)),nsamplepad)]; % possible machine precision error here
end
% apply scaling to selected channels
% using wildcard to support subselection of channels
if ~isempty(cfg.eegscale)
chansel = match_str(lab, ft_channelselection('EEG', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.eegscale;
end
if ~isempty(cfg.eogscale)
chansel = match_str(lab, ft_channelselection('EOG', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.eogscale;
end
if ~isempty(cfg.ecgscale)
chansel = match_str(lab, ft_channelselection('ECG', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.ecgscale;
end
if ~isempty(cfg.emgscale)
chansel = match_str(lab, ft_channelselection('EMG', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.emgscale;
end
if ~isempty(cfg.megscale)
type = opt.hdr.grad.type;
chansel = match_str(lab, ft_channelselection('MEG', lab, type));
dat(chansel,:) = dat(chansel,:) .* cfg.megscale;
end
if ~isempty(cfg.magscale)
chansel = match_str(lab, ft_channelselection('MEGMAG', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.magscale;
end
if ~isempty(cfg.gradscale)
chansel = match_str(lab, ft_channelselection('MEGGRAD', lab));
dat(chansel,:) = dat(chansel,:) .* cfg.gradscale;
end
if ~isempty(cfg.chanscale)
chansel = match_str(lab, ft_channelselection(cfg.channel, lab));
dat(chansel,:) = dat(chansel,:) .* repmat(cfg.chanscale,1,size(dat,2));
end
if ~isempty(cfg.mychanscale)
chansel = match_str(lab, ft_channelselection(cfg.mychan, lab));
dat(chansel,:) = dat(chansel,:) .* cfg.mychanscale;
end
opt.curdata.label = lab;
opt.curdata.time{1} = tim;
opt.curdata.trial{1} = dat;
opt.curdata.hdr = opt.hdr;
opt.curdata.fsample = opt.fsample;
opt.curdata.sampleinfo = [begsample endsample offset];
% to assure current feature is plotted on top
ordervec = 1:length(opt.artdata.label);
ordervec(opt.ftsel) = [];
ordervec(end+1) = opt.ftsel;
% FIXME speedup ft_prepare_layout
if strcmp(cfg.viewmode, 'butterfly')
laytime = [];
laytime.label = {'dummy'};
laytime.pos = [0.5 0.5];
laytime.width = 1;
laytime.height = 1;
opt.laytime = laytime;
else
% this needs to be reconstructed if the channel selection changes
if changedchanflg % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
tmpcfg = [];
if strcmp(cfg.viewmode, 'component')
tmpcfg.layout = 'vertical';
else
tmpcfg.layout = cfg.viewmode;
end
tmpcfg.channel = cfg.channel;
tmpcfg.skipcomnt = 'yes';
tmpcfg.skipscale = 'yes';
tmpcfg.showcallinfo = 'no';
opt.laytime = ft_prepare_layout(tmpcfg, opt.orgdata);
end
end
% determine the position of the channel/component labels relative to the real axes
% FIXME needs a shift to the left for components
labelx = opt.laytime.pos(:,1) - opt.laytime.width/2 - 0.01;
labely = opt.laytime.pos(:,2);
% determine the total extent of all virtual axes relative to the real axes
ax(1) = min(opt.laytime.pos(:,1) - opt.laytime.width/2);
ax(2) = max(opt.laytime.pos(:,1) + opt.laytime.width/2);
ax(3) = min(opt.laytime.pos(:,2) - opt.laytime.height/2);
ax(4) = max(opt.laytime.pos(:,2) + opt.laytime.height/2);
% add white space to bottom and top so channels are not out-of-axis for the majority
% NOTE: there is a second spot where this is done below, specifically for viewmode = component (also need to be here), which should be kept the same as this
if any(strcmp(cfg.viewmode,{'vertical','component'}))
% determine amount of vertical padding using cfg.verticalpadding
if ~isnumeric(cfg.verticalpadding) && strcmp(cfg.verticalpadding,'auto')
% determine amount of padding using the number of channels
if numel(cfg.channel)<=6
wsfac = 0;
elseif numel(cfg.channel)>6 && numel(cfg.channel)<=10
wsfac = 0.01 * (ax(4)-ax(3));
else
wsfac = 0.02 * (ax(4)-ax(3));
end
else
wsfac = cfg.verticalpadding * (ax(4)-ax(3));
end
ax(3) = ax(3) - wsfac;
ax(4) = ax(4) + wsfac;
end
axis(ax)
% determine a single local axis that encompasses all channels
% this is in relative figure units
opt.hpos = (ax(1)+ax(2))/2;
opt.vpos = (ax(3)+ax(4))/2;
opt.width = ax(2)-ax(1);
opt.height = ax(4)-ax(3);
% these determine the scaling inside the virtual axes
% the hlim will be in seconds, the vlim will be in Tesla or Volt
opt.hlim = [tim(1) tim(end)];
opt.vlim = cfg.ylim;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fprintf('plotting artifacts...\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delete(findobj(h, 'tag', 'artifact'));
for j = ordervec
tmp = diff([0 art(j,:) 0]);
artbeg = find(tmp==+1);
artend = find(tmp==-1) - 1;
for k=1:numel(artbeg)
xpos = [tim(artbeg(k)) tim(artend(k))] + ([-.5 +.5]./opt.fsample);
h_artifact = ft_plot_box([xpos -1 1], 'facecolor', opt.artcolors(j,:), 'facealpha', .7, 'edgecolor', 'none', 'tag', 'artifact', 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1]);
end
end % for each of the artifact channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fprintf('plotting events...\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delete(findobj(h, 'tag', 'event'));
if strcmp(cfg.plotevents, 'yes')
if any(strcmp(cfg.viewmode, {'butterfly', 'component', 'vertical'}))
if strcmp(cfg.ploteventlabels , 'colorvalue') && ~isempty(opt.event)
eventlabellegend = [];
for iType = 1:length(opt.eventtypes)
eventlabellegend = [eventlabellegend sprintf('%s = %s\n',opt.eventtypes{iType},opt.eventtypecolorlabels{iType})];
end
fprintf(eventlabellegend);
end
% save stuff to able to shift event labels downwards when they occur at the same time-point
eventcol = cell(1,numel(event));
eventstr = cell(1,numel(event));
eventtim = NaN(1,numel(event));
% gather event info and plot lines
for ievent = 1:numel(event)
try
if strcmp(cfg.ploteventlabels , 'type=value')
if isempty(event(ievent).value)
eventstr{ievent} = '';
else
eventstr{ievent} = sprintf('%s = %s', event(ievent).type, num2str(event(ievent).value)); % value can be both number and string
end
eventcol{ievent} = 'k';
elseif strcmp(cfg.ploteventlabels , 'colorvalue')
eventcol{ievent} = opt.eventtypescolors(match_str(opt.eventtypes, event(ievent).type),:);
eventstr{ievent} = sprintf('%s', num2str(event(ievent).value)); % value can be both number and string
end
catch
eventstr{ievent} = 'unknown';
eventcol{ievent} = 'k';
end
eventtim(ievent) = (event(ievent).sample-begsample)/opt.fsample + opt.hlim(1);
lh = ft_plot_line([eventtim(ievent) eventtim(ievent)], [-1 1], 'tag', 'event', 'color', eventcol{ievent}, 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1]);
% store this data in the line object so that it can be displayed in the
% data cursor (see subfunction datacursortext below)
setappdata(lh, 'ft_databrowser_linetype', 'event');
setappdata(lh, 'ft_databrowser_eventtime', eventtim(ievent));
setappdata(lh, 'ft_databrowser_eventtype', event(ievent).type);
setappdata(lh, 'ft_databrowser_eventvalue', event(ievent).value);
end
% count the consecutive occurrence of each time point
concount = NaN(1,numel(event));
for ievent = 1:numel(event)
concount(ievent) = sum(eventtim(ievent)==eventtim(1:ievent-1));
end
% plot event labels
for ievent = 1:numel(event)
ft_plot_text(eventtim(ievent), 0.9-concount(ievent)*.06, eventstr{ievent}, 'tag', 'event', 'Color', eventcol{ievent}, 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1], 'interpreter', 'none', 'FontSize', cfg.fontsize, 'FontUnits', cfg.fontunits);
end
end % if viewmode appropriate for events
end % if user wants to see event marks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%fprintf('plotting data...\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delete(findobj(h, 'tag', 'timecourse'));
delete(findobj(h, 'tag', 'identify'));
% not removing channel labels, they cause the bulk of redrawing time for the slow text function (note, interpreter = none hardly helps)
% warning, when deleting the labels using the line below, one can easily tripple the excution time of redrawing in viewmode = vertical (see bug 2065)
%delete(findobj(h, 'tag', 'chanlabel'));
if strcmp(cfg.viewmode, 'butterfly')
set(gca, 'ColorOrder',opt.chancolors(chanindx,:)) % plot vector does not clear axis, therefore this is possible
ft_plot_vector(tim, dat, 'box', false, 'tag', 'timecourse', 'hpos', opt.laytime.pos(1,1), 'vpos', opt.laytime.pos(1,2), 'width', opt.laytime.width(1), 'height', opt.laytime.height(1), 'hlim', opt.hlim, 'vlim', opt.vlim, 'linewidth', cfg.linewidth);
set(gca, 'FontSize', cfg.axisfontsize, 'FontUnits', cfg.axisfontunits);
% two ticks per channel
yTick = sort([
opt.laytime.pos(:,2)+(opt.laytime.height/2)
opt.laytime.pos(:,2)+(opt.laytime.height/4)
opt.laytime.pos(:,2)
opt.laytime.pos(:,2)-(opt.laytime.height/4)
opt.laytime.pos(:,2)-(opt.laytime.height/2)
]); % sort
yTickLabel = {num2str(yTick.*range(opt.vlim) + opt.vlim(1))};
set(gca, 'yTick', yTick, 'yTickLabel', yTickLabel)
elseif any(strcmp(cfg.viewmode, {'component', 'vertical'}))
% determine channel indices into data outside of loop
laysels = match_str(opt.laytime.label, opt.hdr.label);
% delete old chan labels before renewing, if they need to be renewed
if changedchanflg % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
delete(findobj(h,'tag', 'chanlabel'));
end
for i = 1:length(chanindx)
if strcmp(cfg.viewmode, 'component')
color = 'k';
else
color = opt.chancolors(chanindx(i),:);
end
datsel = i;
laysel = laysels(i);
if ~isempty(datsel) && ~isempty(laysel)
% only plot chanlabels when necessary
if changedchanflg % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
% determine how many labels to skip in case of 'some'
if opt.plotLabelFlag == 2 && strcmp(cfg.fontunits,'points')
% determine number of labels to plot by estimating overlap using current figure size
% the idea is that figure height in pixels roughly corresponds to the amount of letters at cfg.fontsize (points) put above each other without overlap
figheight = get(h,'Position');
figheight = figheight(4);
labdiscfac = ceil(numel(chanindx) ./ (figheight ./ (cfg.fontsize+6))); % 6 added, so that labels are not too close together (i.e. overlap if font was 6 points bigger)
else
labdiscfac = 10;
end
if opt.plotLabelFlag == 1 || (opt.plotLabelFlag == 2 && mod(i,labdiscfac)==0)
ft_plot_text(labelx(laysel), labely(laysel), opt.hdr.label(chanindx(i)), 'tag', 'chanlabel', 'HorizontalAlignment', 'right', 'interpreter', 'none', 'FontSize', cfg.fontsize, 'FontUnits', cfg.fontunits, 'linewidth', cfg.linewidth);
set(gca, 'FontSize', cfg.axisfontsize, 'FontUnits', cfg.axisfontunits);
end
end
lh = ft_plot_vector(tim, dat(datsel, :), 'box', false, 'color', color, 'tag', 'timecourse', 'hpos', opt.laytime.pos(laysel,1), 'vpos', opt.laytime.pos(laysel,2), 'width', opt.laytime.width(laysel), 'height', opt.laytime.height(laysel), 'hlim', opt.hlim, 'vlim', opt.vlim, 'linewidth', cfg.linewidth);
% store this data in the line object so that it can be displayed in the
% data cursor (see subfunction datacursortext below)
setappdata(lh, 'ft_databrowser_linetype', 'channel');
setappdata(lh, 'ft_databrowser_label', opt.hdr.label(chanindx(i)));
setappdata(lh, 'ft_databrowser_xaxis', tim);
setappdata(lh, 'ft_databrowser_yaxis', dat(datsel,:));
end
end
% plot yticks
if length(chanindx)> 6
% plot yticks at each label in case adaptive labeling is used (cfg.plotlabels = 'some')
% otherwise, use the old ytick plotting based on hard-coded number of channels
if opt.plotLabelFlag == 2
if opt.plotLabelFlag == 2 && strcmp(cfg.fontunits,'points')
% determine number of labels to plot by estimating overlap using current figure size
% the idea is that figure height in pixels roughly corresponds to the amount of letters at cfg.fontsize (points) put above each other without overlap
figheight = get(h,'Position');
figheight = figheight(4);
labdiscfac = ceil(numel(chanindx) ./ (figheight ./ (cfg.fontsize+2))); % 2 added, so that labels are not too close together (i.e. overlap if font was 2 points bigger)
else
labdiscfac = 10;
end
yTick = sort(labely(mod(chanindx,labdiscfac)==0),'ascend'); % sort is required, yticks should be increasing in value
yTickLabel = [];
else
if length(chanindx)>19
% no space for yticks
yTick = [];
yTickLabel = [];
elseif length(chanindx)> 6
% one tick per channel
yTick = sort([
opt.laytime.pos(:,2)+(opt.laytime.height(laysel)/4)
opt.laytime.pos(:,2)-(opt.laytime.height(laysel)/4)
]);
yTickLabel = {[.25 .75] .* range(opt.vlim) + opt.vlim(1)};
end
end
else
% two ticks per channel
yTick = sort([
opt.laytime.pos(:,2)+(opt.laytime.height(laysel)/2)
opt.laytime.pos(:,2)+(opt.laytime.height(laysel)/4)
opt.laytime.pos(:,2)-(opt.laytime.height(laysel)/4)
opt.laytime.pos(:,2)-(opt.laytime.height(laysel)/2)
]); % sort
yTickLabel = {[.0 .25 .75 1] .* range(opt.vlim) + opt.vlim(1)};
end
yTickLabel = repmat(yTickLabel, 1, length(chanindx));
set(gca, 'yTick', yTick, 'yTickLabel', yTickLabel);
else
% the following is implemented for 2column, 3column, etcetera.
% it also works for topographic layouts, such as CTF151
% determine channel indices into data outside of loop
laysels = match_str(opt.laytime.label, opt.hdr.label);
for i = 1:length(chanindx)
color = opt.chancolors(chanindx(i),:);
datsel = i;
laysel = laysels(i);
if ~isempty(datsel) && ~isempty(laysel)
lh = ft_plot_vector(tim, dat(datsel, :), 'box', false, 'color', color, 'tag', 'timecourse', 'hpos', opt.laytime.pos(laysel,1), 'vpos', opt.laytime.pos(laysel,2), 'width', opt.laytime.width(laysel), 'height', opt.laytime.height(laysel), 'hlim', opt.hlim, 'vlim', opt.vlim, 'linewidth', cfg.linewidth);
% store this data in the line object so that it can be displayed in the
% data cursor (see subfunction datacursortext below)
setappdata(lh, 'ft_databrowser_linetype', 'channel');
setappdata(lh, 'ft_databrowser_label', opt.hdr.label(chanindx(i)));
setappdata(lh, 'ft_databrowser_xaxis', tim);
setappdata(lh, 'ft_databrowser_yaxis', dat(datsel,:));
end
end
% ticks are not supported with such a layout
yTick = [];
yTickLabel = [];
yTickLabel = repmat(yTickLabel, 1, length(chanindx));
set(gca, 'yTick', yTick, 'yTickLabel', yTickLabel);
end % if strcmp viewmode
if any(strcmp(cfg.viewmode, {'butterfly', 'component', 'vertical'}))
nticks = 11;
xTickLabel = cellstr(num2str( linspace(tim(1), tim(end), nticks)' , '%1.2f'))';
xTick = linspace(ax(1), ax(2), nticks);
if nsamplepad>0
nlabindat = sum(linspace(tim(1), tim(end), nticks) < tim(end-nsamplepad));
xTickLabel(nlabindat+1:end) = repmat({' '}, [1 nticks-nlabindat]);
end
set(gca, 'xTick', xTick, 'xTickLabel', xTickLabel)
xlabel('time');
else
set(gca, 'xTick', [], 'xTickLabel', [])
end
if strcmp(cfg.viewmode, 'component')
% determine the position of each of the original channels for the topgraphy
laychan = opt.layorg;
% determine the position of each of the topographies
laytopo.pos(:,1) = opt.laytime.pos(:,1) - opt.laytime.width/2 - opt.laytime.height;
laytopo.pos(:,2) = opt.laytime.pos(:,2) + opt.laytime.height/2;
laytopo.width = opt.laytime.height;
laytopo.height = opt.laytime.height;
laytopo.label = opt.laytime.label;
if ~isequal(opt.chanindx, chanindx)
opt.chanindx = chanindx;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fprintf('plotting component topographies...\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delete(findobj(h, 'tag', 'topography'));
[sel1, sel2] = match_str(opt.orgdata.topolabel, laychan.label);
chanx = laychan.pos(sel2,1);
chany = laychan.pos(sel2,2);
if strcmp(cfg.compscale, 'global')
for i=1:length(chanindx) % loop through all components to get max and min
zmin(i) = min(opt.orgdata.topo(sel1,chanindx(i)));
zmax(i) = max(opt.orgdata.topo(sel1,chanindx(i)));
end
if strcmp(cfg.zlim, 'maxmin')
zmin = min(zmin);
zmax = max(zmax);
elseif strcmp(cfg.zlim, 'maxabs')
zmax = max([abs(zmin) abs(zmax)]);
zmin = -zmax;
else
error('configuration option for component scaling could not be recognized');
end
end
for i=1:length(chanindx)
% plot the topography of this component
laysel = match_str(opt.laytime.label, opt.hdr.label(chanindx(i)));
chanz = opt.orgdata.topo(sel1,chanindx(i));
if strcmp(cfg.compscale, 'local')
% compute scaling factors here
if strcmp(cfg.zlim, 'maxmin')
zmin = min(chanz);
zmax = max(chanz);
elseif strcmp(cfg.zlim, 'maxabs')
zmax = max(abs(chanz));
zmin = -zmax;
end
end
% scaling
chanz = (chanz - zmin) ./ (zmax- zmin);
% laychan is the actual topo layout, in pixel units for .mat files
% laytopo is a vertical layout determining where to plot each topo, with one entry per component
ft_plot_topo(chanx, chany, chanz, 'mask', laychan.mask, 'interplim', 'mask', 'outline', laychan.outline, 'tag', 'topography', 'hpos', laytopo.pos(laysel,1)-laytopo.width(laysel)/2, 'vpos', laytopo.pos(laysel,2)-laytopo.height(laysel)/2, 'width', laytopo.width(laysel), 'height', laytopo.height(laysel), 'gridscale', 45);
%axis equal
%drawnow
end
caxis([0 1]);
end % if redraw_topo
set(gca, 'yTick', [])
ax(1) = min(laytopo.pos(:,1) - laytopo.width);
ax(2) = max(opt.laytime.pos(:,1) + opt.laytime.width/2);
ax(3) = min(opt.laytime.pos(:,2) - opt.laytime.height/2);
ax(4) = max(opt.laytime.pos(:,2) + opt.laytime.height/2);
% add white space to bottom and top so channels are not out-of-axis for the majority
% NOTE: there is another spot above with the same code, which should be kept the same as this
% determine amount of vertical padding using cfg.verticalpadding
if ~isnumeric(cfg.verticalpadding) && strcmp(cfg.verticalpadding,'auto')
% determine amount of padding using the number of channels
if numel(cfg.channel)<=6
wsfac = 0;
elseif numel(cfg.channel)>6 && numel(cfg.channel)<=10
wsfac = 0.01 * (ax(4)-ax(3));
else
wsfac = 0.02 * (ax(4)-ax(3));
end
else
wsfac = cfg.verticalpadding * (ax(4)-ax(3));
end
ax(3) = ax(3) - wsfac;
ax(4) = ax(4) + wsfac;
axis(ax)
end % plotting topographies
startim = tim(1);
if nsamplepad>0
endtim = tim(end-nsamplepad);
else
endtim = tim(end);
end
if ~strcmp(opt.trialviewtype, 'trialsegment')
str = sprintf('%s %d/%d, time from %g to %g s', opt.trialviewtype, opt.trlop, size(opt.trlvis,1), startim, endtim);
else
str = sprintf('trial %d/%d: segment: %d/%d , time from %g to %g s', opt.trllock, size(opt.trlorg,1), opt.trlop, size(opt.trlvis,1), startim, endtim);
end
title(str);
% possibly adds some responsiveness if the 'thing' is clogged
drawnow
setappdata(h, 'opt', opt);
setappdata(h, 'cfg', cfg);
end % function redraw_cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
end % function parseKeyboardEvent
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cursortext = datacursortext(obj, event_obj)
pos = get(event_obj, 'position');
linetype = getappdata(event_obj.Target, 'ft_databrowser_linetype');
if strcmp(linetype, 'event')
cursortext = sprintf('%s = %d\nt = %g s', getappdata(event_obj.Target, 'ft_databrowser_eventtype'), getappdata(event_obj.Target, 'ft_databrowser_eventvalue'), getappdata(event_obj.Target, 'ft_databrowser_eventtime'));
elseif strcmp(linetype, 'channel')
% get plotted x axis
plottedX = get(event_obj.Target, 'xdata');
% determine values of data at real x axis
timeAxis = getappdata(event_obj.Target, 'ft_databrowser_xaxis');
dataAxis = getappdata(event_obj.Target, 'ft_databrowser_yaxis');
tInd = nearest(plottedX, pos(1));
% get label
chanLabel = getappdata(event_obj.Target, 'ft_databrowser_label');
chanLabel = chanLabel{1};
cursortext = sprintf('t = %g\n%s = %g', timeAxis(tInd), chanLabel, dataAxis(tInd));
else
cursortext = '<no cursor available>';
% explicitly tell the user there is no info because the x-axis and
% y-axis do not correspond to real data values (both are between 0 and
% 1 always)
end
end % function datacursortext
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function winresize_cb(h,eventdata)
% check whether the current figure is the browser
if get(0,'currentFigure') ~= h
return
end
% get opt, set flg for redrawing channels, redraw
h = getparent(h);
opt = getappdata(h, 'opt');
opt.changedchanflg = true; % trigger for redrawing channel labels and preparing layout again (see bug 2065 and 2878)
setappdata(h, 'opt', opt);
redraw_cb(h,eventdata);
end % function datacursortext
|
github
|
lcnbeapp/beapp-master
|
ft_singleplotER.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_singleplotER.m
| 30,630 |
utf_8
|
b819e880153de426498ff70b6e529657
|
function [cfg] = ft_singleplotER(cfg, varargin)
% FT_SINGLEPLOTER plots the event-related fields or potentials of a single
% channel or the average over multiple channels. Multiple datasets can be
% overlayed.
%
% Use as
% ft_singleplotER(cfg, data)
% or
% ft_singleplotER(cfg, data1, data2, ..., datan)
%
% The data can be an erp/erf produced by FT_TIMELOCKANALYSIS, a power
% spectrum produced by FT_FREQANALYSIS or connectivity spectrum produced by
% FT_CONNECTIVITYANALYSIS.
%
% The configuration can have the following parameters:
% cfg.parameter = field to be plotted on y-axis (default depends on data.dimord)
% 'avg', 'powspctrm' or 'cohspctrm'
% cfg.maskparameter = field in the first dataset to be used for masking of data
% (not possible for mean over multiple channels, or when input contains multiple subjects
% or trials)
% cfg.maskstyle = style used for masking of data, 'box', 'thickness' or 'saturation' (default = 'box')
% cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = 'maxmin', 'maxabs', 'zeromax', 'minzero', or [ymin ymax] (default = 'maxmin')
% cfg.channel = nx1 cell-array with selection of channels (default = 'all'),
% see ft_channelselection for details
% cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui'
% cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see ft_timelockbaseline
% cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute')
% cfg.trials = 'all' or a selection given as a 1xn vector (default = 'all')
% cfg.fontsize = font size of title (default = 8)
% cfg.hotkeys = enables hotkeys (up/down/left/right arrows) for dynamic x/y axis translation (Ctrl+) and zoom adjustment
% cfg.interactive = interactive plot 'yes' or 'no' (default = 'yes')
% in a interactive plot you can select areas and produce a new
% interactive plot when a selected area is clicked. multiple areas
% can be selected by holding down the shift key.
% cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = [])
% cfg.linestyle = linestyle/marker type, see options of the PLOT function (default = '-')
% can be a single style for all datasets, or a cell-array containing one style for each dataset
% cfg.linewidth = linewidth in points (default = 0.5)
% cfg.graphcolor = color(s) used for plotting the dataset(s) (default = 'brgkywrgbkywrgbkywrgbkyw')
% alternatively, colors can be specified as nx3 matrix of rgb values
% cfg.directionality = '', 'inflow' or 'outflow' specifies for
% connectivity measures whether the inflow into a
% node, or the outflow from a node is plotted. The
% (default) behavior of this option depends on the dimor
% of the input data (see below).
%
% For the plotting of directional connectivity data the cfg.directionality
% option determines what is plotted. The default value and the supported
% functionality depend on the dimord of the input data. If the input data
% is of dimord 'chan_chan_XXX', the value of directionality determines
% whether, given the reference channel(s), the columns (inflow), or rows
% (outflow) are selected for plotting. In this situation the default is
% 'inflow'. Note that for undirected measures, inflow and outflow should
% give the same output. If the input data is of dimord 'chancmb_XXX', the
% value of directionality determines whether the rows in data.labelcmb are
% selected. With 'inflow' the rows are selected if the refchannel(s) occur in
% the right column, with 'outflow' the rows are selected if the
% refchannel(s) occur in the left column of the labelcmb-field. Default in
% this case is '', which means that all rows are selected in which the
% refchannel(s) occur. This is to robustly support linearly indexed
% undirected connectivity metrics. In the situation where undirected
% connectivity measures are linearly indexed, specifying 'inflow' or
% 'outflow' can result in unexpected behavior.
%
% to facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% if you specify this option the input data will be read from a *.mat
% file on disk. this mat files should contain only a single variable named 'data',
% corresponding to the input structure.
%
% See also FT_SINGLEPLOTTFR, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR
% Undocumented local options:
% cfg.zlim/xparam (set to a specific frequency range or time range [zmax zmin] for an average
% over the frequency/time bins for TFR data. Use in conjunction with e.g. xparam = 'time', and cfg.parameter = 'powspctrm').
% cfg.preproc
% Copyright (C) 2003-2006, Ole Jensen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam'});
% set the defaults
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.comment = ft_getopt(cfg, 'comment', strcat([date '\n']));
cfg.axes = ft_getopt(cfg,' axes', 'yes');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.graphcolor = ft_getopt(cfg, 'graphcolor', 'brgkywrgbkywrgbkywrgbkyw');
cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no');
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.renderer = ft_getopt(cfg, 'renderer', []);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter',[]);
cfg.linestyle = ft_getopt(cfg, 'linestyle', '-');
cfg.linewidth = ft_getopt(cfg, 'linewidth', 0.5);
cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'box');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.directionality = ft_getopt(cfg, 'directionality', []);
cfg.figurename = ft_getopt(cfg, 'figurename', []);
cfg.preproc = ft_getopt(cfg, 'preproc', []);
cfg.frequency = ft_getopt(cfg, 'frequency', 'all'); % needed for frequency selection with TFR data
cfg.latency = ft_getopt(cfg, 'latency', 'all'); % needed for latency selection with TFR data, FIXME, probably not used
Ndata = numel(varargin);
% interactive plotting is not allowed with more than 1 input
% if Ndata >1 && strcmp(cfg.interactive, 'yes')
% error('interactive plotting is not supported with more than 1 input data set');
% end
% FIXME rename directionality and cohrefchannel in more meaningful options
if ischar(cfg.graphcolor)
graphcolor = ['k' cfg.graphcolor];
elseif isnumeric(cfg.graphcolor)
graphcolor = [0 0 0; cfg.graphcolor];
end
% check for linestyle being a cell-array, check it's length, and lengthen it if does not have enough styles in it
if ischar(cfg.linestyle)
cfg.linestyle = {cfg.linestyle};
end
if Ndata > 1
if (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) > 1)
error('either specify cfg.linestyle as a cell-array with one cell for each dataset, or only specify one linestyle')
elseif (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) == 1)
tmpstyle = cfg.linestyle{1};
cfg.linestyle = cell(Ndata , 1);
for idataset = 1:Ndata
cfg.linestyle{idataset} = tmpstyle;
end
end
end
% ensure that the input is correct, also backward compatibility with old data structures:
dtype = cell(Ndata, 1);
for i=1:Ndata
% check if the input data is valid for this function
varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'timelock', 'freq'});
dtype{i} = ft_datatype(varargin{i});
% this is needed for correct treatment of graphcolor later on
if nargin>1,
if ~isempty(inputname(i+1))
iname{i+1} = inputname(i+1);
else
iname{i+1} = ['input',num2str(i,'%02d')];
end
else
iname{i+1} = cfg.inputfile{i};
end
end
if Ndata >1,
if ~all(strcmp(dtype{1}, dtype))
error('input data are of different type; this is not supported');
end
end
dtype = dtype{1};
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
% ensure that the preproc specific options are located in the cfg.preproc
% substructure, but also ensure that the field 'refchannel' is present at the
% highest level in the structure. This is a little hack by JM because the field
% refchannel can also refer to the plotting of a connectivity metric. Also,
% the freq2raw conversion does not work at all in the call to ft_preprocessing.
% Therefore, for now, the preprocessing will not be done when there is freq
% data in the input. A more generic solution should be considered.
if isfield(cfg, 'refchannel'), refchannelincfg = cfg.refchannel; end
if ~any(strcmp({'freq','freqmvar'},dtype)),
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'});
end
if exist('refchannelincfg', 'var'), cfg.refchannel = refchannelincfg; end
if ~isempty(cfg.preproc)
% preprocess the data, i.e. apply filtering, baselinecorrection, etc.
fprintf('applying preprocessing options\n');
if ~isfield(cfg.preproc, 'feedback')
cfg.preproc.feedback = cfg.interactive;
end
for i=1:Ndata
varargin{i} = ft_preprocessing(cfg.preproc, varargin{i});
end
end
% set x/y/parameter defaults according to datatype and dimord
switch dtype
case 'timelock'
xparam = 'time';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'avg');
case 'freq'
if sum(ismember(dimtok, 'time'))
xparam = 'time';
yparam = 'freq';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
elseif sum(ismember(dimtok, 'time'))
xparam = 'freq';
yparam = 'time';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
else
xparam = 'freq';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
end
case 'comp'
% not supported
otherwise
% not supported
end
% user specified own fields, but no yparam (which is not asked in help)
if exist('xparam', 'var') && isfield(cfg, 'parameter') && ~exist('yparam', 'var')
yparam = '';
end
if isfield(cfg, 'channel') && isfield(varargin{1}, 'label')
cfg.channel = ft_channelselection(cfg.channel, varargin{1}.label);
elseif isfield(cfg, 'channel') && isfield(varargin{1}, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:)));
end
% check whether rpt/subj is present and remove if necessary and whether
hasrpt = sum(ismember(dimtok, {'rpt' 'subj'}));
if strcmp(dtype, 'timelock') && hasrpt,
tmpcfg = [];
tmpcfg.trials = cfg.trials;
for i=1:Ndata
varargin{i} = ft_timelockanalysis(tmpcfg, varargin{i});
end
if ~strcmp(cfg.parameter, 'avg')
% rename avg back into the parameter
varargin{i}.(cfg.parameter) = varargin{i}.avg;
varargin{i} = rmfield(varargin{i}, 'avg');
end
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
elseif strcmp(dtype, 'freq') && hasrpt,
% this also deals with fourier-spectra in the input
% or with multiple subjects in a frequency domain stat-structure
% on the fly computation of coherence spectrum is not supported
for i=1:Ndata
if isfield(varargin{i}, 'crsspctrm'),
varargin{i} = rmfield(varargin{i}, 'crsspctrm');
end
end
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.jackknife = 'no';
for i=1:Ndata
if isfield(cfg, 'parameter') && ~strcmp(cfg.parameter,'powspctrm')
% freqdesctiptives will only work on the powspctrm field
% hence a temporary copy of the data is needed
tempdata.dimord = varargin{i}.dimord;
tempdata.freq = varargin{i}.freq;
tempdata.label = varargin{i}.label;
tempdata.powspctrm = varargin{i}.(cfg.parameter);
if isfield(varargin{i}, 'cfg') tempdata.cfg = varargin{i}.cfg; end
tempdata = ft_freqdescriptives(tmpcfg, tempdata);
varargin{i}.(cfg.parameter) = tempdata.powspctrm;
clear tempdata
else
varargin{i} = ft_freqdescriptives(tmpcfg, varargin{i});
end
end
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
end
% apply baseline correction
if ~strcmp(cfg.baseline, 'no')
for i=1:Ndata
if strcmp(dtype, 'timelock') && strcmp(xparam, 'time')
varargin{i} = ft_timelockbaseline(cfg, varargin{i});
elseif strcmp(dtype, 'freq') && strcmp(xparam, 'time')
varargin{i} = ft_freqbaseline(cfg, varargin{i});
elseif strcmp(dtype, 'freq') && strcmp(xparam, 'freq')
error('baseline correction is not supported for spectra without a time dimension');
else
warning('baseline correction not applied, please set xparam');
end
end
end
% handle the bivariate case
% check for bivariate metric with 'chan_chan' in the dimord
selchan = strmatch('chan', dimtok);
isfull = length(selchan)>1;
% check for bivariate metric with a labelcmb
haslabelcmb = isfield(varargin{1}, 'labelcmb');
if (isfull || haslabelcmb) && (isfield(varargin{1}, cfg.parameter) && ~strcmp(cfg.parameter, 'powspctrm'))
% a reference channel is required:
if ~isfield(cfg, 'refchannel')
error('no reference channel is specified');
end
% check for refchannel being part of selection
if ~strcmp(cfg.refchannel,'gui')
if haslabelcmb
cfg.refchannel = ft_channelselection(cfg.refchannel, unique(varargin{1}.labelcmb(:)));
else
cfg.refchannel = ft_channelselection(cfg.refchannel, varargin{1}.label);
end
if (isfull && ~any(ismember(varargin{1}.label, cfg.refchannel))) || ...
(haslabelcmb && ~any(ismember(varargin{1}.labelcmb(:), cfg.refchannel)))
error('cfg.refchannel is a not present in the (selected) channels)')
end
end
% interactively select the reference channel
if strcmp(cfg.refchannel, 'gui')
error('cfg.refchannel = ''gui'' is not supported in ft_singleplotER');
end
for i=1:Ndata
if ~isfull,
% convert 2-dimensional channel matrix to a single dimension:
if isempty(cfg.directionality)
sel1 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:,2)));
sel2 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'outflow')
sel1 = [];
sel2 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'inflow')
sel1 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:,2)));
sel2 = [];
end
fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.parameter);
if length(sel1)+length(sel2)==0
error('there are no channels selected for plotting: you may need to look at the specification of cfg.directionality');
end
varargin{i}.(cfg.parameter) = varargin{i}.(cfg.parameter)([sel1;sel2],:,:);
varargin{i}.label = [varargin{i}.labelcmb(sel1,1);varargin{i}.labelcmb(sel2,2)];
varargin{i}.labelcmb = varargin{i}.labelcmb([sel1;sel2],:);
varargin{i} = rmfield(varargin{i}, 'labelcmb');
else
% general case
sel = match_str(varargin{i}.label, cfg.refchannel);
siz = [size(varargin{i}.(cfg.parameter)) 1];
if strcmp(cfg.directionality, 'inflow') || isempty(cfg.directionality)
%the interpretation of 'inflow' and 'outflow' depend on
%the definition in the bivariate representation of the data
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(:,sel,:),2),[siz(1) 1 siz(3:end)]);
sel1 = 1:siz(1);
sel2 = sel;
meandir = 2;
elseif strcmp(cfg.directionality, 'outflow')
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(sel,:,:),1),[siz(1) 1 siz(3:end)]);
sel1 = sel;
sel2 = 1:siz(1);
meandir = 1;
elseif strcmp(cfg.directionality, 'ff-fd')
error('cfg.directionality = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_singleplotER');
elseif strcmp(cfg.directionality, 'fd-ff')
error('cfg.directionality = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_singleplotER');
end %if directionality
end %if ~isfull
end %for i
end %handle the bivariate data
% get physical min/max range of x
if strcmp(cfg.xlim,'maxmin')
% find maxmin throughout all varargins:
xmin = [];
xmax = [];
for i=1:Ndata
xmin = min([xmin varargin{i}.(xparam)]);
xmax = max([xmax varargin{i}.(xparam)]);
end
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% get the index of the nearest bin
for i=1:Ndata
xidmin(i,1) = nearest(varargin{i}.(xparam), xmin);
xidmax(i,1) = nearest(varargin{i}.(xparam), xmax);
end
if strcmp('freq', yparam) && strcmp('freq', dtype)
tmpcfg = keepfields(cfg, {'parameter'});
tmpcfg.avgoverfreq = 'yes';
tmpcfg.frequency = cfg.frequency;%cfg.zlim;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
elseif strcmp('time', yparam) && strcmp('freq', dtype)
tmpcfg = keepfields(cfg, {'parameter'});
tmpcfg.avgovertime = 'yes';
tmpcfg.latency = cf.latency;%cfg.zlim;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
end
cla
hold on;
colorlabels = [];
% plot each data set:
for i=1:Ndata
if isfield(varargin{1}, 'label')
selchannel = ft_channelselection(cfg.channel, varargin{i}.label);
elseif isfield(varargin{1}, 'labelcmb')
selchannel = ft_channelselection(cfg.channel, unique(varargin{i}.labelcmb(:)));
else
error('the input data does not contain a label or labelcmb-field');
end
% make vector dat with one value for each channel
dat = varargin{i}.(cfg.parameter);
% get dimord dimensions
dims = textscan(varargin{i}.dimord,'%s', 'Delimiter', '_');
dims = dims{1};
ydim = find(strcmp(yparam, dims));
xdim = find(strcmp(xparam, dims));
zdim = setdiff(1:ndims(dat), [ydim xdim]);
% and permute to make sure that dimensions are in the correct order
dat = permute(dat, [zdim(:)' ydim xdim]);
xval = varargin{i}.(xparam);
% take subselection of channels
% this works for bivariate data with labelcmb because at this point the
% data has a label-field
sellab = match_str(varargin{i}.label, selchannel);
% if ~isempty(yparam)
% if isfull
% dat = dat(sel1, sel2, ymin:ymax, xidmin(i):xidmax(i));
% dat = nanmean(nanmean(dat, meandir), 3);
% siz = size(dat);
% %fixmedat = reshape(dat, [siz(1:2) siz(4)]);
% dat = reshape(dat, [siz(1) siz(3)]);
% dat = dat(sellab, :);
% elseif haslabelcmb
% dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i));
% dat = nanmean(dat, 2);
% siz = size(dat);
% dat = reshape(dat, [siz(1) siz(3)]);
% else
% dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i));
% dat = nanmean(nanmean(dat, 3), 2);
% siz = size(dat);
% dat = reshape(dat, [siz(1) siz(3)]);
% end
% else
if isfull
dat = dat(sel1, sel2, xidmin(i):xidmax(i));
dat = nanmean(dat, meandir);
siz = size(dat);
siz(find(siz(1:2)==1)) = [];
dat = reshape(dat, siz);
dat = dat(sellab, :);
elseif haslabelcmb
dat = dat(sellab, xidmin(i):xidmax(i));
else
dat = dat(sellab, xidmin(i):xidmax(i));
end
% end
xval = xval(xidmin(i):xidmax(i));
datavector = reshape(mean(dat, 1), [1 numel(xval)]); % average over channels
% make mask
if ~isempty(cfg.maskparameter)
datmask = varargin{i}.(cfg.maskparameter)(sellab,:);
if size(datmask,2)>1
datmask = datmask(:,xidmin(i):xidmax(i));
else
datmask = datmask(xidmin(i):xidmax(i));
end
maskdatavector = reshape(mean(datmask,1), [1 numel(xval)]);
else
maskdatavector = [];
end
if Ndata > 1
if ischar(graphcolor); colorlabels = [colorlabels iname{i+1} '=' graphcolor(i+1) '\n'];
elseif isnumeric(graphcolor); colorlabels = [colorlabels iname{i+1} '=' num2str(graphcolor(i+1,:)) '\n'];
end
end
if ischar(graphcolor); color = graphcolor(i+1);
elseif isnumeric(graphcolor); color = graphcolor(i+1,:);
end
% update ymin and ymax for the current data set:
if ischar(cfg.ylim)
if i==1
ymin = [];
ymax = [];
end
if strcmp(cfg.ylim,'maxmin')
% select the channels in the data that match with the layout:
ymin = min([ymin min(datavector)]);
ymax = max([ymax max(datavector)]);
elseif strcmp(cfg.ylim,'maxabs')
ymax = max([ymax max(abs(datavector))]);
ymin = -ymax;
elseif strcmp(cfg.ylim,'zeromax')
ymin = 0;
ymax = max([ymax max(datavector)]);
elseif strcmp(cfg.ylim,'minzero')
ymin = min([ymin min(datavector)]);
ymax = 0;
end;
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% only plot the mask once, for the first line (it's the same anyway for
% all lines, and if plotted multiple times, it will overlay the others
if i>1 && strcmp(cfg.maskstyle, 'box')
ft_plot_vector(xval, datavector, 'style', cfg.linestyle{i}, 'color', color, ...
'linewidth', cfg.linewidth, 'hlim', cfg.xlim, 'vlim', cfg.ylim);
else
ft_plot_vector(xval, datavector, 'style', cfg.linestyle{i}, 'color', color, ...
'highlight', maskdatavector, 'highlightstyle', cfg.maskstyle, 'linewidth', cfg.linewidth, ...
'hlim', cfg.xlim, 'vlim', cfg.ylim);
end
end
% set xlim and ylim:
xlim([xmin xmax]);
ylim([ymin ymax]);
% adjust mask box extents to ymin/ymax
if ~isempty(cfg.maskparameter)
ptchs = findobj(gcf,'type','patch');
for i = 1:length(ptchs)
YData = get(ptchs(i),'YData');
YData(YData == min(YData)) = ymin;
YData(YData == max(YData)) = ymax;
set(ptchs(i),'YData',YData);
end
end
if strcmp('yes',cfg.hotkeys)
% attach data and cfg to figure and attach a key listener to the figure
set(gcf, 'keypressfcn', {@key_sub, xmin, xmax, ymin, ymax})
end
if isfield(cfg, 'dataname')
dataname = cfg.dataname;
elseif nargin > 1
dataname = inputname(2);
cfg.dataname = {inputname(2)};
for k = 2:Ndata
dataname = [dataname ', ' inputname(k+1)];
cfg.dataname{end+1} = inputname(k+1);
end
else
dataname = cfg.inputfile;
end
% set the figure window title, add the channel labels if number is small
if isempty(get(gcf,'Name'))
if length(sellab) < 5
chans = join_str(',', cfg.channel);
else
chans = '<multiple channels>';
end
if isempty(cfg.figurename)
set(gcf, 'Name', sprintf('%d: %s: %s (%s)', double(gcf), mfilename, join_str(', ',dataname), chans));
set(gcf, 'NumberTitle', 'off');
else
set(gcf, 'name', cfg.figurename);
set(gcf, 'NumberTitle', 'off');
end
end
% make the figure interactive
if strcmp(cfg.interactive, 'yes')
% add the dataname to the figure
% this is used in the callbacks
info = guidata(gcf);
info.dataname = dataname;
guidata(gcf, info);
% attach data to the figure with the current axis handle as a name
dataname = fixname(num2str(double(gca)));
setappdata(gcf,dataname,varargin);
set(gcf, 'windowbuttonupfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg}, 'event', 'windowbuttonupfcn'});
set(gcf, 'windowbuttondownfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg}, 'event', 'windowbuttondownfcn'});
set(gcf, 'windowbuttonmotionfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg}, 'event', 'windowbuttonmotionfcn'});
end
% create title text containing channel name(s) and channel number(s):
if length(sellab) == 1
t = [char(cfg.channel) ' / ' num2str(sellab) ];
else
t = sprintf('mean(%0s)', join_str(',', cfg.channel));
end
h = title(t,'fontsize', cfg.fontsize);
% set renderer if specified
if ~isempty(cfg.renderer)
set(gcf, 'renderer', cfg.renderer)
end
if false
% FIXME this is for testing purposes
% Define a context menu; it is not attached to anything
cmlines = uicontextmenu;
% Define the context menu items and install their callbacks
uimenu(cmlines, 'Label', 'dashed', 'Callback', 'set(gco, ''LineStyle'', ''--'')');
uimenu(cmlines, 'Label', 'dotted', 'Callback', 'set(gco, ''LineStyle'', '':'')');
uimenu(cmlines, 'Label', 'solid', 'Callback', 'set(gco, ''LineStyle'', ''-'')');
% Locate line objects
hlines = findall(gca, 'Type', 'line');
% Attach the context menu to each line
for line = 1:length(hlines)
set(hlines(line), 'uicontextmenu', cmlines)
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance
% add a menu to the figure, but only if the current figure does not have subplots
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) <= 1
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting a time range
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_topoplotER(cfg, varargin)
% first to last callback-input of ft_select_range is range
% last callback-input of ft_select_range is contextmenu label, if used
range = varargin{end-1};
varargin = varargin(1:end-2); % remove range and last
% get appdata belonging to current axis
dataname = fixname(num2str(double(gca)));
data = getappdata(gcf, dataname);
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
if isfield(cfg, 'showlabels')
% this is not allowed in topoplotER
cfg = rmfield(cfg, 'showlabels');
end
% make sure the topo displays all channels, not just the ones in this singleplot
cfg.channel = 'all';
cfg.comment = 'auto';
cfg.xlim = range(1:2);
% put data name in here, this cannot be resolved by other means
info = guidata(gcf);
cfg.dataname = info.dataname;
% if user specified a ylim, copy it over to the zlim of topoplot
if isfield(cfg, 'ylim')
cfg.zlim = cfg.ylim;
cfg = rmfield(cfg, 'ylim');
end
fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2));
p = get(gcf, 'position');
f = figure;
set(f, 'position', p);
ft_topoplotER(cfg, data{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which handles hot keys in the current plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key_sub(handle, eventdata, varargin)
xlimits = xlim;
ylimits = ylim;
incr_x = abs(xlimits(2) - xlimits(1)) /10;
incr_y = abs(ylimits(2) - ylimits(1)) /10;
% TRANSLATE by 10%
if length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'leftarrow')
xlim([xlimits(1)+incr_x xlimits(2)+incr_x])
elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'rightarrow')
xlim([xlimits(1)-incr_x xlimits(2)-incr_x])
elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'uparrow')
ylim([ylimits(1)-incr_y ylimits(2)-incr_y])
elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'downarrow')
ylim([ylimits(1)+incr_y ylimits(2)+incr_y])
% ZOOM by 10%
elseif strcmp(eventdata.Key,'leftarrow')
xlim([xlimits(1)-incr_x xlimits(2)+incr_x])
elseif strcmp(eventdata.Key,'rightarrow')
xlim([xlimits(1)+incr_x xlimits(2)-incr_x])
elseif strcmp(eventdata.Key,'uparrow')
ylim([ylimits(1)-incr_y ylimits(2)+incr_y])
elseif strcmp(eventdata.Key,'downarrow')
ylim([ylimits(1)+incr_y ylimits(2)-incr_y])
% resort to minmax of data for x-axis and y-axis
elseif strcmp(eventdata.Key,'m')
xlim([varargin{1} varargin{2}])
ylim([varargin{3} varargin{4}])
end
|
github
|
lcnbeapp/beapp-master
|
ft_mvaranalysis.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_mvaranalysis.m
| 21,401 |
utf_8
|
88f54e5e33f474697f30b35bf0c74510
|
function [mvardata] = ft_mvaranalysis(cfg, data)
% FT_MVARANALYSIS performs multivariate autoregressive modeling on
% time series data over multiple trials.
%
% Use as
% [mvardata] = ft_mvaranalysis(cfg, data)
%
% The input data should be organised in a structure as obtained from
% the FT_PREPROCESSING function. The configuration depends on the type
% of computation that you want to perform.
% The output is a data structure of datatype 'mvar' which contains the
% multivariate autoregressive coefficients in the field coeffs, and the
% covariance of the residuals in the field noisecov.
%
% The configuration should contain:
% cfg.toolbox = the name of the toolbox containing the function for the
% actual computation of the ar-coefficients
% this can be 'biosig' (default) or 'bsmart'
% you should have a copy of the specified toolbox in order
% to use mvaranalysis (both can be downloaded directly).
% cfg.mvarmethod = scalar (only required when cfg.toolbox = 'biosig').
% default is 2, relates to the algorithm used for the
% computation of the AR-coefficients by mvar.m
% cfg.order = scalar, order of the autoregressive model (default=10)
% cfg.channel = 'all' (default) or list of channels for which an mvar model
% is fitted. (Do NOT specify if cfg.channelcmb is
% defined)
% cfg.channelcmb = specify channel combinations as a
% two-column cell array with channels in each column between
% which a bivariate model will be fit (overrides
% cfg.channel)
% cfg.keeptrials = 'no' (default) or 'yes' specifies whether the coefficients
% are estimated for each trial seperately, or on the
% concatenated data
% cfg.jackknife = 'no' (default) or 'yes' specifies whether the coefficients
% are estimated for all leave-one-out sets of trials
% cfg.zscore = 'no' (default) or 'yes' specifies whether the channel data
% are z-transformed prior to the model fit. This may be
% necessary if the magnitude of the signals is very different
% e.g. when fitting a model to combined MEG/EMG data
% cfg.demean = 'yes' (default) or 'no' explicit removal of DC-offset
% cfg.ems = 'no' (default) or 'yes' explicit removal ensemble mean
%
% ft_mvaranalysis can be used to obtain one set of coefficients across
% all time points in the data, also when the trials are of varying length.
%
% ft_mvaranalysis can be also used to obtain time-dependent sets of
% coefficients based on a sliding window. In this case the input cfg
% should contain:
%
% cfg.t_ftimwin = the width of the sliding window on which the coefficients
% are estimated
% cfg.toi = [t1 t2 ... tx] the time points at which the windows are
% centered
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPROCESSING, FT_SOURCESTATISTICS, FT_FREQSTATISTICS,
% FT_TIMELOCKSTATISTICS
% Undocumented local options:
% cfg.keeptapers
% cfg.taper
% cfg.output = 'parameters', 'model', 'residual'. If 'parameters' is
% specified, the output is a mdata data structure, containing the
% coefficients and the noise covariance. If 'model' or 'residual' is
% specified, the output is a data structure containing either the
% modeled time series, or the residuals. This is only supported when
% the model is estimated across the whole time range.
% Copyright (C) 2009, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'hassampleinfo', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'blc', 'demean'});
cfg = ft_checkconfig(cfg, 'renamed', {'blcwindow', 'baselinewindow'});
% set default configuration options
cfg.toolbox = ft_getopt(cfg, 'toolbox', 'biosig');
cfg.mvarmethod = ft_getopt(cfg, 'mvarmethod', 2); % only relevant for biosig
cfg.order = ft_getopt(cfg, 'order', 10);
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.keeptrials = ft_getopt(cfg, 'keeptrials', 'no');
cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
cfg.zscore = ft_getopt(cfg, 'zscore', 'no');
cfg.feedback = ft_getopt(cfg, 'feedback', 'textbar');
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.ems = ft_getopt(cfg, 'ems', 'no');
cfg.toi = ft_getopt(cfg, 'toi', []);
cfg.t_ftimwin = ft_getopt(cfg, 't_ftimwin', []);
cfg.keeptapers = ft_getopt(cfg, 'keeptapers', 'yes');
cfg.taper = ft_getopt(cfg, 'taper', 'rectwin');
cfg.univariate = ft_getopt(cfg, 'univariate', 0);
cfg.output = ft_getopt(cfg, 'output', 'parameters');
% check that cfg.channel and cfg.channelcmb are not both specified
if ~any(strcmp(cfg.channel, 'all')) && isfield(cfg, 'channelcmb')
ft_warning('cfg.channelcmb defined, overriding cfg.channel setting and computing over bivariate pairs');
else
% select trials of interest
tmpcfg = [];
tmpcfg.channel = cfg.channel;
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
end
% check whether the requested toolbox is present and check the configuration
switch cfg.toolbox
case 'biosig'
% check the configuration
cfg = ft_checkconfig(cfg, 'required', 'mvarmethod');
ft_hastoolbox('biosig', 1);
nnans = cfg.order;
case 'bsmart'
ft_hastoolbox('bsmart', 1);
nnans = 0;
otherwise
error('toolbox %s is not yet supported', cfg.toolbox);
end
if isempty(cfg.toi) && isempty(cfg.t_ftimwin)
% fit model to entire data segment
% check whether this is allowed
nsmp = cellfun('size', data.trial, 2);
if all(nsmp==nsmp(1));
oktoolbox = {'bsmart' 'biosig'};
else
oktoolbox = 'biosig'; % bsmart does not work with variable trials
end
if ~ismember(cfg.toolbox, oktoolbox),
error('fitting the mvar-model is not possible with the ''%s'' toolbox',cfg.toolbox);
end
latency = [-inf inf];
elseif ~isempty(cfg.toi) && ~isempty(cfg.t_ftimwin)
% do sliding window approach
for k = 1:numel(cfg.toi)
latency(k,:) = cfg.toi + cfg.t_ftimwin.*[-0.5 0.5];
end
else
error('cfg should contain both cfg.toi and cfg.t_ftimwin');
end
keeprpt = istrue(cfg.keeptrials);
keeptap = istrue(cfg.keeptapers);
dojack = istrue(cfg.jackknife);
dozscore = istrue(cfg.zscore);
dobvar = isfield(cfg, 'channelcmb');
dounivariate = istrue(cfg. univariate);
if ~keeptap, error('not keeping tapers is not possible yet'); end
if dojack && keeprpt, error('you cannot simultaneously keep trials and do jackknifing'); end
tfwin = round(data.fsample.*cfg.t_ftimwin);
ntrl = length(data.trial);
ntoi = size(latency, 1);
if ~dobvar
chanindx = match_str(data.label, cfg.channel);
nchan = length(chanindx);
label = data.label(chanindx);
ncmb = nchan*nchan;
cmbindx1 = repmat(chanindx(:), [1 nchan]);
cmbindx2 = repmat(chanindx(:)', [nchan 1]);
labelcmb = [data.label(cmbindx1(:)) data.label(cmbindx2(:))];
else
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, data.label);
cmbindx = zeros(size(cfg.channelcmb));
for k = 1:size(cmbindx,1)
[tmp, cmbindx(k,:)] = match_str(cfg.channelcmb(k,:)', data.label);
end
nchan = 2;
label = data.label(cmbindx);
ncmb = nchan*nchan;
labelcmb = cell(0,2);
cmb = cfg.channelcmb;
for k = 1:size(cmbindx,1)
labelcmb{end+1,1} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end ,2} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end+1,1} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end ,2} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end+1,1} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end ,2} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end+1,1} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']'];
labelcmb{end ,2} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']'];
end
end
%---think whether this makes sense at all
if strcmp(cfg.taper, 'dpss')
% create a sequence of DPSS (Slepian) tapers
% ensure that the input arguments are double precision
tap = double_dpss(tfwin,tfwin*(cfg.tapsmofrq./data.fsample))';
tap = tap(1,:); %only use first 'zero-order' taper
elseif strcmp(cfg.taper, 'sine')
tap = sine_taper(tfwin, tfwin*(cfg.tapsmofrq./data.fsample))';
tap = tap(1,:);
else
tap = window(cfg.taper, tfwin)';
tap = tap./norm(tap);
end
ntap = size(tap,1);
%---preprocess data if necessary -> changed 20150224, JM does not think
%this step is necessary: it creates problems downstream if the time axes of
%the trials are different
%---cut off the uninteresting data segments
%tmpcfg = [];
%tmpcfg.toilim = cfg.toi([1 end]) + cfg.t_ftimwin.*[-0.5 0.5];
%data = ft_redefinetrial(tmpcfg, data);
%---demean
if strcmp(cfg.demean, 'yes'),
tmpcfg = [];
tmpcfg.demean = 'yes';
tmpcfg.baselinewindow = latency([1 end]);
data = ft_preprocessing(tmpcfg, data);
else
%do nothing
end
%---ensemble mean subtraction
if strcmp(cfg.ems, 'yes')
% to be implemented
error('ensemble mean subtraction is not yet implemented here');
end
%---zscore
if dozscore,
zwindow = latency([1 end]);
sumval = 0;
sumsqr = 0;
numsmp = 0;
trlindx = [];
for k = 1:ntrl
begsmp = nearest(data.time{k}, zwindow(1));
endsmp = nearest(data.time{k}, zwindow(2));
if endsmp>=begsmp,
sumval = sumval + sum(data.trial{k}(:, begsmp:endsmp), 2);
sumsqr = sumsqr + sum(data.trial{k}(:, begsmp:endsmp).^2, 2);
numsmp = numsmp + endsmp - begsmp + 1;
trlindx = [trlindx; k];
end
end
datavg = sumval./numsmp;
datstd = sqrt(sumsqr./numsmp - (sumval./numsmp).^2);
data.trial = data.trial(trlindx);
data.time = data.time(trlindx);
ntrl = length(trlindx);
for k = 1:ntrl
rvec = ones(1,size(data.trial{k},2));
data.trial{k} = (data.trial{k} - datavg*rvec)./(datstd*rvec);
end
else
%do nothing
end
%---generate time axis
maxtim = -inf;
mintim = inf;
for k = 1:ntrl
maxtim = max(maxtim, data.time{k}(end));
mintim = min(mintim, data.time{k}(1));
end
timeaxis = mintim:1/data.fsample:maxtim;
%---allocate memory
if dobvar && (keeprpt || dojack)
% not yet implemented
error('doing bivariate model fits in combination with multiple replicates is not yet possible');
elseif dobvar
coeffs = zeros(1, size(cmbindx,1), 2*nchan, cfg.order, ntoi, ntap);
noisecov = zeros(1, size(cmbindx,1), 2*nchan, ntoi, ntap);
elseif dounivariate && (keeprpt || dojack)
error('doing univariate model fits in combination with multiple replicates is not yet possible');
elseif dounivariate
coeffs = zeros(1, nchan, cfg.order, ntoi, ntap);
noisecov = zeros(1, nchan, ntoi, ntap);
elseif (keeprpt || dojack)
coeffs = zeros(length(data.trial), nchan, nchan, cfg.order, ntoi, ntap);
noisecov = zeros(length(data.trial), nchan, nchan, ntoi, ntap);
else
coeffs = zeros(1, nchan, nchan, cfg.order, ntoi, ntap);
noisecov = zeros(1, nchan, nchan, ntoi, ntap);
end
%---loop over the tois
ft_progress('init', cfg.feedback, 'computing AR-model');
for j = 1:ntoi
if ~isequal(latency(j,:),[-inf inf])
ft_progress(j/ntoi, 'processing timewindow %d from %d\n', j, ntoi);
tmpcfg = [];
tmpcfg.toilim = latency(j,:);
tmpdata = ft_redefinetrial(tmpcfg, data);
else
tmpdata = data;
end
tmpnsmp = cellfun('size', tmpdata.trial, 2);
if ntoi>1 && strcmp(cfg.toolbox, 'bsmart')
% ensure all segments to be of equal length
if ~all(tmpnsmp==tmpnsmp(1))
error('the epochs are of unequal length, possibly due to numerical time axis issues, or due to partial artifacts, use cfg.toolbox=''biosig''');
end
ix = find(tmpnsmp==mode(tmpnsmp), 1, 'first');
cfg.toi(j) = mean(tmpdata.time{ix}([1 end]))+0.5./data.fsample; %FIXME think about this
end
%---create cell-array indexing which original trials should go into each replicate
rpt = {};
nrpt = numel(tmpdata.trial);
if dojack
rpt = cell(nrpt,1);
for k = 1:nrpt
rpt{k,1} = setdiff(1:nrpt,k);
end
elseif keeprpt
for k = 1:nrpt
rpt{k,1} = k;
end
else
rpt{1} = 1:numel(tmpdata.trial);
nrpt = 1;
end
for rlop = 1:nrpt
if dobvar % bvar
for m = 1:ntap
%---construct data-matrix
for k = 1:size(cmbindx,1)
dat = catnan(tmpdata.trial, cmbindx(k,:), rpt{rlop}, tap(m,:), nnans, dobvar);
%---estimate autoregressive model
switch cfg.toolbox
case 'biosig'
[ar, rc, pe] = mvar(dat', cfg.order, cfg.mvarmethod);
%---compute noise covariance
tmpnoisecov = pe(:,nchan*cfg.order+1:nchan*(cfg.order+1));
case 'bsmart'
[ar, tmpnoisecov] = armorf(dat, numel(rpt{rlop}), size(tmpdata.trial{1},2), cfg.order);
ar = -ar; %convention is swapped sign with respect to biosig
%FIXME check which is which: X(t) = A1*X(t-1) + ... + An*X(t-n) + E
%the other is then X(t) + A1*X(t-1) + ... + An*X(t-n) = E
end
coeffs(rlop,k,:,:,j,m) = reshape(ar, [nchan*2 cfg.order]);
%---rescale noisecov if necessary
if dozscore, % FIX ME for bvar
noisecov(rlop,k,:,:,j,m) = diag(datstd)*tmpnoisecov*diag(datstd);
else
noisecov(rlop,k,:,j,m) = reshape(tmpnoisecov,[1 4]);
end
dof(rlop,:,j) = numel(rpt{rlop});
end
end
else % mvar
for m = 1:ntap
%---construct data-matrix
dat = catnan(tmpdata.trial, chanindx, rpt{rlop}, tap(m,:), nnans, dobvar);
%---estimate autoregressive model
if dounivariate,
%---loop across the channels
for p = 1:size(dat,1)
switch cfg.toolbox
case 'biosig'
[ar, rc, pe] = mvar(dat(p,:)', cfg.order, cfg.mvarmethod);
%---compute noise covariance
tmpnoisecov = pe(:,cfg.order+1:(cfg.order+1));
case 'bsmart'
[ar, tmpnoisecov] = armorf(dat(p,:), numel(rpt{rlop}), size(tmpdata.trial{1},2), cfg.order);
ar = -ar; %convention is swapped sign with respect to biosig
%FIXME check which is which: X(t) = A1*X(t-1) + ... + An*X(t-n) + E
%the other is then X(t) + A1*X(t-1) + ... + An*X(t-n) = E
end
coeffs(rlop,p,:,j,m) = reshape(ar, [1 cfg.order]);
%---rescale noisecov if necessary
if dozscore,
noisecov(rlop,p,j,m) = diag(datstd)*tmpnoisecov*diag(datstd);
else
noisecov(rlop,p,j,m) = tmpnoisecov;
end
dof(rlop,:,j) = numel(rpt{rlop});
end
else
switch cfg.toolbox
case 'biosig'
[ar, rc, pe] = mvar(dat', cfg.order, cfg.mvarmethod);
%---compute noise covariance
tmpnoisecov = pe(:,nchan*cfg.order+1:nchan*(cfg.order+1));
case 'bsmart'
[ar, tmpnoisecov] = armorf(dat, numel(rpt{rlop}), size(tmpdata.trial{1},2), cfg.order);
ar = -ar; %convention is swapped sign with respect to biosig
%FIXME check which is which: X(t) = A1*X(t-1) + ... + An*X(t-n) + E
%the other is then X(t) + A1*X(t-1) + ... + An*X(t-n) = E
end
coeffs(rlop,:,:,:,j,m) = reshape(ar, [nchan nchan cfg.order]);
%---rescale noisecov if necessary
if dozscore,
noisecov(rlop,:,:,j,m) = diag(datstd)*tmpnoisecov*diag(datstd);
else
noisecov(rlop,:,:,j,m) = tmpnoisecov;
end
dof(rlop,:,j) = numel(rpt{rlop});
end %---dounivariate
end %---tapers
end
end %---replicates
end %---tois
ft_progress('close');
%---create output-structure
mvardata = [];
if ~dobvar && ~dounivariate && dojack,
mvardata.dimord = 'rptjck_chan_chan_lag';
elseif ~dobvar && ~dounivariate && keeprpt,
mvardata.dimord = 'rpt_chan_chan_lag';
elseif ~dobvar && ~dounivariate
mvardata.dimord = 'chan_chan_lag';
mvardata.label = label;
siz = [size(coeffs) 1];
coeffs = reshape(coeffs, siz(2:end));
siz = [size(noisecov) 1];
if ~all(siz==1)
noisecov = reshape(noisecov, siz(2:end));
end
elseif dobvar
mvardata.dimord = 'chancmb_lag';
siz = [size(coeffs) 1];
coeffs = reshape(coeffs, [siz(2) * siz(3) siz(4) siz(5)]);
siz = [size(noisecov) 1];
noisecov = reshape(noisecov, [siz(2) * siz(3) siz(4)]);
mvardata.labelcmb = labelcmb;
elseif dounivariate
mvardata.dimord = 'chan_lag';
mvardata.label = label;
siz = [size(coeffs) 1];
coeffs = reshape(coeffs, siz(2:end));
siz = [size(noisecov) 1];
if ~all(siz==1)
noisecov = reshape(noisecov, siz(2:end));
end
end
mvardata.coeffs = coeffs;
mvardata.noisecov = noisecov;
mvardata.dof = dof;
if numel(cfg.toi)>1
mvardata.time = cfg.toi;
mvardata.dimord = [mvardata.dimord,'_time'];
end
mvardata.fsampleorig = data.fsample;
switch cfg.output
case 'parameters'
% no output requested, do not re-compile time-series data
case {'model' 'residual'}
if keeprpt || dojack
error('reconstruction of the residuals with keeprpt or dojack is not yet implemented');
end
dataout = keepfields(data, {'hdr','grad','fsample','trialinfo','label','cfg'});
trial = cell(1,numel(data.trial));
time = cell(1,numel(data.time));
for k = 1:numel(data.trial)
if strcmp(cfg.output, 'model')
trial{k} = zeros(size(data.trial{k},1), size(data.trial{k},2)-cfg.order);
else
trial{k} = data.trial{k}(:, (cfg.order+1):end);
end
time{k} = data.time{k}((cfg.order+1):end);
for m = 1:cfg.order
if dounivariate
P = diag(mvardata.coeffs(:,m));
else
P = mvardata.coeffs(:,:,m);
end
if strcmp(cfg.output, 'residual'),
P = -P;
end
trial{k} = trial{k} + P * data.trial{k}(:,(cfg.order+1-m):(end-m));
end
end
dataout.trial = trial;
dataout.time = time;
cfg.coeffs = mvardata.coeffs;
cfg.noisecov = mvardata.noisecov;
mvardata = dataout; clear dataout;
otherwise
error('output ''%s'' is not supported', cfg.output);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance mvardata
ft_postamble history mvardata
ft_postamble savevar mvardata
%----------------------------------------------------
%subfunction to concatenate data with nans in between
function [datamatrix] = catnan(datacells, chanindx, trials, taper, nnans, dobvar)
nchan = length(chanindx);
nsmp = cellfun('size', datacells, 2);
nrpt = numel(trials);
sumsmp = cumsum([0 nsmp]);
%---initialize
datamatrix = nan(nchan, sum(nsmp) + nnans*(nrpt-1));
%---fill the matrix
for k = 1:nrpt
if k==1,
begsmp = sumsmp(k) + 1;
endsmp = sumsmp(k+1) ;
else
begsmp = sumsmp(k) + (k-1)*nnans + 1;
endsmp = sumsmp(k+1) + (k-1)*nnans;
end
if ~dobvar && isempty(taper)
datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx,:);
elseif ~dobvar && ~isempty(taper)
% FIXME this will crash with variable data length and fixed length
% taper
datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx,:).*taper(ones(nchan,1),:);
elseif dobvar && isempty(taper)
datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx',:);
elseif dobvar && ~isempty(taper)
datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx',:).*taper(ones(nchan,1),:);
end
end
%------------------------------------------------------
%---subfunction to ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for MATLAB 6.5 and 7.0
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});
|
github
|
lcnbeapp/beapp-master
|
ft_anonimizedata.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_anonimizedata.m
| 12,569 |
utf_8
|
3b844ea1cf97b9bfafad5d759646ddfc
|
function data = ft_anonimizedata(cfg, data)
% FT_ANONIMIZEDATA clears the value of potentially identifying fields in
% the data and in the provenance information, i.e., it updates the data and
% the configuration structure and history that is maintained by FieldTrip
% in the cfg field.
%
% Use as
% output = ft_anonimizedata(cfg, data)
% where data is any FieldTrip data structure and cfg is a configuration
% structure that should contain
% cfg.keepnumeric = 'yes' or 'no', keep numeric fields (default = 'yes')
% cfg.keepfield = cell-array with strings, fields to keep (default = {})
% cfg.removefield = cell-array with strings, fields to remove (default = {})
% cfg.keepvalue = cell-array with strings, values to keep (default = {})
% cfg.removevalue = cell-array with strings, values to remove (default = {})
%
% The graphical user interface consists of a table that shows the name and
% value of each provenance element, and whether it should be kept or
% removed. Furthermore, it has a number of buttons:
% - sort specify which column is used for sorting
% - apply apply the current selection of "keep" and "remove" and hide the corresponding rows
% - keep all toggle all visibe rows to "keep"
% - remove all toggle all visibe rows to "keep"
% - clear all clear all visibe rows, i.e. neither "keep" nor "remove"
% - quit apply the current selection of "keep" and "remove" and exit
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_ANALYSISPIPELINE
% Copyright (C) 2014, Robert Oostenveld, DCCN
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% get the options
cfg.keepfield = ft_getopt(cfg, 'keepfield', {});
cfg.removefield = ft_getopt(cfg, 'removefield', {});
cfg.keepvalue = ft_getopt(cfg, 'keepvalue', {});
cfg.removevalue = ft_getopt(cfg, 'removevalue', {});
cfg.keepnumeric = ft_getopt(cfg, 'keepnumeric', 'yes');
if isfield(data, 'cfg')
% ensure that it is a structure, not a config object
data.cfg = struct(data.cfg);
end
% determine the name and value of each element in the structure
[name, value] = splitstruct('data', data);
% we can rule out the numeric values as identifying
sel = cellfun(@ischar, value);
if istrue(cfg.keepnumeric)
name = name(sel);
value = value(sel);
else
% the numeric values are also to be judged by the end-user, but cannot be displayed easily
% FIXME it would be possible to display single scalar values by converting them to a string
value(~sel) = {'<numeric>'};
end
% do not bother with fields that are empty
sel = cellfun(@numel, value)>0;
name = name(sel);
value = value(sel);
% all values are char, but some might be a char-array rather than a single string
sel = cellfun('size', value, 1)>1;
value(sel) = {'<multiline char array>'};
for i=1:length(value)
% remove all non-printable characters
sel = value{i}<32 | value{i}>126;
value{i}(sel) = [];
end
keep = false(size(name));
for i=1:numel(cfg.keepfield)
expression = sprintf('\\.%s$', cfg.keepfield{i});
keep = keep | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\.', cfg.keepfield{i});
keep = keep | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\(', cfg.keepfield{i});
keep = keep | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\{', cfg.keepfield{i});
keep = keep | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
end
keep = keep | ismember(value, cfg.keepvalue);
remove = false(size(name));
for i=1:numel(cfg.removefield)
expression = sprintf('\\.%s$', cfg.removefield{i});
remove = remove | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\.', cfg.removefield{i});
remove = remove | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\(', cfg.removefield{i});
remove = remove | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
expression = sprintf('\\.%s\\{', cfg.removefield{i});
remove = remove | ~cellfun(@isempty, regexp(name, expression), 'uniformoutput', 1);
end
remove = remove | ismember(value, cfg.removevalue);
% ensure there is no overlap
keep(remove) = false;
%% construct the graphical user interface
h = figure;
set(h, 'menuBar', 'none')
mp = get(0, 'MonitorPosition');
if size(mp,1)==1
% there is only a single monitor, we can try to go fullscreen
set(h,'units','normalized','position',[0 0 1 1])
else
set(h,'units','normalized');
end
%% add the table to the GUI
t = uitable;
set(t, 'ColumnEditable', [true true false false]);
set(t, 'ColumnName', {'keep', 'remove', 'name', 'value'});
set(t, 'RowName', {});
%% add the buttons to the GUI
uicontrol('tag', 'button1', 'parent', h, 'units', 'pixels', 'style', 'popupmenu', 'string', {'remove', 'keep', 'name', 'value'}, 'userdata', 'sort', 'callback', @sort_cb);
uicontrol('tag', 'button2', 'parent', h, 'units', 'pixels', 'style', 'pushbutton', 'string', 'apply', 'userdata', 'a', 'callback', @keyboard_cb)
uicontrol('tag', 'button3', 'parent', h, 'units', 'pixels', 'style', 'pushbutton', 'string', 'keep all', 'userdata', 'ka', 'callback', @keyboard_cb)
uicontrol('tag', 'button4', 'parent', h, 'units', 'pixels', 'style', 'pushbutton', 'string', 'remove all', 'userdata', 'ra', 'callback', @keyboard_cb)
uicontrol('tag', 'button5', 'parent', h, 'units', 'pixels', 'style', 'pushbutton', 'string', 'clear all', 'userdata', 'ca', 'callback', @keyboard_cb)
uicontrol('tag', 'button6', 'parent', h, 'units', 'pixels', 'style', 'pushbutton', 'string', 'quit', 'userdata', 'q', 'callback', @keyboard_cb)
% use manual positioning of the buttons in pixel units
ft_uilayout(h, 'tag', 'button1', 'hpos', 20+(100+10)*0, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button2', 'hpos', 20+(100+10)*1, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button3', 'hpos', 20+(100+10)*2, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button4', 'hpos', 20+(100+10)*3, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button5', 'hpos', 20+(100+10)*4, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button6', 'hpos', 20+(100+10)*5, 'vpos', 10, 'width', 100, 'height', 25);
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'button1', 'retag', 'buttongroup')
ft_uilayout(h, 'tag', 'buttongroup', 'BackgroundColor', [0.8 0.8 0.8]);
% this structure is passed around as appdata
info = [];
info.table = t;
info.name = name;
info.value = value;
info.keep = keep;
info.remove = remove;
info.hide = false(size(name));
info.cleanup = false;
info.cfg = cfg;
% this is consistent with the sort button
[dum, indx] = sort(~info.remove);
info.keep = info.keep(indx);
info.remove = info.remove(indx);
info.name = info.name(indx);
info.value = info.value(indx);
info.hide = info.hide(indx);
% these callbacks need the info appdata
setappdata(h, 'info', info);
set(h, 'CloseRequestFcn', 'delete(gcf)');
set(h, 'ResizeFcn', @resize_cb);
redraw_cb(h);
resize_cb(h);
while ~info.cleanup
uiwait(h); % we only get part this point with abort or cleanup
if ~ishandle(h)
error('aborted by user');
end
info = getappdata(h, 'info');
if info.cleanup
if ~all(xor(info.keep, info.remove))
warning('not all fields have been marked as "keep" or "remove"');
info.cleanup = false;
else
delete(h);
end
end
end
fprintf('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n');
name = info.name(info.remove);
for i=1:length(name)
str = sprintf('%s = ''removed by ft_anonimizedata'';', name{i});
disp(str);
eval(str);
end
fprintf('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n');
% deal with the output
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
end % function
function redraw_cb(h, eventdata)
h = getparent(h);
info = getappdata(h, 'info');
data = cat(2, num2cell(info.keep), num2cell(info.remove), info.name, info.value);
data = data(~info.hide,:);
set(info.table, 'data', data);
end % function
function keyboard_cb(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
h = getparent(h);
info = getappdata(h, 'info');
data = get(info.table, 'data');
sel = info.keep & info.remove;
if any(sel)
warning('items that were marked both as "keep" and "remove" have been cleared');
info.keep(sel) = false;
info.remove(sel) = false;
end
info.keep (~info.hide) = cell2mat(data(:,1));
info.remove(~info.hide) = cell2mat(data(:,2));
switch key
case 'q'
info.cleanup = true;
uiresume
case 'a'
info.hide(info.keep) = true;
info.hide(info.remove) = true;
case 'ka'
info.keep (~info.hide) = true;
info.remove(~info.hide) = false;
case 'ra'
info.keep (~info.hide) = false;
info.remove(~info.hide) = true;
case 'ca'
info.keep (~info.hide) = false;
info.remove(~info.hide) = false;
end
setappdata(h, 'info', info);
redraw_cb(h)
end % function
function sort_cb(h, eventdata)
h = getparent(h);
info = getappdata(h, 'info');
val = get(findobj(h, 'userdata', 'sort'), 'value');
str = get(findobj(h, 'userdata', 'sort'), 'string');
switch str{val}
case 'remove'
[dum, indx] = sort(~info.remove);
case 'keep'
[dum, indx] = sort(~info.keep);
case 'name'
[dum, indx] = sort(info.name);
case 'value'
[dum, indx] = sort(info.value);
end
info.keep = info.keep(indx);
info.remove = info.remove(indx);
info.name = info.name(indx);
info.value = info.value(indx);
info.hide = info.hide(indx);
setappdata(h, 'info', info);
redraw_cb(h);
end % function
function resize_cb(h, eventdata)
drawnow
h = getparent(h);
info = getappdata(h, 'info');
set(h, 'units', 'pixels');
siz = get(h, 'position');
% the 15 is for the vertical scrollbar on the right
set(info.table, 'units', 'normalized', 'position', [0.05 0.1 0.90 0.85]);
set(info.table, 'ColumnWidth', {50 50 300 600});
end
|
github
|
lcnbeapp/beapp-master
|
ft_electrodeplacement.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_electrodeplacement.m
| 49,055 |
utf_8
|
ef6d8bd86678d2f9b53b60cb5f8afb17
|
function [elec] = ft_electrodeplacement(cfg, varargin)
% FT_ELECTRODEPLACEMENT allows placing electrodes on a volume or headshape.
% The different methods are described in detail below.
%
% VOLUME - Navigate an orthographic display of a volume (e.g. CT or
% MR scan), and assign an electrode label to the current crosshair location
% by clicking on a label in the eletrode list. You can undo the selection by
% clicking on the same label again. The electrode labels shown in the list
% can be prespecified using cfg.channel when calling ft_electrodeplacement.
% The zoom slider allows zooming in at the location of the crosshair.
% The intensity sliders allow thresholding the image's low and high values.
% The magnet feature transports the crosshair to the nearest peak intensity
% voxel, within a certain voxel radius of the selected location.
% The labels feature displays the labels of the selected electrodes within
% the orthoplot. The global feature allows toggling the view between all
% and near-crosshair markers.
%
% HEADSHAPE - Navigate a triangulated head/brain surface, and assign
% an electrode location by clicking on the brain. The electrode
% is placed on the triangulation itself. FIXME: this needs updating
%
% Use as
% [elec] = ft_electrodeplacement(cfg, mri)
% where the input mri should be an anatomical CT or MRI volume
% Use as
% [elec] = ft_electrodeplacement(cfg, headshape)
% where the input headshape should be a surface triangulation
%
% The configuration can contain the following options
% cfg.method = string representing the method for aligning or placing the electrodes
% 'mri' place electrodes in a brain volume
% 'headshape' place electrodes on the head surface
% cfg.parameter = string, field in data (default = 'anatomy' if present in data)
% cfg.channel = Nx1 cell-array with selection of channels (default = '1','2', ...)
% cfg.elec = struct containing previously placed electrodes (this overwrites cfg.channel)
% cfg.clim = color range of the data (default = [0 1], i.e. the full range)
% cfg.magtype = string representing the 'magnet' type used for placing the electrodes
% 'peak' place electrodes at peak intensity voxel (default)
% 'trough' place electrodes at trough intensity voxel
% 'weighted' place electrodes at center-of-mass
% cfg.magradius = number representing the radius for the cfg.magtype based search (default = 2)
%
% See also FT_ELECTRODEREALIGN, FT_VOLUMEREALIGN
% Copyright (C) 2015, Arjen Stolk & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar mri
ft_preamble provenance mri
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% ensure that old and unsupported options are not being relied on by the end-user's script
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=2837
cfg = ft_checkconfig(cfg, 'renamed', {'viewdim', 'axisratio'});
% set the defaults
cfg.method = ft_getopt(cfg, 'method'); % volume, headshape
cfg.parameter = ft_getopt(cfg, 'parameter', 'anatomy');
cfg.channel = ft_getopt(cfg, 'channel', []); % default will be determined further down {'1', '2', ...}
cfg.elec = ft_getopt(cfg, 'elec', []); % use previously placed electrodes
cfg.renderer = ft_getopt(cfg, 'renderer', 'opengl');
% view options
cfg.clim = ft_getopt(cfg, 'clim', [0 1]); % initial volume intensity limit voxels
cfg.markerdist = ft_getopt(cfg, 'markerdist', 5); % marker-slice distance for including in the view
% magnet options
cfg.magtype = ft_getopt(cfg, 'magtype', 'peak'); % detect peaks or troughs or center-of-mass
cfg.magradius = ft_getopt(cfg, 'magradius', 2); % specify the physical unit radius
cfg.voxelratio = ft_getopt(cfg, 'voxelratio', 'data'); % display size of the voxel, 'data' or 'square'
cfg.axisratio = ft_getopt(cfg, 'axisratio', 'data'); % size of the axes of the three orthoplots, 'square', 'voxel', or 'data'
if isempty(cfg.method) && ~isempty(varargin)
% the default determines on the input data
switch ft_datatype(varargin{1})
case 'volume'
cfg.method = 'volume';
case 'mesh'
cfg.method = 'headshape';
end
end
% check if the input data is valid for this function
switch cfg.method
case 'volume'
mri = ft_checkdata(varargin{1}, 'datatype', 'volume', 'feedback', 'yes');
case {'headshape'}
headshape = fixpos(varargin{1});
headshape = ft_determine_coordsys(headshape);
end
switch cfg.method
case 'headshape'
% give the user instructions
disp('Use the mouse to click on the desired electrode positions');
disp('Afterwards you may have to update the electrode labels');
disp('Press "r" to delete the last point add');
disp('Press "+/-" to zoom in/out');
disp('Press "w/a/s/d" to rotate');
disp('Press "q" when you are done');
% open a figure
figure;
% plot the faces of the 2D or 3D triangulation
if isfield(headshape, 'color');
skin = 'none';
ft_plot_mesh(headshape);
else
skin = [255 213 119]/255;
ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',1);
lighting gouraud
material shiny
camlight
end
% rotate3d on
xyz = ft_select_point3d(headshape, 'nearest', false, 'multiple', true, 'marker', '*');
numelec = size(xyz, 1);
% construct the output electrode structure
elec = keepfields(headshape, {'unit', 'coordsys'});
elec.elecpos = xyz;
for i=1:numelec
try
elec.label{i} = cfg.channel{i,1};
catch
elec.label{i} = sprintf('%d', i);
end
end
case 'volume'
% start building the figure
h = figure(...
'MenuBar', 'none',...
'Name', mfilename,...
'Units', 'normalized', ...
'Color', [1 1 1], ...
'Visible', 'on');
set(h, 'windowbuttondownfcn', @cb_buttonpress);
set(h, 'windowbuttonupfcn', @cb_buttonrelease);
set(h, 'windowkeypressfcn', @cb_keyboard);
set(h, 'CloseRequestFcn', @cb_cleanup);
set(h, 'renderer', cfg.renderer);
% axes settings
if strcmp(cfg.axisratio, 'voxel')
% determine the number of voxels to be plotted along each axis
axlen1 = mri.dim(1);
axlen2 = mri.dim(2);
axlen3 = mri.dim(3);
elseif strcmp(cfg.axisratio, 'data')
% determine the length of the edges along each axis
[cp_voxel, cp_head] = cornerpoints(mri.dim, mri.transform);
axlen1 = norm(cp_head(2,:)-cp_head(1,:));
axlen2 = norm(cp_head(4,:)-cp_head(1,:));
axlen3 = norm(cp_head(5,:)-cp_head(1,:));
elseif strcmp(cfg.axisratio, 'square')
% the length of the axes should be equal
axlen1 = 1;
axlen2 = 1;
axlen3 = 1;
end
% this is the size reserved for subplot h1, h2 and h3
h1size(1) = 0.82*axlen1/(axlen1 + axlen2);
h1size(2) = 0.82*axlen3/(axlen2 + axlen3);
h2size(1) = 0.82*axlen2/(axlen1 + axlen2);
h2size(2) = 0.82*axlen3/(axlen2 + axlen3);
h3size(1) = 0.82*axlen1/(axlen1 + axlen2);
h3size(2) = 0.82*axlen2/(axlen2 + axlen3);
if strcmp(cfg.voxelratio, 'square')
voxlen1 = 1;
voxlen2 = 1;
voxlen3 = 1;
elseif strcmp(cfg.voxelratio, 'data')
% the size of the voxel is scaled with the data
[cp_voxel, cp_head] = cornerpoints(mri.dim, mri.transform);
voxlen1 = norm(cp_head(2,:)-cp_head(1,:))/norm(cp_voxel(2,:)-cp_voxel(1,:));
voxlen2 = norm(cp_head(4,:)-cp_head(1,:))/norm(cp_voxel(4,:)-cp_voxel(1,:));
voxlen3 = norm(cp_head(5,:)-cp_head(1,:))/norm(cp_voxel(5,:)-cp_voxel(1,:));
end
% axis handles will hold the anatomical functional if present, along with labels etc.
h1 = axes('position',[0.06 0.06+0.06+h3size(2) h1size(1) h1size(2)]);
h2 = axes('position',[0.06+0.06+h1size(1) 0.06+0.06+h3size(2) h2size(1) h2size(2)]);
h3 = axes('position',[0.06 0.06 h3size(1) h3size(2)]);
set(h1, 'Tag', 'ik', 'Visible', 'off', 'XAxisLocation', 'top');
set(h2, 'Tag', 'jk', 'Visible', 'off', 'YAxisLocation', 'right'); % after rotating in ft_plot_ortho this becomes top
set(h3, 'Tag', 'ij', 'Visible', 'off');
set(h1, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h2, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
set(h3, 'DataAspectRatio', 1./[voxlen1 voxlen2 voxlen3]);
xc = round(mri.dim(1)/2); % start with center view
yc = round(mri.dim(2)/2);
zc = round(mri.dim(3)/2);
dat = double(mri.(cfg.parameter));
dmin = min(dat(:));
dmax = max(dat(:));
dat = (dat-dmin)./(dmax-dmin); % range between 0 and 1
% intensity range sliders
h45text = uicontrol('Style', 'text',...
'String','Intensity',...
'Units', 'normalized', ...
'Position',[2*h1size(1)+0.03 h3size(2)+0.03 h1size(1)/4 0.04],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on');
h4 = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(1), ...
'Units', 'normalized', ...
'Position', [2*h1size(1)+0.02 0.15+h3size(2)/3 0.05 h3size(2)/2-0.05], ...
'Callback', @cb_minslider);
h5 = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 1, ...
'Value', cfg.clim(2), ...
'Units', 'normalized', ...
'Position', [2*h1size(1)+0.07 0.15+h3size(2)/3 0.05 h3size(2)/2-0.05], ...
'Callback', @cb_maxslider);
% java intensity range slider (dual-knob slider): the java component gives issues when wanting to
% access the opt structure
% [jRangeSlider] = com.jidesoft.swing.RangeSlider(0,1,cfg.clim(1),cfg.clim(2)); % min,max,low,high
% [jRangeSlider, h4] = javacomponent(jRangeSlider, [], h);
% set(h4, 'Units', 'normalized', 'Position', [0.05+h1size(1) 0.07 0.07 h3size(2)], 'Parent', h);
% set(jRangeSlider, 'Orientation', 1, 'PaintTicks', true, 'PaintLabels', true, ...
% 'Background', java.awt.Color.white, 'StateChangedCallback', @cb_intensityslider);
% electrode listbox
if ~isempty(cfg.elec) % re-use previously placed (cfg.elec) electrodes
cfg.channel = []; % ensure cfg.channel is empty, for filling it up
for e = 1:numel(cfg.elec.label)
cfg.channel{e,1} = cfg.elec.label{e};
chanstring{e} = ['<HTML><FONT color="black">' cfg.channel{e,1} '</FONT></HTML>']; % hmtl'ize
markerlab{e,1} = cfg.elec.label{e};
markerpos{e,1} = cfg.elec.elecpos(e,:);
end
else % otherwise use standard / prespecified (cfg.channel) electrode labels
if isempty(cfg.channel)
for c = 1:150
cfg.channel{c,1} = sprintf('%d', c);
end
end
for c = 1:numel(cfg.channel)
chanstring{c} = ['<HTML><FONT color="silver">' cfg.channel{c,1} '</FONT></HTML>']; % hmtl'ize
markerlab{c,1} = {};
markerpos{c,1} = zeros(0,3);
end
end
h6 = uicontrol('Style', 'listbox', ...
'Parent', h, ...
'Value', [], 'Min', 0, 'Max', numel(chanstring), ...
'Units', 'normalized', ...
'Position', [0.07+h1size(1)+0.05 0.07 h1size(1)/2 h3size(2)], ...
'Callback', @cb_eleclistbox, ...
'String', chanstring);
% switches / radio buttons
h7 = uicontrol('Style', 'radiobutton',...
'Parent', h, ...
'Value', 1, ...
'String','Magnet',...
'Units', 'normalized', ...
'Position',[2*h1size(1) 0.22 h1size(1)/3 0.05],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on', ...
'Callback', @cb_magnetbutton);
h8 = uicontrol('Style', 'radiobutton',...
'Parent', h, ...
'Value', 0, ...
'String','Labels',...
'Units', 'normalized', ...
'Position',[2*h1size(1) 0.17 h1size(1)/3 0.05],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on', ...
'Callback', @cb_labelsbutton);
h9 = uicontrol('Style', 'radiobutton',...
'Parent', h, ...
'Value', 0, ...
'String','Global',...
'Units', 'normalized', ...
'Position',[2*h1size(1) 0.12 h1size(1)/3 0.05],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on', ...
'Callback', @cb_globalbutton);
hscatter = uicontrol('Style', 'radiobutton',...
'Parent', h, ...
'Value', 0, ...
'String','Scatter',...
'Units', 'normalized', ...
'Position',[2*h1size(1) 0.07 h1size(1)/3 0.05],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on', ...
'Callback', @cb_scatterbutton);
% zoom slider
h10text = uicontrol('Style', 'text',...
'String','Zoom',...
'Units', 'normalized', ...
'Position',[1.8*h1size(1)+0.01 h3size(2)+0.03 h1size(1)/4 0.04],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on');
h10 = uicontrol('Style', 'slider', ...
'Parent', h, ...
'Min', 0, 'Max', 0.9, ...
'Value', 0, ...
'Units', 'normalized', ...
'Position', [1.8*h1size(1)+0.02 0.15+h3size(2)/3 0.05 h3size(2)/2-0.05], ...
'SliderStep', [.1 .1], ...
'Callback', @cb_zoomslider);
% instructions to the user
fprintf(strcat(...
'1. Viewing options:\n',...
' a. use the left mouse button to navigate the image, or\n',...
' b. use the arrow keys to increase or decrease the slice number by one\n',...
'2. Placement options:\n',...
' a. click an electrode label in the list to assign the crosshair location, or\n',...
' b. doubleclick a previously assigned electrode label to remove its marker\n',...
'3. To finalize, close the window or press q on the keyboard\n'));
% create structure to be passed to gui
opt = [];
opt.dim = mri.dim;
opt.ijk = [xc yc zc];
opt.h1size = h1size;
opt.h2size = h2size;
opt.h3size = h3size;
opt.handlesaxes = [h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 hscatter];
opt.handlesfigure = h;
opt.handlesmarker = [];
opt.quit = false;
opt.ana = dat;
opt.update = [1 1 1];
opt.init = true;
opt.tag = 'ik';
opt.mri = mri;
opt.showcrosshair = true;
opt.vox = [opt.ijk]; % voxel coordinates (physical units)
opt.pos = ft_warp_apply(mri.transform, opt.ijk); % head coordinates (e.g. mm)
opt.showlabels = 0;
opt.label = cfg.channel;
opt.magnet = get(h7, 'Value');
opt.magradius = cfg.magradius;
opt.magtype = cfg.magtype;
opt.showmarkers = true;
opt.global = get(h9, 'Value'); % show all markers in the current slices
opt.scatter = get(hscatter, 'Value'); % additional scatterplot
opt.slim = [.5 1]; % 50% - maximum
opt.markerlab = markerlab;
opt.markerpos = markerpos;
opt.markerdist = cfg.markerdist; % hidden option
opt.clim = cfg.clim;
opt.zoom = 0;
if isfield(mri, 'unit') && ~strcmp(mri.unit, 'unknown')
opt.unit = mri.unit; % this is shown in the feedback on screen
else
opt.unit = ''; % this is not shown
end
setappdata(h, 'opt', opt);
cb_redraw(h);
while(opt.quit==0)
uiwait(h);
opt = getappdata(h, 'opt');
end
delete(h);
% collect the results
elec.label = {};
elec.elecpos = [];
elec.chanpos = [];
elec.tra = [];
for i=1:length(opt.markerlab)
if ~isempty(opt.markerlab{i,1})
elec.label = [elec.label; opt.markerlab{i,1}];
elec.elecpos = [elec.elecpos; opt.markerpos{i,1}];
end
end
elec.chanpos = elec.elecpos; % identicial to elecpos
elec.tra = eye(size(elec.elecpos,1));
if isfield(mri, 'unit')
elec.unit = mri.unit;
end
if isfield(mri, 'coordsys')
elec.coordsys = mri.coordsys;
end
end % switch method
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous mri
ft_postamble provenance elec
ft_postamble history elec
ft_postamble savevar elec
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(h, eventdata)
tic
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
mri = opt.mri;
h1 = opt.handlesaxes(1);
h2 = opt.handlesaxes(2);
h3 = opt.handlesaxes(3);
xi = opt.ijk(1);
yi = opt.ijk(2);
zi = opt.ijk(3);
if any([xi yi zi] > mri.dim) || any([xi yi zi] <= 0)
return;
end
opt.ijk = [xi yi zi 1]';
opt.ijk = opt.ijk(1:3)';
% construct a string with user feedback
str1 = sprintf('voxel %d, index [%d %d %d]', sub2ind(mri.dim(1:3), xi, yi, zi), opt.ijk);
if opt.init
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', opt.ijk, 'style', 'subplot', 'parents', [h1 h2 h3], 'update', opt.update, 'doscale', false,'clim', opt.clim);
opt.anahandles = findobj(opt.handlesfigure, 'type', 'surface')';
parenttag = get(opt.anahandles,'parent');
parenttag{1} = get(parenttag{1}, 'tag');
parenttag{2} = get(parenttag{2}, 'tag');
parenttag{3} = get(parenttag{3}, 'tag');
[i1,i2,i3] = intersect(parenttag, {'ik';'jk';'ij'});
opt.anahandles = opt.anahandles(i3(i2)); % seems like swapping the order
opt.anahandles = opt.anahandles(:)';
set(opt.anahandles, 'tag', 'ana');
% for zooming purposes
opt.axis = zeros(1,6);
opt.axis([1 3 5]) = 0.5;
opt.axis([2 4 6]) = size(opt.ana) + 0.5;
else
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', opt.ijk, 'style', 'subplot', 'surfhandle', opt.anahandles, 'update', opt.update, 'doscale', false,'clim', opt.clim);
if all(round([xi yi zi])<=mri.dim) && all(round([xi yi zi])>0)
fprintf('==================================================================================\n');
str = sprintf('voxel %d, index [%d %d %d]', sub2ind(mri.dim(1:3), round(xi), round(yi), round(zi)), round([xi yi zi]));
lab = 'crosshair';
opt.vox = [xi yi zi];
ind = sub2ind(mri.dim(1:3), round(opt.vox(1)), round(opt.vox(2)), round(opt.vox(3)));
opt.pos = ft_warp_apply(mri.transform, opt.vox);
switch opt.unit
case 'mm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.1f %.1f %.1f] %s\n', lab, ind, opt.vox, opt.pos, opt.unit);
case 'cm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.2f %.2f %.2f] %s\n', lab, ind, opt.vox, opt.pos, opt.unit);
case 'm'
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%.4f %.4f %.4f] %s\n', lab, ind, opt.vox, opt.pos, opt.unit);
otherwise
fprintf('%10s: voxel %9d, index = [%3d %3d %3d], head = [%f %f %f] %s\n', lab, ind, opt.vox, opt.pos, opt.unit);
end
end
end
% make the last current axes current again
sel = findobj('type','axes','tag',tag);
if ~isempty(sel)
set(opt.handlesfigure, 'currentaxes', sel(1));
end
% zoom
xloadj = round((xi-opt.axis(1))-(xi-opt.axis(1))*opt.zoom);
xhiadj = round((opt.axis(2)-xi)-(opt.axis(2)-xi)*opt.zoom);
yloadj = round((yi-opt.axis(3))-(yi-opt.axis(3))*opt.zoom);
yhiadj = round((opt.axis(4)-yi)-(opt.axis(4)-yi)*opt.zoom);
zloadj = round((zi-opt.axis(5))-(zi-opt.axis(5))*opt.zoom);
zhiadj = round((opt.axis(6)-zi)-(opt.axis(6)-zi)*opt.zoom);
axis(h1, [xi-xloadj xi+xhiadj yi-yloadj yi+yhiadj zi-zloadj zi+zhiadj]);
axis(h2, [xi-xloadj xi+xhiadj yi-yloadj yi+yhiadj zi-zloadj zi+zhiadj]);
axis(h3, [xi-xloadj xi+xhiadj yi-yloadj yi+yhiadj]);
if opt.init
% draw the crosshairs for the first time
hch1 = crosshair([xi yi-yloadj zi], 'parent', h1, 'color', 'yellow'); % was [xi 1 zi], now corrected for zoom
hch2 = crosshair([xi+xhiadj yi zi], 'parent', h2, 'color', 'yellow'); % was [opt.dim(1) yi zi], now corrected for zoom
hch3 = crosshair([xi yi zi], 'parent', h3, 'color', 'yellow'); % was [xi yi opt.dim(3)], now corrected for zoom
opt.handlescross = [hch1(:)';hch2(:)';hch3(:)'];
opt.handlesmarker = [];
else
% update the existing crosshairs, don't change the handles
crosshair([xi yi-yloadj zi], 'handle', opt.handlescross(1, :));
crosshair([xi+xhiadj yi zi], 'handle', opt.handlescross(2, :));
crosshair([xi yi zi], 'handle', opt.handlescross(3, :));
end
if opt.showcrosshair
set(opt.handlescross,'Visible','on');
else
set(opt.handlescross,'Visible','off');
end
delete(opt.handlesmarker(opt.handlesmarker(:)>0));
opt.handlesmarker = [];
% draw markers
idx = find(~cellfun(@isempty,opt.markerlab)); % non-empty markers
if ~isempty(idx)
for i=1:numel(idx)
markerlab{i,1} = opt.markerlab{idx(i),1};
markerpos(i,:) = opt.markerpos{idx(i),1};
end
opt.vox2 = round(ft_warp_apply(inv(mri.transform), markerpos)); % head to vox
tmp1 = opt.vox2(:,1);
tmp2 = opt.vox2(:,2);
tmp3 = opt.vox2(:,3);
subplot(h1);
if ~opt.global % filter markers distant to the current slice (N units and further)
posj_idx = find( abs(tmp2 - repmat(yi,size(tmp2))) < opt.markerdist);
posi = tmp1(posj_idx);
posj = tmp2(posj_idx);
posk = tmp3(posj_idx);
else % plot all markers on the current slice
posj_idx = 1:numel(tmp1);
posi = tmp1;
posj = tmp2;
posk = tmp3;
end
if ~isempty(posi)
hold on
opt.handlesmarker(:,1) = plot3(posi, repmat(yi-yloadj,size(posj)), posk, 'marker', '+', 'linestyle', 'none', 'color', 'r'); % [xi yi-yloadj zi]
if opt.showlabels
for i=1:numel(posj_idx)
opt.handlesmarker(i,4) = text(posi(i), yi-yloadj, posk(i), markerlab{posj_idx(i),1}, 'color', 'b');
end
end
hold off
end
subplot(h2);
if ~opt.global % filter markers distant to the current slice (N units and further)
posi_idx = find( abs(tmp1 - repmat(xi,size(tmp1))) < opt.markerdist);
posi = tmp1(posi_idx);
posj = tmp2(posi_idx);
posk = tmp3(posi_idx);
else % plot all markers on the current slice
posi_idx = 1:numel(tmp1);
posi = tmp1;
posj = tmp2;
posk = tmp3;
end
if ~isempty(posj)
hold on
opt.handlesmarker(:,2) = plot3(repmat(xi+xhiadj,size(posi)), posj, posk, 'marker', '+', 'linestyle', 'none', 'color', 'r'); % [xi+xhiadj yi zi]
if opt.showlabels
for i=1:numel(posi_idx)
opt.handlesmarker(i,5) = text(posi(i)+xhiadj, posj(i), posk(i), markerlab{posi_idx(i),1}, 'color', 'b');
end
end
hold off
end
subplot(h3);
if ~opt.global % filter markers distant to the current slice (N units and further)
posk_idx = find( abs(tmp3 - repmat(zi,size(tmp3))) < opt.markerdist);
posi = tmp1(posk_idx);
posj = tmp2(posk_idx);
posk = tmp3(posk_idx);
else % plot all markers on the current slice
posk_idx = 1:numel(tmp1);
posi = tmp1;
posj = tmp2;
posk = tmp3;
end
if ~isempty(posk)
hold on
opt.handlesmarker(:,3) = plot3(posi, posj, repmat(zi,size(posk)), 'marker', '+', 'linestyle', 'none', 'color', 'r'); % [xi yi zi]
if opt.showlabels
for i=1:numel(posk_idx)
opt.handlesmarker(i,6) = text(posi(i), posj(i), zi, markerlab{posk_idx(i),1}, 'color', 'b');
end
end
hold off
end
end % for all markers
if isfield(opt, 'scatterfig')
cb_scatterredraw(h); % also update the appendix
figure(h); % FIXME: ugly as it switches forth and back to mainfig
end
% do not initialize on the next call
opt.init = false;
setappdata(h, 'opt', opt);
set(h, 'currentaxes', curr_ax);
toc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_scatterredraw(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
if opt.scatter % radiobutton on
if ~isfield(opt, 'scatterfig') % if the figure does not yet exist, initiate
opt.scatterfig = figure(...
'Name', [mfilename ' appendix'],...
'Units', 'normalized', ...
'Color', [1 1 1], ...
'Visible', 'on');
set(opt.scatterfig, 'CloseRequestFcn', @cb_scattercleanup);
opt.scatterfig_h1 = axes('position',[0.06 0.06 0.74 0.88]);
set(opt.scatterfig_h1, 'DataAspectRatio', get(opt.handlesaxes(1), 'DataAspectRatio'));
axis image;
xlabel('x'); ylabel('y'); zlabel('z');
% scatter range sliders
opt.scatterfig_h23text = uicontrol('Style', 'text',...
'String','Treshold',...
'Units', 'normalized', ...
'Position',[.85+0.03 .26 .1 0.04],...
'BackgroundColor', [1 1 1], ...
'HandleVisibility','on');
opt.scatterfig_h2 = uicontrol('Style', 'slider', ...
'Parent', opt.scatterfig, ...
'Min', 0, 'Max', 1, ...
'Value', opt.slim(1), ...
'Units', 'normalized', ...
'Position', [.85+.02 .06 .05 .2], ...
'Callback', @cb_scatterminslider);
opt.scatterfig_h3 = uicontrol('Style', 'slider', ...
'Parent', opt.scatterfig, ...
'Min', 0, 'Max', 1, ...
'Value', opt.slim(2), ...
'Units', 'normalized', ...
'Position', [.85+.07 .06 .05 .2], ...
'Callback', @cb_scattermaxslider);
msize = round(2500/opt.mri.dim(3)); % headsize (25 cm) / z slices
inc = abs(opt.slim(2)-opt.slim(1))/4; % color increments
for r = 1:4 % 4 color layers to encode peaks
lim1 = opt.slim(1) + r*inc - inc;
lim2 = opt.slim(1) + r*inc;
voxind = find(opt.ana>lim1 & opt.ana<lim2);
[x,y,z] = ind2sub(opt.mri.dim, voxind);
hold on; scatter3(x,y,z,msize,'Marker','s','MarkerEdgeColor','none','MarkerFaceColor',[.8-(r*.2) .8-(r*.2) .8-(r*.2)]);
end
% draw the crosshair for the first time
opt.handlescross2 = crosshair([opt.ijk], 'parent', opt.scatterfig_h1, 'color', 'blue');
end
figure(opt.scatterfig);
% update the existing crosshairs, don't change the handles
crosshair([opt.ijk], 'handle', opt.handlescross2);
if opt.showcrosshair
set(opt.handlescross,'Visible','on');
else
set(opt.handlescross,'Visible','off');
end
% plot the markers
if isfield(opt, 'vox2')
delete(findobj(opt.scatterfig,'Type','line','Marker','+')); % remove previous markers
plot3(opt.vox2(:,1),opt.vox2(:,2),opt.vox2(:,3), 'marker', '+', 'linestyle', 'none', 'color', 'r');
end
end
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
if isempty(key)
% this happens if you press the apple key
key = '';
end
% the following code is largely shared with FT_SOURCEPLOT
switch key
case {'' 'shift+shift' 'alt-alt' 'control+control' 'command-0'}
% do nothing
case '1'
subplot(opt.handlesaxes(1));
case '2'
subplot(opt.handlesaxes(2));
case '3'
subplot(opt.handlesaxes(3));
case 'q'
setappdata(h, 'opt', opt);
cb_cleanup(h);
case 'g' % global/local elec view (h9) toggle
if isequal(opt.global, 0)
opt.global = 1;
set(opt.handlesaxes(9), 'Value', 1);
elseif isequal(opt.global, 1)
opt.global = 0;
set(opt.handlesaxes(9), 'Value', 0);
end
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'l' % elec label view (h8) toggle
if isequal(opt.showlabels, 0)
opt.showlabels = 1;
set(opt.handlesaxes(8), 'Value', 1);
elseif isequal(opt.showlabels, 1)
opt.showlabels = 0;
set(opt.handlesaxes(8), 'Value', 0);
end
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'm' % magnet (h7) toggle
if isequal(opt.magnet, 0)
opt.magnet = 1;
set(opt.handlesaxes(7), 'Value', 1);
elseif isequal(opt.magnet, 1)
opt.magnet = 0;
set(opt.handlesaxes(7), 'Value', 0);
end
setappdata(h, 'opt', opt);
case {28 29 30 31 'leftarrow' 'rightarrow' 'uparrow' 'downarrow'}
% update the view to a new position
if strcmp(tag,'ik') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag,'ik') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag,'ik') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag,'ik') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
elseif strcmp(tag,'ij') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag,'ij') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag,'ij') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag,'ij') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'i') || strcmp(key,'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag,'jk') && (strcmp(key,'j') || strcmp(key,'leftarrow') || isequal(key, 28)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'k') || strcmp(key,'rightarrow') || isequal(key, 29)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag,'jk') && (strcmp(key,'m') || strcmp(key,'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
else
% do nothing
end;
setappdata(h, 'opt', opt);
cb_redraw(h);
% contrast scaling
case {43 'shift+equal'} % numpad +
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% reduce color scale range by 10%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)+cscalefactor;
opt.clim(2) = opt.clim(2)-cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
case {45 'shift+hyphen'} % numpad -
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% increase color scale range by 10%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)-cscalefactor;
opt.clim(2) = opt.clim(2)+cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 99 % 'c'
opt.showcrosshair = ~opt.showcrosshair;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 102 % 'f'
opt.showmarkers = ~opt.showmarkers;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 3 % right mouse click
% add point to a list
l1 = get(get(gca, 'xlabel'), 'string');
l2 = get(get(gca, 'ylabel'), 'string');
switch l1,
case 'i'
xc = d1;
case 'j'
yc = d1;
case 'k'
zc = d1;
end
switch l2,
case 'i'
xc = d2;
case 'j'
yc = d2;
case 'k'
zc = d2;
end
pnt = [pnt; xc yc zc];
case 2 % middle mouse click
l1 = get(get(gca, 'xlabel'), 'string');
l2 = get(get(gca, 'ylabel'), 'string');
% remove the previous point
if size(pnt,1)>0
pnt(end,:) = [];
end
if l1=='i' && l2=='j'
updatepanel = [1 2 3];
elseif l1=='i' && l2=='k'
updatepanel = [2 3 1];
elseif l1=='j' && l2=='k'
updatepanel = [3 1 2];
end
otherwise
% do nothing
end % switch key
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonpress(h, eventdata)
h = getparent(h);
cb_getposition(h);
switch get(h, 'selectiontype')
case 'normal'
% just update to new position, nothing else to be done here
cb_redraw(h);
case 'alt'
set(h, 'windowbuttonmotionfcn', @cb_tracemouse);
cb_redraw(h);
otherwise
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonrelease(h, eventdata)
set(h, 'windowbuttonmotionfcn', '');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_tracemouse(h, eventdata)
h = getparent(h);
cb_getposition(h);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
pos = mean(get(curr_ax, 'currentpoint'));
tag = get(curr_ax, 'tag');
if ~isempty(tag) && ~opt.init
if strcmp(tag, 'ik')
opt.ijk([1 3]) = round(pos([1 3]));
opt.update = [1 1 1];
elseif strcmp(tag, 'ij')
opt.ijk([1 2]) = round(pos([1 2]));
opt.update = [1 1 1];
elseif strcmp(tag, 'jk')
opt.ijk([2 3]) = round(pos([2 3]));
opt.update = [1 1 1];
end
end
opt.ijk = min(opt.ijk(:)', opt.dim);
opt.ijk = max(opt.ijk(:)', [1 1 1]);
if opt.magnet % magnetize
try
center = opt.ijk;
radius = opt.magradius;
% FIXME here it would be possible to adjust the selection at the edges of the volume
xsel = center(1)+(-radius:radius);
ysel = center(2)+(-radius:radius);
zsel = center(3)+(-radius:radius);
cubic = opt.ana(xsel, ysel, zsel);
if strcmp(opt.magtype, 'peak')
% find the peak intensity voxel within the cube
[val, idx] = max(cubic(:));
[ix, iy, iz] = ind2sub(size(cubic), idx);
elseif strcmp(opt.magtype, 'trough')
% find the trough intensity voxel within the cube
[val, idx] = min(cubic(:));
[ix, iy, iz] = ind2sub(size(cubic), idx);
elseif strcmp(opt.magtype, 'weighted')
% find the weighted center of mass in the cube
dim = size(cubic);
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
cubic = cubic./sum(cubic(:));
ix = round(X(:)' * cubic(:));
iy = round(Y(:)' * cubic(:));
iz = round(Z(:)' * cubic(:));
end
% adjust the indices for the selection
opt.ijk = [ix, iy, iz] + center - radius - 1;
fprintf('==================================================================================\n');
fprintf(' clicked at [%d %d %d], %s magnetized adjustment [%d %d %d]\n', center, opt.magtype, opt.ijk-center);
catch
% this fails if the selection is at the edge of the volume
warning('cannot magnetize at the edge of the volume');
end
end % if magnetize
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cleanup(h, eventdata)
opt = getappdata(h, 'opt');
if isfield(opt, 'scatterfig')
cb_scattercleanup(opt.scatterfig);
end
opt.quit = true;
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;d
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_minslider(h4, eventdata)
newlim = get(h4, 'value');
h = getparent(h4);
opt = getappdata(h, 'opt');
opt.clim(1) = newlim;
fprintf('contrast limits updated to [%.03f %.03f]\n', opt.clim);
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_maxslider(h5, eventdata)
newlim = get(h5, 'value');
h = getparent(h5);
opt = getappdata(h, 'opt');
opt.clim(2) = newlim;
fprintf('contrast limits updated to [%.03f %.03f]\n', opt.clim);
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_intensityslider(h4, eventdata) % java intensity range slider - not fully functional
loval = get(h4, 'value');
hival = get(h4, 'highvalue');
h = getparent(h4); % this fails: The name 'parent' is not an accessible property for an instance of class 'com.jidesoft.swing.RangeSlider'.
opt = getappdata(h, 'opt');
opt.clim = [loval hival];
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_eleclistbox(h6, eventdata)
elecidx = get(h6, 'Value'); % chosen elec
listtopidx = get(h6, 'ListboxTop'); % ensure listbox does not move upon label selec
if ~isempty(elecidx)
if numel(elecidx)>1
fprintf('too many labels selected\n');
return
end
eleclis = cellstr(get(h6, 'String')); % all labels
eleclab = eleclis{elecidx}; % this elec's label
h = getparent(h6);
opt = getappdata(h, 'opt');
% toggle electrode status and assign markers
if strfind(eleclab, 'silver') % not yet, check
fprintf('assigning marker %s\n', opt.label{elecidx,1});
eleclab = regexprep(eleclab, '"silver"','"black"'); % replace font color
opt.markerlab{elecidx,1} = opt.label(elecidx,1); % assign marker label
opt.markerpos{elecidx,1} = opt.pos; % assign marker position
elseif strfind(eleclab, 'black') % already chosen before, move cusor to marker or uncheck
if strcmp(get(h,'SelectionType'),'normal') % single click to move cursor to
fprintf('moving cursor to marker %s\n', opt.label{elecidx,1});
opt.ijk = ft_warp_apply(inv(opt.mri.transform), opt.markerpos{elecidx,1}); % move cursor to marker position
elseif strcmp(get(h,'SelectionType'),'open') % double click to uncheck
fprintf('removing marker %s\n', opt.label{elecidx,1});
eleclab = regexprep(eleclab, '"black"','"silver"'); % replace font color
opt.markerlab{elecidx,1} = {}; % assign marker label
opt.markerpos{elecidx,1} = zeros(0,3); % assign marker position
end
end
% update plot
eleclis{elecidx} = eleclab;
set(h6, 'String', eleclis);
set(h6, 'ListboxTop', listtopidx); % ensure listbox does not move upon label selec
setappdata(h, 'opt', opt);
cb_redraw(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_magnetbutton(h7, eventdata)
h = getparent(h7);
opt = getappdata(h, 'opt');
opt.magnet = get(h7, 'value');
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_labelsbutton(h8, eventdata)
h = getparent(h8);
opt = getappdata(h, 'opt');
opt.showlabels = get(h8, 'value');
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_globalbutton(h9, eventdata)
h = getparent(h9);
opt = getappdata(h, 'opt');
opt.global = get(h9, 'value');
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_zoomslider(h10, eventdata)
h = getparent(h10);
opt = getappdata(h, 'opt');
opt.zoom = round(get(h10, 'value')*10)/10;
setappdata(h, 'opt', opt);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_scatterbutton(hscatter, eventdata)
h = getparent(hscatter);
opt = getappdata(h, 'opt');
opt.scatter = get(hscatter, 'value'); % update value
setappdata(h, 'opt', opt);
if isfield(opt, 'scatterfig') && ~opt.scatter % if already open but shouldn't, close it
cb_scattercleanup(opt.scatterfig);
end
if opt.scatter
cb_scatterredraw(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_scattercleanup(hObject, eventdata)
h = findobj('type','figure','name',mfilename);
opt = getappdata(h, 'opt');
opt.scatter = 0;
set(opt.handlesaxes(11), 'Value', 0);
opt = rmfield(opt, 'scatterfig');
setappdata(h, 'opt', opt);
delete(hObject);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_scatterminslider(h2, eventdata)
h = findobj('type','figure','name',mfilename);
opt = getappdata(h, 'opt');
opt.slim(1) = get(h2, 'value');
fprintf('scatter limits updated to [%.03f %.03f]\n', opt.slim);
setappdata(h, 'opt', opt);
delete(findobj('type','scatter')); % remove previous scatters
msize = round(2500/opt.mri.dim(3)); % headsize (25 cm) / z slices
inc = abs(opt.slim(2)-opt.slim(1))/4; % color increments
for r = 1:4 % 4 color layers to encode peaks
lim1 = opt.slim(1) + r*inc - inc;
lim2 = opt.slim(1) + r*inc;
voxind = find(opt.ana>lim1 & opt.ana<lim2);
[x,y,z] = ind2sub(opt.mri.dim, voxind);
hold on; scatter3(x,y,z,msize,'Marker','s','MarkerEdgeColor','none','MarkerFaceColor',[.8-(r*.2) .8-(r*.2) .8-(r*.2)]);
end
cb_scatterredraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_scattermaxslider(h3, eventdata)
h = findobj('type','figure','name',mfilename);
opt = getappdata(h, 'opt');
opt.slim(2) = get(h3, 'value');
fprintf('scatter limits updated to [%.03f %.03f]\n', opt.slim);
setappdata(h, 'opt', opt);
delete(findobj('type','scatter')); % remove previous scatters
msize = round(2500/opt.mri.dim(3)); % headsize (25 cm) / z slices
inc = abs(opt.slim(2)-opt.slim(1))/4; % color increments
for r = 1:4 % 4 color layers to encode peaks
lim1 = opt.slim(1) + r*inc - inc;
lim2 = opt.slim(1) + r*inc;
voxind = find(opt.ana>lim1 & opt.ana<lim2);
[x,y,z] = ind2sub(opt.mri.dim, voxind);
hold on; scatter3(x,y,z,msize,'Marker','s','MarkerEdgeColor','none','MarkerFaceColor',[.8-(r*.2) .8-(r*.2) .8-(r*.2)]);
end
cb_scatterredraw(h);
|
github
|
lcnbeapp/beapp-master
|
ft_sourceplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sourceplot.m
| 66,934 |
utf_8
|
ac9cf37d2c1a5f847260b28941afca09
|
function ft_sourceplot(cfg, functional, anatomical)
% FT_SOURCEPLOT plots functional source reconstruction data on slices or on a
% surface, optionally as an overlay on anatomical MRI data, where statistical data
% can be used to determine the opacity of the mask. Input data comes from
% FT_SOURCEANALYSIS, FT_SOURCEGRANDAVERAGE or statistical values from
% FT_SOURCESTATISTICS.
%
% Use as
% ft_sourceplot(cfg, data)
% where the input data can contain an anatomical MRI, functional source
% reconstruction results and/or statistical data. If both anatomical and
% functional/statistical data is provided as input, they should be represented or
% interpolated on the same same 3-D grid, e.g. using FT_SOURCEINTERPOLATE.
%
% The slice and ortho visualization plot the data in the input data voxel
% arrangement, i.e. the three ortho views are the 1st, 2nd and 3rd dimension of
% the 3-D data matrix, not of the head coordinate system. The specification of the
% coordinate for slice intersection is specified in head coordinates, i.e.
% relative to the fiducials and in mm or cm. If you want the visualisation to be
% consistent with the head coordinate system, you can reslice the data using
% FT_VOLUMERESLICE.
%
% The configuration should contain:
% cfg.method = 'slice', plots the data on a number of slices in the same plane
% 'ortho', plots the data on three orthogonal slices
% 'surface', plots the data on a 3D brain surface
% 'glassbrain', plots a max-projection through the brain
% 'vertex', plots the grid points or vertices scaled according to the functional value
%
% cfg.anaparameter = string, field in data with the anatomical data (default = 'anatomy' if present in data)
% cfg.funparameter = string, field in data with the functional parameter of interest (default = [])
% cfg.maskparameter = string, field in the data to be used for opacity masking of fun data (default = [])
% If values are between 0 and 1, zero is fully transparant and one is fully opaque.
% If values in the field are not between 0 and 1 they will be scaled depending on the values
% of cfg.opacitymap and cfg.opacitylim (see below)
% You can use masking in several ways, f.i.
% - use outcome of statistics to show only the significant values and mask the insignificant
% NB see also cfg.opacitymap and cfg.opacitylim below
% - use the functional data itself as mask, the highest value (and/or lowest when negative)
% will be opaque and the value closest to zero transparent
% - Make your own field in the data with values between 0 and 1 to control opacity directly
%
% The following parameters can be used in all methods:
% cfg.downsample = downsampling for resolution reduction, integer value (default = 1) (orig: from surface)
% cfg.atlas = string, filename of atlas to use (default = []) see FT_READ_ATLAS
% for ROI masking (see "masking" below) or in "ortho-plotting" mode (see "ortho-plotting" below)
%
% The following parameters can be used for the functional data:
% cfg.funcolormap = colormap for functional data, see COLORMAP (default = 'auto')
% 'auto', depends structure funparameter, or on funcolorlim
% - funparameter: only positive values, or funcolorlim:'zeromax' -> 'hot'
% - funparameter: only negative values, or funcolorlim:'minzero' -> 'cool'
% - funparameter: both pos and neg values, or funcolorlim:'maxabs' -> 'default'
% - funcolorlim: [min max] if min & max pos-> 'hot', neg-> 'cool', both-> 'default'
% cfg.funcolorlim = color range of the functional data (default = 'auto')
% [min max]
% 'maxabs', from -max(abs(funparameter)) to +max(abs(funparameter))
% 'zeromax', from 0 to max(funparameter)
% 'minzero', from min(funparameter) to 0
% 'auto', if funparameter values are all positive: 'zeromax',
% all negative: 'minzero', both possitive and negative: 'maxabs'
% cfg.colorbar = 'yes' or 'no' (default = 'yes')
%
% The following parameters can be used for the masking data:
% cfg.opacitymap = opacitymap for mask data, see ALPHAMAP (default = 'auto')
% 'auto', depends structure maskparameter, or on opacitylim
% - maskparameter: only positive values, or opacitylim:'zeromax' -> 'rampup'
% - maskparameter: only negative values, or opacitylim:'minzero' -> 'rampdown'
% - maskparameter: both pos and neg values, or opacitylim:'maxabs' -> 'vdown'
% - opacitylim: [min max] if min & max pos-> 'rampup', neg-> 'rampdown', both-> 'vdown'
% - NB. to use p-values use 'rampdown' to get lowest p-values opaque and highest transparent
% cfg.opacitylim = range of mask values to which opacitymap is scaled (default = 'auto')
% [min max]
% 'maxabs', from -max(abs(maskparameter)) to +max(abs(maskparameter))
% 'zeromax', from 0 to max(abs(maskparameter))
% 'minzero', from min(abs(maskparameter)) to 0
% 'auto', if maskparameter values are all positive: 'zeromax',
% all negative: 'minzero', both possitive and negative: 'maxabs'
% cfg.roi = string or cell of strings, region(s) of interest from anatomical atlas (see cfg.atlas above)
% everything is masked except for ROI
%
% The following parameters apply for ortho-plotting
% cfg.location = location of cut, (default = 'auto')
% 'auto', 'center' if only anatomy, 'max' if functional data
% 'min' and 'max' position of min/max funparameter
% 'center' of the brain
% [x y z], coordinates in voxels or head, see cfg.locationcoordinates
% cfg.locationcoordinates = coordinate system used in cfg.location, 'head' or 'voxel' (default = 'head')
% 'head', headcoordinates as mm or cm
% 'voxel', voxelcoordinates as indices
% cfg.crosshair = 'yes' or 'no' (default = 'yes')
% cfg.axis = 'on' or 'off' (default = 'on')
% cfg.queryrange = number, in atlas voxels (default 3)
%
%
% The following parameters apply for slice-plotting
% cfg.nslices = number of slices, (default = 20)
% cfg.slicerange = range of slices in data, (default = 'auto')
% 'auto', full range of data
% [min max], coordinates of first and last slice in voxels
% cfg.slicedim = dimension to slice 1 (x-axis) 2(y-axis) 3(z-axis) (default = 3)
% cfg.title = string, title of the figure window
%
% When cfg.method = 'surface', the functional data will be rendered onto a cortical
% mesh (can be an inflated mesh). If the input source data contains a tri-field (i.e.
% a description of a mesh), no interpolation is needed. If the input source data does
% not contain a tri-field, an interpolation is performed onto a specified surface.
% Note that the coordinate system in which the surface is defined should be the same
% as the coordinate system that is represented in source.pos.
%
% The following parameters apply to surface-plotting when an interpolation
% is required
% cfg.surffile = string, file that contains the surface (default = 'surface_white_both.mat')
% 'surface_white_both.mat' contains a triangulation that corresponds with the
% SPM anatomical template in MNI coordinates
% cfg.surfinflated = string, file that contains the inflated surface (default = [])
% may require specifying a point-matching (uninflated) surffile
% cfg.surfdownsample = number (default = 1, i.e. no downsampling)
% cfg.projmethod = projection method, how functional volume data is projected onto surface
% 'nearest', 'project', 'sphere_avg', 'sphere_weighteddistance'
% cfg.projvec = vector (in mm) to allow different projections that
% are combined with the method specified in cfg.projcomb
% cfg.projcomb = 'mean', 'max', method to combine the different projections
% cfg.projweight = vector of weights for the different projections (default = 1)
% cfg.projthresh = implements thresholding on the surface level
% for example, 0.7 means 70% of maximum
% cfg.sphereradius = maximum distance from each voxel to the surface to be
% included in the sphere projection methods, expressed in mm
% cfg.distmat = precomputed distance matrix (default = [])
%
% The following parameters apply to surface-plotting independent of whether
% an interpolation is required
% cfg.camlight = 'yes' or 'no' (default = 'yes')
% cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = 'opengl')
% note that when using opacity the OpenGL renderer is required.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat file on
% disk. This mat files should contain only a single variable corresponding to the
% input structure.
%
% See also FT_SOURCEMOVIE, FT_SOURCEANALYSIS, FT_SOURCEGRANDAVERAGE,
% FT_SOURCESTATISTICS, FT_VOLUMELOOKUP, FT_READ_ATLAS, FT_READ_MRI
% TODO have to be built in:
% cfg.marker = [Nx3] array defining N marker positions to display (orig: from sliceinterp)
% cfg.markersize = radius of markers (default = 5)
% cfg.markercolor = [1x3] marker color in RGB (default = [1 1 1], i.e. white) (orig: from sliceinterp)
% white background option
% undocumented TODO
% slice in all directions
% surface also optimal when inside present
% come up with a good glass brain projection
% Copyright (C) 2007-2016, Robert Oostenveld, Ingrid Nieuwenhuis
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar functional anatomical
ft_preamble provenance functional anatomical
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% this is not supported any more as of 26/10/2011
if ischar(functional)
error('please use cfg.inputfile instead of specifying the input variable as a sting');
end
% ensure that old and unsupported options are not being relied on by the end-user's script
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.coh', 'coh'});
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.mom', 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'maskparameter', 'avg.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'maskparameter', 'avg.coh', 'coh'});
cfg = ft_checkconfig(cfg, 'renamedval', {'maskparameter', 'avg.mom', 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'location', 'interactive', 'auto'});
% instead of specifying cfg.coordsys, the user should specify the coordsys in the functional data
cfg = ft_checkconfig(cfg, 'forbidden', {'units', 'inputcoordsys', 'coordinates'});
cfg = ft_checkconfig(cfg, 'deprecated', 'coordsys');
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=2837
cfg = ft_checkconfig(cfg, 'renamed', {'viewdim', 'axisratio'});
if isfield(cfg, 'atlas') && ~isempty(cfg.atlas)
% the atlas lookup requires the specification of the coordsys
functional = ft_checkdata(functional, 'datatype', {'volume', 'source'}, 'feedback', 'yes', 'hasunit', 'yes', 'hascoordsys', 'yes');
else
% check if the input functional is valid for this function, a coordsys is not directly needed
functional = ft_checkdata(functional, 'datatype', {'volume', 'source'}, 'feedback', 'yes', 'hasunit', 'yes');
end
% set the defaults for all methods
cfg.method = ft_getopt(cfg, 'method', 'ortho');
cfg.funparameter = ft_getopt(cfg, 'funparameter', []);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []);
cfg.downsample = ft_getopt(cfg, 'downsample', 1);
cfg.title = ft_getopt(cfg, 'title', '');
cfg.atlas = ft_getopt(cfg, 'atlas', []);
cfg.marker = ft_getopt(cfg, 'marker', []);
cfg.markersize = ft_getopt(cfg, 'markersize', 5);
cfg.markercolor = ft_getopt(cfg, 'markercolor', [1 1 1]);
cfg.renderer = ft_getopt(cfg, 'renderer', 'opengl');
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes');
cfg.voxelratio = ft_getopt(cfg, 'voxelratio', 'data'); % display size of the voxel, 'data' or 'square'
cfg.axisratio = ft_getopt(cfg, 'axisratio', 'data'); % size of the axes of the three orthoplots, 'square', 'voxel', or 'data'
if ~isfield(cfg, 'anaparameter')
if isfield(functional, 'anatomy')
cfg.anaparameter = 'anatomy';
else
cfg.anaparameter = [];
end
end
% set the common defaults for the functional data
cfg.funcolormap = ft_getopt(cfg, 'funcolormap', 'auto');
cfg.funcolorlim = ft_getopt(cfg, 'funcolorlim', 'auto');
% set the common defaults for the statistical data
cfg.opacitymap = ft_getopt(cfg, 'opacitymap', 'auto');
cfg.opacitylim = ft_getopt(cfg, 'opacitylim', 'auto');
cfg.roi = ft_getopt(cfg, 'roi', []);
if isfield(cfg, 'TTlookup'),
error('TTlookup is old; now specify cfg.atlas, see help!');
end
% select the functional and the mask parameter
cfg.funparameter = parameterselection(cfg.funparameter, functional);
cfg.maskparameter = parameterselection(cfg.maskparameter, functional);
% only a single parameter should be selected
try, cfg.funparameter = cfg.funparameter{1}; end
try, cfg.maskparameter = cfg.maskparameter{1}; end
% the data can be passed as input argument or can be read from disk
hasanatomical = exist('anatomical', 'var');
if hasanatomical
% interpolate on the fly, this also does the downsampling if requested
tmpcfg = keepfields(cfg, {'downsample', 'interpmethod'});
tmpcfg.parameter = cfg.funparameter;
functional = ft_sourceinterpolate(tmpcfg, functional, anatomical);
[cfg, functional] = rollback_provenance(cfg, functional);
elseif ~hasanatomical && cfg.downsample~=1
% optionally downsample the functional volume
tmpcfg = keepfields(cfg, {'downsample'});
tmpcfg.parameter = {cfg.funparameter, cfg.maskparameter, cfg.anaparameter};
functional = ft_volumedownsample(tmpcfg, functional);
[cfg, functional] = rollback_provenance(cfg, functional);
end
if isfield(functional, 'dim') && isfield(functional, 'transform')
% this is a regular 3D functional volume
isUnstructuredFun = false;
elseif isfield(functional, 'dim') && isfield(functional, 'pos')
% these are positions that can be mapped onto a 3D regular grid
isUnstructuredFun = false;
% contstruct the transformation matrix from the positions
functional.transform = pos2transform(functional.pos, functional.dim);
else
% this is functional data on irregular positions, such as a cortical sheet
isUnstructuredFun = true;
end
% this only relates to the dimensions of the geometry, which is npos*1 or nx*ny*nz
if isUnstructuredFun
dim = [size(functional.pos,1) 1];
else
dim = functional.dim;
end
%% get the elements that will be plotted
hasatlas = ~isempty(cfg.atlas);
if hasatlas
if ischar(cfg.atlas)
% initialize the atlas
[p, f, x] = fileparts(cfg.atlas);
fprintf(['reading ', f, ' atlas coordinates and labels\n']);
atlas = ft_read_atlas(cfg.atlas);
else
atlas = cfg.atlas;
end
end
hasroi = ~isempty(cfg.roi);
if hasroi
if ~hasatlas
error('specify cfg.atlas which specifies cfg.roi')
else
% get the mask
tmpcfg = [];
tmpcfg.roi = cfg.roi;
tmpcfg.atlas = cfg.atlas;
tmpcfg.inputcoord = functional.coordsys;
roi = ft_volumelookup(tmpcfg,functional);
end
end
hasana = isfield(functional, cfg.anaparameter);
if hasana
ana = getsubfield(functional, cfg.anaparameter);
if isa(ana, 'uint8') || isa(ana, 'uint16') || isa(ana, 'int8') || isa(ana, 'int16')
ana = double(ana);
end
fprintf('scaling anatomy to [0 1]\n');
dmin = min(ana(:));
dmax = max(ana(:));
ana = (ana-dmin)./(dmax-dmin);
ana = reshape(ana, dim);
end
%%% funparameter
hasfun = isfield(functional, cfg.funparameter);
if hasfun
fun = getsubfield(functional, cfg.funparameter);
dimord = getdimord(functional, cfg.funparameter);
dimtok = tokenize(dimord, '_');
% replace the cell-array functional with a normal array
if strcmp(dimtok{1}, '{pos}')
tmpdim = getdimsiz(functional, cfg.funparameter);
tmpfun = nan(tmpdim);
insideindx = find(functional.inside);
for i=insideindx(:)'
tmpfun(i,:) = fun{i};
end
fun = tmpfun;
clear tmpfun
dimtok{1} = 'pos'; % update the description of the dimensions
dimord([1 5]) = []; % remove the { and }
end
% ensure that the functional data is real
if ~isreal(fun)
warning('functional data is complex, taking absolute value');
fun = abs(fun);
end
if strcmp(dimord, 'pos_rgb')
% treat functional data as rgb values
if any(fun(:)>1 | fun(:)<0)
% scale
tmpdim = size(fun);
nvox = prod(tmpdim(1:end-1));
tmpfun = reshape(fun,[nvox tmpdim(end)]);
m1 = max(tmpfun,[],1);
m2 = min(tmpfun,[],1);
tmpfun = (tmpfun-m2(ones(nvox,1),:))./(m1(ones(nvox,1),:)-m2(ones(nvox,1),:));
fun = reshape(tmpfun, tmpdim);
clear tmpfun
end
qi = 1;
hasfreq = 0;
hastime = 0;
doimage = 1;
fcolmin = 0;
fcolmax = 1;
else
% determine scaling min and max (fcolmin fcolmax) and funcolormap
if ~isa(fun, 'logical')
funmin = min(fun(:));
funmax = max(fun(:));
else
funmin = 0;
funmax = 1;
end
% smart automatic limits
if isequal(cfg.funcolorlim, 'auto')
if sign(funmin)>-1 && sign(funmax)>-1
cfg.funcolorlim = 'zeromax';
elseif sign(funmin)<1 && sign(funmax)<1
cfg.funcolorlim = 'minzero';
else
cfg.funcolorlim = 'maxabs';
end
end
if ischar(cfg.funcolorlim)
% limits are given as string
if isequal(cfg.funcolorlim, 'maxabs')
fcolmin = -max(abs([funmin,funmax]));
fcolmax = max(abs([funmin,funmax]));
if isequal(cfg.funcolormap, 'auto'); cfg.funcolormap = 'default'; end;
elseif isequal(cfg.funcolorlim, 'zeromax')
fcolmin = 0;
fcolmax = funmax;
if isequal(cfg.funcolormap, 'auto'); cfg.funcolormap = 'hot'; end;
elseif isequal(cfg.funcolorlim, 'minzero')
fcolmin = funmin;
fcolmax = 0;
if isequal(cfg.funcolormap, 'auto'); cfg.funcolormap = 'cool'; end;
else
error('do not understand cfg.funcolorlim');
end
else
% limits are numeric
fcolmin = cfg.funcolorlim(1);
fcolmax = cfg.funcolorlim(2);
% smart colormap
if isequal(cfg.funcolormap, 'auto')
if sign(fcolmin) == -1 && sign(fcolmax) == 1
cfg.funcolormap = 'default';
else
if fcolmin < 0
cfg.funcolormap = 'cool';
else
cfg.funcolormap = 'hot';
end
end
end
end % if ischar
clear funmin funmax
% what if fun is 4D?
if ndims(fun)>3 || prod(dim)==size(fun,1)
if strcmp(dimord, 'pos_freq_time')
% functional contains time-frequency representation
qi = [1 1];
hasfreq = numel(functional.freq)>1;
hastime = numel(functional.time)>1;
fun = reshape(fun, [dim numel(functional.freq) numel(functional.time)]);
elseif strcmp(dimord, 'pos_time')
% functional contains evoked field
qi = 1;
hasfreq = 0;
hastime = numel(functional.time)>1;
fun = reshape(fun, [dim numel(functional.time)]);
elseif strcmp(dimord, 'pos_freq')
% functional contains frequency spectra
qi = 1;
hasfreq = numel(functional.freq)>1;
hastime = 0;
fun = reshape(fun, [dim numel(functional.freq)]);
else
qi = 1;
hasfreq = 0;
hastime = 0;
fun = reshape(fun, dim);
end
else
% do nothing
qi = 1;
hasfreq = 0;
hastime = 0;
end
doimage = 0;
end % if dimord has rgb or something else
else
% there is no functional data
qi = 1;
hasfreq = 0;
hastime = 0;
doimage = 0;
fcolmin = 0; % needs to be defined for callback
fcolmax = 1;
end
hasmsk = issubfield(functional, cfg.maskparameter);
if hasmsk
if ~hasfun
error('you can not have a mask without functional data')
else
msk = getsubfield(functional, cfg.maskparameter);
if islogical(msk) % otherwise sign() not posible
msk = double(msk);
end
end
% reshape to match fun
if strcmp(dimord, 'pos_freq_time')
% functional contains timefrequency representation
msk = reshape(msk, [dim numel(functional.freq) numel(functional.time)]);
elseif strcmp(dimord, 'pos_time')
% functional contains evoked field
msk = reshape(msk, [dim numel(functional.time)]);
elseif strcmp(dimord, 'pos_freq')
% functional contains frequency spectra
msk = reshape(msk, [dim numel(functional.freq)]);
else
msk = reshape(msk, dim);
end
% determine scaling and opacitymap
mskmin = min(msk(:));
mskmax = max(msk(:));
% determine the opacity limits and the opacity map
% smart limits: make from auto other string, or equal to funcolorlim if funparameter == maskparameter
if isequal(cfg.opacitylim, 'auto')
if isequal(cfg.funparameter,cfg.maskparameter)
cfg.opacitylim = cfg.funcolorlim;
else
if sign(mskmin)>-1 && sign(mskmax)>-1
cfg.opacitylim = 'zeromax';
elseif sign(mskmin)<1 && sign(mskmax)<1
cfg.opacitylim = 'minzero';
else
cfg.opacitylim = 'maxabs';
end
end
end
if ischar(cfg.opacitylim)
% limits are given as string
switch cfg.opacitylim
case 'zeromax'
opacmin = 0;
opacmax = mskmax;
if isequal(cfg.opacitymap, 'auto'), cfg.opacitymap = 'rampup'; end;
case 'minzero'
opacmin = mskmin;
opacmax = 0;
if isequal(cfg.opacitymap, 'auto'), cfg.opacitymap = 'rampdown'; end;
case 'maxabs'
opacmin = -max(abs([mskmin, mskmax]));
opacmax = max(abs([mskmin, mskmax]));
if isequal(cfg.opacitymap, 'auto'), cfg.opacitymap = 'vdown'; end;
otherwise
error('incorrect specification of cfg.opacitylim');
end % switch opacitylim
else
% limits are numeric
opacmin = cfg.opacitylim(1);
opacmax = cfg.opacitylim(2);
if isequal(cfg.opacitymap, 'auto')
if sign(opacmin)>-1 && sign(opacmax)>-1
cfg.opacitymap = 'rampup';
elseif sign(opacmin)<1 && sign(opacmax)<1
cfg.opacitymap = 'rampdown';
else
cfg.opacitymap = 'vdown';
end
end
end % handling opacitylim and opacitymap
clear mskmin mskmax
else
opacmin = [];
opacmax = [];
end
% prevent outside fun from being plotted
if hasfun && ~hasmsk && isfield(functional, 'inside')
hasmsk = 1;
msk = zeros(dim);
cfg.opacitymap = 'rampup';
opacmin = 0;
opacmax = 1;
% make intelligent mask
if isequal(cfg.method, 'surface')
msk(functional.inside) = 1;
else
if hasana
msk(functional.inside) = 0.5; % so anatomy is visible
else
msk(functional.inside) = 1;
end
end
end
% if region of interest is specified, mask everything besides roi
if hasfun && hasroi && ~hasmsk
hasmsk = 1;
msk = roi;
cfg.opacitymap = 'rampup';
opacmin = 0;
opacmax = 1;
elseif hasfun && hasroi && hasmsk
msk = roi .* msk;
opacmin = [];
opacmax = []; % has to be defined
elseif hasroi
error('you can not have a roi without functional data')
end
%% give some feedback
if ~hasfun && ~hasana
% this seems to be a problem that people often have due to incorrect specification of the cfg
error('no anatomy is present and no functional data is selected, please check your cfg.funparameter');
end
if ~hasana
fprintf('not plotting anatomy\n');
end
if ~hasfun
fprintf('not plotting functional data\n');
end
if ~hasmsk
fprintf('not applying a mask on the functional data\n');
end
if ~hasatlas
fprintf('not using an atlas\n');
end
if ~hasroi
fprintf('not using a region-of-interest\n');
end
%% start building the figure
h = figure;
set(h, 'color', [1 1 1]);
set(h, 'visible', 'on');
set(h, 'renderer', cfg.renderer);
if ~isempty(cfg.title)
title(cfg.title);
end
%%% set color and opacity mapping for this figure
if hasfun
colormap(cfg.funcolormap);
cfg.funcolormap = colormap;
end
if hasmsk
cfg.opacitymap = alphamap(cfg.opacitymap);
alphamap(cfg.opacitymap);
if ndims(fun)>3 && ndims(msk)==3
siz = size(fun);
msk = repmat(msk, [1 1 1 siz(4:end)]);
end
end
switch cfg.method
case 'slice'
% set the defaults for method=slice
cfg.nslices = ft_getopt(cfg, 'nslices', 20);
cfg.slicedim = ft_getopt(cfg, 'slicedim', 3);
cfg.slicerange = ft_getopt(cfg, 'slicerange', 'auto');
% white BG => mskana
% TODO: HERE THE FUNCTION THAT MAKES TO SLICE DIMENSION ALWAYS THE THIRD DIMENSION, AND ALSO KEEP TRANSFORMATION MATRIX UP TO DATE
% zoiets
% if hasana; ana = shiftdim(ana,cfg.slicedim-1); end;
% if hasfun; fun = shiftdim(fun,cfg.slicedim-1); end;
% if hasmsk; msk = shiftdim(msk,cfg.slicedim-1); end;
% ADDED BY JM: allow for slicedim different than 3
switch cfg.slicedim
case 1
dim = dim([2 3 1]);
if hasana, ana = permute(ana,[2 3 1]); end
if hasfun, fun = permute(fun,[2 3 1]); end
if hasmsk, msk = permute(msk,[2 3 1]); end
cfg.slicedim=3;
case 2
dim = dim([3 1 2]);
if hasana, ana = permute(ana,[3 1 2]); end
if hasfun, fun = permute(fun,[3 1 2]); end
if hasmsk, msk = permute(msk,[3 1 2]); end
cfg.slicedim=3;
otherwise
% nothing needed
end
%%%%% select slices
if ~ischar(cfg.slicerange)
ind_fslice = cfg.slicerange(1);
ind_lslice = cfg.slicerange(2);
elseif isequal(cfg.slicerange, 'auto')
if hasfun % default
if isfield(functional, 'inside')
insideMask = false(size(fun));
insideMask(functional.inside) = true;
ind_fslice = min(find(max(max(insideMask,[],1),[],2)));
ind_lslice = max(find(max(max(insideMask,[],1),[],2)));
else
ind_fslice = min(find(~isnan(max(max(fun,[],1),[],2))));
ind_lslice = max(find(~isnan(max(max(fun,[],1),[],2))));
end
elseif hasana % if only ana, no fun
ind_fslice = min(find(max(max(ana,[],1),[],2)));
ind_lslice = max(find(max(max(ana,[],1),[],2)));
else
error('no functional parameter and no anatomical parameter, can not plot');
end
else
error('do not understand cfg.slicerange');
end
ind_allslice = linspace(ind_fslice,ind_lslice,cfg.nslices);
ind_allslice = round(ind_allslice);
% make new ana, fun, msk, mskana with only the slices that will be plotted (slice dim is always third dimension)
if hasana; new_ana = ana(:,:,ind_allslice); clear ana; ana=new_ana; clear new_ana; end;
if hasfun; new_fun = fun(:,:,ind_allslice); clear fun; fun=new_fun; clear new_fun; end;
if hasmsk; new_msk = msk(:,:,ind_allslice); clear msk; msk=new_msk; clear new_msk; end;
% if hasmskana; new_mskana = mskana(:,:,ind_allslice); clear mskana; mskana=new_mskana; clear new_mskana; end;
% update the dimensions of the volume
if hasana; dim=size(ana); else dim=size(fun); end;
%%%%% make a "quilt", that contain all slices on 2D patched sheet
% Number of patches along sides of Quilt (M and N)
% Size (in voxels) of side of patches of Quilt (m and n)
% take care of a potential singleton 3rd dimension
if numel(dim)<3
dim(end+1:3) = 1;
end
%if cfg.slicedim~=3
% error('only supported for slicedim=3');
%end
m = dim(1);
n = dim(2);
M = ceil(sqrt(dim(3)));
N = ceil(sqrt(dim(3)));
num_patch = N*M;
num_slice = (dim(cfg.slicedim));
num_empt = num_patch-num_slice;
% put empty slides on ana, fun, msk, mskana to fill Quilt up
if hasana; ana(:,:,end+1:num_patch)=0; end;
if hasfun; fun(:,:,end+1:num_patch)=0; end;
if hasmsk; msk(:,:,end+1:num_patch)=0; end;
% if hasmskana; mskana(:,:,end:num_patch)=0; end;
% put the slices in the quilt
for iSlice = 1:num_slice
xbeg = floor((iSlice-1)./M);
ybeg = mod(iSlice-1, M);
if hasana
quilt_ana(ybeg*m+1:(ybeg+1)*m, xbeg*n+1:(xbeg+1)*n)=ana(:,:,iSlice);
end
if hasfun
quilt_fun(ybeg*m+1:(ybeg+1)*m, xbeg*n+1:(xbeg+1)*n)=fun(:,:,iSlice);
end
if hasmsk
quilt_msk(ybeg.*m+1:(ybeg+1)*m, xbeg*n+1:(xbeg+1)*n)=msk(:,:,iSlice);
end
% if hasmskana
% quilt_mskana(ybeg.*m+1:(ybeg+1).*m, xbeg.*n+1:(xbeg+1).*n)=mskana(:,:,iSlice);
% end
end
% make vols and scales, containes volumes to be plotted (fun, ana, msk), added by ingnie
if hasana; vols2D{1} = quilt_ana; scales{1} = []; end; % needed when only plotting ana
if hasfun; vols2D{2} = quilt_fun; scales{2} = [fcolmin fcolmax]; end;
if hasmsk; vols2D{3} = quilt_msk; scales{3} = [opacmin opacmax]; end;
% the transpose is needed for displaying the matrix using the MATLAB image() function
if hasana; ana = vols2D{1}'; end;
if hasfun && ~doimage; fun = vols2D{2}'; end;
if hasfun && doimage; fun = permute(vols2D{2},[2 1 3]); end;
if hasmsk; msk = vols2D{3}'; end;
if hasana
% scale anatomy between 0 and 1
fprintf('scaling anatomy\n');
amin = min(ana(:));
amax = max(ana(:));
ana = (ana-amin)./(amax-amin);
clear amin amax;
% convert anatomy into RGB values
ana = cat(3, ana, ana, ana);
ha = imagesc(ana);
end
hold on
if hasfun
if doimage
hf = image(fun);
else
hf = imagesc(fun);
try
caxis(scales{2});
end
% apply the opacity mask to the functional data
if hasmsk
% set the opacity
set(hf, 'AlphaData', msk)
set(hf, 'AlphaDataMapping', 'scaled')
try
alim(scales{3});
end
elseif hasana
set(hf, 'AlphaData', 0.5)
end
end
end
axis equal
axis tight
axis xy
axis off
if istrue(cfg.colorbar)
if hasfun
% use a normal MATLAB coorbar
hc = colorbar;
set(hc, 'YLim', [fcolmin fcolmax]);
else
warning('no colorbar possible without functional data')
end
end
case 'ortho'
% set the defaults for method=ortho
cfg.location = ft_getopt(cfg, 'location', 'auto');
cfg.locationcoordinates = ft_getopt(cfg, 'locationcoordinates', 'head');
cfg.crosshair = ft_getopt(cfg, 'crosshair', 'yes');
cfg.axis = ft_getopt(cfg, 'axis', 'on');
cfg.queryrange = ft_getopt(cfg, 'queryrange', 3);
if ~ischar(cfg.location)
if strcmp(cfg.locationcoordinates, 'head')
% convert the headcoordinates location into voxel coordinates
loc = inv(functional.transform) * [cfg.location(:); 1];
loc = round(loc(1:3));
elseif strcmp(cfg.locationcoordinates, 'voxel')
% the location is already in voxel coordinates
loc = round(cfg.location(1:3));
else
error('you should specify cfg.locationcoordinates');
end
else
if isequal(cfg.location, 'auto')
if hasfun
if isequal(cfg.funcolorlim, 'maxabs');
loc = 'max';
elseif isequal(cfg.funcolorlim, 'zeromax');
loc = 'max';
elseif isequal(cfg.funcolorlim, 'minzero');
loc = 'min';
else % if numerical
loc = 'max';
end
else
loc = 'center';
end;
else
loc = cfg.location;
end
end
% determine the initial intersection of the cursor (xi yi zi)
if ischar(loc) && strcmp(loc, 'min')
if isempty(cfg.funparameter)
error('cfg.location is min, but no functional parameter specified');
end
[dummy, minindx] = min(fun(:));
[xi, yi, zi] = ind2sub(dim, minindx);
elseif ischar(loc) && strcmp(loc, 'max')
if isempty(cfg.funparameter)
error('cfg.location is max, but no functional parameter specified');
end
[dummy, maxindx] = max(fun(:));
[xi, yi, zi] = ind2sub(dim, maxindx);
elseif ischar(loc) && strcmp(loc, 'center')
xi = round(dim(1)/2);
yi = round(dim(2)/2);
zi = round(dim(3)/2);
elseif ~ischar(loc)
% using nearest instead of round ensures that the position remains within the volume
xi = nearest(1:dim(1), loc(1));
yi = nearest(1:dim(2), loc(2));
zi = nearest(1:dim(3), loc(3));
end
xi = round(xi); xi = max(xi, 1); xi = min(xi, dim(1));
yi = round(yi); yi = max(yi, 1); yi = min(yi, dim(2));
zi = round(zi); zi = max(zi, 1); zi = min(zi, dim(3));
% axes settings
if strcmp(cfg.axisratio, 'voxel')
% determine the number of voxels to be plotted along each axis
axlen1 = dim(1);
axlen2 = dim(2);
axlen3 = dim(3);
elseif strcmp(cfg.axisratio, 'data')
% determine the length of the edges along each axis
[cp_voxel, cp_head] = cornerpoints(dim, functional.transform);
axlen1 = norm(cp_head(2,:)-cp_head(1,:));
axlen2 = norm(cp_head(4,:)-cp_head(1,:));
axlen3 = norm(cp_head(5,:)-cp_head(1,:));
elseif strcmp(cfg.axisratio, 'square')
% the length of the axes should be equal
axlen1 = 1;
axlen2 = 1;
axlen3 = 1;
end
% this is the size reserved for subplot h1, h2 and h3
h1size(1) = 0.82*axlen1/(axlen1 + axlen2);
h1size(2) = 0.82*axlen3/(axlen2 + axlen3);
h2size(1) = 0.82*axlen2/(axlen1 + axlen2);
h2size(2) = 0.82*axlen3/(axlen2 + axlen3);
h3size(1) = 0.82*axlen1/(axlen1 + axlen2);
h3size(2) = 0.82*axlen2/(axlen2 + axlen3);
if strcmp(cfg.voxelratio, 'square')
voxlen1 = 1;
voxlen2 = 1;
voxlen3 = 1;
elseif strcmp(cfg.voxelratio, 'data')
% the size of the voxel is scaled with the data
[cp_voxel, cp_head] = cornerpoints(dim, functional.transform);
voxlen1 = norm(cp_head(2,:)-cp_head(1,:))/norm(cp_voxel(2,:)-cp_voxel(1,:));
voxlen2 = norm(cp_head(4,:)-cp_head(1,:))/norm(cp_voxel(4,:)-cp_voxel(1,:));
voxlen3 = norm(cp_head(5,:)-cp_head(1,:))/norm(cp_voxel(5,:)-cp_voxel(1,:));
end
%% the figure is interactive, add callbacks
set(h, 'windowbuttondownfcn', @cb_buttonpress);
set(h, 'windowbuttonupfcn', @cb_buttonrelease);
set(h, 'windowkeypressfcn', @cb_keyboard);
set(h, 'CloseRequestFcn', @cb_cleanup);
% ensure that this is done in interactive mode
set(h, 'renderer', cfg.renderer);
%% create figure handles
% axis handles will hold the anatomical functional if present, along with labels etc.
h1 = axes('position',[0.06 0.06+0.06+h3size(2) h1size(1) h1size(2)]);
h2 = axes('position',[0.06+0.06+h1size(1) 0.06+0.06+h3size(2) h2size(1) h2size(2)]);
h3 = axes('position',[0.06 0.06 h3size(1) h3size(2)]);
set(h1, 'Tag', 'ik', 'Visible', cfg.axis, 'XAxisLocation', 'top');
set(h2, 'Tag', 'jk', 'Visible', cfg.axis, 'YAxisLocation', 'right'); % after rotating in ft_plot_ortho this becomes top
set(h3, 'Tag', 'ij', 'Visible', cfg.axis);
set(h1, 'DataAspectRatio',1./[voxlen1 voxlen2 voxlen3]);
set(h2, 'DataAspectRatio',1./[voxlen1 voxlen2 voxlen3]);
set(h3, 'DataAspectRatio',1./[voxlen1 voxlen2 voxlen3]);
% create structure to be passed to gui
opt = [];
opt.dim = dim;
opt.ijk = [xi yi zi];
opt.h1size = h1size;
opt.h2size = h2size;
opt.h3size = h3size;
opt.handlesaxes = [h1 h2 h3];
opt.handlesfigure = h;
opt.axis = cfg.axis;
if hasatlas
opt.atlas = atlas;
end
if hasana
opt.ana = ana;
end
if hasfun
opt.fun = fun;
end
if hasmsk
opt.msk = msk;
end
opt.update = [1 1 1];
opt.init = true;
opt.usedim = (isUnstructuredFun==false);
opt.usepos = (isUnstructuredFun==true);
opt.hasatlas = hasatlas;
opt.hasfreq = hasfreq;
opt.hastime = hastime;
opt.hasmsk = hasmsk;
opt.hasfun = hasfun;
opt.hasana = hasana;
opt.qi = qi;
opt.tag = 'ik';
opt.functional = functional;
opt.fcolmin = fcolmin;
opt.fcolmax = fcolmax;
opt.opacmin = opacmin;
opt.opacmax = opacmax;
opt.clim = []; % contrast limits for the anatomy, see ft_volumenormalise
opt.colorbar = cfg.colorbar;
opt.queryrange = cfg.queryrange;
opt.funcolormap = cfg.funcolormap;
opt.crosshair = istrue(cfg.crosshair);
%% do the actual plotting
setappdata(h, 'opt', opt);
cb_redraw(h);
fprintf('\n');
fprintf('click left mouse button to reposition the cursor\n');
fprintf('click and hold right mouse button to update the position while moving the mouse\n');
fprintf('use the arrowkeys to navigate in the current axis\n');
case 'surface'
% set the defaults for method=surface
cfg.downsample = ft_getopt(cfg, 'downsample', 1);
cfg.surfdownsample = ft_getopt(cfg, 'surfdownsample', 1);
cfg.surffile = ft_getopt(cfg, 'surffile', 'surface_white_both.mat'); % use a triangulation that corresponds with the collin27 anatomical template in MNI coordinates
cfg.surfinflated = ft_getopt(cfg, 'surfinflated', []);
cfg.sphereradius = ft_getopt(cfg, 'sphereradius', []);
cfg.projvec = ft_getopt(cfg, 'projvec', 1);
cfg.projweight = ft_getopt(cfg, 'projweight', ones(size(cfg.projvec)));
cfg.projcomb = ft_getopt(cfg, 'projcomb', 'mean'); % or max
cfg.projthresh = ft_getopt(cfg, 'projthresh', []);
cfg.projmethod = ft_getopt(cfg, 'projmethod', 'nearest');
cfg.distmat = ft_getopt(cfg, 'distmat', []);
cfg.camlight = ft_getopt(cfg, 'camlight', 'yes');
% determine whether the source functional already contains a triangulation
interpolate2surf = 0;
if ~isUnstructuredFun
% no triangulation present: interpolation should be performed
fprintf('The source functional is defined on a 3D grid, interpolation to a surface mesh will be performed\n');
interpolate2surf = 1;
elseif isUnstructuredFun && isfield(functional, 'tri')
fprintf('The source functional is defined on a triangulated surface, using the surface mesh description in the functional\n');
elseif isUnstructuredFun
% add a transform field to the functional
fprintf('The source functional does not contain a triangulated surface, we may need to interpolate to a surface mesh\n');
functional.transform = pos2transform(functional.pos);
interpolate2surf = 1;
end
if interpolate2surf,
% deal with the interpolation
% FIXME this should be dealt with by ft_sourceinterpolate
% read the triangulated cortical surface from file
surf = ft_read_headshape(cfg.surffile);
if isfield(surf, 'transform'),
% compute the surface vertices in head coordinates
surf.pos = ft_warp_apply(surf.transform, surf.pos);
end
% downsample the cortical surface
if cfg.surfdownsample > 1
if ~isempty(cfg.surfinflated)
error('downsampling the surface is not possible in combination with an inflated surface');
end
fprintf('downsampling surface from %d vertices\n', size(surf.pos,1));
[temp.tri, temp.pos] = reducepatch(surf.tri, surf.pos, 1/cfg.surfdownsample);
% find indices of retained patch faces
[dummy, idx] = ismember(temp.pos, surf.pos, 'rows');
idx(idx==0) = [];
surf.tri = temp.tri;
surf.pos = temp.pos;
clear temp
% downsample other fields
if isfield(surf, 'curv'), surf.curv = surf.curv(idx); end
if isfield(surf, 'sulc'), surf.sulc = surf.sulc(idx); end
if isfield(surf, 'hemisphere'), surf.hemisphere = surf.hemisphere(idx); end
end
% these are required
if ~isfield(functional, 'inside')
functional.inside = true(dim);
end
fprintf('%d voxels in functional data\n', prod(dim));
fprintf('%d vertices in cortical surface\n', size(surf.pos,1));
tmpcfg = [];
tmpcfg.parameter = {cfg.funparameter};
if ~isempty(cfg.maskparameter)
tmpcfg.parameter = [tmpcfg.parameter {cfg.maskparameter}];
maskparameter = cfg.maskparameter;
else
tmpcfg.parameter = [tmpcfg.parameter {'mask'}];
functional.mask = msk;
maskparameter = 'mask'; % temporary variable
end
tmpcfg.interpmethod = cfg.projmethod;
tmpcfg.distmat = cfg.distmat;
tmpcfg.sphereradius = cfg.sphereradius;
tmpcfg.projvec = cfg.projvec;
tmpcfg.projcomb = cfg.projcomb;
tmpcfg.projweight = cfg.projweight;
tmpcfg.projthresh = cfg.projthresh;
tmpdata = ft_sourceinterpolate(tmpcfg, functional, surf);
if hasfun, val = getsubfield(tmpdata, cfg.funparameter); val = val(:); end
if hasmsk, maskval = getsubfield(tmpdata, maskparameter); maskval = maskval(:); end
if ~isempty(cfg.projthresh),
maskval(abs(val) < cfg.projthresh*max(abs(val(:)))) = 0;
end
else
surf = [];
surf.pos = functional.pos;
surf.tri = functional.tri;
% if hasfun, val = fun(functional.inside(:)); end
% if hasmsk, maskval = msk(functional.inside(:)); end
if hasfun, val = fun(:); end
if hasmsk, maskval = msk(:); end
end
if ~isempty(cfg.surfinflated)
if ~isstruct(cfg.surfinflated)
% read the inflated triangulated cortical surface from file
surf = ft_read_headshape(cfg.surfinflated);
else
surf = cfg.surfinflated;
if isfield(surf, 'transform'),
% compute the surface vertices in head coordinates
surf.pos = ft_warp_apply(surf.transform, surf.pos);
end
end
end
%------do the plotting
cortex_light = [0.781 0.762 0.664];
cortex_dark = [0.781 0.762 0.664]/2;
if isfield(surf, 'curv')
% the curvature determines the color of gyri and sulci
color = surf.curv(:) * cortex_dark + (1-surf.curv(:)) * cortex_light;
else
color = repmat(cortex_light, size(surf.pos,1), 1);
end
h1 = patch('Vertices', surf.pos, 'Faces', surf.tri, 'FaceVertexCData', color, 'FaceColor', 'interp');
set(h1, 'EdgeColor', 'none');
axis off;
axis vis3d;
axis equal;
if hasfun
h2 = patch('Vertices', surf.pos, 'Faces', surf.tri, 'FaceVertexCData', val, 'FaceColor', 'interp');
set(h2, 'EdgeColor', 'none');
try
caxis(gca,[fcolmin fcolmax]);
end
colormap(cfg.funcolormap);
if hasmsk
set(h2, 'FaceVertexAlphaData', maskval);
set(h2, 'FaceAlpha', 'interp');
set(h2, 'AlphaDataMapping', 'scaled');
try
alim(gca, [opacmin opacmax]);
end
alphamap(cfg.opacitymap);
end
end
lighting gouraud
if istrue(cfg.camlight)
camlight
end
if istrue(cfg.colorbar)
if hasfun
% use a normal MATLAB colorbar
hc = colorbar;
set(hc, 'YLim', [fcolmin fcolmax]);
else
warning('no colorbar possible without functional data')
end
end
case 'glassbrain'
% This is implemented using a recursive call with an updated functional data
% structure. The functional volume is replaced by a volume in which the maxima
% are projected to the "edge" of the volume.
tmpcfg = keepfields(cfg, {'funparameter', 'funcolorlim', 'funcolormap', 'opacitylim', 'axis', 'renderer'});
tmpcfg.method = 'ortho';
tmpcfg.location = [1 1 1];
tmpcfg.locationcoordinates = 'voxel';
tmpcfg.maskparameter = 'inside';
if hasfun,
fun = getsubfield(functional, cfg.funparameter);
fun = reshape(fun, dim);
fun(1,:,:) = max(fun, [], 1); % get the projection along the 1st dimension
fun(:,1,:) = max(fun, [], 2); % get the projection along the 2nd dimension
fun(:,:,1) = max(fun, [], 3); % get the projection along the 3rd dimension
functional = setsubfield(functional, cfg.funparameter, fun);
end
if hasana,
ana = getsubfield(functional, cfg.anaparameter);
% this remains as it is
functional = setsubfield(functional, cfg.anaparameter, ana);
end
if hasmsk,
msk = getsubfield(functional, 'inside');
msk = reshape(msk, dim);
if hasana
msk(1,:,:) = fun(1,:,:)>0 & imfill(abs(ana(1,:,:)-1))>0;
msk(:,1,:) = fun(:,1,:)>0 & imfill(abs(ana(:,1,:)-1))>0;
msk(:,:,1) = fun(:,:,1)>0 & imfill(abs(ana(:,:,1)-1))>0;
else
msk(1,:,:) = fun(1,:,:)>0;
msk(:,1,:) = fun(:,1,:)>0;
msk(:,:,1) = fun(:,:,1)>0;
end
functional = setsubfield(functional, 'inside', msk);
end
ft_sourceplot(tmpcfg, functional);
case 'vertex'
if isUnstructuredFun
pos = functional.pos;
else
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
pos = ft_warp_apply(functional.transform, [X(:) Y(:) Z(:)]);
end
if isfield(functional, 'inside')
pos = pos(functional.inside,:);
if hasfun
fun = fun(functional.inside);
end
end
% scale the functional data between -30 and 30
fun = 30*fun/max(abs(fun(:)));
if any(fun<=0)
warning('using red for positive and blue for negative functional values')
col = zeros(numel(fun), 3); % RGB
col(fun>0,1) = 1; % red
col(fun<0,3) = 1; % blue
fun(fun==0) = eps; % these will be black
ft_plot_mesh(pos, 'vertexsize', abs(fun), 'vertexcolor', col);
else
ft_plot_mesh(pos, 'vertexsize', fun, 'vertexcolor', 'k');
end
% ensure that the axes don't change if you rotate
axis vis3d
otherwise
error('unsupported method "%s"', cfg.method);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous functional
ft_postamble provenance
% add a menu to the figure
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
functional = opt.functional;
h1 = opt.handlesaxes(1);
h2 = opt.handlesaxes(2);
h3 = opt.handlesaxes(3);
xi = opt.ijk(1);
yi = opt.ijk(2);
zi = opt.ijk(3);
qi = opt.qi;
if any([xi yi zi] > functional.dim) || any([xi yi zi] <= 0)
return;
end
opt.ijk = [xi yi zi 1]';
if opt.usedim
xyz = functional.transform * opt.ijk;
elseif opt.usepos
ix = sub2ind(opt.dim,xi,yi,zi);
xyz = functional.pos(ix,:);
end
opt.ijk = opt.ijk(1:3);
% construct a string with user feedback
str1 = sprintf('voxel %d, indices [%d %d %d]', sub2ind(functional.dim(1:3), xi, yi, zi), opt.ijk);
if isfield(functional, 'coordsys') && isfield(functional, 'unit')
str2 = sprintf('%s coordinates [%.1f %.1f %.1f] %s', functional.coordsys, xyz(1:3), functional.unit);
elseif ~isfield(functional, 'coordsys') && isfield(functional, 'unit')
str2 = sprintf('location [%.1f %.1f %.1f] %s', xyz(1:3), functional.unit);
elseif isfield(functional, 'coordsys') && ~isfield(functional, 'unit')
str2 = sprintf('%s coordinates [%.1f %.1f %.1f]', functional.coordsys, xyz(1:3));
elseif ~isfield(functional, 'coordsys') && ~isfield(functional, 'unit')
str2 = sprintf('location [%.1f %.1f %.1f]', xyz(1:3));
else
str2 = '';
end
if opt.hasfreq && opt.hastime,
str3 = sprintf('%.1f s, %.1f Hz', functional.time(opt.qi(2)), functional.freq(opt.qi(1)));
elseif ~opt.hasfreq && opt.hastime,
str3 = sprintf('%.1f s', functional.time(opt.qi(1)));
elseif opt.hasfreq && ~opt.hastime,
str3 = sprintf('%.1f Hz', functional.freq(opt.qi(1)));
else
str3 = '';
end
if opt.hasfun
if ~opt.hasfreq && ~opt.hastime
val = opt.fun(xi, yi, zi);
elseif ~opt.hasfreq && opt.hastime
val = opt.fun(xi, yi, zi, opt.qi);
elseif opt.hasfreq && ~opt.hastime
val = opt.fun(xi, yi, zi, opt.qi);
elseif opt.hasfreq && opt.hastime
val = opt.fun(xi, yi, zi, opt.qi(1), opt.qi(2));
end
str4 = sprintf('value %f', val);
else
str4 = '';
end
%fprintf('%s %s %s %s\n', str1, str2, str3, str4);
if opt.hasatlas
%tmp = [opt.ijk(:)' 1] * opt.atlas.transform; % atlas and functional might have different transformation matrices, so xyz cannot be used here anymore
% determine the anatomical label of the current position
lab = atlas_lookup(opt.atlas, (xyz(1:3)), 'inputcoord', functional.coordsys, 'queryrange', opt.queryrange);
if isempty(lab)
lab = 'NA';
%fprintf('atlas labels: not found\n');
else
tmp = sprintf('%s', strrep(lab{1}, '_', ' '));
for i=2:length(lab)
tmp = [tmp sprintf(', %s', strrep(lab{i}, '_', ' '))];
end
lab = tmp;
end
else
lab = 'NA';
end
if opt.hasana
if opt.init
tmph = [h1 h2 h3];
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', opt.ijk, 'style', 'subplot', 'parents', tmph, 'update', opt.update, 'doscale', false, 'clim', opt.clim);
opt.anahandles = findobj(opt.handlesfigure, 'type', 'surface')';
for i=1:length(opt.anahandles)
opt.parenttag{i} = get(get(opt.anahandles(i), 'parent'), 'tag');
end
[i1,i2,i3] = intersect(opt.parenttag, {'ik' 'jk' 'ij'});
opt.anahandles = opt.anahandles(i3(i2)); % seems like swapping the order
opt.anahandles = opt.anahandles(:)';
set(opt.anahandles, 'tag', 'ana');
else
ft_plot_ortho(opt.ana, 'transform', eye(4), 'location', opt.ijk, 'style', 'subplot', 'surfhandle', opt.anahandles, 'update', opt.update, 'doscale', false, 'clim', opt.clim);
end
end
if opt.hasfun
if opt.init
if opt.hasmsk
tmpqi = [opt.qi 1];
tmph = [h1 h2 h3];
ft_plot_ortho(opt.fun(:,:,:,tmpqi(1),tmpqi(2)), 'datmask', opt.msk(:,:,:,tmpqi(1),tmpqi(2)), 'transform', eye(4), 'location', opt.ijk, ...
'style', 'subplot', 'parents', tmph, 'update', opt.update, ...
'colormap', opt.funcolormap, 'clim', [opt.fcolmin opt.fcolmax], ...
'opacitylim', [opt.opacmin opt.opacmax]);
else
tmpqi = [opt.qi 1];
tmph = [h1 h2 h3];
ft_plot_ortho(opt.fun(:,:,:,tmpqi(1),tmpqi(2)), 'transform', eye(4), 'location', opt.ijk, ...
'style', 'subplot', 'parents', tmph, 'update', opt.update, ...
'colormap', opt.funcolormap, 'clim', [opt.fcolmin opt.fcolmax]);
end
% after the first call, the handles to the functional surfaces
% exist. create a variable containing this, and sort according to
% the parents
opt.funhandles = findobj(opt.handlesfigure, 'type', 'surface');
opt.funtag = get(opt.funhandles, 'tag');
opt.funhandles = opt.funhandles(~strcmp('ana', opt.funtag));
for i=1:length(opt.funhandles)
opt.parenttag{i} = get(get(opt.funhandles(i), 'parent'), 'tag');
end
[i1,i2,i3] = intersect(opt.parenttag, {'ik' 'jk' 'ij'});
opt.funhandles = opt.funhandles(i3(i2)); % seems like swapping the order
opt.funhandles = opt.funhandles(:)';
set(opt.funhandles, 'tag', 'fun');
if ~opt.hasmsk && opt.hasfun && opt.hasana
set(opt.funhandles(1), 'facealpha',0.5);
set(opt.funhandles(2), 'facealpha',0.5);
set(opt.funhandles(3), 'facealpha',0.5);
end
else
if opt.hasmsk
tmpqi = [opt.qi 1];
tmph = opt.funhandles;
ft_plot_ortho(opt.fun(:,:,:,tmpqi(1),tmpqi(2)), 'datmask', opt.msk(:,:,:,tmpqi(1),tmpqi(2)), 'transform', eye(4), 'location', opt.ijk, ...
'style', 'subplot', 'surfhandle', tmph, 'update', opt.update, ...
'colormap', opt.funcolormap, 'clim', [opt.fcolmin opt.fcolmax], ...
'opacitylim', [opt.opacmin opt.opacmax]);
else
tmpqi = [opt.qi 1];
tmph = opt.funhandles;
ft_plot_ortho(opt.fun(:,:,:,tmpqi(1),tmpqi(2)), 'transform', eye(4), 'location', opt.ijk, ...
'style', 'subplot', 'surfhandle', tmph, 'update', opt.update, ...
'colormap', opt.funcolormap, 'clim', [opt.fcolmin opt.fcolmax]);
end
end
end
set(opt.handlesaxes(1), 'Visible',opt.axis);
set(opt.handlesaxes(2), 'Visible',opt.axis);
set(opt.handlesaxes(3), 'Visible',opt.axis);
if opt.hasfreq && opt.hastime && opt.hasfun,
h4 = subplot(2,2,4);
tmpdat = double(shiftdim(opt.fun(xi,yi,zi,:,:),3));
uimagesc(double(functional.time), double(functional.freq), tmpdat); axis xy;
xlabel('time'); ylabel('freq');
set(h4, 'tag', 'TF1');
caxis([opt.fcolmin opt.fcolmax]);
elseif opt.hasfreq && opt.hasfun,
h4 = subplot(2,2,4);
plot(functional.freq, shiftdim(opt.fun(xi,yi,zi,:),3)); xlabel('freq');
axis([functional.freq(1) functional.freq(end) opt.fcolmin opt.fcolmax]);
set(h4, 'tag', 'TF2');
elseif opt.hastime && opt.hasfun,
h4 = subplot(2,2,4);
plot(functional.time, shiftdim(opt.fun(xi,yi,zi,:),3)); xlabel('time');
set(h4, 'tag', 'TF3', 'xlim',functional.time([1 end]), 'ylim',[opt.fcolmin opt.fcolmax], 'layer', 'top');
elseif strcmp(opt.colorbar, 'yes') && ~isfield(opt, 'hc'),
if opt.hasfun
% vectorcolorbar = linspace(fscolmin, fcolmax,length(cfg.funcolormap));
% imagesc(vectorcolorbar,1,vectorcolorbar);colormap(cfg.funcolormap);
% use a normal MATLAB colorbar, attach it to the invisible 4th subplot
try
caxis([opt.fcolmin opt.fcolmax]);
end
opt.hc = colorbar;
set(opt.hc, 'location', 'southoutside');
set(opt.hc, 'position',[0.06+0.06+opt.h1size(1) 0.06-0.06+opt.h3size(2) opt.h2size(1) 0.06]);
try
set(opt.hc, 'XLim', [opt.fcolmin opt.fcolmax]);
end
else
ft_warning('no colorbar possible without functional data');
end
end
if ~((opt.hasfreq && numel(functional.freq)>1) || opt.hastime)
if opt.init
ht = subplot('position',[0.06+0.06+opt.h1size(1) 0.06 opt.h2size(1) opt.h3size(2)]);
set(ht, 'visible', 'off');
opt.ht1=text(0,0.6,str1);
opt.ht2=text(0,0.5,str2);
opt.ht3=text(0,0.4,str4);
opt.ht4=text(0,0.3,str3);
opt.ht5=text(0,0.2,['atlas label: ' lab]);
else
set(opt.ht1, 'string',str1);
set(opt.ht2, 'string',str2);
set(opt.ht3, 'string',str4);
set(opt.ht4, 'string',str3);
set(opt.ht5, 'string',['atlas label: ' lab]);
end
end
% make the last current axes current again
sel = findobj('type', 'axes', 'tag',tag);
if ~isempty(sel)
set(opt.handlesfigure, 'currentaxes', sel(1));
end
if opt.crosshair
if opt.init
hch1 = crosshair([xi 1 zi], 'parent', opt.handlesaxes(1));
hch3 = crosshair([xi yi opt.dim(3)], 'parent', opt.handlesaxes(3));
hch2 = crosshair([opt.dim(1) yi zi], 'parent', opt.handlesaxes(2));
opt.handlescross = [hch1(:)';hch2(:)';hch3(:)'];
else
crosshair([xi 1 zi], 'handle', opt.handlescross(1, :));
crosshair([opt.dim(1) yi zi], 'handle', opt.handlescross(2, :));
crosshair([xi yi opt.dim(3)], 'handle', opt.handlescross(3, :));
end
end
if opt.init
opt.init = false;
setappdata(h, 'opt', opt);
end
set(h, 'currentaxes', curr_ax);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
if isempty(key)
% this happens if you press the apple key
key = '';
end
% the following code is largely shared with FT_VOLUMEREALIGN
switch key
case {'' 'shift+shift' 'alt-alt' 'control+control' 'command-0'}
% do nothing
case '1'
subplot(opt.handlesaxes(1));
case '2'
subplot(opt.handlesaxes(2));
case '3'
subplot(opt.handlesaxes(3));
case 'q'
setappdata(h, 'opt', opt);
cb_cleanup(h);
case {'i' 'j' 'k' 'm' 28 29 30 31 'leftarrow' 'rightarrow' 'uparrow' 'downarrow'} % TODO FIXME use leftarrow rightarrow uparrow downarrow
% update the view to a new position
if strcmp(tag, 'ik') && (strcmp(key, 'i') || strcmp(key, 'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag, 'ik') && (strcmp(key, 'j') || strcmp(key, 'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag, 'ik') && (strcmp(key, 'k') || strcmp(key, 'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag, 'ik') && (strcmp(key, 'm') || strcmp(key, 'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
elseif strcmp(tag, 'ij') && (strcmp(key, 'i') || strcmp(key, 'uparrow') || isequal(key, 30)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag, 'ij') && (strcmp(key, 'j') || strcmp(key, 'leftarrow') || isequal(key, 28)), opt.ijk(1) = opt.ijk(1)-1; opt.update = [0 1 0];
elseif strcmp(tag, 'ij') && (strcmp(key, 'k') || strcmp(key, 'rightarrow') || isequal(key, 29)), opt.ijk(1) = opt.ijk(1)+1; opt.update = [0 1 0];
elseif strcmp(tag, 'ij') && (strcmp(key, 'm') || strcmp(key, 'downarrow') || isequal(key, 31)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag, 'jk') && (strcmp(key, 'i') || strcmp(key, 'uparrow') || isequal(key, 30)), opt.ijk(3) = opt.ijk(3)+1; opt.update = [0 0 1];
elseif strcmp(tag, 'jk') && (strcmp(key, 'j') || strcmp(key, 'leftarrow') || isequal(key, 28)), opt.ijk(2) = opt.ijk(2)-1; opt.update = [1 0 0];
elseif strcmp(tag, 'jk') && (strcmp(key, 'k') || strcmp(key, 'rightarrow') || isequal(key, 29)), opt.ijk(2) = opt.ijk(2)+1; opt.update = [1 0 0];
elseif strcmp(tag, 'jk') && (strcmp(key, 'm') || strcmp(key, 'downarrow') || isequal(key, 31)), opt.ijk(3) = opt.ijk(3)-1; opt.update = [0 0 1];
else
% do nothing
end;
setappdata(h, 'opt', opt);
cb_redraw(h);
% contrast scaling
case {43 'shift+equal'} % numpad +
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% reduce color scale range by 5%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)+cscalefactor;
opt.clim(2) = opt.clim(2)-cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
case {45 'shift+hyphen'} % numpad -
if isempty(opt.clim)
opt.clim = [min(opt.ana(:)) max(opt.ana(:))];
end
% increase color scale range by 5%
cscalefactor = (opt.clim(2)-opt.clim(1))/10;
%opt.clim(1) = opt.clim(1)-cscalefactor;
opt.clim(2) = opt.clim(2)+cscalefactor;
setappdata(h, 'opt', opt);
cb_redraw(h);
otherwise
end % switch key
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonpress(h, eventdata)
h = getparent(h);
cb_getposition(h);
switch get(h, 'selectiontype')
case 'normal'
% just update to new position, nothing else to be done here
cb_redraw(h);
case 'alt'
set(h, 'windowbuttonmotionfcn', @cb_tracemouse);
cb_redraw(h);
otherwise
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonrelease(h, eventdata)
set(h, 'windowbuttonmotionfcn', '');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_tracemouse(h, eventdata)
h = getparent(h);
cb_getposition(h);
cb_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
pos = mean(get(curr_ax, 'currentpoint'));
tag = get(curr_ax, 'tag');
if ~isempty(tag) && ~opt.init
if strcmp(tag, 'ik')
opt.ijk([1 3]) = round(pos([1 3]));
opt.update = [1 1 1];
elseif strcmp(tag, 'ij')
opt.ijk([1 2]) = round(pos([1 2]));
opt.update = [1 1 1];
elseif strcmp(tag, 'jk')
opt.ijk([2 3]) = round(pos([2 3]));
opt.update = [1 1 1];
elseif strcmp(tag, 'TF1')
% timefreq
opt.qi(2) = nearest(opt.functional.time, pos(1));
opt.qi(1) = nearest(opt.functional.freq, pos(2));
opt.update = [1 1 1];
elseif strcmp(tag, 'TF2')
% freq only
opt.qi = nearest(opt.functional.freq, pos(1));
opt.update = [1 1 1];
elseif strcmp(tag, 'TF3')
% time only
opt.qi = nearest(opt.functional.time, pos(1));
opt.update = [1 1 1];
end
end
opt.ijk = min(opt.ijk(:)', opt.dim);
opt.ijk = max(opt.ijk(:)', [1 1 1]);
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cleanup(h, eventdata)
% opt = getappdata(h, 'opt');
% opt.quit = true;
% setappdata(h, 'opt', opt);
% uiresume
delete(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
|
github
|
lcnbeapp/beapp-master
|
ft_statistics_stats.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_statistics_stats.m
| 12,353 |
utf_8
|
d5721c810b45a74a5c1ef735d4711acc
|
function [stat, cfg] = ft_statistics_stats(cfg, dat, design)
% FT_STATISTICS_STATS performs a massive univariate statistical test using the
% MATLAB statistics toolbox. This function should not be called directly,
% instead you should call the function that is associated with the type of data
% on which you want to perform the test.
%
% Use as
% stat = ft_timelockstatistics(cfg, data1, data2, data3, ...)
% stat = ft_freqstatistics (cfg, data1, data2, data3, ...)
% stat = ft_sourcestatistics (cfg, data1, data2, data3, ...)
%
% Where the data is obtained from FT_TIMELOCKANALYSIS, FT_FREQANALYSIS
% or FT_SOURCEANALYSIS respectively, or from FT_TIMELOCKGRANDAVERAGE,
% FT_FREQGRANDAVERAGE or FT_SOURCEGRANDAVERAGE respectively and with
% cfg.method = 'montecarlo'
%
% This function uses the MATLAB statistics toolbox to perform various
% statistical tests on timelock, frequency or source data. Supported
% configuration options are
% cfg.alpha = number, critical value for rejecting the null-hypothesis (default = 0.05)
% cfg.tail = number, -1, 1 or 0 (default = 0)
% cfg.feedback = string, 'gui', 'text', 'textbar' or 'no' (default = 'textbar')
% cfg.method = 'stats'
% cfg.statistic = 'ttest' test against a mean of zero
% 'ttest2' compare the mean in two conditions
% 'paired-ttest'
% 'anova1'
% 'kruskalwallis'
% 'signtest'
% 'signrank'
%
% See also TTEST, TTEST2, KRUSKALWALLIS, SIGNTEST, SIGNRANK
% Undocumented local options:
% cfg.avgovertime
% cfg.constantvalue
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% test for the presence of the statistics toolbox
ft_hastoolbox('stats', 1);
% set the defaults that are common to all methods
if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end
switch cfg.statistic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'ttest', 'ttest_samples_vs_const'}
% set the defaults
if ~isfield(cfg, 'alpha'), cfg.alpha = 0.05; end
if ~isfield(cfg, 'constantvalue'), cfg.constantvalue = 0; end
if ~isfield(cfg, 'tail'), cfg.tail = 0; end
if ~any(size(design)==1)
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
if Ncond>1
error(sprintf('%s method is only supported for one condition at a time', cfg.statistic));
end
Nobs = size(dat, 1);
Nrepl = size(dat, 2); % over all conditions
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
s = zeros(Nobs, 1);
ci = zeros(Nobs, 2);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d\n', Nrepl);
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
[h(chan), p(chan), ci(chan, :), stats] = ttest_wrapper(dat(chan, :), cfg.constantvalue, cfg.alpha, cfg.tail);
s(chan) = stats.tstat;
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'ttest2', 'ttest_2samples_by_timepoint'}
% set the defaults
if ~isfield(cfg, 'alpha'), cfg.alpha = 0.05; end
if ~isfield(cfg, 'tail'), cfg.tail = 0; end
if size(design,1)~=1
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
if Ncond~=2
error(sprintf('%s method is only supported for two condition', cfg.statistic));
end
Nobs = size(dat, 1);
selA = find(design==design(1));
selB = find(design~=design(1));
Nrepl = [length(selA), length(selB)];
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
s = zeros(Nobs, 1);
ci = zeros(Nobs, 2);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d and %d\n', Nrepl(1), Nrepl(2));
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
[h(chan), p(chan), ci(chan, :), stats] = ttest2_wrapper(dat(chan, selA), dat(chan, selB), cfg.alpha, cfg.tail);
s(chan) = stats.tstat;
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'paired-ttest'}
% set the defaults
if ~isfield(cfg, 'alpha'), cfg.alpha = 0.05; end
if ~isfield(cfg, 'tail'), cfg.tail = 0; end
if ~any(size(design)==1)
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
if Ncond~=2
error(sprintf('%s method is only supported for two condition', cfg.statistic));
end
Nobs = size(dat, 1);
selA = find(design==design(1));
selB = find(design~=design(1));
Nrepl = [length(selA), length(selB)];
if Nrepl(1)~=Nrepl(2)
error('number of replications per condition should be the same');
end
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
s = zeros(Nobs, 1);
ci = zeros(Nobs, 2);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d and %d\n', Nrepl(1), Nrepl(2));
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
[h(chan), p(chan), ci(chan, :), stats] = ttest_wrapper(dat(chan, selA)-dat(chan, selB), 0, cfg.alpha, cfg.tail);
s(chan) = stats.tstat;
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'anova1'}
if ~any(size(design)==1)
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
Nobs = size(dat, 1);
Nrepl = size(dat, 2); % over all conditions
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d\n', Nrepl);
fprintf('number of levels %d\n', Ncond);
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
p(chan) = anova1(dat(chan, :), design(:), 'off');
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'kruskalwallis'}
if ~any(size(design)==1)
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
Nobs = size(dat, 1);
Nrepl = size(dat, 2); % over all conditions
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d\n', Nrepl);
fprintf('number of levels %d\n', Ncond);
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
p(chan) = kruskalwallis(dat(chan, :), design(:), 'off');
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% case {'anovan'}
%
% Nfact = size(design,1);
% Nobs = size(dat, 1);
% Nrepl = size(dat, 2); % over all conditions
%
% h = zeros(Nobs, 1);
% p = zeros(Nobs, 1);
% ci = zeros(Nobs, 2);
% fprintf('number of observations %d\n', Nobs);
% fprintf('number of replications %d\n', Nrepl);
% fprintf('number of factors %d\n', Nfact);
%
% % reformat the design matrix into the grouping variable cell-array
% for i=1:Nfact
% group{i} = design(i,:);
% end
%
% ft_progress('init', cfg.feedback);
% for chan = 1:Nobs
% ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
% % FIXME, the probability is returned for each factor separately
% p = anovan(dat(chan, :), group, 'display', 'off');
% end
% ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'ttest_window_avg_vs_const'
% this used to be a feature of the timelockanalysis as it was
% originally implemented by Jens Schwartzbach, but it has been
% superseded by the use of ft_selectdata for data selection
error(sprintf('%s is not supported any more, use cfg.avgovertime=''yes'' instead', cfg.statistic));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'signtest'}
% set the defaults
if ~isfield(cfg, 'alpha'), cfg.alpha = 0.05; end
if ~isfield(cfg, 'tail'), cfg.tail = 0; end
switch cfg.tail
case 0
cfg.tail = 'both';
case -1
cfg.tail = 'left';
case 1
cfg.tail = 'right';
end;
if size(design,1)~=1
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
if Ncond~=2
error(sprintf('%s method is only supported for two condition', cfg.statistic));
end
Nobs = size(dat, 1);
selA = find(design==design(1));
selB = find(design~=design(1));
Nrepl = [length(selA), length(selB)];
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
s = zeros(Nobs, 1);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d and %d\n', Nrepl(1), Nrepl(2));
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
[p(chan), h(chan), stats] = signtest(dat(chan, selA), dat(chan, selB),'alpha', cfg.alpha,'tail', cfg.tail);
s(chan) = stats.sign;
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'signrank'}
% set the defaults
if ~isfield(cfg, 'alpha'), cfg.alpha = 0.05; end
if ~isfield(cfg, 'tail'), cfg.tail = 0; end
switch cfg.tail
case 0
cfg.tail = 'both';
case -1
cfg.tail = 'left';
case 1
cfg.tail = 'right';
end;
if size(design,1)~=1
error('design matrix should only contain one factor (i.e. one row)');
end
Ncond = length(unique(design));
if Ncond~=2
error(sprintf('%s method is only supported for two condition', cfg.statistic));
end
Nobs = size(dat, 1);
selA = find(design==design(1));
selB = find(design~=design(1));
Nrepl = [length(selA), length(selB)];
h = zeros(Nobs, 1);
p = zeros(Nobs, 1);
s = zeros(Nobs, 1);
fprintf('number of observations %d\n', Nobs);
fprintf('number of replications %d and %d\n', Nrepl(1), Nrepl(2));
ft_progress('init', cfg.feedback);
for chan = 1:Nobs
ft_progress(chan/Nobs, 'Processing observation %d/%d\n', chan, Nobs);
[p(chan), h(chan), stats] = signrank(dat(chan, selA), dat(chan, selB),'alpha', cfg.alpha,'tail', cfg.tail);
s(chan) = stats.signedrank;
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
otherwise
error(sprintf('Statistical method ''%s'' is not implemented', cfg.statistic));
end
% assign the output variable
stat = [];
try, stat.mask = h; end
try, stat.prob = p; end
try, stat.stat = s; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions for ttest and ttest2
% - old Matlab, with syntax: ttest(x,y,alpha,tail,dim)
% - new Matlab and GNU Octave, with syntax: ttest(x,y,'alpha',alpha,...)
function [h,p,ci,stats]=ttest_wrapper(x,y,alpha,tail)
[h,p,ci,stats]=general_ttestX_wrapper(@ttest,x,y,alpha,tail);
function [h,p,ci,stats]=ttest2_wrapper(x,y,alpha,tail)
[h,p,ci,stats]=general_ttestX_wrapper(@ttest2,x,y,alpha,tail);
function [h,p,ci,stats]=general_ttestX_wrapper(ttest_func,x,y,alpha,tail)
if nargin(ttest_func)>0
% old Matlab
[h,p,ci,stats]=ttest_func(x,y,alpha,tail);
else
% GNU Octave and new Matlab
[h,p,ci,stats]=ttest_func(x,y,'alpha',alpha,'tail',tail);
end
|
github
|
lcnbeapp/beapp-master
|
ft_megrealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_megrealign.m
| 18,741 |
utf_8
|
70c06177fc1b0bc68db90decccf0589b
|
function [data] = ft_megrealign(cfg, data)
% FT_MEGREALIGN interpolates MEG data towards standard gradiometer locations by
% projecting the individual timelocked data towards a coarse source reconstructed
% representation and computing the magnetic field on the standard gradiometer
% locations.
%
% Use as
% [interp] = ft_megrealign(cfg, data)
%
% Required configuration options:
% cfg.template
% cfg.inwardshift
%
% The new gradiometer definition is obtained from a template dataset,
% or can be constructed by averaging the gradiometer positions over
% multiple datasets.
% cfg.template = single dataset that serves as template
% cfg.template(1..N) = datasets that are averaged into the standard
%
% The realignment is done by computing a minumum norm estimate using a
% large number of dipoles that are placed in the upper layer of the brain
% surface, followed by a forward computation towards the template
% gradiometer array. This requires the specification of a volume conduction
% model of the head and of a source model.
%
% A volume conduction model of the head should be specified with
% cfg.headmodel = structure, see FT_PREPARE_HEADMODEL
%
% A source model (i.e. a superficial layer with distributed sources) can be
% constructed from a headshape file, or from the volume conduction model
% cfg.spheremesh = number of dipoles in the source layer (default = 642)
% cfg.inwardshift = depth of the source layer relative to the headshape
% surface or volume conduction model (no default
% supplied, see below)
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
%
% If you specify a headshape and it describes the skin surface, you should specify an
% inward shift of 2.5 cm.
%
% For a single-sphere or a local-spheres volume conduction model based on the skin
% surface, an inward shift of 2.5 cm is reasonable.
%
% For a single-sphere or a local-spheres volume conduction model based on the brain
% surface, you should probably use an inward shift of about 1 cm.
%
% For a realistic single-shell volume conduction model based on the brain surface, you
% should probably use an inward shift of about 1 cm.
%
% Other options are
% cfg.pruneratio = for singular values, default is 1e-3
% cfg.verify = 'yes' or 'no', show the percentage difference (default = 'yes')
% cfg.feedback = 'yes' or 'no' (default = 'no')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'MEG'),
% see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% This implements the method described by T.R. Knosche, Transformation
% of whole-head MEG recordings between different sensor positions.
% Biomed Tech (Berl). 2002 Mar;47(3):59-62. For more information and
% related methods, see Stolk et al., Online and offline tools for head
% movement compensation in MEG. NeuroImage, 2012.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPARE_LOCALSPHERES, FT_PREPARE_SINGLESHELL
% Copyright (C) 2004-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'plot3d', 'feedback'});
cfg = ft_checkconfig(cfg, 'renamedval', {'headshape', 'headmodel', []});
cfg = ft_checkconfig(cfg, 'required', {'inwardshift', 'template'});
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% set the default configuration
cfg.headshape = ft_getopt(cfg, 'headshape', []);
cfg.pruneratio = ft_getopt(cfg, 'pruneratio', 1e-3);
cfg.spheremesh = ft_getopt(cfg, 'spheremesh', 642);
cfg.verify = ft_getopt(cfg, 'verify', 'yes');
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.channel = ft_getopt(cfg, 'channel', 'MEG');
cfg.topoparam = ft_getopt(cfg, 'topoparam', 'rms');
% store original datatype
dtype = ft_datatype(data);
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes', 'hassampleinfo', 'yes', 'ismeg', 'yes');
% do realignment per trial
pertrial = all(ismember({'nasX';'nasY';'nasZ';'lpaX';'lpaY';'lpaZ';'rpaX';'rpaY';'rpaZ'}, data.label));
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
if isstruct(cfg.template)
% this should be a cell-array
cfg.template = {cfg.template};
end
% retain only the MEG channels in the data and temporarily store
% the rest, these will be added back to the transformed data later.
% select trials and channels of interest
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.channel = setdiff(data.label, ft_channelselection(cfg.channel, data.label));
rest = ft_selectdata(tmpcfg, data);
tmpcfg.channel = ft_channelselection(cfg.channel, data.label);
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
Ntrials = length(data.trial);
% cfg.channel = ft_channelselection(cfg.channel, data.label);
% dataindx = match_str(data.label, cfg.channel);
% restindx = setdiff(1:length(data.label),dataindx);
% if ~isempty(restindx)
% fprintf('removing %d non-MEG channels from the data\n', length(restindx));
% rest.label = data.label(restindx); % first remember the rest
% data.label = data.label(dataindx); % then reduce the data
% for i=1:Ntrials
% rest.trial{i} = data.trial{i}(restindx,:); % first remember the rest
% data.trial{i} = data.trial{i}(dataindx,:); % then reduce the data
% end
% else
% rest.label = {};
% rest.trial = {};
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct the average template gradiometer array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
template = struct([]); % initialize as empty structure
for i=1:length(cfg.template)
if ischar(cfg.template{i}),
fprintf('reading template sensor position from %s\n', cfg.template{i});
tmp = ft_read_sens(cfg.template{i});
elseif isstruct(cfg.template{i}) && isfield(cfg.template{i}, 'coilpos') && isfield(cfg.template{i}, 'coilori') && isfield(cfg.template{i}, 'tra'),
tmp = cfg.template{i};
elseif isstruct(cfg.template{i}) && isfield(cfg.template{i}, 'pnt') && isfield(cfg.template{i}, 'ori') && isfield(cfg.template{i}, 'tra'),
% it seems to be a pre-2011v1 type gradiometer structure, update it
tmp = ft_datatype_sens(cfg.template{i});
else
error('unrecognized template input');
end
% prevent "Subscripted assignment between dissimilar structures" error
template = appendstruct(template, tmp); clear tmp
end
grad = ft_average_sens(template);
% construct the final template gradiometer definition
template = [];
template.grad = grad;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FT_PREPARE_VOL_SENS will match the data labels, the gradiometer labels and the
% volume model labels (in case of a localspheres model) and result in a gradiometer
% definition that only contains the gradiometers that are present in the data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
volcfg = [];
volcfg.headmodel = cfg.headmodel;
volcfg.grad = data.grad;
volcfg.channel = data.label; % this might be a subset of the MEG channels
gradorig = data.grad; % this is needed later on for plotting. As of
% yet the next step is not entirely correct, because it does not keep track
% of the balancing of the gradiometer array. FIXME this may require some
% thought because the leadfields are computed with low level functions and
% do not easily accommodate for matching the correct channels with each
% other (in order to compute the projection matrix).
[volold, data.grad] = prepare_headmodel(volcfg);
% note that it is neccessary to keep the two volume conduction models
% seperate, since the single-shell Nolte model contains gradiometer specific
% precomputed parameters. Note that this is not guaranteed to result in a
% good projection for local sphere models.
volcfg.grad = template.grad;
volcfg.channel = 'MEG'; % include all MEG channels
[volnew, template.grad] = prepare_headmodel(volcfg);
if strcmp(ft_senstype(data.grad), ft_senstype(template.grad))
[id, it] = match_str(data.grad.label, template.grad.label);
fprintf('mean distance towards template gradiometers is %.2f %s\n', mean(sum((data.grad.chanpos(id,:)-template.grad.chanpos(it,:)).^2, 2).^0.5), template.grad.unit);
else
% the projection is from one MEG system to another MEG system, which makes a comparison of the data difficult
cfg.feedback = 'no';
cfg.verify = 'no';
end
% copy all options that are potentially used in ft_prepare_sourcemodel
tmpcfg = keepfields(cfg, {'grid' 'mri' 'headshape' 'symmetry' 'smooth' 'threshold' 'spheremesh' 'inwardshift'});
tmpcfg.headmodel = volold;
tmpcfg.grad = data.grad;
% create the dipole grid on which the data will be projected
grid = ft_prepare_sourcemodel(tmpcfg);
pos = grid.pos;
% sometimes some of the dipole positions are nan, due to problems with the headsurface triangulation
% remove them to prevent problems with the forward computation
sel = find(any(isnan(pos(:,1)),2));
pos(sel,:) = [];
% compute the forward model for the new gradiometer positions
fprintf('computing forward model for %d dipoles\n', size(pos,1));
lfnew = ft_compute_leadfield(pos, template.grad, volnew);
if ~pertrial,
%this needs to be done only once
lfold = ft_compute_leadfield(pos, data.grad, volold);
[realign, noalign, bkalign] = computeprojection(lfold, lfnew, cfg.pruneratio, cfg.verify);
else
%the forward model and realignment matrices have to be computed for each trial
%this also goes for the singleshell volume conductor model
%x = which('rigidbodyJM'); %this function is needed
%if isempty(x),
% error('you are trying out experimental code for which you need some extra functionality which is currently not in the release version of fieldtrip. if you are interested in trying it out, contact jan-mathijs');
%end
end
% interpolate the data towards the template gradiometers
for i=1:Ntrials
fprintf('realigning trial %d\n', i);
if pertrial,
%warp the gradiometer array according to the motiontracking data
sel = match_str(rest.label, {'nasX';'nasY';'nasZ';'lpaX';'lpaY';'lpaZ';'rpaX';'rpaY';'rpaZ'});
hmdat = rest.trial{i}(sel,:);
if ~all(hmdat==repmat(hmdat(:,1),[1 size(hmdat,2)]))
error('only one position per trial is at present allowed');
else
%M = rigidbodyJM(hmdat(:,1))
M = ft_headcoordinates(hmdat(1:3,1),hmdat(4:6,1),hmdat(7:9,1));
grad = ft_transform_sens(M, data.grad);
end
volcfg.grad = grad;
%compute volume conductor
[volold, grad] = prepare_headmodel(volcfg);
%compute forward model
lfold = ft_compute_leadfield(pos, grad, volold);
%compute projection matrix
[realign, noalign, bkalign] = computeprojection(lfold, lfnew, cfg.pruneratio, cfg.verify);
end
data.realign{i} = realign * data.trial{i};
if strcmp(cfg.verify, 'yes')
% also compute the residual variance when interpolating
[id,it] = match_str(data.grad.label, template.grad.label);
rvrealign = rv(data.trial{i}(id,:), data.realign{i}(it,:));
fprintf('original -> template RV %.2f %%\n', 100 * mean(rvrealign));
datnoalign = noalign * data.trial{i};
datbkalign = bkalign * data.trial{i};
rvnoalign = rv(data.trial{i}, datnoalign);
rvbkalign = rv(data.trial{i}, datbkalign);
fprintf('original -> original RV %.2f %%\n', 100 * mean(rvnoalign));
fprintf('original -> template -> original RV %.2f %%\n', 100 * mean(rvbkalign));
end
end
% plot the topography before and after the realignment
if strcmp(cfg.feedback, 'yes')
warning('showing MEG topography (RMS value over time) in the first trial only');
Nchan = length(data.grad.label);
[id,it] = match_str(data.grad.label, template.grad.label);
pos1 = data.grad.chanpos(id,:);
pos2 = template.grad.chanpos(it,:);
prj1 = elproj(pos1); tri1 = delaunay(prj1(:,1), prj1(:,2));
prj2 = elproj(pos2); tri2 = delaunay(prj2(:,1), prj2(:,2));
switch cfg.topoparam
case 'rms'
p1 = sqrt(mean(data.trial{1}(id,:).^2, 2));
p2 = sqrt(mean(data.realign{1}(it,:).^2, 2));
case 'svd'
[u, s, v] = svd(data.trial{1}(id,:)); p1 = u(:,1);
[u, s, v] = svd(data.realign{1}(it,:)); p2 = u(:,1);
otherwise
error('unsupported cfg.topoparam');
end
X = [pos1(:,1) pos2(:,1)]';
Y = [pos1(:,2) pos2(:,2)]';
Z = [pos1(:,3) pos2(:,3)]';
% show figure with old an new helmets, volume model and dipole grid
figure
hold on
ft_plot_vol(volold);
plot3(grid.pos(:,1),grid.pos(:,2),grid.pos(:,3),'b.');
plot3(pos1(:,1), pos1(:,2), pos1(:,3), 'r.') % original positions
plot3(pos2(:,1), pos2(:,2), pos2(:,3), 'g.') % template positions
line(X,Y,Z, 'color', 'black');
view(-90, 90);
% show figure with data on old helmet location
figure
hold on
plot3(pos1(:,1), pos1(:,2), pos1(:,3), 'r.') % original positions
plot3(pos2(:,1), pos2(:,2), pos2(:,3), 'g.') % template positions
line(X,Y,Z, 'color', 'black');
axis equal; axis vis3d
bnd1 = [];
bnd1.pos = pos1;
bnd1.tri = tri1;
ft_plot_mesh(bnd1,'vertexcolor',p1,'edgecolor','none')
title('RMS, before realignment')
view(-90, 90)
% show figure with data on new helmet location
figure
hold on
plot3(pos1(:,1), pos1(:,2), pos1(:,3), 'r.') % original positions
plot3(pos2(:,1), pos2(:,2), pos2(:,3), 'g.') % template positions
line(X,Y,Z, 'color', 'black');
axis equal; axis vis3d
bnd2 = [];
bnd2.pos = pos2;
bnd2.tri = tri2;
ft_plot_mesh(bnd2,'vertexcolor',p2,'edgecolor','none')
title('RMS, after realignment')
view(-90, 90)
end
% store the realigned data in a new structure
interp.label = template.grad.label;
interp.grad = template.grad; % replace with the template gradiometer array
interp.trial = data.realign; % remember the processed data
interp.fsample = data.fsample;
interp.time = data.time;
% add the rest channels back to the data, these were not interpolated
if ~isempty(rest.label)
fprintf('adding %d non-MEG channels back to the data (', length(rest.label));
fprintf('%s, ', rest.label{1:end-1});
fprintf('%s)\n', rest.label{end});
for trial=1:length(rest.trial)
interp.trial{trial} = [interp.trial{trial}; rest.trial{trial}];
end
interp.label = [interp.label; rest.label];
end
% copy the trial specific information into the output
if isfield(data, 'trialinfo')
interp.trialinfo = data.trialinfo;
end
% copy the sampleinfo field as well
if isfield(data, 'sampleinfo')
interp.sampleinfo = data.sampleinfo;
end
% convert back to input type if necessary
switch dtype
case 'timelock'
interp = ft_checkdata(interp, 'datatype', 'timelock');
otherwise
% keep the output as it is
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
% rename the output variable to accomodate the savevar postamble
data = interp;
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction that computes the projection matrix(ces)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [realign, noalign, bkalign] = computeprojection(lfold, lfnew, pruneratio, verify)
% compute this inverse only once, although it is used twice
tmp = prunedinv(lfold, pruneratio);
% compute the three interpolation matrices
fprintf('computing interpolation matrix #1\n');
realign = lfnew * tmp;
if strcmp(verify, 'yes')
fprintf('computing interpolation matrix #2\n');
noalign = lfold * tmp;
fprintf('computing interpolation matrix #3\n');
bkalign = lfold * prunedinv(lfnew, pruneratio) * realign;
else
noalign = [];
bkalign = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction that computes the inverse using a pruned SVD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [lfi] = prunedinv(lf, r)
[u, s, v] = svd(lf);
if r<1,
% treat r as a ratio
p = find(s<(s(1,1)*r) & s~=0);
else
% treat r as the number of spatial components to keep
diagels = 1:(min(size(s))+1):(min(size(s)).^2);
p = diagels((r+1):end);
end
fprintf('pruning %d from %d, i.e. removing the %d smallest spatial components\n', length(p), min(size(s)), length(p));
s(p) = 0;
s(find(s~=0)) = 1./s(find(s~=0));
lfi = v * s' * u';
|
github
|
lcnbeapp/beapp-master
|
ft_volumelookup.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_volumelookup.m
| 14,555 |
utf_8
|
85db9e3295336353532219bebdf32b95
|
function [output] = ft_volumelookup(cfg, volume)
% FT_VOLUMELOOKUP can be used in to combine an anatomical or functional
% atlas with source reconstruction. You can use it for forward and reverse
% lookup.
%
% Given the anatomical or functional label, it looks up the locations and
% creates a mask (as a binary volume) based on the label, or creates a
% sphere or box around a point of interest. In this case the function is to
% be used as:
% mask = ft_volumelookup(cfg, volume)
%
% Given a binary volume that indicates a region of interest, it looks up
% the corresponding anatomical or functional labels from a given atlas. In
% this case the function is to be used as follows:
% labels = ft_volumelookup(cfg, volume)
%
% In both cases the input volume can be:
% mri is the output of FT_READ_MRI
% source is the output of FT_SOURCEANALYSIS
% stat is the output of FT_SOURCESTATISTICS
%
% The configuration options for a mask according to an atlas:
% cfg.inputcoord = 'mni' or 'tal', coordinate system of the mri/source/stat
% cfg.atlas = string, filename of atlas to use, either the AFNI
% brik file that is available from http://afni.nimh.nih.gov/afni/doc/misc/ttatlas_tlrc,
% or the WFU atlasses available from http://fmri.wfubmc.edu. see FT_READ_ATLAS
% cfg.roi = string or cell of strings, region(s) of interest from anatomical atlas
%
% The configuration options for a spherical/box mask around a point of interest:
% cfg.roi = Nx3 vector, coordinates of the points of interest
% cfg.sphere = radius of each sphere in cm/mm dep on unit of input
% cfg.box = Nx3 vector, size of each box in cm/mm dep on unit of input
% cfg.round2nearestvoxel = 'yes' or 'no' (default = 'no'), voxel closest to point of interest is calculated
% and box/sphere is centered around coordinates of that voxel
%
% The configuration options for labels from a mask:
% cfg.inputcoord = 'mni' or 'tal', coordinate system of the mri/source/stat
% cfg.atlas = string, filename of atlas to use, either the AFNI
% brik file that is available from http://afni.nimh.nih.gov/afni/doc/misc/afni_ttatlas/,
% or the WFU atlasses available from http://fmri.wfubmc.edu. see FT_READ_ATLAS
% cfg.maskparameter = string, field in volume to be lookedup, data in field should be logical
% cfg.maxqueryrange = number, should be 1, 3, 5 (default = 1)
%
% The label output has a field "names", a field "count" and a field "usedqueryrange"
% To get a list of areas of the given mask you can do for instance:
% [tmp ind] = sort(labels.count,1,'descend');
% sel = find(tmp);
% for j = 1:length(sel)
% found_areas{j,1} = [num2str(labels.count(ind(j))) ': ' labels.name{ind(j)}];
% end
% in found_areas you can then see how many times which labels are found
% NB in the AFNI brick one location can have 2 labels!
%
% Dependent on the input coordinates and the coordinates of the atlas, the
% input MRI is transformed betweem MNI and Talairach-Tournoux coordinates
% See http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml for more details.
%
% See also FT_READ_ATLAS, FT_SOURCEPLOT
% Copyright (C) 2008-2013, Robert Oostenveld, Ingrid Nieuwenhuis
% Copyright (C) 2013, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar volume
ft_preamble provenance volume
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the handling of the default cfg options is done further down
% the checking of the input data is done further down
cfg.maxqueryrange = ft_getopt(cfg,'maxqueryrange', 1);
roi2mask = 0;
mask2label = 0;
if isfield(cfg, 'roi');
roi2mask = 1;
elseif isfield(cfg, 'maskparameter')
mask2label = 1;
else
error('either specify cfg.roi, or cfg.maskparameter')
end
if roi2mask
% only for volume data
volume = ft_checkdata(volume, 'datatype', 'volume');
cfg.round2nearestvoxel = ft_getopt(cfg, 'round2nearestvoxel', 'no');
isatlas = iscell(cfg.roi) || ischar(cfg.roi);
ispoi = isnumeric(cfg.roi);
if isatlas+ispoi ~= 1
error('do not understand cfg.roi')
end
if isatlas
ft_checkconfig(cfg, 'forbidden', {'sphere' 'box'}, ...
'required', {'atlas' 'inputcoord'});
elseif ispoi
ft_checkconfig(cfg, 'forbidden', {'atlas' 'inputcoord'});
if isempty(ft_getopt(cfg, 'sphere')) && isempty(ft_getopt(cfg, 'box'))
% either needs to be there
error('either specify cfg.sphere or cfg.box')
end
end
elseif mask2label
% convert to source representation (easier to work with)
volume = ft_checkdata(volume, 'datatype', 'source');
ft_checkconfig(cfg, 'required', {'atlas' 'inputcoord'});
if isempty(intersect(cfg.maxqueryrange, [1 3 5]))
error('incorrect query range, should be one of [1 3 5]');
end
end
if roi2mask
% determine location of each anatomical voxel in its own voxel coordinates
dim = volume.dim;
i = 1:dim(1);
j = 1:dim(2);
k = 1:dim(3);
[I, J, K] = ndgrid(i, j, k);
ijk = [I(:) J(:) K(:) ones(prod(dim),1)]';
% determine location of each anatomical voxel in head coordinates
xyz = volume.transform * ijk; % note that this is 4xN
if isatlas
if ischar(cfg.atlas),
% assume it to represent a filename
atlas = ft_read_atlas(cfg.atlas);
else
% assume cfg.atlas to be a struct, but it may have been converted
% into a config object
atlas = struct(cfg.atlas);
end
% determine which field(s) to use to look up the labels,
% and whether these are boolean or indexed
fn = fieldnames(atlas);
isboolean = false(numel(fn),1);
isindexed = false(numel(fn),1);
for i=1:length(fn)
if islogical(atlas.(fn{i})) && isequal(size(atlas.(fn{i})), atlas.dim)
isboolean(i) = true;
elseif isnumeric(atlas.(fn{i})) && isequal(size(atlas.(fn{i})), atlas.dim)
isindexed(i) = true;
end
end
if any(isindexed)
% let the indexed prevail
fn = fn(isindexed);
isindexed = 1;
elseif any(isboolean)
% use the boolean
fn = fn(isboolean);
isindexed = 0;
end
if ischar(cfg.roi)
cfg.roi = {cfg.roi};
end
if isindexed,
sel = zeros(0,2);
for m = 1:length(fn)
for i = 1:length(cfg.roi)
tmp = find(strcmp(cfg.roi{i}, atlas.([fn{m},'label'])));
sel = [sel; tmp m*ones(numel(tmp),1)];
end
end
fprintf('found %d matching anatomical labels\n', size(sel,1));
% this is to accommodate for multiple parcellations:
% the brick refers to the parcellationname
% the value refers to the value within the given parcellation
brick = sel(:,2);
value = sel(:,1);
% convert between MNI head coordinates and TAL head coordinates
% coordinates should be expressed compatible with the atlas
if strcmp(cfg.inputcoord, 'mni') && strcmp(atlas.coordsys, 'tal')
xyz(1:3,:) = mni2tal(xyz(1:3,:));
elseif strcmp(cfg.inputcoord, 'mni') && strcmp(atlas.coordsys, 'mni')
% nothing to do
elseif strcmp(cfg.inputcoord, 'tal') && strcmp(atlas.coordsys, 'tal')
% nothing to do
elseif strcmp(cfg.inputcoord, 'tal') && strcmp(atlas.coordsys, 'mni')
xyz(1:3,:) = tal2mni(xyz(1:3,:));
elseif ~strcmp(cfg.inputcoord, atlas.coordsys)
error('there is a mismatch between the coordinate system in the atlas and the coordinate system in the data, which cannot be resolved');
end
% determine location of each anatomical voxel in atlas voxel coordinates
ijk = atlas.transform \ xyz;
ijk = round(ijk(1:3,:))';
inside_vol = ijk(:,1)>=1 & ijk(:,1)<=atlas.dim(1) & ...
ijk(:,2)>=1 & ijk(:,2)<=atlas.dim(2) & ...
ijk(:,3)>=1 & ijk(:,3)<=atlas.dim(3);
inside_vol = find(inside_vol);
% convert the selection inside the atlas volume into linear indices
ind = sub2ind(atlas.dim, ijk(inside_vol,1), ijk(inside_vol,2), ijk(inside_vol,3));
brick_val = cell(1,numel(brick));
% search the bricks for the value of each voxel
for i=1:numel(brick_val)
brick_val{i} = zeros(prod(dim),1);
brick_val{i}(inside_vol) = atlas.(fn{brick(i)})(ind);
end
mask = zeros(prod(dim),1);
for i=1:numel(brick_val)
%fprintf('constructing mask for %s\n', atlas.descr.name{sel(i)});
mask = mask | (brick_val{i}==value(i));
end
else
error('support for atlases that have a probabilistic segmentationstyle is not supported yet');
% NOTE: this may be very straightforward indeed: the mask is just the
% logical or of the specified rois.
end
elseif ispoi
if istrue(cfg.round2nearestvoxel)
for i=1:size(cfg.roi,1)
cfg.roi(i,:) = poi2voi(cfg.roi(i,:), xyz);
end
end
% sphere(s)
if isfield(cfg, 'sphere')
mask = zeros(1,prod(dim));
for i=1:size(cfg.roi,1)
dist = sqrt( (xyz(1,:) - cfg.roi(i,1)).^2 + (xyz(2,:) - cfg.roi(i,2)).^2 + (xyz(3,:) - cfg.roi(i,3)).^2 );
mask = mask | (dist <= cfg.sphere(i));
end
% box(es)
elseif isfield(cfg, 'box')
mask = zeros(1, prod(dim));
for i=1:size(cfg.roi,1)
mask = mask | ...
(xyz(1,:) <= (cfg.roi(i,1) + cfg.box(i,1)./2) & xyz(1,:) >= (cfg.roi(i,1) - cfg.box(i,1)./2)) & ...
(xyz(2,:) <= (cfg.roi(i,2) + cfg.box(i,2)./2) & xyz(2,:) >= (cfg.roi(i,2) - cfg.box(i,2)./2)) & ...
(xyz(3,:) <= (cfg.roi(i,3) + cfg.box(i,3)./2) & xyz(3,:) >= (cfg.roi(i,3) - cfg.box(i,3)./2));
end
end
end
mask = reshape(mask, dim);
fprintf('%i voxels in mask, which is %.3f %% of total volume\n', sum(mask(:)), 100*mean(mask(:)));
output = mask;
elseif mask2label
if ischar(cfg.atlas),
% assume it to represent a filename
atlas = ft_read_atlas(cfg.atlas);
else
% assume cfg.atlas to be a struct, but it may have been converted
% into a config object
atlas = struct(cfg.atlas);
end
% determine which field(s) to use to look up the labels,
% and whether these are boolean or indexed
fn = fieldnames(atlas);
isboolean = false(numel(fn),1);
isindexed = false(numel(fn),1);
for i=1:length(fn)
if islogical(atlas.(fn{i})) && isequal(size(atlas.(fn{i})), atlas.dim)
isboolean(i) = true;
elseif isnumeric(atlas.(fn{i})) && isequal(size(atlas.(fn{i})), atlas.dim)
isindexed(i) = true;
end
end
if any(isindexed)
% let the indexed prevail
fn = fn(isindexed);
isindexed = 1;
elseif any(isboolean)
% use the boolean
fn = fn(isboolean);
isindexed = 0;
end
sel = find(volume.(cfg.maskparameter)(:));
labels.name = cell(0,1);
for k = 1:numel(fn)
% ensure that they are concatenated as column
tmp = atlas.([fn{k},'label']);
labels.name = cat(1, labels.name(:), tmp(:));
end
labels.name{end+1} = 'no_label_found';
labels.count = zeros(length(labels.name),1);
for iLab = 1:length(labels.name)
labels.usedqueryrange{iLab} = [];
end
for iVox = 1:length(sel)
usedQR = 1;
label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 1);
if isempty(label) && cfg.maxqueryrange > 1
label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 3);
usedQR = 3;
end
if isempty(label) && cfg.maxqueryrange > 3
label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 5);
usedQR = 5;
end
if isempty(label)
label = {'no_label_found'};
elseif length(label) == 1
label = {label};
end
ind_lab = [];
for iLab = 1:length(label)
ind_lab = [ind_lab find(strcmp(label{iLab}, labels.name))];
end
labels.count(ind_lab) = labels.count(ind_lab) + (1/length(ind_lab));
for iFoundLab = 1:length(ind_lab)
if isempty(labels.usedqueryrange{ind_lab(iFoundLab)})
labels.usedqueryrange{ind_lab(iFoundLab)} = usedQR;
else
labels.usedqueryrange{ind_lab(iFoundLab)} = [labels.usedqueryrange{ind_lab(iFoundLab)} usedQR];
end
end
end %iVox
output = labels;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION point of interest to voxel of interest
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function voi = poi2voi(poi, xyz)
xmin = min(abs(xyz(1,:) - poi(1))); xcl = round(abs(xyz(1,:) - poi(1))) == round(xmin);
ymin = min(abs(xyz(2,:) - poi(2))); ycl = round(abs(xyz(2,:) - poi(2))) == round(ymin);
zmin = min(abs(xyz(3,:) - poi(3))); zcl = round(abs(xyz(3,:) - poi(3))) == round(zmin);
xyzcls = xcl + ycl + zcl; ind_voi = xyzcls == 3;
if sum(ind_voi) > 1;
fprintf('%i voxels at same distance of poi, taking first voxel\n', sum(ind_voi))
ind_voi_temp = find(ind_voi); ind_voi_temp = ind_voi_temp(1);
ind_voi = zeros(size(ind_voi));
ind_voi(ind_voi_temp) = 1;
ind_voi = logical(ind_voi);
end
voi = xyz(1:3,ind_voi);
fprintf('coordinates of voi: %.1f %.1f %.1f\n', voi(1), voi(2), voi(3));
|
github
|
lcnbeapp/beapp-master
|
ft_multiplotTFR.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_multiplotTFR.m
| 30,950 |
utf_8
|
785cbcd905ef5ff77519037ef9da1a2d
|
function [cfg] = ft_multiplotTFR(cfg, data)
% FT_MULTIPLOTTFR plots the time-frequency representations of power or coherence
% in a topographical layout. The plots of the indivual sensors are arranged
% according to their location specified in the layout.
%
% Use as
% ft_multiplotTFR(cfg, data)
%
% The data can be a time-frequency representation of power or coherence
% that was computed using the FT_FREQANALYSIS or FT_FREQDESCRIPTIVES
% functions.
%
% The configuration can have the following parameters:
% cfg.parameter = field to be represented as color (default depends on data.dimord)
% 'powspctrm' or 'cohspctrm'
% cfg.maskparameter = field in the data to be used for opacity masking of data
% cfg.maskstyle = style used to masking, 'opacity', 'saturation' or 'outline' (default = 'opacity')
% use 'saturation' or 'outline' when saving to vector-format (like *.eps) to avoid all
% sorts of image-problems (currently only possible with a white backgroud)
% cfg.maskalpha = alpha value between 0 (transparant) and 1 (opaque) used for masking areas dictated by cfg.maskparameter (default = 1)
% cfg.masknans = 'yes' or 'no' (default = 'yes')
% cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin')
% cfg.zlim = plotting limits for color dimension, 'maxmin', 'maxabs', 'zeromax', 'minzero', or [zmin zmax] (default = 'maxmin')
% cfg.gradscale = number, scaling to apply to the MEG gradiometer channels prior to display
% cfg.magscale = number, scaling to apply to the MEG magnetometer channels prior to display
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui'
% cfg.baseline = 'yes', 'no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE
% cfg.baselinetype = 'absolute', 'relative', 'relchange' or 'db' (default = 'absolute')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.box = 'yes', 'no' (default = 'no' if maskparameter given default = 'yes')
% Draw a box around each graph
% cfg.hotkeys = enables hotkeys (up/down arrows) for dynamic colorbar adjustment
% cfg.colorbar = 'yes', 'no' (default = 'no')
% cfg.colormap = any sized colormap, see COLORMAP
% cfg.comment = string of text (default = date + zlimits)
% Add 'comment' to graph (according to COMNT in the layout)
% cfg.showlabels = 'yes', 'no' (default = 'no')
% cfg.showoutline = 'yes', 'no' (default = 'no')
% cfg.fontsize = font size of comment and labels (if present) (default = 8)
% cfg.interactive = Interactive plot 'yes' or 'no' (default = 'yes')
% In a interactive plot you can select areas and produce a new
% interactive plot when a selected area is clicked. Multiple areas
% can be selected by holding down the SHIFT key.
% cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = [])
% cfg.directionality = '', 'inflow' or 'outflow' specifies for
% connectivity measures whether the inflow into a
% node, or the outflow from a node is plotted. The
% (default) behavior of this option depends on the dimor
% of the input data (see below).
% cfg.layout = specify the channel layout for plotting using one of
% the supported ways (see below).
%
% For the plotting of directional connectivity data the cfg.directionality
% option determines what is plotted. The default value and the supported
% functionality depend on the dimord of the input data. If the input data
% is of dimord 'chan_chan_XXX', the value of directionality determines
% whether, given the reference channel(s), the columns (inflow), or rows
% (outflow) are selected for plotting. In this situation the default is
% 'inflow'. Note that for undirected measures, inflow and outflow should
% give the same output. If the input data is of dimord 'chancmb_XXX', the
% value of directionality determines whether the rows in data.labelcmb are
% selected. With 'inflow' the rows are selected if the refchannel(s) occur in
% the right column, with 'outflow' the rows are selected if the
% refchannel(s) occur in the left column of the labelcmb-field. Default in
% this case is '', which means that all rows are selected in which the
% refchannel(s) occur. This is to robustly support linearly indexed
% undirected connectivity metrics. In the situation where undirected
% connectivity measures are linearly indexed, specifying 'inflow' or
% 'outflow' can result in unexpected behavior.
%
% The layout defines how the channels are arranged and what the size of each
% subplot is. You can specify the layout in a variety of ways:
% - you can provide a pre-computed layout structure (see ft_prepare_layout)
% - you can give the name of an ascii layout file with extension *.lay
% - you can give the name of an electrode file
% - you can give an electrode definition, i.e. "elec" structure
% - you can give a gradiometer definition, i.e. "grad" structure
% If you do not specify any of these and the data structure contains an
% electrode or gradiometer structure (common for MEG data, since the header
% of the MEG datafile contains the gradiometer information), that will be
% used for creating a layout. If you want to have more fine-grained control
% over the layout of the subplots, you should create your own layout file.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure. For this particular function, the
% data should be provided as a cell array.
%
% See also:
% FT_MULTIPLOTER, FT_SINGLEPLOTER, FT_SINGLEPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR,
% FT_PREPARE_LAYOUT
% Undocumented local options:
% cfg.channel
% cfg.layoutname
% cfg.orient = landscape/portrait
% Copyright (C) 2003-2006, Ole Jensen
% Copyright (C) 2007-2011, Roemer van der Meij & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'freq');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'});
% set the defaults
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.magscale = ft_getopt(cfg, 'magscale', 1);
cfg.gradscale = ft_getopt(cfg, 'gradscale', 1);
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'no');
cfg.comment = ft_getopt(cfg, 'comment', date);
cfg.showlabels = ft_getopt(cfg, 'showlabels', 'no');
cfg.showoutline = ft_getopt(cfg, 'showoutline', 'no');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no');
cfg.renderer = ft_getopt(cfg, 'renderer'); % let MATLAB decide on default
cfg.orient = ft_getopt(cfg, 'orient', 'landscape');
cfg.maskalpha = ft_getopt(cfg, 'maskalpha', 1);
cfg.masknans = ft_getopt(cfg, 'masknans', 'yes');
cfg.maskparameter = ft_getopt(cfg, 'maskparameter');
cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'opacity');
cfg.directionality = ft_getopt(cfg, 'directionality', '');
cfg.figurename = ft_getopt(cfg, 'figurename');
if ~isfield(cfg, 'box')
if ~isempty(cfg.maskparameter)
cfg.box = 'yes';
else
cfg.box = 'no';
end
end
if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) > 1 && strcmp(cfg.interactive, 'yes')
warning('using cfg.interactive = ''yes'' in subplots is not supported, setting cfg.interactive = ''no''')
cfg.interactive = 'no';
end
dimord = data.dimord;
dimtok = tokenize(dimord, '_');
% Set x/y/parameter defaults
if ~any(ismember(dimtok, 'time'))
error('input data needs a time dimension');
else
xparam = 'time';
yparam = 'freq';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
end
if isfield(cfg, 'channel') && isfield(data, 'label')
cfg.channel = ft_channelselection(cfg.channel, data.label);
elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
% perform channel selection but only allow this when cfg.interactive = 'no'
if isfield(data, 'label') && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, data.label);
elseif isfield(data, 'labelcmb') && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
% check whether rpt/subj is present and remove if necessary and whether
hasrpt = any(ismember(dimtok, {'rpt' 'subj'}));
if hasrpt,
% this also deals with fourier-spectra in the input
% or with multiple subjects in a frequency domain stat-structure
% on the fly computation of coherence spectrum is not supported
if isfield(data, 'crsspctrm'),
data = rmfield(data, 'crsspctrm');
end
% keep mask-parameter if it is set
if ~isempty(cfg.maskparameter)
tempmask = data.(cfg.maskparameter);
end
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.jackknife = 'no';
if isfield(cfg, 'parameter') && ~strcmp(cfg.parameter, 'powspctrm')
% freqdesctiptives will only work on the powspctrm field
% hence a temporary copy of the data is needed
tempdata.dimord = data.dimord;
tempdata.freq = data.freq;
tempdata.label = data.label;
tempdata.powspctrm = data.(cfg.parameter);
if isfield(data, 'cfg') tempdata.cfg = data.cfg; end
tempdata = ft_freqdescriptives(tmpcfg, tempdata);
data.(cfg.parameter) = tempdata.powspctrm;
clear tempdata
else
data = ft_freqdescriptives(tmpcfg, data);
end
% put mask-parameter back if it is set
if ~isempty(cfg.maskparameter)
data.(cfg.maskparameter) = tempmask;
end
dimord = data.dimord;
dimtok = tokenize(dimord, '_');
end % if hasrpt
% Read or create the layout that will be used for plotting:
cla;
hold on
lay = ft_prepare_layout(cfg, data);
cfg.layout = lay;
% Apply baseline correction:
if ~strcmp(cfg.baseline, 'no')
% keep mask-parameter if it is set
if ~isempty(cfg.maskparameter)
tempmask = data.(cfg.maskparameter);
end
data = ft_freqbaseline(cfg, data);
% put mask-parameter back if it is set
if ~isempty(cfg.maskparameter)
data.(cfg.maskparameter) = tempmask;
end
end
% Handle the bivariate case
% Check for bivariate metric with 'chan_chan' in the dimord
selchan = strmatch('chan', dimtok);
isfull = length(selchan)>1;
% Check for bivariate metric with a labelcmb
haslabelcmb = isfield(data, 'labelcmb');
if (isfull || haslabelcmb) && (isfield(data, cfg.parameter) && ~strcmp(cfg.parameter, 'powspctrm'))
% A reference channel is required:
if ~isfield(cfg, 'refchannel')
error('no reference channel is specified');
end
% check for refchannel being part of selection
if ~strcmp(cfg.refchannel, 'gui')
if haslabelcmb
cfg.refchannel = ft_channelselection(cfg.refchannel, unique(data.labelcmb(:)));
else
cfg.refchannel = ft_channelselection(cfg.refchannel, data.label);
end
if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ...
(haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel)))
error('cfg.refchannel is a not present in the (selected) channels)')
end
end
% Interactively select the reference channel
if strcmp(cfg.refchannel, 'gui')
% Open a single figure with the channel layout, the user can click on a reference channel
h = clf;
ft_plot_lay(lay, 'box', false);
title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...');
% add the channel information to the figure
info = guidata(gcf);
info.x = lay.pos(:, 1);
info.y = lay.pos(:, 2);
info.label = lay.label;
info.dataname = '';
guidata(h, info);
%set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}});
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'});
return
end
if ~isfull,
% Convert 2-dimensional channel matrix to a single dimension:
if isempty(cfg.directionality)
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:, 2)));
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:, 1)));
elseif strcmp(cfg.directionality, 'outflow')
sel1 = [];
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:, 1)));
elseif strcmp(cfg.directionality, 'inflow')
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:, 2)));
sel2 = [];
end
fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.parameter);
if length(sel1)+length(sel2)==0
error('there are no channels selected for plotting: you may need to look at the specification of cfg.directionality');
end
data.(cfg.parameter) = data.(cfg.parameter)([sel1;sel2], :, :);
data.label = [data.labelcmb(sel1, 1);data.labelcmb(sel2, 2)];
data.labelcmb = data.labelcmb([sel1;sel2], :);
%data = rmfield(data, 'labelcmb');
else
% General case
sel = match_str(data.label, cfg.refchannel);
siz = [size(data.(cfg.parameter)) 1];
if strcmp(cfg.directionality, 'inflow') || isempty(cfg.directionality)
%the interpretation of 'inflow' and 'outflow' depend on
%the definition in the bivariate representation of the data
%in FieldTrip the row index 'causes' the column index channel
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(:, sel, :), 2), [siz(1) 1 siz(3:end)]);
sel1 = 1:siz(1);
sel2 = sel;
meandir = 2;
elseif strcmp(cfg.directionality, 'outflow')
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(sel, :, :), 1), [siz(1) 1 siz(3:end)]);
sel1 = sel;
sel2 = 1:siz(1);
meandir = 1;
elseif strcmp(cfg.directionality, 'ff-fd')
error('cfg.directionality = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_multiplotTFR');
elseif strcmp(cfg.directionality, 'fd-ff')
error('cfg.directionality = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_multiplotTFR');
end %if directionality
end %if ~isfull
end %handle the bivariate data
% Get physical x-axis range:
if strcmp(cfg.xlim, 'maxmin')
xmin = min(data.(xparam));
xmax = max(data.(xparam));
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% Replace value with the index of the nearest bin
if ~isempty(xparam)
xmin = nearest(data.(xparam), xmin);
xmax = nearest(data.(xparam), xmax);
end
% Get physical y-axis range:
if strcmp(cfg.ylim, 'maxmin')
ymin = min(data.(yparam));
ymax = max(data.(yparam));
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% Replace value with the index of the nearest bin
if ~isempty(yparam)
ymin = nearest(data.(yparam), ymin);
ymax = nearest(data.(yparam), ymax);
end
% test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE
x = data.(xparam)(xmin:xmax);
y = data.(yparam)(ymin:ymax);
dx = min(diff(x)); % smallest interval for X
dy = min(diff(y)); % smallest interval for Y
evenx = all(abs(diff(x)/dx-1)<1e-12); % true if X is linearly spaced
eveny = all(abs(diff(y)/dy-1)<1e-12); % true if Y is linearly spaced
if ~evenx || ~eveny
warning('(one of the) axis is/are not evenly spaced, but plots are made as if axis are linear')
end
% Take subselection of channels, this only works
% in the interactive mode
if exist('selchannel', 'var')
sellab = match_str(data.label, selchannel);
label = data.label(sellab);
else
sellab = 1:numel(data.label);
label = data.label;
end
dat = data.(cfg.parameter);
% get dimord dimensions
dims = textscan(data.dimord, '%s', 'Delimiter', '_');
dims = dims{1};
ydim = find(strcmp(yparam, dims));
xdim = find(strcmp(xparam, dims));
zdim = setdiff(1:ndims(dat), [ydim xdim]);
% and permute
dat = permute(dat, [zdim(:)' ydim xdim]);
if isfull
dat = dat(sel1, sel2, ymin:ymax, xmin:xmax);
dat = nanmean(dat, meandir);
siz = size(dat);
dat = reshape(dat, [max(siz(1:2)) siz(3) siz(4)]);
dat = dat(sellab, :, :);
% this makes no sense, so COMMENTED OUT AS OF FEBURARY 22 2012
% elseif haslabelcmb
% dat = dat(sellab, ymin:ymax, xmin:xmax);
else
dat = dat(sellab, ymin:ymax, xmin:xmax);
end
if ~isempty(cfg.maskparameter)
mask = data.(cfg.maskparameter);
mask = permute(mask, [zdim(:)' ydim xdim]);
if isfull && cfg.maskalpha == 1
mask = mask(sel1, sel2, ymin:ymax, xmin:xmax);
mask = nanmean(nanmean(nanmean(mask, meandir), 4), 3);
elseif haslabelcmb && cfg.maskalpha == 1
mask = mask(sellab, ymin:ymax, xmin:xmax);
%mask = nanmean(nanmean(mask, 3), 2);
elseif cfg.maskalpha == 1
mask = mask(sellab, ymin:ymax, xmin:xmax);
%mask = nanmean(nanmean(mask, 3), 2);
elseif isfull && cfg.maskalpha ~= 1
maskl = mask(sel1, sel2, ymin:ymax, xmin:xmax); %% check this for full representation
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
elseif haslabelcmb && cfg.maskalpha ~= 1
maskl = mask(sellab, ymin:ymax, xmin:xmax);
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
elseif cfg.maskalpha ~= 1
maskl = mask(sellab, ymin:ymax, xmin:xmax);
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
end
end
% Select the channels in the data that match with the layout:
[chanseldat, chansellay] = match_str(label, lay.label);
if isempty(chanseldat)
error('labels in data and labels in layout do not match');
end
% if magnetometer/gradiometer scaling is requested, get indices for
% channels
if (cfg.magscale ~= 1)
magInd = match_str(label, ft_channelselection('MEGMAG', label));
end
if (cfg.gradscale ~= 1)
gradInd = match_str(label, ft_channelselection('MEGGRAD', label));
end
datsel = dat(chanseldat, :, :);
if ~isempty(cfg.maskparameter)
maskdat = mask(chanseldat, :, :);
end
% Select x and y coordinates and labels of the channels in the data
chanX = lay.pos(chansellay, 1);
chanY = lay.pos(chansellay, 2);
chanWidth = lay.width(chansellay);
chanHeight = lay.height(chansellay);
% Get physical z-axis range (color axis):
if strcmp(cfg.zlim, 'maxmin')
zmin = min(datsel(:));
zmax = max(datsel(:));
elseif strcmp(cfg.zlim, 'maxabs')
zmin = -max(abs(datsel(:)));
zmax = max(abs(datsel(:)));
elseif strcmp(cfg.zlim, 'zeromax')
zmin = 0;
zmax = max(datsel(:));
elseif strcmp(cfg.zlim, 'minzero')
zmin = min(datsel(:));
zmax = 0;
else
zmin = cfg.zlim(1);
zmax = cfg.zlim(2);
end
% set colormap
if isfield(cfg, 'colormap')
if size(cfg.colormap, 2)~=3, error('multiplotTFR(): Colormap must be a n x 3 matrix'); end
set(gcf, 'colormap', cfg.colormap);
end
% Plot channels:
for k=1:length(chanseldat)
% Get cdata:
cdata = shiftdim(datsel(k, :, :));
if ~isempty(cfg.maskparameter)
mdata = shiftdim(maskdat(k, :, :));
end
% scale if needed
if (cfg.magscale ~= 1 && any(magInd == chanseldat(k)))
cdata = cdata .* cfg.magscale;
end
if (cfg.gradscale ~= 1 && any(gradInd == chanseldat(k)))
cdata = cdata .* cfg.gradscale;
end
% Draw plot (and mask Nan's with maskfield if requested)
if isequal(cfg.masknans, 'yes') && isempty(cfg.maskparameter)
nans_mask = ~isnan(cdata);
mask = double(nans_mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', chanX(k), 'vpos', chanY(k), 'width', chanWidth(k), 'height', chanHeight(k))
elseif isequal(cfg.masknans, 'yes') && ~isempty(cfg.maskparameter)
nans_mask = ~isnan(cdata);
mask = nans_mask .* mdata;
mask = double(mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', chanX(k), 'vpos', chanY(k), 'width', chanWidth(k), 'height', chanHeight(k))
elseif isequal(cfg.masknans, 'no') && ~isempty(cfg.maskparameter)
mask = mdata;
mask = double(mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', chanX(k), 'vpos', chanY(k), 'width', chanWidth(k), 'height', chanHeight(k))
else
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'hpos', chanX(k), 'vpos', chanY(k), 'width', chanWidth(k), 'height', chanHeight(k))
end
% Currently the handle isn't being used below, this is here for possible use in the future
h = findobj('tag', 'cip');
end % for chanseldat
% write comment:
k = cellstrmatch('COMNT', lay.label);
if ~isempty(k)
comment = cfg.comment;
comment = sprintf('%0s\nxlim=[%.3g %.3g]', comment, data.(xparam)(xmin), data.(xparam)(xmax));
comment = sprintf('%0s\nylim=[%.3g %.3g]', comment, data.(yparam)(ymin), data.(yparam)(ymax));
comment = sprintf('%0s\nzlim=[%.3g %.3g]', comment, zmin, zmax);
ft_plot_text(lay.pos(k, 1), lay.pos(k, 2), sprintf(comment), 'Fontsize', cfg.fontsize);
end
% plot scale:
k = cellstrmatch('SCALE', lay.label);
if ~isempty(k)
% Get average cdata across channels:
cdata = shiftdim(mean(datsel, 1));
% Draw plot (and mask Nan's with maskfield if requested)
if isequal(cfg.masknans, 'yes') && isempty(cfg.maskparameter)
mask = ~isnan(cdata);
mask = double(mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', lay.pos(k, 1), 'vpos', lay.pos(k, 2), 'width', lay.width(k, 1), 'height', lay.height(k, 1))
elseif isequal(cfg.masknans, 'yes') && ~isempty(cfg.maskparameter)
mask = ~isnan(cdata);
mask = mask .* mdata;
mask = double(mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', lay.pos(k, 1), 'vpos', lay.pos(k, 2), 'width', lay.width(k, 1), 'height', lay.height(k, 1))
elseif isequal(cfg.masknans, 'no') && ~isempty(cfg.maskparameter)
mask = mdata;
mask = double(mask);
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask, 'hpos', lay.pos(k, 1), 'vpos', lay.pos(k, 2), 'width', lay.width(k, 1), 'height', lay.height(k, 1))
else
ft_plot_matrix(cdata, 'clim', [zmin zmax], 'tag', 'cip', 'hpos', lay.pos(k, 1), 'vpos', lay.pos(k, 2), 'width', lay.width(k, 1), 'height', lay.height(k, 1))
end
% Currently the handle isn't being used below, this is here for possible use in the future
h = findobj('tag', 'cip');
end
% plot layout
boxflg = istrue(cfg.box);
labelflg = istrue(cfg.showlabels);
outlineflg = istrue(cfg.showoutline);
ft_plot_lay(lay, 'box', boxflg, 'label', labelflg, 'outline', outlineflg, 'point', 'no', 'mask', 'no');
% plot colorbar:
if isfield(cfg, 'colorbar') && (strcmp(cfg.colorbar, 'yes'))
colorbar;
end
% Set colour axis
caxis([zmin zmax]);
if strcmp('yes', cfg.hotkeys)
% Attach data and cfg to figure and attach a key listener to the figure
set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax})
end
% set the figure window title
if isempty(get(gcf, 'Name'))
if isfield(cfg, 'funcname')
funcname = cfg.funcname;
else
funcname = mfilename;
end
if isfield(cfg, 'dataname')
dataname = cfg.dataname;
elseif nargin > 1
dataname = inputname(2);
else % data provided through cfg.inputfile
dataname = cfg.inputfile;
end
if isempty(cfg.figurename)
set(gcf, 'Name', sprintf('%d: %s: %s', double(gcf), funcname, dataname));
set(gcf, 'NumberTitle', 'off');
else
set(gcf, 'name', cfg.figurename);
set(gcf, 'NumberTitle', 'off');
end
else
funcname = '';
dataname = '';
end
% Make the figure interactive:
if strcmp(cfg.interactive, 'yes')
% add the channel information to the figure
info = guidata(gcf);
info.x = lay.pos(:, 1);
info.y = lay.pos(:, 2);
info.label = lay.label;
info.dataname = dataname;
guidata(gcf, info);
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'});
end
axis tight
axis off
hold off
% Set orientation for printing if specified
if ~isempty(cfg.orient)
orient(gcf, cfg.orient);
end
% Set renderer if specified
if ~isempty(cfg.renderer)
set(gcf, 'renderer', cfg.renderer)
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance
% add a menu to the figure
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function l = cellstrmatch(str, strlist)
l = [];
for k=1:length(strlist)
if strcmp(char(str), char(strlist(k)))
l = [l k];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called by ft_select_channel in case cfg.refchannel='gui'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_multiplotTFR(label, cfg, varargin)
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
% put data name in here, this cannot be resolved by other means
info = guidata(gcf);
cfg.dataname = info.dataname;
cfg.refchannel = label;
fprintf('selected cfg.refchannel = ''%s''\n', join_str(', ', cfg.refchannel));
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_multiplotTFR(cfg, varargin{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_singleplotTFR(label, cfg, varargin)
if ~isempty(label)
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
cfg.channel = label;
% make sure ft_singleplotTFR does not apply a baseline correction again
cfg.baseline = 'no';
% put data name in here, this cannot be resolved by other means
info = guidata(gcf);
cfg.dataname = info.dataname;
fprintf('selected cfg.channel = {');
for i=1:(length(cfg.channel)-1)
fprintf('''%s'', ', cfg.channel{i});
end
fprintf('''%s''}\n', cfg.channel{end});
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_singleplotTFR(cfg, varargin{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which handles hot keys in the current plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key_sub(handle, eventdata, varargin)
incr = (max(caxis)-min(caxis)) /10;
% symmetrically scale color bar down by 10 percent
if strcmp(eventdata.Key, 'uparrow')
caxis([min(caxis)-incr max(caxis)+incr]);
% symmetrically scale color bar up by 10 percent
elseif strcmp(eventdata.Key, 'downarrow')
caxis([min(caxis)+incr max(caxis)-incr]);
% resort to minmax of data for colorbar
elseif strcmp(eventdata.Key, 'm')
caxis([varargin{1} varargin{2}]);
end
|
github
|
lcnbeapp/beapp-master
|
ft_connectivityanalysis.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_connectivityanalysis.m
| 41,951 |
utf_8
|
0d5870627ccd8b4bbcef93cede262474
|
function [stat] = ft_connectivityanalysis(cfg, data)
% FT_CONNECTIVITYANALYSIS computes various measures of connectivity between
% MEG/EEG channels or between source-level signals.
%
% Use as
% stat = ft_connectivityanalysis(cfg, data)
% stat = ft_connectivityanalysis(cfg, timelock)
% stat = ft_connectivityanalysis(cfg, freq)
% stat = ft_connectivityanalysis(cfg, source)
% where the first input argument is a configuration structure (see below)
% and the second argument is the output of FT_PREPROCESSING,
% FT_TIMELOCKANLAYSIS, FT_FREQANALYSIS, FT_MVARANALYSIS or FT_SOURCEANALYSIS.
%
% The different connectivity metrics are supported only for specific
% datatypes (see below).
%
% The configuration structure has to contain
% cfg.method = string, can be
% 'amplcorr', amplitude correlation, support for freq and source data
% 'coh', coherence, support for freq, freqmvar and source data.
% For partial coherence also specify cfg.partchannel, see below.
% For imaginary part of coherency or coherency also specify
% cfg.complex, see below.
% 'csd', cross-spectral density matrix, can also calculate partial
% csds - if cfg.partchannel is specified, support for freq
% and freqmvar data
% 'dtf', directed transfer function, support for freq and
% freqmvar data
% 'granger', granger causality, support for freq and freqmvar data
% 'pdc', partial directed coherence, support for freq and
% freqmvar data
% 'plv', phase-locking value, support for freq and freqmvar data
% 'powcorr', power correlation, support for freq and source data
% 'powcorr_ortho', power correlation with single trial
% orthogonalisation, support for source data
% 'ppc' pairwise phase consistency
% 'psi', phaseslope index, support for freq and freqmvar data
% 'wpli', weighted phase lag index (signed one,
% still have to take absolute value to get indication of
% strength of interaction. Note: measure has positive
% bias. Use wpli_debiased to avoid this.
% 'wpli_debiased' debiased weighted phase lag index
% (estimates squared wpli)
% 'wppc' weighted pairwise phase consistency
% 'corr' Pearson correlation, support for timelock or raw data
%
% Additional configuration options are
% cfg.channel = Nx1 cell-array containing a list of channels which are
% used for the subsequent computations. This only has an effect when
% the input data is univariate. See FT_CHANNELSELECTION
% cfg.channelcmb = Nx2 cell-array containing the channel combinations on
% which to compute the connectivity. This only has an effect when the
% input data is univariate. See FT_CHANNELCOMBINATION
% cfg.trials = Nx1 vector specifying which trials to include for the
% computation. This only has an effect when the input data contains
% repetitions.
% cfg.feedback = string, specifying the feedback presented to the user.
% Default is 'none'. See FT_PROGRESS
%
% For specific methods the cfg can also contain
% cfg.partchannel = cell-array containing a list of channels that need to
% be partialized out, support for method 'coh', 'csd', 'plv'
% cfg.complex = 'abs' (default), 'angle', 'complex', 'imag', 'real',
% '-logabs', support for method 'coh', 'csd', 'plv'
% cfg.removemean = 'yes' (default), or 'no', support for method
% 'powcorr' and 'amplcorr'.
% cfg.bandwidth = scalar, (default = Rayleigh frequency), needed for
% 'psi', half-bandwidth of the integration across frequencies (in Hz)
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPROCESSING, FT_TIMELOCKANALYSIS, FT_FREQANALYSIS,
% FT_MVARANALYSIS, FT_SOURCEANALYSIS, FT_NETWORKANALYSIS.
%
% For the implemented methods, see also FT_CONNECTIVITY_CORR,
% FT_CONNECTIVITY_GRANGER, FT_CONNECTIVITY_PPC, FT_CONNECTIVITY_WPLI,
% FT_CONNECTIVITY_PDC, FT_CONNECTIVITY_DTF, FT_CONNECTIVITY_PSI
% Undocumented options:
% cfg.refindx =
% cfg.jackknife =
% cfg.method = 'mi';
% cfg.granger.block =
% cfg.granger.conditional =
%
% Methods to be implemented
% 'xcorr', cross correlation function
% 'di', directionality index
% 'spearman' spearman's rank correlation
% Copyright (C) 2009, Jan-Mathijs Schoffelen, Andre Bastos, Martin Vinck, Robert Oostenveld
% Copyright (C) 2010-2011, Jan-Mathijs Schoffelen, Martin Vinck
% Copyright (C) 2012-2013, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% FIXME it should be checked carefully whether the following works
% check if the input data is valid for this function
% data = ft_checkdata(data, 'datatype', {'raw', 'timelock', 'freq', 'source'});
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.channelcmb = ft_getopt(cfg, 'channelcmb', {'all' 'all'});
cfg.refindx = ft_getopt(cfg, 'refindx', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.complex = ft_getopt(cfg, 'complex', 'abs');
cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
cfg.removemean = ft_getopt(cfg, 'removemean', 'yes');
cfg.partchannel = ft_getopt(cfg, 'partchannel', '');
cfg.parameter = ft_getopt(cfg, 'parameter', []);
hasjack = (isfield(data, 'method') && strcmp(data.method, 'jackknife')) || (isfield(data, 'dimord') && strcmp(data.dimord(1:6), 'rptjck'));
hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt'))) || (isfield(data, 'avg') && isfield(data.avg, 'mom')) || (isfield(data, 'trial') && isfield(data.trial, 'mom')); % FIXME old-fashioned pcc data
dojack = strcmp(cfg.jackknife, 'yes');
normrpt = 0; % default, has to be overruled e.g. in plv, because of single replicate normalisation
normpow = 1; % default, has to be overruled e.g. in csd,
% select trials of interest
if ~strcmp(cfg.trials, 'all')
tmpcfg = [];
tmpcfg.trials = cfg.trials;
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
end
% select channels/channelcombination of interest and set the cfg-options accordingly
if isfield(data, 'label'),
selchan = cell(0, 1);
if ~isempty(cfg.channelcmb) && ~isequal(cfg.channelcmb, {'all' 'all'}),
tmpcmb = ft_channelcombination(cfg.channelcmb, data.label);
tmpchan = unique(tmpcmb(:));
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, tmpchan, 1);
selchan = [selchan;unique(cfg.channelcmb(:))];
end
cfg.channel = ft_channelselection(cfg.channel, data.label);
selchan = [selchan;cfg.channel];
if ~isempty(cfg.partchannel)
cfg.partchannel = ft_channelselection(cfg.partchannel, data.label);
selchan = [selchan; cfg.partchannel];
end
tmpcfg = [];
tmpcfg.channel = unique(selchan);
data = ft_selectdata(tmpcfg, data);
elseif isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
if ~isempty(cfg.partchannel)
error('partialisation is only possible without linearly indexed bivariate data');
end
if ~isempty(cfg.channelcmb),
% FIXME do something extra here
end
% FIXME call selectdata
end
% FIXME check which methods require hasrpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - ensure that the input data is appropriate for the method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
needrpt = 1; % logical flag to specify whether (pseudo)-repetitions are required in the lower level connectivity function (can be singleton)
switch cfg.method
case {'coh' 'csd'}
if ~isempty(cfg.partchannel)
if hasrpt && ~hasjack,
warning('partialisation on single trial observations is not supported, removing trial dimension');
try
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'fullfast');
inparam = 'crsspctrm';
hasrpt = 0;
catch
error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation');
end
else
try
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'full');
inparam = 'crsspctrm';
catch
error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation');
end
end
else
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
inparam = 'crsspctrm';
end
if strcmp(cfg.method, 'csd'),
normpow = 0;
outparam = 'crsspctrm';
elseif strcmp(cfg.method, 'coh'),
outparam = 'cohspctrm';
end
dtype = ft_datatype(data);
switch dtype
case 'source'
if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end
otherwise
end
% FIXME think of accommodating partial coherence for source data with only a few references
case {'wpli'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wplispctrm';
debiaswpli = 0;
if hasjack, error('to compute wpli, data should be in rpt format'); end
case {'wpli_debiased'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wpli_debiasedspctrm';
debiaswpli = 1;
if hasjack, error('to compute wpli, data should be in rpt format'); end
case {'ppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'ppcspctrm';
weightppc = 0;
if hasjack, error('to compute ppc, data should be in rpt format'); end
case {'wppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wppcspctrm';
weightppc = 1;
if hasjack, error('to compute wppc, data should be in rpt format'); end
case {'plv'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
inparam = 'crsspctrm';
outparam = 'plvspctrm';
normrpt = 1;
case {'corr'}
data = ft_checkdata(data, 'datatype', {'raw' 'timelock'});
if isfield(data, 'cov')
% it looks like a timelock with a cov, which is perfectly valid as input
data = ft_checkdata(data, 'datatype', 'timelock');
else
% it does not have a cov, the covariance will be computed on the fly further down
data = ft_checkdata(data, 'datatype', 'raw');
end
inparam = 'cov';
outparam = cfg.method;
case {'amplcorr' 'powcorr'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
dtype = ft_datatype(data);
switch dtype
case {'freq' 'freqmvar'}
inparam = 'powcovspctrm';
case 'source'
inparam = 'powcov';
if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end
otherwise
end
outparam = [cfg.method, 'spctrm'];
case {'granger' 'instantaneous_causality' 'total_interdependence'}
% create subcfg for the spectral factorization
if ~isfield(cfg, 'granger')
cfg.granger = [];
end
cfg.granger.conditional = ft_getopt(cfg.granger, 'conditional', 'no');
cfg.granger.block = ft_getopt(cfg.granger, 'block', []);
if isfield(cfg, 'channelcmb'),
cfg.granger.channelcmb = cfg.channelcmb;
cfg = rmfield(cfg, 'channelcmb');
end
data = ft_checkdata(data, 'datatype', {'mvar' 'freqmvar' 'freq'});
inparam = {'transfer', 'noisecov', 'crsspctrm'};
if strcmp(cfg.method, 'granger'), outparam = 'grangerspctrm'; end
if strcmp(cfg.method, 'instantaneous_causality'), outparam = 'instantspctrm'; end
if strcmp(cfg.method, 'total_interdependence'), outparam = 'totispctrm'; end
% check whether the frequency bins are more or less equidistant
dfreq = diff(data.freq)./mean(diff(data.freq));
assert(all(dfreq>0.999) && all(dfreq<1.001), ['non equidistant frequency bins are not supported for method ',cfg.method]);
case {'dtf' 'pdc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'transfer';
outparam = [cfg.method, 'spctrm'];
case {'psi'}
cfg.bandwidth = ft_getopt(cfg, 'bandwidth', []);
cfg.normalize = ft_getopt(cfg, 'normalize', 'no');
assert(~isempty(cfg.bandwidth), 'you need to supply cfg.bandwidth with ''psi'' as method');
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'psispctrm';
% check whether the frequency bins are more or less equidistant
dfreq = diff(data.freq)./mean(diff(data.freq));
assert(all(dfreq>0.999) && all(dfreq<1.001), 'non equidistant frequency bins are not supported for method ''psi''');
case {'powcorr_ortho'}
data = ft_checkdata(data, 'datatype', {'source', 'freq'});
% inparam = 'avg.mom';
inparam = 'mom';
outparam = 'powcorrspctrm';
case {'mi'}
% create the subcfg for the mutual information
if ~isfield(cfg, 'mi'), cfg.mi = []; end
cfg.mi.numbin = ft_getopt(cfg.mi, 'numbin', 10);
cfg.mi.lags = ft_getopt(cfg.mi, 'lags', 0);
% what are the input requirements?
data = ft_checkdata(data, 'datatype', {'raw' 'timelock' 'freq' 'source'});
dtype = ft_datatype(data);
if strcmp(dtype, 'timelock')
if ~isfield(data, 'trial')
inparam = 'avg';
else
inparam = 'trial';
end
hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt')));
elseif strcmp(dtype, 'raw')
inparam = 'trial';
hasrpt = 1;
elseif strcmp(dtype, 'freq')
inparam = 'something';
else
inparam = 'something else';
end
outparam = 'mi';
needrpt = 1;
case {'di'}
% wat eigenlijk?
otherwise
error('unknown method % s', cfg.method);
end
dtype = ft_datatype(data);
% FIXME throw an error if cfg.complex~='abs', and dojack==1
% FIXME throw an error if no replicates and cfg.method='plv'
% FIXME trial selection has to be implemented still
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - check whether the required inparam is present in the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if any(~isfield(data, inparam)) || (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm'))),
if iscell(inparam)
% in the case of multiple inparams, use the first one to check the
% input data (e.g. checking for 'transfer' for requested granger)
inparam = inparam{1};
end
switch dtype
case {'freq' 'freqmvar'}
if strcmp(inparam, 'crsspctrm')
if isfield(data, 'fourierspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif strcmp(inparam, 'crsspctrm') && isfield(data, 'powspctrm')
% if input data is old-fashioned, i.e. contains powandcsd
[data, powindx, hasrpt] = univariate2bivariate(data, 'powandcsd', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif isfield(data, 'labelcmb')
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
elseif strcmp(inparam, 'powcovspctrm')
if isfield(data, 'powspctrm'),
[data, powindx] = univariate2bivariate(data, 'powspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
elseif isfield(data, 'fourierspctrm'),
[data, powindx] = univariate2bivariate(data, 'fourierspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
end
elseif strcmp(inparam, 'transfer')
if isfield(data, 'fourierspctrm')
% FIXME this is fast but throws away the trial dimension, consider
% a way to keep trial information if needed, but use the fast way
% if possible
data = ft_checkdata(data, 'cmbrepresentation', 'fullfast');
hasrpt = 0;
elseif isfield(data, 'powspctrm')
data = ft_checkdata(data, 'cmbrepresentation', 'full');
end
% convert the inparam back to cell array in the case of granger
if strcmp(cfg.method, 'granger') || strcmp(cfg.method, 'instantaneous_causality') || strcmp(cfg.method, 'total_interdependence')
inparam = {'transfer' 'noisecov' 'crsspctrm'};
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {'granger'});
optarg = ft_cfg2keyval(tmpcfg.granger);
else
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {cfg.method});
optarg = ft_cfg2keyval(tmpcfg.(cfg.method));
end
% compute the transfer matrix
data = ft_connectivity_csd2transfer(data, optarg{:});
end
case 'source'
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
cfg.refindx = 1:size(data.pos,1);
elseif ischar(cfg.refindx)
error('cfg.refindx should be a 1xN vector, or ''all''');
end
if strcmp(inparam, 'crsspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'crsspctrm', dtype, 'cmb', cfg.refindx, 'keeprpt', 0);
% [data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 0, cfg.refindx, [], 1);
elseif strcmp(inparam, 'powcov')
if isfield(data, 'pow')
[data, powindx, hasrpt] = univariate2bivariate(data, 'pow', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method, 'amplcorr'), 'keeprpt', 0);
elseif isfield(data, 'mom')
[data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method, 'amplcorr'), 'keeprpt', 0);
end
end
case 'comp'
[data, powindx, hasrpt] = univariate2bivariate(data, 'trial', 'cov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', false, 'keeprpt', 1);
end % switch dtype
elseif (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm')))
% this means that there is a sparse crsspctrm in the data
else
powindx = [];
end % ensure that the bivariate measure exists
% do some additional work if single trial normalisation is required
% for example when plv needs to be computed
if normrpt && hasrpt,
if strcmp(inparam, 'crsspctrm'),
tmp = data.(inparam);
nrpt = size(tmp, 1);
ft_progress('init', cfg.feedback, 'normalising...');
for k = 1:nrpt
ft_progress(k/nrpt, 'normalising amplitude of replicate % d from % d to 1\n', k, nrpt);
tmp(k, :, :, :, :) = tmp(k, :, :, :, :)./abs(tmp(k, :, :, :, :));
end
ft_progress('close');
data.(inparam) = tmp;
end
end
% convert the labels for the partialisation channels into indices
% do the same for the labels of the channels that should be kept
% convert the labels in the output to reflect the partialisation
if ~isempty(cfg.partchannel)
allchannel = ft_channelselection(cfg.channel, data.label);
pchanindx = match_str(allchannel, cfg.partchannel);
kchanindx = setdiff(1:numel(allchannel), pchanindx);
keepchn = allchannel(kchanindx);
cfg.pchanindx = pchanindx;
cfg.allchanindx = kchanindx;
partstr = '';
for k = 1:numel(cfg.partchannel)
partstr = [partstr, '-', cfg.partchannel{k}];
end
for k = 1:numel(keepchn)
keepchn{k} = [keepchn{k}, '\', partstr(2:end)];
end
data.label = keepchn; % update labels to remove the partialed channels
% FIXME consider keeping track of which channels have been partialised
else
cfg.pchanindx = [];
cfg.allchanindx = [];
end
% check if jackknife is required
if hasrpt && dojack && hasjack,
% do nothing
elseif hasrpt && dojack && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var')),
% compute leave-one-outs
% assume the inparam(s) are well-behaved, i.e. they have the 'rpt'
% dimension as the first dimension
if iscell(inparam)
for k = 1:numel(inparam)
nrpt = size(data.(inparam{k}),1);
sumdat = sum(data.(inparam{k}),1);
data.(inparam{k}) = (sumdat(ones(nrpt,1),:,:,:,:,:) - data.(inparam{k}))./(nrpt-1);
clear sumdat;
end
else
nrpt = size(data.(inparam),1);
sumdat = sum(data.(inparam),1);
data.(inparam) = (sumdat(ones(nrpt,1),:,:,:,:,:) - data.(inparam))./(nrpt-1);
clear sumdat;
end
hasjack = 1;
elseif hasrpt && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var') || strcmp(cfg.method, 'powcorr_ortho'))% || needrpt)
% create dof variable
if isfield(data, 'dof')
dof = data.dof;
elseif isfield(data, 'cumtapcnt')
dof = sum(data.cumtapcnt);
end
tmpcfg = [];
tmpcfg.avgoverrpt = 'yes';
data = ft_selectdata(tmpcfg, data);
hasrpt = 0;
else
% nothing required
end
% ensure that the first dimension is singleton if ~hasrpt
if ~hasrpt && needrpt
if ischar(inparam)
data.(inparam) = reshape(data.(inparam), [1 size(data.(inparam))]);
else
for k = 1:numel(inparam)
data.(inparam{k}) = reshape(data.(inparam{k}), [1 size(data.(inparam{k}))]);
end
end
if isfield(data, 'dimord')
data.dimord = ['rpt_', data.dimord];
elseif ~strcmp(dtype, 'raw')
data.([inparam, 'dimord']) = ['rpt_', data.([inparam, 'dimord'])];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the desired connectivity metric by calling the appropriate ft_connectivity_XXX function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'coh'
% coherence (unsquared), if cfg.complex = 'imag' imaginary part of coherency
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'csd'
% cross-spectral density (e.g. useful if partialisation is required)
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case {'wpli' 'wpli_debiased'}
% weighted pli or debiased weighted phase lag index.
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'debias', debiaswpli};
[datout, varout, nrpt] = ft_connectivity_wpli(data.(inparam), optarg{:});
case {'wppc' 'ppc'}
% weighted pairwise phase consistency or pairwise phase consistency
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'weighted', weightppc};
[datout, varout, nrpt] = ft_connectivity_ppc(data.(inparam), optarg{:});
case 'plv'
% phase locking value
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'amplcorr'
% amplitude correlation
if isfield(data, 'dimord'),
dimord = data.dimord;
else
dimord = data.([inparam, 'dimord']);
end
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'powcorr'
% power correlation
if isfield(data, 'dimord'),
dimord = data.dimord;
else
dimord = data.([inparam, 'dimord']);
end
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case {'granger' 'instantaneous_causality' 'total_interdependence'}
% granger causality
if ft_datatype(data, 'freq') || ft_datatype(data, 'freqmvar'),
if isfield(data, 'labelcmb') && ~istrue(cfg.granger.conditional),
% multiple pairwise non-parametric transfer functions
% linearly indexed
% The following is very slow, one may make assumptions regarding
% the order of the channels -> csd2transfer gives combinations in
% quadruplets, where the first and fourth are auto-combinations,
% and the second and third are cross-combinations
% powindx = labelcmb2indx(data.labelcmb);
%
% The following is not needed anymore, because ft_connectivity_granger
% relies on some hard-coded assumptions for the channel-pair ordering.
% Otherwise it becomes just too slow.
% powindx = zeros(size(data.labelcmb));
% for k = 1:size(powindx, 1)/4
% ix = ((k-1)*4+1):k*4;
% powindx(ix, :) = [1 1;4 1;1 4;4 4] + (k-1)*4;
% end
powindx = [];
if isfield(data, 'label'),
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(data, 'labelcmb') && istrue(cfg.granger.conditional),
% conditional (blockwise) needs linearly represented cross-spectra,
% that have been produced by ft_connectivity_csd2transfer
%
% each row in Nx2 cell-array tmp refers to a comparison
% tmp{k, 1} represents the ordered blocks
% for the full trivariate model: the second element drives the
% first element, while the rest is partialed out.
% tmp{k, 2} represents the ordered blocks where the driving block
% is left out
blocks = unique(data.blockindx);
nblocks = numel(blocks);
cnt = 0;
for k = 1:nblocks
for m = (k+1):nblocks
cnt = cnt+1;
rest = setdiff(reshape(blocks,[1 numel(blocks)]), [k m]); % make sure to reshape blocks into 1xn vector
tmp{cnt, 1} = [k m rest];
tmp{cnt, 2} = [k rest];
newlabelcmb{cnt, 1} = data.block(m).name; % note the index swap: convention is driver in left column
newlabelcmb{cnt, 2} = data.block(k).name;
cnt = cnt+1;
tmp{cnt, 1} = [m k rest];
tmp{cnt, 2} = [m rest];
newlabelcmb{cnt, 1} = data.block(k).name;
newlabelcmb{cnt, 2} = data.block(m).name;
end
end
[cmbindx, n] = blockindx2cmbindx(data.labelcmb, {data.label data.blockindx}, tmp);
powindx.cmbindx = cmbindx;
powindx.n = n;
data.labelcmb = newlabelcmb;
if isfield(data, 'label')
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(cfg.granger, 'block') && ~isempty(cfg.granger.block)
% blockwise granger
for k = 1:numel(cfg.granger.block)
%newlabel{k, 1} = cat(2, cfg.granger.block(k).label{:});
newlabel{k,1} = cfg.granger.block(k).name;
powindx{k,1} = match_str(data.label, cfg.granger.block(k).label);
end
data.label = newlabel;
else
powindx = [];
end
% fs = cfg.fsample; % FIXME do we really need this, or is this related to how noisecov is defined and normalised?
if ~exist('powindx', 'var'), powindx = []; end
if strcmp(cfg.method, 'granger'), methodstr = 'granger'; end
if strcmp(cfg.method, 'instantaneous_causality'), methodstr = 'instantaneous'; end
if strcmp(cfg.method, 'total_interdependence'), methodstr = 'total'; end
optarg = {'hasjack', hasjack, 'method', methodstr, 'powindx', powindx, 'dimord', data.dimord};
[datout, varout, nrpt] = ft_connectivity_granger(data.transfer, data.noisecov, data.crsspctrm, optarg{:});
else
error('granger for time domain data is not yet implemented');
end
case 'dtf'
% directed transfer function
if isfield(data, 'labelcmb'),
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
hasrpt = ~isempty(strfind(data.dimord, 'rpt'));
if hasrpt,
nrpt = size(data.(inparam), 1);
datin = data.(inparam);
else
nrpt = 1;
datin = reshape(data.(inparam), [1 size(data.(inparam))]);
end
[datout, varout, nrpt] = ft_connectivity_dtf(datin, optarg{:});
case 'pdc'
% partial directed coherence
if isfield(data, 'labelcmb'),
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
hasrpt = ~isempty(strfind(data.dimord, 'rpt'));
if hasrpt,
nrpt = size(data.(inparam), 1);
datin = data.(inparam);
else
nrpt = 1;
datin = reshape(data.(inparam), [1 size(data.(inparam))]);
end
[datout, varout, nrpt] = ft_connectivity_pdc(datin, optarg{:});
case 'psi'
% phase slope index
nbin = nearest(data.freq, data.freq(1)+cfg.bandwidth)-1;
optarg = {'feedback', cfg.feedback, 'dimord', data.dimord, 'nbin', nbin, 'normalize', cfg.normalize, 'hasrpt', hasrpt, 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_psi(data.(inparam), optarg{:});
case 'powcorr_ortho'
% Joerg Hipp's power correlation method
optarg = {'refindx', cfg.refindx, 'tapvec', data.cumtapcnt};
if isfield(data, 'mom')
% this is expected to be a single frequency
%dat = cat(2, data.mom{data.inside}).';
% HACK
dimord = getdimord(data, 'mom');
dimtok = tokenize(dimord, '_');
posdim = find(strcmp(dimtok,'{pos}'));
posdim = 4; % we concatenate across positions...
rptdim = find(~cellfun('isempty',strfind(dimtok,'rpt')));
rptdim = rptdim-1; % the posdim has to be taken into account...
dat = cat(4, data.mom{data.inside});
dat = permute(dat,[posdim rptdim setdiff(1:ndims(dat),[posdim rptdim])]);
datout = ft_connectivity_powcorr_ortho(dat, optarg{:});
elseif strcmp(data.dimord, 'rpttap_chan_freq')
% loop over all frequencies
[nrpttap, nchan, nfreq] = size(data.fourierspctrm);
datout = cell(1, nfreq);
for i=1:length(data.freq)
dat = reshape(data.fourierspctrm(:,:,i)', nrpttap, nchan).';
datout{i} = ft_connectivity_powcorr_ortho(dat, optarg{:});
end
datout = cat(3, datout{:});
% HACK otherwise I don't know how to inform the code further down about the dimord
data.dimord = 'rpttap_chan_chan_freq';
else
error('unsupported data representation');
end
varout = [];
nrpt = numel(data.cumtapcnt);
case 'mi'
% mutual information using the information breakdown toolbox
% presence of the toolbox is checked in the low-level function
if ~strcmp(dtype, 'raw') && (numel(cfg.mi.lags)>1 || cfg.mi.lags~=0),
error('computation of lagged mutual information is only possible with ''raw'' data in the input');
end
switch dtype
case 'raw'
% ensure the lags to be in samples, not in seconds.
cfg.mi.lags = round(cfg.mi.lags.*data.fsample);
dat = catnan(data.trial, max(abs(cfg.mi.lags)));
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
outdimord = 'chan_chan';
elseif numel(cfg.refindx)==1,
outdimord = 'chan';
else
error('at present cfg.refindx should be either ''all'', or scalar');
end
if numel(cfg.mi.lags)>1
data.time = cfg.mi.lags./data.fsample;
outdimord = [outdimord,'_time'];
else
data = rmfield(data, 'time');
end
case 'timelock'
dat = data.(inparam);
dat = reshape(permute(dat, [2 3 1]), [size(dat, 2) size(dat, 1)*size(dat, 3)]);
data = rmfield(data, 'time');
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
outdimord = 'chan_chan';
elseif numel(cfg.refindx)==1,
outdimord = 'chan';
else
error('at present cfg.refindx should be either ''all'', or scalar');
end
%data.dimord = 'chan_chan';
case 'freq'
error('not yet implemented');
case 'source'
% for the time being work with mom
% dat = cat(2, data.mom{data.inside}).';
dat = cat(1, data.mom{data.inside});
% dat = abs(dat);
end
optarg = {'numbin', cfg.mi.numbin, 'lags', cfg.mi.lags, 'refindx', cfg.refindx};
[datout] = ft_connectivity_mutualinformation(dat, optarg{:});
varout = [];
nrpt = [];
case 'corr'
% pearson's correlation coefficient
optarg = {'dimord', getdimord(data, inparam), 'feedback', cfg.feedback, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'xcorr'
% cross-correlation function
error('method %s is not yet implemented', cfg.method);
case 'spearman'
% spearman's rank correlation
error('method %s is not yet implemented', cfg.method);
case 'di'
% directionality index
error('method %s is not yet implemented', cfg.method);
otherwise
error('unknown method %s', cfg.method);
end % switch method
% remove the auto combinations if necessary -> FIXME this is granger specific and thus could move to ft_connectivity_granger
if (strcmp(cfg.method, 'granger') || strcmp(cfg.method, 'instantaneous_causality') || strcmp(cfg.method, 'total_interdependence')) && isfield(cfg, 'granger') && isfield(cfg.granger, 'sfmethod') && strcmp(cfg.granger.sfmethod, 'bivariate'),
% remove the auto-combinations based on the order in the data
switch dtype
case {'freq' 'freqmvar'}
keepchn = 1:size(datout, 1);
keepchn = mod(keepchn, 4)==2 | mod(keepchn, 4)==3;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
case 'source'
% not yet implemented
end
end
if exist('powindx', 'var') && ~isempty(powindx),
% based on powindx
switch dtype
case {'freq' 'freqmvar'}
if isfield(data, 'labelcmb') && ~isstruct(powindx),
keepchn = powindx(:, 1) ~= powindx(:, 2);
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
if all(size(varout)==size(nrpt))
nrpt = nrpt(keepchn, :, :, :, :);
end
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
end
case 'source'
nvox = size(unique(data.pos(:, 1:3), 'rows'), 1);
ncmb = size(data.pos, 1)/nvox-1;
remove = (powindx(:, 1) == powindx(:, 2)) & ((1:size(powindx, 1))' > nvox*ncmb);
keepchn = ~remove;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
varout = varout(keepchn, :, :, :, :);
end
inside = false(zeros(1, size(data.pos, 1)));
inside(data.inside) = true;
inside = inside(keepchn);
data.inside = find(inside)';
data.outside = find(inside==0)';
data.pos = data.pos(keepchn, :);
end % switch dtype
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the output structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch dtype
case {'freq' 'freqmvar'},
stat = [];
if isfield(data, 'label'),
stat.label = data.label;
end
if isfield(data, 'labelcmb'),
stat.labelcmb = data.labelcmb;
% ensure the correct dimord in case the input was 'powandcsd'
data.dimord = strrep(data.dimord, 'chan_', 'chancmb_');
end
tok = tokenize(data.dimord, '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
case 'timelock'
stat = [];
if isfield(data, 'label'),
stat.label = data.label;
end
if isfield(data, 'labelcmb'),
stat.labelcmb = data.labelcmb;
end
% deal with the dimord
if exist('outdimord', 'var'),
stat.dimord = outdimord;
else
% guess
tok = tokenize(getdimord(data, inparam), '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
end
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
case 'source'
stat = keepfields(data, {'pos', 'dim', 'transform', 'inside', 'outside'});
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout/nrpt).^0.5;
end
case 'raw'
stat = [];
stat.label = data.label;
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout/nrpt).^0.5;
end
if exist('outdimord', 'var'),
stat.dimord = outdimord;
end
end % switch dtype
if isfield(stat, 'dimord')
dimtok = tokenize(stat.dimord, '_');
% these dimensions in the output data must come from the input data
if any(strcmp(dimtok, 'time')), stat.time = data.time; end
if any(strcmp(dimtok, 'freq')), stat.freq = data.freq; end
else
% just copy them over, alhtough we don't know for sure whether they are needed in the output
if isfield(data, 'freq'), stat.freq = data.freq; end
if isfield(data, 'time'), stat.time = data.time; end
end
if isfield(data, 'grad'), stat.grad = data.grad; end
if isfield(data, 'elec'), stat.elec = data.elec; end
if exist('dof', 'var'), stat.dof = dof; end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance stat
ft_postamble history stat
ft_postamble savevar stat
%-------------------------------------------------------------------------------
%subfunction to concatenate data with nans in between, needed for
%time-shifted mi
function [datamatrix] = catnan(datacells, nnans)
nchan = size(datacells{1}, 1);
nsmp = cellfun('size',datacells,2);
nrpt = numel(datacells);
%---initialize
datamatrix = nan(nchan, sum(nsmp) + nnans*(nrpt+1));
%---fill the matrix
for k = 1:nrpt
if k==1,
begsmp = 1+nnans;
endsmp = nsmp(1)+nnans;
else
begsmp = k*nnans + sum(nsmp(1:(k-1))) + 1;
endsmp = k*nnans + sum(nsmp(1:k));
end
datamatrix(:,begsmp:endsmp) = datacells{k};
end
|
github
|
lcnbeapp/beapp-master
|
ft_defaults.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_defaults.m
| 13,356 |
utf_8
|
0fc0a3d3c7e67d69d12f3fb15f856bc1
|
function ft_defaults
% FT_DEFAULTS (ending with "s") sets some general settings in the global variable
% ft_default (without the "s") and takes care of the required path settings. This
% function is called at the begin of all FieldTrip functions.
%
% The configuration defaults are stored in the global "ft_default" structure.
% The ft_checkconfig function that is called by many FieldTrip functions will
% merge this global ft_default structure with the cfg ctructure that you pass to
% the FieldTrip function that you are calling.
%
% The global options and their default values are
% ft_default.trackdatainfo = string, can be 'yes' or 'no' (default = 'no')
% ft_default.trackconfig = string, can be 'cleanup', 'report', 'off' (default = 'off')
% ft_default.showcallinfo = string, can be 'yes' or 'no' (default = 'yes')
% ft_default.checkconfig = string, can be 'pedantic', 'loose', 'silent' (default = 'loose')
% ft_default.checksize = number in bytes, can be inf (default = 1e5)
% ft_default.outputfilepresent = string, can be 'keep', 'overwrite', 'error' (default = 'overwrite')
% ft_default.debug = string, can be 'display', 'displayonerror', 'displayonsuccess', 'save', 'saveonerror', saveonsuccess' or 'no' (default = 'no')
% ft_default.trackusage = false, or string with salt for one-way encryption of identifying information (by default this is enabled and an automatic salt is created)
%
% See also FT_HASTOOLBOX, FT_CHECKCONFIG
% undocumented options
% ft_default.siunits = 'yes' or 'no'
% Copyright (C) 2009-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global ft_default
persistent initialized
if isempty(initialized)
initialized = false;
end
% locate the file that contains the persistent FieldTrip preferences
fieldtripprefs = fullfile(prefdir, 'fieldtripprefs.mat');
if exist(fieldtripprefs, 'file')
prefs = load(fieldtripprefs); % the file contains multiple fields
ft_default = mergeconfig(ft_default, prefs);
end
% Set the defaults in a global variable, ft_checkconfig will copy these over into the local configuration.
% NOTE ft_getopt might not be available on the path at this moment and can therefore not yet be used.
% NOTE all options here should be explicitly listed as allowed in ft_checkconfig
if ~isfield(ft_default, 'trackconfig'), ft_default.trackconfig = 'off'; end % cleanup, report, off
if ~isfield(ft_default, 'checkconfig'), ft_default.checkconfig = 'loose'; end % pedantic, loose, silent
if ~isfield(ft_default, 'checksize'), ft_default.checksize = 1e5; end % number in bytes, can be inf
if ~isfield(ft_default, 'showcallinfo'), ft_default.showcallinfo = 'yes'; end % yes or no, this is used in ft_pre/postamble_provenance
if ~isfield(ft_default, 'debug'), ft_default.debug = 'no'; end % no, save, saveonerror, display, displayonerror, this is used in ft_pre/postamble_debug
if ~isfield(ft_default, 'outputfilepresent'), ft_default.outputfilepresent = 'overwrite'; end % can be keep, overwrite, error
% these options allow to disable parts of the provenance
if ~isfield(ft_default, 'trackcallinfo'), ft_default.trackcallinfo = 'yes'; end % yes or no
if ~isfield(ft_default, 'trackdatainfo'), ft_default.trackdatainfo = 'no'; end % yes or no
% Check whether this ft_defaults function has already been executed. Note that we
% should not use ft_default itself directly, because the user might have set stuff
% in that struct already prior to ft_defaults being called for the first time.
if initialized && exist('ft_hastoolbox', 'file')
return;
end
% Ensure that the path containing ft_defaults is on the path.
% This allows people to do "cd path_to_fieldtrip; ft_defaults"
ftPath = fileparts(mfilename('fullpath')); % get the full path to this function, strip away 'ft_defaults'
ftPath = strrep(ftPath, '\', '\\');
if isempty(regexp(path, [ftPath pathsep '|' ftPath '$'], 'once'))
warning('FieldTrip is not yet on your MATLAB path, adding %s', strrep(ftPath, '\\', '\'));
addpath(ftPath);
end
if ~isdeployed
if isempty(which('ft_hastoolbox'))
% the fieldtrip/utilities directory contains the ft_hastoolbox and ft_warning
% functions, which are required for the remainder of this script
addpath(fullfile(fileparts(which('ft_defaults')), 'utilities'));
end
% Some people mess up their path settings and then have
% different versions of certain toolboxes on the path.
% The following will issue a warning
checkMultipleToolbox('FieldTrip', 'ft_defaults.m');
checkMultipleToolbox('spm', 'spm.m');
checkMultipleToolbox('mne', 'fiff_copy_tree.m');
checkMultipleToolbox('eeglab', 'eeglab2fieldtrip.m');
checkMultipleToolbox('dipoli', 'write_tri.m');
checkMultipleToolbox('eeprobe', 'read_eep_avr.mexa64');
checkMultipleToolbox('yokogawa', 'GetMeg160ChannelInfoM.p');
checkMultipleToolbox('simbio', 'sb_compile_vista.m');
checkMultipleToolbox('fns', 'fns_region_read.m');
checkMultipleToolbox('bemcp', 'bem_Cii_cst.mexa64');
checkMultipleToolbox('bci2000', 'load_bcidat.m');
checkMultipleToolbox('openmeeg', 'openmeeg_helper.m');
checkMultipleToolbox('freesurfer', 'vox2ras_ksolve.m');
checkMultipleToolbox('fastica', 'fastica.m');
checkMultipleToolbox('besa', 'readBESAmul.m');
checkMultipleToolbox('neuroshare', 'ns_GetAnalogData.m');
checkMultipleToolbox('ctf', 'setCTFDataBalance.m');
checkMultipleToolbox('afni', 'WriteBrikHEAD.m');
checkMultipleToolbox('gifti', '@gifti/display.m');
checkMultipleToolbox('sqdproject', 'sqdread.m');
checkMultipleToolbox('xml4mat', 'xml2mat.m');
checkMultipleToolbox('cca', 'ccabss.m');
checkMultipleToolbox('bsmart', 'armorf.m');
checkMultipleToolbox('iso2mesh', 'iso2meshver.m');
checkMultipleToolbox('bct', 'degrees_und.m');
checkMultipleToolbox('yokogawa_meg_reader', 'getYkgwHdrEvent.p');
checkMultipleToolbox('biosig', 'sopen.m');
checkMultipleToolbox('icasso', 'icassoEst.m');
try
% external/signal contains alternative implementations of some signal processing functions
addpath(fullfile(fileparts(which('ft_defaults')), 'external', 'signal'));
end
try
% some alternative implementations of statistics functions
if ~ft_platform_supports('stats')
addpath(fullfile(fileparts(which('ft_defaults')), 'external', 'stats'));
end
end
try
% external/images contains alternative implementations of some image processing functions
addpath(fullfile(fileparts(which('ft_defaults')), 'external', 'images'));
end
try
% this directory contains various functions that were obtained from elsewere, e.g. MATLAB file exchange
ft_hastoolbox('fileexchange', 3, 1); % not required
end
try
% this directory contains the backward compatibility wrappers for the ft_xxx function name change
ft_hastoolbox('compat', 3, 1); % not required
end
try
% these directories deal with compatibility with older MATLAB versions
if ft_platform_supports('matlabversion', -inf, '2008a'), ft_hastoolbox('compat/matlablt2008b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2008b'), ft_hastoolbox('compat/matlablt2009a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2009a'), ft_hastoolbox('compat/matlablt2009b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2009b'), ft_hastoolbox('compat/matlablt2010a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2010a'), ft_hastoolbox('compat/matlablt2010b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2010b'), ft_hastoolbox('compat/matlablt2011a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2011a'), ft_hastoolbox('compat/matlablt2011b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2011b'), ft_hastoolbox('compat/matlablt2012a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2012a'), ft_hastoolbox('compat/matlablt2012b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2012b'), ft_hastoolbox('compat/matlablt2013a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2013a'), ft_hastoolbox('compat/matlablt2013b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2013b'), ft_hastoolbox('compat/matlablt2014a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2014a'), ft_hastoolbox('compat/matlablt2014b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2014d'), ft_hastoolbox('compat/matlablt2015a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2015a'), ft_hastoolbox('compat/matlablt2015b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2015b'), ft_hastoolbox('compat/matlablt2016a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2016a'), ft_hastoolbox('compat/matlablt2016b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2016b'), ft_hastoolbox('compat/matlablt2017a', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2017a'), ft_hastoolbox('compat/matlablt2017b', 3, 1); end
if ft_platform_supports('matlabversion', -inf, '2017b'), ft_hastoolbox('compat/matlablt2018a', 3, 1); end
end
try
% these contains template layouts, neighbour structures, MRIs and cortical meshes
ft_hastoolbox('template/layout', 1, 1);
ft_hastoolbox('template/anatomy', 1, 1);
ft_hastoolbox('template/headmodel', 1, 1);
ft_hastoolbox('template/electrode', 1, 1);
ft_hastoolbox('template/neighbours', 1, 1);
ft_hastoolbox('template/sourcemodel', 1, 1);
end
try
% this is used in ft_statistics
ft_hastoolbox('statfun', 1, 1);
end
try
% this is used in ft_definetrial
ft_hastoolbox('trialfun', 1, 1);
end
try
% this contains the low-level reading functions
ft_hastoolbox('fileio', 1, 1);
end
try
% this is for filtering etc. on time-series data
ft_hastoolbox('preproc', 1, 1);
end
try
% this contains forward models for the EEG and MEG volume conductor
ft_hastoolbox('forward', 1, 1);
end
try
% this contains inverse source estimation methods
ft_hastoolbox('inverse', 1, 1);
end
try
% this contains intermediate-level plotting functions, e.g. multiplots and 3-d objects
ft_hastoolbox('plotting', 1, 1);
end
try
% this contains intermediate-level functions for spectral analysis
ft_hastoolbox('specest', 1, 1);
end
try
% this contains the functions to compute connectivity metrics
ft_hastoolbox('connectivity', 1, 1);
end
try
% this contains the functions for spike and spike-field analysis
ft_hastoolbox('spike', 1, 1);
end
try
% this contains user contributed functions
ft_hastoolbox('contrib/misc', 1, 1);
end
try
% this contains specific code and examples for realtime processing
ft_hastoolbox('realtime/example', 3, 1); % not required
ft_hastoolbox('realtime/online_mri', 3, 1); % not required
ft_hastoolbox('realtime/online_meg', 3, 1); % not required
ft_hastoolbox('realtime/online_eeg', 3, 1); % not required
end
end
% track the usage of this function, this only happens once at startup
ft_trackusage('startup');
% remember that the function has executed in a persistent variable
initialized = true;
end % function ft_default
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function checkMultipleToolbox(toolbox, keyfile)
if ~ft_platform_supports('which-all')
return;
end
list = which(keyfile, '-all');
if length(list)>1
[ws, warned] = ft_warning(sprintf('Multiple versions of %s on your path will confuse FieldTrip', toolbox));
if warned % only throw the warning once
for i=1:length(list)
warning('one version of %s is found here: %s', toolbox, list{i});
end
end
ft_warning('You probably used addpath(genpath(''path_to_fieldtrip'')), this can lead to unexpected behaviour. See http://www.fieldtriptoolbox.org/faq/should_i_add_fieldtrip_with_all_subdirectories_to_my_matlab_path');
end
end % function checkMultipleToolbox
|
github
|
lcnbeapp/beapp-master
|
ft_prepare_neighbours.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_prepare_neighbours.m
| 13,251 |
utf_8
|
07eb375aeb41eb43bd565f6470060f88
|
function [neighbours, cfg] = ft_prepare_neighbours(cfg, data)
% FT_PREPARE_NEIGHBOURS finds the neighbours of the channels based on three
% different methods. Using the 'distance'-method, prepare_neighbours is
% based on a minimum neighbourhood distance (in cfg.neighbourdist). The
% 'triangulation'-method calculates a triangulation based on a
% two-dimenstional projection of the sensor position. The 'template'-method
% loads a default template for the given data type. prepare_neighbours
% should be verified using cfg.feedback ='yes' or by calling
% ft_neighbourplot
%
% The positions of the channel are specified in a gradiometer or electrode configuration or
% from a layout. The sensor configuration can be passed into this function in three ways:
% (1) in a configuration field,
% (2) in a file whose name is passed in a configuration field, and that can be imported using FT_READ_SENS, or
% (3) in a data field.
%
% Use as
% neighbours = ft_prepare_neighbours(cfg, data)
%
% The configuration can contain
% cfg.method = 'distance', 'triangulation' or 'template'
% cfg.neighbourdist = number, maximum distance between neighbouring sensors (only for 'distance')
% cfg.template = name of the template file, e.g. CTF275_neighb.mat
% cfg.layout = filename of the layout, see FT_PREPARE_LAYOUT
% cfg.channel = channels for which neighbours should be found
% cfg.feedback = 'yes' or 'no' (default = 'no')
%
% The EEG or MEG sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% The output is an array of structures with the "neighbours" which is
% structured like this:
% neighbours(1).label = 'Fz';
% neighbours(1).neighblabel = {'Cz', 'F3', 'F3A', 'FzA', 'F4A', 'F4'};
% neighbours(2).label = 'Cz';
% neighbours(2).neighblabel = {'Fz', 'F4', 'RT', 'RTP', 'P4', 'Pz', 'P3', 'LTP', 'LT', 'F3'};
% neighbours(3).label = 'Pz';
% neighbours(3).neighblabel = {'Cz', 'P4', 'P4P', 'Oz', 'P3P', 'P3'};
% etc.
% Note that a channel is not considered to be a neighbour of itself.
%
% See also FT_NEIGHBOURPLOT
% Copyright (C) 2006-2011, Eric Maris, Jorn M. Horschig, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', {'method'});
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
if hasdata
% check if the input data is valid for this function
data = ft_checkdata(data);
end
if strcmp(cfg.method, 'template')
neighbours = [];
fprintf('Trying to load sensor neighbours from a template\n');
% determine from where to load the neighbour template
if ~isfield(cfg, 'template')
% if data has been put in, try to estimate the sensor type
if hasdata
fprintf('Estimating sensor type of data to determine the layout filename\n');
senstype = ft_senstype(data.label);
fprintf('Data is of sensor type ''%s''\n', senstype);
if ~exist([senstype '_neighb.mat'], 'file')
if exist([senstype '.lay'], 'file')
cfg.layout = [senstype '.lay'];
else
fprintf('Name of sensor type does not match name of layout- and template-file\n');
end
else
cfg.template = [senstype '_neighb.mat'];
end
end
end
% if that failed
if ~isfield(cfg, 'template')
% check whether a layout can be used
if ~isfield(cfg, 'layout')
% error if that fails as well
error('You need to define a template or layout or give data as an input argument when ft_prepare_neighbours is called with cfg.method=''template''');
end
fprintf('Using the 2-D layout filename to determine the template filename\n');
cfg.template = [strtok(cfg.layout, '.') '_neighb.mat'];
end
% adjust filename
if ~exist(cfg.template, 'file')
cfg.template = lower(cfg.template);
end
% add necessary extensions
if numel(cfg.template) < 4 || ~isequal(cfg.template(end-3:end), '.mat')
if numel(cfg.template) < 7 || ~isequal(cfg.template(end-6:end), '_neighb')
cfg.template = [cfg.template, '_neighb'];
end
cfg.template = [cfg.template, '.mat'];
end
% check for existence
if ~exist(cfg.template, 'file')
error('Template file could not be found - please check spelling or see http://www.fieldtriptoolbox.org/faq/how_can_i_define_my_own_neighbourhood_template (please consider sharing it with others via the FT mailing list)');
end
load(cfg.template);
fprintf('Successfully loaded neighbour structure from %s\n', cfg.template);
else
% get the the grad or elec if not present in the data
if hasdata
sens = ft_fetch_sens(cfg, data);
else
sens = ft_fetch_sens(cfg);
end
if strcmp(ft_senstype(sens), 'neuromag306')
warning('Neuromag306 system detected - be aware of different sensor types, see http://www.fieldtriptoolbox.org/faq/why_are_there_multiple_neighbour_templates_for_the_neuromag306_system');
end
chanpos = sens.chanpos;
label = sens.label;
if nargin > 1
% remove channels that are not in data
[dataidx, sensidx] = match_str(data.label, label);
chanpos = chanpos(sensidx, :);
label = label(sensidx);
end
if ~strcmp(cfg.channel, 'all')
desired = ft_channelselection(cfg.channel, label);
[sensidx] = match_str(label, desired);
chanpos = chanpos(sensidx, :);
label = label(sensidx);
end
switch lower(cfg.method)
case 'distance'
% use a smart default for the distance
if ~isfield(cfg, 'neighbourdist')
sens = ft_checkdata(sens, 'hasunit', 'yes');
if isfield(sens, 'unit') && strcmp(sens.unit, 'm')
cfg.neighbourdist = 0.04;
elseif isfield(sens, 'unit') && strcmp(sens.unit, 'dm')
cfg.neighbourdist = 0.4;
elseif isfield(sens, 'unit') && strcmp(sens.unit, 'cm')
cfg.neighbourdist = 4;
elseif isfield(sens, 'unit') && strcmp(sens.unit, 'mm')
cfg.neighbourdist = 40;
else
% don't provide a default in case the dimensions of the sensor array are unknown
error('Sensor distance is measured in an unknown unit type');
end
fprintf('using a distance threshold of %g\n', cfg.neighbourdist);
end
neighbours = compneighbstructfromgradelec(chanpos, label, cfg.neighbourdist);
case {'triangulation', 'tri'} % the latter for reasons of simplicity
if size(chanpos, 2)==2 || all(chanpos(:,3)==0)
% the sensor positions are already on a 2D plane
prj = chanpos(:,1:2);
else
% project sensor on a 2D plane
prj = elproj(chanpos);
end
% make a 2d delaunay triangulation of the projected points
tri = delaunay(prj(:,1), prj(:,2));
tri_x = delaunay(prj(:,1)./2, prj(:,2));
tri_y = delaunay(prj(:,1), prj(:,2)./2);
tri = [tri; tri_x; tri_y];
neighbours = compneighbstructfromtri(chanpos, label, tri);
otherwise
error('Method ''%s'' not known', cfg.method);
end
end
% removed as from Nov 09 2011 - hope there are no problems with this
% if iscell(neighbours)
% warning('Neighbourstructure is in old format - converting to structure array');
% neighbours = fixneighbours(neighbours);
% end
% only select those channels that are in the data
neighb_chans = {neighbours(:).label};
if isfield(cfg, 'channel') && ~isempty(cfg.channel)
if hasdata
desired = ft_channelselection(cfg.channel, data.label);
else
desired = ft_channelselection(cfg.channel, neighb_chans);
end
elseif (hasdata)
desired = data.label;
else
desired = neighb_chans;
end
% in any case remove SCALE and COMNT
desired = ft_channelselection({'all', '-SCALE', '-COMNT'}, desired);
neighb_idx = ismember(neighb_chans, desired);
neighbours = neighbours(neighb_idx);
k = 0;
for i=1:length(neighbours)
if isempty(neighbours(i).neighblabel)
warning('FIELDTRIP:NoNeighboursFound', 'no neighbours found for %s\n', neighbours(i).label);
% JMH: I removed this in Feb 2013 - this is handled above now
% note however that in case of using a template, this function behaves
% differently now (neighbourschans can still be channels not in
% cfg.channel)
%else % only selected desired channels
% neighbours(i).neighblabel = neighbours(i).neighblabel(ismember(neighbours(i).neighblabel, desired));
end
k = k + length(neighbours(i).neighblabel);
end
if k==0
error('No neighbours were found!');
end
fprintf('there are on average %.1f neighbours per channel\n', k/length(neighbours));
if strcmp(cfg.feedback, 'yes')
% give some graphical feedback
cfg.neighbours = neighbours;
if hasdata
ft_neighbourplot(cfg, data);
else
ft_neighbourplot(cfg);
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance neighbours
ft_postamble history neighbours
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that compute the neighbourhood geometry from the
% gradiometer/electrode positions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [neighbours] = compneighbstructfromgradelec(chanpos, label, neighbourdist)
nsensors = length(label);
% compute the distance between all sensors
dist = zeros(nsensors,nsensors);
for i=1:nsensors
dist(i,:) = sqrt(sum((chanpos(1:nsensors,:) - repmat(chanpos(i,:), nsensors, 1)).^2,2))';
end;
% find the neighbouring electrodes based on distance
% later we have to restrict the neighbouring electrodes to those actually selected in the dataset
channeighbstructmat = (dist<neighbourdist);
% electrode istelf is not a neighbour
channeighbstructmat = (channeighbstructmat .* ~eye(nsensors));
% construct a structured cell array with all neighbours
neighbours=struct;
for i=1:nsensors
neighbours(i).label = label{i};
neighbours(i).neighblabel = label(find(channeighbstructmat(i,:)));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the neighbourhood geometry from the
% triangulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [neighbours] = compneighbstructfromtri(chanpos, label, tri)
nsensors = length(label);
channeighbstructmat = zeros(nsensors,nsensors);
% mark neighbours according to triangulation
for i=1:size(tri, 1)
channeighbstructmat(tri(i, 1), tri(i, 2)) = 1;
channeighbstructmat(tri(i, 1), tri(i, 3)) = 1;
channeighbstructmat(tri(i, 2), tri(i, 1)) = 1;
channeighbstructmat(tri(i, 3), tri(i, 1)) = 1;
channeighbstructmat(tri(i, 2), tri(i, 3)) = 1;
channeighbstructmat(tri(i, 3), tri(i, 2)) = 1;
end
% construct a structured cell array with all neighbours
neighbours = struct;
alldist = [];
for i=1:nsensors
neighbours(i).label = label{i};
neighbidx = find(channeighbstructmat(i,:));
neighbours(i).dist = sqrt(sum((repmat(chanpos(i, :), numel(neighbidx), 1) - chanpos(neighbidx, :)).^2, 2));
alldist = [alldist; neighbours(i).dist];
neighbours(i).neighblabel = label(neighbidx);
end
% remove neighbouring channels that are too far away (imporntant e.g. in
% case of missing sensors)
neighbdist = mean(alldist)+3*std(alldist);
for i=1:nsensors
idx = neighbours(i).dist > neighbdist;
neighbours(i).dist(idx) = [];
neighbours(i).neighblabel(idx) = [];
end
neighbours = rmfield(neighbours, 'dist');
|
github
|
lcnbeapp/beapp-master
|
ft_crossfrequencyanalysis.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_crossfrequencyanalysis.m
| 9,389 |
utf_8
|
64b924a3625f4df0dcd5baaae904a6cf
|
function crossfreq = ft_crossfrequencyanalysis(cfg,freqlow,freqhigh)
% FT_CROSSFREQUENCYANALYSIS performs cross-frequency analysis using various algorithms
%
% Use as
% crossfreq = ft_crossfrequencyanalysis(cfg, freqlo, freqhi)
% where freq is frequency decomposed data structure as obtained from FT_FREQANALYSIS
% and cfg is a configuration structure that should contain
%
% cfg.freqlow scalar or vector, selection of frequencies for the low frequency data
% cfg.freqhigh scalar or vector, selection of frequencies for the high frequency data
% cfg.chanlow selection of channels for the low frequency, see FT_CHANNELSELECTION
% cfg.chanhigh selection of channels for the high frequency, see FT_CHANNELSELECTION
% cfg.method 'plv' - phase locking value
% 'mvl' - mean vector length
% 'mi' - modulation index
% cfg.keeptrials string, can be 'yes' or 'no'
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_FREQANALYSIS
% Copyright (C) 2014, Donders Centre for Cognitive Neuroimaging
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar freqlow freqhigh
ft_preamble provenance freqlow freqhi
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% ensure that the input data is valid for this function, this will also do
% backward-compatibility conversions of old data that for example was
% read from an old *.mat file
freqlow = ft_checkdata(freqlow, 'datatype', 'freq', 'feedback', 'yes');
freqhigh = ft_checkdata(freqhigh, 'datatype', 'freq', 'feedback', 'yes');
cfg.chanlow = ft_getopt(cfg, 'chanlow', 'all');
cfg.chanhigh = ft_getopt(cfg, 'chanhigh', 'all');
cfg.freqlow = ft_getopt(cfg, 'freqlow');
cfg.freqhigh = ft_getopt(cfg, 'freqhigh');
cfg.keeptrials = ft_getopt(cfg, 'keeptrials');
% make selection of frequencies and channels
tmpcfg = [];
tmpcfg.channel = cfg.chanlow;
tmpcfg.frequency = cfg.freqlow;
freqlow = ft_selectdata(tmpcfg, freqlow);
[tmpcfg, freqlow] = rollback_provenance(cfg, freqlow);
try, cfg.chanlow = tmpcfg.channel; end
try, cfg.freqlow = tmpcfg.frequency; end
tmpcfg = [];
tmpcfg.channel = cfg.chanhigh;
tmpcfg.foi = cfg.freqhigh;
freqhigh = ft_selectdata(tmpcfg, freqhigh);
[tmpcfg, freqhigh] = rollback_provenance(cfg, freqhigh);
try, cfg.chanhigh = tmpcfg.channel; end
try, cfg.freqhigh = tmpcfg.frequency; end
LF = freqlow.freq;
HF = freqhigh.freq;
ntrial = size(freqlow.fourierspctrm,1); % FIXME the dimord might be different
nchan = size(freqlow.fourierspctrm,2); % FIXME the dimord might be different
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% prepare the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'plv' % phase locking value
plvdatas = zeros(ntrial,nchan,numel(LF),numel(HF)) ;
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
plvdatas(j,i,:,:) = data2plv(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)));
end
end
cfcdata = plvdatas;
case 'mvl' % mean vector length
mvldatas = zeros(ntrial,nchan,numel(LF),numel(HF));
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
mvldatas(j,i,:,:) = data2mvl(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)));
end
end
cfcdata = mvldatas;
case 'mi' % modulation index
nbin = 20; % number of phase bin
pacdatas = zeros(ntrial,nchan,numel(LF),numel(HF),nbin) ;
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
pacdatas(j,i,:,:,:) = data2pac(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)),nbin);
end
end
cfcdata = pacdatas;
end % switch method for data preparation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do the actual computation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'plv'
if strcmp(cfg.keeptrials,'no')
crsspctrm = squeeze(abs(mean(cfcdata,1)));
dimord = 'chan_freqlow_freqhigh' ;
else
crsspctrm = abs(cfcdata);
dimord = 'rpt_chan_freqlow_freqhigh' ;
end
case 'mvl'
if strcmp(cfg.keeptrials,'no')
crsspctrm = squeeze(abs(mean(cfcdata,1)));
dimord = 'chan_freqlow_freqhigh' ;
else
crsspctrm = abs(cfcdata);
dimord = 'rpt_chan_freqlow_freqhigh' ;
end
case 'mi'
[ntrial,nchan,nlf,nhf,nbin] = size(cfcdata);
if strcmp(cfg.keeptrials,'yes')
dimord = 'rpt_chan_freqlow_freqhigh' ;
crsspctrm = zeros(ntrial,nchan,nlf,nhf);
for k =1:ntrial
for n=1:nchan
pac = squeeze(cfcdata(k,n,:,:,:));
Q =ones(nbin,1)/nbin; % uniform distribution
mi = zeros(nlf,nhf);
for i=1:nlf
for j=1:nhf
P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution
% KL distance
mi(i,j) = nansum(P.* (log2(P)-log2(Q)))/log2(pha);
end
end
crsspctrm(k,n,:,:) = mi;
end
end
else
dimord = 'chan_freqlow_freqhigh' ;
crsspctrm = zeros(nchan,nlf,nhf);
cfcdatamean = squeeze(mean(cfcdata,1));
for k =1:nchan
pac = squeeze(cfcdatamean(k,:,:,:));
Q =ones(nbin,1)/nbin; % uniform distribution
mi = zeros(nlf,nhf);
for i=1:nlf
for j=1:nhf
P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution
% KL distance
mi(i,j) = nansum(P.* (log2(P)-log2(Q)))/log2(nbin);
end
end
crsspctrm(k,:,:) = mi;
end
end % if keeptrials
end % switch method for actual computation
crossfreq.crsspctrm = crsspctrm;
crossfreq.dimord = dimord;
crossfreq.freqlow = LF;
crossfreq.freqhigh = HF;
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous freqlow freqhigh
ft_postamble provenance crossfreq
ft_postamble history crossfreq
ft_postamble savevar crossfreq
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [plvdata] =data2plv(LFsigtemp,HFsigtemp)
LFphas = angle(LFsigtemp);
HFamp = abs(HFsigtemp);
HFamp(isnan(HFamp(:))) = 0; % replace nan with 0
HFphas = angle(hilbert(HFamp'))';
plvdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % phase lokcing value
for i = 1:size(LFsigtemp)
for j = 1:size(HFsigtemp)
plvdata(i,j) = nanmean(exp(1i*(LFphas(i,:)-HFphas(j,:))));
end
end
end % function
function [mvldata] =data2mvl(LFsigtemp,HFsigtemp)
% calculate mean vector length (complex value) per trial
% mvldata dim: LF*HF
LFphas = angle(LFsigtemp);
HFamp = abs(HFsigtemp);
mvldata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % mean vector length
for i = 1:size(LFsigtemp)
for j = 1:size(HFsigtemp)
mvldata(i,j) = nanmean(HFamp(j,:).*exp(1i*LFphas(i,:)));
end
end
end % function
function pacdata =data2pac(LFsigtemp,HFsigtemp,nbin)
% calculate phase amplitude distribution per trial
% pacdata dim: LF*HF*Phasebin
pacdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1),nbin);
Ang = angle(LFsigtemp);
Amp = abs(HFsigtemp);
[~,bin] = histc(Ang, linspace(-pi,pi,nbin)); % binned low frequency phase
binamp = zeros (size(HFsigtemp,1),nbin); % binned amplitude
for i= 1:size(Ang,1)
for k =1:nbin
idx = bin(i,:)==k;
binamp(:,k) = mean(Amp(:,idx),2);
end
pacdata(i,:,:) = binamp;
end
end % function
|
github
|
lcnbeapp/beapp-master
|
ft_conjunctionanalysis.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_conjunctionanalysis.m
| 8,875 |
utf_8
|
106b6a2753353fed3cf27ea9b1fb1da7
|
function [conjunction] = ft_conjunctionanalysis(cfg, varargin)
% FT_CONJUNCTIONANALYSIS finds the minimum statistic common across two or
% more contrasts, i.e. data following ft_xxxstatistics. Furthermore, it
% finds the overlap of sensors/voxels that show statistically significant
% results (a logical AND on the mask fields).
%
% Alternatively, it finds minimalistic mean power values in the
% input datasets. Here, a type 'relative change' baselinecorrection
% prior to conjunction is advised.
%
% Use as
% [stat] = ft_conjunctionanalysis(cfg, stat1, stat2, .., statN)
%
% where the input data is the result from either FT_TIMELOCKSTATISTICS,
% FT_FREQSTATISTICS, or FT_SOURCESTATISTICS
%
% No configuration options are yet implemented.
%
% See also FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS, FT_SOURCESTATISTICS
% Copyright (C) 2010-2014, Arjen Stolk
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% input check
ndatasets = length(varargin);
if ndatasets<2
error('not enough input arguments; there should be at least two');
end
% check if the input data is valid for this function
for i = 1:ndatasets
varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'timelock', 'freq', 'source'}, 'feedback', 'yes');
end
fprintf('performing conjunction analysis on %d input datasets \n', ndatasets);
conjunction = [];
% determine datatype
isfreq = ft_datatype(varargin{1}, 'freq');
istimelock = ft_datatype(varargin{1}, 'timelock');
issource = ft_datatype(varargin{1}, 'source');
% conjunction loop, in case ndatasets > 2
for i = 1:ndatasets-1
% align input arguments for conjunction
if isempty(conjunction)
data1 = varargin{i};
data2 = varargin{i+1};
else
data1 = conjunction; % use already conjunct output
data2 = varargin{i+1};
end
%% SOURCE DATA
if issource
if isfield(data1, 'stat')
fprintf('minimum statistics on source level data \n');
% equal size input check
if ~isequal(size(data1.stat), size(data2.stat))
error('the input arguments have different sizes');
end
% prepare the output data structure
conjunction = data1;
if isfield(data1, 'posclusters') % remove cluster details
fprintf('removing information about positive clusters\n');
conjunction = rmfield(conjunction, 'posclusters');
conjunction = rmfield(conjunction, 'posclusterslabelmat');
end
if isfield(data1, 'negclusters') % remove cluster details
fprintf('removing information about negative clusters\n');
conjunction = rmfield(conjunction, 'negclusters');
conjunction = rmfield(conjunction, 'negclusterslabelmat');
end
fprintf('minimum statistics on stat fields \n');
conjunction.stat = minimumstatistics(data1.stat, data2.stat);
if isfield(data1, 'prob') && isfield(data2, 'prob') % conjunction on probabilities
fprintf('minimum statistics on prob fields \n');
conjunction.prob = maximumprobabilities(data1.prob, data2.prob);
end
if isfield(data1, 'mask') && isfield(data2, 'mask') % conjunction on mask parameters
fprintf('logical AND on mask fields \n');
conjunction.mask = logicalAND(data1.mask, data2.mask);
end
elseif isfield(data1, 'avg') && isfield(data2, 'avg') % conjunction on mean power values
fprintf('minimum statistics on mean voxel power \n');
% equal size input check
if ~isequal(size(data1.avg.pow), size(data2.avg.pow))
error('the input arguments have different sizes');
end
conjunction = data1;
conjunction.avg.pow = minimumstatistics(data1.avg.pow, data2.avg.pow);
elseif isfield(data1, 'trial')
fprintf('please first compute the averages with ft_sourcedescriptives \n');
else
fprintf('this source level data does not fit conjunction analysis \n');
end
end % end of source level conjunction
%% SENSOR DATA
if isfreq || istimelock
if isfield(data1, 'stat') % conjunction on t-values
fprintf('minimum statistics on sensor level data \n');
% equal size input check
if ~isequal(size(data1.stat), size(data2.stat))
error('the input arguments have different sizes');
end
% prepare the output data structure
conjunction = data1;
if isfield(data1, 'posclusters') % remove cluster details
fprintf('removing information about positive clusters\n');
conjunction = rmfield(conjunction, 'posclusters');
conjunction = rmfield(conjunction, 'posclusterslabelmat');
end
if isfield(data1, 'negclusters') % remove cluster details
fprintf('removing information about negative clusters\n');
conjunction = rmfield(conjunction, 'negclusters');
conjunction = rmfield(conjunction, 'negclusterslabelmat');
end
fprintf('minimum statistics on stat fields \n');
conjunction.stat = minimumstatistics(data1.stat, data2.stat);
if isfield(data1, 'prob') && isfield(data2, 'prob') % conjunction on probabilities
fprintf('minimum statistics on prob fields \n');
conjunction.prob = maximumprobabilities(data1.prob, data2.prob);
end
if isfield(data1, 'mask') && isfield(data2, 'mask') % conjunction on mask parameters
fprintf('logical AND on mask fields \n');
conjunction.mask = logicalAND(data1.mask, data2.mask);
end
elseif isfield(data1, 'powspctrm') && isfield(data2, 'powspctrm') % conjunction on mean power values
fprintf('minimum statistics on mean sensor power \n');
% equal size input check
if ~isequal(size(data1.powspctrm), size(data2.powspctrm))
error('the input arguments have different sizes');
end
conjunction = data1;
conjunction.powspctrm = minimumstatistics(data1.powspctrm, data2.powspctrm);
elseif isfield(data1, 'avg') && isfield(data2, 'avg') % conjunction on mean signal amplitudes
fprintf('minimum statistics on mean sensor amplitudes \n');
% equal size input check
if ~isequal(size(data1.avg), size(data2.avg))
error('the input arguments have different sizes');
end
conjunction = data1;
conjunction.avg = minimumstatistics(data1.avg, data2.avg);
elseif isfield(data1, 'trial')
fprintf('please first compute the averages with ft_timelockdescriptives/ft_freqdescriptives \n');
else
fprintf('this sensor level data does not fit conjunction analysis \n');
end
end % end of sensor level conjunction
clear data1; clear data2;
end % end of conjunction loop
%% UNIDENTIFIED DATA
if istimelock == 0 && isfreq == 0 && issource == 0
fprintf('this data is not appropriate for conjunction analysis\n');
conjunction = [];
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance conjunction
ft_postamble history conjunction
ft_postamble savevar conjunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [minstat] = minimumstatistics(variable1, variable2)
minAbsT = min(abs(variable1), abs(variable2)); % minimum of the absolute values
equalSign = (sign(variable1) == sign(variable2)); % 1 is signs are equal, 0 otherwise
origSign = sign(variable1); % sign(varagin2) gives same result
minstat = minAbsT.*equalSign.*origSign;
function [maxprob] = maximumprobabilities(variable1, variable2)
maxprob = max(variable1, variable2); % maximum of the probabilities
function [logic] = logicalAND(variable1, variable2)
logic = (variable1 & variable2); % compute logical AND
|
github
|
lcnbeapp/beapp-master
|
ft_sliceinterp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sliceinterp.m
| 18,635 |
utf_8
|
f2c5c3de8b6b941ac0dda303889261a2
|
function [outim] = ft_sliceinterp(cfg, ininterp)
% FT_SLICEINTERP plots a 2D-montage of source reconstruction and anatomical MRI
% after these have been interpolated onto the same grid.
%
% Use as
% ft_sliceinterp(cfg, interp)
% or
% [rgbimage] = ft_sliceinterp(cfg, interp), rgbimage is the monatage image
%
% where interp is the output of sourceinterpolate and cfg is a structure
% with any of the following fields:
%
% cfg.funparameter string with the functional parameter of interest (default = 'source')
% cfg.maskparameter parameter used as opacity mask (default = 'none')
% cfg.clipmin value or 'auto' (clipping of source data)
% cfg.clipmax value or 'auto' (clipping of source data)
% cfg.clipsym 'yes' or 'no' (default) symmetrical clipping
% cfg.colormap colormap for source overlay (default is jet(128))
% cfg.colmin source value mapped to the lowest color (default = 'auto')
% cfg.colmax source value mapped to the highest color (default = 'auto')
% cfg.maskclipmin value or 'auto' (clipping of mask data)
% cfg.maskclipmax value or 'auto' (clipping of mask data)
% cfg.maskclipsym 'yes' or 'no' (default) symmetrical clipping
% cfg.maskmap opacitymap for source overlay
% (default is linspace(0,1,128))
% cfg.maskcolmin mask value mapped to the lowest opacity, i.e.
% completely transparent (default ='auto')
% cfg.maskcolmin mask value mapped to the highest opacity, i.e.
% non-transparent (default = 'auto')
% cfg.alpha value between 0 and 1 or 'adaptive' (default)
% cfg.nslices integer value, default is 20
% cfg.dim integer value, default is 3 (dimension to slice)
% cfg.spacemin 'auto' (default) or integer (first slice position)
% cfg.spacemax 'auto' (default) or integer (last slice position)
% cfg.resample integer value, default is 1 (for resolution reduction)
% cfg.rotate number of ccw 90 deg slice rotations (default = 0)
% cfg.title optional title (default is '')
% cfg.whitebg 'yes' or 'no' (default = 'yes')
% cfg.flipdim flip data along the sliced dimension, 'yes' or 'no'
% (default = 'no')
% cfg.marker [Nx3] array defining N marker positions to display
% cfg.markersize radius of markers (default = 5);
% cfg.markercolor [1x3] marker color in RGB (default = [1 1 1], i.e. white)
% cfg.interactive 'yes' or 'no' (default), interactive coordinates
% and source values
%
% if cfg.alpha is set to 'adaptive' the opacity of the source overlay
% linearly follows the source value: maxima are opaque and minima are
% transparent.
%
% if cfg.spacemin and/or cfg.spacemax are set to 'auto' the sliced
% space is automatically restricted to the evaluated source-space
%
% if cfg.colmin and/or cfg.colmax are set to 'auto' the colormap is mapped
% to source values the following way: if source values are either all
% positive or all negative the colormap is mapped to from
% min(source) to max(source). If source values are negative and positive
% the colormap is symmetrical mapped around 0 from -max(abs(source)) to
% +max(abs(source)).
%
% If cfg.maskparameter specifies a parameter to be used as an opacity mask
% cfg.alpha is not used. Instead the mask values are maped to an opacitymap
% that can be specified using cfg.maskmap. The mapping onto that
% opacitymap is controlled as for the functional data using the
% corresponding clipping and min/max options.
%
% if cfg.whitebg is set to 'yes' the function estimates the head volume and
% displays a white background outside the head, which can save a lot of black
% printer toner.
%
% if cfg.interactive is set to 'yes' a button will be displayed for
% interactive data evaluation and coordinate reading. After clicking the
% button named 'coords' you can click on any position in the slice montage.
% After clicking these coordinates and their source value are displayed in
% a text box below the button. The coordinates correspond to indeces in the
% input data array:
%
% f = interp.source(coord_1,coord_2,coord_3)
%
% The coordinates are not affected by any transformations used for displaying
% the data such as cfg.dim, cfg.rotate,cfg.flipdim or cfg.resample.
%
% See also FT_SOURCEANALYSIS, FT_VOLUMERESLICE
% Copyright (C) 2004, Markus Siegel, [email protected]
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar ininterp
ft_preamble provenance ininterp
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
ininterp = ft_checkdata(ininterp, 'datatype', 'volume', 'feedback', 'yes');
% set the defaults
if ~isfield(cfg, 'clipmin'); cfg.clipmin = 'auto'; end
if ~isfield(cfg, 'clipmax'); cfg.clipmax = 'auto'; end
if ~isfield(cfg, 'clipsym'); cfg.clipsym = 'no'; end
if ~isfield(cfg, 'alpha'); cfg.alpha = 'adaptive'; end
if ~isfield(cfg, 'nslices'); cfg.nslices = 20; end
if ~isfield(cfg, 'dim'); cfg.dim = 3; end
if ~isfield(cfg, 'colormap'); cfg.colormap = jet(128); end
if ~isfield(cfg, 'spacemin'); cfg.spacemin = 'auto'; end
if ~isfield(cfg, 'spacemax'); cfg.spacemax = 'auto'; end
if ~isfield(cfg, 'colmin'); cfg.colmin = 'auto'; end
if ~isfield(cfg, 'colmax'); cfg.colmax = 'auto'; end
if ~isfield(cfg, 'resample'); cfg.resample = 1; end
if ~isfield(cfg, 'rotate'); cfg.rotate = 0; end
if ~isfield(cfg, 'title'); cfg.title = ''; end
if ~isfield(cfg, 'whitebg'); cfg.whitebg = 'no'; end
if ~isfield(cfg, 'flipdim'); cfg.flipdim = 'no'; end
if ~isfield(cfg, 'marker'); cfg.marker = []; end
if ~isfield(cfg, 'markersize'); cfg.markersize = 5; end
if ~isfield(cfg, 'markercolor'); cfg.markercolor = [1,1,1]; end
if ~isfield(cfg, 'interactive'); cfg.interactive = 'no'; end
if ~isfield(cfg, 'maskclipmin'); cfg.maskclipmin = 'auto'; end
if ~isfield(cfg, 'maskclipmax'); cfg.maskclipmax = 'auto'; end
if ~isfield(cfg, 'maskclipsym'); cfg.maskclipsym = 'no'; end
if ~isfield(cfg, 'maskmap'); cfg.maskmap = linspace(0,1,128); end
if ~isfield(cfg, 'maskcolmin'); cfg.maskcolmin = 'auto'; end
if ~isfield(cfg, 'maskcolmax'); cfg.maskcolmax = 'auto'; end
if ~isfield(cfg, 'maskparameter');cfg.maskparameter = []; end
% perform some checks on the configuration for backward compatibility
if ~isfield(cfg, 'funparameter') && isfield(ininterp, 'source')
% if present, the default behavior should be to use this field for plotting
cfg.funparameter = 'source';
end
% make the selection of functional and mask data consistent with the data
cfg.funparameter = parameterselection(cfg.funparameter, ininterp);
cfg.maskparameter = parameterselection(cfg.maskparameter, ininterp);
% only a single parameter should be selected
try, cfg.funparameter = cfg.funparameter{1}; end
try, cfg.maskparameter = cfg.maskparameter{1}; end
% check anatomical data
if isfield(ininterp,'anatomy');
interp.anatomy = reshape(ininterp.anatomy, ininterp.dim);
else
error('no anatomical data supplied');
end
% check functional data
if ~isempty(cfg.funparameter)
interp.source = double(reshape(getsubfield(ininterp, cfg.funparameter), ininterp.dim));
else
error('no functional data supplied');
end
% check mask data
if ~isempty(cfg.maskparameter)
interp.mask = double(reshape(getsubfield(ininterp,cfg.maskparameter), ininterp.dim));
maskdat = 1;
else
fprintf('no opacity mask data supplied\n');
interp.mask = [];
maskdat = 0;
end
% only work with the copy of the relevant parameters in "interp"
clear ininterp;
% convert anatomy data type and optimize contrast
if isa(interp.anatomy, 'uint8') || isa(interp.anatomy, 'uint16')
fprintf('converting anatomy to floating point values...');
interp.anatomy = double(interp.anatomy);
fprintf('done\n');
end
fprintf('optimizing contrast of anatomical data ...');
minana = min(interp.anatomy(:));
maxana = max(interp.anatomy(:));
interp.anatomy = (interp.anatomy-minana)./(maxana-minana);
fprintf('done\n');
% store original data if 'interactive' mode
if strcmp(cfg.interactive,'yes')
data.source = interp.source;
end
% place markers
marker = zeros(size(interp.anatomy));
if ~isempty(cfg.marker)
fprintf('placing markers ...');
[x,y,z] = ndgrid([1:size(interp.anatomy,1)],[1:size(interp.anatomy,2)],[1:size(interp.anatomy,3)]);
for imarker = 1:size(cfg.marker,1)
marker(find(sqrt((x-cfg.marker(iarker,1)).^2 + (y-cfg.marker(imarker,2)).^2 + (z-cfg.marker(imarker,3)).^2)<=cfg.markersize)) = 1;
end
fprintf('done\n');
end
% shift dimensions
fprintf('sorting dimensions...');
interp.anatomy = shiftdim(interp.anatomy,cfg.dim-1);
interp.source = shiftdim(interp.source,cfg.dim-1);
interp.mask = shiftdim(interp.mask,cfg.dim-1);
marker = shiftdim(marker,cfg.dim-1);
fprintf('done\n');
% flip dimensions
if strcmp(cfg.flipdim,'yes')
fprintf('flipping dimensions...');
interp.anatomy = flipdim(interp.anatomy,1);
interp.source = flipdim(interp.source,1);
interp.mask = flipdim(interp.mask,1);
marker = flipdim(marker,1);
fprintf('done\n');
end
% set slice space
if ischar(cfg.spacemin)
fprintf('setting first slice position...');
spacemin = min(find(~isnan(max(max(interp.source,[],3),[],2))));
fprintf('%d...done\n',spacemin);
else
spacemin = cfg.spacemin;
end
if ischar(cfg.spacemax)
fprintf('setting last slice position...');
spacemax = max(find(~isnan(max(max(interp.source,[],3),[],2))));
fprintf('%d...done\n',spacemax);
else
spacemax = cfg.spacemax;
end
% clip funtional data
if ~ischar(cfg.clipmin)
fprintf('clipping functional minimum...');
switch cfg.clipsym
case 'no'
interp.source(find(interp.source<cfg.clipmin)) = nan;
case 'yes'
interp.source(find(abs(interp.source)<cfg.clipmin)) = nan;
end
fprintf('done\n');
end
if ~ischar(cfg.clipmax)
fprintf('clipping functional maximum...');
switch cfg.clipsym
case 'no'
interp.source(find(interp.source>cfg.clipmax)) = nan;
case 'yes'
interp.source(find(abs(interp.source)>cfg.clipmax)) = nan;
end
fprintf('done\n');
end
% clip mask data
if maskdat
if ~ischar(cfg.maskclipmin)
fprintf('clipping mask minimum...');
switch cfg.maskclipsym
case 'no'
interp.mask(find(interp.mask<cfg.maskclipmin)) = nan;
case 'yes'
interp.mask(find(abs(interp.mask)<cfg.maskclipmin)) = nan;
end
fprintf('done\n');
end
if ~ischar(cfg.maskclipmax)
fprintf('clipping mask maximum...');
switch cfg.maskclipsym
case 'no'
interp.mask(find(interp.mask>cfg.maskclipmax)) = nan;
case 'yes'
interp.mask(find(abs(interp.mask)>cfg.maskclipmax)) = nan;
end
fprintf('done\n');
end
end
% scale functional data
fprintf('scaling functional data...');
fmin = min(interp.source(:));
fmax = max(interp.source(:));
if ~ischar(cfg.colmin)
fcolmin = cfg.colmin;
else
if sign(fmin)==sign(fmax)
fcolmin = fmin;
else
fcolmin = -max(abs([fmin,fmax]));
end
end
if ~ischar(cfg.colmax)
fcolmax = cfg.colmax;
else
if sign(fmin)==sign(fmax)
fcolmax = fmax;
else
fcolmax = max(abs([fmin,fmax]));
end
end
interp.source = (interp.source-fcolmin)./(fcolmax-fcolmin);
if ~ischar(cfg.colmax)
interp.source(find(interp.source>1)) = 1;
end
if ~ischar(cfg.colmin)
interp.source(find(interp.source<0)) = 0;
end
fprintf('done\n');
% scale mask data
if maskdat
fprintf('scaling mask data...');
fmin = min(interp.mask(:));
fmax = max(interp.mask(:));
if ~ischar(cfg.maskcolmin)
mcolmin = cfg.maskcolmin;
else
if sign(fmin)==sign(fmax)
mcolmin = fmin;
else
mcolmin = -max(abs([fmin,fmax]));
end
end
if ~ischar(cfg.maskcolmax)
mcolmax = cfg.maskcolmax;
else
if sign(fmin)==sign(fmax)
mcolmax = fmax;
else
mcolmax = max(abs([fmin,fmax]));
end
end
interp.mask = (interp.mask-mcolmin)./(mcolmax-mcolmin);
if ~ischar(cfg.maskcolmax)
interp.mask(find(interp.mask>1)) = 1;
end
if ~ischar(cfg.maskcolmin)
interp.mask(find(interp.mask<0)) = 0;
end
fprintf('done\n');
end
% merge anatomy, functional data and mask
fprintf('constructing overlay...');
if ischar(cfg.colormap)
% replace string by colormap using standard MATLAB function
cfg.colormap = colormap(cfg.colormap);
end
cmap = cfg.colormap;
cmaplength = size(cmap,1);
maskmap = cfg.maskmap(:);
maskmaplength = size(maskmap,1);
indslice = round(linspace(spacemin,spacemax,cfg.nslices));
nvox1 = length(1:cfg.resample:size(interp.anatomy,2));
nvox2 = length(1:cfg.resample:size(interp.anatomy,3));
if mod(cfg.rotate,2)
dummy = nvox1;
nvox1 = nvox2;
nvox2 = dummy;
end
out = zeros(nvox1,nvox2,3,cfg.nslices);
for islice = 1:cfg.nslices
sel1 = 1:cfg.resample:size(interp.anatomy,2);
sel2 = 1:cfg.resample:size(interp.anatomy,3);
dummy1 = reshape(interp.anatomy(indslice(islice),sel1,sel2), [numel(sel1) numel(sel2)]);
dummy2 = reshape(interp.source(indslice(islice),sel1,sel2), [numel(sel1) numel(sel2)]);
indmarker = find(reshape(marker(indslice(islice),sel1,sel2), [numel(sel1) numel(sel2)]));
indsource = find(~isnan(dummy2));
if maskdat
dummymask = reshape(interp.mask(indslice(islice),sel1,sel2), [numel(sel1) numel(sel2)]);
indsource = find(~isnan(dummy2) & ~isnan(dummymask));
end
for icol = 1:3
dummy3 = dummy1;
if not(maskdat)
if ~ischar(cfg.alpha)
try
dummy3(indsource) = ...
(1-cfg.alpha) * dummy3(indsource) + ...
cfg.alpha * cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol);
end
else
try
dummy3(indsource) = ...
(1-dummy2(indsource)) .* dummy3(indsource) + ...
dummy2(indsource) .* cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol);
end
end
else
dummy3(indsource) = ...
(1-maskmap(round(dummymask(indsource)*(maskmaplength-1))+1)).* ...
dummy3(indsource) + ...
maskmap(round(dummymask(indsource)*(maskmaplength-1))+1) .* ...
cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol);
end
dummy3(indmarker) = cfg.markercolor(icol);
out(:,:,icol,islice) = rot90(dummy3,cfg.rotate);
end
if strcmp(cfg.whitebg,'yes')
bgmask = zeros(nvox1,nvox2);
bgmask(find(conv2(mean(out(:,:,:,islice),3),ones(round((nvox1+nvox2)/8))/(round((nvox1+nvox2)/8).^2),'same')<0.1)) = 1;
for icol = 1:3
out(:,:,icol,islice) = bgmask.*ones(nvox1,nvox2) + (1-bgmask).* out(:,:,icol,islice);
end
end
end
fprintf('done\n');
clf;
fprintf('plotting...');
axes('position',[0.9 0.3 0.02 0.4]);
image(permute(cmap,[1 3 2]));
set(gca,'YAxisLocation','right');
set(gca,'XTick',[]);
set(gca,'YDir','normal');
set(gca,'YTick',linspace(1,cmaplength,5));
set(gca,'YTickLabel',linspace(fcolmin,fcolmax,5));
set(gca,'Box','on');
axes('position',[0.01 0.01 0.88 0.90]);
[h,nrows,ncols]=slicemon(out);
xlim=get(gca,'XLim');
ylim=get(gca,'YLim');
text(diff(xlim)/2,-diff(ylim)/100,cfg.title,'HorizontalAlignment','center','Interpreter','none');
drawnow;
fprintf('done\n');
if nargout > 0
outim=get(h,'CData');
end
if strcmp(cfg.interactive,'yes')
data.sin = size(interp.source);
data.nrows = nrows;
data.ncols = ncols;
data.out = out;
data.indslice = indslice;
data.cfg = cfg;
data.hfig = gcf;
uicontrol('Units','norm', 'Position', [0.9 0.2 0.08 0.05], 'Style','pushbutton', 'String','coords',...
'Callback',@getcoords,'FontSize',7);
data.hcoords = uicontrol('Units','norm', 'Position', [0.9 0.05 0.08 0.13], 'Style','text', 'String','','HorizontalAlign','left','FontSize',7);
guidata(data.hfig,data);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble history ininterp
ft_postamble provenance
% ---------------- subfunctions ----------------
function getcoords(h,eventdata,handles,varargin)
data = guidata(gcf);
[xi,yi] = ginput(1);
co(2,1) = round(mod(yi,size(data.out,1)));
co(3,1) = round(mod(xi,size(data.out,2)));
switch mod(data.cfg.rotate,4)
case 1,
t1 = co(2);
co(2) = co(3);
co(3) = data.sin(3)-t1;
case 2,
co(2) = data.sin(2)-co(2);
co(3) = data.sin(3)-co(3);
case 3,
t1 = co(3);
co(3) = co(2);
co(2) = data.sin(2)-t1;
end
try
co(1) = data.indslice(fix(xi/size(data.out,2)) + fix(yi/size(data.out,1))*data.ncols + 1);
catch
co(1) = NaN;
end
if strcmp(data.cfg.flipdim, 'yes')
co(1) = data.sin(1) - co(1) + 1;
end
co = co(:);
co(2:3) = round(co(2:3)*data.cfg.resample);
for ishift = 1:data.cfg.dim-1
co = [co(3);co(1);co(2)];
end
set(data.hcoords,'String',sprintf('1: %d\n2: %d\n3: %d\nf: %0.4f',co(1),co(2),co(3),data.source(co(1),co(2),co(3))));
function [h,nrows,ncols] = slicemon(a) % display the montage w/o image_toolbox
siz = [size(a,1) size(a,2) size(a,4)];
nn = sqrt(prod(siz))/siz(2);
mm = siz(3)/nn;
if (ceil(nn)-nn) < (ceil(mm)-mm),
nn = ceil(nn); mm = ceil(siz(3)/nn);
else
mm = ceil(mm); nn = ceil(siz(3)/mm);
end
b = a(1,1);
b(1,1) = 0;
b = repmat(b, [mm*siz(1), nn*siz(2), size(a,3), 1]);
rows = 1:siz(1); cols = 1:siz(2);
for i=0:mm-1,
for j=0:nn-1,
k = j+i*nn+1;
if k<=siz(3),
b(rows+i*siz(1),cols+j*siz(2),:) = a(:,:,:,k);
end
end
end
hh = image(b);
axis image;
box off;
set(gca,'XTick',[],'YTick',[],'Visible','off');
if nargout > 0
h = hh;
nrows = mm;
ncols = nn;
end
|
github
|
lcnbeapp/beapp-master
|
ft_clusterplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_clusterplot.m
| 18,675 |
utf_8
|
5b3eefd9bad8ee441352bfaa996bfcdc
|
function [cfg] = ft_clusterplot(cfg, stat)
% FT_CLUSTERPLOT plots a series of topographies with highlighted clusters.
%
% Use as
% ft_clusterplot(cfg, stat)
% where the input data is obtained from FT_TIMELOCKSTATISTICS or FT_FREQSTATISTICS
% and the configuration options can be
% cfg.alpha = number, highest cluster p-value to be plotted max 0.3 (default = 0.05)
% cfg.highlightseries = 1x5 cell-array, highlight option series with 'on','labels' or 'numbers' (default {'on','on','on','on','on'} for p < [0.01 0.05 0.1 0.2 0.3]
% cfg.highlightsymbolseries = 1x5 vector, highlight marker symbol series (default ['*','x','+','o','.'] for p < [0.01 0.05 0.1 0.2 0.3]
% cfg.highlightsizeseries = 1x5 vector, highlight marker size series (default [6 6 6 6 6] for p < [0.01 0.05 0.1 0.2 0.3])
% cfg.highlightcolorpos = color of highlight marker for positive clusters (default = [0 0 0])
% cfg.highlightcolorneg = color of highlight marker for negative clusters (default = [0 0 0])
% cfg.subplotsize = layout of subplots ([h w], default [3 5])
% cfg.saveaspng = string, filename of the output figures (default = 'no')
%
% You can also specify cfg options that apply to FT_TOPOPLOTTFR, except for
% cfg.xlim, any of the FT_TOPOPLOTTFR highlight options, cfg.comment and
% cfg.commentpos.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure.
%
% See also:
% FT_TOPOPLOTTFR, FT_TOPOPLOTER, FT_SINGLEPLOTER
% Copyright (C) 2007, Ingrid Nieuwenhuis, F.C. Donders Centre
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar stat
ft_preamble provenance stat
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
stat = ft_checkdata(stat, 'datatype', {'timelock', 'freq'}, 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkerseries', 'highlightsymbolseries'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkersizeseries', 'highlightsizeseries'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorpos', 'highlightcolorpos'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorneg', 'highlightcolorneg'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'hllinewidthseries'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'});
% added several forbidden options
cfg = ft_checkconfig(cfg, 'forbidden', {'highlight', ...
'highlightchannel', ...
'highlightsymbol', ...
'highlightcolor', ...
'highlightsize', ...
'highlightfontsize', ...
'xlim', ...
'comment', ...
'commentpos'});
% set the defaults
cfg.marker = ft_getopt(cfg, 'marker', 'off');
cfg.alpha = ft_getopt(cfg, 'alpha', 0.05);
cfg.highlightseries = ft_getopt(cfg, 'highlightseries', {'on','on','on','on','on'});
cfg.highlightsymbolseries = ft_getopt(cfg, 'highlightsymbolseries', ['*','x','+','o','.']);
cfg.highlightsizeseries = ft_getopt(cfg, 'highlightsizeseries', [6 6 6 6 6]);
cfg.hllinewidthseries = ft_getopt(cfg, 'hllinewidthseries', [1 1 1 1 1]);
cfg.highlightcolorpos = ft_getopt(cfg, 'highlightcolorpos', [0 0 0]);
cfg.highlightcolorneg = ft_getopt(cfg, 'highlightcolorneg', [0 0 0]);
cfg.parameter = ft_getopt(cfg, 'parameter', 'stat');
cfg.saveaspng = ft_getopt(cfg, 'saveaspng', 'no');
cfg.subplotsize = ft_getopt(cfg, 'subplotsize', [3 5]);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% error if cfg.highlightseries is not a cell, for possible confusion with cfg-options
if ~iscell(cfg.highlightseries)
error('cfg.highlightseries should be a cell-array of strings')
end
% get the options that are specific for topoplotting
cfgtopo = keepfields(cfg, {'parameter', 'marker', 'markersymbol', 'markercolor', 'markersize', 'markerfontsize', 'style', 'gridscale', 'interplimits', 'interpolation', 'contournum', 'colorbar', 'shading', 'zlim'});
% prepare the layout, this only has to be done once
cfgtopo.layout = ft_prepare_layout(cfg, stat);
cfgtopo.showcallinfo = 'no';
cfgtopo.feedback = 'no';
% handle with the data, it should be 1D or 2D
dimord = getdimord(stat, cfg.parameter);
dimtok = tokenize(dimord, '_');
dimsiz = getdimsiz(stat, cfg.parameter);
dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
switch dimord
case 'chan'
is2D = false;
case 'chan_time'
is2D = true;
case 'chan_freq'
is2D = true;
case 'chan_freq_time'
% no more than two dimensions are supported, we can ignore singleton dimensions
is2D = true;
if dimsiz(2)==1
stat = rmfield(stat, 'freq');
stat.dimord = 'chan_time';
% remove the singleton dimension in the middle
stat.(cfg.parameter) = reshape(stat.(cfg.parameter),dimsiz([1 3]));
if isfield(stat, 'posclusterslabelmat')
stat.posclusterslabelmat = reshape(stat.posclusterslabelmat, dimsiz([1 3]));
end
if isfield(stat, 'negclusterslabelmat')
stat.negclusterslabelmat = reshape(stat.negclusterslabelmat, dimsiz([1 3]));
end
elseif dimsiz(3)==1
stat = rmfield(stat, 'time');
stat.dimord = 'chan_freq';
% no need to remove the singleton dimension at the end
else
error('this only works if either frequency or time is a singleton dimension');
end
otherwise
error('unsupported dimord %s', dimord);
end % switch dimord
% these are not valid any more
clear dimord dimsiz
% this determines the labels in the figure
hastime = isfield(stat, 'time');
hasfreq = isfield(stat, 'freq');
% use the vector time, even though the 2nd dimension might be freq
if hastime
time = stat.time;
elseif hasfreq
time = stat.freq;
end
if issubfield(stat, 'cfg.correcttail') && ((strcmp(stat.cfg.correcttail,'alpha') || strcmp(stat.cfg.correcttail,'prob')) && (stat.cfg.tail == 0));
if ~(cfg.alpha >= stat.cfg.alpha);
warning(['the pvalue you plot: cfg.alpha = ' num2str(cfg.alpha) ' is higher than the correcttail option you tested: stat.cfg.alpha = ' num2str(stat.cfg.alpha)]);
end
end
% find significant clusters
sigpos = [];
signeg = [];
haspos = isfield(stat,'posclusters');
hasneg = isfield(stat,'negclusters');
if haspos == 0 && hasneg == 0
fprintf('%s\n','no significant clusters in data; nothing to plot')
else
if haspos
for iPos = 1:length(stat.posclusters)
sigpos(iPos) = stat.posclusters(iPos).prob < cfg.alpha;
end
end
if hasneg
for iNeg = 1:length(stat.negclusters)
signeg(iNeg) = stat.negclusters(iNeg).prob < cfg.alpha;
end
end
sigpos = find(sigpos == 1);
signeg = find(signeg == 1);
Nsigpos = length(sigpos);
Nsigneg = length(signeg);
Nsigall = Nsigpos + Nsigneg;
if Nsigall == 0
error('no clusters present with a p-value lower than the specified alpha, nothing to plot')
end
% make clusterslabel matrix per significant cluster
if haspos
posCLM = stat.posclusterslabelmat;
sigposCLM = zeros(size(posCLM));
probpos = [];
for iPos = 1:length(sigpos)
sigposCLM(:,:,iPos) = (posCLM == sigpos(iPos));
probpos(iPos) = stat.posclusters(iPos).prob;
hlsignpos(iPos) = prob2hlsign(probpos(iPos), cfg.highlightsymbolseries);
end
else
posCLM = [];
sigposCLM = [];
probpos = [];
end
if hasneg
negCLM = stat.negclusterslabelmat;
signegCLM = zeros(size(negCLM));
probneg = [];
for iNeg = 1:length(signeg)
signegCLM(:,:,iNeg) = (negCLM == signeg(iNeg));
probneg(iNeg) = stat.negclusters(iNeg).prob;
hlsignneg(iNeg) = prob2hlsign(probneg(iNeg), cfg.highlightsymbolseries);
end
else % no negative clusters
negCLM = [];
signegCLM = [];
probneg = [];
end
fprintf('%s%i%s%g%s\n','There are ',Nsigall,' clusters smaller than alpha (',cfg.alpha,')')
if is2D
% define time or freq window per cluster
for iPos = 1:length(sigpos)
possum_perclus = sum(sigposCLM(:,:,iPos),1); %sum over chans for each time- or freq-point
ind_min = min(find(possum_perclus~=0));
ind_max = max(find(possum_perclus~=0));
time_perclus = [time(ind_min) time(ind_max)];
if hastime
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Positive cluster: ',num2str(sigpos(iPos)),', pvalue: ',num2str(probpos(iPos)),' (',hlsignpos(iPos),')',', t = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2)))
elseif hasfreq
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Positive cluster: ',num2str(sigpos(iPos)),', pvalue: ',num2str(probpos(iPos)),' (',hlsignpos(iPos),')',', f = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2)))
end
end
for iNeg = 1:length(signeg)
negsum_perclus = sum(signegCLM(:,:,iNeg),1);
ind_min = min(find(negsum_perclus~=0));
ind_max = max(find(negsum_perclus~=0));
time_perclus = [time(ind_min) time(ind_max)];
if hastime
time_perclus = [time(ind_min) time(ind_max)];
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Negative cluster: ',num2str(signeg(iNeg)),', pvalue: ',num2str(probneg(iNeg)),' (',hlsignneg(iNeg),')',', t = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2)))
elseif hasfreq
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Negative cluster: ',num2str(signeg(iNeg)),', pvalue: ',num2str(probneg(iNeg)),' (',hlsignneg(iNeg),')',', f = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2)))
end
end
% define time- or freq-window containing all significant clusters
possum = sum(sigposCLM,3); %sum over Chans for timevector
possum = sum(possum,1);
negsum = sum(signegCLM,3);
negsum = sum(negsum,1);
if haspos && hasneg
allsum = possum + negsum;
elseif haspos
allsum = possum;
else
allsum = negsum;
end
ind_timewin_min = min(find(allsum~=0));
ind_timewin_max = max(find(allsum~=0));
timewin = time(ind_timewin_min:ind_timewin_max);
else
for iPos = 1:length(sigpos)
fprintf('%s%s%s%s%s%s%s\n','Positive cluster: ',num2str(sigpos(iPos)),', pvalue: ',num2str(probpos(iPos)),' (',hlsignpos(iPos),')')
end
for iNeg = 1:length(signeg)
fprintf('%s%s%s%s%s%s%s\n','Negative cluster: ',num2str(signeg(iNeg)),', pvalue: ',num2str(probneg(iNeg)),' (',hlsignneg(iNeg),')')
end
end
% setup highlight options for all clusters and make comment for 1D data
compos = [];
comneg = [];
for iPos = 1:length(sigpos)
if stat.posclusters(sigpos(iPos)).prob < 0.01
cfgtopo.highlight{iPos} = cfg.highlightseries{1};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(1);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(1);
elseif stat.posclusters(sigpos(iPos)).prob < 0.05
cfgtopo.highlight{iPos} = cfg.highlightseries{2};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(2);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(2);
elseif stat.posclusters(sigpos(iPos)).prob < 0.1
cfgtopo.highlight{iPos} = cfg.highlightseries{3};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(3);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(3);
elseif stat.posclusters(sigpos(iPos)).prob < 0.2
cfgtopo.highlight{iPos} = cfg.highlightseries{4};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(4);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(4);
elseif stat.posclusters(sigpos(iPos)).prob < 0.3
cfgtopo.highlight{iPos} = cfg.highlightseries{5};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(5);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(5);
end
cfgtopo.highlightcolor{iPos} = cfg.highlightcolorpos;
compos = strcat(compos,cfgtopo.highlightsymbol{iPos}, 'p=',num2str(probpos(iPos)),' '); % make comment, only used for 1D data
end
for iNeg = 1:length(signeg)
if stat.negclusters(signeg(iNeg)).prob < 0.01
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{1};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(1);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(1);
elseif stat.negclusters(signeg(iNeg)).prob < 0.05
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{2};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(2);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(2);
elseif stat.negclusters(signeg(iNeg)).prob < 0.1
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{3};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(3);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(3);
elseif stat.negclusters(signeg(iNeg)).prob < 0.2
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{4};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(4);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(4);
elseif stat.negclusters(signeg(iNeg)).prob < 0.3
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{5};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(5);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(5);
end
cfgtopo.highlightcolor{length(sigpos)+iNeg} = cfg.highlightcolorneg;
comneg = strcat(comneg,cfgtopo.highlightsymbol{length(sigpos)+iNeg}, 'p=',num2str(probneg(iNeg)),' '); % make comment, only used for 1D data
end
if is2D
Npl = length(timewin);
else
Npl = 1;
end
numSubplots = prod(cfg.subplotsize);
Nfig = ceil(Npl/numSubplots);
% put channel indexes in list
if is2D
for iPl = 1:Npl
for iPos = 1:length(sigpos)
list{iPl}{iPos} = find(sigposCLM(:,ind_timewin_min+iPl-1,iPos) == 1);
end
for iNeg = 1:length(signeg)
list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,ind_timewin_min+iPl-1,iNeg) == 1);
end
end
else
for iPl = 1:Npl
for iPos = 1:length(sigpos)
list{iPl}{iPos} = find(sigposCLM(:,iPos) == 1);
end
for iNeg = 1:length(signeg)
list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,iNeg) == 1);
end
end
end
% this does not work, because the progress tracker is also used inside ft_topoplotTFR
% ft_progress('init', cfg.feedback, 'making subplots...');
% ft_progress(count/Npl, 'making subplot %d from %d', count, Npl);
% ft_progress('close');
count = 0;
% make plots
for iPl = 1:Nfig
figure;
if is2D
if iPl < Nfig
for iT = 1:numSubplots
PlN = (iPl-1)*numSubplots + iT; %plotnumber
cfgtopo.xlim = [time(ind_timewin_min+PlN-1) time(ind_timewin_min+PlN-1)];
cfgtopo.highlightchannel = list{PlN};
if hastime
cfgtopo.comment = strcat('time: ',num2str(time(ind_timewin_min+PlN-1)), ' s');
elseif hasfreq
cfgtopo.comment = strcat('freq: ',num2str(time(ind_timewin_min+PlN-1)), ' Hz');
end
cfgtopo.commentpos = 'title';
subplot(cfg.subplotsize(1), cfg.subplotsize(2), iT);
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
elseif iPl == Nfig
for iT = 1:Npl-(numSubplots*(Nfig-1))
PlN = (iPl-1)*numSubplots + iT; %plotnumber
cfgtopo.xlim = [time(ind_timewin_min+PlN-1) time(ind_timewin_min+PlN-1)];
cfgtopo.highlightchannel = list{PlN};
if hastime
cfgtopo.comment = strcat('time: ',num2str(time(ind_timewin_min+PlN-1)), ' s');
elseif hasfreq
cfgtopo.comment = strcat('freq: ',num2str(time(ind_timewin_min+PlN-1)), ' Hz');
end
cfgtopo.commentpos = 'title';
subplot(cfg.subplotsize(1), cfg.subplotsize(2), iT);
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
end
else
cfgtopo.highlightchannel = list{1};
cfgtopo.comment = strcat(compos,comneg);
cfgtopo.commentpos = 'title';
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
% save figure
if isequal(cfg.saveaspng,'no');
else
filename = strcat(cfg.saveaspng, '_fig', num2str(iPl));
print(gcf,'-dpng',filename);
end
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous stat
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sign = prob2hlsign(prob, hlsign)
if prob < 0.01
sign = hlsign(1);
elseif prob < 0.05
sign = hlsign(2);
elseif prob < 0.1
sign = hlsign(3);
elseif prob < 0.2
sign = hlsign(4);
elseif prob < 0.3
sign = hlsign(5);
end
|
github
|
lcnbeapp/beapp-master
|
ft_sourcemovie.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sourcemovie.m
| 27,386 |
utf_8
|
e4209fc342ee8d918587cffc2dfc2d6e
|
function [cfg, M] = ft_sourcemovie(cfg, source, source2)
% FT_SOURCEMOVIE displays the source reconstruction on a cortical mesh
% and allows the user to scroll through time with a movie
%
% Use as
% ft_sourcemovie(cfg, source)
% where the input source data is obtained from FT_SOURCEANALYSIS and cfg is
% a configuratioun structure that should contain
%
% cfg.funparameter = string, functional parameter that is color coded (default = 'pow')
% cfg.maskparameter = string, functional parameter that is used for opacity (default = [])
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure.
%
% See also FT_SOURCEPLOT, FT_SOURCEINTERPOLATE
% Undocumented options:
% cfg.parcellation
% Copyright (C) 2011-2015, Robert Oostenveld
% Copyright (C) 2012-2014, Jorn Horschig
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar source
ft_preamble provenance source
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input argument or can be read from disk
hassource2 = exist('source2', 'var');
% check if the input data is valid for this function
source = ft_checkdata(source, 'datatype', 'source', 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'cfg.funparameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'parameter', 'cfg.funparameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'mask', 'maskparameter'});
% these are not needed any more, once the source structure has a proper dimord
% cfg = ft_checkconfig(cfg, 'deprecated', 'xparam');
% cfg = ft_checkconfig(cfg, 'deprecated', 'yparam');
% get the options
xlim = ft_getopt(cfg, 'xlim');
ylim = ft_getopt(cfg, 'ylim');
zlim = ft_getopt(cfg, 'zlim');
olim = ft_getopt(cfg, 'alim'); % don't use alim as variable name
cfg.xparam = ft_getopt(cfg, 'xparam'); % default is dealt with below
cfg.yparam = ft_getopt(cfg, 'yparam'); % default is dealt with below
cfg.funparameter = ft_getopt(cfg, 'funparameter');
cfg.maskparameter = ft_getopt(cfg, 'maskparameter');
cfg.renderer = ft_getopt(cfg, 'renderer', 'opengl');
cfg.title = ft_getopt(cfg, 'title', '');
cfg.parcellation = ft_getopt(cfg, 'parcellation');
% select the functional and the mask parameter
cfg.funparameter = parameterselection(cfg.funparameter, source);
cfg.maskparameter = parameterselection(cfg.maskparameter, source);
% only a single parameter should be selected
try, cfg.funparameter = cfg.funparameter{1}; end
try, cfg.maskparameter = cfg.maskparameter{1}; end
dimord = getdimord(source, cfg.funparameter);
dimtok = tokenize(dimord, '_');
if isempty(cfg.xparam) && numel(dimtok)>1
cfg.xparam = dimtok{2};
end
if isempty(cfg.xparam) && numel(dimtok)>2
cfg.yparam = dimtok{3};
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~hassource2
fun = getsubfield(source, cfg.funparameter);
elseif hassource2 && isfield(source2, 'pos'),
fun = getsubfield(source, cfg.funparameter);
fun2 = getsubfield(source2, cfg.funparameter);
elseif hassource2
% assume the first data argument to be a parcellation, and the second a parcellated structure
tmp = getsubfield(source2, cfg.funparameter);
siz = [size(tmp) 1];
fun = zeros([size(source.pos, 1), siz(2:end)]);
parcels = source.(cfg.parcellation);
parcelslabel = source.([cfg.parcellation,'label']);
for k = 1:numel(source2.label)
sel = match_str(source.([cfg.parcellation,'label']), source2.label{k});
if ~isempty(sel)
sel = source.(cfg.parcellation)==sel;
fun(sel,:,:) = repmat(tmp(k,:,:), [sum(sel) 1]);
end
end
source.(cfg.xparam) = source2.(cfg.xparam);
if ~isempty(cfg.yparam)
source.(cfg.yparam) = source2.(cfg.yparam);
end
end
if size(source.pos)~=size(fun,1)
error('inconsistent number of vertices in the cortical mesh');
end
if ~isfield(source, 'tri')
error('source.tri missing, this function requires a triangulated cortical sheet as source model');
end
if ~isempty(cfg.maskparameter) && ischar(cfg.maskparameter)
mask = double(getsubfield(source, cfg.maskparameter));
else
mask = 0.5*ones(size(fun));
end
xparam = source.(cfg.xparam);
if length(xparam)~=size(fun,2)
error('inconsistent size of "%s" compared to "%s"', cfg.funparameter, cfg.xparam);
end
if ~isempty(cfg.yparam)
yparam = source.(cfg.yparam);
if length(yparam)~=size(fun,3)
error('inconsistent size of "%s" compared to "%s"', cfg.funparameter, cfg.yparam);
end
else
yparam = [];
end
if isempty(xlim)
xlim(1) = min(xparam);
xlim(2) = max(xparam);
end
xbeg = nearest(xparam, xlim(1));
xend = nearest(xparam, xlim(2));
% update the configuration
cfg.xlim = xparam([xbeg xend]);
if ~isempty(yparam)
if isempty(ylim)
ylim(1) = min(yparam);
ylim(2) = max(yparam);
end
ybeg = nearest(yparam, ylim(1));
yend = nearest(yparam, ylim(2));
% update the configuration
cfg.ylim = xparam([xbeg xend]);
hasyparam = true;
else
% this allows us not to worry about the yparam any more
yparam = nan;
ybeg = 1;
yend = 1;
cfg.ylim = [];
hasyparam = false;
end
% make a subselection of the data
xparam = xparam(xbeg:xend);
yparam = yparam(ybeg:yend);
fun = fun(:,xbeg:xend,ybeg:yend);
if hassource2 && isfield(source2, 'pos'),
fun2 = fun2(:,xbeg:xend,ybeg:yend);
end
mask = mask(:,xbeg:xend,ybeg:yend);
clear xbeg xend ybeg yend
if isempty(zlim)
zlim(1) = min(fun(:));
zlim(2) = max(fun(:));
% update the configuration
cfg.zlim = zlim;
end
if isempty(olim)
olim(1) = min(mask(:));
olim(2) = max(mask(:));
if olim(1)==olim(2)
olim(1) = 0;
olim(2) = 1;
end
% update the configuration
%cfg.alim = olim;
end
% collect the data and the options to be used in the figure
opt.cfg = cfg;
opt.xparam = xparam;
opt.yparam = yparam;
opt.xval = 0;
opt.yval = 0;
opt.dat = fun;
opt.mask = abs(mask);
opt.pos = source.pos;
opt.tri = source.tri;
if isfield(source, 'inside')
opt.vindx = source.inside(:);
else
opt.vindx = 1:size(opt.pos,1);
end
opt.speed = 1;
opt.record = 0;
opt.threshold = 0;
opt.frame = 0;
opt.cleanup = false;
if exist('parcels', 'var'), opt.parcellation = parcels; end
if exist('parcelslabel', 'var'), opt.parcellationlabel = parcelslabel; end
% add functional data of optional third input to the opt structure
% FIXME here we should first check whether the meshes correspond!
if hassource2 && isfield(source2, 'pos')
opt.dat2 = fun2;
opt.dat1 = opt.dat;
end
%% start building the figure
h = figure;
set(h, 'color', [1 1 1]);
set(h, 'visible', 'on');
set(h, 'renderer', cfg.renderer);
set(h, 'toolbar', 'figure');
set(h, 'CloseRequestFcn', @cb_quitbutton);
set(h, 'position', [100 200 700 500]);
set(h, 'windowbuttondownfcn', @cb_getposition);
if ~isempty(cfg.title)
title(cfg.title);
end
% get timer object
t = timer;
set(t, 'timerfcn', {@cb_timer, h}, 'period', 0.1, 'executionmode', 'fixedSpacing');
% make the user interface elements
cambutton = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'light', 'userdata', 'C');
playbutton = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'play', 'userdata', 'p');
recordbutton = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'record', 'userdata', 'r');
quitbutton = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'quit', 'userdata', 'q');
if isfield(opt, 'dat2'),
displaybutton = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'display: var1', 'userdata', 'f');
end
thrmin = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'downarrow');
thr = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'threshold', 'userdata', 't');
thrplus = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'uparrow');
spdmin = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'shift+downarrow');
spd = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'speed','userdata', 's');
spdplus = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'shift+uparrow');
clim = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'colorlim', 'userdata', 'z');
climminmin = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'leftarrow');
climmaxmin = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+leftarrow');
climminplus = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'rightarrow');
climmaxplus = uicontrol('parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+rightarrow');
sliderx = uicontrol('parent', h, 'units', 'normalized', 'style', 'slider', 'string', sprintf('%s = ', cfg.xparam));
stringx = uicontrol('parent', h, 'units', 'normalized', 'style', 'text');
slidery = uicontrol('parent', h, 'units', 'normalized', 'style', 'slider', 'string', sprintf('%s = ', cfg.yparam));
stringy = uicontrol('parent', h, 'units', 'normalized', 'style', 'text');
stringz = uicontrol('parent', h, 'units', 'normalized', 'style', 'text');
stringp = uicontrol('parent', h, 'units', 'normalized', 'style', 'text');
if isfield(opt,'dat2')
set(displaybutton, 'position', [0.005 0.34 0.18 0.05], 'callback', @cb_keyboard);
end
set(cambutton, 'position', [0.095 0.28 0.09 0.05], 'callback', @cb_keyboard);
set(quitbutton, 'position', [0.005 0.28 0.09 0.05], 'callback', @cb_keyboard);
set(playbutton, 'position', [0.005 0.22 0.09 0.05], 'callback', @cb_keyboard);
set(recordbutton, 'position', [0.095 0.22 0.09 0.05], 'callback', @cb_keyboard);
set(thrmin, 'position', [0.005 0.16 0.03 0.05], 'callback', @cb_keyboard);
set(thr, 'position', [0.035 0.16 0.12 0.05], 'callback', @cb_keyboard);
set(thrplus, 'position', [0.155 0.16 0.03 0.05], 'callback', @cb_keyboard);
set(climminmin, 'position', [0.005 0.10 0.03 0.025], 'callback', @cb_keyboard);
set(climmaxmin, 'position', [0.005 0.125 0.03 0.025], 'callback', @cb_keyboard);
set(clim, 'position', [0.035 0.10 0.12 0.05], 'callback', @cb_keyboard);
set(climminplus, 'position', [0.155 0.10 0.03 0.025], 'callback', @cb_keyboard);
set(climmaxplus, 'position', [0.155 0.125 0.03 0.025], 'callback', @cb_keyboard);
set(spdmin, 'position', [0.005 0.04 0.03 0.05], 'callback', @cb_keyboard);
set(spd, 'position', [0.035 0.04 0.12 0.05], 'callback', @cb_keyboard);
set(spdplus, 'position', [0.155 0.04 0.03 0.05], 'callback', @cb_keyboard);
set(sliderx, 'position', [0.02 0.4 0.3 0.03], 'callback', @cb_slider);%[0.200 0.04 0.78 0.03], 'callback', @cb_slider);
set(slidery, 'position', [0.350 0.5 0.03 0.35], 'callback', @cb_slider);
set(stringx, 'position', [0.800 0.93 0.18 0.03]);
set(stringy, 'position', [0.800 0.90 0.18 0.03]);
set(stringz, 'position', [0.650 0.96 0.33 0.03]);
set(stringp, 'position', [0.650 0.87 0.33 0.03]);
set(stringx, 'string', sprintf('%s = ', cfg.xparam));
set(stringy, 'string', sprintf('%s = ', cfg.yparam));
set(stringz, 'string', sprintf('position = '));
set(stringp, 'string', sprintf('parcel = '));
set(stringx, 'horizontalalignment', 'right', 'backgroundcolor', [1 1 1]);
set(stringy, 'horizontalalignment', 'right', 'backgroundcolor', [1 1 1]);
set(stringz, 'horizontalalignment', 'right', 'backgroundcolor', [1 1 1]);
set(stringp, 'horizontalalignment', 'right', 'backgroundcolor', [1 1 1]);
% create axes object to contain the mesh
hx = axes;
set(hx, 'position', [0.4 0.08 0.6 0.8]);
set(hx, 'tag', 'mesh');
if isfield(source, 'sulc')
vdat = source.sulc;
vdat = vdat-min(vdat);
vdat = vdat./max(vdat);
vdat = 0.1+0.3.*repmat(round(1-vdat),[1 3]);
hs1 = ft_plot_mesh(source, 'edgecolor', 'none', 'vertexcolor', vdat);
else
hs1 = ft_plot_mesh(source, 'edgecolor', 'none', 'facecolor', [0.5 0.5 0.5]);
end
lighting gouraud
siz = [size(opt.dat) 1];
hs = ft_plot_mesh(source, 'edgecolor', 'none', 'vertexcolor', 0*opt.dat(:,ceil(siz(2)/2),ceil(siz(3)/2)));%, 'facealpha', 0*opt.mask(:,1,1));
lighting gouraud
cam1 = camlight('left');
cam2 = camlight('right');
caxis(cfg.zlim);
%alim(cfg.alim);
% create axis object to contain a time course
hy = axes;
set(hy, 'position', [0.02 0.5 0.3 0.35]);
set(hy, 'yaxislocation', 'right');
if ~hasyparam
tline = plot(opt.xparam, mean(opt.dat(opt.vindx,:))); hold on;
abc = axis;
axis([opt.xparam(1) opt.xparam(end) abc(3:4)]);
vline = plot(opt.xparam(1)*[1 1], abc(3:4), 'r');
if hassource2 && isfield(source2, 'pos')
tline2 = plot(opt.xparam, mean(opt.dat2(opt.vindx,:)), 'r'); hold on;
end
else
tline = imagesc(opt.xparam, opt.yparam, shiftdim(mean(opt.dat(opt.vindx,:,:)),1)'); axis xy; hold on;
abc = [opt.xparam([1 end]) opt.yparam([1 end])];
vline = plot(opt.xparam(ceil(siz(2)/2)).*[1 1], abc(3:4));
hline = plot(abc(1:2), opt.yparam(ceil(siz(3)/2)).*[1 1]);
%error('not yet implemented');
end
set(hy, 'tag', 'timecourse');
% remember the various handles
opt.h = h; % handle to the figure
opt.hs = hs; % handle to the mesh
opt.hx = hx; % handle to the axes containing the mesh
opt.hy = hy; % handle to the axes containing the timecourse
opt.cam = [cam1 cam2]; % handles to the light objects
opt.vline = vline; % handle to the line in the ERF plot
opt.tline = tline; % handle to the ERF
if exist('hline', 'var')
opt.hline = hline;
end
if hassource2 && isfield(source2, 'pos'),
opt.tline2 = tline2;
end
opt.playbutton = playbutton; % handle to the playbutton
opt.recordbutton = recordbutton; % handle to the recordbutton
opt.quitbutton = quitbutton; % handle to the quitbutton
try, opt.displaybutton = displaybutton; end
%opt.p = p;
opt.t = t;
%opt.hx = hx;
%opt.hy = hy;
opt.sliderx = sliderx;
opt.slidery = slidery;
opt.stringx = stringx;
opt.stringy = stringy;
opt.stringz = stringz;
opt.stringp = stringp;
if ~hasyparam
set(opt.slidery, 'visible', 'off');
set(opt.stringy, 'visible', 'off');
end
if ~exist('parcels', 'var')
set(opt.stringp, 'visible', 'off');
end
setappdata(h, 'opt', opt);
while opt.cleanup==0
uiwait(h);
opt = getappdata(h, 'opt');
end
stop(opt.t);
if nargout
M = opt.movie;
end
delete(h);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous source
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_slider(h, eventdata)
persistent previous_valx previous_valy previous_vindx
if isempty(previous_valx)
previous_valx = 0;
end
if isempty(previous_valy)
previous_valy = 0;
end
h = getparent(h);
opt = getappdata(h, 'opt');
valx = get(opt.sliderx, 'value');
valx = round(valx*(size(opt.dat,2)-1))+1;
valx = min(valx, size(opt.dat,2));
valx = max(valx, 1);
valy = get(opt.slidery, 'value');
valy = round(valy*(size(opt.dat,3)-1))+1;
valy = min(valy, size(opt.dat,3));
valy = max(valy, 1);
mask = opt.mask(:,valx,valy);
mask(opt.dat(:,valx,valy)<opt.threshold) = 0;
% update stuff
if previous_valx~=valx || previous_valy~=valy
% update strings
set(opt.stringx, 'string', sprintf('%s = %3.3f\n', opt.cfg.xparam, opt.xparam(valx)));
set(opt.stringy, 'string', sprintf('%s = %3.3f\n', opt.cfg.yparam, opt.yparam(valy)));
% update data in mesh
set(opt.hs, 'FaceVertexCData', opt.dat(:,valx,valy));
set(opt.hs, 'FaceVertexAlphaData', mask);
set(opt.vline, 'xdata', [1 1]*opt.xparam(valx));
if isfield(opt, 'hline')
set(opt.hline, 'ydata', [1 1]*opt.yparam(valy));
end
end
% update ERF-plot
if ~isfield(opt, 'hline')
set(opt.hy, 'ylim', opt.cfg.zlim);
set(opt.vline, 'ydata', opt.cfg.zlim);
else
set(opt.hy, 'clim', opt.cfg.zlim);
end
if ~(numel(previous_vindx)==numel(opt.vindx) && all(previous_vindx==opt.vindx))
if ~isfield(opt, 'hline')
tmp = mean(opt.dat(opt.vindx,:,valy),1);
set(opt.tline, 'ydata', tmp);
else
tmp = shiftdim(mean(opt.dat(opt.vindx,:,:),1))';
set(opt.tline, 'cdata', tmp);
end
%set(opt.hy, 'ylim', [min(tmp(:)) max(tmp(:))]);
%set(opt.vline, 'ydata', [min(tmp(:)) max(tmp(:))]);
if isfield(opt, 'dat2')
tmp = mean(opt.dat1(opt.vindx,:,valy),1);
set(opt.tline, 'ydata', tmp);
tmp = mean(opt.dat2(opt.vindx,:,valy),1);
set(opt.tline2, 'ydata', tmp);
end
set(opt.hy, 'yaxislocation', 'right');
set(opt.stringz, 'string', sprintf('position = [%2.1f, %2.1f, %2.1f]', opt.pos(opt.vindx,:)));
if isfield(opt, 'parcellation'),
set(opt.stringp, 'string', sprintf('parcel = %s', opt.parcellationlabel{opt.parcellation(opt.vindx)}));
end
end
if opt.record
tmp = get(opt.h, 'position');
opt.frame = opt.frame + 1;
opt.movie(opt.frame) = getframe(opt.h,[1 1 tmp(3:4)-1]);
end
setappdata(h, 'opt', opt);
previous_valx = valx;
previous_valy = valy;
previous_vindx = opt.vindx;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_playbutton(h, eventdata)
opt = getappdata(h, 'opt');
if strcmp(get(opt.playbutton, 'string'), 'pause')
stop(opt.t);
set(opt.playbutton, 'string', 'play');
else
start(opt.t);
set(opt.playbutton, 'string', 'pause');
end
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_quitbutton(h, eventdata)
opt = getappdata(h, 'opt');
opt.cleanup = 1;
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_recordbutton(h, eventdata)
opt = getappdata(h, 'opt');
if strcmp(get(opt.recordbutton, 'string'), 'stop')
opt.record = 0;
set(opt.recordbutton, 'string', 'record');
else
opt.record = 1;
set(opt.recordbutton, 'string', 'stop');
end
setappdata(h, 'opt', opt);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_timer(obj, info, h)
opt = getappdata(h, 'opt');
delta = opt.speed/size(opt.dat,2);
val = get(opt.sliderx, 'value');
val = val + delta;
if val>1
val = val-1;
end
set(opt.sliderx, 'value', val);
setappdata(h, 'opt', opt);
cb_slider(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_alim(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
switch get(h, 'String')
case '+'
alim(alim*sqrt(2));
case '-'
alim(alim/sqrt(2));
end % switch
guidata(h, opt);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
if strcmp(get(get(h, 'currentaxes'), 'tag'), 'timecourse')
% get the current point
pos = get(opt.hy, 'currentpoint');
set(opt.sliderx, 'value', nearest(opt.xparam, pos(1,1))./numel(opt.xparam));
if isfield(opt, 'hline')
set(opt.slidery, 'value', nearest(opt.yparam, pos(1,2))./numel(opt.yparam));
end
elseif strcmp(get(get(h, 'currentaxes'), 'tag'), 'mesh')
% get the current point, which is defined as the intersection through the
% axis-box (in 3D)
pos = get(opt.hx, 'currentpoint');
% get the intersection with the mesh
[ipos, d] = intersect_line(opt.pos, opt.tri, pos(1,:), pos(2,:));
[md, ix] = min(abs(d));
dpos = opt.pos - ipos(ix*ones(size(opt.pos,1),1),:);
opt.vindx = nearest(sum(dpos.^2,2),0);
end
setappdata(h, 'opt', opt);
cb_slider(h);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
switch key
case 'leftarrow' % change colorlim
opt.cfg.zlim(1) = opt.cfg.zlim(1)-0.1*abs(opt.cfg.zlim(1));
setappdata(h, 'opt', opt);
caxis(opt.cfg.zlim);
set(opt.hx, 'Clim', opt.cfg.zlim);
case 'shift+leftarrow' % change colorlim
opt.cfg.zlim(1) = opt.cfg.zlim(1)+0.1*abs(opt.cfg.zlim(1));
setappdata(h, 'opt', opt);
caxis(opt.cfg.zlim);
set(opt.hx, 'Clim', opt.cfg.zlim);
case 'rightarrow'
opt.cfg.zlim(2) = opt.cfg.zlim(2)-0.1*abs(opt.cfg.zlim(2));
setappdata(h, 'opt', opt);
caxis(opt.cfg.zlim);
set(opt.hx, 'Clim', opt.cfg.zlim);
case 'shift+rightarrow'
opt.cfg.zlim(2) = opt.cfg.zlim(2)+0.1*abs(opt.cfg.zlim(2));
setappdata(h, 'opt', opt);
caxis(opt.cfg.zlim);
set(opt.hx, 'Clim', opt.cfg.zlim);
case 'uparrow' % enhance threshold
opt.threshold = opt.threshold+0.01.*max(opt.dat(:));
setappdata(h, 'opt', opt);
case 'downarrow' % lower threshold
opt.threshold = opt.threshold-0.01.*max(opt.dat(:));
setappdata(h, 'opt', opt);
case 'shift+uparrow' % change speed
opt.speed = opt.speed*sqrt(2);
setappdata(h, 'opt', opt);
case 'shift+downarrow'
opt.speed = opt.speed/sqrt(2);
opt.speed = max(opt.speed, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
case 'ctrl+uparrow' % change channel
case 'C' % update camera position
camlight(opt.cam(1), 'left');
camlight(opt.cam(2), 'right');
case 'p'
cb_playbutton(h);
case 'q'
cb_quitbutton(h);
case 'r'
cb_recordbutton(h);
case 's'
% select the speed
response = inputdlg('speed', 'specify', 1, {num2str(opt.speed)});
if ~isempty(response)
opt.speed = str2double(response);
setappdata(h, 'opt', opt);
end
case 't'
% select the threshold
response = inputdlg('threshold', 'specify', 1, {num2str(opt.threshold)});
if ~isempty(response)
opt.threshold = str2double(response);
setappdata(h, 'opt', opt);
end
case 'z'
% select the colorlim
response = inputdlg('colorlim', 'specify', 1, {[num2str(opt.cfg.zlim(1)),' ',num2str(opt.cfg.zlim(2))]});
if ~isempty(response)
[tok1, tok2] = strtok(response, ' ');
opt.cfg.zlim(1) = str2double(deblank(tok1));
opt.cfg.zlim(2) = str2double(deblank(tok2));
set(opt.hx, 'Clim', opt.cfg.zlim);
setappdata(h, 'opt', opt);
end
case 'f'
if isfield(opt, 'dat2')
if isequalwithequalnans(opt.dat,opt.dat2),
opt.dat = opt.dat1;
set(opt.displaybutton, 'string', 'display: var1');
end
if isequalwithequalnans(opt.dat,opt.dat1),
opt.dat = opt.dat2;
set(opt.displaybutton, 'string', 'display: var2');
end
end
setappdata(h, 'opt', opt);
cb_slider(h);
case 'control+control'
% do nothing
case 'shift+shift'
% do nothing
case 'alt+alt'
% do nothing
otherwise
setappdata(h, 'opt', opt);
cb_help(h);
end
cb_slider(h);
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
|
github
|
lcnbeapp/beapp-master
|
ft_sourcedescriptives.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sourcedescriptives.m
| 50,287 |
utf_8
|
6f54ea734332fd49fc0a7a16e886c4e3
|
function [source] = ft_sourcedescriptives(cfg, source)
% FT_SOURCEDESCRIPTIVES computes descriptive parameters of the source
% analysis results.
%
% Use as
% [source] = ft_sourcedescriptives(cfg, source)
%
% where cfg is a structure with the configuration details and source is the
% result from a beamformer source estimation. The configuration can contain
% cfg.cohmethod = 'regular', 'lambda1', 'canonical'
% cfg.powmethod = 'regular', 'lambda1', 'trace', 'none'
% cfg.supmethod = 'chan_dip', 'chan', 'dip', 'none' (default)
% cfg.projectmom = 'yes' or 'no' (default = 'no')
% cfg.eta = 'yes' or 'no' (default = 'no')
% cfg.kurtosis = 'yes' or 'no' (default = 'no')
% cfg.keeptrials = 'yes' or 'no' (default = 'no')
% cfg.keepcsd = 'yes' or 'no' (default = 'no')
% cfg.keepnoisecsd = 'yes' or 'no' (default = 'no')
% cfg.keepmom = 'yes' or 'no' (default = 'yes')
% cfg.keepnoisemom = 'yes' or 'no' (default = 'yes')
% cfg.resolutionmatrix = 'yes' or 'no' (default = 'no')
% cfg.feedback = 'no', 'text' (default), 'textbar', 'gui'
%
% The following option only applies to LCMV single-trial timecourses.
% cfg.fixedori = 'within_trials' or 'over_trials' (default = 'over_trials')
%
% If repeated trials are present that have undergone some sort of
% resampling (i.e. jackknife, bootstrap, singletrial or rawtrial), the mean,
% variance and standard error of mean will be computed for all source
% parameters. This is done after applying the optional transformation
% on the power and projected noise.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_SOURCEANALYSIS, FT_SOURCESTATISTICS, FT_MATH
% Copyright (C) 2004-2015, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar source
ft_preamble provenance source
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
% source = ft_checkdata(source, 'datatype', 'source', 'feedback', 'yes');
cfg = ft_checkconfig(cfg, 'forbidden', {'trials'}); % trial selection is not implented here, you may want to consider ft_selectdata
% DEPRECATED by roboos on 13 June 2013
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=2199 for more details
% support for this functionality can be removed at the end of 2013
cfg = ft_checkconfig(cfg, 'deprecated', {'transform'}); % please use ft_math instead
% set the defaults
cfg.transform = ft_getopt(cfg, 'transform', []);
cfg.projectmom = ft_getopt(cfg, 'projectmom', 'no');% if yes -> svdfft
cfg.numcomp = ft_getopt(cfg, 'numcomp', 1);
cfg.powmethod = ft_getopt(cfg, 'powmethod', []);% see below
cfg.cohmethod = ft_getopt(cfg, 'cohmethod', []);% see below
cfg.feedback = ft_getopt(cfg, 'feedback', 'textbar');
cfg.supmethod = ft_getopt(cfg, 'supmethod', 'none');
cfg.resolutionmatrix = ft_getopt(cfg, 'resolutionmatrix', 'no');
cfg.eta = ft_getopt(cfg, 'eta', 'no');
cfg.fa = ft_getopt(cfg, 'fa', 'no');
cfg.kurtosis = ft_getopt(cfg, 'kurtosis', 'no');
cfg.keeptrials = ft_getopt(cfg, 'keeptrials', 'no');
cfg.keepcsd = ft_getopt(cfg, 'keepcsd', 'no');
cfg.keepmom = ft_getopt(cfg, 'keepmom', 'yes');
cfg.keepnoisecsd = ft_getopt(cfg, 'keepnoisecsd', 'no');
cfg.keepnoisemom = ft_getopt(cfg, 'keepnoisemom', 'yes');
cfg.fwhm = ft_getopt(cfg, 'fwhm', 'no');
cfg.fwhmremovecenter = ft_getopt(cfg, 'fwhmremovecenter', 0);
cfg.fwhmmethod = ft_getopt(cfg, 'fwhmmethod', 'barnes');
cfg.fwhmmaxdist = ft_getopt(cfg, 'fwhmmaxdist', []);
cfg.fixedori = ft_getopt(cfg, 'fixedori', 'over_trials');
% only works for minimumnormestimate
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.baselinewindow = ft_getopt(cfg, 'baselinewindow', [-inf 0]);
cfg.zscore = ft_getopt(cfg, 'zscore', 'yes');
zscore = strcmp(cfg.zscore, 'yes');
demean = strcmp(cfg.demean, 'yes');
% get desired method from source structure
source.method = ft_getopt(source,'method',[]);
% this is required for backward compatibility with the old sourceanalysis
if isfield(source, 'method') && strcmp(source.method, 'randomized')
source.method = 'randomization';
elseif isfield(source, 'method') && strcmp(source.method, 'permuted')
source.method = 'permutation';
elseif isfield(source, 'method') && strcmp(source.method, 'jacknife')
source.method = 'jackknife';
end
% determine the type of data, this is only relevant for a few specific types
ispccdata = isfield(source, 'avg') && isfield(source.avg, 'csdlabel');
islcmvavg = isfield(source, 'avg') && isfield(source, 'time') && isfield(source.avg, 'mom') && any(size(source.avg.pow)==1);
islcmvtrl = isfield(source, 'trial') && isfield(source, 'time') && isfield(source.trial, 'mom');
ismneavg = isfield(source, 'avg') && isfield(source, 'time') && isfield(source.avg, 'mom') && size(source.avg.pow, 2)==numel(source.time);
% check the consistency of the defaults
if strcmp(cfg.projectmom, 'yes')
if isempty(cfg.powmethod)
cfg.powmethod = 'regular'; % set the default
elseif ~strcmp(cfg.powmethod, 'regular')
error('unsupported powmethod in combination with projectmom');
end
if isempty(cfg.cohmethod)
cfg.cohmethod = 'regular';% set the default
elseif ~strcmp(cfg.cohmethod, 'regular')
error('unsupported cohmethod in combination with projectmom');
end
else
if isempty(cfg.powmethod)
cfg.powmethod = 'lambda1'; % set the default
end
if isempty(cfg.cohmethod)
cfg.cohmethod = 'lambda1'; % set the default
end
end
% this is required for backward compatibility with an old version of sourcedescriptives
if isfield(cfg, 'singletrial'), cfg.keeptrials = cfg.singletrial; end
% do a validity check on the input data and specified options
if strcmp(cfg.resolutionmatrix, 'yes')
if ~isfield(source.avg, 'filter')
error('The computation of the resolution matrix requires keepfilter=''yes'' in sourceanalysis.');
elseif ~isfield(source, 'leadfield')
error('The computation of the resolution matrix requires keepleadfield=''yes'' in sourceanalysis.');
end
end
if strcmp(cfg.fwhm, 'yes')
if ~isfield(source.avg, 'filter')
error('The computation of the fwhm requires keepfilter=''yes'' in sourceanalysis.');
end
end
if strcmp(cfg.eta, 'yes') && strcmp(cfg.cohmethod, 'svdfft'),
error('eta cannot be computed in combination with the application of svdfft');
end
if strcmp(cfg.keeptrials, 'yes') && ~strcmp(cfg.supmethod, 'none'),
error('you cannot keep trials when you want to partialize something');
end
% set some flags for convenience
isnoise = isfield(source, 'avg') && isfield(source.avg, 'noisecsd');
keeptrials = strcmp(cfg.keeptrials, 'yes');
projectmom = strcmp(cfg.projectmom, 'yes');
% determine the subfunction used for computing power
switch cfg.powmethod
case 'regular'
powmethodfun = @powmethod_regular;
case 'lambda1'
powmethodfun = @powmethod_lambda1;
case 'trace'
powmethodfun = @powmethod_trace;
case 'none'
powmethodfun = [];
otherwise
error('unsupported powmethod');
end
% represent the selection of sources in the brain as a row-vector with indices
insideindx = find(source.inside(:)');
if ispccdata
% the source reconstruction was computed using the pcc beamformer
Ndipole = size(source.pos,1);
if ischar(source.avg.csdlabel{1}), source.avg.csdlabel = {source.avg.csdlabel}; end
if numel(source.avg.csdlabel)==1,
source.avg.csdlabel = repmat(source.avg.csdlabel, [Ndipole 1]);
end
dipsel = find(strcmp(source.avg.csdlabel{1}, 'scandip'));
refchansel = find(strcmp(source.avg.csdlabel{1}, 'refchan'));
refdipsel = find(strcmp(source.avg.csdlabel{1}, 'refdip'));
supchansel = find(strcmp(source.avg.csdlabel{1}, 'supchan'));
supdipsel = find(strcmp(source.avg.csdlabel{1}, 'supdip'));
% cannot handle reference channels and reference dipoles simultaneously
if numel(refchansel)>0 && numel(refdipsel)>0
error('cannot simultaneously handle reference channels and reference dipole');
end
% these are only used to count the number of reference/suppression dipoles and channels
refsel = [refdipsel refchansel];
supsel = [supdipsel supchansel];
% first do the projection of the moment, if requested
if projectmom
source.avg.ori = cell(1, Ndipole);
ft_progress('init', cfg.feedback, 'projecting dipole moment');
for i=insideindx
ft_progress(i/length(insideindx), 'projecting dipole moment %d/%d\n', i, length(insideindx));
if numel(source.avg.csdlabel)>1,
dipsel = find(strcmp(source.avg.csdlabel{i}, 'scandip'));
refchansel = find(strcmp(source.avg.csdlabel{i}, 'refchan'));
refdipsel = find(strcmp(source.avg.csdlabel{i}, 'refdip'));
supchansel = find(strcmp(source.avg.csdlabel{i}, 'supchan'));
supdipsel = find(strcmp(source.avg.csdlabel{i}, 'supdip'));
% these are only used to count the number of reference/suppression dipoles and channels
refsel = [refdipsel refchansel];
supsel = [supdipsel supchansel];
end
mom = source.avg.mom{i}(dipsel, :);
ref = source.avg.mom{i}(refdipsel, :);
sup = source.avg.mom{i}(supdipsel, :);
refchan = source.avg.mom{i}(refchansel, :);
supchan = source.avg.mom{i}(supchansel, :);
% compute the projection of the scanning dipole along the direction of the dominant amplitude
if length(dipsel)>1, [mom, rmom] = svdfft(mom, cfg.numcomp, source.cumtapcnt); else rmom = []; end
source.avg.ori{i} = rmom;
% compute the projection of the reference dipole along the direction of the dominant amplitude
if length(refdipsel)>1, [ref, rref] = svdfft(ref, 1, source.cumtapcnt); else rref = []; end
% compute the projection of the supression dipole along the direction of the dominant amplitude
if length(supdipsel)>1, [sup, rsup] = svdfft(sup, 1, source.cumtapcnt); else rsup = []; end
% compute voxel-level fourier-matrix
source.avg.mom{i} = cat(1, mom, ref, sup, refchan, supchan);
% create rotation-matrix
rotmat = zeros(0, length(source.avg.csdlabel{i}));
if ~isempty(rmom),
rotmat = [rotmat; rmom zeros(numel(refsel)+numel(supsel),1)];
end
if ~isempty(rref),
rotmat = [rotmat; zeros(1, numel(dipsel)), rref, zeros(1,numel(refchansel)+numel(supsel))];
end
if ~isempty(rsup),
rotmat = [rotmat; zeros(1, numel(dipsel)+numel(refdipsel)), rsup, zeros(1,numel(refchansel)+numel(supchansel))];
end
for j=1:length(supchansel)
rotmat(end+1,:) = 0;
rotmat(end,numel(dipsel)+numel(refdipsel)+numel(supdipsel)+j) = 1;
end
for j=1:length(refchansel)
rotmat(end+1,:) = 0;
rotmat(end,numel(dipsel)+numel(refdipsel)+numel(supdipsel)+numel(supchansel)+j) = 1;
end
% compute voxel-level csd-matrix
if isfield(source.avg, 'csd'), source.avg.csd{i} = rotmat * source.avg.csd{i} * rotmat'; end
% compute voxel-level noisecsd-matrix
if isfield(source.avg, 'noisecsd'), source.avg.noisecsd{i} = rotmat * source.avg.noisecsd{i} * rotmat'; end
% compute rotated filter
if isfield(source.avg, 'filter'), source.avg.filter{i} = rotmat * source.avg.filter{i}; end
if isfield(source.avg, 'csdlabel'),
% remember what the interpretation is of all CSD output components
scandiplabel = repmat({'scandip'}, 1, cfg.numcomp); % only one dipole orientation remains
refdiplabel = repmat({'refdip'}, 1, length(refdipsel)>0); % for svdfft at max. only one dipole orientation remains
supdiplabel = repmat({'supdip'}, 1, length(supdipsel)>0); % for svdfft at max. only one dipole orientation remains
refchanlabel = repmat({'refchan'}, 1, length(refchansel));
supchanlabel = repmat({'supchan'}, 1, length(supchansel));
% concatenate all the labels
source.avg.csdlabel{i} = cat(2, scandiplabel, refdiplabel, supdiplabel, refchanlabel, supchanlabel);
end
% compute rotated leadfield
% FIXME in the presence of a refdip and/or supdip, this does not work; leadfield is Nx3
if isfield(source, 'leadfield'),
%FIXME this is a proposed dirty fix
n1 = size(source.leadfield{i},2);
%n2 = size(rotmat,2) - n1;
n2 = size(rotmat,2) - n1 +1; %added 1 JM
source.leadfield{i} = source.leadfield{i} * rotmat(1:n2, 1:n1)';
end
end % for i=insideindx
ft_progress('close');
% update the indices
dipsel = find(strcmp(source.avg.csdlabel, 'scandip'));
refchansel = find(strcmp(source.avg.csdlabel, 'refchan'));
refdipsel = find(strcmp(source.avg.csdlabel, 'refdip'));
supchansel = find(strcmp(source.avg.csdlabel, 'supchan'));
supdipsel = find(strcmp(source.avg.csdlabel, 'supdip'));
refsel = [refdipsel refchansel];
supsel = [supdipsel supchansel];
end % if projectmom
if keeptrials
cumtapcnt = source.cumtapcnt(:);
sumtapcnt = cumsum([0;cumtapcnt]);
Ntrial = length(cumtapcnt);
ft_progress('init', cfg.feedback, 'computing singletrial voxel-level cross-spectral densities');
for triallop = 1:Ntrial
source.trial(triallop).csd = cell(Ndipole, 1); % allocate memory for this trial
source.trial(triallop).mom = cell(Ndipole, 1); % allocate memory for this trial
ft_progress(triallop/Ntrial, 'computing singletrial voxel-level cross-spectral densities %d%d\n', triallop, Ntrial);
for i=insideindx
dat = source.avg.mom{i};
tmpmom = dat(:, sumtapcnt(triallop)+1:sumtapcnt(triallop+1));
tmpcsd = (tmpmom * tmpmom') ./cumtapcnt(triallop);
source.trial(triallop).mom{i} = tmpmom;
source.trial(triallop).csd{i} = tmpcsd;
end % for i=insideindx
end % for triallop
ft_progress('close');
% remove the average, continue with separate trials, but keep track of
% the csdlabel
csdlabel = source.avg.csdlabel;
source = rmfield(source, 'avg');
else
fprintf('using average voxel-level cross-spectral densities\n');
csdlabel = source.avg.csdlabel;
end % if keeptrials
% process the csdlabel for each of the dipoles
hasrefdip = true;
hasrefchan = true;
hassupdip = true;
hassupchan = true;
dipselcell = cell(Ndipole,1);
refdipselcell = cell(Ndipole,1);
refchanselcell = cell(Ndipole,1);
supdipselcell = cell(Ndipole,1);
supchanselcell = cell(Ndipole,1);
for i = insideindx
dipsel = find(strcmp(csdlabel{i}, 'scandip'));
refchansel = find(strcmp(csdlabel{i}, 'refchan'));
refdipsel = find(strcmp(csdlabel{i}, 'refdip'));
supchansel = find(strcmp(csdlabel{i}, 'supchan'));
supdipsel = find(strcmp(csdlabel{i}, 'supdip'));
hasrefdip = ~isempty(refdipsel) && hasrefdip; %NOTE: it has to be true for all dipoles!
hasrefchan = ~isempty(refchansel) && hasrefchan;
hassupdip = ~isempty(supdipsel) && hassupdip;
hassupchan = ~isempty(supchansel) && hassupchan;
dipselcell{i} = dipsel;
refdipselcell{i} = refdipsel;
refchanselcell{i} = refchansel;
supdipselcell{i} = supdipsel;
supchanselcell{i} = supchansel;
end
if keeptrials
% do the processing of the CSD matrices for each trial
if ~strcmp(cfg.supmethod, 'none')
error('suppression is only supported for average CSD');
end
%dipselcell = mat2cell(repmat(dipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(dipsel));
%if hasrefdip, refdipselcell = mat2cell(repmat(refdipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(refdipsel)); end
%if hasrefchan, refchanselcell = mat2cell(repmat(refchansel(:)', [Ndipole 1]), ones(Ndipole,1), length(refchansel)); end
%if hassupdip, supdipselcell = mat2cell(repmat(supdipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(supdipsel)); end
%if hassupchan, supchanselcell = mat2cell(repmat(supchansel(:)', [Ndipole 1]), ones(Ndipole,1), length(supchansel)); end
ft_progress('init', cfg.feedback, 'computing singletrial voxel-level power');
for triallop = 1:Ntrial
%initialize the variables
source.trial(triallop).pow = zeros(Ndipole, 1);
if hasrefdip, source.trial(triallop).refdippow = zeros(Ndipole, 1); end
if hasrefchan, source.trial(triallop).refchanpow = zeros(Ndipole, 1); end
if hassupdip, source.trial(triallop).supdippow = zeros(Ndipole, 1); end
if hassupchan, source.trial(triallop).supchanpow = zeros(Ndipole, 1); end
ft_progress(triallop/Ntrial, 'computing singletrial voxel-level power %d%d\n', triallop, Ntrial);
source.trial(triallop).pow(source.inside) = cellfun(powmethodfun, source.trial(triallop).csd(source.inside), dipselcell(source.inside));
if hasrefdip, source.trial(triallop).refdippow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), refdipselcell(source.inside)); end
if hassupdip, source.trial(triallop).supdippow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), supdipselcell(source.inside)); end
if hasrefchan, source.trial(triallop).refchanpow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), refchanselcell(source.inside)); end
if hassupchan, source.trial(triallop).supchanpow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), supchanselcell(source.inside)); end
%FIXME kan volgens mij niet
if isnoise && isfield(source.trial(triallop), 'noisecsd'),
% compute the power of the noise projected on each source component
source.trial(triallop).noise = cellfun(powmethodfun,source.trial(triallop).csd, dipselcell);
if hasrefdip, source.trial(triallop).refdipnoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, refdipselcell); end
if hassupdip, source.trial(triallop).supdipnoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, supdipselcell); end
if hasrefchan, source.trial(triallop).refchannoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, refchanselcell); end
if hassupchan, source.trial(triallop).supchannoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, supchanselcell); end
end % if isnoise
end % for triallop
ft_progress('close');
if strcmp(cfg.keepcsd, 'no')
source.trial = rmfield(source.trial, 'csd');
end
else
% do the processing of the average CSD matrix
for i=insideindx
switch cfg.supmethod
case 'chan_dip'
supindx = [supdipsel supchansel];
if i==insideindx(1), refsel = refsel - length(supdipsel); end % adjust index only once
case 'chan'
supindx = supchansel;
case 'dip'
supindx = supdipsel;
if i==insideindx(1), refsel = refsel - length(supdipsel); end
case 'none'
% do nothing
supindx = [];
end
tmpcsd = source.avg.csd{i};
scnindx = setdiff(1:size(tmpcsd,1), supindx);
tmpcsd = tmpcsd(scnindx, scnindx) - tmpcsd(scnindx, supindx)*pinv(tmpcsd(supindx, supindx))*tmpcsd(supindx, scnindx);
source.avg.csd{i} = tmpcsd;
end % for i=insideindx
% source.avg.csdlabel = source.avg.csdlabel(scnindx);
if isnoise && ~strcmp(cfg.supmethod, 'none')
source.avg = rmfield(source.avg, 'noisecsd');
end
% initialize the variables
source.avg.pow = nan(Ndipole, 1);
if hasrefdip, source.avg.refdippow = nan(Ndipole, 1); end
if hasrefchan, source.avg.refchanpow = nan(Ndipole, 1); end
if hassupdip, source.avg.supdippow = nan(Ndipole, 1); end
if hassupchan, source.avg.supchanpow = nan(Ndipole, 1); end
if isnoise
source.avg.noise = nan(Ndipole, 1);
if hasrefdip, source.avg.refdipnoise = nan(Ndipole, 1); end
if hasrefchan, source.avg.refchannoise = nan(Ndipole, 1); end
if hassupdip, source.avg.supdipnoise = nan(Ndipole, 1); end
if hassupchan, source.avg.supchannoise = nan(Ndipole, 1); end
end % if isnoise
if hasrefdip||hasrefchan, source.avg.coh = nan(Ndipole, 1); end
if strcmp(cfg.eta, 'yes'),
source.avg.eta = nan(Ndipole, 1);
source.avg.ori = cell(1, Ndipole);
end
if strcmp(cfg.eta, 'yes') && ~isempty(refsel),
source.avg.etacsd = nan(Ndipole, 1);
source.avg.ucsd = cell(1, Ndipole);
end
if strcmp(cfg.fa, 'yes'),
source.avg.fa = nan(Ndipole, 1);
end
for i=insideindx
dipsel = dipselcell{i};
refsel = [refchanselcell{i} refdipselcell{i}];
% compute the power of each source component
if strcmp(cfg.projectmom, 'yes') && cfg.numcomp>1,
source.avg.pow(i) = powmethodfun(source.avg.csd{i}(dipselcell{i},dipselcell{i}), 1);
else
source.avg.pow(i) = powmethodfun(source.avg.csd{i}(dipselcell{i},dipselcell{i}));
end
if hasrefdip, source.avg.refdippow(i) = powmethodfun(source.avg.csd{i}(refdipsel,refdipsel)); end
if hassupdip, source.avg.supdippow(i) = powmethodfun(source.avg.csd{i}(supdipsel,supdipsel)); end
if hasrefchan, source.avg.refchanpow(i) = powmethodfun(source.avg.csd{i}(refchansel,refchansel)); end
if hassupchan, source.avg.supchanpow(i) = powmethodfun(source.avg.csd{i}(supchansel,supchansel)); end
if isnoise
% compute the power of the noise projected on each source component
if strcmp(cfg.projectmom, 'yes') && cfg.numcomp>1,
source.avg.noise(i) = powmethodfun(source.avg.noisecsd{i}(dipselcell{i},dipselcell{i}), 1);
else
source.avg.noise(i) = powmethodfun(source.avg.noisecsd{i}(dipselcell{i},dipselcell{i}));
end
if hasrefdip, source.avg.refdipnoise(i) = powmethodfun(source.avg.noisecsd{i}(refdipsel,refdipsel)); end
if hassupdip, source.avg.supdipnoise(i) = powmethodfun(source.avg.noisecsd{i}(supdipsel,supdipsel)); end
if hasrefchan, source.avg.refchannoise(i) = powmethodfun(source.avg.noisecsd{i}(refchansel,refchansel)); end
if hassupchan, source.avg.supchannoise(i) = powmethodfun(source.avg.noisecsd{i}(supchansel,supchansel)); end
end % if isnoise
if ~isempty(refsel)
% compute coherence
csd = source.avg.csd{i};
switch cfg.cohmethod
case 'regular'
% assume that all dipoles have been projected along the direction of maximum power
Pd = abs(csd(dipsel, dipsel));
Pr = abs(csd(refsel, refsel));
Cdr = csd(dipsel, refsel);
source.avg.coh(i) = (Cdr.^2) ./ (Pd*Pr);
case 'lambda1'
%compute coherence on Joachim Gross' way
Pd = lambda1(csd(dipsel, dipsel));
Pr = lambda1(csd(refsel, refsel));
Cdr = lambda1(csd(dipsel, refsel));
source.avg.coh(i) = abs(Cdr).^2 ./ (Pd*Pr);
case 'canonical'
[ccoh, c2, v1, v2] = cancorr(csd, dipsel, refsel);
[cmax, indmax] = max(ccoh);
source.avg.coh(i) = ccoh(indmax);
otherwise
error('unsupported cohmethod');
end % cohmethod
end
% compute eta
if strcmp(cfg.eta, 'yes')
[source.avg.eta(i), source.avg.ori{i}] = csd2eta(source.avg.csd{i}(dipselcell{i},dipselcell{i}));
if ~isempty(refsel),
%FIXME this only makes sense when only a reference signal OR a dipole is selected
[source.avg.etacsd(i), source.avg.ucsd{i}] = csd2eta(source.avg.csd{i}(dipsel,refsel));
end
end
%compute fa
if strcmp(cfg.fa, 'yes')
source.avg.fa(i) = csd2fa(source.avg.csd{i}(dipsel,dipsel));
end
end % for diplop
if strcmp(cfg.keepcsd, 'no')
source.avg = rmfield(source.avg, 'csd');
end
if strcmp(cfg.keepnoisecsd, 'no') && isnoise
source.avg = rmfield(source.avg, 'noisecsd');
end
end
elseif ismneavg
%the source reconstruction was computed using the minimumnormestimate and contains an average timecourse
if demean
begsmp = nearest(source.time, cfg.baselinewindow(1));
endsmp = nearest(source.time, cfg.baselinewindow(2));
ft_progress('init', cfg.feedback, 'baseline correcting dipole moments');
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'baseline correcting dipole moments %d/%d\n', diplop, length(insideindx));
mom = source.avg.mom{insideindx(diplop)};
mom = ft_preproc_baselinecorrect(mom, begsmp, endsmp);
source.avg.mom{insideindx(diplop)} = mom;
end
ft_progress('close');
end
if projectmom
if isfield(source, 'tri')
nrm = normals(source.pos, source.tri, 'vertex');
source.avg.phi = zeros(size(source.pos,1),1);
end
ft_progress('init', cfg.feedback, 'projecting dipole moment');
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'projecting dipole moment %d/%d\n', diplop, length(insideindx));
mom = source.avg.mom{insideindx(diplop)};
[mom, rmom] = svdfft(mom, 1);
source.avg.mom{insideindx(diplop)} = mom;
source.avg.ori{insideindx(diplop)} = rmom;
end
if isfield(source, 'tri')
for diplop=insideindx
source.avg.phi(diplop) = source.avg.ori{diplop}*nrm(diplop,:)';
end
end
if isfield(source.avg, 'noisecov')
source.avg.noise = nan+zeros(size(source.pos,1),1);
for diplop=insideindx
rmom = source.avg.ori{diplop};
source.avg.noise(diplop) = rmom*source.avg.noisecov{diplop}*rmom';
end
end
ft_progress('close');
end
if zscore
begsmp = nearest(source.time, cfg.baselinewindow(1));
endsmp = nearest(source.time, cfg.baselinewindow(2));
% zscore using baselinewindow for power
ft_progress('init', cfg.feedback, 'computing power');
%source.avg.absmom = source.avg.pow;
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'computing power %d/%d\n', diplop, length(insideindx));
mom = source.avg.mom{insideindx(diplop)};
mmom = mean(mom(:,begsmp:endsmp),2);
smom = std(mom(:,begsmp:endsmp),[],2);
pow = sum(((mom-mmom(:,ones(size(mom,2),1)))./smom(:,ones(size(mom,2),1))).^2,1);
source.avg.pow(insideindx(diplop),:) = pow;
%source.avg.absmom(source.inside(diplop),:) = sum((mom-mmom)./smom,1);
end
ft_progress('close');
else
% just square for power
ft_progress('init', cfg.feedback, 'computing power');
%source.avg.absmom = source.avg.pow;
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'computing power %d/%d\n', diplop, length(insideindx));
mom = source.avg.mom{insideindx(diplop)};
pow = sum(mom.^2,1);
source.avg.pow(insideindx(diplop),:) = pow;
%source.avg.absmom(insideindx(diplop),:) = sum(mom,1);
end
ft_progress('close');
end
if strcmp(cfg.kurtosis, 'yes')
fprintf('computing kurtosis based on dipole timecourse\n');
source.avg.k2 = nan(size(source.pos,1),1);
for diplop=1:length(insideindx)
mom = source.avg.mom{insideindx(diplop)};
if length(mom)~=prod(size(mom))
error('kurtosis can only be computed for projected dipole moment');
end
source.avg.k2(insideindx(diplop)) = kurtosis(mom);
end
end
elseif islcmvavg
% the source reconstruction was computed using the lcmv beamformer and contains an average timecourse
if projectmom
ft_progress('init', cfg.feedback, 'projecting dipole moment');
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'projecting dipole moment %d/%d\n', diplop, length(insideindx));
mom = source.avg.mom{insideindx(diplop)};
[mom, rmom] = svdfft(mom, 1);
source.avg.mom{insideindx(diplop)} = mom;
source.avg.ori{insideindx(diplop)} = rmom;
end
ft_progress('close');
end
if ~strcmp(cfg.powmethod, 'none')
fprintf('recomputing power based on dipole timecourse\n')
source.avg.pow = nan(size(source.pos,1),1);
for diplop=1:length(insideindx)
mom = source.avg.mom{insideindx(diplop)};
cov = mom * mom';
source.avg.pow(insideindx(diplop)) = powmethodfun(cov);
end
end
if strcmp(cfg.kurtosis, 'yes')
fprintf('computing kurtosis based on dipole timecourse\n');
source.avg.k2 = nan(size(source.pos,1),1);
for diplop=1:length(insideindx)
mom = source.avg.mom{insideindx(diplop)};
if length(mom)~=prod(size(mom))
error('kurtosis can only be computed for projected dipole moment');
end
source.avg.k2(insideindx(diplop)) = kurtosis(mom);
end
end
elseif islcmvtrl
% the source reconstruction was computed using the lcmv beamformer and contains a single-trial timecourse
ntrial = length(source.trial);
if projectmom && strcmp(cfg.fixedori, 'within_trials')
% the dipole orientation is re-determined for each trial
ft_progress('init', cfg.feedback, 'projecting dipole moment');
for trllop=1:ntrial
ft_progress(trllop/ntrial, 'projecting dipole moment %d/%d\n', trllop, ntrial);
for diplop=1:length(insideindx)
mom = source.trial(trllop).mom{insideindx(diplop)};
[mom, rmom] = svdfft(mom, 1);
source.trial(trllop).mom{insideindx(diplop)} = mom;
source.trial(trllop).ori{insideindx(diplop)} = rmom; % remember the orientation
end
end
ft_progress('close');
elseif projectmom && strcmp(cfg.fixedori, 'over_trials')
ft_progress('init', cfg.feedback, 'projecting dipole moment');
% compute average covariance over all trials
for trllop=1:ntrial
for diplop=1:length(insideindx)
mom = source.trial(trllop).mom{insideindx(diplop)};
if trllop==1
cov{diplop} = mom*mom'./size(mom,2);
else
cov{diplop} = mom*mom'./size(mom,2) + cov{diplop};
end
end
end
% compute source orientation over all trials
for diplop=1:length(insideindx)
[dum, ori{diplop}] = svdfft(cov{diplop}, 1);
end
% project the data in each trial
for trllop=1:ntrial
ft_progress(trllop/ntrial, 'projecting dipole moment %d/%d\n', trllop, ntrial);
for diplop=1:length(insideindx)
mom = source.trial(trllop).mom{insideindx(diplop)};
mom = ori{diplop}*mom;
source.trial(trllop).mom{insideindx(diplop)} = mom;
source.trial(trllop).ori{insideindx(diplop)} = ori{diplop};
end
end
ft_progress('close');
end
if ~strcmp(cfg.powmethod, 'none')
fprintf('recomputing power based on dipole timecourse\n')
for trllop=1:ntrial
for diplop=1:length(insideindx)
mom = source.trial(trllop).mom{insideindx(diplop)};
cov = mom * mom';
source.trial(trllop).pow(insideindx(diplop)) = powmethodfun(cov);
end
end
end
if strcmp(cfg.kurtosis, 'yes')
fprintf('computing kurtosis based on dipole timecourse\n');
for trllop=1:ntrial
source.trial(trllop).k2 = nan(size(source.pos,1),1);
for diplop=1:length(insideindx)
mom = source.trial(trllop).mom{insideindx(diplop)};
if length(mom)~=numel(mom)
error('kurtosis can only be computed for projected dipole moment');
end
source.trial(trllop).k2(insideindx(diplop)) = kurtosis(mom);
end
end
end
end % dealing with pcc or lcmv input
if isfield(source, 'avg') && isfield(source.avg, 'pow') && isfield(source.avg, 'noise') && ~ismneavg
% compute the neural activity index for the average
source.avg.nai = source.avg.pow(:) ./ source.avg.noise(:);
end
if isfield(source, 'trial') && isfield(source.trial, 'pow') && isfield(source.trial, 'noise')
% compute the neural activity index for the trials
ntrials = length(source.trial);
for trlop=1:ntrials
source.trial(trlop).nai = source.trial(trlop).pow ./ source.trial(trlop).noise;
end
end
if strcmp(source.method, 'randomization') || strcmp(source.method, 'permutation')
% compute the neural activity index for the two randomized conditions
source.avgA.nai = source.avgA.pow ./ source.avgA.noise;
source.avgB.nai = source.avgB.pow ./ source.avgB.noise;
for trlop=1:length(source.trialA)
source.trialA(trlop).nai = source.trialA(trlop).pow ./ source.trialA(trlop).noise;
end
for trlop=1:length(source.trialB)
source.trialB(trlop).nai = source.trialB(trlop).pow ./ source.trialB(trlop).noise;
end
end
if ~isempty(cfg.transform)
fprintf('applying %s transformation on the power and projected noise\n', cfg.transform);
% apply the specified transformation on the power
if isfield(source, 'avg' ) && isfield(source.avg , 'pow'), source.avg .pow = feval(cfg.transform, source.avg .pow); end
if isfield(source, 'avgA' ) && isfield(source.avgA , 'pow'), source.avgA.pow = feval(cfg.transform, source.avgA.pow); end
if isfield(source, 'avgB' ) && isfield(source.avgB , 'pow'), source.avgB.pow = feval(cfg.transform, source.avgB.pow); end
if isfield(source, 'trial' ) && isfield(source.trial , 'pow'), for i=1:length(source.trial ), source.trial (i).pow = feval(cfg.transform, source.trial (i).pow); end; end
if isfield(source, 'trialA') && isfield(source.trialA, 'pow'), for i=1:length(source.trialA), source.trialA(i).pow = feval(cfg.transform, source.trialA(i).pow); end; end
if isfield(source, 'trialB') && isfield(source.trialB, 'pow'), for i=1:length(source.trialB), source.trialB(i).pow = feval(cfg.transform, source.trialB(i).pow); end; end
% apply the specified transformation on the projected noise
if isfield(source, 'avg' ) && isfield(source.avg , 'noise'), source.avg .noise = feval(cfg.transform, source.avg .noise); end
if isfield(source, 'avgA' ) && isfield(source.avgA , 'noise'), source.avgA.noise = feval(cfg.transform, source.avgA.noise); end
if isfield(source, 'avgB' ) && isfield(source.avgB , 'noise'), source.avgB.noise = feval(cfg.transform, source.avgB.noise); end
if isfield(source, 'trial' ) && isfield(source.trial , 'noise'), for i=1:length(source.trial ), source.trial (i).noise = feval(cfg.transform, source.trial (i).noise); end; end
if isfield(source, 'trialA') && isfield(source.trialA, 'noise'), for i=1:length(source.trialA), source.trialA(i).noise = feval(cfg.transform, source.trialA(i).noise); end; end
if isfield(source, 'trialB') && isfield(source.trialB, 'noise'), for i=1:length(source.trialB), source.trialB(i).noise = feval(cfg.transform, source.trialB(i).noise); end; end
end
if strcmp(source.method, 'pseudovalue')
% compute the pseudovalues for the beamformer output
avg = source.trial(1); % the first is the complete average
Ntrials = length(source.trial)-1; % the remaining are the leave-one-out averages
pseudoval = [];
if isfield(source.trial, 'pow')
allavg = getfield(avg, 'pow');
for i=1:Ntrials
thisavg = getfield(source.trial(i+1), 'pow');
thisval = Ntrials*allavg - (Ntrials-1)*thisavg;
pseudoval(i).pow = thisval;
end
end
if isfield(source.trial, 'coh')
allavg = getfield(avg, 'coh');
for i=1:Ntrials
thisavg = getfield(source.trial(i+1), 'coh');
thisval = Ntrials*allavg - (Ntrials-1)*thisavg;
pseudoval(i).coh = thisval;
end
end
if isfield(source.trial, 'nai')
allavg = getfield(avg, 'nai');
for i=1:Ntrials
thisavg = getfield(source.trial(i+1), 'nai');
thisval = Ntrials*allavg - (Ntrials-1)*thisavg;
pseudoval(i).nai = thisval;
end
end
if isfield(source.trial, 'noise')
allavg = getfield(avg, 'noise');
for i=1:Ntrials
thisavg = getfield(source.trial(i+1), 'noise');
thisval = Ntrials*allavg - (Ntrials-1)*thisavg;
pseudoval(i).noise = thisval;
end
end
% store the pseudovalues instead of the original values
source.trial = pseudoval;
end
if strcmp(source.method, 'jackknife') || strcmp(source.method, 'bootstrap') || strcmp(source.method, 'pseudovalue') || strcmp(source.method, 'singletrial') || strcmp(source.method, 'rawtrial')
% compute descriptive statistics (mean, var, sem) for multiple trial data
% compute these for as many source parameters as possible
% for convenience copy the trials out of the source structure
dip = source.trial;
% determine the (original) number of trials in the data
if strcmp(source.method, 'bootstrap') %VERANDERD ER ZAT GEEN .RESAMPLE IN SOURCE
Ntrials = size(source.trial,2);% WAS size(source.resample, 2);
else
Ntrials = length(source.trial);
end
fprintf('original data contained %d trials\n', Ntrials);
% allocate memory for all elements in the dipole structure
sumdip = [];
if isfield(dip(1), 'var'), sumdip.var = zeros(size(dip(1).var )); sumdip.var(~source.inside) = nan; end
if isfield(dip(1), 'pow'), sumdip.pow = zeros(size(dip(1).pow )); sumdip.pow(~source.inside) = nan; end
if isfield(dip(1), 'coh'), sumdip.coh = zeros(size(dip(1).coh )); sumdip.coh(~source.inside) = nan; end
if isfield(dip(1), 'rv'), sumdip.rv = zeros(size(dip(1).rv )); sumdip.rv(~source.inside) = nan; end
if isfield(dip(1), 'noise'), sumdip.noise = zeros(size(dip(1).noise)); sumdip.noise(~source.inside) = nan; end
if isfield(dip(1), 'nai'), sumdip.nai = zeros(size(dip(1).nai )); sumdip.nai(~source.inside) = nan; end
sqrdip = [];
if isfield(dip(1), 'var'), sqrdip.var = zeros(size(dip(1).var )); sqrdip.var(~source.inside) = nan; end
if isfield(dip(1), 'pow'), sqrdip.pow = zeros(size(dip(1).pow )); sqrdip.pow(~source.inside) = nan; end
if isfield(dip(1), 'coh'), sqrdip.coh = zeros(size(dip(1).coh )); sqrdip.coh(~source.inside) = nan; end
if isfield(dip(1), 'rv'), sqrdip.rv = zeros(size(dip(1).rv )); sqrdip.rv(~source.inside) = nan; end
if isfield(dip(1), 'noise'), sqrdip.noise = zeros(size(dip(1).noise)); sqrdip.noise(~source.inside) = nan; end
if isfield(dip(1), 'nai'), sqrdip.nai = zeros(size(dip(1).nai )); sqrdip.nai(~source.inside) = nan; end
if isfield(dip(1), 'mom')
sumdip.mom = cell(size(dip(1).mom));
sqrdip.mom = cell(size(dip(1).mom));
for i=1:length(dip(1).mom)
sumdip.mom{i} = zeros(size(dip(1).mom{i}));
sqrdip.mom{i} = zeros(size(dip(1).mom{i}));
end
end
if isfield(dip(1), 'csd')
sumdip.csd = cell(size(dip(1).csd));
sqrdip.csd = cell(size(dip(1).csd));
for i=1:length(dip(1).csd)
sumdip.csd{i} = zeros(size(dip(1).csd{i}));
sqrdip.csd{i} = zeros(size(dip(1).csd{i}));
end
end
for trial=1:length(dip)
% compute the sum of all values
if isfield(dip(trial), 'var'), sumdip.var = sumdip.var + dip(trial).var; end
if isfield(dip(trial), 'pow'), sumdip.pow = sumdip.pow + dip(trial).pow; end
if isfield(dip(trial), 'coh'), sumdip.coh = sumdip.coh + dip(trial).coh; end
if isfield(dip(trial), 'rv'), sumdip.rv = sumdip.rv + dip(trial).rv; end
if isfield(dip(trial), 'noise'), sumdip.noise = sumdip.noise + dip(trial).noise; end
if isfield(dip(trial), 'nai'), sumdip.nai = sumdip.nai + dip(trial).nai; end
% compute the sum of squared values
if isfield(dip(trial), 'var'), sqrdip.var = sqrdip.var + (dip(trial).var ).^2; end
if isfield(dip(trial), 'pow'), sqrdip.pow = sqrdip.pow + (dip(trial).pow ).^2; end
if isfield(dip(trial), 'coh'), sqrdip.coh = sqrdip.coh + (dip(trial).coh ).^2; end
if isfield(dip(trial), 'rv'), sqrdip.rv = sqrdip.rv + (dip(trial).rv ).^2; end
if isfield(dip(trial), 'noise'), sqrdip.noise = sqrdip.noise + (dip(trial).noise).^2; end
if isfield(dip(trial), 'nai'), sqrdip.nai = sqrdip.nai + (dip(trial).nai ).^2; end
% do the same for the cell array with mom
if isfield(dip(trial), 'mom')
for i=1:length(dip(1).mom)
sumdip.mom{i} = sumdip.mom{i} + dip(trial).mom{i};
sqrdip.mom{i} = sqrdip.mom{i} + (dip(trial).mom{i}).^2;
end
end
% do the same for the cell array with csd
if isfield(dip(trial), 'csd')
for i=1:length(dip(1).csd)
sumdip.csd{i} = sumdip.csd{i} + dip(trial).csd{i};
sqrdip.csd{i} = sqrdip.csd{i} + (dip(trial).csd{i}).^2;
end
end
end
% compute the mean over all repetitions
if isfield(sumdip, 'var'), dipmean.var = sumdip.var / length(dip); end
if isfield(sumdip, 'pow'), dipmean.pow = sumdip.pow / length(dip); end
if isfield(sumdip, 'coh'), dipmean.coh = sumdip.coh / length(dip); end
if isfield(sumdip, 'rv'), dipmean.rv = sumdip.rv / length(dip); end
if isfield(sumdip, 'noise'), dipmean.noise = sumdip.noise / length(dip); end
if isfield(sumdip, 'nai'), dipmean.nai = sumdip.nai / length(dip); end
% for the cell array with mom, this is done further below
% for the cell array with csd, this is done further below
% the estimates for variance and SEM are biased if we are working with the jackknife/bootstrap
% determine the proper variance scaling that corrects for this bias
% note that Ntrials is not always the same as the length of dip, especially in case of the bootstrap
if strcmp(source.method, 'singletrial')
bias = 1;
elseif strcmp(source.method, 'rawtrial')
bias = 1;
elseif strcmp(source.method, 'jackknife')
% Effron gives SEM estimate for the jackknife method in equation 11.5 (paragraph 11.2)
% to get the variance instead of SEM, we also have to multiply with the number of trials
bias = (Ntrials - 1)^2;
elseif strcmp(source.method, 'bootstrap')
% Effron gives SEM estimate for the bootstrap method in algorithm 6.1 (equation 6.6)
% to get the variance instead of SEM, we also have to multiply with the number of trials
bias = Ntrials;
elseif strcmp(source.method, 'pseudovalue')
% note that I have not put any thought in this aspect yet
warning('don''t know how to compute bias for pseudovalue resampling');
bias = 1;
end
% compute the variance over all repetitions
if isfield(sumdip, 'var'), dipvar.var = bias*(sqrdip.var - (sumdip.var .^2)/length(dip))/(length(dip)-1); end
if isfield(sumdip, 'pow'), dipvar.pow = bias*(sqrdip.pow - (sumdip.pow .^2)/length(dip))/(length(dip)-1); end
if isfield(sumdip, 'coh'), dipvar.coh = bias*(sqrdip.coh - (sumdip.coh .^2)/length(dip))/(length(dip)-1); end
if isfield(sumdip, 'rv' ), dipvar.rv = bias*(sqrdip.rv - (sumdip.rv .^2)/length(dip))/(length(dip)-1); end
if isfield(sumdip, 'noise' ), dipvar.noise = bias*(sqrdip.noise - (sumdip.noise .^2)/length(dip))/(length(dip)-1); end
if isfield(sumdip, 'nai' ), dipvar.nai = bias*(sqrdip.nai - (sumdip.nai .^2)/length(dip))/(length(dip)-1); end
% compute the SEM over all repetitions
if isfield(sumdip, 'var'), dipsem.var = (dipvar.var /Ntrials).^0.5; end
if isfield(sumdip, 'pow'), dipsem.pow = (dipvar.pow /Ntrials).^0.5; end
if isfield(sumdip, 'coh'), dipsem.coh = (dipvar.coh /Ntrials).^0.5; end
if isfield(sumdip, 'rv' ), dipsem.rv = (dipvar.rv /Ntrials).^0.5; end
if isfield(sumdip, 'noise' ), dipsem.noise = (dipvar.noise /Ntrials).^0.5; end
if isfield(sumdip, 'nai' ), dipsem.nai = (dipvar.nai /Ntrials).^0.5; end
% compute the mean and SEM over all repetitions for the cell array with mom
if isfield(dip(trial), 'mom')
for i=1:length(dip(1).mom)
dipmean.mom{i} = sumdip.mom{i}/length(dip);
dipvar.mom{i} = bias*(sqrdip.mom{i} - (sumdip.mom{i}.^2)/length(dip))/(length(dip)-1);
dipsem.mom{i} = (dipvar.mom{i}/Ntrials).^0.5;
end
end
% compute the mean and SEM over all repetitions for the cell array with csd
if isfield(dip(trial), 'csd')
for i=1:length(dip(1).csd)
dipmean.csd{i} = sumdip.csd{i}/length(dip);
dipvar.csd{i} = bias*(sqrdip.csd{i} - (sumdip.csd{i}.^2)/length(dip))/(length(dip)-1);
dipsem.csd{i} = (dipvar.csd{i}/Ntrials).^0.5;
end
end
if strcmp(source.method, 'pseudovalue')
% keep the trials, since they have been converted to pseudovalues
% and hence the trials contain the interesting data
elseif keeptrials
% keep the trials upon request
else
% remove the original trials
source = rmfield(source, 'trial');
% assign the descriptive statistics to the output source structure
source.avg = dipmean;
source.var = dipvar;
source.sem = dipsem;
end
end
if strcmp(cfg.resolutionmatrix, 'yes')
% this is only implemented for pcc and no refdips/chans at the moment
Nchan = size(source.leadfield{insideindx(1)}, 1);
Ninside = length(insideindx);
allfilter = zeros(Ninside,Nchan);
allleadfield = zeros(Nchan,Ninside);
dipsel = match_str(source.avg.csdlabel, 'scandip');
ft_progress('init', cfg.feedback, 'computing resolution matrix');
for diplop=1:length(insideindx)
ft_progress(diplop/length(insideindx), 'computing resolution matrix %d/%d\n', diplop, length(insideindx));
% concatenate all filters
allfilter(diplop,:) = source.avg.filter{insideindx(diplop)}(dipsel,:);
% concatenate all leadfields
allleadfield(:,diplop) = source.leadfield{insideindx(diplop)};
end
ft_progress('close');
% multiply the filters and leadfields to obtain the resolution matrix
% see equation 1 and 2 in De Peralta-Menendez RG, Gonzalez-Andino SL: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Transactions on Biomedical Engineering 45: 440-448, 1998.
source.resolution = nan(Ndipole, Ndipole);
source.resolution(insideindx, insideindx) = allfilter*allleadfield;
end
% compute fwhm
if strcmp(cfg.fwhm, 'yes')
switch cfg.fwhmmethod
case 'barnes'
if ~isfield(source, 'dim')
error('computation of fwhm is not possible with method ''barnes'' is not possible when the dipoles are not defined on a regular 3D grid');
end
fprintf('computing fwhm of spatial filters using method ''barnes''\n');
source = estimate_fwhm1(source, cfg.fwhmremovecenter);
case 'gaussfit'
fprintf('computing fwhm of spatial filters using method ''gaussfit''\n');
source = estimate_fwhm2(source, cfg.fwhmmaxdist);
otherwise
error('unknown method for fwhm estimation');
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous source
ft_postamble provenance source
ft_postamble history source
ft_postamble savevar source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to compute eta from a csd-matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [eta, u] = csd2eta(csd)
[u,s,v] = svd(real(csd));
eta = s(2,2)./s(1,1);
u = u'; %orientation is defined in the rows
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to compute fa from a csd-matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fa] = csd2fa(csd)
s = svd(real(csd));
ns = rank(real(csd));
s = s(1:ns);
ms = mean(s);
fa = sqrt( (ns./(ns-1)) .* (sum((s-ms).^2))./(sum(s.^2)) );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to compute power
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = powmethod_lambda1(x, ind)
if nargin==1,
ind = 1:size(x,1);
end
s = svd(x(ind,ind));
p = s(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to compute power
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = powmethod_trace(x, ind)
if nargin==1,
ind = 1:size(x,1);
end
p = trace(x(ind,ind));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to compute power
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = powmethod_regular(x, ind)
if nargin==1,
ind = 1:size(x,1);
end
p = abs(x(ind,ind));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function to obtain the largest singular value or trace of the
% source CSD matrices resulting from DICS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = lambda1(x)
s = svd(x);
s = s(1);
|
github
|
lcnbeapp/beapp-master
|
ft_defacevolume.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_defacevolume.m
| 16,914 |
utf_8
|
5f4be3aba9099ccccbf2f1a745004df0
|
function mri = ft_defacevolume(cfg, mri)
% FT_DEFACEVOLUME allows you to de-identify an anatomical MRI by erasing specific regions, such as the face and ears. The graphical
% user interface allows you to position a box over the anatomical data inside which
% all anatomical voxel values will be replaced by zero. You might have to call this
% function multiple times when both face and ears need to be removed. Following
% defacing, you should check the result with FT_SOURCEPLOT.
%
% Use as
% mri = ft_defacevolume(cfg, mri)
%
% The configuration can contain the following options
% cfg.translate = initial position of the center of the box (default = [0 0 0])
% cfg.scale = initial size of the box along each dimension (default is automatic)
% cfg.translate = initial rotation of the box (default = [0 0 0])
% cfg.selection = which voxels to keep, can be 'inside' or 'outside' (default = 'outside')
% cfg.smooth = 'no' or the FWHM of the gaussian kernel in voxels (default = 'no')
% cfg.keepbrain = 'no' or 'yes', segment and retain the brain (default = 'no')
% cfg.feedback = 'no' or 'yes', whether to provide graphical feedback (default = 'no')
%
% If you specify no smoothing, the selected area will be zero-masked. If you
% specify a certain amount of smoothing (in voxels FWHM), the selected area will
% be replaced by a smoothed version of the data.
%
% See also FT_ANONIMIZEDATA, FT_DEFACEMESH, FT_ANALYSISPIPELINE, FT_SOURCEPLOT
% Copyright (C) 2015-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar mri
ft_preamble provenance mri
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% set the defaults
cfg.rotate = ft_getopt(cfg, 'rotate', [0 0 0]);
cfg.scale = ft_getopt(cfg, 'scale'); % the automatic default is determined further down
cfg.translate = ft_getopt(cfg, 'translate', [0 0 0]);
cfg.selection = ft_getopt(cfg, 'selection', 'outside');
cfg.smooth = ft_getopt(cfg, 'smooth', 'no');
cfg.keepbrain = ft_getopt(cfg, 'keepbrain', 'no');
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
ismri = ft_datatype(mri, 'volume') && isfield(mri, 'anatomy');
ismesh = isfield(mri, 'pos'); % triangles are optional
if ismri
% check if the input data is valid for this function
mri = ft_checkdata(mri, 'datatype', 'volume', 'feedback', 'yes');
end
% determine the size of the "unit" sphere in the origin and the length of the axes
switch mri.unit
case 'mm'
axmax = 150;
rbol = 5;
case 'cm'
axmax = 15;
rbol = 0.5;
case 'm'
axmax = 0.15;
rbol = 0.005;
otherwise
error('unknown units (%s)', unit);
end
figHandle = figure;
set(figHandle, 'CloseRequestFcn', @cb_close);
% clear persistent variables to ensure fresh figure
clear ft_plot_slice
if ismri
% the volumetric data needs to be interpolated onto three orthogonal planes
% determine a resolution that is close to, or identical to the original resolution
[corner_vox, corner_head] = cornerpoints(mri.dim, mri.transform);
diagonal_head = norm(range(corner_head));
diagonal_vox = norm(range(corner_vox));
resolution = diagonal_head/diagonal_vox; % this is in units of "mri.unit"
% create a contrast enhanced version of the anatomy
mri.anatomy = double(mri.anatomy);
dum = unique(mri.anatomy(:));
clim(1) = dum(round(0.05*numel(dum)));
clim(2) = dum(round(0.95*numel(dum)));
anatomy = (mri.anatomy-clim(1))/(clim(2)-clim(1));
ft_plot_ortho(anatomy, 'transform', mri.transform, 'unit', mri.unit, 'resolution', resolution, 'style', 'intersect');
elseif ismesh
ft_plot_mesh(mri);
end
axis vis3d
view([110 36]);
% shift the axes to the left
ax = get(gca, 'position');
ax(1) = 0;
set(gca, 'position', ax);
% get the xyz-axes
xdat = [-axmax 0 0; axmax 0 0];
ydat = [0 -axmax 0; 0 axmax 0];
zdat = [0 0 -axmax; 0 0 axmax];
% get the xyz-axes dotted
xdatdot = (-axmax:(axmax/15):axmax);
xdatdot = xdatdot(1:floor(numel(xdatdot)/2)*2);
xdatdot = reshape(xdatdot, [2 numel(xdatdot)/2]);
n = size(xdatdot,2);
ydatdot = [zeros(2,n) xdatdot zeros(2,n)];
zdatdot = [zeros(2,2*n) xdatdot];
xdatdot = [xdatdot zeros(2,2*n)];
% plot axes
hl = line(xdat, ydat, zdat);
set(hl(1), 'linewidth', 1, 'color', 'r');
set(hl(2), 'linewidth', 1, 'color', 'g');
set(hl(3), 'linewidth', 1, 'color', 'b');
hld = line(xdatdot, ydatdot, zdatdot);
for k = 1:n
set(hld(k ), 'linewidth', 3, 'color', 'r');
set(hld(k+n*1), 'linewidth', 3, 'color', 'g');
set(hld(k+n*2), 'linewidth', 3, 'color', 'b');
end
if isempty(cfg.scale)
cfg.scale = [axmax axmax axmax]/2;
end
guidata(figHandle, cfg);
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
uiwait(figHandle);
cfg = guidata(figHandle);
delete(figHandle);
drawnow
fprintf('keeping all voxels from MRI that are %s the box\n', cfg.selection)
% the order of application is scale, rotate, translate
S = cfg.S;
R = cfg.R;
T = cfg.T;
if ismri
% it is possible to convert the box to headcoordinates, but it is more efficient the other way around
[X, Y, Z] = ndgrid(1:mri.dim(1), 1:mri.dim(2), 1:mri.dim(3));
voxpos = ft_warp_apply(mri.transform, [X(:) Y(:) Z(:)]); % voxel positions in head coordinates
voxpos = ft_warp_apply(inv(T*R*S), voxpos); % voxel positions in box coordinates
remove = ...
voxpos(:,1) > -0.5 & ...
voxpos(:,1) < +0.5 & ...
voxpos(:,2) > -0.5 & ...
voxpos(:,2) < +0.5 & ...
voxpos(:,3) > -0.5 & ...
voxpos(:,3) < +0.5;
elseif ismesh || issource
meshpos = ft_warp_apply(inv(T*R*S), mri.pos); % mesh vertex positions in box coordinates
remove = ...
meshpos(:,1) > -0.5 & ...
meshpos(:,1) < +0.5 & ...
meshpos(:,2) > -0.5 & ...
meshpos(:,2) < +0.5 & ...
meshpos(:,3) > -0.5 & ...
meshpos(:,3) < +0.5;
end
if strcmp(cfg.selection, 'inside')
% invert the selection, i.e. keep the voxels inside the box
remove = ~remove;
end
if ismri
if istrue(cfg.keepbrain)
tmpcfg = [];
tmpcfg.output = {'brain'};
seg = ft_volumesegment(tmpcfg, mri);
fprintf('keeping voxels in brain segmentation\n');
% keep the tissue of the brain
remove(seg.brain) = 0;
clear seg
end
if istrue(cfg.feedback)
tmpmri = keepfields(mri, {'anatomy', 'transform', 'coordsys', 'units', 'dim'});
tmpmri.remove = remove;
tmpcfg = [];
tmpcfg.funparameter = 'remove';
ft_sourceplot(tmpcfg, tmpmri);
end
if isequal(cfg.smooth, 'no')
fprintf('zero-filling %.0f%% of the volume\n', 100*mean(remove));
mri.anatomy(remove) = 0;
else
tmp = mri.anatomy;
tmp = (1 + 0.5.*randn(size(tmp))).*tmp; % add 50% noise to each voxel
tmp = volumesmooth(tmp, cfg.smooth, 'anatomy');
fprintf('smoothing %.0f%% of the volume\n', 100*mean(remove));
mri.anatomy(remove) = tmp(remove);
end
elseif ismesh
% determine all fields that might need to be defaced
fn = setdiff(fieldnames(mri), ignorefields('deface'));
dimord = cell(size(fn));
for i=1:numel(fn)
dimord{i} = getdimord(mri, fn{i});
end
% this applies to headshapes and meshes in general
fprintf('keeping %d and removing %d vertices in the mesh\n', sum(remove==0), sum(remove==1));
if isfield(mri, 'tri')
[mri.pos, mri.tri] = remove_vertices(mri.pos, mri.tri, remove);
elseif isfield(mri, 'tet')
[mri.pos, mri.tet] = remove_vertices(mri.pos, mri.tet, remove);
elseif isfield(mri, 'hex')
[mri.pos, mri.hex] = remove_vertices(mri.pos, mri.hex, remove);
else
mri.pos = mri.pos(~remove,1:3);
end
for i=1:numel(fn)
dimtok = tokenize(dimord{i}, '_');
% do some sanity checks
if any(strcmp(dimtok, '{pos}'))
error('not supported');
end
if numel(dimtok)>5
error('too many dimensions');
end
% remove the same positions from each matching dimension
if numel(dimtok)>0 && strcmp(dimtok{1}, 'pos')
mri.(fn{i}) = mri.(fn{i})(~remove,:,:,:,:);
end
if numel(dimtok)>1 && strcmp(dimtok{2}, 'pos')
mri.(fn{i}) = mri.(fn{i})(:,~remove,:,:,:);
end
if numel(dimtok)>2 && strcmp(dimtok{3}, 'pos')
mri.(fn{i}) = mri.(fn{i})(:,:,~remove,:,:);
end
if numel(dimtok)>3 && strcmp(dimtok{4}, 'pos')
mri.(fn{i}) = mri.(fn{i})(:,:,:,~remove,:);
end
if numel(dimtok)>4 && strcmp(dimtok{5}, 'pos')
mri.(fn{i}) = mri.(fn{i})(:,:,:,:,~remove);
end
end % for fn
mri = removefields(mri, {'dim', 'transform'}); % these fields don't apply any more
end % ismesh
% remove the temporary fields from the configuration, keep the rest for provenance
cfg = removefields(cfg, {'R', 'S', 'T'});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous mri
ft_postamble provenance mri
ft_postamble history mri
ft_postamble savevar mri
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(figHandle, varargin)
persistent p
% define the position of each GUI element
figHandle = get(figHandle, 'parent');
cfg = guidata(figHandle);
rx = str2double(get(findobj(figHandle, 'tag', 'rx'), 'string'));
ry = str2double(get(findobj(figHandle, 'tag', 'ry'), 'string'));
rz = str2double(get(findobj(figHandle, 'tag', 'rz'), 'string'));
tx = str2double(get(findobj(figHandle, 'tag', 'tx'), 'string'));
ty = str2double(get(findobj(figHandle, 'tag', 'ty'), 'string'));
tz = str2double(get(findobj(figHandle, 'tag', 'tz'), 'string'));
sx = str2double(get(findobj(figHandle, 'tag', 'sx'), 'string'));
sy = str2double(get(findobj(figHandle, 'tag', 'sy'), 'string'));
sz = str2double(get(findobj(figHandle, 'tag', 'sz'), 'string'));
% remember the user specified transformation
cfg.rotate = [rx ry rz];
cfg.translate = [tx ty tz];
cfg.scale = [sx sy sz];
R = rotate (cfg.rotate);
T = translate(cfg.translate);
S = scale (cfg.scale);
% remember the transformation matrices
cfg.R = R;
cfg.T = T;
cfg.S = S;
% start with a cube of unit dimensions
x1 = -0.5;
y1 = -0.5;
z1 = -0.5;
x2 = +0.5;
y2 = +0.5;
z2 = +0.5;
plane1 = [
x1 y1 z1
x2 y1 z1
x2 y2 z1
x1 y2 z1];
plane2 = [
x1 y1 z2
x2 y1 z2
x2 y2 z2
x1 y2 z2];
plane3 = [
x1 y1 z1
x1 y2 z1
x1 y2 z2
x1 y1 z2];
plane4 = [
x2 y1 z1
x2 y2 z1
x2 y2 z2
x2 y1 z2];
plane5 = [
x1 y1 z1
x2 y1 z1
x2 y1 z2
x1 y1 z2];
plane6 = [
x1 y2 z1
x2 y2 z1
x2 y2 z2
x1 y2 z2];
plane1 = ft_warp_apply(T*R*S, plane1);
plane2 = ft_warp_apply(T*R*S, plane2);
plane3 = ft_warp_apply(T*R*S, plane3);
plane4 = ft_warp_apply(T*R*S, plane4);
plane5 = ft_warp_apply(T*R*S, plane5);
plane6 = ft_warp_apply(T*R*S, plane6);
if all(ishandle(p))
delete(p);
end
p(1) = patch(plane1(:,1), plane1(:,2), plane1(:,3), 'y');
p(2) = patch(plane2(:,1), plane2(:,2), plane2(:,3), 'y');
p(3) = patch(plane3(:,1), plane3(:,2), plane3(:,3), 'y');
p(4) = patch(plane4(:,1), plane4(:,2), plane4(:,3), 'y');
p(5) = patch(plane5(:,1), plane5(:,2), plane5(:,3), 'y');
p(6) = patch(plane6(:,1), plane6(:,2), plane6(:,3), 'y');
set(p, 'FaceAlpha', 0.3);
guidata(figHandle, cfg);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(figHandle, varargin)
% define the position of each GUI element
figHandle = get(figHandle, 'parent');
cfg = guidata(figHandle);
% constants
CONTROL_WIDTH = 0.05;
CONTROL_HEIGHT = 0.08;
CONTROL_HOFFSET = 0.68;
CONTROL_VOFFSET = 0.20;
% rotateui
uicontrol('tag', 'rotateui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'rotate', 'callback', [])
uicontrol('tag', 'rx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(1)), 'callback', @cb_redraw)
uicontrol('tag', 'ry', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(2)), 'callback', @cb_redraw)
uicontrol('tag', 'rz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'rotateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'rx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'ry', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'rz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
% scaleui
uicontrol('tag', 'scaleui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'scale', 'callback', [])
uicontrol('tag', 'sx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(1)), 'callback', @cb_redraw)
uicontrol('tag', 'sy', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(2)), 'callback', @cb_redraw)
uicontrol('tag', 'sz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'scaleui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sy', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
% translateui
uicontrol('tag', 'translateui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'translate', 'callback', [])
uicontrol('tag', 'tx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(1)), 'callback', @cb_redraw)
uicontrol('tag', 'ty', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(2)), 'callback', @cb_redraw)
uicontrol('tag', 'tz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'translateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'tx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'ty', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'tz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
% somehow the toolbar gets lost in 2012b
set(figHandle, 'toolbar', 'figure');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_close(figHandle, varargin)
% the figure will be closed in the main function after collecting the guidata
uiresume;
|
github
|
lcnbeapp/beapp-master
|
ft_freqanalysis_mvar.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_freqanalysis_mvar.m
| 8,209 |
utf_8
|
455f4261f748338ec12c74948fbda55b
|
function [freq] = ft_freqanalysis_mvar(cfg, data)
% FT_FREQANALYSIS_MVAR performs frequency analysis on
% mvar data, by fourier transformation of the coefficients. The output
% contains cross-spectral density, spectral transfer matrix, and the
% covariance of the innovation noise. The dimord = 'chan_chan(_freq)(_time)
%
% The function is stand-alone, but is typically called through
% FT_FREQANALYSIS, specifying cfg.method = 'mvar'.
%
% Use as
% [freq] = ft_freqanalysis(cfg, data), with cfg.method = 'mvar'
%
% or
%
% [freq] = ft_freqanalysis_mvar(cfg, data)
%
% The input data structure should be a data structure created by
% FT_MVARANALYSIS, i.e. a data-structure of type 'mvar'.
%
% The configuration can contain:
% cfg.foi = vector with the frequencies at which the spectral quantities
% are estimated (in Hz). Default: 0:1:Nyquist
% cfg.feedback = 'none', or any of the methods supported by FT_PROGRESS,
% for providing feedback to the user in the command
% window.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_MVARANALYSIS, FT_DATATYPE_MVAR, FT_PROGRESS
% Copyright (C) 2009, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
cfg.foi = ft_getopt(cfg, 'foi', 'all');
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
%cfg.channel = ft_getopt(cfg, 'channel', 'all');
%cfg.keeptrials = ft_getopt(cfg, 'keeptrials', 'no');
%cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
%cfg.keeptapers = ft_getopt(cfg, 'keeptapers', 'yes');
if strcmp(cfg.foi, 'all'),
cfg.foi = (0:1:data.fsampleorig/2);
end
dimtok = tokenize(data.dimord, '_');
isfull = isfield(data, 'label') && sum(strcmp(dimtok,'chan'))==2;
isuvar = isfield(data, 'label') && sum(strcmp(dimtok,'chan'))==1;
isbvar = isfield(data, 'labelcmb');
if (isfull||isuvar) && isbvar
error('data representaion is ambiguous');
end
if ~isfull && ~isbvar && ~isuvar
error('data representation is unsupported');
end
%keeprpt = strcmp(cfg.keeptrials, 'yes');
%keeptap = strcmp(cfg.keeptapers, 'yes');
%dojack = strcmp(cfg.jackknife, 'yes');
%dozscore = strcmp(cfg.zscore, 'yes');
%if ~keeptap, error('not keeping tapers is not possible yet'); end
%if dojack && keeprpt, error('you cannot simultaneously keep trials and do jackknifing'); end
nfoi = length(cfg.foi);
if isfield(data, 'time')
ntoi = numel(data.time);
else
ntoi = 1;
end
if isfull || isuvar
cfg.channel = ft_channelselection('all', data.label);
%cfg.channel = ft_channelselection(cfg.channel, data.label);
chanindx = match_str(data.label, cfg.channel);
nchan = length(chanindx);
label = data.label(chanindx);
nlag = size(data.coeffs,3); %change in due course
%---allocate memory
h = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
a = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
crsspctrm = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
elseif isbvar
ncmb = size(data.labelcmb,1)./4;
nlag = size(data.coeffs,2);
%---allocate memory
h = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
a = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
crsspctrm = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
end
%FIXME build in repetitions
%---loop over the tois
ft_progress('init', cfg.feedback, 'computing MAR-model based TFR');
for j = 1:ntoi
ft_progress(j/ntoi, 'processing timewindow %d from %d\n', j, ntoi);
if isfull
%---compute transfer function
ar = reshape(data.coeffs(:,:,:,j), [nchan nchan*nlag]);
[h(:,:,:,j), a(:,:,:,j)] = ar2h(ar, cfg.foi, data.fsampleorig);
%---compute cross-spectra
nc = data.noisecov(:,:,j);
for k = 1:nfoi
tmph = h(:,:,k,j);
crsspctrm(:,:,k,j) = tmph*nc*tmph';
end
elseif isuvar
%---compute transfer function
for m = 1:nchan
ar = reshape(data.coeffs(m,:,j), [1 nlag]);
[h(m,m,:,j), a(m,m,:,j)] = ar2h(ar, cfg.foi, data.fsampleorig);
%---compute cross-spectra
nc = data.noisecov(m,j);
for k = 1:nfoi
tmph = h(m,m,k,j);
crsspctrm(m,m,k,j) = tmph*nc*tmph';
end
end
elseif isbvar
for kk = 1:ncmb
%---compute transfer function
ar = reshape(data.coeffs((kk-1)*4+(1:4),:,:,j), [2 2*nlag]);
[tmph,tmpa] = ar2h(ar, cfg.foi, data.fsampleorig);
h((kk-1)*4+(1:4),:,:) = reshape(tmph, [4 nfoi ntoi]);
a((kk-1)*4+(1:4),:,:) = reshape(tmpa, [4 nfoi ntoi]);
%---compute cross-spectra
nc = reshape(data.noisecov((kk-1)*4+(1:4),j), [2 2]);
for k = 1:nfoi
crsspctrm((kk-1)*4+(1:4),k,j) = reshape(tmph(:,:,k)*nc*tmph(:,:,k)', [4 1]);
end
end
end
end
ft_progress('close');
%---create output-structure
freq = [];
freq.freq = cfg.foi;
%freq.cumtapcnt= ones(ntrl, 1)*ntap;
freq.transfer = h;
%freq.itransfer = a;
freq.noisecov = data.noisecov;
freq.crsspctrm = crsspctrm;
if isfield(data, 'dof'),
freq.dof = data.dof;
end
if isfull
freq.label = label;
if ntoi>1
freq.time = data.time;
freq.dimord = 'chan_chan_freq_time';
else
freq.dimord = 'chan_chan_freq';
end
elseif isbvar
freq.labelcmb = data.labelcmb;
if ntoi>1
freq.time = data.time;
freq.dimord = 'chancmb_freq_time';
else
freq.dimord = 'chancmb_freq';
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance freq
ft_postamble history freq
ft_postamble savevar freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to compute transfer-function from ar-parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, zar] = ar2h(ar, foi, fsample)
nchan = size(ar,1);
ncmb = nchan*nchan;
nfoi = length(foi);
%---z-transform frequency axis
zfoi = exp(-2.*pi.*1i.*(foi./fsample));
%---reorganize the ar-parameters
ar = reshape(ar, [ncmb size(ar,2)./nchan]);
ar = fliplr([reshape(eye(nchan), [ncmb 1]) -ar]);
zar = complex(zeros(ncmb, nfoi), zeros(ncmb, nfoi));
for k = 1:ncmb
zar(k,:) = polyval(ar(k,:),zfoi);
end
zar = reshape(zar, [nchan nchan nfoi]);
h = zeros(size(zar));
for k = 1:nfoi
h(:,:,k) = inv(zar(:,:,k));
end
h = sqrt(2).*h; %account for the negative frequencies, normalization necessary for
%comparison with non-parametric (fft based) results in fieldtrip
%FIXME probably the normalization for the zero Hz bin is incorrect
zar = zar./sqrt(2);
|
github
|
lcnbeapp/beapp-master
|
ft_math.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_math.m
| 17,813 |
utf_8
|
c90f403d7bc6a7bb69ba1a6fb9b5b61f
|
function data = ft_math(cfg, varargin)
% FT_MATH performs mathematical operations on FieldTrip data structures,
% such as addition, subtraction, division, etc.
%
% Use as
% data = ft_math(cfg, data1, data2, ...)
% with one or multiple FieldTrip data structures as the input and the configuration
% structure cfg in which you specify the mathematical operation that is to be
% executed on the desired parameter from the data
% cfg.parameter = string, field from the input data on which the operation is
% performed, e.g. 'pow' or 'avg'
% cfg.operation = string, for example '(x1-x2)/(x1+x2)' or 'x1/6'
%
% In the specification of the mathematical operation, x1 is the parameter obtained
% from the first input data structure, x2 from the second, etc.
%
% Rather than specifying the operation as a string that is evaluated, you can also
% specify it as a single operation. The advantage is that it is computed faster.
% cfg.operation = string, can be 'add', 'subtract', 'divide', 'multiply', 'log10', 'abs'
% If you specify only a single input data structure and the operation is 'add',
% 'subtract', 'divide' or 'multiply', the configuration should also contain:
% cfg.scalar = scalar value to be used in the operation
%
% The operation 'add' is implemented as follows
% y = x1 + x2 + ....
% if you specify multiple input arguments, or as
% y = x1 + s
% if you specify one input argument and a scalar value.
%
% The operation 'subtract' is implemented as follows
% y = x1 - x2 - ....
% if you specify multiple input arguments, or as
% y = x1 - s
% if you specify one input argument and a scalar value.
%
% The operation 'divide' is implemented as follows
% y = x1 ./ x2
% if you specify two input arguments, or as
% y = x1 / s
% if you specify one input argument and a scalar value.
%
% The operation 'multiply' is implemented as follows
% y = x1 .* x2
% if you specify two input arguments, or as
% y = x1 * s
% if you specify one input argument and a scalar value.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_DATATYPE
% Undocumented options:
% cfg.matrix = rather than using a scalar, a matrix can be specified. In
% this case, the dimensionality of cfg.matrix should be equal
% to the dimensionality of data.(cfg.parameter). If used in
% combination with cfg.operation, the operation should
% involve element-wise combination of the data and the
% matrix.
% Copyright (C) 2012-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do teh general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
type = ft_datatype(varargin{1});
for i=1:length(varargin)
% check if the input data is valid for this function, that all data types are equal and update old data structures
varargin{i} = ft_checkdata(varargin{i}, 'datatype', type);
end
% ensure that the required options are present
cfg = ft_checkconfig(cfg, 'required', {'operation', 'parameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'value', 'scalar'});
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.coh', 'coh'});
cfg = ft_checkconfig(cfg, 'renamedval', {'funparameter', 'avg.mom', 'mom'});
if ~iscell(cfg.parameter)
cfg.parameter = {cfg.parameter};
end
% this function only works for the upcoming (not yet standard) source representation without sub-structures
if ft_datatype(varargin{1}, 'source')
% update the old-style beamformer source reconstruction
for i=1:length(varargin)
varargin{i} = ft_datatype_source(varargin{i}, 'version', 'upcoming');
end
for p = 1:length(cfg.parameter)
if strncmp(cfg.parameter{p}, 'avg.', 4)
cfg.parameter{p} = cfg.parameter{p}(5:end); % remove the 'avg.' part
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for p=1:length(cfg.parameter)
if ~issubfield(varargin{1}, cfg.parameter{p})
error('the requested parameter is not present in the data');
end
end
% ensure that the data in all inputs has the same channels, time-axis, etc.
tmpcfg = [];
tmpcfg.parameter = cfg.parameter;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
% restore the user-specified parameter option
cfg.parameter = tmpcfg.parameter;
for p = 1:length(cfg.parameter)
dimordtmp{p} = getdimord(varargin{1}, cfg.parameter{p});
if p>1 && ~strcmp(dimordtmp{1}, dimordtmp{p})
error('the dimord of multiple parameters must be the same');
end
end
dimord = dimordtmp{1}; clear dimordtmp
dimtok = tokenize(dimord, '_');
% this determines which descriptive fields will get copied over
haschan = any(strcmp(dimtok, 'chan'));
haschancmb = any(strcmp(dimtok, 'chancmb'));
hasfreq = any(strcmp(dimtok, 'freq'));
hastime = any(strcmp(dimtok, 'time'));
haspos = any(strcmp(dimtok, 'pos'));
% construct the output data structure
data = [];
if haschan
data.label = varargin{1}.label;
end
if haschancmb
data.labelcmb = varargin{1}.labelcmb;
end
if hasfreq
data.freq = varargin{1}.freq;
end
if hastime
data.time = varargin{1}.time;
end
if haspos
if isfield(varargin{1}, 'pos')
data.pos = varargin{1}.pos;
end
if isfield(varargin{1}, 'dim')
data.dim = varargin{1}.dim;
end
if isfield(varargin{1}, 'transform')
data.transform = varargin{1}.transform;
end
end
% use an anonymous function
assign = @(var, val) assignin('caller', var, val);
for p = 1:length(cfg.parameter)
fprintf('selecting %s from the first input argument\n', cfg.parameter{p});
% create the local variables x1, x2, ...
for i=1:length(varargin)
assign(sprintf('x%i', i), getsubfield(varargin{i}, cfg.parameter{p}));
end
% create the local variables s and m
s = ft_getopt(cfg, 'scalar');
m = ft_getopt(cfg, 'matrix');
% check the dimensionality of m against the input data
if ~isempty(m),
for i=1:length(varargin)
ok = isequal(size(getsubfield(varargin{i}, cfg.parameter{p})),size(m));
if ~ok, break; end
end
if ~ok,
error('the dimensions of cfg.matrix do not allow for element-wise operations');
end
end
% only one of these can be defined at the moment (i.e. not allowing for
% operations such as (x1+m)^s for now
if ~isempty(m) && ~isempty(s),
error('you can either specify a cfg.matrix or a cfg.scalar, not both');
end
% touch it to keep track of it in the output cfg
if ~isempty(s), cfg.scalar; end
if ~isempty(m), cfg.matrix; end
% replace s with m, so that the code below is more transparent
if ~isempty(m),
s = m; clear m;
end
if length(varargin)==1
switch cfg.operation
case 'add'
if isscalar(s),
fprintf('adding %f to the %s\n', s, cfg.parameter{p});
else
fprintf('adding the contents of cfg.matrix to the %s\n', cfg.parameter{p});
end
if iscell(x1)
y = cellplus(x1, s);
else
y = x1 + s;
end
case 'subtract'
if isscalar(s),
fprintf('subtracting %f from the %s\n', s, cfg.parameter{p});
else
fprintf('subtracting the contents of cfg.matrix from the %s\n', cfg.parameter{p});
end
if iscell(x1)
y = cellminus(x1, s);
else
y = x1 - s;
end
case 'multiply'
if isscalar(s),
fprintf('multiplying %s with %f\n', cfg.parameter{p}, s);
else
fprintf('multiplying %s with the content of cfg.matrix\n', cfg.parameter{p});
end
fprintf('multiplying %s with %f\n', cfg.parameter{p}, s);
if iscell(x1)
y = celltimes(x1, s);
else
y = x1 .* s;
end
case 'divide'
if isscalar(s),
fprintf('dividing %s by %f\n', cfg.parameter{p}, s);
else
fprintf('dividing %s by the content of cfg.matrix\n', cfg.parameter{p});
end
if iscell(x1)
y = cellrdivide(x1, s);
else
y = x1 ./ s;
end
case 'log10'
fprintf('taking the log10 of %s\n', cfg.parameter{p});
if iscell(x1)
y = celllog10(x1);
else
y = log10(x1);
end
case 'abs'
fprintf('taking the abs of %s\n', cfg.parameter{p});
if iscell(x1)
y = cellabs(x1);
else
y = abs(x1);
end
otherwise
% assume that the operation is descibed as a string, e.g. x1^s
% where x1 is the first argument and s is obtained from cfg.scalar
arginstr = sprintf('x%i,', 1:length(varargin));
arginstr = arginstr(1:end-1); % remove the trailing ','
eval(sprintf('operation = @(%s) %s;', arginstr, cfg.operation));
if ~iscell(varargin{1}.(cfg.parameter{p}))
% gather x1, x2, ... into a cell-array
arginval = eval(sprintf('{%s}', arginstr));
eval(sprintf('operation = @(%s) %s;', arginstr, cfg.operation));
if numel(s)<=1
y = arrayfun(operation, arginval{:});
elseif size(s)==size(arginval{1})
y = feval(operation, arginval{:});
end
else
y = cell(size(x1));
% do the same thing, but now for each element of the cell array
for i=1:numel(y)
for j=1:length(varargin)
% rather than working with x1 and x2, we need to work on its elements
% xx1 is one element of the x1 cell-array
assign(sprintf('xx%d', j), eval(sprintf('x%d{%d}', j, i)))
end
% gather xx1, xx2, ... into a cell-array
arginstr = sprintf('xx%i,', 1:length(varargin));
arginstr = arginstr(1:end-1); % remove the trailing ','
arginval = eval(sprintf('{%s}', arginstr));
if numel(s)<=1
y{i} = arrayfun(operation, arginval{:});
else
y{i} = feval(operation, arginval{:});
end
end % for each element
end % iscell or not
end % switch
else
switch cfg.operation
case 'add'
for i=2:length(varargin)
fprintf('adding the %s input argument\n', nth(i));
if iscell(x1)
y = cellplus(x1, varargin{i}.(cfg.parameter{p}));
else
y = x1 + varargin{i}.(cfg.parameter{p});
end
end
case 'multiply'
for i=2:length(varargin)
fprintf('multiplying with the %s input argument\n', nth(i));
if iscell(x1)
y = celltimes(x1, varargin{i}.(cfg.parameter{p}));
else
y = x1 .* varargin{i}.(cfg.parameter{p});
end
end
case 'subtract'
if length(varargin)>2
error('the operation "%s" requires exactly 2 input arguments', cfg.operation);
end
fprintf('subtracting the 2nd input argument from the 1st\n');
if iscell(x1)
y = cellminus(x1, varargin{2}.(cfg.parameter{p}));
else
y = x1 - varargin{2}.(cfg.parameter{p});
end
case 'divide'
if length(varargin)>2
error('the operation "%s" requires exactly 2 input arguments', cfg.operation);
end
fprintf('dividing the 1st input argument by the 2nd\n');
if iscell(x1)
y = cellrdivide(x1, varargin{2}.(cfg.parameter{p}));
else
y = x1 ./ varargin{2}.(cfg.parameter{p});
end
case 'log10'
if length(varargin)>2
error('the operation "%s" requires exactly 2 input arguments', cfg.operation);
end
fprintf('taking the log difference between the 2nd input argument and the 1st\n');
y = log10(x1 ./ varargin{2}.(cfg.parameter{p}));
otherwise
% assume that the operation is descibed as a string, e.g. (x1-x2)/(x1+x2)
% ensure that all input arguments are being used
for i=1:length(varargin)
assert(~isempty(regexp(cfg.operation, sprintf('x%i', i), 'once')), 'not all input arguments are assigned in the operation')
end
arginstr = sprintf('x%i,', 1:length(varargin));
arginstr = arginstr(1:end-1); % remove the trailing ','
eval(sprintf('operation = @(%s) %s;', arginstr, cfg.operation));
if ~iscell(varargin{1}.(cfg.parameter{p}))
% gather x1, x2, ... into a cell-array
arginval = eval(sprintf('{%s}', arginstr));
eval(sprintf('operation = @(%s) %s;', arginstr, cfg.operation));
if numel(s)<=1
y = arrayfun(operation, arginval{:});
else
y = feval(operation, arginval{:});
end
else
y = cell(size(x1));
% do the same thing, but now for each element of the cell array
for i=1:numel(y)
for j=1:length(varargin)
% rather than working with x1 and x2, we need to work on its elements
% xx1 is one element of the x1 cell-array
assign(sprintf('xx%d', j), eval(sprintf('x%d{%d}', j, i)))
end
% gather xx1, xx2, ... into a cell-array
arginstr = sprintf('xx%i,', 1:length(varargin));
arginstr = arginstr(1:end-1); % remove the trailing ','
arginval = eval(sprintf('{%s}', arginstr));
if numel(s)<=1
y{i} = arrayfun(operation, arginval{:});
else
y{i} = feval(operation, arginval{:});
end
end % for each element
end % iscell or not
end % switch
end % one or multiple input data structures
% store the result of the operation in the output structure
data = setsubfield(data, cfg.parameter{p}, y);
end % p over length(cfg.parameter)
data.dimord = dimord;
% certain fields should remain in the output, but only if they are identical in all inputs
keepfield = {'grad', 'elec', 'inside', 'trialinfo', 'sampleinfo'};
for j=1:numel(keepfield)
if isfield(varargin{1}, keepfield{j})
tmp = varargin{i}.(keepfield{j});
keep = true;
else
keep = false;
end
for i=1:numel(varargin)
if ~isfield(varargin{i}, keepfield{j}) || ~isequal(varargin{i}.(keepfield{j}), tmp)
keep = false;
break
end
end
if keep
data.(keepfield{j}) = tmp;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% deal with the output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = nth(n)
if rem(n,10)==1 && rem(n,100)~=11
s = sprintf('%dst', n);
elseif rem(n,10)==2 && rem(n,100)~=12
s = sprintf('%dnd', n);
elseif rem(n,10)==3 && rem(n,100)~=13
s = sprintf('%drd', n);
else
s = sprintf('%dth', n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS for doing math on each element of a cell-array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function z = cellplus(x, y)
if ~iscell(y)
y = repmat({y}, size(x));
end
z = cellfun(@plus, x, y, 'UniformOutput', false);
function z = cellminus(x, y)
if ~iscell(y)
y = repmat({y}, size(x));
end
z = cellfun(@minus, x, y, 'UniformOutput', false);
function z = celltimes(x, y)
if ~iscell(y)
y = repmat({y}, size(x));
end
z = cellfun(@times, x, y, 'UniformOutput', false);
function z = cellrdivide(x, y)
if ~iscell(y)
y = repmat({y}, size(x));
end
z = cellfun(@rdivide, x, y, 'UniformOutput', false);
function z = celllog10(x)
z = cellfun(@log10, x, 'UniformOutput', false);
function z = cellabs(x)
z = cellfun(@abs, x, 'UniformOutput', false);
|
github
|
lcnbeapp/beapp-master
|
ft_removetmsartifact.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_removetmsartifact.m
| 11,406 |
utf_8
|
422128cb8363b94785f8e75e0e5abce4
|
function data = ft_removetmsartifact(cfg, data)
% FT_REMOVETMSARTIFACT removes TMS artifacts from EEG data
%
% %%
% NOTE: Please be aware that this function is deprecated. Please follow the
% TMS-EEG tutorial instead at http://www.fieldtriptoolbox.org/tutorial/tms-eeg
% %%
%
% Use as
% data = ft_removetmsartifact(cfg, data)
% where the input data is a raw data, for example obtained from FT_PREPROCESSING, and
% cfg is a configuratioun structure that should contain
% cfg.method = string, can be 'twopassfilter', 'interpolatepulse'
% cfg.pulseonset = value or vector, time in seconds of the TMS pulse in seconds
%
% The following options pertain to the 'replace' method
% cfg.pulsewidth = value, pulse pulsewidth to be removed in seconds
% cfg.offset = value, offset with respect to pulse onset to start
% replacing, in seconds.
%
% The following options pertain to the 'twopassfilter' method
% cfg.lpfreq = number in Hz
% cfg.lpfiltord = lowpass filter order
% cfg.lpfilttype = digital filter type, 'but' or 'fir' or 'firls' (default = 'but')
% cfg.pulsewidth = value, pulse pulsewidth to be removed in seconds. If
% set to 0, entire trial will be filtered.
% cfg.offset = value, offset with respect to pulse onset to start
% filtering, in seconds.
%
% See also FT_REJECTARTIFACT, FT_REJECTCOMPONENT
% Copyrights (C) 2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% DEPRECATED by jimher on 19 September 2013
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1791 for more details
warning('FT_REMOVETMSARTIFACT is deprecated, please follow TMS-EEG tutorial instead (http://www.fieldtriptoolbox.org/tutorial/tms-eeg).')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar datain
ft_preamble provenance datain
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'raw'}, 'feedback', 'yes');
% ensure that the required options are present
cfg = ft_checkconfig(cfg, 'required', {'method'});
% get the options
cfg.method = ft_getopt(cfg, 'method'); % there is no default
cfg.pulseonset = ft_getopt(cfg, 'pulseonset');
cfg.pulsewidth = ft_getopt(cfg, 'pulsewidth');
cfg.lpfiltord = ft_getopt(cfg, 'lpfiltord', 2);
cfg.lpfilttype = ft_getopt(cfg, 'lpfilttype', 'but');
cfg.lpfreq = ft_getopt(cfg, 'lpfreq', 30);
cfg.offset = ft_getopt(cfg, 'offset', 0);
cfg.fillmethod = ft_getopt(cfg, 'fillmethod');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numtrl = length(data.trial);
temp_pulse = [];
if ~isfield(data, 'fsample')
fsample = 1/mean(diff(data.time{1}));
else
fsample = data.fsample;
end
if isnumeric(cfg.pulsewidth) && numel(cfg.pulsewidth)==1; temp_pulse = cfg.pulsewidth; end;
% copy for all trials
if isnumeric(cfg.pulseonset) && numel(cfg.pulseonset)==1; cfg.pulseonset = repmat(cfg.pulseonset, numtrl, 1); end
if isnumeric(cfg.pulsewidth) && numel(cfg.pulsewidth)==1; cfg.pulsewidth = repmat(cfg.pulsewidth, numtrl, 1); end
% check wether fields are cell where necessary
if ~iscell(cfg.pulseonset); cfg.pulseonset = num2cell(cfg.pulseonset); end;
if ~iscell(cfg.pulsewidth); cfg.pulsewidth = num2cell(cfg.pulsewidth); end;
if isempty(cfg.pulseonset) || isempty(cfg.pulsewidth)
for i=1:numtrl
[onset, width] = pulsedetect(data.trial{i});
% these should be expressed in seconds
cfg.pulseonset{i} = data.time{i}(onset);
if ~isempty(temp_pulse)
cfg.pulsewidth{i} = repmat(temp_pulse, 1, length(onset));
else
cfg.pulsewidth{i} = width;
end;
fprintf('detected %d pulses in trial %d\n', length(onset), i);
end
end % estimate pulse onset and width
switch cfg.method
case 'twopassfilter'
for i=1:numtrl
for j=1:length(cfg.pulseonset{i})
%tmssample = nearest(data.time{i}, cfg.pulseonset{i}(j));
pulseonset = cfg.pulseonset{i}(j);
pulsewidth = cfg.pulsewidth{i}(j);
offset = cfg.offset;
% express it in samples,
pulseonset = nearest(data.time{i}, pulseonset);
pulsewidth = round(pulsewidth*fsample);
offset = round(offset*fsample);
% get the part of the data that is left and right of the TMS pulse artifact
dat1 = data.trial{i}(:,1:pulseonset);
dat2 = data.trial{i}(:,(pulseonset+1:end));
% filter the two pieces, prevent filter artifacts
[filt1] = ft_preproc_lowpassfilter(dat1,fsample,cfg.lpfreq,cfg.lpfiltord,cfg.lpfilttype,'onepass');
[filt2] = ft_preproc_lowpassfilter(dat2,fsample,cfg.lpfreq,cfg.lpfiltord,cfg.lpfilttype,'onepass-reverse');
% stitch the left and right parts of the data back together
%data.trial{i} = [filt1 filt2];
fill = [filt1 filt2];
% determine a short window around the tms pulse
begsample = pulseonset + offset;
endsample = pulseonset + pulsewidth + offset - 1;
% replace data in the pulse window with a filtered version
if pulsewidth == 0
data.trial{i} = fill;
else
data.trial{i}(:,begsample:endsample) = fill(:,begsample:endsample);
end;
end % for pulses
end % for trials
case 'interpolatepulse'
for i=1:numtrl
for j=1:length(cfg.pulseonset{i})
pulseonset = cfg.pulseonset{i}(j);
pulsewidth = cfg.pulsewidth{i}(j);
offset = cfg.offset;
% express it in samples,
pulseonset = nearest(data.time{i}, pulseonset);
pulsewidth = round(pulsewidth*fsample);
offset = round(offset*fsample);
begsample = pulseonset + offset;
endsample = pulseonset + pulsewidth + offset - 1;
% determine a short window before the TMS pulse
begsample1 = begsample - pulsewidth;
endsample1 = begsample - 1;
% determine a short window after the TMS pulse
begsample2 = endsample + 1;
endsample2 = endsample + pulsewidth;
dat1 = data.trial{i}(:,begsample1:endsample1);
dat2 = data.trial{i}(:,begsample2:endsample2);
%fill = dat1(:,randperm(size(dat1,2))); % randomly shuffle the data points
%fill = mean(dat1,2) + cumsum(std(dat1,[],2).*randn(size(dat1,1),size(dat1,2)));
% fill = linspace(mean(dat1,2),mean(dat2,2),endsample1-begsample1+1);
% fill = fill + cumsum(std(dat1,[],2).*randn(size(dat1,1),size(dat1,2)));
% fill = cumsum(std(dat1,[],2).*randn(size(dat1,1),size(dat1,2)));
switch cfg.fillmethod
case 'fft'
fft_dat1 = fft(dat1);
fft_dat2 = fft(dat2);
fill = real(ifft(mean([fft_dat1; fft_dat2])));
% fill = std(dat1,[],2).*randn(size(dat1,1),size(dat1,2));
% fill = fill .* repmat(hann(size(fill,2))',size(fill,1),1);
% %fill = fill - linspace(fill(:,1),fill(:,end),endsample1-begsample1+1);
% % fill = fill + linspace(mean(dat1,2),mean(dat2,2),endsample1-begsample1+1);
% fill = fill + linspace(dat1(:,end),dat2(:,1),endsample1-begsample1+1);
case 'zeros'
fill = zeros(size(dat1,1),size(dat1,2));
case 'randperm'
fill = dat1(:,randperm(size(dat1,2))); % randomly shuffle the data points
case 'brown'
fill = linspace(mean(dat1,2),mean(dat2,2),endsample1-begsample1+1);
fill = fill + cumsum(std(dat1,[],2).*randn(size(dat1,1),size(dat1,2)));
case 'linear'
fill = interp1([1:size(dat1,2) 2*size(dat1,2)+1:3*size(dat1,2)], [dat1 dat2]', size(dat1,2)+1:2*size(dat1,2),'linear')';
case 'linear+noise'
fill = interp1([1:size(dat1,2) 2*size(dat1,2)+1:3*size(dat1,2)], [dat1 dat2]', size(dat1,2)+1:2*size(dat1,2),'linear')';
fill = fill(2:end-1) + std(dat1,[],2).*randn(size(dat1,1),size(dat1,2));
case 'spline'
fill = interp1([1:size(dat1,2) 2*size(dat1,2)+1:3*size(dat1,2)], [dat1 dat2]', size(dat1,2)+1:2*size(dat1,2),'spline')';
case 'cubic'
fill = interp1([1:size(dat1,2) 2*size(dat1,2)+1:3*size(dat1,2)], [dat1 dat2]', size(dat1,2)+1:2*size(dat1,2),'cubic')';
case 'cubic+noise'
fill = interp1([1:size(dat1,2) 2*size(dat1,2)+1:3*size(dat1,2)], [dat1 dat2]', size(dat1,2)+1:2*length(dat1),'cubic')';
fill = fill + std(dat1,[],2).*randn(size(dat1,1),size(dat1,2));
end;
% FIXME an alternative would be to replace it with an interpolated version of the signal just around it
% FIXME an alternative would be to replace it with nan
% FIXME an alternative would be to replace it with random noise
% replace the data in the pulse window with a random shuffled version of the data just around it
data.trial{i}(:,begsample:endsample) = fill;
end % for pulses
end % for trials
otherwise
error('unsupported method');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% deal with the output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that detects the onset and pulsewidth of one or multiple TMS pulses
% that are present as artifact in a segment of multi-channel EEG data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [onset, pulsewidth] = pulsedetect(dat)
[nchan, ntime] = size(dat);
for i=1:nchan
dat(i,:) = dat(i,:) - median(dat(i,:));
end
dat = sum(abs(dat),1);
threshold = 0.5 * max(dat);
dat = dat>threshold;
dat = [0 diff(dat) 0];
onset = find(dat== 1);
offset = find(dat==-1) - 1;
pulsewidth = offset - onset;
% make the pulse a bit wider
offset = offset - 2*pulsewidth;
pulsewidth = pulsewidth*5;
|
github
|
lcnbeapp/beapp-master
|
ft_interactiverealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_interactiverealign.m
| 22,918 |
utf_8
|
5ef189d255cecff5ebfcdd4c7b876b59
|
function cfg = ft_interactiverealign(cfg)
% FT_INTERACTIVEREALIGN interactively rotates, scales and translates
% electrode positions to template electrode positions or towards
% the head surface.
%
% Use as
% [cfg] = ft_interactiverealign(cfg)
%
% The configuration structure should contain the individuals geometrical
% objects that have to be realigned as
% cfg.individual.elec = structure
% cfg.individual.grad = structure
% cfg.individual.headmodel = structure, see FT_PREPARE_HEADMODEL
% cfg.individual.headmodelstyle = 'edge', 'surface' or 'both' (default = 'edge')
% cfg.individual.headshape = structure, see FT_READ_HEADSHAPE
% cfg.individual.headshapestyle = 'vertex', 'surface' or 'both' (default = 'vertex')
%
% The configuration structure should also contain the geometrical
% objects of a template that serves as target
% cfg.template.elec = structure
% cfg.template.grad = structure
% cfg.template.headmodel = structure, see FT_PREPARE_HEADMODEL
% cfg.template.headmodelstyle = 'edge', 'surface' or 'both' (default = 'edge')
% cfg.template.headshape = structure, see FT_READ_HEADSHAPE
% cfg.template.headshapestyle = 'vertex', 'surface' or 'both' (default = 'vertex')
%
% See also FT_VOLUMEREALIGN, FT_ELECTRODEREALIGN, FT_READ_SENS, FT_READ_VOL, FT_READ_HEADSHAPE
% Copyright (C) 2008, Vladimir Litvak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', {'individual', 'template'});
cfg.individual = ft_checkconfig(cfg.individual, 'renamed', {'vol', 'headmodel'});
cfg.individual = ft_checkconfig(cfg.individual, 'renamed', {'volstyle', 'headmodelstyle'});
cfg.template = ft_checkconfig(cfg.template, 'renamed', {'vol', 'headmodel'});
cfg.template = ft_checkconfig(cfg.template, 'renamed', {'volstyle', 'headmodelstyle'});
cfg.individual.elec = ft_getopt(cfg.individual, 'elec', []);
cfg.individual.grad = ft_getopt(cfg.individual, 'grad', []);
cfg.individual.headshape = ft_getopt(cfg.individual, 'headshape', []);
cfg.individual.headshapestyle = ft_getopt(cfg.individual, 'headshapestyle', 'vertex');
cfg.individual.headmodel = ft_getopt(cfg.individual, 'headmodel', []);
cfg.individual.headmodelstyle = ft_getopt(cfg.individual, 'headmodelstyle', 'edge');
cfg.individual.mri = ft_getopt(cfg.individual, 'mri', []);
cfg.individual.mristyle = ft_getopt(cfg.individual, 'mristyle', 'intersect');
cfg.template.elec = ft_getopt(cfg.template, 'elec', []);
cfg.template.grad = ft_getopt(cfg.template, 'grad', []);
cfg.template.headshape = ft_getopt(cfg.template, 'headshape', []);
cfg.template.headshapestyle = ft_getopt(cfg.template, 'headshapestyle', 'vertex');
cfg.template.headmodel = ft_getopt(cfg.template, 'headmodel', []);
cfg.template.headmodelstyle = ft_getopt(cfg.template, 'headmodelstyle', 'edge');
cfg.template.mri = ft_getopt(cfg.template, 'mri', []);
cfg.template.mristyle = ft_getopt(cfg.template, 'mristyle', 'intersect');
template = struct(cfg.template);
individual = struct(cfg.individual);
% ensure that they are consistent with the latest FieldTrip version
if ~isempty(template.elec)
template.elec = ft_datatype_sens(template.elec);
end
if ~isempty(individual.elec)
individual.elec = ft_datatype_sens(individual.elec);
end
if ~isempty(template.headshape)
template.headshape = fixpos(template.headshape);
end
if ~isempty(individual.headshape)
individual.headshape = fixpos(individual.headshape);
end
% convert the coordinates of all geometrical objects into mm
fn = {'elec', 'grad', 'headshape', 'headmodel', 'mri'};
for i=1:length(fn)
if ~isempty(individual.(fn{i}))
individual.(fn{i}) = ft_convert_units(individual.(fn{i}), 'mm');
end
end
for i=1:length(fn)
if ~isempty(template.(fn{i}))
template.(fn{i}) = ft_convert_units(template.(fn{i}), 'mm');
end
end
if ~isempty(template.headshape)
if ~isfield(template.headshape, 'tri') || isempty(template.headshape.tri)
template.headshape.tri = projecttri(template.headshape.pos);
end
end
if ~isempty(individual.headshape)
if ~isfield(individual.headshape, 'tri') || isempty(individual.headshape.tri)
individual.headshape.tri = projecttri(individual.headshape.pos);
end
end
% open a figure
fig = figure;
set(gca, 'position', [0.05 0.15 0.75 0.75]);
axis([-150 150 -150 150 -150 150]);
% add the data to the figure
set(fig, 'CloseRequestFcn', @cb_quit);
setappdata(fig, 'individual', individual);
setappdata(fig, 'template', template);
setappdata(fig, 'transform', eye(4));
setappdata(fig, 'cleanup', false);
setappdata(fig, 'toggle_axes', 1);
setappdata(fig, 'toggle_grid', 1);
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
rotate3d on
cleanup = false;
while ~cleanup
uiwait(fig);
cfg.m = getappdata(fig, 'transform');
cleanup = getappdata(fig, 'cleanup');
end
% remember the transform and touch it
cfg.m = getappdata(fig, 'transform');
cfg.m;
delete(fig);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(h, eventdata, handles)
% define the position of each GUI element
fig = getparent(h);
% constants
CONTROL_WIDTH = 0.04;
CONTROL_HEIGHT = 0.05;
CONTROL_HOFFSET = 0.75;
CONTROL_VOFFSET = 0.5;
% rotateui
uicontrol('tag', 'rotateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'rotate', 'callback', [])
uicontrol('tag', 'rx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ry', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'rz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'rotateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET+CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'rx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET+CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'ry', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET+CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'rz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET+CONTROL_HEIGHT);
% scaleui
uicontrol('tag', 'scaleui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'scale', 'callback', [])
uicontrol('tag', 'sx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sy', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'scaleui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-0*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-0*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sy', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-0*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-0*CONTROL_HEIGHT);
% translateui
uicontrol('tag', 'translateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'translate', 'callback', [])
uicontrol('tag', 'tx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ty', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'tz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'translateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'ty', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT);
% control buttons
uicontrol('tag', 'viewbtn', 'parent', fig, 'units', 'normalized', 'style', 'popup', 'string', 'top|bottom|left|right|front|back', 'value', 1, 'callback', @cb_view);
uicontrol('tag', 'redisplaybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'redisplay', 'value', [], 'callback', @cb_redraw);
uicontrol('tag', 'applybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'apply', 'value', [], 'callback', @cb_apply);
uicontrol('tag', 'toggle labels', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle label', 'value', 0, 'callback', @cb_redraw);
uicontrol('tag', 'toggle axes', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle axes', 'value', getappdata(fig, 'toggle_axes'), 'callback', @cb_redraw);
uicontrol('tag', 'toggle grid', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle grid', 'value', getappdata(fig, 'toggle_grid'), 'callback', @cb_redraw);
uicontrol('tag', 'quitbtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'quit', 'value', 1, 'callback', @cb_quit);
ft_uilayout(fig, 'tag', 'viewbtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'redisplaybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'applybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle labels', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-6*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle axes', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-7*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle grid', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-8*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'quitbtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-9*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
% alpha ui (somehow not implemented, facealpha is fixed at 0.7
uicontrol('tag', 'alphaui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'alpha', 'value', [], 'callback', []);
uicontrol('tag', 'alpha', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0.6', 'value', [], 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'alphaui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-3*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'alpha', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-3*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(h, eventdata, handles)
fig = getparent(h);
individual = getappdata(fig, 'individual');
template = getappdata(fig, 'template');
transform = getappdata(fig, 'transform');
% get the transformation details
rx = str2double(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2double(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2double(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2double(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2double(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2double(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2double(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2double(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2double(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
% combine the present transform according to the GUI with the one that has been previously applied
transform = H * transform;
axis vis3d; cla
xlabel('x')
ylabel('y')
zlabel('z')
hold on
% the "individual" struct is a local copy, so it is safe to change it here
if ~isempty(individual.headmodel)
individual.headmodel = ft_transform_vol(transform, individual.headmodel);
end
if ~isempty(individual.elec)
individual.elec = ft_transform_sens(transform, individual.elec);
end
if ~isempty(individual.grad)
individual.grad = ft_transform_sens(transform, individual.grad);
end
if ~isempty(individual.headshape)
individual.headshape = ft_transform_headshape(transform, individual.headshape);
end
if ~isempty(individual.mri)
individual.mri.transform = transform * individual.mri.transform;
end
if ~isempty(template.mri)
if strcmp(template.mristyle, 'intersect')
ft_plot_ortho(template.mri.anatomy, 'transform', template.mri.transform, 'style', 'intersect', 'intersectmesh', individual.headshape);
elseif strcmp(template.mristyle, 'montage')
ft_plot_montage(template.mri.anatomy, 'transform', template.mri.transform, 'style', 'intersect', 'intersectmesh', individual.headshape);
end
end
if ~isempty(individual.mri)
if strcmp(individual.mristyle, 'intersect')
ft_plot_ortho(individual.mri.anatomy, 'transform', individual.mri.transform, 'style', 'intersect', 'intersectmesh', template.headshape);
elseif strcmp(individual.mristyle, 'montage')
ft_plot_montage(individual.mri.anatomy, 'transform', individual.mri.transform, 'style', 'intersect', 'intersectmesh', template.headshape);
end
end
if ~isempty(template.elec)
% FIXME use ft_plot_sens
if isfield(template.elec, 'line')
tmpbnd = [];
tmpbnd.pos = template.elec.chanpos;
tmpbnd.tri = template.elec.line;
ft_plot_mesh(tmpbnd,'vertexcolor', 'b', 'facecolor', 'none', 'edgecolor', 'b', 'vertexsize',10)
else
ft_plot_mesh(template.elec.chanpos,'vertexcolor', 'b', 'vertexsize',10);
end
end
if ~isempty(individual.elec)
% FIXME use ft_plot_sens
if isfield(individual.elec, 'line')
tmpbnd = [];
tmpbnd.pos = individual.elec.chanpos;
tmpbnd.tri = individual.elec.line;
ft_plot_mesh(tmpbnd,'vertexcolor', 'r', 'facecolor', 'none', 'edgecolor', 'r', 'vertexsize',10)
else
ft_plot_mesh(individual.elec.chanpos,'vertexcolor', 'r', 'vertexsize',10);
end
end
if ~isempty(template.grad)
% FIXME use ft_plot_sens
ft_plot_mesh(template.grad.chanpos,'vertexcolor', 'b', 'vertexsize',10);
% FIXME also plot lines?
end
if ~isempty(individual.grad)
% FIXME use ft_plot_sens
ft_plot_mesh(individual.grad.chanpos,'vertexcolor', 'r', 'vertexsize',10);
% FIXME also plot lines?
end
if ~isempty(template.headmodel)
% FIXME this only works for boundary element models
if strcmp(template.headmodelstyle, 'edge')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'none';
elseif strcmp(template.headmodelstyle, 'surface')
vertexcolor = 'none';
edgecolor = 'none';
facecolor = 'skin';
elseif strcmp(template.headmodelstyle, 'both')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'skin';
end
for i = 1:numel(template.headmodel.bnd)
ft_plot_mesh(template.headmodel.bnd(i), 'facecolor', facecolor, 'vertexcolor', vertexcolor, 'edgecolor', edgecolor)
end
end
if ~isempty(individual.headmodel)
% FIXME this only works for boundary element models
if strcmp(individual.headmodelstyle, 'edge')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'none';
elseif strcmp(individual.headmodelstyle, 'surface')
vertexcolor = 'none';
edgecolor = 'none';
facecolor = 'skin';
elseif strcmp(individual.headmodelstyle, 'both')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'skin';
end
for i = 1:numel(individual.headmodel.bnd)
ft_plot_mesh(individual.headmodel.bnd(i), 'facecolor', facecolor, 'vertexcolor', vertexcolor, 'edgecolor', edgecolor)
end
end
if ~isempty(template.headshape)
if isfield(template.headshape, 'pos') && ~isempty(template.headshape.pos)
if strcmp(template.headshapestyle, 'edge')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'none';
elseif strcmp(template.headshapestyle, 'surface')
vertexcolor = 'none';
edgecolor = 'none';
facecolor = 'skin';
elseif strcmp(template.headshapestyle, 'both')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'skin';
end
ft_plot_headshape(template.headshape, 'facecolor', facecolor, 'vertexcolor', vertexcolor, 'edgecolor', edgecolor)
end
end
if ~isempty(individual.headshape)
if isfield(individual.headshape, 'pos') && ~isempty(individual.headshape.pos)
if strcmp(individual.headshapestyle, 'edge')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'none';
elseif strcmp(individual.headshapestyle, 'surface')
vertexcolor = 'none';
edgecolor = 'none';
facecolor = 'skin';
elseif strcmp(individual.headshapestyle, 'both')
vertexcolor = 'none';
edgecolor = 'k';
facecolor = 'skin';
end
ft_plot_headshape(individual.headshape, 'facecolor', facecolor, 'vertexcolor', vertexcolor, 'edgecolor', edgecolor)
end
end
alpha(str2double(get(findobj(fig, 'tag', 'alpha'), 'string')));
lighting gouraud
material shiny
camlight
if strcmp(get(h, 'tag'), 'toggle axes')
setappdata(fig, 'toggle_axes', ~getappdata(fig, 'toggle_axes'))
end
if getappdata(fig, 'toggle_axes')
axis on
else
axis off
end
if strcmp(get(h, 'tag'), 'toggle grid')
setappdata(fig, 'toggle_grid', ~getappdata(fig, 'toggle_grid'))
end
if getappdata(fig, 'toggle_grid')
grid on
else
grid off
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_apply(h, eventdata, handles)
fig = getparent(h);
transform = getappdata(fig, 'transform');
% get the transformation details
rx = str2double(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2double(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2double(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2double(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2double(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2double(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2double(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2double(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2double(get(findobj(fig, 'tag', 'sz'), 'string'));
% create the transformation matrix;
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
transform = H * transform;
set(findobj(fig, 'tag', 'rx'), 'string', 0);
set(findobj(fig, 'tag', 'ry'), 'string', 0);
set(findobj(fig, 'tag', 'rz'), 'string', 0);
set(findobj(fig, 'tag', 'tx'), 'string', 0);
set(findobj(fig, 'tag', 'ty'), 'string', 0);
set(findobj(fig, 'tag', 'tz'), 'string', 0);
set(findobj(fig, 'tag', 'sx'), 'string', 1);
set(findobj(fig, 'tag', 'sy'), 'string', 1);
set(findobj(fig, 'tag', 'sz'), 'string', 1);
setappdata(fig, 'transform', transform);
if ~getappdata(fig, 'cleanup')
cb_redraw(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_view(h, eventdata)
% FIXME this is hardcoded for a particular (probably MNI/SPM) coordinate system
val = get(h, 'value');
switch val
case 1
view([90 90]);
case 2
view([90 -90]);
case 3
view([-90 0]);
case 4
view([90 0]);
case 5
view([-180 0]);
case 6
view([0 0]);
otherwise
end
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_quit(h, eventdata)
fig = getparent(h);
setappdata(fig, 'cleanup', true);
% ensure to apply the current transformation
cb_apply(h);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
|
github
|
lcnbeapp/beapp-master
|
ft_neighbourplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_neighbourplot.m
| 14,397 |
utf_8
|
775e543981ae4a5e32195c20d0bbdde8
|
function [cfg] = ft_neighbourplot(cfg, data)
% FT_NEIGHBOURPLOT visualizes neighbouring channels in a particular channel
% configuration. The positions of the channel are specified in a
% gradiometer or electrode configuration or from a layout.
%
% Use as
% ft_neighbourplot(cfg)
% or as
% ft_neighbourplot(cfg, data)
%
% where the configuration can contain
% cfg.verbose = 'yes' or 'no', if 'yes' then the plot callback will include text output
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS (optional)
% cfg.enableedit = 'yes' or 'no' (default). allows the user to
% flexibly add or remove edges between vertices
% or one of the following options
% cfg.layout = filename of the layout, see FT_PREPARE_LAYOUT
% cfg.elec = structure with electrode definition
% cfg.grad = structure with gradiometer definition
% cfg.elecfile = filename containing electrode definition
% cfg.gradfile = filename containing gradiometer definition
%
% If cfg.neighbours is not defined, this function will call
% FT_PREPARE_NEIGHBOURS to determine the channel neighbours. The
% following data fields may also be used by FT_PREPARE_NEIGHBOURS
% data.elec = structure with EEG electrode positions
% data.grad = structure with MEG gradiometer positions
% If cfg.neighbours is empty, no neighbouring sensors are assumed.
%
% Use cfg.enableedit to create or extend your own neighbourtemplate
%
% See also FT_PREPARE_NEIGHBOURS, FT_PREPARE_LAYOUT
% Copyright (C) 2011, J?rn M. Horschig, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
if hasdata
% check if the input data is valid for this function
data = ft_checkdata(data);
end
cfg.enableedit = ft_getopt(cfg, 'enableedit', 'no');
if isfield(cfg, 'neighbours')
cfg.neighbours = cfg.neighbours;
elseif hasdata
cfg.neighbours = ft_prepare_neighbours(cfg, data);
else
cfg.neighbours = ft_prepare_neighbours(cfg);
end
if ~isfield(cfg, 'verbose')
cfg.verbose = 'no';
elseif strcmp(cfg.verbose, 'yes')
cfg.verbose = true;
end
% get the the grad or elec
if hasdata
sens = ft_fetch_sens(cfg, data);
else
sens = ft_fetch_sens(cfg);
end
% insert sensors that are not in neighbourhood structure
if isempty(cfg.neighbours)
nsel = 1:numel(sens.label);
else
nsel = find(~ismember(sens.label, {cfg.neighbours.label}));
end
for i=1:numel(nsel)
cfg.neighbours(end+1).label = sens.label{nsel(i)};
cfg.neighbours(end).neighblabel = {};
end
[tmp, sel] = match_str(sens.label, {cfg.neighbours.label});
cfg.neighbours = cfg.neighbours(sel);
% give some graphical feedback
if all(sens.chanpos(:,3)==0)
% the sensor positions are already projected on a 2D plane
proj = sens.chanpos(:,1:2);
else
% use 3-dimensional data for plotting
proj = sens.chanpos;
end
hf = figure;
axis equal
axis vis3d
axis off
hold on;
hl = [];
for i=1:length(cfg.neighbours)
this = cfg.neighbours(i);
sel1 = match_str(sens.label, this.label);
sel2 = match_str(sens.label, this.neighblabel);
% account for missing sensors
this.neighblabel = sens.label(sel2);
for j=1:length(this.neighblabel)
x1 = proj(sel1,1);
y1 = proj(sel1,2);
x2 = proj(sel2(j),1);
y2 = proj(sel2(j),2);
X = [x1 x2];
Y = [y1 y2];
if size(proj, 2) == 2
hl(sel1, sel2(j)) = line(X, Y, 'color', 'r');
elseif size(proj, 2) == 3
z1 = proj(sel1,3);
z2 = proj(sel2(j),3);
Z = [z1 z2];
hl(sel1, sel2(j)) = line(X, Y, Z, 'color', 'r');
end
end
end
% this is for putting the channels on top of the connections
hs = [];
for i=1:length(cfg.neighbours)
this = cfg.neighbours(i);
sel1 = match_str(sens.label, this.label);
sel2 = match_str(sens.label, this.neighblabel);
% account for missing sensors
this.neighblabel = sens.label(sel2);
if isempty(sel1)
continue;
end
if size(proj, 2) == 2
hs(i) = line(proj(sel1, 1), proj(sel1, 2), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(i).neighblabel))^2, ...
'UserData', i, ...
'ButtonDownFcn', @showLabelInTitle);
elseif size(proj, 2) == 3
hs(i) = line(proj(sel1, 1), proj(sel1, 2), proj(sel1, 3), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(i).neighblabel))^2, ...
'UserData', i, ...
'ButtonDownFcn', @showLabelInTitle);
else
error('Channel coordinates are too high dimensional');
end
end
hold off;
title('[Click on a sensor to see its label]');
% store what is needed in UserData of figure
userdata.lastSensId = [];
userdata.cfg = cfg;
userdata.sens = sens;
userdata.hs = hs;
userdata.hl = hl;
userdata.quit = false;
hf = getparent(hf);
set(hf, 'UserData', userdata);
if istrue(cfg.enableedit)
set(hf, 'CloseRequestFcn', @cleanup_cb);
while ~userdata.quit
uiwait(hf);
userdata = get(hf, 'UserData');
end
cfg = userdata.cfg;
hf = getparent(hf);
delete(hf);
end
% in any case remove SCALE and COMNT
desired = ft_channelselection({'all', '-SCALE', '-COMNT'}, {cfg.neighbours.label});
neighb_idx = ismember({cfg.neighbours.label}, desired);
cfg.neighbours = cfg.neighbours(neighb_idx);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance
end % main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function showLabelInTitle(gcbo, EventData, handles)
userdata = get(gcf, 'UserData');
lastSensId = userdata.lastSensId;
cfg = userdata.cfg;
hs = userdata.hs;
curSensId = get(gcbo, 'UserData');
if lastSensId == curSensId
title('[Click on a sensor to see its label]');
set(hs(curSensId), 'MarkerFaceColor', 'k');
userdata.lastSensId = [];
elseif isempty(lastSensId) || ~istrue(cfg.enableedit)
userdata.lastSensId = curSensId;
if istrue(cfg.enableedit)
title(['Selected channel: ' cfg.neighbours(curSensId).label ' click on another to (dis-)connect']);
else
title(['Selected channel: ' cfg.neighbours(curSensId).label]);
end
if cfg.verbose
str = sprintf('%s, ', cfg.neighbours(curSensId).neighblabel{:});
if length(str)>2
% remove the last comma and space
str = str(1:end-2);
end
fprintf('Selected channel %s, which has %d neighbours: %s\n', ...
cfg.neighbours(curSensId).label, ...
length(cfg.neighbours(curSensId).neighblabel), ...
str);
end
set(hs(curSensId), 'MarkerFaceColor', 'g');
set(hs(lastSensId), 'MarkerFaceColor', 'k');
elseif istrue(cfg.enableedit)
hl = userdata.hl;
sens = userdata.sens;
if all(sens.chanpos(:,3)==0)
% the sensor positions are already projected on a 2D plane
proj = sens.chanpos(:,1:2);
else
% use 3-dimensional data for plotting
proj = sens.chanpos;
end
% find out whether they are connected
connected1 = ismember(cfg.neighbours(curSensId).neighblabel, cfg.neighbours(lastSensId).label);
connected2 = ismember(cfg.neighbours(lastSensId).neighblabel, cfg.neighbours(curSensId).label);
if any(connected1) % then disconnect
cfg.neighbours(curSensId).neighblabel(connected1) = [];
cfg.neighbours(lastSensId).neighblabel(connected2) = [];
title(['Disconnected channels ' cfg.neighbours(curSensId).label ' and ' cfg.neighbours(lastSensId).label]);
delete(hl(curSensId, lastSensId));
hl(curSensId, lastSensId) = 0;
delete(hl(lastSensId, curSensId));
hl(lastSensId, curSensId) = 0;
else % then connect
cfg.neighbours(curSensId).neighblabel{end+1} = cfg.neighbours(lastSensId).label;
cfg.neighbours(lastSensId).neighblabel{end+1} = cfg.neighbours(curSensId).label;
title(['Connected channels ' cfg.neighbours(curSensId).label ' and ' cfg.neighbours(lastSensId).label]);
% draw new edge
x1 = proj(curSensId,1);
y1 = proj(curSensId,2);
x2 = proj(lastSensId,1);
y2 = proj(lastSensId,2);
X = [x1 x2];
Y = [y1 y2];
if size(proj, 2) == 2
hl(curSensId, lastSensId) = line(X, Y, 'color', 'r');
hl(lastSensId, curSensId) = line(X, Y, 'color', 'r');
elseif size(proj, 2) == 3
z1 = proj(curSensId,3);
z2 = proj(lastSensId,3);
Z =[z1 z2];
hl(curSensId, lastSensId) = line(X, Y, Z, 'color', 'r');
hl(lastSensId, curSensId) = line(X, Y, Z, 'color', 'r');
end
end
% draw nodes on top again
delete(hs(curSensId));
delete(hs(lastSensId));
if size(proj, 2) == 2
hs(curSensId) = line(proj(curSensId, 1), proj(curSensId, 2), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(curSensId).neighblabel))^2, ...
'UserData', curSensId, ...
'ButtonDownFcn', @showLabelInTitle);
hs(lastSensId) = line(proj(lastSensId, 1), proj(lastSensId, 2), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(lastSensId).neighblabel))^2, ...
'UserData', lastSensId, ...
'ButtonDownFcn', @showLabelInTitle);
elseif size(proj, 2) == 3
hs(curSensId) = line(proj(curSensId, 1), proj(curSensId, 2), proj(curSensId, 3), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(curSensId).neighblabel))^2, ...
'UserData', curSensId, ...
'ButtonDownFcn', @showLabelInTitle);
hs(lastSensId) = line(proj(lastSensId, 1), proj(lastSensId, 2), proj(lastSensId, 3), ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'k', ...
'Marker', 'o', ...
'MarkerSize', .125*(2+numel(cfg.neighbours(lastSensId).neighblabel))^2, ...
'UserData', lastSensId, ...
'ButtonDownFcn', @showLabelInTitle);
else
error('Channel coordinates are too high dimensional');
end
if cfg.verbose
str = sprintf('%s, ', cfg.neighbours(curSensId).neighblabel{:});
if length(str)>2
% remove the last comma and space
str = str(1:end-2);
end
fprintf('Selected channel %s, which has %d neighbours: %s\n', ...
cfg.neighbours(curSensId).label, ...
length(cfg.neighbours(curSensId).neighblabel), ...
str);
end
set(hs(curSensId), 'MarkerFaceColor', 'g');
set(hs(lastSensId), 'MarkerFaceColor', 'k');
userdata.lastSensId = curSensId;
userdata.hl = hl;
userdata.hs = hs;
userdata.cfg = cfg;
set(gcf, 'UserData', userdata);
return;
else
% can never happen, so do nothing
end
set(gcf, 'UserData', userdata);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cleanup_cb(h, eventdata)
userdata = get(h, 'UserData');
h = getparent(h);
userdata.quit = true;
set(h, 'UserData', userdata);
uiresume
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_appendfreq.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_appendfreq.m
| 14,982 |
utf_8
|
cb5cb36f0468f54d1ad2e83c9b40ee46
|
function [freq] = ft_appendfreq(cfg, varargin)
% FT_APPENDFREQ concatenates multiple frequency or time-frequency data
% structures that have been processed separately. If the input data
% structures contain different channels, it will be concatenated along the
% channel direction. If the channels are identical in the input data
% structures, the data will be concatenated along the repetition dimension.
%
% Use as
% combined = ft_appendfreq(cfg, freq1, freq2, ...)
%
% cfg.parameter = String. Specifies the name of the field to concatenate.
% For example, to concatenate freq1.powspctrm,
% freq2.powspctrm etc, use cft.parameter = 'powspctrm'.
%
% The configuration can optionally contain
% cfg.appenddim = String. The dimension to concatenate over (default is 'auto').
% cfg.tolerance = Double. Tolerance determines how different the units of
% frequency structures are allowed to be to be considered
% compatible (default: 1e-5).
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a
% *.mat file on disk and/or the output data will be written to a *.mat file.
% These mat files should contain only a single variable, corresponding with
% the input/output structure.
%
% See also FT_FREQANALYSIS, FT_APPENDDATA, FT_APPENDTIMELOCK, FT_APPENDSOURCE
% Copyright (C) 2011, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'freq');
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', 'parameter');
% set the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.appenddim = ft_getopt(cfg, 'appenddim', 'auto');
cfg.tolerance = ft_getopt(cfg, 'tolerance', 1e-5);
% do a basic check to see whether the dimords match
Ndata = length(varargin);
dimord = cell(1,Ndata);
for i=1:Ndata
dimord{i} = varargin{i}.dimord;
end
dimordmatch = all(strcmp(dimord{1}, dimord));
if ~dimordmatch
error('the dimords of the input data structures are not equal');
end
% create the output structure from scratch
freq = [];
tol = cfg.tolerance;
dimtok = tokenize(dimord{1}, '_');
switch cfg.appenddim
case 'auto'
% only allow to append across observations if these are present in the data
if any(strcmp(dimtok, 'rpt'))
cfg.appenddim = 'rpt';
elseif any(strcmp(dimtok, 'rpttap'))
cfg.appenddim = 'rpttap';
elseif any(strcmp(dimtok, 'subj'))
cfg.appenddim = 'subj';
else
% we need to check whether the other dimensions are the same.
% if not, consider some tolerance.
boolval1 = checkchan(varargin{:}, 'identical');
boolval2 = checkfreq(varargin{:}, 'identical', tol);
if isfield(varargin{1}, 'time'),
boolval3 = checktime(varargin{:}, 'identical', tol);
if boolval1 && boolval2 && boolval3
% each of the input datasets contains a single repetition (perhaps an average), these can be concatenated
cfg.appenddim = 'rpt';
elseif ~boolval1 && boolval2 && boolval3
cfg.appenddim = 'chan';
elseif boolval1 && ~boolval2 && boolval3
cfg.appenddim = 'freq';
elseif boolval1 && boolval2 && ~boolval3
cfg.appenddim = 'time';
else
error('the input datasets have multiple non-identical dimensions, this function only appends one dimension at a time');
end
else
if boolval1 && boolval2
% each of the input datasets contains a single repetition (perhaps an average), these can be concatenated
cfg.appenddim = 'rpt';
elseif ~boolval1 && boolval2
cfg.appenddim = 'chan';
elseif boolval1 && ~boolval2
cfg.appenddim = 'freq';
end
end
end % determine the dimension for appending
end
switch cfg.appenddim
case {'rpt' 'rpttap' 'subj'}
catdim = find(ismember(dimtok, {'rpt' 'rpttap' 'subj'}));
if numel(catdim)==0
catdim = 0;
elseif numel(catdim)==1
% this is OK
elseif numel(catdim)>1
error('ambiguous dimord for concatenation');
end
% if any of these are present, concatenate
% if not prepend the dimord with rpt (and thus shift the dimensions)
% here we need to check whether the other dimensions are the same. if
% not, consider some tolerance.
boolval1 = checkchan(varargin{:}, 'identical');
boolval2 = checkfreq(varargin{:}, 'identical', tol);
if isfield(varargin{1}, 'time'),
boolval3 = checktime(varargin{:}, 'identical', tol);
else
boolval3 = true;
end
if any([boolval2 boolval3]==false)
error('appending across observations is not possible, because the frequency and/or temporal dimensions are incompatible');
end
% select and reorder the channels that are in every dataset
tmpcfg = [];
tmpcfg.channel = cfg.channel;
tmpcfg.tolerance = cfg.tolerance;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
for i=1:Ndata
[cfg_rolledback, varargin{i}] = rollback_provenance(cfg, varargin{i});
end
cfg = cfg_rolledback;
% update the dimord
if catdim==0
freq.dimord = ['rpt_',varargin{1}.dimord];
% FIXME append dof
else
freq.dimord = varargin{1}.dimord;
% FIXME append dof
% before append cumtapcnt cumsumcnt trialinfo check if there's a
% subfield in each dataset. Append fields of different dataset might
% lead in empty and/or non-existing fields in a particular dataset
hascumsumcnt = [];
hascumtapcnt = [];
hastrialinfo = [];
for i=1:Ndata
if isfield(varargin{i},'cumsumcnt');
hascumsumcnt(end+1) = 1;
else
hascumsumcnt(end+1) = 0;
end
if isfield(varargin{i},'cumtapcnt');
hascumtapcnt(end+1) = 1;
else
hascumtapcnt(end+1) = 0;
end
if isfield(varargin{i},'trialinfo');
hastrialinfo(end+1) = 1;
else
hastrialinfo(end+1) = 0;
end
end
% screen concatenable fields
if ~checkfreq(varargin{:}, 'identical', tol)
error('the freq fields of the input data structures are not equal');
else
freq.freq=varargin{1}.freq;
end
if ~sum(hascumsumcnt)==0 && ~(sum(hascumsumcnt)==Ndata);
error('the cumsumcnt fields of the input data structures are not equal');
else
iscumsumcnt=unique(hascumsumcnt);
end
if ~sum(hascumtapcnt)==0 && ~(sum(hascumtapcnt)==Ndata);
error('the cumtapcnt fields of the input data structures are not equal');
else
iscumtapcnt=unique(hascumtapcnt);
end
if ~sum(hastrialinfo)==0 && ~(sum(hastrialinfo)==Ndata);
error('the trialinfo fields of the input data structures are not equal');
else
istrialinfo=unique(hastrialinfo);
end
% concatenating fields
for i=1:Ndata;
if iscumsumcnt;
cumsumcnt{i}=varargin{i}.cumsumcnt;
end
if iscumtapcnt;
cumtapcnt{i}=varargin{i}.cumtapcnt;
end
if istrialinfo;
trialinfo{i}=varargin{i}.trialinfo;
end
end
% fill in the rest of the descriptive fields
if iscumsumcnt;
freq.cumsumcnt = cat(catdim,cumsumcnt{:});
clear cumsumcnt;
end
if iscumtapcnt;
freq.cumtapcnt = cat(catdim,cumtapcnt{:});
clear cumtapcnt;
end
if istrialinfo;
freq.trialinfo = cat(catdim,trialinfo{:});
clear trialinfo;
end
end
freq.label = varargin{1}.label;
freq.freq = varargin{1}.freq;
if isfield(varargin{1}, 'time'), freq.time = varargin{1}.time; end
case 'chan'
catdim = find(strcmp('chan', dimtok));
if isempty(catdim)
% try chancmb
catdim = find(strcmp('chancmb', dimtok));
elseif numel(catdim)>1
error('ambiguous dimord for concatenation');
end
% check whether all channels are unique and throw an error if not
[boolval, list] = checkchan(varargin{:}, 'unique');
if ~boolval
error('the input data structures have non-unique channels, concatenation across channel is not possible');
end
if isfield(varargin{1}, 'time')
if ~checktime(varargin{:}, 'identical', tol)
error('the input data structures have non-identical time bins, concatenation across channels not possible');
end
end
if ~checkfreq(varargin{:}, 'identical', tol)
error('the input data structures have non-identical frequency bins, concatenation across channels not possible');
end
% update the channel description
freq.label = list;
% fill in the rest of the descriptive fields
freq.freq = varargin{1}.freq;
if isfield(varargin{1}, 'time'), freq.time = varargin{1}.time; end
freq.dimord = varargin{1}.dimord;
case 'freq'
catdim = find(strcmp('freq', dimtok));
% check whether all frequencies are unique and throw an error if not
[boolval, list] = checkfreq(varargin{:}, 'unique', tol);
if ~boolval
error('the input data structures have non-unique frequency bins, concatenation across frequency is not possible');
end
if ~checkchan(varargin{:}, 'identical')
error('the input data structures have non-identical channels, concatenation across frequency not possible');
end
if isfield(varargin{1}, 'time')
if ~checktime(varargin{:}, 'identical', tol)
error('the input data structures have non-identical time bins, concatenation across channels not possible');
end
end
% update the frequency description
freq.freq = list(:)';
% fill in the rest of the descriptive fields
freq.label = varargin{1}.label;
freq.dimord = varargin{1}.dimord;
if isfield(varargin{1}, 'time'), freq.time = varargin{1}.time; end
case 'time'
catdim = find(strcmp('time', dimtok));
% check whether all time points are unique and throw an error if not
[boolval, list] = checktime(varargin{:}, 'unique', tol);
if ~boolval
error('the input data structures have non-unique time bins, concatenation across time is not possible');
end
if ~checkchan(varargin{:}, 'identical')
error('the input data structures have non-identical channels, concatenation across time not possible');
end
if ~checkfreq(varargin{:}, 'identical', tol)
error('the input data structures have non-identical frequency bins, concatenation across time not possible');
end
% update the time description
freq.time = list(:)';
% fill in the rest of the descriptive fields
freq.label = varargin{1}.label;
freq.freq = varargin{1}.freq;
freq.dimord = varargin{1}.dimord;
otherwise
error('it is not allowed to concatenate across dimension %s',cfg.appenddim);
end
param = cfg.parameter;
if ~iscell(param), param = {param}; end
% are we appending along the channel dimension?
catchan = strcmp(cfg.appenddim, 'chan');
chandim = find(strcmp('chan', dimtok));
% concatenate the numeric data
for k = 1:numel(param)
tmp = cell(1,Ndata);
% get the numeric data 'param{k}' if present
for m = 1:Ndata
if ~isfield(varargin{m}, param{k})
error('parameter %s is not present in all data sets', param{k});
end
tmp{m} = varargin{m}.(param{k});
% if we are not appending along the channel dimension, make sure we
% reorder the channel dimension across the different data sets. At this
% point we can be sure that all data sets have identical channels.
if ~catchan && m > 1
[a,b] = match_str(varargin{1}.label, varargin{m}.label);
if ~all(a==b)
tmp{m} = reorderdim(tmp{m}, chandim, b);
end
end
end
if catdim==0,
ndim = length(size(tmp{1}));
freq.(param{k}) = permute(cat(ndim+1,tmp{:}),[ndim+1 1:ndim]);
else
freq.(param{k}) = cat(catdim,tmp{:});
end
end % for k = 1:numel(param)
% deal with the sensor information, if present
if isfield(varargin{1}, 'grad') || isfield(varargin{1}, 'elec')
keepsensinfo = true;
if isfield(varargin{1}, 'grad'), sensfield = 'grad'; end
if isfield(varargin{1}, 'elec'), sensfield = 'elec'; end
for k = 2:Ndata
keepsensinfo = keepsensinfo && isequaln(varargin{1}.(sensfield), varargin{k}.(sensfield));
end
if keepsensinfo,
freq.(sensfield) = varargin{1}.(sensfield);
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance freq
ft_postamble history freq
ft_postamble savevar freq
%---------------------------------------------
% subfunction to check uniqueness of freq bins
function [boolval, faxis] = checkfreq(varargin)
% last input is always the required string
tol = varargin{end};
required = varargin{end-1};
varargin = varargin(1:end-2);
Ndata = numel(varargin);
Nfreq = zeros(1,Ndata);
faxis = zeros(1,0);
for i=1:Ndata
Nfreq(i) = numel(varargin{i}.freq);
faxis = [faxis;varargin{i}.freq(:)];
end
if strcmp(required, 'unique')
boolval = numel(unique(faxis))==numel(faxis) && ~all(isnan(faxis));
% the second condition is included when the freq is set to dummy nan
elseif strcmp(required, 'identical')
% the number of frequency bins needs at least to be the same across
% inputs
boolval = all(Nfreq==Nfreq(1));
if boolval
% then check whether the axes are equal
faxis = reshape(faxis, Nfreq(1), []);
boolval = all(all(abs(faxis - repmat(faxis(:,1), 1, Ndata))<tol)==1);
faxis = faxis(:,1);
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_electroderealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_electroderealign.m
| 38,512 |
utf_8
|
66eebcaea5b14ce2be2ddce9abd44d98
|
function [elec_realigned] = ft_electroderealign(cfg, elec_original)
% FT_ELECTRODEREALING rotates, translates, scales and warps electrode positions. The
% default is to only rotate and translate, i.e. to do a rigid body transformation in
% which only the coordinate system is changed. With the right settings if can apply
% additional deformations to the input sensors (e.g. scale them to better fit the
% skin surface). The different methods are described in detail below.
%
% INTERACTIVE - You can display the skin surface together with the
% electrode or gradiometer positions, and manually (using the graphical
% user interface) adjust the rotation, translation and scaling parameters,
% so that the electrodes correspond with the skin.
%
% FIDUCIAL - You can apply a rigid body realignment based on three fiducial
% locations. After realigning, the fiducials in the input electrode set
% (typically nose, left and right ear) are along the same axes as the
% fiducials in the template electrode set.
%
% TEMPLATE - You can apply a spatial transformation/deformation that
% automatically minimizes the distance between the electrodes or
% gradiometers and a template or sensor array. The warping methods use a
% non-linear search to minimize the distance between the input sensor
% positions and the corresponding template sensors.
%
% HEADSHAPE - You can apply a spatial transformation/deformation that
% automatically minimizes the distance between the electrodes and the head
% surface. The warping methods use a non-linear search to minimize the
% distance between the input sensor positions and the projection of the
% electrodes on the head surface.
%
% PROJECT - This projects all electrodes to the nearest point on the
% head surface mesh.
%
% Use as
% [elec_realigned] = ft_sensorrealign(cfg)
% with the electrode or gradiometer details in the configuration, or as
% [elec_realigned] = ft_sensorrealign(cfg, elec_orig)
% with the electrode or gradiometer definition as 2nd input argument.
%
% The configuration can contain the following options
% cfg.method = string representing the method for aligning or placing the electrodes
% 'interactive' realign manually using a graphical user interface
% 'fiducial' realign using three fiducials (e.g. NAS, LPA and RPA)
% 'template' realign the electrodes to match a template set
% 'headshape' realign the electrodes to fit the head surface
% 'project' projects electrodes onto the head surface
% cfg.warp = string describing the spatial transformation for the template and headshape methods
% 'rigidbody' apply a rigid-body warp (default)
% 'globalrescale' apply a rigid-body warp with global rescaling
% 'traditional' apply a rigid-body warp with individual axes rescaling
% 'nonlin1' apply a 1st order non-linear warp
% 'nonlin2' apply a 2nd order non-linear warp
% 'nonlin3' apply a 3rd order non-linear warp
% 'nonlin4' apply a 4th order non-linear warp
% 'nonlin5' apply a 5th order non-linear warp
% 'dykstra2012' non-linear wrap only for headshape
% method useful for projecting ECoG onto
% cortex hull.
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.fiducial = cell-array with the name of three fiducials used for
% realigning (default = {'nasion', 'lpa', 'rpa'})
% cfg.casesensitive = 'yes' or 'no', determines whether string comparisons
% between electrode labels are case sensitive (default = 'yes')
% cfg.feedback = 'yes' or 'no' (default = 'no')
%
% The electrode positions can be present in the 2nd input argument or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
%
% If you want to realign the EEG electrodes using anatomical fiducials, the template
% has to contain the three fiducials, e.g.
% cfg.target.pos(1,:) = [110 0 0] % location of the nose
% cfg.target.pos(2,:) = [0 90 0] % location of the left ear
% cfg.target.pos(3,:) = [0 -90 0] % location of the right ear
% cfg.target.label = {'NAS', 'LPA', 'RPA'}
%
% If you want to align EEG electrodes to a single or multiple template electrode sets
% (which will be averaged), you should specify the template electrode sets either as
% electrode structures (i.e. when they are already read in memory) or their file
% names using
% cfg.target = single electrode set that serves as standard
% or
% cfg.target{1..N} = list of electrode sets that will be averaged
%
% If you want to align EEG electrodes to the head surface, you should specify the head surface as
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
%
% If you want to align ECoG electrodes to the pial surface, you first need to
% compute the cortex hull with FT_PREPARE_MESH. dykstra2012 uses algorithm
% described in Dykstra et al. (2012, Neuroimage) in which electrodes are
% projected onto pial surface while minimizing the displacement of the
% electrodes from original location and maintaining the grid shape. It relies
% on the optimization toolbox.
% cfg.method = 'headshape'
% cfg.warp = 'dykstra2012'
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
% cfg.feedback = 'yes' or 'no' (feedback includes the output of the iteration
% procedure.
%
% See also FT_READ_SENS, FT_VOLUMEREALIGN, FT_INTERACTIVEREALIGN, FT_PREPARE_MESH
% Copyright (C) 2005-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% the interactive method uses a global variable to get the data from the figure when it is closed
global norm
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar elec_original
ft_preamble provenance elec_original
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'template', 'target'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducials', 'fiducial'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'});
cfg = ft_checkconfig(cfg, 'renamedval', {'warp', 'homogenous', 'rigidbody'});
cfg = ft_checkconfig(cfg, 'renamedval', {'warp', 'homogeneous', 'rigidbody'});
cfg = ft_checkconfig(cfg, 'forbidden', 'outline');
% set the defaults
cfg.warp = ft_getopt(cfg, 'warp', 'rigidbody');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
cfg.casesensitive = ft_getopt(cfg, 'casesensitive', 'no');
cfg.headshape = ft_getopt(cfg, 'headshape', []); % for triangulated head surface, without labels
cfg.target = ft_getopt(cfg, 'target', []); % for electrodes or fiducials, always with labels
cfg.coordsys = ft_getopt(cfg, 'coordsys'); % this allows for automatic template fiducial placement
if ~isempty(cfg.coordsys) && isempty(cfg.target)
% set the template fiducial locations according to the coordinate system
switch lower(cfg.coordsys)
case 'ctf'
cfg.target = [];
cfg.target.coordsys = 'ctf';
cfg.target.pos(1,:) = [100 0 0];
cfg.target.pos(2,:) = [0 80 0];
cfg.target.pos(3,:) = [0 -80 0];
cfg.target.label{1} = 'NAS';
cfg.target.label{2} = 'LPA';
cfg.target.label{3} = 'RPA';
otherwise
error('the %s coordinate system is not automatically supported, please specify fiducial details in cfg.target')
end
end
% ensure that the right cfg options have been set corresponding to the method
switch cfg.method
case 'template' % realign the sensors to match a template set
cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape');
case 'headshape' % realign the sensors to fit the head surface
cfg = ft_checkconfig(cfg, 'required', 'headshape', 'forbidden', 'target');
case 'fiducial' % realign using the NAS, LPA and RPA fiducials
cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape');
end % switch cfg.method
if strcmp(cfg.method, 'fiducial') && isfield(cfg, 'warp') && ~isequal(cfg.warp, 'rigidbody')
warning('The method ''fiducial'' implies a rigid body tramsformation. See also http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1722');
cfg.warp = 'rigidbody';
end
if strcmp(cfg.method, 'fiducial') && isfield(cfg, 'warp') && ~isequal(cfg.warp, 'rigidbody')
warning('The method ''interactive'' implies a rigid body tramsformation. See also http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1722');
cfg.warp = 'rigidbody';
end
if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config')
% convert the nested config-object back into a normal structure
cfg.headshape = struct(cfg.headshape);
end
if isfield(cfg, 'target') && isa(cfg.target, 'config')
% convert the nested config-object back into a normal structure
cfg.target = struct(cfg.target);
end
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
% get the electrode definition that should be warped
if ~hasdata
elec_original = ft_fetch_sens(cfg);
else
% the input electrodes were specified as second input argument
% or read from cfg.inputfile
end
% ensure that the units are specified
elec_original = ft_convert_units(elec_original);
% ensure up-to-date sensor description (Oct 2011)
elec_original = ft_datatype_sens(elec_original);
% ensure that channel and electrode positions are the same
assert(isequaln(elec_original.elecpos, elec_original.chanpos), 'this function requires same electrode and channel positions.');
% remember the original electrode locations and labels and do all the work with a
% temporary copy, this involves channel selection and changing to lower case
elec = elec_original;
% instead of working with all sensors, only work with the fiducials
% this is useful for gradiometer structures
if strcmp(cfg.method, 'fiducial') && isfield(elec, 'fid')
fprintf('using the fiducials instead of the sensor positions\n');
elec.fid.unit = elec.unit;
elec = elec.fid;
end
usetarget = isfield(cfg, 'target') && ~isempty(cfg.target);
useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape);
if usetarget
% get the template electrode definitions
if ~iscell(cfg.target)
cfg.target = {cfg.target};
end
Ntemplate = length(cfg.target);
for i=1:Ntemplate
if isstruct(cfg.target{i})
target(i) = cfg.target{i};
else
target(i) = ft_read_sens(cfg.target{i});
end
end
clear tmp
for i=1:Ntemplate
% ensure up-to-date sensor description
% ensure that the units are consistent with the electrodes
tmp(i) = ft_convert_units(ft_datatype_sens(target(i)), elec.unit);
end
target = tmp;
end
if useheadshape
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'hex')
cfg.headshape = fixpos(cfg.headshape);
fprintf('extracting surface from hexahedral mesh\n');
headshape = mesh2edge(cfg.headshape);
headshape = poly2tri(headshape);
elseif isstruct(cfg.headshape) && isfield(cfg.headshape, 'tet')
cfg.headshape = fixpos(cfg.headshape);
fprintf('extracting surface from tetrahedral mesh\n');
headshape = mesh2edge(cfg.headshape);
elseif isstruct(cfg.headshape) && isfield(cfg.headshape, 'tri')
cfg.headshape = fixpos(cfg.headshape);
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
if ~isfield(headshape, 'tri') && ~isfield(headshape, 'poly')
% generate a closed triangulation from the surface points
headshape.pos = unique(headshape.pos, 'rows');
headshape.tri = projecttri(headshape.pos);
end
headshape = ft_convert_units(headshape, elec.unit); % ensure that the units are consistent with the electrodes
end
% convert all labels to lower case for string comparisons
% this has to be done AFTER keeping the original labels and positions
if strcmp(cfg.casesensitive, 'no')
for i=1:length(elec.label)
elec.label{i} = lower(elec.label{i});
end
if usetarget
for j=1:length(target)
for i=1:length(target(j).label)
target(j).label{i} = lower(target(j).label{i});
end
end
end
end
% start with an empty structure, this will be returned at the end
norm = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(cfg.method, 'template')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = ft_channelselection(cfg.channel, elec.label);
for i=1:Ntemplate
cfg.channel = ft_channelselection(cfg.channel, target(i).label);
end
% make consistent subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.elecpos = elec.elecpos(datsel,:);
for i=1:Ntemplate
[cfgsel, datsel] = match_str(cfg.channel, target(i).label);
target(i).label = target(i).label(datsel);
target(i).elecpos = target(i).elecpos(datsel,:);
end
% compute the average of the target electrode positions
average = ft_average_sens(target);
fprintf('warping electrodes to average template... '); % the newline comes later
[norm.elecpos, norm.m] = ft_warp_optim(elec.elecpos, average.elecpos, cfg.warp);
norm.label = elec.label;
dpre = mean(sqrt(sum((average.elecpos - elec.elecpos).^2, 2)));
dpost = mean(sqrt(sum((average.elecpos - norm.elecpos).^2, 2)));
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% create an empty figure, continued below...
figure
axis equal
axis vis3d
hold on
xlabel('x')
ylabel('y')
zlabel('z')
% plot all electrodes before warping
ft_plot_sens(elec, 'r*');
% plot all electrodes after warping
ft_plot_sens(norm, 'm.', 'label', 'label');
% plot the template electrode locations
ft_plot_sens(average, 'b.');
% plot lines connecting the input and the realigned electrode locations with the template locations
my_line3(elec.elecpos, average.elecpos, 'color', 'r');
my_line3(norm.elecpos, average.elecpos, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'headshape')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = ft_channelselection(cfg.channel, elec.label);
% make subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.elecpos = elec.elecpos(datsel,:);
norm.label = elec.label;
if strcmp(lower(cfg.warp), 'dykstra2012')
norm.elecpos = ft_warp_dykstra2012(elec.elecpos, headshape, cfg.feedback);
else
fprintf('warping electrodes to skin surface... '); % the newline comes later
[norm.elecpos, norm.m] = ft_warp_optim(elec.elecpos, headshape, cfg.warp);
dpre = ft_warp_error([], elec.elecpos, headshape, cfg.warp);
dpost = ft_warp_error(norm.m, elec.elecpos, headshape, cfg.warp);
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'fiducial')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the fiducials have to be present in the electrodes and in the template set
label = intersect(lower(elec.label), lower(target.label));
if ~isfield(cfg, 'fiducial') || isempty(cfg.fiducial)
% try to determine the names of the fiducials automatically
option1 = {'nasion' 'left' 'right'};
option2 = {'nasion' 'lpa' 'rpa'};
option3 = {'nz' 'left' 'right'};
option4 = {'nz' 'lpa' 'rpa'};
option5 = {'nas' 'left' 'right'};
option6 = {'nas' 'lpa' 'rpa'};
if length(match_str(label, option1))==3
cfg.fiducial = option1;
elseif length(match_str(label, option2))==3
cfg.fiducial = option2;
elseif length(match_str(label, option3))==3
cfg.fiducial = option3;
elseif length(match_str(label, option4))==3
cfg.fiducial = option4;
elseif length(match_str(label, option5))==3
cfg.fiducial = option5;
elseif length(match_str(label, option6))==3
cfg.fiducial = option6;
else
error('could not determine consistent fiducials in the input and the target, please specify cfg.fiducial or cfg.coordsys')
end
end
fprintf('matching fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3});
% determine electrode selection
cfg.channel = ft_channelselection(cfg.channel, elec.label);
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.elecpos = elec.elecpos(datsel,:);
if length(cfg.fiducial)~=3
error('you must specify exaclty three fiducials');
end
% do case-insensitive search for fiducial locations
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error('not all fiducials were found in the electrode set');
end
elec_nas = elec.elecpos(nas_indx,:);
elec_lpa = elec.elecpos(lpa_indx,:);
elec_rpa = elec.elecpos(rpa_indx,:);
% FIXME change the flow in the remainder
% if one or more template electrode sets are specified, then align to the average of those
% if no template is specified, then align so that the fiducials are along the axis
% find the matching fiducials in the template and average them
tmpl_nas = nan(Ntemplate,3);
tmpl_lpa = nan(Ntemplate,3);
tmpl_rpa = nan(Ntemplate,3);
for i=1:Ntemplate
nas_indx = match_str(lower(target(i).label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(target(i).label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(target(i).label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error(sprintf('not all fiducials were found in template %d', i));
end
tmpl_nas(i,:) = target(i).elecpos(nas_indx,:);
tmpl_lpa(i,:) = target(i).elecpos(lpa_indx,:);
tmpl_rpa(i,:) = target(i).elecpos(rpa_indx,:);
end
tmpl_nas = mean(tmpl_nas,1);
tmpl_lpa = mean(tmpl_lpa,1);
tmpl_rpa = mean(tmpl_rpa,1);
% realign both to a common coordinate system
elec2common = ft_headcoordinates(elec_nas, elec_lpa, elec_rpa);
templ2common = ft_headcoordinates(tmpl_nas, tmpl_lpa, tmpl_rpa);
% compute the combined transform
norm = [];
norm.m = templ2common \ elec2common;
% apply the transformation to the fiducials as sanity check
norm.elecpos(1,:) = ft_warp_apply(norm.m, elec_nas, 'homogeneous');
norm.elecpos(2,:) = ft_warp_apply(norm.m, elec_lpa, 'homogeneous');
norm.elecpos(3,:) = ft_warp_apply(norm.m, elec_rpa, 'homogeneous');
norm.label = cfg.fiducial;
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
dpre = mean(sqrt(sum((elec.elecpos([nas_indx lpa_indx rpa_indx],:) - [tmpl_nas; tmpl_lpa; tmpl_rpa]).^2, 2)));
nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3}));
dpost = mean(sqrt(sum((norm.elecpos([nas_indx lpa_indx rpa_indx],:) - [tmpl_nas; tmpl_lpa; tmpl_rpa]).^2, 2)));
fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% create an empty figure, continued below...
figure
axis equal
axis vis3d
hold on
xlabel('x')
ylabel('y')
zlabel('z')
% plot the first three electrodes before transformation
my_plot3(elec.elecpos(1,:), 'r*');
my_plot3(elec.elecpos(2,:), 'r*');
my_plot3(elec.elecpos(3,:), 'r*');
my_text3(elec.elecpos(1,:), elec.label{1}, 'color', 'r');
my_text3(elec.elecpos(2,:), elec.label{2}, 'color', 'r');
my_text3(elec.elecpos(3,:), elec.label{3}, 'color', 'r');
% plot the template fiducials
my_plot3(tmpl_nas, 'b*');
my_plot3(tmpl_lpa, 'b*');
my_plot3(tmpl_rpa, 'b*');
my_text3(tmpl_nas, ' nas', 'color', 'b');
my_text3(tmpl_lpa, ' lpa', 'color', 'b');
my_text3(tmpl_rpa, ' rpa', 'color', 'b');
% plot all electrodes after transformation
my_plot3(norm.elecpos, 'm.');
my_plot3(norm.elecpos(1,:), 'm*');
my_plot3(norm.elecpos(2,:), 'm*');
my_plot3(norm.elecpos(3,:), 'm*');
my_text3(norm.elecpos(1,:), norm.label{1}, 'color', 'm');
my_text3(norm.elecpos(2,:), norm.label{2}, 'color', 'm');
my_text3(norm.elecpos(3,:), norm.label{3}, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'interactive')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% give the user instructions
disp('Use the mouse to rotate the head and the electrodes around, and click "redisplay"');
disp('Close the figure when you are done');
% open a figure
fig = figure;
% add the data to the figure
set(fig, 'CloseRequestFcn', @cb_close);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', eye(4));
if useheadshape
setappdata(fig, 'headshape', headshape);
end
if usetarget
% FIXME interactive realigning to template electrodes is not yet supported
% this requires a consistent handling of channel selection etc.
setappdata(fig, 'target', target);
end
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
rotate3d on
waitfor(fig);
% get the data from the figure that was left behind as global variable
tmp = norm;
clear global norm
norm = tmp;
clear tmp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'project')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[dum, prj] = project_elec(elec.elecpos, headshape.pos, headshape.tri);
% replace the electrodes with the projected version
elec.elecpos = prj;
else
error('unknown method');
end % if method
% apply the spatial transformation to all electrodes, and replace the
% electrode labels by their case-sensitive original values
switch cfg.method
case {'template', 'headshape'}
if strcmp(lower(cfg.warp), 'dykstra2012')
elec_realigned = norm;
elec_realigned.unit = elec_original.unit;
else
% the transformation is a linear or non-linear warp, i.e. a vector
try
% convert the vector with fitted parameters into a 4x4 homogenous transformation
% apply the transformation to the original complete set of sensors
elec_realigned = ft_transform_sens(feval(cfg.warp, norm.m), elec_original);
catch
% the previous section will fail for nonlinear transformations
elec_realigned.label = elec_original.label;
try, elec_realigned.elecpos = ft_warp_apply(norm.m, elec_original.elecpos, cfg.warp); end
end
% remember the transformation
elec_realigned.(cfg.warp) = norm.m;
end
case {'fiducial' 'interactive'}
% the transformation is a 4x4 homogenous matrix
% apply the transformation to the original complete set of sensors
elec_realigned = ft_transform_sens(norm.m, elec_original);
% remember the transformation
elec_realigned.homogeneous = norm.m;
case 'project'
% nothing to be done
elec_realigned = elec;
otherwise
error('unknown method');
end
% the coordinate system is in general not defined after transformation
if isfield(elec_realigned, 'coordsys')
elec_realigned = rmfield(elec_realigned, 'coordsys');
end
% in some cases the coordinate system matches that of the input target or headshape
switch cfg.method
case 'template'
if isfield(target, 'coordsys')
elec_realigned.coordsys = target.coordsys;
end
case 'headshape'
if isfield(headshape, 'coordsys')
elec_realigned.coordsys = headshape.coordsys;
end
case 'fiducial'
if isfield(target, 'coordsys')
elec_realigned.coordsys = target.coordsys;
end
case 'interactive'
% the coordinate system is not known
case 'project'
% the coordinate system remains the same
if isfield(elec_original, 'coordsys')
elec_realigned.coordsys = elec_original.coordsys;
end
otherwise
error('unknown method');
end
% channel positions are identical to the electrode positions (this was checked at the start)
elec_realigned.chanpos = elec_realigned.elecpos;
% update it to the latest version
elec_realigned = ft_datatype_sens(elec_realigned);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous elec_original
ft_postamble provenance elec_realigned
ft_postamble history elec_realigned
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% some simple SUBFUNCTIONs that facilitate 3D plotting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = my_plot3(xyz, varargin)
h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function h = my_text3(xyz, varargin)
h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function my_line3(xyzB, xyzE, varargin)
for i=1:size(xyzB,1)
line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:})
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(hObject, eventdata, handles)
% % define the position of each GUI element
fig = get(hObject, 'parent');
% constants
CONTROL_WIDTH = 0.05;
CONTROL_HEIGHT = 0.06;
CONTROL_HOFFSET = 0.7;
CONTROL_VOFFSET = 0.5;
% rotateui
uicontrol('tag', 'rotateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'rotate', 'callback', [])
uicontrol('tag', 'rx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ry', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'rz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'rotateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'rx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'ry', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(fig, 'tag', 'rz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
% scaleui
uicontrol('tag', 'scaleui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'scale', 'callback', [])
uicontrol('tag', 'sx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sy', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
uicontrol('tag', 'sz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '1', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'scaleui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sy', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'sz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
% translateui
uicontrol('tag', 'translateui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'translate', 'callback', [])
uicontrol('tag', 'tx', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'ty', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
uicontrol('tag', 'tz', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0', 'callback', @cb_redraw)
ft_uilayout(fig, 'tag', 'translateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'ty', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(fig, 'tag', 'tz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
% control buttons
uicontrol('tag', 'redisplaybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'redisplay', 'value', [], 'callback', @cb_redraw);
uicontrol('tag', 'applybtn', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'apply', 'value', [], 'callback', @cb_apply);
uicontrol('tag', 'toggle labels', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle label', 'value', 0, 'callback', @cb_redraw);
uicontrol('tag', 'toggle axes', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'toggle axes', 'value', 0, 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'redisplaybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-3*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'applybtn', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle labels', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'toggle axes', 'BackgroundColor', [0.8 0.8 0.8], 'width', 6*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
% alpha ui (somehow not implemented, facealpha is fixed at 0.7
uicontrol('tag', 'alphaui', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'alpha', 'value', [], 'callback', []);
uicontrol('tag', 'alpha', 'parent', fig, 'units', 'normalized', 'style', 'edit', 'string', '0.7', 'value', [], 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'alphaui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-7*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
ft_uilayout(fig, 'tag', 'alpha', 'BackgroundColor', [0.8 0.8 0.8], 'width', 3*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-7*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(hObject, eventdata, handles)
fig = get(hObject, 'parent');
headshape = getappdata(fig, 'headshape');
elec = getappdata(fig, 'elec');
target = getappdata(fig, 'target');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec = ft_transform_sens(H, elec);
axis vis3d; cla
xlabel('x')
ylabel('y')
zlabel('z')
if ~isempty(target)
disp('Plotting the target electrodes in blue');
if size(target.elecpos, 2)==2
hs = plot(target.elecpos(:,1), target.elecpos(:,2), 'b.', 'MarkerSize', 20);
else
hs = plot3(target.elecpos(:,1), target.elecpos(:,2), target.elecpos(:,3), 'b.', 'MarkerSize', 20);
end
end
if ~isempty(headshape)
% plot the faces of the 2D or 3D triangulation
skin = [255 213 119]/255;
ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',0.7);
lighting gouraud
material shiny
camlight
end
if isfield(elec, 'fid') && ~isempty(elec.fid.pos)
disp('Plotting the fiducials in red');
ft_plot_sens(elec.fid,'style', 'r*');
end
if get(findobj(fig, 'tag', 'toggle axes'), 'value')
axis on
grid on
else
axis off
grid on
end
hold on
if get(findobj(fig, 'tag', 'toggle labels'), 'value')
ft_plot_sens(elec,'label', 'on');
else
ft_plot_sens(elec,'label', 'off');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_apply(hObject, eventdata, handles)
fig = get(hObject, 'parent');
elec = getappdata(fig, 'elec');
transform = getappdata(fig, 'transform');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec = ft_transform_headshape(H, elec);
transform = H * transform;
set(findobj(fig, 'tag', 'rx'), 'string', 0);
set(findobj(fig, 'tag', 'ry'), 'string', 0);
set(findobj(fig, 'tag', 'rz'), 'string', 0);
set(findobj(fig, 'tag', 'tx'), 'string', 0);
set(findobj(fig, 'tag', 'ty'), 'string', 0);
set(findobj(fig, 'tag', 'tz'), 'string', 0);
set(findobj(fig, 'tag', 'sx'), 'string', 1);
set(findobj(fig, 'tag', 'sy'), 'string', 1);
set(findobj(fig, 'tag', 'sz'), 'string', 1);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', transform);
cb_redraw(hObject);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_close(hObject, eventdata, handles)
% make the current transformation permanent and subsequently allow deleting the figure
cb_apply(gca);
% get the updated electrode from the figure
fig = hObject;
% hmmm, this is ugly
global norm
norm = getappdata(fig, 'elec');
norm.m = getappdata(fig, 'transform');
set(fig, 'CloseRequestFcn', @delete);
delete(fig);
|
github
|
lcnbeapp/beapp-master
|
ft_singleplotTFR.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_singleplotTFR.m
| 25,551 |
utf_8
|
c1e10cb941401df2b09074cf6edb3bf3
|
function [cfg] = ft_singleplotTFR(cfg, data)
% FT_SINGLEPLOTTFR plots the time-frequency representation of power of a
% single channel or the average over multiple channels.
%
% Use as
% ft_singleplotTFR(cfg,data)
%
% The input freq structure should be a a time-frequency representation of
% power or coherence that was computed using the FT_FREQANALYSIS function.
%
% The configuration can have the following parameters:
% cfg.parameter = field to be plotted on z-axis, e.g. 'powspcrtrm' (default depends on data.dimord)
% cfg.maskparameter = field in the data to be used for masking of data
% (not possible for mean over multiple channels, or when input contains multiple subjects
% or trials)
% cfg.maskstyle = style used to masking, 'opacity', 'saturation' or 'outline' (default = 'opacity')
% use 'saturation' or 'outline' when saving to vector-format (like *.eps) to avoid all sorts of image-problems
% cfg.maskalpha = alpha value between 0 (transparant) and 1 (opaque) used for masking areas dictated by cfg.maskparameter (default = 1)
% cfg.masknans = 'yes' or 'no' (default = 'yes')
% cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin')
% cfg.zlim = plotting limits for color dimension, 'maxmin', 'maxabs', 'zeromax', 'minzero', or [zmin zmax] (default = 'maxmin')
% cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE
% cfg.baselinetype = 'absolute', 'relative', 'relchange' or 'db' (default = 'absolute')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui'
% cfg.fontsize = font size of title (default = 8)
% cfg.hotkeys = enables hotkeys (up/down arrows) for dynamic colorbar adjustment
% cfg.colormap = any sized colormap, see COLORMAP
% cfg.colorbar = 'yes', 'no' (default = 'yes')
% cfg.interactive = Interactive plot 'yes' or 'no' (default = 'yes')
% In a interactive plot you can select areas and produce a new
% interactive plot when a selected area is clicked. Multiple areas
% can be selected by holding down the SHIFT key.
% cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = [])
% cfg.directionality = '', 'inflow' or 'outflow' specifies for
% connectivity measures whether the inflow into a
% node, or the outflow from a node is plotted. The
% (default) behavior of this option depends on the dimor
% of the input data (see below).
%
% For the plotting of directional connectivity data the cfg.directionality
% option determines what is plotted. The default value and the supported
% functionality depend on the dimord of the input data. If the input data
% is of dimord 'chan_chan_XXX', the value of directionality determines
% whether, given the reference channel(s), the columns (inflow), or rows
% (outflow) are selected for plotting. In this situation the default is
% 'inflow'. Note that for undirected measures, inflow and outflow should
% give the same output. If the input data is of dimord 'chancmb_XXX', the
% value of directionality determines whether the rows in data.labelcmb are
% selected. With 'inflow' the rows are selected if the refchannel(s) occur in
% the right column, with 'outflow' the rows are selected if the
% refchannel(s) occur in the left column of the labelcmb-field. Default in
% this case is '', which means that all rows are selected in which the
% refchannel(s) occur. This is to robustly support linearly indexed
% undirected connectivity metrics. In the situation where undirected
% connectivity measures are linearly indexed, specifying 'inflow' or
% 'outflow' can result in unexpected behavior.
%
% See also FT_SINGLEPLOTER, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR
% Copyright (C) 2005-2006, F.C. Donders Centre
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'freq');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'});
% Set the defaults:
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes');
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no');
cfg.renderer = ft_getopt(cfg, 'renderer', []);
cfg.maskalpha = ft_getopt(cfg, 'maskalpha', 1);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []);
cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'opacity');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.masknans = ft_getopt(cfg, 'masknans', 'yes');
cfg.directionality = ft_getopt(cfg, 'directionality',[]);
cfg.figurename = ft_getopt(cfg, 'figurename', []);
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
dimord = getdimord(data, cfg.parameter);
dimtok = tokenize(dimord, '_');
% Set x/y/parameter defaults
if ~any(ismember(dimtok, 'time'))
error('input data needs a time dimension');
else
xparam = 'time';
yparam = 'freq';
end
if isfield(cfg, 'channel') && isfield(data, 'label')
cfg.channel = ft_channelselection(cfg.channel, data.label);
elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
if isempty(cfg.channel)
error('no channels selected');
end
if ~isfield(data, cfg.parameter)
error('data has no field ''%s''', cfg.parameter);
end
% check whether rpt/subj is present and remove if necessary and whether
hasrpt = any(ismember(dimtok, {'rpt' 'subj'}));
if hasrpt,
% this also deals with fourier-spectra in the input
% or with multiple subjects in a frequency domain stat-structure
% on the fly computation of coherence spectrum is not supported
if isfield(data, 'crsspctrm'),
data = rmfield(data, 'crsspctrm');
end
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.jackknife = 'no';
% keep mask-parameter if it is set
if ~isempty(cfg.maskparameter)
tempmask = data.(cfg.maskparameter);
end
if isfield(cfg, 'parameter') && ~strcmp(cfg.parameter,'powspctrm')
% freqdesctiptives will only work on the powspctrm field
% hence a temporary copy of the data is needed
tempdata.dimord = data.dimord;
tempdata.freq = data.freq;
tempdata.label = data.label;
tempdata.time = data.time;
tempdata.powspctrm = data.(cfg.parameter);
if isfield(data, 'cfg') tempdata.cfg = data.cfg; end
tempdata = ft_freqdescriptives(tmpcfg, tempdata);
data.(cfg.parameter) = tempdata.powspctrm;
clear tempdata
else
data = ft_freqdescriptives(tmpcfg, data);
end
% put mask-parameter back if it is set
if ~isempty(cfg.maskparameter)
data.(cfg.maskparameter) = tempmask;
end
dimord = data.dimord;
dimtok = tokenize(dimord, '_');
end % if hasrpt
% Handle the bivariate case
% Check for bivariate metric with 'chan_chan' in the dimord
selchan = strmatch('chan', dimtok);
isfull = length(selchan)>1;
% Check for bivariate metric with a labelcmb
haslabelcmb = isfield(data, 'labelcmb');
% check whether the bivariate metric is the one requested to plot
%shouldPlotCmb = (haslabelcmb && ...
% size(data.(cfg.parameter),selchan(1)) == size(data.labelcmb,1)) ...
% || isfull; % this should work because if dimord has multiple chans (so isfull=1)
% % then we can never plot anything without reference channel
% % this is different when haslabelcmb=1; then the parameter
% % requested to plot might well be a simple powspctrm
%if (isfull || haslabelcmb) && shouldPlotCmb
if (isfull || haslabelcmb) && (isfield(data, cfg.parameter) && ~strcmp(cfg.parameter, 'powspctrm'))
% A reference channel is required:
if ~isfield(cfg, 'refchannel')
error('no reference channel is specified');
end
% check for refchannel being part of selection
if ~strcmp(cfg.refchannel,'gui')
if haslabelcmb
cfg.refchannel = ft_channelselection(cfg.refchannel, unique(data.labelcmb(:)));
else
cfg.refchannel = ft_channelselection(cfg.refchannel, data.label);
end
if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ...
(haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel)))
error('cfg.refchannel is a not present in the (selected) channels)')
end
end
% Interactively select the reference channel
if strcmp(cfg.refchannel, 'gui')
error('coh.refchannel = ''gui'' is not supported at the moment for ft_singleplotTFR');
%
% % Open a single figure with the channel layout, the user can click on a reference channel
% h = clf;
% ft_plot_lay(lay, 'box', false);
% title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...');
% % add the channel information to the figure
% info = guidata(gcf);
% info.x = lay.pos(:,1);
% info.y = lay.pos(:,2);
% info.label = lay.label;
% guidata(h, info);
% %set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'});
% set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'});
% return
end
if ~isfull,
% Convert 2-dimensional channel matrix to a single dimension:
if isempty(cfg.directionality)
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:,2)));
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'outflow')
sel1 = [];
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'inflow')
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:,2)));
sel2 = [];
end
fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.parameter);
if length(sel1)+length(sel2)==0
error('there are no channels selected for plotting: you may need to look at the specification of cfg.directionality');
end
data.(cfg.parameter) = data.(cfg.parameter)([sel1;sel2],:,:);
data.label = [data.labelcmb(sel1,1);data.labelcmb(sel2,2)];
data.labelcmb = data.labelcmb([sel1;sel2],:);
data = rmfield(data, 'labelcmb');
else
% General case
sel = match_str(data.label, cfg.refchannel);
siz = [size(data.(cfg.parameter)) 1];
if strcmp(cfg.directionality, 'inflow') || isempty(cfg.directionality)
%the interpretation of 'inflow' and 'outflow' depend on
%the definition in the bivariate representation of the data
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(:,sel,:),2),[siz(1) 1 siz(3:end)]);
sel1 = 1:siz(1);
sel2 = sel;
meandir = 2;
elseif strcmp(cfg.directionality, 'outflow')
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(sel,:,:),1),[siz(1) 1 siz(3:end)]);
sel1 = sel;
sel2 = 1:siz(1);
meandir = 1;
elseif strcmp(cfg.directionality, 'ff-fd')
error('cfg.directionality = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_singleplotTFR');
elseif strcmp(cfg.directionality, 'fd-ff')
error('cfg.directionality = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_singleplotTFR');
end %if directionality
end %if ~isfull
end %handle the bivariate data
% Apply baseline correction:
if ~strcmp(cfg.baseline, 'no')
% keep mask-parameter if it is set
if ~isempty(cfg.maskparameter)
tempmask = data.(cfg.maskparameter);
end
data = ft_freqbaseline(cfg, data);
% put mask-parameter back if it is set
if ~isempty(cfg.maskparameter)
data.(cfg.maskparameter) = tempmask;
end
end
% Get physical x-axis range:
if strcmp(cfg.xlim,'maxmin')
xmin = min(data.(xparam));
xmax = max(data.(xparam));
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% Replace value with the index of the nearest bin
if ~isempty(xparam)
xmin = nearest(data.(xparam), xmin);
xmax = nearest(data.(xparam), xmax);
end
% Get physical y-axis range:
if strcmp(cfg.ylim,'maxmin')
ymin = min(data.(yparam));
ymax = max(data.(yparam));
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% Replace value with the index of the nearest bin
if ~isempty(yparam)
ymin = nearest(data.(yparam), ymin);
ymax = nearest(data.(yparam), ymax);
end
% % test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE
% x = data.(xparam)(xmin:xmax);
% y = data.(yparam)(ymin:ymax);
% dx = min(diff(x)); % smallest interval for X
% dy = min(diff(y)); % smallest interval for Y
% evenx = all(abs(diff(x)/dx-1)<1e-12); % true if X is linearly spaced
% eveny = all(abs(diff(y)/dy-1)<1e-12); % true if Y is linearly spaced
%
% % masking only possible for evenly spaced axis
% if strcmp(cfg.masknans, 'yes') && (~evenx || ~eveny)
% warning('(one of the) axis are not evenly spaced -> nans cannot be masked out -> cfg.masknans is set to ''no'';')
% cfg.masknans = 'no';
% end
%
% if ~isempty(cfg.maskparameter) && (~evenx || ~eveny)
% warning('(one of the) axis are not evenly spaced -> no masking possible -> cfg.maskparameter cleared')
% cfg.maskparameter = [];
% end
% perform channel selection
selchannel = ft_channelselection(cfg.channel, data.label);
sellab = match_str(data.label, selchannel);
% cfg.maskparameter only possible for single channel
if length(sellab) > 1 && ~isempty(cfg.maskparameter)
warning('no masking possible for average over multiple channels -> cfg.maskparameter cleared')
cfg.maskparameter = [];
end
% get dimord dimensions
ydim = find(strcmp(yparam, dimtok));
xdim = find(strcmp(xparam, dimtok));
zdim = setdiff(1:length(dimtok), [ydim xdim]); % all other dimensions
% and permute
dat = data.(cfg.parameter);
dat = permute(dat, [zdim(:)' ydim xdim]);
if isfull
dat = dat(sel1, sel2, ymin:ymax, xmin:xmax);
dat = nanmean(dat, meandir);
siz = size(dat);
dat = reshape(dat, [max(siz(1:2)) siz(3) siz(4)]);
dat = dat(sellab, :, :);
elseif haslabelcmb
dat = dat(sellab, ymin:ymax, xmin:xmax);
else
dat = dat(sellab, ymin:ymax, xmin:xmax);
end
if ~isempty(cfg.maskparameter)
mask = data.(cfg.maskparameter);
if isfull && cfg.maskalpha == 1
mask = mask(sel1, sel2, ymin:ymax, xmin:xmax);
mask = nanmean(mask, meandir);
siz = size(mask);
mask = reshape(mask, [max(siz(1:2)) siz(3) siz(4)]);
mask = reshape(mask(sellab, :, :), [siz(3) siz(4)]);
elseif haslabelcmb && cfg.maskalpha == 1
mask = squeeze(mask(sellab, ymin:ymax, xmin:xmax));
elseif cfg.maskalpha == 1
mask = squeeze(mask(sellab, ymin:ymax, xmin:xmax));
elseif isfull && cfg.maskalpha ~= 1 %% check me
maskl = mask(sel1, sel2, ymin:ymax, xmin:xmax);
maskl = nanmean(maskl, meandir);
siz = size(maskl);
maskl = reshape(maskl, [max(siz(1:2)) siz(3) siz(4)]);
maskl = squeeze(reshape(maskl(sellab, :, :), [siz(3) siz(4)]));
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
elseif haslabelcmb && cfg.maskalpha ~= 1
maskl = squeeze(mask(sellab, ymin:ymax, xmin:xmax));
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
elseif cfg.maskalpha ~= 1
maskl = squeeze(mask(sellab, ymin:ymax, xmin:xmax));
mask = zeros(size(maskl));
mask(maskl) = 1;
mask(~maskl) = cfg.maskalpha;
end
end
siz = size(dat);
datamatrix = reshape(mean(dat, 1), [siz(2:end) 1]);
xvector = data.(xparam)(xmin:xmax);
yvector = data.(yparam)(ymin:ymax);
% Get physical z-axis range (color axis):
if strcmp(cfg.zlim,'maxmin')
zmin = min(datamatrix(:));
zmax = max(datamatrix(:));
elseif strcmp(cfg.zlim,'maxabs')
zmin = -max(abs(datamatrix(:)));
zmax = max(abs(datamatrix(:)));
elseif strcmp(cfg.zlim,'zeromax')
zmin = 0;
zmax = max(datamatrix(:));
elseif strcmp(cfg.zlim,'minzero')
zmin = min(datamatrix(:));
zmax = 0;
else
zmin = cfg.zlim(1);
zmax = cfg.zlim(2);
end
% set colormap
if isfield(cfg,'colormap')
if size(cfg.colormap,2)~=3, error('singleplotTFR(): Colormap must be a n x 3 matrix'); end
set(gcf,'colormap',cfg.colormap);
end
% Draw plot (and mask NaN's if requested):
cla
if isequal(cfg.masknans,'yes') && isempty(cfg.maskparameter)
nans_mask = ~isnan(datamatrix);
mask = double(nans_mask);
ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask)
elseif isequal(cfg.masknans,'yes') && ~isempty(cfg.maskparameter)
nans_mask = ~isnan(datamatrix);
mask = mask .* nans_mask;
mask = double(mask);
ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask)
elseif isequal(cfg.masknans,'no') && ~isempty(cfg.maskparameter)
mask = double(mask);
ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask)
else
ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip')
end
hold on
axis xy;
% set(gca,'Color','k')
if isequal(cfg.colorbar,'yes')
% tag the colorbar so we know which axes are colorbars
colorbar('tag', 'ft-colorbar');
end
% Set adjust color axis
if strcmp('yes',cfg.hotkeys)
% Attach data and cfg to figure and attach a key listener to the figure
set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax})
end
% Make the figure interactive:
if strcmp(cfg.interactive, 'yes')
% first, attach data to the figure with the current axis handle as a name
dataname = fixname(num2str(double(gca)));
setappdata(gcf,dataname,data);
set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg}, 'event', 'WindowButtonMotionFcn'});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'});
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'});
end
% Create title text containing channel name(s) and channel number(s):
if length(sellab) == 1
t = [char(cfg.channel) ' / ' num2str(sellab) ];
else
t = sprintf('mean(%0s)', join_str(',', cfg.channel));
end
h = title(t,'fontsize', cfg.fontsize);
% set the figure window title, add channel labels if number is small
if isempty(get(gcf, 'Name'))
if length(sellab) < 5
chans = join_str(',', cfg.channel);
else
chans = '<multiple channels>';
end
if isfield(cfg,'dataname')
if iscell(cfg.dataname)
dataname = cfg.dataname{1};
else
dataname = cfg.dataname;
end
elseif nargin > 1
dataname = inputname(2);
else % data provided through cfg.inputfile
dataname = cfg.inputfile;
end
if isempty(cfg.figurename)
set(gcf, 'Name', sprintf('%d: %s: %s (%s)', double(gcf), mfilename, dataname, chans));
set(gcf, 'NumberTitle', 'off');
else
set(gcf, 'name', cfg.figurename);
set(gcf, 'NumberTitle', 'off');
end
end
axis tight;
hold off;
% Set renderer if specified
if ~isempty(cfg.renderer)
set(gcf, 'renderer', cfg.renderer)
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance
% add a menu to the figure, but only if the current figure does not have subplots
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) <= 1
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting a time range
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_topoplotTFR(cfg, varargin)
% first to last callback-input of ft_select_range is range
% last callback-input of ft_select_range is contextmenu label, if used
range = varargin{end-1};
varargin = varargin(1:end-2); % remove range and last
% get appdata belonging to current axis
dataname = fixname(num2str(double(gca)));
data = getappdata(gcf, dataname);
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
% make sure the topo displays all channels, not just the ones in this
% singleplot
cfg.channel = 'all';
cfg.comment = 'auto';
cfg.xlim = range(1:2);
cfg.ylim = range(3:4);
% compatibility fix for new ft_topoplotER/TFR cfg options
if isfield(cfg,'showlabels') && strcmp(cfg.showlabels,'yes')
cfg = rmfield(cfg,'showlabels');
cfg.marker = 'labels';
elseif isfield(cfg,'showlabels') && strcmp(cfg.showlabels,'no')
cfg = rmfield(cfg,'showlabels');
cfg.marker = 'on';
end
fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2));
fprintf('selected cfg.ylim = [%f %f]\n', cfg.ylim(1), cfg.ylim(2));
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_topoplotTFR(cfg, data);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which handles hot keys in the current plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key_sub(handle, eventdata, varargin)
incr = (max(caxis)-min(caxis)) /10;
% symmetrically scale color bar down by 10 percent
if strcmp(eventdata.Key,'uparrow')
caxis([min(caxis)-incr max(caxis)+incr]);
% symmetrically scale color bar up by 10 percent
elseif strcmp(eventdata.Key,'downarrow')
caxis([min(caxis)+incr max(caxis)-incr]);
% resort to minmax of data for colorbar
elseif strcmp(eventdata.Key,'m')
caxis([varargin{1} varargin{2}]);
end
|
github
|
lcnbeapp/beapp-master
|
ft_prepare_sourcemodel.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_prepare_sourcemodel.m
| 34,786 |
utf_8
|
2a141b62a7f6242462a4682d7abf426b
|
function [grid, cfg] = ft_prepare_sourcemodel(cfg, headmodel, sens)
% FT_PREPARE_SOURCEMODEL constructs a source model, for example a 3-D grid or a
% cortical sheet. The source model that can be used for source reconstruction,
% beamformer scanning, linear estimation and MEG interpolation.
%
% Use as
% grid = ft_prepare_sourcemodel(cfg)
%
% where the configuration structure contains the details on how the source
% model should be constructed.
%
% A source model can be constructed based on
% - regular 3D grid with explicit specification
% - regular 3D grid with specification of the resolution
% - regular 3D grid, based on segmented MRI, restricted to gray matter
% - regular 3D grid, based on a warped template grid, based on the MNI brain
% - surface grid based on the brain surface from the volume conduction model
% - surface grid based on the head surface from an external file
% - cortical sheet that was created in MNE or Freesurfer
% - using user-supplied grid positions, which can be regular or irregular
% The approach that will be used depends on the configuration options that
% you specify.
%
% Configuration options for generating a regular 3-D grid
% cfg.grid.xgrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.ygrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.zgrid = vector (e.g. 0:1:20) or 'auto' (default = 'auto')
% cfg.grid.resolution = number (e.g. 1 cm) for automatic grid generation
%
% Configuration options for a predefined grid
% cfg.grid.pos = N*3 matrix with position of each source
% cfg.grid.inside = N*1 vector with boolean value whether grid point is inside brain (optional)
% cfg.grid.dim = [Nx Ny Nz] vector with dimensions in case of 3-D grid (optional)
%
% The following fields are not used in this function, but will be copied along to the output
% cfg.grid.leadfield
% cfg.grid.filter or alternatively cfg.grid.avg.filter
% cfg.grid.subspace
% cfg.grid.lbex
%
% Configuration options for a warped MNI grid
% cfg.mri = can be filename or MRI structure, containing the individual anatomy
% cfg.grid.warpmni = 'yes'
% cfg.grid.resolution = number (e.g. 6) of the resolution of the
% template MNI grid, defined in mm
% cfg.grid.template = specification of a template grid (grid structure), or a
% filename of a template grid (defined in MNI space),
% either cfg.grid.resolution or cfg.grid.template needs
% to be defined. If both are defined cfg.grid.template
% prevails
% cfg.grid.nonlinear = 'no' (or 'yes'), use non-linear normalization
%
% Configuration options for cortex segmentation, i.e. for placing dipoles in grey matter
% cfg.mri = can be filename, MRI structure or segmented MRI structure
% cfg.threshold = 0.1, relative to the maximum value in the segmentation
% cfg.smooth = 5, smoothing in voxels
%
% Configuration options for reading a cortical sheet from file
% cfg.headshape = string, should be a *.fif file
%
% The EEG or MEG sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% or alternatively
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% The headmodel or volume conduction model can be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% Other configuration options
% cfg.grid.unit = string, can be 'mm', 'cm', 'm' (default is automatic)
% cfg.grid.tight = 'yes' or 'no' (default is automatic)
% cfg.inwardshift = number, how much should the innermost surface be moved inward to constrain
% sources to be considered inside the source compartment (default = 0)
% cfg.moveinward = number, move dipoles inward to ensure a certain distance to the innermost
% surface of the source compartment (default = 0)
% cfg.spherify = 'yes' or 'no', scale the source model so that it fits inside a sperical
% volume conduction model (default = 'no')
% cfg.symmetry = 'x', 'y' or 'z' symmetry for two dipoles, can be empty (default = [])
% cfg.headshape = a filename for the headshape, a structure containing a single surface,
% or a Nx3 matrix with headshape surface points (default = [])
%
% See also FT_PREPARE_LEADFIELD, FT_PREPARE_HEADMODEL, FT_SOURCEANALYSIS,
% FT_DIPOLEFITTING, FT_MEGREALIGN
% Copyright (C) 2004-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'deprecated', 'mriunits');
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
% set the defaults
cfg.moveinward = ft_getopt(cfg, 'moveinward', []); % the default is automatic and depends on a triangulation being present
cfg.spherify = ft_getopt(cfg, 'spherify', 'no');
cfg.headshape = ft_getopt(cfg, 'headshape', []);
cfg.symmetry = ft_getopt(cfg, 'symmetry', []);
cfg.grid = ft_getopt(cfg, 'grid', []);
cfg.spmversion = ft_getopt(cfg, 'spmversion', 'spm8');
cfg.grid.unit = ft_getopt(cfg.grid, 'unit', 'auto');
% this code expects the inside to be represented as a logical array
if isfield(cfg, 'grid')
cfg.grid = ft_checkconfig(cfg.grid, 'renamed', {'pnt' 'pos'});
if isfield(cfg.grid, 'template')
cfg.grid.template = ft_checkconfig(cfg.grid.template, 'renamed', {'pnt' 'pos'});
end
end
cfg = ft_checkconfig(cfg, 'index2logical', 'yes');
if ~isfield(cfg, 'headmodel') && nargin>1
% put it in the configuration structure
% this is for backward compatibility, 13 Januari 2011
cfg.headmodel = headmodel;
end
if ~isfield(cfg, 'grad') && ~isfield(cfg, 'elec') && nargin>2
% put it in the configuration structure
% this is for backward compatibility, 13 Januari 2011
cfg.grad = sens;
end
if isfield(cfg.grid, 'resolution') && isfield(cfg.grid, 'xgrid') && ~ischar(cfg.grid.xgrid)
error('You cannot specify cfg.grid.resolution and an explicit cfg.grid.xgrid simultaneously');
end
if isfield(cfg.grid, 'resolution') && isfield(cfg.grid, 'ygrid') && ~ischar(cfg.grid.ygrid)
error('You cannot specify cfg.grid.resolution and an explicit cfg.grid.ygrid simultaneously');
end
if isfield(cfg.grid, 'resolution') && isfield(cfg.grid, 'zgrid') && ~ischar(cfg.grid.zgrid)
error('You cannot specify cfg.grid.resolution and an explicit cfg.grid.zgrid simultaneously');
end
% the source model can be constructed in a number of ways
basedongrid = isfield(cfg.grid, 'xgrid') && ~ischar(cfg.grid.xgrid); % regular 3D grid with explicit specification
basedonpos = isfield(cfg.grid, 'pos'); % using user-supplied grid positions, which can be regular or irregular
basedonshape = ~isempty(cfg.headshape); % surface grid based on inward shifted head surface from external file
basedonmri = isfield(cfg, 'mri') && ~(isfield(cfg.grid, 'warpmni') && istrue(cfg.grid.warpmni)); % regular 3D grid, based on segmented MRI, restricted to gray matter
basedonmni = isfield(cfg, 'mri') && (isfield(cfg.grid, 'warpmni') && istrue(cfg.grid.warpmni)); % regular 3D grid, based on warped MNI template
basedonvol = false; % surface grid based on inward shifted brain surface from volume conductor
basedoncortex = isfield(cfg, 'headshape') && (iscell(cfg.headshape) || any(ft_filetype(cfg.headshape, {'neuromag_fif', 'freesurfer_triangle_binary', 'caret_surf', 'gifti'}))); % cortical sheet from external software such as Caret or FreeSurfer, can also be two separate hemispheres
basedonresolution = isfield(cfg.grid, 'resolution') && ~basedonmri && ~basedonmni; % regular 3D grid with specification of the resolution
if basedonshape && basedoncortex
% treating it as cortical sheet has preference
basedonshape = false;
end
if basedongrid && basedonpos
% fall back to default behaviour, in which the pos overrides the grid
basedongrid = false;
end
if ~any([basedonresolution basedongrid basedonpos basedonshape basedonmri basedoncortex basedonmni]) && ~isempty(cfg.headmodel)
% fall back to default behaviour, which is to create a surface grid (e.g. used in MEGREALIGN)
basedonvol = 1;
end
% these are mutually exclusive, but printing all requested methods here
% facilitates debugging of weird configs. Also specify the defaults here to
% keep the overview
if basedonresolution
fprintf('creating dipole grid based on automatic 3D grid with specified resolution\n');
cfg.grid.xgrid = ft_getopt(cfg.grid, 'xgrid', 'auto');
cfg.grid.ygrid = ft_getopt(cfg.grid, 'ygrid', 'auto');
cfg.grid.zgrid = ft_getopt(cfg.grid, 'zgrid', 'auto');
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 0); %in this case for inside detection, FIXME move to cfg.grid
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'yes');
end
if basedongrid
fprintf('creating dipole grid based on user specified 3D grid\n');
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 0); %in this case for inside detection, FIXME move to cfg.grid
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'yes');
end
if basedonpos
fprintf('creating dipole grid based on user specified dipole positions\n');
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 0); %in this case for inside detection, FIXME move to cfg.grid
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'no');
end
if basedonshape
fprintf('creating dipole grid based on inward-shifted head shape\n');
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 0); %in this case for inside detection, FIXME move to cfg.grid
cfg.spheremesh = ft_getopt(cfg, 'spheremesh', 642); % FIXME move spheremesh to cfg.grid
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'yes');
end
if basedoncortex
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'yes');
end
if basedonmri
fprintf('creating dipole grid based on an anatomical volume\n');
cfg.threshold = ft_getopt(cfg, 'threshold', 0.1); % relative
cfg.smooth = ft_getopt(cfg, 'smooth', 5); % in voxels
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'yes');
end
if basedonvol
fprintf('creating dipole grid based on inward-shifted brain surface from volume conductor model\n');
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 0); %in this case for inside detection, FIXME move to cfg.grid
cfg.spheremesh = ft_getopt(cfg, 'spheremesh', 642); % FIXME move spheremesh to cfg.grid
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'no');
end
if basedonmni
cfg.grid.tight = ft_getopt(cfg.grid, 'tight', 'no');
cfg.grid.nonlinear = ft_getopt(cfg.grid, 'nonlinear', 'no');
end
% these are mutually exclusive
if sum([basedonresolution basedongrid basedonpos basedonshape basedonmri basedonvol basedoncortex basedonmni])~=1
error('incorrect cfg specification for constructing a dipole grid');
end
if (isfield(cfg, 'smooth') && ~strcmp(cfg.smooth, 'no')) || basedonmni
% check that SPM is on the path, try to add the preferred version
if strcmpi(cfg.spmversion, 'spm2'),
ft_hastoolbox('SPM2', 1);
elseif strcmpi(cfg.spmversion, 'spm8'),
ft_hastoolbox('SPM8', 1);
elseif strcmpi(cfg.spmversion, 'spm12'),
ft_hastoolbox('SPM12', 1);
end
end
% start with an empty grid
grid = [];
% get the volume conduction model
try
headmodel = ft_fetch_vol(cfg);
catch
headmodel = [];
end
% get the gradiometer or electrode definition
try
sens = ft_fetch_sens(cfg);
catch
sens = [];
end
if strcmp(cfg.grid.unit, 'auto')
if isfield(cfg.grid, 'pos') && size(cfg.grid.pos,1)>10
% estimate the units based on the existing source positions
cfg.grid = rmfield(cfg.grid, 'unit'); % remove 'auto' and have ft_convert_units determine it properly
cfg.grid = ft_convert_units(cfg.grid);
elseif ~isempty(sens)
% copy the units from the sensor array
cfg.grid.unit = sens.unit;
elseif ~isempty(headmodel)
% copy the units from the volume conduction model
cfg.grid.unit = headmodel.unit;
else
warning('assuming "cm" as default source units');
cfg.grid.unit = 'cm';
end
end
% convert the sensor array to the desired units for the source model
if ~isempty(sens)
sens = ft_convert_units(sens, cfg.grid.unit);
end
% convert the head model to the desired units for the source model
if ~isempty(headmodel)
headmodel = ft_convert_units(headmodel, cfg.grid.unit);
end
if basedonresolution
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct a regular 3D grid that spans a box encompassing all electrode
% or gradiometer coils, this will typically also cover the complete brain
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(sens)
minpos = min(sens.chanpos,[],1);
maxpos = max(sens.chanpos,[],1);
elseif ~isempty(headmodel)
minpos = [inf inf inf];
maxpos = [-inf -inf -inf];
for k = 1:numel(headmodel.bnd)
tmpbnd = headmodel.bnd(k);
if ~isfield(tmpbnd, 'pnt') && isfield(tmpbnd, 'pos')
pos = tmpbnd.pos;
elseif isfield(tmpbnd, 'pnt') && ~isfield(tmpbnd, 'pos')
pos = tmpbnd.pnt;
end
minpos = min(minpos, min(pos,[],1));
maxpos = max(maxpos, max(pos,[],1));
end
% add a few % on either side
minpos(minpos<0) = minpos(minpos<0).*1.08;
maxpos(maxpos>0) = maxpos(maxpos>0).*1.08;
minpos(minpos>0) = minpos(minpos>0).*0.92;
maxpos(maxpos<0) = maxpos(maxpos<0).*0.92;
else
error('creating a 3D-grid sourcemodel this way requires either sensor position information or a headmodel to estimate the extent of the brain');
end
fprintf('creating dipole grid with %g %s resolution\n', cfg.grid.resolution, cfg.grid.unit);
% round the bounding box limits to the nearest cm
switch cfg.grid.unit
case 'm'
minpos = floor(minpos*100)/100;
maxpos = ceil(maxpos*100)/100;
case 'cm'
minpos = floor(minpos);
maxpos = ceil(maxpos);
case 'mm'
minpos = floor(minpos/10)*10;
maxpos = ceil(maxpos/10)*10;
end
if ischar(cfg.grid.xgrid) && strcmp(cfg.grid.xgrid, 'auto')
grid.xgrid = minpos(1):cfg.grid.resolution:maxpos(1);
end
if ischar(cfg.grid.ygrid) && strcmp(cfg.grid.ygrid, 'auto')
grid.ygrid = minpos(2):cfg.grid.resolution:maxpos(2);
end
if ischar(cfg.grid.zgrid) && strcmp(cfg.grid.zgrid, 'auto')
grid.zgrid = minpos(3):cfg.grid.resolution:maxpos(3);
end
grid.dim = [length(grid.xgrid) length(grid.ygrid) length(grid.zgrid)];
[X, Y, Z] = ndgrid(grid.xgrid, grid.ygrid, grid.zgrid);
grid.pos = [X(:) Y(:) Z(:)];
grid.unit = cfg.grid.unit;
end
if basedongrid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% a detailed xgrid/ygrid/zgrid has been specified, the other details
% still need to be determined
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
grid.xgrid = cfg.grid.xgrid;
grid.ygrid = cfg.grid.ygrid;
grid.zgrid = cfg.grid.zgrid;
grid.dim = [length(grid.xgrid) length(grid.ygrid) length(grid.zgrid)];
[X, Y, Z] = ndgrid(grid.xgrid, grid.ygrid, grid.zgrid);
grid.pos = [X(:) Y(:) Z(:)];
grid.unit = cfg.grid.unit;
end
if basedonpos
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% a grid is already specified in the configuration, reuse as much of the
% prespecified grid as possible (but only known objects)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
grid = keepfields(cfg.grid, {'pos', 'unit', 'xgrid', 'ygrid', 'zgrid', 'mom', 'tri', 'dim', 'transform', 'inside', 'lbex', 'subspace', 'leadfield', 'filter', 'label', 'leadfielddimord'});
end
if basedonmri
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct a grid based on the segmented MRI that is provided in the
% configuration, only voxels in gray matter will be used
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ischar(cfg.mri)
mri = ft_read_mri(cfg.mri);
else
mri = cfg.mri;
end
% ensure the mri to have units
if ~isfield(mri, 'unit')
mri = ft_convert_units(mri);
end
if ~isfield(cfg.grid, 'resolution')
switch cfg.grid.unit
case 'mm'
cfg.grid.resolution = 10;
case 'cm'
cfg.grid.resolution = 1;
case 'dm'
cfg.grid.resolution = 0.1;
case 'm'
cfg.grid.resolution = 0.01;
end
end
issegmentation = false;
if isfield(mri, 'gray')
% this is not a boolean segmentation, but based on tissue probability
% maps, being the original implementation here.
dat = double(mri.gray);
% apply a smoothing of a certain amount of voxels
if ~strcmp(cfg.smooth, 'no');
dat = volumesmooth(dat, cfg.smooth, 'MRI gray matter');
end
elseif isfield(mri, 'anatomy')
% this could be a tpm stored on disk, i.e. the result of
% ft_volumesegment. Reading it in always leads to the field 'anatomy'.
% Note this could be any anatomical mask
dat = double(mri.anatomy);
% apply a smoothing of a certain amount of voxels
if ~strcmp(cfg.smooth, 'no');
dat = volumesmooth(dat, cfg.smooth, 'anatomy');
end
elseif ft_datatype(mri, 'segmentation')
% this is a proper segmentation, where a set of boolean masks is in the
% input, or and indexed volume, along with labels. FIXME for now still
% only works for boolean volumes.
issegmentation = true;
fn = booleanfields(mri);
if isempty(fn)
% convert indexed segmentation into probabilistic
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic');
fn = booleanfields(mri);
end
dat = false(mri.dim);
for i=1:numel(fn)
if ~strcmp(cfg.smooth, 'no')
mri.(fn{i}) = volumesmooth(double(mri.(fn{i})), cfg.smooth, fn{i}) > cfg.threshold;
end
dat = dat | mri.(fn{i});
end
dat = double(dat);
else
error('cannot determine the format of the segmentation in cfg.mri');
end
% determine for each voxel whether it belongs to the grey matter
fprintf('thresholding MRI data at a relative value of %f\n', cfg.threshold);
head = dat./max(dat(:)) > cfg.threshold;
% convert the source/functional data into the same units as the anatomical MRI
scale = ft_scalingfactor(cfg.grid.unit, mri.unit);
ind = find(head(:));
fprintf('%d from %d voxels in the segmentation are marked as ''inside'' (%.0f%%)\n', length(ind), numel(head), 100*length(ind)/numel(head));
[X,Y,Z] = ndgrid(1:mri.dim(1), 1:mri.dim(2), 1:mri.dim(3)); % create the grid in MRI-coordinates
posmri = [X(ind) Y(ind) Z(ind)]; % take only the inside voxels
poshead = ft_warp_apply(mri.transform, posmri); % transform to head coordinates
resolution = cfg.grid.resolution*scale; % source and mri can be expressed in different units (e.g. cm and mm)
xgrid = floor(min(poshead(:,1))):resolution:ceil(max(poshead(:,1))); % create the grid in head-coordinates
ygrid = floor(min(poshead(:,2))):resolution:ceil(max(poshead(:,2))); % with 'consistent' x,y,z definitions
zgrid = floor(min(poshead(:,3))):resolution:ceil(max(poshead(:,3)));
[X,Y,Z] = ndgrid(xgrid,ygrid,zgrid);
pos2head = [X(:) Y(:) Z(:)];
pos2mri = ft_warp_apply(inv(mri.transform), pos2head); % transform to MRI voxel coordinates
pos2mri = round(pos2mri);
inside = getinside(pos2mri, head); % use helper subfunction
grid.pos = pos2head/scale; % convert to source units
grid.xgrid = xgrid/scale; % convert to source units
grid.ygrid = ygrid/scale; % convert to source units
grid.zgrid = zgrid/scale; % convert to source units
grid.dim = [length(grid.xgrid) length(grid.ygrid) length(grid.zgrid)];
grid.inside = inside(:);
grid.unit = cfg.grid.unit;
if issegmentation
% pass on the segmentation information on the grid points, the
% individual masks have been smoothed above
fn = booleanfields(mri);
for i=1:numel(fn)
grid.(fn{i}) = getinside(pos2mri, mri.(fn{i}));
end
% convert back is not in general possible because the masks can be
% overlapping due to smoothing
% grid = ft_datatype_segmentation(grid, 'segmentationstyle', segstyle);
end
fprintf('the full grid contains %d grid points\n', numel(grid.inside));
fprintf('%d grid points are mared as inside the brain\n', sum(grid.inside));
end
if basedoncortex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read it from a *.fif file that was created using Freesurfer and MNE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if iscell(cfg.headshape)
% FIXME loop over all files, this should be two hemispheres
keyboard
else
shape = ft_read_headshape(cfg.headshape);
end
% ensure that the headshape is in the same units as the source
shape = ft_convert_units(shape, cfg.grid.unit);
% return both the vertices and triangles from the cortical sheet
grid.pos = shape.pos;
grid.tri = shape.tri;
grid.unit = shape.unit;
end
if basedonshape
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% use the headshape to make a superficial dipole layer (e.g.
% for megrealign). Assume that all points are inside the volume.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pos')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
% ensure that the headshape is in the same units as the source
headshape = ft_convert_units(headshape, cfg.grid.unit);
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
headshape.pos = unique(headshape.pos, 'rows');
headshape.tri = projecttri(headshape.pos);
end
% please note that cfg.inwardshift should be expressed in the units consistent with cfg.grid.unit
grid.pos = headsurface([], [], 'headshape', headshape, 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
grid.tri = headshape.tri;
grid.unit = headshape.unit;
grid.inside = true(size(grid.pos,1),1);
end
if basedonvol
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% use the volume conduction model to make a superficial dipole layer (e.g.
% for megrealign). Assume that all points are inside the volume.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% please note that cfg.inwardshift should be expressed in the units consistent with cfg.grid.unit
grid.pos = headsurface(headmodel, sens, 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
grid.unit = cfg.grid.unit;
grid.inside = true(size(grid.pos,1),1);
end
if basedonmni
if ~isfield(cfg.grid, 'template') && ~isfield(cfg.grid, 'resolution')
error('you either need to specify the filename of a template grid in cfg.grid.template, or a resolution in cfg.grid.resolution');
elseif isfield(cfg.grid, 'template')
% let the template filename prevail
fname = cfg.grid.template;
elseif isfield(cfg.grid, 'resolution') && cfg.grid.resolution==round(cfg.grid.resolution)
% use one of the templates that are in Fieldtrip, this requires a
% resolution
fname = ['standard_sourcemodel3d',num2str(cfg.grid.resolution),'mm.mat'];
elseif isfield(cfg.grid, 'resolution') && cfg.grid.resolution~=round(cfg.grid.resolution)
fname = ['standard_sourcemodel3d',num2str(floor(cfg.grid.resolution)),'point',num2str(10*(cfg.grid.resolution-floor(cfg.grid.resolution))),'mm.mat'];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check whether the mni template grid exists for the specified resolution
% if not create it: FIXME (this needs to be done still)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get the mri
if ischar(cfg.mri)
if ~exist(fname, 'file')
error('the MNI template grid based on the specified resolution does not exist');
end
mri = ft_read_mri(cfg.mri);
else
mri = cfg.mri;
end
% get the template grid
if ischar(fname)
mnigrid = load(fname, 'sourcemodel');
mnigrid = mnigrid.sourcemodel;
else
mnigrid = cfg.grid.template;
end
% ensure these to have units in mm, the conversion of the source model is done further down
mri = ft_convert_units(mri, 'mm');
mnigrid = ft_convert_units(mnigrid, 'mm');
% ensure that it is specified with logical inside
mnigrid = fixinside(mnigrid);
% spatial normalisation of mri and construction of subject specific dipole grid positions
tmpcfg = [];
tmpcfg.nonlinear = cfg.grid.nonlinear;
if isfield(cfg.grid, 'templatemri')
tmpcfg.template = cfg.grid.templatemri;
end
normalise = ft_volumenormalise(tmpcfg, mri);
if ~isfield(normalise, 'params') && ~isfield(normalise, 'initial')
fprintf('applying an inverse warp based on a linear transformation only\n');
grid.pos = ft_warp_apply(inv(normalise.cfg.final), mnigrid.pos);
else
grid.pos = ft_warp_apply(inv(normalise.initial), ft_warp_apply(normalise.params, mnigrid.pos, 'sn2individual'));
end
if isfield(mnigrid, 'dim')
grid.dim = mnigrid.dim;
end
if isfield(mnigrid, 'tri')
grid.tri = mnigrid.tri;
end
grid.unit = mnigrid.unit;
grid.inside = mnigrid.inside;
grid.params = normalise.params;
grid.initial = normalise.initial;
if ft_datatype(mnigrid, 'parcellation')
% copy the boolean fields over
grid = copyfields(mnigrid, grid, booleanfields(mnigrid));
end
end
% in most cases the source model will already be in the desired units, but e.g. for "basedonmni" it will be in 'mm'
% convert to the requested units
grid = ft_convert_units(grid, cfg.grid.unit);
if strcmp(cfg.spherify, 'yes')
if ~ft_voltype(headmodel, 'singlesphere') && ~ft_voltype(headmodel, 'concentricspheres')
error('this only works for spherical volume conduction models');
end
% deform the cortex so that it fits in a unit sphere
pos = mesh_spherify(grid.pos, [], 'shift', 'range');
% scale it to the radius of the innermost sphere, make it a tiny bit smaller to
% ensure that the support point with the exact radius 1 is still inside the sphere
pos = pos*min(headmodel.r)*0.999;
pos(:,1) = pos(:,1) + headmodel.o(1);
pos(:,2) = pos(:,2) + headmodel.o(2);
pos(:,3) = pos(:,3) + headmodel.o(3);
grid.pos = pos;
end
if ~isempty(cfg.moveinward)
% construct a triangulated boundary of the source compartment
[pos1, tri1] = headsurface(headmodel, [], 'inwardshift', cfg.moveinward, 'surface', 'brain');
inside = bounding_mesh(grid.pos, pos1, tri1);
if ~all(inside)
pos2 = grid.pos(~inside,:);
[dum, pos3] = project_elec(pos2, pos1, tri1);
grid.pos(~inside,:) = pos3;
end
if cfg.moveinward>cfg.inwardshift
grid.inside = true(size(grid.pos,1),1);
end
end
% determine the dipole locations that are inside the source compartment of the
% volume conduction model, i.e. inside the brain
if ~isfield(grid, 'inside')
grid.inside = ft_inside_vol(grid.pos, headmodel, 'grad', sens, 'headshape', cfg.headshape, 'inwardshift', cfg.inwardshift); % this returns a boolean vector
end
if strcmp(cfg.grid.tight, 'yes')
fprintf('%d dipoles inside, %d dipoles outside brain\n', sum(grid.inside), sum(~grid.inside));
fprintf('making tight grid\n');
xmin = min(grid.pos(grid.inside,1));
ymin = min(grid.pos(grid.inside,2));
zmin = min(grid.pos(grid.inside,3));
xmax = max(grid.pos(grid.inside,1));
ymax = max(grid.pos(grid.inside,2));
zmax = max(grid.pos(grid.inside,3));
xmin_indx = find(grid.xgrid==xmin);
ymin_indx = find(grid.ygrid==ymin);
zmin_indx = find(grid.zgrid==zmin);
xmax_indx = find(grid.xgrid==xmax);
ymax_indx = find(grid.ygrid==ymax);
zmax_indx = find(grid.zgrid==zmax);
sel = (grid.pos(:,1)>=xmin & grid.pos(:,1)<=xmax); % select all grid positions inside the tight box
sel = sel & (grid.pos(:,2)>=ymin & grid.pos(:,2)<=ymax); % select all grid positions inside the tight box
sel = sel & (grid.pos(:,3)>=zmin & grid.pos(:,3)<=zmax); % select all grid positions inside the tight box
% update the grid locations that are marked as inside the brain
grid.pos = grid.pos(sel,:);
% update the boolean fields, this requires the original dim
fn = booleanfields(grid);
for i=1:numel(fn)
grid.(fn{i}) = grid.(fn{i})(sel);
end
grid.xgrid = grid.xgrid(xmin_indx:xmax_indx);
grid.ygrid = grid.ygrid(ymin_indx:ymax_indx);
grid.zgrid = grid.zgrid(zmin_indx:zmax_indx);
grid.dim = [length(grid.xgrid) length(grid.ygrid) length(grid.zgrid)];
end
fprintf('%d dipoles inside, %d dipoles outside brain\n', sum(grid.inside), sum(~grid.inside));
% apply the symmetry constraint, i.e. add a symmetric dipole for each location that was defined sofar
if ~isempty(cfg.symmetry)
if size(grid.pos,2)>3
% sanity check, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3119
warning('the construction of a symmetric dipole model requires to start with a Nx3 description of the dipole positions, discarding subsequent columns');
grid.pos = grid.pos(:,1:3);
end
if strcmp(cfg.symmetry, 'x')
reduce = [1 2 3]; % select the parameters [x1 y1 z1]
expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
mirror = [1 1 1 -1 1 1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 -x1 y
elseif strcmp(cfg.symmetry, 'y')
reduce = [1 2 3]; % select the parameters [x1 y1 z1]
expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
mirror = [1 1 1 1 -1 1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 x1 -y
elseif strcmp(cfg.symmetry, 'z')
reduce = [1 2 3]; % select the parameters [x1 y1 z1]
expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
mirror = [1 1 1 1 1 -1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 x1 y1
else
error('unrecognized symmetry constraint');
end
fprintf('each source describes two dipoles with symmetry along %s axis\n', cfg.symmetry);
% expand the number of parameters from one (3) to two dipoles (6)
grid.pos = grid.pos(:,expand) .* repmat(mirror, size(grid.pos,1), 1);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance grid
ft_postamble history grid
%--------------------------------------------------------------
% helper function for basedonmri method to determine the inside
% returns a boolean vector
function inside = getinside(pos, mask)
% it might be that the box with the points does not completely fit into the
% mask
dim = size(mask);
sel = find(pos(:,1)<1 | pos(:,1)>dim(1) | ...
pos(:,2)<1 | pos(:,2)>dim(2) | ...
pos(:,3)<1 | pos(:,3)>dim(3));
if isempty(sel)
% use the efficient implementation
inside = mask(sub2ind(dim, pos(:,1), pos(:,2), pos(:,3)));
else
% only loop over the points that can be dealt with
inside = zeros(size(pos,1), 1);
for i=setdiff(1:size(pos,1), sel(:)')
inside(i) = mask(pos(i,1), pos(i,2), pos(i,3));
end
end
%--------------------------------------------------------------------------
% helper function to return the fieldnames of the boolean fields in a
% segmentation, should work both for volumetric and for source
function fn = booleanfields(mri)
fn = fieldnames(mri);
isboolean = false(1,numel(fn));
for i=1:numel(fn)
if islogical(mri.(fn{i})) && isequal(numel(mri.(fn{i})),prod(mri.dim))
isboolean(i) = true;
end
end
fn = fn(isboolean);
|
github
|
lcnbeapp/beapp-master
|
ft_multiplotER.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_multiplotER.m
| 35,324 |
utf_8
|
39694d442a64d6dd2c92402f20d2f942
|
function [cfg] = ft_multiplotER(cfg, varargin)
% FT_MULTIPLOTER plots the event-related potentials, event-related fields
% or oscillatory activity (power or coherence) versus frequency. Multiple
% datasets can be overlayed. The plots are arranged according to their
% location specified in the layout.
%
% Use as
% ft_multiplotER(cfg, data)
% or
% ft_multiplotER(cfg, data, data2, ..., dataN)
%
% The data can be an ERP/ERF produced by FT_TIMELOCKANALYSIS, a powerspectrum
% produced by FT_FREQANALYSIS or a coherencespectrum produced by FT_FREQDESCRIPTIVES.
% If you specify multiple datasets they must contain the same channels, etc.
%
% The configuration can have the following parameters:
% cfg.parameter = field to be plotted on y-axis (default depends on data.dimord)
% 'avg', 'powspctrm' or 'cohspctrm'
% cfg.maskparameter = field in the first dataset to be used for marking significant data
% cfg.maskstyle = style used for masking of data, 'box', 'thickness' or 'saturation' (default = 'box')
% cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = 'maxmin', 'maxabs', 'zeromax', 'minzero', or [ymin ymax] (default = 'maxmin')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui'
% cfg.baseline = 'yes', 'no' or [time1 time2] (default = 'no'), see FT_TIMELOCKBASELINE or FT_FREQBASELINE
% cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.axes = 'yes', 'no' (default = 'yes')
% Draw x- and y-axes for each graph
% cfg.box = 'yes', 'no' (default = 'no')
% Draw a box around each graph
% cfg.comment = string of text (default = date + colors)
% Add 'comment' to graph (according to COMNT in the layout)
% cfg.showlabels = 'yes', 'no' (default = 'no')
% cfg.showoutline = 'yes', 'no' (default = 'no')
% cfg.fontsize = font size of comment and labels (if present) (default = 8)
% cfg.interactive = Interactive plot 'yes' or 'no' (default = 'yes')
% In a interactive plot you can select areas and produce a new
% interactive plot when a selected area is clicked. Multiple areas
% can be selected by holding down the SHIFT key.
% cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = [])
% cfg.linestyle = linestyle/marker type, see options of the PLOT function (default = '-')
% can be a single style for all datasets, or a cell-array containing one style for each dataset
% cfg.linewidth = linewidth in points (default = 0.5)
% cfg.graphcolor = color(s) used for plotting the dataset(s) (default = 'brgkywrgbkywrgbkywrgbkyw')
% alternatively, colors can be specified as Nx3 matrix of RGB values
% cfg.directionality = '', 'inflow' or 'outflow' specifies for
% connectivity measures whether the inflow into a
% node, or the outflow from a node is plotted. The
% (default) behavior of this option depends on the dimor
% of the input data (see below).
% cfg.layout = specify the channel layout for plotting using one of
% the supported ways (see below).
%
% For the plotting of directional connectivity data the cfg.directionality
% option determines what is plotted. The default value and the supported
% functionality depend on the dimord of the input data. If the input data
% is of dimord 'chan_chan_XXX', the value of directionality determines
% whether, given the reference channel(s), the columns (inflow), or rows
% (outflow) are selected for plotting. In this situation the default is
% 'inflow'. Note that for undirected measures, inflow and outflow should
% give the same output. If the input data is of dimord 'chancmb_XXX', the
% value of directionality determines whether the rows in data.labelcmb are
% selected. With 'inflow' the rows are selected if the refchannel(s) occur in
% the right column, with 'outflow' the rows are selected if the
% refchannel(s) occur in the left column of the labelcmb-field. Default in
% this case is '', which means that all rows are selected in which the
% refchannel(s) occur. This is to robustly support linearly indexed
% undirected connectivity metrics. In the situation where undirected
% connectivity measures are linearly indexed, specifying 'inflow' or
% 'outflow' can result in unexpected behavior.
%
% The layout defines how the channels are arranged and what the size of each
% subplot is. You can specify the layout in a variety of ways:
% - you can provide a pre-computed layout structure (see prepare_layout)
% - you can give the name of an ascii layout file with extension *.lay
% - you can give the name of an electrode file
% - you can give an electrode definition, i.e. "elec" structure
% - you can give a gradiometer definition, i.e. "grad" structure
% If you do not specify any of these and the data structure contains an
% electrode or gradiometer structure, that will be used for creating a
% layout. If you want to have more fine-grained control over the layout
% of the subplots, you should create your own layout file.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure. For this particular function, the
% data should be provided as a cell array.
%
% See also FT_MULTIPLOTTFR, FT_SINGLEPLOTER, FT_SINGLEPLOTTFR, FT_TOPOPLOTER,
% FT_TOPOPLOTTFR, FT_PREPARE_LAYOUT
% Undocumented local options:
% cfg.layoutname
% cfg.preproc
% cfg.orient = landscape/portrait
% Copyright (C) 2003-2006, Ole Jensen
% Copyright (C) 2007-2011, Roemer van der Meij & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
for i=1:length(varargin)
% check if the input data is valid for this function
varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'timelock', 'freq'});
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlim', 'xlim'});
cfg = ft_checkconfig(cfg, 'renamed', {'vlim', 'ylim'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam'});
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
% set the defaults
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.comment = ft_getopt(cfg, 'comment', strcat([date '\n']));
cfg.axes = ft_getopt(cfg, 'axes', 'yes');
cfg.showlabels = ft_getopt(cfg, 'showlabels', 'no');
cfg.showoutline = ft_getopt(cfg, 'showoutline', 'no');
cfg.box = ft_getopt(cfg, 'box', 'no');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.graphcolor = ft_getopt(cfg, 'graphcolor', 'brgkywrgbkywrgbkywrgbkyw');
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.renderer = ft_getopt(cfg, 'renderer'); % let MATLAB decide on default
cfg.orient = ft_getopt(cfg, 'orient', 'landscape');
cfg.maskparameter = ft_getopt(cfg, 'maskparameter');
cfg.linestyle = ft_getopt(cfg, 'linestyle', '-');
cfg.linewidth = ft_getopt(cfg, 'linewidth', 0.5);
cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'box');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.directionality = ft_getopt(cfg, 'directionality', '');
cfg.figurename = ft_getopt(cfg, 'figurename');
cfg.preproc = ft_getopt(cfg, 'preproc');
cfg.tolerance = ft_getopt(cfg, 'tolerance', 1e-5);
cfg.frequency = ft_getopt(cfg, 'frequency', 'all'); % needed for frequency selection with TFR data
cfg.latency = ft_getopt(cfg, 'latency', 'all'); % needed for latency selection with TFR data, FIXME, probably not used
if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) > 1 && strcmp(cfg.interactive, 'yes')
warning('using cfg.interactive = ''yes'' in subplots is not supported, setting cfg.interactive = ''no''')
cfg.interactive = 'no';
end
Ndata = length(varargin);
for i=1:Ndata
dtype{i} = ft_datatype(varargin{i});
hastime(i) = ~isempty(strfind(varargin{i}.dimord, 'time'));
hasfreq(i) = ~isempty(strfind(varargin{i}.dimord, 'freq'));
end
% check if the input has consistent datatypes
if ~all(strcmp(dtype, dtype{1})) || ~all(hastime==hastime(1)) || ~all(hasfreq==hasfreq(1))
error('different datatypes are not allowed as input');
end
dtype = dtype{1};
hastime = hastime(1);
hasfreq = hasfreq(1);
% ensure that all inputs are sufficiently consistent
if hastime && ~checktime(varargin{:}, 'identical', cfg.tolerance);
error('this function requires identical time axes for all input structures');
end
if hasfreq && ~checkfreq(varargin{:}, 'identical', cfg.tolerance);
error('this function requires identical frequency axes for all input structures');
end
%FIXME rename directionality and refchannel in more meaningful options
if ischar(cfg.graphcolor)
GRAPHCOLOR = ['k' cfg.graphcolor];
elseif isnumeric(cfg.graphcolor)
GRAPHCOLOR = [0 0 0; cfg.graphcolor];
end
% check for linestyle being a cell-array, check it's length, and lengthen it if does not have enough styles in it
if ischar(cfg.linestyle)
cfg.linestyle = {cfg.linestyle};
end
if Ndata>1
if (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) > 1)
error('either specify cfg.linestyle as a cell-array with one cell for each dataset, or only specify one linestyle')
elseif (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) == 1)
tmpstyle = cfg.linestyle{1};
cfg.linestyle = cell(Ndata , 1);
for idataset = 1:Ndata
cfg.linestyle{idataset} = tmpstyle;
end
end
end
% % interactive plotting is not allowed with more than 1 input
% if numel(varargin)>1 && strcmp(cfg.interactive, 'yes')
% error('interactive plotting is not supported with more than 1 input data set');
% end
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
% ensure that the preproc specific options are located in the cfg.preproc
% substructure, but also ensure that the field 'refchannel' is present at the
% highest level in the structure. This is a little hack by JM because the field
% refchannel can also refer to the plotting of a connectivity metric. Also,
% the freq2raw conversion does not work at all in the call to ft_preprocessing.
% Therefore, for now, the preprocessing will not be done when there is freq
% data in the input. A more generic solution should be considered.
if isfield(cfg, 'refchannel'), refchannelincfg = cfg.refchannel; end
if ~any(strcmp({'freq', 'freqmvar'}, dtype)),
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'});
end
if exist('refchannelincfg', 'var'), cfg.refchannel = refchannelincfg; end
if ~isempty(cfg.preproc)
% preprocess the data, i.e. apply filtering, baselinecorrection, etc.
fprintf('applying preprocessing options\n');
if ~isfield(cfg.preproc, 'feedback')
cfg.preproc.feedback = cfg.interactive;
end
for i=1:Ndata
varargin{i} = ft_preprocessing(cfg.preproc, varargin{i});
end
end
for i=1:Ndata
% this is needed for correct treatment of GRAPHCOLOR later on
if nargin>1,
if ~isempty(inputname(i+1))
iname{i+1} = inputname(i+1);
else
iname{i+1} = ['input', num2str(i, '%02d')];
end
else
iname{i+1} = cfg.inputfile{i};
end
end
% Set x/y/parameter defaults according to datatype and dimord
switch dtype
case 'timelock'
xparam = 'time';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'avg');
case 'freq'
if any(ismember(dimtok, 'time'))
xparam = 'time';
yparam = 'freq';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
else
xparam = 'freq';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
end
case 'comp'
% not supported
otherwise
% not supported
end
% user specified own fields, but no yparam (which is not asked in help)
if exist('xparam', 'var') && isfield(cfg, 'parameter') && ~exist('yparam', 'var')
yparam = '';
end
if isfield(cfg, 'channel') && isfield(varargin{1}, 'label')
cfg.channel = ft_channelselection(cfg.channel, varargin{1}.label);
elseif isfield(cfg, 'channel') && isfield(varargin{1}, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:)));
end
% perform channel selection, unless in the other plotting functions this
% can always be done because ft_multiplotER is the entry point into the
% interactive stream, but will not be revisited
if isfield(varargin{1}, 'label')
% only do the channel selection when it can actually be done,
% i.e. when the data are bivariate ft_selectdata will crash, moreover
% the bivariate case is handled below
tmpcfg = keepfields(cfg, 'channel');
tmpvar = varargin{1};
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
if isfield(tmpvar, cfg.maskparameter) && ~isfield(varargin{1}, cfg.maskparameter)
% the mask parameter is not present after ft_selectdata, because it is
% not included in all input arguments. Make the same selection and copy
% it over
tmpvar = ft_selectdata(tmpcfg, tmpvar);
varargin{1}.(cfg.maskparameter) = tmpvar.(cfg.maskparameter);
end
clear tmpvar tmpcfg
end
if isfield(varargin{1}, 'label') % && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, varargin{1}.label);
elseif isfield(varargin{1}, 'labelcmb') % && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:)));
end
% check whether rpt/subj is present and remove if necessary
% FIXME this should be implemented with avgoverpt in ft_selectdata
hasrpt = sum(ismember(dimtok, {'rpt' 'subj'}));
if strcmp(dtype, 'timelock') && hasrpt,
tmpcfg = [];
% disable hashing of input data (speeds up things)
tmpcfg.trackcallinfo = 'no';
tmpcfg.trials = cfg.trials;
for i=1:Ndata
% save mask (timelockanalysis will remove it)
if ~isempty(cfg.maskparameter)
tmpmask = varargin{i}.(cfg.maskparameter);
end
varargin{i} = ft_timelockanalysis(tmpcfg, varargin{i});
if ~strcmp(cfg.parameter, 'avg')
% rename avg back into its original parameter name
varargin{i}.(cfg.parameter) = varargin{i}.avg;
varargin{i} = rmfield(varargin{i}, 'avg');
end
% put back mask
if ~isempty(cfg.maskparameter)
varargin{i}.(cfg.maskparameter) = tmpmask;
end
end
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
elseif strcmp(dtype, 'freq') && hasrpt,
% this also deals with fourier-spectra in the input
% or with multiple subjects in a frequency domain stat-structure
% on the fly computation of coherence spectrum is not supported
for i=1:Ndata
if isfield(varargin{i}, 'crsspctrm'),
varargin{i} = rmfield(varargin{i}, 'crsspctrm');
end
end
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.jackknife = 'no';
for i=1:Ndata
if isfield(cfg, 'parameter') && ~strcmp(cfg.parameter, 'powspctrm')
% freqdesctiptives will only work on the powspctrm field
% hence a temporary copy of the data is needed
tempdata.dimord = varargin{i}.dimord;
tempdata.freq = varargin{i}.freq;
tempdata.label = varargin{i}.label;
tempdata.powspctrm = varargin{i}.(cfg.parameter);
if isfield(varargin{i}, 'cfg') tempdata.cfg = varargin{i}.cfg; end
tempdata = ft_freqdescriptives(tmpcfg, tempdata);
varargin{i}.(cfg.parameter) = tempdata.powspctrm;
clear tempdata
else
varargin{i} = ft_freqdescriptives(tmpcfg, varargin{i});
end
end
dimord = varargin{1}.dimord;
dimtok = tokenize(dimord, '_');
end
% % Read or create the layout that will be used for plotting
cla
lay = ft_prepare_layout(cfg, varargin{1});
cfg.layout = lay;
% plot layout
boxflg = istrue(cfg.box);
labelflg = false; % channel labels are plotted further down using ft_plot_vector
outlineflg = istrue(cfg.showoutline);
ft_plot_lay(lay, 'box', boxflg, 'label', labelflg, 'outline', outlineflg, 'point', 'no', 'mask', 'no');
% Apply baseline correction
if ~strcmp(cfg.baseline, 'no')
for i=1:Ndata
if strcmp(dtype, 'timelock') && strcmp(xparam, 'time')
varargin{i} = ft_timelockbaseline(cfg, varargin{i});
elseif strcmp(dtype, 'freq') && strcmp(xparam, 'time')
varargin{i} = ft_freqbaseline(cfg, varargin{i});
elseif strcmp(dtype, 'freq') && strcmp(xparam, 'freq')
error('Baseline correction is not supported for spectra without a time dimension');
else
warning('Baseline correction not applied, please set xparam');
end
end
end
% Handle the bivariate case
% Check for bivariate metric with 'chan_chan' in the dimord
selchan = strmatch('chan', dimtok);
isfull = length(selchan)>1;
% Check for bivariate metric with a labelcmb
haslabelcmb = isfield(varargin{1}, 'labelcmb');
if (isfull || haslabelcmb) && (isfield(varargin{1}, cfg.parameter) && ~strcmp(cfg.parameter, 'powspctrm'))
% A reference channel is required:
if ~isfield(cfg, 'refchannel')
error('no reference channel is specified');
end
% check for refchannel being part of selection
if ~strcmp(cfg.refchannel, 'gui')
if haslabelcmb
cfg.refchannel = ft_channelselection(cfg.refchannel, unique(varargin{1}.labelcmb(:)));
else
cfg.refchannel = ft_channelselection(cfg.refchannel, varargin{1}.label);
end
if (isfull && ~any(ismember(varargin{1}.label, cfg.refchannel))) || ...
(haslabelcmb && ~any(ismember(varargin{1}.labelcmb(:), cfg.refchannel)))
error('cfg.refchannel is a not present in the (selected) channels)')
end
end
% Interactively select the reference channel
if strcmp(cfg.refchannel, 'gui')
% Open a single figure with the channel layout, the user can click on a reference channel
h = clf;
ft_plot_lay(lay, 'box', false);
title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...');
% add the channel information to the figure
info = guidata(gcf);
info.x = lay.pos(:, 1);
info.y = lay.pos(:, 2);
info.label = lay.label;
guidata(h, info);
%set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}});
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonMotionFcn'});
return
end
for i=1:Ndata
if ~isfull,
% Convert 2-dimensional channel matrix to a single dimension:
if isempty(cfg.directionality)
sel1 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:, 2)));
sel2 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:, 1)));
elseif strcmp(cfg.directionality, 'outflow')
sel1 = [];
sel2 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:, 1)));
elseif strcmp(cfg.directionality, 'inflow')
sel1 = find(strcmp(cfg.refchannel, varargin{i}.labelcmb(:, 2)));
sel2 = [];
end
fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.parameter);
if length(sel1)+length(sel2)==0
error('there are no channels selected for plotting: you may need to look at the specification of cfg.directionality');
end
varargin{i}.(cfg.parameter) = varargin{i}.(cfg.parameter)([sel1;sel2], :, :);
varargin{i}.label = [varargin{i}.labelcmb(sel1, 1);varargin{i}.labelcmb(sel2, 2)];
varargin{i}.labelcmb = varargin{i}.labelcmb([sel1;sel2], :);
%varargin{i} = rmfield(varargin{i}, 'labelcmb');
else
% General case
sel = match_str(varargin{i}.label, cfg.refchannel);
siz = [size(varargin{i}.(cfg.parameter)) 1];
if strcmp(cfg.directionality, 'inflow') || isempty(cfg.directionality)
%the interpretation of 'inflow' and 'outflow' depend on
%the definition in the bivariate representation of the data
%in FieldTrip the row index 'causes' the column index channel
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(:, sel, :), 2), [siz(1) 1 siz(3:end)]);
sel1 = 1:siz(1);
sel2 = sel;
meandir = 2;
elseif strcmp(cfg.directionality, 'outflow')
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(sel, :, :), 1), [siz(1) 1 siz(3:end)]);
sel1 = sel;
sel2 = 1:siz(1);
meandir = 1;
elseif strcmp(cfg.directionality, 'ff-fd')
error('cfg.directionality = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_multiplotER');
elseif strcmp(cfg.directionality, 'fd-ff')
error('cfg.directionality = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_multiplotER');
end %if directionality
end %if ~isfull
end %for i
end %handle the bivariate data
% Get physical min/max range of x
if strcmp(cfg.xlim, 'maxmin')
% Find maxmin throughout all varargins:
xmin = [];
xmax = [];
for i=1:length(varargin)
xmin = min([xmin varargin{i}.(xparam)]);
xmax = max([xmax varargin{i}.(xparam)]);
end
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% Get the index of the nearest bin
for i=1:Ndata
xidmin(i, 1) = nearest(varargin{i}.(xparam), xmin);
xidmax(i, 1) = nearest(varargin{i}.(xparam), xmax);
end
if strcmp('freq',yparam) && strcmp('freq',dtype)
tmpcfg = keepfields(cfg, {'parameter'});
tmpcfg.avgoverfreq = 'yes';
tmpcfg.frequency = cfg.frequency;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
elseif strcmp('time',yparam) && strcmp('freq',dtype)
tmpcfg = keepfields(cfg, {'parameter'});
tmpcfg.avgovertime = 'yes';
tmpcfg.latency = cfg.latency;
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
end
% Get physical y-axis range (ylim / parameter):
if strcmp(cfg.ylim, 'maxmin') || strcmp(cfg.ylim, 'maxabs')
% Find maxmin throughout all varargins:
ymin = [];
ymax = [];
for i=1:length(varargin)
% Select the channels in the data that match with the layout and that
% are selected for plotting:
dat = [];
dat = varargin{i}.(cfg.parameter);
seldat1 = match_str(varargin{i}.label, lay.label); % indexes labels corresponding in input and layout
seldat2 = match_str(varargin{i}.label, cfg.channel); % indexes labels corresponding in input and plot-selection
if isempty(seldat1)
error('labels in data and labels in layout do not match');
end
data = dat(intersect(seldat1, seldat2), :);
ymin = min([ymin min(min(min(data)))]);
ymax = max([ymax max(max(max(data)))]);
end
if strcmp(cfg.ylim, 'maxabs') % handle maxabs, make y-axis center on 0
ymax = max([abs(ymax) abs(ymin)]);
ymin = -ymax;
elseif strcmp(cfg.ylim, 'zeromax')
ymin = 0;
elseif strcmp(cfg.ylim, 'minzero')
ymax = 0;
end
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% convert the layout to Ole's style of variable names
X = lay.pos(:, 1);
Y = lay.pos(:, 2);
width = lay.width;
height = lay.height;
Lbl = lay.label;
% Create empty channel coordinates and labels arrays:
chanX(1:length(Lbl)) = NaN;
chanY(1:length(Lbl)) = NaN;
chanLabels = cell(1, length(Lbl));
hold on;
colorLabels = [];
% Plot each data set:
for i=1:Ndata
% Make vector dat with one value for each channel
dat = varargin{i}.(cfg.parameter);
% get dimord dimensions
dims = textscan(varargin{i}.dimord, '%s', 'Delimiter', '_');
dims = dims{1};
ydim = find(strcmp(yparam, dims));
xdim = find(strcmp(xparam, dims));
zdim = setdiff(1:ndims(dat), [ydim xdim]);
% and permute
dat = permute(dat, [zdim(:)' ydim xdim]);
xval = varargin{i}.(xparam);
% Take subselection of channels, this only works
% in the non-interactive mode
if exist('selchannel', 'var')
sellab = match_str(varargin{i}.label, selchannel);
label = varargin{i}.label(sellab);
else
sellab = 1:numel(varargin{i}.label);
label = varargin{i}.label;
end
if isfull
dat = dat(sel1, sel2, xidmin(i):xidmax(i));
dat = nanmean(dat, meandir);
elseif haslabelcmb
dat = dat(sellab, xidmin(i):xidmax(i));
else
dat = dat(sellab, xidmin(i):xidmax(i));
end
xval = xval(xidmin(i):xidmax(i));
% Select the channels in the data that match with the layout:
[seldat, sellay] = match_str(label, cfg.layout.label);
if isempty(seldat)
error('labels in data and labels in layout do not match');
end
% gather the data of multiple input arguments
datamatrix{i} = dat(seldat, :);
% Select x and y coordinates and labels of the channels in the data
layX = cfg.layout.pos(sellay, 1);
layY = cfg.layout.pos(sellay, 2);
layLabels = cfg.layout.label(sellay);
if ~isempty(cfg.maskparameter)
% one value for each channel, or one value for each channel-time point
maskmatrix = varargin{1}.(cfg.maskparameter)(seldat, :);
maskmatrix = maskmatrix(:, xidmin:xidmax);
else
% create an Nx0 matrix
maskmatrix = zeros(length(seldat), 0);
end
if Ndata > 1
if ischar(GRAPHCOLOR); colorLabels = [colorLabels iname{i+1} '=' GRAPHCOLOR(i+1) '\n'];
elseif isnumeric(GRAPHCOLOR); colorLabels = [colorLabels iname{i+1} '=' num2str(GRAPHCOLOR(i+1, :)) '\n'];
end
end
end % for number of input data
for m=1:length(layLabels)
% Plot ER
if ischar(GRAPHCOLOR); color = GRAPHCOLOR(2:end);
elseif isnumeric(GRAPHCOLOR); color = GRAPHCOLOR(2:end, :);
end
mask = maskmatrix(m, :);
for i=1:Ndata
yval(i, :) = datamatrix{i}(m, :);
end
% Clip out of bounds y values:
yval(yval > ymax) = ymax;
yval(yval < ymin) = ymin;
if strcmp(cfg.showlabels, 'yes')
label = layLabels(m);
else
% don't show labels
label = [];
end
ft_plot_vector(xval, yval, 'width', width(m), 'height', height(m), 'hpos', layX(m), 'vpos', layY(m), 'hlim', [xmin xmax], 'vlim', [ymin ymax], 'color', color, 'style', cfg.linestyle{i}, 'linewidth', cfg.linewidth, 'axis', cfg.axes, 'highlight', mask, 'highlightstyle', cfg.maskstyle, 'label', label, 'box', cfg.box, 'fontsize', cfg.fontsize);
if i==1,
% Keep ER plot coordinates (at centre of ER plot), and channel labels (will be stored in the figure's UserData struct):
chanX(m) = X(m) + 0.5 * width(m);
chanY(m) = Y(m) + 0.5 * height(m);
chanLabels{m} = Lbl{m};
end
end % for number of channels
% Add the colors of the different datasets to the comment:
cfg.comment = [cfg.comment colorLabels];
% Write comment text:
l = cellstrmatch('COMNT', Lbl);
if ~isempty(l)
ft_plot_text(X(l), Y(l), sprintf(cfg.comment), 'Fontsize', cfg.fontsize, 'interpreter', 'none');
end
% Plot scales:
l = cellstrmatch('SCALE', Lbl);
if ~isempty(l)
plotScales([xmin xmax], [ymin ymax], X(l), Y(l), width(1), height(1), cfg)
end
% set the figure window title
if isempty(get(gcf, 'Name'))
if nargin > 1
dataname = {inputname(2)};
for k = 2:Ndata
dataname{end+1} = inputname(k+1);
end
else % data provided through cfg.inputfile
dataname = cfg.inputfile;
end
if isempty(cfg.figurename)
set(gcf, 'Name', sprintf('%d: %s: %s', double(gcf), mfilename, join_str(', ', dataname)));
set(gcf, 'NumberTitle', 'off');
else
set(gcf, 'name', cfg.figurename);
set(gcf, 'NumberTitle', 'off');
end
else
dataname = {};
end
% Make the figure interactive:
if strcmp(cfg.interactive, 'yes')
% add the dataname and channel information to the figure
% this is used in the callbacks
info = guidata(gcf);
info.x = lay.pos(:, 1);
info.y = lay.pos(:, 2);
info.label = lay.label;
info.dataname = dataname;
guidata(gcf, info);
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonMotionFcn'});
end
axis tight
axis off
if strcmp(cfg.box, 'yes')
abc = axis;
axis(abc + [-1 +1 -1 +1]*mean(abs(abc))/10)
end
hold off
% Set orientation for printing if specified
if ~isempty(cfg.orient)
orient(gcf, cfg.orient);
end
% Set renderer if specified
if ~isempty(cfg.renderer)
set(gcf, 'renderer', cfg.renderer)
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance
% add a menu to the figure, but only if the current figure does not have subplots
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
if numel(findobj(gcf, 'type', 'axes')) <= 1
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotScales(hlim, vlim, hpos, vpos, width, height, cfg)
% the placement of all elements is identical
placement = {'hpos', hpos, 'vpos', vpos, 'width', width, 'height', height, 'hlim', hlim, 'vlim', vlim};
ft_plot_box([hlim vlim], placement{:}, 'edgecolor', 'k');
if hlim(1)<=0 && hlim(2)>=0
ft_plot_vector([0 0], vlim, placement{:}, 'color', 'b');
end
if vlim(1)<=0 && vlim(2)>=0
ft_plot_vector(hlim, [0 0], placement{:}, 'color', 'b');
end
ft_plot_text(hlim(1), vlim(1), [num2str(hlim(1), 3) ' '], placement{:}, 'rotation', 90, 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'top', 'Fontsize', cfg.fontsize);
ft_plot_text(hlim(2), vlim(1), [num2str(hlim(2), 3) ' '], placement{:}, 'rotation', 90, 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'top', 'Fontsize', cfg.fontsize);
ft_plot_text(hlim(1), vlim(1), [num2str(vlim(1), 3) ' '], placement{:}, 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'bottom', 'Fontsize', cfg.fontsize);
ft_plot_text(hlim(1), vlim(2), [num2str(vlim(2), 3) ' '], placement{:}, 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'bottom', 'Fontsize', cfg.fontsize);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function l = cellstrmatch(str, strlist)
l = [];
for k=1:length(strlist)
if strcmp(char(str), char(strlist(k)))
l = [l k];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.refchannel='gui'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_multiplotER(label, cfg, varargin)
if ~isempty(label)
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
% put data name in here, this cannot be resolved by other means
info = guidata(gcf);
cfg.dataname = info.dataname;
if iscell(label)
label = label{1};
end
cfg.refchannel = label; % FIXME this only works with label being a string
fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel);
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_multiplotER(cfg, varargin{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_singleplotER(label, cfg, varargin)
if ~isempty(label)
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
cfg.channel = label;
% put data name in here, this cannot be resolved by other means
info = guidata(gcf);
cfg.dataname = info.dataname;
fprintf('selected cfg.channel = {');
for i=1:(length(cfg.channel)-1)
fprintf('''%s'', ', cfg.channel{i});
end
fprintf('''%s''}\n', cfg.channel{end});
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_singleplotER(cfg, varargin{:});
end
|
github
|
lcnbeapp/beapp-master
|
ft_prepare_mesh.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_prepare_mesh.m
| 9,219 |
utf_8
|
ee790b2287e954598ed510afb471183a
|
function [bnd, cfg] = ft_prepare_mesh(cfg, mri)
% FT_PREPARE_MESH creates a triangulated surface mesh for the volume
% conduction model. The mesh can either be selected manually from raw
% mri data or can be generated starting from a segmented volume
% information stored in the mri structure. FT_PREPARE_MESH can be used
% to create a cortex hull, i.e. the smoothed envelope around the pial
% surface created by freesurfer. The result is a bnd structure which
% contains the information about all segmented surfaces related to mri
% sand are expressed in world coordinates.
%
% Use as
% bnd = ft_prepare_mesh(cfg, mri)
% bnd = ft_prepare_mesh(cfg, seg)
% bnd = ft_prepare_mesh(cfg) # for cortexhull
%
% Configuration options:
% cfg.method = string, can be 'interactive', 'projectmesh', 'iso2mesh', 'isosurface',
% 'headshape', 'hexahedral', 'tetrahedral', 'cortexhull'
% cfg.tissue = cell-array with tissue types or numeric vector with integer values
% cfg.numvertices = numeric vector, should have same number of elements as cfg.tissue
% cfg.downsample = integer number (default = 1, i.e. no downsampling), see FT_VOLUMEDOWNSAMPLE
% cfg.headshape = (optional) a filename containing headshape, a Nx3 matrix with surface
% points, or a structure with a single or multiple boundaries
%
% Method 'cortexhull' has its own specific configuration options:
% cfg.headshape = a filename containing the pial surface computed by
% freesurfer recon-all ('/path/to/surf/lh.pial')
% cfg.
%
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% Example
% mri = ft_read_mri('Subject01.mri');
%
% cfg = [];
% cfg.output = {'scalp', 'skull', 'brain'};
% segmentation = ft_volumesegment(cfg, mri);
%
% cfg = [];
% cfg.tissue = {'scalp', 'skull', 'brain'};
% cfg.numvertices = [800, 1600, 2400];
% bnd = ft_prepare_mesh(cfg, segmentation);
%
% cfg = [];
% cfg.method = 'cortexhull';
% cfg.headshape = '/path/to/surf/lh.pial';
% cortex_hull = ft_prepare_mesh(cfg);
%
% See also FT_VOLUMESEGMENT, FT_PREPARE_HEADMODEL, FT_PLOT_MESH
% Undocumented functionality: at this moment it allows for either
% bnd = ft_prepare_mesh(cfg) or
% bnd = ft_prepare_mesh(cfg, headmodel)
% but more consistent would be to specify a volume conduction model with
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
% cfg.headshape = name of file containing the volume conduction model, see FT_READ_VOL
%
% Undocumented options, I have no clue why they exist
% cfg.method = {'singlesphere' 'concentricspheres' 'localspheres'}
% Copyrights (C) 2009-2012, Robert Oostenveld & Cristiano Micheli
% Copyrights (C) 2012-2013, Robert Oostenveld & Lilla Magyari
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar mri
ft_preamble provenance mri
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% we cannot use nargin, because the data might have been loaded from cfg.inputfile
hasdata = exist('mri', 'var');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'numcompartments', 'outputfile', 'sourceunits', 'mriunits'});
% get the options
cfg.downsample = ft_getopt(cfg, 'downsample', 1); % default is no downsampling
cfg.numvertices = ft_getopt(cfg, 'numvertices'); % no default
% This was changed on 3 December 2013, this backward compatibility can be removed in 6 months from now.
if isfield(cfg, 'interactive')
if strcmp(cfg.interactive, 'yes')
warning('please specify cfg.method=''interactive'' instead of cfg.interactive=''yes''');
cfg.method = 'interactive';
end
cfg = rmfield(cfg, 'interactive');
end
% This was changed on 3 December 2013, it makes sense to keep it like this on the
% long term (previously there was no explicit use of cfg.method, now there is).
% Translate the input options in the appropriate cfg.method.
if ~isfield(cfg, 'method')
if isfield(cfg, 'headshape') && ~isempty(cfg.headshape)
warning('please specify cfg.method=''headshape''');
cfg.method = 'headshape';
elseif hasdata && ~strcmp(ft_voltype(mri), 'unknown')
% the input is a spherical volume conduction model
cfg.method = ft_voltype(mri);
elseif hasdata
warning('please specify cfg.method=''projectmesh'', ''iso2mesh'' or ''isosurface''');
warning('using ''projectmesh'' as default');
cfg.method = 'projectmesh';
end
end
if hasdata && cfg.downsample~=1
% optionally downsample the anatomical volume and/or tissue segmentations
tmpcfg = keepfields(cfg, {'downsample'});
mri = ft_volumedownsample(tmpcfg, mri);
% restore the provenance information
[cfg, mri] = rollback_provenance(cfg, mri);
end
switch cfg.method
case 'interactive'
% this makes sense with a non-segmented MRI as input
% call the corresponding helper function
bnd = prepare_mesh_manual(cfg, mri);
case {'projectmesh', 'iso2mesh', 'isosurface'}
% this makes sense with a segmented MRI as input
% call the corresponding helper function
bnd = prepare_mesh_segmentation(cfg, mri);
case 'headshape'
% call the corresponding helper function
bnd = prepare_mesh_headshape(cfg);
case 'hexahedral'
% the MRI is assumed to contain a segmentation
% call the corresponding helper function
bnd = prepare_mesh_hexahedral(cfg, mri);
case 'tetrahedral'
% the MRI is assumed to contain a segmentation
% call the corresponding helper function
bnd = prepare_mesh_tetrahedral(cfg, mri);
case {'singlesphere' 'concentricspheres' 'localspheres'}
% FIXME for localspheres it should be replaced by an outline of the head, see private/headsurface
fprintf('triangulating the sphere in the volume conductor\n');
[pos, tri] = makesphere(cfg.numvertices);
bnd = [];
mri = ft_convert_units(mri); % ensure that it has units
headmodel = ft_datatype_headmodel(mri); % rename it and ensure that it is consistent and up-to-date
for i=1:length(headmodel.r)
bnd(i).pos(:,1) = pos(:,1)*headmodel.r(i) + headmodel.o(1);
bnd(i).pos(:,2) = pos(:,2)*headmodel.r(i) + headmodel.o(2);
bnd(i).pos(:,3) = pos(:,3)*headmodel.r(i) + headmodel.o(3);
bnd(i).tri = tri;
end
case 'cortexhull'
bnd = prepare_cortexhull(cfg);
otherwise
error('unsupported cfg.method')
end
% copy the geometrical units from the input to the output
if ~isfield(bnd, 'unit') && hasdata && isfield(mri, 'unit')
for i=1:numel(bnd)
bnd(i).unit = mri.unit;
end
elseif ~isfield(bnd, 'unit')
bnd = ft_convert_units(bnd);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous mri
ft_postamble provenance bnd
ft_postamble history bnd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pos, tri] = makesphere(numvertices)
if isempty(numvertices)
[pos,tri] = icosahedron162;
fprintf('using the mesh specified by icosaedron162\n');
elseif numvertices==42
[pos,tri] = icosahedron42;
fprintf('using the mesh specified by icosaedron%d\n',size(pos,1));
elseif numvertices==162
[pos,tri] = icosahedron162;
fprintf('using the mesh specified by icosaedron%d\n',size(pos,1));
elseif numvertices==642
[pos,tri] = icosahedron642;
fprintf('using the mesh specified by icosaedron%d\n',size(pos,1));
elseif numvertices==2562
[pos,tri] = icosahedron2562;
fprintf('using the mesh specified by icosaedron%d\n',size(pos,1));
else
[pos, tri] = msphere(numvertices);
fprintf('using the mesh specified by msphere with %d vertices\n',size(pos,1));
end
|
github
|
lcnbeapp/beapp-master
|
fieldtrip2fiff.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fieldtrip2fiff.m
| 10,130 |
utf_8
|
bce65d78216fd8c34de7e249b66f54d4
|
function fieldtrip2fiff(filename, data)
% FIELDTRIP2FIFF saves a FieldTrip raw data structure as a fiff-file, allowing it
% to be further analyzed by the Elekta/Neuromag software, or in the MNE suite
% software.
%
% Use as
% fieldtrip2fiff(filename, data)
% where filename is the name of the output file, and data is a raw data structure
% as obtained from FT_PREPROCESSING, or a timelock structure obtained from
% FT_TIMELOCKANALYSIS.
%
% If the data comes from preprocessing and has only one trial, then it writes the
% data into raw continuous format. If present in the data, the original header
% from neuromag is reused (also removing the non-used channels). Otherwise, the
% function tries to create a correct header, which might or might not contain the
% correct scaling and channel location. If the data contains events in the cfg
% structure, it writes the events in the MNE format (three columns) into a file
% based on "filename", ending with "-eve.fif"
%
% See also FT_DATATYPE_RAW, FT_DATATYPE_TIMELOCK
% Copyright (C) 2012-2013, Jan-Mathijs Schoffelen, Gio Piantoni
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this ensures that the path is correct and that the ft_defaults global variable is available
ft_defaults
% ensure that the filename has the correct extension
[pathstr, name, ext] = fileparts(filename);
if ~strcmp(ext, '.fif')
error('if the filename is specified with extension, this should read .fif');
end
fifffile = [pathstr filesep name '.fif'];
eventfile = [pathstr filesep name '-eve.fif'];
% ensure the mne-toolbox to be on the path
ft_hastoolbox('mne', 1);
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'raw', 'timelock'}, 'feedback', 'yes');
istlck = ft_datatype(data, 'timelock');
isepch = ft_datatype(data, 'raw');
israw = false;
if isepch && numel(data.trial) == 1
isepch = false;
israw = true;
end
% Create a fiff-header, or take it from the original header if possible
if ft_senstype(data, 'neuromag') && isfield(data, 'hdr')
fprintf('Using the original FIFF header, but channel locations are read \nfrom .grad and .elec in the data, if they exist\n')
info = data.hdr.orig;
else
info.meas_id.version = NaN;
info.meas_id.machid = [NaN;NaN];
info.meas_id.secs = NaN;
info.meas_id.usecs = NaN;
info.meas_date = [NaN;NaN];
info.acq_pars = []; % needed by raw
info.acq_stim = []; % needed by raw
info.highpass = NaN;
info.lowpass = NaN;
% no strictly necessary, but the inverse functions in MNE works better if
% this matrix is present
info.dev_head_t.from = 1;
info.dev_head_t.to = 4;
info.dev_head_t.trans = eye(4);
info.ctf_head_t = [];
info.dig = [];
info.projs = struct('kind', {}, 'active', {}, 'desc', {}, 'data', {});
info.comps = struct('ctfkind', {}, 'kind', {}, 'save_calibrated', {}, ...
'rowcals', {}, 'colcals', {}, 'data', {});
info.bads = [];
if isepch
info.sfreq = 1./mean(diff(data.time{1}));
info.isaverage = 0;
info.isepoched = 1;
info.iscontinuous = 0;
elseif istlck
info.sfreq = 1./mean(diff(data.time));
info.isaverage = 1;
info.isepoched = 0;
info.iscontinuous = 0;
end
end
if israw
info.sfreq = data.fsample;
elseif isepch
info.sfreq = 1 ./ mean(diff(data.time{1}));
elseif istlck
info.sfreq = 1 ./ mean(diff(data.time));
end
info.ch_names = data.label(:)';
info.chs = sens2fiff(data);
info.nchan = numel(data.label);
if israw
[outfid, cals] = fiff_start_writing_raw(fifffile, info);
fiff_write_raw_buffer(outfid, data.trial{1}, cals);
fiff_finish_writing_raw(outfid);
% write events, if they exists
if isfield(data, 'cfg')
event = ft_findcfg(data.cfg, 'event');
else
event = [];
end
if ~isempty(event)
eve = convertevent(event);
mne_write_events(eventfile, eve);
fprintf('Writing events to %s\n', eventfile)
end
elseif isepch
error('fieldtrip2fiff:NotImplementedError', 'Function to write epochs to MNE not implemented yet')
for j = 1:length(data.trial)
evoked(j).aspect_kind = 100;
evoked(j).is_smsh = 0; % FIXME: How could we tell?
evoked(j).nave = 1; % FIXME: Use the real value
evoked(j).first = round(data.time{j}(1)*info.sfreq);
evoked(j).last = round(data.time{j}(end)*info.sfreq);
evoked(j).times = data.time{j};
evoked(j).comment = sprintf('FieldTrip data, category/trial %d', j);
evoked(j).epochs = data.trial{j};
end
% fiffdata.info = info;
% fiffdata.evoked = evoked;
% fiff_write_XXX(fifffile, fiffdata);
elseif istlck
evoked.aspect_kind = 100;
evoked.is_smsh = 0;
evoked.nave = max(data.dof(:));
evoked.first = round(data.time(1)*info.sfreq);
evoked.last = round(data.time(end)*info.sfreq);
evoked.times = data.time;
evoked.comment = sprintf('FieldTrip data averaged');
evoked.epochs = data.avg;
fiffdata.info = info;
fiffdata.evoked = evoked;
fiff_write_evoked(fifffile, fiffdata);
end
%-------------------
% subfunction
function [chs] = sens2fiff(data)
% use orig information if available
if isfield(data, 'hdr') && isfield(data.hdr, 'orig') && ...
isfield(data.hdr.orig, 'chs')
[dummy, i_label, i_chs] = intersect(data.label, {data.hdr.orig.chs.ch_name});
chs(i_label) = data.hdr.orig.chs(i_chs);
return
end
% otherwise reconstruct it
fprintf('Reconstructing channel locations, it might be inaccurate\n')
FIFF = fiff_define_constants; % some constants are not defined in the MATLAB function
if isfield(data, 'grad')
hasgrad = true;
else
hasgrad = false;
end
if isfield(data, 'elec')
haselec = true;
elec = ft_convert_units(data.elec, 'cm'); % that MNE uses cm
else
haselec = false;
end
cnt_grad = 0;
cnt_elec = 0;
cnt_else = 0;
for k = 1:numel(data.label)
% create a struct for each channel
chs(1,k).scanno = k;
chs(1,k).ch_name = data.label{k};
chs(1,k).range = 1;
chs(1,k).cal = 1;
i_grad = false;
i_elec = false;
if hasgrad
i_grad = strcmp(data.grad.label, data.label{k});
elseif haselec
i_elec = strcmp(elec.label, data.label{k});
end
if any(i_grad)
chs(1,k).kind = FIFF.FIFFV_MEG_CH;
cnt_grad = cnt_grad + 1;
chs(1,k).logno = cnt_grad;
switch data.grad.chantype{i_grad}
case 'megmag'
chs(1,k).coil_type = 3024;
chs(1,k).unit = FIFF.FIFF_UNIT_T;
case 'megplanar'
chs(1,k).coil_type = 3012;
chs(1,k).unit = FIFF.FIFF_UNIT_T_M;
case 'meggrad'
chs(1,k).coil_type = 3022;
chs(1,k).unit = FIFF.FIFF_UNIT_T;
otherwise
fprintf('Unknown channel type %s, assigned to meggrad', data.grad.chantype{i_grad})
chs(1,k).coil_type = 3022;
chs(1,k).unit = FIFF.FIFF_UNIT_T;
end
chs(1,k).coil_trans = eye(4);
chs(1,k).unit_mul = 0;
chs(1,k).coord_frame = FIFF.FIFFV_COORD_HEAD;
chs(1,k).eeg_loc = [];
chs(1,k).loc = [data.grad.chanpos(i_grad,:)'; reshape(eye(3),[9 1])];
elseif any(i_elec)
chs(1,k).kind = FIFF.FIFFV_EEG_CH;
cnt_elec = cnt_elec + 1;
chs(1,k).logno = cnt_elec;
chs(1,k).coil_type = NaN;
chs(1,k).coil_trans = [];
chs(1,k).unit = 107; % volts FIFF.FIFF_UNIT_V
chs(1,k).unit_mul = -6; % micro FIFF.FIFF_UNITM_MU
chs(1,k).coord_frame = FIFF.FIFFV_COORD_DEVICE;
chs(1,k).eeg_loc = [elec.chanpos(i_elec,:)' zeros(3,1)] / 100;
chs(1,k).loc = [chs(1,k).eeg_loc(:); 0; 1; 0; 0; 0; 1];
else
chs(1,k).kind = NaN;
cnt_else = cnt_else + 1;
chs(1,k).logno = cnt_else;
chs(1,k).coil_type = NaN;
chs(1,k).coil_trans = [];
chs(1,k).unit = NaN;
chs(1,k).unit_mul = 0;
chs(1,k).coord_frame = NaN;
chs(1,k).eeg_loc = [];
chs(1,k).loc = zeros(12,1);
end
end
function eve = convertevent(event)
% tentative code, with lots of assumption
%CTF should use backpanel trigger
backpanel = strcmp({event.type}, 'backpanel trigger');
if any(backpanel)
fprintf('Writing the value of the backpanel trigger into the event file\n')
trigger = [event(backpanel).value];
eve = zeros(numel(trigger), 3);
eve(:,1) = [event(backpanel).sample];
eve(:,3) = [event(backpanel).value];
return
end
% use ev_type and ev_value
ev_type = unique({event.type});
% convert to cell of strings
if any(cellfun(@isnumeric, {event.value}))
event_value = cellfun(@num2str, {event.value}, 'uni', false);
else
event_value = {event.value};
end
ev_value = unique(event_value);
eve = zeros(numel(event), 3);
for i1 = 1:numel(ev_type)
for i2 = 1:numel(ev_value)
i_type = strcmp({event.type}, ev_type{i1});
i_value = strcmp(event_value, ev_value{i2});
marker = i1 * 10 + i2;
if any(i_type & i_value)
eve(i_type & i_value, 1) = [event(i_type & i_value).sample];
eve(i_type & i_value, 2) = marker;
end
end
end
% report event coding
newev = unique(eve(:,2));
fprintf('EVENTS have been coded as:\n')
for i = 1:numel(newev)
i_type = floor(newev(i)/10);
i_value = mod(newev(i), 10);
fprintf('type: %s, value %s -> % 3d\n', ev_type{i_type}, ev_value{i_value}, newev(i))
end
|
github
|
lcnbeapp/beapp-master
|
ft_artifact_zvalue.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_artifact_zvalue.m
| 48,529 |
utf_8
|
d7f68586d26f9a1b0725e1f63f4b08ad
|
function [cfg, artifact] = ft_artifact_zvalue(cfg, data)
% FT_ARTIFACT_ZVALUE reads the interesting segments of data from file and
% identifies artifacts by means of thresholding the z-transformed value
% of the preprocessed raw data. Depending on the preprocessing options,
% this method will be sensitive to EOG, muscle or jump artifacts.
% This procedure only works on continuously recorded data.
%
% Use as
% [cfg, artifact] = ft_artifact_zvalue(cfg)
% or
% [cfg, artifact] = ft_artifact_zvalue(cfg, data)
%
% The output argument "artifact" is a Nx2 matrix comparable to the
% "trl" matrix of FT_DEFINETRIAL. The first column of which specifying the
% beginsamples of an artifact period, the second column contains the
% endsamples of the artifactperiods.
%
% If you are calling FT_ARTIFACT_ZVALUE with only the configuration as first
% input argument and the data still has to be read from file, you should
% specify
% cfg.dataset = string with the filename
% or
% cfg.headerfile = string with the filename
% cfg.datafile = string with the filename
% and optionally
% cfg.headerformat
% cfg.dataformat
%
% If you are calling FT_ARTIFACT_ZVALUE with also the second input argument
% "data", then that should contain data that was already read from file
% a call to FT_PREPROCESSING.
%
% If you encounter difficulties with memory usage, you can use
% cfg.memory = 'low' or 'high', whether to be memory or computationally efficient, respectively (default = 'high')
%
% The required configuration settings are:
% cfg.trl
% cfg.continuous
% cfg.artfctdef.zvalue.channel
% cfg.artfctdef.zvalue.cutoff
% cfg.artfctdef.zvalue.trlpadding
% cfg.artfctdef.zvalue.fltpadding
% cfg.artfctdef.zvalue.artpadding
%
% The optional configuration settings (see below) are:
% cfg.artfctdef.zvalue.artfctpeak = 'yes' or 'no'
% cfg.artfctdef.zvalue.interactive = 'yes' or 'no'
%
% If you specify artfctpeak='yes', the maximum value of the artifact within its range
% will be found and saved into cfg.artfctdef.zvalue.peaks.
%
% If you specify interactive='yes', a GUI will be started and you can manually
% accept/reject detected artifacts, and/or change the threshold. To control the
% graphical interface via keyboard, use the following keys:
%
% q : Stop
%
% comma : Step to the previous artifact trial
% a : Specify artifact trial to display
% period : Step to the next artifact trial
%
% x : Step 10 trials back
% leftarrow : Step to the previous trial
% t : Specify trial to display
% rightarrow : Step to the next trial
% c : Step 10 trials forward
%
% k : Keep trial
% space : Mark complete trial as artifact
% r : Mark part of trial as artifact
%
% downarrow : Shift the z-threshold down
% z : Specify the z-threshold
% uparrow : Shift the z-threshold down
%
% Use also, e.g. as input to DSS option of ft_componentanalysis
% cfg.artfctdef.zvalue.artfctpeakrange=[-0.25 0.25], for example to indicate range
% around peak to include, saved into cfg.artfctdef.zvalue.dssartifact. The default is
% [0 0]. Range will respect trial boundaries (i.e. be shorter if peak is near
% beginning or end of trial). Samples between trials will be removed; thus this won't
% match .sampleinfo of the data structure.
%
% Configuration settings related to the preprocessing of the data are
% cfg.artfctdef.zvalue.lpfilter = 'no' or 'yes' lowpass filter
% cfg.artfctdef.zvalue.hpfilter = 'no' or 'yes' highpass filter
% cfg.artfctdef.zvalue.bpfilter = 'no' or 'yes' bandpass filter
% cfg.artfctdef.zvalue.bsfilter = 'no' or 'yes' bandstop filter for line noise removal
% cfg.artfctdef.zvalue.dftfilter = 'no' or 'yes' line noise removal using discrete fourier transform
% cfg.artfctdef.zvalue.medianfilter = 'no' or 'yes' jump preserving median filter
% cfg.artfctdef.zvalue.lpfreq = lowpass frequency in Hz
% cfg.artfctdef.zvalue.hpfreq = highpass frequency in Hz
% cfg.artfctdef.zvalue.bpfreq = bandpass frequency range, specified as [low high] in Hz
% cfg.artfctdef.zvalue.bsfreq = bandstop frequency range, specified as [low high] in Hz
% cfg.artfctdef.zvalue.lpfiltord = lowpass filter order
% cfg.artfctdef.zvalue.hpfiltord = highpass filter order
% cfg.artfctdef.zvalue.bpfiltord = bandpass filter order
% cfg.artfctdef.zvalue.bsfiltord = bandstop filter order
% cfg.artfctdef.zvalue.medianfiltord = length of median filter
% cfg.artfctdef.zvalue.lpfilttype = digital filter type, 'but' (default) or 'firws' or 'fir' or 'firls'
% cfg.artfctdef.zvalue.hpfilttype = digital filter type, 'but' (default) or 'firws' or 'fir' or 'firls'
% cfg.artfctdef.zvalue.bpfilttype = digital filter type, 'but' (default) or 'firws' or 'fir' or 'firls'
% cfg.artfctdef.zvalue.bsfilttype = digital filter type, 'but' (default) or 'firws' or 'fir' or 'firls'
% cfg.artfctdef.zvalue.detrend = 'no' or 'yes'
% cfg.artfctdef.zvalue.demean = 'no' or 'yes'
% cfg.artfctdef.zvalue.baselinewindow = [begin end] in seconds, the default is the complete trial
% cfg.artfctdef.zvalue.hilbert = 'no' or 'yes'
% cfg.artfctdef.zvalue.rectify = 'no' or 'yes'
%
% See also FT_REJECTARTIFACT, FT_ARTIFACT_CLIP, FT_ARTIFACT_ECG, FT_ARTIFACT_EOG,
% FT_ARTIFACT_JUMP, FT_ARTIFACT_MUSCLE, FT_ARTIFACT_THRESHOLD, FT_ARTIFACT_ZVALUE
% Copyright (C) 2003-2011, Jan-Mathijs Schoffelen & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble loadvar data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% set default rejection parameters
cfg.headerformat = ft_getopt(cfg, 'headerformat', []);
cfg.dataformat = ft_getopt(cfg, 'dataformat', []);
cfg.memory = ft_getopt(cfg, 'memory', 'high');
cfg.artfctdef = ft_getopt(cfg, 'artfctdef', []);
cfg.artfctdef.zvalue = ft_getopt(cfg.artfctdef, 'zvalue', []);
cfg.artfctdef.zvalue.method = ft_getopt(cfg.artfctdef.zvalue, 'method', 'all');
cfg.artfctdef.zvalue.ntrial = ft_getopt(cfg.artfctdef.zvalue, 'ntrial', 10);
cfg.artfctdef.zvalue.channel = ft_getopt(cfg.artfctdef.zvalue, 'channel', {});
cfg.artfctdef.zvalue.trlpadding = ft_getopt(cfg.artfctdef.zvalue, 'trlpadding', 0);
cfg.artfctdef.zvalue.fltpadding = ft_getopt(cfg.artfctdef.zvalue, 'fltpadding', 0);
cfg.artfctdef.zvalue.artpadding = ft_getopt(cfg.artfctdef.zvalue, 'artpadding', 0);
cfg.artfctdef.zvalue.interactive = ft_getopt(cfg.artfctdef.zvalue, 'interactive', 'no');
cfg.artfctdef.zvalue.cumulative = ft_getopt(cfg.artfctdef.zvalue, 'cumulative', 'yes');
cfg.artfctdef.zvalue.artfctpeak = ft_getopt(cfg.artfctdef.zvalue, 'artfctpeak', 'no');
cfg.artfctdef.zvalue.artfctpeakrange = ft_getopt(cfg.artfctdef.zvalue, 'artfctpeakrange',[0 0]);
% for backward compatibility
cfg.artfctdef = ft_checkconfig(cfg.artfctdef, 'renamed', {'blc', 'demean'});
cfg.artfctdef = ft_checkconfig(cfg.artfctdef, 'renamed', {'blcwindow' 'baselinewindow'});
cfg.artfctdef.zvalue = ft_checkconfig(cfg.artfctdef.zvalue, 'renamed', {'sgn', 'channel'});
cfg.artfctdef.zvalue = ft_checkconfig(cfg.artfctdef.zvalue, 'renamed', {'feedback', 'interactive'});
if isfield(cfg.artfctdef.zvalue, 'artifact')
fprintf('zvalue artifact detection has already been done, retaining artifacts\n');
artifact = cfg.artfctdef.zvalue.artifact;
return
end
% set feedback
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% clear old warnings from this stack
ft_warning('-clear')
% flag whether to compute z-value per trial or not, rationale being that if
% there are fluctuations in the variance across trials (e.g. due to
% position differences in MEG measurements) which don't have to do with the artifact per se,
% the detection is compromised (although the data quality is questionable
% when there is a lot of movement to begin with).
pertrial = strcmp(cfg.artfctdef.zvalue.method, 'trial');
demeantrial = strcmp(cfg.artfctdef.zvalue.method, 'trialdemean');
if pertrial
if isfield(cfg.artfctdef.zvalue, 'ntrial') && cfg.artfctdef.zvalue.ntrial>0
pertrial = cfg.artfctdef.zvalue.ntrial;
else
error('you should specify cfg.artfctdef.zvalue.ntrial, and it should be > 0');
end
end
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
if ~hasdata
% only cfg given, read data from disk
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes');
hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat);
trl = cfg.trl;
else
% check whether the value for trlpadding makes sense
if cfg.artfctdef.zvalue.trlpadding > 0
% negative trlpadding is allowed with in-memory data
error('you cannot use positive trlpadding with in-memory data');
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'hassampleinfo', 'yes');
cfg = ft_checkconfig(cfg, 'forbidden', {'dataset', 'headerfile', 'datafile'});
hdr = ft_fetch_header(data);
trl = data.sampleinfo;
end
% set default cfg.continuous
if ~isfield(cfg, 'continuous')
if hdr.nTrials==1
cfg.continuous = 'yes';
else
cfg.continuous = 'no';
end
end
trlpadding = round(cfg.artfctdef.zvalue.trlpadding*hdr.Fs);
fltpadding = round(cfg.artfctdef.zvalue.fltpadding*hdr.Fs);
artpadding = round(cfg.artfctdef.zvalue.artpadding*hdr.Fs);
trl(:,1) = trl(:,1) - trlpadding; % pad the trial with some samples, in order to detect
trl(:,2) = trl(:,2) + trlpadding; % artifacts at the edges of the relevant trials.
if size(trl, 2) >= 3
trl(:,3) = trl(:,3) - trlpadding; % the offset can ofcourse be adjusted as well
elseif hasdata
% reconstruct offset
for tr=1:size(trl, 1)
% account for 0 might not be in data.time
t0 = interp1(data.time{tr}, 1:numel(data.time{tr}), 0, 'linear', 'extrap');
trl(tr, 3) = -t0+1 - trlpadding;
end
else
% assuming that the trial starts at t=0s
trl(:, 3) = trl(:, 1);
end
trllength = trl(:,2) - trl(:,1) + 1; % length of each trial
numtrl = size(trl,1);
cfg.artfctdef.zvalue.trl = trl; % remember where we are going to look for artifacts
cfg.artfctdef.zvalue.channel = ft_channelselection(cfg.artfctdef.zvalue.channel, hdr.label);
sgnind = match_str(hdr.label, cfg.artfctdef.zvalue.channel);
numsgn = length(sgnind);
thresholdsum = strcmp(cfg.artfctdef.zvalue.cumulative, 'yes');
if numsgn<1
error('no channels selected');
end
% read the data and apply preprocessing options
sumval = zeros(numsgn, 1);
sumsqr = zeros(numsgn, 1);
numsmp = zeros(numsgn, 1);
ft_progress('init', cfg.feedback, ['searching for artifacts in ' num2str(numsgn) ' channels']);
for trlop = 1:numtrl
ft_progress(trlop/numtrl, 'searching in trial %d from %d\n', trlop, numtrl);
if strcmp(cfg.memory, 'low') % store nothing in memory
if hasdata
dat = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'), 'skipcheckdata', 1);
else
dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'), 'dataformat', cfg.dataformat);
end
dat = preproc(dat, cfg.artfctdef.zvalue.channel, offset2time(0, hdr.Fs, size(dat,2)), cfg.artfctdef.zvalue, fltpadding, fltpadding);
if trlop==1 && ~pertrial
sumval = zeros(size(dat,1), 1);
sumsqr = zeros(size(dat,1), 1);
numsmp = zeros(size(dat,1), 1);
numsgn = size(dat,1);
elseif trlop==1 && pertrial
sumval = zeros(size(dat,1), numtrl);
sumsqr = zeros(size(dat,1), numtrl);
numsmp = zeros(size(dat,1), numtrl);
numsgn = size(dat,1);
end
if ~pertrial
% accumulate the sum and the sum-of-squares
sumval = sumval + sum(dat,2);
sumsqr = sumsqr + sum(dat.^2,2);
numsmp = numsmp + size(dat,2);
else
% store per trial the sum and the sum-of-squares
sumval(:,trlop) = sum(dat,2);
sumsqr(:,trlop) = sum(dat.^2,2);
numsmp(:,trlop) = size(dat,2);
end
else % store all data in memory, saves computation time
if hasdata
dat{trlop} = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'), 'skipcheckdata', 1);
else
dat{trlop} = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'), 'dataformat', cfg.dataformat);
end
dat{trlop} = preproc(dat{trlop}, cfg.artfctdef.zvalue.channel, offset2time(0, hdr.Fs, size(dat{trlop},2)), cfg.artfctdef.zvalue, fltpadding, fltpadding);
if trlop==1 && ~pertrial
sumval = zeros(size(dat{1},1), 1);
sumsqr = zeros(size(dat{1},1), 1);
numsmp = zeros(size(dat{1},1), 1);
numsgn = size(dat{1},1);
elseif trlop==1 && pertrial
sumval = zeros(size(dat{1},1), numtrl);
sumsqr = zeros(size(dat{1},1), numtrl);
numsmp = zeros(size(dat{1},1), numtrl);
numsgn = size(dat{1},1);
end
if ~pertrial
% accumulate the sum and the sum-of-squares
sumval = sumval + sum(dat{trlop},2);
sumsqr = sumsqr + sum(dat{trlop}.^2,2);
numsmp = numsmp + size(dat{trlop},2);
else
% store per trial the sum and the sum-of-squares
sumval(:,trlop) = sum(dat{trlop},2);
sumsqr(:,trlop) = sum(dat{trlop}.^2,2);
numsmp(:,trlop) = size(dat{trlop},2);
end
end
end % for trlop
ft_progress('close');
if pertrial>1
sumval = ft_preproc_smooth(sumval, pertrial)*pertrial;
sumsqr = ft_preproc_smooth(sumsqr, pertrial)*pertrial;
numsmp = ft_preproc_smooth(numsmp, pertrial)*pertrial;
end
% compute the average and the standard deviation
datavg = sumval./numsmp;
datstd = sqrt(sumsqr./numsmp - (sumval./numsmp).^2);
if strcmp(cfg.memory, 'low')
fprintf('\n');
end
zmax = cell(1, numtrl);
zsum = cell(1, numtrl);
zindx = cell(1, numtrl);
% create a vector that indexes the trials, or is all 1, in order
% to a per trial z-scoring, or use a static std and mean (used in lines 317
% and 328)
if pertrial
indvec = 1:numtrl;
else
indvec = ones(1,numtrl);
end
for trlop = 1:numtrl
if strcmp(cfg.memory, 'low') % store nothing in memory (note that we need to preproc AGAIN... *yawn*
fprintf('.');
if hasdata
dat = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
else
dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'), 'dataformat', cfg.dataformat);
end
dat = preproc(dat, cfg.artfctdef.zvalue.channel, offset2time(0, hdr.Fs, size(dat,2)), cfg.artfctdef.zvalue, fltpadding, fltpadding);
zmax{trlop} = -inf + zeros(1,size(dat,2));
zsum{trlop} = zeros(1,size(dat,2));
zindx{trlop} = zeros(1,size(dat,2));
nsmp = size(dat,2);
zdata = (dat - datavg(:,indvec(trlop)*ones(1,nsmp)))./datstd(:,indvec(trlop)*ones(1,nsmp)); % convert the filtered data to z-values
zsum{trlop} = nansum(zdata,1); % accumulate the z-values over channels
[zmax{trlop},ind] = max(zdata,[],1); % find the maximum z-value and remember it
zindx{trlop} = sgnind(ind); % also remember the channel number that has the largest z-value
else
% initialize some matrices
zmax{trlop} = -inf + zeros(1,size(dat{trlop},2));
zsum{trlop} = zeros(1,size(dat{trlop},2));
zindx{trlop} = zeros(1,size(dat{trlop},2));
nsmp = size(dat{trlop},2);
zdata = (dat{trlop} - datavg(:,indvec(trlop)*ones(1,nsmp)))./datstd(:,indvec(trlop)*ones(1,nsmp)); % convert the filtered data to z-values
zsum{trlop} = nansum(zdata,1); % accumulate the z-values over channels
[zmax{trlop},ind] = max(zdata,[],1); % find the maximum z-value and remember it
zindx{trlop} = sgnind(ind); % also remember the channel number that has the largest z-value
end
% This alternative code does the same, but it is much slower
% for i=1:size(zmax{trlop},2)
% if zdata{trlop}(i)>zmax{trlop}(i)
% % update the maximum value and channel index
% zmax{trlop}(i) = zdata{trlop}(i);
% zindx{trlop}(i) = sgnind(sgnlop);
% end
% end
end % for trlop
if demeantrial
for trlop = 1:numtrl
zmax{trlop} = zmax{trlop}-mean(zmax{trlop},2);
zsum{trlop} = zsum{trlop}-mean(zsum{trlop},2);
end
end
%for sgnlop=1:numsgn
% % read the data and apply preprocessing options
% sumval = 0;
% sumsqr = 0;
% numsmp = 0;
% fprintf('searching channel %s ', cfg.artfctdef.zvalue.channel{sgnlop});
% for trlop = 1:numtrl
% fprintf('.');
% if hasdata
% dat{trlop} = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind(sgnlop), 'checkboundary', strcmp(cfg.continuous,'no'));
% else
% dat{trlop} = read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1)-fltpadding, 'endsample', trl(trlop,2)+fltpadding, 'chanindx', sgnind(sgnlop), 'checkboundary', strcmp(cfg.continuous,'no'));
% end
% dat{trlop} = preproc(dat{trlop}, cfg.artfctdef.zvalue.channel(sgnlop), hdr.Fs, cfg.artfctdef.zvalue, [], fltpadding, fltpadding);
% % accumulate the sum and the sum-of-squares
% sumval = sumval + sum(dat{trlop},2);
% sumsqr = sumsqr + sum(dat{trlop}.^2,2);
% numsmp = numsmp + size(dat{trlop},2);
% end % for trlop
%
% % compute the average and the standard deviation
% datavg = sumval./numsmp;
% datstd = sqrt(sumsqr./numsmp - (sumval./numsmp).^2);
%
% for trlop = 1:numtrl
% if sgnlop==1
% % initialize some matrices
% zdata{trlop} = zeros(size(dat{trlop}));
% zmax{trlop} = -inf + zeros(size(dat{trlop}));
% zsum{trlop} = zeros(size(dat{trlop}));
% zindx{trlop} = zeros(size(dat{trlop}));
% end
% zdata{trlop} = (dat{trlop} - datavg)./datstd; % convert the filtered data to z-values
% zsum{trlop} = zsum{trlop} + zdata{trlop}; % accumulate the z-values over channels
% zmax{trlop} = max(zmax{trlop}, zdata{trlop}); % find the maximum z-value and remember it
% zindx{trlop}(zmax{trlop}==zdata{trlop}) = sgnind(sgnlop); % also remember the channel number that has the largest z-value
%
% % This alternative code does the same, but it is much slower
% % for i=1:size(zmax{trlop},2)
% % if zdata{trlop}(i)>zmax{trlop}(i)
% % % update the maximum value and channel index
% % zmax{trlop}(i) = zdata{trlop}(i);
% % zindx{trlop}(i) = sgnind(sgnlop);
% % end
% % end
% end
% fprintf('\n');
%end % for sgnlop
for trlop = 1:numtrl
zsum{trlop} = zsum{trlop} ./ sqrt(numsgn);
end
% always create figure
% keypress to enable keyboard uicontrol
h = figure('KeyPressFcn', @keyboard_cb);
set(h, 'visible', 'off');
opt.artcfg = cfg.artfctdef.zvalue;
opt.artval = {};
opt.artpadding = artpadding;
opt.cfg = cfg;
opt.channel = 'artifact';
opt.hdr = hdr;
opt.numtrl = size(trl,1);
opt.quit = 0;
opt.threshold = cfg.artfctdef.zvalue.cutoff;
opt.thresholdsum = thresholdsum;
opt.trialok = true(1,opt.numtrl); % OK by means of objective criterion
opt.keep = zeros(1,opt.numtrl); % OK overruled by user +1 to keep, -1 to reject, start all zeros for callback to work
opt.trl = trl;
opt.trlop = 1;
opt.updatethreshold = true;
opt.zmax = zmax;
opt.zsum = zsum;
if ~thresholdsum
opt.zval = zmax;
else
opt.zval = zsum;
end
opt.zindx = zindx;
if ~hasdata
opt.data = {};
else
opt.data = data;
end
if strcmp(cfg.artfctdef.zvalue.interactive, 'yes')
set(h, 'visible', 'on');
set(h, 'CloseRequestFcn', @cleanup_cb);
% give graphical feedback and allow the user to modify the threshold
set(h, 'position', [100 200 900 400]);
h1 = axes('position', [0.05 0.15 0.4 0.8]);
h2 = axes('position', [0.5 0.57 0.45 0.38]);
h3 = axes('position', [0.5 0.15 0.45 0.32]);
opt.h1 = h1;
opt.h2 = h2;
opt.h3 = h3;
setappdata(h, 'opt', opt);
artval_cb(h);
redraw_cb(h);
% make the user interface elements for the data view, the order of the elements
% here is from left to right and should match the order in the documentation
uicontrol('tag', 'width1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'stop', 'userdata', 'q');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'comma');
uicontrol('tag', 'width1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'artifact', 'userdata', 'a');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'period');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<<', 'userdata', 'x');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'leftarrow');
uicontrol('tag', 'width1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'trial', 'userdata', 't');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'rightarrow');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>>', 'userdata', 'c');
uicontrol('tag', 'width3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'keep trial', 'userdata', 'k');
uicontrol('tag', 'width3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'reject full', 'userdata', 'space');
uicontrol('tag', 'width3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'reject part', 'userdata', 'r');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'downarrow');
uicontrol('tag', 'width3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'threshold', 'userdata', 'z');
uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'uparrow');
%uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'control+uparrow')
%uicontrol('tag', 'width1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'channel', 'userdata', 'c')
%uicontrol('tag', 'width2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'control+downarrow')
ft_uilayout(h, 'tag', 'width1', 'width', 0.10, 'height', 0.05);
ft_uilayout(h, 'tag', 'width2', 'width', 0.05, 'height', 0.05);
ft_uilayout(h, 'tag', 'width3', 'width', 0.12, 'height', 0.05);
ft_uilayout(h, 'tag', 'width1', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'width2', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'width3', 'style', 'pushbutton', 'callback', @keyboard_cb);
ft_uilayout(h, 'tag', 'width1', 'retag', 'viewui');
ft_uilayout(h, 'tag', 'width2', 'retag', 'viewui');
ft_uilayout(h, 'tag', 'width3', 'retag', 'viewui');
ft_uilayout(h, 'tag', 'viewui', 'BackgroundColor', [0.8 0.8 0.8], 'hpos', 'auto', 'vpos', 0.005);
while opt.quit==0
uiwait(h);
opt = getappdata(h, 'opt');
end
else
% compute the artifacts given the settings in the cfg
setappdata(h, 'opt', opt);
artval_cb(h);
end
h = getparent(h);
opt = getappdata(h, 'opt');
% convert to one long vector
dum = zeros(1,max(opt.trl(:,2)));
for trlop=1:opt.numtrl
dum(opt.trl(trlop,1):opt.trl(trlop,2)) = opt.artval{trlop};
end
artval = dum;
% find the padded artifacts and put them in a Nx2 trl-like matrix
artbeg = find(diff([0 artval])== 1);
artend = find(diff([artval 0])==-1);
artifact = [artbeg(:) artend(:)];
if strcmp(cfg.artfctdef.zvalue.artfctpeak,'yes')
cnt=1;
shift=opt.trl(1,1)-1;
for tt=1:opt.numtrl
if tt==1
tind{tt}=find(artifact(:,2)<opt.trl(tt,2));
else
tind{tt}=intersect(find(artifact(:,2)<opt.trl(tt,2)),find(artifact(:,2)>opt.trl(tt-1,2)));
end
artbegend=[(artifact(tind{tt},1)-opt.trl(tt,1)+1) (artifact(tind{tt},2)-opt.trl(tt,1)+1)];
for rr=1:size(artbegend,1)
[mx,mxnd]=max(opt.zval{tt}(artbegend(rr,1):artbegend(rr,2)));
peaks(cnt)=artifact(tind{tt}(rr),1)+mxnd-1;
dssartifact(cnt,1)=max(peaks(cnt)+cfg.artfctdef.zvalue.artfctpeakrange(1)*hdr.Fs,opt.trl(tt,1));
dssartifact(cnt,2)=min(peaks(cnt)+cfg.artfctdef.zvalue.artfctpeakrange(2)*hdr.Fs,opt.trl(tt,2));
peaks(cnt)=peaks(cnt)-shift;
dssartifact(cnt,:)=dssartifact(cnt,:)-shift;
cnt=cnt+1;
end
if tt<opt.numtrl
shift=shift+opt.trl(tt+1,1)-opt.trl(tt,2)-1;
end
clear artbegend
end
cfg.artfctdef.zvalue.peaks=peaks';
cfg.artfctdef.zvalue.dssartifact=dssartifact;
end
% remember the artifacts that were found
cfg.artfctdef.zvalue.artifact = artifact;
% also update the threshold
cfg.artfctdef.zvalue.cutoff = opt.threshold;
fprintf('detected %d artifacts\n', size(artifact,1));
delete(h);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble provenance
ft_postamble previous data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function artval_cb(h, eventdata)
opt = getappdata(h, 'opt');
artval = cell(1,opt.numtrl);
for trlop=1:opt.numtrl
if opt.thresholdsum,
% threshold the accumulated z-values
artval{trlop} = opt.zsum{trlop}>opt.threshold;
else
% threshold the max z-values
artval{trlop} = opt.zmax{trlop}>opt.threshold;
end
% pad the artifacts
artbeg = find(diff([0 artval{trlop}])== 1);
artend = find(diff([artval{trlop} 0])==-1);
artbeg = artbeg - opt.artpadding;
artend = artend + opt.artpadding;
artbeg(artbeg<1) = 1;
artend(artend>length(artval{trlop})) = length(artval{trlop});
for artlop=1:length(artbeg)
artval{trlop}(artbeg(artlop):artend(artlop)) = 1;
end
opt.trialok(trlop) = isempty(artbeg);
end
for trlop = find(opt.keep==1 & opt.trialok==0)
% overrule the objective criterion, i.e. keep the trial when the user
% wants to keep it
artval{trlop}(:) = 0;
end
for trlop = find(opt.keep<0 & opt.trialok==1)
% if the user specifies that the trial is not OK
% reject the whole trial if there is no extra-threshold data,
% otherwise use the artifact as found by the thresholding
if opt.thresholdsum && opt.keep(trlop)==-1,
% threshold the accumulated z-values
artval{trlop} = opt.zsum{trlop}>opt.threshold;
elseif opt.keep(trlop)==-1
% threshold the max z-values
artval{trlop} = opt.zmax{trlop}>opt.threshold;
elseif opt.keep(trlop)==-2
artval{trlop}(:) = 1;
end
% pad the artifacts
artbeg = find(diff([0 artval{trlop}])== 1);
artend = find(diff([artval{trlop} 0])==-1);
artbeg = artbeg - opt.artpadding;
artend = artend + opt.artpadding;
artbeg(artbeg<1) = 1;
artend(artend>length(artval{trlop})) = length(artval{trlop});
if ~isempty(artbeg)
for artlop=1:length(artbeg)
artval{trlop}(artbeg(artlop):artend(artlop)) = 1;
end
else
artval{trlop}(:) = 1;
end
end
for trlop = find(opt.keep==-2 & opt.trialok==0)
% if the user specifies the whole trial to be rejected define the whole
% segment to be bad
artval{trlop}(:) = 1;
% pad the artifacts
artbeg = find(diff([0 artval{trlop}])== 1);
artend = find(diff([artval{trlop} 0])==-1);
artbeg = artbeg - opt.artpadding;
artend = artend + opt.artpadding;
artbeg(artbeg<1) = 1;
artend(artend>length(artval{trlop})) = length(artval{trlop});
if ~isempty(artbeg)
for artlop=1:length(artbeg)
artval{trlop}(artbeg(artlop):artend(artlop)) = 1;
end
else
artval{trlop}(:) = 1;
end
end
opt.artval = artval;
setappdata(h, 'opt', opt);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function keyboard_cb(h, eventdata)
% If a mouseclick was made, use that value. If not, determine the key that
% corresponds to the uicontrol element that was activated.
if isa(eventdata,'matlab.ui.eventdata.ActionData') % only the case when clicked with mouse
curKey = get(h, 'userdata');
elseif isa(eventdata, 'matlab.ui.eventdata.KeyData') % only when key was pressed
if isempty(eventdata.Character) && any(strcmp(eventdata.Key, {'control', 'shift', 'alt', '0'}))
% only a modifier key was pressed
return
end
if isempty(eventdata.Modifier)
curKey = eventdata.Key;
else
curKey = [sprintf('%s+', eventdata.Modifier{:}) eventdata.Key];
end
elseif isfield(eventdata, 'Key') % only when key was pressed
curKey = eventdata.Key;
elseif isempty(eventdata) % matlab2012b returns an empty double upon a mouse click
curKey = get(h, 'userdata');
else
error('cannot process user input, please report this on http://bugzilla.fieldtriptoolbox.org including your MATLAB version');
end
h = getparent(h); % otherwise h is empty if isa [...].ActionData
opt = getappdata(h, 'opt');
disp(strcat('Key = ', curKey))
switch strtrim(curKey)
case 'leftarrow' % change trials
opt.trlop = max(opt.trlop - 1, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
case 'x'
opt.trlop = max(opt.trlop - 10, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
case 'rightarrow'
opt.trlop = min(opt.trlop + 1, opt.numtrl); % should not be larger than the number of trials
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
case 'c'
opt.trlop = min(opt.trlop + 10, opt.numtrl); % should not be larger than the number of trials
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
case 'uparrow' % change threshold
opt.threshold = opt.threshold+0.5;
opt.updatethreshold = true;
setappdata(h, 'opt', opt);
artval_cb(h, eventdata);
redraw_cb(h, eventdata);
opt = getappdata(h, 'opt'); % grab the opt-structure from the handle because it has been adjusted in the callbacks
opt.updatethreshold = false;
setappdata(h, 'opt', opt);
case 'downarrow'
opt.threshold = opt.threshold-0.5;
opt.updatethreshold = true;
setappdata(h, 'opt', opt);
artval_cb(h, eventdata);
redraw_cb(h, eventdata);
opt = getappdata(h, 'opt'); % grab the opt-structure from the handle because it has been adjusted in the callbacks
opt.updatethreshold = false;
setappdata(h, 'opt', opt);
case 'period' % change artifact
artfctindx = find(opt.trialok == 0);
sel = find(artfctindx>opt.trlop);
if ~isempty(sel)
opt.trlop = artfctindx(sel(1));
end
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
case 'comma'
artfctindx = find(opt.trialok == 0);
sel = find(artfctindx<opt.trlop);
if ~isempty(sel)
opt.trlop = artfctindx(sel(end));
end
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
% case 'control+uparrow' % change channel
% if strcmp(opt.channel, 'artifact')
% [dum, indx] = max(opt.zval);
% sgnind = opt.zindx(indx);
% else
% if ~isempty(opt.data)
% sgnind = match_str(opt.channel, opt.data.label);
% selchan = match_str(opt.artcfg.channel, opt.channel);
% else
% sgnind = match_str(opt.channel, opt.hdr.label);
% selchan = match_str(opt.artcfg.channel, opt.channel);
% end
% end
% numchan = numel(opt.artcfg.channel);
% chansel = min(selchan+1, numchan);
% % convert numeric array into cell-array with channel labels
% opt.channel = tmpchan(chansel);
% setappdata(h, 'opt', opt);
% redraw_cb(h, eventdata);
% case 'c' % select channel
% select = match_str([opt.artcfg.channel;{'artifact'}], opt.channel);
% opt.channel = select_channel_list([opt.artcfg.channel;{'artifact'}], select);
% setappdata(h, 'opt', opt);
% redraw_cb(h, eventdata);
% case 'control+downarrow'
% tmpchan = [opt.artcfg.channel;{'artifact'}]; % append the 'artifact' channel
% chansel = match_str(tmpchan, opt.channel);
% chansel = max(chansel-1, 1);
% % convert numeric array into cell-array with channel labels
% opt.channel = tmpchan(chansel);
% setappdata(h, 'opt', opt);
% redraw_cb(h, eventdata);
case 'a'
% select the artifact to display
response = inputdlg(sprintf('artifact trial to display'), 'specify', 1, {num2str(opt.trlop)});
if ~isempty(response)
artfctindx = find(opt.trialok == 0);
sel = str2double(response);
sel = min(numel(artfctindx), sel);
sel = max(1, sel);
opt.trlop = artfctindx(sel);
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
end
case 'q'
setappdata(h, 'opt', opt);
cleanup_cb(h);
case 't'
% select the trial to display
response = inputdlg(sprintf('trial to display'), 'specify', 1, {num2str(opt.trlop)});
if ~isempty(response)
opt.trlop = str2double(response);
opt.trlop = min(opt.trlop, opt.numtrl); % should not be larger than the number of trials
opt.trlop = max(opt.trlop, 1); % should not be smaller than 1
setappdata(h, 'opt', opt);
redraw_cb(h, eventdata);
end
case 'z'
% select the threshold
response = inputdlg('z-threshold', 'specify', 1, {num2str(opt.threshold)});
if ~isempty(response)
opt.threshold = str2double(response);
opt.updatethreshold = true;
setappdata(h, 'opt', opt);
artval_cb(h, eventdata);
redraw_cb(h, eventdata);
opt = getappdata(h, 'opt'); % grab the opt-structure from the handle because it has been adjusted in the callbacks
opt.updatethreshold = false;
setappdata(h, 'opt', opt);
end
case 'k'
opt.keep(opt.trlop) = 1;
setappdata(h, 'opt', opt);
artval_cb(h);
redraw_cb(h);
case 'r'
% only of the trial contains a partial artifact
if opt.trialok(opt.trlop) == 0
opt.keep(opt.trlop) = -1;
end
setappdata(h, 'opt', opt);
artval_cb(h);
redraw_cb(h);
case 'space'
opt.keep(opt.trlop) = -2;
setappdata(h, 'opt', opt);
artval_cb(h);
redraw_cb(h);
case 'control+control'
% do nothing
case 'shift+shift'
% do nothing
case 'alt+alt'
% do nothing
otherwise
setappdata(h, 'opt', opt);
% this should be consistent with the help of the function
fprintf('----------------------------------------------------------------------\n');
fprintf(' q : Stop\n');
fprintf('\n');
fprintf(' comma : Step to the previous artifact trial\n');
fprintf(' a : Specify artifact trial to display\n');
fprintf(' period : Step to the next artifact trial\n');
fprintf('\n');
fprintf(' x : Step 10 trials back\n');
fprintf(' leftarrow : Step to the previous trial\n');
fprintf(' t : Specify trial to display\n');
fprintf(' rightarrow : Step to the next trial\n');
fprintf(' c : Step 10 trials forward\n');
fprintf('\n');
fprintf(' k : Keep trial\n');
fprintf(' space : Mark complete trial as artifact\n');
fprintf(' r : Mark part of trial as artifact\n');
fprintf('\n');
fprintf(' downarrow : Shift the z-threshold down\n');
fprintf(' z : Specify the z-threshold\n');
fprintf(' uparrow : Shift the z-threshold down\n');
fprintf('----------------------------------------------------------------------\n');
end
clear curKey;
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function redraw_cb(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
% make a local copy of the relevant variables
trlop = opt.trlop;
artval = opt.artval{trlop};
zindx = opt.zindx{trlop};
zval = opt.zval{trlop};
cfg = opt.cfg;
artcfg = opt.artcfg;
hdr = opt.hdr;
trl = opt.trl;
trlpadsmp = round(artcfg.trlpadding*hdr.Fs);
channel = opt.channel;
% determine the channel with the highest z-value to be displayed
% this is default behaviour but can be overruled in the gui
if strcmp(channel, 'artifact')
[dum, indx] = max(zval);
sgnind = zindx(indx);
else
if ~isempty(opt.data)
sgnind = match_str(channel, opt.data.label);
else
sgnind = match_str(channel, hdr.label);
end
end
if ~isempty(opt.data)
data = ft_fetch_data(opt.data, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
else
data = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
end
%data = preproc(data, '', hdr.Fs, artcfg, [], artcfg.fltpadding, artcfg.fltpadding);
str = sprintf('trial %3d, channel %s', opt.trlop, hdr.label{sgnind});
fprintf('showing %s\n', str);
%-----------------------------
% plot summary in left subplot
subplot(opt.h1);hold on;
% plot as a blue line only once
if isempty(get(opt.h1, 'children'))
for k = 1:opt.numtrl
xval = opt.trl(k,1):opt.trl(k,2);
if opt.thresholdsum,
yval = opt.zsum{k};
else
yval = opt.zmax{k};
end
plot(opt.h1, xval, yval, 'linestyle', '-', 'color', 'b', 'displayname', 'data');
xlabel('samples');
ylabel('z-value');
end
end
h1children = get(opt.h1, 'children');
% plot trial box
boxhandle = findall(h1children, 'displayname', 'highlight');
if isempty(boxhandle)
% draw it
xval = trl(opt.trlop,1):trl(opt.trlop,2);
if opt.thresholdsum,
yval = opt.zsum{opt.trlop};
else
yval = opt.zmax{opt.trlop};
end
plot(opt.h1, xval, yval, 'linestyle', '-', 'color', 'm', 'linewidth', 2, 'displayname', 'highlight');
else
% update it
xval = trl(opt.trlop,1):trl(opt.trlop,2);
if opt.thresholdsum,
yval = opt.zsum{opt.trlop};
else
yval = opt.zmax{opt.trlop};
end
set(boxhandle, 'XData', xval);
set(boxhandle, 'YData', yval);
end
% plot as red lines the suprathreshold data points
thrhandle = findall(h1children, 'displayname', 'reddata');
if isempty(thrhandle)
% they have to be drawn
for k = 1:opt.numtrl
xval = trl(k,1):trl(k,2);
if opt.thresholdsum,
yval = opt.zsum{k};
else
yval = opt.zmax{k};
end
dum = yval<=opt.threshold;
yval(dum) = nan;
plot(opt.h1, xval, yval, 'linestyle', '-', 'color', [1 0 0], 'displayname', 'reddata');
end
hline(opt.threshold, 'color', 'r', 'linestyle', ':', 'displayname', 'threshline');
elseif ~isempty(thrhandle) && opt.updatethreshold
% they can be updated
for k = 1:opt.numtrl
xval = trl(k,1):trl(k,2);
if opt.thresholdsum,
yval = opt.zsum{k};
else
yval = opt.zmax{k};
end
dum = yval<=opt.threshold;
yval(dum) = nan;
set(thrhandle(k), 'XData', xval);
set(thrhandle(k), 'YData', yval);
end
set(findall(h1children, 'displayname', 'threshline'), 'YData', [1 1].*opt.threshold);
end
%--------------------------------------------------
% get trial specific x-axis values and padding info
xval = ((trl(opt.trlop,1):trl(opt.trlop,2))-trl(opt.trlop,1)+trl(opt.trlop,3))./opt.hdr.Fs;
if trlpadsmp>0
sel = trlpadsmp:(size(data,2)-trlpadsmp);
selpad = 1:size(data,2);
else
sel = 1:size(data,2);
selpad = sel;
end
% plot data of most aberrant channel in upper subplot
subplot(opt.h2); hold on
if isempty(get(opt.h2, 'children'))
% do the plotting
plot(xval(selpad), data(selpad), 'color', [0.5 0.5 1], 'displayname', 'line1');
plot(xval(sel), data(sel), 'color', [0 0 1], 'displayname', 'line2');
vline(xval( 1)+(trlpadsmp-1/opt.hdr.Fs), 'color', [0 0 0], 'displayname', 'vline1');
vline(xval(end)-(trlpadsmp/opt.hdr.Fs), 'color', [0 0 0], 'displayname', 'vline2');
data(~artval) = nan;
plot(xval, data, 'r-', 'displayname', 'line3');
xlabel('time(s)');
ylabel('uV or Tesla');
xlim([xval(1) xval(end)]);
title(str);
else
% update in the existing handles
h2children = get(opt.h2, 'children');
set(findall(h2children, 'displayname', 'vline1'), 'visible', 'off');
set(findall(h2children, 'displayname', 'vline2'), 'visible', 'off');
set(findall(h2children, 'displayname', 'line1'), 'XData', xval(selpad));
set(findall(h2children, 'displayname', 'line1'), 'YData', data(selpad));
set(findall(h2children, 'displayname', 'line2'), 'XData', xval(sel));
set(findall(h2children, 'displayname', 'line2'), 'YData', data(sel));
data(~artval) = nan;
set(findall(h2children, 'displayname', 'line3'), 'XData', xval);
set(findall(h2children, 'displayname', 'line3'), 'YData', data);
abc2 = axis(opt.h2);
set(findall(h2children, 'displayname', 'vline1'), 'XData', [1 1]*xval( 1)+(trlpadsmp-1/opt.hdr.Fs));
set(findall(h2children, 'displayname', 'vline1'), 'YData', abc2(3:4));
set(findall(h2children, 'displayname', 'vline2'), 'XData', [1 1]*xval(end)-(trlpadsmp/opt.hdr.Fs));
set(findall(h2children, 'displayname', 'vline2'), 'YData', abc2(3:4));
set(findall(h2children, 'displayname', 'vline1'), 'visible', 'on');
set(findall(h2children, 'displayname', 'vline2'), 'visible', 'on');
str = sprintf('trial %3d, channel %s', opt.trlop, hdr.label{sgnind});
title(str);
xlim([xval(1) xval(end)]);
end
% plot z-values in lower subplot
subplot(opt.h3); hold on;
if isempty(get(opt.h3, 'children'))
% do the plotting
plot(xval(selpad), zval(selpad), 'color', [0.5 0.5 1], 'displayname', 'line1b');
plot(xval(sel), zval(sel), 'color', [0 0 1], 'displayname', 'line2b');
hline(opt.threshold, 'color', 'r', 'linestyle', ':', 'displayname', 'threshline');
vline(xval( 1)+(trlpadsmp-1/opt.hdr.Fs), 'color', [0 0 0], 'displayname', 'vline1b');
vline(xval(end)-(trlpadsmp/opt.hdr.Fs), 'color', [0 0 0], 'displayname', 'vline2b');
zval(~artval) = nan;
plot(xval, zval, 'r-', 'displayname', 'line3b');
xlabel('time(s)');
ylabel('z-value');
xlim([xval(1) xval(end)]);
else
% update in the existing handles
h3children = get(opt.h3, 'children');
set(findall(h3children, 'displayname', 'vline1b'), 'visible', 'off');
set(findall(h3children, 'displayname', 'vline2b'), 'visible', 'off');
set(findall(h3children, 'displayname', 'line1b'), 'XData', xval(selpad));
set(findall(h3children, 'displayname', 'line1b'), 'YData', zval(selpad));
set(findall(h3children, 'displayname', 'line2b'), 'XData', xval(sel));
set(findall(h3children, 'displayname', 'line2b'), 'YData', zval(sel));
zval(~artval) = nan;
set(findall(h3children, 'displayname', 'line3b'), 'XData', xval);
set(findall(h3children, 'displayname', 'line3b'), 'YData', zval);
set(findall(h3children, 'displayname', 'threshline'), 'YData', [1 1].*opt.threshold);
set(findall(h3children, 'displayname', 'threshline'), 'XData', xval([1 end]));
abc = axis(opt.h3);
set(findall(h3children, 'displayname', 'vline1b'), 'XData', [1 1]*xval( 1)+(trlpadsmp-1/opt.hdr.Fs));
set(findall(h3children, 'displayname', 'vline1b'), 'YData', abc(3:4));
set(findall(h3children, 'displayname', 'vline2b'), 'XData', [1 1]*xval(end)-(trlpadsmp/opt.hdr.Fs));
set(findall(h3children, 'displayname', 'vline2b'), 'YData', abc(3:4));
set(findall(h3children, 'displayname', 'vline1b'), 'visible', 'on');
set(findall(h3children, 'displayname', 'vline2b'), 'visible', 'on');
xlim([xval(1) xval(end)]);
end
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cleanup_cb(h, eventdata)
opt = getappdata(h, 'opt');
opt.quit = true;
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
|
github
|
lcnbeapp/beapp-master
|
ft_sourceparcellate.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_sourceparcellate.m
| 17,075 |
utf_8
|
a75c59fcd439e6245d86f4a5ad81ccb6
|
function parcel = ft_sourceparcellate(cfg, source, parcellation)
% FT_SOURCEPARCELLATE combines the source-reconstruction parameters over the parcels.
%
% Use as
% output = ft_sourceparcellate(cfg, source, parcellation)
% where the input source is a 2D surface-based or 3-D voxel-based source grid that was for
% example obtained from FT_SOURCEANALYSIS or FT_COMPUTE_LEADFIELD. The input parcellation is
% described in detail in FT_DATATYPE_PARCELLATION (2-D) or FT_DATATYPE_SEGMENTATION (3-D) and
% can be obtained from FT_READ_ATLAS or from a custom parcellation/segmentation for your
% individual subject. The output is a channel-based representation with the combined (e.g.
% averaged) representation of the source parameters per parcel.
%
% The configuration "cfg" is a structure that can contain the following
% fields
% cfg.method = string, method to combine the values, see below (default = 'mean')
% cfg.parcellation = string, fieldname that contains the desired parcellation
% cfg.parameter = cell-array with strings, fields that should be parcellated (default = 'all')
%
% The values within a parcel or parcel-combination can be combined using
% the following methods:
% 'mean' compute the mean
% 'median' compute the median (unsupported for fields that are represented in a cell-array)
% 'eig' compute the largest eigenvector
% 'min' take the minimal value
% 'max' take the maximal value
% 'maxabs' take the signed maxabs value
%
% See also FT_SOURCEANALYSIS, FT_DATATYPE_PARCELLATION, FT_DATATYPE_SEGMENTATION
% Copyright (C) 2012-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar source parcellation
ft_preamble provenance source parcellation
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% get the defaults
cfg.parcellation = ft_getopt(cfg, 'parcellation');
cfg.parameter = ft_getopt(cfg, 'parameter', 'all');
cfg.method = ft_getopt(cfg, 'method', 'mean'); % can be mean, min, max, svd
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% the data can be passed as input argument or can be read from disk
hasparcellation = exist('parcellation', 'var');
if ischar(cfg.parameter)
cfg.parameter = {cfg.parameter};
end
if hasparcellation
% the parcellation is specified as separate structure
else
% the parcellation is represented in the source structure itself
parcellation = source;
end
% keep the transformation matrix
if isfield(parcellation, 'transform')
transform = parcellation.transform;
else
transform = [];
end
% ensure it is a parcellation, not a segmentation
parcellation = ft_checkdata(parcellation, 'datatype', 'parcellation', 'parcellationstyle', 'indexed');
% keep the transformation matrix
if ~isempty(transform)
parcellation.transform = transform;
end
% ensure it is a source, not a volume
source = ft_checkdata(source, 'datatype', 'source', 'inside', 'logical');
% ensure that the source and the parcellation are anatomically consistent
if ~isequalwithequalnans(source.pos, parcellation.pos)
error('the source positions are not consistent with the parcellation, please use FT_SOURCEINTERPOLATE');
end
if isempty(cfg.parcellation)
% determine the first field that can be used for the parcellation
fn = fieldnames(parcellation);
for i=1:numel(fn)
if isfield(parcellation, [fn{i} 'label'])
warning('using "%s" for the parcellation', fn{i});
cfg.parcellation = fn{i};
break
end
end
end
if isempty(cfg.parcellation)
error('you should specify the field containing the parcellation');
end
% determine the fields and corresponding dimords to work on
fn = fieldnames(source);
fn = setdiff(fn, {'pos', 'tri', 'inside', 'outside', 'time', 'freq', 'dim', 'transform', 'unit', 'coordsys', 'cfg', 'hdr'}); % remove fields that do not represent the data
fn = fn(cellfun(@isempty, regexp(fn, 'dimord'))); % remove dimord fields
fn = fn(cellfun(@isempty, regexp(fn, 'label'))); % remove label fields
dimord = cell(size(fn));
for i=1:numel(fn)
dimord{i} = getdimord(source, fn{i});
end
if any(strcmp(cfg.parameter, 'all'))
cfg.parameter = fn;
else
[inside, i1, i2] = intersect(cfg.parameter, fn);
[outside ] = setdiff(cfg.parameter, fn);
if ~isempty(outside)
warning('\nparameter "%s" cannot be parcellated', outside{:});
end
cfg.parameter = fn(i2);
fn = fn(i2);
dimord = dimord(i2);
end
% although it is technically feasible, don't parcellate the parcellation itself
sel = ~strcmp(cfg.parcellation, fn);
fn = fn(sel);
dimord = dimord(sel);
if numel(fn)==0
error('there are no source parameters that can be parcellated');
end
% get the parcellation and the labels that go with it
seg = parcellation.(cfg.parcellation);
seglabel = parcellation.([cfg.parcellation 'label']);
nseg = length(seglabel);
if isfield(source, 'inside')
% determine the conjunction of the parcellation and the inside source points
n0 = numel(source.inside);
n1 = sum(source.inside(:));
n2 = sum(seg(:)~=0);
fprintf('there are in total %d positions, %d positions are inside the brain, %d positions have a label\n', n0, n1, n2);
fprintf('%d of the positions inside the brain have a label\n', sum(seg(source.inside)~=0));
fprintf('%d of the labeled positions are inside the brain\n', sum(source.inside(seg(:)~=0)));
fprintf('%d of the positions inside the brain do not have a label\n', sum(seg(source.inside)==0));
% discard the positions outside the brain and the positions in the brain that do not have a label
seg(~source.inside) = 0;
end
% start preparing the output data structure
parcel = [];
parcel.label = seglabel;
if isfield(source, 'time')
parcel.time = source.time;
end
if isfield(source, 'freq')
parcel.freq = source.freq;
end
for i=1:numel(fn)
% parcellate each of the desired parameters
dat = source.(fn{i});
if strncmp('{pos_pos}', dimord{i}, 9)
fprintf('creating %d*%d parcel combinations for parameter %s by taking the %s\n', numel(seglabel), numel(seglabel), fn{i}, cfg.method);
tmp = cell(nseg, nseg);
ft_progress('init', cfg.feedback, 'computing parcellation');
k = 0;
K = numel(seglabel)^2;
for j1=1:numel(seglabel)
for j2=1:numel(seglabel)
k = k + 1;
ft_progress(k/K, 'computing parcellation for %s combined with %s', seglabel{j1}, seglabel{j2});
switch cfg.method
case 'mean'
tmp{j1,j2} = cellmean2(dat(seg==j1,seg==j2,:));
case 'median'
error('taking the median from data in a cell-array is not yet implemented');
case 'min'
tmp{j1,j2} = cellmin2(dat(seg==j1,seg==j2,:));
case 'max'
tmp{j1,j2} = cellmax2(dat(seg==j1,seg==j2,:));
% case 'eig'
% tmp{j1,j2} = celleig2(dat(seg==j1,seg==j2,:));
otherwise
error('method %s not implemented for %s', cfg.method, dimord{i});
end % switch
end % for j2
end % for j1
ft_progress('close');
elseif strncmp('{pos}', dimord{i}, 5)
fprintf('creating %d parcels for parameter %s by taking the %s\n', numel(seglabel), fn{i}, cfg.method);
tmp = cell(nseg, 1);
ft_progress('init', cfg.feedback, 'computing parcellation');
for j=1:numel(seglabel)
ft_progress(j/numel(seglabel), 'computing parcellation for %s', seglabel{j});
switch cfg.method
case 'mean'
tmp{j} = cellmean1(dat(seg==j));
case 'median'
error('taking the median from data in a cell-array is not yet implemented');
case 'min'
tmp{j} = cellmin1(dat(seg==j));
case 'max'
tmp{j} = cellmax1(dat(seg==j));
% case 'eig'
% tmp{j} = celleig1(dat(seg==j));
otherwise
error('method %s not implemented for %s', cfg.method, dimord{i});
end % switch
end % for
ft_progress('close');
elseif strncmp('pos_pos', dimord{i}, 7)
fprintf('creating %d*%d parcel combinations for parameter %s by taking the %s\n', numel(seglabel), numel(seglabel), fn{i}, cfg.method);
siz = size(dat);
siz(1) = nseg;
siz(2) = nseg;
tmp = nan(siz);
ft_progress('init', cfg.feedback, 'computing parcellation');
k = 0;
K = numel(seglabel)^2;
for j1=1:numel(seglabel)
for j2=1:numel(seglabel)
k = k + 1;
ft_progress(k/K, 'computing parcellation for %s combined with %s', seglabel{j1}, seglabel{j2});
switch cfg.method
case 'mean'
tmp(j1,j2,:) = arraymean2(dat(seg==j1,seg==j2,:));
case 'median'
tmp(j1,j2,:) = arraymedian2(dat(seg==j1,seg==j2,:));
case 'min'
tmp(j1,j2,:) = arraymin2(dat(seg==j1,seg==j2,:));
case 'max'
tmp(j1,j2,:) = arraymax2(dat(seg==j1,seg==j2,:));
case 'eig'
tmp(j1,j2,:) = arrayeig2(dat(seg==j1,seg==j2,:));
case 'maxabs'
tmp(j1,j2,:) = arraymaxabs2(dat(seg==j1,seg==j2,:));
otherwise
error('method %s not implemented for %s', cfg.method, dimord{i});
end % switch
end % for j2
end % for j1
ft_progress('close');
elseif strncmp('pos', dimord{i}, 3)
fprintf('creating %d parcels for %s by taking the %s\n', numel(seglabel), fn{i}, cfg.method);
siz = size(dat);
siz(1) = nseg;
tmp = nan(siz);
ft_progress('init', cfg.feedback, 'computing parcellation');
for j=1:numel(seglabel)
ft_progress(j/numel(seglabel), 'computing parcellation for %s', seglabel{j});
switch cfg.method
case 'mean'
tmp(j,:) = arraymean1(dat(seg==j,:));
case 'mean_thresholded'
cfg.mean = ft_getopt(cfg, 'mean', struct('threshold', []));
if isempty(cfg.mean.threshold),
error('when cfg.method = ''mean_thresholded'', you should specify a cfg.mean.threshold');
end
if numel(cfg.mean.threshold)==size(dat,1)
% assume one threshold per vertex
threshold = cfg.mean.threshold(seg==j,:);
else
threshold = cfg.mean.threshold;
end
tmp(j,:) = arraymean1(dat(seg==j,:), threshold);
case 'median'
tmp(j,:) = arraymedian1(dat(seg==j,:));
case 'min'
tmp(j,:) = arraymin1(dat(seg==j,:));
case 'max'
tmp(j,:) = arraymax1(dat(seg==j,:));
case 'maxabs'
tmp(j,:) = arraymaxabs1(dat(seg==j,:));
case 'eig'
tmp(j,:) = arrayeig1(dat(seg==j,:));
otherwise
error('method %s not implemented for %s', cfg.method, dimord{i});
end % switch
end % for
ft_progress('close');
else
error('unsupported dimord %s', dimord{i})
end % if pos, pos_pos, {pos}, etc.
% update the dimord, use chan rather than pos
% this makes it look just like timelock or freq data
tok = tokenize(dimord{i}, '_');
tok(strcmp(tok, 'pos' )) = { 'chan' }; % replace pos by chan
tok(strcmp(tok, '{pos}')) = {'{chan}'}; % replace pos by chan
tok(strcmp(tok, '{pos')) = {'{chan' }; % replace pos by chan
tok(strcmp(tok, 'pos}')) = { 'chan}'}; % replace pos by chan
tmpdimord = sprintf('%s_', tok{:});
tmpdimord = tmpdimord(1:end-1); % exclude the last _
% store the results in the output structure
parcel.(fn{i}) = tmp;
parcel.([fn{i} 'dimord']) = tmpdimord;
% to avoid confusion
clear dat tmp tmpdimord j j1 j2
end % for each of the fields that should be parcellated
% a brainordinate is a brain location that is specified by either a surface vertex (node) or a volume voxel
parcel.brainordinate = keepfields(parcellation, {'pos', 'tri', 'dim', 'transform'}); % keep the information about the geometry
fn = fieldnames(parcellation);
for i=1:numel(fn)
if isfield(parcellation, [fn{i} 'label'])
% keep each of the labeled fields from the parcellation
parcel.brainordinate.( fn{i} ) = parcellation.( fn{i} );
parcel.brainordinate.([fn{i} 'label']) = parcellation.([fn{i} 'label']);
end
end
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous source parcellation
ft_postamble provenance parcel
ft_postamble history parcel
ft_postamble savevar parcel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS to complute something over the first dimension
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = arraymean1(x, threshold)
if nargin==1
y = mean(x,1);
else
if numel(threshold)==1
% scalar comparison is possible
elseif size(threshold,1) == size(x,1)
% assume threshold to be column vector
threshold = repmat(threshold, [1, size(x,2)]);
end
sel = sum(x>threshold,2);
if ~isempty(sel)
y = mean(x(sel>0,:),1);
else
y = nan+zeros(1,size(x,2));
end
end
function y = arraymedian1(x)
y = median(x,1);
function y = arraymin1(x)
y = min(x,[], 1);
function y = arraymax1(x)
y = max(x,[], 1);
function y = arrayeig1(x)
siz = size(x);
x = reshape(x, siz(1), prod(siz(2:end)));
[u, s, v] = svds(x, 1); % x = u * s * v'
y = s(1,1) * v(:,1); % retain the largest eigenvector with appropriate scaling
y = reshape(y, [siz(2:end) 1]); % size should have at least two elements
function y = arraymaxabs1(x)
% take the value that is at max(abs(x))
[dum,ix] = max(abs(x), [], 1);
y = x(ix);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS to compute something over the first two dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = arraymean2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = arraymean1(x);
function y = arraymedian2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = arraymedian1(x);
function y = arraymin2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = arraymin1(x);
function y = arraymax2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = arraymax1(x);
function y = arrayeig2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = arrayeig1(x);
function y = arraymaxabs2(x)
% take the value that is at max(abs(x))
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
[dum,ix] = max(abs(x), [], 1);
y = x(ix);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS for doing something over the first dimension of a cell array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = cellmean1(x)
siz = size(x);
if siz(1)==1 && siz(2)>1
siz([2 1]) = siz([1 2]);
x = reshape(x, siz);
end
y = x{1};
n = 1;
for i=2:siz(1)
y = y + x{i};
n = n + 1;
end
y = y/n;
function y = cellmin1(x)
siz = size(x);
if siz(1)==1 && siz(2)>1
siz([2 1]) = siz([1 2]);
x = reshape(x, siz);
end
y = x{1};
for i=2:siz(1)
y = min(x{i}, y);
end
function y = cellmax1(x)
siz = size(x);
if siz(1)==1 && siz(2)>1
siz([2 1]) = siz([1 2]);
x = reshape(x, siz);
end
y = x{1};
for i=2:siz(1)
y = max(x{i}, y);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS to compute something over the first two dimensions of a cell array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = cellmean2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = cellmean1(x);
function y = cellmin2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = cellmin1(x);
function y = cellmax2(x)
siz = size(x);
x = reshape(x, [siz(1)*siz(2) siz(3:end) 1]); % simplify it into a single dimension
y = cellmax1(x);
|
github
|
lcnbeapp/beapp-master
|
besa2fieldtrip.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/besa2fieldtrip.m
| 16,198 |
utf_8
|
0c7a9f9810b768eb90d6a2e7ffeeab37
|
function data = besa2fieldtrip(input)
% BESA2FIELDTRIP reads and converts various BESA datafiles into a FieldTrip
% data structure, which subsequently can be used for statistical analysis
% or other analysis methods implemented in Fieldtrip.
%
% Use as
% [data] = besa2fieldtrip(filename)
% where the filename should point to a BESA datafile (or data that
% was exported by BESA). The output is a MATLAB structure that is
% compatible with FieldTrip.
%
% The format of the output structure depends on the type of datafile:
% *.avr is converted to a structure similar to the output of FT_TIMELOCKANALYSIS
% *.mul is converted to a structure similar to the output of FT_TIMELOCKANALYSIS
% *.swf is converted to a structure similar to the output of FT_TIMELOCKANALYSIS (*)
% *.tfc is converted to a structure similar to the output of FT_FREQANALYSIS (*)
% *.dat is converted to a structure similar to the output of FT_SOURCANALYSIS
% *.dat combined with a *.gen or *.generic is converted to a structure similar to the output of FT_PREPROCESSING
%
% Note (*): If the BESA toolbox by Karsten Hochstatter is found on your
% MATLAB path, the readBESAxxx functions will be used (where xxx=tfc/swf),
% alternatively the private functions from FieldTrip will be used.
%
% See also EEGLAB2FIELDTRIP, SPM2FIELDTRIP
% Copyright (C) 2005-2010, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble callinfo
if isstruct(input) && numel(input)>1
% use a recursive call to convert multiple inputs
data = cell(size(input));
for i=1:numel(input)
data{i} = besa2fieldtrip(input(i));
end
return
end
if isstruct(input)
fprintf('besa2fieldtrip: converting structure\n');
%---------------------TFC-------------------------------------------------%
if strcmp(input.structtype, 'besa_tfc')
%fprintf('BESA tfc\n');
data.time = input.latencies;
data.freq = input.frequencies;
temp_chans = char(input.channellabels');
Nchan = size(temp_chans,1);
%{
if strcmp(input.type,'COHERENCE_SQUARED')
% it contains coherence between channel pairs
fprintf('reading coherence between %d channel pairs\n', Nchan);
for i=1:Nchan
tmp = tokenize(deblank(temp_chans(i,:)), '-');
data.labelcmb{i,1} = deblank(tmp{1});
data.labelcmb{i,2} = deblank(tmp{2});
data.label{i,1} = deblank(temp_chans(i,:));
end
data.cohspctrm = input.data;
else
%}
% it contains power on channels
fprintf('reading power on %d channels\n', Nchan);
for i=1:Nchan
data.label{i,1} = deblank(temp_chans(i,:));
end
data.powspctrm = input.data;
data.dimord = 'chan_freq_time';
data.condition = input.condition; %not original Fieldtrip fieldname
%end
clear temp;
%--------------------Image------------------------------------------------%
elseif strcmp(input.structtype, 'besa_image')
%fprintf('BESA image\n');
data.avg.pow = input.data;
xTemp = input.xcoordinates;
yTemp = input.ycoordinates;
zTemp = input.zcoordinates;
data.xgrid = xTemp;
data.ygrid = yTemp;
data.zgrid = zTemp;
nx = size(data.xgrid,2);
ny = size(data.ygrid,2);
nz = size(data.zgrid,2);
% Number of points in each dimension
data.dim = [nx ny nz];
% Array with all possible positions (x,y,z)
data.pos = WritePosArray(xTemp,yTemp,zTemp,nx,ny,nz);
data.inside = 1:prod(data.dim);%as in Fieldtrip - not correct
data.outside = [];
%--------------------Source Waveform--------------------------------------%
elseif strcmp(input.structtype, 'besa_sourcewaveforms')
%fprintf('BESA source waveforms\n');
data.label = input.labels'; %not the same as Fieldtrip!
data.dimord = 'chan_time';
data.fsample = input.samplingrate;
data.time = input.latencies / 1000.0;
data.avg = input.waveforms';
data.cfg.filename = input.datafile;
%--------------------Data Export------------------------------------------%
elseif strcmp(input.structtype, 'besa_channels')
%fprintf('BESA data export\n');
if isfield(input,'datatype')
switch input.ft_datatype
case {'Raw_Data','Epoched_Data','Segment'}
data.fsample = input.samplingrate;
data.label = input.channellabels';
for k=1:size(input.data,2)
data.time{1,k} = input.data(k).latencies / 1000.0';
data.trial{1,k} = input.data(k).amplitudes';
end
otherwise
fprintf('ft_datatype other than Raw_Data, Epoched or Segment');
end
else
fprintf('workspace created with earlier MATLAB version');
end
%--------------------else-------------------------------------------------%
else
error('unrecognized format of the input structure');
end
elseif ischar(input)
fprintf('besa2fieldtrip: reading from file\n');
% This function can either use the reading functions included in FieldTrip
% (with contributions from Karsten, Vladimir and Robert), or the official
% released functions by Karsten Hoechstetter from BESA. The functions in the
% official toolbox have precedence.
hasbesa = ft_hastoolbox('besa',1, 1);
type = ft_filetype(input);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(type, 'besa_avr') && hasbesa
fprintf('reading ERP/ERF\n');
% this should be similar to the output of TIMELOCKANALYSIS
tmp = readBESAavr(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = [];
if isfield(tmp, 'ChannelLabels'),
data.label = fixlabels(tmp.ChannelLabels);
end;
data.avg = tmp.Data;
data.time = tmp.Time / 1000; % convert to seconds
data.fsample = 1000/tmp.DI;
data.dimord = 'chan_time';
elseif strcmp(type, 'besa_avr') && ~hasbesa
fprintf('reading ERP/ERF\n');
% this should be similar to the output of TIMELOCKANALYSIS
tmp = read_besa_avr(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = fixlabels(tmp.label);
data.avg = tmp.data;
data.time = (0:(tmp.npnt-1)) * tmp.di + tmp.tsb;
data.time = data.time / 1000; % convert to seconds
data.fsample = 1000/tmp.di;
data.dimord = 'chan_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_mul') && hasbesa
fprintf('reading ERP/ERF\n');
% this should be similar to the output of TIMELOCKANALYSIS
tmp = readBESAmul(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = tmp.ChannelLabels(:);
data.avg = tmp.data';
data.time = (0:(tmp.Npts-1)) * tmp.DI + tmp.TSB;
data.time = data.time / 1000; %convert to seconds
data.fsample = 1000/tmp.DI;
data.dimord = 'chan_time';
elseif strcmp(type, 'besa_mul') && ~hasbesa
fprintf('reading ERP/ERF\n');
% this should be similar to the output of TIMELOCKANALYSIS
tmp = read_besa_mul(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = tmp.label(:);
data.avg = tmp.data;
data.time = (0:(tmp.TimePoints-1)) * tmp.SamplingInterval_ms_ + tmp.BeginSweep_ms_;
data.time = data.time / 1000; % convert to seconds
data.fsample = 1000/tmp.SamplingInterval_ms_;
data.dimord = 'chan_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_sb')
if hasbesa
fprintf('reading preprocessed channel data using BESA toolbox\n');
else
error('this data format requires the BESA toolbox');
end
[p, f, x] = fileparts(input);
input = fullfile(p, [f '.dat']);
[time,buf,ntrial] = readBESAsb(input);
time = time/1000; % convert from ms to sec
nchan = size(buf,1);
ntime = size(buf,3);
% convert into a PREPROCESSING compatible data structure
data = [];
data.trial = {};
data.time = {};
for i=1:ntrial
data.trial{i} = reshape(buf(:,i,:), [nchan, ntime]);
data.time{i} = time;
end
data.label = {};
for i=1:size(buf,1)
data.label{i,1} = sprintf('chan%03d', i);
end
data.fsample = 1./mean(diff(time)); % time is already in seconds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_tfc') && hasbesa
fprintf('reading time-frequency representation using BESA toolbox\n');
% this should be similar to the output of FREQANALYSIS
tfc = readBESAtfc(input);
Nchan = size(tfc.ChannelLabels,1);
% convert into a FREQANALYSIS compatible data structure
data = [];
data.time = tfc.Time(:)';
data.freq = tfc.Frequency(:)';
if isfield(tfc, 'DataType') && strcmp(tfc.DataType, 'COHERENCE_SQUARED')
% it contains coherence between channel pairs
fprintf('reading coherence between %d channel pairs\n', Nchan);
for i=1:Nchan
tmp = tokenize(deblank(tfc.ChannelLabels(i,:)), '-');
data.labelcmb{i,1} = tmp{1};
data.labelcmb{i,2} = tmp{2};
end
data.cohspctrm = permute(tfc.Data, [1 3 2]);
else
% it contains power on channels
fprintf('reading power on %d channels\n', Nchan);
for i=1:Nchan
data.label{i,1} = deblank(tfc.ChannelLabels(i,:));
end
data.powspctrm = permute(tfc.Data, [1 3 2]);
end
data.dimord = 'chan_freq_time';
data.condition = tfc.ConditionName;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_tfc') && ~hasbesa
fprintf('reading time-frequency representation\n');
% this should be similar to the output of FREQANALYSIS
[ChannelLabels, Time, Frequency, Data, Info] = read_besa_tfc(input);
Nchan = size(ChannelLabels,1);
% convert into a FREQANALYSIS compatible data structure
data = [];
data.time = Time * 1e-3; % convert to seconds;
data.freq = Frequency;
if isfield(Info, 'DataType') && strcmp(Info.DataType, 'COHERENCE_SQUARED')
% it contains coherence between channel pairs
fprintf('reading coherence between %d channel pairs\n', Nchan);
for i=1:Nchan
tmp = tokenize(deblank(ChannelLabels(i,:)), '-');
data.labelcmb{i,1} = tmp{1};
data.labelcmb{i,2} = tmp{2};
end
data.cohspctrm = permute(Data, [1 3 2]);
else
% it contains power on channels
fprintf('reading power on %d channels\n', Nchan);
for i=1:Nchan
data.label{i} = deblank(ChannelLabels(i,:));
end
data.powspctrm = permute(Data, [1 3 2]);
end
data.dimord = 'chan_freq_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_swf') && hasbesa
fprintf('reading source waveform using BESA toolbox\n');
swf = readBESAswf(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = fixlabels(swf.waveName);
data.avg = swf.data;
data.time = swf.Time * 1e-3; % convert to seconds
data.fsample = 1/mean(diff(data.time));
data.dimord = 'chan_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_swf') && ~hasbesa
fprintf('reading source waveform\n');
% hmm, I guess that this should be similar to the output of TIMELOCKANALYSIS
tmp = read_besa_swf(input);
% convert into a TIMELOCKANALYSIS compatible data structure
data = [];
data.label = fixlabels(tmp.label);
data.avg = tmp.data;
data.time = (0:(tmp.npnt-1)) * tmp.di + tmp.tsb;
data.time = data.time / 1000; % convert to seconds
data.fsample = 1000/tmp.di;
data.dimord = 'chan_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_src') && hasbesa
src = readBESAimage(input);
data.xgrid = src.Coordinates.X;
data.ygrid = src.Coordinates.Y;
data.zgrid = src.Coordinates.Z;
data.avg.pow = src.Data;
data.dim = size(src.Data);
[X, Y, Z] = ndgrid(data.xgrid, data.ygrid, data.zgrid);
data.pos = [X(:) Y(:) Z(:)];
% cannot determine which voxels are inside the brain volume
data.inside = 1:prod(data.dim);
data.outside = [];
elseif strcmp(type, 'besa_src') && ~hasbesa
src = read_besa_src(input);
data.xgrid = linspace(src.X(1), src.X(2), src.X(3));
data.ygrid = linspace(src.Y(1), src.Y(2), src.Y(3));
data.zgrid = linspace(src.Z(1), src.Z(2), src.Z(3));
data.avg.pow = src.vol;
data.dim = size(src.vol);
[X, Y, Z] = ndgrid(data.xgrid, data.ygrid, data.zgrid);
data.pos = [X(:) Y(:) Z(:)];
% cannot determine which voxels are inside the brain volume
data.inside = 1:prod(data.dim);
data.outside = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(type, 'besa_pdg')
% hmmm, I have to think about this one...
error('sorry, pdg is not yet supported');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else
error('unrecognized file format for importing BESA data');
end
end % isstruct || ischar
% construct and add a configuration to the output
cfg = [];
if isstruct(input) && isfield(input,'datafile')
cfg.filename = input.datafile;
elseif isstruct(input) && ~isfield(input,'datafile')
cfg.filename = 'Unknown';
elseif ischar(input)
cfg.filename = input;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble callinfo
ft_postamble history data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that fixes the channel labels, should be a cell-array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [newlabels] = fixlabels(labels)
if iscell(labels) && length(labels)>1
% seems to be ok
newlabels = labels;
elseif iscell(labels) && length(labels)==1
% could be a cell with a single long string in it
if length(tokenize(labels{1}, ' '))>1
% seems like a long string that accidentaly ended up in a single
cell
newlabels = tokenize(labels{1}, ' ');
else
% seems to be ok
newlabels = labels;
end
elseif ischar(labels) && any(size(labels)==1)
newlabels = tokenize(labels(:)', ' '); % also ensure that it is a row-string
elseif ischar(labels) && ~any(size(labels)==1)
for i=1:size(labels)
newlabels{i} = strtrim(labels(i,:));
end
end
% convert to column
newlabels = newlabels(:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [PArray] = WritePosArray(x,y,z,mx,my,mz)
A1 = repmat(x,1,my*mz);
A21 = repmat(y,mx,mz);
A2 = reshape(A21,1,mx*my*mz);
A31 = repmat(z,mx*my,1);
A3 = reshape(A31,1,mx*my*mz);
PArray = [A1;A2;A3]';
|
github
|
lcnbeapp/beapp-master
|
ft_topoplotCC.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/ft_topoplotCC.m
| 12,799 |
utf_8
|
8416ba741caf630c1c2b3a2fc78e6ff8
|
function [cfg] = ft_topoplotCC(cfg, freq)
% FT_TOPOPLOTCC plots the coherence between channel pairs
%
% Use as
% ft_topoplotCC(cfg, freq)
%
% The configuration should contain:
% cfg.feedback = string (default = 'textbar')
% cfg.layout = specification of the layout, see FT_PREPARE_LAYOUT
% cfg.foi = the frequency of interest which is to be plotted (default is the first frequency bin)
% cfg.widthparam = string, parameter to be used to control the line width (see below)
% cfg.alphaparam = string, parameter to be used to control the opacity (see below)
% cfg.colorparam = string, parameter to be used to control the line color
%
% The widthparam should be indicated in pixels, e.g. usefull numbers are 1
% and larger.
%
% The alphaparam should be indicated as opacity between 0 (fully transparent)
% and 1 (fully opaque).
%
% The default is to plot the connections as lines, but you can also use
% bidirectional arrows:
% cfg.arrowhead = string, 'none', 'stop', 'start', 'both' (default = 'none')
% cfg.arrowsize = scalar, size of the arrow head in figure units,
% i.e. the same units as the layout (default is automatically determined)
% cfg.arrowoffset = scalar, amount that the arrow is shifted to the side in figure units,
% i.e. the same units as the layout (default is automatically determined)
% cfg.arrowlength = scalar, amount by which the length is reduced relative to the complete line (default = 0.8)
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure. For this particular function, the input should be
% structured as a cell array.
%
% See also FT_PREPARE_LAYOUT, FT_MULTIPLOTCC, FT_CONNECTIVITYPLOT
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar freq
ft_preamble provenance freq
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
freq = ft_checkdata(freq, 'cmbrepresentation', 'sparse');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', {'foi', 'layout'});
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.alphaparam = ft_getopt(cfg, 'alphaparam', []);
cfg.widthparam = ft_getopt(cfg, 'widthparam', []);
cfg.colorparam = ft_getopt(cfg, 'colorparam', 'cohspctrm');
cfg.newfigure = ft_getopt(cfg, 'newfigure', 'yes');
cfg.arrowhead = ft_getopt(cfg, 'arrowhead', 'none'); % none, stop, start, both
cfg.arrowsize = ft_getopt(cfg, 'arrowsize', nan); % length of the arrow head, should be in in figure units, i.e. the same units as the layout
cfg.arrowoffset = ft_getopt(cfg, 'arrowoffset', nan); % absolute, should be in figure units, i.e. the same units as the layout
cfg.arrowlength = ft_getopt(cfg, 'arrowlength', 0.8);% relative to the complete line
cfg.linestyle = ft_getopt(cfg, 'linestyle', []);
cfg.colormap = ft_getopt(cfg, 'colormap', colormap);
lay = ft_prepare_layout(cfg, freq);
beglabel = freq.labelcmb(:,1);
endlabel = freq.labelcmb(:,2);
ncmb = size(freq.labelcmb,1);
% select the data to be used in the figure
fbin = nearest(freq.freq, cfg.foi);
if isfield(freq, cfg.widthparam)
widthparam = freq.(cfg.widthparam)(:,fbin);
else
widthparam = ones(ncmb,1);
end
if isfield(freq, cfg.alphaparam)
alphaparam = freq.(cfg.alphaparam)(:,fbin);
else
alphaparam = [];
end
if isfield(freq, cfg.colorparam)
colorparam = freq.(cfg.colorparam)(:,fbin);
else
colorparam = [];
end
if strcmp(cfg.newfigure, 'yes')
figure
end
hold on
axis equal
% set the figure window title
funcname = mfilename();
if isfield(cfg, 'inputfile') && ~isempty(cfg.inputfile)
dataname = cfg.inputfile;
else
dataname = inputname(2);
end
set(gcf, 'Name', sprintf('%d: %s: %s', double(gcf), funcname, join_str(', ',dataname)));
set(gcf, 'NumberTitle', 'off');
if isnan(cfg.arrowsize)
% use the size of the figure to estimate a decent number
siz = axis;
cfg.arrowsize = (siz(2) - siz(1))/50;
warning('using an arrowsize of %f', cfg.arrowsize);
end
if isnan(cfg.arrowoffset)
% use the size of the figure to estimate a decent number
siz = axis;
cfg.arrowoffset = (siz(2) - siz(1))/100;
warning('using an arrowoffset of %f', cfg.arrowoffset);
end
rgb = cfg.colormap;
if ~isempty(colorparam)
cmin = min(colorparam(:));
cmax = max(colorparam(:));
% this line creates a sorting vector that cause the most extreme valued
% arrows to be plotted last
[srt, srtidx] = sort(abs(colorparam));
colorparam = (colorparam - cmin)./(cmax-cmin);
colorparam = round(colorparam * (size(rgb,1)-1) + 1);
end
if strcmp(cfg.newfigure, 'yes')
ft_plot_lay(lay, 'label', 'no', 'box', 'off');
end % if newfigure
% fix the limits for the axis
axis(axis);
ft_progress('init', cfg.feedback, 'plotting connections...');
if ~exist('srtidx', 'var')
srtidx = 1:ncmb;
end
for i=srtidx(:)'
if strcmp(beglabel{i}, endlabel{i})
% skip autocombinations
continue
end
if widthparam(i)>0 && (isempty(alphaparam)||alphaparam(i)>0)
ft_progress(i/ncmb, 'plotting connection %d from %d (%s -> %s)\n', i, ncmb, beglabel{i}, endlabel{i});
begindx = strcmp(beglabel{i}, lay.label);
endindx = strcmp(endlabel{i}, lay.label);
xbeg = lay.pos(begindx,1);
ybeg = lay.pos(begindx,2);
xend = lay.pos(endindx,1);
yend = lay.pos(endindx,2);
if isempty(cfg.linestyle)
if strcmp(cfg.arrowhead, 'none')
x = [xbeg xend]';
y = [ybeg yend]';
% h = line(x, y);
h = patch(x, y, 1);
else
arrowbeg = [xbeg ybeg];
arrowend = [xend yend];
center = (arrowbeg+arrowend)/2;
direction = (arrowend - arrowbeg);
direction = direction/norm(direction);
offset = [direction(2) -direction(1)];
arrowbeg = cfg.arrowlength * (arrowbeg-center) + center + cfg.arrowoffset * offset;
arrowend = cfg.arrowlength * (arrowend-center) + center + cfg.arrowoffset * offset;
h = arrow(arrowbeg, arrowend, 'Ends', cfg.arrowhead, 'length', 0.05);
end % if arrow
if ~isempty(widthparam)
set(h, 'LineWidth', widthparam(i));
end
if ~isempty(alphaparam)
set(h, 'EdgeAlpha', alphaparam(i));
set(h, 'FaceAlpha', alphaparam(i)); % for arrowheads
end
if ~isempty(colorparam)
set(h, 'EdgeColor', rgb(colorparam(i),:));
set(h, 'FaceColor', rgb(colorparam(i),:)); % for arrowheads
end
elseif ~isempty(cfg.linestyle)
% new style of plotting, using curved lines, this does not allow for
% alpha mapping on the line segment
switch cfg.linestyle
case 'curve'
tmp = cscvn([xbeg mean([xbeg,xend])*0.8 xend;ybeg mean([ybeg,yend])*0.8 yend]);
pnt = fnplt(tmp);
h = line(pnt(1,:)', pnt(2,:)');
if ~isempty(widthparam)
set(h, 'LineWidth', widthparam(i));
end
if ~isempty(colorparam)
set(h, 'Color', rgb(colorparam(i),:));
end
% deal with the arrow
if ~strcmp(cfg.arrowhead, 'none')
arrowbeg = pnt(:,1)';
arrowend = pnt(:,end)';
directionbeg = (arrowbeg - pnt(:,2)');
directionend = (arrowend - pnt(:,end-1)');
directionbeg = directionbeg/norm(directionbeg);
directionend = directionend/norm(directionend);
switch cfg.arrowhead
case 'stop'
pnt1 = arrowend - 0.05*directionend + 0.02*[directionend(2) -directionend(1)];
pnt2 = arrowend;
pnt3 = arrowend - 0.05*directionend - 0.02*[directionend(2) -directionend(1)];
h_arrow = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', [0 0 0]);
case 'start'
pnt1 = arrowbeg - 0.05*directionbeg + 0.02*[directionbeg(2) -directionbeg(1)];
pnt2 = arrowbeg;
pnt3 = arrowbeg - 0.05*directionbeg - 0.02*[directionbeg(2) -directionbeg(1)];
h_arrow = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', [0 0 0]);
case 'both'
pnt1 = arrowbeg - 0.05*directionbeg + 0.02*[directionbeg(2) -directionbeg(1)];
pnt2 = arrowbeg;
pnt3 = arrowbeg - 0.05*directionbeg - 0.02*[directionbeg(2) -directionbeg(1)];
h_arrow(1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', [0 0 0]);
pnt1 = arrowend - 0.05*directionend + 0.02*[directionend(2) -directionend(1)];
pnt2 = arrowend;
pnt3 = arrowend - 0.05*directionend - 0.02*[directionend(2) -directionend(1)];
h_arrow(2) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', [0 0 0]);
end
else
h_arrow = [];
end
if ~isempty(widthparam)
set(h, 'LineWidth', widthparam(i));
if ~isempty(h_arrow)
set(h_arrow, 'LineWidth', widthparam(i));
end
end
if ~isempty(colorparam)
set(h, 'Color', rgb(colorparam(i),:));
if ~isempty(h_arrow)
set(h_arrow, 'Edgecolor', rgb(colorparam(i),:));
set(h_arrow, 'Facecolor', rgb(colorparam(i),:));
end
end
if ~isempty(alphaparam)
if ~isempty(h_arrow)
set(h_arrow, 'EdgeAlpha', alphaparam(i));
set(h_arrow, 'FaceAlpha', alphaparam(i)); % for arrowheads
end
end
otherwise
error('unsupported linestyle specified');
end
end
end
end
ft_progress('close');
% improve the fit in the axis
axis tight
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous freq
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for plotting arrows, see also fieldtrip/private/arrow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = arrow(arrowbeg, arrowend, varargin)
ends = ft_getopt(varargin, 'ends');
length = ft_getopt(varargin, 'length'); % the length of the arrow head, in figure units
color = [0 0 0]; % in RGB
direction = (arrowend - arrowbeg);
direction = direction/norm(direction);
offset = [direction(2) -direction(1)];
pnt1 = arrowbeg;
pnt2 = arrowend;
h = patch([pnt1(1) pnt2(1)], [pnt1(2) pnt2(2)], color);
switch ends
case 'stop'
pnt1 = arrowend - length*direction + 0.4*length*offset;
pnt2 = arrowend;
pnt3 = arrowend - length*direction - 0.4*length*offset;
h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color);
case 'start'
pnt1 = arrowbeg + length*direction + 0.4*length*offset;
pnt2 = arrowbeg;
pnt3 = arrowbeg + length*direction - 0.4*length*offset;
h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color);
case 'both'
pnt1 = arrowend - length*direction + 0.4*length*offset;
pnt2 = arrowend;
pnt3 = arrowend - length*direction - 0.4*length*offset;
h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color);
pnt1 = arrowbeg + length*direction + 0.4*length*offset;
pnt2 = arrowbeg;
pnt3 = arrowbeg + length*direction - 0.4*length*offset;
h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color);
case 'none'
% don't draw arrow heads
end
|
github
|
lcnbeapp/beapp-master
|
ft_struct2single.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_struct2single.m
| 2,879 |
utf_8
|
8bbd1d96564795e5223a0cac06d604c8
|
function [x] = ft_struct2single(x, maxdepth)
% FT_STRUCT2SINGLE converts all double precision numeric data in a structure
% into single precision, which takes up half the amount of memory compared
% to double precision. It will also convert plain matrices and cell-arrays.
%
% Use as
% x = ft_struct2single(x)
%
% Starting from MATLAB 7.0, you can use single precision data in your
% computations, i.e. you do not have to convert back to double precision.
%
% MATLAB version 6.5 and older only support single precision for storing
% data in memory or on disk, but do not allow computations on single
% precision data. After reading a single precision structure from file, you
% can convert it back with FT_STRUCT2DOUBLE.
%
% See also FT_STRUCT2DOUBLE
% Copyright (C) 2005-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<2
maxdepth = inf;
end
% convert the data, work recursively through the complete structure
x = convert(x, 0, maxdepth);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this subfunction does the actual work
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [a] = convert(a, depth, maxdepth)
if depth>maxdepth
error('recursive depth exceeded');
end
switch class(a)
case 'struct'
% process all fields of the structure recursively
fna = fieldnames(a);
% process all elements of the array
for j=1:length(a(:))
% warning, this is a recursive call to traverse nested structures
for i=1:length(fna)
fn = fna{i};
ra = getfield(a(j), fn);
ra = convert(ra, depth+1, maxdepth);
a(j) = setfield(a(j), fn, ra);
end
end
case 'cell'
% process all elements of the cell-array recursively
% warning, this is a recursive call to traverse nested structures
for i=1:length(a(:))
a{i} = convert(a{i}, depth+1, maxdepth);
end
case {'double' 'int64' 'uint64' 'int32' 'uint32' 'int16' 'uint16' 'int8' 'uint8'}
% convert the values to single precision
if ~issparse(a)
a = single(a);
end
otherwise
% do nothing
end
|
github
|
lcnbeapp/beapp-master
|
ft_channelselection.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_channelselection.m
| 21,775 |
utf_8
|
45acb4edda264cd6b5cd506dfde62c48
|
function [channel] = ft_channelselection(desired, datachannel, senstype)
% FT_CHANNELSELECTION makes a selection of EEG and/or MEG channel labels.
% This function translates the user-specified list of channels into channel
% labels as they occur in the data. This channel selection procedure can be
% used throughout FieldTrip.
%
% Use as:
% channel = ft_channelselection(desired, datachannel)
%
% You can specify a mixture of real channel labels and of special strings,
% or index numbers that will be replaced by the corresponding channel
% labels. Channels that are not present in the raw datafile are
% automatically removed from the channel list.
%
% E.g. the desired input element can be:
% 'all' is replaced by all channels in the datafile
% 'gui' this will pop up a graphical user interface to select the channels
% 'C*' is replaced by all channels that match the wildcard, e.g. C1, C2, C3, ...
% '*1' is replaced by all channels that match the wildcard, e.g. C1, P1, F1, ...
% 'M*1' is replaced by all channels that match the wildcard, e.g. MEG0111, MEG0131, MEG0131, ...
% 'meg' is replaced by all MEG channels (works for CTF, 4D, Neuromag and Yokogawa)
% 'megref' is replaced by all MEG reference channels (works for CTF and 4D)
% 'meggrad' is replaced by all MEG gradiometer channels (works for Yokogawa and Neuromag-306)
% 'megmag' is replaced by all MEG magnetometer channels (works for Yokogawa and Neuromag-306)
% 'eeg' is replaced by all recognized EEG channels (this is system dependent)
% 'eeg1020' is replaced by 'Fp1', 'Fpz', 'Fp2', 'F7', 'F3', ...
% 'eog' is replaced by all recognized EOG channels
% 'ecg' is replaced by all recognized ECG channels
% 'nirs' is replaced by all channels recognized as NIRS channels
% 'emg' is replaced by all channels in the datafile starting with 'EMG'
% 'lfp' is replaced by all channels in the datafile starting with 'lfp'
% 'mua' is replaced by all channels in the datafile starting with 'mua'
% 'spike' is replaced by all channels in the datafile starting with 'spike'
% 10 is replaced by the 10th channel in the datafile
%
% Other channel groups are
% 'EEG1010' with approximately 90 electrodes
% 'EEG1005' with approximately 350 electrodes
% 'EEGREF' for mastoid and ear electrodes (M1, M2, LM, RM, A1, A2)
% 'MZ' for MEG zenith
% 'ML' for MEG left
% 'MR' for MEG right
% 'MLx', 'MRx' and 'MZx' with x=C,F,O,P,T for left/right central, frontal, occipital, parietal and temporal
%
% You can also exclude channels or channel groups using the following syntax
% {'all', '-POz', '-Fp1', -EOG'}
%
% See also FT_PREPROCESSING, FT_SENSLABEL, FT_MULTIPLOTER, FT_MULTIPLOTTFR,
% FT_SINGLEPLOTER, FT_SINGLEPLOTTFR
% Note that the order of channels that is returned should correspond with
% the order of the channels in the data.
% Copyright (C) 2003-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this is to avoid a recursion loop
persistent recursion
if isempty(recursion)
recursion = false;
end
if nargin<3
senstype = ft_senstype(datachannel);
end
if ~iscell(datachannel)
if ischar(datachannel)
datachannel = {datachannel};
else
error('please specify the data channels as a cell-array');
end
end
if ~ischar(desired) && ~isnumeric(desired) && ~iscell(desired)
error('please specify the desired channels as a cell-array or a string');
end
% start with the list of desired channels, this will be pruned/expanded
channel = desired;
if length(datachannel)~=length(unique(datachannel))
warning('discarding non-unique channel names');
sel = false(size(datachannel));
for i=1:length(datachannel)
sel(i) = sum(strcmp(datachannel, datachannel{i}))==1;
end
datachannel = datachannel(sel);
end
if any(size(channel) == 0)
% there is nothing to do if it is empty
return
end
if ~iscell(datachannel)
% ensure that a single input argument like 'all' also works
datachannel = {datachannel};
end
if isnumeric(channel)
% remove channels tha fall outside the range
channel = channel(channel>=1 & channel<=numel(datachannel));
% change index into channelname
channel = datachannel(channel);
return
end
if ~iscell(channel)
% ensure that a single input argument like 'all' also works
% the case of a vector with channel indices has already been dealt with
channel = {channel};
end
% ensure that both inputs are column vectors
channel = channel(:);
datachannel = datachannel(:);
% remove channels that occur more than once, this sorts the channels alphabetically
[channel, indx] = unique(channel);
% undo the sorting, make the order identical to that of the data channels
[dum, indx] = sort(indx);
channel = channel(indx);
[dataindx, chanindx] = match_str(datachannel, channel);
if length(chanindx)==length(channel)
% there is a perfect match between the channels and the datachannels, only some reordering is needed
channel = channel(chanindx);
% no need to look at channel groups
return
end
% define the known groups with channel labels
labelall = datachannel;
label1020 = ft_senslabel('eeg1020'); % use external helper function
label1010 = ft_senslabel('eeg1010'); % use external helper function
label1005 = ft_senslabel('eeg1005'); % use external helper function
labelchwilla = {'Fz', 'Cz', 'Pz', 'F7', 'F8', 'LAT', 'RAT', 'LT', 'RT', 'LTP', 'RTP', 'OL', 'OR', 'FzA', 'Oz', 'F7A', 'F8A', 'F3A', 'F4A', 'F3', 'F4', 'P3', 'P4', 'T5', 'T6', 'P3P', 'P4P'}';
labelbham = {'P9', 'PPO9h', 'PO7', 'PPO5h', 'PPO3h', 'PO5h', 'POO9h', 'PO9', 'I1', 'OI1h', 'O1', 'POO1', 'PO3h', 'PPO1h', 'PPO2h', 'POz', 'Oz', 'Iz', 'I2', 'OI2h', 'O2', 'POO2', 'PO4h', 'PPO4h', 'PO6h', 'POO10h', 'PO10', 'PO8', 'PPO6h', 'PPO10h', 'P10', 'P8', 'TPP9h', 'TP7', 'TTP7h', 'CP5', 'TPP7h', 'P7', 'P5', 'CPP5h', 'CCP5h', 'CP3', 'P3', 'CPP3h', 'CCP3h', 'CP1', 'P1', 'Pz', 'CPP1h', 'CPz', 'CPP2h', 'P2', 'CPP4h', 'CP2', 'CCP4h', 'CP4', 'P4', 'P6', 'CPP6h', 'CCP6h', 'CP6', 'TPP8h', 'TP8', 'TPP10h', 'T7', 'FTT7h', 'FT7', 'FC5', 'FCC5h', 'C5', 'C3', 'FCC3h', 'FC3', 'FC1', 'C1', 'CCP1h', 'Cz', 'FCC1h', 'FCz', 'FFC1h', 'Fz', 'FFC2h', 'FC2', 'FCC2h', 'CCP2h', 'C2', 'C4', 'FCC4h', 'FC4', 'FC6', 'FCC6h', 'C6', 'TTP8h', 'T8', 'FTT8h', 'FT8', 'FT9', 'FFT9h', 'F7', 'FFT7h', 'FFC5h', 'F5', 'AFF7h', 'AF7', 'AF5h', 'AFF5h', 'F3', 'FFC3h', 'F1', 'AF3h', 'Fp1', 'Fpz', 'Fp2', 'AFz', 'AF4h', 'F2', 'FFC4h', 'F4', 'AFF6h', 'AF6h', 'AF8', 'AFF8h', 'F6', 'FFC6h', 'FFT8h', 'F8', 'FFT10h', 'FT10'};
labelref = {'M1', 'M2', 'LM', 'RM', 'A1', 'A2'}';
labeleog = datachannel(strncmp('EOG', datachannel, length('EOG'))); % anything that starts with EOG
labeleog = [labeleog(:); {'HEOG', 'VEOG', 'VEOG-L', 'VEOG-R', 'hEOG', 'vEOG', 'Eye_Ver', 'Eye_Hor'}']; % or any of these
labelecg = datachannel(strncmp('ECG', datachannel, length('ECG')));
labelemg = datachannel(strncmp('EMG', datachannel, length('EMG')));
labellfp = datachannel(strncmp('lfp', datachannel, length('lfp')));
labelmua = datachannel(strncmp('mua', datachannel, length('mua')));
labelspike = datachannel(strncmp('spike', datachannel, length('spike')));
labelnirs = datachannel(~cellfun(@isempty, regexp(datachannel, sprintf('%s%s', regexptranslate('wildcard','Rx*-Tx*[*]'), '$'))));
% use regular expressions to deal with the wildcards
labelreg = false(size(datachannel));
findreg = [];
for i=1:length(channel)
if length(channel{i}) < 1
continue;
end
if strcmp((channel{i}(1)), '-')
% skip channels to be excluded
continue;
end
rexp = sprintf('%s%s', regexptranslate('wildcard',channel{i}), '$');
lreg = ~cellfun(@isempty, regexp(datachannel, rexp));
if any(lreg)
labelreg = labelreg | lreg;
findreg = [findreg; i];
end
end
if ~isempty(findreg)
findreg = unique(findreg); % remove multiple occurances due to multiple wildcards
labelreg = datachannel(labelreg);
end
% initialize all the system-specific variables to empty
labelmeg = [];
labelmeggrad = [];
labelmegref = [];
labelmegmag = [];
labeleeg = [];
switch senstype
case {'yokogawa', 'yokogawa160', 'yokogawa160_planar', 'yokogawa64', 'yokogawa64_planar', 'yokogawa440', 'yokogawa440_planar'}
% Yokogawa axial gradiometers channels start with AG, hardware planar gradiometer
% channels start with PG, magnetometers start with M
megax = strncmp('AG', datachannel, length('AG'));
megpl = strncmp('PG', datachannel, length('PG'));
megmag = strncmp('M', datachannel, length('M' ));
megind = logical( megax + megpl + megmag);
labelmeg = datachannel(megind);
labelmegmag = datachannel(megmag);
labelmeggrad = datachannel(megax | megpl);
case {'ctf64'}
labelml = datachannel(~cellfun(@isempty, regexp(datachannel, '^SL'))); % left MEG channels
labelmr = datachannel(~cellfun(@isempty, regexp(datachannel, '^SR'))); % right MEG channels
labelmeg = cat(1, labelml, labelmr);
labelmegref = [datachannel(strncmp('B' , datachannel, 1));
datachannel(strncmp('G' , datachannel, 1));
datachannel(strncmp('P' , datachannel, 1));
datachannel(strncmp('Q' , datachannel, 1));
datachannel(strncmp('R' , datachannel, length('G' )))];
case {'ctf', 'ctf275', 'ctf151', 'ctf275_planar', 'ctf151_planar'}
% all CTF MEG channels start with "M"
% all CTF reference channels start with B, G, P, Q or R
% all CTF EEG channels start with "EEG"
labelmeg = datachannel(strncmp('M' , datachannel, length('M' )));
labelmegref = [datachannel(strncmp('B' , datachannel, 1));
datachannel(strncmp('G' , datachannel, 1));
datachannel(strncmp('P' , datachannel, 1));
datachannel(strncmp('Q' , datachannel, 1));
datachannel(strncmp('R' , datachannel, length('G' )))];
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
% Not sure whether this should be here or outside the switch or
% whether these specifications should be supported for systems
% other than CTF.
labelmz = datachannel(strncmp('MZ' , datachannel, length('MZ' ))); % central MEG channels
labelml = datachannel(strncmp('ML' , datachannel, length('ML' ))); % left MEG channels
labelmr = datachannel(strncmp('MR' , datachannel, length('MR' ))); % right MEG channels
labelmlc = datachannel(strncmp('MLC', datachannel, length('MLC')));
labelmlf = datachannel(strncmp('MLF', datachannel, length('MLF')));
labelmlo = datachannel(strncmp('MLO', datachannel, length('MLO')));
labelmlp = datachannel(strncmp('MLP', datachannel, length('MLP')));
labelmlt = datachannel(strncmp('MLT', datachannel, length('MLT')));
labelmrc = datachannel(strncmp('MRC', datachannel, length('MRC')));
labelmrf = datachannel(strncmp('MRF', datachannel, length('MRF')));
labelmro = datachannel(strncmp('MRO', datachannel, length('MRO')));
labelmrp = datachannel(strncmp('MRP', datachannel, length('MRP')));
labelmrt = datachannel(strncmp('MRT', datachannel, length('MRT')));
labelmzc = datachannel(strncmp('MZC', datachannel, length('MZC')));
labelmzf = datachannel(strncmp('MZF', datachannel, length('MZF')));
labelmzo = datachannel(strncmp('MZO', datachannel, length('MZO')));
labelmzp = datachannel(strncmp('MZP', datachannel, length('MZP')));
case {'bti', 'bti248', 'bti248grad', 'bti148', 'bti248_planar', 'bti148_planar'}
% all 4D-BTi MEG channels start with "A"
% all 4D-BTi reference channels start with M or G
labelmeg = datachannel(myregexp('^A[0-9]+$', datachannel));
labelmegref = [datachannel(myregexp('^M[CLR][xyz][aA]*$', datachannel)); datachannel(myregexp('^G[xyz][xyz]A$', datachannel)); datachannel(myregexp('^M[xyz][aA]*$', datachannel))];
labelmegrefa = datachannel(~cellfun(@isempty,strfind(datachannel, 'a')));
labelmegrefc = datachannel(strncmp('MC', datachannel, 2));
labelmegrefg = datachannel(myregexp('^G[xyz][xyz]A$', datachannel));
labelmegrefl = datachannel(strncmp('ML', datachannel, 2));
labelmegrefr = datachannel(strncmp('MR', datachannel, 2));
labelmegrefm = datachannel(myregexp('^M[xyz][aA]*$', datachannel));
case {'neuromag122' 'neuromag122alt', 'neuromag122_combined'}
% all neuromag MEG channels start with MEG
% all neuromag EEG channels start with EEG
labelmeg = datachannel(strncmp('MEG', datachannel, length('MEG')));
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
case {'neuromag306' 'neuromag306alt', 'neuromag306_combined'}
% all neuromag MEG channels start with MEG
% all neuromag EEG channels start with EEG
% all neuromag-306 gradiometers follow pattern MEG*2,MEG*3
% all neuromag-306 magnetometers follow pattern MEG*1
labelmeg = datachannel(strncmp('MEG', datachannel, length('MEG')));
labeleeg = datachannel(strncmp('EEG', datachannel, length('EEG')));
labelmeggrad = labelmeg(~cellfun(@isempty, regexp(labelmeg, '^MEG.*[23]$')));
labelmegmag = labelmeg(~cellfun(@isempty, regexp(labelmeg, '^MEG.*1$')));
case {'ant128', 'biosemi64', 'biosemi128', 'biosemi256', 'egi32', 'egi64', 'egi128', 'egi256', 'eeg1020', 'eeg1010', 'eeg1005', 'ext1020'}
% use an external helper function to define the list with EEG channel names
labeleeg = ft_senslabel(ft_senstype(datachannel));
case {'itab153'}
% all itab MEG channels start with MAG
labelmeg = datachannel(strncmp('MAG', datachannel, length('MAG')));
end % switch ft_senstype
% figure out if there are bad channels or channel groups that should be excluded
findbadchannel = strncmp('-', channel, length('-')); % bad channels start with '-'
badchannel = channel(findbadchannel);
if ~isempty(badchannel)
for i=1:length(badchannel)
badchannel{i} = badchannel{i}(2:end); % remove the '-' from the channel label
end
badchannel = ft_channelselection(badchannel, datachannel); % support exclusion of channel groups
end
% determine if any of the known groups is mentioned in the channel list
findall = find(strcmp(channel, 'all'));
% findreg (for the wildcards) is dealt with in the channel group specification above
findmeg = find(strcmpi(channel, 'MEG'));
findemg = find(strcmpi(channel, 'EMG'));
findecg = find(strcmpi(channel, 'ECG'));
findeeg = find(strcmpi(channel, 'EEG'));
findeeg1020 = find(strcmpi(channel, 'EEG1020'));
findeeg1010 = find(strcmpi(channel, 'EEG1010'));
findeeg1005 = find(strcmpi(channel, 'EEG1005'));
findeegchwilla = find(strcmpi(channel, 'EEGCHWILLA'));
findeegbham = find(strcmpi(channel, 'EEGBHAM'));
findeegref = find(strcmpi(channel, 'EEGREF'));
findmegref = find(strcmpi(channel, 'MEGREF'));
findmeggrad = find(strcmpi(channel, 'MEGGRAD'));
findmegmag = find(strcmpi(channel, 'MEGMAG'));
findmegrefa = find(strcmpi(channel, 'MEGREFA'));
findmegrefc = find(strcmpi(channel, 'MEGREFC'));
findmegrefg = find(strcmpi(channel, 'MEGREFG'));
findmegrefl = find(strcmpi(channel, 'MEGREFL'));
findmegrefr = find(strcmpi(channel, 'MEGREFR'));
findmegrefm = find(strcmpi(channel, 'MEGREFM'));
findeog = find(strcmpi(channel, 'EOG'));
findmz = find(strcmp(channel, 'MZ' ));
findml = find(strcmp(channel, 'ML' ));
findmr = find(strcmp(channel, 'MR' ));
findmlc = find(strcmp(channel, 'MLC'));
findmlf = find(strcmp(channel, 'MLF'));
findmlo = find(strcmp(channel, 'MLO'));
findmlp = find(strcmp(channel, 'MLP'));
findmlt = find(strcmp(channel, 'MLT'));
findmrc = find(strcmp(channel, 'MRC'));
findmrf = find(strcmp(channel, 'MRF'));
findmro = find(strcmp(channel, 'MRO'));
findmrp = find(strcmp(channel, 'MRP'));
findmrt = find(strcmp(channel, 'MRT'));
findmzc = find(strcmp(channel, 'MZC'));
findmzf = find(strcmp(channel, 'MZF'));
findmzo = find(strcmp(channel, 'MZO'));
findmzp = find(strcmp(channel, 'MZP'));
findnirs = find(strcmpi(channel, 'NIRS'));
findlfp = find(strcmpi(channel, 'lfp'));
findmua = find(strcmpi(channel, 'mua'));
findspike = find(strcmpi(channel, 'spike'));
findgui = find(strcmpi(channel, 'gui'));
% remove any occurences of groups in the channel list
channel([
findall
findreg
findmeg
findemg
findecg
findeeg
findeeg1020
findeeg1010
findeeg1005
findeegchwilla
findeegbham
findeegref
findmegref
findmeggrad
findmegmag
findeog
findmz
findml
findmr
findmlc
findmlf
findmlo
findmlp
findmlt
findmrc
findmrf
findmro
findmrp
findmrt
findmzc
findmzf
findmzo
findmzp
findlfp
findmua
findspike
findnirs
findgui
]) = [];
% add the full channel labels to the channel list
if findall, channel = [channel; labelall]; end
if findreg, channel = [channel; labelreg]; end
if findmeg, channel = [channel; labelmeg]; end
if findecg, channel = [channel; labelecg]; end
if findemg, channel = [channel; labelemg]; end
if findeeg, channel = [channel; labeleeg]; end
if findeeg1020, channel = [channel; label1020]; end
if findeeg1010, channel = [channel; label1010]; end
if findeeg1005, channel = [channel; label1005]; end
if findeegchwilla, channel = [channel; labelchwilla]; end
if findeegbham, channel = [channel; labelbham]; end
if findeegref, channel = [channel; labelref]; end
if findmegref, channel = [channel; labelmegref]; end
if findmeggrad, channel = [channel; labelmeggrad]; end
if findmegmag, channel = [channel; labelmegmag]; end
if findmegrefa, channel = [channel; labelmegrefa]; end
if findmegrefc, channel = [channel; labelmegrefc]; end
if findmegrefg, channel = [channel; labelmegrefg]; end
if findmegrefl, channel = [channel; labelmegrefl]; end
if findmegrefr, channel = [channel; labelmegrefr]; end
if findmegrefm, channel = [channel; labelmegrefm]; end
if findeog, channel = [channel; labeleog]; end
if findmz , channel = [channel; labelmz ]; end
if findml , channel = [channel; labelml ]; end
if findmr , channel = [channel; labelmr ]; end
if findmlc, channel = [channel; labelmlc]; end
if findmlf, channel = [channel; labelmlf]; end
if findmlo, channel = [channel; labelmlo]; end
if findmlp, channel = [channel; labelmlp]; end
if findmlt, channel = [channel; labelmlt]; end
if findmrc, channel = [channel; labelmrc]; end
if findmrf, channel = [channel; labelmrf]; end
if findmro, channel = [channel; labelmro]; end
if findmrp, channel = [channel; labelmrp]; end
if findmrt, channel = [channel; labelmrt]; end
if findmzc, channel = [channel; labelmzc]; end
if findmzf, channel = [channel; labelmzf]; end
if findmzo, channel = [channel; labelmzo]; end
if findmzp, channel = [channel; labelmzp]; end
if findlfp, channel = [channel; labellfp]; end
if findmua, channel = [channel; labelmua]; end
if findspike, channel = [channel; labelspike]; end
if findnirs, channel = [channel; labelnirs]; end
% remove channel labels that have been excluded by the user
badindx = match_str(channel, badchannel);
channel(badindx) = [];
% remove channel labels that are not present in the data
chanindx = match_str(channel, datachannel);
channel = channel(chanindx);
if findgui
indx = select_channel_list(datachannel, match_str(datachannel, channel), 'Select channels');
channel = datachannel(indx);
end
% remove channels that occur more than once, this sorts the channels alphabetically
channel = unique(channel);
if isempty(channel) && ~recursion
% try whether only lowercase channel labels makes a difference
recursion = true;
channel = ft_channelselection(desired, lower(datachannel));
recursion = false;
% undo the conversion to lowercase, this sorts the channels alphabetically
[c, ia, ib] = intersect(channel, lower(datachannel));
channel = datachannel(ib);
end
if isempty(channel) && ~recursion
% try whether only uppercase channel labels makes a difference
recursion = true;
channel = ft_channelselection(desired, upper(datachannel));
recursion = false;
% undo the conversion to uppercase, this sorts the channels alphabetically
[c, ia, ib] = intersect(channel, lower(datachannel));
channel = datachannel(ib);
end
% undo the sorting, make the order identical to that of the data channels
[tmp, indx] = match_str(datachannel, channel);
channel = channel(indx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function match = myregexp(pat, list)
match = false(size(list));
for i=1:numel(list)
match(i) = ~isempty(regexp(list{i}, pat, 'once'));
end
|
github
|
lcnbeapp/beapp-master
|
ft_datatype_sens.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_datatype_sens.m
| 22,743 |
utf_8
|
fab01996ef9a98c643827fb2767fbaf3
|
function [sens] = ft_datatype_sens(sens, varargin)
% FT_DATATYPE_SENS describes the FieldTrip structure that represents an EEG, ECoG, or
% MEG sensor array. This structure is commonly called "elec" for EEG, "grad" for MEG,
% "opto" for NIRS, or general "sens" for either one.
%
% For all sensor types a distinction should be made between the channel (i.e. the
% output of the transducer that is A/D converted) and the sensor, which may have some
% spatial extent. E.g. with EEG you can have a bipolar channel, where the position of
% the channel can be represented as in between the position of the two electrodes.
%
% The structure for MEG gradiometers and/or magnetometers contains
% sens.label = Mx1 cell-array with channel labels
% sens.chanpos = Mx3 matrix with channel positions
% sens.chanori = Mx3 matrix with channel orientations, used for synthetic planar gradient computation
% sens.tra = MxN matrix to combine coils into channels
% sens.coilpos = Nx3 matrix with coil positions
% sens.coilori = Nx3 matrix with coil orientations
% sens.balance = structure containing info about the balancing, See FT_APPLY_MONTAGE
% and optionally
% sens.chanposold = Mx3 matrix with original channel positions (in case
% sens.chanpos has been updated to contain NaNs, e.g.
% after ft_componentanalysis)
% sens.chanoriold = Mx3 matrix with original channel orientations
% sens.labelold = Mx1 cell-array with original channel labels
%
% The structure for EEG or ECoG channels contains
% sens.label = Mx1 cell-array with channel labels
% sens.elecpos = Nx3 matrix with electrode positions
% sens.chanpos = Mx3 matrix with channel positions (often the same as electrode positions)
% sens.tra = MxN matrix to combine electrodes into channels
% In case sens.tra is not present in the EEG sensor array, the channels
% are assumed to be average referenced.
%
% The structure for NIRS channels contains
% sens.optopos = contains information about the position of the optodes
% sens.optotype = contains information about the type of optode (receiver or transmitter)
% sens.chanpos = contains information about the position of the channels (i.e. average of optopos)
% sens.tra = NxC matrix, boolean, contains information about how receiver and transmitter form channels
% sens.wavelength = 1xM vector of all wavelengths that were used
% sens.transmits = NxM matrix, boolean, where N is the number of optodes and M the number of wavelengths per transmitter. Specifies what optode is transmitting at what wavelength (or nothing at all, which indicates that it is a receiver)
% sens.laserstrength = 1xM vector of the strength of the emitted light of the lasers
%
% The following fields apply to MEG and EEG
% sens.chantype = Mx1 cell-array with the type of the channel, see FT_CHANTYPE
% sens.chanunit = Mx1 cell-array with the units of the channel signal, e.g. 'V', 'fT' or 'T/cm', see FT_CHANUNIT
%
% The following fields are optional
% sens.type = string with the type of acquisition system, see FT_SENSTYPE
% sens.fid = structure with fiducial information
%
% Historical fields:
% pnt, pos, ori, pnt1, pnt2
%
% Revision history:
% (2016/latest) The chantype and chanunit have become required fields.
% Original channel details are specified with the suffix "old" rather than "org".
% All numeric values are represented in double precision.
% It is possible to convert the amplitude and distance units (e.g. from T to fT and
% from m to mm) and it is possible to express planar and axial gradiometer channels
% either in units of amplitude or in units of amplitude/distance (i.e. proper
% gradient).
%
% (2011v2) The chantype and chanunit have been added for MEG.
%
% (2011v1) To facilitate determining the position of channels (e.g. for plotting)
% in case of balanced MEG or bipolar EEG, an explicit distinction has been made
% between chanpos+chanori and coilpos+coilori (for MEG) and chanpos and elecpos
% (for EEG). The pnt and ori fields are removed
%
% (2010) Added support for bipolar or otherwise more complex linear combinations
% of EEG electrodes using sens.tra, similar to MEG.
%
% (2009) Noice reduction has been added for MEG systems in the balance field.
%
% (2006) The optional fields sens.type and sens.unit were added.
%
% (2003) The initial version was defined, which looked like this for EEG
% sens.pnt = Mx3 matrix with electrode positions
% sens.label = Mx1 cell-array with channel labels
% and like this for MEG
% sens.pnt = Nx3 matrix with coil positions
% sens.ori = Nx3 matrix with coil orientations
% sens.tra = MxN matrix to combine coils into channels
% sens.label = Mx1 cell-array with channel labels
%
% See also FT_READ_SENS, FT_SENSTYPE, FT_CHANTYPE, FT_APPLY_MONTAGE, CTF2GRAD, FIF2GRAD,
% BTI2GRAD, YOKOGAWA2GRAD, ITAB2GRAD
% Copyright (C) 2011-2016, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% undocumented options for the 2016 format
% amplitude = string, can be 'T' or 'fT'
% distance = string, can be 'm', 'cm' or 'mm'
% scaling = string, can be 'amplitude' or 'amplitude/distance'
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout
current_argin = [{sens} varargin];
if isequal(current_argin, previous_argin)
% don't do the whole cheking again, but return the previous output from cache
sens = previous_argout{1};
return
end
% get the optional input arguments, which should be specified as key-value pairs
version = ft_getopt(varargin, 'version', 'latest');
amplitude = ft_getopt(varargin, 'amplitude'); % should be 'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'
distance = ft_getopt(varargin, 'distance'); % should be 'm' 'dm' 'cm' 'mm'
scaling = ft_getopt(varargin, 'scaling'); % should be 'amplitude' or 'amplitude/distance', the default depends on the senstype
if ~isempty(amplitude) && ~any(strcmp(amplitude, {'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'}))
error('unsupported unit of amplitude "%s"', amplitude);
end
if ~isempty(distance) && ~any(strcmp(distance, {'m' 'dm' 'cm' 'mm'}))
error('unsupported unit of distance "%s"', distance);
end
if strcmp(version, 'latest')
version = '2016';
end
if isempty(sens)
return;
end
% this is needed further down
nchan = length(sens.label);
% there are many cases which deal with either eeg or meg
ismeg = ft_senstype(sens, 'meg');
switch version
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2016'
% update it to the previous standard version
sens = ft_datatype_sens(sens, 'version', '2011v2');
% ensure that all numbers are represented in double precision
sens = ft_struct2double(sens);
% use "old/new" rather than "org/new"
if isfield(sens, 'labelorg')
sens.labelold = sens.labelorg;
sens = rmfield(sens, 'labelorg');
end
if isfield(sens, 'chantypeorg')
sens.chantypeold = sens.chantypeorg;
sens = rmfield(sens, 'chantypeorg');
end
if isfield(sens, 'chanuniteorg')
sens.chanunitold = sens.chanunitorg;
sens = rmfield(sens, 'chanunitorg');
end
if isfield(sens, 'chanposorg')
sens.chanposold = sens.chanposorg;
sens = rmfield(sens, 'chanposorg');
end
if isfield(sens, 'chanoriorg')
sens.chanoriold = sens.chanoriorg;
sens = rmfield(sens, 'chanoriorg');
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
sens.chantype = ft_chantype(sens);
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
sens.chanunit = ft_chanunit(sens);
end
if ~isempty(distance)
% update the units of distance, this also updates the tra matrix
sens = ft_convert_units(sens, distance);
else
% determine the default, this may be needed to set the scaling
distance = sens.unit;
end
if ~isempty(amplitude) && isfield(sens, 'tra')
% update the tra matrix for the units of amplitude, this ensures that
% the leadfield values remain consistent with the units
for i=1:nchan
if ~isempty(regexp(sens.chanunit{i}, 'm$', 'once'))
% this channel is expressed as amplitude per distance
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, [amplitude '/' distance]);
sens.chanunit{i} = [amplitude '/' distance];
elseif ~isempty(regexp(sens.chanunit{i}, '[T|V]$', 'once'))
% this channel is expressed as amplitude
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, amplitude);
sens.chanunit{i} = amplitude;
else
error('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i);
end
end
else
% determine the default amplityde, this may be needed to set the scaling
if any(~cellfun(@isempty, regexp(sens.chanunit, '^T')))
% one of the channel units starts with T
amplitude = 'T';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^fT')))
% one of the channel units starts with fT
amplitude = 'fT';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^V')))
% one of the channel units starts with V
amplitude = 'V';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^uV')))
% one of the channel units starts with uV
amplitude = 'uV';
else
% this unknown amplitude will cause a problem if the scaling needs to be changed between amplitude and amplitude/distance
amplitude = 'unknown';
end
end
% perform some sanity checks
if ismeg
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if strcmp(sens.unit, 'm') && (any(sel_dm) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'dm') && (any(sel_m) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'cm') && (any(sel_m) || any(sel_dm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'mm') && (any(sel_m) || any(sel_dm) || any(sel_cm))
error('inconsistent units in input gradiometer');
end
% the default should be amplitude/distance for neuromag and amplitude for all others
if isempty(scaling)
if ft_senstype(sens, 'neuromag')
scaling = 'amplitude/distance';
elseif ft_senstype(sens, 'yokogawa440')
warning('asuming that the default scaling should be amplitude rather than amplitude/distance');
scaling = 'amplitude';
else
scaling = 'amplitude';
end
end
% update the gradiometer scaling
if strcmp(scaling, 'amplitude') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, [amplitude '/' distance])
% this channel is expressed as amplitude per distance
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)~=2
error('unexpected number of coils contributing to channel %d', i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)*baseline; % scale with the baseline distance
sens.chanunit{i} = amplitude;
elseif strcmp(sens.chanunit{i}, amplitude)
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
elseif strcmp(scaling, 'amplitude/distance') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, amplitude)
% this channel is expressed as amplitude
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)==1 || strcmp(sens.chantype{i}, 'megmag')
% this is a magnetometer channel, no conversion needed
continue
elseif length(coil)~=2
error('unexpected number of coils (%d) contributing to channel %s (%d)', length(coil), sens.label{i}, i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)/baseline; % scale with the baseline distance
sens.chanunit{i} = [amplitude '/' distance];
elseif strcmp(sens.chanunit{i}, [amplitude '/' distance])
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
end % if strcmp scaling
else
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if any(sel_m | sel_dm | sel_cm | sel_mm)
error('scaling of amplitude/distance has not been considered yet for EEG');
end
end % if iseeg or ismeg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2011v2'
if ~isempty(amplitude) || ~isempty(distance) || ~isempty(scaling)
warning('amplitude, distance and scaling are not supported for version "%s"', version);
end
% This speeds up subsequent calls to ft_senstype and channelposition.
% However, if it is not more precise than MEG or EEG, don't keep it in
% the output (see further down).
if ~isfield(sens, 'type')
sens.type = ft_senstype(sens);
end
if isfield(sens, 'pnt')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
sens.coilpos = sens.pnt; sens = rmfield(sens, 'pnt');
sens.coilori = sens.ori; sens = rmfield(sens, 'ori');
else
% sensor description is something else, EEG/ECoG etc
sens.elecpos = sens.pnt; sens = rmfield(sens, 'pnt');
end
end
if ~isfield(sens, 'chanpos')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
sens.chanori = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
sens.chanori(selsens,:) = chanori(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
else
% sensor description is something else, EEG/ECoG etc
% note that chanori will be all NaNs
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
end
end
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
if ismeg
sens.chantype = ft_chantype(sens);
else
% for EEG it is not required
end
end
if ~isfield(sens, 'unit')
% this should be done prior to calling ft_chanunit, since ft_chanunit uses this for planar neuromag channels
sens = ft_convert_units(sens);
end
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
if ismeg
sens.chanunit = ft_chanunit(sens);
else
% for EEG it is not required
end
end
if any(strcmp(sens.type, {'meg', 'eeg', 'magnetometer', 'electrode', 'unknown'}))
% this is not sufficiently informative, so better remove it
% see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1806
sens = rmfield(sens, 'type');
end
if size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'tra') && size(sens.tra,1)~=length(sens.label) || ...
isfield(sens, 'tra') && isfield(sens, 'elecpos') && size(sens.tra,2)~=size(sens.elecpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilpos') && size(sens.tra,2)~=size(sens.coilpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilori') && size(sens.tra,2)~=size(sens.coilori,1) || ...
isfield(sens, 'chanpos') && size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'chanori') && size(sens.chanori,1)~=length(sens.label)
error('inconsistent number of channels in sensor description');
end
if ismeg
% ensure that the magnetometer/gradiometer balancing is specified
if ~isfield(sens, 'balance') || ~isfield(sens.balance, 'current')
sens.balance.current = 'none';
end
% try to add the chantype and chanunit to the CTF G1BR montage
if isfield(sens, 'balance') && isfield(sens.balance, 'G1BR') && ~isfield(sens.balance.G1BR, 'chantype')
sens.balance.G1BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chantypenew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
sens.balance.G1BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G1BR.labelorg, sens.label);
sens.balance.G1BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G1BR.labelnew, sens.label);
sens.balance.G1BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G2BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G2BR') && ~isfield(sens.balance.G2BR, 'chantype')
sens.balance.G2BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chantypenew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
sens.balance.G2BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G2BR.labelorg, sens.label);
sens.balance.G2BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G2BR.labelnew, sens.label);
sens.balance.G2BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G3BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G3BR') && ~isfield(sens.balance.G3BR, 'chantype')
sens.balance.G3BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chantypenew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
sens.balance.G3BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G3BR.labelorg, sens.label);
sens.balance.G3BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G3BR.labelnew, sens.label);
sens.balance.G3BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
otherwise
error('converting to version %s is not supported', version);
end % switch
% this makes the display with the "disp" command look better
sens = sortfieldnames(sens);
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {sens};
previous_argin = current_argin;
previous_argout = current_argout;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function b = sortfieldnames(a)
fn = sort(fieldnames(a));
for i=1:numel(fn)
b.(fn{i}) = a.(fn{i});
end
|
github
|
lcnbeapp/beapp-master
|
ft_datatype.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_datatype.m
| 10,068 |
utf_8
|
0a0165e618d5828bde6132b5a5a7a2f2
|
function [type, dimord] = ft_datatype(data, desired)
% FT_DATATYPE determines the type of data represented in a FieldTrip data
% structure and returns a string with raw, freq, timelock source, comp,
% spike, source, volume, dip, montage, event.
%
% Use as
% [type, dimord] = ft_datatype(data)
% [status] = ft_datatype(data, desired)
%
% See also FT_DATATYPE_COMP, FT_DATATYPE_FREQ, FT_DATATYPE_MVAR,
% FT_DATATYPE_SEGMENTATION, FT_DATATYPE_PARCELLATION, FT_DATATYPE_SOURCE,
% FT_DATATYPE_TIMELOCK, FT_DATATYPE_DIP, FT_DATATYPE_HEADMODEL,
% FT_DATATYPE_RAW, FT_DATATYPE_SENS, FT_DATATYPE_SPIKE, FT_DATATYPE_VOLUME
% Copyright (C) 2008-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<2
desired = [];
end
% determine the type of input data
israw = isfield(data, 'label') && isfield(data, 'time') && isa(data.time, 'cell') && isfield(data, 'trial') && isa(data.trial, 'cell') && ~isfield(data,'trialtime');
isfreq = (isfield(data, 'label') || isfield(data, 'labelcmb')) && isfield(data, 'freq') && ~isfield(data,'trialtime') && ~isfield(data,'origtrial'); %&& (isfield(data, 'powspctrm') || isfield(data, 'crsspctrm') || isfield(data, 'cohspctrm') || isfield(data, 'fourierspctrm') || isfield(data, 'powcovspctrm'));
istimelock = isfield(data, 'label') && isfield(data, 'time') && ~isfield(data, 'freq') && ~isfield(data,'timestamp') && ~isfield(data,'trialtime') && ~(isfield(data, 'trial') && iscell(data.trial)) && ~isfield(data, 'pos'); %&& ((isfield(data, 'avg') && isnumeric(data.avg)) || (isfield(data, 'trial') && isnumeric(data.trial) || (isfield(data, 'cov') && isnumeric(data.cov))));
iscomp = isfield(data, 'label') && isfield(data, 'topo') || isfield(data, 'topolabel');
isvolume = isfield(data, 'transform') && isfield(data, 'dim') && ~isfield(data, 'pos');
issource = (isfield(data, 'pos') || isfield(data, 'pnt')) && isstruct(data) && numel(data)==1; % pnt is deprecated, this does not apply to a mesh array
ismesh = (isfield(data, 'pos') || isfield(data, 'pnt')) && (isfield(data, 'tri') || isfield(data, 'tet') || isfield(data, 'hex')); % pnt is deprecated
isdip = isfield(data, 'dip');
ismvar = isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'lag'));
isfreqmvar = isfield(data, 'freq') && isfield(data, 'transfer');
ischan = check_chan(data);
issegmentation = check_segmentation(data);
isparcellation = check_parcellation(data);
ismontage = isfield(data, 'labelorg') && isfield(data, 'labelnew') && isfield(data, 'tra');
isevent = isfield(data, 'type') && isfield(data, 'value') && isfield(data, 'sample') && isfield(data, 'offset') && isfield(data, 'duration');
isheadmodel = false; % FIXME this is not yet implemented
if issource && isstruct(data) && numel(data)>1
% this applies to struct arrays with meshes, i.e. with a pnt+tri
issource = false;
end
if ~isfreq
% this applies to a freq structure from 2003 up to early 2006
isfreq = all(isfield(data, {'foi', 'label', 'dimord'})) && ~isempty(strfind(data.dimord, 'frq'));
end
% check if it is a spike structure
spk_hastimestamp = isfield(data,'label') && isfield(data, 'timestamp') && isa(data.timestamp, 'cell');
spk_hastrials = isfield(data,'label') && isfield(data, 'time') && isa(data.time, 'cell') && isfield(data, 'trial') && isa(data.trial, 'cell') && isfield(data, 'trialtime') && isa(data.trialtime, 'numeric');
spk_hasorig = isfield(data,'origtrial') && isfield(data,'origtime'); % for compatibility
isspike = isfield(data, 'label') && (spk_hastimestamp || spk_hastrials || spk_hasorig);
% check if it is a sensor array
isgrad = isfield(data, 'label') && isfield(data, 'coilpos') && isfield(data, 'coilori');
iselec = isfield(data, 'label') && isfield(data, 'elecpos');
if isspike
type = 'spike';
elseif israw && iscomp
type = 'raw+comp';
elseif istimelock && iscomp
type = 'timelock+comp';
elseif isfreq && iscomp
type = 'freq+comp';
elseif israw
type = 'raw';
elseif iscomp
type = 'comp';
elseif isfreqmvar
% freqmvar should conditionally go before freq, otherwise the returned ft_datatype will be freq in the case of frequency mvar data
type = 'freqmvar';
elseif isfreq
type = 'freq';
elseif ismvar
type = 'mvar';
elseif isdip
% dip should conditionally go before timelock, otherwise the ft_datatype will be timelock
type = 'dip';
elseif istimelock
type = 'timelock';
elseif isvolume && issegmentation
type = 'volume+label';
elseif isvolume
type = 'volume';
elseif ismesh && isparcellation
type = 'mesh+label';
elseif ismesh
type = 'mesh';
elseif issource && isparcellation
type = 'source+label';
elseif issource
type = 'source';
elseif ischan
% this results from avgovertime/avgoverfreq after timelockstatistics or freqstatistics
type = 'chan';
elseif iselec
type = 'elec';
elseif isgrad
type = 'grad';
elseif ismontage
type = 'montage';
elseif isevent
type = 'event';
else
type = 'unknown';
end
if nargin>1
% return a boolean value
switch desired
case 'raw'
type = any(strcmp(type, {'raw', 'raw+comp'}));
case 'timelock'
type = any(strcmp(type, {'timelock', 'timelock+comp'}));
case 'freq'
type = any(strcmp(type, {'freq', 'freq+comp'}));
case 'comp'
type = any(strcmp(type, {'comp', 'raw+comp', 'timelock+comp', 'freq+comp'}));
case 'volume'
type = any(strcmp(type, {'volume', 'volume+label'}));
case 'source'
type = any(strcmp(type, {'source', 'source+label', 'mesh', 'mesh+label'})); % a single mesh qualifies as source structure
type = type && isstruct(data) && numel(data)==1; % an array of meshes does not qualify
case 'mesh'
type = any(strcmp(type, {'mesh', 'mesh+label'}));
case 'segmentation'
type = strcmp(type, 'volume+label');
case 'parcellation'
type = any(strcmp(type, {'source+label' 'mesh+label'}));
case 'sens'
type = any(strcmp(type, {'elec', 'grad'}));
otherwise
type = strcmp(type, desired);
end % switch
end
if nargout>1
% FIXME this should be replaced with getdimord in the calling code
% also return the dimord of the input data
if isfield(data, 'dimord')
dimord = data.dimord;
else
dimord = 'unknown';
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [res] = check_chan(data)
if ~isstruct(data) || any(isfield(data, {'time', 'freq', 'pos', 'dim', 'transform'}))
res = false;
elseif isfield(data, 'dimord') && any(strcmp(data.dimord, {'chan', 'chan_chan'}))
res = true;
else
res = false;
fn = fieldnames(data);
for i=1:numel(fn)
if isfield(data, [fn{i} 'dimord']) && any(strcmp(data.([fn{i} 'dimord']), {'chan', 'chan_chan'}))
res = true;
break;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [res] = check_segmentation(volume)
res = false;
if ~isfield(volume, 'dim') && ~isfield(volume, 'transform')
return
end
if isfield(volume, 'pos')
return
end
if any(isfield(volume, {'seg', 'csf', 'white', 'gray', 'skull', 'scalp', 'brain'}))
res = true;
return
end
fn = fieldnames(volume);
isboolean = [];
cnt = 0;
for i=1:length(fn)
if isfield(volume, [fn{i} 'label'])
res = true;
return
else
if (islogical(volume.(fn{i})) || isnumeric(volume.(fn{i}))) && isequal(size(volume.(fn{i})),volume.dim)
cnt = cnt+1;
if islogical(volume.(fn{i}))
isboolean(cnt) = true;
else
isboolean(cnt) = false;
end
end
end
end
if ~isempty(isboolean)
res = all(isboolean);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [res] = check_parcellation(source)
res = false;
if numel(source)>1
% this applies to struct arrays with meshes, i.e. with a pnt+tri
return
end
if ~isfield(source, 'pos')
return
end
fn = fieldnames(source);
fb = false(size(fn));
npos = size(source.pos,1);
for i=1:numel(fn)
% for each of the fields check whether it might be a logical array with the size of the number of sources
tmp = source.(fn{i});
fb(i) = numel(tmp)==npos && islogical(tmp);
end
if sum(fb)>1
% the presence of multiple logical arrays suggests it is a parcellation
res = true;
end
if res == false % check if source has more D elements
check = 0;
for i = 1: length(fn)
fname = fn{i};
switch fname
case 'tri'
npos = size(source.tri,1);
check = 1;
case 'hex'
npos = size(source.hex,1);
check = 1;
case 'tet'
npos = size(source.tet,1);
check = 1;
end
end
if check == 1 % check if elements are labelled
for i=1:numel(fn)
tmp = source.(fn{i});
fb(i) = numel(tmp)==npos && islogical(tmp);
end
if sum(fb)>1
res = true;
end
end
end
fn = fieldnames(source);
for i=1:length(fn)
if isfield(source, [fn{i} 'label']) && isnumeric(source.(fn{i}))
res = true;
return
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_checkconfig.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_checkconfig.m
| 25,828 |
utf_8
|
dc8f84be30850438906132f672928729
|
function [cfg] = ft_checkconfig(cfg, varargin)
% FT_CHECKCONFIG checks the input cfg of the main FieldTrip functions
% in three steps.
%
% 1: It checks whether the cfg contains all the required options, it gives
% a warning when renamed or deprecated options are used, and it makes sure
% no forbidden options are used. If necessary and possible, this function
% will adjust the cfg to the input requirements. If the input cfg does NOT
% correspond to the requirements, this function gives an elaborate warning
% message.
%
% 2: It controls the relevant cfg options that are being passed on to other
% functions, by putting them into substructures or converting them into the
% required format.
%
% 3: It controls the output cfg (data.cfg) such that it only contains
% relevant and used fields. The size of fields in the output cfg is also
% controlled: fields exceeding a certain maximum size are emptied.
% This part of the functionality is still under construction!
%
% Use as
% [cfg] = ft_checkconfig(cfg, ...)
%
% The behaviour of checkconfig can be controlled by the following cfg options,
% which can be set as global FieldTrip defaults (see FT_DEFAULTS)
% cfg.checkconfig = 'pedantic', 'loose' or 'silent' (control the feedback behaviour of checkconfig)
% cfg.trackconfig = 'cleanup', 'report' or 'off'
% cfg.checksize = number in bytes, can be inf (set max size allowed for output cfg fields)
%
% Optional input arguments should be specified as key-value pairs and can include
% renamed = {'old', 'new'} % list the old and new option
% renamedval = {'opt', 'old', 'new'} % list option and old and new value
% allowedval = {'opt', 'allowed1'...} % list of allowed values for a particular option, anything else will throw an error
% required = {'opt1', 'opt2', etc.} % list the required options
% allowed = {'opt1', 'opt2', etc.} % list the allowed options, all other options are forbidden
% forbidden = {'opt1', 'opt2', etc.} % list the forbidden options, these result in an error
% deprecated = {'opt1', 'opt2', etc.} % list the deprecated options
% unused = {'opt1', 'opt2', etc.} % list the unused options, these will be removed and a warning is issued
% createsubcfg = {'subname', etc.} % list the names of the subcfg
% dataset2files = 'yes', 'no' % converts dataset into headerfile and datafile
% index2logical = 'yes', 'no' % converts cfg.index or cfg.grid.index into logical representation
% checksize = 'yes', 'no' % remove large fields from the cfg
% trackconfig = 'on', 'off' % start/end config tracking
%
% See also FT_CHECKDATA, FT_DEFAULTS
% Copyright (C) 2007-2014, Robert Oostenveld, Saskia Haegens
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
renamed = ft_getopt(varargin, 'renamed');
allowed = ft_getopt(varargin, 'allowed');
required = ft_getopt(varargin, 'required');
deprecated = ft_getopt(varargin, 'deprecated');
unused = ft_getopt(varargin, 'unused');
forbidden = ft_getopt(varargin, 'forbidden');
renamedval = ft_getopt(varargin, 'renamedval');
allowedval = ft_getopt(varargin, 'allowedval');
createsubcfg = ft_getopt(varargin, 'createsubcfg');
checkfilenames = ft_getopt(varargin, 'dataset2files');
checkinside = ft_getopt(varargin, 'index2logical', 'off');
checksize = ft_getopt(varargin, 'checksize', 'off');
trackconfig = ft_getopt(varargin, 'trackconfig');
if ~isempty(trackconfig) && strcmp(trackconfig, 'on')
% infer from the user configuration whether tracking should be enabled
if isfield(cfg, 'trackconfig') && (strcmp(cfg.trackconfig, 'report') || strcmp(cfg.trackconfig, 'cleanup'))
trackconfig = 'on'; % turn on configtracking if user requests report/cleanup
else
trackconfig = []; % disable configtracking if user doesn't request report/cleanup
end
end
% these should be cell arrays and not strings
if ischar(required), required = {required}; end
if ischar(deprecated), deprecated = {deprecated}; end
if ischar(unused), unused = {unused}; end
if ischar(forbidden), forbidden = {forbidden}; end
if ischar(createsubcfg), createsubcfg = {createsubcfg}; end
if isfield(cfg, 'checkconfig')
silent = strcmp(cfg.checkconfig, 'silent');
loose = strcmp(cfg.checkconfig, 'loose');
pedantic = strcmp(cfg.checkconfig, 'pedantic');
else
silent = false;
loose = true;
pedantic = false;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% rename old to new options, give warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(renamed)
if issubfield(cfg, renamed{1})
cfg = setsubfield(cfg, renamed{2}, (getsubfield(cfg, renamed{1})));
cfg = rmsubfield(cfg, renamed{1});
if silent
% don't mention it
elseif loose
warning('use cfg.%s instead of cfg.%s', renamed{2}, renamed{1});
elseif pedantic
error('use cfg.%s instead of cfg.%s', renamed{2}, renamed{1});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% rename old to new value, give warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(renamedval) && issubfield(cfg, renamedval{1})
if strcmpi(getsubfield(cfg, renamedval{1}), renamedval{2})
cfg = setsubfield(cfg, renamedval{1}, renamedval{3});
if silent
% don't mention it
elseif loose
warning('use cfg.%s=''%s'' instead of cfg.%s=''%s''', renamedval{1}, renamedval{3}, renamedval{1}, renamedval{2});
elseif pedantic
error('use cfg.%s=''%s'' instead of cfg.%s=''%s''', renamedval{1}, renamedval{3}, renamedval{1}, renamedval{2});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for required fields, give error when missing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(required)
fieldsused = fieldnames(cfg);
[c, ia, ib] = setxor(required, fieldsused);
if ~isempty(ia)
error('The field cfg.%s is required\n', required{ia});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for deprecated fields, give warning when present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(deprecated)
fieldsused = fieldnames(cfg);
if any(ismember(deprecated, fieldsused))
if silent
% don't mention it
elseif loose
warning('The option cfg.%s is deprecated, support is no longer guaranteed\n', deprecated{ismember(deprecated, fieldsused)});
elseif pedantic
error('The option cfg.%s is not longer supported\n', deprecated{ismember(deprecated, fieldsused)});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for unused fields, give warning when present and remove them
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(unused)
fieldsused = fieldnames(cfg);
if any(ismember(unused, fieldsused))
cfg = rmfield(cfg, unused(ismember(unused, fieldsused)));
if silent
% don't mention it
elseif loose
warning('The field cfg.%s is unused, it will be removed from your configuration\n', unused{ismember(unused, fieldsused)});
elseif pedantic
error('The field cfg.%s is unused\n', unused{ismember(unused, fieldsused)});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for required fields, give error when missing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(allowed)
% there are some fields that are always be allowed
allowed = union(allowed, ignorefields('allowed'));
fieldsused = fieldnames(cfg);
[c, i] = setdiff(fieldsused, allowed);
if ~isempty(c)
error('The field cfg.%s is not allowed\n', c{1});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for forbidden fields, give error when present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(forbidden)
fieldsused = fieldnames(cfg);
if any(ismember(forbidden, fieldsused))
cfg = rmfield(cfg, forbidden(ismember(forbidden, fieldsused)));
if silent
% don't mention it
elseif loose
warning('The field cfg.%s is forbidden, it will be removed from your configuration\n', forbidden{ismember(forbidden, fieldsused)});
elseif pedantic
error('The field cfg.%s is forbidden\n', forbidden{ismember(forbidden, fieldsused)});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check for allowed values, give error if non-allowed value is specified
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(allowedval) && isfield(cfg, allowedval{1}) ...
&& ~any(strcmp(cfg.(allowedval{1}), allowedval(2:end)))
s = ['The only allowed values for cfg.' allowedval{1} ' are: '];
for k = 2:numel(allowedval)
s = [s allowedval{k} ', '];
end
s = s(1:end-2); % strip last comma
error(s);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% backward compatibility for the gradiometer and electrode definition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(cfg, 'grad') && ~isempty(cfg.grad)
cfg.grad = ft_datatype_sens(cfg.grad);
end
if isfield(cfg, 'elec')&& ~isempty(cfg.elec)
cfg.elec = ft_datatype_sens(cfg.elec);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% backward compatibility for old neighbourstructures
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(cfg, 'neighbours') && iscell(cfg.neighbours)
warning('cfg.neighbours is in the old format - converting it to a structure array');
cfg.neighbours = fixneighbours(cfg.neighbours);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% createsubcfg
%
% This collects the optional arguments for some of the low-level
% functions and puts them in a separate substructure. This function is to
% ensure backward compatibility of end-user scripts, FieldTrip functions
% and documentation that do not use the nested detailled configuration
% but that use a flat configuration.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(createsubcfg)
for j=1:length(createsubcfg)
subname = createsubcfg{j};
if isfield(cfg, subname)
% get the options that are already specified in the substructure
subcfg = cfg.(subname);
else
% start with an empty substructure
subcfg = [];
end
% add all other relevant options to the substructure
switch subname
case 'preproc'
fieldname = {
'reref'
'refchannel'
'implicitref'
'detrend'
'bpfiltdir'
'bpfilter'
'bpfiltord'
'bpfilttype'
'bpfreq'
'bsfiltdir'
'bsfilter'
'bsfiltord'
'bsfilttype'
'bsfreq'
'demean'
'baselinewindow'
'denoise'
'dftfilter'
'dftfreq'
'hpfiltdir'
'hpfilter'
'hpfiltord'
'hpfilttype'
'hpfreq'
'lpfiltdir'
'lpfilter'
'lpfiltord'
'lpfilttype'
'lpfreq'
'medianfilter'
'medianfiltord'
'hilbert'
'derivative'
'rectify'
'boxcar'
'absdiff'
};
case 'grid'
fieldname = {
'xgrid'
'ygrid'
'zgrid'
'resolution'
'unit'
'filter'
'leadfield'
'inside'
'outside'
'pos'
'dim'
'tight'
};
case 'dics'
fieldname = {
'feedback'
'fixedori'
'keepcsd'
'keepfilter'
'keepmom'
'keepsubspace'
'lambda'
'normalize'
'normalizeparam'
'powmethod'
'projectnoise'
'reducerank'
'realfilter'
'subspace'
};
case 'eloreta'
fieldname = {
'keepfilter'
'keepmom'
'lambda'
'normalize'
'normalizeparam'
'reducerank'
};
case 'sloreta'
fieldname = {
'feedback'
'fixedori'
'keepcov'
'keepfilter'
'keepmom'
'keepsubspace'
'lambda'
'normalize'
'normalizeparam'
'powmethod'
'projectnoise'
'projectmom'
'reducerank'
'subspace'
};
case 'lcmv'
fieldname = {
'feedback'
'fixedori'
'keepcov'
'keepfilter'
'keepmom'
'keepsubspace'
'lambda'
'normalize'
'normalizeparam'
'powmethod'
'projectnoise'
'projectmom'
'reducerank'
'subspace'
};
case 'pcc'
fieldname = {
'feedback'
'keepfilter'
'keepmom'
'lambda'
'normalize'
'normalizeparam'
%'powmethod'
'projectnoise'
'reducerank'
'keepcsd'
'realfilter'
'fixedori'
};
case 'rv'
fieldname = {
'feedback'
'lambda'
};
case 'mne'
fieldname = {
'feedback'
'lambda'
'keepfilter'
'prewhiten'
'snr'
'scalesourcecov'
};
case 'harmony'
fieldname = {
'feedback'
'lambda'
'keepfilter'
'prewhiten'
'snr'
'scalesourcecov'
'filter_order'
'filter_bs'
'connected_components'
'number_harmonics'
};
case 'music'
fieldname = {
'feedback'
'numcomponent'
};
case 'sam'
fieldname = {
'meansphereorigin'
'feedback'
'lambda'
'fixedori'
'reducerank'
'normalize'
'normalizeparam'
};
case 'mvl'
fieldname = {};
case {'npsf', 'granger' 'pdc' 'dtf'}
% non-parametric spectral factorization -> csd2transfer
fieldname = {
'block'
'blockindx'
'channelcmb'
'numiteration'
'tol'
'sfmethod'
'svd'
'init'
'checkconvergence'
};
otherwise
error('unexpected name of the subfunction');
fieldname = {};
end % switch subname
for i=1:length(fieldname)
if ~isfield(subcfg, fieldname{i}) && isfield(cfg, fieldname{i})
if silent
% don't mention it
elseif loose
warning('The field cfg.%s is deprecated, please specify it as cfg.%s.%s instead of cfg.%s', fieldname{i}, subname, fieldname{i});
elseif pedantic
error('The field cfg.%s is not longer supported, use cfg.%s.%s instead\n', fieldname{i}, subname, fieldname{i});
end
subcfg = setfield(subcfg, fieldname{i}, getfield(cfg, fieldname{i})); % set it in the subconfiguration
cfg = rmfield(cfg, fieldname{i}); % remove it from the main configuration
end
end
% copy the substructure back into the main configuration structure
cfg = setfield(cfg, subname, subcfg);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checkinside, i.e. index2logical
%
% Converts indexed cfg.inside/outside into logical representation if neccessary.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if istrue(checkinside)
if isfield(cfg, 'inside') && any(cfg.inside>1)
inside = false(size(cfg.pos,1),1);
inside(cfg.inside) = true;
cfg = removefields(cfg, {'inside', 'outside'});
cfg.inside = inside;
elseif isfield(cfg, 'grid') && isfield(cfg.grid, 'inside') && any(cfg.grid.inside>1)
inside = false(size(cfg.grid.pos,1),1);
inside(cfg.grid.inside) = true;
cfg.grid = removefields(cfg.grid, {'inside', 'outside'});
cfg.grid.inside = inside;
end
end % if checkinside
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checkfilenames, i.e. dataset2files
%
% Converts cfg.dataset into cfg.headerfile and cfg.datafile if neccessary.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if istrue(checkfilenames)
% start with empty fields if they are not present
if ~isfield(cfg, 'dataset')
cfg.dataset = [];
end
if ~isfield(cfg, 'datafile')
cfg.datafile = [];
end
if ~isfield(cfg, 'headerfile')
cfg.headerfile = [];
end
if ~isempty(cfg.dataset)
% the dataset is an abstract concept and might relate to a file, a
% constellation of fioles or a directory containing multiple files
if isequal(cfg.dataset, 'gui') || isequal(cfg.dataset, 'uigetfile')
% display a graphical file selection dialog
[f, p] = uigetfile('*.*', 'Select a data file');
if isequal(f, 0)
error('User pressed cancel');
else
d = fullfile(p, f);
end
cfg.dataset = d;
elseif strcmp(cfg.dataset, 'uigetdir')
% display a graphical directory selection dialog
d = uigetdir('*.*', 'Select a data directory');
if isequal(d, 0)
error('User pressed cancel');
end
cfg.dataset = d;
end
% ensure that the headerfile and datafile are defined, which are sometimes different than the name of the dataset
% this requires correct autodetection of the format of the data set
[cfg.dataset, cfg.headerfile, cfg.datafile] = dataset2files(cfg.dataset, []);
elseif ~isempty(cfg.datafile) && isempty(cfg.headerfile);
% assume that the datafile also contains the header information
cfg.dataset = cfg.datafile;
cfg.headerfile = cfg.datafile;
elseif isempty(cfg.datafile) && ~isempty(cfg.headerfile);
% assume that the headerfile also contains the data
cfg.dataset = cfg.headerfile;
cfg.datafile = cfg.headerfile;
end
% fill dataformat if unspecified, doing this only once saves time later
if ~isfield(cfg,'dataformat') || isempty(cfg.dataformat)
cfg.dataformat = ft_filetype(cfg.datafile);
end
% fill headerformat if unspecified, doing this only once saves time later
if ~isfield(cfg,'headerformat') || isempty(cfg.headerformat)
cfg.headerformat = ft_filetype(cfg.headerfile);
end
% remove empty fields, otherwise a subsequent check on required fields doesn't make any sense
if isempty(cfg.dataset), cfg = rmfield(cfg, 'dataset'); end
if isempty(cfg.headerfile), cfg = rmfield(cfg, 'headerfile'); end
if isempty(cfg.datafile), cfg = rmfield(cfg, 'datafile'); end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% configtracking
%
% switch configuration tracking on/off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(trackconfig)
try
if strcmp(trackconfig, 'on')
if isa(cfg, 'struct')
% turn ON configuration tracking
cfg = config(cfg);
% remember that configtracking has been turned on
cfg = access(cfg, 'set', 'counter', 1);
elseif isa(cfg, 'config')
% remember how many times trackconfig has been turned on
cfg = access(cfg, 'set', 'counter', access(cfg, 'get', 'counter')+1); % count the 'ONs'
end
end
if strcmp(trackconfig, 'off') && isa(cfg, 'config')
% turn OFF configuration tracking, optionally give report and/or cleanup
cfg = access(cfg, 'set', 'counter', access(cfg, 'get', 'counter')-1); % count(down) the 'OFFs'
if access(cfg, 'get', 'counter')==0
% only proceed when number of 'ONs' matches number of 'OFFs'
if strcmp(cfg.trackconfig, 'report') || strcmp(cfg.trackconfig, 'cleanup')
% gather information about the tracked results
r = access(cfg, 'reference');
o = access(cfg, 'original');
% this uses a helper function to identify the fields that should be ignored
key = fieldnames(cfg);
key = key(:)';
skipsel = match_str(key, ignorefields('trackconfig'));
key(skipsel) = [];
used = zeros(size(key));
original = zeros(size(key));
for i=1:length(key)
used(i) = (r.(key{i})>0);
original(i) = (o.(key{i})>0);
end
if ~silent
% give report on screen
fprintf('\nThe following config fields were specified by YOU and were USED\n');
sel = find(used & original);
if numel(sel)
fprintf(' cfg.%s\n', key{sel});
else
fprintf(' <none>\n');
end
fprintf('\nThe following config fields were specified by YOU and were NOT USED\n');
sel = find(~used & original);
if numel(sel)
fprintf(' cfg.%s\n', key{sel});
else
fprintf(' <none>\n');
end
fprintf('\nThe following config fields were set to DEFAULTS and were USED\n');
sel = find(used & ~original);
if numel(sel)
fprintf(' cfg.%s\n', key{sel});
else
fprintf(' <none>\n');
end
fprintf('\nThe following config fields were set to DEFAULTS and were NOT USED\n');
sel = find(~used & ~original);
if numel(sel)
fprintf(' cfg.%s\n', key{sel});
else
fprintf(' <none>\n');
end
end % report
end % report/cleanup
if strcmp(cfg.trackconfig, 'cleanup')
% remove the unused options from the configuration
unusedkey = key(~used);
for i=1:length(unusedkey)
cfg = rmfield(cfg, unusedkey{i});
end
end
% convert the configuration back to a struct
cfg = struct(cfg);
end
end % off
catch
disp(lasterr);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check the size of fields in the cfg, remove large fields
% the max allowed size should be specified in cfg.checksize (this can be
% set with ft_defaults)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(checksize, 'yes') && ~isinf(cfg.checksize)
cfg = checksizefun(cfg, cfg.checksize);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [cfg] = checksizefun(cfg, max_size)
% first check the total size of the cfg
s = whos('cfg');
if (s.bytes <= max_size)
return;
end
% these fields should not be handled recursively
norecursion = {'event', 'headmodel', 'leadfield'};
fieldsorig = fieldnames(cfg);
for i=1:numel(fieldsorig)
for k=1:numel(cfg) % process each structure in a struct-array
if any(strcmp(fieldsorig{i}, ignorefields('checksize')))
% keep this field, regardless of its size
continue
elseif iscell(cfg(k).(fieldsorig{i}))
% run recursively on each struct element that is contained in the cell-array
for j=1:numel(cfg(k).(fieldsorig{i}))
if isstruct(cfg(k).(fieldsorig{i}){j})
cfg(k).(fieldsorig{i}){j} = checksizefun(cfg(k).(fieldsorig{i}){j}, max_size);
end
end
elseif isstruct(cfg(k).(fieldsorig{i})) && ~any(strcmp(fieldsorig{i}, norecursion))
% run recursively on a struct field
cfg(k).(fieldsorig{i}) = checksizefun(cfg(k).(fieldsorig{i}), max_size);
else
% determine the size of the field and remove it if too large
temp = cfg(k).(fieldsorig{i});
s = whos('temp');
if s.bytes>max_size
cfg(k).(fieldsorig{i}) = 'empty - this was cleared by checkconfig';
end
clear temp
end
end % for numel(cfg)
end % for each of the fieldsorig
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION converts a cell array of structure arrays into a structure array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [newNeighbours] = fixneighbours(neighbours)
newNeighbours = struct;
for i=1:numel(neighbours)
if i==1, newNeighbours = neighbours{i}; end;
newNeighbours(i) = neighbours{i};
end
|
github
|
lcnbeapp/beapp-master
|
ft_datatype_source.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_datatype_source.m
| 12,246 |
utf_8
|
ab7ac36100ef0e75b5989d6870ea0bbf
|
function [source] = ft_datatype_source(source, varargin)
% FT_DATATYPE_SOURCE describes the FieldTrip MATLAB structure for data that is
% represented at the source level. This is typically obtained with a beamformer of
% minimum-norm source reconstruction using FT_SOURCEANALYSIS.
%
% An example of a source structure obtained after performing DICS (a frequency
% domain beamformer scanning method) is shown here
%
% pos: [6732x3 double] positions at which the source activity could have been estimated
% inside: [6732x1 logical] boolean vector that indicates at which positions the source activity was estimated
% dim: [xdim ydim zdim] if the positions can be described as a 3D regular grid, this contains the
% dimensionality of the 3D volume
% cumtapcnt: [120x1 double] information about the number of tapers per original trial
% time: 0.100 the latency at which the activity is estimated (in seconds)
% freq: 30 the frequency at which the activity is estimated (in Hz)
% pow: [6732x120 double] the estimated power at each source position
% powdimord: 'pos_rpt' defines how the numeric data has to be interpreted,
% in this case 6732 dipole positions x 120 repetitions (i.e. trials)
% cfg: [1x1 struct] the configuration used by the function that generated this data structure
%
% Required fields:
% - pos
%
% Optional fields:
% - time, freq, pow, coh, eta, mom, ori, cumtapcnt, dim, transform, inside, cfg, dimord, other fields with a dimord
%
% Deprecated fields:
% - method, outside
%
% Obsoleted fields:
% - xgrid, ygrid, zgrid, transform, latency, frequency
%
% Historical fields:
% - avg, cfg, cumtapcnt, df, dim, freq, frequency, inside, method,
% outside, pos, time, trial, vol, see bug2513
%
% Revision history:
%
% (2014) The subfields in the avg and trial fields are now present in the
% main structure, e.g. source.avg.pow is now source.pow. Furthermore, the
% inside is always represented as logical vector.
%
% (2011) The source representation should always be irregular, i.e. not
% a 3-D volume, contain a "pos" field and not contain a "transform".
%
% (2010) The source structure should contain a general "dimord" or specific
% dimords for each of the fields. The source reconstruction in the avg and
% trial substructures has been moved to the toplevel.
%
% (2007) The xgrid/ygrid/zgrid fields have been removed, because they are
% redundant.
%
% (2003) The initial version was defined
%
% See also FT_DATATYPE, FT_DATATYPE_COMP, FT_DATATYPE_DIP, FT_DATATYPE_FREQ,
% FT_DATATYPE_MVAR, FT_DATATYPE_RAW, FT_DATATYPE_SOURCE, FT_DATATYPE_SPIKE,
% FT_DATATYPE_TIMELOCK, FT_DATATYPE_VOLUME
% Copyright (C) 2013-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% FIXME: I am not sure whether the removal of the xgrid/ygrid/zgrid fields
% was really in 2007
% get the optional input arguments, which should be specified as key-value pairs
version = ft_getopt(varargin, 'version', 'latest');
if strcmp(version, 'latest') || strcmp(version, 'upcoming')
version = '2014';
end
if isempty(source)
return;
end
% old data structures may use latency/frequency instead of time/freq. It is
% unclear when these were introduced and removed again, but they were never
% used by any FieldTrip function itself
if isfield(source, 'frequency'),
source.freq = source.frequency;
source = rmfield(source, 'frequency');
end
if isfield(source, 'latency'),
source.time = source.latency;
source = rmfield(source, 'latency');
end
switch version
case '2014'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ensure that it has individual source positions
source = fixpos(source);
% ensure that it is always logical
source = fixinside(source, 'logical');
% remove obsolete fields
if isfield(source, 'method')
source = rmfield(source, 'method');
end
if isfield(source, 'transform')
source = rmfield(source, 'transform');
end
if isfield(source, 'xgrid')
source = rmfield(source, 'xgrid');
end
if isfield(source, 'ygrid')
source = rmfield(source, 'ygrid');
end
if isfield(source, 'zgrid')
source = rmfield(source, 'zgrid');
end
if isfield(source, 'avg') && isstruct(source.avg) && isfield(source, 'trial') && isstruct(source.trial) && ~isempty(intersect(fieldnames(source.avg), fieldnames(source.trial)))
% it is not possible to convert both since they have the same field names
ft_warning('removing ''avg'', keeping ''trial''');
source = rmfield(source, 'avg');
end
if isfield(source, 'avg') && isstruct(source.avg)
% move the average fields to the main structure
fn = fieldnames(source.avg);
for i=1:length(fn)
dat = source.avg.(fn{i});
if isequal(size(dat), [1 size(source.pos,1)])
source.(fn{i}) = dat';
else
source.(fn{i}) = dat;
end
clear dat
end % j
source = rmfield(source, 'avg');
end
if isfield(source, 'inside')
% the inside is by definition logically indexed
probe = find(source.inside, 1, 'first');
else
% just take the first source position
probe = 1;
end
if isfield(source, 'trial') && isstruct(source.trial)
npos = size(source.pos,1);
% concatenate the fields for each trial and move them to the main structure
fn = fieldnames(source.trial);
for i=1:length(fn)
% some fields are descriptive and hence identical over trials
if strcmp(fn{i}, 'csdlabel')
source.csdlabel = dat;
continue
end
% start with the first trial
dat = source.trial(1).(fn{i});
datsiz = getdimsiz(source, fn{i});
nrpt = datsiz(1);
datsiz = datsiz(2:end);
if iscell(dat)
datsiz(1) = nrpt; % swap the size of pos with the size of rpt
val = cell(npos,1);
indx = find(source.inside);
for k=1:length(indx)
val{indx(k)} = nan(datsiz);
val{indx(k)}(1,:,:,:) = dat{indx(k)};
end
% concatenate all data as {pos}_rpt_etc
for j=2:nrpt
dat = source.trial(j).(fn{i});
for k=1:length(indx)
val{indx(k)}(j,:,:,:) = dat{indx(k)};
end
end % for all trials
source.(fn{i}) = val;
else
% concatenate all data as pos_rpt_etc
val = nan([datsiz(1) nrpt datsiz(2:end)]);
val(:,1,:,:,:) = dat(:,:,:,:);
for j=2:length(source.trial)
dat = source.trial(j).(fn{i});
val(:,j,:,:,:) = dat(:,:,:,:);
end % for all trials
source.(fn{i}) = val;
% else
% siz = size(dat);
% if prod(siz)==npos
% siz = [npos nrpt];
% elseif siz(1)==npos
% siz = [npos nrpt siz(2:end)];
% end
% val = nan(siz);
% % concatenate all data as pos_rpt_etc
% val(:,1,:,:,:) = dat(:);
% for j=2:length(source.trial)
% dat = source.trial(j).(fn{i});
% val(:,j,:,:,:) = dat(:);
% end % for all trials
% source.(fn{i}) = val;
end
end % for each field
source = rmfield(source, 'trial');
end % if trial
% ensure that it has a dimord (or multiple for the different fields)
source = fixdimord(source);
% ensure that all data fields have the correct dimensions
fn = getdatfield(source);
for i=1:numel(fn)
dimord = getdimord(source, fn{i});
dimtok = tokenize(dimord, '_');
dimsiz = getdimsiz(source, fn{i});
dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
if numel(dimsiz)>=3 && strcmp(dimtok{1}, 'dim1') && strcmp(dimtok{2}, 'dim2') && strcmp(dimtok{3}, 'dim3')
% convert it from voxel-based representation to position-based representation
try
source.(fn{i}) = reshape(source.(fn{i}), [prod(dimsiz(1:3)) dimsiz(4:end) 1]);
catch
warning('could not reshape %s to the expected dimensions', fn{i});
end
end
end
case '2011'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ensure that it has individual source positions
source = fixpos(source);
% remove obsolete fields
if isfield(source, 'xgrid')
source = rmfield(source, 'xgrid');
end
if isfield(source, 'ygrid')
source = rmfield(source, 'ygrid');
end
if isfield(source, 'zgrid')
source = rmfield(source, 'zgrid');
end
if isfield(source, 'transform')
source = rmfield(source, 'transform');
end
% ensure that it has a dimord (or multiple for the different fields)
source = fixdimord(source);
case '2010'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ensure that it has individual source positions
source = fixpos(source);
% remove obsolete fields
if isfield(source, 'xgrid')
source = rmfield(source, 'xgrid');
end
if isfield(source, 'ygrid')
source = rmfield(source, 'ygrid');
end
if isfield(source, 'zgrid')
source = rmfield(source, 'zgrid');
end
% ensure that it has a dimord (or multiple for the different fields)
source = fixdimord(source);
case '2007'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ensure that it has individual source positions
source = fixpos(source);
% remove obsolete fields
if isfield(source, 'dimord')
source = rmfield(source, 'dimord');
end
if isfield(source, 'xgrid')
source = rmfield(source, 'xgrid');
end
if isfield(source, 'ygrid')
source = rmfield(source, 'ygrid');
end
if isfield(source, 'zgrid')
source = rmfield(source, 'zgrid');
end
case '2003'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(source, 'dimord')
source = rmfield(source, 'dimord');
end
if ~isfield(source, 'xgrid') || ~isfield(source, 'ygrid') || ~isfield(source, 'zgrid')
if isfield(source, 'dim')
minx = min(source.pos(:,1));
maxx = max(source.pos(:,1));
miny = min(source.pos(:,2));
maxy = max(source.pos(:,2));
minz = min(source.pos(:,3));
maxz = max(source.pos(:,3));
source.xgrid = linspace(minx, maxx, source.dim(1));
source.ygrid = linspace(miny, maxy, source.dim(2));
source.zgrid = linspace(minz, maxz, source.dim(3));
end
end
otherwise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
error('unsupported version "%s" for source datatype', version);
end
function pos = grid2pos(xgrid, ygrid, zgrid)
[X, Y, Z] = ndgrid(xgrid, ygrid, zgrid);
pos = [X(:) Y(:) Z(:)];
function pos = dim2pos(dim, transform)
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
pos = [X(:) Y(:) Z(:)];
pos = ft_warp_apply(transform, pos, 'homogenous');
|
github
|
lcnbeapp/beapp-master
|
ft_warp_dykstra2012.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_warp_dykstra2012.m
| 5,113 |
utf_8
|
f62b920eb747153a6abe6350a926cc1b
|
function [coord_snapped] = ft_warp_dykstra2012(coord, surf, feedback)
% FT_WARP_DYKSTRA2012 projects the ECoG grid / strip onto a cortex hull
% while minimizing the distance from original positions and the
% deformation of the grid. To align ECoG electrodes to the pial surface,
% you first need to compute the cortex hull with FT_PREPARE_MESH.
% FT_WARP_DYKSTRA2012 uses algorithm described in Dykstra et al. (2012,
% Neuroimage) in which electrodes are projected onto pial surface while
% minimizing the displacement of the electrodes from original location
% and maintaining the grid shape. It relies on the optimization toolbox.
%
% See also FT_ELECTRODEREALIGN, FT_PREPARE_MESH
% Copyright (C) 2012-2016, Gio Piantoni, Andrew Dykstra
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% determine whether the MATLAB Optimization toolbox is available and can be used
ft_hastoolbox('optim', 1);
disp('Please cite: Dykstra et al. 2012 Neuroimage PMID: 22155045')
% get starting coordinates
coord0 = coord;
% compute pairs of neighbors
pairs = knn_pairs(coord, 4);
% anonymous function handles
efun = @(coord_snapped) energy_electrodesnap(coord_snapped, coord, pairs);
cfun = @(coord_snapped) dist_to_surface(coord_snapped, surf);
% options
options = optimset('Algorithm','active-set',...
'MaxIter', 50,...
'MaxFunEvals', Inf,...
'UseParallel', 'always',...
'GradObj', 'off',...
'TypicalX', coord(:),...
'DiffMaxChange', 2,...
'DiffMinChange', 0.3,...
'TolFun', 0.3,...
'TolCon', 0.01 * size(coord0, 1),...
'TolX', 0.5,...
'Diagnostics', 'off',...
'RelLineSrchBnd',1);
if strcmp(feedback, 'yes')
options = optimset(options, 'Display', 'iter');
else
options = optimset(options, 'Display', 'final');
end
% run minimization
coord_snapped = fmincon(efun, coord0, [], [], [], [], [], [], cfun, options);
end
function [energy, denergy] = energy_electrodesnap(coord, coord_orig, pairs)
% ENERGY_ELECTRODESNAP compute energy to be minimized, based on deformation
% and distance of the electrodes from original distance
energy_eshift = sum((coord - coord_orig).^2, 2);
energy_deform = deformation_energy(coord, coord_orig, pairs);
energy = mean(energy_eshift) + mean(energy_deform.^2);
denergy=[];
end
function energy = deformation_energy(coord, coord_orig, pairs)
% DEFORMATION_ENERGY measure energy due to grid deformation
dist = sqrt(sum((coord(pairs(:, 1), :) - coord(pairs(:, 2), :)) .^ 2, 2));
dist_orig = sqrt(sum((coord_orig(pairs(:, 1), :) - coord_orig(pairs(:, 2), :)) .^ 2, 2));
energy = (dist - dist_orig) .^2;
end
function [c, dist] = dist_to_surface(coord, surf)
% DIST_TO_SURFACE Compute distance to surface, this is the fastest way to run
% it, although running the loops in other directions might be more intuitive.
c = [];
dist = zeros(size(coord, 1), 1);
for i0 = 1:size(coord, 1)
dist_one_elec = zeros(size(surf.pos, 1), 1);
for i1 = 1:size(surf.pos, 2)
dist_one_elec = dist_one_elec + (surf.pos(:, i1) - coord(i0, i1)) .^ 2;
end
dist(i0) = min(dist_one_elec);
end
dist = sqrt(dist);
end
function pairs = knn_pairs(coord, k)
% KNN_PAIRS compute pairs of neighbors of the grid
knn_ind = knn_search(coord, coord, k);
pairs = cat(3, knn_ind, repmat([1:size(coord,1)]',1,k));
pairs = permute(pairs,[3 1 2]);
pairs = sort(reshape(pairs,2,[]),1)';
pairs = unique(pairs,'rows');
end
function idx = knn_search(Q, R, K)
%KNN_SEARCH perform search using k-Nearest Neighbors algorithm
[N, M] = size(Q);
L = size(R, 1);
idx = zeros(N, K);
D = idx;
for k = 1:N
d = zeros(L, 1);
for t = 1:M
d = d + (R(:, t) - Q(k, t)) .^ 2;
end
d(k) = inf;
[s, t] = sort(d);
idx(k, :) = t(1:K);
D(k, :)= s(1:K);
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_test_result.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_test_result.m
| 7,436 |
utf_8
|
a28cd88cb3548c06087d0b49b4d8b15b
|
function results = ft_test_result(varargin)
% FT_TEST_RESULT checks the status of selected test scripts on the FieldTrip dashboard
%
% To get all dashboard results as a structure array, you would do
% result = ft_test_result
%
% To print a table with the results on screen, you would do
% ft_test_result comparerevision ea3c2b9 314d186
% ft_test_result comparematlab 2015b 2016b
% ft_test_result comparemexext mexw32 mexw64
% ft_test_result compareos osx windows
%
% Additional query arguments are specified as key-value pairs and can include
% matlabversion = string
% fieldtripversion = string
% hostname = string
% user = string
% branch = string
% result = string
%
% See also FT_TEST_RUN, FT_VERSION
% Copyright (C) 2016, Robert oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/donders/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% set the default
command = 'query';
if nargin>0
if isequal(varargin{1}, 'compare') || isequal(varargin{1}, 'comparerevision')
% comparerevision rev1 rev2
command = 'comparerevision';
arg1 = varargin{2};
arg2 = varargin{3};
varargin = varargin(4:end);
elseif isequal(varargin{1}, 'matlab') || isequal(varargin{1}, 'comparematlab')
% comparematlab ver1 ver2
command = 'comparematlab';
arg1 = varargin{2};
arg2 = varargin{3};
varargin = varargin(4:end);
end
end
% construct the query string
query = '?';
% the 'distict' parameter is mutually exclusive with all others
queryparam = {'matlabversion', 'fieldtripversion', 'hostname', 'user', 'functionname', 'result', 'branch', 'distinct'};
for i=1:numel(queryparam)
val = ft_getopt(varargin, queryparam{i});
if ~isempty(val)
query = [query sprintf('%s=%s&', queryparam{i}, val)];
end
end
options = weboptions('ContentType','json'); % this returns the results as MATLAB structure
switch command
case 'query'
results = webread(['http://dashboard.fieldtriptoolbox.org/api/' query], options);
case 'comparerevision'
dashboard1 = webread(['http://dashboard.fieldtriptoolbox.org/api/' query sprintf('&fieldtripversion=%s', arg1)], options);
dashboard2 = webread(['http://dashboard.fieldtriptoolbox.org/api/' query sprintf('&fieldtripversion=%s', arg2)], options);
assert(~isempty(dashboard1), 'no tests were returned for the first revision');
assert(~isempty(dashboard2), 'no tests were returned for the second revision');
functionname1 = {dashboard1.functionname};
functionname2 = {dashboard2.functionname};
functionname = unique(cat(2, functionname1, functionname2));
n = max(cellfun(@length, functionname));
line = cell(size(functionname));
order = nan(size(functionname));
for i=1:numel(functionname)
sel1 = find(strcmp(functionname1, functionname{i}));
sel2 = find(strcmp(functionname2, functionname{i}));
res1 = getresult(dashboard1, sel1);
res2 = getresult(dashboard2, sel2);
line{i} = sprintf('%s : %s in %s, %s in %s\n', padto(functionname{i}, n), res1, arg1, res2, arg2);
% determine the order
if strcmp(res1, 'passed') && strcmp(res2, 'passed')
order(i) = 1;
elseif strcmp(res1, 'failed') && strcmp(res2, 'failed')
order(i) = 2;
elseif strcmp(res1, 'missing') && strcmp(res2, 'passed')
order(i) = 3;
elseif strcmp(res1, 'passed') && strcmp(res2, 'missing')
order(i) = 4;
elseif strcmp(res1, 'missing') && strcmp(res2, 'failed')
order(i) = 5;
elseif strcmp(res1, 'failed') && strcmp(res2, 'missing')
order(i) = 6;
elseif strcmp(res1, 'failed') && strcmp(res2, 'passed')
order(i) = 7;
elseif strcmp(res1, 'passed') && strcmp(res2, 'failed')
order(i) = 8;
else
order(i) = 9;
end
end % for each functionname
[order, index] = sort(order);
line = line(index);
for i=1:length(line)
fprintf(line{i});
end
case 'comparematlab'
dashboard1 = webread(['http://dashboard.fieldtriptoolbox.org/api/' query sprintf('&matlabversion=%s', arg1)], options);
dashboard2 = webread(['http://dashboard.fieldtriptoolbox.org/api/' query sprintf('&matlabversion=%s', arg2)], options);
assert(~isempty(dashboard1), 'no tests were returned for the first matab version');
assert(~isempty(dashboard2), 'no tests were returned for the second matab version');
functionname1 = {dashboard1.functionname};
functionname2 = {dashboard2.functionname};
functionname = unique(cat(2, functionname1, functionname2));
n = max(cellfun(@length, functionname));
line = cell(size(functionname));
order = nan(size(functionname));
for i=1:numel(functionname)
sel1 = find(strcmp(functionname1, functionname{i}));
sel2 = find(strcmp(functionname2, functionname{i}));
res1 = getresult(dashboard1, sel1);
res2 = getresult(dashboard2, sel2);
line{i} = sprintf('%s : %s in %s, %s in %s\n', padto(functionname{i}, n), res1, arg1, res2, arg2);
% determine the order
if strcmp(res1, 'passed') && strcmp(res2, 'passed')
order(i) = 1;
elseif strcmp(res1, 'failed') && strcmp(res2, 'failed')
order(i) = 2;
elseif strcmp(res1, 'missing') && strcmp(res2, 'passed')
order(i) = 3;
elseif strcmp(res1, 'passed') && strcmp(res2, 'missing')
order(i) = 4;
elseif strcmp(res1, 'missing') && strcmp(res2, 'failed')
order(i) = 5;
elseif strcmp(res1, 'failed') && strcmp(res2, 'missing')
order(i) = 6;
elseif strcmp(res1, 'failed') && strcmp(res2, 'passed')
order(i) = 7;
elseif strcmp(res1, 'passed') && strcmp(res2, 'failed')
order(i) = 8;
else
order(i) = 9;
end
end % for each functionname
[order, index] = sort(order);
line = line(index);
for i=1:length(line)
fprintf(line{i});
end
otherwise
error('unsupported command "%s"', command);
end % switch command
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = padto(str, n)
if n>length(str)
str = [str repmat(' ', [1 n-length(str)])];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = getresult(dashboard, sel)
if isempty(sel)
str = 'missing';
elseif all(istrue([dashboard(sel).result]))
str = 'passed';
elseif all(~istrue([dashboard(sel).result]))
str = 'failed';
else
str = 'ambiguous';
end
|
github
|
lcnbeapp/beapp-master
|
ft_warning.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_warning.m
| 7,789 |
utf_8
|
d832a7ad5e2f9bb42995e6e5d4caa198
|
function [ws, warned] = ft_warning(varargin)
% FT_WARNING will throw a warning for every unique point in the
% stacktrace only, e.g. in a for-loop a warning is thrown only once.
%
% Use as one of the following
% ft_warning(string)
% ft_warning(id, string)
% Alternatively, you can use ft_warning using a timeout
% ft_warning(string, timeout)
% ft_warning(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again.
%
% Use as ft_warning('-clear') to clear old warnings from the current
% stack
%
% It can be used instead of the MATLAB built-in function WARNING, thus as
% s = ft_warning(...)
% or as
% ft_warning(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information. In other words, ft_warning accepts as an input the
% same structure it returns as an output. This returns or restores the
% states of warnings to their previous values.
%
% It can also be used as
% [s w] = ft_warning(...)
% where w is a boolean that indicates whether a warning as been thrown or not.
%
% Please note that you can NOT use it like this
% ft_warning('the value is %d', 10)
% instead you should do
% ft_warning(sprintf('the value is %d', 10))
% Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global ft_default
warned = false;
ws = [];
stack = dbstack;
if any(strcmp({stack(2:end).file}, 'ft_warning.m'))
% don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068
return;
end
if nargin < 1
error('You need to specify at least a warning message');
end
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if ~isfield(ft_default, 'warning')
ft_default.warning = [];
end
if ~isfield(ft_default.warning, 'stopwatch')
ft_default.warning.stopwatch = [];
end
if ~isfield(ft_default.warning, 'identifier')
ft_default.warning.identifier = [];
end
if ~isfield(ft_default.warning, 'ignore')
ft_default.warning.ignore = {};
end
% put the arguments we will pass to warning() in this cell array
warningArgs = {};
if nargin==3
% calling syntax (id, msg, timeout)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = varargin{3};
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==2 && isnumeric(varargin{2})
% calling syntax (msg, timeout)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = varargin{2};
fname = warningArgs{1};
elseif nargin==2 && isequal(varargin{1}, 'off')
ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && isequal(varargin{1}, 'on')
ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && ~isnumeric(varargin{2})
% calling syntax (id, msg)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = inf;
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==1
% calling syntax (msg)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = inf; % default timeout in seconds
fname = [warningArgs{1}];
end
if ismember(msg, ft_default.warning.ignore)
% do not show this warning
return;
end
if isempty(timeout)
error('Timeout ill-specified');
end
if timeout ~= inf
fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures
line = [];
else
% here, we create the fieldname functionA.functionB.functionC...
[tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier);
if ~isempty(tmpfname),
fname = tmpfname;
clear tmpfname;
end
end
if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1})
if strcmp(fname, '-clear') % reset all fields if called outside a function
ft_default.warning.identifier = [];
ft_default.warning.stopwatch = [];
else
if issubfield(ft_default.warning.identifier, fname)
ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname);
end
end
return;
end
% and add the line number to make this unique for the last function
fname = horzcat(fname, line);
if ~issubfield('ft_default.warning.stopwatch', fname)
ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic);
end
now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call
if ~issubfield(ft_default.warning.identifier, fname) || ...
(issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout']))
% create or reset field
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []);
% warning never given before or timed out
ws = warning(warningArgs{:});
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout);
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg);
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = getsubfield(ft_default.warning.identifier, [fname '.ws']);
end
end % function ft_warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings)
% stack(1) is this function, stack(2) is ft_warning
stack = dbstack('-completenames');
if size(stack) < 3
fname = [];
line = [];
return;
end
i0 = 3;
% ignore ft_preamble
while strfind(stack(i0).name, 'ft_preamble')
i0=i0+1;
end
fname = horzcat(fixname(stack(end).name));
if ~issubfield(ft_previous_warnings, fixname(stack(end).name))
ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields
end
for i=numel(stack)-1:-1:(i0)
% skip postamble scripts
if strncmp(stack(i).name, 'ft_postamble', 12)
break;
end
fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file
if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields
setsubfield(ft_previous_warnings, fname, []);
end
end
% line of last function call
line = ['.line', int2str(stack(i0).line)];
end
% function outcome = issubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% outcome = isfield(strct, fname);
% end
% end
% function strct = rmsubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% strct = rmfield(strct, fname);
% end
% end
|
github
|
lcnbeapp/beapp-master
|
ft_selectdata_new.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_selectdata_new.m
| 50,624 |
utf_8
|
9a80958f482cd3233df091925dbdcaa9
|
function [varargout] = ft_selectdata_new(cfg, varargin)
% FT_SELECTDATA_NEW is deprecated, please use FT_SELECTDATA instead.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Old documentation for reference
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This function makes a selection in the input data along specific data
% dimensions, such as channels, time, frequency, trials, etc. It can also
% be used to average the data along each of the specific dimensions.
%
% Use as
% [data] = ft_selectdata_new(cfg, data, ...)
%
% The cfg artument is a configuration structure which can contain
% cfg.tolerance = scalar, tolerance value to determine equality of time/frequency bins (default = 1e-5)
%
% For data with trials or subjects as repetitions, you can specify
% cfg.trials = 1xN, trial indices to keep, can be 'all'. You can use logical indexing, where false(1,N) removes all the trials
% cfg.avgoverrpt = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a channel dimension you can specify
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION
% cfg.avgoverchan = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a time dimension you can specify
% cfg.latency = scalar -> can be 'all'
% cfg.latency = [beg end]
% cfg.avgovertime = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a frequency dimension you can specify
% cfg.frequency = scalar -> can be 'all'
% cfg.frequency = [beg end] -> this is less common, preferred is to use foilim
% cfg.foilim = [beg end]
% cfg.avgoverfreq = string, can be 'yes' or 'no' (default = 'no')
%
% If multiple input arguments are provided, FT_SELECTDATA will adjust the
% individual inputs such that either the intersection across inputs is
% retained (i.e. only the channel/time/frequency points that are shared
% across all input arguments), or the union across inputs is retained
% (replacing missing data with nans). In either case, the order (e.g. of
% the channel labels) is made consistent across inputs. Multiple inputs in
% combination with the selection of trials is not supported. The exact
% behavior can be specified with
% cfg.select = 'intersect' or 'union' (default = 'intersect')
% Copyright (C) 2012-2014, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
ft_defaults % this ensures that the path is correct and that the ft_defaults global variable is available
ft_preamble init % this will reset ft_warning and show the function help if nargin==0 and return an error
ft_preamble provenance % this records the time and memory usage at teh beginning of the function
ft_preamble trackconfig % this converts the cfg structure in a config object, which tracks the cfg options that are being used
ft_preamble debug % this allows for displaying or saving the function name and input arguments upon an error
ft_preamble loadvar varargin % this reads the input data in case the user specified the cfg.inputfile option
% determine the characteristics of the input data
dtype = ft_datatype(varargin{1});
for i=2:length(varargin)
% ensure that all subsequent inputs are of the same type
ok = ft_datatype(varargin{i}, dtype);
if ~ok, error('input data should be of the same datatype'); end
end
cfg = ft_checkconfig(cfg, 'renamed', {'selmode', 'select'});
cfg = ft_checkconfig(cfg, 'renamed', {'toilim' 'latency'});
cfg = ft_checkconfig(cfg, 'renamed', {'avgoverroi' 'avgoverpos'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'avg.pow' 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'avg.mom' 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'avg.nai' 'nai'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'trial.pow' 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'trial.mom' 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter' 'trial.nai' 'nai'});
cfg.tolerance = ft_getopt(cfg, 'tolerance', 1e-5); % default tolerance for checking equality of time/freq axes
cfg.select = ft_getopt(cfg, 'select', 'intersect'); % default is to take intersection, alternative 'union'
cfg.parameter = ft_getopt(cfg, 'parameter', {});
% this function only works for the upcoming (not yet standard) source representation without sub-structures
% update the old-style beamformer source reconstruction to the upcoming representation
if strcmp(dtype, 'source')
for i=1:length(varargin)
varargin{i} = ft_datatype_source(varargin{i}, 'version', 'upcoming');
end
end
if length(varargin)>1 && isfield(cfg, 'trials') && ~isequal(cfg.trials, 'all')
error('it is ambiguous to make a subselection of trials while at the same time concatenating multiple data structures')
end
if strcmp(cfg.select, 'union') && any(strcmp(dtype, {'raw', 'comp', 'source'}))
error('cfg.select ''union'' is not yet supported for %s data', dtype);
end
if ft_datatype(varargin{1}, 'raw')
cfg.channel = ft_getopt(cfg, 'channel', 'all', 1); % empty definition by user is meaningful
cfg.latency = ft_getopt(cfg, 'latency', 'all', 1);
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
for i=1:length(varargin)
varargin{i} = selfromraw(varargin{i}, 'rpt', cfg.trials, 'chan', cfg.channel, 'latency', cfg.latency);
end
else % not raw or comp
cfg.channel = ft_getopt(cfg, 'channel', 'all', 1);
cfg.latency = ft_getopt(cfg, 'latency', 'all', 1);
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
if ~isfield(cfg, 'foilim')
cfg.frequency = ft_getopt(cfg, 'frequency', 'all', 1);
end
if isempty(cfg.parameter) && isfield(varargin{1}, 'dimord')
dimord = varargin{1}.dimord;
elseif ischar(cfg.parameter) && isfield(varargin{1}, [cfg.parameter 'dimord'])
dimord = varargin{1}.([cfg.parameter 'dimord']);
elseif ischar(cfg.parameter) && isfield(varargin{1}, 'dimord')
dimord = varargin{1}.dimord;
else
error('cannot determine which parameter to select from the data, please specify cfg.parameter');
end
dimtok = tokenize(dimord, '_');
if isempty(cfg.parameter) || isequal(cfg.parameter ,'all')
dimsiz = nan(size(dimtok));
dimfields = cell(size(dimtok));
% determine the size of each of the dimensions
for i=1:numel(dimtok)
% this switch-list is consistent with fixdimord
switch dimtok{i}
case 'time'
dimsiz(i) = length(varargin{1}.time);
dimfields{i} = 'time';
case 'freq'
dimsiz(i) = length(varargin{1}.freq);
dimfields{i} = 'freq';
case 'chan'
dimsiz(i) = length(varargin{1}.label);
dimfields{i} = 'label';
case 'chancmb'
dimsiz(i) = size(varargin{1}.labelcmb,1);
dimfields{i} = 'labelcmb';
case 'pos'
dimsiz(i) = size(varargin{1}.pos,1);
dimfields{i} = 'pos';
case '{pos}'
dimsiz(i) = size(varargin{1}.pos,1);
dimfields{i} = '{pos}';
case 'subj'
% the number of elements along this dimension is implicit
dimsiz(i) = nan;
dimfields{i} = 'implicit';
case 'rpt'
% the number of elements along this dimension is implicit
dimsiz(i) = nan;
dimfields{i} = 'implicit';
case 'rpttap'
% the number of elements along this dimension is implicit
dimsiz(i) = nan;
dimfields{i} = 'implicit';
case 'ori'
% the number of elements along this dimension is implicit
dimsiz(i) = nan;
dimfields{i} = 'implicit';
case 'comp'
error('FIXME');
case 'refchan'
error('FIXME');
case 'voxel'
error('FIXME');
otherwise
% try to guess the size from the corresponding field
if isfield(varargin{1}, dimtok{i})
siz = varargin{1}.(dimtok{i});
if length(siz)==2 && any(siz==1)
dimsiz(i) = prod(siz);
dimfields{i} = dimtok{i};
end
end
end % switch
end % for dimtok
% deal with the data dimensions whose size is only implicitly represented
if any(strcmp(dimfields, 'implicit'))
fn = fieldnames(varargin{1})';
for i=1:numel(fn)
val = varargin{1}.(fn{i});
siz = cellmatsize(val);
clear val
if isequalwithoutnans(siz, dimsiz)
fprintf('using the "%s" field to determine the size along the unknown dimensions\n', fn{i});
% update the size of all dimensions
dimsiz = size(varargin{1}.(fn{i}));
% update the fieldname of each dimension
dimfields(strcmp(dimfields, 'implicit')) = dimtok(strcmp(dimfields, 'implicit'));
break
end
end
if any(strcmp(dimfields, 'implicit'))
% it failed
error('could not determine the size of the implicit "%s" dimension', dimfields{strcmp(dimfields, 'implicit')});
end
end
% select the fields based on the dimord
fn = fieldnames(varargin{1})'; % it should be a row-array
fn = setdiff(fn, {'pos', 'label', 'time', 'freq', 'cfg', 'hdr', 'grad', 'elec'});
sel = false(size(fn));
for i=1:numel(fn)
sel(i) = isequal(size(varargin{1}.(fn{i})), dimsiz) || isequal(size(varargin{1}.(fn{i})), [dimsiz 1]);
end
cfg.parameter = fn(sel);
clear dimsiz dimfields
end % is isempty(cfg.parameter)
% these are the fields in which the selection will be made
datfields = cfg.parameter;
if ~iscell(datfields)
datfields = {datfields};
end
hasrpt = any(ismember(dimtok, {'rpt', 'subj'}));
hasrpttap = any(ismember(dimtok, 'rpttap'));
haspos = any(ismember(dimtok, {'pos', '{pos}'}));
haschan = any(ismember(dimtok, 'chan'));
haschancmb = any(ismember(dimtok, 'chancmb'));
hasfreq = any(ismember(dimtok, 'freq'));
hastime = any(ismember(dimtok, 'time'));
haspos = haspos && isfield(varargin{1}, 'pos');
haschan = haschan && isfield(varargin{1}, 'label');
haschancmb = haschancmb && isfield(varargin{1}, 'labelcmb');
hasfreq = hasfreq && isfield(varargin{1}, 'freq');
hastime = hastime && isfield(varargin{1}, 'time');
avgoverpos = istrue(ft_getopt(cfg, 'avgoverpos', false)); % at some places it is also referred to as roi (region-of-interest)
avgoverrpt = istrue(ft_getopt(cfg, 'avgoverrpt', false));
avgoverchan = istrue(ft_getopt(cfg, 'avgoverchan', false));
avgoverfreq = istrue(ft_getopt(cfg, 'avgoverfreq', false));
avgovertime = istrue(ft_getopt(cfg, 'avgovertime', false));
if avgoverpos, assert(haspos, 'there are no source positions, so averaging is not possible'); end
if avgoverrpt, assert(hasrpt||hasrpttap, 'there are no repetitions, so averaging is not possible'); end
if avgoverchan, assert(haschan, 'there is no channel dimension, so averaging is not possible'); end
if avgoverfreq, assert(hasfreq, 'there is no frequency dimension, so averaging is not possible'); end
if avgovertime, assert(hastime, 'there is no time dimension, so averaging over time is not possible'); end
% by default we keep most of the dimensions in the data structure when averaging over them
keeprptdim = istrue(ft_getopt(cfg, 'keeprptdim', false));
keepposdim = istrue(ft_getopt(cfg, 'keepposdim', true));
keepchandim = istrue(ft_getopt(cfg, 'keepchandim', true));
keepfreqdim = istrue(ft_getopt(cfg, 'keepfreqdim', true));
keeptimedim = istrue(ft_getopt(cfg, 'keeptimedim', true));
if strcmp(cfg.select, 'union') && (avgoverpos || avgoverrpt || avgoverchan || avgoverfreq || avgovertime)
error('cfg.select ''union'' in combination with averaging across one of the dimensions is not implemented');
end
if avgoverpos
for i=1:length(varargin)
% must be a source representation, not a volume representation
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'source');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 2:
% ensure that the cfg is fully contained in the data and consistent over all inputs
% get the selection along each of the dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FIXMEroboos this implementation is not yet complete
% dtype = 'new';
switch dtype
% this switch-list is consistent with ft_datatype
case {'new'}
% FIXMEroboos this implementation is not yet complete
% trim the selection to all inputs
if haspos, [selpos, cfg] = getselection_pos (cfg, varargin{:}, cfg.tolerance, cfg.select); end
if haschan, [selchan, cfg] = getselection_chan (cfg, varargin{:}, cfg.select); end
if haschancmb, [selchancmb, cfg] = getselection_chancmb(cfg, varargin{:}, cfg.select); end
if hastime, [seltime, cfg] = getselection_time (cfg, varargin{:}, cfg.tolerance, cfg.select); end
if hasfreq, [selfreq, cfg] = getselection_freq (cfg, varargin{:}, cfg.tolerance, cfg.select); end
for i=1:numel(varargin)
% the rpt selection should only work with a single data argument
% in case tapers were kept, selrpt~=selrpttap, otherwise selrpt==selrpttap
[selrpt{i}, dum, rptdim{i}, selrpttap{i}] = getselection_rpt(cfg, varargin{i}, 'datfields', datfields);
if haspos, varargin{i} = makeselection(varargin{i}, find(ismember(dimtok, {'pos', '{pos}'})), selpos{i}, avgoverpos, datfields, cfg.select); end
if haschan, varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'chan')), selchan{i}, avgoverchan, datfields, cfg.select); end
if haschancmb, varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'chancmb')), selchancmb{i}, false, datfields, cfg.select); end
if hastime, varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, datfields, cfg.select); end
if hasfreq, varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'freq')), selfreq{i}, avgoverfreq, datfields, cfg.select); end
if hasrpt, varargin{i} = makeselection(varargin{i}, find(ismember(dimtok,{'rpt', 'subj'})), selrpt{i}, avgoverrpt, datfields, 'intersect'); end
if hasrpttap, varargin{i} = makeselection(varargin{i}, rptdim{i}, selrpttap{i}, avgoverrpt, datfields, 'intersect'); end
if haspos, varargin{i} = makeselection_pos(varargin{i}, selpos{i}, avgoverpos); end % update the pos field
if haschan, varargin{i} = makeselection_chan(varargin{i}, selchan{i}, avgoverchan); end % update the label field
if hastime, varargin{i} = makeselection_time(varargin{i}, seltime{i}, avgovertime); end % update the time field
if hasfreq, varargin{i} = makeselection_freq(varargin{i}, selfreq{i}, avgoverfreq); end % update the time field
if hasrpt || hasrpttap, varargin{i} = makeselection_rpt (varargin{i}, selrpt{i}); end % avgoverrpt for the supporting fields is dealt with later
% also deal with the supporting cumtapcnt field, because it has a frequency dimension when time dimension is present
% this is a temporary workaround, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=2509
if isfield(varargin{i}, 'cumtapcnt') && hastime
varargin{i} = makeselection_cumtapcnt(varargin{i}, selfreq{i}, avgoverfreq);
end
% make an exception for the covariance here (JM 20131128)
if isfield(varargin{i}, 'cov') && (all(~isnan(selrpt{i})) || all(~isnan(selchan{i})))
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok, 'chan'))+[0 1], selchan{i}, avgoverchan, {'cov'}, cfg.select);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok, 'rpt')), selrpt{i}, avgoverrpt, {'cov'}, 'intersect');
datfields = [datfields {'cov'}];
end
end % for varargin
% in the case of selmode='union', create the union of the descriptive axes
if strcmp(cfg.select, 'union')
if haschan
label = varargin{1}.label;
for i=2:numel(varargin)
tmplabel = varargin{i}.label;
emptylabel = find(cellfun('isempty', label));
for k=emptylabel(:)'
label{k} = tmplabel{k};
end
end
for i=1:numel(varargin)
varargin{i}.label = label;
end
end % haschan
if hastime
time = varargin{1}.time;
for i=2:numel(varargin)
tmptime = varargin{i}.time;
time(~isfinite(time)) = tmptime(~isfinite(time));
end
for i=1:numel(varargin)
varargin{i}.time = time;
end
end % hastime
end % select=union
case 'timelock'
% trim the selection to all inputs
[selchan, cfg] = getselection_chan(cfg, varargin{:}, cfg.select);
[seltime, cfg] = getselection_time(cfg, varargin{:}, cfg.tolerance, cfg.select);
selrpt = cell(numel(varargin),1);
for i=1:numel(varargin)
[selrpt{i}] = getselection_rpt (cfg, varargin{i}, 'datfields', datfields);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'chan')), selchan{i}, avgoverchan, datfields, cfg.select);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, datfields, cfg.select);
varargin{i} = makeselection(varargin{i}, find(ismember(dimtok,{'rpt', 'rpttap', 'subj'})), selrpt{i}, avgoverrpt, datfields, 'intersect');
varargin{i} = makeselection_chan(varargin{i}, selchan{i}, avgoverchan); % update the label field
varargin{i} = makeselection_time(varargin{i}, seltime{i}, avgovertime); % update the time field
varargin{i} = makeselection_rpt (varargin{i}, selrpt{i}); % avgoverrpt for the supporting fields is dealt with later
% make an exception for the covariance here (JM 20131128)
if isfield(varargin{i}, 'cov') && (all(~isnan(selrpt{i})) || all(~isnan(selchan{i})))
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok, 'chan'))+[0 1], selchan{i}, avgoverchan, {'cov'}, cfg.select);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok, 'rpt')), selrpt{i}, avgoverrpt, {'cov'}, 'intersect');
datfields = [datfields {'cov'}];
end
end % varargin
% in the case of selmode='union', create the union of the descriptive axes
if strcmp(cfg.select, 'union')
label = varargin{1}.label;
time = varargin{1}.time;
for i=2:numel(varargin)
tmplabel = varargin{i}.label;
tmptime = varargin{i}.time;
time(~isfinite(time)) = tmptime(~isfinite(time));
emptylabel = find(cellfun('isempty', label));
for k=emptylabel(:)'
label{k} = tmplabel{k};
end
end
for i=1:numel(varargin)
varargin{i}.label = label;
varargin{i}.time = time;
end
end
case 'freq'
% trim the selection to all inputs
[selchan, cfg] = getselection_chan(cfg, varargin{:}, cfg.select); % tolerance not needed
[selfreq, cfg] = getselection_freq(cfg, varargin{:}, cfg.tolerance, cfg.select); % freq is always present
if hastime, [seltime, cfg] = getselection_time(cfg, varargin{:}, cfg.tolerance, cfg.select); end
selrpt = cell(numel(varargin),1);
selrpttap = cell(numel(varargin),1);
rptdim = cell(numel(varargin),1);
for i=1:numel(varargin)
% the rpt selection stays within this loop, it only should work with a single data argument anyway
% in case tapers were kept, selrpt~=selrpttap, otherwise selrpt==selrpttap
[selrpt{i}, dum, rptdim{i}, selrpttap{i}] = getselection_rpt(cfg, varargin{i}, 'datfields', datfields);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'chan')), selchan{i}, avgoverchan, datfields, cfg.select);
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'freq')), selfreq{i}, avgoverfreq, datfields, cfg.select);
varargin{i} = makeselection(varargin{i}, rptdim{i}, selrpttap{i}, avgoverrpt, datfields, 'intersect');
varargin{i} = makeselection_chan(varargin{i}, selchan{i}, avgoverchan); % update the label field
varargin{i} = makeselection_freq(varargin{i}, selfreq{i}, avgoverfreq); % update the freq field
varargin{i} = makeselection_rpt(varargin{i}, selrpt{i}); % avgoverrpt for the supporting fields is dealt with later
if hastime
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, datfields, cfg.select);
varargin{i} = makeselection_time(varargin{i}, seltime{i}, avgovertime); % update the time field
end
% also deal with the supporting cumtapcnt field, because it has a frequency dimension when time dimension is present
% this is a temporary workaround, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=2509
if hastime && isfield(varargin{i}, 'cumtapcnt')
varargin{i} = makeselection_cumtapcnt(varargin{i}, selfreq{i}, avgoverfreq);
end
end % varargin
% in the case of selmode='union', create the union of the descriptive axes
if strcmp(cfg.select, 'union')
label = varargin{1}.label;
freq = varargin{1}.freq;
if hastime,
time = varargin{1}.time;
end
for i=2:numel(varargin)
tmpfreq = varargin{i}.freq;
tmplabel = varargin{i}.label;
if hastime,
tmptime = varargin{i}.time;
end
freq(~isfinite(freq)) = tmpfreq(~isfinite(freq));
if hastime,
time(~isfinite(time)) = tmptime(~isfinite(time));
end
emptylabel = find(cellfun('isempty', label));
for k=emptylabel(:)'
label{k} = tmplabel{k};
end
end
for i=1:numel(varargin)
varargin{i}.freq = freq;
varargin{i}.label = label;
if hastime,
varargin{i}.time = time;
end
end
end
case 'source'
% trim the selection to all inputs
[selpos, cfg] = getselection_pos(cfg, varargin{:}, cfg.tolerance, cfg.select);
if hastime, [seltime, cfg] = getselection_time(cfg, varargin{:}, cfg.tolerance, cfg.select); end
if hasfreq, [selfreq, cfg] = getselection_freq(cfg, varargin{:}, cfg.tolerance, cfg.select); end
for i=1:numel(varargin)
% get the selection from all inputs
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'pos') | strcmp(dimtok,'{pos}')), selpos{i}, avgoverpos, datfields, cfg.select);
varargin{i} = makeselection_pos(varargin{i}, selpos{i}, avgoverpos); % update the pos field
% FIXME this code does not deal with repetitions
if hastime,
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, datfields, cfg.select);
varargin{i} = makeselection_time(varargin{i}, seltime{i}, avgovertime); % update the time field
end
if hasfreq,
varargin{i} = makeselection(varargin{i}, find(strcmp(dimtok,'freq')), selfreq{i}, avgoverfreq, datfields, cfg.select);
varargin{i} = makeselection_freq(varargin{i}, selfreq{i}, avgoverfreq); % update the freq field
end
end % varargin
case 'freqmvar'
error('FIXME');
case 'mvar'
error('FIXME');
case 'spike'
error('FIXME');
case 'volume'
error('FIXME');
case 'dip'
error('FIXME');
case 'chan'
% this results from avgovertime/avgoverfreq after timelockstatistics or freqstatistics
error('FIXME');
otherwise
% try to get the selection based on the field name
seldim = cell(size(dimtok));
for j=1:numel(seldim)
seldim(j) = feval(['getselection_' dimtok{j}], cfg, varargin{i});
end
end % switch dtype
% update the fields and the dimord
keepdim = true(size(dimtok));
keepfield = unique(dimtok);
sel = strcmp(keepfield, '{pos}'); if any(sel), keepfield(sel) = {'pos'}; end
sel = strcmp(keepfield, 'chan'); if any(sel), keepfield(sel) = {'label'}; end
if avgoverchan && ~keepchandim
keepdim(strcmp(dimtok, 'chan')) = false;
keepfield = setdiff(keepfield, 'label');
else
keepfield = [keepfield 'label'];
end
if avgoverfreq && ~keepfreqdim
keepdim(strcmp(dimtok, 'freq')) = false;
keepfield = setdiff(keepfield, 'freq');
else
keepfield = [keepfield 'freq'];
end
if avgovertime && ~keeptimedim
keepdim(strcmp(dimtok, 'time')) = false;
keepfield = setdiff(keepfield, 'time');
else
keepfield = [keepfield 'time'];
end
if avgoverpos && ~keepposdim
keepdim(strcmp(dimtok, 'pos')) = false;
keepdim(strcmp(dimtok, '{pos}')) = false;
keepfield = setdiff(keepfield, {'pos' '{pos}' 'dim'});
else
keepfield = [keepfield {'pos' '{pos}' 'dim'}];
end
if avgoverrpt && ~keeprptdim
keepdim(ismember(dimtok, {'rpt', 'rpttap', 'subj'})) = false;
keepfield = setdiff(keepfield, {'cumtapcnt' 'cumsumcnt' 'sampleinfo' 'trialinfo'});
else
keepfield = [keepfield {'cumtapcnt' 'cumsumcnt' 'sampleinfo' 'trialinfo'}];
end
% remove all fields from the dimord that do not pertain to the selection
for i=1:numel(varargin)
varargin{i}.dimord = sprintf('%s_', dimtok{keepdim});
varargin{i}.dimord = varargin{i}.dimord(1:end-1); % remove the last '_'
end
for i=1:numel(varargin)
for j=1:numel(datfields)
varargin{i}.(datfields{j}) = squeezedim(varargin{i}.(datfields{j}), ~keepdim);
end
end
% remove all fields from the data that do not pertain to the selection
for i=1:numel(varargin)
varargin{i} = keepfields(varargin{i}, [datfields {'cfg' 'dimord' 'elec' 'grad'} keepfield]);
end
end % if raw or something else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 3:
% if desired, concatenate over repetitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
varargout = varargin;
ft_postamble debug % this clears the onCleanup function used for debugging in case of an error
ft_postamble trackconfig % this converts the config object back into a struct and can report on the unused fields
ft_postamble provenance % this records the time and memory at the end of the function, prints them on screen and adds this information together with the function name and MATLAB version etc. to the output cfg
% ft_postamble previous varargin % this copies the datain.cfg structure into the cfg.previous field. You can also use it for multiple inputs, or for "varargin"
% ft_postamble history varargout % this adds the local cfg structure to the output data structure, i.e. dataout.cfg = cfg
% note that the cfg.previous thingy does not work with the postamble,
% because the postamble puts the cfgs of all input arguments in the (first)
% output argument's xxx.cfg
for k = 1:numel(varargout)
varargout{k}.cfg = cfg;
if isfield(varargin{k}, 'cfg')
varargout{k}.cfg.previous = varargin{k}.cfg;
end
end
% ft_postamble savevar varargout % this saves the output data structure to disk in case the user specified the cfg.outputfile option
if nargout>numel(varargout)
% also return the input cfg
varargout{end+1} = cfg;
end
end % main function ft_selectdata
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection(data, seldim, selindx, avgoverdim, datfields, selmode)
if numel(seldim) > 1
for k = 1:numel(seldim)
data = makeselection(data, seldim(k), selindx, avgoverdim, datfields, selmode);
end
return;
end
switch selmode
case 'intersect'
for i=1:numel(datfields)
% the selindx value of NaN indicates that it is not needed to make a selection
if isempty(selindx) || all(~isnan(selindx))
data.(datfields{i}) = cellmatselect(data.(datfields{i}), seldim, selindx);
end
if avgoverdim
data.(datfields{i}) = cellmatmean(data.(datfields{i}), seldim);
end
end % for datfields
case 'union'
for i=1:numel(datfields)
tmp = data.(datfields{i});
siz = size(tmp);
siz(seldim) = numel(selindx);
data.(datfields{i}) = nan+zeros(siz);
sel = isfinite(selindx);
switch seldim
case 1
data.(datfields{i})(sel,:,:,:,:,:) = tmp(selindx(sel),:,:,:,:,:);
case 2
data.(datfields{i})(:,sel,:,:,:,:) = tmp(:,selindx(sel),:,:,:,:);
case 3
data.(datfields{i})(:,:,sel,:,:,:) = tmp(:,:,selindx(sel),:,:,:);
case 4
data.(datfields{i})(:,:,:,sel,:,:) = tmp(:,:,:,selindx(sel),:,:);
case 5
data.(datfields{i})(:,:,:,:,sel,:) = tmp(:,:,:,:,selindx(sel),:);
case 6
data.(datfields{i})(:,:,:,:,:,sel) = tmp(:,:,:,:,:,selindx(sel));
otherwise
error('unsupported dimension (%d) for making a selection for %s', seldim, datfields{i});
end
end
if avgoverdim
data.(datfields{i}) = mean(data.(datfields{i}), seldim);
end
end % switch
end % function makeselection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_chan(data, selchan, avgoverchan)
if avgoverchan && all(isnan(selchan))
str = sprintf('%s, ', data.label{:});
str = str(1:(end-2));
str = sprintf('mean(%s)', str);
data.label = {str};
elseif avgoverchan && ~any(isnan(selchan))
str = sprintf('%s, ', data.label{selchan});
str = str(1:(end-2));
str = sprintf('mean(%s)', str);
data.label = {str}; % remove the last '+'
elseif all(isfinite(selchan))
data.label = data.label(selchan);
data.label = data.label(:);
elseif numel(selchan)==1 && any(~isfinite(selchan))
% do nothing
elseif numel(selchan)>1 && any(~isfinite(selchan))
tmp = cell(numel(selchan),1);
for k = 1:numel(tmp)
if isfinite(selchan(k))
tmp{k} = data.label{selchan(k)};
end
end
data.label = tmp;
elseif isempty(selchan)
data.label = {};
end
end % function makeselection_chan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_freq(data, selfreq, avgoverfreq)
if avgoverfreq
% compute the mean frequency
if ~isnan(selfreq)
data.freq = mean(data.freq(selfreq));
else
data.freq = mean(data.freq);
end
elseif numel(selfreq)==1 && ~isfinite(selfreq)
% do nothing
elseif numel(selfreq)==1 && isfinite(selfreq)
data.freq = data.freq(selfreq);
elseif numel(selfreq)>1 && any(~isfinite(selfreq))
tmp = selfreq(:)';
sel = isfinite(selfreq);
tmp(sel) = data.freq(selfreq(sel));
data.freq = tmp;
elseif numel(selfreq)>1 && all(isfinite(selfreq))
data.freq = data.freq(selfreq);
elseif isempty(selfreq)
data.freq = zeros(1,0);
end
end % function makeselection_freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_time(data, seltime, avgovertime)
if avgovertime
% compute the mean latency
if ~isnan(seltime)
data.time = mean(data.time(seltime));
else
data.time = mean(data.time);
end
elseif numel(seltime)==1 && ~isfinite(seltime)
% do nothing
elseif numel(seltime)==1 && isfinite(seltime)
data.time = data.time(seltime);
elseif numel(seltime)>1 && any(~isfinite(seltime))
tmp = seltime(:)';
sel = isfinite(seltime);
tmp(sel) = data.time(seltime(sel));
data.time = tmp;
elseif numel(seltime)>1 && all(isfinite(seltime))
data.time = data.time(seltime);
elseif isempty(seltime)
data.time = zeros(1,0);
end
end % function makeselection_time
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_cumtapcnt(data, selfreq, avgoverfreq)
if ~isfield(data, 'time')
error('the subfunction makeselection_cumtapcnt should only be called when there is a time dimension in the data');
end
if ~isfield(data, 'cumtapcnt')
return;
end
if avgoverfreq
if ~isnan(selfreq)
data.cumtapcnt = mean(data.cumtapcnt(:,selfreq),2);
else
data.cumtapcnt = mean(data.cumtapcnt,2);
end
elseif numel(selfreq)==1 && ~isfinite(selfreq)
% do nothing
elseif numel(selfreq)==1 && isfinite(selfreq)
data.cumtapcnt = data.cumtapcnt(:,selfreq);
elseif numel(selfreq)>1 && any(~isfinite(selfreq))
tmp = selfreq(:)';
tmp2 = zeros(size(data.cumtapcnt,1), numel(selfreq));
sel = isfinite(selfreq);
tmp2(:, sel) = data.cumtapcnt(:,selfreq(sel));
data.freq = tmp2;
elseif numel(selfreq)>1 && all(isfinite(selfreq))
data.cumtapcnt = data.cumtapcnt(:,selfreq);
elseif isempty(selfreq)
%data.cumtapcnt = zeros(1,0);
end
end % function makeselection_cumtapcnt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_rpt(data, selrpt)
if all(isfinite(selrpt)) || isempty(selrpt)
if isfield(data, 'cumtapcnt')
data.cumtapcnt = data.cumtapcnt(selrpt,:,:);
end
if isfield(data, 'cumsumcnt')
data.cumsumcnt = data.cumsumcnt(selrpt,:,:);
end
if isfield(data, 'trialinfo')
data.trialinfo = data.trialinfo(selrpt,:);
end
if isfield(data, 'sampleinfo')
data.sampleinfo = data.sampleinfo(selrpt,:);
end
end
end % function makeselection_rpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_pos(data, selpos, avgoverpos)
if ~isnan(selpos)
data.pos = data.pos(selpos, :);
end
if avgoverpos
data.pos = mean(data.pos, 1);
end
end % function makeselection_pos
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [chanindx, cfg] = getselection_chan(cfg, varargin)
selmode = varargin{end};
ndata = numel(varargin)-1;
varargin = varargin(1:ndata);
% loop over data once to initialize
chanindx = cell(ndata,1);
label = cell(1,0);
if isfield(cfg, 'channel')
for k = 1:ndata
selchannel = ft_channelselection(cfg.channel, varargin{k}.label);
label = union(label, selchannel);
end
indx = nan+zeros(numel(label), ndata);
for k = 1:ndata
[ix, iy] = match_str(label, varargin{k}.label);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==ndata;
indx = indx(sel,:);
label = varargin{1}.label(indx(:,1));
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end % switch
for k = 1:ndata
chanindx{k,1} = indx(:,k);
end
cfg.channel = label;
else
for k = 1:ndata
% the nan return value specifies that no selection was specified
chanindx{k,1} = nan;
end
end
end % function getselection_chan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [chancmbindx, cfg] = getselection_chancmb(cfg, varargin)
selmode = varargin{end};
ndata = numel(varargin)-1;
varargin = varargin(1:ndata);
chancmbindx = cell(ndata,1);
if isfield(cfg, 'channelcmb')
for k = 1:ndata
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, varargin{k}.labelcmb);
end
error('selection of channelcmb is not yet implemented');
else
for k = 1:ndata
% the nan return value specifies that no selection was specified
chancmbindx{k} = nan;
end
end
end % function getselection_chancmb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [timeindx, cfg] = getselection_time(cfg, varargin)
% possible specifications are
% cfg.latency = value -> can be 'all'
% cfg.latency = [beg end]
ndata = numel(varargin)-2;
tol = varargin{end-1};
selmode = varargin{end};
% loop over data once to initialize
timeindx = cell(numel(varargin)-2,1);
timeaxis = zeros(1,0);
for k = 1:ndata
assert(isfield(varargin{k}, 'time'), 'the input data should have a time axis');
% the nan return value specifies that no selection was specified
timeindx{k,1} = nan;
% update the axis along which the frequencies are defined
timeaxis = union(timeaxis, round(varargin{k}.time(:)/tol)*tol);
end
indx = nan+zeros(numel(timeaxis), ndata);
for k = 1:ndata
[dum, ix, iy] = intersect(timeaxis, round(varargin{k}.time(:)/tol)*tol);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==ndata;
indx = indx(sel,:);
timeaxis = varargin{1}.time(indx(:,1));
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end
if isfield(cfg, 'latency')
% deal with string selection
if ischar(cfg.latency)
if strcmp(cfg.latency, 'all')
cfg.latency = [min(timeaxis) max(timeaxis)];
else
error('incorrect specification of cfg.latency');
end
end
% deal with numeric selection
if numel(cfg.latency)==1
% this single value should be within the time axis of each input data structure
tbin = nearest(timeaxis, cfg.latency, true, true);
cfg.latency = timeaxis(tbin);
for k = 1:ndata
timeindx{k,1} = indx(tbin, k);
end
elseif numel(cfg.latency)==2
% the [min max] range can be specifed with +inf or -inf, but should
% at least partially overlap with the time axis of the input data
mintime = min(timeaxis);
maxtime = max(timeaxis);
if all(cfg.latency<mintime) || all(cfg.latency>maxtime)
error('the selected time range falls outside the time axis in the data');
end
tbeg = nearest(timeaxis, cfg.latency(1), false, false);
tend = nearest(timeaxis, cfg.latency(2), false, false);
cfg.latency = timeaxis([tbeg tend]);
for k = 1:ndata
timeindx{k,1} = indx(tbeg:tend, k);
end
elseif size(cfg.latency,2)==2
% this may be used for specification of the computation, not for data selection
elseif isempty(cfg.latency)
for k = 1:ndata
timeindx{k,1} = [];
end
else
error('incorrect specification of cfg.latency');
end
end % if cfg.latency
% % Note: cfg.toilim handling removed as it was renamed to cfg.latency
for k = 1:ndata
if isequal(timeindx, 1:length(timeaxis))
% the cfg was updated, but no selection is needed for the data
timeindx{k,1} = nan;
end
end
end % function getselection_time
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [freqindx, cfg] = getselection_freq(cfg, varargin)
% possible specifications are
% cfg.frequency = value -> can be 'all'
% cfg.frequency = [beg end] -> this is less common, preferred is to use foilim
% cfg.foilim = [beg end]
ndata = numel(varargin)-2;
tol = varargin{end-1};
selmode = varargin{end};
% loop over data once to initialize
freqindx = cell(numel(varargin)-2,1);
freqaxis = zeros(1,0);
for k = 1:ndata
assert(isfield(varargin{k}, 'freq'), 'the input data should have a frequency axis');
% the nan return value specifies that no selection was specified
freqindx{k,1} = nan;
% update the axis along which the frequencies are defined
freqaxis = union(freqaxis, round(varargin{k}.freq(:)/tol)*tol);
end
indx = nan+zeros(numel(freqaxis), ndata);
for k = 1:ndata
[dum, ix, iy] = intersect(freqaxis, round(varargin{k}.freq(:)/tol)*tol);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==ndata;
indx = indx(sel,:);
freqaxis = varargin{1}.freq(indx(:,1));
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end
if isfield(cfg, 'frequency')
% deal with string selection
if ischar(cfg.frequency)
if strcmp(cfg.frequency, 'all')
cfg.frequency = [min(freqaxis) max(freqaxis)];
else
error('incorrect specification of cfg.frequency');
end
end
% deal with numeric selection
if numel(cfg.frequency)==1
% this single value should be within the frequency axis of each input data structure
fbin = nearest(freqaxis, cfg.frequency, true, true);
cfg.frequency = freqaxis(fbin);
for k = 1:ndata
freqindx{k,1} = indx(fbin,k);
end
elseif numel(cfg.frequency)==2
% the [min max] range can be specifed with +inf or -inf, but should
% at least partially overlap with the freq axis of the input data
minfreq = min(freqaxis);
maxfreq = max(freqaxis);
if all(cfg.frequency<minfreq) || all(cfg.frequency>maxfreq)
error('the selected range falls outside the frequency axis in the data');
end
fbeg = nearest(freqaxis, cfg.frequency(1), false, false);
fend = nearest(freqaxis, cfg.frequency(2), false, false);
cfg.frequency = freqaxis([fbeg fend]);
for k = 1:ndata
freqindx{k,1} = indx(fbeg:fend,k);
end
elseif size(cfg.frequency,2)==2
% this may be used for specification of the computation, not for data selection
elseif isempty(cfg.frequency)
for k = 1:ndata
freqindx{k,1} = [];
end
else
error('incorrect specification of cfg.frequency');
end
end % if cfg.frequency
if isfield(cfg, 'foilim')
if ~ischar(cfg.foilim) && numel(cfg.foilim)==2
% the [min max] range can be specifed with +inf or -inf, but should
% at least partially overlap with the time axis of the input data
minfreq = min(freqaxis);
maxfreq = max(freqaxis);
if all(cfg.foilim<minfreq) || all(cfg.foilim>maxfreq)
error('the selected range falls outside the frequency axis in the data');
end
fbin = nan(1,2);
fbin(1) = nearest(freqaxis, cfg.foilim(1), false, false);
fbin(2) = nearest(freqaxis, cfg.foilim(2), false, false);
cfg.foilim = freqaxis(fbin);
for k = 1:ndata
freqindx{k,1} = indx(fbin(1):fbin(2), k);
end
else
error('incorrect specification of cfg.foilim');
end
end % cfg.foilim
for k = 1:ndata
if isequal(freqindx{k}, 1:length(varargin{k}.freq))
% the cfg was updated, but no selection is needed for the data
freqindx{k} = nan;
end
end
end % function getselection_freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [rptindx, cfg, rptdim, rptindxtap] = getselection_rpt(cfg, data, varargin)
% this should deal with cfg.trials
datfields = ft_getopt(varargin, 'datfields');
% start with the initual guess for the dimord
if isfield(data, 'dimord')
dimord = data.dimord;
end
% perhaps there is a specific dimord for the data fields of interest
for i=1:length(datfields)
if isfield(data, [datfields{i} 'dimord'])
dimord = data.([datfields{i} 'dimord']);
break
end
end
dimtok = tokenize(dimord, '_');
if isfield(cfg, 'trials') && ~isequal(cfg.trials, 'all') && ~isempty(datfields)
rptdim = find(strcmp(dimtok, 'rpt') | strcmp(dimtok, 'rpttap') | strcmp(dimtok, 'subj'));
rptindx = nan; % the nan return value specifies that no selection was specified
rptindxtap = nan; % the nan return value specifies that no selection was specified
if isempty(rptdim)
return
else
rptindx = ft_getopt(cfg, 'trials');
if islogical(rptindx)
% convert from booleans to indices
rptindx = find(rptindx);
end
rptindx = unique(sort(rptindx));
rptindx = unique(sort(rptindx));
rptsiz = size(data.(datfields{1}), rptdim);
if strcmp(dimtok{rptdim}, 'rpttap')
% account for the tapers
sumtapcnt = [0;cumsum(data.cumtapcnt(:))];
begtapcnt = sumtapcnt(1:end-1)+1;
endtapcnt = sumtapcnt(2:end);
begtapcnt = begtapcnt(rptindx);
endtapcnt = endtapcnt(rptindx);
tapers = zeros(1,sumtapcnt(end));
for k = 1:length(begtapcnt)
tapers(begtapcnt(k):endtapcnt(k)) = k;
end
rptindxtap = find(tapers);
[srt,ix] = sort(tapers(tapers~=0));
rptindxtap = rptindxtap(ix);
% cfg.trials = rptindx;
% TODO FIXME think about whether this is a good or a bad thing...
%warning('cfg.trials accounts for the number of tapers now');
else
rptindxtap = rptindx;
end
if ~isempty(rptindx) && rptindx(1)<1
error('cannot select rpt/subj/rpttap smaller than 1');
elseif ~isempty(rptindx) && rptindx(end)>rptsiz
error('cannot select rpt/subj/rpttap larger than the number of repetitions in the data');
end
% commented out because of rpttap dilemma...
% cfg.trials = rptindx;
return
end
else
% recover the rptdim if possible
rptdim = find(strcmp(dimtok, 'rpt') | strcmp(dimtok, 'rpttap') | strcmp(dimtok, 'subj'));
rptindx = nan;
rptindxtap = nan;
end % if isfield cfg.trials
end % function getselection_rpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [posindx, cfg] = getselection_pos(cfg, varargin)
% possible specifications are <none>
ndata = numel(varargin)-2;
tol = varargin{end-1}; % FIXME this is still ignored
selmode = varargin{end}; % FIXME this is still ignored
for i=2:ndata
if ~isequal(varargin{i}.pos, varargin{1}.pos)
% FIXME it would be possible here to make a selection based on intersect or union
error('source positions are different');
end
end % for
for i=1:ndata
posindx{i} = nan; % the nan return value specifies that no selection was specified
end
end % function getselection_pos
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = squeezedim(x, dim)
siz = size(x);
for i=(numel(siz)+1):numel(dim)
% all trailing singleton dimensions have length 1
siz(i) = 1;
end
x = reshape(x, [siz(~dim) 1]);
end % function squeezedim
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = isequalwithoutnans(a, b)
% this is *only* used to compare matrix sizes, so we can ignore any
% singleton last dimension
numdiff = numel(b)-numel(a);
if numdiff > 0
% assume singleton dimensions missing in a
a = [a(:); ones(numdiff, 1)];
b = b(:);
elseif numdiff < 0
% assume singleton dimensions missing in b
b = [b(:); ones(abs(numdiff), 1)];
a = a(:);
end
c = ~isnan(a(:)) & ~isnan(b(:));
ok = isequal(a(c), b(c));
end % function isequalwithoutnans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the size of data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = cellmatsize(x)
if iscell(x)
cellsize = numel(x); % the number of elements in the cell-array
[dum, indx] = max(cellfun(@numel, x));
matsize = size(x{indx}); % the size of the content of the cell-array
siz = [cellsize matsize]; % concatenate the two
else
siz = size(x);
end
end % function cellmatsize
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to make a selextion in data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = cellmatselect(x, seldim, selindx)
if iscell(x)
if seldim==1
x = x(selindx);
else
for i=1:numel(x)
switch seldim
case 2
x{i} = x{i}(selindx,:,:,:,:);
case 3
x{i} = x{i}(:,selindx,:,:,:);
case 4
x{i} = x{i}(:,:,selindx,:,:);
case 5
x{i} = x{i}(:,:,:,selindx,:);
case 6
x{i} = x{i}(:,:,:,:,selindx);
otherwise
error('unsupported dimension (%d) for making a selection', seldim);
end % switch
end % for
end
else
switch seldim
case 1
x = x(selindx,:,:,:,:,:);
case 2
x = x(:,selindx,:,:,:,:);
case 3
x = x(:,:,selindx,:,:,:);
case 4
x = x(:,:,:,selindx,:,:);
case 5
x = x(:,:,:,:,selindx,:);
case 6
x = x(:,:,:,:,:,selindx);
otherwise
error('unsupported dimension (%d) for making a selection', seldim);
end
end
end % function cellmatselect
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to take an average in data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = cellmatmean(x, seldim)
if iscell(x)
if seldim==1
for i=2:numel(x)
x{1} = x{1} + x{i};
end
x = {x{1}/numel(x)};
else
for i=1:numel(x)
x{i} = mean(x{i}, seldim-1);
end % for
end
else
x = mean(x, seldim);
end
end % function cellmatmean
function dimord = paramdimord(data, param)
if isfield(data, [param 'dimord'])
dimord = data.([param 'dimord']);
else
dimord = data.dimord;
end
end % function paramdimord
function dimtok = paramdimtok(data, param)
dimord = paramdimord(data, param);
dimtok = tokenize(dimord, '_');
end % function paramdimtok
|
github
|
lcnbeapp/beapp-master
|
ft_hastoolbox.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_hastoolbox.m
| 24,831 |
utf_8
|
43bae19e25ce108f013f1c401e497630
|
function [status] = ft_hastoolbox(toolbox, autoadd, silent)
% FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally
% it will try to determine the path to the toolbox and install it
% automatically.
%
% Use as
% [status] = ft_hastoolbox(toolbox, autoadd, silent)
%
% autoadd = 0 means that it will not be added
% autoadd = 1 means that give an error if it cannot be added
% autoadd = 2 means that give a warning if it cannot be added
% autoadd = 3 means that it remains silent if it cannot be added
%
% silent = 0 means that it will give some feedback about adding the toolbox
% silent = 1 means that it will not give feedback
% Copyright (C) 2005-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this function is called many times in FieldTrip and associated toolboxes
% use efficient handling if the same toolbox has been investigated before
% persistent previous previouspath
%
% if ~isequal(previouspath, path)
% previous = [];
% end
%
% if isempty(previous)
% previous = struct;
% elseif isfield(previous, fixname(toolbox))
% status = previous.(fixname(toolbox));
% return
% end
if isdeployed
% it is not possible to check the presence of functions or change the path in a compiled application
status = 1;
return
end
% this points the user to the website where he/she can download the toolbox
url = {
'AFNI' 'see http://afni.nimh.nih.gov'
'DSS' 'see http://www.cis.hut.fi/projects/dss'
'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab'
'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox'
'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM12' 'see http://www.fil.ion.ucl.ac.uk/spm'
'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd'
'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com'
'BIOSIG' 'see http://biosig.sourceforge.net'
'EEG' 'see http://eeg.sourceforge.net'
'EEGSF' 'see http://eeg.sourceforge.net' % alternative name
'MRI' 'see http://eeg.sourceforge.net' % alternative name
'NEUROSHARE' 'see http://www.neuroshare.org'
'BESA' 'see http://www.besa.de/downloads/matlab/ and get the "BESA MATLAB Readers"'
'MATLAB2BESA' 'see http://www.besa.de/downloads/matlab/ and get the "MATLAB to BESA Export functions"'
'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde'
'YOKOGAWA' 'this is deprecated, please use YOKOGAWA_MEG_READER instead'
'YOKOGAWA_MEG_READER' 'see http://www.yokogawa.com/me/me-login-en.htm'
'BEOWULF' 'see http://robertoostenveld.nl, or contact Robert Oostenveld'
'MENTAT' 'see http://robertoostenveld.nl, or contact Robert Oostenveld'
'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth'
'4D-VERSION' 'contact Christian Wienbruch'
'COMM' 'see http://www.mathworks.com/products/communications'
'SIGNAL' 'see http://www.mathworks.com/products/signal'
'OPTIM' 'see http://www.mathworks.com/products/optim'
'IMAGE' 'see http://www.mathworks.com/products/image' % Mathworks refers to this as IMAGES
'SPLINES' 'see http://www.mathworks.com/products/splines'
'DISTCOMP' 'see http://www.mathworks.nl/products/parallel-computing/'
'COMPILER' 'see http://www.mathworks.com/products/compiler'
'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica'
'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm'
'FILEIO' 'see http://www.fieldtriptoolbox.org'
'PREPROC' 'see http://www.fieldtriptoolbox.org'
'FORWARD' 'see http://www.fieldtriptoolbox.org'
'INVERSE' 'see http://www.fieldtriptoolbox.org'
'SPECEST' 'see http://www.fieldtriptoolbox.org'
'REALTIME' 'see http://www.fieldtriptoolbox.org'
'PLOTTING' 'see http://www.fieldtriptoolbox.org'
'SPIKE' 'see http://www.fieldtriptoolbox.org'
'CONNECTIVITY' 'see http://www.fieldtriptoolbox.org'
'PEER' 'see http://www.fieldtriptoolbox.org'
'PLOTTING' 'see http://www.fieldtriptoolbox.org'
'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne'
'BCI2000' 'see http://bci2000.org'
'NLXNETCOM' 'see http://www.neuralynx.com'
'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external'
'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php'
'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydesaeter'
'BEMCP' 'contact Christophe Phillips'
'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435'
'PRTOOLS' 'see http://www.prtools.org'
'ITAB' 'contact Stefania Della Penna'
'BSMART' 'see http://www.brain-smart.org'
'PEER' 'see http://www.fieldtriptoolbox.org/development/peer'
'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki'
'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page'
'VGRID' 'see http://www.rheinahrcampus.de/~medsim/vgrid/manual.html'
'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS'
'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti'
'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0'
'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab'
'BCT' 'see http://www.brain-connectivity-toolbox.net/'
'CCA' 'see http://www.imt.liu.se/~magnus/cca or contact Magnus Borga'
'EGI_MFF' 'see http://www.egi.com/ or contact either Phan Luu or Colin Davey at EGI'
'TOOLBOX_GRAPH' 'see http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph or contact Gabriel Peyre'
'NETCDF' 'see http://www.mathworks.com/matlabcentral/fileexchange/15177'
'MYSQL' 'see http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector'
'ISO2MESH' 'see http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home or contact Qianqian Fang'
'DATAHASH' 'see http://www.mathworks.com/matlabcentral/fileexchange/31272'
'IBTB' 'see http://www.ibtb.org'
'ICASSO' 'see http://www.cis.hut.fi/projects/ica/icasso'
'XUNIT' 'see http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework'
'PLEXON' 'available from http://www.plexon.com/assets/downloads/sdk/ReadingPLXandDDTfilesinMatlab-mexw.zip'
'MISC' 'various functions that were downloaded from http://www.mathworks.com/matlabcentral/fileexchange and elsewhere'
'35625-INFORMATION-THEORY-TOOLBOX' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox'
'29046-MUTUAL-INFORMATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox'
'14888-MUTUAL-INFORMATION-COMPUTATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation'
'PLOT2SVG' 'see http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures'
'BRAINSUITE' 'see http://brainsuite.bmap.ucla.edu/processing/additional-tools/'
'BRAINVISA' 'see http://brainvisa.info'
'FILEEXCHANGE' 'see http://www.mathworks.com/matlabcentral/fileexchange/'
'NEURALYNX_V6' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Neuralynx (windows only)'
'NEURALYNX_V3' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Ueli Rutishauser'
'NPMK' 'see https://github.com/BlackrockMicrosystems/NPMK'
'VIDEOMEG' 'see https://github.com/andreyzhd/VideoMEG'
'WAVEFRONT' 'see http://mathworks.com/matlabcentral/fileexchange/27982-wavefront-obj-toolbox'
'NEURONE' 'see http://www.megaemg.com/support/unrestricted-downloads'
};
if nargin<2
% default is not to add the path automatically
autoadd = 0;
end
if nargin<3
% default is not to be silent
silent = 0;
end
% determine whether the toolbox is installed
toolbox = upper(toolbox);
% In case SPM8 or higher not available, allow to use fallback toolbox
fallback_toolbox='';
switch toolbox
case 'AFNI'
dependency={'BrikLoad', 'BrikInfo'};
case 'DSS'
dependency={'denss', 'dss_create_state'};
case 'EEGLAB'
dependency = 'runica';
case 'NWAY'
dependency = 'parafac';
case 'SPM'
dependency = 'spm'; % any version of SPM is fine
case 'SPM99'
dependency = {'spm', get_spm_version()==99};
case 'SPM2'
dependency = {'spm', get_spm_version()==2};
case 'SPM5'
dependency = {'spm', get_spm_version()==5};
case 'SPM8'
dependency = {'spm', get_spm_version()==8};
case 'SPM8UP' % version 8 or later, but not SPM 9X
dependency = {'spm', get_spm_version()>=8, get_spm_version()<95};
%This is to avoid crashes when trying to add SPM to the path
fallback_toolbox = 'SPM8';
case 'SPM12'
dependency = {'spm', get_spm_version()==12};
case 'MEG-PD'
dependency = {'rawdata', 'channames'};
case 'MEG-CALC'
dependency = {'megmodel', 'megfield', 'megtrans'};
case 'BIOSIG'
dependency = {'sopen', 'sread'};
case 'EEG'
dependency = {'ctf_read_res4', 'ctf_read_meg4'};
case 'EEGSF' % alternative name
dependency = {'ctf_read_res4', 'ctf_read_meg4'};
case 'MRI' % other functions in the mri section
dependency = {'avw_hdr_read', 'avw_img_read'};
case 'NEUROSHARE'
dependency = {'ns_OpenFile', 'ns_SetLibrary', ...
'ns_GetAnalogData'};
case 'ARTINIS'
dependency = {'read_artinis_oxy3'};
case 'BESA'
dependency = {'readBESAavr', 'readBESAelp', 'readBESAswf'};
case 'MATLAB2BESA'
dependency = {'besa_save2Avr', 'besa_save2Elp', 'besa_save2Swf'};
case 'EEPROBE'
dependency = {'read_eep_avr', 'read_eep_cnt'};
case 'YOKOGAWA'
dependency = @()hasyokogawa('16bitBeta6');
case 'YOKOGAWA12BITBETA3'
dependency = @()hasyokogawa('12bitBeta3');
case 'YOKOGAWA16BITBETA3'
dependency = @()hasyokogawa('16bitBeta3');
case 'YOKOGAWA16BITBETA6'
dependency = @()hasyokogawa('16bitBeta6');
case 'YOKOGAWA_MEG_READER'
dependency = @()hasyokogawa('1.4');
case 'BEOWULF'
dependency = {'evalwulf', 'evalwulf', 'evalwulf'};
case 'MENTAT'
dependency = {'pcompile', 'pfor', 'peval'};
case 'SON2'
dependency = {'SONFileHeader', 'SONChanList', 'SONGetChannel'};
case '4D-VERSION'
dependency = {'read4d', 'read4dhdr'};
case {'STATS', 'STATISTICS'}
dependency = has_license('statistics_toolbox'); % check the availability of a toolbox license
case {'OPTIM', 'OPTIMIZATION'}
dependency = has_license('optimization_toolbox'); % check the availability of a toolbox license
case {'SPLINES', 'CURVE_FITTING'}
dependency = has_license('curve_fitting_toolbox'); % check the availability of a toolbox license
case 'COMM'
dependency = {has_license('communication_toolbox'), 'de2bi'}; % also check the availability of a toolbox license
case 'SIGNAL'
dependency = {has_license('signal_toolbox'), 'window'}; % also check the availability of a toolbox license
case 'IMAGE'
dependency = has_license('image_toolbox'); % check the availability of a toolbox license
case {'DCT', 'DISTCOMP'}
dependency = has_license('distrib_computing_toolbox'); % check the availability of a toolbox license
case 'COMPILER'
dependency = has_license('compiler'); % check the availability of a toolbox license
case 'FASTICA'
dependency = 'fpica';
case 'BRAINSTORM'
dependency = 'bem_xfer';
case 'DENOISE'
dependency = {'tsr', 'sns'};
case 'CTF'
dependency = {'getCTFBalanceCoefs', 'getCTFdata'};
case 'BCI2000'
dependency = {'load_bcidat'};
case 'NLXNETCOM'
dependency = {'MatlabNetComClient', 'NlxConnectToServer', ...
'NlxGetNewCSCData'};
case 'DIPOLI'
dependency = {'dipoli.maci', 'file'};
case 'MNE'
dependency = {'fiff_read_meas_info', 'fiff_setup_read_raw'};
case 'TCP_UDP_IP'
dependency = {'pnet', 'pnet_getvar', 'pnet_putvar'};
case 'BEMCP'
dependency = {'bem_Cij_cog', 'bem_Cij_lin', 'bem_Cij_cst'};
case 'OPENMEEG'
dependency = {'om_save_tri'};
case 'PRTOOLS'
dependency = {'prversion', 'dataset', 'svc'};
case 'ITAB'
dependency = {'lcReadHeader', 'lcReadData'};
case 'BSMART'
dependency = 'bsmart';
case 'FREESURFER'
dependency = {'MRIread', 'vox2ras_0to1'};
case 'FNS'
dependency = 'elecsfwd';
case 'SIMBIO'
dependency = {'calc_stiff_matrix_val', 'sb_transfer'};
case 'VGRID'
dependency = 'vgrid';
case 'GIFTI'
dependency = 'gifti';
case 'XML4MAT'
dependency = {'xml2struct', 'xml2whos'};
case 'SQDPROJECT'
dependency = {'sqdread', 'sqdwrite'};
case 'BCT'
dependency = {'macaque71.mat', 'motif4funct_wei'};
case 'CCA'
dependency = {'ccabss'};
case 'EGI_MFF'
dependency = {'mff_getObject', 'mff_getSummaryInfo'};
case 'TOOLBOX_GRAPH'
dependency = 'toolbox_graph';
case 'NETCDF'
dependency = {'netcdf'};
case 'MYSQL'
% not sure if 'which' would work fine here, so use 'exist'
dependency = has_mex('mysql'); % this only consists of a single mex file
case 'ISO2MESH'
dependency = {'vol2surf', 'qmeshcut'};
case 'QSUB'
dependency = {'qsubfeval', 'qsubcellfun'};
case 'ENGINE'
dependency = {'enginefeval', 'enginecellfun'};
case 'DATAHASH'
dependency = {'DataHash'};
case 'IBTB'
dependency = {'make_ibtb','binr'};
case 'ICASSO'
dependency = {'icassoEst'};
case 'XUNIT'
dependency = {'initTestSuite', 'runtests'};
case 'PLEXON'
dependency = {'plx_adchan_gains', 'mexPlex'};
case '35625-INFORMATION-THEORY-TOOLBOX'
dependency = {'conditionalEntropy', 'entropy', 'jointEntropy',...
'mutualInformation' 'nmi' 'nvi' 'relativeEntropy'};
case '29046-MUTUAL-INFORMATION'
dependency = {'MI', 'license.txt'};
case '14888-MUTUAL-INFORMATION-COMPUTATION'
dependency = {'condentropy', 'demo_mi', 'estcondentropy.cpp',...
'estjointentropy.cpp', 'estpa.cpp', ...
'findjointstateab.cpp', 'makeosmex.m',...
'mutualinfo.m', 'condmutualinfo.m',...
'entropy.m', 'estentropy.cpp',...
'estmutualinfo.cpp', 'estpab.cpp',...
'jointentropy.m' 'mergemultivariables.m' };
case 'PLOT2SVG'
dependency = {'plot2svg.m', 'simulink2svg.m'};
case 'BRAINSUITE'
dependency = {'readdfs.m', 'writedfc.m'};
case 'BRAINVISA'
dependency = {'loadmesh.m', 'plotmesh.m', 'savemesh.m'};
case 'NEURALYNX_V6'
dependency = has_mex('Nlx2MatCSC');
case 'NEURALYNX_V3'
dependency = has_mex('Nlx2MatCSC_v3');
case 'NPMK'
dependency = {'OpenNSx' 'OpenNEV'};
case 'VIDEOMEG'
dependency = {'comp_tstamps' 'load_audio0123', 'load_video123'};
case 'WAVEFRONT'
dependency = {'write_wobj' 'read_wobj'};
case 'NEURONE'
dependency = {'readneurone' 'readneuronedata' 'readneuroneevents'};
% the following are FieldTrip modules/toolboxes
case 'FILEIO'
dependency = {'ft_read_header', 'ft_read_data', ...
'ft_read_event', 'ft_read_sens'};
case 'FORWARD'
dependency = {'ft_compute_leadfield', 'ft_prepare_vol_sens'};
case 'PLOTTING'
dependency = {'ft_plot_topo', 'ft_plot_mesh', 'ft_plot_matrix'};
case 'PEER'
dependency = {'peerslave', 'peermaster'};
case 'CONNECTIVITY'
dependency = {'ft_connectivity_corr', 'ft_connectivity_granger'};
case 'SPIKE'
dependency = {'ft_spiketriggeredaverage', 'ft_spiketriggeredspectrum'};
case 'FILEEXCHANGE'
dependency = is_subdir_in_fieldtrip_path('/external/fileexchange');
case {'INVERSE', 'REALTIME', 'SPECEST', 'PREPROC', ...
'COMPAT', 'STATFUN', 'TRIALFUN', 'UTILITIES/COMPAT', ...
'FILEIO/COMPAT', 'PREPROC/COMPAT', 'FORWARD/COMPAT', ...
'PLOTTING/COMPAT', 'TEMPLATE/LAYOUT', 'TEMPLATE/ANATOMY' ,...
'TEMPLATE/HEADMODEL', 'TEMPLATE/ELECTRODE', ...
'TEMPLATE/NEIGHBOURS', 'TEMPLATE/SOURCEMODEL'}
dependency = is_subdir_in_fieldtrip_path(toolbox);
otherwise
if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end
dependency = false;
end
status = is_present(dependency);
if ~status && ~isempty(fallback_toolbox)
% in case of SPM8UP
toolbox = fallback_toolbox;
end
% try to determine the path of the requested toolbox
if autoadd>0 && ~status
% for core FieldTrip modules
prefix = fileparts(which('ft_defaults'));
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% for external FieldTrip modules
prefix = fullfile(fileparts(which('ft_defaults')), 'external');
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
licensefile = [lower(toolbox) '_license'];
if status && exist(licensefile, 'file')
% this will execute openmeeg_license and mne_license
% which display the license on screen for three seconds
feval(licensefile);
end
end
% for contributed FieldTrip extensions
prefix = fullfile(fileparts(which('ft_defaults')), 'contrib');
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
licensefile = [lower(toolbox) '_license'];
if status && exist(licensefile, 'file')
% this will execute openmeeg_license and mne_license
% which display the license on screen for three seconds
feval(licensefile);
end
end
% for linux computers in the Donders Centre for Cognitive Neuroimaging
prefix = '/home/common/matlab';
if ~status && isdir(prefix)
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% for windows computers in the Donders Centre for Cognitive Neuroimaging
prefix = 'h:\common\matlab';
if ~status && isdir(prefix)
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% use the MATLAB subdirectory in your homedirectory, this works on linux and mac
prefix = fullfile(getenv('HOME'), 'matlab');
if ~status && isdir(prefix)
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
if ~status
% the toolbox is not on the path and cannot be added
sel = find(strcmp(url(:,1), toolbox));
if ~isempty(sel)
msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2});
else
msg = sprintf('the %s toolbox is not installed', toolbox);
end
if autoadd==1
error(msg);
elseif autoadd==2
ft_warning(msg);
else
% fail silently
end
end
end
% this function is called many times in FieldTrip and associated toolboxes
% use efficient handling if the same toolbox has been investigated before
if status
previous.(fixname(toolbox)) = status;
end
% remember the previous path, allows us to determine on the next call
% whether the path has been modified outise of this function
previouspath = path;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = myaddpath(toolbox, silent)
if isdeployed
warning('cannot change path settings for %s in a compiled application', toolbox);
status = 1;
elseif exist(toolbox, 'dir')
if ~silent,
ws = warning('backtrace', 'off');
warning('adding %s toolbox to your MATLAB path', toolbox);
warning(ws); % return to the previous warning level
end
addpath(toolbox);
status = 1;
elseif (~isempty(regexp(toolbox, 'spm5$', 'once')) || ~isempty(regexp(toolbox, 'spm8$', 'once')) || ~isempty(regexp(toolbox, 'spm12$', 'once'))) && exist([toolbox 'b'], 'dir')
status = myaddpath([toolbox 'b'], silent);
else
status = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function path = unixpath(path)
%path(path=='\') = '/'; % replace backward slashes with forward slashes
path = strrep(path,'\','/');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = hasfunction(funname, toolbox)
try
% call the function without any input arguments, which probably is inapropriate
feval(funname);
% it might be that the function without any input already works fine
status = true;
catch
% either the function returned an error, or the function is not available
% availability is influenced by the function being present and by having a
% license for the function, i.e. in a concurrent licensing setting it might
% be that all toolbox licenses are in use
m = lasterror;
if strcmp(m.identifier, 'MATLAB:license:checkouterror')
if nargin>1
warning('the %s toolbox is available, but you don''t have a license for it', toolbox);
else
warning('the function ''%s'' is available, but you don''t have a license for it', funname);
end
status = false;
elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction')
status = false;
else
% the function seems to be available and it gave an unknown error,
% which is to be expected with inappropriate input arguments
status = true;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = is_subdir_in_fieldtrip_path(toolbox_name)
fttrunkpath = unixpath(fileparts(which('ft_defaults')));
fttoolboxpath = fullfile(fttrunkpath, lower(toolbox_name));
needle=[pathsep fttoolboxpath pathsep];
haystack = [pathsep path() pathsep];
status = ~isempty(findstr(needle, haystack));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = has_mex(name)
full_name=[name '.' mexext];
status = (exist(full_name, 'file')==3);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v = get_spm_version()
if ~is_present('spm')
v=NaN;
return
end
version_str = spm('ver');
token = regexp(version_str,'(\d*)','tokens');
v = str2num([token{:}{:}]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = has_license(toolbox_name)
status = license('checkout', toolbox_name)==1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = is_present(dependency)
if iscell(dependency)
% use recursion
status = all(cellfun(@is_present,dependency));
elseif islogical(dependency)
% boolean
status = all(dependency);
elseif ischar(dependency)
% name of a function
status = is_function_present_in_search_path(dependency);
elseif isa(dependency, 'function_handle')
status = dependency();
else
assert(false,'this should not happen');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = is_function_present_in_search_path(function_name)
w = which(function_name);
% must be in path and not a variable
status = ~isempty(w) && ~isequal(w, 'variable');
|
github
|
lcnbeapp/beapp-master
|
ft_test_run.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_test_run.m
| 6,568 |
utf_8
|
dfb4c969efe2182d441bddabe08d3dc6
|
function status = ft_test_run(varargin)
% FT_TEST_RUN executes selected FieldTrip test scripts. It checks whether each test
% script runs without problems as indicated by an explicit error and posts the
% results on the FieldTrip dashboard.
%
% Use as
% ft_test_run functionname
%
% Additional optional arguments are specified as key-value pairs and can include
% dependency = string
% maxmem = string
% maxwalltime = string
%
% Test functions should not require any input arguments.
% Output arguments of the test function will not be considered.
%
% See also FT_TEST_RESULT, FT_VERSION
% Copyright (C) 2016, Robert oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/donders/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
optbeg = find(ismember(varargin, {'dependency', 'maxmem', 'maxwalltime'}));
if ~isempty(optbeg)
optarg = varargin(optbeg:end);
varargin = varargin(1:optbeg-1);
else
optarg = {};
end
% get the optional input arguments
dependency = ft_getopt(optarg, 'dependency', {});
maxmem = ft_getopt(optarg, 'maxmem', inf);
maxwalltime = ft_getopt(optarg, 'maxwalltime', inf);
if ischar(dependency)
% this should be a cell-array
dependency = {dependency};
end
if ischar(maxwalltime)
% it is probably formatted as HH:MM:SS
maxwalltime = str2walltime(maxwalltime);
end
if ischar(maxmem)
% it is probably formatted as XXmb, or XXgb, ...
maxmem = str2mem(maxmem);
end
% get the version and the path
[revision, ftpath] = ft_version;
% testing a work-in-progress version is not supported
assert(istrue(ft_version('clean')), 'this requires all local changes to be committed');
%% determine the list of functions to test
if ~isempty(varargin) && exist(varargin{1}, 'file')
functionlist = varargin;
else
d = dir(fullfile(ftpath, 'test', 'test_*.m'));
functionlist = {d.name}';
for i=1:numel(functionlist)
functionlist{i} = functionlist{i}(1:end-2); % remove the extension
end
end
%% determine the list of files to test
filelist = cell(size(functionlist));
for i=1:numel(functionlist)
filelist{i} = which(functionlist{i});
end
fprintf('considering %d test scripts for execution\n', numel(filelist));
%% make a subselection based on the filters
sel = true(size(filelist));
mem = zeros(size(filelist));
tim = zeros(size(filelist));
for i=1:numel(filelist)
fid = fopen(filelist{i}, 'rt');
str = fread(fid, [1 inf], 'char=>char');
fclose(fid);
line = tokenize(str, 10);
if ~isempty(dependency)
sel(i) = false;
else
sel(i) = true;
end
for k=1:numel(line)
for j=1:numel(dependency)
[s, e] = regexp(line{k}, sprintf('%% TEST.*%s.*', dependency{j}), 'once', 'start', 'end');
if ~isempty(s)
sel(i) = true;
end
end
[s, e] = regexp(line{k}, '% WALLTIME.*', 'once', 'start', 'end');
if ~isempty(s)
s = s + length('% WALLTIME'); % strip this part
tim(i) = str2walltime(line{k}(s:e));
end
[s, e] = regexp(line{k}, '% MEM.*', 'once', 'start', 'end');
if ~isempty(s)
s = s + length('% MEM'); % strip this part
mem(i) = str2mem(line{k}(s:e));
end
end % for each line
end % for each function/file
fprintf('%3d scripts do not meet the requirements for dependencies\n', sum(~sel));
fprintf('%3d scripts do not meet the requirements for memory\n', sum(mem>maxmem));
fprintf('%3d scripts do not meet the requirements for walltime \n', sum(tim>maxwalltime));
% remove test scripts that exceed walltime or memory
sel(tim>maxwalltime) = false;
sel(mem>maxmem) = false;
% make the subselection of functions to test
functionlist = functionlist(sel);
fprintf('executing %d test scripts\n', numel(functionlist));
%% run over all tests
for i=1:numel(functionlist)
close all
fprintf('================================================================================\n');;
fprintf('=== evaluating %s\n', functionlist{i});
try
stopwatch = tic;
eval(functionlist{i});
status = true;
runtime = round(toc(stopwatch));
fprintf('=== %s PASSED in %d seconds\n', functionlist{i}, runtime);
catch
status = false;
runtime = round(toc(stopwatch));
fprintf('=== %s FAILED in %d seconds\n', functionlist{i}, runtime);
end
close all
result = [];
result.matlabversion = version('-release');
result.fieldtripversion = revision;
result.branch = ft_version('branch');
result.hostname = gethostname;
result.user = getusername;
result.result = status;
result.runtime = runtime;
result.functionname = functionlist{i};
options = weboptions('MediaType','application/json');
webwrite('http://dashboard.fieldtriptoolbox.org/api', result, options);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function walltime = str2walltime(str)
str = lower(strtrim(str));
walltime = str2double(str);
if isnan(walltime)
str = strtrim(str);
hms = sscanf(str, '%d:%d:%d'); % hours, minutes, seconds
walltime = 60*60*hms(1) + 60*hms(2) + hms(3);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mem = str2mem(str)
str = lower(strtrim(str));
mem = str2double(str);
if isnan(mem)
if ~isempty(regexp(str, '[0-9]*kb', 'once'))
mem = str2double(str(1:end-2)) * 2^10;
elseif ~isempty(regexp(str, '[0-9]*mb', 'once'))
mem = str2double(str(1:end-2)) * 2^20;
elseif ~isempty(regexp(str, '[0-9]*gb', 'once'))
mem = str2double(str(1:end-2)) * 2^30;
elseif ~isempty(regexp(str, '[0-9]*tb', 'once'))
mem = str2double(str(1:end-2)) * 2^40;
else
mem = str2double(str);
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_checkdata.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_checkdata.m
| 57,523 |
utf_8
|
361ae795581b786433b88af3f624763d
|
function [data] = ft_checkdata(data, varargin)
% FT_CHECKDATA checks the input data of the main FieldTrip functions, e.g. whether
% the type of data strucure corresponds with the required data. If neccessary
% and possible, this function will adjust the data structure to the input
% requirements (e.g. change dimord, average over trials, convert inside from
% index into logical).
%
% If the input data does NOT correspond to the requirements, this function
% is supposed to give a elaborate warning message and if applicable point
% the user to external documentation (link to website).
%
% Use as
% [data] = ft_checkdata(data, ...)
%
% Optional input arguments should be specified as key-value pairs and can include
% feedback = yes, no
% datatype = raw, freq, timelock, comp, spike, source, dip, volume, segmentation, parcellation
% dimord = any combination of time, freq, chan, refchan, rpt, subj, chancmb, rpttap, pos
% senstype = ctf151, ctf275, ctf151_planar, ctf275_planar, neuromag122, neuromag306, bti148, bti248, bti248_planar, magnetometer, electrode
% inside = logical, index
% ismeg = yes, no
% isnirs = yes, no
% hasunit = yes, no
% hascoordsys = yes, no
% hassampleinfo = yes, no, ifmakessense (only applies to raw data)
% hascumtapcnt = yes, no (only applies to freq data)
% hasdim = yes, no
% hasdof = yes, no
% cmbrepresentation = sparse, full (applies to covariance and cross-spectral density)
% fsample = sampling frequency to use to go from SPIKE to RAW representation
% segmentationstyle = indexed, probabilistic (only applies to segmentation)
% parcellationstyle = indexed, probabilistic (only applies to parcellation)
% hasbrain = yes, no (only applies to segmentation)
%
% For some options you can specify multiple values, e.g.
% [data] = ft_checkdata(data, 'senstype', {'ctf151', 'ctf275'}), e.g. in megrealign
% [data] = ft_checkdata(data, 'datatype', {'timelock', 'freq'}), e.g. in sourceanalysis
% Copyright (C) 2007-2015, Robert Oostenveld
% Copyright (C) 2010-2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% in case of an error this function could use dbstack for more detailled
% user feedback
%
% this function should replace/encapsulate
% fixdimord
% fixinside
% fixprecision
% fixvolume
% data2raw
% raw2data
% grid2transform
% transform2grid
% fourier2crsspctrm
% freq2cumtapcnt
% sensortype
% time2offset
% offset2time
% fixsens -> this is kept a separate function because it should also be
% called from other modules
%
% other potential uses for this function:
% time -> offset in freqanalysis
% average over trials
% csd as matrix
% FIXME the following is difficult, if not impossible, to support without knowing the parameter
% FIXME it is presently (dec 2014) not being used anywhere in FT, so can be removed
% hastrials = yes, no
% get the optional input arguments
feedback = ft_getopt(varargin, 'feedback', 'no');
dtype = ft_getopt(varargin, 'datatype'); % should not conflict with the ft_datatype function
dimord = ft_getopt(varargin, 'dimord');
stype = ft_getopt(varargin, 'senstype'); % senstype is a function name which should not be masked
ismeg = ft_getopt(varargin, 'ismeg');
isnirs = ft_getopt(varargin, 'isnirs');
inside = ft_getopt(varargin, 'inside'); % can be 'logical' or 'index'
hastrials = ft_getopt(varargin, 'hastrials');
hasunit = ft_getopt(varargin, 'hasunit', 'no');
hascoordsys = ft_getopt(varargin, 'hascoordsys', 'no');
hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense');
hasdim = ft_getopt(varargin, 'hasdim');
hascumtapcnt = ft_getopt(varargin, 'hascumtapcnt');
hasdof = ft_getopt(varargin, 'hasdof');
cmbrepresentation = ft_getopt(varargin, 'cmbrepresentation');
channelcmb = ft_getopt(varargin, 'channelcmb');
fsample = ft_getopt(varargin, 'fsample');
segmentationstyle = ft_getopt(varargin, 'segmentationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function
parcellationstyle = ft_getopt(varargin, 'parcellationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function
hasbrain = ft_getopt(varargin, 'hasbrain');
% check whether people are using deprecated stuff
depHastrialdef = ft_getopt(varargin, 'hastrialdef');
if (~isempty(depHastrialdef))
ft_warning('ft_checkdata option ''hastrialdef'' is deprecated; use ''hassampleinfo'' instead');
hassampleinfo = depHastrialdef;
end
% determine the type of input data
% this can be raw, freq, timelock, comp, spike, source, volume, dip
israw = ft_datatype(data, 'raw');
isfreq = ft_datatype(data, 'freq');
istimelock = ft_datatype(data, 'timelock');
iscomp = ft_datatype(data, 'comp');
isspike = ft_datatype(data, 'spike');
isvolume = ft_datatype(data, 'volume');
issegmentation = ft_datatype(data, 'segmentation');
isparcellation = ft_datatype(data, 'parcellation');
issource = ft_datatype(data, 'source');
isdip = ft_datatype(data, 'dip');
ismvar = ft_datatype(data, 'mvar');
isfreqmvar = ft_datatype(data, 'freqmvar');
ischan = ft_datatype(data, 'chan');
ismesh = ft_datatype(data, 'mesh');
% FIXME use the istrue function on ismeg and hasxxx options
if ~isequal(feedback, 'no')
if iscomp
% it can be comp and raw/timelock/freq at the same time, therefore this has to go first
nchan = size(data.topo,1);
ncomp = size(data.topo,2);
fprintf('the input is component data with %d components and %d original channels\n', ncomp, nchan);
end
if israw
nchan = length(data.label);
ntrial = length(data.trial);
fprintf('the input is raw data with %d channels and %d trials\n', nchan, ntrial);
elseif istimelock
nchan = length(data.label);
ntime = length(data.time);
fprintf('the input is timelock data with %d channels and %d timebins\n', nchan, ntime);
elseif isfreq
if isfield(data, 'label')
nchan = length(data.label);
nfreq = length(data.freq);
if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end
fprintf('the input is freq data with %d channels, %d frequencybins and %s timebins\n', nchan, nfreq, ntime);
elseif isfield(data, 'labelcmb')
nchan = length(data.labelcmb);
nfreq = length(data.freq);
if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end
fprintf('the input is freq data with %d channel combinations, %d frequencybins and %s timebins\n', nchan, nfreq, ntime);
else
error('cannot infer freq dimensions');
end
elseif isspike
nchan = length(data.label);
fprintf('the input is spike data with %d channels\n', nchan);
elseif isvolume
if issegmentation
subtype = 'segmented volume';
else
subtype = 'volume';
end
fprintf('the input is %s data with dimensions [%d %d %d]\n', subtype, data.dim(1), data.dim(2), data.dim(3));
clear subtype
elseif issource
data = fixpos(data); % ensure that positions are in pos, not in pnt
nsource = size(data.pos, 1);
if isparcellation
subtype = 'parcellated source';
else
subtype = 'source';
end
if isfield(data, 'dim')
fprintf('the input is %s data with %d brainordinates on a [%d %d %d] grid\n', subtype, nsource, data.dim(1), data.dim(2), data.dim(3));
elseif isfield(data, 'tri')
fprintf('the input is %s data with %d vertex positions and %d triangles\n', subtype, nsource, size(data.tri, 1));
else
fprintf('the input is %s data with %d brainordinates\n', subtype, nsource);
end
clear subtype
elseif isdip
fprintf('the input is dipole data\n');
elseif ismvar
fprintf('the input is mvar data\n');
elseif isfreqmvar
fprintf('the input is freqmvar data\n');
elseif ischan
nchan = length(data.label);
if isfield(data, 'brainordinate')
fprintf('the input is parcellated data with %d parcels\n', nchan);
else
fprintf('the input is chan data with %d channels\n', nchan);
end
end
elseif ismesh
data = fixpos(data);
if numel(data)==1
if isfield(data,'tri')
fprintf('the input is mesh data with %d vertices and %d triangles\n', size(data.pos,1), size(data.tri,1));
elseif isfield(data,'hex')
fprintf('the input is mesh data with %d vertices and %d hexahedrons\n', size(data.pos,1), size(data.hex,1));
elseif isfield(data,'tet')
fprintf('the input is mesh data with %d vertices and %d tetrahedrons\n', size(data.pos,1), size(data.tet,1));
else
fprintf('the input is mesh data with %d vertices', size(data.pos,1));
end
else
fprintf('the input is mesh data multiple surfaces\n');
end
end % give feedback
if issource && isvolume
% it should be either one or the other: the choice here is to represent it as volume description since that is simpler to handle
% the conversion is done by removing the grid positions
data = rmfield(data, 'pos');
issource = false;
end
% the ft_datatype_XXX functions ensures the consistency of the XXX datatype
% and provides a detailed description of the dataformat and its history
if iscomp % this should go before israw/istimelock/isfreq
data = ft_datatype_comp(data, 'hassampleinfo', hassampleinfo);
elseif israw
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
elseif istimelock
data = ft_datatype_timelock(data);
elseif isfreq
data = ft_datatype_freq(data);
elseif isspike
data = ft_datatype_spike(data);
elseif issegmentation % this should go before isvolume
data = ft_datatype_segmentation(data, 'segmentationstyle', segmentationstyle, 'hasbrain', hasbrain);
elseif isvolume
data = ft_datatype_volume(data);
elseif isparcellation % this should go before issource
data = ft_datatype_parcellation(data, 'parcellationstyle', parcellationstyle);
elseif issource
data = ft_datatype_source(data);
elseif isdip
data = ft_datatype_dip(data);
elseif ismvar || isfreqmvar
data = ft_datatype_mvar(data);
end
if ~isempty(dtype)
if ~isa(dtype, 'cell')
dtype = {dtype};
end
okflag = 0;
for i=1:length(dtype)
% check that the data matches with one or more of the required ft_datatypes
switch dtype{i}
case 'raw+comp'
okflag = okflag + (israw & iscomp);
case 'freq+comp'
okflag = okflag + (isfreq & iscomp);
case 'timelock+comp'
okflag = okflag + (istimelock & iscomp);
case 'raw'
okflag = okflag + (israw & ~iscomp);
case 'freq'
okflag = okflag + (isfreq & ~iscomp);
case 'timelock'
okflag = okflag + (istimelock & ~iscomp);
case 'comp'
okflag = okflag + (iscomp & ~(israw | istimelock | isfreq));
case 'spike'
okflag = okflag + isspike;
case 'volume'
okflag = okflag + isvolume;
case 'source'
okflag = okflag + issource;
case 'dip'
okflag = okflag + isdip;
case 'mvar'
okflag = okflag + ismvar;
case 'freqmvar'
okflag = okflag + isfreqmvar;
case 'chan'
okflag = okflag + ischan;
case 'segmentation'
okflag = okflag + issegmentation;
case 'parcellation'
okflag = okflag + isparcellation;
case 'mesh'
okflag = okflag + ismesh;
end % switch dtype
end % for dtype
% try to convert the data if needed
for iCell = 1:length(dtype)
if okflag
% the requested datatype is specified in descending order of
% preference (if there is a preference at all), so don't bother
% checking the rest of the requested data types if we already
% succeeded in converting
break;
end
if isequal(dtype(iCell), {'parcellation'}) && issegmentation
data = volume2source(data); % segmentation=volume, parcellation=source
data = ft_datatype_parcellation(data);
issegmentation = 0;
isvolume = 0;
isparcellation = 1;
issource = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'segmentation'}) && isparcellation
data = source2volume(data); % segmentation=volume, parcellation=source
data = ft_datatype_segmentation(data);
isparcellation = 0;
issource = 0;
issegmentation = 1;
isvolume = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'source'}) && isvolume
data = volume2source(data);
data = ft_datatype_source(data);
isvolume = 0;
issource = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'volume'}) && (ischan || istimelock || isfreq)
data = parcellated2source(data);
data = ft_datatype_volume(data);
ischan = 0;
isvolume = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'source'}) && (ischan || istimelock || isfreq)
data = parcellated2source(data);
data = ft_datatype_source(data);
ischan = 0;
issource = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'volume'}) && issource
data = source2volume(data);
data = ft_datatype_volume(data);
isvolume = 1;
issource = 0;
okflag = 1;
elseif isequal(dtype(iCell), {'raw+comp'}) && istimelock && iscomp
data = timelock2raw(data);
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
istimelock = 0;
iscomp = 1;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && issource
data = source2raw(data);
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
issource = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && istimelock
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = timelock2raw(data);
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
istimelock = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'comp'}) && israw
data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields
data = ft_datatype_comp(data);
israw = 0;
iscomp = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'comp'}) && istimelock
data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields
data = ft_datatype_comp(data);
istimelock = 0;
iscomp = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'comp'}) && isfreq
data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields
data = ft_datatype_comp(data);
isfreq = 0;
iscomp = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && israw
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = ft_datatype_raw(data);
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && istimelock
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = ft_datatype_timelock(data);
okflag = 1;
elseif isequal(dtype(iCell), {'freq'}) && isfreq
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = ft_datatype_freq(data);
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && israw
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = raw2timelock(data);
data = ft_datatype_timelock(data);
israw = 0;
istimelock = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && isfreq
if iscomp
data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired
iscomp = 0;
end
data = freq2raw(data);
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
isfreq = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && ischan
data = chan2timelock(data);
data = timelock2raw(data);
data = ft_datatype_raw(data);
ischan = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && ischan
data = chan2timelock(data);
data = ft_datatype_timelock(data);
ischan = 0;
istimelock = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'freq'}) && ischan
data = chan2freq(data);
data = ft_datatype_freq(data);
ischan = 0;
isfreq = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'spike'}) && israw
data = raw2spike(data);
data = ft_datatype_spike(data);
israw = 0;
isspike = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && isspike
data = spike2raw(data,fsample);
data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo);
isspike = 0;
israw = 1;
okflag = 1;
end
end % for iCell
if ~okflag
% construct an error message
if length(dtype)>1
str = sprintf('%s, ', dtype{1:(end-2)});
str = sprintf('%s%s or %s', str, dtype{end-1}, dtype{end});
else
str = dtype{1};
end
error('This function requires %s data as input.', str);
end % if okflag
end
if ~isempty(dimord)
if ~isa(dimord, 'cell')
dimord = {dimord};
end
if isfield(data, 'dimord')
okflag = any(strcmp(data.dimord, dimord));
else
okflag = 0;
end
if ~okflag
% construct an error message
if length(dimord)>1
str = sprintf('%s, ', dimord{1:(end-2)});
str = sprintf('%s%s or %s', str, dimord{end-1}, dimord{end});
else
str = dimord{1};
end
error('This function requires data with a dimord of %s.', str);
end % if okflag
end
if ~isempty(stype)
if ~isa(stype, 'cell')
stype = {stype};
end
if isfield(data, 'grad') || isfield(data, 'elec') || isfield(data, 'opto')
if any(strcmp(ft_senstype(data), stype))
okflag = 1;
elseif any(cellfun(@ft_senstype, repmat({data}, size(stype)), stype))
% this is required to detect more general types, such as "meg" or "ctf" rather than "ctf275"
okflag = 1;
else
okflag = 0;
end
end
if ~okflag
% construct an error message
if length(stype)>1
str = sprintf('%s, ', stype{1:(end-2)});
str = sprintf('%s%s or %s', str, stype{end-1}, stype{end});
else
str = stype{1};
end
error('This function requires %s data as input, but you are giving %s data.', str, ft_senstype(data));
end % if okflag
end
if ~isempty(ismeg)
if isequal(ismeg, 'yes')
okflag = isfield(data, 'grad');
elseif isequal(ismeg, 'no')
okflag = ~isfield(data, 'grad');
end
if ~okflag && isequal(ismeg, 'yes')
error('This function requires MEG data with a ''grad'' field');
elseif ~okflag && isequal(ismeg, 'no')
error('This function should not be given MEG data with a ''grad'' field');
end % if okflag
end
if ~isempty(isnirs)
if isequal(isnirs, 'yes')
okflag = isfield(data, 'opto');
elseif isequal(isnirs, 'no')
okflag = ~isfield(data, 'opto');
end
if ~okflag && isequal(isnirs, 'yes')
error('This function requires NIRS data with an ''opto'' field');
elseif ~okflag && isequal(isnirs, 'no')
error('This function should not be given NIRS data with an ''opto'' field');
end % if okflag
end
if ~isempty(inside)
if strcmp(inside, 'index')
warning('the indexed representation of inside/outside source locations is deprecated');
end
% TODO absorb the fixinside function into this code
data = fixinside(data, inside);
okflag = isfield(data, 'inside');
if ~okflag
% construct an error message
error('This function requires data with an ''inside'' field.');
end % if okflag
end
if istrue(hasunit) && ~isfield(data, 'unit')
% calling convert_units with only the input data adds the units without converting
data = ft_convert_units(data);
end % if hasunit
if istrue(hascoordsys) && ~isfield(data, 'coordsys')
data = ft_determine_coordsys(data);
end % if hascoordsys
if isequal(hastrials, 'yes')
okflag = isfield(data, 'trial');
if ~okflag && isfield(data, 'dimord')
% instead look in the dimord for rpt or subj
okflag = ~isempty(strfind(data.dimord, 'rpt')) || ...
~isempty(strfind(data.dimord, 'rpttap')) || ...
~isempty(strfind(data.dimord, 'subj'));
end
if ~okflag
error('This function requires data with a ''trial'' field');
end % if okflag
end
if strcmp(hasdim, 'yes') && ~isfield(data, 'dim')
data.dim = pos2dim(data.pos);
elseif strcmp(hasdim, 'no') && isfield(data, 'dim')
data = rmfield(data, 'dim');
end % if hasdim
if strcmp(hascumtapcnt, 'yes') && ~isfield(data, 'cumtapcnt')
error('This function requires data with a ''cumtapcnt'' field');
elseif strcmp(hascumtapcnt, 'no') && isfield(data, 'cumtapcnt')
data = rmfield(data, 'cumtapcnt');
end % if hascumtapcnt
if strcmp(hasdof, 'yes') && ~isfield(data, 'dof')
error('This function requires data with a ''dof'' field');
elseif strcmp(hasdof, 'no') && isfield(data, 'dof')
data = rmfield(data, 'dof');
end % if hasdof
if ~isempty(cmbrepresentation)
if istimelock
data = fixcov(data, cmbrepresentation);
elseif isfreq
data = fixcsd(data, cmbrepresentation, channelcmb);
elseif isfreqmvar
data = fixcsd(data, cmbrepresentation, channelcmb);
else
error('This function requires data with a covariance, coherence or cross-spectrum');
end
end % cmbrepresentation
if isfield(data, 'grad')
% ensure that the gradiometer structure is up to date
data.grad = ft_datatype_sens(data.grad);
end
if isfield(data, 'elec')
% ensure that the electrode structure is up to date
data.elec = ft_datatype_sens(data.elec);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% represent the covariance matrix in a particular manner
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = fixcov(data, desired)
if any(isfield(data, {'cov', 'corr'}))
if ~isfield(data, 'labelcmb')
current = 'full';
else
current = 'sparse';
end
else
error('Could not determine the current representation of the covariance matrix');
end
if isequal(current, desired)
% nothing to do
elseif strcmp(current, 'full') && strcmp(desired, 'sparse')
% FIXME should be implemented
error('not yet implemented');
elseif strcmp(current, 'sparse') && strcmp(desired, 'full')
% FIXME should be implemented
error('not yet implemented');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% represent the cross-spectral density matrix in a particular manner
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = fixcsd(data, desired, channelcmb)
% FIXCSD converts univariate frequency domain data (fourierspctrm) into a bivariate
% representation (crsspctrm), or changes the representation of bivariate frequency
% domain data (sparse/full/sparsewithpow, sparsewithpow only works for crsspctrm or
% fourierspctrm)
% Copyright (C) 2010, Jan-Mathijs Schoffelen, Robert Oostenveld
if isfield(data, 'crsspctrm') && isfield(data, 'powspctrm')
current = 'sparsewithpow';
elseif isfield(data, 'powspctrm')
current = 'sparsewithpow';
elseif isfield(data, 'fourierspctrm') && ~isfield(data, 'labelcmb')
current = 'fourier';
elseif ~isfield(data, 'labelcmb')
current = 'full';
elseif isfield(data, 'labelcmb')
current = 'sparse';
else
error('Could not determine the current representation of the %s matrix', param);
end
% first go from univariate fourier to the required bivariate representation
if isequal(current, desired)
% nothing to do
elseif strcmp(current, 'fourier') && strcmp(desired, 'sparsewithpow')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt,1);
flag = 0;
else
nrpt = 1;
end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1));
flag = nrpt==1; % needed to truncate the singleton dimension upfront
%create auto-spectra
nchan = length(data.label);
if fastflag
% all trials have the same amount of tapers
powspctrm = zeros(nrpt,nchan,nfrq,ntim);
ntap = data.cumtapcnt(1);
for p = 1:ntap
powspctrm = powspctrm + abs(data.fourierspctrm(p:ntap:end,:,:,:,:)).^2;
end
powspctrm = powspctrm./ntap;
else
% different amount of tapers
powspctrm = zeros(nrpt,nchan,nfrq,ntim)+i.*zeros(nrpt,nchan,nfrq,ntim);
sumtapcnt = [0;cumsum(data.cumtapcnt(:))];
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat = data.fourierspctrm(indx,:,:,:);
powspctrm(p,:,:,:) = (sum(tmpdat.*conj(tmpdat),1))./data.cumtapcnt(p);
end
end
%create cross-spectra
if ~isempty(channelcmb),
ncmb = size(channelcmb,1);
cmbindx = zeros(ncmb,2);
labelcmb = cell(ncmb,2);
for k = 1:ncmb
ch1 = find(strcmp(data.label, channelcmb(k,1)));
ch2 = find(strcmp(data.label, channelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(k,:) = [ch1 ch2];
labelcmb(k,:) = data.label([ch1 ch2])';
end
end
crsspctrm = zeros(nrpt,ncmb,nfrq,ntim)+i.*zeros(nrpt,ncmb,nfrq,ntim);
if fastflag
for p = 1:ntap
tmpdat1 = data.fourierspctrm(p:ntap:end,cmbindx(:,1),:,:,:);
tmpdat2 = data.fourierspctrm(p:ntap:end,cmbindx(:,2),:,:,:);
crsspctrm = crsspctrm + tmpdat1.*conj(tmpdat2);
end
crsspctrm = crsspctrm./ntap;
else
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:);
tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:);
crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p);
end
end
data.crsspctrm = crsspctrm;
data.labelcmb = labelcmb;
end
data.powspctrm = powspctrm;
data = rmfield(data, 'fourierspctrm');
if ntim>1,
data.dimord = 'chan_freq_time';
else
data.dimord = 'chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
if flag,
siz = size(data.powspctrm);
data.powspctrm = reshape(data.powspctrm, [siz(2:end) 1]);
if isfield(data, 'crsspctrm')
siz = size(data.crsspctrm);
data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]);
end
end
elseif strcmp(current, 'fourier') && strcmp(desired, 'sparse')
if isempty(channelcmb), error('no channel combinations are specified'); end
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt,1);
flag = 0;
else
nrpt = 1;
end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
flag = nrpt==1; % flag needed to squeeze first dimension if singleton
ncmb = size(channelcmb,1);
cmbindx = zeros(ncmb,2);
labelcmb = cell(ncmb,2);
for k = 1:ncmb
ch1 = find(strcmp(data.label, channelcmb(k,1)));
ch2 = find(strcmp(data.label, channelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(k,:) = [ch1 ch2];
labelcmb(k,:) = data.label([ch1 ch2])';
end
end
sumtapcnt = [0;cumsum(data.cumtapcnt(:))];
fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1));
if fastflag && nrpt>1
ntap = data.cumtapcnt(1);
% compute running sum across tapers
siz = [size(data.fourierspctrm) 1];
for p = 1:ntap
indx = p:ntap:nrpt*ntap;
if p==1.
tmpc = zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)) + ...
1i.*zeros(numel(indx), size(cmbindx,1), siz(3), siz(4));
end
for k = 1:size(cmbindx,1)
tmpc(:,k,:,:) = data.fourierspctrm(indx,cmbindx(k,1),:,:).* ...
conj(data.fourierspctrm(indx,cmbindx(k,2),:,:));
end
if p==1
crsspctrm = tmpc;
else
crsspctrm = tmpc + crsspctrm;
end
end
crsspctrm = crsspctrm./ntap;
else
crsspctrm = zeros(nrpt, ncmb, nfrq, ntim);
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:);
tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:);
crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p);
end
end
data.crsspctrm = crsspctrm;
data.labelcmb = labelcmb;
data = rmfield(data, 'fourierspctrm');
data = rmfield(data, 'label');
if ntim>1,
data.dimord = 'chancmb_freq_time';
else
data.dimord = 'chancmb_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
if flag,
% deal with the singleton 'rpt', i.e. remove it
siz = size(data.powspctrm);
data.powspctrm = reshape(data.powspctrm, [siz(2:end) 1]);
if isfield(data,'crsspctrm')
% this conditional statement is needed in case there's a single channel
siz = size(data.crsspctrm);
data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]);
end
end
elseif strcmp(current, 'fourier') && strcmp(desired, 'full')
% this is how it is currently and the desired functionality of prepare_freq_matrices
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt, 1);
flag = 0;
else
nrpt = 1;
flag = 1;
end
if ~isempty(strmatch('rpttap',dimtok)), nrpt=size(data.cumtapcnt, 1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
if any(data.cumtapcnt(1,:) ~= data.cumtapcnt(1,1)), error('this only works when all frequencies have the same number of tapers'); end
nchan = length(data.label);
crsspctrm = zeros(nrpt,nchan,nchan,nfrq,ntim);
sumtapcnt = [0;cumsum(data.cumtapcnt(:,1))];
for k = 1:ntim
for m = 1:nfrq
for p = 1:nrpt
%FIXME speed this up in the case that all trials have equal number of tapers
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat = transpose(data.fourierspctrm(indx,:,m,k));
crsspctrm(p,:,:,m,k) = (tmpdat*tmpdat')./data.cumtapcnt(p);
clear tmpdat;
end
end
end
data.crsspctrm = crsspctrm;
data = rmfield(data, 'fourierspctrm');
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
% remove first singleton dimension
if flag || nrpt==1, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end
elseif strcmp(current, 'fourier') && strcmp(desired, 'fullfast'),
dimtok = tokenize(data.dimord, '_');
nrpt = size(data.fourierspctrm, 1);
nchn = numel(data.label);
nfrq = numel(data.freq);
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
data.fourierspctrm = reshape(data.fourierspctrm, [nrpt nchn nfrq*ntim]);
data.fourierspctrm(~isfinite(data.fourierspctrm)) = 0;
crsspctrm = complex(zeros(nchn,nchn,nfrq*ntim));
for k = 1:nfrq*ntim
tmp = transpose(data.fourierspctrm(:,:,k));
n = sum(tmp~=0,2);
crsspctrm(:,:,k) = tmp*tmp'./n(1);
end
data = rmfield(data, 'fourierspctrm');
data.crsspctrm = reshape(crsspctrm, [nchn nchn nfrq ntim]);
if isfield(data, 'time'),
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end;
if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end;
if isfield(data, 'cumsumcnt'), data = rmfield(data, 'cumsumcnt'); end;
if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end;
end % convert to the requested bivariate representation
% from one bivariate representation to another
if isequal(current, desired)
% nothing to do
elseif (strcmp(current, 'full') && strcmp(desired, 'fourier')) || ...
(strcmp(current, 'sparse') && strcmp(desired, 'fourier')) || ...
(strcmp(current, 'sparsewithpow') && strcmp(desired, 'fourier'))
% this is not possible
error('converting the cross-spectrum into a Fourier representation is not possible');
elseif strcmp(current, 'full') && strcmp(desired, 'sparsewithpow')
error('not yet implemented');
elseif strcmp(current, 'sparse') && strcmp(desired, 'sparsewithpow')
% convert back to crsspctrm/powspctrm representation: useful for plotting functions etc
indx = labelcmb2indx(data.labelcmb);
autoindx = indx(indx(:,1)==indx(:,2), 1);
cmbindx = setdiff([1:size(indx,1)]', autoindx);
if strcmp(data.dimord(1:3), 'rpt')
data.powspctrm = data.crsspctrm(:, autoindx, :, :);
data.crsspctrm = data.crsspctrm(:, cmbindx, :, :);
else
data.powspctrm = data.crsspctrm(autoindx, :, :);
data.crsspctrm = data.crsspctrm(cmbindx, :, :);
end
data.label = data.labelcmb(autoindx,1);
data.labelcmb = data.labelcmb(cmbindx, :);
if isempty(cmbindx)
data = rmfield(data, 'crsspctrm');
data = rmfield(data, 'labelcmb');
end
elseif strcmp(current, 'full') && strcmp(desired, 'sparse')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
nchan = length(data.label);
ncmb = nchan*nchan;
labelcmb = cell(ncmb, 2);
cmbindx = zeros(nchan, nchan);
k = 1;
for j=1:nchan
for m=1:nchan
labelcmb{k, 1} = data.label{m};
labelcmb{k, 2} = data.label{j};
cmbindx(m,j) = k;
k = k+1;
end
end
% reshape all possible fields
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt>1,
data.(fn{ii}) = reshape(data.(fn{ii}), nrpt, ncmb, nfrq, ntim);
else
data.(fn{ii}) = reshape(data.(fn{ii}), ncmb, nfrq, ntim);
end
end
end
% remove obsolete fields
data = rmfield(data, 'label');
try data = rmfield(data, 'dof'); end
% replace updated fields
data.labelcmb = labelcmb;
if ntim>1,
data.dimord = 'chancmb_freq_time';
else
data.dimord = 'chancmb_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'sparse')
% this representation for sparse data contains autospectra as e.g. {'A' 'A'} in labelcmb
if isfield(data, 'crsspctrm'),
dimtok = tokenize(data.dimord, '_');
catdim = match_str(dimtok, {'chan' 'chancmb'});
data.crsspctrm = cat(catdim, data.powspctrm, data.crsspctrm);
data.labelcmb = [data.label(:) data.label(:); data.labelcmb];
data = rmfield(data, 'powspctrm');
data.dimord = strrep(data.dimord, 'chan_', 'chancmb_');
else
data.crsspctrm = data.powspctrm;
data.labelcmb = [data.label(:) data.label(:)];
data = rmfield(data, 'powspctrm');
data.dimord = strrep(data.dimord, 'chan_', 'chancmb_');
end
data = rmfield(data, 'label');
elseif strcmp(current, 'sparse') && strcmp(desired, 'full')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
if ~isfield(data, 'label')
% ensure that the bivariate spectral factorization results can be
% processed. FIXME this is experimental and will not work if the user
% did something weird before
for k = 1:numel(data.labelcmb)
tmp = tokenize(data.labelcmb{k}, '[');
data.labelcmb{k} = tmp{1};
end
data.label = unique(data.labelcmb(:));
end
nchan = length(data.label);
ncmb = size(data.labelcmb,1);
cmbindx = zeros(nchan,nchan);
for k = 1:size(data.labelcmb,1)
ch1 = find(strcmp(data.label, data.labelcmb(k,1)));
ch2 = find(strcmp(data.label, data.labelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(ch1,ch2) = k;
end
end
complete = all(cmbindx(:)~=0);
% remove obsolete fields
try data = rmfield(data, 'powspctrm'); end
try data = rmfield(data, 'labelcmb'); end
try data = rmfield(data, 'dof'); end
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt==1,
data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]);
end
tmpall = nan(nrpt,nchan,nchan,nfrq,ntim);
for j = 1:nrpt
for k = 1:ntim
for m = 1:nfrq
tmpdat = nan(nchan,nchan);
indx = find(cmbindx);
if ~complete
% this realizes the missing combinations to be represented as the
% conjugate of the corresponding combination across the diagonal
tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]);
tmpdat = ctranspose(tmpdat);
end
tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]);
tmpall(j,:,:,m,k) = tmpdat;
end % for m
end % for k
end % for j
% replace the data in the old representation with the new representation
if nrpt>1,
data.(fn{ii}) = tmpall;
else
data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]);
end
end % if numel
end % for ii
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
elseif strcmp(current, 'sparse') && strcmp(desired, 'fullfast')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
if ~isfield(data, 'label')
data.label = unique(data.labelcmb(:));
end
nchan = length(data.label);
ncmb = size(data.labelcmb,1);
cmbindx = zeros(nchan,nchan);
for k = 1:size(data.labelcmb,1)
ch1 = find(strcmp(data.label, data.labelcmb(k,1)));
ch2 = find(strcmp(data.label, data.labelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(ch1,ch2) = k;
end
end
complete = all(cmbindx(:)~=0);
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt==1,
data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]);
end
tmpall = nan(nchan,nchan,nfrq,ntim);
for k = 1:ntim
for m = 1:nfrq
tmpdat = nan(nchan,nchan);
indx = find(cmbindx);
if ~complete
% this realizes the missing combinations to be represented as the
% conjugate of the corresponding combination across the diagonal
tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]);
tmpdat = ctranspose(tmpdat);
end
tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]);
tmpall(:,:,m,k) = tmpdat;
end % for m
end % for k
% replace the data in the old representation with the new representation
if nrpt>1,
data.(fn{ii}) = tmpall;
else
data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]);
end
end % if numel
end % for ii
% remove obsolete fields
try data = rmfield(data, 'powspctrm'); end
try data = rmfield(data, 'labelcmb'); end
try data = rmfield(data, 'dof'); end
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
elseif strcmp(current, 'sparsewithpow') && any(strcmp(desired, {'full', 'fullfast'}))
% recursively call ft_checkdata, but ensure channel order to be the same
% as the original input.
origlabelorder = data.label; % keep track of the original order of the channels
data = ft_checkdata(data, 'cmbrepresentation', 'sparse');
data.label = origlabelorder; % this avoids the labels to be alphabetized in the next call
data = ft_checkdata(data, 'cmbrepresentation', 'full');
end % convert from one to another bivariate representation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [source] = parcellated2source(data)
if ~isfield(data, 'brainordinate')
error('projecting parcellated data onto the full brain model geometry requires the specification of brainordinates');
end
% the main structure contains the functional data on the parcels
% the brainordinate sub-structure contains the original geometrical model
source = data.brainordinate;
data = rmfield(data, 'brainordinate');
if isfield(data, 'cfg')
source.cfg = data.cfg;
end
fn = fieldnames(data);
fn = setdiff(fn, {'label', 'time', 'freq', 'hdr', 'cfg', 'grad', 'elec', 'dimord', 'unit'}); % remove irrelevant fields
fn(~cellfun(@isempty, regexp(fn, 'dimord$'))) = []; % remove irrelevant (dimord) fields
sel = false(size(fn));
for i=1:numel(fn)
try
sel(i) = ismember(getdimord(data, fn{i}), {'chan', 'chan_time', 'chan_freq', 'chan_freq_time', 'chan_chan'});
end
end
parameter = fn(sel);
fn = fieldnames(source);
sel = false(size(fn));
for i=1:numel(fn)
tmp = source.(fn{i});
sel(i) = iscell(tmp) && isequal(tmp(:), data.label(:));
end
parcelparam = fn(sel);
if numel(parcelparam)~=1
error('cannot determine which parcellation to use');
else
parcelparam = parcelparam{1}(1:(end-5)); % minus the 'label'
end
for i=1:numel(parameter)
source.(parameter{i}) = unparcellate(data, source, parameter{i}, parcelparam);
end
% copy over fields (these are necessary for visualising the data in ft_sourceplot)
source = copyfields(data, source, {'time', 'freq'});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = volume2source(data)
if isfield(data, 'dimord')
% it is a modern source description
else
% it is an old-fashioned source description
xgrid = 1:data.dim(1);
ygrid = 1:data.dim(2);
zgrid = 1:data.dim(3);
[x y z] = ndgrid(xgrid, ygrid, zgrid);
data.pos = ft_warp_apply(data.transform, [x(:) y(:) z(:)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = source2volume(data)
if isfield(data, 'dimord')
% it is a modern source description
%this part depends on the assumption that the list of positions is describing a full 3D volume in
%an ordered way which allows for the extraction of a transformation matrix
%i.e. slice by slice
try
if isfield(data, 'dim'),
data.dim = pos2dim(data.pos, data.dim);
else
data.dim = pos2dim(data);
end
catch
end
end
if isfield(data, 'dim') && length(data.dim)>=3,
data.transform = pos2transform(data.pos, data.dim);
end
% remove the unwanted fields
data = removefields(data, {'pos', 'xgrid', 'ygrid', 'zgrid', 'tri', 'tet', 'hex'});
% make inside a volume
data = fixinside(data, 'logical');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = freq2raw(freq)
if isfield(freq, 'powspctrm')
param = 'powspctrm';
elseif isfield(freq, 'fourierspctrm')
param = 'fourierspctrm';
else
error('not supported for this data representation');
end
if strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'rpttap_chan_freq_time')
dat = freq.(param);
elseif strcmp(freq.dimord, 'chan_freq_time')
dat = freq.(param);
dat = reshape(dat, [1 size(dat)]); % add a singleton dimension
else
error('not supported for dimord %s', freq.dimord);
end
nrpt = size(dat,1);
nchan = size(dat,2);
nfreq = size(dat,3);
ntime = size(dat,4);
data = [];
% create the channel labels like "MLP11@12Hz""
k = 0;
for i=1:nfreq
for j=1:nchan
k = k+1;
data.label{k} = sprintf('%s@%dHz', freq.label{j}, freq.freq(i));
end
end
% reshape and copy the data as if it were timecourses only
for i=1:nrpt
data.time{i} = freq.time;
data.trial{i} = reshape(dat(i,:,:,:), nchan*nfreq, ntime);
if any(isnan(data.trial{i}(1,:))),
tmp = data.trial{i}(1,:);
begsmp = find(isfinite(tmp),1, 'first');
endsmp = find(isfinite(tmp),1, 'last' );
data.trial{i} = data.trial{i}(:, begsmp:endsmp);
data.time{i} = data.time{i}(begsmp:endsmp);
end
end
if isfield(freq, 'trialinfo'), data.trialinfo = freq.trialinfo; end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = raw2timelock(data)
nsmp = cellfun('size',data.time,2);
data = ft_checkdata(data, 'hassampleinfo', 'yes');
ntrial = numel(data.trial);
nchan = numel(data.label);
if ntrial==1
data.time = data.time{1};
data.avg = data.trial{1};
data = rmfield(data, 'trial');
data.dimord = 'chan_time';
else
% code below tries to construct a general time-axis where samples of all trials can fall on
% find earliest beginning and latest ending
begtime = min(cellfun(@min,data.time));
endtime = max(cellfun(@max,data.time));
% find 'common' sampling rate
fsample = 1./mean(cellfun(@mean,cellfun(@diff,data.time,'uniformoutput',false)));
% estimate number of samples
nsmp = round((endtime-begtime)*fsample) + 1; % numerical round-off issues should be dealt with by this round, as they will/should never cause an extra sample to appear
% construct general time-axis
time = linspace(begtime,endtime,nsmp);
% concatenate all trials
tmptrial = nan(ntrial, nchan, length(time));
begsmp = nan(ntrial, 1);
endsmp = nan(ntrial, 1);
for i=1:ntrial
begsmp(i) = nearest(time, data.time{i}(1));
endsmp(i) = nearest(time, data.time{i}(end));
tmptrial(i,:,begsmp(i):endsmp(i)) = data.trial{i};
end
% update the sampleinfo
begpad = begsmp - min(begsmp);
endpad = max(endsmp) - endsmp;
if isfield(data, 'sampleinfo')
data.sampleinfo = data.sampleinfo + [-begpad(:) endpad(:)];
end
% construct the output timelocked data
% data.avg = reshape(nanmean(tmptrial, 1), nchan, length(tmptime));
% data.var = reshape(nanvar (tmptrial, [], 1), nchan, length(tmptime))
% data.dof = reshape(sum(~isnan(tmptrial), 1), nchan, length(tmptime));
data.trial = tmptrial;
data.time = time;
data.dimord = 'rpt_chan_time';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = timelock2raw(data)
switch data.dimord
case 'chan_time'
data.trial{1} = data.avg;
data.time = {data.time};
data = rmfield(data, 'avg');
case 'rpt_chan_time'
tmptrial = {};
tmptime = {};
ntrial = size(data.trial,1);
nchan = size(data.trial,2);
ntime = size(data.trial,3);
for i=1:ntrial
tmptrial{i} = reshape(data.trial(i,:,:), [nchan, ntime]);
tmptime{i} = data.time;
end
data = rmfield(data, 'trial');
data.trial = tmptrial;
data.time = tmptime;
case 'subj_chan_time'
tmptrial = {};
tmptime = {};
ntrial = size(data.individual,1);
nchan = size(data.individual,2);
ntime = size(data.individual,3);
for i=1:ntrial
tmptrial{i} = reshape(data.individual(i,:,:), [nchan, ntime]);
tmptime{i} = data.time;
end
data = rmfield(data, 'individual');
data.trial = tmptrial;
data.time = tmptime;
otherwise
error('unsupported dimord');
end
% remove the unwanted fields
if isfield(data, 'avg'), data = rmfield(data, 'avg'); end
if isfield(data, 'var'), data = rmfield(data, 'var'); end
if isfield(data, 'cov'), data = rmfield(data, 'cov'); end
if isfield(data, 'dimord'), data = rmfield(data, 'dimord'); end
if isfield(data, 'numsamples'), data = rmfield(data, 'numsamples'); end
if isfield(data, 'dof'), data = rmfield(data, 'dof'); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = chan2freq(data)
data.dimord = [data.dimord '_freq'];
data.freq = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = chan2timelock(data)
data.dimord = [data.dimord '_time'];
data.time = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [spike] = raw2spike(data)
fprintf('converting raw data into spike data\n');
nTrials = length(data.trial);
[spikelabel] = detectspikechan(data);
spikesel = match_str(data.label, spikelabel);
nUnits = length(spikesel);
if nUnits==0
error('cannot convert raw data to spike format since the raw data structure does not contain spike channels');
end
trialTimes = zeros(nTrials,2);
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit);
spikeTimes = []; % we dont know how large it will be, so use concatenation inside loop
trialInds = [];
for iTrial = 1:nTrials
% read in the spike times
[spikeTimesTrial] = getspiketimes(data, iTrial, unitIndx);
nSpikes = length(spikeTimesTrial);
spikeTimes = [spikeTimes; spikeTimesTrial(:)];
trialInds = [trialInds; ones(nSpikes,1)*iTrial];
% get the begs and ends of trials
hasNum = find(~isnan(data.time{iTrial}));
if iUnit==1, trialTimes(iTrial,:) = data.time{iTrial}([hasNum(1) hasNum(end)]); end
end
spike.label{iUnit} = data.label{unitIndx};
spike.waveform{iUnit} = [];
spike.time{iUnit} = spikeTimes(:)';
spike.trial{iUnit} = trialInds(:)';
if iUnit==1, spike.trialtime = trialTimes; end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = spike2raw(spike, fsample)
if nargin<2 || isempty(fsample)
timeDiff = abs(diff(sort([spike.time{:}])));
fsample = 1/min(timeDiff(timeDiff>0));
warning('Desired sampling rate for spike data not specified, automatically resampled to %f', fsample);
end
% get some sizes
nUnits = length(spike.label);
nTrials = size(spike.trialtime,1);
% preallocate
data.trial(1:nTrials) = {[]};
data.time(1:nTrials) = {[]};
for iTrial = 1:nTrials
% make bins: note that the spike.time is already within spike.trialtime
x = [spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2)];
timeBins = [x x(end)+1/fsample] - (0.5/fsample);
time = (spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2));
% convert to continuous
trialData = zeros(nUnits,length(time));
for iUnit = 1:nUnits
% get the timestamps and only select those timestamps that are in the trial
ts = spike.time{iUnit};
hasTrial = spike.trial{iUnit}==iTrial;
ts = ts(hasTrial);
N = histc(ts,timeBins);
if isempty(N)
N = zeros(1,length(timeBins)-1);
else
N(end) = [];
end
% store it in a matrix
trialData(iUnit,:) = N;
end
data.trial{iTrial} = trialData;
data.time{iTrial} = time;
end % for all trials
% create the associated labels and other aspects of data such as the header
data.label = spike.label;
data.fsample = fsample;
if isfield(spike,'hdr'), data.hdr = spike.hdr; end
if isfield(spike,'cfg'), data.cfg = spike.cfg; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = source2raw(source)
fn = fieldnames(source);
fn = setdiff(fn, {'pos', 'dim', 'transform', 'time', 'freq', 'cfg'});
for i=1:length(fn)
dimord{i} = getdimord(source, fn{i});
end
sel = strcmp(dimord, 'pos_time');
assert(sum(sel)>0, 'the source structure does not contain a suitable field to represent as raw channel-level data');
assert(sum(sel)<2, 'the source structure contains multiple fields that can be represented as raw channel-level data');
fn = fn{sel};
dimord = dimord{sel};
switch dimord
case 'pos_time'
% add fake raw channel data to the original data structure
data.trial{1} = source.(fn);
data.time{1} = source.time;
% add fake channel labels
data.label = {};
for i=1:size(source.pos,1)
data.label{i} = sprintf('source%d', i);
end
data.label = data.label(:);
data.cfg = source.cfg;
otherwise
% FIXME other formats could be implemented as well
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for detection of channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [spikelabel, eeglabel] = detectspikechan(data)
maxRate = 2000; % default on what we still consider a neuronal signal: this firing rate should never be exceeded
% autodetect the spike channels
ntrial = length(data.trial);
nchans = length(data.label);
spikechan = zeros(nchans,1);
for i=1:ntrial
for j=1:nchans
hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:)));
hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0);
T = nansum(diff(data.time{i}),2); % total time
fr = nansum(data.trial{i}(j,:),2) ./ T;
spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts & fr<=maxRate);
end
end
spikechan = (spikechan==ntrial);
spikelabel = data.label(spikechan);
eeglabel = data.label(~spikechan);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [spikeTimes] = getspiketimes(data, trial, unit)
spikeIndx = logical(data.trial{trial}(unit,:));
spikeCount = data.trial{trial}(unit,spikeIndx);
spikeTimes = data.time{trial}(spikeIndx);
if isempty(spikeTimes), return; end
multiSpikes = find(spikeCount>1);
% get the additional samples and spike times, we need only loop through the bins
[addSamples, addTimes] = deal([]);
for iBin = multiSpikes(:)' % looping over row vector
addTimes = [addTimes ones(1,spikeCount(iBin))*spikeTimes(iBin)];
addSamples = [addSamples ones(1,spikeCount(iBin))*spikeIndx(iBin)];
end
% before adding these times, first remove the old ones
spikeTimes(multiSpikes) = [];
spikeTimes = sort([spikeTimes(:); addTimes(:)]);
|
github
|
lcnbeapp/beapp-master
|
nearest.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/nearest.m
| 6,174 |
utf_8
|
e7381a0e2eb9c75fcbb90e07f575a6ae
|
function [indx] = nearest(array, val, insideflag, toleranceflag)
% NEAREST return the index of an array nearest to a scalar
%
% Use as
% [indx] = nearest(array, val, insideflag, toleranceflag)
%
% The second input val can be a scalar, or a [minval maxval] vector for
% limits selection.
%
% If not specified or if left empty, the insideflag and the toleranceflag
% will default to false.
%
% The boolean insideflag can be used to specify whether the value should be
% within the array or not. For example nearest(1:10, -inf) will return 1,
% but nearest(1:10, -inf, true) will return an error because -inf is not
% within the array.
%
% The boolean toleranceflag is used when insideflag is true. It can be used
% to specify whether some tolerance should be allowed for values that are
% just outside the array. For example nearest(1:10, 0.99, true, false) will
% return an error, but nearest(1:10, 0.99, true, true) will return 1. The
% tolerance that is allowed is half the distance between the subsequent
% values in the array.
%
% See also FIND
% Copyright (C) 2002-2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
mbreal(array);
mbreal(val);
mbvector(array);
assert(all(~isnan(val)), 'incorrect value (NaN)');
if numel(val)==2
% interpret this as a range specification like [minval maxval]
% see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1431
intervaltol = eps;
sel = find(array>=val(1) & array<=val(2));
if isempty(sel)
error('The limits you selected are outside the range available in the data');
end
indx = sel([1 end]);
if indx(1)>1 && abs(array(indx(1)-1)-val(1))<=intervaltol
indx(1) = indx(1)-1;
end
if indx(2)<length(array) && abs(array(indx(2)+1)-val(2))<=intervaltol
indx(2) = indx(2)+1;
end
return
end
mbscalar(val);
if nargin<3 || isempty(insideflag)
insideflag = false;
end
if nargin<4 || isempty(toleranceflag)
toleranceflag = false;
end
% ensure that it is a column vector
array = array(:);
% determine the most extreme values in the array
minarray = min(array);
maxarray = max(array);
% do some strict checks whether the value lies within the min-max range
if insideflag
if ~toleranceflag
if val<minarray || val>maxarray
if numel(array)==1
warning('the selected value %g should be within the range of the array from %g to %g', val, minarray, maxarray);
else
error('the selected value %g should be within the range of the array from %g to %g', val, minarray, maxarray);
end
end
else
if ~isequal(array, sort(array))
error('the input array should be sorted from small to large');
end
if numel(array)<2
error('the input array must have multiple elements to compute the tolerance');
end
mintolerance = (array(2)-array(1))/2;
maxtolerance = (array(end)-array(end-1))/2;
if val<(minarray-mintolerance) || val>(maxarray+maxtolerance)
error('the value %g should be within the range of the array from %g to %g with a tolerance of %g and %g on both sides', val, minarray, maxarray, mintolerance, maxtolerance);
end
end % toleragceflag
end % insideflag
% FIXME it would be possible to do some soft checks and potentially give a
% warning in case the user did not explicitly specify the inside and
% tolerance flags
% note that [dum, indx] = min([1 1 2]) will return indx=1
% and that [dum, indx] = max([1 2 2]) will return indx=2
% whereas it is desired to have consistently the match that is most towards the side of the array
if val>maxarray
% return the last occurence of the largest number
[dum, indx] = max(flipud(array));
indx = numel(array) + 1 - indx;
elseif val<minarray
% return the first occurence of the smallest number
[dum, indx] = min(array);
else
% implements a threshold to correct for errors due to numerical precision
% see http://bugzilla.fcdonders.nl/show_bug.cgi?id=498 and http://bugzilla.fcdonders.nl/show_bug.cgi?id=1943
% if maxarray==minarray
% precision = 1;
% else
% precision = (maxarray-minarray) / 10^6;
% end
%
% % return the first occurence of the nearest number
% [dum, indx] = min(round((abs(array(:) - val)./precision)).*precision);
% use find instead, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1943
wassorted = true;
if ~issorted(array)
wassorted = false;
[array, xidx] = sort(array);
end
indx2 = find(array<=val, 1, 'last');
indx3 = find(array>=val, 1, 'first');
if abs(array(indx2)-val) <= abs(array(indx3)-val)
indx = indx2;
else
indx = indx3;
end
if ~wassorted
indx = xidx(indx);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mbreal(a)
if ~isreal(a)
error('Argument to mbreal must be real');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mbscalar(a)
if ~all(size(a)==1)
error('Argument to mbscalar must be scalar');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mbvector(a)
if ndims(a) > 2 || (size(a, 1) > 1 && size(a, 2) > 1)
error('Argument to mbvector must be a vector');
end
|
github
|
lcnbeapp/beapp-master
|
ft_checkopt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_checkopt.m
| 5,085 |
utf_8
|
c8bce4359cc4a8be5591788b5984166d
|
function opt = ft_checkopt(opt, key, allowedtype, allowedval)
% FT_CHECKOPT does a validity test on the types and values of a configuration
% structure or cell-array with key-value pairs.
%
% Use as
% opt = ft_checkopt(opt, key)
% opt = ft_checkopt(opt, key, allowedtype)
% opt = ft_checkopt(opt, key, allowedtype, allowedval)
%
% For allowedtype you can specify a string or a cell-array with multiple
% strings. All the default MATLAB types can be specified, such as
% 'double'
% 'logical'
% 'char'
% 'single'
% 'float'
% 'int16'
% 'cell'
% 'struct'
% 'function_handle'
% Furthermore, the following custom types can be specified
% 'doublescalar'
% 'doublevector'
% 'doublebivector' i.e. [1 1] or [1 2]
% 'ascendingdoublevector' i.e. [1 2 3 4 5], but not [1 3 2 4 5]
% 'ascendingdoublebivector' i.e. [1 2], but not [2 1]
% 'doublematrix'
% 'numericscalar'
% 'numericvector'
% 'numericmatrix'
% 'charcell'
%
% For allowedval you can specify a single value or a cell-array
% with multiple values.
%
% This function will give an error or it returns the input configuration
% structure or cell-array without modifications. A match on any of the
% allowed types and any of the allowed values is sufficient to let this
% function pass.
%
% See also FT_GETOPT, FT_SETOPT
% Copyright (C) 2011-2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<3
allowedtype = {};
end
if ~iscell(allowedtype)
allowedtype = {allowedtype};
end
if nargin<4
allowedval = {};
end
if ~iscell(allowedval)
allowedval = {allowedval};
end
% get the value that belongs to this key
val = ft_getopt(opt, key); % the default will be []
if isempty(val) && ~any(strcmp(allowedtype, 'empty'))
if isnan(ft_getopt(opt, key, nan))
error('the option "%s" was not specified or was empty', key);
end
end
% check that the type of the option is allowed
ok = isempty(allowedtype);
for i=1:length(allowedtype)
switch allowedtype{i}
case 'empty'
ok = isempty(val);
case 'charcell'
ok = isa(val, 'cell') && all(cellfun(@ischar, val(:)));
case 'doublescalar'
ok = isa(val, 'double') && numel(val)==1;
case 'doublevector'
ok = isa(val, 'double') && sum(size(val)>1)==1;
case 'ascendingdoublevector'
ok = isa(val,'double') && issorted(val);
case 'doublebivector'
ok = isa(val,'double') && sum(size(val)>1)==1 && length(val)==2;
case 'ascendingdoublebivector'
ok = isa(val,'double') && sum(size(val)>1)==1 && length(val)==2 && val(2)>val(1);
case 'doublematrix'
ok = isa(val, 'double') && sum(size(val)>1)>1;
case 'numericscalar'
ok = isnumeric(val) && numel(val)==1;
case 'numericvector'
ok = isnumeric(val) && sum(size(val)>1)==1;
case 'numericmatrix'
ok = isnumeric(val) && sum(size(val)>1)>1;
otherwise
ok = isa(val, allowedtype{i});
end
if ok
% no reason to do additional checks
break
end
end % for allowedtype
% construct a string that describes the type of the input variable
if isnumeric(val) && numel(val)==1
valtype = sprintf('%s scalar', class(val));
elseif isnumeric(val) && numel(val)==length(val)
valtype = sprintf('%s vector', class(val));
elseif isnumeric(val) && length(size(val))==2
valtype = sprintf('%s matrix', class(val));
elseif isnumeric(val)
valtype = sprintf('%s array', class(val));
else
valtype = class(val);
end
if ~ok
if length(allowedtype)==1
error('the type of the option "%s" is invalid, it should be "%s" instead of "%s"', key, allowedtype{1}, valtype);
else
error('the type of the option "%s" is invalid, it should be any of %s instead of "%s"', key, printcell(allowedtype), valtype);
end
end
% check that the type of the option is allowed
ok = isempty(allowedval);
for i=1:length(allowedval)
ok = isequal(val, allowedval{i});
if ok
% no reason to do additional checks
break
end
end % for allowedtype
if ~ok
error('the value of the option "%s" is invalid', key);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [s] = printcell(c)
if ~isempty(c)
s = sprintf('%s, ', c{:});
s = sprintf('{%s}', s(1:end-2));
else
s = '{}';
end
|
github
|
lcnbeapp/beapp-master
|
ft_struct2double.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_struct2double.m
| 2,812 |
utf_8
|
862ae4b495515d398d89bfab714c0e10
|
function [x] = ft_struct2double(x, maxdepth)
% FT_STRUCT2DOUBLE converts all single precision numeric data in a structure
% into double precision. It will also convert plain matrices and
% cell-arrays.
%
% Use as
% x = ft_struct2double(x)
%
% Starting from MATLAB 7.0, you can use single precision data in your
% computations, i.e. you do not have to convert back to double precision.
%
% MATLAB version 6.5 and older only support single precision for storing
% data in memory or on disk, but do not allow computations on single
% precision data. Therefore you should converted your data from single to
% double precision after reading from file.
%
% See also FT_STRUCT2SINGLE
% Copyright (C) 2005-2014, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<2
maxdepth = inf;
end
% convert the data, work recursively through the complete structure
x = convert(x, 0, maxdepth);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this subfunction does the actual work
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [a] = convert(a, depth, maxdepth)
if depth>maxdepth
error('recursive depth exceeded');
end
switch class(a)
case 'struct'
% process all fields of the structure recursively
fna = fieldnames(a);
% process all elements of the array
for j=1:length(a(:))
% warning, this is a recursive call to traverse nested structures
for i=1:length(fna)
fn = fna{i};
ra = getfield(a(j), fn);
ra = convert(ra, depth+1, maxdepth);
a(j) = setfield(a(j), fn, ra);
end
end
case 'cell'
% process all elements of the cell-array recursively
% warning, this is a recursive call to traverse nested structures
for i=1:length(a(:))
a{i} = convert(a{i}, depth+1, maxdepth);
end
case {'single' 'int64' 'uint64' 'int32' 'uint32' 'int16' 'uint16' 'int8' 'uint8'}
% convert the values to double precision
a = double(a);
case 'double'
% keep as it is
otherwise
% do nothing
end
|
github
|
lcnbeapp/beapp-master
|
printstruct.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/printstruct.m
| 6,112 |
utf_8
|
e5ecd75e63c034fa964cc6f7976c1f23
|
function str = printstruct(name, val)
% PRINTSTRUCT converts a MATLAB structure into a multi-line string that can be
% interpreted by MATLAB, resulting in the original structure.
%
% Use as
% str = printstruct(val)
% or
% str = printstruct(name, val)
% where "val" is any MATLAB variable, e.g. a scalar, vector, matrix, structure, or
% cell-array. If you pass the name of the variable, the output is a piece of MATLAB code
% that you can execute, i.e. an ASCII serialized representation of the variable.
%
% Example
% a.field1 = 1;
% a.field2 = 2;
% s = printstruct(a)
%
% b = rand(3);
% s = printstruct(b)
%
% s = printstruct('c', randn(10)>0.5)
%
% See also DISP
% Copyright (C) 2006-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin==1
val = name;
name = inputname(1);
end
if isa(val, 'config')
% this is FieldTrip specific: the @config object resembles a structure but tracks the
% access to each field. In this case it is to be treated as a normal structure.
val = struct(val);
end
% note here that because we don't know the final size of the string,
% iteratively appending is actually faster than creating a cell array and
% subsequently doing a cat(2, strings{:}) (also sprintf() is slow)
str = '';
% note further that in the string concatenations I use the numerical value
% of a newline (\n), which is 10
if numel(val) == 0
if iscell(val)
str = [name ' = {};' 10];
else
str = [name ' = [];' 10];
end
elseif isstruct(val)
if numel(val)>1
str = cell(size(val));
for i=1:numel(val)
str{i} = printstruct(sprintf('%s(%d)', name, i), val(i));
end
str = cat(2, str{:});
return
else
% print it as a named structure
fn = fieldnames(val);
for i=1:length(fn)
fv = val.(fn{i});
switch class(fv)
case 'char'
line = printstr([name '.' fn{i}], fv);
case {'single' 'double' 'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64' 'logical'}
if ismatrix(fv)
line = [name '.' fn{i} ' = ' printmat(fv) ';' 10];
else
line = '''FIXME: printing multidimensional arrays is not supported''';
end
case 'cell'
line = printcell([name '.' fn{i}], fv);
case 'struct'
line = [printstruct([name '.' fn{i}], fv) 10];
case 'function_handle'
line = printstr([name '.' fn{i}], func2str(fv));
otherwise
error('unsupported');
end
if numel(line)>1 && line(end)==10 && line(end-1)==10
% do not repeat the end-of-line
str = [str line(1:end-1)];
else
str = [str line];
end
end
end
elseif ~isstruct(val)
% print it as a named variable
switch class(val)
case 'char'
str = printstr(name, val);
case {'double' 'single' 'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64' 'logical'}
str = [name ' = ' printmat(val)];
case 'cell'
str = printcell(name, val);
otherwise
error('unsupported');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printcell(name, val)
siz = size(val);
if isempty(val)
str = sprintf('%s = {};\n', name);
return;
end
if all(size(val)==1)
str = sprintf('%s = { %s };\n', name, printval(val{1}));
else
str = sprintf('%s = {\n', name);
for i=1:siz(1)
dum = '';
for j=1:(siz(2)-1)
dum = [dum ' ' printval(val{i,j}) ',']; % add the element with a comma
end
dum = [dum ' ' printval(val{i,siz(2)})]; % add the last one without comma
str = [str dum 10];
end
str = sprintf('%s};\n', str);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printstr(name, val)
siz = size(val);
if siz(1)>1
str = sprintf('%s = \n', name);
for i=1:siz(1)
str = [str sprintf(' %s\n', printval(val(i,:)))];
end
elseif siz(1)==1
str = sprintf('%s = %s;\n', name, printval(val));
else
str = sprintf('%s = '''';\n', name);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printmat(val)
if numel(val) == 0
str = '[]';
elseif numel(val) == 1
% an integer will never get trailing decimals when using %g
str = sprintf('%g', val);
elseif ismatrix(val)
if isa(val, 'double')
str = mat2str(val);
else
% add class information for non-double numeric matrices
str = mat2str(val, 'class');
end
str = strrep(str, ';', [';' 10]);
else
warning('multidimensional arrays are not supported');
str = '''FIXME: printing multidimensional arrays is not supported''';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printval(val)
switch class(val)
case 'char'
str = ['''' val ''''];
case {'single' 'double' 'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64' 'logical'}
str = printmat(val);
case 'function_handle'
str = ['@' func2str(val)];
case 'struct'
% print it as an anonymous structure
str = 'struct(';
fn = fieldnames(val);
for i=1:numel(fn)
str = [str '''' fn{i} '''' ', ' printval(val.(fn{i}))];
end
str = [str ')'];
otherwise
warning('cannot print unknown object at this level');
str = '''FIXME: printing unknown objects is not supported''';
end
|
github
|
lcnbeapp/beapp-master
|
ft_datatype_raw.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_datatype_raw.m
| 11,069 |
utf_8
|
03bdcca0ba9819b1dd39d0c90de61ee3
|
function [data] = ft_datatype_raw(data, varargin)
% FT_DATATYPE_RAW describes the FieldTrip MATLAB structure for raw data
%
% The raw datatype represents sensor-level time-domain data typically
% obtained after calling FT_DEFINETRIAL and FT_PREPROCESSING. It contains
% one or multiple segments of data, each represented as Nchan X Ntime
% arrays.
%
% An example of a raw data structure with 151 MEG channels is
%
% label: {151x1 cell} the channel labels (e.g. 'MRC13')
% time: {1x266 cell} the timeaxis [1*Ntime double] per trial
% trial: {1x266 cell} the numeric data [151*Ntime double] per trial
% sampleinfo: [266x2 double] the begin and endsample of each trial relative to the recording on disk
% trialinfo: [266x1 double] optional trigger or condition codes for each trial
% hdr: [1x1 struct] the full header information of the original dataset on disk
% grad: [1x1 struct] information about the sensor array (for EEG it is called elec)
% cfg: [1x1 struct] the configuration used by the function that generated this data structure
%
% Required fields:
% - time, trial, label
%
% Optional fields:
% - sampleinfo, trialinfo, grad, elec, hdr, cfg
%
% Deprecated fields:
% - fsample
%
% Obsoleted fields:
% - offset
%
% Historical fields:
% - cfg, elec, fsample, grad, hdr, label, offset, sampleinfo, time,
% trial, trialdef, see bug2513
%
% Revision history:
%
% (2011/latest) The description of the sensors has changed, see FT_DATATYPE_SENS
% for further information.
%
% (2010v2) The trialdef field has been replaced by the sampleinfo and
% trialinfo fields. The sampleinfo corresponds to trl(:,1:2), the trialinfo
% to trl(4:end).
%
% (2010v1) In 2010/Q3 it shortly contained the trialdef field which was a copy
% of the trial definition (trl) is generated by FT_DEFINETRIAL.
%
% (2007) It used to contain the offset field, which correcponds to trl(:,3).
% Since the offset field is redundant with the time axis, the offset field is
% from now on not present any more. It can be recreated if needed.
%
% (2003) The initial version was defined
%
% See also FT_DATATYPE, FT_DATATYPE_COMP, FT_DATATYPE_TIMELOCK, FT_DATATYPE_FREQ,
% FT_DATATYPE_SPIKE, FT_DATATYPE_SENS
% Copyright (C) 2011, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% get the optional input arguments, which should be specified as key-value pairs
version = ft_getopt(varargin, 'version', 'latest');
hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense'); % can be yes/no/ifmakessense
hastrialinfo = ft_getopt(varargin, 'hastrialinfo', 'ifmakessense'); % can be yes/no/ifmakessense
% do some sanity checks
assert(isfield(data, 'trial') && isfield(data, 'time') && isfield(data, 'label'), 'inconsistent raw data structure, some field is missing');
assert(length(data.trial)==length(data.time), 'inconsistent number of trials in raw data structure');
for i=1:length(data.trial)
assert(size(data.trial{i},2)==length(data.time{i}), 'inconsistent number of samples in trial %d', i);
assert(size(data.trial{i},1)==length(data.label), 'inconsistent number of channels in trial %d', i);
end
if isequal(hassampleinfo, 'ifmakessense')
hassampleinfo = 'no'; % default to not adding it
if isfield(data, 'sampleinfo') && size(data.sampleinfo,1)~=numel(data.trial)
% it does not make sense, so don't keep it
hassampleinfo = 'no';
end
if isfield(data, 'sampleinfo')
hassampleinfo = 'yes'; % if it's already there, consider keeping it
numsmp = data.sampleinfo(:,2)-data.sampleinfo(:,1)+1;
for i=1:length(data.trial)
if size(data.trial{i},2)~=numsmp(i);
% it does not make sense, so don't keep it
hassampleinfo = 'no';
% the actual removal will be done further down
warning('removing inconsistent sampleinfo');
break;
end
end
end
end
if isequal(hastrialinfo, 'ifmakessense')
hastrialinfo = 'no';
if isfield(data, 'trialinfo')
hastrialinfo = 'yes';
if size(data.trialinfo,1)~=numel(data.trial)
% it does not make sense, so don't keep it
hastrialinfo = 'no';
warning('removing inconsistent trialinfo');
end
end
end
% convert it into true/false
hassampleinfo = istrue(hassampleinfo);
hastrialinfo = istrue(hastrialinfo);
if strcmp(version, 'latest')
version = '2011';
end
if isempty(data)
return;
end
switch version
case '2011'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, 'grad')
% ensure that the gradiometer structure is up to date
data.grad = ft_datatype_sens(data.grad);
end
if isfield(data, 'elec')
% ensure that the electrode structure is up to date
data.elec = ft_datatype_sens(data.elec);
end
if ~isfield(data, 'fsample')
for i=1:length(data.time)
if length(data.time{i})>1
data.fsample = 1/mean(diff(data.time{i}));
break
else
data.fsample = nan;
end
end
if isnan(data.fsample)
warning('cannot determine sampling frequency');
end
end
if isfield(data, 'offset')
data = rmfield(data, 'offset');
end
% the trialdef field should be renamed into sampleinfo
if isfield(data, 'trialdef')
data.sampleinfo = data.trialdef;
data = rmfield(data, 'trialdef');
end
if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo'))
% try to reconstruct the sampleinfo and trialinfo
data = fixsampleinfo(data);
end
if ~hassampleinfo && isfield(data, 'sampleinfo')
data = rmfield(data, 'sampleinfo');
end
if ~hastrialinfo && isfield(data, 'trialinfo')
data = rmfield(data, 'trialinfo');
end
case '2010v2'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(data, 'fsample')
data.fsample = 1/mean(diff(data.time{1}));
end
if isfield(data, 'offset')
data = rmfield(data, 'offset');
end
% the trialdef field should be renamed into sampleinfo
if isfield(data, 'trialdef')
data.sampleinfo = data.trialdef;
data = rmfield(data, 'trialdef');
end
if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo'))
% try to reconstruct the sampleinfo and trialinfo
data = fixsampleinfo(data);
end
if ~hassampleinfo && isfield(data, 'sampleinfo')
data = rmfield(data, 'sampleinfo');
end
if ~hastrialinfo && isfield(data, 'trialinfo')
data = rmfield(data, 'trialinfo');
end
case {'2010v1' '2010'}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(data, 'fsample')
data.fsample = 1/mean(diff(data.time{1}));
end
if isfield(data, 'offset')
data = rmfield(data, 'offset');
end
if ~isfield(data, 'trialdef') && hascfg
% try to find it in the nested configuration history
data.trialdef = ft_findcfg(data.cfg, 'trl');
end
case '2007'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(data, 'fsample')
data.fsample = 1/mean(diff(data.time{1}));
end
if isfield(data, 'offset')
data = rmfield(data, 'offset');
end
case '2003'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(data, 'fsample')
data.fsample = 1/mean(diff(data.time{1}));
end
if ~isfield(data, 'offset')
data.offset = zeros(length(data.time),1);
for i=1:length(data.time);
data.offset(i) = round(data.time{i}(1)*data.fsample);
end
end
otherwise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
error('unsupported version "%s" for raw datatype', version);
end
% Numerical inaccuracies in the binary representations of floating point
% values may accumulate. The following code corrects for small inaccuracies
% in the time axes of the trials. See http://bugzilla.fcdonders.nl/show_bug.cgi?id=1390
data = fixtimeaxes(data);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = fixtimeaxes(data)
if ~isfield(data, 'fsample')
fsample = 1/mean(diff(data.time{1}));
else
fsample = data.fsample;
end
begtime = zeros(1, length(data.time));
endtime = zeros(1, length(data.time));
numsample = zeros(1, length(data.time));
for i=1:length(data.time)
begtime(i) = data.time{i}(1);
endtime(i) = data.time{i}(end);
numsample(i) = length(data.time{i});
end
% compute the differences over trials and the tolerance
tolerance = 0.01*(1/fsample);
begdifference = abs(begtime-begtime(1));
enddifference = abs(endtime-endtime(1));
% check whether begin and/or end are identical, or close to identical
begidentical = all(begdifference==0);
endidentical = all(enddifference==0);
begsimilar = all(begdifference < tolerance);
endsimilar = all(enddifference < tolerance);
% Compute the offset of each trial relative to the first trial, and express
% that in samples. Non-integer numbers indicate that there is a slight skew
% in the time over trials. This works in case of variable length trials.
offset = fsample * (begtime-begtime(1));
skew = abs(offset - round(offset));
% try to determine all cases where a correction is needed
% note that this does not yet address all possible cases where a fix might be needed
needfix = false;
needfix = needfix || ~begidentical && begsimilar;
needfix = needfix || ~endidentical && endsimilar;
needfix = needfix || ~all(skew==0) && all(skew<0.01);
% if the skew is less than 1% it will be corrected
if needfix
ft_warning('correcting numerical inaccuracy in the time axes');
for i=1:length(data.time)
% reconstruct the time axis of each trial, using the begin latency of
% the first trial and the integer offset in samples of each trial
data.time{i} = begtime(1) + ((1:numsample(i)) - 1 + round(offset(i)))/fsample;
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_compile_mex.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_compile_mex.m
| 7,899 |
utf_8
|
af2e1571d581fe3e6893aebec491bb67
|
function ft_compile_mex(force)
% FT_COMPILE_MEX can be used for compiling most of the FieldTrip MEX files Note that
% this function does not put the MEX files in the correct location in the private
% folders, this is managed by a Bash script. In case you are not working with Git and
% you want to recompile the mex files for your platform, you can find all mex files
% for your platform and move them to a backup directory that is not on your MATLAB
% path. Subsequently you can rtun this function to recompile it on your platform with
% your compiler settings
%
% The standards procedure for compiling mex files is detailled on
% http://www.fieldtriptoolbox.org/development/guidelines/code#compiling_mex_files
%
% Please note that this script does NOT set up your MEX environment for you, so in
% case you haven't selected the C compiler on Windows yet, you need to type 'mex
% -setup' first to choose either the LCC, Borland or Microsoft compiler. If you want
% to use MinGW, you also need to install Gnumex (http://gnumex.sourceforget.net),
% which comes with its own procedure for setting up the MEX environment.
%
% The logic in this script is to first build a list of files that actually need
% compilation for the particular platform that MATLAB is running on, and then to go
% through that list. Functions are added to the list by giving their destination
% directory and (relative to that) the name of the source file (without the .c).
% Optionally, you can specify a list of platform this file needs to be compiled on
% only, and a list of platforms where you don't compile it on. Finally, you can give
% extra arguments to the MEX command, e.g., for including other c-sources or giving
% compiler flags.
%
% See also MEX
% Copyright (C) 2010, Stefan Klanke
%
% $Id$
if nargin<1
force=false;
end
% Possible COMPUTER types
% GLNX86
% GLNXA64
% PCWIN
% PCWIN64
% MAC
% MACI
% MACI64
[ftver, ftpath] = ft_version;
L = [];
L = add_mex_source(L,'fileio/@uint64','abs');
L = add_mex_source(L,'fileio/@uint64','min');
L = add_mex_source(L,'fileio/@uint64','max');
L = add_mex_source(L,'fileio/@uint64','plus');
L = add_mex_source(L,'fileio/@uint64','minus');
L = add_mex_source(L,'fileio/@uint64','times');
L = add_mex_source(L,'fileio/@uint64','rdivide');
L = add_mex_source(L,'@config/private','deepcopy');
L = add_mex_source(L,'@config/private','increment');
L = add_mex_source(L,'@config/private','setzero');
L = add_mex_source(L,'realtime/online_mri','ft_omri_smooth_volume');
L = add_mex_source(L,'realtime/src/acquisition/siemens/src', 'sap2matlab', [], [], 'siemensap.c -I../include');
L = add_mex_source(L,'src','ft_getopt');
L = add_mex_source(L,'src','read_16bit');
L = add_mex_source(L,'src','read_24bit');
L = add_mex_source(L,'src','read_ctf_shm', {'GLNX86'}); % only compile on GLNX86
L = add_mex_source(L,'src','write_ctf_shm', {'GLNX86'}); % only compile on GLNX86
L = add_mex_source(L,'src','lmoutr',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','ltrisect',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','plinproj',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','ptriproj',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','routlm',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','solid_angle',[],[],'geometry.c -I.');
L = add_mex_source(L,'src','rfbevent',[],{'PCWIN', 'PCWIN64'},'d3des.c -I.'); % do not compile on WIN32 and WIN64
L = add_mex_source(L,'src','meg_leadfield1');
L = add_mex_source(L,'src','splint_gh');
L = add_mex_source(L,'src','plgndr');
L = add_mex_source(L,'src','ft_spike_sub_crossx');
L = add_mex_source(L,'src','rename');
L = add_mex_source(L,'src','getpid');
L = add_mex_source(L,'src','nanmean');
L = add_mex_source(L,'src','nanstd');
L = add_mex_source(L,'src','nanvar');
L = add_mex_source(L,'src','nansum');
L = add_mex_source(L,'src','nanstd');
L = add_mex_source(L,'src','det2x2');
L = add_mex_source(L,'src','inv2x2');
L = add_mex_source(L,'src','mtimes2x2');
L = add_mex_source(L,'src','sandwich2x2');
L = add_mex_source(L,'src','combineClusters');
% this one is located elsewhere
L = add_mex_source(L,'external/fileexchange','CalcMD5',[],[],'CFLAGS=''-std=c99 -fPIC''');
% this one depends on the MATLAB version
if ft_platform_supports('libmx_c_interface')
% use the C interface
L = add_mex_source(L,'src','mxSerialize_c');
L = add_mex_source(L,'src','mxDeserialize_c');
else
% use the C++ interface
L = add_mex_source(L,'src','mxSerialize_cpp');
L = add_mex_source(L,'src','mxDeserialize_cpp');
end
oldDir = pwd;
try
compile_mex_list(L, ftpath, force);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
cd(oldDir);
rethrow(me);
end
cd(oldDir);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%
% Use as
% list = add_mex_source(list, directory, relName, includePlatform, excludePlatform, extras)
%
% The list is a structure array of directory names, source file names, and
% extra arguments required for the compilation of MEX files. This function will
% create a new element of this structure and append it to L.
%
% directory = target directory of the mex-file
% relName = source file relative to 'directory'
% includePlatform = list of platforms this MEX file should only be compiled for.
% use an empty matrix [] to compile for all platforms
% excludePlatform = list of platforms this MEX file should NOT be compiled for.
% extras = extra arguments to the MEX command, e.g. additional source files
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function L = add_mex_source(L, directory, relName, includePlatform, excludePlatform, extras)
% Check if this file only needs compilation on certain platforms (including this one)
if nargin>3 && ~isempty(includePlatform)
ok = false;
for k=1:numel(includePlatform)
if strcmp(includePlatform{k}, computer)
ok = true;
break;
end
end
if ~ok
return
end
end
% Check if this file cannot be compiled on certain platforms (including this one)
if nargin>4 && ~isempty(excludePlatform)
ok = true;
for k=1:numel(excludePlatform)
if strcmp(excludePlatform{k}, computer)
return;
end
end
end
L(end+1).dir = directory;
L(end).relName = relName;
if nargin>5
L(end).extras = extras;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%
% Use as
% compile_mex_list(L, baseDir)
%
% Compile a list of MEX files as determined by the input argument L.
% The second argument 'baseDir' is the common base directory for the
% files listed in L. The third argument is a flag that determines
% whether to force (re-)compilation even if the MEX file is up-to-date.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function compile_mex_list(L, baseDir, force)
for i=1:length(L)
[relDir, name] = fileparts(L(i).relName);
sfname1 = fullfile(baseDir, L(i).dir, [L(i).relName '.c']);
sfname2 = fullfile(baseDir, L(i).dir, [L(i).relName '.cpp']);
if exist(sfname1, 'file')
sfname = sfname1;
L(i).ext = 'c';
elseif exist(sfname2, 'file')
sfname = sfname2;
L(i).ext = 'cpp';
else
sfname = '';
L(i).ext = '';
fprintf(1,'Error: source file for %s cannot be found.\n', L(i).relName);
continue;
end
SF = dir(sfname);
if ~force
mfname = [baseDir filesep L(i).dir filesep name '.' mexext];
MF = dir(mfname);
if numel(MF)==1 && datenum(SF.date) <= datenum(MF.date)
fprintf(1,'Skipping up-to-date MEX file %s/%s\n', L(i).dir, name);
continue;
end
end
fprintf(1,'Compiling MEX file %s/%s ...\n', L(i).dir, name);
cd([baseDir '/' L(i).dir]);
cmd = sprintf('mex %s.%s %s', L(i).relName, L(i).ext, L(i).extras);
eval(cmd);
end
|
github
|
lcnbeapp/beapp-master
|
ft_selectdata.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_selectdata.m
| 49,158 |
utf_8
|
7a2848867b0ce4107732993c753c7589
|
function [varargout] = ft_selectdata(varargin)
% FT_SELECTDATA makes a selection in the input data along specific data
% dimensions, such as channels, time, frequency, trials, etc. It can also
% be used to average the data along each of the specific dimensions.
%
% Use as
% [data] = ft_selectdata(cfg, data, ...)
%
% The cfg argument is a configuration structure which can contain
% cfg.tolerance = scalar, tolerance value to determine equality of time/frequency bins (default = 1e-5)
%
% For data with trials or subjects as repetitions, you can specify
% cfg.trials = 1xN, trial indices to keep, can be 'all'. You can use logical indexing, where false(1,N) removes all the trials
% cfg.avgoverrpt = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a channel dimension you can specify
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION
% cfg.avgoverchan = string, can be 'yes' or 'no' (default = 'no')
% cfg.nanmean = string, can be 'yes' or 'no' (default = 'no')
%
% For data with channel combinations you can specify
% cfg.channelcmb = Nx2 cell-array with selection of channels (default = 'all'), see FT_CHANNELCOMBINATION
% cfg.avgoverchancmb = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a time dimension you can specify
% cfg.latency = scalar -> can be 'all', 'prestim', 'poststim'
% cfg.latency = [beg end]
% cfg.avgovertime = string, can be 'yes' or 'no' (default = 'no')
% cfg.nanmean = string, can be 'yes' or 'no' (default = 'no')
%
% For data with a frequency dimension you can specify
% cfg.frequency = scalar -> can be 'all'
% cfg.frequency = [beg end]
% cfg.avgoverfreq = string, can be 'yes' or 'no' (default = 'no')
% cfg.nanmean = string, can be 'yes' or 'no' (default = 'no')
%
% If multiple input arguments are provided, FT_SELECTDATA will adjust the individual inputs
% such that either the intersection across inputs is retained (i.e. only the channel, time,
% and frequency points that are shared across all input arguments), or that the union across
% inputs is retained (replacing missing data with nans). In either case, the order (e.g. of
% the channels) is made consistent across inputs. The behavior can be specified with
% cfg.select = string, can be 'intersect' or 'union' (default = 'intersect')
%
% See also FT_DATATYPE, FT_CHANNELSELECTION, FT_CHANNELCOMBINATION
% Undocumented options
% cfg.keeprptdim = 'yes' or 'no'
% cfg.keepposdim = 'yes' or 'no'
% cfg.keepchandim = 'yes' or 'no'
% cfg.keepchancmbdim = 'yes' or 'no'
% cfg.keepfreqdim = 'yes' or 'no'
% cfg.keeptimedim = 'yes' or 'no'
% Copyright (C) 2012-2014, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin==1 || (nargin>2 && ischar(varargin{end-1})) || (isstruct(varargin{1}) && ~ft_datatype(varargin{1}, 'unknown'))
% this is the OLD calling style, like this
% data = ft_selectdata(data, 'key1', value1, 'key2', value2, ...)
% or with multiple input data structures like this
% data = ft_selectdata(data1, data2, 'key1', value1, 'key2', value2, ...)
[varargout{1:nargout}] = ft_selectdata_old(varargin{:});
return
end
% reorganize the input arguments
cfg = varargin{1};
varargin = varargin(2:end);
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
ft_defaults % this ensures that the path is correct and that the ft_defaults global variable is available
ft_preamble init % this will reset ft_warning and show the function help if nargin==0 and return an error
ft_preamble provenance % this records the time and memory usage at teh beginning of the function
ft_preamble trackconfig % this converts the cfg structure in a config object, which tracks the cfg options that are being used
ft_preamble debug % this allows for displaying or saving the function name and input arguments upon an error
ft_preamble loadvar varargin % this reads the input data in case the user specified the cfg.inputfile option
% determine the characteristics of the input data
dtype = ft_datatype(varargin{1});
for i=2:length(varargin)
% ensure that all subsequent inputs are of the same type
ok = ft_datatype(varargin{i}, dtype);
if ~ok, error('input data should be of the same datatype'); end
end
% ensure that the user does not give invalid selection options
cfg = ft_checkconfig(cfg, 'forbidden', {'foi', 'toi'});
cfg = ft_checkconfig(cfg, 'renamed', {'selmode', 'select'});
cfg = ft_checkconfig(cfg, 'renamed', {'toilim', 'latency'});
cfg = ft_checkconfig(cfg, 'renamed', {'foilim', 'frequency'});
cfg = ft_checkconfig(cfg, 'renamed', {'avgoverroi', 'avgoverpos'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.mom', 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.nai', 'nai'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.pow', 'pow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.mom', 'mom'});
cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.nai', 'nai'});
cfg.tolerance = ft_getopt(cfg, 'tolerance', 1e-5); % default tolerance for checking equality of time/freq axes
cfg.select = ft_getopt(cfg, 'select', 'intersect'); % default is to take intersection, alternative 'union'
if strcmp(dtype, 'volume') || strcmp(dtype, 'segmentation')
% it must be a source representation, not a volume representation
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'source');
end
dtype = 'source';
end
% this function only works for the upcoming (not yet standard) source representation without sub-structures
% update the old-style beamformer source reconstruction to the upcoming representation
if strcmp(dtype, 'source')
if isfield(varargin{1}, 'avg')
restoreavg = fieldnames(varargin{1}.avg);
else
restoreavg = {};
end
for i=1:length(varargin)
varargin{i} = ft_datatype_source(varargin{i}, 'version', 'upcoming');
end
end
cfg.latency = ft_getopt(cfg, 'latency', 'all', 1);
if isnumeric(cfg.latency) && numel(cfg.latency)==2 && cfg.latency(1)==cfg.latency(2)
% this is better specified by a single number
cfg.latency = cfg.latency(1);
end
cfg.channel = ft_getopt(cfg, 'channel', 'all', 1);
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
if length(varargin)>1 && ~isequal(cfg.trials, 'all')
error('it is ambiguous to make a subselection of trials while at the same time concatenating multiple data structures')
end
cfg.frequency = ft_getopt(cfg, 'frequency', 'all', 1);
if isnumeric(cfg.frequency) && numel(cfg.frequency)==2 && cfg.frequency(1)==cfg.frequency(2)
% this is better specified by a single number
cfg.frequency = cfg.frequency(1);
end
datfield = fieldnames(varargin{1});
for i=2:length(varargin)
% only consider fields that are present in all inputs
datfield = intersect(datfield, fieldnames(varargin{i}));
end
datfield = setdiff(datfield, {'label' 'labelcmb'}); % these fields will be used for selection, but are not treated as data fields
datfield = setdiff(datfield, {'dim'}); % not used for selection, also not treated as data field
xtrafield = {'cfg' 'hdr' 'fsample' 'fsampleorig' 'grad' 'elec' 'opto' 'transform' 'unit' 'topolabel'}; % these fields will not be touched in any way by the code
datfield = setdiff(datfield, xtrafield);
orgdim1 = datfield(~cellfun(@isempty, regexp(datfield, 'label$'))); % xxxlabel
datfield = setdiff(datfield, orgdim1);
datfield = datfield(:)';
orgdim1 = datfield(~cellfun(@isempty, regexp(datfield, 'dimord$'))); % xxxdimord
datfield = setdiff(datfield, orgdim1);
datfield = datfield(:)';
sel = strcmp(datfield, 'cumtapcnt');
if any(sel)
% move this field to the end, as it is needed to make the selections in the other fields
datfield(sel) = [];
datfield = [datfield {'cumtapcnt'}];
end
orgdim2 = cell(size(orgdim1));
for i=1:length(orgdim1)
orgdim2{i} = varargin{1}.(orgdim1{i});
end
dimord = cell(size(datfield));
for i=1:length(datfield)
dimord{i} = getdimord(varargin{1}, datfield{i});
end
% do not consider fields of which the dimensions are unknown
% sel = cellfun(@isempty, regexp(dimord, 'unknown'));
% for i=find(~sel)
% fprintf('not including "%s" in selection\n', datfield{i});
% end
% datfield = datfield(sel);
% dimord = dimord(sel);
% determine all dimensions that are present in all data fields
dimtok = {};
for i=1:length(datfield)
dimtok = cat(2, dimtok, tokenize(dimord{i}, '_'));
end
dimtok = unique(dimtok);
hasspike = any(ismember(dimtok, 'spike'));
haspos = any(ismember(dimtok, {'pos', '{pos}'}));
haschan = any(ismember(dimtok, {'chan', '{chan}'}));
haschancmb = any(ismember(dimtok, 'chancmb'));
hasfreq = any(ismember(dimtok, 'freq'));
hastime = any(ismember(dimtok, 'time'));
hasrpt = any(ismember(dimtok, {'rpt', 'subj'}));
hasrpttap = any(ismember(dimtok, 'rpttap'));
if hasspike
% cfg.latency is used to select individual spikes, not to select from a continuously sampled time axis
hastime = false;
end
clear dimtok
haspos = haspos && isfield(varargin{1}, 'pos');
haschan = haschan && isfield(varargin{1}, 'label');
haschancmb = haschancmb && isfield(varargin{1}, 'labelcmb');
hasfreq = hasfreq && isfield(varargin{1}, 'freq');
hastime = hastime && isfield(varargin{1}, 'time');
% do a sanity check on all input arguments
if haspos, assert(all(cellfun(@isfield, varargin, repmat({'pos'}, size(varargin)))), 'not all input arguments have a "pos" field'); end
if haschan, assert(all(cellfun(@isfield, varargin, repmat({'label'}, size(varargin)))), 'not all input arguments have a "label" field'); end
if haschancmb, assert(all(cellfun(@isfield, varargin, repmat({'labelcmb'}, size(varargin)))), 'not all input arguments have a "labelcmb" field'); end
if hasfreq, assert(all(cellfun(@isfield, varargin, repmat({'freq'}, size(varargin)))), 'not all input arguments have a "freq" field'); end
if hastime, assert(all(cellfun(@isfield, varargin, repmat({'time'}, size(varargin)))), 'not all input arguments have a "time" field'); end
avgoverpos = istrue(ft_getopt(cfg, 'avgoverpos', false)); % at some places it is also referred to as roi (region-of-interest)
avgoverchan = istrue(ft_getopt(cfg, 'avgoverchan', false));
avgoverchancmb = istrue(ft_getopt(cfg, 'avgoverchancmb', false));
avgoverfreq = istrue(ft_getopt(cfg, 'avgoverfreq', false));
avgovertime = istrue(ft_getopt(cfg, 'avgovertime', false));
avgoverrpt = istrue(ft_getopt(cfg, 'avgoverrpt', false));
% do a sanity check for the averaging options
if avgoverpos, assert(haspos, 'there are no source positions, so averaging is not possible'); end
if avgoverchan, assert(haschan, 'there is no channel dimension, so averaging is not possible'); end
if avgoverchancmb, assert(haschancmb, 'there are no channel combinations, so averaging is not possible'); end
if avgoverfreq, assert(hasfreq, 'there is no frequency dimension, so averaging is not possible'); end
if avgovertime, assert(hastime, 'there is no time dimension, so averaging over time is not possible'); end
if avgoverrpt, assert(hasrpt||hasrpttap, 'there are no repetitions, so averaging is not possible'); end
% set averaging function
cfg.nanmean = ft_getopt(cfg, 'nanmean', 'no');
if strcmp(cfg.nanmean, 'yes')
average = @nanmean;
else
average = @mean;
end
% by default we keep most of the dimensions in the data structure when averaging over them
keepposdim = istrue(ft_getopt(cfg, 'keepposdim', true));
keepchandim = istrue(ft_getopt(cfg, 'keepchandim', true));
keepchancmbdim = istrue(ft_getopt(cfg, 'keepchancmbdim', true));
keepfreqdim = istrue(ft_getopt(cfg, 'keepfreqdim', true));
keeptimedim = istrue(ft_getopt(cfg, 'keeptimedim', true));
keeprptdim = istrue(ft_getopt(cfg, 'keeprptdim', ~avgoverrpt));
if ~keepposdim, assert(avgoverpos, 'removing a dimension is only possible when averaging'); end
if ~keepchandim, assert(avgoverchan, 'removing a dimension is only possible when averaging'); end
if ~keepchancmbdim, assert(avgoverchancmb, 'removing a dimension is only possible when averaging'); end
if ~keepfreqdim, assert(avgoverfreq, 'removing a dimension is only possible when averaging'); end
if ~keeptimedim, assert(avgovertime, 'removing a dimension is only possible when averaging'); end
if ~keeprptdim, assert(avgoverrpt, 'removing a dimension is only possible when averaging'); end
if strcmp(cfg.select, 'union') && (avgoverpos || avgoverchan || avgoverchancmb || avgoverfreq || avgovertime || avgoverrpt)
error('cfg.select ''union'' in combination with averaging across one of the dimensions is not possible');
end
% trim the selection to all inputs, rpt and rpttap are dealt with later
if hasspike, [selspike, cfg] = getselection_spike (cfg, varargin{:}); end
if haspos, [selpos, cfg] = getselection_pos (cfg, varargin{:}, cfg.tolerance, cfg.select); end
if haschan, [selchan, cfg] = getselection_chan (cfg, varargin{:}, cfg.select); end
if haschancmb, [selchancmb, cfg] = getselection_chancmb(cfg, varargin{:}, cfg.select); end
if hasfreq, [selfreq, cfg] = getselection_freq (cfg, varargin{:}, cfg.tolerance, cfg.select); end
if hastime, [seltime, cfg] = getselection_time (cfg, varargin{:}, cfg.tolerance, cfg.select); end
% this is to keep track of all fields that should be retained in the output
keepfield = datfield;
for i=1:numel(varargin)
for j=1:numel(datfield)
dimtok = tokenize(dimord{j}, '_');
% the rpt selection should only work with a single data argument
% in case tapers were kept, selrpt~=selrpttap, otherwise selrpt==selrpttap
[selrpt{i}, dum, rptdim{i}, selrpttap{i}] = getselection_rpt(cfg, varargin{i}, dimord{j});
% check for the presence of each dimension in each datafield
fieldhasspike = ismember('spike', dimtok);
fieldhaspos = ismember('pos', dimtok) || ismember('{pos}', dimtok);
fieldhaschan = (ismember('chan', dimtok) || ismember('{chan}', dimtok)) && isfield(varargin{1}, 'label');
fieldhaschancmb = ismember('chancmb', dimtok);
fieldhastime = ismember('time', dimtok) && ~hasspike;
fieldhasfreq = ismember('freq', dimtok);
fieldhasrpt = ismember('rpt', dimtok) | ismember('subj', dimtok) | ismember('{rpt}', dimtok);
fieldhasrpttap = ismember('rpttap', dimtok);
% cfg.latency is used to select individual spikes, not to select from a continuously sampled time axis
if fieldhasspike, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'spike')), selspike{i}, false, 'intersect', average); end
if fieldhaspos, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(ismember(dimtok, {'pos', '{pos}'})), selpos{i}, avgoverpos, cfg.select, average); end
if fieldhaschan, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(ismember(dimtok,{'chan' '{chan}'})), selchan{i}, avgoverchan, cfg.select, average); end
if fieldhaschancmb, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'chancmb')), selchancmb{i}, avgoverchancmb, cfg.select, average); end
if fieldhastime, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, cfg.select, average); end
if fieldhasfreq, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'freq')), selfreq{i}, avgoverfreq, cfg.select, average); end
if fieldhasrpt, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, rptdim{i}, selrpt{i}, avgoverrpt, 'intersect', average); end
if fieldhasrpttap, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, rptdim{i}, selrpttap{i}, avgoverrpt, 'intersect', average); end
% update the fields that should be kept in the structure as a whole
% and update the dimord for this specific datfield
keepdim = true(size(dimtok));
if avgoverchan && ~keepchandim
keepdim(strcmp(dimtok, 'chan')) = false;
keepfield = setdiff(keepfield, 'label');
else
keepfield = [keepfield 'label'];
end
if avgoverchancmb && ~keepchancmbdim
keepdim(strcmp(dimtok, 'chancmb')) = false;
keepfield = setdiff(keepfield, 'labelcmb');
else
keepfield = [keepfield 'labelcmb'];
end
if avgoverfreq && ~keepfreqdim
keepdim(strcmp(dimtok, 'freq')) = false;
keepfield = setdiff(keepfield, 'freq');
else
keepfield = [keepfield 'freq'];
end
if avgovertime && ~keeptimedim
keepdim(strcmp(dimtok, 'time')) = false;
keepfield = setdiff(keepfield, 'time');
else
keepfield = [keepfield 'time'];
end
if avgoverpos && ~keepposdim
keepdim(strcmp(dimtok, 'pos')) = false;
keepdim(strcmp(dimtok, '{pos}')) = false;
keepdim(strcmp(dimtok, 'dim')) = false;
keepfield = setdiff(keepfield, {'pos' '{pos}' 'dim'});
elseif avgoverpos && keepposdim
keepfield = setdiff(keepfield, {'dim'}); % this should be removed anyway
else
keepfield = [keepfield {'pos' '{pos}' 'dim'}];
end
if avgoverrpt && ~keeprptdim
keepdim(strcmp(dimtok, 'rpt')) = false;
keepdim(strcmp(dimtok, 'rpttap')) = false;
keepdim(strcmp(dimtok, 'subj')) = false;
end
varargin{i}.(datfield{j}) = squeezedim(varargin{i}.(datfield{j}), ~keepdim);
end % for datfield
% also update the fields that describe the dimensions, time/freq/pos have been dealt with as data
if haschan, varargin{i} = makeselection_chan (varargin{i}, selchan{i}, avgoverchan); end % update the label field
if haschancmb, varargin{i} = makeselection_chancmb(varargin{i}, selchancmb{i}, avgoverchancmb); end % update the labelcmb field
end % for varargin
if strcmp(cfg.select, 'union')
% create the union of the descriptive axes
if haspos, varargin = makeunion(varargin, 'pos'); end
if haschan, varargin = makeunion(varargin, 'label'); end
if haschancmb, varargin = makeunion(varargin, 'labelcmb'); end
if hastime, varargin = makeunion(varargin, 'time'); end
if hasfreq, varargin = makeunion(varargin, 'freq'); end
end
% remove all fields from the data structure that do not pertain to the selection
sel = strcmp(keepfield, '{pos}'); if any(sel), keepfield(sel) = {'pos'}; end
sel = strcmp(keepfield, 'chan'); if any(sel), keepfield(sel) = {'label'}; end
sel = strcmp(keepfield, 'chancmb'); if any(sel), keepfield(sel) = {'labelcmb'}; end
if avgoverrpt
% these are invalid after averaging
keepfield = setdiff(keepfield, {'cumsumcnt' 'cumtapcnt' 'trialinfo' 'sampleinfo'});
end
if avgovertime || ~isequal(cfg.latency, 'all')
% these are invalid after averaging or making a latency selection
keepfield = setdiff(keepfield, {'sampleinfo'});
end
for i=1:numel(varargin)
varargin{i} = keepfields(varargin{i}, [keepfield xtrafield]);
end
% restore the original dimord fields in the data
for i=1:length(orgdim1)
dimtok = tokenize(orgdim2{i}, '_');
% using a setdiff may result in double occurrences of chan and pos to
% disappear, so this causes problems as per bug 2962
% if ~keeprptdim, dimtok = setdiff(dimtok, {'rpt' 'rpttap' 'subj'}); end
% if ~keepposdim, dimtok = setdiff(dimtok, {'pos' '{pos}'}); end
% if ~keepchandim, dimtok = setdiff(dimtok, {'chan'}); end
% if ~keepfreqdim, dimtok = setdiff(dimtok, {'freq'}); end
% if ~keeptimedim, dimtok = setdiff(dimtok, {'time'}); end
if ~keeprptdim, dimtok = dimtok(~ismember(dimtok, {'rpt' 'rpttap' 'subj'})); end
if ~keepposdim, dimtok = dimtok(~ismember(dimtok, {'pos' '{pos}'})); end
if ~keepchandim, dimtok = dimtok(~ismember(dimtok, {'chan'})); end
if ~keepfreqdim, dimtok = dimtok(~ismember(dimtok, {'freq'})); end
if ~keeptimedim, dimtok = dimtok(~ismember(dimtok, {'time'})); end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1); % remove the trailing _
for j=1:length(varargin)
varargin{j}.(orgdim1{i}) = dimord;
end
end
% restore the source.avg field, this keeps the output reasonably consistent with the
% old-style source representation of the input
if strcmp(dtype, 'source') && ~isempty(restoreavg)
for i=1:length(varargin)
varargin{i}.avg = keepfields(varargin{i}, restoreavg);
varargin{i} = removefields(varargin{i}, restoreavg);
end
end
varargout = varargin;
ft_postamble debug % this clears the onCleanup function used for debugging in case of an error
ft_postamble trackconfig % this converts the config object back into a struct and can report on the unused fields
ft_postamble provenance % this records the time and memory at the end of the function, prints them on screen and adds this information together with the function name and MATLAB version etc. to the output cfg
% ft_postamble previous varargin % this copies the datain.cfg structure into the cfg.previous field. You can also use it for multiple inputs, or for "varargin"
% ft_postamble history varargout % this adds the local cfg structure to the output data structure, i.e. dataout.cfg = cfg
% note that the cfg.previous thingy does not work with the postamble,
% because the postamble puts the cfgs of all input arguments in the (first)
% output argument's xxx.cfg
for k = 1:numel(varargout)
varargout{k}.cfg = cfg;
if isfield(varargin{k}, 'cfg')
varargout{k}.cfg.previous = varargin{k}.cfg;
end
end
% ft_postamble savevar varargout % this saves the output data structure to disk in case the user specified the cfg.outputfile option
if nargout>numel(varargout)
% also return the input cfg with the combined selection over all input data structures
varargout{end+1} = cfg;
end
end % main function ft_selectdata
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection(data, datfield, dimtok, seldim, selindx, avgoverdim, selmode, average)
if numel(seldim) > 1
for k = 1:numel(seldim)
data = makeselection(data, datfield, dimtok, seldim(k), selindx, avgoverdim, selmode, average);
end
return;
end
if isnumeric(data.(datfield))
if isrow(data.(datfield)) && seldim==1
if length(dimtok)==1
seldim = 2; % switch row and column
end
elseif iscolumn(data.(datfield)) && seldim==2
if length(dimtok)==1
seldim = 1; % switch row and column
end
end
elseif iscell(data.(datfield))
if isrow(data.(datfield){1}) && seldim==2
if length(dimtok)==2
seldim = 3; % switch row and column
end
elseif iscolumn(data.(datfield){1}) && seldim==3
if length(dimtok)==2
seldim = 2; % switch row and column
end
end
end
% an empty selindx means that nothing(!) should be selected and hence everything should be removed, which is different than keeping everything
% the selindx value of NaN indicates that it is not needed to make a selection
switch selmode
case 'intersect'
if iscell(selindx)
% there are multiple selections in multipe vectors, the selection is in the matrices contained within the cell array
for j=1:numel(selindx)
if ~isempty(selindx{j}) && all(isnan(selindx{j}))
% no selection needs to be made
else
data.(datfield){j} = cellmatselect(data.(datfield){j}, seldim-1, selindx{j}, numel(dimtok)==1);
end
end
else
% there is a single selection in a single vector
if ~isempty(selindx) && all(isnan(selindx))
% no selection needs to be made
else
data.(datfield) = cellmatselect(data.(datfield), seldim, selindx, numel(dimtok)==1);
end
end
if avgoverdim
data.(datfield) = cellmatmean(data.(datfield), seldim, average);
end
case 'union'
if ~isempty(selindx) && all(isnan(selindx))
% no selection needs to be made
else
tmp = data.(datfield);
siz = size(tmp);
siz(seldim) = numel(selindx);
data.(datfield) = nan(siz);
sel = isfinite(selindx);
switch seldim
case 1
data.(datfield)(sel,:,:,:,:,:) = tmp(selindx(sel),:,:,:,:,:);
case 2
data.(datfield)(:,sel,:,:,:,:) = tmp(:,selindx(sel),:,:,:,:);
case 3
data.(datfield)(:,:,sel,:,:,:) = tmp(:,:,selindx(sel),:,:,:);
case 4
data.(datfield)(:,:,:,sel,:,:) = tmp(:,:,:,selindx(sel),:,:);
case 5
data.(datfield)(:,:,:,:,sel,:) = tmp(:,:,:,:,selindx(sel),:);
case 6
data.(datfield)(:,:,:,:,:,sel) = tmp(:,:,:,:,:,selindx(sel));
otherwise
error('unsupported dimension (%d) for making a selection for %s', seldim, datfield);
end
end
if avgoverdim
data.(datfield) = average(data.(datfield), seldim);
end
end % switch
end % function makeselection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_chan(data, selchan, avgoverchan)
if isempty(selchan)
%error('no channels were selected');
data.label = {};
elseif avgoverchan && all(isnan(selchan))
str = sprintf('%s, ', data.label{:});
str = str(1:end-2);
str = sprintf('mean(%s)', str);
data.label = {str};
elseif avgoverchan && ~any(isnan(selchan))
str = sprintf('%s, ', data.label{selchan});
str = str(1:end-2);
str = sprintf('mean(%s)', str);
data.label = {str}; % remove the last '+'
elseif all(isfinite(selchan))
data.label = data.label(selchan);
data.label = data.label(:);
elseif numel(selchan)==1 && any(~isfinite(selchan))
% do nothing
elseif numel(selchan)>1 && any(~isfinite(selchan))
tmp = cell(numel(selchan),1);
for k = 1:numel(tmp)
if isfinite(selchan(k))
tmp{k} = data.label{selchan(k)};
end
end
data.label = tmp;
else
% this should never happen
error('cannot figure out how to select channels');
end
end % function makeselection_chan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = makeselection_chancmb(data, selchancmb, avgoverchancmb)
if isempty(selchancmb)
error('no channel combinations were selected');
elseif avgoverchancmb && all(isnan(selchancmb))
% naming the channel combinations becomes ambiguous, but should not
% suggest that the mean was computed prior to combining
str1 = sprintf('%s, ', data.labelcmb{:,1});
str1 = str1(1:end-2);
% str1 = sprintf('mean(%s)', str1);
str2 = sprintf('%s, ', data.labelcmb{:,2});
str2 = str2(1:end-2);
% str2 = sprintf('mean(%s)', str2);
data.label = {str1, str2};
elseif avgoverchancmb && ~any(isnan(selchancmb))
% naming the channel combinations becomes ambiguous, but should not
% suggest that the mean was computed prior to combining
str1 = sprintf('%s, ', data.labelcmb{selchancmb,1});
str1 = str1(1:end-2);
% str1 = sprintf('mean(%s)', str1);
str2 = sprintf('%s, ', data.labelcmb{selchancmb,2});
str2 = str2(1:end-2);
% str2 = sprintf('mean(%s)', str2);
data.label = {str1, str2};
elseif all(isfinite(selchancmb))
data.labelcmb = data.labelcmb(selchancmb,:);
elseif numel(selchancmb)==1 && any(~isfinite(selchancmb))
% do nothing
elseif numel(selchancmb)>1 && any(~isfinite(selchancmb))
tmp = cell(numel(selchancmb),2);
for k = 1:size(tmp,1)
if isfinite(selchan(k))
tmp{k,1} = data.labelcmb{selchan(k),1};
tmp{k,2} = data.labelcmb{selchan(k),2};
end
end
data.labelcmb = tmp;
else
% this should never happen
error('cannot figure out how to select channelcombinations');
end
end % function makeselection_chancmb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [chanindx, cfg] = getselection_chan(cfg, varargin)
selmode = varargin{end};
ndata = numel(varargin)-1;
varargin = varargin(1:ndata);
% loop over data once to initialize
chanindx = cell(ndata,1);
label = cell(1,0);
for k = 1:ndata
selchannel = ft_channelselection(cfg.channel, varargin{k}.label);
label = union(label, selchannel);
end
% this call to match_str ensures that that labels are always in the
% order of the first input argument see bug_2917, but also temporarily keep
% the labels from the other data structures not present in the first one
% (in case selmode = 'union')
[ix, iy] = match_str(varargin{1}.label, label);
label1 = varargin{1}.label(:); % ensure column array
label = [label1(ix); label(setdiff(1:numel(label),iy))];
indx = nan+zeros(numel(label), ndata);
for k = 1:ndata
[ix, iy] = match_str(label, varargin{k}.label);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==ndata;
indx = indx(sel,:);
label = varargin{1}.label(indx(:,1));
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end % switch
ok = false(size(indx,1),1);
for k = 1:ndata
% loop through the columns to preserve the order of the channels, where
% the order of the input arguments determines the final order
ix = find(~ok);
[srt,srtix] = sort(indx(ix,k));
indx(ix,:) = indx(ix(srtix),:);
ok = ok | isfinite(indx(:,k));
end
for k = 1:ndata
% do a sanity check on double occurrences
if numel(unique(indx(isfinite(indx(:,k)),k)))<sum(isfinite(indx(:,k)))
error('the selection of channels across input arguments leads to double occurrences');
end
chanindx{k} = indx(:,k);
end
for k = 1:ndata
if isequal(chanindx{k}, (1:numel(varargin{k}.label))')
% no actual selection is needed for this data structure
chanindx{k} = nan;
end
end
cfg.channel = label;
end % function getselection_chan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [chancmbindx, cfg] = getselection_chancmb(cfg, varargin)
selmode = varargin{end};
ndata = numel(varargin)-1;
varargin = varargin(1:ndata);
chancmbindx = cell(ndata,1);
if ~isfield(cfg, 'channelcmb')
for k=1:ndata
% the nan return value specifies that no selection was specified
chancmbindx{k} = nan;
end
else
switch selmode
case 'intersect'
for k=1:ndata
if ~isfield(varargin{k}, 'label')
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, unique(varargin{k}.labelcmb(:)));
else
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, varargin{k}.label);
end
end
ncfgcmb = size(cfg.channelcmb,1);
cfgcmb = cell(ncfgcmb, 1);
for i=1:ncfgcmb
cfgcmb{i} = sprintf('%s&%s', cfg.channelcmb{i,1}, cfg.channelcmb{i,2});
end
for k=1:ndata
ndatcmb = size(varargin{k}.labelcmb,1);
datcmb = cell(ndatcmb, 1);
for i=1:ndatcmb
datcmb{i} = sprintf('%s&%s', varargin{k}.labelcmb{i,1}, varargin{k}.labelcmb{i,2});
end
% return the order according to the (joint) configuration, not according to the (individual) data
% FIXME this should adhere to the general code guidelines, where
% the order returned will be according to the first data argument!
[dum, chancmbindx{k}] = match_str(cfgcmb, datcmb);
end
case 'union'
% FIXME this is not yet implemented
error('union of channel combination is not yet supported');
otherwise
error('invalid value for cfg.select');
end % switch
end
end % function getselection_chancmb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [spikeindx, cfg] = getselection_spike(cfg, varargin)
% possible specifications are
% cfg.latency = string -> 'all'
% cfg.latency = [beg end]
% cfg.trials = string -> 'all'
% cfg.trials = vector with indices
ndata = numel(varargin);
varargin = varargin(1:ndata);
if isequal(cfg.latency, 'all') && isequal(cfg.trials, 'all')
spikeindx = cell(1,ndata);
for i=1:ndata
spikeindx{i} = num2cell(nan(1, length(varargin{i}.time)));
end
return
end
trialbeg = varargin{1}.trialtime(:,1);
trialend = varargin{1}.trialtime(:,2);
for i=2:ndata
trialbeg = cat(1, trialbeg, varargin{1}.trialtime(:,1));
trialend = cat(1, trialend, varargin{1}.trialtime(:,2));
end
% convert string into a numeric selection
if ischar(cfg.latency)
switch cfg.latency
case 'all'
cfg.latency = [-inf inf];
case 'maxperiod'
cfg.latency = [min(trialbeg) max(trialend)];
case 'minperiod'
cfg.latency = [max(trialbeg) min(trialend)];
case 'prestim'
cfg.latency = [min(trialbeg) 0];
case 'poststim'
cfg.latency = [0 max(trialend)];
otherwise
error('incorrect specification of cfg.latency');
end % switch
end
spikeindx = cell(1,ndata);
for i=1:ndata
nchan = length(varargin{i}.time);
spikeindx{i} = cell(1,nchan);
for j=1:nchan
selbegtime = varargin{i}.time{j}>=cfg.latency(1);
selendtime = varargin{i}.time{j}<=cfg.latency(2);
if isequal(cfg.trials, 'all')
seltrial = true(size(varargin{i}.trial{j}));
else
seltrial = ismember(varargin{i}.trial{j}, cfg.trials);
end
spikeindx{i}{j} = find(selbegtime & selendtime & seltrial);
end
end
end % function getselection_spiketime
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [timeindx, cfg] = getselection_time(cfg, varargin)
% possible specifications are
% cfg.latency = value -> can be 'all'
% cfg.latency = [beg end]
if ft_datatype(varargin{1}, 'spike')
error('latency selection in spike data is not supported')
end
selmode = varargin{end};
tol = varargin{end-1};
ndata = numel(varargin)-2;
varargin = varargin(1:ndata);
if isequal(cfg.latency, 'all') && iscell(varargin{1}.time)
% for raw data this means that all trials should be selected as they are
% for timelock/freq data it is still needed to make the intersection between data arguments
timeindx = cell(1,ndata);
for i=1:ndata
% the nan return value specifies that no selection was specified
timeindx{i} = num2cell(nan(1, length(varargin{i}.time)));
end
return
end
% if there is a single timelock/freq input, there is one time vector
% if there are multiple timelock/freq inputs, there are multiple time vectors
% if there is a single raw input, there are multiple time vectors
% if there are multiple raw inputs, there are multiple time vectors
% collect all time axes in one large cell-array
alltimecell = {};
if iscell(varargin{1}.time)
for k = 1:ndata
alltimecell = [alltimecell varargin{k}.time{:}];
end
else
for k = 1:ndata
alltimecell = [alltimecell {varargin{k}.time}];
end
end
% the nan return value specifies that no selection was specified
timeindx = repmat({nan}, size(alltimecell));
% loop over data once to determine the union of all time axes
alltimevec = zeros(1,0);
for k = 1:length(alltimecell)
alltimevec = union(alltimevec, round(alltimecell{k}/tol)*tol);
end
indx = nan(numel(alltimevec), numel(alltimecell));
for k = 1:numel(alltimecell)
[dum, ix, iy] = intersect(alltimevec, round(alltimecell{k}/tol)*tol);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==numel(alltimecell);
indx = indx(sel,:);
alltimevec = alltimevec(sel);
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end
% Note that cfg.toilim handling has been removed, as it was renamed to cfg.latency
% convert a string selection into a numeric selection
if ischar(cfg.latency)
switch cfg.latency
case {'all' 'maxperlen'}
cfg.latency = [min(alltimevec) max(alltimevec)];
case 'prestim'
cfg.latency = [min(alltimevec) 0];
case 'poststim'
cfg.latency = [0 max(alltimevec)];
otherwise
error('incorrect specification of cfg.latency');
end % switch
end
% deal with numeric selection
if isempty(cfg.latency)
for k = 1:numel(alltimecell)
% FIXME I do not understand this
% this signifies that all time bins are deselected and should be removed
timeindx{k} = [];
end
elseif numel(cfg.latency)==1
% this single value should be within the time axis of each input data structure
if numel(alltimevec)>1
tbin = nearest(alltimevec, cfg.latency, true, true); % determine the numerical tolerance
else
tbin = nearest(alltimevec, cfg.latency, true, false); % don't consider tolerance
end
cfg.latency = alltimevec(tbin);
for k = 1:ndata
timeindx{k} = indx(tbin, k);
end
elseif numel(cfg.latency)==2
% the [min max] range can be specifed with +inf or -inf, but should
% at least partially overlap with the time axis of the input data
mintime = min(alltimevec);
maxtime = max(alltimevec);
if all(cfg.latency<mintime) || all(cfg.latency>maxtime)
error('the selected time range falls outside the time axis in the data');
end
tbeg = nearest(alltimevec, cfg.latency(1), false, false);
tend = nearest(alltimevec, cfg.latency(2), false, false);
cfg.latency = alltimevec([tbeg tend]);
for k = 1:numel(alltimecell)
timeindx{k} = indx(tbeg:tend, k);
end
elseif size(cfg.latency,2)==2
% this may be used for specification of the computation, not for data selection
else
error('incorrect specification of cfg.latency');
end
for k = 1:numel(alltimecell)
if isequal(timeindx{k}(:)', 1:length(alltimecell{k}))
% no actual selection is needed for this data structure
timeindx{k} = nan;
end
end
if iscell(varargin{1}.time)
% split all time axes again over the different input raw data structures
dum = cell(1,ndata);
for k = 1:ndata
sel = 1:length(varargin{k}.time);
dum{k} = timeindx(sel); % get the first selection
timeindx(sel) = []; % remove the first selection
end
timeindx = dum;
else
% no splitting is needed, each input data structure has one selection
end
end % function getselection_time
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [freqindx, cfg] = getselection_freq(cfg, varargin)
% possible specifications are
% cfg.frequency = value -> can be 'all'
% cfg.frequency = [beg end]
selmode = varargin{end};
tol = varargin{end-1};
ndata = numel(varargin)-2;
varargin = varargin(1:ndata);
% loop over data once to initialize
freqindx = cell(ndata,1);
freqaxis = zeros(1,0);
for k = 1:ndata
% the nan return value specifies that no selection was specified
freqindx{k} = nan;
% update the axis along which the frequencies are defined
freqaxis = union(freqaxis, round(varargin{k}.freq(:)/tol)*tol);
end
indx = nan+zeros(numel(freqaxis), ndata);
for k = 1:ndata
[dum, ix, iy] = intersect(freqaxis, round(varargin{k}.freq(:)/tol)*tol);
indx(ix,k) = iy;
end
switch selmode
case 'intersect'
sel = sum(isfinite(indx),2)==ndata;
indx = indx(sel,:);
freqaxis = varargin{1}.freq(indx(:,1));
case 'union'
% don't do a subselection
otherwise
error('invalid value for cfg.select');
end
if isfield(cfg, 'frequency')
% deal with string selection
% some of these do not make sense, but are here for consistency with ft_multiplotER
if ischar(cfg.frequency)
if strcmp(cfg.frequency, 'all')
cfg.frequency = [min(freqaxis) max(freqaxis)];
elseif strcmp(cfg.frequency, 'maxmin')
cfg.frequency = [min(freqaxis) max(freqaxis)]; % the same as 'all'
elseif strcmp(cfg.frequency, 'minzero')
cfg.frequency = [min(freqaxis) 0];
elseif strcmp(cfg.frequency, 'maxabs')
cfg.frequency = [-max(abs(freqaxis)) max(abs(freqaxis))];
elseif strcmp(cfg.frequency, 'zeromax')
cfg.frequency = [0 max(freqaxis)];
elseif strcmp(cfg.frequency, 'zeromax')
cfg.frequency = [0 max(freqaxis)];
else
error('incorrect specification of cfg.frequency');
end
end
% deal with numeric selection
if isempty(cfg.frequency)
for k = 1:ndata
% FIXME I do not understand this
% this signifies that all frequency bins are deselected and should be removed
freqindx{k} = [];
end
elseif numel(cfg.frequency)==1
% this single value should be within the frequency axis of each input data structure
if numel(freqaxis)>1
fbin = nearest(freqaxis, cfg.frequency, true, true); % determine the numerical tolerance
else
fbin = nearest(freqaxis, cfg.frequency, true, false); % don't consider tolerance
end
cfg.frequency = freqaxis(fbin);
for k = 1:ndata
freqindx{k} = indx(fbin,k);
end
elseif numel(cfg.frequency)==2
% the [min max] range can be specifed with +inf or -inf, but should
% at least partially overlap with the freq axis of the input data
minfreq = min(freqaxis);
maxfreq = max(freqaxis);
if all(cfg.frequency<minfreq) || all(cfg.frequency>maxfreq)
error('the selected range falls outside the frequency axis in the data');
end
fbeg = nearest(freqaxis, cfg.frequency(1), false, false);
fend = nearest(freqaxis, cfg.frequency(2), false, false);
cfg.frequency = freqaxis([fbeg fend]);
for k = 1:ndata
freqindx{k} = indx(fbeg:fend,k);
end
elseif size(cfg.frequency,2)==2
% this may be used for specification of the computation, not for data selection
else
error('incorrect specification of cfg.frequency');
end
end % if cfg.frequency
for k = 1:ndata
if isequal(freqindx{k}, 1:length(varargin{k}.freq))
% the cfg was updated, but no selection is needed for the data
freqindx{k} = nan;
end
end
end % function getselection_freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [rptindx, cfg, rptdim, rpttapindx] = getselection_rpt(cfg, varargin)
% this should deal with cfg.trials
dimord = varargin{end};
ndata = numel(varargin)-1;
data = varargin{1:ndata}; % this syntax ensures that it will only work on a single data input
dimtok = tokenize(dimord, '_');
rptdim = find(strcmp(dimtok, '{rpt}') | strcmp(dimtok, 'rpt') | strcmp(dimtok, 'rpttap') | strcmp(dimtok, 'subj'));
if isequal(cfg.trials, 'all')
rptindx = nan; % the nan return value specifies that no selection was specified
rpttapindx = nan; % the nan return value specifies that no selection was specified
elseif isempty(rptdim)
rptindx = nan; % the nan return value specifies that no selection was specified
rpttapindx = nan; % the nan return value specifies that no selection was specified
else
rptindx = ft_getopt(cfg, 'trials');
if islogical(rptindx)
% convert from booleans to indices
rptindx = find(rptindx);
end
rptindx = unique(sort(rptindx));
if strcmp(dimtok{rptdim}, 'rpttap') && isfield(data, 'cumtapcnt')
% there are tapers in the data
% determine for each taper to which trial it belongs
if numel(data.cumtapcnt)~=length(data.cumtapcnt)
error('FIXME this is not yet implemented for mtmconvol with keeptrials and varying number of tapers per frequency');
end
nrpt = length(data.cumtapcnt);
taper = zeros(nrpt, 1);
sumtapcnt = cumsum([0; data.cumtapcnt(:)]);
begtapcnt = sumtapcnt(1:end-1)+1;
endtapcnt = sumtapcnt(2:end);
for i=1:nrpt
taper(begtapcnt(i):endtapcnt(i)) = i;
end
rpttapindx = find(ismember(taper, rptindx));
else
% there are no tapers in the data
rpttapindx = rptindx;
end
end
end % function getselection_rpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [posindx, cfg] = getselection_pos(cfg, varargin)
% possible specifications are <none>
ndata = numel(varargin)-2;
tol = varargin{end-1}; % FIXME this is still ignored
selmode = varargin{end}; % FIXME this is still ignored
data = varargin(1:ndata);
for i=1:ndata
if ~isequal(varargin{i}.pos, varargin{1}.pos)
% FIXME it would be possible here to make a selection based on intersect or union
error('not yet implemented');
end
end
if strcmp(cfg.select, 'union')
% FIXME it would be possible here to make a selection based on intersect or union
error('not yet implemented');
end
for i=1:ndata
posindx{i} = nan; % the nan return value specifies that no selection was specified
end
end % function getselection_pos
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = squeezedim(x, dim)
siz = size(x);
for i=(numel(siz)+1):numel(dim)
% all trailing singleton dimensions have length 1
siz(i) = 1;
end
if isvector(x)
% there is no harm to keep it as it is
else
x = reshape(x, [siz(~dim) 1]);
end
end % function squeezedim
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = makeunion(x, field)
old = cellfun(@getfield, x, repmat({field}, size(x)), 'uniformoutput', false);
if iscell(old{1})
% empty is indicated to represent missing value for a cell array (label, labelcmb)
new = old{1};
for i=2:length(old)
sel = ~cellfun(@isempty, old{i});
new(sel) = old{i}(sel);
end
else
% nan is indicated to represent missing value for a numeric array (time, freq, pos)
new = old{1};
for i=2:length(old)
sel = ~isnan(old{i});
new(sel) = old{i}(sel);
end
end
x = cellfun(@setfield, x, repmat({field}, size(x)), repmat({new}, size(x)), 'uniformoutput', false);
end % function makeunion
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to make a selextion in data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = cellmatselect(x, seldim, selindx, maybevector)
if nargin<4
% some fields are a vector with an unspecified singleton dimension, these can be transposed
% if the singleton dimension represents something explicit, they should not be transposed
% they might for example represent a single trial, or a single channel
maybevector = true;
end
if iscell(x)
if seldim==1
x = x(selindx);
else
for i=1:numel(x)
if isempty(x{i})
continue
end
switch seldim
case 2
if maybevector && isvector(x{i})
% sometimes the data is 1xN, whereas the dimord describes only the first dimension
% in this case a row and column vector can be interpreted as equivalent
x{i} = x{i}(selindx);
else
x{i} = x{i}(selindx,:,:,:,:);
end
case 3
x{i} = x{i}(:,selindx,:,:,:);
case 4
x{i} = x{i}(:,:,selindx,:,:);
case 5
x{i} = x{i}(:,:,:,selindx,:);
case 6
x{i} = x{i}(:,:,:,:,selindx);
otherwise
error('unsupported dimension (%d) for making a selection', seldim);
end % switch
end % for
end
else
switch seldim
case 1
if maybevector && isvector(x)
% sometimes the data is 1xN, whereas the dimord describes only the first dimension
% in this case a row and column vector can be interpreted as equivalent
x = x(selindx);
else
x = x(selindx,:,:,:,:,:);
end
case 2
x = x(:,selindx,:,:,:,:);
case 3
x = x(:,:,selindx,:,:,:);
case 4
x = x(:,:,:,selindx,:,:);
case 5
x = x(:,:,:,:,selindx,:);
case 6
x = x(:,:,:,:,:,selindx);
otherwise
error('unsupported dimension (%d) for making a selection', seldim);
end
end
end % function cellmatselect
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to take an average in data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = cellmatmean(x, seldim, average)
if iscell(x)
if seldim==1
for i=2:numel(x)
x{1} = x{1} + x{i};
end
x = {x{1}/numel(x)};
else
for i=1:numel(x)
x{i} = average(x{i}, seldim-1);
end % for
end
else
x = average(x, seldim);
end
end % function cellmatmean
|
github
|
lcnbeapp/beapp-master
|
ft_transform_geometry.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/ft_transform_geometry.m
| 4,001 |
utf_8
|
65ab78e845b70fd7afc0d6c59e0fc89e
|
function [output] = ft_transform_geometry(transform, input)
% FT_TRANSFORM_GEOMETRY applies a homogeneous coordinate transformation to
% a structure with geometric information, for example a volume conduction model
% for the head, gradiometer of electrode structure containing EEG or MEG
% sensor positions and MEG coil orientations, a head shape or a source model.
%
% The units in which the transformation matrix is expressed are assumed to
% be the same units as the units in which the geometric object is
% expressed. Depending on the input object, the homogeneous transformation
% matrix should be limited to a rigid-body translation plus rotation
% (MEG-gradiometer array), or to a rigid-body translation plus rotation
% plus a global rescaling (volume conductor geometry).
%
% Use as
% output = ft_transform_geometry(transform, input)
%
% See also FT_WARP_APPLY, FT_HEADCOORDINATES
% Copyright (C) 2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_transform_geometry.m$
% flg rescaling check
allowscaling = ~ft_senstype(input, 'meg');
% determine the rotation matrix
rotation = eye(4);
rotation(1:3,1:3) = transform(1:3,1:3);
if any(abs(transform(4,:)-[0 0 0 1])>100*eps)
error('invalid transformation matrix');
end
if ~allowscaling
% allow for some numerical imprecision
if abs(det(rotation)-1)>1e-6%100*eps
%if abs(det(rotation)-1)>100*eps % allow for some numerical imprecision
error('only a rigid body transformation without rescaling is allowed');
end
end
if allowscaling
% FIXME build in a check for uniform rescaling probably do svd or so
% FIXME insert check for nonuniform scaling, should give an error
end
tfields = {'pos' 'pnt' 'o' 'coilpos' 'chanpos' 'chanposold' 'chanposorg' 'elecpos', 'nas', 'lpa', 'rpa', 'zpoint'}; % apply rotation plus translation
rfields = {'ori' 'nrm' 'coilori' 'chanori' 'chanoriold' 'chanoriorg'}; % only apply rotation
mfields = {'transform'}; % plain matrix multiplication
recfields = {'fid' 'bnd' 'orig'}; % recurse into these fields
% the field 'r' is not included here, because it applies to a volume
% conductor model, and scaling is not allowed, so r will not change.
fnames = fieldnames(input);
for k = 1:numel(fnames)
if ~isempty(input.(fnames{k}))
if any(strcmp(fnames{k}, tfields))
input.(fnames{k}) = apply(transform, input.(fnames{k}));
elseif any(strcmp(fnames{k}, rfields))
input.(fnames{k}) = apply(rotation, input.(fnames{k}));
elseif any(strcmp(fnames{k}, mfields))
input.(fnames{k}) = transform*input.(fnames{k});
elseif any(strcmp(fnames{k}, recfields))
for j = 1:numel(input.(fnames{k}))
input.(fnames{k})(j) = ft_transform_geometry(transform, input.(fnames{k})(j));
end
else
% do nothing
end
end
end
output = input;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that applies the homogeneous transformation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [new] = apply(transform, old)
old(:,4) = 1;
new = old * transform';
new = new(:,1:3);
|
github
|
lcnbeapp/beapp-master
|
getdimord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/getdimord.m
| 20,107 |
utf_8
|
706f4f45a5d4ae7535c204b8c010f76b
|
function dimord = getdimord(data, field, varargin)
% GETDIMORD
%
% Use as
% dimord = getdimord(data, field)
%
% See also GETDIMSIZ, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = '';
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % copy the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = '(rpt)_';
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % copy the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = '';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 1: the specific dimord is simply present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, [field 'dimord'])
dimord = data.([field 'dimord']);
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if not present, we need some additional information about the data strucure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nan means that the value is not known and might remain unknown
% inf means that the value is not known but should be known
ntime = inf;
nfreq = inf;
nchan = inf;
nchancmb = inf;
nsubj = nan;
nrpt = nan;
nrpttap = nan;
npos = inf;
nori = nan; % this will be 3 in many cases
ntopochan = inf;
nspike = inf; % this is only for the first spike channel
nlag = nan;
ndim1 = nan;
ndim2 = nan;
ndim3 = nan;
% use an anonymous function
assign = @(var, val) assignin('caller', var, val);
% it is possible to pass additional ATTEMPTs such as nrpt, nrpttap, etc
for i=1:2:length(varargin)
assign(varargin{i}, varargin{i+1});
end
% try to determine the size of each possible dimension in the data
if isfield(data, 'label')
nchan = length(data.label);
end
if isfield(data, 'labelcmb')
nchancmb = size(data.labelcmb, 1);
end
if isfield(data, 'time')
if iscell(data.time) && ~isempty(data.time)
tmp = getdimsiz(data, 'time');
ntime = tmp(3); % raw data may contain variable length trials
else
ntime = length(data.time);
end
end
if isfield(data, 'freq')
nfreq = length(data.freq);
end
if isfield(data, 'trial') && ft_datatype(data, 'raw')
nrpt = length(data.trial);
end
if isfield(data, 'trialtime') && ft_datatype(data, 'spike')
nrpt = size(data.trialtime,1);
end
if isfield(data, 'cumtapcnt')
nrpt = size(data.cumtapcnt,1);
if numel(data.cumtapcnt)==length(data.cumtapcnt)
% it is a vector, hence it only represents repetitions
nrpttap = sum(data.cumtapcnt);
else
% it is a matrix, hence it is repetitions by frequencies
% this happens after mtmconvol with keeptrials
nrpttap = sum(data.cumtapcnt,2);
if any(nrpttap~=nrpttap(1))
warning('unexpected variation of the number of tapers over trials')
nrpttap = nan;
else
nrpttap = nrpttap(1);
end
end
end
if isfield(data, 'pos')
npos = size(data.pos,1);
elseif isfield(data, 'dim')
npos = prod(data.dim);
end
if isfield(data, 'dim')
ndim1 = data.dim(1);
ndim2 = data.dim(2);
ndim3 = data.dim(3);
end
if isfield(data, 'csdlabel')
% this is used in PCC beamformers
if length(data.csdlabel)==npos
% each position has its own labels
len = cellfun(@numel, data.csdlabel);
len = len(len~=0);
if all(len==len(1))
% they all have the same length
nori = len(1);
end
else
% one list of labels for all positions
nori = length(data.csdlabel);
end
elseif isfinite(npos)
% assume that there are three dipole orientations per source
nori = 3;
end
if isfield(data, 'topolabel')
% this is used in ICA and PCA decompositions
ntopochan = length(data.topolabel);
end
if isfield(data, 'timestamp') && iscell(data.timestamp)
nspike = length(data.timestamp{1}); % spike data: only for the first channel
end
if ft_datatype(data, 'mvar') && isfield(data, 'coeffs')
nlag = size(data.coeffs,3);
end
% determine the size of the actual data
datsiz = getdimsiz(data, field);
tok = {'subj' 'rpt' 'rpttap' 'chan' 'chancmb' 'freq' 'time' 'pos' 'ori' 'topochan' 'lag' 'dim1' 'dim2' 'dim3'};
siz = [nsubj nrpt nrpttap nchan nchancmb nfreq ntime npos nori ntopochan nlag ndim1 ndim2 ndim3];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 2: a general dimord is present and might apply
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, 'dimord')
dimtok = tokenize(data.dimord, '_');
if length(dimtok)>length(datsiz) && check_trailingdimsunitlength(data, dimtok((length(datsiz)+1):end))
% add the trailing singleton dimensions to datsiz, if needed
datsiz = [datsiz ones(1,max(0,length(dimtok)-length(datsiz)))];
end
if length(dimtok)==length(datsiz) || (length(dimtok)==(length(datsiz)-1) && datsiz(end)==1)
success = false(size(dimtok));
for i=1:length(dimtok)
sel = strcmp(tok, dimtok{i});
if any(sel) && datsiz(i)==siz(sel)
success(i) = true;
elseif strcmp(dimtok{i}, 'subj')
% the number of subjects cannot be determined, and will be indicated as nan
success(i) = true;
elseif strcmp(dimtok{i}, 'rpt')
% the number of trials is hard to determine, and might be indicated as nan
success(i) = true;
end
end % for
if all(success)
dimord = data.dimord;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 3: look at the size of some common fields that are known
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch field
% the logic for this code is to first check whether the size of a field
% has an exact match to a potential dimensionality, if not, check for a
% partial match (ignoring nans)
% note that the case for a cell dimension (typically pos) is handled at
% the end of this section
case {'pos'}
if isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_unknown';
end
case {'individual'}
if isequalwithoutnans(datsiz, [nsubj nchan ntime])
dimord = 'subj_chan_time';
end
case {'avg' 'var' 'dof'}
if isequal(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequal(datsiz, [nchan ntime])
dimord = 'chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nchan ntime])
dimord = 'chan_time';
end
case {'powspctrm' 'fourierspctrm'}
if isequal(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequal(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequal(datsiz, [nchan nfreq])
dimord = 'chan_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nfreq])
dimord = 'chan_freq';
end
case {'crsspctrm' 'cohspctrm'}
if isequal(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequal(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequal(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequal(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequal(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequal(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequal(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequal(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequalwithoutnans(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
end
case {'cov' 'coh' 'csd' 'noisecov' 'noisecsd'}
% these occur in timelock and in source structures
if isequal(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequal(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequal(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequal(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequalwithoutnans(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequalwithoutnans(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequalwithoutnans(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
end
case {'tf'}
if isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'pow'}
if isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequal(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequal(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
elseif isequal(datsiz, [npos 1]) % in case there are no repetitions
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequalwithoutnans(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
end
case {'mom','itc','aa','stat','pval','statitc','pitc'}
if isequal(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequal(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequal(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequalwithoutnans(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequalwithoutnans(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nrpt nori ntime])
dimord = 'pos_rpt_ori_time';
elseif isequalwithoutnans(datsiz, [npos nrpt 1 ntime])
dimord = 'pos_rpt_ori_time';
elseif isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'filter'}
if isequalwithoutnans(datsiz, [npos nori nchan]) || (isequal(datsiz([1 2]), [npos nori]) && isinf(nchan))
dimord = 'pos_ori_chan';
end
case {'leadfield'}
if isequalwithoutnans(datsiz, [npos nchan nori]) || (isequal(datsiz([1 3]), [npos nori]) && isinf(nchan))
dimord = 'pos_chan_ori';
end
case {'ori' 'eta'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'csdlabel'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'trial'}
if ~iscell(data.(field)) && isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = '{rpt}_chan_time';
elseif isequalwithoutnans(datsiz, [nchan nspike]) || isequalwithoutnans(datsiz, [nchan 1 nspike])
dimord = '{chan}_spike';
end
case {'sampleinfo' 'trialinfo' 'trialtime'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'cumtapcnt' 'cumsumcnt'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'topo'}
if isequalwithoutnans(datsiz, [ntopochan nchan])
dimord = 'topochan_chan';
end
case {'unmixing'}
if isequalwithoutnans(datsiz, [nchan ntopochan])
dimord = 'chan_topochan';
end
case {'inside'}
if isequalwithoutnans(datsiz, [npos])
dimord = 'pos';
end
case {'timestamp' 'time'}
if ft_datatype(data, 'spike') && iscell(data.(field)) && datsiz(1)==nchan
dimord = '{chan}_spike';
elseif ft_datatype(data, 'raw') && iscell(data.(field)) && datsiz(1)==nrpt
dimord = '{rpt}_time';
elseif isvector(data.(field)) && isequal(datsiz, [1 ntime ones(1,numel(datsiz)-2)])
dimord = 'time';
end
case {'freq'}
if isvector(data.(field)) && isequal(datsiz, [1 nfreq])
dimord = 'freq';
end
otherwise
if isfield(data, 'dim') && isequal(datsiz, data.dim)
dimord = 'dim1_dim2_dim3';
end
end % switch field
% deal with possible first pos which is a cell
if exist('dimord', 'var') && strcmp(dimord(1:3), 'pos') && iscell(data.(field))
dimord = ['{pos}' dimord(4:end)];
end
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 4: there is only one way that the dimensions can be interpreted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dimtok = cell(size(datsiz));
for i=1:length(datsiz)
sel = find(siz==datsiz(i));
if length(sel)==1
% there is exactly one corresponding dimension
dimtok{i} = tok{sel};
else
% there are zero or multiple corresponding dimensions
dimtok{i} = [];
end
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 5: compare the size with the known size of each dimension
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sel = ~isnan(siz) & ~isinf(siz);
% nan means that the value is not known and might remain unknown
% inf means that the value is not known and but should be known
if length(unique(siz(sel)))==length(siz(sel))
% this should only be done if there is no chance of confusing dimensions
dimtok = cell(size(datsiz));
dimtok(datsiz==npos) = {'pos'};
dimtok(datsiz==nori) = {'ori'};
dimtok(datsiz==nrpttap) = {'rpttap'};
dimtok(datsiz==nrpt) = {'rpt'};
dimtok(datsiz==nsubj) = {'subj'};
dimtok(datsiz==nchancmb) = {'chancmb'};
dimtok(datsiz==nchan) = {'chan'};
dimtok(datsiz==nfreq) = {'freq'};
dimtok(datsiz==ntime) = {'time'};
dimtok(datsiz==ndim1) = {'dim1'};
dimtok(datsiz==ndim2) = {'dim2'};
dimtok(datsiz==ndim3) = {'dim3'};
if isempty(dimtok{end}) && datsiz(end)==1
% remove the unknown trailing singleton dimension
dimtok = dimtok(1:end-1);
elseif isequal(dimtok{1}, 'pos') && isempty(dimtok{2}) && datsiz(2)==1
% remove the unknown leading singleton dimension
dimtok(2) = [];
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 6: check whether it is a 3-D volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isequal(datsiz, [ndim1 ndim2 ndim3])
dimord = 'dim1_dim2_dim3';
end
end % if dimord does not exist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FINAL RESORT: return "unknown" for all unknown dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('dimord', 'var')
% this should not happen
% if it does, it might help in diagnosis to have a very informative warning message
% since there have been problems with trials not being selected correctly due to the warning going unnoticed
% it is better to throw an error than a warning
warning('could not determine dimord of "%s" in the following data', field)
disp(data);
dimtok(cellfun(@isempty, dimtok)) = {'unknown'};
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
end
end
% add '(rpt)' in case of source.trial
dimord = [prefix dimord];
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = isequalwithoutnans(a, b)
% this is *only* used to compare matrix sizes, so we can ignore any singleton last dimension
numdiff = numel(b)-numel(a);
if numdiff > 0
% assume singleton dimensions missing in a
a = [a(:); ones(numdiff, 1)];
b = b(:);
elseif numdiff < 0
% assume singleton dimensions missing in b
b = [b(:); ones(abs(numdiff), 1)];
a = a(:);
end
c = ~isnan(a(:)) & ~isnan(b(:));
ok = isequal(a(c), b(c));
end % function isequalwithoutnans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = check_trailingdimsunitlength(data, dimtok)
ok = false;
for k = 1:numel(dimtok)
switch dimtok{k}
case 'chan'
ok = numel(data.label)==1;
otherwise
if isfield(data, dimtok{k}); % check whether field exists
ok = numel(data.(dimtok{k}))==1;
end;
end
if ok,
break;
end
end
end % function check_trailingdimsunitlength
|
github
|
lcnbeapp/beapp-master
|
pinvNx2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/pinvNx2.m
| 1,116 |
utf_8
|
a10c4b3cf66f4a8756fdb95d62b5e04a
|
function y = pinvNx2(x)
% PINVNX2 computes a pseudo-inverse of the slices of an Nx2xM real-valued matrix.
% Output has dimensionality 2xNxM. This implementation is generally faster
% than calling pinv in a for-loop, once M > 2
siz = [size(x) 1];
xtx = zeros([2,2,siz(3:end)]);
xtx(1,1,:,:) = sum(x(:,1,:,:).^2,1);
xtx(2,2,:,:) = sum(x(:,2,:,:).^2,1);
tmp = sum(x(:,1,:,:).*x(:,2,:,:),1);
xtx(1,2,:,:) = tmp;
xtx(2,1,:,:) = tmp;
ixtx = inv2x2(xtx);
y = mtimes2xN(ixtx, permute(x, [2 1 3:ndims(x)]));
function [d] = inv2x2(x)
% INV2X2 computes inverse of matrix x, where x = 2x2xN, using explicit analytic definition
adjx = [x(2,2,:,:) -x(1,2,:,:); -x(2,1,:,:) x(1,1,:,:)];
denom = x(1,1,:,:).*x(2,2,:,:) - x(1,2,:,:).*x(2,1,:,:);
d = adjx./denom([1 1],[1 1],:,:);
function [z] = mtimes2xN(x, y)
% MTIMES2XN computes x*y where x = 2x2xM and y = 2xNxM
% and output dimensionatity is 2xNxM
siz = size(y);
z = zeros(siz);
for k = 1:siz(2)
z(1,k,:,:) = x(1,1,:,:).*y(1,k,:,:) + x(1,2,:,:).*y(2,k,:,:);
z(2,k,:,:) = x(2,1,:,:).*y(1,k,:,:) + x(2,2,:,:).*y(2,k,:,:);
end
|
github
|
lcnbeapp/beapp-master
|
individual2sn.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/individual2sn.m
| 4,944 |
utf_8
|
8972e941e1b5082b8d0c29a8c3f70454
|
function [warped]= individual2sn(P, input)
% INDIVIDUAL2SN warps the input coordinates (defined as Nx3 matrix) from
% individual headspace coordinates into normalised MNI coordinates, using the
% (inverse of the) warp parameters defined in the structure spmparams.
%
% this is code inspired by nutmeg and spm: nut_mri2mni, nut_spm_sn2def and
% nut_spm_invdef which were themselves modified from code originally written
% by John Ashburner:
% http://www.sph.umich.edu/~nichols/JohnsGems2.html
%
% Use as
% [warped] = individual2sn(P, input)
%
% Input parameters:
% P = structure that contains the contents of an spm generated _sn.mat
% file
% input = Nx3 array containing the input positions
% Copyright (C) 2013, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
ft_hastoolbox('spm8up', 1);
% The following is a three-step procedure
% 1: create the spatial deformation field from the sn parameters
[Def, M] = get_sn2def(P);
% 2a: invert the spatial deformation field
[p,f,e] = fileparts(which('spm_invdef'));
templatedirname = fullfile(p,'templates');
d = dir([templatedirname,'/T1*']);
VT = spm_vol(fullfile(templatedirname,d(1).name));
[iy1,iy2,iy3] = spm_invdef(Def{1},Def{2},Def{3},VT.dim(1:3),inv(VT.mat),M);
% 2b: write the deformation fields in x/y/z direction to temporary files
V1.fname = [tempname '.img'];
V1.dim(1:3) = VT.dim(1:3);
V1.pinfo = [1 0 0]';
V1.mat = VT.mat;
V1.dt = [64 0];
V1.descrip = 'Inverse deformation field';
spm_write_vol(V1,iy1);
V2.fname = [tempname '.img'];
V2.dim(1:3) = VT.dim(1:3);
V2.pinfo = [1 0 0]';
V2.mat = VT.mat;
V2.dt = [64 0];
V2.descrip = 'Inverse deformation field';
spm_write_vol(V2,iy2);
V3.fname = [tempname '.img'];
V3.dim(1:3) = VT.dim(1:3);
V3.pinfo = [1 0 0]';
V3.mat = VT.mat;
V3.dt = [64 0];
V3.descrip = 'Inverse deformation field';
spm_write_vol(V3,iy3);
% 3: extract the coordinates
warped = ft_warp_apply(inv(V1.mat), input); % Express as voxel indices
warped = cat(2, spm_sample_vol(V1,warped(:,1),warped(:,2),warped(:,3),1), ...
spm_sample_vol(V2,warped(:,1),warped(:,2),warped(:,3),1), ...
spm_sample_vol(V3,warped(:,1),warped(:,2),warped(:,3),1));
%_______________________________________________________________________
function [Def,mat] = get_sn2def(sn)
% Convert a SPM _sn.mat file into a deformation field, and return it.
% This is code that was taken from SPM8.
dim = sn.VG(1).dim;
x = 1:dim(1);
y = 1:dim(2);
z = 1:dim(3);
mat = sn.VG(1).mat;
[X,Y] = ndgrid(x,y);
st = size(sn.Tr);
if (prod(st) == 0),
affine_only = true;
basX = 0;
basY = 0;
basZ = 0;
else
affine_only = false;
basX = spm_dctmtx(sn.VG(1).dim(1),st(1),x-1);
basY = spm_dctmtx(sn.VG(1).dim(2),st(2),y-1);
basZ = spm_dctmtx(sn.VG(1).dim(3),st(3),z-1);
end,
Def = single(0);
Def(numel(x),numel(y),numel(z)) = 0;
Def = {Def; Def; Def};
for j=1:length(z)
if (~affine_only)
tx = reshape( reshape(sn.Tr(:,:,:,1),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) );
ty = reshape( reshape(sn.Tr(:,:,:,2),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) );
tz = reshape( reshape(sn.Tr(:,:,:,3),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) );
X1 = X + basX*tx*basY';
Y1 = Y + basX*ty*basY';
Z1 = z(j) + basX*tz*basY';
end
Mult = sn.VF.mat*sn.Affine;
if (~affine_only)
X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4);
Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4);
Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4);
else
X2= Mult(1,1)*X + Mult(1,2)*Y + (Mult(1,3)*z(j) + Mult(1,4));
Y2= Mult(2,1)*X + Mult(2,2)*Y + (Mult(2,3)*z(j) + Mult(2,4));
Z2= Mult(3,1)*X + Mult(3,2)*Y + (Mult(3,3)*z(j) + Mult(3,4));
end
Def{1}(:,:,j) = single(X2);
Def{2}(:,:,j) = single(Y2);
Def{3}(:,:,j) = single(Z2);
end;
%_______________________________________________________________________
|
github
|
lcnbeapp/beapp-master
|
ft_platform_supports.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/ft_platform_supports.m
| 9,557 |
utf_8
|
eb0e55d84d57e6873cce8df6cad90d96
|
function tf = ft_platform_supports(what,varargin)
% FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform
% supports a specific capability
%
% Usage:
% tf = ft_platform_supports(what)
% tf = ft_platform_supports('matlabversion', min_version, max_version)
%
% The following values are allowed for the 'what' parameter:
% value means that the following is supported:
%
% 'which-all' which(...,'all')
% 'exists-in-private-directory' exists(...) will look in the /private
% subdirectory to see if a file exists
% 'onCleanup' onCleanup(...)
% 'alim' alim(...)
% 'int32_logical_operations' bitand(a,b) with a, b of type int32
% 'graphics_objects' graphics sysem is object-oriented
% 'libmx_c_interface' libmx is supported through mex in the
% C-language (recent Matlab versions only
% support C++)
% 'stats' all statistical functions in
% FieldTrip's external/stats directory
% 'program_invocation_name' program_invocation_name() (GNU Octave)
% 'singleCompThread' start Matlab with -singleCompThread
% 'nosplash' -nosplash
% 'nodisplay' -nodisplay
% 'nojvm' -nojvm
% 'no-gui' start GNU Octave with --no-gui
% 'RandStream.setGlobalStream' RandStream.setGlobalStream(...)
% 'RandStream.setDefaultStream' RandStream.setDefaultStream(...)
% 'rng' rng(...)
% 'rand-state' rand('state')
% 'urlread-timeout' urlread(..., 'Timeout', t)
% 'griddata-vector-input' griddata(...,...,...,a,b) with a and b
% vectors
% 'griddata-v4' griddata(...,...,...,...,...,'v4'),
% that is v4 interpolation support
% 'uimenu' uimenu(...)
if ~ischar(what)
error('first argument must be a string');
end
switch what
case 'matlabversion'
tf = is_matlab() && matlabversion(varargin{:});
case 'exists-in-private-directory'
tf = is_matlab();
case 'which-all'
tf = is_matlab();
case 'onCleanup'
tf = is_octave() || matlabversion(7.8, Inf);
case 'alim'
tf = is_matlab();
case 'int32_logical_operations'
% earlier version of Matlab don't support bitand (and similar)
% operations on int32
tf = is_octave() || ~matlabversion(-inf, '2012a');
case 'graphics_objects'
% introduced in Matlab 2014b, graphics is handled through objects;
% previous versions use numeric handles
tf = is_matlab() && matlabversion('2014b', Inf);
case 'libmx_c_interface'
% removed after 2013b
tf = matlabversion(-Inf, '2013b');
case 'stats'
root_dir=fileparts(which('ft_defaults'));
external_stats_dir=fullfile(root_dir,'external','stats');
% these files are only used by other functions in the external/stats
% directory
exclude_mfiles={'common_size.m',...
'iscomplex.m',...
'lgamma.m'};
tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles);
case 'program_invocation_name'
% Octave supports program_invocation_name, which returns the path
% of the binary that was run to start Octave
tf = is_octave();
case 'singleCompThread'
tf = is_matlab() && matlabversion(7.8, inf);
case {'nosplash','nodisplay','nojvm'}
% Only on Matlab
tf = is_matlab();
case 'no-gui'
% Only on Octave
tf = is_octave();
case 'RandStream.setDefaultStream'
tf = is_matlab() && matlabversion('2008b', '2011b');
case 'RandStream.setGlobalStream'
tf = is_matlab() && matlabversion('2012a', inf);
case 'randomized_PRNG_on_startup'
tf = is_octave() || ~matlabversion(-Inf,'7.3');
case 'rng'
% recent Matlab versions
tf = is_matlab() && matlabversion('7.12',Inf);
case 'rand-state'
% GNU Octave
tf = is_octave();
case 'urlread-timeout'
tf = is_matlab() && matlabversion('2012b',Inf);
case 'griddata-vector-input'
tf = is_matlab();
case 'griddata-v4'
tf = is_matlab() && matlabversion('2009a',Inf);
case 'uimenu'
tf = is_matlab();
otherwise
error('unsupported value for first argument: %s', what);
end % switch
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_matlab()
tf = ~is_octave();
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_octave()
persistent cached_tf;
if isempty(cached_tf)
cached_tf = logical(exist('OCTAVE_VERSION', 'builtin'));
end
tf = cached_tf;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = has_all_functions_in_dir(in_dir, exclude_mfiles)
% returns true if all functions in in_dir are already provided by the
% platform
m_files=dir(fullfile(in_dir,'*.m'));
n=numel(m_files);
for k=1:n
m_filename=m_files(k).name;
if isempty(which(m_filename)) && ...
isempty(strmatch(m_filename,exclude_mfiles))
tf=false;
return;
end
end
tf=true;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current MATLAB version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion('2009b') % exactly 2009b
% matlabversion('2008b', '2010a') % between two versions
% matlabversion('2008b', Inf) % from a version onwards
% etc.
%
% See also VERSION, VER, VERLESSTHAN
% Copyright (C) 2006, Robert Oostenveld
% Copyright (C) 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this does not change over subsequent calls, making it persistent speeds it up
persistent curVer
if nargin<2
max = min;
end
if isempty(curVer)
curVer = version();
end
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
end % function
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end % function
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end % function
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end % function
|
github
|
lcnbeapp/beapp-master
|
getdimsiz.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/getdimsiz.m
| 2,235 |
utf_8
|
340d495a654f2f6752aa1af7ac915390
|
function dimsiz = getdimsiz(data, field)
% GETDIMSIZ
%
% Use as
% dimsiz = getdimsiz(data, field)
%
% If the length of the vector that is returned is smaller than the
% number of dimensions that you would expect from GETDIMORD, you
% should assume that it has trailing singleton dimensions.
%
% Example use
% dimord = getdimord(datastructure, fieldname);
% dimtok = tokenize(dimord, '_');
% dimsiz = getdimsiz(datastructure, fieldname);
% dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
%
% See also GETDIMORD, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = [];
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % move the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = numel(data.trial);
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % move the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = [];
end
dimsiz = cellmatsize(data.(field));
% add nrpt in case of source.trial
dimsiz = [prefix dimsiz];
end % main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the size of data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = cellmatsize(x)
if iscell(x)
if isempty(x)
siz = 0;
return % nothing else to do
elseif isvector(x)
cellsize = numel(x); % the number of elements in the cell-array
else
cellsize = size(x);
x = x(:); % convert to vector for further size detection
end
[dum, indx] = max(cellfun(@numel, x));
matsize = size(x{indx}); % the size of the content of the cell-array
siz = [cellsize matsize]; % concatenate the two
else
siz = size(x);
end
end % function cellmatsize
|
github
|
lcnbeapp/beapp-master
|
project_elec.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/utilities/private/project_elec.m
| 3,791 |
utf_8
|
61bc3f095e4ced1311048c06823bb037
|
function [el, prj] = project_elec(elc, pnt, tri)
% PROJECT_ELEC projects electrodes on a triangulated surface
% and returns triangle index, la/mu parameters and distance
%
% Use as
% [el, prj] = project_elec(elc, pnt, tri)
% which returns
% el = Nx4 matrix with [tri, la, mu, dist] for each electrode
% prj = Nx3 matrix with the projected electrode position
%
% See also TRANSFER_ELEC
% Copyright (C) 1999-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
Nelc = size(elc,1);
el = zeros(Nelc, 4);
% this is a work-around for http://bugzilla.fcdonders.nl/show_bug.cgi?id=2369
elc = double(elc);
pnt = double(pnt);
tri = double(tri);
for i=1:Nelc
[proj,dist] = ptriprojn(pnt(tri(:,1),:), pnt(tri(:,2),:), pnt(tri(:,3),:), elc(i,:), 1);
[mindist, minindx] = min(abs(dist));
[la, mu] = lmoutr(pnt(tri(minindx,1),:), pnt(tri(minindx,2),:), pnt(tri(minindx,3),:), proj(minindx,:));
smallest_dist = dist(minindx);
smallest_tri = minindx;
smallest_la = la;
smallest_mu = mu;
% the following can be done faster, because the smallest_dist can be
% directly selected
% Ntri = size(tri,1);
% for j=1:Ntri
% %[proj, dist] = ptriproj(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), elc(i,:), 1);
% if dist(j)<smallest_dist
% % remember the triangle index, distance and la/mu
% [la, mu] = lmoutr(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), proj(j,:));
% smallest_dist = dist(j);
% smallest_tri = j;
% smallest_la = la;
% smallest_mu = mu;
% end
% end
% store the projection for this electrode
el(i,:) = [smallest_tri smallest_la smallest_mu smallest_dist];
end
if nargout>1
prj = zeros(size(elc));
for i=1:Nelc
v1 = pnt(tri(el(i,1),1),:);
v2 = pnt(tri(el(i,1),2),:);
v3 = pnt(tri(el(i,1),3),:);
la = el(i,2);
mu = el(i,3);
prj(i,:) = routlm(v1, v2, v3, la, mu);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION this is an alternative implementation that will also work for
% polygons
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function prj = polyproj(elc,pnt)
% projects a point on a plane, e.g. an electrode on a polygon
% pnt is a Nx3 matrix with multiple vertices that span the plane
% these vertices can be slightly off the plane
center = mean(pnt,1);
% shift the vertices to have zero mean
pnt(:,1) = pnt(:,1) - center(1);
pnt(:,2) = pnt(:,2) - center(2);
pnt(:,3) = pnt(:,3) - center(3);
elc(:,1) = elc(:,1) - center(1);
elc(:,2) = elc(:,2) - center(2);
elc(:,3) = elc(:,3) - center(3);
pnt = pnt';
elc = elc';
[u, s, v] = svd(pnt);
% The vertices are assumed to ly in plane, at least reasonably. That means
% that from the three eigenvectors there is one which is very small, i.e.
% the one orthogonal to the plane. Project the electrodes along that
% direction.
u(:,3) = 0;
prj = u * u' * elc;
prj = prj';
prj(:,1) = prj(:,1) + center(1);
prj(:,2) = prj(:,2) + center(2);
prj(:,3) = prj(:,3) + center(3);
|
github
|
lcnbeapp/beapp-master
|
peerslave.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/peer/peerslave.m
| 8,422 |
utf_8
|
196853955545e0384a80090dff57d1e1
|
function peerslave(varargin)
% PEERSLAVE starts the low-level peer services and switches to slave mode.
% Subsequently it will wait untill a job comes in and execute it.
%
% Use as
% peerslave(...)
%
% Optional input arguments should be passed as key-value pairs. The
% following options are available to limit the peer network, i.e. to
% form sub-networks.
% group = string
% allowuser = {...}
% allowgroup = {...}
% allowhost = {...}
% refuseuser = {...}
% refusegroup = {...}
% refusehost = {...}
% The allow options will prevent peers that do not match the requirements
% to be added to the (dynamic) list of known peers. Consequently, these
% options limit which peers know each other. A master will not send jobs
% to peers that it does not know. A slave will not accept jobs from a peer
% that it does not know.
%
% The following options are available to limit the number and duration
% of the jobs that the slave will execute.
% maxnum = number (default = inf)
% maxtime = number (default = inf)
% maxidle = number (default = inf)
%
% The following options are available to limit the available resources
% that available for job execution.
% memavail = number, amount of memory available (default = inf)
% cpuavail = number, speed of the CPU (default = inf)
% timavail = number, maximum duration of a single job (default = inf)
%
% See also PEERMASTER, PEERRESET, PEERFEVAL, PEERCELLFUN
% Undocumented options
% sleep = number in seconds (default = 0.01)
% threads = number, maximum number of threads to use (default = automatic)
% -----------------------------------------------------------------------
% Copyright (C) 2010, Robert Oostenveld
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/
%
% $Id$
% -----------------------------------------------------------------------
if ft_platform_supports('onCleanup')
% switch to zombie when finished or when ctrl-c gets pressed
% the onCleanup function does not exist for older versions
onCleanup(@peerzombie);
end
% get the optional input arguments
maxnum = ft_getopt(varargin, 'maxnum', inf);
maxtime = ft_getopt(varargin, 'maxtime', inf);
maxidle = ft_getopt(varargin, 'maxidle', inf);
sleep = ft_getopt(varargin, 'sleep', 0.01);
memavail = ft_getopt(varargin, 'memavail');
cpuavail = ft_getopt(varargin, 'cpuavail');
timavail = ft_getopt(varargin, 'timavail');
threads = ft_getopt(varargin, 'threads');
group = ft_getopt(varargin, 'group');
allowuser = ft_getopt(varargin, 'allowuser', {});
allowgroup = ft_getopt(varargin, 'allowgroup', {});
allowhost = ft_getopt(varargin, 'allowhost', {});
refuseuser = ft_getopt(varargin, 'refuseuser', {});
refusegroup = ft_getopt(varargin, 'refusegroup', {});
refusehost = ft_getopt(varargin, 'refusehost', {});
if ~isempty(threads) && exist('maxNumCompThreads', 'file')
% this function is only available from MATLAB version 7.5 (R2007b) upward
% and has become deprecated in MATLAB version 7.9 (R2009b)
ws = warning('off', 'MATLAB:maxNumCompThreads:Deprecated');
maxNumCompThreads(threads);
warning(ws);
end
% these should be cell arrays
if ~iscell(allowuser) && ischar(allowuser)
allowuser = {allowuser};
end
if ~iscell(allowgroup) && ischar(allowgroup)
allowgroup = {allowgroup};
end
if ~iscell(allowhost) && ischar(allowhost)
allowhost = {allowhost};
end
if ~iscell(refuseuser) && ischar(refuseuser)
refuseuser = {refuseuser};
end
if ~iscell(refusegroup) && ischar(refusegroup)
refusegroup = {refusegroup};
end
if ~iscell(refusehost) && ischar(refusehost)
refusehost = {refusehost};
end
% this should not be user-configurable
% if ~isempty(user)
% peer('user', user);
% end
% this should not be user-configurable
% if ~isempty(hostname)
% peer('hostname', hostname);
% end
% the group can be specified by the user
if ~isempty(group)
peer('group', group);
end
% switch to idle slave mode
peer('status', 2);
% check the current access restrictions
info = peerinfo;
access = true;
access = access && isequal(info.allowhost, allowhost);
access = access && isequal(info.allowuser, allowuser);
access = access && isequal(info.allowgroup, allowgroup);
access = access && isequal(info.refusehost, refusehost);
access = access && isequal(info.refuseuser, refuseuser);
access = access && isequal(info.refusegroup, refusegroup);
if ~access
% impose the updated access restrictions
peer('allowhost', allowhost);
peer('allowuser', allowuser);
peer('allowgroup', allowgroup);
peer('refusehost', refusehost);
peer('refuseuser', refuseuser);
peer('refusegroup', refusegroup);
end
% check the current status of the maintenance threads
threads = true;
threads = threads && peer('announce', 'status');
threads = threads && peer('discover', 'status');
threads = threads && peer('expire', 'status');
threads = threads && peer('tcpserver', 'status');
% threads = threads && peer('udsserver', 'status');
if ~threads
% start the maintenance threads
ws = warning('off');
peer('announce', 'start');
peer('discover', 'start');
peer('expire', 'start');
peer('tcpserver', 'start');
% peer('udsserver', 'start');
warning(ws);
end
% the available resources will be announced and are used to drop requests that are too large
if ~isempty(memavail), peer('memavail', memavail); end
if ~isempty(cpuavail), peer('cpuavail', cpuavail); end
if ~isempty(timavail), peer('timavail', timavail); end
% keep track of the time and number of jobs
stopwatch = tic;
prevtime = toc(stopwatch);
idlestart = toc(stopwatch);
jobnum = 0;
while true
if (toc(stopwatch)-idlestart) >= maxidle
fprintf('maxidle exceeded, stopping as slave\n');
break;
end
if toc(stopwatch)>=maxtime
fprintf('maxtime exceeded, stopping as slave\n');
break;
end
if jobnum>=maxnum
fprintf('maxnum exceeded, stopping as slave\n');
break;
end
joblist = peer('joblist');
if isempty(joblist)
% wait a little bit and try again
pause(sleep);
% display the time every second
currtime = toc(stopwatch);
if (currtime-prevtime>=10)
prevtime = currtime;
disp(datestr(now));
end
else
% set the status to "busy slave"
peer('status', 3);
% increment the job counter
jobnum = jobnum + 1;
% reset the error and warning messages
lasterr('');
lastwarn('');
% get the last job from the list, which will be the oldest
joblist = joblist(end);
fprintf('executing job %d from %s@%s (jobid=%d, memreq=%d, timreq=%d)\n', jobnum, joblist.user, joblist.hostname, joblist.jobid, joblist.memreq, joblist.timreq);
% get the input arguments and options
[argin, options] = peer('get', joblist.jobid);
% set the options that will be used in the watchdog
% options = {options{:}, 'masterid', joblist.hostid}; % add the masterid as option
% options = {options{:}, 'timavail', 2*(timavail+1)}; % add the timavail as option, empty is ok
% evaluate the job
[argout, options] = peerexec(argin, options);
% write the results back to the master
try
peer('put', joblist.hostid, argout, options, 'jobid', joblist.jobid);
catch
warning('failed to return job results to the master');
end
% remove the job from the tcpserver
peer('clear', joblist.jobid);
% remember when the slave becomes idle
idlestart = toc(stopwatch);
% set the status to "idle slave"
peer('status', 2);
end % isempty(joblist)
end % while true
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION this masks the regular version, this one only updates the status
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function peerzombie
peer('status', 0);
|
github
|
lcnbeapp/beapp-master
|
peercellfun.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/peer/peercellfun.m
| 24,302 |
utf_8
|
3754d5d1bf8da977815e1ebf1080f286
|
function varargout = peercellfun(fname, varargin)
% PEERCELLFUN applies a function to each element of a cell-array. The
% function execution is done in parallel on all avaialble peers.
%
% Use as
% argout = peercellfun(fname, x1, x2, ...)
%
% This function has a number of optional arguments that have to passed
% as key-value pairs at the end of the list of input arguments. All other
% input arguments (including other key-value pairs) will be passed to the
% function to be evaluated.
% UniformOutput = boolean (default = false)
% StopOnError = boolean (default = true)
% RetryOnError = number, number of retries for failed jobs expressed as ratio (default = 0.05)
% MaxBusy = number, amount of slaves allowed to be busy (default = inf)
% diary = string, can be 'always', 'never', 'warning', 'error' (default = 'error')
% timreq = number, initial estimate for the time required to run a single job (default = 3600)
% mintimreq = number, minimum time required to run a single job (default is automatic)
% memreq = number, initial estimate for the memory required to run a single job (default = 2*1024^3)
% minmemreq = number, minimum memory required to run a single job (default is automatic)
% order = string, can be 'random' or 'original' (default = 'random')
%
% Example
% fname = 'power';
% x1 = {1, 2, 3, 4, 5};
% x2 = {2, 2, 2, 2, 2};
% y = peercellfun(fname, x1, x2);
%
% See also PEERMASTER, PEERSLAVE, PEERLIST, PEERINFO, PEERFEVAL, CELLFUN, DFEVAL
% -----------------------------------------------------------------------
% Copyright (C) 2010, Robert Oostenveld
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/
%
% $Id$
% -----------------------------------------------------------------------
if ft_platform_supports('onCleanup')
% switch to zombie when finished or when ctrl-c gets pressed
% the onCleanup function does not exist for older versions
onCleanup(@peerzombie);
end
% locate the begin of the optional key-value arguments
optbeg = find(cellfun(@ischar, varargin));
optarg = varargin(optbeg:end);
% get the optional input arguments
UniformOutput = ft_getopt(optarg, 'UniformOutput', false );
StopOnError = ft_getopt(optarg, 'StopOnError', true );
MaxBusy = ft_getopt(optarg, 'MaxBusy', inf );
RetryOnError = ft_getopt(optarg, 'RetryOnError', 0.050 ); % ratio, fraction of the total jobs
sleep = ft_getopt(optarg, 'sleep', 0.050 ); % time in seconds
diary = ft_getopt(optarg, 'diary', 'error' ); % 'always', 'never', 'warning', 'error'
order = ft_getopt(optarg, 'order', 'random'); % 'random', 'original'
timreq = ft_getopt(optarg, 'timreq', [] );
mintimreq = ft_getopt(optarg, 'mintimreq', [] );
memreq = ft_getopt(optarg, 'memreq', [] ); % see below
minmemreq = ft_getopt(optarg, 'minmemreq', [] ); % see below
if isempty(timreq) && isempty(mintimreq)
% assume an initial job duration of 1 hour
% the time required by the jobs will be estimated and timreq will be auto-adjusted
timreq = 3600;
mintimreq = 0;
elseif isempty(timreq)
% use the specified mimimum as the initial value that a job required
% it will be auto-adjusted to larger values, not to smaller values
timreq = mintimreq;
elseif isempty(mintimreq)
% jobs will be killed by the slave if they take more than 3 times the estimated time at submission
% use the user-supplied initial value, the minimum should not be less than 1/3 of that
mintimreq = timreq/3;
end
if isempty(memreq) && isempty(minmemreq)
% assume an initial memory requirement of 1 GB
% the memory required by the jobs will be estimated and memreq will be auto-adjusted
memreq = 2*1024^3;
minmemreq = 0;
elseif isempty(memreq)
% use the specified mimimum as the initial value that a job required
% it will be auto-adjusted to larger values, not to smaller values
memreq = minmemreq;
elseif isempty(minmemreq)
% jobs will be killed by the slave if they take more than 1.5 times the estimated time at submission
% use the user-supplied initial value, the minimum should not be less than 1/1.5 times that
minmemreq = memreq/1.5;
end
% convert from 'yes'/'no' into boolean value
UniformOutput = istrue(UniformOutput);
% convert from a fraction into an integer number
RetryOnError = floor(RetryOnError * numel(varargin{1}));
% skip the optional key-value arguments
if ~isempty(optbeg)
varargin = varargin(1:(optbeg-1));
end
if isa(fname, 'function_handle')
% convert the function handle back into a string (e.g. @plus should be 'plus')
fname = func2str(fname);
end
% there are potentially errors to catch from the which() function
if isempty(which(fname))
error('Not a valid M-file (%s).', fname);
end
% determine the number of input arguments and the number of jobs
numargin = numel(varargin);
numjob = numel(varargin{1});
% it can be difficult to determine the number of output arguments
try
numargout = nargout(fname);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
nargout_err = lasterror;
if strcmp(nargout_err.identifier, 'MATLAB:narginout:doesNotApply')
% e.g. in case of nargin('plus')
numargout = 1;
else
rethrow(nargout_err);
end
end
if numargout<0
% the nargout function returns -1 in case of a variable number of output arguments
numargout = 1;
elseif numargout>nargout
% the number of output arguments is constrained by the users' call to this function
numargout = nargout;
elseif nargout>numargout
error('Too many output arguments.');
end
% check the input arguments
for i=1:numargin
if ~isa(varargin{i}, 'cell')
error('input argument #%d should be a cell-array', i+1);
end
if numel(varargin{i})~=numjob
error('inconsistent number of elements in input #%d', i+1);
end
end
% check the availability of peer slaves
list = peerlist;
list = list([list.status]==2 | [list.status]==3);
if isempty(list)
warning('there is no peer available as slave, reverting to local cellfun');
% prepare the output arguments
varargout = cell(1,numargout);
% use the standard cellfun
[varargout{:}] = cellfun(str2func(fname), varargin{:}, 'UniformOutput', UniformOutput);
return
end
% prepare some arrays that are used for bookkeeping
jobid = nan(1, numjob);
puttime = nan(1, numjob);
timused = nan(1, numjob);
memused = nan(1, numjob);
submitted = false(1, numjob);
collected = false(1, numjob);
busy = false(1, numjob);
lastseen = inf(1, numjob);
submittime = inf(1, numjob);
collecttime = inf(1, numjob);
resubmitted = []; % this will contain a growing list with structures
% remove any remains from an aborted previous call
joblist = peer('joblist');
for i=1:length(joblist)
peer('clear', joblist(i).jobid);
end
% start the timer
stopwatch = tic;
% these are used for printing feedback on screen
prevnumsubmitted = 0;
prevnumcollected = 0;
prevnumbusy = 0;
prevtimreq = timreq;
prevmemreq = memreq;
if any(collected)
% update the estimate of the time and memory that will be needed for the next job
% note that it cannot be updated if all collected jobs have failed (in case of stoponerror=false)
if ~isempty(nanmax(timused))
timreq = nanmax(timused);
timreq = max(timreq, mintimreq);
memreq = nanmax(memused);
memreq = max(memreq, minmemreq);
end
end
if any(submitted) && any(busy)
% update based on the time already spent on the slowest job
elapsed = toc(stopwatch) - min(submittime(submitted & busy));
timreq = max(timreq, elapsed);
timreq = max(timreq, mintimreq);
end
% determine the initial job order, small numbers are submitted first
if strcmp(order, 'random')
priority = randperm(numjob);
elseif strcmp(order, 'original')
priority = 1:numjob;
else
error('unsupported order');
end
% post all jobs and gather their results
while ~all(submitted) || ~all(collected)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 1: submit the jobs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select all jobs that still need to be submitted
submit = find(~submitted);
if ~isempty(submit) && (sum(submitted)-sum(collected))<MaxBusy
% determine the job to submit, the one with the smallest priority number goes first
[dum, sel] = min(priority(submit));
submit = submit(sel(1));
% redistribute the input arguments
argin = cell(1, numargin);
for j=1:numargin
argin{j} = varargin{j}{submit};
end
% submit the job for execution
ws = warning('off', 'FieldTrip:peer:noSlaveAvailable');
% peerfeval will give a warning if the submission timed out
[curjobid curputtime] = peerfeval(fname, argin{:}, 'timeout', 5, 'memreq', memreq, 'timreq', timreq, 'diary', diary, 'nargout', numargout);
warning(ws);
if ~isempty(curjobid)
% fprintf('submitted job %d\n', submit);
jobid(submit) = curjobid;
puttime(submit) = curputtime;
submitted(submit) = true;
submittime(submit) = toc(stopwatch);
clear curjobid curputtime
% give some feedback
if abs(memreq-prevmemreq)>1000
fprintf('updating memreq to %s\n', print_mem(memreq));
end
% give some feedback
if abs(timreq-prevtimreq)>1
fprintf('updating timreq to %s\n', print_tim(timreq));
end
end
clear argin
end % if ~isempty(submitlist)
% get the list of jobs that are busy
busylist = peerlist('busy');
busy(:) = false;
if ~isempty(busylist)
current = [busylist.current];
[dum, sel] = intersect(jobid, [current.jobid]);
busy(sel) = true; % this indicates that the job execution is currently busy
lastseen(sel) = toc(stopwatch); % keep track of when the job was seen the last time
end
if sum(collected)>prevnumcollected || sum(busy)~=prevnumbusy
% give an update of the progress
fprintf('submitted %d/%d, collected %d/%d, busy %d, speedup %.1f\n', sum(submitted), numel(submitted), sum(collected), numel(collected), sum(busy), nansum(timused(collected))/toc(stopwatch));
end
prevnumsubmitted = sum(submitted);
prevnumcollected = sum(collected);
prevnumbusy = sum(busy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 2: collect the job results that have finished sofar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get the list of job results
joblist = peer('joblist');
% get the output of all jobs that have finished
for i=1:numel(joblist)
% figure out to which job these results belong
collect = find(jobid == joblist(i).jobid);
if isempty(collect) && ~isempty(resubmitted)
% it might be that these results are from a previously resubmitted job
collect = [resubmitted([resubmitted.jobid] == joblist(i).jobid).jobnum];
if ~isempty(collect) && ~collected(collect)
% forget the resubmitted job, take these results instead
warning('the original job %d did return, reverting to its original results', collect);
end
end
if isempty(collect)
% this job is not interesting to collect, probably it reflects some junk
% from a previous call or a failed resubmission
peer('clear', joblist(i).jobid);
continue;
end
if collected(collect)
% this job is the result of a resubmission, where the original result did return
peer('clear', joblist(i).jobid);
continue;
end
% collect the output arguments
try
ws = warning('Off','Backtrace');
[argout, options] = peerget(joblist(i).jobid, 'timeout', inf, 'output', 'cell', 'diary', diary, 'StopOnError', StopOnError);
warning(ws);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
peerget_err = lasterror;
% the peerslave command line executable itself can return a number of errors
% 1) could not start the MATLAB engine
% 2) failed to execute the job (argin)
% 3) failed to execute the job (optin)
% 4) failed to execute the job (eval)
% 5) failed to execute the job (argout)
% 6) failed to execute the job (optout)
% 7) failed to execute the job
% errors 1-3 are not the users fault and happen prior to execution, therefore they should always result in a resubmission
if ~isempty(strfind(peerget_err.message, 'could not start the MATLAB engine')) || ...
~isempty(strfind(peerget_err.message, 'failed to execute the job (argin)')) || ...
~isempty(strfind(peerget_err.message, 'failed to execute the job (optin)'))
% this is due to a license problem or a memory problem
if ~isempty(strfind(peerget_err.message, 'could not start the MATLAB engine'))
warning('resubmitting job %d because the MATLAB engine could not get a license', collect);
end
% reset all job information, this will cause it to be automatically resubmitted
jobid (collect) = nan;
puttime (collect) = nan;
timused (collect) = nan;
memused (collect) = nan;
submitted (collect) = false;
collected (collect) = false;
busy (collect) = false;
lastseen (collect) = inf;
submittime (collect) = inf;
collecttime(collect) = inf;
continue
else
% the returned error is more serious and requires the users attention
if RetryOnError>0
% dercease the counter for the remaining retries
RetryOnError = RetryOnError - 1;
% give the user some information
fprintf('an error was detected during the execution of job %d\n', collect);
fprintf('??? %s\n', peerget_err.message);
fprintf('resubmitting the failed job (%d retries remaining)\n', RetryOnError);
% reset all job information, this will cause it to be automatically resubmitted
jobid (collect) = nan;
puttime (collect) = nan;
timused (collect) = nan;
memused (collect) = nan;
submitted (collect) = false;
collected (collect) = false;
busy (collect) = false;
lastseen (collect) = inf;
submittime (collect) = inf;
collecttime(collect) = inf;
continue
else
fprintf('an error was detected during the execution of job %d\n', collect);
rethrow(peerget_err);
end
end
end
% fprintf('collected job %d\n', collect);
collected(collect) = true;
collecttime(collect) = toc(stopwatch);
% redistribute the output arguments
for j=1:numargout
varargout{j}{collect} = argout{j};
end
% gather the job statistics
% these are empty in case an error happened during remote evaluation, therefore the default value of NaN is specified
timused(collect) = ft_getopt(options, 'timused', nan);
memused(collect) = ft_getopt(options, 'memused', nan);
end % for joblist
prevtimreq = timreq;
prevmemreq = memreq;
if any(collected)
% update the estimate of the time and memory that will be needed for the next job
% note that it cannot be updated if all collected jobs have failed (in case of stoponerror=false)
if ~isempty(nanmax(timused))
timreq = nanmax(timused);
timreq = max(timreq, mintimreq);
memreq = nanmax(memused);
memreq = max(memreq, minmemreq);
end
end
if any(submitted) && any(busy)
% update based on the time already spent on the slowest job
elapsed = toc(stopwatch) - min(submittime(submitted & busy));
timreq = max(timreq, elapsed);
timreq = max(timreq, mintimreq);
end
% get the list of jobs that are busy
busylist = peerlist('busy');
busy(:) = false;
if ~isempty(busylist)
current = [busylist.current];
[dum, sel] = intersect(jobid, [current.jobid]);
busy(sel) = true; % this indicates that the job execution is currently busy
lastseen(sel) = toc(stopwatch); % keep track of when the job was seen the last time
end
if sum(collected)>prevnumcollected || sum(busy)~=prevnumbusy
% give an update of the progress
fprintf('submitted %d/%d, collected %d/%d, busy %d, speedup %.1f\n', sum(submitted), numel(submitted), sum(collected), numel(collected), sum(busy), nansum(timused(collected))/toc(stopwatch));
end
prevnumsubmitted = sum(submitted);
prevnumcollected = sum(collected);
prevnumbusy = sum(busy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 3: flag jobs that take too long for resubmission
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this is only a warning, no action is taken here
% sel = find((toc(stopwatch)-lastseen)>60);
% for i=1:length(sel)
% warning('job %d has not been seen for 60 seconds\n', sel(i));
% end
% search for jobs that were submitted but that are still not busy after 60 seconds
% this happens if the peerslave is not able to get a MATLAB license
elapsed = toc(stopwatch) - submittime;
elapsed(~submitted) = 0;
elapsed(collected) = 0;
elapsed(~isinf(lastseen)) = 0; % once started there is no reason to resubmit "because it takes too long to get started"
sel = find(elapsed>60);
for i=1:length(sel)
warning('resubmitting job %d because it takes too long to get started', sel(i));
% remember the job that will be resubmitted, it still might return its results
resubmitted(end+1).jobnum = sel(i);
resubmitted(end ).jobid = jobid(sel(i));
resubmitted(end ).time = toc(stopwatch);
resubmitted(end ).reason = 'startup';
% reset all job information, this will cause it to be automatically resubmitted
jobid (sel(i)) = nan;
puttime (sel(i)) = nan;
timused (sel(i)) = nan;
memused (sel(i)) = nan;
submitted (sel(i)) = false;
collected (sel(i)) = false;
busy (sel(i)) = false;
lastseen (sel(i)) = inf;
submittime (sel(i)) = inf;
collecttime(sel(i)) = inf;
% increase the priority number, the resubmission should as late as possible
% to increase the chance of the original job returning its results
priority(sel(i)) = max(priority)+1;
end
% search for jobs that take too long to return their results
% use an estimate of the time it requires a job to complete
% assume that it will not take more than 3x the required time
% this is also what is used by the peerslave to kill the job
estimated = 3*timreq;
% add some time to allow the MATLAB engine to start
estimated = estimated + 60;
% test whether one of the submitted jobs should be resubmitted
elapsed = toc(stopwatch) - submittime;
sel = find(submitted & ~collected & (elapsed>estimated));
for i=1:length(sel)
warning('resubmitting job %d because it takes too long to finish (estimated = %s)', sel(i), print_tim(estimated));
% remember the job that will be resubmitted, it still might return its results
resubmitted(end+1).jobnum = sel(i);
resubmitted(end ).jobid = jobid(sel(i));
resubmitted(end ).time = toc(stopwatch);
resubmitted(end ).reason = 'duration';
% reset all job information, this will cause it to be automatically resubmitted
jobid (sel(i)) = nan;
puttime (sel(i)) = nan;
timused (sel(i)) = nan;
memused (sel(i)) = nan;
submitted (sel(i)) = false;
collected (sel(i)) = false;
busy (sel(i)) = false;
lastseen (sel(i)) = inf;
submittime (sel(i)) = inf;
collecttime(sel(i)) = inf;
% increase the priority number, the resubmission should as late as possible
% to increase the chance of the original job returning its results
priority(sel(i)) = max(priority)+1;
end
if all(submitted)
% wait a little bit, then try again to submit or collect a job
pause(sleep);
end
% get the list of jobs that are busy
busylist = peerlist('busy');
busy(:) = false;
if ~isempty(busylist)
current = [busylist.current];
[dum, sel] = intersect(jobid, [current.jobid]);
busy(sel) = true; % this indicates that the job execution is currently busy
lastseen(sel) = toc(stopwatch); % keep track of when the job was seen the last time
end
if sum(collected)>prevnumcollected || sum(busy)~=prevnumbusy
% give an update of the progress
fprintf('submitted %d/%d, collected %d/%d, busy %d, speedup %.1f\n', sum(submitted), numel(submitted), sum(collected), numel(collected), sum(busy), nansum(timused(collected))/toc(stopwatch));
end
prevnumsubmitted = sum(submitted);
prevnumcollected = sum(collected);
prevnumbusy = sum(busy);
end % while not all jobs have finished
if numargout>0 && UniformOutput
% check whether the output can be converted to a uniform one
for i=1:numel(varargout)
for j=1:numel(varargout{i})
if numel(varargout{i}{j})~=1
% this error message is consistent with the one from cellfun
error('Non-scalar in Uniform output, at index %d, output %d. Set ''UniformOutput'' to false.', j, i);
end
end
end
% convert the output to a uniform one
for i=1:numargout
varargout{i} = [varargout{i}{:}];
end
end
% ensure the output to have the same size/dimensions as the input
for i=1:numargout
varargout{i} = reshape(varargout{i}, size(varargin{1}));
end
% compare the time used inside this function with the total execution time
fprintf('computational time = %.1f sec, elapsed = %.1f sec, speedup %.1f x (memreq = %s, timreq = %s)\n', nansum(timused), toc(stopwatch), nansum(timused)/toc(stopwatch), print_mem(memreq), print_tim(timreq));
if all(puttime>timused)
% FIXME this could be detected in the loop above, and the strategy could automatically
% be adjusted from using the peers to local execution
warning('copying the jobs over the network took more time than their execution');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION this masks the regular version, this one only updates the status
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function peerzombie
peer('status', 0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmax(x)
y = max(x(~isnan(x(:))));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmin(x)
y = min(x(~isnan(x(:))));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmean(x)
x = x(~isnan(x(:)));
y = mean(x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanstd(x)
x = x(~isnan(x(:)));
y = std(x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nansum(x)
x = x(~isnan(x(:)));
y = sum(x);
|
github
|
lcnbeapp/beapp-master
|
print_mem.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/peer/private/print_mem.m
| 432 |
utf_8
|
2aec5a412cc63c6c38e768ddba2bf30c
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for pretty-printing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = print_mem(val)
if val<1024
str = sprintf('%d bytes', val);
elseif val<1024^2
str = sprintf('%.1f KB', val/1024);
elseif val<1024^3
str = sprintf('%.1f MB', val/1024^2);
else
str = sprintf('%.1f GB', val/1024^3);
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.