plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
lcnbeapp/beapp-master
|
ft_platform_supports.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/peer/private/ft_platform_supports.m
| 9,557 |
utf_8
|
eb0e55d84d57e6873cce8df6cad90d96
|
function tf = ft_platform_supports(what,varargin)
% FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform
% supports a specific capability
%
% Usage:
% tf = ft_platform_supports(what)
% tf = ft_platform_supports('matlabversion', min_version, max_version)
%
% The following values are allowed for the 'what' parameter:
% value means that the following is supported:
%
% 'which-all' which(...,'all')
% 'exists-in-private-directory' exists(...) will look in the /private
% subdirectory to see if a file exists
% 'onCleanup' onCleanup(...)
% 'alim' alim(...)
% 'int32_logical_operations' bitand(a,b) with a, b of type int32
% 'graphics_objects' graphics sysem is object-oriented
% 'libmx_c_interface' libmx is supported through mex in the
% C-language (recent Matlab versions only
% support C++)
% 'stats' all statistical functions in
% FieldTrip's external/stats directory
% 'program_invocation_name' program_invocation_name() (GNU Octave)
% 'singleCompThread' start Matlab with -singleCompThread
% 'nosplash' -nosplash
% 'nodisplay' -nodisplay
% 'nojvm' -nojvm
% 'no-gui' start GNU Octave with --no-gui
% 'RandStream.setGlobalStream' RandStream.setGlobalStream(...)
% 'RandStream.setDefaultStream' RandStream.setDefaultStream(...)
% 'rng' rng(...)
% 'rand-state' rand('state')
% 'urlread-timeout' urlread(..., 'Timeout', t)
% 'griddata-vector-input' griddata(...,...,...,a,b) with a and b
% vectors
% 'griddata-v4' griddata(...,...,...,...,...,'v4'),
% that is v4 interpolation support
% 'uimenu' uimenu(...)
if ~ischar(what)
error('first argument must be a string');
end
switch what
case 'matlabversion'
tf = is_matlab() && matlabversion(varargin{:});
case 'exists-in-private-directory'
tf = is_matlab();
case 'which-all'
tf = is_matlab();
case 'onCleanup'
tf = is_octave() || matlabversion(7.8, Inf);
case 'alim'
tf = is_matlab();
case 'int32_logical_operations'
% earlier version of Matlab don't support bitand (and similar)
% operations on int32
tf = is_octave() || ~matlabversion(-inf, '2012a');
case 'graphics_objects'
% introduced in Matlab 2014b, graphics is handled through objects;
% previous versions use numeric handles
tf = is_matlab() && matlabversion('2014b', Inf);
case 'libmx_c_interface'
% removed after 2013b
tf = matlabversion(-Inf, '2013b');
case 'stats'
root_dir=fileparts(which('ft_defaults'));
external_stats_dir=fullfile(root_dir,'external','stats');
% these files are only used by other functions in the external/stats
% directory
exclude_mfiles={'common_size.m',...
'iscomplex.m',...
'lgamma.m'};
tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles);
case 'program_invocation_name'
% Octave supports program_invocation_name, which returns the path
% of the binary that was run to start Octave
tf = is_octave();
case 'singleCompThread'
tf = is_matlab() && matlabversion(7.8, inf);
case {'nosplash','nodisplay','nojvm'}
% Only on Matlab
tf = is_matlab();
case 'no-gui'
% Only on Octave
tf = is_octave();
case 'RandStream.setDefaultStream'
tf = is_matlab() && matlabversion('2008b', '2011b');
case 'RandStream.setGlobalStream'
tf = is_matlab() && matlabversion('2012a', inf);
case 'randomized_PRNG_on_startup'
tf = is_octave() || ~matlabversion(-Inf,'7.3');
case 'rng'
% recent Matlab versions
tf = is_matlab() && matlabversion('7.12',Inf);
case 'rand-state'
% GNU Octave
tf = is_octave();
case 'urlread-timeout'
tf = is_matlab() && matlabversion('2012b',Inf);
case 'griddata-vector-input'
tf = is_matlab();
case 'griddata-v4'
tf = is_matlab() && matlabversion('2009a',Inf);
case 'uimenu'
tf = is_matlab();
otherwise
error('unsupported value for first argument: %s', what);
end % switch
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_matlab()
tf = ~is_octave();
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_octave()
persistent cached_tf;
if isempty(cached_tf)
cached_tf = logical(exist('OCTAVE_VERSION', 'builtin'));
end
tf = cached_tf;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = has_all_functions_in_dir(in_dir, exclude_mfiles)
% returns true if all functions in in_dir are already provided by the
% platform
m_files=dir(fullfile(in_dir,'*.m'));
n=numel(m_files);
for k=1:n
m_filename=m_files(k).name;
if isempty(which(m_filename)) && ...
isempty(strmatch(m_filename,exclude_mfiles))
tf=false;
return;
end
end
tf=true;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current MATLAB version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion('2009b') % exactly 2009b
% matlabversion('2008b', '2010a') % between two versions
% matlabversion('2008b', Inf) % from a version onwards
% etc.
%
% See also VERSION, VER, VERLESSTHAN
% Copyright (C) 2006, Robert Oostenveld
% Copyright (C) 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this does not change over subsequent calls, making it persistent speeds it up
persistent curVer
if nargin<2
max = min;
end
if isempty(curVer)
curVer = version();
end
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
end % function
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end % function
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end % function
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end % function
|
github
|
lcnbeapp/beapp-master
|
ft_plot_sens.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_plot_sens.m
| 12,664 |
utf_8
|
2fa8bf27fb2d400b192ebf7e24e2a1bb
|
function hs = ft_plot_sens(sens, varargin)
% FT_PLOT_SENS plots the position of all channels or coils that comprise the EEG or
% MEG sensor array description
%
% Use as
% ft_plot_sens(sens, ...)
% where the first argument is the sensor array as returned by FT_READ_SENS or
% by FT_PREPARE_VOL_SENS.
%
% Optional input arguments should come in key-value pairs and can include
% 'chantype' = string or cell-array with strings, for example 'meg' (default = 'all')
% 'unit' = string, convert the data to the specified geometrical units (default = [])
% 'label' = show the label, can be 'off', 'label', 'number' (default = 'off')
% 'coil' = true/false, plot each individual coil (default = false)
% 'orientation' = true/false, plot a line for the orientation of each coil (default = false)
%
% The following option only applies when individual coils are being plotted
% 'coilsize' = diameter or edge length of the coils (default is automatic)
% 'coilshape' = 'point', 'circle' or 'square' (default is automatic)
% 'facecolor' = [r g b] values or string, for example 'brain', 'cortex', 'skin', 'black', 'red', 'r', or an Nx1 array where N is the number of faces (default = 'none')
% 'edgecolor' = [r g b] values or string, for example 'brain', 'cortex', 'skin', 'black', 'red', 'r' (default = 'k')
% 'facealpha' = transparency, between 0 and 1 (default = 1)
% 'edgealpha' = transparency, between 0 and 1 (default = 1)
%
% The following option only applies when individual coils are NOT being plotted
% 'style' = plotting style for the points representing the channels, see plot3 (default = 'k.')
%
% Example
% sens = ft_read_sens('Subject01.ds');
% ft_plot_sens(sens, 'style', 'r*')
%
% See also FT_READ_SENS, FT_DATATYPE_SENS, FT_PLOT_HEADSHAPE, FT_PREPARE_VOL_SENS
% Copyright (C) 2009-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
ws = warning('on', 'MATLAB:divideByZero');
% ensure that the sensor description is up-to-date (Aug 2011)
sens = ft_datatype_sens(sens);
% get the optional input arguments
label = ft_getopt(varargin, 'label', 'off');
chantype = ft_getopt(varargin, 'chantype');
unit = ft_getopt(varargin, 'unit');
orientation = ft_getopt(varargin, 'orientation', false);
% this is for MEG magnetometer and/or gradiometer arrays
coil = ft_getopt(varargin, 'coil', false);
coilsize = ft_getopt(varargin, 'coilsize'); % default depends on the input, see below
coilshape = ft_getopt(varargin, 'coilshape'); % default depends on the input, see below
% this is simply passed to plot3
style = ft_getopt(varargin, 'style', 'k.');
% this is simply passed to ft_plot_mesh
edgecolor = ft_getopt(varargin, 'edgecolor', 'k');
facecolor = ft_getopt(varargin, 'facecolor', 'none');
facealpha = ft_getopt(varargin, 'facealpha', 1);
edgealpha = ft_getopt(varargin, 'edgealpha', 1);
if ischar(chantype)
% should be a cell array
chantype = {chantype};
end
if ~isempty(ft_getopt(varargin, 'coilorientation'))
% for backward compatibility, added on 17 Aug 2016
warning('the coilorientation option is deprecated, please use orientation instead')
orientation = ft_getopt(varargin, 'coilorientation');
end
if ~isempty(ft_getopt(varargin, 'coildiameter'))
% for backward compatibility, added on 6 July 2016
% the size is the diameter for a circle, or the edge length for a square
warning('the coildiameter option is deprecated, please use coilsize instead')
coilsize = ft_getopt(varargin, 'coilsize');
end
if ~isempty(unit)
% convert the sensor description to the specified units
sens = ft_convert_units(sens, unit);
end
if isempty(coilshape)
if ft_senstype(sens, 'neuromag')
if strcmp(chantype, 'megmag')
coilshape = 'point'; % these cannot be plotted as squares
else
coilshape = 'square';
end
elseif ft_senstype(sens, 'meg')
coilshape = 'circle';
else
coilshape = 'point';
end
end
if isempty(coilsize)
switch ft_senstype(sens)
case 'neuromag306'
coilsize = 30; % FIXME this is only an estimate
case 'neuromag122'
coilsize = 35; % FIXME this is only an estimate
case 'ctf151'
coilsize = 15; % FIXME this is only an estimate
case 'ctf275'
coilsize = 15; % FIXME this is only an estimate
otherwise
coilsize = 10;
end
% convert from mm to the units of the sensor array
coilsize = coilsize/ft_scalingfactor(sens.unit, 'mm');
end
% select a subset of channels and coils to be plotted
if ~isempty(chantype)
% remove the balancing from the sensor definition, e.g. 3rd order gradients, PCA-cleaned data or ICA projections
sens = undobalancing(sens);
chansel = match_str(sens.chantype, chantype);
% remove the channels that are not selected
sens.label = sens.label(chansel);
sens.chanpos = sens.chanpos(chansel,:);
sens.chantype = sens.chantype(chansel);
sens.chanunit = sens.chanunit(chansel);
if isfield(sens, 'chanori')
% this is only present for MEG sensor descriptions
sens.chanori = sens.chanori(chansel,:);
end
% remove the magnetometer and gradiometer coils that are not in one of the selected channels
if isfield(sens, 'tra') && isfield(sens, 'coilpos')
sens.tra = sens.tra(chansel,:);
coilsel = any(sens.tra~=0,1);
sens.coilpos = sens.coilpos(coilsel,:);
sens.coilori = sens.coilori(coilsel,:);
sens.tra = sens.tra(:,coilsel);
end
% FIXME note that I have not tested this on any complicated electrode definitions
% remove the electrodes that are not in one of the selected channels
if isfield(sens, 'tra') && isfield(sens, 'elecpos')
sens.tra = sens.tra(chansel,:);
elecsel = any(sens.tra~=0,1);
sens.elecpos = sens.elecpos(elecsel,:);
sens.tra = sens.tra(:,elecsel);
end
end % selecting channels and coils
% everything is added to the current figure
holdflag = ishold;
if ~holdflag
hold on
end
if istrue(orientation)
if istrue(coil)
if isfield(sens, 'coilori')
pos = sens.coilpos;
ori = sens.coilori;
elseif isfield(sens, 'elecori')
pos = sens.elecpos;
ori = sens.elecori;
else
pos = [];
ori = [];
end
else
if isfield(sens, 'chanori')
pos = sens.chanpos;
ori = sens.chanori;
else
pos = [];
ori = [];
end
end
scale = ft_scalingfactor('mm', sens.unit)*20; % draw a line segment of 20 mm
for i=1:size(pos,1)
x = [pos(i,1) pos(i,1)+ori(i,1)*scale];
y = [pos(i,2) pos(i,2)+ori(i,2)*scale];
z = [pos(i,3) pos(i,3)+ori(i,3)*scale];
line(x, y, z)
end
end
% determine the rotation-around-the-axis of each sensor
% only applicable for neuromag planar gradiometers
if ft_senstype(sens, 'neuromag')
[nchan, ncoil] = size(sens.tra);
chandir = nan(nchan,3);
for i=1:nchan
poscoil = find(sens.tra(i,:)>0);
negcoil = find(sens.tra(i,:)<0);
if numel(poscoil)==1 && numel(negcoil)==1
% planar gradiometer
direction = sens.coilpos(poscoil,:)-sens.coilpos(negcoil,:);
direction = direction/norm(direction);
chandir(i,:) = direction;
elseif (numel([poscoil negcoil]))==1
% magnetometer
elseif numel(poscoil)>1 || numel(negcoil)>1
error('cannot work with balanced gradiometer definition')
end
end
end
if istrue(coil)
% simply get the position of all coils or electrodes
if isfield(sens, 'coilpos')
pos = sens.coilpos;
elseif isfield(sens, 'elecpos')
pos = sens.elecpos;
end
if isfield(sens, 'coilori')
ori = sens.coilori;
elseif isfield(sens, 'elecori')
ori = sens.elecori;
else
ori = [];
end
else
% determine the position of each channel, which is for example the mean of
% two bipolar electrodes, or the bottom coil of a axial gradiometer, or
% the center between two coils of a planar gradiometer
if isfield(sens, 'chanpos')
pos = sens.chanpos;
else
pos = [];
end
if isfield(sens, 'chanori')
ori = sens.chanori;
else
ori = [];
end
end % if istrue(coil)
switch coilshape
case 'point'
hs = plot3(pos(:,1), pos(:,2), pos(:,3), style);
case 'circle'
plotcoil(pos, ori, [], coilsize, coilshape, 'edgecolor', edgecolor, 'facecolor', facecolor, 'edgealpha', edgealpha, 'facealpha', facealpha);
case 'square'
plotcoil(pos, ori, chandir, coilsize, coilshape, 'edgecolor', edgecolor, 'facecolor', facecolor, 'edgealpha', edgealpha, 'facealpha', facealpha);
otherwise
error('incorrect coilshape');
end % switch
if ~isempty(label) && ~any(strcmp(label, {'off', 'no'}))
for i=1:length(sens.label)
switch label
case {'on', 'yes'}
str = sens.label{i};
case {'label' 'labels'}
str = sens.label{i};
case {'number' 'numbers'}
str = num2str(i);
otherwise
error('unsupported value for option ''label''');
end % switch
text(sens.chanpos(i,1), sens.chanpos(i,2), sens.chanpos(i,3), str);
end % for
end % if empty or off/no
axis vis3d
axis equal
if ~nargout
clear hs
end
if ~holdflag
hold off
end
warning(ws); % revert to original state
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION all optional inputs are passed to ft_plot_mesh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'%%%%%%%%%%%%%%%%%%
function plotcoil(coilpos, coilori, chandir, coilsize, coilshape, varargin)
% start with a single template coil at [0 0 0], oriented towards [0 0 1]
switch coilshape
case 'circle'
pos = circle(24);
case 'square'
pos = square;
end
ncoil = size(coilpos,1);
npos = size(pos,1);
mesh.pos = nan(ncoil*npos,3);
mesh.poly = nan(ncoil,npos);
% determine the scaling of the coil as homogenous transformation matrix
s = scale([coilsize coilsize coilsize]);
for i=1:ncoil
x = coilori(i,1);
y = coilori(i,2);
z = coilori(i,3);
ph = atan2(y, x)*180/pi;
th = atan2(sqrt(x^2+y^2), z)*180/pi;
% determine the rotation and translation of the coil as homogenous transformation matrix
r1 = rotate([0 th 0]);
r2 = rotate([0 0 ph]);
t = translate(coilpos(i,:));
% determine the initial rotation of the coil as homogenous transformation matrix
if isempty(chandir)
% none of the coils needs to be rotated around their axis, this applies to circular coils
r0 = eye(4);
elseif ~all(isfinite(chandir(i,:)))
% the rotation around the axis of this coil is not known
r0 = nan(4);
else
% express the direction of sensitivity of the planar channel relative to the orientation of the channel
dir = ft_warp_apply(inv(r2*r1), chandir(i,:));
x = dir(1);
y = dir(2);
% determine the rotation
rh = atan2(y, x)*180/pi;
r0 = rotate([0 0 rh]);
end
% construct a single mesh with separate polygons for all coils
sel = ((i-1)*npos+1):(i*npos);
mesh.pos(sel,:) = ft_warp_apply(t*r2*r1*r0*s, pos); % scale, rotate and translate the template coil vertices, skip the central vertex
mesh.poly(i,:) = sel; % this is a polygon connecting all edge points
end
% plot all polygons together
ft_plot_mesh(mesh, varargin{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION return a circle with unit diameter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pos] = circle(n)
phi = linspace(0, 2*pi, n+1)';
x = cos(phi);
y = sin(phi);
z = zeros(size(phi));
pos = [x y z]/2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION return a square with unit edges
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pos] = square
pos = [
0.5 0.5 0
-0.5 0.5 0
-0.5 -0.5 0
0.5 -0.5 0
0.5 0.5 0 % this closes the square
];
|
github
|
lcnbeapp/beapp-master
|
ft_plot_montage.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_plot_montage.m
| 6,988 |
utf_8
|
4a804759bff8cad4c6b860a900990b77
|
function ft_plot_montage(dat, varargin)
% FT_PLOT_MONTAGE makes a montage of a 3-D array by selecting slices at
% regular distances and combining them in one large 2-D image.
%
% Use as
% ft_plot_montage(dat, ...)
% where dat is a 3-D array.
%
% Additional options should be specified in key-value pairs and can be
% 'transform' = 4x4 homogeneous transformation matrix specifying the mapping from voxel space to the coordinate system in which the data are plotted.
% 'location' = 1x3 vector specifying a point on the plane which will be plotted the coordinates are expressed in the coordinate system in which the data will be plotted. location defines the origin of the plane
% 'orientation' = 1x3 vector specifying the direction orthogonal through the plane which will be plotted (default = [0 0 1])
% 'srange' =
% 'slicesize' =
% 'nslice' = scalar, number of slices
%
% See also FT_PLOT_ORTHO, FT_PLOT_SLICE, FT_SOURCEPLOT
% undocumented, these are passed on to FT_PLOT_SLICE
% 'intersectmesh' = triangulated mesh through which the intersection of the plane will be plotted (e.g. cortical sheet)
% 'intersectcolor' = color for the intersection
% Copyrights (C) 2012, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
transform = ft_getopt(varargin, 'transform', eye(4));
loc = ft_getopt(varargin, 'location');
ori = ft_getopt(varargin, 'orientation');
srange = ft_getopt(varargin, 'slicerange');
slicesize = ft_getopt(varargin, 'slicesize');
nslice = ft_getopt(varargin, 'nslice');
backgroundcolor = ft_getopt(varargin, 'backgroundcolor', [0 0 0]);
% the intersectmesh and intersectcolor options are passed on to FT_PLOT_SLICE
dointersect = ~isempty(ft_getopt(varargin, 'intersectmesh')) || ~isempty(ft_getopt(varargin, 'plotmarker'));
% set the location if empty
if isempty(loc) && (isempty(transform) || all(all(transform-eye(4)==0)==1))
% go to the middle of the volume if the data seem to be in voxel coordinates
loc = size(dat)./2;
elseif isempty(loc)
% otherwise take the origin of the coordinate system
loc = [0 0 0];
end
% check compatibility of inputs
if size(loc, 1) == 1 && isempty(nslice)
nslice = 20;
elseif size(loc, 1) == 1 && ~isempty(nslice)
% this is not a problem, slice spacing will be determined
elseif size(loc, 1) > 1 && isempty(nslice)
% this is not a problem, number of slices is determined by loc
nslice = size(loc, 1);
elseif size(loc, 1) > 1 && ~isempty(nslice)
if size(loc, 1) ~= nslice
error('you should either specify a set of locations or a single location with a number of slices');
end
end
% set the orientation if empty
if isempty(ori),
ori = [0 0 1];
end
% ensure the ori to have unit norm
for k = 1:size(ori,1)
ori(k,:) = ori(k,:)./norm(ori(k,:));
end
% determine the slice range
if size(loc, 1) == 1 && nslice > 1,
if isempty(srange) || (ischar(srange) && strcmp(srange, 'auto'))
srange = [-50 70];
else
end
loc = repmat(loc, [nslice 1]) + linspace(srange(1),srange(2),nslice)'*ori;
end
% ensure that the ori has the same size as the loc
if size(ori,1)==1 && size(loc,1)>1,
ori = repmat(ori, size(loc,1), 1);
end
div = [ceil(sqrt(nslice)) ceil(sqrt(nslice))];
optarg = varargin;
corners = [inf -inf inf -inf inf -inf]; % get the corners for the axis specification
for k = 1:nslice
% define 'x' and 'y' axis in projection plane, the definition of x and y is more or less arbitrary
[x, y] = projplane(ori(k,:)); % z = ori
% get the transformation matrix to project onto the xy-plane
T = [x(:) y(:) ori(k,:)' loc(k,:)'; 0 0 0 1];
optarg = ft_setopt(optarg, 'location', loc(k,:));
optarg = ft_setopt(optarg, 'orientation', ori(k,:));
ix = mod(k-1, div(1));
iy = floor((k-1)/div(1));
h(k) = ft_plot_slice(dat, optarg{:}); % FIXME is it safe to pass all optinoal inputs?
xtmp = get(h(k), 'xdata');
ytmp = get(h(k), 'ydata');
ztmp = get(h(k), 'zdata');
siz = size(xtmp);
if k==1 && isempty(slicesize)
slicesize = siz;
end
% project the positions onto the xy-plane
pos = [xtmp(:) ytmp(:) ztmp(:)];
pos = ft_warp_apply(inv(T), pos);
xtmp = reshape(pos(:,1), siz);
ytmp = reshape(pos(:,2), siz);
ztmp = reshape(pos(:,3), siz);
% add some offset in the x and y directions to create the montage
offset(1) = iy*(slicesize(1)-1);
offset(2) = ix*(slicesize(2)-1);
% update the specification of the corners of the montage plot
if ~isempty(xtmp)
c1 = offset(1) + min(xtmp(:));
c2 = offset(1) + max(xtmp(:));
c3 = offset(2) + min(ytmp(:));
c4 = offset(2) + max(ytmp(:));
c5 = min(ztmp(:));
c6 = max(ztmp(:));
end
corners = [min(corners(1),c1) max(corners(2),c2) min(corners(3),c3) max(corners(4),c4) min(corners(5),c5) max(corners(6),c6)];
% update the positions
set(h(k), 'ydata', offset(1) + xtmp);
set(h(k), 'xdata', offset(2) + ytmp);
set(h(k), 'zdata', 0 * ztmp);
if dointersect,
if ~exist('pprevious', 'var'), pprevious = []; end
p = setdiff(findobj(gcf, 'type', 'patch'), pprevious);
for kk = 1:numel(p)
xtmp = get(p(kk), 'xdata');
ytmp = get(p(kk), 'ydata');
ztmp = get(p(kk), 'zdata');
siz2 = size(xtmp);
pos = [xtmp(:) ytmp(:) ztmp(:)];
pos = ft_warp_apply(inv(T), pos);
xtmp = reshape(pos(:,1), siz2);
ytmp = reshape(pos(:,2), siz2);
ztmp = reshape(pos(:,3), siz2);
% update the positions
set(p(kk), 'ydata', offset(1) + xtmp);
set(p(kk), 'xdata', offset(2) + ytmp);
set(p(kk), 'zdata', 0.0001 * ztmp);
end
pprevious = [pprevious(:);p(:)];
end
% drawnow; %this statement slows down the process big time on some file
%systems. I don't know what's going on there, but the statement is not
%really necessary, so commented out.
end
set(gcf, 'color', backgroundcolor);
set(gca, 'zlim', [0 1]);
%axis equal;
axis off;
view([0 90]);
axis(corners([3 4 1 2]));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, y] = projplane(z)
[u, s, v] = svd([eye(3) z(:)]);
x = u(:, 2)';
y = u(:, 3)';
|
github
|
lcnbeapp/beapp-master
|
ft_select_point.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_select_point.m
| 3,409 |
utf_8
|
dce9dd259e854da9fb1630782705e4ff
|
function [selected] = ft_select_point(pos, varargin)
% FT_SELECT_POINT helper function for selecting a one or multiple points in the
% current figure using the mouse. It returns a list of the [x y] coordinates of the
% selected points.
%
% Use as
% [selected] = ft_select_point(pos, ...)
%
% Optional input arguments should come in key-value pairs and can include
% 'multiple' = true/false, make multiple selections, pressing "q" on the keyboard finalizes the selection (default = false)
% 'nearest' = true/false (default = true)
%
% Example
% pos = randn(10,2);
% figure
% plot(pos(:,1), pos(:,2), '.')
% ft_select_point(pos)
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% get optional input arguments
nearest = ft_getopt(varargin, 'nearest', true);
multiple = ft_getopt(varargin, 'multiple', false);
% ensure that it is boolean
nearest = istrue(nearest);
multiple = istrue(multiple);
if multiple
fprintf('select multiple points by clicking in the figure, press "q" if you are done\n');
end
x = [];
y = [];
done = false;
selected = zeros(0,3);
% ensure that "q" is not the current character, which happens if you reuse the same figure
set(gcf, 'CurrentCharacter', 'x')
while ~done
k = waitforbuttonpress;
point = get(gca,'CurrentPoint'); % button down detected
key = get(gcf,'CurrentCharacter'); % which key was pressed (if any)?
if strcmp(key, 'q')
% we are done with the clicking
done = true;
else
% add the current point
x(end+1) = point(1,1);
y(end+1) = point(1,2);
end
if ~multiple
done = true;
end
end
if nearest && ~isempty(pos)
% determine the points that are the nearest to the displayed points
selected = [];
% compute the distance between the points to get an estimate of the tolerance
dp = dist(pos');
dp = triu(dp, 1);
dp = dp(:);
dp = dp(dp>0);
% allow for some tolerance in the clicking
dp = median(dp);
tolerance = 0.3*dp;
for i=1:length(x)
% compute the distance between the clicked position and all points
dx = pos(:,1) - x(i);
dy = pos(:,2) - y(i);
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<tolerance
selected(end+1,:) = pos(i,:);
end
end
else
selected = [x(:) y(:)];
end % if nearest
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function serves as a replacement for the dist function in the Neural
% Networks toolbox.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [d] = dist(x)
n = size(x,2);
d = zeros(n,n);
for i=1:n
for j=(i+1):n
d(i,j) = sqrt(sum((x(:,i)-x(:,j)).^2));
d(j,i) = d(i,j);
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_plot_slice.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_plot_slice.m
| 15,682 |
utf_8
|
f036338d1094cbb7ff4a6ba748e8d3db
|
function [h, T2] = ft_plot_slice(dat, varargin)
% FT_PLOT_SLICE cuts a 2-D slice from a 3-D volume and interpolates if needed
%
% Use as
% ft_plot_slice(dat, ...)
% ft_plot_slice(dat, mask, ...)
% where dat and mask are equal-sized 3-D arrays.
%
% Additional options should be specified in key-value pairs and can be
% 'transform' = 4x4 homogeneous transformation matrix specifying the mapping from
% voxel coordinates to the coordinate system in which the data are plotted.
% 'location' = 1x3 vector specifying a point on the plane which will be plotted
% the coordinates are expressed in the coordinate system in which the
% data will be plotted. location defines the origin of the plane
% 'orientation' = 1x3 vector specifying the direction orthogonal through the plane
% which will be plotted (default = [0 0 1])
% 'unit' = string, can be 'm', 'cm' or 'mm (default is automatic)
% 'resolution' = number (default = 1 mm)
% 'datmask' = 3D-matrix with the same size as the data matrix, serving as opacitymap
% If the second input argument to the function contains a matrix, this
% will be used as the mask
% 'opacitylim' = 1x2 vector specifying the limits for opacity masking
% 'interpmethod' = string specifying the method for the interpolation, see INTERPN (default = 'nearest')
% 'style' = string, 'flat' or '3D'
% 'colormap' = string, see COLORMAP
% 'clim' = 1x2 vector specifying the min and max for the colorscale
%
% See also FT_PLOT_ORTHO, FT_PLOT_MONTAGE, FT_SOURCEPLOT
% undocumented
% 'intersectmesh' = triangulated mesh through which the intersection of the plane will be plotted (e.g. cortical sheet)
% 'intersectcolor' = color for the intersection
% 'plotmarker' = Nx3 matrix with points to be plotted as markers, e.g. dipole positions
% Copyrights (C) 2010-2014, Jan-Mathijs Schoffelen
% Copyrights (C) 2014, Robert Oostenveld and Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
persistent dim X Y Z
if isequal(dim, size(dat))
% reuse the persistent variables to speed up subsequent calls with the same input
else
dim = size(dat);
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
end
% parse first input argument(s). it is either
% (dat, varargin)
% (dat, msk, varargin)
% (dat, [], varargin)
if numel(varargin)>0 && (isempty(varargin{1}) || isnumeric(varargin{1}) || islogical(varargin{1}))
msk = varargin{1};
varargin = varargin(2:end);
end
% get the optional input arguments
transform = ft_getopt(varargin, 'transform', eye(4));
loc = ft_getopt(varargin, 'location');
ori = ft_getopt(varargin, 'orientation', [0 0 1]);
unit = ft_getopt(varargin, 'unit'); % the default will be determined further down
resolution = ft_getopt(varargin, 'resolution'); % the default depends on the units and will be determined further down
mask = ft_getopt(varargin, 'datmask');
opacitylim = ft_getopt(varargin, 'opacitylim');
interpmethod = ft_getopt(varargin, 'interpmethod', 'nearest');
cmap = ft_getopt(varargin, 'colormap');
clim = ft_getopt(varargin, 'clim');
doscale = ft_getopt(varargin, 'doscale', true); % only scale when necessary (time consuming), i.e. when plotting as grayscale image & when the values are not between 0 and 1
h = ft_getopt(varargin, 'surfhandle', []);
mesh = ft_getopt(varargin, 'intersectmesh');
intersectcolor = ft_getopt(varargin, 'intersectcolor', 'yrgbmyrgbm');
intersectlinewidth = ft_getopt(varargin, 'intersectlinewidth', 2);
intersectlinestyle = ft_getopt(varargin, 'intersectlinestyle');
plotmarker = ft_getopt(varargin, 'plotmarker');
markersize = ft_getopt(varargin, 'markersize', 'auto');
markercolor = ft_getopt(varargin, 'markercolor', 'w');
% convert from yes/no/true/false/0/1 into a proper boolean
doscale = istrue(doscale);
if ~isa(dat, 'double')
dat = cast(dat, 'double');
end
if exist('msk', 'var') && isempty(mask)
ft_warning('using the second input argument as mask rather than the one from the varargin list');
mask = msk; clear msk;
end
% normalise the orientation vector to one
ori = ori./sqrt(sum(ori.^2));
% set the default location
if isempty(loc) && (isempty(transform) || isequal(transform, eye(4)))
loc = (dim+1)./2;
elseif isempty(loc)
loc = [0 0 0];
end
% shift the location to be along the orientation vector
loc = ori*dot(loc,ori);
% it should be a cell-array
if isstruct(mesh)
tmp = mesh;
mesh = cell(size(tmp));
for i=1:numel(tmp)
mesh{i} = tmp(i);
end
elseif iscell(mesh)
% do nothing
else
mesh = {};
end
% replace pnt by pos
for k = 1:numel(mesh)
mesh{k} = fixpos(mesh{k});
end
dointersect = ~isempty(mesh);
if dointersect
for k = 1:numel(mesh)
if ~isfield(mesh{k}, 'pos') || ~isfield(mesh{k}, 'tri')
% error('the mesh should be a structure with pos and tri');
mesh{k}.pos = [];
mesh{k}.tri = [];
end
end
end
% check whether the mask is ok
domask = ~isempty(mask);
if domask
if ~isequal(size(dat), size(mask))
error('the mask data should have the same dimensions as the functional data');
end
end
% determine the voxel center
% voxel_center_vc = [X(:) Y(:) Z(:)];
% voxel_center_hc = ft_warp_apply(transform, voxel_center_vc);
% determine the edges, i.e. the corner points of each voxel
% [Xe, Ye, Ze] = ndgrid(0:dim(1), 0:dim(2), 0:dim(3));
% Xe = Xe+0.5;
% Ye = Ye+0.5;
% Ze = Ze+0.5;
% voxel_edge_vc = [Xe(:) Ye(:) Ze(:)];
% voxel_edge_hc = ft_warp_apply(transform, voxel_edge_vc);
% determine the corner points of the box encompassing the whole data block
% extend the box with half a voxel in all directions to get the outer edge
corner_vc = [
0.5 0.5 0.5
0.5+dim(1) 0.5 0.5
0.5+dim(1) 0.5+dim(2) 0.5
0.5 0.5+dim(2) 0.5
0.5 0.5 0.5+dim(3)
0.5+dim(1) 0.5 0.5+dim(3)
0.5+dim(1) 0.5+dim(2) 0.5+dim(3)
0.5 0.5+dim(2) 0.5+dim(3)
];
corner_hc = ft_warp_apply(transform, corner_vc);
if isempty(unit)
if ~isequal(transform, eye(4))
% estimate the geometrical units we are dealing with
unit = ft_estimate_units(norm(range(corner_hc)));
else
% units are in voxels, these are assumed to be close to mm
unit = 'mm';
end
end
if isempty(resolution)
% the default resolution is 1 mm
resolution = ft_scalingfactor('mm', unit);
end
% determine whether interpolation is needed
dointerp = false;
dointerp = dointerp || sum(sum(transform-eye(4)))~=0;
dointerp = dointerp || ~all(round(loc)==loc);
dointerp = dointerp || sum(ori)~=1;
dointerp = dointerp || ~(resolution==round(resolution));
% determine the caller function and toggle dointerp to true, if ft_plot_slice has been called from ft_plot_montage
% this is necessary for the correct allocation of the persistent variables
st = dbstack;
if ~dointerp && numel(st)>1 && strcmp(st(2).name, 'ft_plot_montage'), dointerp = true; end
% define 'x' and 'y' axis in projection plane, the definition of x and y is more or less arbitrary
[x, y] = projplane(ori);
% z = ori;
% project the corner points onto the projection plane
corner_pc = zeros(size(corner_hc));
for i=1:8
corner = corner_hc(i, :) - loc(:)';
corner_pc(i,1) = dot(corner, x);
corner_pc(i,2) = dot(corner, y);
corner_pc(i,3) = 0;
end
% get the transformation matrix from the projection plane to head coordinates
T2 = [x(:) y(:) ori(:) loc(:); 0 0 0 1];
% get the transformation matrix from projection plane to voxel coordinates
T3 = transform\T2;
min_corner_pc = min(corner_pc, [], 1);
max_corner_pc = max(corner_pc, [], 1);
% round the bounding box limits to the nearest mm
switch unit
case 'm'
min_corner_pc = ceil(min_corner_pc*100)/100;
max_corner_pc = floor(max_corner_pc*100)/100;
case 'cm'
min_corner_pc = ceil(min_corner_pc*10)/10;
max_corner_pc = floor(max_corner_pc*10)/10;
case 'mm'
min_corner_pc = ceil(min_corner_pc);
max_corner_pc = floor(max_corner_pc);
end
% determine a grid of points in the projection plane
xplane = min_corner_pc(1):resolution:max_corner_pc(1);
yplane = min_corner_pc(2):resolution:max_corner_pc(2);
zplane = 0;
[Xi, Yi, Zi] = ndgrid(xplane, yplane, zplane);
siz = size(squeeze(Xi));
interp_center_pc = [Xi(:) Yi(:) Zi(:)];
% interp_center_hc = ft_warp_apply(T2, interp_center_pc);
% get the positions of the points in the projection plane in voxel coordinates
interp_center_vc = ft_warp_apply(T3, interp_center_pc);
Xi = reshape(interp_center_vc(:, 1), siz);
Yi = reshape(interp_center_vc(:, 2), siz);
Zi = reshape(interp_center_vc(:, 3), siz);
if isequal(transform, eye(4)) && isequal(interpmethod, 'nearest') && all(isinteger(Xi(:))) && all(isinteger(Yi(:))) && all(isinteger(Zi(:)))
% simply look up the values
V = dat(sub2ind(dim, Xi(:), Yi(:), Zi(:)));
V = reshape(V, siz);
else
V = interpn(X, Y, Z, dat, Xi, Yi, Zi, interpmethod);
end
if all(isnan(V(:)))
% the projection plane lies completely outside the box spanned by the data
else
% trim the edges of the projection plane
[sel1, sel2] = tight(V);
V = V (sel1,sel2);
Xi = Xi(sel1,sel2);
Yi = Yi(sel1,sel2);
Zi = Zi(sel1,sel2);
end
if domask,
Vmask = interpn(X, Y, Z, mask, Xi, Yi, Zi, interpmethod);
end
interp_center_vc = [Xi(:) Yi(:) Zi(:)]; clear Xi Yi Zi
interp_center_pc = ft_warp_apply(inv(T3), interp_center_vc);
% determine a grid of points in the projection plane
% this reconstruction is needed since the edges may have been trimmed off
xplane = min(interp_center_pc(:, 1)):resolution:max(interp_center_pc(:, 1));
yplane = min(interp_center_pc(:, 2)):resolution:max(interp_center_pc(:, 2));
zplane = 0;
[Xi, Yi, Zi] = ndgrid(xplane, yplane, zplane); % 2D cartesian grid of projection plane in plane voxels
siz = size(squeeze(Xi));
% extend with one voxel along dim 1
Xi = cat(1, Xi, Xi(end,:)+mean(diff(Xi,[],1),1));
Yi = cat(1, Yi, Yi(end,:)+mean(diff(Yi,[],1),1));
Zi = cat(1, Zi, Zi(end,:)+mean(diff(Zi,[],1),1));
% extend with one voxel along dim 2
Xi = cat(2, Xi, Xi(:,end)+mean(diff(Xi,[],2),2));
Yi = cat(2, Yi, Yi(:,end)+mean(diff(Yi,[],2),2));
Zi = cat(2, Zi, Zi(:,end)+mean(diff(Zi,[],2),2));
% shift with half a voxel along dim 1 and 2
Xi = Xi-0.5*resolution;
Yi = Yi-0.5*resolution;
% Zi = Zi; % do not shift along this direction
interp_edge_pc = [Xi(:) Yi(:) Zi(:)]; clear Xi Yi Zi
interp_edge_hc = ft_warp_apply(T2, interp_edge_pc);
if false
% plot all objects in head coordinates
ft_plot_mesh(voxel_center_hc, 'vertexmarker', 'o')
ft_plot_mesh(voxel_edge_hc, 'vertexmarker', '+')
ft_plot_mesh(corner_hc, 'vertexmarker', '*')
ft_plot_mesh(interp_center_hc, 'vertexmarker', 'o', 'vertexcolor', 'r')
ft_plot_mesh(interp_edge_hc, 'vertexmarker', '+', 'vertexcolor', 'r')
axis on
grid on
xlabel('x')
ylabel('y')
zlabel('z')
end
if isempty(cmap),
% treat as gray value: scale and convert to rgb
if doscale
dmin = min(dat(:));
dmax = max(dat(:));
V = (V-dmin)./(dmax-dmin);
clear dmin dmax
end
V(isnan(V)) = 0;
% deal with clim for RGB data here, where the purpose is to increase the
% contrast range, rather than shift the average grey value
if ~isempty(clim)
V = (V-clim(1))./clim(2);
V(V>1)=1;
end
% convert into RGB values, e.g. for the plotting of anatomy
V = cat(3, V, V, V);
end
% get positions of the voxels in the interpolation plane in head coordinates
Xh = reshape(interp_edge_hc(:,1), siz+1);
Yh = reshape(interp_edge_hc(:,2), siz+1);
Zh = reshape(interp_edge_hc(:,3), siz+1);
if isempty(h),
% create surface object
h = surface(Xh, Yh, Zh, V);
set(h, 'linestyle', 'none');
else
% update the colordata in the surface object
set(h, 'Cdata', V);
set(h, 'Xdata', Xh);
set(h, 'Ydata', Yh);
set(h, 'Zdata', Zh);
end
if domask,
if islogical(Vmask), Vmask = double(Vmask); end
set(h, 'FaceColor', 'texture');
set(h, 'FaceAlpha', 'texturemap'); %flat
set(h, 'AlphaDataMapping', 'scaled');
set(h, 'AlphaData', Vmask);
if ~isempty(opacitylim)
alim(opacitylim)
end
end
if dointersect
% determine three points on the plane
inplane = eye(3) - (eye(3) * ori') * ori;
v1 = loc + inplane(1,:);
v2 = loc + inplane(2,:);
v3 = loc + inplane(3,:);
for k = 1:numel(mesh)
[xmesh, ymesh, zmesh] = intersect_plane(mesh{k}.pos, mesh{k}.tri, v1, v2, v3);
% draw each individual line segment of the intersection
if ~isempty(xmesh),
p = patch(xmesh', ymesh', zmesh', nan(1, size(xmesh,1)));
if ~isempty(intersectcolor), set(p, 'EdgeColor', intersectcolor(k)); end
if ~isempty(intersectlinewidth), set(p, 'LineWidth', intersectlinewidth); end
if ~isempty(intersectlinestyle), set(p, 'LineStyle', intersectlinestyle); end
end
end
end
if ~isempty(cmap)
colormap(cmap);
if ~isempty(clim)
caxis(clim);
end
end
if ~isempty(plotmarker)
% determine three points on the plane
inplane = eye(3) - (eye(3) * ori') * ori;
v1 = loc + inplane(1,:);
v2 = loc + inplane(2,:);
v3 = loc + inplane(3,:);
pr = nan(size(plotmarker,1), 3);
d = nan(size(plotmarker,1), 1);
for k = 1:size(plotmarker,1)
[pr(k,:), d(k,:)] = ptriprojn(v1, v2, v3, plotmarker(k,:));
end
sel = d<eps*1e8;
if sum(sel)>0
ft_plot_dipole(pr(sel,:), repmat([0;0;1], 1, size(pr,1)), 'length', 0, 'color', markercolor, 'diameter', markersize);
end
end
% update the axes to ensure that the whole volume fits
ax = [min(corner_hc) max(corner_hc)];
axis(ax([1 4 2 5 3 6])); % reorder into [xmin xmax ymin ymaz zmin zmax]
st = dbstack;
if numel(st)>1
% ft_plot_slice has been called from another function
% assume the remainder of the axis settings to be handled there
else
set(gca,'xlim',[min(Xh(:))-0.5*resolution max(Xh(:))+0.5*resolution]);
set(gca,'ylim',[min(Yh(:))-0.5*resolution max(Yh(:))+0.5*resolution]);
set(gca,'zlim',[min(Zh(:))-0.5*resolution max(Zh(:))+0.5*resolution]);
set(gca,'dataaspectratio',[1 1 1]);
% axis equal; % this for some reason does not work robustly when drawing intersections, replaced by the above
axis vis3d
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, y] = projplane(z)
[u, s, v] = svd([eye(3) z(:)]);
x = u(:, 2)';
y = u(:, 3)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [sel1, sel2] = tight(V)
% make a selection to cut off the nans at the edges
sel1 = sum(~isfinite(V), 2)<size(V, 2);
sel2 = sum(~isfinite(V), 1)<size(V, 1);
|
github
|
lcnbeapp/beapp-master
|
ft_select_range.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_select_range.m
| 14,189 |
utf_8
|
302ad7dece8f9e09963ca038ce060824
|
function ft_select_range(handle, eventdata, varargin)
% FT_SELECT_RANGE is a helper function that can be used as callback function
% in a figure. It allows the user to select a horizontal or a vertical
% range, or one or multiple boxes.
%
% The callback function (and it's arguments) specified in callback is called
% on a left-click inside a selection, or using the right-click context-menu.
% The callback function will have as its first-to-last input argument the range of
% all selections. The last input argument is either empty, or, when using the context
% menu, a label of the item clicked.
% Context menus are shown as the labels presented in the input. When activated,
% the callback function is called, with the last input argument being the label of
% the selection option.
%
% Input arguments:
% 'event' = string, event used as hook.
% 'callback' = function handle or cell-array containing function handle and additional input arguments
% 'contextmenu' = cell-array containing labels shown in right-click menu
% 'multiple' = boolean, allowing multiple selection boxes or not
% 'xrange' = boolean, xrange variable or not
% 'yrange' = boolean, yrange variable or not
% 'clear' = boolean
%
% Example
% x = randn(10,1);
% y = randn(10,1);
% figure; plot(x, y, '.');
%
% The following example allows multiple horizontal and vertical selections to be made
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'event', 'WindowButtonDownFcn', 'multiple', true, 'callback', @disp});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'event', 'WindowButtonMotionFcn', 'multiple', true, 'callback', @disp});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'event', 'WindowButtonUpFcn', 'multiple', true, 'callback', @disp});
%
% The following example allows a single horizontal selection to be made
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'event', 'WindowButtonDownFcn', 'multiple', false, 'xrange', true, 'yrange', false, 'callback', @disp});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'event', 'WindowButtonMotionFcn', 'multiple', false, 'xrange', true, 'yrange', false, 'callback', @disp});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'event', 'WindowButtonUpFcn', 'multiple', false, 'xrange', true, 'yrange', false, 'callback', @disp});
%
% The following example allows a single point to be selected
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'event', 'WindowButtonDownFcn', 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'event', 'WindowButtonMotionFcn', 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'event', 'WindowButtonUpFcn', 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp});
% Copyright (C) 2009-2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% get the optional arguments
event = ft_getopt(varargin, 'event');
callback = ft_getopt(varargin, 'callback');
multiple = ft_getopt(varargin, 'multiple', false);
xrange = ft_getopt(varargin, 'xrange', true);
yrange = ft_getopt(varargin, 'yrange', true);
clear = ft_getopt(varargin, 'clear', false);
contextmenu = ft_getopt(varargin, 'contextmenu'); % this will be displayed following a right mouse click
% convert 'yes/no' string to boolean value
multiple = istrue(multiple);
xrange = istrue(xrange);
yrange = istrue(yrange);
clear = istrue(clear);
% get the figure handle, dependent on MATLAB version
if ft_platform_supports('graphics_objects')
while ~isa(handle, 'matlab.ui.Figure')
handle = p;
p = get(handle, 'parent');
end
else
p = handle;
while ~isequal(p, 0)
handle = p;
p = get(handle, 'parent');
end
end
if ishandle(handle)
userData = getappdata(handle, 'select_range_m');
else
userData = [];
end
if isempty(userData)
userData.range = []; % this is a Nx4 matrix with the selection range
userData.box = []; % this is a Nx1 vector with the line handle
end
p = get(gca, 'CurrentPoint');
p = p(1,1:2);
abc = axis;
xLim = abc(1:2);
yLim = abc(3:4);
% limit cursor coordinates
if p(1)<xLim(1), p(1)=xLim(1); end;
if p(1)>xLim(2), p(1)=xLim(2); end;
if p(2)<yLim(1), p(2)=yLim(1); end;
if p(2)>yLim(2), p(2)=yLim(2); end;
% determine whether the user is currently making a selection
selecting = numel(userData.range)>0 && any(isnan(userData.range(end,:)));
pointonly = ~xrange && ~yrange;
if pointonly && multiple
warning('multiple selections are not possible for a point');
multiple = false;
end
% setup contextmenu
if ~isempty(contextmenu)
if isempty(get(handle,'uicontextmenu'))
hcmenu = uicontextmenu;
hcmenuopt = nan(1,numel(contextmenu));
for icmenu = 1:numel(contextmenu)
hcmenuopt(icmenu) = uimenu(hcmenu, 'label', contextmenu{icmenu}, 'callback', {@evalcontextcallback, callback{:}, []}); % empty matrix is placeholder, will be updated to userdata.range
end
end
if ~exist('hcmenuopt','var')
hcmenuopt = get(get(handle,'uicontextmenu'),'children'); % uimenu handles, used for switchen on/off and updating
end
% setting associations for all clickable objects
% this out to be pretty fast, if this is still to slow in some cases, the code below has to be reused
if ~exist('hcmenu','var')
hcmenu = get(handle,'uicontextmenu');
end
set(findobj(handle,'hittest','on'), 'uicontextmenu',hcmenu);
% to be used if above is too slow
% associations only done once. this might be an issue in some cases, cause when a redraw is performed in the original figure (e.g. databrowser), a specific assocations are lost (lines/patches/text)
% set(get(handle,'children'),'uicontextmenu',hcmenu);
% set(findobj(handle,'type','text'), 'uicontextmenu',hcmenu);
% set(findobj(handle,'type','patch'),'uicontextmenu',hcmenu);
% set(findobj(handle,'type','line'), 'uicontextmenu',hcmenu); % fixme: add other often used object types that ft_select_range is called upon
end
% get last-used-mouse-button
lastmousebttn = get(gcf,'selectiontype');
switch lower(event)
case lower('WindowButtonDownFcn')
switch lastmousebttn
case 'normal' % left click
if inSelection(p, userData.range)
% the user has clicked in one of the existing selections
evalCallback(callback, userData.range);
if clear
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
set(handle, 'Pointer', 'crosshair');
if ~isempty(contextmenu) && ~pointonly
set(hcmenuopt,'enable','off')
end
end
else
if ~multiple
% start with a new selection
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
end
% add a new selection range
userData.range(end+1,1:4) = nan;
userData.range(end,1) = p(1);
userData.range(end,3) = p(2);
% add a new selection box
xData = [nan nan nan nan nan];
yData = [nan nan nan nan nan];
userData.box(end+1) = line(xData, yData);
end
end
case lower('WindowButtonUpFcn')
switch lastmousebttn
case 'normal' % left click
if selecting
% select the other corner of the box
userData.range(end,2) = p(1);
userData.range(end,4) = p(2);
end
if multiple && ~isempty(userData.range) && ~diff(userData.range(end,1:2)) && ~diff(userData.range(end,3:4))
% start with a new selection
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
end
if ~isempty(userData.range)
% ensure that the selection is sane
if diff(userData.range(end,1:2))<0
userData.range(end,1:2) = userData.range(end,[2 1]);
end
if diff(userData.range(end,3:4))<0
userData.range(end,3:4) = userData.range(end,[4 3]);
end
if pointonly
% only select a single point
userData.range(end,2) = userData.range(end,1);
userData.range(end,4) = userData.range(end,3);
elseif ~xrange
% only select along the y-axis
userData.range(end,1:2) = [-inf inf];
elseif ~yrange
% only select along the x-axis
userData.range(end,3:4) = [-inf inf];
end
% update contextmenu callbacks
if ~isempty(contextmenu)
updateContextCallback(hcmenuopt, callback, userData.range)
end
end
if pointonly && ~multiple
evalCallback(callback, userData.range);
if clear
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
set(handle, 'Pointer', 'crosshair');
end
end
end
case lower('WindowButtonMotionFcn')
if selecting && ~pointonly
% update the selection box
if xrange
x1 = userData.range(end,1);
x2 = p(1);
else
x1 = xLim(1);
x2 = xLim(2);
end
if yrange
y1 = userData.range(end,3);
y2 = p(2);
else
y1 = yLim(1);
y2 = yLim(2);
end
xData = [x1 x2 x2 x1 x1];
yData = [y1 y1 y2 y2 y1];
set(userData.box(end), 'xData', xData);
set(userData.box(end), 'yData', yData);
set(userData.box(end), 'Color', [0 0 0]);
%set(userData.box(end), 'EraseMode', 'xor');
set(userData.box(end), 'LineStyle', '--');
set(userData.box(end), 'LineWidth', 1.5);
set(userData.box(end), 'Visible', 'on');
else
% update the cursor
if inSelection(p, userData.range)
set(handle, 'Pointer', 'hand');
if ~isempty(contextmenu)
set(hcmenuopt,'enable','on')
end
else
set(handle, 'Pointer', 'crosshair');
if ~isempty(contextmenu)
set(hcmenuopt,'enable','off')
end
end
end
otherwise
error('unexpected event "%s"', event);
end % switch event
% put the modified selections back into the figure
if ishandle(handle)
setappdata(handle, 'select_range_m', userData);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function retval = inSelection(p, range)
if isempty(range)
retval = false;
else
retval = (p(1)>=range(:,1) & p(1)<=range(:,2) & p(2)>=range(:,3) & p(2)<=range(:,4));
retval = any(retval);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function evalCallback(callback, val)
% no context menu item was clicked, set to empty
cmenulab = [];
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, funargs{:}, val, cmenulab);
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, val);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function updateContextCallback(hcmenuopt, callback, val)
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
callback = {funhandle, funargs{:}, val};
else
% the callback only specifies a function
funhandle = callback;
callback = {funhandle, val};
end
for icmenu = 1:numel(hcmenuopt)
set(hcmenuopt(icmenu),'callback',{@evalcontextcallback, callback{:}})
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function evalcontextcallback(hcmenuopt, eventdata, varargin)
% delete selection box if present
% get parent (uimenu -> uicontextmenu -> parent)
parent = get(get(hcmenuopt,'parent'),'parent'); % fixme: isn't the parent handle always input provided in the callback?
userData = getappdata(parent, 'select_range_m');
if ishandle(userData.box)
if any(~isnan([get(userData.box,'ydata') get(userData.box,'xdata')]))
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
set(parent, 'Pointer', 'crosshair');
setappdata(parent, 'select_range_m', userData);
end
end
% get contextmenu name
cmenulab = get(hcmenuopt,'label');
if numel(varargin)>1
% the callback specifies a function and additional arguments
funhandle = varargin{1};
funargs = varargin(2:end);
feval(funhandle, funargs{:}, cmenulab);
else
% the callback only specifies a function
funhandle = varargin{1};
feval(funhandle, val, cmenulab);
end
|
github
|
lcnbeapp/beapp-master
|
ft_plot_axes.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_plot_axes.m
| 5,531 |
utf_8
|
2d76425ace6d8a6d80c3d90c26650c78
|
function ft_plot_axes(object, varargin)
% FT_PLOT_AXES adds three axes of 150 mm and a 10 mm sphere at the origin to the
% present 3-D figure. The axes and sphere are scaled according to the units of the
% geometrical object that is passed to this function. Furthermore, when possible,
% the axes labels will represent the aanatomical labels corresponding to the
% specified coordinate system.
%
% Use as
% ft_plot_axes(object)
%
% Additional optional input arguments should be specified as key-value pairs
% and can include
% axisscale = scaling factor for the reference axes and sphere (default = 1)
% fontcolor = string (default = 'y')
%
% See also FT_PLOT_SENS, FT_PLOT_MESH, FT_PLOT_ORTHO, FT_PLOT_HEADSHAPE, FT_PLOT_DIPOLE, FT_PLOT_VOL
% Copyright (C) 2015, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
axisscale = ft_getopt(varargin, 'axisscale', 1); % this is used to scale the axmax and rbol
fontcolor = ft_getopt(varargin, 'fontcolor', 'y'); % default is yellow
if isfield(object, 'unit')
unit = object.unit;
else
warning('units are not known, not plotting axes')
return
end
if isfield(object, 'coordsys')
coordsys = object.coordsys;
else
% this is not a problem per see
coordsys = 'unknown';
end
axmax = 150 * ft_scalingfactor('mm', unit);
rbol = 5 * ft_scalingfactor('mm', unit);
% this is useful if the anatomy is from a non-human primate or rodent
axmax = axisscale*axmax;
rbol = axisscale*rbol;
fprintf('The axes are %g %s long in each direction\n', axmax, unit);
fprintf('The diameter of the sphere at the origin is %g %s\n', 2*rbol, unit);
% get the xyz-axes
xdat = [-axmax 0 0; axmax 0 0];
ydat = [0 -axmax 0; 0 axmax 0];
zdat = [0 0 -axmax; 0 0 axmax];
% get the xyz-axes dotted
xdatdot = (-axmax:(axmax/15):axmax);
xdatdot = xdatdot(1:floor(numel(xdatdot)/2)*2);
xdatdot = reshape(xdatdot, [2 numel(xdatdot)/2]);
n = size(xdatdot,2);
ydatdot = [zeros(2,n) xdatdot zeros(2,n)];
zdatdot = [zeros(2,2*n) xdatdot];
xdatdot = [xdatdot zeros(2,2*n)];
prevhold = ishold;
hold on
% plot axes
hl = line(xdat, ydat, zdat);
set(hl(1), 'linewidth', 1, 'color', 'r');
set(hl(2), 'linewidth', 1, 'color', 'g');
set(hl(3), 'linewidth', 1, 'color', 'b');
hld = line(xdatdot, ydatdot, zdatdot);
for k = 1:n
set(hld(k ), 'linewidth', 3, 'color', 'r');
set(hld(k+n*1), 'linewidth', 3, 'color', 'g');
set(hld(k+n*2), 'linewidth', 3, 'color', 'b');
end
% create the ball at the origin
[O.pos, O.tri] = icosahedron42;
O.pos = O.pos.*rbol;
ft_plot_mesh(O, 'edgecolor', 'none');
% create the labels that are to be plotted along the axes
[labelx, labely, labelz] = xyz2label(coordsys);
% add the labels to the axis
text(xdat(1,1), ydat(1,1), zdat(1,1), labelx{1}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
text(xdat(1,2), ydat(1,2), zdat(1,2), labely{1}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
text(xdat(1,3), ydat(1,3), zdat(1,3), labelz{1}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
text(xdat(2,1), ydat(2,1), zdat(2,1), labelx{2}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
text(xdat(2,2), ydat(2,2), zdat(2,2), labely{2}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
text(xdat(2,3), ydat(2,3), zdat(2,3), labelz{2}, 'color', fontcolor, 'fontsize', 15, 'linewidth', 2);
if ~prevhold
hold off
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%
% NOTE this should be kept consistent with the longer axes labels in FT_DETERMINE_COORDSYS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [labelx, labely, labelz] = xyz2label(str)
if ~isempty(str) && ~strcmp(str, 'unknown')
% the first part is important for the orientations
% the second part optionally contains information on the origin
strx = tokenize(str, '_');
switch lower(strx{1})
case {'ras' 'itab' 'neuromag' 'spm' 'mni' 'tal'}
labelx = {'-X (left)' '+X (right)' };
labely = {'-Y (posterior)' '+Y (anterior)'};
labelz = {'-Z (inferior)' '+Z (superior)'};
case {'als' 'ctf' '4d', 'bti'}
labelx = {'-X (posterior)' '+X (anterior)'};
labely = {'-Y (right)' '+Y (left)'};
labelz = {'-Z (inferior)' '+Z (superior)'};
case {'paxinos'}
labelx = {'-X (left)' '+X (right)'};
labely = {'-Y (inferior)' '+Y (superior)'};
labelz = {'-Z (anterior)' '+Z (posterior)'};
case {'lps'}
labelx = {'-X (right)' '+X (left)'};
labely = {'-Y (anterior)' '+Y (posterior)'};
labelz = {'-Z (inferior)' '+Z (superior)'};
otherwise
error('unknown coordsys');
end
else
labelx = {'-X (unknown)' '+X (unknown)'};
labely = {'-Y (unknown)' '+Y (unknown)'};
labelz = {'-Z (unknown)' '+Z (unknown)'};
end
|
github
|
lcnbeapp/beapp-master
|
ft_select_channel.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/ft_select_channel.m
| 5,700 |
utf_8
|
ba3d1a96f9f4cecda939faa6f1298b81
|
function ft_select_channel(handle, eventdata, varargin)
% FT_SELECT_CHANNEL is a helper function that can be used as callback function
% in a figure. It allows the user to select a channel. The channel labels
% are returned.
%
% Use as
% label = ft_select_channel(h, eventdata, ...)
% The first two arguments are automatically passed by MATLAB to any
% callback function.
%
% Additional options should be specified in key-value pairs and can be
% 'callback' = function handle to be executed after channels have been selected
%
% You can pass additional arguments to the callback function in a cell-array
% like {@function_handle,arg1,arg2}
%
% Example
% % create a figure
% lay = ft_prepare_layout([])
% ft_plot_lay(lay)
%
% % add the required guidata
% info = guidata(gcf)
% info.x = lay.pos(:,1);
% info.y = lay.pos(:,2);
% info.label = lay.label
% guidata(gcf, info)
%
% % add this function as the callback to make a single selection
% set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'callback', @disp})
%
% % or to make multiple selections
% set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
% set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
%
% Subsequently you can click in the figure and you'll see that the disp
% function is executed as callback and that it displays the selected
% channels.
% Copyright (C) 2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% get optional input arguments
multiple = ft_getopt(varargin, 'multiple', false);
callback = ft_getopt(varargin, 'callback');
if istrue(multiple)
% the selection is done using select_range, which will subsequently call select_channel_multiple
set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonMotionFcn'});
else
% the selection is done using select_channel_single
pos = get(gca, 'CurrentPoint');
pos = pos(1,1:2);
select_channel_single(pos, callback)
end % if multiple
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to assist in the selection of a single channel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_channel_single(pos, callback)
info = guidata(gcf);
x = info.x;
y = info.y;
label = info.label;
% compute a tolerance measure
distance = sqrt(abs(sum([x y]'.*[x y]',1)));
distance = triu(distance, 1);
distance = distance(:);
distance = distance(distance>0);
distance = median(distance);
tolerance = 0.3*distance;
% compute the distance between the clicked point and all channels
dx = x - pos(1);
dy = y - pos(2);
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<tolerance
label = label{i};
fprintf('channel "%s" selected\n', label);
else
label = {};
fprintf('no channel selected\n');
end
% execute the original callback with the selected channel as input argument
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, label, funargs{:});
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, label);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to assist in the selection of multiple channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_channel_multiple(callback,range,cmenulab) % last input is context menu label, see ft_select_range
info = guidata(gcf);
x = info.x(:);
y = info.y(:);
label = info.label(:);
% determine which channels ly in the selected range
select = false(size(label));
for i=1:size(range,1)
select = select | (x>=range(i, 1) & x<=range(i, 2) & y>=range(i, 3) & y<=range(i, 4));
end
label = label(select);
% execute the original callback with the selected channels as input argument
if any(select)
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, label, funargs{:});
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, label);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
ft_datatype_sens.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ft_datatype_sens.m
| 22,743 |
utf_8
|
fab01996ef9a98c643827fb2767fbaf3
|
function [sens] = ft_datatype_sens(sens, varargin)
% FT_DATATYPE_SENS describes the FieldTrip structure that represents an EEG, ECoG, or
% MEG sensor array. This structure is commonly called "elec" for EEG, "grad" for MEG,
% "opto" for NIRS, or general "sens" for either one.
%
% For all sensor types a distinction should be made between the channel (i.e. the
% output of the transducer that is A/D converted) and the sensor, which may have some
% spatial extent. E.g. with EEG you can have a bipolar channel, where the position of
% the channel can be represented as in between the position of the two electrodes.
%
% The structure for MEG gradiometers and/or magnetometers contains
% sens.label = Mx1 cell-array with channel labels
% sens.chanpos = Mx3 matrix with channel positions
% sens.chanori = Mx3 matrix with channel orientations, used for synthetic planar gradient computation
% sens.tra = MxN matrix to combine coils into channels
% sens.coilpos = Nx3 matrix with coil positions
% sens.coilori = Nx3 matrix with coil orientations
% sens.balance = structure containing info about the balancing, See FT_APPLY_MONTAGE
% and optionally
% sens.chanposold = Mx3 matrix with original channel positions (in case
% sens.chanpos has been updated to contain NaNs, e.g.
% after ft_componentanalysis)
% sens.chanoriold = Mx3 matrix with original channel orientations
% sens.labelold = Mx1 cell-array with original channel labels
%
% The structure for EEG or ECoG channels contains
% sens.label = Mx1 cell-array with channel labels
% sens.elecpos = Nx3 matrix with electrode positions
% sens.chanpos = Mx3 matrix with channel positions (often the same as electrode positions)
% sens.tra = MxN matrix to combine electrodes into channels
% In case sens.tra is not present in the EEG sensor array, the channels
% are assumed to be average referenced.
%
% The structure for NIRS channels contains
% sens.optopos = contains information about the position of the optodes
% sens.optotype = contains information about the type of optode (receiver or transmitter)
% sens.chanpos = contains information about the position of the channels (i.e. average of optopos)
% sens.tra = NxC matrix, boolean, contains information about how receiver and transmitter form channels
% sens.wavelength = 1xM vector of all wavelengths that were used
% sens.transmits = NxM matrix, boolean, where N is the number of optodes and M the number of wavelengths per transmitter. Specifies what optode is transmitting at what wavelength (or nothing at all, which indicates that it is a receiver)
% sens.laserstrength = 1xM vector of the strength of the emitted light of the lasers
%
% The following fields apply to MEG and EEG
% sens.chantype = Mx1 cell-array with the type of the channel, see FT_CHANTYPE
% sens.chanunit = Mx1 cell-array with the units of the channel signal, e.g. 'V', 'fT' or 'T/cm', see FT_CHANUNIT
%
% The following fields are optional
% sens.type = string with the type of acquisition system, see FT_SENSTYPE
% sens.fid = structure with fiducial information
%
% Historical fields:
% pnt, pos, ori, pnt1, pnt2
%
% Revision history:
% (2016/latest) The chantype and chanunit have become required fields.
% Original channel details are specified with the suffix "old" rather than "org".
% All numeric values are represented in double precision.
% It is possible to convert the amplitude and distance units (e.g. from T to fT and
% from m to mm) and it is possible to express planar and axial gradiometer channels
% either in units of amplitude or in units of amplitude/distance (i.e. proper
% gradient).
%
% (2011v2) The chantype and chanunit have been added for MEG.
%
% (2011v1) To facilitate determining the position of channels (e.g. for plotting)
% in case of balanced MEG or bipolar EEG, an explicit distinction has been made
% between chanpos+chanori and coilpos+coilori (for MEG) and chanpos and elecpos
% (for EEG). The pnt and ori fields are removed
%
% (2010) Added support for bipolar or otherwise more complex linear combinations
% of EEG electrodes using sens.tra, similar to MEG.
%
% (2009) Noice reduction has been added for MEG systems in the balance field.
%
% (2006) The optional fields sens.type and sens.unit were added.
%
% (2003) The initial version was defined, which looked like this for EEG
% sens.pnt = Mx3 matrix with electrode positions
% sens.label = Mx1 cell-array with channel labels
% and like this for MEG
% sens.pnt = Nx3 matrix with coil positions
% sens.ori = Nx3 matrix with coil orientations
% sens.tra = MxN matrix to combine coils into channels
% sens.label = Mx1 cell-array with channel labels
%
% See also FT_READ_SENS, FT_SENSTYPE, FT_CHANTYPE, FT_APPLY_MONTAGE, CTF2GRAD, FIF2GRAD,
% BTI2GRAD, YOKOGAWA2GRAD, ITAB2GRAD
% Copyright (C) 2011-2016, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% undocumented options for the 2016 format
% amplitude = string, can be 'T' or 'fT'
% distance = string, can be 'm', 'cm' or 'mm'
% scaling = string, can be 'amplitude' or 'amplitude/distance'
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout
current_argin = [{sens} varargin];
if isequal(current_argin, previous_argin)
% don't do the whole cheking again, but return the previous output from cache
sens = previous_argout{1};
return
end
% get the optional input arguments, which should be specified as key-value pairs
version = ft_getopt(varargin, 'version', 'latest');
amplitude = ft_getopt(varargin, 'amplitude'); % should be 'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'
distance = ft_getopt(varargin, 'distance'); % should be 'm' 'dm' 'cm' 'mm'
scaling = ft_getopt(varargin, 'scaling'); % should be 'amplitude' or 'amplitude/distance', the default depends on the senstype
if ~isempty(amplitude) && ~any(strcmp(amplitude, {'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'}))
error('unsupported unit of amplitude "%s"', amplitude);
end
if ~isempty(distance) && ~any(strcmp(distance, {'m' 'dm' 'cm' 'mm'}))
error('unsupported unit of distance "%s"', distance);
end
if strcmp(version, 'latest')
version = '2016';
end
if isempty(sens)
return;
end
% this is needed further down
nchan = length(sens.label);
% there are many cases which deal with either eeg or meg
ismeg = ft_senstype(sens, 'meg');
switch version
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2016'
% update it to the previous standard version
sens = ft_datatype_sens(sens, 'version', '2011v2');
% ensure that all numbers are represented in double precision
sens = ft_struct2double(sens);
% use "old/new" rather than "org/new"
if isfield(sens, 'labelorg')
sens.labelold = sens.labelorg;
sens = rmfield(sens, 'labelorg');
end
if isfield(sens, 'chantypeorg')
sens.chantypeold = sens.chantypeorg;
sens = rmfield(sens, 'chantypeorg');
end
if isfield(sens, 'chanuniteorg')
sens.chanunitold = sens.chanunitorg;
sens = rmfield(sens, 'chanunitorg');
end
if isfield(sens, 'chanposorg')
sens.chanposold = sens.chanposorg;
sens = rmfield(sens, 'chanposorg');
end
if isfield(sens, 'chanoriorg')
sens.chanoriold = sens.chanoriorg;
sens = rmfield(sens, 'chanoriorg');
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
sens.chantype = ft_chantype(sens);
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
sens.chanunit = ft_chanunit(sens);
end
if ~isempty(distance)
% update the units of distance, this also updates the tra matrix
sens = ft_convert_units(sens, distance);
else
% determine the default, this may be needed to set the scaling
distance = sens.unit;
end
if ~isempty(amplitude) && isfield(sens, 'tra')
% update the tra matrix for the units of amplitude, this ensures that
% the leadfield values remain consistent with the units
for i=1:nchan
if ~isempty(regexp(sens.chanunit{i}, 'm$', 'once'))
% this channel is expressed as amplitude per distance
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, [amplitude '/' distance]);
sens.chanunit{i} = [amplitude '/' distance];
elseif ~isempty(regexp(sens.chanunit{i}, '[T|V]$', 'once'))
% this channel is expressed as amplitude
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, amplitude);
sens.chanunit{i} = amplitude;
else
error('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i);
end
end
else
% determine the default amplityde, this may be needed to set the scaling
if any(~cellfun(@isempty, regexp(sens.chanunit, '^T')))
% one of the channel units starts with T
amplitude = 'T';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^fT')))
% one of the channel units starts with fT
amplitude = 'fT';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^V')))
% one of the channel units starts with V
amplitude = 'V';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^uV')))
% one of the channel units starts with uV
amplitude = 'uV';
else
% this unknown amplitude will cause a problem if the scaling needs to be changed between amplitude and amplitude/distance
amplitude = 'unknown';
end
end
% perform some sanity checks
if ismeg
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if strcmp(sens.unit, 'm') && (any(sel_dm) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'dm') && (any(sel_m) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'cm') && (any(sel_m) || any(sel_dm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'mm') && (any(sel_m) || any(sel_dm) || any(sel_cm))
error('inconsistent units in input gradiometer');
end
% the default should be amplitude/distance for neuromag and amplitude for all others
if isempty(scaling)
if ft_senstype(sens, 'neuromag')
scaling = 'amplitude/distance';
elseif ft_senstype(sens, 'yokogawa440')
warning('asuming that the default scaling should be amplitude rather than amplitude/distance');
scaling = 'amplitude';
else
scaling = 'amplitude';
end
end
% update the gradiometer scaling
if strcmp(scaling, 'amplitude') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, [amplitude '/' distance])
% this channel is expressed as amplitude per distance
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)~=2
error('unexpected number of coils contributing to channel %d', i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)*baseline; % scale with the baseline distance
sens.chanunit{i} = amplitude;
elseif strcmp(sens.chanunit{i}, amplitude)
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
elseif strcmp(scaling, 'amplitude/distance') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, amplitude)
% this channel is expressed as amplitude
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)==1 || strcmp(sens.chantype{i}, 'megmag')
% this is a magnetometer channel, no conversion needed
continue
elseif length(coil)~=2
error('unexpected number of coils (%d) contributing to channel %s (%d)', length(coil), sens.label{i}, i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)/baseline; % scale with the baseline distance
sens.chanunit{i} = [amplitude '/' distance];
elseif strcmp(sens.chanunit{i}, [amplitude '/' distance])
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
end % if strcmp scaling
else
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if any(sel_m | sel_dm | sel_cm | sel_mm)
error('scaling of amplitude/distance has not been considered yet for EEG');
end
end % if iseeg or ismeg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2011v2'
if ~isempty(amplitude) || ~isempty(distance) || ~isempty(scaling)
warning('amplitude, distance and scaling are not supported for version "%s"', version);
end
% This speeds up subsequent calls to ft_senstype and channelposition.
% However, if it is not more precise than MEG or EEG, don't keep it in
% the output (see further down).
if ~isfield(sens, 'type')
sens.type = ft_senstype(sens);
end
if isfield(sens, 'pnt')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
sens.coilpos = sens.pnt; sens = rmfield(sens, 'pnt');
sens.coilori = sens.ori; sens = rmfield(sens, 'ori');
else
% sensor description is something else, EEG/ECoG etc
sens.elecpos = sens.pnt; sens = rmfield(sens, 'pnt');
end
end
if ~isfield(sens, 'chanpos')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
sens.chanori = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
sens.chanori(selsens,:) = chanori(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
else
% sensor description is something else, EEG/ECoG etc
% note that chanori will be all NaNs
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
end
end
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
if ismeg
sens.chantype = ft_chantype(sens);
else
% for EEG it is not required
end
end
if ~isfield(sens, 'unit')
% this should be done prior to calling ft_chanunit, since ft_chanunit uses this for planar neuromag channels
sens = ft_convert_units(sens);
end
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
if ismeg
sens.chanunit = ft_chanunit(sens);
else
% for EEG it is not required
end
end
if any(strcmp(sens.type, {'meg', 'eeg', 'magnetometer', 'electrode', 'unknown'}))
% this is not sufficiently informative, so better remove it
% see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1806
sens = rmfield(sens, 'type');
end
if size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'tra') && size(sens.tra,1)~=length(sens.label) || ...
isfield(sens, 'tra') && isfield(sens, 'elecpos') && size(sens.tra,2)~=size(sens.elecpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilpos') && size(sens.tra,2)~=size(sens.coilpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilori') && size(sens.tra,2)~=size(sens.coilori,1) || ...
isfield(sens, 'chanpos') && size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'chanori') && size(sens.chanori,1)~=length(sens.label)
error('inconsistent number of channels in sensor description');
end
if ismeg
% ensure that the magnetometer/gradiometer balancing is specified
if ~isfield(sens, 'balance') || ~isfield(sens.balance, 'current')
sens.balance.current = 'none';
end
% try to add the chantype and chanunit to the CTF G1BR montage
if isfield(sens, 'balance') && isfield(sens.balance, 'G1BR') && ~isfield(sens.balance.G1BR, 'chantype')
sens.balance.G1BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chantypenew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
sens.balance.G1BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G1BR.labelorg, sens.label);
sens.balance.G1BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G1BR.labelnew, sens.label);
sens.balance.G1BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G2BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G2BR') && ~isfield(sens.balance.G2BR, 'chantype')
sens.balance.G2BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chantypenew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
sens.balance.G2BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G2BR.labelorg, sens.label);
sens.balance.G2BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G2BR.labelnew, sens.label);
sens.balance.G2BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G3BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G3BR') && ~isfield(sens.balance.G3BR, 'chantype')
sens.balance.G3BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chantypenew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
sens.balance.G3BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G3BR.labelorg, sens.label);
sens.balance.G3BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G3BR.labelnew, sens.label);
sens.balance.G3BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
otherwise
error('converting to version %s is not supported', version);
end % switch
% this makes the display with the "disp" command look better
sens = sortfieldnames(sens);
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {sens};
previous_argin = current_argin;
previous_argout = current_argout;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function b = sortfieldnames(a)
fn = sort(fieldnames(a));
for i=1:numel(fn)
b.(fn{i}) = a.(fn{i});
end
|
github
|
lcnbeapp/beapp-master
|
ptriside.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ptriside.m
| 1,257 |
utf_8
|
f52f0beb3731b653116c217b37b673d2
|
function [side] = ptriside(v1, v2, v3, r, tolerance)
% PTRISIDE determines the side of a plane on which a set of points lie. it
% returns 0 for the points that lie on the plane
%
% [side] = ptriside(v1, v2, v3, r)
%
% the side of points r is determined relative to the plane spanned by
% vertices v1, v2 and v3. v1,v2 and v3 should be 1x3 vectors. r should be a
% Nx3 matrix
% Copyright (C) 2002, Robert Oostenveld
%
% $Log: ptriside.m,v $
% Revision 1.3 2003/03/11 15:35:20 roberto
% converted all files from DOS to UNIX
%
% Revision 1.2 2003/03/04 21:46:19 roberto
% added CVS log entry and synchronized all copyright labels
%
if nargin<5
tolerance = 100*eps;
end
n = size(r,1);
a = r - ones(n,1)*v1;
b = v2 - v1;
c = v3 - v1;
d = crossproduct(b, c);
val = dotproduct(a, d);
side = zeros(n, 1);
side(val > tolerance) = 1;
side(val < -tolerance) = -1;
%if val>tolerance
% side=1;
%elseif val<-tolerance
% side=-1;
%else
% side=0;
%end
% subfunction without overhead to speed up
function c = crossproduct(a, b)
c(1) = a(2)*b(3)-a(3)*b(2);
c(2) = a(3)*b(1)-a(1)*b(3);
c(3) = a(1)*b(2)-a(2)*b(1);
% subfunction without overhead to speed up, input a can be a matrix
function d = dotproduct(a, b)
d = a(:,1)*b(1)+a(:,2)*b(2)+a(:,3)*b(3);
|
github
|
lcnbeapp/beapp-master
|
ft_convert_units.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ft_convert_units.m
| 10,207 |
utf_8
|
d3c04f1222517baf2f069d68e3dd6abe
|
function [obj] = ft_convert_units(obj, target, varargin)
% FT_CONVERT_UNITS changes the geometrical dimension to the specified SI unit.
% The units of the input object is determined from the structure field
% object.unit, or is estimated based on the spatial extend of the structure,
% e.g. a volume conduction model of the head should be approximately 20 cm large.
%
% Use as
% [object] = ft_convert_units(object, target)
%
% The following geometrical objects are supported as inputs
% electrode or gradiometer array, see FT_DATATYPE_SENS
% volume conductor, see FT_DATATYPE_HEADMODEL
% anatomical mri, see FT_DATATYPE_VOLUME
% segmented mri, see FT_DATATYPE_SEGMENTATION
% dipole grid definition, see FT_DATATYPE_SOURCE
%
% Possible target units are 'm', 'dm', 'cm ' or 'mm'. If no target units
% are specified, this function will only determine the native geometrical
% units of the object.
%
% See also FT_ESTIMATE_UNITS, FT_READ_VOL, FT_READ_SENS
% Copyright (C) 2005-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% This function consists of three parts:
% 1) determine the input units
% 2) determine the requested scaling factor to obtain the output units
% 3) try to apply the scaling to the known geometrical elements in the input object
feedback = ft_getopt(varargin, 'feedback', false);
if isstruct(obj) && numel(obj)>1
% deal with a structure array
for i=1:numel(obj)
if nargin>1
tmp(i) = ft_convert_units(obj(i), target, varargin{:});
else
tmp(i) = ft_convert_units(obj(i));
end
end
obj = tmp;
return
elseif iscell(obj) && numel(obj)>1
% deal with a cell array
% this might represent combined EEG, ECoG and/or MEG
for i=1:numel(obj)
obj{i} = ft_convert_units(obj{i}, target, varargin{:});
end
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine the unit-of-dimension of the input object
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(obj, 'unit') && ~isempty(obj.unit)
% use the units specified in the object
unit = obj.unit;
elseif isfield(obj, 'bnd') && isfield(obj.bnd, 'unit')
unit = unique({obj.bnd.unit});
if ~all(strcmp(unit, unit{1}))
error('inconsistent units in the individual boundaries');
else
unit = unit{1};
end
% keep one representation of the units rather than keeping it with each boundary
% the units will be reassigned further down
obj.bnd = rmfield(obj.bnd, 'unit');
else
% try to determine the units by looking at the size of the object
if isfield(obj, 'chanpos') && ~isempty(obj.chanpos)
siz = norm(idrange(obj.chanpos));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'elecpos') && ~isempty(obj.elecpos)
siz = norm(idrange(obj.elecpos));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'coilpos') && ~isempty(obj.coilpos)
siz = norm(idrange(obj.coilpos));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'pnt') && ~isempty(obj.pnt)
siz = norm(idrange(obj.pnt));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'pos') && ~isempty(obj.pos)
siz = norm(idrange(obj.pos));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'transform') && ~isempty(obj.transform)
% construct the corner points of the volume in voxel and in head coordinates
[pos_voxel, pos_head] = cornerpoints(obj.dim, obj.transform);
siz = norm(idrange(pos_head));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'fid') && isfield(obj.fid, 'pnt') && ~isempty(obj.fid.pnt)
siz = norm(idrange(obj.fid.pnt));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'fid') && isfield(obj.fid, 'pos') && ~isempty(obj.fid.pos)
siz = norm(idrange(obj.fid.pos));
unit = ft_estimate_units(siz);
elseif ft_voltype(obj, 'infinite')
% this is an infinite medium volume conductor, which does not care about units
unit = 'm';
elseif ft_voltype(obj,'singlesphere')
siz = obj.r;
unit = ft_estimate_units(siz);
elseif ft_voltype(obj,'localspheres')
siz = median(obj.r);
unit = ft_estimate_units(siz);
elseif ft_voltype(obj,'concentricspheres')
siz = max(obj.r);
unit = ft_estimate_units(siz);
elseif isfield(obj, 'bnd') && isstruct(obj.bnd) && isfield(obj.bnd(1), 'pnt') && ~isempty(obj.bnd(1).pnt)
siz = norm(idrange(obj.bnd(1).pnt));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'bnd') && isstruct(obj.bnd) && isfield(obj.bnd(1), 'pos') && ~isempty(obj.bnd(1).pos)
siz = norm(idrange(obj.bnd(1).pos));
unit = ft_estimate_units(siz);
elseif isfield(obj, 'nas') && isfield(obj, 'lpa') && isfield(obj, 'rpa')
pnt = [obj.nas; obj.lpa; obj.rpa];
siz = norm(idrange(pnt));
unit = ft_estimate_units(siz);
else
error('cannot determine geometrical units');
end % recognized type of volume conduction model or sensor array
end % determine input units
if nargin<2 || isempty(target)
% just remember the units in the output and return
obj.unit = unit;
return
elseif strcmp(unit, target)
% no conversion is needed
obj.unit = unit;
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the scaling factor from the input units to the desired ones
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
scale = ft_scalingfactor(unit, target);
if istrue(feedback)
% give some information about the conversion
fprintf('converting units from ''%s'' to ''%s''\n', unit, target)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% apply the scaling factor
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% volume conductor model
if isfield(obj, 'r'), obj.r = scale * obj.r; end
if isfield(obj, 'o'), obj.o = scale * obj.o; end
if isfield(obj, 'bnd') && isfield(obj.bnd, 'pnt')
for i=1:length(obj.bnd)
obj.bnd(i).pnt = scale * obj.bnd(i).pnt;
end
end
if isfield(obj, 'bnd') && isfield(obj.bnd, 'pos')
for i=1:length(obj.bnd)
obj.bnd(i).pos = scale * obj.bnd(i).pos;
end
end
% old-fashioned gradiometer array
if isfield(obj, 'pnt1'), obj.pnt1 = scale * obj.pnt1; end
if isfield(obj, 'pnt2'), obj.pnt2 = scale * obj.pnt2; end
if isfield(obj, 'prj'), obj.prj = scale * obj.prj; end
% gradiometer array, electrode array, head shape or dipole grid
if isfield(obj, 'pnt'), obj.pnt = scale * obj.pnt; end
if isfield(obj, 'pos'), obj.pos = scale * obj.pos; end
if isfield(obj, 'chanpos'), obj.chanpos = scale * obj.chanpos; end
if isfield(obj, 'chanposorg'), obj.chanposold = scale * obj.chanposorg; end % pre-2016 version
if isfield(obj, 'chanposold'), obj.chanposold = scale * obj.chanposold; end % 2016 version and later
if isfield(obj, 'coilpos'), obj.coilpos = scale * obj.coilpos; end
if isfield(obj, 'elecpos'), obj.elecpos = scale * obj.elecpos; end
% gradiometer array that combines multiple coils in one channel
if isfield(obj, 'tra') && isfield(obj, 'chanunit')
% find the gradiometer channels that are expressed as unit of field strength divided by unit of distance, e.g. T/cm
for i=1:length(obj.chanunit)
tok = tokenize(obj.chanunit{i}, '/');
if ~isempty(regexp(obj.chanunit{i}, 'm$', 'once'))
% assume that it is T/m or so
obj.tra(i,:) = obj.tra(i,:) / scale;
obj.chanunit{i} = [tok{1} '/' target];
elseif ~isempty(regexp(obj.chanunit{i}, '[T|V]$', 'once'))
% assume that it is T or V, don't do anything
elseif strcmp(obj.chanunit{i}, 'unknown')
% assume that it is T or V, don't do anything
else
error('unexpected units %s', obj.chanunit{i});
end
end % for
end % if
% fiducials
if isfield(obj, 'fid') && isfield(obj.fid, 'pnt'), obj.fid.pnt = scale * obj.fid.pnt; end
if isfield(obj, 'fid') && isfield(obj.fid, 'pos'), obj.fid.pos = scale * obj.fid.pos; end
% dipole grid
if isfield(obj, 'resolution'), obj.resolution = scale * obj.resolution; end
% x,y,zgrid can also be 'auto'
if isfield(obj, 'xgrid') && ~ischar(obj.xgrid), obj.xgrid = scale * obj.xgrid; end
if isfield(obj, 'ygrid') && ~ischar(obj.ygrid), obj.ygrid = scale * obj.ygrid; end
if isfield(obj, 'zgrid') && ~ischar(obj.zgrid), obj.zgrid = scale * obj.zgrid; end
% anatomical MRI or functional volume
if isfield(obj, 'transform'),
H = diag([scale scale scale 1]);
obj.transform = H * obj.transform;
end
if isfield(obj, 'transformorig'),
H = diag([scale scale scale 1]);
obj.transformorig = H * obj.transformorig;
end
% sourcemodel obtained through mne also has a orig-field with the high
% number of vertices
if isfield(obj, 'orig')
if isfield(obj.orig, 'pnt')
obj.orig.pnt = scale * obj.orig.pnt;
end
if isfield(obj.orig, 'pos')
obj.orig.pos = scale * obj.orig.pos;
end
end
% remember the unit
obj.unit = target;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% IDRANGE interdecile range for more robust range estimation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function r = idrange(x)
keeprow=true(size(x,1),1);
for l=1:size(x,2)
keeprow = keeprow & isfinite(x(:,l));
end
sx = sort(x(keeprow,:), 1);
ii = round(interp1([0, 1], [1, size(x(keeprow,:), 1)], [.1, .9])); % indices for 10 & 90 percentile
r = diff(sx(ii, :));
|
github
|
lcnbeapp/beapp-master
|
ft_apply_montage.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ft_apply_montage.m
| 21,632 |
utf_8
|
44431986d20b2a03b833ec06858af91d
|
function [input] = ft_apply_montage(input, montage, varargin)
% FT_APPLY_MONTAGE changes the montage of an electrode or gradiometer array. A
% montage can be used for EEG rereferencing, MEG synthetic gradients, MEG
% planar gradients or unmixing using ICA. This function applies the montage
% to the input EEG or MEG sensor array, which can subsequently be used for
% forward computation and source reconstruction of the data.
%
% Use as
% [sens] = ft_apply_montage(sens, montage, ...)
% [data] = ft_apply_montage(data, montage, ...)
% [freq] = ft_apply_montage(freq, montage, ...)
% [montage] = ft_apply_montage(montage1, montage2, ...)
%
% A montage is specified as a structure with the fields
% montage.tra = MxN matrix
% montage.labelold = Nx1 cell-array
% montage.labelnew = Mx1 cell-array
%
% As an example, a bipolar montage could look like this
% bipolar.labelold = {'1', '2', '3', '4'}
% bipolar.labelnew = {'1-2', '2-3', '3-4'}
% bipolar.tra = [
% +1 -1 0 0
% 0 +1 -1 0
% 0 0 +1 -1
% ];
%
% The montage can optionally also specify the channel type and unit of the input
% and output data with
% montage.chantypeold = Nx1 cell-array
% montage.chantypenew = Mx1 cell-array
% montage.chanunitold = Nx1 cell-array
% montage.chanunitnew = Mx1 cell-array
%
% Additional options should be specified in key-value pairs and can be
% 'keepunused' string, 'yes' or 'no' (default = 'no')
% 'inverse' string, 'yes' or 'no' (default = 'no')
% 'balancename' string, name of the montage (default = '')
% 'feedback' string, see FT_PROGRESS (default = 'text')
% 'warning' boolean, whether to show warnings (default = true)
%
% If the first input is a montage, then the second input montage will be
% applied to the first. In effect, the output montage will first do
% montage1, then montage2.
%
% See also FT_READ_SENS, FT_TRANSFORM_SENS
% Copyright (C) 2008-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if iscell(input) && iscell(input)
% this represents combined EEG, ECoG and/or MEG
for i=1:numel(input)
input{i} = ft_apply_montage(input{i}, montage, varargin{:});
end
return
end
% use "old/new" instead of "org/new"
montage = fixmontage(montage);
input = fixmontage(input); % the input might also be a montage
% get optional input arguments
keepunused = ft_getopt(varargin, 'keepunused', 'no');
inverse = ft_getopt(varargin, 'inverse', 'no');
feedback = ft_getopt(varargin, 'feedback', 'text');
showwarning = ft_getopt(varargin, 'warning', true);
bname = ft_getopt(varargin, 'balancename', '');
if istrue(showwarning)
warningfun = @warning;
else
warningfun = @nowarning;
end
% these are optional, at the end we will clean up the output in case they did not exist
haschantype = (isfield(input, 'chantype') || isfield(input, 'chantypenew')) && all(isfield(montage, {'chantypeold', 'chantypenew'}));
haschanunit = (isfield(input, 'chanunit') || isfield(input, 'chanunitnew')) && all(isfield(montage, {'chanunitold', 'chanunitnew'}));
% make sure they always exist to facilitate the remainder of the code
if ~isfield(montage, 'chantypeold')
montage.chantypeold = repmat({'unknown'}, size(montage.labelold));
if isfield(input, 'chantype') && ~istrue(inverse)
warning('copying input chantype to montage');
[sel1, sel2] = match_str(montage.labelold, input.label);
montage.chantypeold(sel1) = input.chantype(sel2);
end
end
if ~isfield(montage, 'chantypenew')
montage.chantypenew = repmat({'unknown'}, size(montage.labelnew));
if isfield(input, 'chantype') && istrue(inverse)
warning('copying input chantype to montage');
[sel1, sel2] = match_str(montage.labelnew, input.label);
montage.chantypenew(sel1) = input.chantype(sel2);
end
end
if ~isfield(montage, 'chanunitold')
montage.chanunitold = repmat({'unknown'}, size(montage.labelold));
if isfield(input, 'chanunit') && ~istrue(inverse)
warning('copying input chanunit to montage');
[sel1, sel2] = match_str(montage.labelold, input.label);
montage.chanunitold(sel1) = input.chanunit(sel2);
end
end
if ~isfield(montage, 'chanunitnew')
montage.chanunitnew = repmat({'unknown'}, size(montage.labelnew));
if isfield(input, 'chanunit') && istrue(inverse)
warning('copying input chanunit to montage');
[sel1, sel2] = match_str(montage.labelnew, input.label);
montage.chanunitnew(sel1) = input.chanunit(sel2);
end
end
if ~isfield(input, 'label') && isfield(input, 'labelnew')
% the input data structure is also a montage
inputlabel = input.labelnew;
if isfield(input, 'chantypenew')
inputchantype = input.chantypenew;
else
inputchantype = repmat({'unknown'}, size(input.labelnew));
end
if isfield(input, 'chanunitnew')
inputchanunit = input.chanunitnew;
else
inputchanunit = repmat({'unknown'}, size(input.labelnew));
end
else
% the input should describe the channel labels, and optionally the type and unit
inputlabel = input.label;
if isfield(input, 'chantype')
inputchantype = input.chantype;
else
inputchantype = repmat({'unknown'}, size(input.label));
end
if isfield(input, 'chanunit')
inputchanunit = input.chanunit;
else
inputchanunit = repmat({'unknown'}, size(input.label));
end
end
% check the consistency of the montage
if ~iscell(montage.labelold) || ~iscell(montage.labelnew)
error('montage labels need to be specified in cell-arrays');
end
% check the consistency of the montage
if ~all(isfield(montage, {'tra', 'labelold', 'labelnew'}))
error('the second input argument does not correspond to a montage');
end
% check the consistency of the montage
if size(montage.tra,1)~=length(montage.labelnew)
error('the number of channels in the montage is inconsistent');
elseif size(montage.tra,2)~=length(montage.labelold)
error('the number of channels in the montage is inconsistent');
end
% use a default unit transfer from sensors to channels if not otherwise specified
if ~isfield(input, 'tra') && isfield(input, 'label')
if isfield(input, 'elecpos') && length(input.label)==size(input.elecpos, 1)
nchan = length(input.label);
input.tra = eye(nchan);
elseif isfield(input, 'coilpos') && length(input.label)==size(input.coilpos, 1)
nchan = length(input.label);
input.tra = eye(nchan);
elseif isfield(input, 'chanpos') && length(input.label)==size(input.chanpos, 1)
nchan = length(input.label);
input.tra = eye(nchan);
end
end
if istrue(inverse)
% swap the role of the original and new channels
tmp.labelnew = montage.labelold;
tmp.labelold = montage.labelnew;
tmp.chantypenew = montage.chantypeold;
tmp.chantypeold = montage.chantypenew;
tmp.chanunitnew = montage.chanunitold;
tmp.chanunitold = montage.chanunitnew;
% apply the inverse montage, this can be used to undo a previously
% applied montage
tmp.tra = full(montage.tra);
if rank(tmp.tra) < length(tmp.tra)
warningfun('the linear projection for the montage is not full-rank, the resulting data will have reduced dimensionality');
tmp.tra = pinv(tmp.tra);
else
tmp.tra = inv(tmp.tra);
end
montage = tmp;
end
% select and keep the columns that are non-empty, i.e. remove the empty columns
selcol = find(~all(montage.tra==0, 1));
montage.tra = montage.tra(:,selcol);
montage.labelold = montage.labelold(selcol);
montage.chantypeold = montage.chantypeold(selcol);
montage.chanunitold = montage.chanunitold(selcol);
clear selcol
% select and remove the columns corresponding to channels that are not present in the
% original data
remove = setdiff(montage.labelold, intersect(montage.labelold, inputlabel));
selcol = match_str(montage.labelold, remove);
% we cannot just remove the colums, all rows that depend on it should also be removed
selrow = false(length(montage.labelnew),1);
for i=1:length(selcol)
selrow = selrow & (montage.tra(:,selcol(i))~=0);
end
% convert from indices to logical vector
selcol = indx2logical(selcol, length(montage.labelold));
% remove rows and columns
montage.labelold = montage.labelold(~selcol);
montage.labelnew = montage.labelnew(~selrow);
montage.chantypeold = montage.chantypeold(~selcol);
montage.chantypenew = montage.chantypenew(~selrow);
montage.chanunitold = montage.chanunitold(~selcol);
montage.chanunitnew = montage.chanunitnew(~selrow);
montage.tra = montage.tra(~selrow, ~selcol);
clear remove selcol selrow i
% add columns for channels that are present in the input data but not specified in
% the montage, stick to the original order in the data
[dum, ix] = setdiff(inputlabel, montage.labelold);
addlabel = inputlabel(sort(ix));
addchantype = inputchantype(sort(ix));
addchanunit = inputchanunit(sort(ix));
m = size(montage.tra,1);
n = size(montage.tra,2);
k = length(addlabel);
% check for NaNs in unused channels; these will be mixed in with the rest
% of the channels and result in NaNs in the output even when multiplied
% with zeros or identity
if k > 0 && isfield(input, 'trial') % check for raw data now only
cfg = [];
cfg.channel = addlabel;
data_unused = ft_selectdata(cfg, input);
% use an anonymous function to test for the presence of NaNs in the input data
hasnan = @(x) any(isnan(x(:)));
if any(cellfun(hasnan, data_unused.trial))
error('FieldTrip:NaNsinInputData', ['Your input data contains NaNs in channels that are unused '...
'in the supplied montage. This would result in undesired NaNs in the '...
'output data. Please remove these channels from the input data (using '...
'ft_selectdata) before attempting to apply the montage.']);
end
end
if istrue(keepunused)
% add the channels that are not rereferenced to the input and output of the
% montage
montage.tra((m+(1:k)),(n+(1:k))) = eye(k);
montage.labelold = cat(1, montage.labelold(:), addlabel(:));
montage.labelnew = cat(1, montage.labelnew(:), addlabel(:));
montage.chantypeold = cat(1, montage.chantypeold(:), addchantype(:));
montage.chantypenew = cat(1, montage.chantypenew(:), addchantype(:));
montage.chanunitold = cat(1, montage.chanunitold(:), addchanunit(:));
montage.chanunitnew = cat(1, montage.chanunitnew(:), addchanunit(:));
else
% add the channels that are not rereferenced to the input of the montage only
montage.tra(:,(n+(1:k))) = zeros(m,k);
montage.labelold = cat(1, montage.labelold(:), addlabel(:));
montage.chantypeold = cat(1, montage.chantypeold(:), addchantype(:));
montage.chanunitold = cat(1, montage.chanunitold(:), addchanunit(:));
end
clear addlabel addchantype addchanunit m n k
% determine whether all channels are unique
m = size(montage.tra,1);
n = size(montage.tra,2);
if length(unique(montage.labelnew))~=m
error('not all output channels of the montage are unique');
end
if length(unique(montage.labelold))~=n
error('not all input channels of the montage are unique');
end
% determine whether all channels that have to be rereferenced are available
if length(intersect(inputlabel, montage.labelold))~=length(montage.labelold)
error('not all channels that are required in the montage are available in the data');
end
% reorder the columns of the montage matrix
[selinput, selmontage] = match_str(inputlabel, montage.labelold);
montage.tra = montage.tra(:,selmontage);
montage.labelold = montage.labelold(selmontage);
montage.chantypeold = montage.chantypeold(selmontage);
montage.chanunitold = montage.chanunitold(selmontage);
% ensure that the montage is double precision
montage.tra = double(montage.tra);
% making the tra matrix sparse will speed up subsequent multiplications, but should
% not result in a sparse matrix
% note that this only makes sense for matrices with a lot of zero elements, for dense
% matrices keeping it full will be much quicker
if size(montage.tra,1)>1 && nnz(montage.tra)/numel(montage.tra) < 0.3
montage.tra = sparse(montage.tra);
else
montage.tra = full(montage.tra);
end
% update the channel scaling if the input has different units than the montage expects
if isfield(input, 'chanunit') && ~isequal(input.chanunit, montage.chanunitold)
scale = ft_scalingfactor(input.chanunit, montage.chanunitold);
montage.tra = montage.tra * diag(scale);
montage.chanunitold = input.chanunit;
elseif isfield(input, 'chanunitnew') && ~isequal(input.chanunitnew, montage.chanunitold)
scale = ft_scalingfactor(input.chanunitnew, montage.chanunitold);
montage.tra = montage.tra * diag(scale);
montage.chanunitold = input.chanunitnew;
end
if isfield(input, 'chantype') && ~isequal(input.chantype, montage.chantypeold)
error('inconsistent chantype in data and montage');
elseif isfield(input, 'chantypenew') && ~isequal(input.chantypenew, montage.chantypeold)
error('inconsistent chantype in data and montage');
end
if isfield(input, 'labelold') && isfield(input, 'labelnew')
inputtype = 'montage';
elseif isfield(input, 'tra')
inputtype = 'sens';
elseif isfield(input, 'trial')
inputtype = 'raw';
elseif isfield(input, 'fourierspctrm')
inputtype = 'freq';
else
inputtype = 'unknown';
end
switch inputtype
case 'montage'
% apply the montage on top of the other montage
if isa(input.tra, 'single')
% sparse matrices and single precision do not match
input.tra = full(montage.tra) * input.tra;
else
input.tra = montage.tra * input.tra;
end
input.labelnew = montage.labelnew;
input.chantypenew = montage.chantypenew;
input.chanunitnew = montage.chanunitnew;
case 'sens'
% apply the montage to an electrode or gradiometer description
sens = input;
clear input
% apply the montage to the inputor array
if isa(sens.tra, 'single')
% sparse matrices and single precision do not match
sens.tra = full(montage.tra) * sens.tra;
else
sens.tra = montage.tra * sens.tra;
end
% The montage operates on the coil weights in sens.tra, but the output channels
% can be different. If possible, we want to keep the original channel positions
% and orientations.
[sel1, sel2] = match_str(montage.labelnew, inputlabel);
keepchans = length(sel1)==length(montage.labelnew);
if isfield(sens, 'chanpos')
if keepchans
sens.chanpos = sens.chanpos(sel2,:);
else
if ~isfield(sens, 'chanposold')
% add a chanposold only if it is not there yet
sens.chanposold = sens.chanpos;
end
sens.chanpos = nan(numel(montage.labelnew),3);
end
end
if isfield(sens, 'chanori')
if keepchans
sens.chanori = sens.chanori(sel2,:);
else
if ~isfield(sens, 'chanoriold')
sens.chanoriold = sens.chanori;
end
sens.chanori = nan(numel(montage.labelnew),3);
end
end
sens.label = montage.labelnew;
sens.chantype = montage.chantypenew;
sens.chanunit = montage.chanunitnew;
% keep the
% original label,
% type and unit
% for reference
if ~isfield(sens, 'labelold')
sens.labelold = inputlabel;
end
if ~isfield(sens, 'chantypeold')
sens.chantypeold = inputchantype;
end
if ~isfield(sens, 'chanunitold')
sens.chanunitold = inputchanunit;
end
% keep track of the order of the balancing and which one is the current one
if istrue(inverse)
if isfield(sens, 'balance')% && isfield(sens.balance, 'previous')
if isfield(sens.balance, 'previous') && numel(sens.balance.previous)>=1
sens.balance.current = sens.balance.previous{1};
sens.balance.previous = sens.balance.previous(2:end);
elseif isfield(sens.balance, 'previous')
sens.balance.current = 'none';
sens.balance = rmfield(sens.balance, 'previous');
else
sens.balance.current = 'none';
end
end
elseif ~istrue(inverse) && ~isempty(bname)
if isfield(sens, 'balance'),
% check whether a balancing montage with name bname already exist,
% and if so, how many
mnt = fieldnames(sens.balance);
sel = strmatch(bname, mnt);
if numel(sel)==0,
% bname can stay the same
elseif numel(sel)==1
% the original should be renamed to 'bname1' and the new one should
% be 'bname2'
sens.balance.([bname, '1']) = sens.balance.(bname);
sens.balance = rmfield(sens.balance, bname);
if isfield(sens.balance, 'current') && strcmp(sens.balance.current, bname)
sens.balance.current = [bname, '1'];
end
if isfield(sens.balance, 'previous')
sel2 = strmatch(bname, sens.balance.previous);
if ~isempty(sel2)
sens.balance.previous{sel2} = [bname, '1'];
end
end
bname = [bname, '2'];
else
bname = [bname, num2str(length(sel)+1)];
end
end
if isfield(sens, 'balance') && isfield(sens.balance, 'current')
if ~isfield(sens.balance, 'previous')
sens.balance.previous = {};
end
sens.balance.previous = [{sens.balance.current} sens.balance.previous];
sens.balance.current = bname;
sens.balance.(bname) = montage;
end
end
% rename the output variable
input = sens;
clear sens
case 'raw';
% apply the montage to the raw data that was preprocessed using fieldtrip
data = input;
clear input
Ntrials = numel(data.trial);
ft_progress('init', feedback, 'processing trials');
for i=1:Ntrials
ft_progress(i/Ntrials, 'processing trial %d from %d\n', i, Ntrials);
if isa(data.trial{i}, 'single')
% sparse matrices and single
% precision do not match
data.trial{i} = full(montage.tra) * data.trial{i};
else
data.trial{i} = montage.tra * data.trial{i};
end
end
ft_progress('close');
data.label = montage.labelnew;
data.chantype = montage.chantypenew;
data.chanunit = montage.chanunitnew;
% rename the output variable
input = data;
clear data
case 'freq'
% apply the montage to the spectrally decomposed data
freq = input;
clear input
if strcmp(freq.dimord, 'rpttap_chan_freq')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
output = zeros(nrpt, size(montage.tra,1), nfreq);
for foilop=1:nfreq
output(:,:,foilop) = freq.fourierspctrm(:,:,foilop) * montage.tra';
end
freq.fourierspctrm = output; % replace the original Fourier spectrum
elseif strcmp(freq.dimord, 'rpttap_chan_freq_time')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
ntime = siz(4);
output = zeros(nrpt, size(montage.tra,1), nfreq, ntime);
for foilop=1:nfreq
for toilop = 1:ntime
output(:,:,foilop,toilop) = freq.fourierspctrm(:,:,foilop,toilop) * montage.tra';
end
end
freq.fourierspctrm = output; % replace the original Fourier spectrum
else
error('unsupported dimord in frequency data (%s)', freq.dimord);
end
freq.label = montage.labelnew;
freq.chantype = montage.chantypenew;
freq.chanunit = montage.chanunitnew;
% rename the output variable
input = freq;
clear freq
otherwise
error('unrecognized input');
end % switch inputtype
% only retain the chantype and/or chanunit if they were present in the input
if ~haschantype
input = removefields(input, {'chantype', 'chantypeold', 'chantypenew'});
end
if ~haschanunit
input = removefields(input, {'chanunit', 'chanunitold', 'chanunitnew'});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = indx2logical(x, n)
y = false(1,n);
y(x) = true;
function nowarning(varargin)
return
function s = removefields(s, fn)
for i=1:length(fn)
if isfield(s, fn{i})
s = rmfield(s, fn{i});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTION use "old/new" instead of "org/new"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function montage = fixmontage(montage)
if isfield(montage, 'labelorg')
montage.labelold = montage.labelorg;
montage = rmfield(montage, 'labelorg');
end
if isfield(montage, 'chantypeorg')
montage.chantypeold = montage.chantypeorg;
montage = rmfield(montage, 'chantypeorg');
end
if isfield(montage, 'chanunitorg')
montage.chanunitold = montage.chanunitorg;
montage = rmfield(montage, 'chanunitorg');
end
|
github
|
lcnbeapp/beapp-master
|
select3dtool.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/select3dtool.m
| 2,713 |
utf_8
|
fdf7d572638e6ebd059c63f233d26704
|
function select3dtool(arg)
%SELECT3DTOOL A simple tool for interactively obtaining 3-D coordinates
%
% SELECT3DTOOL(FIG) Specify figure handle
%
% Example:
% surf(peaks);
% select3dtool;
% % click on surface
if nargin<1
arg = gcf;
end
if ~ishandle(arg)
feval(arg);
return;
end
%% initialize gui %%
fig = arg;
figure(fig);
uistate = uiclearmode(fig);
[tool, htext] = createUI;
hmarker1 = line('marker','o','markersize',10,'markerfacecolor','k','erasemode','xor','visible','off');
hmarker2 = line('marker','o','markersize',10,'markerfacecolor','r','erasemode','xor','visible','off');
state.uistate = uistate;
state.text = htext;
state.tool = tool;
state.fig = fig;
state.marker1 = hmarker1;
state.marker2 = hmarker2;
setappdata(fig,'select3dtool',state);
setappdata(state.tool,'select3dhost',fig);
set(fig,'windowbuttondownfcn','select3dtool(''click'')');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function off
state = getappdata(gcbf,'select3dtool');
if ~isempty(state)
delete(state.tool);
end
fig = getappdata(gcbf,'select3dhost');
if ~isempty(fig) & ishandle(fig)
state = getappdata(fig,'select3dtool');
uirestore(state.uistate);
delete(state.marker1);
delete(state.marker2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function click
[p v vi] = select3d;
state = getappdata(gcbf,'select3dtool');
if ~ishandle(state.text)
state.text = createUI;
end
if ~ishandle(state.marker1)
state.marker1 = [];
end
if ~ishandle(state.marker2)
state.marker2 = [];
end
setappdata(state.fig,'select3dtool',state);
if isempty(v)
v = [nan nan nan];
vi = nan;
set(state.marker2,'visible','off');
else
set(state.marker2,'visible','on','xdata',v(1),'ydata',v(2),'zdata',v(3));
end
if isempty(p)
p = [nan nan nan];
set(state.marker1,'visible','off');
else
set(state.marker1,'visible','on','xdata',p(1),'ydata',p(2),'zdata',p(3));
end
% Update tool and markers
set(state.text,'string',createString(p(1),p(2),p(3),v(1),v(2),v(3),vi));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fig, h] = createUI
pos = [200 200 200 200];
% Create selection tool %
fig = figure('handlevisibility','off','menubar','none','resize','off',...
'numbertitle','off','name','Select 3-D Tool','position',pos,'deletefcn','select3dtool(''off'')');
h = uicontrol('style','text','parent',fig,'string',createString(0,0,0,0,0,0,0),...
'units','norm','position',[0 0 1 1],'horizontalalignment','left');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [str] = createString(px,py,pz,vx,vy,vz,vi)
str = sprintf(' Position:\n X %f\n Y: %f\n Z: %f \n\n Vertex:\n X: %f\n Y: %f\n Z: %f \n\n Vertex Index:\n %d',px,py,pz,vx,vy,vz,vi);
|
github
|
lcnbeapp/beapp-master
|
ft_platform_supports.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ft_platform_supports.m
| 9,557 |
utf_8
|
eb0e55d84d57e6873cce8df6cad90d96
|
function tf = ft_platform_supports(what,varargin)
% FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform
% supports a specific capability
%
% Usage:
% tf = ft_platform_supports(what)
% tf = ft_platform_supports('matlabversion', min_version, max_version)
%
% The following values are allowed for the 'what' parameter:
% value means that the following is supported:
%
% 'which-all' which(...,'all')
% 'exists-in-private-directory' exists(...) will look in the /private
% subdirectory to see if a file exists
% 'onCleanup' onCleanup(...)
% 'alim' alim(...)
% 'int32_logical_operations' bitand(a,b) with a, b of type int32
% 'graphics_objects' graphics sysem is object-oriented
% 'libmx_c_interface' libmx is supported through mex in the
% C-language (recent Matlab versions only
% support C++)
% 'stats' all statistical functions in
% FieldTrip's external/stats directory
% 'program_invocation_name' program_invocation_name() (GNU Octave)
% 'singleCompThread' start Matlab with -singleCompThread
% 'nosplash' -nosplash
% 'nodisplay' -nodisplay
% 'nojvm' -nojvm
% 'no-gui' start GNU Octave with --no-gui
% 'RandStream.setGlobalStream' RandStream.setGlobalStream(...)
% 'RandStream.setDefaultStream' RandStream.setDefaultStream(...)
% 'rng' rng(...)
% 'rand-state' rand('state')
% 'urlread-timeout' urlread(..., 'Timeout', t)
% 'griddata-vector-input' griddata(...,...,...,a,b) with a and b
% vectors
% 'griddata-v4' griddata(...,...,...,...,...,'v4'),
% that is v4 interpolation support
% 'uimenu' uimenu(...)
if ~ischar(what)
error('first argument must be a string');
end
switch what
case 'matlabversion'
tf = is_matlab() && matlabversion(varargin{:});
case 'exists-in-private-directory'
tf = is_matlab();
case 'which-all'
tf = is_matlab();
case 'onCleanup'
tf = is_octave() || matlabversion(7.8, Inf);
case 'alim'
tf = is_matlab();
case 'int32_logical_operations'
% earlier version of Matlab don't support bitand (and similar)
% operations on int32
tf = is_octave() || ~matlabversion(-inf, '2012a');
case 'graphics_objects'
% introduced in Matlab 2014b, graphics is handled through objects;
% previous versions use numeric handles
tf = is_matlab() && matlabversion('2014b', Inf);
case 'libmx_c_interface'
% removed after 2013b
tf = matlabversion(-Inf, '2013b');
case 'stats'
root_dir=fileparts(which('ft_defaults'));
external_stats_dir=fullfile(root_dir,'external','stats');
% these files are only used by other functions in the external/stats
% directory
exclude_mfiles={'common_size.m',...
'iscomplex.m',...
'lgamma.m'};
tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles);
case 'program_invocation_name'
% Octave supports program_invocation_name, which returns the path
% of the binary that was run to start Octave
tf = is_octave();
case 'singleCompThread'
tf = is_matlab() && matlabversion(7.8, inf);
case {'nosplash','nodisplay','nojvm'}
% Only on Matlab
tf = is_matlab();
case 'no-gui'
% Only on Octave
tf = is_octave();
case 'RandStream.setDefaultStream'
tf = is_matlab() && matlabversion('2008b', '2011b');
case 'RandStream.setGlobalStream'
tf = is_matlab() && matlabversion('2012a', inf);
case 'randomized_PRNG_on_startup'
tf = is_octave() || ~matlabversion(-Inf,'7.3');
case 'rng'
% recent Matlab versions
tf = is_matlab() && matlabversion('7.12',Inf);
case 'rand-state'
% GNU Octave
tf = is_octave();
case 'urlread-timeout'
tf = is_matlab() && matlabversion('2012b',Inf);
case 'griddata-vector-input'
tf = is_matlab();
case 'griddata-v4'
tf = is_matlab() && matlabversion('2009a',Inf);
case 'uimenu'
tf = is_matlab();
otherwise
error('unsupported value for first argument: %s', what);
end % switch
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_matlab()
tf = ~is_octave();
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_octave()
persistent cached_tf;
if isempty(cached_tf)
cached_tf = logical(exist('OCTAVE_VERSION', 'builtin'));
end
tf = cached_tf;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = has_all_functions_in_dir(in_dir, exclude_mfiles)
% returns true if all functions in in_dir are already provided by the
% platform
m_files=dir(fullfile(in_dir,'*.m'));
n=numel(m_files);
for k=1:n
m_filename=m_files(k).name;
if isempty(which(m_filename)) && ...
isempty(strmatch(m_filename,exclude_mfiles))
tf=false;
return;
end
end
tf=true;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current MATLAB version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion('2009b') % exactly 2009b
% matlabversion('2008b', '2010a') % between two versions
% matlabversion('2008b', Inf) % from a version onwards
% etc.
%
% See also VERSION, VER, VERLESSTHAN
% Copyright (C) 2006, Robert Oostenveld
% Copyright (C) 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this does not change over subsequent calls, making it persistent speeds it up
persistent curVer
if nargin<2
max = min;
end
if isempty(curVer)
curVer = version();
end
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
end % function
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end % function
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end % function
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end % function
|
github
|
lcnbeapp/beapp-master
|
ft_warning.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/ft_warning.m
| 7,789 |
utf_8
|
d832a7ad5e2f9bb42995e6e5d4caa198
|
function [ws, warned] = ft_warning(varargin)
% FT_WARNING will throw a warning for every unique point in the
% stacktrace only, e.g. in a for-loop a warning is thrown only once.
%
% Use as one of the following
% ft_warning(string)
% ft_warning(id, string)
% Alternatively, you can use ft_warning using a timeout
% ft_warning(string, timeout)
% ft_warning(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again.
%
% Use as ft_warning('-clear') to clear old warnings from the current
% stack
%
% It can be used instead of the MATLAB built-in function WARNING, thus as
% s = ft_warning(...)
% or as
% ft_warning(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information. In other words, ft_warning accepts as an input the
% same structure it returns as an output. This returns or restores the
% states of warnings to their previous values.
%
% It can also be used as
% [s w] = ft_warning(...)
% where w is a boolean that indicates whether a warning as been thrown or not.
%
% Please note that you can NOT use it like this
% ft_warning('the value is %d', 10)
% instead you should do
% ft_warning(sprintf('the value is %d', 10))
% Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global ft_default
warned = false;
ws = [];
stack = dbstack;
if any(strcmp({stack(2:end).file}, 'ft_warning.m'))
% don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068
return;
end
if nargin < 1
error('You need to specify at least a warning message');
end
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if ~isfield(ft_default, 'warning')
ft_default.warning = [];
end
if ~isfield(ft_default.warning, 'stopwatch')
ft_default.warning.stopwatch = [];
end
if ~isfield(ft_default.warning, 'identifier')
ft_default.warning.identifier = [];
end
if ~isfield(ft_default.warning, 'ignore')
ft_default.warning.ignore = {};
end
% put the arguments we will pass to warning() in this cell array
warningArgs = {};
if nargin==3
% calling syntax (id, msg, timeout)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = varargin{3};
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==2 && isnumeric(varargin{2})
% calling syntax (msg, timeout)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = varargin{2};
fname = warningArgs{1};
elseif nargin==2 && isequal(varargin{1}, 'off')
ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && isequal(varargin{1}, 'on')
ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && ~isnumeric(varargin{2})
% calling syntax (id, msg)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = inf;
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==1
% calling syntax (msg)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = inf; % default timeout in seconds
fname = [warningArgs{1}];
end
if ismember(msg, ft_default.warning.ignore)
% do not show this warning
return;
end
if isempty(timeout)
error('Timeout ill-specified');
end
if timeout ~= inf
fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures
line = [];
else
% here, we create the fieldname functionA.functionB.functionC...
[tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier);
if ~isempty(tmpfname),
fname = tmpfname;
clear tmpfname;
end
end
if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1})
if strcmp(fname, '-clear') % reset all fields if called outside a function
ft_default.warning.identifier = [];
ft_default.warning.stopwatch = [];
else
if issubfield(ft_default.warning.identifier, fname)
ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname);
end
end
return;
end
% and add the line number to make this unique for the last function
fname = horzcat(fname, line);
if ~issubfield('ft_default.warning.stopwatch', fname)
ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic);
end
now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call
if ~issubfield(ft_default.warning.identifier, fname) || ...
(issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout']))
% create or reset field
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []);
% warning never given before or timed out
ws = warning(warningArgs{:});
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout);
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg);
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = getsubfield(ft_default.warning.identifier, [fname '.ws']);
end
end % function ft_warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings)
% stack(1) is this function, stack(2) is ft_warning
stack = dbstack('-completenames');
if size(stack) < 3
fname = [];
line = [];
return;
end
i0 = 3;
% ignore ft_preamble
while strfind(stack(i0).name, 'ft_preamble')
i0=i0+1;
end
fname = horzcat(fixname(stack(end).name));
if ~issubfield(ft_previous_warnings, fixname(stack(end).name))
ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields
end
for i=numel(stack)-1:-1:(i0)
% skip postamble scripts
if strncmp(stack(i).name, 'ft_postamble', 12)
break;
end
fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file
if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields
setsubfield(ft_previous_warnings, fname, []);
end
end
% line of last function call
line = ['.line', int2str(stack(i0).line)];
end
% function outcome = issubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% outcome = isfield(strct, fname);
% end
% end
% function strct = rmsubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% strct = rmfield(strct, fname);
% end
% end
|
github
|
lcnbeapp/beapp-master
|
mesh2edge.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/mesh2edge.m
| 3,713 |
utf_8
|
410baaa2ca114acab82443de9a844a68
|
function [newbnd] = mesh2edge(bnd)
% MESH2EDGE finds the edge lines from a triangulated mesh or the edge
% surfaces from a tetrahedral or hexahedral mesh. An edge is defined as an
% element that does not border any other element. This also implies that a
% closed triangulated surface has no edges.
%
% Use as
% [edge] = mesh2edge(mesh)
%
% See also POLY2TRI
% Copyright (C) 2013-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if isfield(bnd, 'tri')
% make a list of all edges
edge1 = bnd.tri(:, [1 2]);
edge2 = bnd.tri(:, [2 3]);
edge3 = bnd.tri(:, [3 1]);
edge = cat(1, edge1, edge2, edge3);
elseif isfield(bnd, 'tet')
% make a list of all triangles that form the tetraheder
tri1 = bnd.tet(:, [1 2 3]);
tri2 = bnd.tet(:, [2 3 4]);
tri3 = bnd.tet(:, [3 4 1]);
tri4 = bnd.tet(:, [4 1 2]);
edge = cat(1, tri1, tri2, tri3, tri4);
elseif isfield(bnd, 'hex')
% make a list of all "squares" that form the cube/hexaheder
% FIXME should be checked, this is impossible without a drawing
square1 = bnd.hex(:, [1 2 3 4]);
square2 = bnd.hex(:, [5 6 7 8]);
square3 = bnd.hex(:, [1 2 6 5]);
square4 = bnd.hex(:, [2 3 7 6]);
square5 = bnd.hex(:, [3 4 8 7]);
square6 = bnd.hex(:, [4 1 5 8]);
edge = cat(1, square1, square2, square3, square4, square5, square6);
end % isfield(bnd)
% soort all polygons in the same direction
% keep the original as "edge" and the sorted one as "sedge"
sedge = sort(edge, 2);
% % find the edges that are not shared -> count the number of occurences
% n = size(sedge,1);
% occurences = ones(n,1);
% for i=1:n
% for j=(i+1):n
% if all(sedge(i,:)==sedge(j,:))
% occurences(i) = occurences(i)+1;
% occurences(j) = occurences(j)+1;
% end
% end
% end
%
% % make the selection in the original, not the sorted version of the edges
% % otherwise the orientation of the edges might get flipped
% edge = edge(occurences==1,:);
% find the edges that are not shared
indx = findsingleoccurringrows(sedge);
edge = edge(indx, :);
% replace pnt by pos
bnd = fixpos(bnd);
% the naming of the output edges depends on what they represent
newbnd.pos = bnd.pos;
if isfield(bnd, 'tri')
% these have two vertices in each edge element
newbnd.line = edge;
elseif isfield(bnd, 'tet')
% these have three vertices in each edge element
newbnd.tri = edge;
elseif isfield(bnd, 'hex')
% these have four vertices in each edge element
newbnd.poly = edge;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1833#c12
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function indx = findsingleoccurringrows(X)
[X, indx] = sortrows(X);
sel = any(diff([X(1,:)-1; X],1),2) & any(diff([X; X(end,:)+1],1),2);
indx = indx(sel);
function indx = finduniquerows(X)
[X, indx] = sortrows(X);
sel = any(diff([X(1,:)-1; X],1),2);
indx = indx(sel);
|
github
|
lcnbeapp/beapp-master
|
intersect_plane.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/intersect_plane.m
| 2,842 |
utf_8
|
b975e248e2a82787c16084c79547fd9d
|
function [X, Y, Z, pnt1, tri1, pnt2, tri2] = intersect_plane(pnt, tri, v1, v2, v3)
% INTERSECT_PLANE intersection between a triangulated surface and a plane
% it returns the coordinates of the vertices which form a contour
% % Use as
% [X, Y, Z] = intersect_plane(pnt, tri, v1, v2, v3)
%
% where the intersecting plane is spanned by the vertices v1, v2, v3
% and the return values are each Nx2 for the N line segments.
% Copyright (C) 2002-2012, Robert Oostenveld
%
% $Id$
npnt = size(pnt,1);
ntri = size(tri,1);
% side = zeros(npnt,1);
% for i=1:npnt
% side(i) = ptriside(v1, v2, v3, pnt(i,:));
% end
side = ptriside(v1, v2, v3, pnt);
% find the triangles which have vertices on both sides of the plane
indx = find(abs(sum(side(tri),2))~=3);
cnt1 = zeros(length(indx), 3);
cnt2 = zeros(length(indx), 3);
for i=1:length(indx)
cur = tri(indx(i),:);
tmp = side(cur);
l1 = pnt(cur(1),:);
l2 = pnt(cur(2),:);
l3 = pnt(cur(3),:);
if tmp(1)==tmp(2)
% plane intersects two sides of the triangle
cnt1(i,:) = ltrisect(v1, v2, v3, l3, l1);
cnt2(i,:) = ltrisect(v1, v2, v3, l3, l2);
elseif tmp(1)==tmp(3)
cnt1(i,:) = ltrisect(v1, v2, v3, l2, l1);
cnt2(i,:) = ltrisect(v1, v2, v3, l2, l3);
elseif tmp(2)==tmp(3)
cnt1(i,:) = ltrisect(v1, v2, v3, l1, l2);
cnt2(i,:) = ltrisect(v1, v2, v3, l1, l3);
elseif tmp(1)==0 && tmp(2)==0
% two vertices of the triangle lie on the plane
cnt1(i,:) = l1;
cnt2(i,:) = l2;
elseif tmp(1)==0 && tmp(3)==0
cnt1(i,:) = l1;
cnt2(i,:) = l3;
elseif tmp(2)==0 && tmp(3)==0
cnt1(i,:) = l2;
cnt2(i,:) = l3;
elseif tmp(1)==0 && tmp(2)~=tmp(3)
% one vertex of the triangle lies on the plane
cnt1(i,:) = l1;
cnt2(i,:) = ltrisect(v1, v2, v3, l2, l3);
elseif tmp(2)==0 && tmp(3)~=tmp(1)
cnt1(i,:) = l2;
cnt2(i,:) = ltrisect(v1, v2, v3, l3, l1);
elseif tmp(3)==0 && tmp(1)~=tmp(2)
cnt1(i,:) = l3;
cnt2(i,:) = ltrisect(v1, v2, v3, l1, l2);
elseif tmp(1)==0
cnt1(i,:) = l1;
cnt2(i,:) = l1;
elseif tmp(2)==0
cnt1(i,:) = l2;
cnt2(i,:) = l2;
elseif tmp(3)==0
cnt1(i,:) = l3;
cnt2(i,:) = l3;
end
end
X = [cnt1(:,1) cnt2(:,1)];
Y = [cnt1(:,2) cnt2(:,2)];
Z = [cnt1(:,3) cnt2(:,3)];
if nargout>3
% also output the two meshes on either side of the plane
indx1 = find(side==1);
pnt1 = pnt(indx1,:);
sel1 = sum(ismember(tri, indx1), 2)==3;
tri1 = tri(sel1,:);
tri1 = tri_reindex(tri1);
indx2 = find(side==-1);
pnt2 = pnt(indx2,:);
sel2 = sum(ismember(tri, indx2), 2)==3;
tri2 = tri(sel2,:);
tri2 = tri_reindex(tri2);
end
function [newtri] = tri_reindex(tri)
%this function reindexes tri such that they run from 1:number of unique vertices
newtri = tri;
[srt, indx] = sort(tri(:));
tmp = cumsum(double(diff([0;srt])>0));
newtri(indx) = tmp;
|
github
|
lcnbeapp/beapp-master
|
inside_contour.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/plotting/private/inside_contour.m
| 1,105 |
utf_8
|
6554af9f8bc2dc7512e8ca962a63688b
|
function bool = inside_contour(pos, contour)
npos = size(pos,1);
ncnt = size(contour,1);
x = pos(:,1);
y = pos(:,2);
minx = min(x);
miny = min(y);
maxx = max(x);
maxy = max(y);
bool = true(npos,1);
bool(x<minx) = false;
bool(y<miny) = false;
bool(x>maxx) = false;
bool(y>maxy) = false;
% the summed angle over the contour is zero if the point is outside, and 2*pi if the point is inside the contour
% leave some room for inaccurate f
critval = 0.1;
% the remaining points have to be investigated with more attention
sel = find(bool);
for i=1:length(sel)
contourx = contour(:,1) - pos(sel(i),1);
contoury = contour(:,2) - pos(sel(i),2);
angle = atan2(contoury, contourx);
% angle = unwrap(angle);
angle = my_unwrap(angle);
total = sum(diff(angle));
bool(sel(i)) = (abs(total)>critval);
end
function x = my_unwrap(x)
% this is a faster implementation of the MATLAB unwrap function
% with hopefully the same functionality
d = diff(x);
indx = find(abs(d)>pi);
for i=indx(:)'
if d(i)>0
x((i+1):end) = x((i+1):end) - 2*pi;
else
x((i+1):end) = x((i+1):end) + 2*pi;
end
end
|
github
|
lcnbeapp/beapp-master
|
enginecellfun.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/engine/enginecellfun.m
| 11,478 |
utf_8
|
3cd2f39f096029c7a0cdfa80414a36bf
|
function varargout = enginecellfun(fname, varargin)
% ENGINECELLFUN applies a function to each element of a cell-array. The function
% execution is done in parallel on locally or remotely running MATLAB engines.
%
% Use as
% argout = enginecellfun(fname, x1, x2, ...)
%
% Optional arguments can be specified in key-value pairs and can include
% UniformOutput = boolean (default = false)
% StopOnError = boolean (default = true)
% diary = string, can be 'always', 'never', 'warning', 'error' (default = 'error')
% order = string, can be 'random' or 'original' (default = 'random')
%
% Example
% x1 = {1, 2, 3, 4, 5};
% x2 = {2, 2, 2, 2, 2};
% enginepool open 4
% y = enginecellfun(@power, x1, x2);
% enginepool close
%
% See also ENGINEPOOL, ENGINEFEVAL, ENGINEGET
% -----------------------------------------------------------------------
% Copyright (C) 2012, Robert Oostenveld
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/
%
% $Id$
% -----------------------------------------------------------------------
if ft_platform_supports('onCleanup')
% switch to zombie when finished or when ctrl-c gets pressed
% the onCleanup function does not exist for older versions
onCleanup(@cleanupfun);
end
% locate the begin of the optional key-value arguments
optbeg = find(cellfun(@ischar, varargin));
optarg = varargin(optbeg:end);
% get the optional input arguments
UniformOutput = ft_getopt(optarg, 'UniformOutput', false );
StopOnError = ft_getopt(optarg, 'StopOnError', true );
diary = ft_getopt(optarg, 'diary', 'error' ); % 'always', 'never', 'warning', 'error'
order = ft_getopt(optarg, 'order', 'original'); % 'random', 'original'
% convert from 'yes'/'no' into boolean value
UniformOutput = istrue(UniformOutput);
% skip the optional key-value arguments
if ~isempty(optbeg)
varargin = varargin(1:(optbeg-1));
end
if isa(fname, 'function_handle')
% convert the function handle back into a string (e.g. @plus should be 'plus')
fname = func2str(fname);
end
% there are potentially errors to catch from the which() function
if isempty(which(fname))
error('Not a valid M-file (%s).', fname);
end
% determine the number of input arguments and the number of jobs
numargin = numel(varargin);
numjob = numel(varargin{1});
% it can be difficult to determine the number of output arguments
try
numargout = nargout(fname);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
nargout_err = lasterror;
if strcmp(nargout_err.identifier, 'MATLAB:narginout:doesNotApply')
% e.g. in case of nargin('plus')
numargout = 1;
else
rethrow(nargout_err);
end
end
if numargout<0
% the nargout function returns -1 in case of a variable number of output arguments
numargout = 1;
elseif numargout>nargout
% the number of output arguments is constrained by the users' call to this function
numargout = nargout;
elseif nargout>numargout
error('Too many output arguments.');
end
% check the input arguments
for i=1:numargin
if ~isa(varargin{i}, 'cell')
error('input argument #%d should be a cell-array', i+1);
end
if numel(varargin{i})~=numjob
error('inconsistent number of elements in input #%d', i+1);
end
end
% check the availability of the engines
pool = enginepool('info');
pool = enginepool('info');
isbusy = false(1,numel(pool));
hasjob = false(1,numel(pool));
for i=1:numel(pool)
isbusy(i) = engine('isbusy', i);
hasjob(i) = ~isempty(pool{i});
end
if isempty(pool)
error('the engine pool is empty');
end
if all(isbusy)
warning('there is no engine available, reverting to local cellfun');
% prepare the output arguments
varargout = cell(1,numargout);
% use the standard cellfun
[varargout{:}] = cellfun(str2func(fname), varargin{:}, 'UniformOutput', UniformOutput);
return
end
% prepare some arrays that are used for bookkeeping
jobid = nan(1, numjob);
puttime = nan(1, numjob);
timused = nan(1, numjob);
memused = nan(1, numjob);
submitted = false(1, numjob);
collected = false(1, numjob);
busy = false(1, numjob);
lastseen = inf(1, numjob);
submittime = inf(1, numjob);
collecttime = inf(1, numjob);
% remove any remains from an aborted previous call
cleanupfun
% start the timer
stopwatch = tic;
% these are used for printing feedback on screen
prevnumsubmitted = 0;
prevnumcollected = 0;
prevnumbusy = 0;
% determine the initial job order, small numbers are submitted first
if strcmp(order, 'random')
priority = randperm(numjob);
elseif strcmp(order, 'original')
priority = 1:numjob;
else
error('unsupported order');
end
% post all jobs and gather their results
while ~all(submitted) || ~all(collected)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 1: submit the jobs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pool = enginepool('info');
isbusy = false(1,numel(pool));
hasjob = false(1,numel(pool));
for i=1:numel(pool)
isbusy(i) = engine('isbusy', i);
hasjob(i) = ~isempty(pool{i});
end
% try to submit as many jobs as possible
for submit = find(~submitted);
if all(hasjob | isbusy)
% all engines are busy, we have to wait for and collect some results before submitting new jobs
break
end
% redistribute the input arguments
argin = cell(1, numargin);
for j=1:numargin
argin{j} = varargin{j}{submit};
end
% submit the job for execution
[curjobid curputtime] = enginefeval(fname, argin{:}, 'diary', diary, 'nargout', numargout);
if ~isempty(curjobid)
% fprintf('submitted job %d\n', submit);
jobid(submit) = curjobid;
puttime(submit) = curputtime;
submitted(submit) = true;
submittime(submit) = toc(stopwatch);
clear curjobid curputtime
end
clear argin
% check the availability of the engines
pool = enginepool('info');
isbusy = false(1,numel(pool));
hasjob = false(1,numel(pool));
for i=1:numel(pool)
isbusy(i) = engine('isbusy', i);
hasjob(i) = ~isempty(pool{i});
end
end % while not all engines are busy
if sum(collected)>prevnumcollected || sum(isbusy)~=prevnumbusy
% give an update of the progress
fprintf('submitted %d/%d, collected %d/%d, busy %d, speedup %.1f\n', sum(submitted), numel(submitted), sum(collected), numel(collected), sum(isbusy), nansum(timused(collected))/toc(stopwatch));
end
prevnumcollected = sum(collected);
prevnumbusy = sum(isbusy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 2: collect the job results that have finished sofar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% try to collect as many jobs as possible
for ready = find(hasjob & ~isbusy)
% figure out to which job this engines result belong
collect = find(jobid == pool{ready});
% collect the output arguments
ws = warning('Off','Backtrace');
[argout, options] = engineget(pool{ready}, 'output', 'cell', 'diary', diary, 'StopOnError', StopOnError);
warning(ws);
% fprintf('collected job %d\n', collect);
collected(collect) = true;
collecttime(collect) = toc(stopwatch);
% redistribute the output arguments
for j=1:numargout
varargout{j}{collect} = argout{j};
end
% gather the job statistics
% these are empty in case an error happened during remote evaluation, therefore the default value of NaN is specified
timused(collect) = ft_getopt(options, 'timused', nan);
memused(collect) = ft_getopt(options, 'memused', nan);
end % collect the selected job
if sum(collected)>prevnumcollected
% give an update of the progress
fprintf('submitted %d/%d, collected %d/%d, busy %d, speedup %.1f\n', sum(submitted), numel(submitted), sum(collected), numel(collected), sum(isbusy), nansum(timused(collected))/toc(stopwatch));
end
if all(isbusy)
% wait a little bit for the running jobs to complete
pause(0.1);
end
prevnumcollected = sum(collected);
prevnumbusy = sum(isbusy);
end % while not all jobs have finished
if numargout>0 && UniformOutput
% check whether the output can be converted to a uniform one
for i=1:numel(varargout)
for j=1:numel(varargout{i})
if numel(varargout{i}{j})~=1
% this error message is consistent with the one from cellfun
error('Non-scalar in Uniform output, at index %d, output %d. Set ''UniformOutput'' to false.', j, i);
end
end
end
% convert the output to a uniform one
for i=1:numargout
varargout{i} = [varargout{i}{:}];
end
end
% ensure the output to have the same size/dimensions as the input
for i=1:numargout
varargout{i} = reshape(varargout{i}, size(varargin{1}));
end
% compare the time used inside this function with the total execution time
fprintf('computational time = %.1f sec, elapsed = %.1f sec, speedup %.1f x\n', nansum(timused), toc(stopwatch), nansum(timused)/toc(stopwatch));
if all(puttime>timused)
% FIXME this could be detected in the loop above, and the strategy could automatically
% be adjusted from using the engines to local execution
warning('copying the jobs over the network took more time than their execution');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cleanupfun
pool = enginepool('info');
for i=1:length(pool)
enginepool('release', i);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmax(x)
y = max(x(~isnan(x(:))));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmin(x)
y = min(x(~isnan(x(:))));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanmean(x)
x = x(~isnan(x(:)));
y = mean(x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nanstd(x)
x = x(~isnan(x(:)));
y = std(x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = nansum(x)
x = x(~isnan(x(:)));
y = sum(x);
|
github
|
lcnbeapp/beapp-master
|
ft_platform_supports.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/engine/private/ft_platform_supports.m
| 9,557 |
utf_8
|
eb0e55d84d57e6873cce8df6cad90d96
|
function tf = ft_platform_supports(what,varargin)
% FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform
% supports a specific capability
%
% Usage:
% tf = ft_platform_supports(what)
% tf = ft_platform_supports('matlabversion', min_version, max_version)
%
% The following values are allowed for the 'what' parameter:
% value means that the following is supported:
%
% 'which-all' which(...,'all')
% 'exists-in-private-directory' exists(...) will look in the /private
% subdirectory to see if a file exists
% 'onCleanup' onCleanup(...)
% 'alim' alim(...)
% 'int32_logical_operations' bitand(a,b) with a, b of type int32
% 'graphics_objects' graphics sysem is object-oriented
% 'libmx_c_interface' libmx is supported through mex in the
% C-language (recent Matlab versions only
% support C++)
% 'stats' all statistical functions in
% FieldTrip's external/stats directory
% 'program_invocation_name' program_invocation_name() (GNU Octave)
% 'singleCompThread' start Matlab with -singleCompThread
% 'nosplash' -nosplash
% 'nodisplay' -nodisplay
% 'nojvm' -nojvm
% 'no-gui' start GNU Octave with --no-gui
% 'RandStream.setGlobalStream' RandStream.setGlobalStream(...)
% 'RandStream.setDefaultStream' RandStream.setDefaultStream(...)
% 'rng' rng(...)
% 'rand-state' rand('state')
% 'urlread-timeout' urlread(..., 'Timeout', t)
% 'griddata-vector-input' griddata(...,...,...,a,b) with a and b
% vectors
% 'griddata-v4' griddata(...,...,...,...,...,'v4'),
% that is v4 interpolation support
% 'uimenu' uimenu(...)
if ~ischar(what)
error('first argument must be a string');
end
switch what
case 'matlabversion'
tf = is_matlab() && matlabversion(varargin{:});
case 'exists-in-private-directory'
tf = is_matlab();
case 'which-all'
tf = is_matlab();
case 'onCleanup'
tf = is_octave() || matlabversion(7.8, Inf);
case 'alim'
tf = is_matlab();
case 'int32_logical_operations'
% earlier version of Matlab don't support bitand (and similar)
% operations on int32
tf = is_octave() || ~matlabversion(-inf, '2012a');
case 'graphics_objects'
% introduced in Matlab 2014b, graphics is handled through objects;
% previous versions use numeric handles
tf = is_matlab() && matlabversion('2014b', Inf);
case 'libmx_c_interface'
% removed after 2013b
tf = matlabversion(-Inf, '2013b');
case 'stats'
root_dir=fileparts(which('ft_defaults'));
external_stats_dir=fullfile(root_dir,'external','stats');
% these files are only used by other functions in the external/stats
% directory
exclude_mfiles={'common_size.m',...
'iscomplex.m',...
'lgamma.m'};
tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles);
case 'program_invocation_name'
% Octave supports program_invocation_name, which returns the path
% of the binary that was run to start Octave
tf = is_octave();
case 'singleCompThread'
tf = is_matlab() && matlabversion(7.8, inf);
case {'nosplash','nodisplay','nojvm'}
% Only on Matlab
tf = is_matlab();
case 'no-gui'
% Only on Octave
tf = is_octave();
case 'RandStream.setDefaultStream'
tf = is_matlab() && matlabversion('2008b', '2011b');
case 'RandStream.setGlobalStream'
tf = is_matlab() && matlabversion('2012a', inf);
case 'randomized_PRNG_on_startup'
tf = is_octave() || ~matlabversion(-Inf,'7.3');
case 'rng'
% recent Matlab versions
tf = is_matlab() && matlabversion('7.12',Inf);
case 'rand-state'
% GNU Octave
tf = is_octave();
case 'urlread-timeout'
tf = is_matlab() && matlabversion('2012b',Inf);
case 'griddata-vector-input'
tf = is_matlab();
case 'griddata-v4'
tf = is_matlab() && matlabversion('2009a',Inf);
case 'uimenu'
tf = is_matlab();
otherwise
error('unsupported value for first argument: %s', what);
end % switch
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_matlab()
tf = ~is_octave();
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_octave()
persistent cached_tf;
if isempty(cached_tf)
cached_tf = logical(exist('OCTAVE_VERSION', 'builtin'));
end
tf = cached_tf;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = has_all_functions_in_dir(in_dir, exclude_mfiles)
% returns true if all functions in in_dir are already provided by the
% platform
m_files=dir(fullfile(in_dir,'*.m'));
n=numel(m_files);
for k=1:n
m_filename=m_files(k).name;
if isempty(which(m_filename)) && ...
isempty(strmatch(m_filename,exclude_mfiles))
tf=false;
return;
end
end
tf=true;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current MATLAB version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion('2009b') % exactly 2009b
% matlabversion('2008b', '2010a') % between two versions
% matlabversion('2008b', Inf) % from a version onwards
% etc.
%
% See also VERSION, VER, VERLESSTHAN
% Copyright (C) 2006, Robert Oostenveld
% Copyright (C) 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this does not change over subsequent calls, making it persistent speeds it up
persistent curVer
if nargin<2
max = min;
end
if isempty(curVer)
curVer = version();
end
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
end % function
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end % function
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end % function
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end % function
|
github
|
lcnbeapp/beapp-master
|
ft_warning.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/engine/private/ft_warning.m
| 7,789 |
utf_8
|
d832a7ad5e2f9bb42995e6e5d4caa198
|
function [ws, warned] = ft_warning(varargin)
% FT_WARNING will throw a warning for every unique point in the
% stacktrace only, e.g. in a for-loop a warning is thrown only once.
%
% Use as one of the following
% ft_warning(string)
% ft_warning(id, string)
% Alternatively, you can use ft_warning using a timeout
% ft_warning(string, timeout)
% ft_warning(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again.
%
% Use as ft_warning('-clear') to clear old warnings from the current
% stack
%
% It can be used instead of the MATLAB built-in function WARNING, thus as
% s = ft_warning(...)
% or as
% ft_warning(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information. In other words, ft_warning accepts as an input the
% same structure it returns as an output. This returns or restores the
% states of warnings to their previous values.
%
% It can also be used as
% [s w] = ft_warning(...)
% where w is a boolean that indicates whether a warning as been thrown or not.
%
% Please note that you can NOT use it like this
% ft_warning('the value is %d', 10)
% instead you should do
% ft_warning(sprintf('the value is %d', 10))
% Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global ft_default
warned = false;
ws = [];
stack = dbstack;
if any(strcmp({stack(2:end).file}, 'ft_warning.m'))
% don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068
return;
end
if nargin < 1
error('You need to specify at least a warning message');
end
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if ~isfield(ft_default, 'warning')
ft_default.warning = [];
end
if ~isfield(ft_default.warning, 'stopwatch')
ft_default.warning.stopwatch = [];
end
if ~isfield(ft_default.warning, 'identifier')
ft_default.warning.identifier = [];
end
if ~isfield(ft_default.warning, 'ignore')
ft_default.warning.ignore = {};
end
% put the arguments we will pass to warning() in this cell array
warningArgs = {};
if nargin==3
% calling syntax (id, msg, timeout)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = varargin{3};
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==2 && isnumeric(varargin{2})
% calling syntax (msg, timeout)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = varargin{2};
fname = warningArgs{1};
elseif nargin==2 && isequal(varargin{1}, 'off')
ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && isequal(varargin{1}, 'on')
ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && ~isnumeric(varargin{2})
% calling syntax (id, msg)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = inf;
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==1
% calling syntax (msg)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = inf; % default timeout in seconds
fname = [warningArgs{1}];
end
if ismember(msg, ft_default.warning.ignore)
% do not show this warning
return;
end
if isempty(timeout)
error('Timeout ill-specified');
end
if timeout ~= inf
fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures
line = [];
else
% here, we create the fieldname functionA.functionB.functionC...
[tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier);
if ~isempty(tmpfname),
fname = tmpfname;
clear tmpfname;
end
end
if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1})
if strcmp(fname, '-clear') % reset all fields if called outside a function
ft_default.warning.identifier = [];
ft_default.warning.stopwatch = [];
else
if issubfield(ft_default.warning.identifier, fname)
ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname);
end
end
return;
end
% and add the line number to make this unique for the last function
fname = horzcat(fname, line);
if ~issubfield('ft_default.warning.stopwatch', fname)
ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic);
end
now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call
if ~issubfield(ft_default.warning.identifier, fname) || ...
(issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout']))
% create or reset field
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []);
% warning never given before or timed out
ws = warning(warningArgs{:});
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout);
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg);
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = getsubfield(ft_default.warning.identifier, [fname '.ws']);
end
end % function ft_warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings)
% stack(1) is this function, stack(2) is ft_warning
stack = dbstack('-completenames');
if size(stack) < 3
fname = [];
line = [];
return;
end
i0 = 3;
% ignore ft_preamble
while strfind(stack(i0).name, 'ft_preamble')
i0=i0+1;
end
fname = horzcat(fixname(stack(end).name));
if ~issubfield(ft_previous_warnings, fixname(stack(end).name))
ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields
end
for i=numel(stack)-1:-1:(i0)
% skip postamble scripts
if strncmp(stack(i).name, 'ft_postamble', 12)
break;
end
fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file
if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields
setsubfield(ft_previous_warnings, fname, []);
end
end
% line of last function call
line = ['.line', int2str(stack(i0).line)];
end
% function outcome = issubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% outcome = isfield(strct, fname);
% end
% end
% function strct = rmsubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% strct = rmfield(strct, fname);
% end
% end
|
github
|
lcnbeapp/beapp-master
|
ft_specest_mtmconvol.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/specest/ft_specest_mtmconvol.m
| 21,073 |
utf_8
|
b5608f0bb24aca60fd1c5df6e8299018
|
function [spectrum,ntaper,freqoi,timeoi] = ft_specest_mtmconvol(dat, time, varargin)
% FT_SPECEST_MTMCONVOL performs wavelet convolution in the time domain by
% multiplication in the frequency domain.
%
% Use as
% [spectrum,ntaper,freqoi,timeoi] = ft_specest_mtmconvol(dat,time,...)
% where input
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% and output
% spectrum = matrix of ntaper*chan*freqoi*timeoi of fourier coefficients
% ntaper = vector containing the number of tapers per freqoi
% freqoi = vector of frequencies in spectrum
% timeoi = vector of timebins in spectrum
%
% Optional arguments should be specified in key-value pairs and can include
% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% pad = number, indicating time-length of data to be padded out to in seconds
% padtype = string, indicating type of padding to be used (see ft_preproc_padding, default: zero)
% timeoi = vector, containing time points of interest (in seconds)
% timwin = vector, containing length of time windows (in seconds)
% freqoi = vector, containing frequencies (in Hz)
% tapsmofrq = number, the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box
% dimord = 'tap_chan_freq_time' (default) or 'chan_time_freqtap' for memory efficiency
% verbose = output progress to console (0 or 1, default 1)
% taperopt = additional taper options to be used in the WINDOW function, see WINDOW
% polyorder = number, the order of the polynomial to fitted to and removed from the data prior to the fourier transform (default = 0 -> remove DC-component)
%
% See also FT_FREQANALYSIS, FT_SPECEST_MTMFFT, FT_SPECEST_TFR, FT_SPECEST_HILBERT, FT_SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are for speeding up computation of tapers on subsequent calls
persistent previous_argin previous_wltspctrm
% get the optional input arguments
taper = ft_getopt(varargin, 'taper', 'dpss');
pad = ft_getopt(varargin, 'pad');
padtype = ft_getopt(varargin, 'padtype', 'zero');
timeoi = ft_getopt(varargin, 'timeoi', 'all');
timwin = ft_getopt(varargin, 'timwin');
freqoi = ft_getopt(varargin, 'freqoi', 'all');
tapsmofrq = ft_getopt(varargin, 'tapsmofrq');
dimord = ft_getopt(varargin, 'dimord', 'tap_chan_freq_time');
fbopt = ft_getopt(varargin, 'feedback');
verbose = ft_getopt(varargin, 'verbose', true);
polyorder = ft_getopt(varargin, 'polyorder', 0);
tapopt = ft_getopt(varargin, 'taperopt');
if isempty(fbopt),
fbopt.i = 1;
fbopt.n = 1;
end
% throw errors for required input
if isempty(tapsmofrq) && strcmp(taper, 'dpss')
error('you need to specify tapsmofrq when using dpss tapers')
end
if isempty(timwin)
error('you need to specify timwin')
elseif (length(timwin) ~= length(freqoi) && ~strcmp(freqoi,'all'))
error('timwin should be of equal length as freqoi')
end
% Set n's
[nchan,ndatsample] = size(dat);
% This does not work on integer data
typ = class(dat);
if ~strcmp(typ, 'double') && ~strcmp(typ, 'single')
dat = cast(dat, 'double');
end
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1./mean(diff(time));
dattime = ndatsample / fsample; % total time in seconds of input data
% Zero padding
if round(pad * fsample) < ndatsample
error('the padding that you specified is shorter than the data');
end
if isempty(pad) % if no padding is specified padding is equal to current data length
pad = dattime;
end
postpad = round((pad - dattime) * fsample);
endnsample = round(pad * fsample); % total number of samples of padded data
endtime = pad; % total time in seconds of padded data
% Set freqboi and freqoi
freqoiinput = freqoi;
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1; % is equivalent to: round(freqoi .* endtime) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all')
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
% check for freqoi = 0 and remove it, there is no wavelet for freqoi = 0
if freqoi(1)==0
freqoi(1) = [];
freqboi(1) = [];
if length(timwin) == (length(freqoi) + 1)
timwin(1) = [];
end
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
% throw a warning if input freqoi is different from output freqoi
if isnumeric(freqoiinput)
% check whether padding is appropriate for the requested frequency resolution
rayl = 1/endtime;
if any(rem(freqoiinput,rayl))
ft_warning('padding not sufficient for requested frequency resolution, for more information please see the FAQs on www.ru.nl/neuroimaging/fieldtrip');
end
if numel(freqoiinput) ~= numel(freqoi) % freqoi will not contain double frequency bins when requested
ft_warning('output frequencies are different from input frequencies, multiples of the same bin were requested but not given');
else
if any(abs(freqoiinput-freqoi) >= eps*1e6)
ft_warning('output frequencies are different from input frequencies');
end
end
end
% Set timeboi and timeoi
timeoiinput = timeoi;
offset = round(time(1)*fsample);
if isnumeric(timeoi) % if input is a vector
timeoi = unique(round(timeoi .* fsample) ./ fsample);
timeboi = round(timeoi .* fsample - offset) + 1;
ntimeboi = length(timeboi);
elseif strcmp(timeoi,'all') % if input was 'all'
timeboi = 1:length(time);
ntimeboi = length(timeboi);
timeoi = time;
end
% throw a warning if input timeoi is different from output timeoi
if isnumeric(timeoiinput)
if numel(timeoiinput) ~= numel(timeoi) % timeoi will not contain double time-bins when requested
ft_warning('output time-bins are different from input time-bins, multiples of the same bin were requested but not given');
else
if any(abs(timeoiinput-timeoi) >= eps*1e6)
ft_warning('output time-bins are different from input time-bins');
end
end
end
% set number of samples per time-window (timwin is in seconds)
if numel(timwin)==1 && nfreqoi~=1
timwin = repmat(timwin,[1 nfreqoi]);
end
timwinsample = round(timwin .* fsample);
% determine whether tapers need to be recomputed
current_argin = {time, postpad, taper, timwinsample, tapsmofrq, freqoi, timeoi, tapopt}; % reasoning: if time and postpad are equal, it's the same length trial, if the rest is equal then the requested output is equal
if isequal(current_argin, previous_argin)
% don't recompute tapers
wltspctrm = previous_wltspctrm;
ntaper = cellfun(@size,wltspctrm,repmat({1},[1 nfreqoi])');
else
% recompute tapers per frequency, multiply with wavelets and compute their fft
wltspctrm = cell(nfreqoi,1);
ntaper = zeros(nfreqoi,1);
for ifreqoi = 1:nfreqoi
switch taper
case 'dpss'
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
tap = double_dpss(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
% remove the last taper because the last slepian taper is always messy
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), timwinsample(ifreqoi)/fsample,tapsmofrq(ifreqoi),fsample/timwinsample(ifreqoi));
elseif size(tap,1) == 1
disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])
end
case 'sine'
% create and remove the last taper
tap = sine_taper(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
tap = tap(1:(end-1), :);
case 'sine_old'
% to provide compatibility with the tapers being scaled (which was default
% behavior prior to 29apr2011) yet this gave different magnitude of power
% when comparing with slepian multi tapers
tap = sine_taper_scaled(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'alpha'
tap = alpha_taper(timwinsample(ifreqoi), freqoi(ifreqoi)./ fsample)';
tap = tap./norm(tap)';
case 'hanning'
tap = hanning(timwinsample(ifreqoi))';
tap = tap./norm(tap, 'fro');
otherwise
% create a single taper according to the window specification as a replacement for the DPSS (Slepian) sequence
if isempty(tapopt) % some windowing functions don't support nargin>1, and window.m doesn't check it
tap = window(taper, timwinsample(ifreqoi))';
else
tap = window(taper, timwinsample(ifreqoi),tapopt)';
end
tap = tap ./ norm(tap,'fro'); % make it explicit that the frobenius norm is being used
end
% set number of tapers
ntaper(ifreqoi) = size(tap,1);
% Wavelet construction
tappad = ceil(endnsample ./ 2) - floor(timwinsample(ifreqoi) ./ 2);
prezero = zeros(1,tappad);
postzero = zeros(1,round(endnsample) - ((tappad-1) + timwinsample(ifreqoi))-1);
% phase consistency: cos must always be 1 and sin must always be centered in upgoing flank, so the centre of the wavelet (untapered) has angle = 0
anglein = (-(timwinsample(ifreqoi)-1)/2 : (timwinsample(ifreqoi)-1)/2)' .* ((2.*pi./fsample) .* freqoi(ifreqoi));
wltspctrm{ifreqoi} = complex(zeros(size(tap,1),round(endnsample)));
for itap = 1:ntaper(ifreqoi)
try % this try loop tries to fit the wavelet into wltspctrm, when its length is smaller than ndatsample, the rest is 'filled' with zeros because of above code
% if a wavelet is longer than ndatsample, it doesn't fit and it is kept at zeros, which is translated to NaN's in the output
% construct the complex wavelet
coswav = horzcat(prezero, tap(itap,:) .* cos(anglein)', postzero);
sinwav = horzcat(prezero, tap(itap,:) .* sin(anglein)', postzero);
wavelet = complex(coswav, sinwav);
% store the fft of the complex wavelet
wltspctrm{ifreqoi}(itap,:) = fft(wavelet,[],2);
% % debug plotting
% figure('name',['taper #' num2str(itap) ' @ ' num2str(freqoi(ifreqoi)) 'Hz' ],'NumberTitle','off');
% subplot(2,1,1);
% hold on;
% plot(real(wavelet));
% plot(imag(wavelet),'color','r');
% legend('real','imag');
% tline = length(wavelet)/2;
% if mod(tline,2)==0
% line([tline tline],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--')
% else
% line([ceil(tline) ceil(tline)],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--');
% line([floor(tline) floor(tline)],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--');
% end;
% subplot(2,1,2);
% plot(angle(wavelet),'color','g');
% if mod(tline,2)==0,
% line([tline tline],[-pi pi],'color','r','linestyle','--')
% else
% line([ceil(tline) ceil(tline)],[-pi pi],'color','r','linestyle','--')
% line([floor(tline) floor(tline)],[-pi pi],'color','r','linestyle','--')
% end
end
end
end
end
% Switch between memory efficient representation or intuitive default representation
switch dimord
case 'tap_chan_freq_time' % default
% compute fft, major speed increases are possible here, depending on which MATLAB is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
datspectrum = fft(ft_preproc_padding(dat, padtype, 0, postpad), [], 2);
spectrum = cell(max(ntaper), nfreqoi);
for ifreqoi = 1:nfreqoi
str = sprintf('frequency %d (%.2f Hz), %d tapers', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:max(ntaper)
% compute indices that will be used to extracted the requested fft output
nsamplefreqoi = timwin(ifreqoi) .* fsample;
reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
reqtimeboi = timeboi(reqtimeboiind);
% compute datspectrum*wavelet, if there are reqtimeboi's that have data
% create a matrix of NaNs if there is no taper for this current frequency-taper-number
if itap > ntaper(ifreqoi)
spectrum{itap,ifreqoi} = complex(nan(nchan,ntimeboi));
else
dum = fftshift(ifft(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1]), [], 2),2); % fftshift is necessary to implement zero-phase/acyclic/acausal convolution (either here, or the wavelet should be wrapped around sample=0)
tmp = complex(nan(nchan,ntimeboi));
tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
spectrum{itap,ifreqoi} = tmp;
end
end
end
spectrum = reshape(vertcat(spectrum{:}),[nchan max(ntaper) nfreqoi ntimeboi]); % collecting in a cell-array and later reshaping provides significant speedups
spectrum = permute(spectrum, [2 1 3 4]);
case 'chan_time_freqtap' % memory efficient representation
% create tapfreqind
freqtapind = cell(1,nfreqoi);
tempntaper = [0; cumsum(ntaper(:))];
for ifreqoi = 1:nfreqoi
freqtapind{ifreqoi} = tempntaper(ifreqoi)+1:tempntaper(ifreqoi+1);
end
% start fft'ing
datspectrum = fft(ft_preproc_padding(dat, padtype, 0, postpad), [], 2);
spectrum = complex(zeros([nchan ntimeboi sum(ntaper)]));
for ifreqoi = 1:nfreqoi
str = sprintf('frequency %d (%.2f Hz), %d tapers', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
% compute indices that will be used to extracted the requested fft output
nsamplefreqoi = timwin(ifreqoi) .* fsample;
reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < (ndatsample - (nsamplefreqoi ./2))));
reqtimeboi = timeboi(reqtimeboiind);
% compute datspectrum*wavelet, if there are reqtimeboi's that have data
dum = fftshift(ifft(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1]), [], 2),2); % fftshift is necessary to implement zero-phase/acyclic/acausal convolution (either here, or the wavelet should be wrapped around sample=0)
tmp = complex(nan(nchan,ntimeboi),nan(nchan,ntimeboi));
tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
spectrum(:,:,freqtapind{ifreqoi}(itap)) = tmp;
end
end % for nfreqoi
end % switch dimord
% remember the current input arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
previous_argin = current_argin;
previous_wltspctrm = wltspctrm;
% % below code does the exact same as above, but without the trick of converting to cell-arrays for speed increases. however, when there is a huge variability in number of tapers per freqoi
% % than this approach can benefit from the fact that the array can be precreated containing nans
% % compute fft, major speed increases are possible here, depending on which MATLAB is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
% datspectrum = transpose(fft(transpose([dat repmat(postpad,[nchan, 1])]))); % double explicit transpose to speedup fft
% % NOTE: double explicit transpose around fft is not faster than using fft
% with dim argument (in fact, it is slower)
% spectrum = complex(nan([max(ntaper) nchan nfreqoi ntimeboi]),nan([max(ntaper) nchan nfreqoi ntimeboi])); % assumes fixed number of tapers
% for ifreqoi = 1:nfreqoi
% fprintf('processing frequency %d (%.2f Hz), %d tapers\n', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
% for itap = 1:max(ntaper)
% % compute indices that will be used to extracted the requested fft output
% nsamplefreqoi = timwin(ifreqoi) .* fsample;
% reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
% reqtimeboi = timeboi(reqtimeboiind);
%
% % compute datspectrum*wavelet, if there are reqtimeboi's that have data
% % create a matrix of NaNs if there is no taper for this current frequency-taper-number
% if itap <= ntaper(ifreqoi)
% dum = fftshift(transpose(ifft(transpose(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1])))),2); % double explicit transpose to speedup fft
% tmp = complex(nan(nchan,ntimeboi));
% tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
% tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
% spectrum(itap,:,ifreqoi,:) = tmp;
% else
% break
% end
% end
% end
% Below the code used to implement variable amount of tapers in a different way, kept here for testing, please do not remove
% % build tapfreq vector
% tapfreq = [];
% for ifreqoi = 1:nfreqoi
% tapfreq = [tapfreq ones(1,ntaper(ifreqoi)) * ifreqoi];
% end
% tapfreq = tapfreq(:);
%
% % compute fft, major speed increases are possible here, depending on which MATLAB is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
% %spectrum = complex(nan([numel(tapfreq),nchan,ntimeboi]));
% datspectrum = fft([dat repmat(postpad,[nchan, 1])],[],2);
% spectrum = cell(numel(tapfreq), nchan, ntimeboi);
% for ifreqoi = 1:nfreqoi
% fprintf('processing frequency %d (%.2f Hz), %d tapers\n', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
% for itap = 1:ntaper(ifreqoi)
% tapfreqind = sum(ntaper(1:ifreqoi-1)) + itap;
% for ichan = 1:nchan
% % compute indices that will be used to extracted the requested fft output
% nsamplefreqoi = timwin(ifreqoi) .* fsample;
% reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
% reqtimeboi = timeboi(reqtimeboiind);
%
% % compute datspectrum*wavelet, if there are reqtimeboi's that have data
% if ~isempty(reqtimeboi)
% dum = fftshift(ifft(datspectrum(ichan,:) .* wltspctrm{ifreqoi}(itap,:),[],2));
% %spectrum(tapfreqind,ichan,reqtimeboiind) = dum(reqtimeboi);
% tmp = complex(nan(1,ntimeboi));
% tmp(reqtimeboiind) = dum(reqtimeboi);
% spectrum{tapfreqind,ichan} = tmp;
% end
% end
% end
% end
% spectrum = reshape(vertcat(spectrum{:}),[numel(tapfreq) nchan ntimeboi]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for MATLAB 6.5 and 7.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});
|
github
|
lcnbeapp/beapp-master
|
ft_specest_mtmfft.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/specest/ft_specest_mtmfft.m
| 14,511 |
utf_8
|
b163b64586570687c72bc376ea856ea1
|
function [spectrum,ntaper,freqoi] = ft_specest_mtmfft(dat, time, varargin)
% FT_SPECEST_MTMFFT computes a fast Fourier transform using multitapering with
% multiple tapers from the DPSS sequence or using a variety of single tapers.
%
% Use as
% [spectrum,ntaper,freqoi] = ft_specest_mtmfft(dat,time...)
% where
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% spectrum = matrix of taper*chan*freqoi of fourier coefficients
% ntaper = vector containing number of tapers per element of freqoi
% freqoi = vector of frequencies in spectrum
%
% Optional arguments should be specified in key-value pairs and can include
% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% pad = number, total length of data after zero padding (in seconds)
% padtype = string, indicating type of padding to be used (see ft_preproc_padding, default: zero)
% freqoi = vector, containing frequencies of interest
% tapsmofrq = the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box
% dimord = 'tap_chan_freq' (default) or 'chan_time_freqtap' for memory efficiency (only when use variable number slepian tapers)
% polyorder = number, the order of the polynomial to fitted to and removed from the data prior to the fourier transform (default = 0 -> remove DC-component)
% taperopt = additional taper options to be used in the WINDOW function, see WINDOW
% verbose = output progress to console (0 or 1, default 1)
%
% See also FT_FREQANALYSIS, FT_SPECEST_MTMCONVOL, FT_SPECEST_TFR, FT_SPECEST_HILBERT, FT_SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are for speeding up computation of tapers on subsequent calls
persistent previous_argin previous_tap
% get the optional input arguments
taper = ft_getopt(varargin, 'taper'); if isempty(taper), error('You must specify a taper'); end
pad = ft_getopt(varargin, 'pad');
padtype = ft_getopt(varargin, 'padtype', 'zero');
freqoi = ft_getopt(varargin, 'freqoi', 'all');
tapsmofrq = ft_getopt(varargin, 'tapsmofrq');
dimord = ft_getopt(varargin, 'dimord', 'tap_chan_freq');
fbopt = ft_getopt(varargin, 'feedback');
verbose = ft_getopt(varargin, 'verbose', true);
polyorder = ft_getopt(varargin, 'polyorder', 0);
tapopt = ft_getopt(varargin, 'taperopt');
if isempty(fbopt),
fbopt.i = 1;
fbopt.n = 1;
end
% throw errors for required input
if isempty(tapsmofrq) && strcmp(taper, 'dpss')
error('you need to specify tapsmofrq when using dpss tapers')
end
% this does not work on integer data
dat = cast(dat, 'double');
% Set n's
[nchan,ndatsample] = size(dat);
% This does not work on integer data
typ = class(dat);
if ~strcmp(typ, 'double') && ~strcmp(typ, 'single')
dat = cast(dat, 'double');
end
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1./mean(diff(time));
dattime = ndatsample / fsample; % total time in seconds of input data
% Zero padding
if round(pad * fsample) < ndatsample
error('the padding that you specified is shorter than the data');
end
if isempty(pad) % if no padding is specified padding is equal to current data length
pad = dattime;
end
postpad = ceil((pad - dattime) * fsample);
endnsample = round(pad * fsample); % total number of samples of padded data
endtime = pad; % total time in seconds of padded data
% Set freqboi and freqoi
freqoiinput = freqoi;
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1; % is equivalent to: round(freqoi .* endtime) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all') % if input was 'all'
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
if strcmp(taper, 'dpss') && numel(tapsmofrq)~=1 && (numel(tapsmofrq)~=nfreqoi)
error('tapsmofrq needs to contain a smoothing parameter for every frequency when requesting variable number of slepian tapers')
end
% throw a warning if input freqoi is different from output freqoi
if isnumeric(freqoiinput)
% check whether padding is appropriate for the requested frequency resolution
rayl = 1/endtime;
if any(rem(freqoiinput,rayl)) % not always the case when they mismatch
ft_warning('padding not sufficient for requested frequency resolution, for more information please see the FAQs on www.ru.nl/neuroimaging/fieldtrip');
end
if numel(freqoiinput) ~= numel(freqoi) % freqoi will not contain double frequency bins when requested
ft_warning('output frequencies are different from input frequencies, multiples of the same bin were requested but not given');
else
if any(abs(freqoiinput-freqoi) >= eps*1e6)
ft_warning('output frequencies are different from input frequencies');
end
end
end
% determine whether tapers need to be recomputed
current_argin = {time, postpad, taper, tapsmofrq, freqoi, tapopt, dimord}; % reasoning: if time and postpad are equal, it's the same length trial, if the rest is equal then the requested output is equal
if isequal(current_argin, previous_argin)
% don't recompute tapers
tap = previous_tap;
else
% recompute tapers
switch taper
case 'dpss'
if numel(tapsmofrq)==1
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
tap = double_dpss(ndatsample,ndatsample*(tapsmofrq./fsample))';
% remove the last taper because the last slepian taper is always messy
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
error('datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);
elseif size(tap,1) == 1
ft_warning('using only one taper for specified smoothing');
end
elseif numel(tapsmofrq)>1
tap = cell(1,nfreqoi);
for ifreqoi = 1:nfreqoi
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
currtap = double_dpss(ndatsample, ndatsample .* (tapsmofrq(ifreqoi) ./ fsample))';
% remove the last taper because the last slepian taper is always messy
currtap = currtap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(currtap)
error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), ndatsample/fsample,tapsmofrq(ifreqoi),fsample/ndatsample(ifreqoi));
elseif size(currtap,1) == 1
disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])
end
tap{ifreqoi} = currtap;
end
end
case 'sine'
tap = sine_taper(ndatsample, ndatsample*(tapsmofrq./fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'sine_old'
% to provide compatibility with the tapers being scaled (which was default
% behavior prior to 29apr2011) yet this gave different magnitude of power
% when comparing with slepian multi tapers
tap = sine_taper_scaled(ndatsample, ndatsample*(tapsmofrq./fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'alpha'
error('not yet implemented');
case 'hanning'
tap = hanning(ndatsample)';
tap = tap./norm(tap, 'fro');
otherwise
% create the taper and ensure that it is normalized
if isempty(tapopt) % some windowing functions don't support nargin>1, and window.m doesn't check it
tap = window(taper, ndatsample)';
else
tap = window(taper, ndatsample, tapopt)';
end
tap = tap ./ norm(tap,'fro');
end % switch taper
end % isequal currargin
% set ntaper
if ~(strcmp(taper,'dpss') && numel(tapsmofrq)>1) % variable number of slepian tapers not requested
ntaper = repmat(size(tap,1),nfreqoi,1);
else % variable number of slepian tapers requested
ntaper = cellfun(@size,tap,repmat({1},[1 nfreqoi]));
end
% determine phase-shift so that for all frequencies angle(t=0) = 0
timedelay = time(1);
if timedelay ~= 0
angletransform = complex(zeros(1,nfreqoi));
for ifreqoi = 1:nfreqoi
missedsamples = round(timedelay * fsample);
% determine angle of freqoi if oscillation started at 0
% the angle of wavelet(cos,sin) = 0 at the first point of a cycle, with sine being in upgoing flank, which is the same convention as in mtmconvol
anglein = (missedsamples) .* ((2.*pi./fsample) .* freqoi(ifreqoi));
coswav = cos(anglein);
sinwav = sin(anglein);
angletransform(ifreqoi) = atan2(sinwav, coswav);
end
angletransform = repmat(angletransform,[nchan,1]);
end
% compute fft
if ~(strcmp(taper,'dpss') && numel(tapsmofrq)>1) % ariable number of slepian tapers not requested
str = sprintf('nfft: %d samples, datalength: %d samples, %d tapers',endnsample,ndatsample,ntaper(1));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis')
% specest_mtmfft has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d/%d ',str,'\n'], fbopt.i, fbopt.n);
elseif verbose
fprintf([str, '\n']);
end
spectrum = cell(ntaper(1),1);
for itap = 1:ntaper(1)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap(itap,:)), padtype, 0, postpad),[], 2);
dum = dum(:,freqboi);
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform);
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum{itap} = dum;
end
spectrum = reshape(vertcat(spectrum{:}),[nchan ntaper(1) nfreqboi]);% collecting in a cell-array and later reshaping provides significant speedups
spectrum = permute(spectrum, [2 1 3]);
else % variable number of slepian tapers requested
switch dimord
case 'tap_chan_freq' % default
% start fft'ing
spectrum = complex(NaN([max(ntaper) nchan nfreqoi]));
for ifreqoi = 1:nfreqoi
str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);
dum = dum(:,freqboi(ifreqoi));
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform(:,ifreqoi));
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum(itap,:,ifreqoi) = dum;
end
end % for nfreqoi
case 'chan_freqtap' % memory efficient representation
% create tapfreqind
freqtapind = cell(1,nfreqoi);
tempntaper = [0; cumsum(ntaper(:))];
for ifreqoi = 1:nfreqoi
freqtapind{ifreqoi} = tempntaper(ifreqoi)+1:tempntaper(ifreqoi+1);
end
% start fft'ing
spectrum = complex(zeros([nchan sum(ntaper)]));
for ifreqoi = 1:nfreqoi
str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);
dum = dum(:,freqboi(ifreqoi));
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform(:,ifreqoi));
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum(:,freqtapind{ifreqoi}(itap)) = dum;
end
end % for nfreqoi
end % switch dimord
end
% remember the current input arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
previous_argin = current_argin;
previous_tap = tap;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for MATLAB 6.5 and 7.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});
|
github
|
lcnbeapp/beapp-master
|
ft_warning.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/specest/private/ft_warning.m
| 7,789 |
utf_8
|
d832a7ad5e2f9bb42995e6e5d4caa198
|
function [ws, warned] = ft_warning(varargin)
% FT_WARNING will throw a warning for every unique point in the
% stacktrace only, e.g. in a for-loop a warning is thrown only once.
%
% Use as one of the following
% ft_warning(string)
% ft_warning(id, string)
% Alternatively, you can use ft_warning using a timeout
% ft_warning(string, timeout)
% ft_warning(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again.
%
% Use as ft_warning('-clear') to clear old warnings from the current
% stack
%
% It can be used instead of the MATLAB built-in function WARNING, thus as
% s = ft_warning(...)
% or as
% ft_warning(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information. In other words, ft_warning accepts as an input the
% same structure it returns as an output. This returns or restores the
% states of warnings to their previous values.
%
% It can also be used as
% [s w] = ft_warning(...)
% where w is a boolean that indicates whether a warning as been thrown or not.
%
% Please note that you can NOT use it like this
% ft_warning('the value is %d', 10)
% instead you should do
% ft_warning(sprintf('the value is %d', 10))
% Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global ft_default
warned = false;
ws = [];
stack = dbstack;
if any(strcmp({stack(2:end).file}, 'ft_warning.m'))
% don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068
return;
end
if nargin < 1
error('You need to specify at least a warning message');
end
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if ~isfield(ft_default, 'warning')
ft_default.warning = [];
end
if ~isfield(ft_default.warning, 'stopwatch')
ft_default.warning.stopwatch = [];
end
if ~isfield(ft_default.warning, 'identifier')
ft_default.warning.identifier = [];
end
if ~isfield(ft_default.warning, 'ignore')
ft_default.warning.ignore = {};
end
% put the arguments we will pass to warning() in this cell array
warningArgs = {};
if nargin==3
% calling syntax (id, msg, timeout)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = varargin{3};
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==2 && isnumeric(varargin{2})
% calling syntax (msg, timeout)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = varargin{2};
fname = warningArgs{1};
elseif nargin==2 && isequal(varargin{1}, 'off')
ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && isequal(varargin{1}, 'on')
ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2});
return
elseif nargin==2 && ~isnumeric(varargin{2})
% calling syntax (id, msg)
warningArgs = varargin(1:2);
msg = warningArgs{2};
timeout = inf;
fname = [warningArgs{1} '_' warningArgs{2}];
elseif nargin==1
% calling syntax (msg)
warningArgs = varargin(1);
msg = warningArgs{1};
timeout = inf; % default timeout in seconds
fname = [warningArgs{1}];
end
if ismember(msg, ft_default.warning.ignore)
% do not show this warning
return;
end
if isempty(timeout)
error('Timeout ill-specified');
end
if timeout ~= inf
fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures
line = [];
else
% here, we create the fieldname functionA.functionB.functionC...
[tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier);
if ~isempty(tmpfname),
fname = tmpfname;
clear tmpfname;
end
end
if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1})
if strcmp(fname, '-clear') % reset all fields if called outside a function
ft_default.warning.identifier = [];
ft_default.warning.stopwatch = [];
else
if issubfield(ft_default.warning.identifier, fname)
ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname);
end
end
return;
end
% and add the line number to make this unique for the last function
fname = horzcat(fname, line);
if ~issubfield('ft_default.warning.stopwatch', fname)
ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic);
end
now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call
if ~issubfield(ft_default.warning.identifier, fname) || ...
(issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout']))
% create or reset field
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []);
% warning never given before or timed out
ws = warning(warningArgs{:});
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout);
ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg);
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = getsubfield(ft_default.warning.identifier, [fname '.ws']);
end
end % function ft_warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings)
% stack(1) is this function, stack(2) is ft_warning
stack = dbstack('-completenames');
if size(stack) < 3
fname = [];
line = [];
return;
end
i0 = 3;
% ignore ft_preamble
while strfind(stack(i0).name, 'ft_preamble')
i0=i0+1;
end
fname = horzcat(fixname(stack(end).name));
if ~issubfield(ft_previous_warnings, fixname(stack(end).name))
ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields
end
for i=numel(stack)-1:-1:(i0)
% skip postamble scripts
if strncmp(stack(i).name, 'ft_postamble', 12)
break;
end
fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file
if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields
setsubfield(ft_previous_warnings, fname, []);
end
end
% line of last function call
line = ['.line', int2str(stack(i0).line)];
end
% function outcome = issubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% outcome = isfield(strct, fname);
% end
% end
% function strct = rmsubfield(strct, fname)
% substrindx = strfind(fname, '.');
% if numel(substrindx) > 0
% % separate the last fieldname from all former
% strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']);
% else
% % there is only one fieldname
% strct = rmfield(strct, fname);
% end
% end
|
github
|
lcnbeapp/beapp-master
|
ft_nonlinearassociation.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/misc/ft_nonlinearassociation.m
| 13,980 |
utf_8
|
8eddc691a3520b09cedcd32f211f3e34
|
function [association] = nonlinearassociation(cfg, data)
% NONLINEARASSOCIATION calculate the association coefficient as a
% function of delay.
%
% In order to estimate the amount of association between all possible
% pairs of MEG sensors the nonlinear association analysis is used.
% It was first developed for EEG data analysis by Pijn and co-workers
% (Lopes da Silva, et al. 1989; Pijn, et al. 1990). The basic principle
% is similar to that of coherence and (cross) correlation, with the
% exception that this nonlinear association method can be applied
% independent of the type of relationship (linear or nonlinear) in
% the data.
%
% The method is based on the idea that if two signals x and y are
% correlated, a nonlinear regression curve can be calculated that
% represents their relationship. In practice, that regression curve
% is estimated by creating a scatterplot of y versus x, dividing the
% data in segments and describing each segment with a linear regression
% curve. The estimated correlation ratio h2, which gives the reduction
% in variance of y as a result of predicting its values according to
% the regression curve, can be calculated as follows:
%
% h^2 = (sum(Yi - mean(Y))^2 - sum(Yi - f(Xi))^2) / sum(Yi - mean(Y))^2
%
% With the sum going over N samples and f(Xi) the estimated value of
% Yi according to the regression line. The h2 coefficient has values
% between 0 (y is completely independent of x) and 1 (y is completely
% determined by x). In the case of a linear relationship between x
% and y, h2 is equal to the well known Pearson correlation coefficient
% (r2). As is the case with cross-correlation, it is possible to
% estimate h2 as a function of time shift () between the signals. The
% h2 is then iteratively calculated for different values of , by
% shifting the signals in comparison to each other, and the value for
% which the maximal h2 is reached can be used as an estimate of the
% time lag between both signals. In deciding what epoch length to use
% in the association analysis, a trade-off has to be made between
% successfully determining the correct delay and h2-value (for which
% large epoch lengths are necessary) and a small enough time-resolution
% (for which small epoch lengths are necessary).
%
% Use as
% [association] = nonlinearassociation(cfg, data)
%
% The input data should be organised in a structure as obtained from
% the PREPROCESSING function.
%
% The configuration should contain
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see CHANNELSELECTION for details
% cfg.keeptrials = 'yes' or 'no', process the individual trials or the concatenated data (default = 'no')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.fsample = 1200
% cfg.maxdelay = 32/cfg.fsample
% cfg.delaystep = 2/cfg.fsample
% cfg.nr_bins = 7
% cfg.offset = 0
% cfg.order = 'Hxy'
% cfg.timwin = 0.2
% cfg.toi = []
%
% References
% - Lopes da Silva F, Pijn JP, Boeijinga P. (1989): Interdependence of
% EEG signals: linear vs. nonlinear associations and the significance
% of time delays and phase shifts. Brain Topogr 2(1-2):9-18.
% - Pijn JP, Vijn PC, Lopes da Silva FH, Van Ende Boas W, Blanes W.
% (1990): Localization of epileptogenic foci using a new signal
% analytical approach. Neurophysiol Clin 20(1):1-11.
% Copyright (C) 2007, Inge Westmijse
ft_defaults
% set the defaults
if ~isfield(cfg, 'trials'), cfg.trials = 'all'; end
if ~isfield(cfg, 'keeptrials'), cfg.keeptrials = 'no'; end
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'toi'), cfg.toi = []; end
if ~isfield(cfg, 'timwin'), cfg.timwin = 0.2; end
if ~isfield(cfg, 'fsample'), cfg.fsample = 1200; end
if ~isfield(cfg, 'delaystep'), cfg.delaystep = 2/cfg.fsample; end
if ~isfield(cfg, 'maxdelay'), cfg.maxdelay = 32/cfg.fsample; end
if ~isfield(cfg, 'offset'), cfg.offset = 0; end
if ~isfield(cfg, 'nr_bins'), cfg.nr_bins = 7; end
if ~isfield(cfg, 'order'), cfg.order = 'Hxy'; end
if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do some bookkeeping on the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select trials of interest
if ~strcmp(cfg.trials, 'all')
if islogical(cfg.trials), cfg.trials=find(cfg.trials); end
fprintf('selecting %d trials\n', length(cfg.trials));
data.trial = data.trial(cfg.trials);
data.time = data.time(cfg.trials);
end
Ntrials = numel(data.trial);
% select channels of interest
cfg.channel = channelselection(cfg.channel, data.label);
chansel = match_str(data.label, cfg.channel);
fprintf('selecting %d channels\n', length(chansel));
for trial=1:Ntrials
data.trial{trial} = data.trial{trial}(chansel,:);
end
data.label = data.label(chansel);
Nchans = length(chansel);
% determine the size of each trial, they can be variable length
Nsamples = zeros(1,Ntrials);
for trial=1:Ntrials
Nsamples(trial) = size(data.trial{trial},2);
end
if strcmp(cfg.keeptrials, 'no')
% concatenate all the data into a 2D matrix
fprintf('concatenating data');
dat = zeros(Nchans, sum(Nsamples));
for trial=1:Ntrials
fprintf('.');
begsample = sum(Nsamples(1:(trial-1))) + 1;
endsample = sum(Nsamples(1:trial));
dat(:,begsample:endsample) = data.trial{trial};
end
fprintf('\n');
fprintf('concatenated data matrix size %dx%d\n', size(dat,1), size(dat,2));
time = [1/cfg.fsample : size(dat,1)/cfg.fsample : size(dat,1)];
data.trial = {dat};
data.time = {time};
Ntrials = 1;
else
% replace the time axis, since shifted time-axes over trials are not supported
for i = 1:Ntrials
data.time{i} = [1/cfg.fsample : 1/cfg.fsample : size(data.trial{i},2) / cfg.fsample];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% prepare all data selection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% item 1: channel combinations
numchannelcmb = Nchans*(Nchans-1)/2;
channelcmb = zeros(numchannelcmb, 2);
k = 1;
if (strcmp(cfg.order, 'Hxy'))
for i=1:Nchans
for j=(i+1):Nchans
channelcmb(k, :) = [i j];
k = k+1;
end
end
elseif (strcmp(cfg.order, 'Hyx'))
for i = Nchans:-1:1
for j = Nchans : -1:(i+1)
channelcmb(k,:) = [i j];
k = k+1;
end
end
end
numchannelcmb = size(channelcmb,1);
% item 2: time windows
% this requires
% cfg.toi = [t1 t2 t3 t4] center time of each window
% cfg.timwin = 0.2 in seconds
% TODO implement "time, offset, fsample"
for j = 1:Ntrials
time = data.time{j};
numtimwin = size(cfg.toi,2); % initial guess, not all might fit in this trial
timwin = zeros(numtimwin,2);
sel = zeros(numtimwin,1);
for i=1:numtimwin
timwin(i,1) = cfg.toi(i) - cfg.timwin/2; % begin of time window
timwin(i,2) = cfg.toi(i) + cfg.timwin/2; % end of time window
sel(i) = timwin(i,1)>=time(1) && timwin(i,2)<=time(end); % does it fit in?
end
timwin = timwin(find(sel==1),:);
toi_mat{j} = cfg.toi(find(sel == 1)); % update the configuration
timwin_mat{j} = round((timwin - cfg.offset) * cfg.fsample); % convert to samples
end
timwin = timwin_mat;
cfg.toi = toi_mat;
% item 3: delays within each timewindow
% this requires
% cfg.delaystep
% cfg.maxdelay
delay = -cfg.maxdelay:cfg.delaystep:cfg.maxdelay;
numdelay = length(delay);
% convert to samples
delay = round(delay * cfg.fsample);
if strcmp(cfg.keeptrials, 'yes')
for trllop=1:Ntrials
association.trial(trllop) = Do_Association_Calculation( trllop , Ntrials , cfg , timwin , numchannelcmb , numdelay , data , channelcmb , delay );
end % for each trial
else
trllop = 1;
association = Do_Association_Calculation( trllop , Ntrials , cfg , timwin , numchannelcmb , numdelay , data , channelcmb , delay );
end
% add the version details of this function call to the configuration
try
% get the full name of the function
cfg.version.name = mfilename('fullpath');
catch
% required for compatibility with Matlab versions prior to release 13 (6.5)
[st, i] = dbstack;
cfg.version.name = st(i);
end
cfg.version.id = '$Id$';
% remember the configuration details of the input data
try, cfg.previous = data.cfg; end
% remember the exact configuration details in the output
association.cfg = cfg;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that does the computation for each trial
function [association] = Do_Association_Calculation( trllop , Ntrials , cfg , timwin , numchannelcmb , numdelay , data , channelcmb , delay )
fprintf('\nprocessing trial %d from %d\n', trllop, Ntrials);
association = [];
numtimwin = size(timwin{trllop},1);
h2 = zeros(numchannelcmb, numtimwin, numdelay);
l = 0;
maxl = numchannelcmb*numtimwin*numdelay;
progress('init', cfg.feedback, 'Computing nonlinear association for each delay');
for i=1:numchannelcmb
dat1_chan = data.trial{trllop}(channelcmb(i,1),:);
dat2_chan = data.trial{trllop}(channelcmb(i,2),:);
progress(l/maxl,'Computing nonlinear association %d from %d', l, maxl);
for j=1:numtimwin
dat1_timwin = dat1_chan(timwin{trllop}(j,1):timwin{trllop}(j,2));
dat2_timwin = dat2_chan(timwin{trllop}(j,1):timwin{trllop}(j,2));
for k=1:numdelay
if delay(k)==0
% select the complete (unshifted) window
dat1_delay = dat1_timwin;
dat2_delay = dat2_timwin;
elseif delay(k)<0
% channel 1 is shifted w.r.t. channel 2
dat1_delay = dat1_timwin((abs(delay(k))+1):end);
dat2_delay = dat2_timwin(1:(end-abs(delay(k))));
elseif delay(k)>0
% channel 2 is shifted w.r.t. channel 1
dat1_delay = dat1_timwin(1:(end-delay(k)));
dat2_delay = dat2_timwin((delay(k)+1):end);
end
% remove the mean of each snippet of data
dat1_delay = dat1_delay - mean(dat1_delay);
dat2_delay = dat2_delay - mean(dat2_delay);
% do the computation
[sorted_data1,id] = sort(dat1_delay);
sorted_data2 = dat2_delay(id);
data_is = sorted_data1;
data_js = sorted_data2;
% divided data_i in bins
[H,mp_i] = hist(data_is,cfg.nr_bins);
% Divide data_i and data_j in bins
bp = 1;
gem_j = zeros (cfg.nr_bins,1);
for s = 1:cfg.nr_bins
gem_j(s) = mean(data_js(bp:bp+H(s)-1));
bp = bp + H(s);
end
% Calculation of line segment and variance per bin
p=1;
sp = 1;
clear unex_var tot_var;
for u = 1:cfg.nr_bins
data_is_bin = data_is(sp:sp+H(u)-1)';
data_js_bin = data_js(sp:sp+H(u)-1)';
if u == 1
fx1 = gem_j(u) + (gem_j(u+1) - gem_j(u))/(mp_i(u+1) - mp_i(u))*(data_is_bin(1:round(length(data_is_bin)/2)) - mp_i(u));
else
fx1 = gem_j(u-1) + (gem_j(u) - gem_j(u-1))/(mp_i(u) - mp_i(u-1))*(data_is_bin(1:round(length(data_is_bin)/2)) - mp_i(u-1));
end
if u == cfg.nr_bins
fx2 = gem_j(u-1) + (gem_j(u) - gem_j(u-1))/(mp_i(u) - mp_i(u-1))*(data_is_bin(round(length(data_is_bin)/2)+1:end) - mp_i(u-1));
else
fx2 = gem_j(u) + (gem_j(u+1) - gem_j(u))/(mp_i(u+1) - mp_i(u))*(data_is_bin(round(length(data_is_bin)/2)+1:end) - mp_i(u));
end
% calculation unexplained variance
ftot = [fx1; fx2];
unex_var(p:p+length(data_js_bin)-1,:) = (data_js_bin - ftot).^2;
% calculation total variance
tot_var(p:p+length(data_js_bin)-1,:) = (data_js_bin - mean(data_js)).^2;
p = p+length(data_is_bin);
sp = sp + H(u);
end
% Calculation of association coefficient h2
h2(i,j,k) = ((sum(tot_var) - sum(unex_var)) / sum(tot_var))*100;
l=l+1;
end
end
end
progress('close');
% collect the results
if (size(h2, 1) ~= numchannelcmb)
error('number of channel combinations is not right');
end
if (size(h2, 2) ~= numtimwin)
error('number of timewindows does not match input');
end
if (size(h2, 3) ~= numdelay)
error('number of delays does not match input');
end
h2 = reshape(h2, numchannelcmb*numtimwin, numdelay);
[m, indx] = max(h2, [], 2);
h2 = reshape(m, numchannelcmb, numtimwin);
d = (delay(indx)./cfg.fsample)*1000; % convert to miliseconds (to compare with original method)
d = reshape(d, numchannelcmb, numtimwin);
% FIXME this does not work: one is not supposed to rely on data.cfg.trl, use data.time please!
% association.time = cfg.toi{trllop} + data.cfg.trl(trllop,1);
association.h2 = h2;
association.delay = d;
return % from Do_Association_Calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the mean over all values without checking the dimensions
% this function is approximately 2x faster on 1 dimensional data than the matlab version
function y = mean(x)
y = sum(x(:))./numel(x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that bins the elements of Y into equally spaced containers
% this function is approximately 2x faster on 1 dimensional data than the matlab version
function [nn, x] = hist(y, x)
miny = min(y);
maxy = max(y);
binwidth = (maxy - miny) ./ x;
xx = miny:binwidth:maxy;
x = xx(1:(end-1)) + binwidth/2;
% Shift bins so the interval is ( ] instead of [ ).
xx = full(real(xx)); y = full(real(y)); % For compatibility
bins = xx + eps(xx);
nn = histc(y',[-inf bins],1);
% Combine first bin with 2nd bin and last bin with next to last bin
nn(2,:) = nn(2,:)+nn(1,:);
nn(end-1,:) = nn(end-1,:)+nn(end,:);
nn = nn(2:end-1,:);
|
github
|
lcnbeapp/beapp-master
|
ft_spike_psth.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_psth.m
| 12,842 |
utf_8
|
e308e4099a5a08933fde13a8aa72fffd
|
function [psth] = ft_spike_psth(cfg,spike)
% FT_SPIKE_PSTH computes the peristimulus histogram of spiketrains.
%
% Use as
% [psth] = ft_spike_psth(cfg, spike)
%
% The input SPIKE should be organised as a) the spike datatype, obtained
% from FT_SPIKE_MAKETRIALS b) the raw datatype, containing binary spike
% trains, obtained from FT_APPENDSPIKE or FT_CHECKDATA. In this case the
% raw datatype is converted to the spike datatype.
%
% Configurations:
% cfg.binsize = [binsize] in sec or string.
% If 'scott', we estimate the optimal bin width
% using Scott's formula (1979). If 'sqrt', we take
% the number of bins as the square root of the
% number of observations. The optimal bin width is
% derived over all neurons; thus, this procedure
% works best if the input contains only one neuron
% at a time.
% cfg.outputunit = 'rate' (default) or 'spikecount' or
% 'proportion'. If 'rate', we
% convert the output per trial to firing rates
% (spikes/sec). If 'spikecount', we count the
% number spikes per trial. If 'proportion', we
% normalize the area under the PSTH to 1.
% cfg.spikechannel = See FT_CHANNELSELECTION for details. cfg.trials
% is vector of indices (e.g., 1:2:10)
% logical selection of trials (e.g., [1010101010])
% 'all' (default), selects all trials
% cfg.vartriallen = 'yes' (default)
% Accept variable trial lengths and use all
% available trials and the samples in every trial.
% Missing values will be ignored in the
% computation of the average and the variance and
% stored as NaNs in the output psth.trial. 'no'
% Only select those trials that fully cover the
% window as specified by cfg.latency and discard
% those trials that do not.
% cfg.latency = [begin end] in seconds
% 'maxperiod' (default), i.e., maximum period
% available 'minperiod', i.e., the minimal period
% all trials share, 'prestim' (all t<=0) 'poststim'
% (all t>=0).
% cfg.keeptrials = 'yes' or 'no' (default).
% cfg.trials = numeric or logical selection of trials (default = 'all')
%
% Outputs:
% Psth is a timelock datatype (see FT_DATATYPE_TIMELOCK)
% Psth.time = center histogram bin points
% Psth.fsample = 1/binsize;
% Psth.avg = contains average PSTH per unit
% Psth.trial = contains PSTH per unit per trial
% Psth.var = contains variance of PSTH per unit across trials
%
% For subsequent processing you can use
% FT_SPIKE_PLOT_PSTH : plot only the PSTH, for a single neuron
% FT_TIMELOCKSTATISTICS : compute statistics on the PSTH
% FT_SPIKE_PLOT_RASTER : plot PSTH with raster for one or more neurons
% FT_SPIKE_JPSTH : compute the JPSTH
% Copyright (C) 2010-2013, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% control input spike structure and convert to spike if raw structure
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes');
% get the default options
cfg.outputunit = ft_getopt(cfg, 'outputunit','rate');
cfg.binsize = ft_getopt(cfg, 'binsize','scott');
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all');
cfg.latency = ft_getopt(cfg, 'latency','maxperiod');
cfg.vartriallen = ft_getopt(cfg, 'vartriallen', 'yes');
cfg.keeptrials = ft_getopt(cfg, 'keeptrials', 'yes');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'outputunit', 'char', {'rate', 'spikecount'});
cfg = ft_checkopt(cfg,'binsize', {'char', 'doublescalar'});
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'trials', {'char', 'doublevector', 'logical'});
cfg = ft_checkopt(cfg,'vartriallen' , 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'keeptrials' , 'char', {'yes', 'no'});
cfg = ft_checkconfig(cfg, 'allowed', {'outputunit', 'binsize', 'spikechannel', 'trials', 'latency', 'vartriallen', 'keeptrials'});
% get the number of trials or convert to indices
cfg = trialselection(cfg,spike);
% select the unit - this should be done with channelselection function
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
spikesel = match_str(spike.label, cfg.spikechannel);
nUnits = length(spikesel);
if nUnits==0, error('no spikechannel selected by means of cfg.spikechannel'); end
% determine the duration of each trial
begTrialLatency = spike.trialtime(cfg.trials,1); % remember: already selected on trial here
endTrialLatency = spike.trialtime(cfg.trials,2);
trialDur = endTrialLatency - begTrialLatency;
% select the latencies, use the same modular function in all the scripts
cfg = latencyselection(cfg,begTrialLatency,endTrialLatency);
% compute the optimal bin width if desired
if ischar(cfg.binsize)
h = zeros(1,nUnits);
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit); % select the unit
spikesInWin = spike.time{unitIndx}>=cfg.latency(1) & spike.time{unitIndx}<=cfg.latency(2); % get spikes in trial
% automatically determine an 'optimal' binwidth
N = sum(spikesInWin);
if strcmp(cfg.binsize,'scott')
sd = nanstd(spike.time{unitIndx}(spikesInWin));
h(iUnit) = 3.49*sd./(N^(1/3));
elseif strcmp(cfg.binsize,'sqrt')
k = ceil(sqrt(N));
h(iUnit) = (cfg.latency(2)-cfg.latency(1))/k;
else
error('unsupported option for cfg.binsize');
end
end
cfg.binsize = nanmean(h);
end
% do some error checking on the binsize
if cfg.binsize<=0 || cfg.binsize>(cfg.latency(2)-cfg.latency(1)),
error('cfg.binsize should be greater than zero and not exceed the trialduration');
end
% end of trial should be late enough, beginning should be early enough
fullDur = trialDur>=cfg.binsize; % trials which have full duration
overlaps = endTrialLatency>=(cfg.latency(1)+cfg.binsize) & begTrialLatency<=(cfg.latency(2)-cfg.binsize);
if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window
startsLater = single(begTrialLatency) > (single(cfg.latency(1)) + 0.0001); % last factor just for rounding errors
endsEarlier = single(endTrialLatency) < (single(cfg.latency(2)) - 0.0001);
hasWindow = ~(startsLater | endsEarlier); % it should not start later or end earlier
else
hasWindow = ones(1,length(cfg.trials));
end
trialSel = fullDur(:) & overlaps(:) & hasWindow(:);
cfg.trials = cfg.trials(trialSel); % note that endTrialLatency was of length cfg.trials
if isempty(cfg.trials), warning('No trials were selected after latency selection'); end
nTrials = length(cfg.trials);
begTrialLatency = begTrialLatency(trialSel); % note that begTrialLatency was of length cfg.trials here
endTrialLatency = endTrialLatency(trialSel);
% create the bins, we start arbitrarily at cfg.latency(1)
bins = cfg.latency(1) : cfg.binsize : cfg.latency(end);
nBins = length(bins);
% preallocate before computing the psth, otherwise, compute stuff 'on the run'
if strcmp(cfg.keeptrials,'yes'), singleTrials = NaN(nTrials,nUnits,nBins-1); end
[s,ss] = deal(zeros(nUnits, nBins-1)); %sum, and sum of squared in the loop, to get mean & var
% preallocate and compute degrees of freedom
allStartEarlier = all(begTrialLatency<=cfg.latency(1));
allEndLater = all(endTrialLatency>=cfg.latency(2));
if ~ (allStartEarlier && allEndLater),
dof = zeros(1,nBins-1);
else
dof = ones(1,nBins-1)*nTrials; % if all exceed latency, then this is dof
end
for iTrial = 1:nTrials
origTrial = cfg.trials(iTrial);
if ~ (allStartEarlier && allEndLater) % select bins and count dof + 1
binSel = begTrialLatency(iTrial)<=bins(1:end-1) & endTrialLatency(iTrial)>=bins(2:end);
dof(binSel) = dof(binSel) + 1;
else
binSel = 1:(nBins-1); % always deselect the last bin
end
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit); % select the unit
spikesInTrial = (spike.trial{unitIndx}==origTrial); % get spikes in trial
spikeTimes = spike.time{unitIndx}(spikesInTrial);
% compute the psth
trialPsth = histc(spikeTimes(:), bins); % we deselect the last bin per default
trialPsth = trialPsth(:)'; % force into row vec
if isempty(trialPsth), trialPsth = zeros(1,length(bins)); end
% convert to firing rates if requested, with spikecount do nothing
if strcmp(cfg.outputunit,'rate'),
trialPsth = trialPsth/cfg.binsize;
elseif strcmp(cfg.outputunit,'proportion'),
trialPsth = trialPsth./nansum(trialPsth);
end
% compute the sum and the sum of squares for the var and the mean on the fly
s(iUnit,binSel) = s(iUnit,binSel) + trialPsth(binSel); % last bin is single value
ss(iUnit,binSel) = ss(iUnit,binSel) + trialPsth(binSel).^2;
if strcmp(cfg.keeptrials,'yes'),
singleTrials(iTrial,iUnit,binSel) = trialPsth(binSel);
end
end
end
% get the results
dof = dof(ones(nUnits,1),:);
psth.avg = s ./ dof;
psth.var = (ss - s.^2./dof)./(dof-1); % since sumPsth.^2 ./ dof = dof .* (sumPsth/dof).^2
psth.dof = dof; % combined with psth.var we can get SEM
psth.fsample = 1/(cfg.binsize); % might be more compatible with feeding psth in other funcs
psth.time = bins(1:end-1) + 0.5*cfg.binsize;
psth.label = spike.label(spikesel);
if (strcmp(cfg.keeptrials,'yes'))
psth.trial = singleTrials;
psth.dimord = 'rpt_chan_time';
else
psth.dimord = 'chan_time';
end
if isfield(spike,'sampleinfo'), psth.sampleinfo = spike.sampleinfo(cfg.trials,:); end
if isfield(spike,'trialinfo'), psth.trialinfo = spike.trialinfo(cfg.trials,:); end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history psth
%%%%%%%%% SUB FUNCTIONS %%%%%%%%%
function [cfg] = latencyselection(cfg,begTrialLatency,endTrialLatency)
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
% check whether the time window fits with the data
if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency);
warning('Correcting begin latency because it is before all trial beginnings');
end
if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency);
warning('Correcting end latency because it is after all trial ends');
end
function [cfg] = trialselection(cfg,spike)
nTrials = size(spike.trialtime,1);
if strcmp(cfg.trials,'all')
cfg.trials = 1:nTrials;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrials,
error('maximum trial number in cfg.trials should not exceed number of rows of spike.trialtime');
end
if isempty(cfg.trials), error('No trials were selected by you, rien ne va plus'); end
|
github
|
lcnbeapp/beapp-master
|
ft_spikesimulation.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spikesimulation.m
| 4,725 |
utf_8
|
d2f166296318bfe9177298cc049edc35
|
function data = ft_spikesimulation(cfg)
% FT_SPIKESIMULATION simulates a spiketrain with a structures timing of the
% neuronal firing.
%
% Use as
% data = ft_spikesimulation(cfg)
% and please look in the code for the cfg details.
%
% See also FT_DIPOLESIMULATION, FT_FREQSIMULATION
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% set the defaults
if ~isfield(cfg, 'trlduration'), cfg.trlduration = 1; end % in seconds
if ~isfield(cfg, 'nlfpchan'), cfg.nlfpchan = 10; end
if ~isfield(cfg, 'nspikechan'), cfg.nspikechan = 10; end
if ~isfield(cfg, 'spikerate'), cfg.spikerate = ones(cfg.nspikechan,1)*10; end
if ~isfield(cfg, 'ntrial'), cfg.ntrial = 10; end
if ~isfield(cfg, 'bpfreq'), cfg.bpfreq = [40 80]; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define the parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cfg.spikerate = [ 10 50 100 200];
% cfg.nspikechan = 4;
% nlfpchan = 2;
% cfg.ntrial = 10;
% cfg.bpfreq = [40 80];
% cfg.trlduration = 1;
spikemix = eye(cfg.nspikechan, cfg.nlfpchan);
spikemix(5,1:2) = [0.5 0.5]; % mix with lfp chan 1 and 2
spikemix(6,1:2) = [0.5 0.5]; % mix with lfp chan 1 and 2
% cfg.spikerate = 100*ones(1,cfg.nspikechan); % for each channel, per second
% cfg.spikerate = [100 100 300 300 100 300];
fsample = 1000;
nsample = cfg.trlduration*fsample;
nchan = cfg.nlfpchan + cfg.nspikechan;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start with empty data
data = [];
data.fsample = fsample;
% create channel labels
k = 1;
for i=1:cfg.nlfpchan, data.label{k} = sprintf('lfp%02d', i); k=k+1; end
for i=1:cfg.nspikechan, data.label{k} = sprintf('spike%02d', i); k=k+1; end
data.label = data.label(:);
for t=1:cfg.ntrial
fprintf('creating trial %d\n', t);
data.time{t} = (1:nsample)./fsample;
lfp = zeros(cfg.nlfpchan, nsample);
spike = zeros(cfg.nspikechan, nsample);
for i=1:cfg.nlfpchan,
lfp(i,:) = ft_preproc_bandpassfilter(randn(1,nsample), fsample, cfg.bpfreq);
end
for i=1:cfg.nspikechan
% the spikes are generated from a probabilistic mix of the LFP channels
x = spikemix(i,:) * lfp;
% apply a non-linear mapping to the spike probablility, output should be defined between 0 and 1
x = mapping(x);
% normalize the total probability to one
x = x./sum(x);
% randomly assign the spikes over the time series
spike(i,:) = ((cfg.spikerate(i)*nsample/fsample)*x)>=rand(size(x));
end
data.time{t} = (1:nsample)./fsample;
data.trial{t} = [lfp; spike];
clear lfp spike
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble history data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to strengthen the temporal strucure in the spike train
% by a non-linear modulation of the spike probability
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = mapping(x)
x = 6*(x-mean(x))/std(x);
y = 1./(1+exp(-x));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% IIRFILTER simple brick wall filter in the frequency domain
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = myiirfilter(s, fs, fb, a)
f = fft(s);
ax = linspace(0, fs, length(s));
fl = nearest(ax, fb(1))-1;
fh = nearest(ax, fb(2))+1;
f(1:fl) = a.*f(1:fl);
f(fh:end) = a.*f(fh:end);
s = real(ifft(f));
|
github
|
lcnbeapp/beapp-master
|
ft_spikedensity.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spikedensity.m
| 16,902 |
utf_8
|
ec80282516f911e5c7b17ae91dbafcaf
|
function [sdf, sdfdata] = ft_spikedensity(cfg,data)
% FT_SPIKEDENSITY computes the spike density function of the spike trains by
% convolving the data with a window.
%
% Use as
% [sdf] = ft_spike_density(cfg, data)
% [sdf, sdfdata] = ft_spike_density(cfg, data)
%
% If you specify one output argument, only the average and variance of spike density
% function across trials will be computed and individual trials are not kept. See
% cfg.winfunc below for more information on the smoothing kernel to use.
%
% Inputs:
% DATA should be organised in a RAW structure with binary spike
% representations obtained from FT_APPENDSPIKE or FT_CHECKDATA, or
% a SPIKE structure.
%
% Configurations:
% cfg.timwin = [begin end], time of the smoothing kernel (default = [-0.05 0.05])
% If cfg.winfunc = @alphawin, cfg.timwin(1) will be
% set to 0. Hence, it is possible to use asymmetric
% kernels.
% cfg.outputunit = 'rate' (default) or 'spikecount'. This determines the physical unit
% of our spikedensityfunction, either in firing rate or in spikecount.
% cfg.winfunc = (a) string or function handle, type of window to convolve with (def = 'gauss').
% - 'gauss' (default)
% - 'alphawin', given by win = x*exp(-x/timeconstant)
% - For standard window functions in the signal processing toolbox see
% WINDOW.
% (b) vector of length nSamples, used directly as window
% cfg.winfuncopt = options that go with cfg.winfunc
% For cfg.winfunc = 'alpha': the timeconstant in seconds (default = 0.005s)
% For cfg.winfunc = 'gauss': the standard deviation in seconds (default =
% 1/4 of window duration in seconds)
% For cfg.winfunc = 'wname' with 'wname' any standard window function
% see window opts in that function and add as cell array
% If cfg.winfunctopt = [], default opts are taken.
% cfg.latency = [begin end] in seconds, 'maxperiod' (default), 'minperiod',
% 'prestim'(t>=0), or 'poststim' (t>=0).
% cfg.vartriallen = 'yes' (default) or 'no'.
% 'yes' - accept variable trial lengths and use all available trials
% and the samples in every trial. Missing values will be ignored in
% the computation of the average and the variance.
% 'no' - only select those trials that fully cover the window as
% specified by cfg.latency.
% cfg.spikechannel = cell-array ,see FT_CHANNELSELECTION for details
% cfg.trials = numeric or logical selection of trials (default = 'all')
% cfg.keeptrials = 'yes' or 'no' (default). If 'yes', we store the trials in a matrix
% in the output SDF as well
% cfg.fsample = additional user input that can be used when input
% is a SPIKE structure, in that case a continuous
% representation is created using cfg.fsample
% (default = 1000)
%
% The SDF output is a data structure similar to the TIMELOCK structure from FT_TIMELOCKANALYSIS.
% For subsequent processing you can use for example
% FT_TIMELOCKSTATISTICS: Compute statistics on SDF
% FT_SPIKE_PLOT_RASTER: Plot together with the raster plots
% FT_SINGLEPLOTER and FT_MULTIPLOTER Plot spike-density alone
%
% The SDFDATA output is a data structure similar to DATA type structure from FT_PREPROCESSING.
% For subsequent processing you can use for example
% FT_TIMELOCKANALYSIS Compute time-locked average and variance
% FT_FREQANALYSIS Compute frequency and time-ferquency spectrum.
% Copyright (C) 2010-2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% get the default options
if isfield(cfg,'trials') && isempty(cfg.trials), error('no trials were selected'); end % empty should result in error, not in default
cfg.outputunit = ft_getopt(cfg,'outputunit','rate');
cfg.timwin = ft_getopt(cfg,'timwin',[-0.05 0.05]);
cfg.trials = ft_getopt(cfg,'trials', 'all');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');
cfg.vartriallen = ft_getopt(cfg,'vartriallen', 'yes');
cfg.keeptrials = ft_getopt(cfg,'keeptrials', 'yes');
cfg.winfunc = ft_getopt(cfg,'winfunc', 'gauss');
cfg.winfuncopt = ft_getopt(cfg,'winfuncopt', []);
cfg.fsample = ft_getopt(cfg,'fsample', 1000);
% ensure that the options are valid
cfg = ft_checkopt(cfg, 'outputunit','char', {'rate', 'spikecount'});
cfg = ft_checkopt(cfg, 'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg, 'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg, 'trials', {'char', 'doublevector', 'logical'});
cfg = ft_checkopt(cfg, 'vartriallen', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'keeptrials', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'timwin', 'ascendingdoublebivector');
cfg = ft_checkopt(cfg, 'winfunc', {'char', 'function_handle', 'doublevector'});
cfg = ft_checkopt(cfg, 'winfuncopt', {'cell', 'double', 'empty'});
cfg = ft_checkopt(cfg, 'fsample', 'double');
if strcmp(class(cfg.winfunc), 'function_handle'), cfg.winfunc = func2str(cfg.winfunc); end
cfg = ft_checkconfig(cfg, 'allowed', {'outputunit', 'spikechannel', 'latency', 'trials', 'vartriallen', 'keeptrials', 'timwin', 'winfunc', 'winfuncopt', 'fsample'});
% check input data structure
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes', 'fsample', cfg.fsample);
[spikechannel] = detectspikechan(data);
if strcmp(cfg.spikechannel, 'all'),
cfg.spikechannel = spikechannel;
else
cfg.spikechannel = ft_channelselection(cfg.spikechannel, data.label);
if ~all(ismember(cfg.spikechannel,spikechannel)), warning('some selected spike channels no not appear spike channels'); end
end
spikesel = match_str(data.label, cfg.spikechannel);
nUnits = length(spikesel); % number of spike channels
if nUnits==0, error('no spikechannel selected by means of cfg.spikechannel'); end
% get the number of trials or change DATA according to cfg.trials
if strcmp(cfg.trials,'all')
cfg.trials = 1:length(data.trial);
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>length(data.trial),error('maximum trial number in cfg.trials should not exceed length of data.trial'), end
if isempty(cfg.trials), error('no trials were selected in cfg.trials'); end
% determine the duration of each trial
begTrialLatency = cellfun(@min,data.time(cfg.trials));
endTrialLatency = cellfun(@max,data.time(cfg.trials));
% select the latencies
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency);
warning('correcting begin latency of averaging window');
end
if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency);
warning('correcting end latency of averaging window');
end
% start processing the window information
if strcmp(cfg.winfunc,'alphawin') % now force start of window to be positive.
warning('cfg.timwin(1) should be a non-negative number if cfg.winfunc = @alphawin, correcting')
cfg.timwin(1) = 0;
end
if cfg.timwin(1)>0 || cfg.timwin(2)<0, error('Please specify cfg.timwin(1)<=0 and cfg.timwin(2)>=0'); end
% construct the window and the time axis of the window
fsample = data.fsample;
sampleTime = 1/fsample;
nLeftSamples = round(-cfg.timwin(1)/sampleTime);
nRightSamples = round(cfg.timwin(2)/sampleTime);
winTime = -nLeftSamples*sampleTime : sampleTime : nRightSamples*sampleTime; % this is uneven if cfg.timwin symmetric
cfg.timwin = [winTime(1) winTime(end)];
nSamplesWin = length(winTime);
if nSamplesWin==1, warning('Number of samples in selected window is exactly one, so no smoothing applied'); end
% construct the window
if ~iscell(cfg.winfuncopt), cfg.winfuncopt = {cfg.winfuncopt}; end
if strcmp(cfg.winfunc,'gauss')
if isempty(cfg.winfuncopt{1}), cfg.winfuncopt{1} = 0.25*diff(cfg.timwin); end
win = exp(-(winTime.^2)/(2*cfg.winfuncopt{1}^2)); % here we could compute the optimal SD
elseif strcmp(cfg.winfunc,'alphawin')
if isempty(cfg.winfuncopt{1}), cfg.winfuncopt{1} = 0.005; end
win = winTime.*exp(-winTime/cfg.winfuncopt{1});
elseif ischar(cfg.winfunc)
if isempty(cfg.winfuncopt{1})
win = feval(cfg.winfunc,nSamplesWin);
else
win = feval(cfg.winfunc,nSamplesWin, cfg.winfuncopt{:});
end
else % must be a double vector then
if length(cfg.winfunc)~=nSamplesWin, error('Length of cfg.winfunc vector should be %d', nSamplesWin); end
end
win = win(:).'./sum(win); % normalize the window to 1
winDur = max(winTime) - min(winTime); % duration of the window
% create the time axis for the spike density
time = cfg.latency(1):(1/fsample):cfg.latency(2);
cfg.latency(2) = time(end); % this is the used latency that should be stored in cfg again
maxNumSamples = length(time);
% check which trials will be used based on the latency
overlaps = endTrialLatency>=(cfg.latency(1)+winDur) & begTrialLatency<=(cfg.latency(2)-winDur);
if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window
hasWindow = false(length(begTrialLatency),1);
for iTrial = 1:length(begTrialLatency)
timeTrial = data.time{cfg.trials(iTrial)};
nSamplesTrial = length(timeTrial);
hasLaterStart = (begTrialLatency(iTrial)-cfg.latency(1))>(0.5*sampleTime);
hasEarlierEnd = (cfg.latency(2)-endTrialLatency(iTrial))>(0.5*sampleTime);
hasWindow(iTrial) = ~hasLaterStart & ~hasEarlierEnd & nSamplesTrial>=maxNumSamples;
end
else
hasWindow = true(length(cfg.trials),1); % in case vartriallen = "yes"
end
trialSel = overlaps(:) & hasWindow(:); % trials from cfg.trials we select further
cfg.trials = cfg.trials(trialSel); % cut down further on cfg.trials
begTrialLatency = begTrialLatency(trialSel); % on this variable as well
endTrialLatency = endTrialLatency(trialSel); % on this variable as well
nTrials = length(cfg.trials); % the actual number of trials we will use
if isempty(cfg.trials),warning('no trials were selected, please check cfg.trials'), end
% calculates the samples we are shifted wrt latency(1)
samplesShift = zeros(1,nTrials);
sel = (begTrialLatency-cfg.latency(1))>(0.5*sampleTime); % otherwise 0 samples to be padded
samplesShift(sel) = round(fsample*(begTrialLatency(sel)-cfg.latency(1)));
% preallocate the sum, squared sum and degrees of freedom
[s,ss] = deal(NaN(nUnits, maxNumSamples)); % sum and sum of squares
dof = zeros(nUnits, length(s));
% preallocate, depending on whether nargout is 1 or 2
if (strcmp(cfg.keeptrials,'yes')), singleTrials = zeros(nTrials,nUnits,size(s,2)); end
if nargout==2, [sdfdata.trial(1:nTrials) sdfdata.time(1:nTrials)] = deal({[]}); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the spike density
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iTrial = 1:nTrials
origTrial = cfg.trials(iTrial); % this is the original trial we use for DATA input
timeAxis = data.time{origTrial}; % get the time axis for this trial
begSample = nearest(timeAxis, cfg.latency(1));
sampleSel = begSample : (begSample + maxNumSamples - samplesShift(iTrial) - 1);
sampleSel(sampleSel>length(timeAxis)) = []; % delete the indices that should not be there
nSamples = length(sampleSel);
trialTime = timeAxis(sampleSel); % select the relevant portion of time
% handle every unit separately
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit); % index in data.label
dat = data.trial{origTrial}(unitIndx,sampleSel); % get the data
if any(dat)
y = conv(full(dat),win); % use convolution to get the raw spike density
else
y = zeros(1,nSamples + nSamplesWin - 1); % no spikes; no convolution needed
end
if strcmp(cfg.outputunit, 'rate')
y = y*fsample; % normalize to the sampling rate, to get it in Hz.
else
y = y*nSamplesWin; % now maximum becomes N (length window)
end
% restrict to the relevant portion of output conv
y = y(nLeftSamples+1 : end-nRightSamples); % delete additional points we get with conv
y([1:nLeftSamples end-nRightSamples+1:end]) = NaN; % assign NaN at borders
% write a raw data structure
if nargout==2
sl = ~isnan(y);
sdfdata.trial{iTrial}(iUnit,:) = y(sl);
sdfdata.time{iTrial}(1,:) = trialTime(sl); % write back original time axis
end
% pad with nans if there's variable trial length
dofsel = ~isnan(y);%true(1,length(y));
if strcmp(cfg.vartriallen,'yes')
padLeft = zeros(1, samplesShift(iTrial));
padRight = zeros(1,(maxNumSamples - nSamples - samplesShift(iTrial)));
ySingleTrial = [NaN(size(padLeft)) y NaN(size(padRight))];
y = [padLeft y padRight];
dofsel = logical([padLeft dofsel padRight]);
else
ySingleTrial = y;
end
% compute the sum and the sum of squares
s(iUnit,:) = nansum([s(iUnit,:);y]); % compute the sum
ss(iUnit,:) = nansum([ss(iUnit,:);y.^2]); % compute the squared sum
% count the number of samples that went into the sum
dof(iUnit,dofsel) = dof(iUnit,dofsel) + 1;
% keep the single trials if requested
if strcmp(cfg.keeptrials,'yes'), singleTrials(iTrial,iUnit,:) = ySingleTrial; end
end
% remove the trial from data in order to avoid buildup in memory
data.trial{origTrial} = [];
data.time{origTrial} = [];
end
% give back a similar structure as timelockanalysis
sdf.avg = s ./ dof;
sdf.var = (ss - s.^2./dof)./(dof-1);
sdf.dof = dof;
sdf.time = time;
sdf.label(1:nUnits) = data.label(spikesel);
if (strcmp(cfg.keeptrials,'yes'))
sdf.trial = singleTrials;
sdf.dimord = 'rpt_chan_time';
else
sdf.dimord = 'chan_time';
end
% create a new structure that is a standard raw data spike structure itself, this is returned as second output argument
if nargout==2
sdfdata.fsample = fsample;
sdfdata.label(1:nUnits) = data.label(spikesel);
try, sdfdata.hdr = data.hdr; end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous data
ft_postamble history sdf
if nargout==2
ft_postamble history sdfdata
end
function [spikelabel, eeglabel] = detectspikechan(data)
% autodetect the spike channels
ntrial = length(data.trial);
nchans = length(data.label);
spikechan = zeros(nchans,1);
for i=1:ntrial
for j=1:nchans
hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:)));
hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0);
spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts);
end
end
spikechan = (spikechan==ntrial);
spikelabel = data.label(spikechan);
eeglabel = data.label(~spikechan);
|
github
|
lcnbeapp/beapp-master
|
ft_spike_rate.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_rate.m
| 9,138 |
utf_8
|
cd54c3262f0a19d4bb98e00fd04202b0
|
function [rate] = ft_spike_rate(cfg,spike)
% FT_SPIKE_RATE computes the firing rate of spiketrains and their variance
%
% Use as
% [rate] = ft_spike_rate(cfg, spike)
%
% The input SPIKE should be organised as the spike or the (binary) raw datatype, obtained from
% FT_SPIKE_MAKETRIALS or FT_APPENDSPIKE (in that case, conversion is done
% within the function)
%
% Configurations:
% cfg.outputunit = 'rate' (default) or 'spikecount'. If 'rate', we convert
% the output per trial to firing rates (spikes/sec).
% If 'spikecount', we count the number spikes per trial.
% cfg.spikechannel = see FT_CHANNELSELECTION for details
% cfg.trials = vector of indices (e.g., 1:2:10)
% logical selection of trials (e.g., [1010101010])
% 'all' (default), selects all trials% cfg.trials
% cfg.vartriallen = 'yes' (default) or 'no'.
% If 'yes' - accept variable trial lengths and use all available trials
% and the samples in every trial.
% If 'no' - only select those trials that fully cover the window as
% specified by cfg.latency and discard those trials that do not.
% cfg.latency = [begin end] in seconds
% 'maxperiod' (default)
% 'minperiod', i.e., the minimal period all trials share
% 'prestim' (all t<=0)
% 'poststim' (all t>=0).
% cfg.keeptrials = 'yes' or 'no' (default).
%
% The outputs from spike is a TIMELOCK structure (see FT_DATATYPE_TIMELOCK)
% rate.trial: nTrials x nUnits matrix containing the firing rate per unit and trial
% rate.avg: nTrials array containing the average firing rate per unit
% rate.var: nTrials array containing the variance of firing rates per unit
% rate.dof: nTrials array containing the degree of freedom per unit
% rate.label: nUnits cell array containing the labels of the neuronal units%
% rate.time: Mean latency (this field ensures it is TIMELOCK
% struct)
% Copyright (C) 2010, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% control input spike structure
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes');
% get the default options
if isfield(cfg,'trials') && isempty(cfg.trials), error('no trials were selected'); end % empty should result in error, not in default
cfg.outputunit = ft_getopt(cfg, 'outputunit','rate');
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.vartriallen = ft_getopt(cfg,'vartriallen', 'yes');
cfg.keeptrials = ft_getopt(cfg,'keeptrials', 'yes');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'outputunit','char', {'rate', 'spikecount'});
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'trials', {'char', 'doublevector', 'logical'});
cfg = ft_checkopt(cfg,'vartriallen', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'keeptrials', 'char', {'yes', 'no'});
% check if the configuration inputs are valid
cfg = ft_checkconfig(cfg, 'allowed', {'outputunit', 'spikechannel', 'trials', 'latency', 'vartriallen', 'keeptrials'});
% get the spikechannels
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
spikesel = match_str(spike.label, cfg.spikechannel);
nUnits = length(spikesel); % number of spike channels
if nUnits==0, error('No spikechannel selected by means of cfg.spikechannel'); end
% do the trial selection
cfg = trialselection(cfg,spike);
nTrials = length(cfg.trials); % actual number of trials we use
% determine the duration of each trial
begTrialLatency = spike.trialtime(cfg.trials,1);
endTrialLatency = spike.trialtime(cfg.trials,2);
% select the latencies
cfg = latencyselection(cfg,begTrialLatency,endTrialLatency);
% check which trials will be used based on the latency
overlaps = endTrialLatency>(cfg.latency(1)) & begTrialLatency<(cfg.latency(2));
hasWindow = true(nTrials,1);
if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window
startsLater = begTrialLatency > (cfg.latency(1) + 0.0001);
endsEarlier = endTrialLatency < (cfg.latency(2) - 0.0001);
hasWindow = ~(startsLater | endsEarlier); % it should not start later or end earlier
trialDur = ones(nTrials,1)*(cfg.latency(2)-cfg.latency(1));
elseif strcmp(cfg.vartriallen,'yes')
winBeg = max([begTrialLatency(:) cfg.latency(1)*ones(nTrials,1)],[],2);
winEnd = min([endTrialLatency(:) cfg.latency(2)*ones(nTrials,1)],[],2);
trialDur = winEnd-winBeg; % the effective trial duration
end
cfg.trials = cfg.trials(overlaps(:) & hasWindow(:));
trialDur = trialDur(overlaps(:) & hasWindow(:)); % select the durations, we will need this later
nTrials = length(cfg.trials);
if isempty(cfg.trials), warning('No trials were selected in the end'); end
% preallocate before computing the psth
keepTrials = strcmp(cfg.keeptrials,'yes');
if keepTrials, singleTrials = NaN(nTrials,nUnits); end % preallocate single trials with NaNs
[s,ss] = deal(zeros(nUnits,1));
dof = nTrials*ones(nUnits,1); % compute degrees of freedom
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit);
ts = spike.time{unitIndx}(:); % get the times
latencySel = ts>=cfg.latency(1) & ts<=cfg.latency(2); % select timestamps within latency
trialSel = ismember(spike.trial{unitIndx},cfg.trials);
trialNums = spike.trial{unitIndx}(latencySel(:) & trialSel(:));
% use the fact that trial numbers are integers >=1 apart, so we can use histc
trialBins = sort([cfg.trials-0.5; cfg.trials+0.5]);
trialRate = histc(trialNums(:),trialBins);
trialRate = trialRate(1:2:end-1); % the uneven bins correspond to the trial integers
if isempty(trialRate), trialRate = zeros(nTrials,1); end
% convert to firing rates if requested
if strcmp(cfg.outputunit,'rate') ,trialRate = trialRate(:)./trialDur(:); end
% store and compute sum, just fill the single trials up with nans
if keepTrials, singleTrials(:,iUnit) = trialRate(:); end
s(iUnit) = sum(trialRate);
ss(iUnit) = sum(trialRate.^2);
end
% compute the average rate
rate.avg = s ./ dof;
rate.var = (ss - s.^2./dof)./(dof); % since sumrate.^2 ./ dof = dof .* (sumrate/dof).^2
rate.var(dof<2) = 0;
% gather the rest of the results
rate.dof = dof;
rate.label = spike.label(spikesel);
rate.dimord = 'chan_time';
rate.time = mean(cfg.latency);
if (strcmp(cfg.keeptrials,'yes'))
rate.trial = singleTrials;
rate.dimord = 'rpt_chan_time';
end
if isfield(spike, 'trialinfo'), rate.trialinfo = spike.trialinfo(cfg.trials,:); end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history rate
%%%%%%%%% SUB FUNCTIONS %%%%%%%%%
function [cfg] = latencyselection(cfg,begTrialLatency,endTrialLatency)
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
function [cfg] = trialselection(cfg,spike)
% get the number of trials or change DATA according to cfg.trials
nTrials = size(spike.trialtime,1);
if strcmp(cfg.trials,'all')
cfg.trials = 1:nTrials;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrials, error('maximum trial number in cfg.trials should not exceed size(spike.trialtime,1)'); end
if isempty(cfg.trials), error('no trials were selected by you'); end
|
github
|
lcnbeapp/beapp-master
|
ft_spike_plot_psth.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_plot_psth.m
| 6,983 |
utf_8
|
dcbec74860c44d235aad797cfe733489
|
function [cfg] = ft_spike_plot_psth(cfg, psth)
% FT_SPIKE_PLOT_PSTH makes a bar plot of PSTH structure with error bars.
%
% Use as
% ft_spike_plot_psth(cfg, psth)
%
% Inputs:
% PSTH typically is a structure from FT_SPIKE_PSTH.
%
% Configurations:
% cfg.latency = [begin end] in seconds, 'maxperiod' (default), 'prestim'(t<=0), or
% 'poststim' (t>=0).
% cfg.errorbars = 'no', 'std', 'sem' (default), 'conf95%' (requires statistic toolbox,
% according to student-T distribution), 'var'
% cfg.spikechannel = string or index of single spike channel to trigger on (default = 1)
% Only one spikechannel can be plotted at a time.
% cfg.ylim = [min max] or 'auto' (default)
% If 'standard', we plot from 0 to 110% of maximum plotted value);
% Outputs:
% cfg.hdl.avg = figure handle for the bar plot, psth average.
% cfg.hdl.var = figure handle for the error lines.
%
% See also FT_SPIKE_PSTH
% Copyright (C) 2010, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check the psth datatype
psth = ft_checkdata(psth, 'datatype', 'timelock', 'feedback', 'yes');
% get the default options
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', 'all');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.errorbars = ft_getopt(cfg,'errorbars', 'sem');
cfg.ylim = ft_getopt(cfg,'ylim', 'auto');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'errorbars', 'char', {'sem', 'std', 'conf95%', 'no', 'var'});
cfg = ft_checkopt(cfg,'ylim', {'char', 'ascendingdoublebivector'});
cfg = ft_checkconfig(cfg, 'allowed', {'spikechannel', 'latency', 'errorbars', 'ylim'});
% select the latencies
if ischar(cfg.latency)
if strcmp(cfg.latency, 'maxperiod')
cfg.latency = [min(psth.time) max(psth.time)];
elseif strcmp(cfg.latency, 'prestim')
cfg.latency = [min(psth.time) 0];
elseif strcmp(cfg.latency, 'poststim')
cfg.latency = [0 max(psth.time)];
end
end
% check whether the time window fits with the data
if cfg.latency(1) < min(psth.time), cfg.latency(1) = min(psth.time);
warning('Correcting begin latency of averaging window');
end
if (cfg.latency(2) > max(psth.time)), cfg.latency(2) = max(psth.time);
warning('Correcting begin latency of averaging window');
end
% get the spikechannels
cfg.spikechannel = ft_channelselection(cfg.spikechannel, psth.label);
spikesel = match_str(psth.label, cfg.spikechannel);
nUnits = length(spikesel);
if nUnits~=1, error('You selected more or less than one spikechannel by means of cfg.spikechannel'); end
% select the timepoints within the latencies
timeSel = psth.time>=cfg.latency(1) & psth.time <= cfg.latency(2);
if isempty(timeSel), error('no time points selected, please change cfg.latency or inspect input PSTH');end
% plot the average psth
psthHdl = bar(psth.time(timeSel),psth.avg(spikesel,timeSel),'k');
set(psthHdl,'BarWidth', 1)
% check if fields .dof and .var are correct given cfg.errorbars
if ~strcmp(cfg.errorbars,'no')
if ~isfield(psth,'var') || ~any(isfinite(psth.var(spikesel,:)))
error('PSTH should contain field .var with numbers');
end
if ~ (strcmp(cfg.errorbars,'std') || strcmp(cfg.errorbars,'var'))
if ~isfield(psth,'dof') || ~any(isfinite(psth.dof(spikesel,:)))
error('psth should contain field dof that contains numbers.');
end
end
end
% add standard error bars to it
x = [psth.time(timeSel);psth.time(timeSel)]; % create x doublets
if strcmp(cfg.errorbars, 'sem')
err = sqrt(psth.var(spikesel,timeSel)./psth.dof(timeSel));
elseif strcmp(cfg.errorbars, 'std')
err = sqrt(psth.var(spikesel,timeSel));
elseif strcmp(cfg.errorbars, 'var')
err = psth.var(spikesel,timeSel);
elseif strcmp(cfg.errorbars, 'conf95%')
% use a try statement just in case the statistics toolbox doesn't work.
try
tCrit = tinv(0.975,psth.dof(timeSel));
err = tCrit.*sqrt(psth.var(spikesel,timeSel)./psth.dof(timeSel)); % assuming normal distribution, SHOULD BE REPLACED BY STUDENTS-T!
catch
err = 0;
end
else
err = 0;
end
y = psth.avg(spikesel,timeSel) + err; % create the error values
% plot the errorbars as line plot on top of the bar plot
if ~strcmp(cfg.errorbars,'no')
hold on
y = [zeros(1,length(y));y]; % let lines run from 0 to error values
psthSemHdl = plot(x,y,'k'); % plot the error bars
end
% create labels
xlabel('bin centers (sec)')
try
ylabel(psth.cfg.outputunit)
catch
ylabel('firing intensity')
end
% set the axis
if strcmp(cfg.ylim, 'auto'), cfg.ylim = [0 max(y(:))*1.1+eps]; end
if cfg.ylim(2)<max(y(:))
warning('correcting cfg.ylim(2) as it clips the data');
cfg.ylim(2) = max(y(:))*1.1+eps;
end
set(gca,'YLim', cfg.ylim, 'XLim', cfg.latency)
set(gca,'TickDir','out', 'Box', 'off')
% store the handles
cfg.hdl.avg = psthHdl;
if ~strcmp(cfg.errorbars,'no'), cfg.hdl.var = psthSemHdl; end
% as usual, make sure that panning and zooming does not distort the y limits
set(zoom,'ActionPostCallback',{@mypostcallback,cfg.ylim,cfg.latency});
set(pan,'ActionPostCallback',{@mypostcallback,cfg.ylim,cfg.latency});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous psth
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [] = mypostcallback(fig,evd,limY,limX)
% get the x limits and reset them
ax = evd.Axes;
xlim = get(ax(1), 'XLim');
ylim = get(ax(1), 'YLim');
if limX(1)>xlim(1), xlim(1) = limX(1); end
if limX(2)<xlim(2), xlim(2) = limX(2); end
if limY(1)>ylim(1), ylim(1) = limY(1); end
if limY(2)<ylim(2), ylim(2) = limY(2); end
set(ax(1), 'XLim',xlim)
set(ax(1), 'YLim',ylim);
|
github
|
lcnbeapp/beapp-master
|
ft_spiketriggeredspectrum_stat.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spiketriggeredspectrum_stat.m
| 20,734 |
utf_8
|
e8056c172557b5150d15a058d443c647
|
function [freq] = ft_spiketriggeredspectrum_stat(cfg,spike)
% FT_SPIKETRIGGEREDSPECTRUM_STAT computes phase-locking statistics for spike-LFP
% phases. These contain the PPC statistics according to Vinck et al. 2010 (Neuroimage)
% and Vinck et al. 2011 (Journal of Computational Neuroscience).
%
% Use as:
% [stat] = ft_spiketriggeredspectrum_stat(cfg, spike)
%
% Inputs:
% SPIKE should be a structure as obtained from from the FT_SPIKETRIGGEREDSPECTRUM function.
%
% Configurations (cfg)
%
% cfg.method = string, indicating which statistic to compute. Can be:
% -'plv' : phase-locking value, computes the resultant length over spike
% phases. More spikes -> lower value (bias).
% -'ang' : computes the angular mean of the spike phases.
% -'ral' : computes the rayleigh p-value.
% -'ppc0': computes the pairwise-phase consistency across all available
% spike pairs (Vinck et al., 2010).
% -'ppc1': computes the pairwise-phase consistency across all available
% spike pairs with exclusion of spike pairs in the same trial.
% This avoids history effects within spike-trains to influence
% phase lock statistics.
% -'ppc2': computes the PPC across all spike pairs with exclusion of
% spike pairs in the same trial, but applies a normalization
% for every set of trials. This estimator has more variance but
% is more robust against dependencies between spike phase and
% spike count.
%
% cfg.timwin = double or 'all' (default)
% - double: indicates we compute statistic with a
% sliding window of cfg.timwin, i.e. time-resolved analysis.
% - 'all': we compute statistic over all time-points,
% i.e. in non-time resolved fashion.
%
% cfg.winstepsize = double, stepsize of sliding window in seconds. For
% example if cfg.winstepsize = 0.1, we compute stat every other 100 ms.
%
% cfg.channel = Nx1 cell-array or numerical array with selection of
% channels (default = 'all'),See CHANNELSELECTION for details
%
% cfg.spikechannel = label of ONE unit, according to FT_CHANNELSELECTION
%
% cfg.spikesel = 'all' (default) or numerical or logical selection of spikes.
%
% cfg.foi = 'all' or numerical vector that specifies a subset of
% frequencies in Hz, e.g. cfg.foi = spike.freq(1:10);
%
% cfg.latency = [beg end] in sec, or 'maxperiod', 'poststim' or
% 'prestim'. This determines the start and end of analysis window.
%
% cfg.avgoverchan = 'weighted', 'unweighted' (default) or 'no'.
% This regulates averaging of fourierspectra prior to
% computing the statistic.
% - 'weighted' : we average across channels by weighting by the LFP power.
% This is identical to adding the raw LFP signals in time
% and then taking their FFT.
% - 'unweighted': we average across channels after normalizing for LFP power.
% This is identical to normalizing LFP signals for
% their power, averaging them, and then taking their FFT.
% - 'no' : no weighting is performed, statistic is computed for
% every LFP channel.
% cfg.trials = vector of indices (e.g., 1:2:10),
% logical selection of trials (e.g., [1010101010]), or
% 'all' (default)
%
% Main outputs:
% stat.nspikes = nChancmb-by-nFreqs-nTimepoints number
% of spikes used to compute stat
% stat.dimord = 'chan_freq_time'
% stat.labelcmb = nChancmbs cell array with spike vs
% LFP labels
% stat.(cfg.method) = nChancmb-by-nFreqs-nTimepoints statistic
% stat.freq = 1xnFreqs array of frequencies
% stat.nspikes = number of spikes used to compute
%
% The output stat structure can be plotted using ft_singleplotTFR or ft_multiplotTFR.
% Copyright (C) 2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check if the data is of spike format, and convert from old format if required
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes');
% get the options
cfg.method = ft_getopt(cfg, 'method', 'ppc1');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', spike.label{1});
cfg.latency = ft_getopt(cfg, 'latency', 'maxperiod');
cfg.spikesel = ft_getopt(cfg, 'spikesel', 'all');
cfg.avgoverchan = ft_getopt(cfg, 'avgoverchan', 'no');
cfg.foi = ft_getopt(cfg, 'foi', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all');
cfg.timwin = ft_getopt(cfg, 'timwin', 'all');
cfg.winstepsize = ft_getopt(cfg, 'winstepsize', 0.01);
% ensure that the options are valid
cfg = ft_checkopt(cfg, 'method', 'char', {'ppc0', 'ppc1', 'ppc2', 'ang', 'ral', 'plv'});
cfg = ft_checkopt(cfg, 'foi',{'char', 'double'});
cfg = ft_checkopt(cfg, 'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg, 'channel', {'cell', 'char', 'double'});
cfg = ft_checkopt(cfg, 'spikesel', {'char', 'logical', 'double'});
cfg = ft_checkopt(cfg, 'avgoverchan', 'char', {'weighted', 'unweighted', 'no'});
cfg = ft_checkopt(cfg, 'latency', {'char', 'doublevector'});
cfg = ft_checkopt(cfg, 'trials', {'char', 'double', 'logical'});
cfg = ft_checkopt(cfg, 'timwin', {'double', 'char'});
cfg = ft_checkopt(cfg, 'winstepsize', {'double'});
cfg = ft_checkconfig(cfg, 'allowed', {'method', 'channel', 'spikechannel', 'latency', 'spikesel', 'avgoverchan', 'foi', 'trials', 'timwin', 'winstepsize'});
% collect channel information
cfg.channel = ft_channelselection(cfg.channel, spike.lfplabel);
chansel = match_str(spike.lfplabel, cfg.channel);
% get the spikechannels
spikelabel = spike.label;
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spikelabel);
unitsel = match_str(spikelabel, cfg.spikechannel);
nspikesel = length(unitsel); % number of spike channels
if nspikesel>1, error('only one unit should be selected for now'); end
if nspikesel==0, error('no unit was selected'); end
% collect frequency information
if strcmp(cfg.foi, 'all'),
cfg.foi = spike.freq(:)';
freqindx = 1:length(spike.freq);
else
freqindx = zeros(1,length(foi));
for iFreq = 1:length(cfg.foi)
freqindx(iFreq) = nearest(spike.freq,cfg.foi(iFreq));
end
end
if length(freqindx)~=length(unique(freqindx))
error('Please select every frequency only once, are you sure you selected in Hz?')
end
nFreqs = length(freqindx);
cfg.foi = spike.freq(freqindx); % update the information again
% create the spike selection
nSpikes = length(spike.trial{unitsel});
if strcmp(cfg.spikesel,'all'),
cfg.spikesel = 1:length(spike.trial{unitsel});
elseif islogical(cfg.spikesel)
cfg.spikesel = find(cfg.spikesel);
end
if ~isempty(cfg.spikesel)
if max(cfg.spikesel)>nSpikes || length(cfg.spikesel)>nSpikes
error('cfg.spikesel must not exceed number of spikes and select every spike just once')
end
end
% select on basis of latency
if strcmp(cfg.latency, 'maxperiod'),
cfg.latency = [min(spike.trialtime(:)) max(spike.trialtime(:))];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(spike.trialtime(:)) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(spike.trialtime(:))];
elseif ~isrealvec(cfg.latency) && length(cfg.latency)~=2
error('cfg.latency should be "maxperiod", "prestim", "poststim" or 1-by-2 numerical vector');
end
if cfg.latency(1)>=cfg.latency(2),
error('cfg.latency should be a vector in ascending order, i.e., cfg.latency(2)>cfg.latency(1)');
end
inWindow = find(spike.time{unitsel}>=cfg.latency(1) & cfg.latency(2)>=spike.time{unitsel});
% selection of the trials
cfg = trialselection(cfg,spike);
% do the final selection, and select on spike structure
isintrial = ismember(spike.trial{unitsel}, cfg.trials);
spikesel = intersect(cfg.spikesel(:),inWindow(:));
spikesel = intersect(spikesel,find(isintrial));
cfg.spikesel = spikesel;
spikenum = length(cfg.spikesel); % number of spikes that were finally selected
if isempty(spikenum), warning('No spikes were selected after applying cfg.latency, cfg.spikesel and cfg.trials'); end
spike.fourierspctrm = spike.fourierspctrm{unitsel}(cfg.spikesel,chansel,freqindx);
spike.time = spike.time{unitsel}(cfg.spikesel);
spike.trial = spike.trial{unitsel}(cfg.spikesel);
% average the lfp channels (weighted, unweighted, or not)
if strcmp(cfg.avgoverchan,'unweighted')
spike.fourierspctrm = spike.fourierspctrm ./ abs(spike.fourierspctrm); % normalize the angles before averaging
spike.fourierspctrm = nanmean(spike.fourierspctrm,2); % now rep x 1 x freq
nChans = 1;
outlabels = {'avgLFP'};
elseif strcmp(cfg.avgoverchan,'no')
nChans = length(chansel);
outlabels = cfg.channel;
elseif strcmp(cfg.avgoverchan,'weighted')
spike.fourierspctrm = nanmean(spike.fourierspctrm,2); % now rep x 1 x freq
outlabels = {'avgLFP'};
nChans = 1;
end
% normalize the spectrum first
spike.fourierspctrm = spike.fourierspctrm ./ abs(spike.fourierspctrm); % normalize the angles before averaging
ft_progress('init', 'text', 'Please wait...');
if strcmp(cfg.timwin,'all')
freq.time = 'all';
switch cfg.method
case 'ang'
out = angularmean(spike.fourierspctrm);
case 'plv'
out = resultantlength(spike.fourierspctrm);
case 'ral'
out = rayleightest(spike.fourierspctrm); % the rayleigh test
case 'ppc0'
out = ppc(spike.fourierspctrm);
case {'ppc1', 'ppc2'}
% check the final set of trials present in the spikes
trials = unique(spike.trial);
% loop init for PPC 2.0
[S,SS,dof,dofSS] = deal(zeros(1,nChans,nFreqs));
nTrials = length(trials);
if nTrials==1
warning('computing ppc1 or ppc2 can only be performed with more than 1 trial');
end
for iTrial = 1:nTrials % compute the firing rate
trialNum = trials(iTrial);
spikesInTrial = find(spike.trial == trialNum);
spc = spike.fourierspctrm(spikesInTrial,:,:);
ft_progress(iTrial/nTrials, 'Processing trial %d from %d', iTrial, nTrials);
% compute PPC 1.0 and 2.0 according to Vinck et al. (2011) using summation per trial
if strcmp(cfg.method,'ppc2')
if ~isempty(spc)
m = nanmean(spc,1); % no problem with NaN
hasNum = ~isnan(m);
S(hasNum) = S(hasNum) + m(hasNum); % add the imaginary and real components
SS(hasNum) = SS(hasNum) + m(hasNum).*conj(m(hasNum));
dof(hasNum) = dof(hasNum) + 1; % dof needs to be kept per frequency
end
elseif strcmp(cfg.method,'ppc1')
if ~isempty(spc)
n = sum(~isnan(spc),1);
m = nansum(spc,1);
hasNum = ~isnan(m);
S(hasNum) = S(hasNum) + m(hasNum); % add the imaginary and real components
SS(hasNum) = SS(hasNum) + m(hasNum).*conj(m(hasNum));
dof(hasNum) = dof(hasNum) + n(hasNum);
dofSS(hasNum) = dofSS(hasNum) + n(hasNum).^2;
end
end
end
[out] = deal(NaN(1,nChans,nFreqs));
hasTrl = dof>1;
if strcmp(cfg.method,'ppc1')
out(hasTrl) = (S(hasTrl).*conj(S(hasTrl)) - SS(hasTrl))./(dof(hasTrl).^2 - dofSS(hasTrl));
elseif strcmp(cfg.method, 'ppc2')
out(hasTrl) = (S(hasTrl).*conj(S(hasTrl)) - SS(hasTrl))./(dof(hasTrl).*(dof(hasTrl)-1));
end
end
nSpikes = sum(~isnan(spike.fourierspctrm));
else % compute time-resolved spectra of statistic
% make the sampling axis for the window
bins = cfg.latency(1):cfg.winstepsize:cfg.latency(2);
N = length(bins)-1; % number of bins
wintime = 0:cfg.winstepsize:cfg.timwin;
win = ones(1,length(wintime));
freq.time = (bins(2:end)+bins(1:end-1))/2;
if ~mod(length(win),2), win = [win 1]; end % make sure the number of samples is uneven.
out = NaN(N,nChans,nFreqs);
nSpikes = zeros(N,nChans,nFreqs);
for iChan = 1:nChans
for iFreq = 1:nFreqs
spctra = spike.fourierspctrm(:,iChan,iFreq); % values to accumulate
tm = spike.time;
hasnan = isnan(spctra);
tm(hasnan) = [];
spctra(hasnan) = [];
% compute the degree of freedom per time bin and the index for every spike
[dof, indx] = histc(tm, bins); % get the index per spike, and number per bin
if isempty(dof), continue,end
toDel = indx==length(bins) | indx==0; % delete those points that are equal to last output histc or don't fall in
spctra(toDel) = [];
indx(toDel) = [];
dof(end) = []; % the last bin is a single point in time, so we delete it
% compute the sum of spikes per window at every time point
dof = dof(:); % force it to be row
dof = conv2(dof(:),win(:),'same'); % get the total number of spikes across all trials
nSpikes(:,iChan,iFreq) = dof;
switch cfg.method
case {'ang', 'plv', 'ppc0', 'ral'}
% first create a vector with the phases at the samples
x = accumarray(indx(:),spctra,[N 1]); % simply the sum of the complex numbers
% then compute the sum of the spectra for every timepoint
y = conv2(x(:),win(:),'same');
% now compute the output statistic
hasnum = dof>1;
hasnum0 = dof>0;
if strcmp(cfg.method,'plv')
out(hasnum,iChan,iFreq) = abs(y(hasnum)./dof(hasnum));
elseif strcmp(cfg.method,'ral')
Z = abs(y).^2./dof;
P = exp(-Z) .* (1 + (2*Z - Z.^2)./(4*dof) -(24.*Z - 123*(Z.^2) + 76*(Z.^3) - 9*(Z.^4))./(288*dof.^2)); %Mardia 1972
out(hasnum,iChan,iFreq) = P(hasnum);
elseif strcmp(cfg.method,'ang')
out(hasnum0,iChan,iFreq) = angle(y(hasnum0)); %
elseif strcmp(cfg.method,'ppc0')
out(hasnum,iChan,iFreq) = (y(hasnum).*conj(y(hasnum)) - dof(hasnum))./(dof(hasnum).*(dof(hasnum)-1)); % simplest form of ppc
end
case {'ppc1', 'ppc2'}
trials = unique(spike.trial);
nTrials = length(trials);
[S,SS,dofS,dofSS] = deal(zeros(length(bins)-1,1));
if nTrials==1
warning('computing ppc1 or ppc2 can only be performed with more than 1 trial');
end
% compute the new ppc versions
for iTrial = 1:nTrials
ft_progress(iTrial/nTrials, 'Processing trial %d from %d for freq %d and chan %d', iTrial, nTrials, iFreq, iChan);
% select the spectra, time points, and trial numbers again
trialNum = trials(iTrial);
spikesInTrial = find(spike.trial == trialNum);
if isempty(spikesInTrial), continue,end
spctraTrial = spike.fourierspctrm(spikesInTrial,iChan,iFreq);
tm = spike.time;
hasnan = isnan(spctraTrial);
tm(hasnan) = [];
spctraTrial(hasnan) = [];
% bin the spikes and delete spikes out of the selected time
[dof, indx] = histc(tm(spikesInTrial), bins); % get the index per spike, and number per bin
dof(end) = [];
toDel = indx==length(bins) | indx==0; % delete those points that are equal to last output histc
spctraTrial(toDel,:,:) = []; % delete those spikes from fourierspctrm as well
indx(toDel) = []; % make sure index doesn't contain them
% first create a vector that sums the spctra
x = accumarray(indx(:),spctraTrial,[N 1]);
% then compute the moving average sum of this vector
y = conv2(x(:),win(:),'same'); % convolution again just means a sum
d = conv2(dof(:),win(:),'same'); % get the dof of spikes per trial
if strcmp(cfg.method,'ppc1')
S = S + y; % add the imaginary and real components
SS = SS + y.*conj(y);
dofS = dofS + d(:);
dofSS = dofSS + d(:).^2;
else
sl = d(:)>0;
m = y./d(:);
S(sl) = S(sl) + m(sl); % add the imaginary and real components
SS(sl) = SS(sl) + m(sl).*conj(m(sl));
dofS(sl) = dofS(sl) + 1;
end
end
% we need at least two trials
hasNum = dofS>1;
if strcmp(cfg.method,'ppc1')
out(hasNum,iChan,iFreq) = (S(hasNum).*conj(S(hasNum)) - SS(hasNum))./(dofS(hasNum).^2 - dofSS(hasNum));
else
out(hasNum,iChan,iFreq) = (S(hasNum).*conj(S(hasNum)) - SS(hasNum))./(dofS(hasNum).*(dofS(hasNum)-1));
end
end
end
end
end
ft_progress('close');
% collect the outputs: in labelcmb representation
outparam = cfg.method;
freq.(outparam) = permute(out,[2 3 1]);
freq.nspikes = permute(nSpikes,[2 3 1]); % also cross-unit purposes
freq.labelcmb = cell(nChans,2);
freq.labelcmb(1:nChans,1) = cfg.spikechannel;
for iCmb = 1:nChans
freq.labelcmb{iCmb,2} = outlabels{iCmb};
end
freq.freq = spike.freq(freqindx);
freq.dimord = 'chancmb_freq_time';
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history freq
function [P] = rayleightest(x)
n = sum(~isnan(x),1);
R = resultantlength(x);
Z = n.*R.^2;
P = exp(-Z).*...
(1 + (2*Z - Z.^2)./(4*n) -(24.*Z - 123*(Z.^2) + 76*(Z.^3) - 9*(Z.^4))./(288*n.^2)); %Mardia 1972
function [resLen] = resultantlength(angles)
n = sum(~isnan(angles),1);
resLen = abs(nansum(angles,1))./n;%calculate the circular variance
function [y] = ppc(crss)
dim = 1;
dof = sum(~isnan(crss),dim);
sinSum = abs(nansum(imag(crss),dim));
cosSum = nansum(real(crss),dim);
y = (cosSum.^2+sinSum.^2 - dof)./(dof.*(dof-1));
function [angMean] = angularmean(angles)
angMean = angle(nanmean(angles,1)); %get the mean angle
function [cfg] = trialselection(cfg,spike)
% get the number of trials or change DATA according to cfg.trials
nTrials = size(spike.trialtime,1);
if strcmp(cfg.trials, 'all')
cfg.trials = 1:nTrials;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrials, warning('maximum trial number in cfg.trials should not exceed length of DATA.trial')
end
if isempty(cfg.trials), error('No trials were selected');
end
function m = nansum(x,dim)
% Find NaNs and set them to zero
nans = isnan(x);
x(nans) = 0;
if nargin == 1 % let sum deal with figuring out which dimension to use
% Count up non-NaNs.
n = sum(~nans);
n(n==0) = NaN; % prevent divideByZero warnings
% Sum up non-NaNs, and divide by the number of non-NaNs.
m = sum(x);
else
% Count up non-NaNs.
n = sum(~nans,dim);
n(n==0) = NaN; % prevent divideByZero warnings
% Sum up non-NaNs, and divide by the number of non-NaNs.
m = sum(x,dim);
end
|
github
|
lcnbeapp/beapp-master
|
ft_spike_select.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_select.m
| 7,381 |
utf_8
|
17594cc9b902b58cd372eac21bf3272f
|
function [spike] = ft_spike_select(cfg,spike)
% FT_SPIKE_SELECT selects subsets of spikes, channels and trials from a
% spike structure
%
% Use as
% [spike] = ft_spike_select(cfg, spike)
%
% The input SPIKE should be organised as the spike datatype (see
% FT_DATATYPE_SPIKE)
%
% Configurations:
% cfg.spikechannel = See FT_CHANNELSELECTION for details.
% cfg.trials = vector of indices (e.g., 1:2:10)
% logical selection of trials (e.g., [1010101010])
% 'all' (default), selects all trials
% cfg.latency = [begin end] in seconds
% 'maxperiod' (default), i.e., maximum period available
% 'minperiod', i.e., the minimal period all trials share
% 'prestim' (all t<=0)
% 'poststim' (all t>=0).
% Outputs:
% Spike structure with selections
% Copyright (C) 2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% control input spike structure
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes');
% get the default options
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all');
cfg.latency = ft_getopt(cfg, 'latency', 'maxperiod');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'trials', {'char', 'doublevector', 'logical'});
% select the desired channels
doAll = strcmp(cfg.spikechannel,'all');
try
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
catch
[I,J] = unique(spike.label, 'first');
label = spike.label(J);
cfg.spikechannel = ft_channelselection(cfg.spikechannel, label);
end
spikesel = match_str(spike.label, cfg.spikechannel);
nUnits = length(spikesel);
if nUnits==0, error('no spikechannel selected by means of cfg.spikechannel');end
doAllTrials = strcmp(cfg.trials,'all');
doAllLatencies = strcmp(cfg.latency,'maxperiod');
% select the desired channels
if ~doAll
fprintf('Selecting channels\n');
try, spike.time = spike.time(spikesel); end
try, spike.trial = spike.trial(spikesel); end
try, spike.waveform = spike.waveform(spikesel); end
try, spike.timestamp = spike.timestamp(spikesel); end
try, spike.unit = spike.unit(spikesel); end
try, spike.fourierspctrm = spike.fourierspctrm(spikesel); end
try, spike.label = spike.label(spikesel); end
end
% select the desired trials
if ~isfield(spike,'trial') | ~isfield(spike,'trialtime') | ~isfield(spike,'time')
if ~doAllTrials
warning('spike structure does not contain trial, time or trialtime field, cannot select trials');
end
else
doSelection = ~strcmp(cfg.trials,'all');
cfg = trialselection(cfg,spike);
if doSelection
fprintf('Selecting trials\n');
nUnits = length(spike.trial);
for iUnit = 1:nUnits
spikesInTrial = ismember(spike.trial{iUnit},cfg.trials); % get spikes in trial
spike.trial{iUnit} = spike.trial{iUnit}(spikesInTrial);
spike.time{iUnit} = spike.time{iUnit}(spikesInTrial);
try, spike.timestamp{iUnit} = spike.timestamp{iUnit}(spikesInTrial); end
try, spike.waveform{iUnit} = spike.waveform{iUnit}(spikesInTrial); end
try, spike.unit{iUnit} = spike.unit{iUnit}(spikesInTrial); end
try, spike.fourierspctrm{iUnit} = spike.fourierspctrm{iUnit}(spikesInTrial,:,:); end
end
warning('No selection is performed on spike.trialtime and spike.sampleinfo');
% Note: .trialtime and .sampleinfo are explicitly left intact, as the
% relationship between trial number and trialtime becomes ambigious
% otherwise!
end
end
% select the desired latencies
if ~isfield(spike, 'trialtime') || ~isfield(spike,'time') || ~isfield(spike,'trial')
if ~doAllLatencies
warning('cannot select latencies as either .trialtime, .time or .trial is missing');
end
else
if ~strcmp(cfg.latency,'maxperiod') % otherwise, all spikes are selected
fprintf('Selecting on latencies\n');
begTrialLatency = spike.trialtime(cfg.trials,1);
endTrialLatency = spike.trialtime(cfg.trials,2);
cfg = latencyselection(cfg,begTrialLatency,endTrialLatency);
for iUnit = 1:nUnits
spikesInWin = spike.time{iUnit}>=cfg.latency(1) & spike.time{iUnit}<=cfg.latency(2); % get spikes in trial
spike.trial{iUnit} = spike.trial{iUnit}(spikesInWin);
spike.time{iUnit} = spike.time{iUnit}(spikesInWin);
try, spike.timestamp{iUnit} = spike.timestamp{iUnit}(spikesInWin); end
try, spike.waveform{iUnit} = spike.waveform{iUnit}(spikesInWin); end
try, spike.unit{iUnit} = spike.unit{iUnit}(spikesInWin); end
try, spike.fourierspctrm{iUnit} = spike.fourierspctrm{iUnit}(spikesInWin,:,:); end
end
% modify the trialtime
adjust = spike.trialtime(:,1)<=cfg.latency(1);
spike.trialtime(adjust,1) = cfg.latency(1);
adjust = spike.trialtime(:,2)>=cfg.latency(2);
spike.trialtime(adjust,2) = cfg.latency(2);
% FIXME: change sampleinfo field automatically again, for now remove.
try, spike = rmfield(spike,'sampleinfo'); end
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history spike
%%%%%%%%% SUB FUNCTIONS %%%%%%%%%
function [cfg] = latencyselection(cfg,begTrialLatency,endTrialLatency)
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
%%%
function [cfg] = trialselection(cfg,spike)
% get the number of trials or change DATA according to cfg.trials
nTrials = size(spike.trialtime,1);
if strcmp(cfg.trials,'all')
cfg.trials = 1:nTrials;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrials, error('maximum trial number in cfg.trials should not exceed length of spike.trialtime')
end
if isempty(cfg.trials), error('No trials were selected');
end
|
github
|
lcnbeapp/beapp-master
|
ft_spiketriggeredspectrum_fft.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spiketriggeredspectrum_fft.m
| 13,060 |
utf_8
|
9ddd1c3908a218f53afc3cd852cffd4b
|
function [sts] = ft_spiketriggeredspectrum_fft(cfg, data, spike)
% FT_SPIKETRIGGEREDSPECTRUM_FFT computes the Fourier spectrum (amplitude and phase)
% of the LFP around the % spikes. A phase of zero corresponds to the spike being on
% the peak of the LFP oscillation. A phase of 180 degree corresponds to the spike being
% in the through of the oscillation. A phase of 45 degrees corresponds to the spike
% being just after the peak in the LFP.
%
% If the triggered spike leads a spike in another channel, then the angle of the Fourier
% spectrum of that other channel will be negative. Earlier phases are in clockwise
% direction.
%
% Use as
% [sts] = ft_spiketriggeredspectrum_convol(cfg,data,spike)
% or
% [sts] = ft_spiketriggeredspectrum_convol(cfg,data)
% where the spike data can either be contained in the DATA input or in the SPIKE input.
%
% The input DATA should be organised as the raw datatype, obtained from FT_PREPROCESSING
% or FT_APPENDSPIKE.
%
% The (optional) input SPIKE should be organised as the spike or the raw datatype,
% obtained from FT_SPIKE_MAKETRIALS or FT_PREPROCESSING (in that case, conversion is done
% within the function)
%
% Important is that data.time and spike.trialtime should be referenced relative to the
% same trial trigger times.
%
% The configuration should be according to
% cfg.timwin = [begin end], time around each spike (default = [-0.1 0.1])
% cfg.foilim = [begin end], frequency band of interest (default = [0 150])
% cfg.taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'hanning')
% cfg.tapsmofrq = number, the amount of spectral smoothing through
% multi-tapering. Note that 4 Hz smoothing means plus-minus 4 Hz,
% i.e. a 8 Hz smoothing box. Note: multitapering rotates phases (no
% problem for consistency)
% cfg.spikechannel = string, name of spike channels to trigger on cfg.channel = Nx1
% cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.feedback = 'no', 'text', 'textbar', 'gui' (default = 'no')
%
% The output STS data structure can be input to FT_SPIKETRIGGEREDSPECTRUM_STAT
%
% This function uses a NaN-aware spectral estimation technique, which will default to the
% standard Matlab FFT routine if no NaNs are present. The fft_along_rows subfunction below
% demonstrates the expected function behaviour.
%
% See FT_SPIKETRIGGEREDINTERPOLATION to remove segments of LFP around spikes.
% See FT_SPIKETRIGGEREDSPECTRUM_CONVOL for an alternative implementation based
% on convolution
% Copyright (C) 2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check input data structure
data = ft_checkdata(data,'datatype', 'raw', 'feedback', 'yes');
if nargin==3
spike = ft_checkdata(spike, 'datatype', {'spike'}, 'feedback', 'yes');
end
% these were supported in the past, but are not any more (for consistency with other spike functions)
cfg = ft_checkconfig(cfg, 'forbidden', {'inputfile','outputfile'});
%get the options
cfg.timwin = ft_getopt(cfg, 'timwin',[-0.1 0.1]);
cfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');
cfg.channel = ft_getopt(cfg,'channel', 'all');
cfg.feedback = ft_getopt(cfg,'feedback', 'no');
cfg.tapsmofrq = ft_getopt(cfg,'tapsmofrq', 4);
cfg.taper = ft_getopt(cfg,'taper', 'hanning');
cfg.foilim = ft_getopt(cfg,'foilim', [0 150]);
% ensure that the options are valid
cfg = ft_checkopt(cfg,'timwin','doublevector');
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double', 'empty'});
cfg = ft_checkopt(cfg,'channel', {'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'feedback', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'taper', 'char');
cfg = ft_checkopt(cfg,'tapsmofrq', 'doublescalar');
cfg = ft_checkopt(cfg,'foilim', 'doublevector');
if strcmp(cfg.taper, 'sine')
error('sorry, sine taper is not yet implemented');
end
% get the spikechannels
if nargin==2
% autodetect the spikechannels and EEG channels
[spikechannel, eegchannel] = detectspikechan(data);
% make the final selection of spike channels and check
if strcmp(cfg.spikechannel, 'all'),
cfg.spikechannel = spikechannel;
else
cfg.spikechannel = ft_channelselection(cfg.spikechannel, data.label);
if ~all(ismember(cfg.spikechannel,spikechannel)),
error('some selected spike channels appear eeg channels');
end
end
% make the final selection of EEG channels and check
if strcmp(cfg.channel,'all')
cfg.channel = eegchannel;
else
cfg.channel = ft_channelselection(cfg.channel, data.label);
if ~all(ismember(cfg.channel,eegchannel)),
warning('some of the selected eeg channels appear spike channels');
end
end
% select the data and convert to a spike structure
data_spk = ft_selectdata(data,'channel', cfg.spikechannel);
data = ft_selectdata(data,'channel', cfg.channel); % leave only LFP
spike = ft_checkdata(data_spk,'datatype', 'spike');
clear data_spk % remove the continuous data
else
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
cfg.channel = ft_channelselection(cfg.channel, data.label);
end
% determine the channel indices and number of chans
chansel = match_str(data.label, cfg.channel); % selected channels
nchansel = length(cfg.channel); % number of channels
spikesel = match_str(spike.label, cfg.spikechannel);
nspikesel = length(spikesel); % number of spike channels
if nspikesel==0, error('no spike channel selected'); end
% construct the taper
if ~isfield(data, 'fsample'), data.fsample = 1/mean(diff(data.time{1})); end
begpad = round(cfg.timwin(1)*data.fsample);
endpad = round(cfg.timwin(2)*data.fsample);
numsmp = endpad - begpad + 1;
if ~strcmp(cfg.taper,'dpss')
taper = window(cfg.taper, numsmp);
taper = taper./norm(taper);
else
% not implemented yet: keep tapers, or selecting only a subset of them.
taper = dpss(numsmp, cfg.tapsmofrq);
taper = taper(:,1:end-1); % we get 2*NW-1 tapers
taper = sum(taper,2)./size(taper,2); % using the linearity of multitapering
end
taper = sparse(diag(taper));
% preallocate the output structures for different units / trials
ntrial = length(data.trial);
spectrum = cell(nspikesel,ntrial);
spiketime = cell(nspikesel,ntrial);
spiketrial = cell(nspikesel,ntrial);
% select the frequencies
freqaxis = linspace(0, data.fsample, numsmp);
fbeg = nearest(freqaxis, cfg.foilim(1));
fend = nearest(freqaxis, cfg.foilim(2));
% update the configuration to account for rounding off differences
cfg.foilim(1) = freqaxis(fbeg);
cfg.foilim(2) = freqaxis(fend);
% make a representation of the spike, this is used for the phase rotation
spike_repr = zeros(1,numsmp);
time = linspace(cfg.timwin(1),cfg.timwin(2), numsmp);
spike_repr(1-begpad) = 1;
spike_fft = specest_nanfft(spike_repr, time);
spike_fft = spike_fft(fbeg:fend);
spike_fft = spike_fft./abs(spike_fft);
rephase = sparse(diag(conj(spike_fft)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_progress('init', 'text', 'Please wait...');
for iUnit = 1:nspikesel
for iTrial = 1:ntrial
% select the spikes that fell in the trial and convert to samples
timeBins = [data.time{iTrial} data.time{iTrial}(end)+1/data.fsample] - (0.5/data.fsample);
hasTrial = spike.trial{spikesel(iUnit)} == iTrial; % find the spikes that are in the trial
ts = spike.time{spikesel(iUnit)}(hasTrial); % get the spike times for these spikes
ts = ts(ts>=timeBins(1) & ts<=timeBins(end)); % only select those spikes that fall in the trial window
[ignore,spikesmp] = histc(ts,timeBins);
if ~isempty(ts)
ts(spikesmp==0 | spikesmp==length(timeBins)) = [];
end
spikesmp(spikesmp==0 | spikesmp==length(timeBins)) = [];
% store in the output cell arrays as column vectors
spiketime{iUnit, iTrial} = ts(:);
tr = iTrial*ones(size(spikesmp));
spiketrial{iUnit, iTrial} = tr(:);
% preallocate the spectrum
spectrum{iUnit, iTrial} = zeros(length(spikesmp), nchansel, fend-fbeg+1);
% compute the spiketriggered spectrum
ft_progress(iTrial/ntrial, 'spectrally decomposing data for trial %d of %d, %d spikes for unit %d', iTrial, ntrial, length(spikesmp), iUnit);
for j=1:length(spikesmp)
% selected samples
begsmp = spikesmp(j) + begpad;
endsmp = spikesmp(j) + endpad;
% handle spikes near the borders of the trials
if (begsmp<1)
segment = nan(nchansel, numsmp);
elseif endsmp>size(data.trial{iTrial},2)
segment = nan(nchansel, numsmp);
else
segment = data.trial{iTrial}(chansel,begsmp:endsmp);
end
% substract the DC component from every segment, to avoid any leakage of the taper
segmentMean = repmat(nanmean(segment,2),1,numsmp); % nChan x Numsmp
segment = segment - segmentMean; % LFP has average of zero now (no DC)
% taper the data segment around the spike and compute the fft
segment_fft = specest_nanfft(segment * taper, time);
% select the desired output frquencies and normalize
segment_fft = segment_fft(:,fbeg:fend) ./ sqrt(numsmp/2);
% rotate the estimated phase at each frequency to correct for the segment t=0 not being at the first sample
segment_fft = segment_fft * rephase;
% store the result for this spike in this trial
spectrum{iUnit, iTrial}(j,:,:) = segment_fft;
end % for each spike in this trial
end % for each trial
end
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect the results in a structure that is a spike structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sts.lfplabel = data.label(chansel);
sts.freq = freqaxis(fbeg:fend);
sts.dimord = 'rpt_chan_freq';
for iUnit = 1:nspikesel
sts.fourierspctrm{iUnit} = cat(1, spectrum{iUnit,:});
spectrum(iUnit,:) = {[]}; % free from the memory
sts.time{iUnit} = cat(1,spiketime{iUnit,:});
sts.trial{iUnit} = cat(1,spiketrial{iUnit,:});
end
sts.dimord = '{chan}_spike_lfpchan_freq';
sts.trialtime = spike.trialtime;
sts.label = spike.label(spikesel);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous data
ft_postamble history sts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [spikelabel, eeglabel] = detectspikechan(data)
maxRate = 1000; % default on what we still consider a neuronal signal
% autodetect the spike channels
ntrial = length(data.trial);
nchans = length(data.label);
spikechan = zeros(nchans,1);
for i=1:ntrial
for j=1:nchans
hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:)));
hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0);
fr = nansum(data.trial{i}(j,:),2) ./ (data.time{i}(end)-data.time{i}(1));
spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts & fr<=maxRate);
end
end
spikechan = (spikechan==ntrial);
spikelabel = data.label(spikechan);
eeglabel = data.label(~spikechan);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for demonstration purpose
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = fft_along_rows(x)
y = fft(x, [], 2); % use normal Matlab function to compute the fft along 2nd dimension
|
github
|
lcnbeapp/beapp-master
|
ft_spike_plot_raster.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_plot_raster.m
| 19,802 |
utf_8
|
2861220e5c63dfa6d9a32157c62c8593
|
function [cfg] = ft_spike_plot_raster(cfg, spike, timelock)
% FT_SPIKE_PLOT_RASTER makes a raster plot of spike-trains and allows for a
% spike-density or a PSTH plot on top.
%
% Use as
% ft_spike_plot_raster(cfg, spike)
% or
% ft_spike_plot_raster(cfg, spike, timelock)
%
% The input SPIKE data structure should be organized as the spike or the
% raw datatype The optional input TIMELOCK should be organized as the
% timelock datatype, e.g. the output from FT_SPIKE_PSTH or FT_SPIKEDENSITY,
% having the average firing rate / spike count per time-point / time-bin.
% However, timelock could also be the output from FT_TIMELOCKANALYSIS.
%
% Configuration options
% cfg.spikechannel = see FT_CHANNELSELECTION for details
% cfg.latency = [begin end] in seconds, 'maxperiod' (default), 'minperiod',
% 'prestim' (all t<=0), or 'poststim' (all t>=0).
% If a third input is present, we will use the
% timelock.cfg.latency field to ensure that the
% raster and the timelock data have the same
% latency.
% cfg.linewidth = number indicating the width of the lines (default = 1);
% cfg.cmapneurons = 'auto' (default), or nUnits-by-3 matrix.
% Controls coloring of spikes and psth/density
% data if multiple cells are present.
% cfg.spikelength = number >0 and <=1 indicating the length of the spike. If
% cfg.spikelength = 1, then no space will be left between
% subsequent rows representing trials (row-unit is 1).
% cfg.trialborders = 'yes' or 'no'. If 'yes', borders of trials are
% plotted
% cfg.plotselection = 'yes' or 'no' (default). If yes plot Y axis only for selection in cfg.trials
% cfg.topplotsize = number ranging from 0 to 1, indicating the proportion of the
% rasterplot that the top plot will take (e.g., with 0.7 the top
% plot will be 70% of the rasterplot in size). Default = 0.5.
% cfg.topplotfunc = 'bar' (default) or 'line'.
% cfg.errorbars = 'no', 'std', 'sem' (default), 'conf95%','var'
%
% cfg.interactive = 'yes' (default) or 'no'. If 'yes', zooming and panning operate via callbacks.
% cfg.trials = numeric or logical selection of trials (default = 'all').
% Copyright (C) 2010-2013, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check if input spike structure is indeed a spike structure
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes'); % converts raw as well
% get the default options
cfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');
cfg.trials = ft_getopt(cfg,'trials', 'all');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.linewidth = ft_getopt(cfg,'linewidth', 1);
cfg.cmapneurons = ft_getopt(cfg,'cmapneurons', 'auto');
cfg.spikelength = ft_getopt(cfg,'spikelength', 0.9);
cfg.topplotsize = ft_getopt(cfg,'topplotsize', 0.5);
cfg.topplotfunc = ft_getopt(cfg,'topplotfunc', 'bar');
cfg.errorbars = ft_getopt(cfg,'errorbars', 'sem');
cfg.trialborders = ft_getopt(cfg,'trialborders','yes');
cfg.plotselection = ft_getopt(cfg,'plotselection','no');
cfg.interactive = ft_getopt(cfg,'interactive','yes');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'trials', {'char', 'doublevector', 'logical'});
cfg = ft_checkopt(cfg,'linewidth', 'doublescalar');
cfg = ft_checkopt(cfg,'cmapneurons', {'char', 'doublematrix', 'doublevector'});
cfg = ft_checkopt(cfg,'spikelength', 'doublescalar');
cfg = ft_checkopt(cfg,'topplotsize', 'doublescalar');
cfg = ft_checkopt(cfg,'topplotfunc', 'char', {'bar', 'line'});
cfg = ft_checkopt(cfg,'errorbars', 'char', {'sem', 'std', 'conf95%', 'no', 'var'});
cfg = ft_checkopt(cfg,'trialborders', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'plotselection', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'interactive', 'char', {'yes', 'no'});
cfg = ft_checkconfig(cfg, 'allowed', {'spikechannel', 'latency', 'trials', 'linewidth', 'cmapneurons', 'spikelength', 'topplotsize', 'topplotfunc', 'errorbars', 'trialborders', 'plotselection', 'interactive'});
% check if a third input is present, and check if it's a timelock structure
if nargin==3
doTopData = true;
timelock = ft_checkdata(timelock,'datatype', 'timelock', 'feedback', 'yes');
if isfield(timelock,'cfg') && isfield(timelock.cfg, 'latency')
cfg.latency = timelock.cfg.latency;
end
else
doTopData = false;
end
% get the spikechannels
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
spikesel = match_str(spike.label, cfg.spikechannel);
nUnits = length(spikesel); % number of spike channels
if nUnits==0, error('No spikechannel selected by means of cfg.spikechannel'); end
% get the number of trials and set the cfg.trials field
nTrialsOrig = size(spike.trialtime,1);
nTrialsShown = nTrialsOrig;
if strcmp(cfg.trials,'all')
cfg.trials = 1:nTrialsOrig;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrialsOrig,
error('maximum trial number in cfg.trials should not exceed length of spike.trial')
end
if isempty(cfg.trials), errors('No trials were selected in cfg.trials'); end
% determine the duration of each trial
begTrialLatency = spike.trialtime(cfg.trials,1);
endTrialLatency = spike.trialtime(cfg.trials,2);
% select the latencies
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
% check whether the time window fits with the data
if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency);
warning('Correcting begin latency of averaging window');
end
if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency);
warning('Correcting begin latency of averaging window');
end
% delete trials that are not in our window
overlaps = endTrialLatency>=cfg.latency(1) & begTrialLatency<=cfg.latency(2);
trialSel = overlaps(:);
cfg.trials = cfg.trials(trialSel); %update the trial selection
if isempty(cfg.trials),warning('No trials were selected');end
% create the data that should be plotted
[unitX,unitY] = deal(cell(1,nUnits));
% find the spiketimes per neuron and make one vector of them with y value per element
for iUnit = 1:nUnits
unitIndx = spikesel(iUnit);
latencySel = spike.time{unitIndx}>=cfg.latency(1) & spike.time{unitIndx} <= cfg.latency(2);
isInTrials = ismember(spike.trial{unitIndx},cfg.trials);
unitX{iUnit} = spike.time{unitIndx}(isInTrials(:) & latencySel(:));
unitY{iUnit} = spike.trial{unitIndx}(isInTrials(:) & latencySel(:));
if strcmp(cfg.plotselection,'yes')
tempY{iUnit} = zeros(size(unitY{iUnit}));
u = unique(unitY{iUnit});
for i = 1:length(u)
idx = find(unitY{iUnit} == u(i));
tempY{iUnit}(idx) = i;
end
nTrialsShown = length(u);
unitY{iUnit} = tempY{iUnit};
end
end
% some error checks on spike length
if (cfg.spikelength<=0 || cfg.spikelength>1),
error('cfg.spikelength should be a single number >0 and <=1. 1 row (1 trial) = 1');
end
% some error checks on the size of the top figure
if (cfg.topplotsize<=0 || cfg.topplotsize>1),
error('cfg.topplotsize should be a single number >0 and <=1. 0.7 = 70%');
end
% plot the trial borders if desired
if strcmp(cfg.trialborders,'yes')
begTrialLatency = begTrialLatency(overlaps(:));
endTrialLatency = endTrialLatency(overlaps(:));
% make yellow fills after trial end
X = endTrialLatency;
Y = cfg.trials;
Y = [Y(:);Y(end);Y(1);(Y(1))];
X = [X(:);cfg.latency(2);cfg.latency(2);endTrialLatency(1)];
f = fill(X,Y,'y');
set(f,'EdgeColor', [1 1 1]);
% make yellow fills before trial beginning
X = begTrialLatency;
Y = cfg.trials;
Y = [Y(:);Y(end);Y(1);(Y(1))];
X = [X(:);cfg.latency(1);cfg.latency(1);begTrialLatency(1)];
hold on, fill(X,Y,'y'), hold on
set(f,'EdgeColor', [1 1 1]);
end
% start plotting the rasterplot
for iUnit = 1:nUnits
% create the x and y value to be plotted
x = [unitX{iUnit}(:)'; unitX{iUnit}(:)']; % create x duplicates, spike times
y = unitY{iUnit}(:); % these are the trial values
y = [y' - cfg.spikelength/2; y' + cfg.spikelength/2];
% process the color information for the different units
if strcmp(cfg.cmapneurons, 'auto'), cfg.cmapneurons = colormap_cgbprb(nUnits); end
if all(size(cfg.cmapneurons) ./ [nUnits 3])
color = cfg.cmapneurons(iUnit,:);
else
error('cfg.cmapneurons should be nUnits-by-3 matrix or "auto"');
end
% create axes for the rasterplot, all go to the same position, so do this for unit 1
if iUnit==1
ax(1) = newplot;
posOrig = get(ax(1), 'Position'); % original position for a standard plot
pos = posOrig;
if doTopData % if topdata, we leave space on top
posRaster = [pos(1:3) pos(4)*(1-cfg.topplotsize)]; % and decrease the size of width and height
else
posRaster = pos;
end
set(ax(1), 'ActivePositionProperty', 'position', 'Position', posRaster)
end
% make the raster plot and hold on for the next plots
rasterHdl = line(x, y,'LineWidth', cfg.linewidth,'Color', color);
cfg.hdl.raster = rasterHdl;
set(ax(1),'NextPlot', 'add')
set(ax(1),'Box', 'off')
end
% create the labels for the first axes
xlabel('time (sec)')
ylabel('Trial Number')
axis ij
% plot the top data
if doTopData
% match on the basis of labels, and specify this in the documentary
unitIndx = find(ismember(timelock.label,spike.label(spikesel)));
if sum(unitIndx)<nUnits, error('timelock.label should contain all label of selected units'); end
% select timepoints and get the data to be plotted
binSel = timelock.time>=cfg.latency(1) & timelock.time<=cfg.latency(2);
dataY = timelock.avg(unitIndx,binSel);
dataX = timelock.time(binSel);
% create the position for the topplot and axes with this position
posTopPlot = [0 pos(4)*(1-cfg.topplotsize) 0 0] + pos.*[1 1 1 cfg.topplotsize];
ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', posTopPlot,...
'Parent', get(ax(1), 'Parent'));
% make the bar or the line plot
if strcmp(cfg.topplotfunc,'bar')
% plot thje density / psth as a bar plot
avgHdl = feval(cfg.topplotfunc,dataX,dataY', 'stack');
% color the different bars
for iUnit = 1:nUnits
set(avgHdl(iUnit),'FaceColor',cfg.cmapneurons(iUnit,:),'EdgeColor', cfg.cmapneurons(iUnit,:),'LineWidth', 3);
end
% set the bar width to 1
set(avgHdl,'BarWidth', 1);
if ~strcmp(cfg.errorbars, 'no') && nUnits>1
warning('error bars can only be plotted with bar plot if one unit is plotted');
end
% add standard error bars to it
if ~strcmp(cfg.errorbars, 'no') && nUnits==1
x = [timelock.time(binSel);timelock.time(binSel)]; % create x doublets
if strcmp(cfg.errorbars, 'sem')
err = sqrt(timelock.var(unitIndx,binSel)./timelock.dof(unitIndx,binSel));
elseif strcmp(cfg.errorbars, 'std')
err = sqrt(timelock.var(unitIndx,binSel));
elseif strcmp(cfg.errorbars, 'var')
err = timelock.var(unitIndx,binSel);
elseif strcmp(cfg.errorbars, 'conf95%')
% use a try statement just in case the statistics toolbox doesn't work.
try
tCrit = tinv(0.975,timelock.dof(unitIndx,binSel));
err = tCrit.*sqrt(timelock.var(unitIndx,binSel)./timelock.dof(unitIndx,binSel)); % assuming normal distribution, SHOULD BE REPLACED BY STUDENTS-T!
catch % this is in case statistics toolbox is lacking
err = 0;
warning('error with computing 95% conf limits, probably issue with statistics toolbox');
end
end
y = dataY + err;
% plot the errorbars as line plot on top of the bar plot
hold on
y = [zeros(1,length(y));y]; % let lines run from 0 to error values
hd = plot(x,y,'k'); % plot the error bars
end
else
% plot the density / psth
avgHdl = feval(cfg.topplotfunc,dataX,dataY');
% set the color for every unit
for iUnit = 1:nUnits
set(avgHdl(iUnit),'Color',cfg.cmapneurons(iUnit,:));
end
% ensure that the data limits are increasing
mnmax = [nanmin(dataY(:))-eps nanmax(dataY(:))+eps];
% plot the errorbars
if ~strcmp(cfg.errorbars,'no')
% check if the right error information is there
if ~isfield(timelock,'var') || ~isfield(timelock,'dof'),
error('timelock should contain field .var and .dof for errorbars');
end
% select the degrees of freedom
df = timelock.dof(unitIndx,binSel);
% plot the different error bars
if strcmp(cfg.errorbars, 'sem')
err = sqrt(timelock.var(unitIndx,binSel)./df);
elseif strcmp(cfg.errorbars, 'std')
err = sqrt(timelock.var(unitIndx,binSel));
elseif strcmp(cfg.errorbars, 'var')
err = timelock.var(unitIndx,binSel);
elseif strcmp(cfg.errorbars, 'conf95%')
tCrit = tinv(0.975,df);
err = tCrit.*sqrt(timelock.var(unitIndx,binSel)./df);
end
% ensure division by zero does not count, should not happen however
err(~isfinite(err)) = NaN;
% make a polygon of the error bars that allows easy filling in adobe
for iUnit = 1:nUnits
upb = dataY(iUnit,:) + err(iUnit,:);
lowb = dataY(iUnit,:) - err(iUnit,:);
sl = ~isnan(upb);
[X,Y] = polygon(dataX(sl),upb(sl)+0.0001,lowb(sl)-0.0001);
hold on
hd = plot(X,Y,'--');
set(hd,'Color', cfg.cmapneurons(iUnit,:));
hold on
end
mnmax = [nanmin(dataY(:) - err(:)) nanmax(dataY(:) + err(:))];
end
% set the y limits explicitly
ylim = mnmax;
d = ylim(2)-ylim(1);
yl = ylim(1)-0.05*d;
if ylim(1)>0
if yl<0, yl = 0; end
end
ylim(1) = yl;
yl = ylim(2)+0.05*d;
if ylim(2)<0
if yl>0, yl = 0; end
end
ylim(2) = yl;
if ylim(2) == ylim(1) %if the plot is empty
ylim(2)=ylim(1)+1; %be nice to set
end
set(gca,'YLim', ylim)
end
% store the handle
cfg.hdl.psth = avgHdl;
% modify the axes
set(ax(2),'YAxisLocation', 'right') % swap y axis location
set(ax(2),'XTickLabel', {}) % remove ticks and labels for x axis
set(ax(2),'XTick', [])
set(ax(2), 'Box', 'off') % turn the box off
% change the axis settings
try
ylabel(timelock.cfg.outputunit)
catch
warning('unit of the y-axis is unknown');
ylabel('Signal intensity')
end
end
% set the limits for the axis
set(ax,'XLim', [cfg.latency])
if nTrialsShown==0; nTrialsShown = 1; end %
set(ax(1), 'YLim', [0.5 nTrialsShown+0.5]); % number of trials
set(ax,'TickDir','out') % put the tickmarks outside
% now link the axes, constrain zooming and keep ticks intact
limX = [cfg.latency];
limY = get(ax,'YLim');
if ~iscell(limY), limY = {limY}; end
% constrain the zooming and zoom psth together with the jpsth, remove
% ticklabels jpsth
if strcmp(cfg.interactive,'yes')
set(zoom,'ActionPostCallback',{@mypostcallback,ax,limX,limY});
set(pan,'ActionPostCallback',{@mypostcallback,ax,limX,limY});
end
% pass positions and axis handles so downstream
% functions can respect the positions set here.
cfg.pos.posRaster = posRaster;
cfg.hdl.axRaster = ax(1);
if doTopData
cfg.pos.posTopPlot = posTopPlot;
cfg.hdl.axTopPlot = ax(2);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [] = mypostcallback(fig,evd,ax,lim,ylim)
currentAxes = evd.Axes;
indx = find(currentAxes==ax);
% keep the y axis within boundaries
origLim = ylim{indx};
ylim = get(ax(indx), 'YLim');
if origLim(1)>ylim(1), ylim(1) = origLim(1); end
if origLim(2)<ylim(2), ylim(2) = origLim(2); end
set(ax(indx), 'YLim', ylim)
% keep the x axis within boundaries and reset for both
xlim = get(ax(indx), 'XLim');
if lim(1)>xlim(1), xlim(1) = lim(1); end
if lim(2)<xlim(2), xlim(2) = lim(2); end
set(ax,'XLim', xlim)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [colorspace] = colormap_cgbprb(N)
% COLORMAP_SEPARATION returns a color map with well separated colors that does not include
% white, yellow or orange since these are not well visible in white plots.
%
% Inputs: N is the number of colors desired
% Outputs: COLORSPACE is an N-by-3 colorspace.
% Chosen colors are green, cyan, blue, purple, red and black
% Script was adapted from varycolors.m from FEX
% Copyright (c) 2009, Martin Vinck
if nargin<1
error('specify the number of colors that you want')
end
% create a well visible color space
% green cyan blue purple red black
colors = [[0 1 0]; [0 1 1] ; [0 0 1] ; [1 0 1]; [1 0 0]; [0 0 0]];
order = [1 5 3 2 4 6]; % our preference order when plotting different lines
rm{2} = [2:5];
rm{3} = [2 4 5];
rm{4} = [2 4];
rm{5} = [4];
if N==1
colorspace = colors(end,:);
elseif N>1&&N<6
colors(rm{N},:) = [];
colorspace = colors;
else
n = floor(N/5)*ones(1,5);
rest = mod(N,5);
order = [1 5 3 2 4];
% if we have some rest, add them starting oppositly
n(order(1:rest)) = n(order(1:rest)) + 1;
colorspace = [];
for iColor = 1:5
corStart = colors(iColor,:);
corEnd = colors(iColor+1,:);
dim = corStart~=corEnd;
subColors = corStart(ones(n(iColor)+1,1),:);
if iColor>1
subColors(:,dim) = linspace(corStart(dim),corEnd(dim),n(iColor)+1);
subColors(1,:) = [];
else
subColors(1:end-1,dim) = linspace(corStart(dim),corEnd(dim),n(iColor));
subColors(end,:) = [];
end
colorspace = [colorspace;subColors];
end
end
function [X,Y] = polygon(x,sm1,sm2,multiplier)
x = x(:)';
if nargin < 4
multiplier = 1;
end
X = [x x(end:-1:1) x(1)];
up = sm1(:)';
down = sm2(:)';
Y = [down up(end:-1:1) down(1)];
|
github
|
lcnbeapp/beapp-master
|
ft_spiketriggeredspectrum_convol.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spiketriggeredspectrum_convol.m
| 22,946 |
utf_8
|
d98d6fda0d5ecfa7112481f075927c44
|
function [sts] = ft_spiketriggeredspectrum_convol(cfg, data, spike)
% FT_SPIKETRIGGEREDSPECTRUM_CONVOL computes the Fourier spectrum (amplitude and
% phase) of the LFP around the spikes using convolution of the complete LFP traces. A
% phase of zero corresponds to the spike being on the peak of the LFP oscillation. A
% phase of 180 degree corresponds to the spike being in the through of the oscillation.
% A phase of 45 degrees corresponds to the spike being just after the peak in the LFP.
%
% The difference to FT_SPIKETRIGGEREDSPECTRUM_FFT is that this function allows for
% multiple frequencies to be processed with different time-windows per frequency, and
% that FT_SPIKETRIGGEREDSPECTRUM_FFT is based on taking the FFT of a limited LFP
% segment around each spike.
%
% Use as
% [sts] = ft_spiketriggeredspectrum_convol(cfg,data,spike)
% or
% [sts] = ft_spiketriggeredspectrum_convol(cfg,data)
% The spike data can either be contained in the data input or in the spike
% input.
%
% The input DATA should be organised as the raw datatype, obtained from
% FT_PREPROCESSING or FT_APPENDSPIKE.
%
% The input SPIKE should be organised as the spike or the raw datatype, obtained from
% FT_SPIKE_MAKETRIALS or FT_PREPROCESSING, in which case the conversion is done
% within this function.
%
% Important is that data.time and spike.trialtime should be referenced
% relative to the same trial trigger times!
%
% Configurations (following largely FT_FREQNALYSIS with method mtmconvol)
% cfg.tapsmofrq = vector 1 x numfoi, the amount of spectral smoothing through
% multi-tapering. Note that 4 Hz smoothing means
% plus-minus 4 Hz, i.e. a 8 Hz smoothing box.
% cfg.foi = vector 1 x numfoi, frequencies of interest
% cfg.taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% cfg.t_ftimwin = vector 1 x numfoi, length of time window (in
% seconds)
% cfg.taperopt = parameter that goes in WINDOW function (only
% applies to windows like KAISER).
% cfg.spikechannel = cell-array with selection of channels (default = 'all')
% see FT_CHANNELSELECTION for details
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.borderspikes = 'yes' (default) or 'no'. If 'yes', we process the spikes
% falling at the border using an LFP that is not centered
% on the spike. If 'no', we output NaNs for spikes
% around which we could not center an LFP segment.
% cfg.rejectsaturation= 'yes' (default) or 'no'. If 'yes', we set
% EEG segments where the maximum or minimum
% voltage range is reached
% with zero derivative (i.e., saturated signal) to
% NaN, effectively setting all spikes phases that
% use these parts of the EEG to NaN. An EEG that
% saturates always returns the same phase at all
% frequencies and should be ignored.
%
% Note: some adjustment of the frequencies can occur as the chosen time-window may not
% be appropriate for the chosen frequency.
% For example, suppose that cfg.foi = 80, data.fsample = 1000, and
% cfg.t_ftimwin = 0.0625. The DFT frequencies in that case are
% linspace(0,1000,63) such that cfg.foi --> 80.645. In practice, this error
% can only become large if the number of cycles per frequency is very
% small and the frequency is high. For example, suppose that cfg.foi = 80
% and cfg.t_ftimwin = 0.0125. In that case cfg.foi-->83.33.
% The error is smaller as data.fsample is larger.
%
% Outputs:
% sts is a spike structure, containing new fields:
% sts.fourierspctrm = 1 x nUnits cell array with dimord spike_lfplabel_freq
% sts.lfplabel = 1 x nChan cell array with EEG labels
% sts.freq = 1 x nFreq frequencies. Note that per default, not
% all frequencies can be used as we compute the DFT
% around the spike based on an uneven number of
% samples. This introduces a slight adjustment of the
% selected frequencies.
%
% Note: sts.fourierspctrm can contain NaNs, for example if
% cfg.borderspikes = 'no', or if cfg.rejectsaturation = 'yes', or if the
% trial length was too short for the window desired.
%
% WHen using multitapering, the phase distortion is corrected for.
%
% The output STS data structure can be input to FT_SPIKETRIGGEREDSPECTRUM_STAT
% Copyright (C) 2008-2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'raw'}, 'feedback', 'yes');
if nargin==3
spike = ft_checkdata(spike, 'datatype', {'spike'}, 'feedback', 'yes');
end
% ensure that the required options are present
cfg = ft_checkconfig(cfg, 'required', {'foi','t_ftimwin'});
% get the options
cfg.borderspikes = ft_getopt(cfg, 'borderspikes','yes');
cfg.taper = ft_getopt(cfg, 'taper','hanning');
cfg.taperopt = ft_getopt(cfg, 'taperopt',[]);
cfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');
cfg.channel = ft_getopt(cfg,'channel', 'all');
cfg.rejectsaturation = ft_getopt(cfg,'rejectsaturation', 'yes');
% ensure that the options are valid
cfg = ft_checkopt(cfg, 'taper',{'char', 'function_handle'});
cfg = ft_checkopt(cfg, 'borderspikes','char',{'yes', 'no'});
cfg = ft_checkopt(cfg, 't_ftimwin',{'doublevector', 'doublescalar'});
cfg = ft_checkopt(cfg, 'foi',{'doublevector', 'doublescalar'});
cfg = ft_checkopt(cfg, 'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg, 'channel', {'cell', 'char', 'double'});
cfg = ft_checkopt(cfg, 'taperopt', {'double','empty'});
cfg = ft_checkopt(cfg, 'rejectsaturation','char', {'yes', 'no'});
if isequal(cfg.taper, 'dpss')
cfg = ft_checkconfig(cfg, 'required', {'tapsmofrq'});
cfg = ft_checkopt(cfg,'tapsmofrq',{'doublevector', 'doublescalar'});
end
cfg = ft_checkconfig(cfg, 'allowed', {'taper', 'borderspikes', 't_ftimwin', 'foi', 'spikechannel', 'channel', 'taperopt', 'rejectsaturation','tapsmofrq'});
% length of tapsmofrq, foi and t_ftimwin should all be matched
if isfield(cfg,'tapsmofrq')
if length(cfg.tapsmofrq) ~= length(cfg.foi) || length(cfg.foi)~=length(cfg.t_ftimwin)
error('lengths of cfg.tapsmofrq, cfg.foi and cfg_t_ftimwin should be equal and 1 x nFreqs')
end
end
% get the spikechannels
if nargin==2
% autodetect the spikechannels and EEG channels
[spikechannel, eegchannel] = detectspikechan(data);
if strcmp(cfg.spikechannel, 'all'),
cfg.spikechannel = spikechannel;
else
cfg.spikechannel = ft_channelselection(cfg.spikechannel, data.label);
if ~all(ismember(cfg.spikechannel,spikechannel)), error('some selected spike channels appear eeg channels'); end
end
if strcmp(cfg.channel,'all')
cfg.channel = eegchannel;
else
cfg.channel = ft_channelselection(cfg.channel, data.label);
if ~all(ismember(cfg.channel,eegchannel)), warning('some of the selected eeg channels appear spike channels'); end
end
data_spk = ft_selectdata(data,'channel', cfg.spikechannel);
data = ft_selectdata(data,'channel', cfg.channel); % leave only LFP
spike = ft_checkdata(data_spk,'datatype', 'spike');
clear data_spk % remove the continuous data
else
cfg.spikechannel = ft_channelselection(cfg.spikechannel, spike.label);
cfg.channel = ft_channelselection(cfg.channel, data.label);
end
% determine the channel indices and number of chans
chansel = match_str(data.label, cfg.channel); % selected channels
nchansel = length(cfg.channel); % number of channels
spikesel = match_str(spike.label, cfg.spikechannel);
nspikesel = length(spikesel); % number of spike channels
if nspikesel==0, error('no units were selected'); end
if nchansel==0, error('no channels were selected'); end
% preallocate
nTrials = length(data.trial); % number of trials
[spectrum,spiketime, spiketrial] = deal(cell(nspikesel,nTrials)); % preallocate the outputs
[unitsmp,unittime,unitshift] = deal(cell(1,nspikesel));
nSpikes = zeros(1,nspikesel);
% construct the frequency axis and restrict to unique frequencies
if ~isfield(data, 'fsample'), data.fsample = 1/mean(diff(data.time{1})); end
if any(cfg.foi > (data.fsample/2))
error('frequencies in cfg.foi are above Nyquist frequency')
end
numsmp = round(cfg.t_ftimwin .* data.fsample);
numsmp(~mod(numsmp,2)) = numsmp(~mod(numsmp,2))+1; % make sure we always have uneven samples, since we want the spike in the middle
foi = zeros(1,length(cfg.foi));
for iSmp = 1:length(numsmp)
faxis = linspace(0,data.fsample,numsmp(iSmp));
findx = nearest(faxis,cfg.foi(iSmp));
[foi(iSmp)] = deal(faxis(findx)); % this is the actual frequency used, from the DFT formula
end
%
[cfg.foi,B,C] = unique(foi); % take the unique frequencies from this
cfg.t_ftimwin = cfg.t_ftimwin(B);
% compute the minima and maxima of the data, this is done to remove EEG portions where there are potential saturation effects
if strcmp(cfg.rejectsaturation,'yes')
[minChan,maxChan] = deal([]);
for iChan = 1:nchansel
mx = -inf;
mn = +inf;
for iTrial = 1:nTrials
minTrial = nanmin(data.trial{iTrial}(iChan,:));
maxTrial = nanmax(data.trial{iTrial}(iChan,:));
if maxTrial>mx, mx = maxTrial; end
if minTrial<mn, mn = minTrial; end
end
minChan(iChan) = mn;
maxChan(iChan) = mx;
end
end
% compute the spectra
ft_progress('init', 'text', 'Please wait...');
for iTrial = 1:nTrials
% select the spike times for a given trial and restrict to those overlapping with the EEG
x = data.time{iTrial};
timeBins = [x x(end)+1/data.fsample] - (0.5/data.fsample);
for iUnit = 1:nspikesel
unitindx = spikesel(iUnit);
hasTrial = spike.trial{unitindx} == iTrial; % find the spikes that are in the trial
ts = spike.time{unitindx}(hasTrial); % get the spike times for these spikes
vld = ts>=timeBins(1) & ts<=timeBins(end); % only select those spikes that fall in the trial window
ts = ts(vld); % timestamps for these spikes
[ignore,I] = histc(ts,timeBins);
if ~isempty(ts)
ts(I==0 | I==length(timeBins)) = [];
end
I(I==0 | I==length(timeBins)) = [];
unitsmp{iUnit} = I;
unittime{iUnit} = ts(:); % this is for storage in the output structure
smptime = data.time{iTrial}(unitsmp{iUnit}); % times corresponding to samples
unitshift{iUnit} = ts(:) - smptime(:); % shift induced by shifting to sample times, important for high-frequency oscillations
nSpikes(iUnit) = length(unitsmp{iUnit});
end
if ~any(nSpikes),continue,end % continue to the next trial if this one does not contain valid spikes
% set the saturated parts of the data to NaNs
if strcmp(cfg.rejectsaturation,'yes')
for iChan = 1:nchansel
isSaturated = find(diff(data.trial{iTrial}(chansel(iChan),:))==0)+1;
remove = data.trial{iTrial}(chansel(iChan),isSaturated)==maxChan(iChan) | data.trial{iTrial}(chansel(iChan),isSaturated)==minChan(iChan);
remove = isSaturated(remove);
data.trial{iTrial}(chansel(iChan),remove) = NaN;
if ~isempty(remove)
fprintf('setting %d points from channel %s in trial %d to NaN\n', length(remove), cfg.channel{iChan}, iTrial);
end
end
end
% preallocate
nFreqs = length(cfg.foi);
for iUnit = 1:nspikesel
if nSpikes(iUnit)>0, spectrum{iUnit,iTrial} = zeros(nSpikes(iUnit),nchansel,nFreqs); end
end
% process the phases for every chan-freq combination separately to save memory
for iFreq = 1:nFreqs
% construct the input options for the sub-function phase_est
tmpcfg = cfg;
tmpcfg.foi = cfg.foi(iFreq);
try tmpcfg.tapsmofrq = cfg.tapsmofrq(iFreq);end
tmpcfg.t_ftimwin = cfg.t_ftimwin(iFreq);
if tmpcfg.t_ftimwin>=(data.time{iTrial}(end)-data.time{iTrial}(1))
warning('time window for frequency %.2f Hz too large for trial %d', tmpcfg.foi, iTrial);
spectrum{iUnit,iTrial}(:,:,iFreq) = NaN;
continue;
end
% just some message
if nTrials==1
ft_progress(iFreq/nFreqs, 'Processing frequency %d from %d', iFreq, nFreqs);
else
ft_progress(iTrial/nTrials, 'Processing trial %d from %d', iTrial, nTrials);
end
% compute the LFP phase at every time-point
spec = zeros(length(data.time{iTrial}),nchansel);
for iChan = 1:nchansel
[spec(:,iChan),foi, numsmp] = phase_est(tmpcfg,data.trial{iTrial}(chansel(iChan),:),data.time{iTrial}, data.fsample);
end
% select now the proper phases for every unit
for iUnit = 1:nspikesel
if nSpikes(iUnit)==0, continue,end
% gather the phases at the samples where we had the spikes
spectrum{iUnit,iTrial}(:,:,iFreq) = spec(unitsmp{iUnit},:);
% preallocate rephasing vector
rephase = ones(nSpikes(iUnit),1);
% do the rephasing and use proper phases for spikes at borders
if strcmp(cfg.borderspikes,'yes')
% use an LFP window not centered around the spike, to use spikes around the trial borders as well
beg = 1+(numsmp-1)/2; % find the borders empirically
ed = length(data.time{iTrial}) - beg + 1;
vldSpikes = unitsmp{iUnit}>=beg & unitsmp{iUnit}<=ed; % determine the valid spikes
earlySpikes = unitsmp{iUnit}<beg;
lateSpikes = unitsmp{iUnit}>ed;
if any(earlySpikes)
rephase(earlySpikes) = exp(1i*2*pi*foi* (unittime{iUnit}(earlySpikes) - data.time{iTrial}(beg))' );
for iChan = 1:nchansel
spectrum{iUnit,iTrial}(earlySpikes,iChan,iFreq) = spec(beg,iChan);
end
end
if any(lateSpikes)
rephase(lateSpikes) = exp(1i*2*pi*foi * (unittime{iUnit}(lateSpikes) - data.time{iTrial}(ed)) );
for iChan = 1:nchansel
spectrum{iUnit,iTrial}(lateSpikes,iChan,iFreq) = spec(ed,iChan);
end
end
if any(vldSpikes)
rephase(vldSpikes) = exp(1i*2*pi*foi*unitshift{iUnit}(vldSpikes));
end
else
% in this case the spikes that fall around borders are set to NaN
if ~isempty(unitshift{iUnit})
rephase(1:end) = exp(1i*2*pi*foi*unitshift{iUnit});
end
end
% Rephase the spectrum, this serves two purposes:
% 1) correct for potential misallignment of spikes to LFP sampling axis
% 2) for spikes falling at borders, we need to account for the fact that we
% used the instantaneous phase at a different moment in time
for iChan = 1:nchansel
spectrum{iUnit,iTrial}(:,iChan,iFreq) = spectrum{iUnit,iTrial}(:,iChan,iFreq).*rephase;
end
% Store the spiketimes and spiketrials, constructing a type of SPIKE format
spiketime{iUnit,iTrial} = unittime{iUnit};
spiketrial{iUnit,iTrial} = iTrial*ones(1,nSpikes(iUnit));
end
end
end
ft_progress('close');
% collect the results
sts.lfplabel = data.label(chansel);
sts.freq = cfg.foi;
sts.label = spike.label(spikesel);
for iUnit = 1:nspikesel
sts.fourierspctrm{iUnit} = cat(1, spectrum{iUnit,:});
spectrum(iUnit,:) = {[]}; % free from the memory
sts.time{iUnit} = cat(1, spiketime{iUnit,:});
sts.trial{iUnit} = cat(2, spiketrial{iUnit,:})';
end
sts.dimord = '{chan}_spike_lfpchan_freq';
sts.trialtime = spike.trialtime;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous data spike
ft_postamble history sts
function [spctrm,foi, numsmp] = phase_est(cfg,dat,time,fsample)
% Phase estimation function
% Determine fsample and set total time-length of data
if nargin<4
fsample = 1./mean(time(2:end)-time(1:end-1)); % round off errors!
end
numsmp = round(cfg.t_ftimwin .* fsample);
numsmp(~mod(numsmp,2)) = numsmp(~mod(numsmp,2))+1; % make sure we always have uneven samples, since we want the spike in the middle
faxis = linspace(0,fsample,numsmp);
findx = nearest(faxis,cfg.foi);
[cfg.foi,foi] = deal(faxis(findx)); % this is the actual frequency used, from the DFT formula
timwinSamples = numsmp;
% Compute tapers per frequency, multiply with wavelets and compute their fft
switch cfg.taper
case 'dpss'
% create a sequence of DPSS tapers
taper = double_dpss(timwinSamples, timwinSamples .* (cfg.tapsmofrq ./ fsample))';
taper = taper(1:(end-1), :); % removing the last taper
% give error/warning about number of tapers
if isempty(taper)
error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',...
cfg.foi, timwinSamples/fsample,cfg.tapsmofrq,fsample/timwinSamples);
elseif size(taper,1) == 1
warning('using only one taper for specified smoothing for %.2f Hz', cfg.foi)
end
case 'sine'
taper = sine_taper(timwinSamples, timwinSamples .* (cfg.tapsmofrq ./ fsample))';
taper = taper(1:(end-1), :);
otherwise
% create a single taper according to the standard window specification
if isempty(cfg.taperopt)
taper = window(cfg.taper, timwinSamples)';
else
try
taper = window(cfg.taper, timwinSamples,cfg.taperopt)';
catch
error('taper option was not appropriate for taper');
end
end
end
% do some check on the taper size
if size(taper,1)==numsmp, taper = taper'; end
% normalize taper if there's 1 and all are positive
if size(taper,1)==1 && all(taper>=0)
taper = numsmp*taper./sum(taper); % magnitude of cosine is now returned
end
%%%% fit linear regression for every datapoint: to remove mean and ramp of signal
sumKern = ones(1,timwinSamples);
avgKern = sumKern./timwinSamples;
xKern = timwinSamples:-1:1; % because of definition conv2 function
meanX = mean(xKern);
sumX = sum(xKern);
% beta1 = (sum(x.*y) - sum(x)*sum(y)/n) ./ (sum((x-meanx).^2): standard linear regr formula
beta1 = (conv2(dat(:),xKern(:),'same') - sumX.*conv2(dat(:),sumKern(:),'same')/timwinSamples ) ./ sum((xKern-meanX).^2);
beta0 = conv2(dat(:),avgKern(:),'same') - beta1.*meanX; % beta0 = mean(dat) - beta1*mean(x)
% DFT formula: basefunctions: cos(2*pi*k*[0:numsmp-1]/numsmp) and sin(2*pi*k*[0:numsmp-1]/numsmp)
% center the base functions such that the peak of the cos function is at the center. See:
% f = findx-1; ax = -(numsmp-1)/2:(numsmp-1)/2; y = cos(2*pi.*ax.*f/numsmp);figure, plot(ax,y,'sr');
% y2 = cos(2*pi.*linspace(-(numsmp-1)/2,(numsmp-1)/2,1000).*f/numsmp);
% hold on, plot(linspace(-(numsmp-1)/2,(numsmp-1)/2,1000),y2,'r-')
% correcting for phase rotation (as with multitapering)
nTapers = size(taper,1);
indN = -(numsmp-1)/2:(numsmp-1)/2;
spctrmRot = complex(zeros(1,1));
for iTaper = 1:nTapers
coswav = taper(iTaper,:).*cos(2*pi*(findx-1)*indN/numsmp);
sinwav = taper(iTaper,:).*sin(2*pi*(findx-1)*indN/numsmp);
wavelet = complex(coswav(:), sinwav(:));
cosSignal = cos(2*pi*(findx-1)*indN/numsmp);
spctrmRot = spctrmRot + sum(wavelet.*cosSignal(:));
end
phaseCor = angle(spctrmRot);
%%%% compute the spectra
nTapers = size(taper,1);
indN = -(numsmp-1)/2:(numsmp-1)/2;
spctrm = complex(zeros(length(dat),1));
for iTaper = 1:nTapers
coswav = taper(iTaper,:).*cos(2*pi*(findx-1)*indN/numsmp);
sinwav = taper(iTaper,:).*sin(2*pi*(findx-1)*indN/numsmp);
wavelet = complex(coswav(:), sinwav(:));
fftRamp = sum(xKern.*coswav) + 1i*sum(xKern.*sinwav); % fft of ramp with dx/ds = 1 * taper
fftDC = sum(ones(1,timwinSamples).*coswav) + 1i*sum(ones(1,timwinSamples).*sinwav);% fft of unit direct current * taper
spctrm = spctrm + (conv_fftbased(dat(:),wavelet) - (beta0*fftDC + beta1.*fftRamp))/(numsmp/2);
% fft % mean %linear ramp % make magnitude invariant to window length
end
spctrm = spctrm./nTapers; % normalize by number of tapers
spctrm = spctrm.*exp(-1i*phaseCor);
% set the part of the spectrum without a valid phase to NaNs
n = (timwinSamples-1)/2;
spctrm(1:n) = NaN;
spctrm(end-n+1:end) = NaN;
function [taper] = double_dpss(a, b, varargin)
taper = dpss(double(a), double(b), varargin{:});
function [spikelabel, eeglabel] = detectspikechan(data)
maxRate = 1000; % default on what we still consider a neuronal signal
% autodetect the spike channels
ntrial = length(data.trial);
nchans = length(data.label);
spikechan = zeros(nchans,1);
for i=1:ntrial
for j=1:nchans
hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:)));
hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0);
fr = nansum(data.trial{i}(j,:),2) ./ (data.time{i}(end)-data.time{i}(1));
spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts & fr<=maxRate);
end
end
spikechan = (spikechan==ntrial);
spikelabel = data.label(spikechan);
eeglabel = data.label(~spikechan);
% CONVOLUTION: FFT BASED IMPLEMENTATION
function c = conv_fftbased(a, b)
P = numel(a);
Q = numel(b);
L = P + Q - 1;
K = 2^nextpow2(L);
c = ifft(fft(a, K) .* fft(b, K));
c = c(1:L);
toRm1 = [1:(Q-1)/2];
toRm2 = [(1 + length(c) - (Q-1)/2) : length(c)];
toRm = [toRm1(:); toRm2(:)];
c(toRm) = [];
|
github
|
lcnbeapp/beapp-master
|
ft_spikesorting.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spikesorting.m
| 6,746 |
utf_8
|
162576b720405723faae8c158c5b3b19
|
function [spike] = ft_spikesorting(cfg, spike)
% FT_SPIKESORTING performs clustering of spike-waveforms and returns the
% unit number to which each spike belongs.
%
% Use as
% [spike] = ft_spikesorting(cfg, spike)
%
% The configuration can contain
% cfg.channel cell-array with channel selection (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.method 'kmeans', 'ward'
% cfg.feedback 'no', 'text', 'textbar', 'gui' (default = 'textbar')
% cfg.kmeans substructure with additional low-level options for this method
% cfg.ward substructure with additional low-level options for this method
% cfg.ward.distance 'L1', 'L2', 'correlation', 'cosine'
%
% The input spike structure can be imported using READ_FCDC_SPIKE and should contain
% spike.label = 1 x Nchans cell-array, with channel labels
% spike.waveform = 1 x Nchans cell-array, each element contains a matrix (Nsamples x Nspikes), can be empty
% spike.timestamp = 1 x Nchans cell-array, each element contains a vector (1 x Nspikes)
% spike.unit = 1 x Nchans cell-array, each element contains a vector (1 x Nspikes)
%
% See also FT_READ_SPIKE, FT_SPIKEDOWNSAMPLE
% Copyright (C) 2006-2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% these were supported in the past, but are not any more (for consistency with other spike functions)
cfg = ft_checkconfig(cfg, 'forbidden', 'inputfile', ...
'outputfile'); % see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1056
% set the defaults
if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end
if ~isfield(cfg, 'method'), cfg.method = 'ward'; end
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if isequal(cfg.method, 'ward')
if ~isfield(cfg, 'ward'), cfg.ward = []; end
if ~isfield(cfg.ward, 'distance'), cfg.ward.distance = 'L2'; end
if ~isfield(cfg.ward, 'optie'), cfg.ward.optie = 'ward'; end
if ~isfield(cfg.ward, 'aantal'), cfg.ward.aantal = 10; end
if ~isfield(cfg.ward, 'absoluut'), cfg.ward.absoluut = 1; end
end
if isequal(cfg.method, 'kmeans')
if ~isfield(cfg, 'kmeans'), cfg.kmeans = []; end
if ~isfield(cfg.kmeans, 'aantal'), cfg.kmeans.aantal = 10; end
end
% select the channels
cfg.channel = ft_channelselection(cfg.channel, spike.label);
sel = match_str(spike.label, cfg.channel);
spike.label = spike.label(sel);
spike.waveform = spike.waveform(sel);
spike.timestamp = spike.timestamp(sel);
spike.unit = {}; % this will be assigned by the clustering
nchan = length(spike.label);
for chanlop=1:nchan
label = spike.label{chanlop};
waveform = spike.waveform{chanlop};
timestamp = spike.timestamp{chanlop};
nspike = size(waveform,2);
unit = zeros(1,nspike);
fprintf('sorting %d spikes in channel %s\n', nspike, label);
switch cfg.method
case 'ward'
dist = ward_distance(cfg, waveform);
[grootte,ordening] = cluster_ward(dist,cfg.ward.optie,cfg.ward.absoluut,cfg.ward.aantal);
for i=1:cfg.ward.aantal
begsel = sum([1 grootte(1:(i-1))]);
endsel = sum([0 grootte(1:(i ))]);
unit(ordening(begsel:endsel)) = i;
end
case 'kmeans'
unit = kmeans(waveform', cfg.kmeans.aantal)';
% 'sqEuclidean' - Squared Euclidean distance
% 'cityblock' - Sum of absolute differences, a.k.a. L1
% 'cosine' - One minus the cosine of the included angle
% between points (treated as vectors)
% 'correlation' - One minus the sample correlation between
% points (treated as sequences of values)
otherwise
error('unsupported clustering method');
end
% remember the sorted units
spike.unit{chanlop} = unit;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history spike
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the distance between all spike waveforms
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dist] = ward_distance(cfg, waveform)
nspike = size(waveform,2);
dist = zeros(nspike, nspike);
ft_progress('init', cfg.feedback, 'computing distance');
switch lower(cfg.ward.distance)
case 'l1'
for i=1:nspike
ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike);
for j=2:nspike
dist(i,j) = sum(abs(waveform(:,j)-waveform(:,i)));
dist(j,i) = dist(i,j);
end
end
case 'l2'
for i=1:nspike
ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike);
for j=2:nspike
dist(i,j) = sqrt(sum((waveform(:,j)-waveform(:,i)).^2));
dist(j,i) = dist(i,j);
end
end
case 'correlation'
for i=1:nspike
ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike);
for j=2:nspike
dist(i,j) = corrcoef(waveform(:,j),waveform(:,i));
dist(j,i) = dist(i,j);
end
end
case 'cosine'
for i=1:nspike
ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike);
for j=2:nspike
x = waveform(:,j);
y = waveform(:,i);
x = x./norm(x);
y = y./norm(y);
dist(i,j) = dot(x, y);
dist(j,i) = dist(i,j);
end
end
otherwise
error('unsupported distance metric');
end
ft_progress('close');
|
github
|
lcnbeapp/beapp-master
|
ft_spike_xcorr.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_xcorr.m
| 17,643 |
utf_8
|
1640c25cf61ea0bbfab739c9bf37ef6b
|
function [stat] = ft_spike_xcorr(cfg,spike)
% FT_SPIKE_XCORR computes the cross-correlation histogram and shift predictor.
%
% Use as
% [stat] = ft_spike_xcorr(cfg,data)
%
% The input SPIKE should be organised as the spike or the raw datatype, obtained from
% FT_SPIKE_MAKETRIALS or FT_PREPROCESSING (in that case, conversion is done
% within the function). A mex file is located in /contrib/spike/private
% which will be automatically mexed.
%
% Configurations options for xcorr general:
% cfg.maxlag = number in seconds, indicating the maximum lag for the
% cross-correlation function in sec (default = 0.1 sec).
% cfg.debias = 'yes' (default) or 'no'. If 'yes', we scale the
% cross-correlogram by M/(M-abs(lags)), where M = 2*N -1 with N
% the length of the data segment.
% cfg.method = 'xcorr' or 'shiftpredictor'. If 'shiftpredictor'
% we do not compute the normal cross-correlation
% but shuffle the subsequent trials.
% If two channels are independent, then the shift
% predictor should give the same correlogram as the raw
% correlogram calculated from the same trials.
% Typically, the shift predictor is subtracted from the
% correlogram.
% cfg.outputunit = - 'proportion' (value in each bin indicates proportion of occurence)
% - 'center' (values are scaled to center value which is set to 1)
% - 'raw' (default) unnormalized crosscorrelogram.
% cfg.binsize = [binsize] in sec (default = 0.001 sec).
% cfg.channelcmb = Mx2 cell-array with selection of channel pairs (default = {'all' 'all'}),
% see FT_CHANNELCOMBINATION for details
% cfg.latency = [begin end] in seconds, 'max' (default), 'min', 'prestim'(t<=0), or
% 'poststim' (t>=0).%
% cfg.vartriallen = 'yes' (default) or 'no'.
% If 'yes' - accept variable trial lengths and use all available trials
% and the samples in every trial.
% If 'no' - only select those trials that fully cover the window as
% specified by cfg.latency and discard those trials that do not.
% if cfg.method = 'yes', then cfg.vartriallen
% should be 'no' (otherwise, fewer coincidences
% will occur because of non-overlapping windows)
% cfg.trials = numeric selection of trials (default = 'all')
% cfg.keeptrials = 'yes' or 'no' (default)
%
% A peak at a negative lag for stat.xcorr(chan1,chan2,:) means that chan1 is
% leading chan2. Thus, a negative lag represents a spike in the second
% dimension of stat.xcorr before the channel in the third dimension of
% stat.stat.
%
% Variable trial length is controlled by the option cfg.vartriallen. If
% cfg.vartriallen = 'yes', all trials are selected that have a minimum
% overlap with the latency window of cfg.maxlag. However, the shift
% predictor calculation demands that following trials have the same amount
% of data, otherwise, it does not control for rate non-stationarities. If
% cfg.vartriallen = 'yes', all trials should fall in the latency window,
% otherwise we do not compute the shift predictor.
%
% Output:
% stat.xcorr = nchans-by-nchans-by-(2*nlags+1) cross correlation histogram
% or
% stat.shiftpredictor = nchans-by-nchans-by-(2*nlags+1) shift predictor.
% both with dimord 'chan_chan_time'
% stat.lags = (2*nlags + 1) vector with lags in seconds.
%
% stat.trial = ntrials-by-nchans-by-nchans-by-(2*nlags + 1) with single
% trials and dimord 'rpt_chan_chan_time';
% stat.label = corresponding labels to channels in stat.xcorr
% stat.cfg = configurations used in this function.
% Copyright (C) 2010-2012, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% check input spike structure
spike = ft_checkdata(spike,'datatype', 'spike', 'feedback', 'yes');
% get the default options
cfg.trials = ft_getopt(cfg,'trials', 'all');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.keeptrials = ft_getopt(cfg,'keeptrials', 'no');
cfg.method = ft_getopt(cfg,'method', 'xcorr');
cfg.channelcmb = ft_getopt(cfg,'channelcmb', 'all');
cfg.vartriallen = ft_getopt(cfg,'vartriallen', 'yes');
cfg.debias = ft_getopt(cfg,'debias', 'yes');
cfg.maxlag = ft_getopt(cfg,'maxlag', 0.01);
cfg.binsize = ft_getopt(cfg,'binsize', 0.001);
cfg.outputunit = ft_getopt(cfg,'outputunit', 'proportion');
% ensure that the options are valid
cfg = ft_checkopt(cfg, 'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg, 'trials', {'char', 'doublevector', 'logical'});
cfg = ft_checkopt(cfg, 'keeptrials', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'method', 'char', {'xcorr', 'shiftpredictor'});
cfg = ft_checkopt(cfg, 'channelcmb', {'char', 'cell'});
cfg = ft_checkopt(cfg, 'vartriallen', 'char', {'no', 'yes'});
cfg = ft_checkopt(cfg, 'debias', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'maxlag', 'doublescalar');
cfg = ft_checkopt(cfg, 'binsize', 'doublescalar');
cfg = ft_checkopt(cfg, 'outputunit', 'char', {'proportion', 'center', 'raw'});
cfg = ft_checkconfig(cfg, 'allowed', {'latency', 'trials', 'keeptrials', 'method', 'channelcmb', 'vartriallen', 'debias', 'maxlag', 'binsize', 'outputunit'});
doShiftPredictor = strcmp(cfg.method, 'shiftpredictor'); % shift predictor
% determine the corresponding indices of the requested channel combinations
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, spike.label(:), true);
cmbindx = zeros(size(cfg.channelcmb));
for k=1:size(cfg.channelcmb,1)
cmbindx(k,1) = strmatch(cfg.channelcmb(k,1), spike.label, 'exact');
cmbindx(k,2) = strmatch(cfg.channelcmb(k,2), spike.label, 'exact');
end
nCmbs = size(cmbindx,1);
chansel = unique(cmbindx(:)); % get the unique channels
nChans = length(chansel);
if isempty(chansel), error('No channel was selected'); end
% get the number of trials or change SPIKE according to cfg.trials
nTrials = size(spike.trialtime,1);
if strcmp(cfg.trials,'all')
cfg.trials = 1:nTrials;
elseif islogical(cfg.trials)
cfg.trials = find(cfg.trials);
end
cfg.trials = sort(cfg.trials(:));
if max(cfg.trials)>nTrials, error('maximum trial number in cfg.trials should not exceed length of DATA.trial'); end
if isempty(cfg.trials), errors('No trials were selected in cfg.trials'); end
nTrials = length(cfg.trials);
% get the latencies
begTrialLatency = spike.trialtime(cfg.trials,1);
endTrialLatency = spike.trialtime(cfg.trials,2);
trialDur = endTrialLatency - begTrialLatency;
% select the latencies
if strcmp(cfg.latency,'minperiod')
cfg.latency = [max(begTrialLatency) min(endTrialLatency)];
elseif strcmp(cfg.latency,'maxperiod')
cfg.latency = [min(begTrialLatency) max(endTrialLatency)];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [min(begTrialLatency) 0];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 max(endTrialLatency)];
end
% check whether the time window fits with the data
if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency);
warning('Correcting begin latency of averaging window');
end
if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency);
warning('Correcting begin latency of averaging window');
end
% get the maximum number of lags in samples
fsample = (1/cfg.binsize);
if cfg.maxlag>(cfg.latency(2)-cfg.latency(1))
warning('Correcting cfg.maxlag since it exceeds latency period');
cfg.maxlag = (cfg.latency(2) - cfg.latency(1));
end
nLags = round(cfg.maxlag*fsample);
lags = (-nLags:nLags)/fsample; % create the lag axis
% check which trials will be used based on the latency
fullDur = trialDur>=(cfg.maxlag); % only trials which are larger than maximum lag
overlaps = endTrialLatency>(cfg.latency(1)+cfg.maxlag) & begTrialLatency<(cfg.latency(2)-cfg.maxlag);
hasWindow = ones(nTrials,1);
if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window
startsLater = single(begTrialLatency) > (single(cfg.latency(1)) + 0.5*cfg.binsize);
endsEarlier = single(endTrialLatency) < (single(cfg.latency(2)) - 0.5*cfg.binsize);
hasWindow = ~(startsLater | endsEarlier); % check this in all other funcs
end
trialSel = fullDur(:) & overlaps(:) & hasWindow(:);
cfg.trials = cfg.trials(trialSel);
begTrialLatency = begTrialLatency(trialSel);
endTrialLatency = endTrialLatency(trialSel);
if isempty(cfg.trials), warning('No trials were selected'); end
if length(cfg.trials)<2&&doShiftPredictor
error('Shift predictor can only be calculated with more than 1 selected trial.');
end
% if we allow variable trial lengths
if strcmp(cfg.vartriallen,'yes') && doShiftPredictor && ~strcmp(cfg.outputunit,'proportion')
warning('using cfg.vartriallen = "yes" and shift predictor method: please use cfg.outputunit = "proportion"');
end
nTrials = length(cfg.trials); % only now reset nTrials
% preallocate the sum and the single trials and the shift predictor
keepTrials = strcmp(cfg.keeptrials,'yes');
s = zeros(nChans,nChans,2*nLags);
if keepTrials
warning('storing single trials for cross correlation is memory expensive, please check');
singleTrials = zeros(nTrials,nChans,nChans,2*nLags);
end
if strcmp(cfg.method,'shiftpredictor'), singleTrials(1,:,:,:) = NaN; end
if ((cfg.latency(2)-cfg.latency(1))/cfg.maxlag)<2.5
warning('selected latency will cause highly variable xcorr at borders');
end
doMex = 1;
ft_progress('init', 'text', 'Please wait...');
for iTrial = 1:nTrials
origTrial = cfg.trials(iTrial);
ft_progress(iTrial/nTrials, 'Processing trial %d from %d', iTrial, nTrials);
for iCmb = 1:nCmbs
% take only the times that are in this trial and latency window
indx = cmbindx(iCmb,:);
inTrial1 = spike.trial{indx(1)}==origTrial;
inTrial2 = spike.trial{indx(2)}==origTrial;
inWindow1 = spike.time{indx(1)}>=cfg.latency(1) & spike.time{indx(1)}<=cfg.latency(2);
inWindow2 = spike.time{indx(2)}>=cfg.latency(1) & spike.time{indx(2)}<=cfg.latency(2);
ts1 = sort(spike.time{indx(1)}(inTrial1(:) & inWindow1(:)));
ts2 = sort(spike.time{indx(2)}(inTrial2(:) & inWindow2(:)));
switch cfg.method
case 'xcorr'
% compute the xcorr if both are non-empty
if ~isempty(ts1) && ~isempty(ts2)
if indx(1)<=indx(2)
[x] = spike_crossx_matlab(ts1(:),ts2(:),cfg.binsize,nLags*2+1); % removed the mex file for now, until issue on windows is resolved
else
[x] = spike_crossx_matlab(ts2(:),ts1(:),cfg.binsize,nLags*2+1); % removed the mex file for now, until issue on windows is resolved
end
% remove the center peaks from the auto-correlogram
if indx(1)==indx(2), x(nLags:nLags+1) = 0; end
if strcmp(cfg.debias,'yes')
lags = (-nLags:nLags)*cfg.binsize;
lags = (lags(2:end)+lags(1:end-1))/2;
T = nanmin([endTrialLatency(iTrial);cfg.latency(2)])-nanmax([begTrialLatency(iTrial);cfg.latency(1)]);
sc = (T./(T-abs(lags(:))));
sc = length(sc)*sc./sum(sc);
x = x(:).*sc(:);
end
% sum the xcorr
s(indx(1),indx(2),:) = s(indx(1),indx(2),:) + shiftdim(x(:),-2);
s(indx(2),indx(1),:) = s(indx(2),indx(1),:) + shiftdim(flipud(x(:)),-2);
% store individual trials if requested
if keepTrials
singleTrials(iTrial,indx(1),indx(2),:) = shiftdim(x(:),-3);
singleTrials(iTrial,indx(2),indx(1),:) = shiftdim(flipud(x(:)),-3);
end
end
case 'shiftpredictor'
if iTrial>1
% symmetric, get x21 to x12 and x22 to x11
inTrial1_old = spike.trial{indx(1)}==cfg.trials(iTrial-1);
ts1_old = sort(spike.time{indx(1)}(inTrial1_old(:) & inWindow1(:)));
inTrial2_old = spike.trial{indx(2)}==cfg.trials(iTrial-1);
ts2_old = sort(spike.time{indx(2)}(inTrial2_old(:) & inWindow2(:)));
% compute both combinations
for k = 1:2
% take chan from this and previous channel
if k==1
A = ts1;
B = ts2_old;
else
A = ts1_old;
B = ts2;
end
if ~isempty(A) && ~isempty(B),
if indx(1)<=indx(2)
[x] = spike_crossx_matlab(A(:),B(:),cfg.binsize,nLags*2+1);
else
[x] = spike_crossx_matlab(B(:),A(:),cfg.binsize,nLags*2+1);
end
% remove the center peaks from the auto-correlogram
if indx(1)==indx(2), x(nLags:nLags+1) = 0; end
if strcmp(cfg.debias,'yes')
lags = (-nLags:nLags)*cfg.binsize;
lags = (lags(2:end)+lags(1:end-1))/2;
T = nanmin([endTrialLatency(iTrial);cfg.latency(2)])-nanmax([begTrialLatency(iTrial);cfg.latency(1)]);
sc = (T./(T-abs(lags(:))));
sc = length(sc)*sc./sum(sc);
x = x(:).*sc(:);
end
% compute the sum
s(indx(1),indx(2),:) = s(indx(1),indx(2),:) + shiftdim(x(:),-2);
s(indx(2),indx(1),:) = s(indx(2),indx(1),:) + shiftdim(flipud(x(:)),-2);
if keepTrials
singleTrials(iTrial,indx(1),indx(2),:) = shiftdim(x(:)/2,-3);
singleTrials(iTrial,indx(2),indx(1),:) = shiftdim(flipud(x(:))/2,-3);
end
end
end
end
end % symmetric shift predictor loop
end % combinations
end % trial loop
ft_progress('close')
% multiply the shift sum by a factor so it has the same scale as raw
dofShiftPred = 2*(nTrials-1);
if doShiftPredictor, s = s*nTrials/dofShiftPred; end
switch cfg.outputunit
case 'proportion'
sm = repmat(nansum(s,3),[1 1 nLags*2]);
s = s./sm;
if keepTrials
singleTrials = singleTrials./repmat(shiftdim(sm,-1),[nTrials 1 1 1]);
end
case 'center'
center = repmat(s(:,:,nLags+1),[1 1 nLags*2]);
s = s./center;
if keepTrials
singleTrials = singleTrials./repmat(shiftdim(center,-1),[nTrials 1 1 1]);
end
end
% return the results
stat.(cfg.method) = s;
lags = (-nLags:nLags)*cfg.binsize;
lags = (lags(2:end)+lags(1:end-1))/2;
stat.time = lags;
stat.dimord = 'chan_chan_time';
if keepTrials
stat.trial = singleTrials;
stat.dimord = 'trial_chan_chan_time';
end
stat.label = spike.label(chansel);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous spike
ft_postamble history stat
function [C] = spike_crossx_matlab(tX,tY,binsize,nbins)
tX = sort(tX(:));
tY = sort(tY(:));
minLag = - binsize * (nbins-1) / 2;
j = 0:nbins-1;
B = minLag + j * binsize;
tX(tX<(tY(1)+minLag) | tX>(tY(end)-minLag)) = [];
if isempty(tX),
C = zeros(1,length(B)-1);
return;
end
tY(tY>(tX(end)-minLag) | tY<(tX(1)+minLag)) = [];
if isempty(tY),
C = zeros(1,length(B)-1);
return;
end
nX = length(tX); nY = length(tY);
% compute all distances at once using a multiplication trick
if (nX*nY)<2*10^7 % allow matrix to grow to about 150 MB, should always work
D = log(exp(-tX(:))*exp(tY(:)'));
D = D(:);
D(abs(D)>abs(minLag)) = [];
[C] = histc(D,B);
C(end) = [];
else
% break it down in pieces such that nX*nY<2*10*7
k = 2;
nXs = round(nX/k);
while (nXs*nY)>=(2*10^7)
k = k+1;
nXs = round(nX/k);
end
% get the indices
steps = round(nX/k);
begs = [1:steps:steps*k];
ends = begs+(steps-1);
rm = begs>nX;
begs(rm) = [];
ends(rm) = [];
ends(end) = nX;
nSteps = length(begs);
D = [];
C = zeros(1,length(B));
for iStep = 1:nSteps
d = log(exp(-tX(begs(iStep):ends(iStep)))*exp(tY(:)'));
d = d(:);
d(abs(d)>abs(minLag)) = [];
C = C + histc(d,B)';
end
C(end) = [];
end
if isempty(C)
C = zeros(1,length(B)-1);
end
|
github
|
lcnbeapp/beapp-master
|
ft_spike_plot_isi.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_plot_isi.m
| 4,783 |
utf_8
|
ae1249245a55f1f3f2a73625f0bfaf8a
|
function [cfg] = ft_spike_plot_isi(cfg, isih)
% FT_SPIKE_PLOT_ISI makes an inter-spike-interval bar plot.
%
% Use as
% ft_spike_plot_isi(cfg, isih)
%
% Inputs:
% ISIH is the output from FT_SPIKE_ISIHIST
%
% Configurations:
% cfg.spikechannel = string or index or logical array to to select 1 spike channel.
% (default = 1).
% cfg.ylim = [min max] or 'auto' (default)
% If 'auto', we plot from 0 to 110% of maximum plotted value);
% cfg.plotfit = 'yes' (default) or 'no'. This requires that when calling
% FT_SPIKESTATION_ISI, cfg.gammafit = 'yes'.
%
% Outputs:
% hdl.fit = handle for line fit. Use SET and GET to access.
% hdl.isih = handle for bar isi histogram. Use SET and GET to access.
% Copyright (C) 2010, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% get the default options
cfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');
cfg.ylim = ft_getopt(cfg,'ylim', 'auto');
cfg.plotfit = ft_getopt(cfg,'plotfit', 'no');
% ensure that the options are valid
cfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});
cfg = ft_checkopt(cfg,'ylim', {'char','ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'plotfit', 'char', {'yes', 'no'});
% get the spikechannels
cfg.channel = ft_channelselection(cfg.spikechannel, isih.label);
spikesel = match_str(isih.label, cfg.channel);
nUnits = length(spikesel); % number of spike channels
if nUnits~=1, error('One spikechannel should be selected by means of cfg.spikechannel'); end
% plot the average isih
isiHdl = bar(isih.time,isih.avg(spikesel,:),'k');
set(isiHdl,'BarWidth', 1)
if strcmp(cfg.plotfit,'yes')
if ~isfield(isih,'gamfit'), error('isih.gamfit should be present when cfg.plotfit = yes'); end
% generate the probabilities according to the gamma model
pGamma = gampdf(isih.time, isih.gamfit(spikesel,1), isih.gamfit(spikesel,2));
sel = isfinite(pGamma);
pGamma = pGamma(sel)./sum(pGamma(sel));
% scale the fit in the same way (total area is equal)
sumIsih = sum(isih.avg(spikesel,:),2);
pGamma = pGamma*sumIsih;
% plot the fit
hold on
fitHdl = plot(isih.time(sel), pGamma,'r');
else
pGamma = 0;
end
try
if strcmp(isih.cfg.outputunit, 'proportion')
ylabel('probability')
elseif strcmp(isih.cfg.outputunit, 'spikecount')
ylabel('spikecount')
end
catch
ylabel('intensity');
end
xlabel('bin edges (sec)')
% set the x axis
set(gca,'XLim', [min(isih.time) max(isih.time)])
% set the y axis
if strcmp(cfg.ylim, 'auto')
y = [isih.avg(spikesel,:) pGamma];
cfg.ylim = [0 max(y(:))*1.1+eps];
end
set(gca,'YLim', cfg.ylim)
set(gca,'TickDir','out')
% store the handles
if strcmp(cfg.plotfit,'yes'), H.fit = fitHdl; end
H.isih = isiHdl;
% as usual, make sure that panning and zooming does not distort the y limits
set(zoom,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]});
set(pan,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous isih
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [] = mypostcallback(fig,evd,limY,limX)
% get the x limits and reset them
ax = evd.Axes;
xlim = get(ax(1), 'XLim');
ylim = get(ax(1), 'YLim');
if limX(1)>xlim(1), xlim(1) = limX(1); end
if limX(2)<xlim(2), xlim(2) = limX(2); end
if limY(1)>ylim(1), ylim(1) = limY(1); end
if limY(2)<ylim(2), ylim(2) = limY(2); end
set(ax(1), 'XLim',xlim)
set(ax(1), 'YLim',ylim);
|
github
|
lcnbeapp/beapp-master
|
ft_spike_plot_jpsth.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_plot_jpsth.m
| 13,192 |
utf_8
|
d52c82a28b5a7f91c7301fd2bd7baaa8
|
function [cfg] = ft_spike_plot_jpsth(cfg, jpsth)
% FT_SPIKE_PLOT_JPSTH makes a plot from JPSTH structure.
%
% Use as
% ft_spike_plot_jpsth(cfg, jpsth)
%
% Inputs:
% JPSTH must be the output structure from FT_SPIKE_JPSTH and contain the
% field JPSTH.avg. If cfg.psth = 'yes', the field JPSTH.psth must be
% present as well.
%
% General configurations:
% cfg.channelcmb = string or index of single channel combination to trigger on.
% See SPIKESTATION_FT_SUB_CHANNELCOMBINATION for details.
% cfg.psth = 'yes' (default) or 'no'. Plot PSTH with JPSTH if 'yes';
% cfg.latency = [begin end] in seconds or 'max' (default), 'prestim' or 'poststim';
% cfg.colorbar = 'yes' (default) or 'no'
% cfg.colormap = N-by-3 colormap (see COLORMAP). or 'auto' (default,hot(256))
% cfg.interpolate = integer (default = 1), we perform interpolating
% with extra number of spacings determined by
% cfg.interpolate. For example cfg.interpolate = 5
% means 5 times more dense axis.
% cfg.window = 'string' or N-by-N matrix
% 'no': apply no smoothing
% ' gausswin' use a Gaussian smooth function
% ' boxcar' use a box-car to smooth
% cfg.gaussvar = variance (default = 1/16 of window length in sec).
% cfg.winlen = cfg.window length in seconds (default = 5*binwidth).
% length of our window is 2*round*(cfg.winlen/binwidth)
% where binwidth is the binwidth of the jpsth (jpsth.time(2)-jpsth.time(1)).
%
% See also FT_SPIKE_JPSTH, FT_SPIKE_PSTH
% FIXME: extend the windowing functions a bit
% Copyright (C) 2010, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% get the default options
cfg.channelcmb = ft_getopt(cfg,'channelcmb', 'all');
cfg.psth = ft_getopt(cfg,'psth', 'yes');
cfg.latency = ft_getopt(cfg,'latency','maxperiod');
cfg.colorbar = ft_getopt(cfg,'colorbar', 'yes');
cfg.colormap = ft_getopt(cfg,'colormap', jet(256));
cfg.interpolate = ft_getopt(cfg,'interpolate', 1);
cfg.window = ft_getopt(cfg,'window', 'no');
cfg.winlen = ft_getopt(cfg,'winlen', 5*(mean(diff(jpsth.time))));
cfg.gaussvar = ft_getopt(cfg,'gaussvar', (cfg.winlen/4).^2);
% ensure that the options are valid
cfg = ft_checkopt(cfg,'channelcmb', {'char', 'cell'});
cfg = ft_checkopt(cfg,'psth', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'latency', {'char', 'ascendingdoublebivector'});
cfg = ft_checkopt(cfg,'colorbar', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg,'colormap','double');
cfg = ft_checkopt(cfg,'interpolate', 'doublescalar');
cfg = ft_checkopt(cfg,'window','char', {'no', 'gausswin', 'boxcar'});
cfg = ft_checkopt(cfg,'winlen', 'double');
cfg = ft_checkopt(cfg,'gaussvar', 'double');
cfg = ft_checkconfig(cfg, 'allowed', {'channelcmb', 'psth', 'latency', 'colorbar', 'colormap', 'interpolate', 'window', 'winlen', 'gaussvar'});
% determine the corresponding indices of the requested channel combinations
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, jpsth.label);
cmbindx = zeros(size(cfg.channelcmb));
for k=1:size(cfg.channelcmb,1)
cmbindx(k,1) = strmatch(cfg.channelcmb(k,1), jpsth.label, 'exact');
cmbindx(k,2) = strmatch(cfg.channelcmb(k,2), jpsth.label, 'exact');
end
nCmbs = size(cmbindx,1);
if nCmbs~=1, error('Currently only supported for a single channel combination'); end
% for convenience create a separate variable
if isfield(jpsth,'jpsth')
dens = squeeze(jpsth.jpsth(cmbindx(1,1),cmbindx(1,2),:,:)); % density
else
dens = squeeze(jpsth.shiftpredictor(cmbindx(1,1),cmbindx(1,2),:,:)); % density
end
% get rid of the NaNs at the borders
isNaN = 1;
k = 1;
while isNaN
if any(isnan(jpsth.psth(cmbindx,k))),
disp('deleting NaNs at the borders')
jpsth.psth(:,k) = [];
dens(k,:) = [];
dens(:,k) = [];
jpsth.time(k) = [];
else
isNaN = 0;
end
end
isNaN = 1;
k = size(jpsth.psth,2);
while isNaN
if any(isnan(jpsth.psth(cmbindx,k))),
disp('deleting NaNs at the borders')
jpsth.psth(:,k) = [];
dens(k,:) = [];
dens(:,k) = [];
jpsth.time(k) = [];
k = size(jpsth.psth,2);
else
isNaN = 0;
end
end
% select the time
minTime = jpsth.time(1);
maxTime = jpsth.time(end);
if strcmp(cfg.latency,'maxperiod')
cfg.latency = [minTime maxTime];
elseif strcmp(cfg.latency,'poststim')
cfg.latency = [0 maxTime];
elseif strcmp(cfg.latency,'prestim')
cfg.latency = [minTime 0];
end
% check whether the time window fits with the data
if (cfg.latency(1) < minTime), cfg.latency(1) = minTime;
warning('Correcting begin latency of averaging window');
end
if (cfg.latency(2) > maxTime), cfg.latency(2) = maxTime;
warning('Correcting end latency of averaging window');
end
% get the samples of our window, and the binwidth of the JPSTH
timeSel = jpsth.time>=cfg.latency(1) & jpsth.time <= cfg.latency(2);
sampleTime = mean(diff(jpsth.time)); % get the binwidt
% smooth the jpsth with a kernel if requested
if ~strcmp(cfg.window,'no')
% construct the kernel
winTime = [fliplr(0:-sampleTime:-cfg.winlen) sampleTime:sampleTime:cfg.winlen];
winLen = length(winTime);
if strcmp(cfg.window, 'gausswin') % multivariate gaussian
A = winTime'*ones(1,winLen);
B = A';
T = [A(:) B(:)]; % makes rows with each time combination on it
covmat = diag([cfg.gaussvar cfg.gaussvar]); % covariance matrix
win = mvnpdf(T,0,covmat); % multivariate gaussian function
elseif strcmp(cfg.window, 'boxcar')
win = ones(winLen);
end
% turn into discrete probabilities again (sum(p)=1);
win = win./sum(win(:));
win = reshape(win,[],winLen);
% do 2-D convolution and rescale
dens = conv2(dens,win,'same');
outputOnes = conv2(ones(size(dens)),win,'same');
rescale = 1./outputOnes;
dens = dens.*rescale;
end
bins = jpsth.time;
ax(1) = newplot; % create a new axis object
origPos = get(ax(1), 'Position');
pos = origPos;
if cfg.interpolate>1
binAxis = linspace(min(bins), max(bins), round(length(bins)*cfg.interpolate)); % CHANGE THIS
densInterp = interp2(bins(:), bins(:), dens, binAxis(:), binAxis(:)', 'spline');
jpsthHdl = imagesc(binAxis, binAxis, densInterp);
else
jpsthHdl = imagesc(bins,bins,dens);
end
axis xy;
colormap(cfg.colormap); % set the colormap
view(ax(1),2); % use the top view
grid(ax(1),'off'); % toggle grid off
% we need to leave some space for the colorbar on the top
if strcmp(cfg.colorbar,'yes'), pos(3) = pos(3)*0.95; end
% plot the histogram if requested
if strcmp(cfg.psth,'yes')
startPos = pos(1:2) + pos(3:4)*0.2 ; % shift the height and the width 20%
sz = pos(3:4)*0.8; % decrease the size of width and height
set(ax(1), 'ActivePositionProperty', 'position', 'Position', [startPos sz])
% scale the isi such that it becomes 1/5 of the return plot
for iChan = 1:2
% get the data and create the strings that should be the labels
psth = jpsth.psth(cmbindx(1,iChan),timeSel);
label = jpsth.label{cmbindx(1,iChan)};
if iChan==2
startPos = pos(1:2) + pos(3:4).*[0.2 0] ; % shift the width 20%
sz = pos(3:4).*[0.8 0.2]; % and decrease the size of width and height
ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],...
'Parent', get(ax(1), 'Parent'));
psthHdl(iChan) = bar(jpsth.time(timeSel),psth,'k'); % plot the psth under the jpsth
set(ax(2),'YDir', 'reverse')
ylabel(label)
else
startPos = pos(1:2) + pos(3:4).*[0 0.2] ; % shift the height 20%
sz = pos(3:4).*[0.2 0.8]; % and decrease the size of width and height
ax(3) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],...
'Parent', get(ax(1), 'Parent'));
psthHdl(iChan) = barh(jpsth.time(timeSel),psth,'k'); % plot the psth left
set(ax(3),'XDir', 'reverse')
xlabel(label)
end
end
set(ax(2), 'YAxisLocation', 'Right', 'XGrid', 'off'); % change the y axis location
set(ax(3), 'XAxisLocation', 'Top', 'XGrid', 'off'); % change the x axis location
set(psthHdl, 'BarWidth', 1); % make sure bars have no space between
% change the limits to get the same time limits
set(ax(2),'XLim', cfg.latency)
set(ax(3),'YLim', cfg.latency)
set(get(ax(2),'XLabel'),'String', 'time (sec)')
set(get(ax(3),'YLabel'),'String', 'time (sec)')
set(ax(1), 'YTickLabel', {},'XTickLabel', {}); % we remove the labels from JPSTH now
H.psthleft = psthHdl(2);
H.psthbottom = psthHdl(1);
elseif strcmp(cfg.psth,'no')
xlabel('time (sec)')
ylabel('time (sec')
set(ax(1), 'ActivePositionProperty', 'position', 'Position',pos)
end
% create the colorbar if requested
if strcmp(cfg.colorbar,'yes')
caxis([min(dens(:))-0.05 max(dens(:))+0.05])
colormap(cfg.colormap); % create the colormap as the user wants
H.colorbarHdl = colorbar; % create a colorbar
% create a position vector and reset the position, it should be alligned right of JPSTH
startPos = [(pos(1) + 0.96*origPos(3)) (pos(2) + pos(4)*0.25)];
sizePos = [0.04*origPos(3) 0.75*pos(4)];
set(H.colorbarHdl, 'Position', [startPos sizePos])
% set the text, try all the possible configurations
try
isNormalized = strcmp(jpsth.cfg.normalization,'yes');
catch
isNormalized = 0;
end
try
unit = jpsth.cfg.previous.outputunit;
if strcmp(unit,'rate')
isRate = 1;
elseif strcmp(unit,'spikecount')
isRate = 2;
end
catch
isRate = 3;
end
if isNormalized
colorbarLabel = 'Normalized Joint Activity';
elseif isRate==1
colorbarLabel = 'Joint Firing Rate (spikes^2/sec^2)';
elseif isRate==2
colorbarLabel = 'Joint Spike Count (spikes^2)';
else
colorbarLabel = 'Joint Peristimulus Activity';
end
try
if strcmp(jpsth.cfg.shiftpredictor,'yes')
colorbarLabel = strcat(colorbarLabel,' Shift Predictor');
end
catch,end
set(get(H.colorbarHdl,'YLabel'),'String',colorbarLabel)
end
set(ax,'TickDir','out')
set(ax(1),'XLim', cfg.latency,'YLim', cfg.latency)
% get the psth limits for constraining the zooming and panning
psthLim = {};
if strcmp(cfg.psth,'yes')
psthLim{1} = get(ax(2),'YLim');
psthLim{2} = get(ax(3),'XLim');
end
% collect the handles
H.ax = ax;
H.jpsth = jpsthHdl;
H.cfg = cfg;
% constrain the zooming and zoom psth together with the jpsth, remove ticklabels jpsth
set(zoom,'ActionPostCallback',{@mypostcallback,ax,cfg.latency,psthLim});
set(pan,'ActionPostCallback',{@mypostcallback,ax,cfg.latency,psthLim});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous jpsth
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [] = mypostcallback(fig,evd,ax,lim,psthLim)
currentAxes = evd.Axes;
xlim = get(currentAxes, 'XLim');
ylim = get(currentAxes, 'YLim');
if currentAxes==ax(1)
% reset the x limits to the shared limits
if lim(1)>xlim(1), xlim(1) = lim(1); end
if lim(2)<xlim(2), xlim(2) = lim(2); end
set(ax(1:2), 'XLim',xlim)
% reset the y limits
if lim(1)>ylim(1), ylim(1) = lim(1); end
if lim(2)<ylim(2), ylim(2) = lim(2); end
set(ax([1 3]), 'YLim',ylim)
elseif currentAxes == ax(2)
% reset the x and y limits
if lim(1)>xlim(1), xlim(1) = lim(1); end
if lim(2)<xlim(2), xlim(2) = lim(2); end
if psthLim{1}(1)>ylim(1), ylim(1) = psthLim{1}(1); end
if psthLim{1}(2)<ylim(2), ylim(2) = psthLim{1}(2); end
set(ax(1:2), 'XLim',xlim)
set(ax(3), 'YLim', xlim)
set(ax(2),'YLim', ylim)
elseif currentAxes == ax(3)
% y limits are shared limits here
if lim(1)>ylim(1), ylim(1) = lim(1); end
if lim(2)<ylim(2), ylim(2) = lim(2); end
% psth limit is specific to its x axis
if psthLim{2}(1)>xlim(1), xlim(1) = psthLim{2}(1); end
if psthLim{2}(2)<xlim(2), xlim(2) = psthLim{2}(2); end
set(ax(1:2), 'XLim',ylim)
set(ax(3), 'YLim', ylim)
set(ax(3),'XLim', xlim)
end
set(ax(1), 'YTickLabel', {});
set(ax(1), 'XTickLabel', {});
|
github
|
lcnbeapp/beapp-master
|
ft_spike_plot_isireturn.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/ft_spike_plot_isireturn.m
| 12,153 |
utf_8
|
8622e6b75dbc92336c1b2713baa56e48
|
function [cfg] = ft_spike_plot_isireturn(cfg, isih)
% FT_SPIKE_PLOT_ISIRETURN makes a return plot from ISIH structure. A return
% plot (also called Poincare plot) plots the isi to the next spike versus the isi
% from the next spike to the second next spike, and thus gives insight in
% the second order isi statistics. This func also plots the raw
% isi-histogram on left and bottom and thereby give a rather complete
% visualization of the spike-train interval statistics.
%
% Use as
% ft_spike_plot_isireturn(cfg, data)
%
% Inputs:
% ISIH must be the output structure from FT_SPIKE_ISI and contain the field
% ISIH.isi.
%
% General configurations:
% cfg.spikechannel = string or index of single spike channel to trigger on (default = 1)
% Only one spikechannel can be plotted at a time.
% cfg.density = 'yes' or 'no', if 'yes', we will use color shading on top of
% the individual datapoints to indicate the density.
% cfg.scatter = 'yes' (default) or 'no'. If 'yes', we plot the individual values.
% cfg.dt = resolution of the 2-D histogram, or of the kernel plot in seconds. Since we
% have to smooth for a finite number of values, cfg.dt determines
% the resolution of our smooth density plot.
% cfg.colormap = N-by-3 colormap (see COLORMAP). Default = hot(256);
% cfg.interpolate = integer (default = 1), we perform interpolating
% with extra number of spacings determined by
% cfg.interpolate. For example cfg.interpolate = 5
% means 5 times more dense axis.
% cfg.window = 'no', 'gausswin' or 'boxcar'
% 'gausswin' is N-by-N multivariate gaussian, where the diagonal of the
% covariance matrix is set by cfg.gaussvar.
% 'boxcar' is N-by-N rectangular window.
% cfg.gaussvar = variance (default = 1/16 of window length in sec).
% cfg.winlen = window length in seconds (default = 5*cfg.dt). The total
% length of our window is 2*round*(cfg.winlen/cfg.dt) +1;
% Copyright (C) 2010, Martin Vinck
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble callinfo
ft_preamble trackconfig
% get the default options
cfg.spikechannel = ft_getopt(cfg, 'spikechannel', isih.label{1});
cfg.scatter = ft_getopt(cfg, 'scatter', 'yes');
cfg.density = ft_getopt(cfg,'density', 'yes');
cfg.colormap = ft_getopt(cfg,'colormap', 'auto');
cfg.interpolate = ft_getopt(cfg, 'interpolate', 1);
cfg.scattersize = ft_getopt(cfg,'scattersize', 0.3);
cfg.dt = ft_getopt(cfg,'dt', 0.001);
cfg.window = ft_getopt(cfg,'window', 'gausswin');
cfg.winlen = ft_getopt(cfg,'winlen', cfg.dt*5);
cfg.gaussvar = ft_getopt(cfg,'gaussvar', (cfg.winlen/4).^2);
cfg = ft_checkopt(cfg, 'spikechannel', {'char', 'cell', 'double'});
cfg = ft_checkopt(cfg, 'scatter','char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'density', 'char', {'yes', 'no'});
cfg = ft_checkopt(cfg, 'colormap', {'double', 'char'});
cfg = ft_checkopt(cfg, 'interpolate', 'doublescalar');
cfg = ft_checkopt(cfg, 'scattersize', 'doublescalar');
cfg = ft_checkopt(cfg, 'dt', 'double');
cfg = ft_checkopt(cfg, 'window','char',{'no', 'gausswin', 'boxcar'});
cfg = ft_checkopt(cfg, 'winlen', 'double');
cfg = ft_checkopt(cfg, 'gaussvar', 'double');
cfg.interpolate = round(cfg.interpolate);
% check if all the required fields are there
isih = ft_checkdata(isih,'datatype', 'timelock', 'feedback', 'yes');
if ~isfield(isih,'isi'), error('input struct should contain the fields isi, label and time'), end
cfg = ft_checkconfig(cfg, 'allowed', {'spikechannel', 'scatter', 'density', 'colormap', 'interpolate', 'scattersize', 'dt', 'window', 'winlen', 'gaussvar'});
% get the spikechannels: maybe replace this by one function with checking etc. in it
cfg.spikechannel = ft_channelselection(cfg.spikechannel, isih.label);
spikesel = match_str(isih.label, cfg.spikechannel);
nUnits = length(spikesel); % number of spike channels
if nUnits~=1, error('Only one unit can be selected at a time'); end
isi = isih.isi{spikesel};
% create the axis
ax(1) = newplot;
[origPos,pos] = deal(get(ax(1), 'Position'));
if strcmp(cfg.density,'yes'), pos(3) = pos(3)*0.95; end % because of the color bar which takes place
bins = min(isih.time):cfg.dt:max(isih.time);
nbins = length(bins);
% two-dimensional kernel smoothing to get a density behind our scatterplot
if strcmp(cfg.density,'yes')
isivld1 = (~isnan(isi(1:end-1))&~isnan(isi(2:end)));
isivld2 = (isi(1:end-1)<=max(isih.time)-cfg.dt&isi(2:end)<=max(isih.time)-cfg.dt);
isivld = isivld1&isivld2;
hold on
% make a 2-D histogram, we need this for both the kernel and the hist
[N,indx1] = histc(isi(find(isivld)),bins);
[N,indx2] = histc(isi(find(isivld)+1),bins);
% remove the outer counts
rmv = indx1==length(bins)|indx2==length(bins);
indx1(rmv) = [];
indx2(rmv) = [];
dens = full(sparse(indx2,indx1,ones(1,length(indx1)),nbins,nbins));
if ~strcmp(cfg.window,'no')
if cfg.winlen<cfg.dt, error('please configure cfg.winlen such that cfg.winlen>=cfg.dt'); end
winTime = [fliplr(0:-cfg.dt:-cfg.winlen) cfg.dt:cfg.dt:cfg.winlen];
winLen = length(winTime);
if strcmp(cfg.window, 'gausswin') % multivariate gaussian
A = winTime'*ones(1,winLen);
B = A';
T = [A(:) B(:)]; % makes rows with each time combination on it
covmat = diag([cfg.gaussvar cfg.gaussvar]); % covariance matrix
win = mvnpdf(T,0,covmat); % multivariate gaussian function
elseif strcmp(cfg.window, 'boxcar')
win = ones(winLen);
end
% turn into discrete probabilities again (sum(p)=1);
win = win./sum(win);
win = reshape(win,[],length(winTime)); % reshape to matrix corresponding to grid again
% do 2-D convolution and rescale
dens = conv2(dens,win,'same');
outputOnes = conv2(ones(size(dens)),win,'same');
rescale = 1./outputOnes;
dens = dens.*rescale;
end
% create the surface
hdl.density = imagesc(bins+cfg.dt/2,bins+cfg.dt/2,dens);
if cfg.interpolate>1
binAxis = linspace(min(bins)-0.5*(bins(2)-bins(1)), max(bins)+0.5*(bins(2)-bins(1)), length(bins)*cfg.interpolate);
dens = interp2(bins(:), bins(:), dens, binAxis(:), binAxis(:)', 'linear');
hdl.density = imagesc(binAxis, binAxis, dens);
end
if isrealmat(cfg.colormap) && size(cfg.colormap,2)==3
colormap(cfg.colormap);
elseif strcmp(cfg.colormap, 'auto')
cfg.colormap = flipud(hot(600));
cfg.colormap = cfg.colormap(1:450,:);
else
error('cfg.colormap should be N-by-3 numerical matrix')
end
view(ax(1),2); % use the top view
grid(ax(1),'off')
end
hold on
% create scatter return plot and get the handle
if strcmp(cfg.scatter, 'yes')
hdl.scatter = plot(isi(1:end-1), isi(2:end),'ko');
set(hdl.scatter,'MarkerFaceColor', 'k','MarkerSize', cfg.scattersize)
end
%keyboard
% plot the histogram (user can cut away in adobe of canvas himself if needed)
posisih = [pos(1:2) + pos(3:4)*0.2 pos(3:4)*0.8]; % shift the height and the width 20%
set(ax(1), 'ActivePositionProperty', 'position', 'Position', posisih)
startPos = pos(1:2) + pos(3:4).*[0.2 0] ; % shift the width 20%
sz = pos(3:4).*[0.8 0.2]; % and decrease the size of width and height
ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],...
'Parent', get(ax(1), 'Parent'));
isihist = isih.avg(spikesel,:); %divide by proportion and 5 to get 20% of size
hdl.isi(1) = bar(isih.time(:),isihist,'k');
set(ax(2),'YDir', 'reverse')
startPos = pos(1:2) + pos(3:4).*[0 0.2] ; % shift the height 20%
sz = pos(3:4).*[0.2 0.8]; % and decrease the size of width and height
ax(3) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],...
'Parent', get(ax(1), 'Parent'));
hdl.isi(2) = barh(isih.time(:),isihist,'k');
set(hdl.isi,'BarWidth',1)
set(ax(2:3), 'Box', 'off')
set(ax(3),'XDir', 'reverse')
set(ax(1), 'YTickLabel', {},'XTickLabel',{}, 'XTick',[],'YTick', []);
% take care of all the x and y limits at once
set(ax,'Box', 'off','TickDir','out')
set(ax(1),'XLim', [0 max(isih.time)],'YLim',[0 max(isih.time)]);
limIsi = [0 max(isih.avg(spikesel,:))*1.05];
set(ax(2),'XLim', [0 max(isih.time)],'YLim',limIsi);
set(ax(3),'YLim', [0 max(isih.time)],'XLim',limIsi);
set(ax(2),'YAxisLocation', 'Right')
set(ax(3),'XAxisLocation', 'Top')
set(get(ax(2),'Xlabel'),'String','isi(n) (sec)')
set(get(ax(3),'Ylabel'),'String','isi(n+1) (sec)')
% create the colorbar (who doesn't want one)
caxis([min(dens(:)) max(dens(:))]);
colormap(cfg.colormap); % create the colormap as the user wants
colorbarHdl = colorbar; % create a colorbar
% create a position vector and reset the position, it should be alligned right of isih
startPos = [(pos(1) + 0.96*origPos(3)) (pos(2) + pos(4)*0.25)];
sizePos = [0.04*origPos(3) 0.75*pos(4)];
set(colorbarHdl, 'Position', [startPos sizePos])
set(get(colorbarHdl,'YLabel'),'String','Number of spikes per bin'); % set the text
hdl.colorbar = colorbarHdl;
hdl.ax = ax;
hdl.cfg = cfg;
% constrain the zooming and zoom psth together with the isih, remove ticklabels isih
set(zoom,'ActionPostCallback',{@mypostcallback,ax,[0 max(isih.time)],limIsi});
set(pan,'ActionPostCallback',{@mypostcallback,ax,[0 max(isih.time)],limIsi});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble callinfo
ft_postamble previous isih
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [] = mypostcallback(fig,evd,ax,lim,limIsi)
currentAxes = evd.Axes;
indx = find(currentAxes==ax);
if currentAxes==ax(1)
% get the x limits and reset them
xlim = get(ax(1), 'XLim');
ylim = get(ax(1), 'YLim');
[axlim] = [min(xlim(1),ylim(1)) max(xlim(2),ylim(2))]; % make the zoom symmetric
if lim(1)>axlim(1), axlim(1) = lim(1); end
if lim(2)<axlim(2), axlim(2) = lim(2); end
set(ax(1:2), 'XLim',axlim)
set(ax([1 3]), 'YLim',axlim);
elseif currentAxes == ax(2)
xlim = get(ax(2), 'XLim');
if lim(1)>xlim(1), xlim(1) = lim(1); end
if lim(2)<xlim(2), xlim(2) = lim(2); end
set(ax(1:2), 'XLim',xlim)
set(ax(3), 'YLim', xlim)
ylim = get(ax(2), 'YLim');
if limIsi(1)>ylim(1), ylim(1) = limIsi(1); end
if limIsi(2)<ylim(2), ylim(2) = limIsi(2); end
set(ax(2), 'YLim', ylim)
set(ax(3), 'XLim', ylim)
elseif currentAxes == ax(3)
ylim = get(ax(3), 'YLim');
if lim(1)>ylim(1), ylim(1) = lim(1); end
if lim(2)<ylim(2), ylim(2) = lim(2); end
set(ax([1 3]), 'YLim',ylim);
set(ax(2), 'XLim', ylim)
xlim = get(ax(3), 'XLim');
if limIsi(1)>xlim(1), xlim(1) = limIsi(1); end
if limIsi(2)<xlim(2), xlim(2) = limIsi(2); end
set(ax(3), 'XLim', xlim)
set(ax(2), 'YLim', xlim)
end
|
github
|
lcnbeapp/beapp-master
|
test_ft_spiketriggeredspectrum_stat.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/spike/test/test_ft_spiketriggeredspectrum_stat.m
| 2,343 |
utf_8
|
c0b669f66bc952bb2a588904bf5e9faf
|
function test_ft_spiketriggeredspectrum_stat()
% MEM 1gb
% WALLTIME 00:10:00
% TEST test_ft_spiketriggeredspectrum_stat
% TEST ft_spiketriggeredspectrum_stat
nSpikes = 10000;
randPhases = [];
kappa = 1;
nChans = 3;
for iChan = 1:nChans
for iFreq = 1:6
randPhases(:,iChan,iFreq) = randnwrap(nSpikes+1,kappa/iChan);
end
end
figure, rose(randPhases(:,1,1))
sts = [];
sts.fourierspctrm{1} = rand(size(randPhases)).*exp(1i*randPhases); % random weighting
sts.trial{1} = sort(ceil(rand(1,nSpikes)*100));
sts.time{1} = rand(1,nSpikes);
for iChan = 1:nChans
sts.lfplabel{iChan} = strcat('chan', num2str(iChan));
end
sts.cfg = [];
sts.dimord = 'rpt_chan_freq';
sts.freq = 10:10:60;
sts.label = {'unit1'};
sts.trialtime = repmat([0,1],[100 1]);
cfg = [];
cfg.timwin = 0.5;
cfg.winstepsize = 0.001;
cfg.method = 'ppc0';
sts_tfr = ft_spiketriggeredspectrum_stat(cfg,sts);
figure, imagesc(sts_tfr.time, sts_tfr.freq, squeeze(sts_tfr.ppc0(1,:,:))), colorbar
%
cfg.method = 'ppc1';
sts_tfr = ft_spiketriggeredspectrum_stat(cfg,sts);
figure, imagesc(sts_tfr.time, sts_tfr.freq, squeeze(sts_tfr.ppc1(1,:,:))), colorbar
%
cfg = [];
cfg.method = 'ppc1';
sts_tfr = ft_spiketriggeredspectrum_stat(cfg,sts);
figure, plot(sts_tfr.freq, squeeze(sts_tfr.ppc1(1,:,:))), colorbar
%%
% now make a case where no phase locking should be present
% TEST test_ft_spiketriggeredspectrum_tfr
% ft_spiketriggeredspectrum_tfr
nSpikes = 10000;
randPhases = [];
kappa = 1;
nChans = 3;
for iChan = 1:nChans
for iFreq = 1:6
randPhases(:,iChan,iFreq) = randnwrap(nSpikes+1,0.001/iChan);
end
end
figure, rose(randPhases(:,1,1))
sts = [];
sts.fourierspctrm{1} = rand(size(randPhases)).*exp(i*randPhases); % random weighting
sts.trial{1} = sort(ceil(rand(1,nSpikes)*100));
sts.time{1} = rand(1,nSpikes);
for iChan = 1:nChans
sts.lfplabel{iChan} = strcat('chan', num2str(iChan));
end
sts.cfg = [];
sts.dimord = 'rpt_chan_freq';
sts.freq = 10:10:60;
sts.label = {'unit1'};
sts.trialtime = repmat([0,1],[100 1]);
cfg = [];
cfg.timwin = 0.5;
cfg.winstepsize = 0.001;
cfg.method = 'ppc0';
sts_tfr = ft_spiketriggeredspectrum_stat(cfg,sts);
figure, imagesc(sts_tfr.time, sts_tfr.freq, squeeze(sts_tfr.ppc0(1,:,:))), colorbar
function r=randnwrap(n,k)
r=angle(exp(1i*randn(n,1)*sqrt(1/k)));
|
github
|
lcnbeapp/beapp-master
|
nmt_transform_coord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/nutmegtrip/nmt_transform_coord.m
| 1,383 |
utf_8
|
45ec93e41ec1e8943ab8f2c2ea73dd0e
|
function [xyz_o,y_o,z_o] = nmt_transform_coord(varargin)
% [XYZ_O]=NUT_COORDTFM(A,XYZ_I)
% [X_O,Y_O,Z_O]=NUT_COORDTFM(A,X_I,Y_I,Z_I)
% Performs coordinate transformation using transform matrix A.
% Supply either xyz_i as an N x 3 matrix containing cartesian coordinates
% or x_i, y_i, and z_i in separate N x 1 vectors.
% A should be 4 x 4.
switch nargin
case 4 % if given x,y,z in separate N x 1 vectors
[A,x_i,y_i,z_i] = deal(varargin{:});
xyz=[x_i y_i z_i ones(length(z_i),1)]*A';
xyz_o=xyz(:,1); % really just x in this case
y_o=xyz(:,2);
z_o=xyz(:,3);
if(~isequal(xyz(:,4),ones(size(xyz(:,4)))))% if fourth column is not a bunch of ones, something went wrong
warning('something may have gone awry with this coordinate transform.');
end
case 2 % if given N x 3 matrix with x,y,z coords
[A,xyz_i] = deal(varargin{:});
xyz_o=[xyz_i ones(size(xyz_i,1),1)]*A';
% if(~isequal(xyz_o(:,4),ones(size(xyz_o(:,4)))))% if fourth column is not a bunch of ones, something went wrong
if(norm(xyz_o(:,4)-1,'fro')>1e-13)% if fourth column is not a bunch of ones, something went wrong
warning('something may have gone awry with this coordinate transform.');
end
xyz_o(:,4)=[]; % destroy last column of ones
otherwise
error('You''re doing something wrong.');
end
|
github
|
lcnbeapp/beapp-master
|
getdimord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/nutmegtrip/private/getdimord.m
| 20,107 |
utf_8
|
706f4f45a5d4ae7535c204b8c010f76b
|
function dimord = getdimord(data, field, varargin)
% GETDIMORD
%
% Use as
% dimord = getdimord(data, field)
%
% See also GETDIMSIZ, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = '';
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % copy the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = '(rpt)_';
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % copy the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = '';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 1: the specific dimord is simply present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, [field 'dimord'])
dimord = data.([field 'dimord']);
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if not present, we need some additional information about the data strucure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nan means that the value is not known and might remain unknown
% inf means that the value is not known but should be known
ntime = inf;
nfreq = inf;
nchan = inf;
nchancmb = inf;
nsubj = nan;
nrpt = nan;
nrpttap = nan;
npos = inf;
nori = nan; % this will be 3 in many cases
ntopochan = inf;
nspike = inf; % this is only for the first spike channel
nlag = nan;
ndim1 = nan;
ndim2 = nan;
ndim3 = nan;
% use an anonymous function
assign = @(var, val) assignin('caller', var, val);
% it is possible to pass additional ATTEMPTs such as nrpt, nrpttap, etc
for i=1:2:length(varargin)
assign(varargin{i}, varargin{i+1});
end
% try to determine the size of each possible dimension in the data
if isfield(data, 'label')
nchan = length(data.label);
end
if isfield(data, 'labelcmb')
nchancmb = size(data.labelcmb, 1);
end
if isfield(data, 'time')
if iscell(data.time) && ~isempty(data.time)
tmp = getdimsiz(data, 'time');
ntime = tmp(3); % raw data may contain variable length trials
else
ntime = length(data.time);
end
end
if isfield(data, 'freq')
nfreq = length(data.freq);
end
if isfield(data, 'trial') && ft_datatype(data, 'raw')
nrpt = length(data.trial);
end
if isfield(data, 'trialtime') && ft_datatype(data, 'spike')
nrpt = size(data.trialtime,1);
end
if isfield(data, 'cumtapcnt')
nrpt = size(data.cumtapcnt,1);
if numel(data.cumtapcnt)==length(data.cumtapcnt)
% it is a vector, hence it only represents repetitions
nrpttap = sum(data.cumtapcnt);
else
% it is a matrix, hence it is repetitions by frequencies
% this happens after mtmconvol with keeptrials
nrpttap = sum(data.cumtapcnt,2);
if any(nrpttap~=nrpttap(1))
warning('unexpected variation of the number of tapers over trials')
nrpttap = nan;
else
nrpttap = nrpttap(1);
end
end
end
if isfield(data, 'pos')
npos = size(data.pos,1);
elseif isfield(data, 'dim')
npos = prod(data.dim);
end
if isfield(data, 'dim')
ndim1 = data.dim(1);
ndim2 = data.dim(2);
ndim3 = data.dim(3);
end
if isfield(data, 'csdlabel')
% this is used in PCC beamformers
if length(data.csdlabel)==npos
% each position has its own labels
len = cellfun(@numel, data.csdlabel);
len = len(len~=0);
if all(len==len(1))
% they all have the same length
nori = len(1);
end
else
% one list of labels for all positions
nori = length(data.csdlabel);
end
elseif isfinite(npos)
% assume that there are three dipole orientations per source
nori = 3;
end
if isfield(data, 'topolabel')
% this is used in ICA and PCA decompositions
ntopochan = length(data.topolabel);
end
if isfield(data, 'timestamp') && iscell(data.timestamp)
nspike = length(data.timestamp{1}); % spike data: only for the first channel
end
if ft_datatype(data, 'mvar') && isfield(data, 'coeffs')
nlag = size(data.coeffs,3);
end
% determine the size of the actual data
datsiz = getdimsiz(data, field);
tok = {'subj' 'rpt' 'rpttap' 'chan' 'chancmb' 'freq' 'time' 'pos' 'ori' 'topochan' 'lag' 'dim1' 'dim2' 'dim3'};
siz = [nsubj nrpt nrpttap nchan nchancmb nfreq ntime npos nori ntopochan nlag ndim1 ndim2 ndim3];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 2: a general dimord is present and might apply
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, 'dimord')
dimtok = tokenize(data.dimord, '_');
if length(dimtok)>length(datsiz) && check_trailingdimsunitlength(data, dimtok((length(datsiz)+1):end))
% add the trailing singleton dimensions to datsiz, if needed
datsiz = [datsiz ones(1,max(0,length(dimtok)-length(datsiz)))];
end
if length(dimtok)==length(datsiz) || (length(dimtok)==(length(datsiz)-1) && datsiz(end)==1)
success = false(size(dimtok));
for i=1:length(dimtok)
sel = strcmp(tok, dimtok{i});
if any(sel) && datsiz(i)==siz(sel)
success(i) = true;
elseif strcmp(dimtok{i}, 'subj')
% the number of subjects cannot be determined, and will be indicated as nan
success(i) = true;
elseif strcmp(dimtok{i}, 'rpt')
% the number of trials is hard to determine, and might be indicated as nan
success(i) = true;
end
end % for
if all(success)
dimord = data.dimord;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 3: look at the size of some common fields that are known
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch field
% the logic for this code is to first check whether the size of a field
% has an exact match to a potential dimensionality, if not, check for a
% partial match (ignoring nans)
% note that the case for a cell dimension (typically pos) is handled at
% the end of this section
case {'pos'}
if isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_unknown';
end
case {'individual'}
if isequalwithoutnans(datsiz, [nsubj nchan ntime])
dimord = 'subj_chan_time';
end
case {'avg' 'var' 'dof'}
if isequal(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequal(datsiz, [nchan ntime])
dimord = 'chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nchan ntime])
dimord = 'chan_time';
end
case {'powspctrm' 'fourierspctrm'}
if isequal(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequal(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequal(datsiz, [nchan nfreq])
dimord = 'chan_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nfreq])
dimord = 'chan_freq';
end
case {'crsspctrm' 'cohspctrm'}
if isequal(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequal(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequal(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequal(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequal(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequal(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequal(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequal(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequalwithoutnans(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
end
case {'cov' 'coh' 'csd' 'noisecov' 'noisecsd'}
% these occur in timelock and in source structures
if isequal(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequal(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequal(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequal(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequalwithoutnans(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequalwithoutnans(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequalwithoutnans(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
end
case {'tf'}
if isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'pow'}
if isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequal(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequal(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
elseif isequal(datsiz, [npos 1]) % in case there are no repetitions
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequalwithoutnans(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
end
case {'mom','itc','aa','stat','pval','statitc','pitc'}
if isequal(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequal(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequal(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequalwithoutnans(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequalwithoutnans(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nrpt nori ntime])
dimord = 'pos_rpt_ori_time';
elseif isequalwithoutnans(datsiz, [npos nrpt 1 ntime])
dimord = 'pos_rpt_ori_time';
elseif isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'filter'}
if isequalwithoutnans(datsiz, [npos nori nchan]) || (isequal(datsiz([1 2]), [npos nori]) && isinf(nchan))
dimord = 'pos_ori_chan';
end
case {'leadfield'}
if isequalwithoutnans(datsiz, [npos nchan nori]) || (isequal(datsiz([1 3]), [npos nori]) && isinf(nchan))
dimord = 'pos_chan_ori';
end
case {'ori' 'eta'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'csdlabel'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'trial'}
if ~iscell(data.(field)) && isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = '{rpt}_chan_time';
elseif isequalwithoutnans(datsiz, [nchan nspike]) || isequalwithoutnans(datsiz, [nchan 1 nspike])
dimord = '{chan}_spike';
end
case {'sampleinfo' 'trialinfo' 'trialtime'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'cumtapcnt' 'cumsumcnt'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'topo'}
if isequalwithoutnans(datsiz, [ntopochan nchan])
dimord = 'topochan_chan';
end
case {'unmixing'}
if isequalwithoutnans(datsiz, [nchan ntopochan])
dimord = 'chan_topochan';
end
case {'inside'}
if isequalwithoutnans(datsiz, [npos])
dimord = 'pos';
end
case {'timestamp' 'time'}
if ft_datatype(data, 'spike') && iscell(data.(field)) && datsiz(1)==nchan
dimord = '{chan}_spike';
elseif ft_datatype(data, 'raw') && iscell(data.(field)) && datsiz(1)==nrpt
dimord = '{rpt}_time';
elseif isvector(data.(field)) && isequal(datsiz, [1 ntime ones(1,numel(datsiz)-2)])
dimord = 'time';
end
case {'freq'}
if isvector(data.(field)) && isequal(datsiz, [1 nfreq])
dimord = 'freq';
end
otherwise
if isfield(data, 'dim') && isequal(datsiz, data.dim)
dimord = 'dim1_dim2_dim3';
end
end % switch field
% deal with possible first pos which is a cell
if exist('dimord', 'var') && strcmp(dimord(1:3), 'pos') && iscell(data.(field))
dimord = ['{pos}' dimord(4:end)];
end
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 4: there is only one way that the dimensions can be interpreted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dimtok = cell(size(datsiz));
for i=1:length(datsiz)
sel = find(siz==datsiz(i));
if length(sel)==1
% there is exactly one corresponding dimension
dimtok{i} = tok{sel};
else
% there are zero or multiple corresponding dimensions
dimtok{i} = [];
end
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 5: compare the size with the known size of each dimension
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sel = ~isnan(siz) & ~isinf(siz);
% nan means that the value is not known and might remain unknown
% inf means that the value is not known and but should be known
if length(unique(siz(sel)))==length(siz(sel))
% this should only be done if there is no chance of confusing dimensions
dimtok = cell(size(datsiz));
dimtok(datsiz==npos) = {'pos'};
dimtok(datsiz==nori) = {'ori'};
dimtok(datsiz==nrpttap) = {'rpttap'};
dimtok(datsiz==nrpt) = {'rpt'};
dimtok(datsiz==nsubj) = {'subj'};
dimtok(datsiz==nchancmb) = {'chancmb'};
dimtok(datsiz==nchan) = {'chan'};
dimtok(datsiz==nfreq) = {'freq'};
dimtok(datsiz==ntime) = {'time'};
dimtok(datsiz==ndim1) = {'dim1'};
dimtok(datsiz==ndim2) = {'dim2'};
dimtok(datsiz==ndim3) = {'dim3'};
if isempty(dimtok{end}) && datsiz(end)==1
% remove the unknown trailing singleton dimension
dimtok = dimtok(1:end-1);
elseif isequal(dimtok{1}, 'pos') && isempty(dimtok{2}) && datsiz(2)==1
% remove the unknown leading singleton dimension
dimtok(2) = [];
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 6: check whether it is a 3-D volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isequal(datsiz, [ndim1 ndim2 ndim3])
dimord = 'dim1_dim2_dim3';
end
end % if dimord does not exist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FINAL RESORT: return "unknown" for all unknown dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('dimord', 'var')
% this should not happen
% if it does, it might help in diagnosis to have a very informative warning message
% since there have been problems with trials not being selected correctly due to the warning going unnoticed
% it is better to throw an error than a warning
warning('could not determine dimord of "%s" in the following data', field)
disp(data);
dimtok(cellfun(@isempty, dimtok)) = {'unknown'};
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
end
end
% add '(rpt)' in case of source.trial
dimord = [prefix dimord];
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = isequalwithoutnans(a, b)
% this is *only* used to compare matrix sizes, so we can ignore any singleton last dimension
numdiff = numel(b)-numel(a);
if numdiff > 0
% assume singleton dimensions missing in a
a = [a(:); ones(numdiff, 1)];
b = b(:);
elseif numdiff < 0
% assume singleton dimensions missing in b
b = [b(:); ones(abs(numdiff), 1)];
a = a(:);
end
c = ~isnan(a(:)) & ~isnan(b(:));
ok = isequal(a(c), b(c));
end % function isequalwithoutnans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = check_trailingdimsunitlength(data, dimtok)
ok = false;
for k = 1:numel(dimtok)
switch dimtok{k}
case 'chan'
ok = numel(data.label)==1;
otherwise
if isfield(data, dimtok{k}); % check whether field exists
ok = numel(data.(dimtok{k}))==1;
end;
end
if ok,
break;
end
end
end % function check_trailingdimsunitlength
|
github
|
lcnbeapp/beapp-master
|
freezeColors.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/nutmegtrip/private/freezeColors.m
| 9,815 |
utf_8
|
2068d7a4f7a74d251e2519c4c5c1c171
|
function freezeColors(varargin)
% freezeColors Lock colors of plot, enabling multiple colormaps per figure. (v2.3)
%
% Problem: There is only one colormap per figure. This function provides
% an easy solution when plots using different colomaps are desired
% in the same figure.
%
% freezeColors freezes the colors of graphics objects in the current axis so
% that subsequent changes to the colormap (or caxis) will not change the
% colors of these objects. freezeColors works on any graphics object
% with CData in indexed-color mode: surfaces, images, scattergroups,
% bargroups, patches, etc. It works by converting CData to true-color rgb
% based on the colormap active at the time freezeColors is called.
%
% The original indexed color data is saved, and can be restored using
% unfreezeColors, making the plot once again subject to the colormap and
% caxis.
%
%
% Usage:
% freezeColors applies to all objects in current axis (gca),
% freezeColors(axh) same, but works on axis axh.
%
% Example:
% subplot(2,1,1); imagesc(X); colormap hot; freezeColors
% subplot(2,1,2); imagesc(Y); colormap hsv; freezeColors etc...
%
% Note: colorbars must also be frozen. Due to Matlab 'improvements' this can
% no longer be done with freezeColors. Instead, please
% use the function CBFREEZE by Carlos Adrian Vargas Aguilera
% that can be downloaded from the MATLAB File Exchange
% (http://www.mathworks.com/matlabcentral/fileexchange/24371)
%
% h=colorbar; cbfreeze(h), or simply cbfreeze(colorbar)
%
% For additional examples, see test/test_main.m
%
% Side effect on render mode: freezeColors does not work with the painters
% renderer, because Matlab doesn't support rgb color data in
% painters mode. If the current renderer is painters, freezeColors
% changes it to zbuffer. This may have unexpected effects on other aspects
% of your plots.
%
% See also unfreezeColors, freezeColors_pub.html, cbfreeze.
%
%
% John Iversen ([email protected]) 3/23/05
%
% Changes:
% JRI ([email protected]) 4/19/06 Correctly handles scaled integer cdata
% JRI 9/1/06 should now handle all objects with cdata: images, surfaces,
% scatterplots. (v 2.1)
% JRI 11/11/06 Preserves NaN colors. Hidden option (v 2.2, not uploaded)
% JRI 3/17/07 Preserve caxis after freezing--maintains colorbar scale (v 2.3)
% JRI 4/12/07 Check for painters mode as Matlab doesn't support rgb in it.
% JRI 4/9/08 Fix preserving caxis for objects within hggroups (e.g. contourf)
% JRI 4/7/10 Change documentation for colorbars
% Hidden option for NaN colors:
% Missing data are often represented by NaN in the indexed color
% data, which renders transparently. This transparency will be preserved
% when freezing colors. If instead you wish such gaps to be filled with
% a real color, add 'nancolor',[r g b] to the end of the arguments. E.g.
% freezeColors('nancolor',[r g b]) or freezeColors(axh,'nancolor',[r g b]),
% where [r g b] is a color vector. This works on images & pcolor, but not on
% surfaces.
% Thanks to Fabiano Busdraghi and Jody Klymak for the suggestions. Bugfixes
% attributed in the code.
% Free for all uses, but please retain the following:
% Original Author:
% John Iversen, 2005-10
% [email protected]
appdatacode = 'JRI__freezeColorsData';
[h, nancolor] = checkArgs(varargin);
%gather all children with scaled or indexed CData
cdatah = getCDataHandles(h);
%current colormap
cmap = colormap;
nColors = size(cmap,1);
cax = caxis;
% convert object color indexes into colormap to true-color data using
% current colormap
for hh = cdatah',
g = get(hh);
%preserve parent axis clim
parentAx = getParentAxes(hh);
originalClim = get(parentAx, 'clim');
% Note: Special handling of patches: For some reason, setting
% cdata on patches created by bar() yields an error,
% so instead we'll set facevertexcdata instead for patches.
if ~strcmp(g.Type,'patch'),
cdata = g.CData;
else
cdata = g.FaceVertexCData;
end
%get cdata mapping (most objects (except scattergroup) have it)
if isfield(g,'CDataMapping'),
scalemode = g.CDataMapping;
else
scalemode = 'scaled';
end
%save original indexed data for use with unfreezeColors
siz = size(cdata);
setappdata(hh, appdatacode, {cdata scalemode});
%convert cdata to indexes into colormap
if strcmp(scalemode,'scaled'),
%4/19/06 JRI, Accommodate scaled display of integer cdata:
% in MATLAB, uint * double = uint, so must coerce cdata to double
% Thanks to O Yamashita for pointing this need out
idx = ceil( (double(cdata) - cax(1)) / (cax(2)-cax(1)) * nColors);
else %direct mapping
idx = cdata;
%10/8/09 in case direct data is non-int (e.g. image;freezeColors)
% (Floor mimics how matlab converts data into colormap index.)
% Thanks to D Armyr for the catch
idx = floor(idx);
end
%clamp to [1, nColors]
idx(idx<1) = 1;
idx(idx>nColors) = nColors;
%handle nans in idx
nanmask = isnan(idx);
idx(nanmask)=1; %temporarily replace w/ a valid colormap index
%make true-color data--using current colormap
realcolor = zeros(siz);
for i = 1:3,
c = cmap(idx,i);
c = reshape(c,siz);
c(nanmask) = nancolor(i); %restore Nan (or nancolor if specified)
realcolor(:,:,i) = c;
end
%apply new true-color color data
%true-color is not supported in painters renderer, so switch out of that
if strcmp(get(gcf,'renderer'), 'painters'),
set(gcf,'renderer','zbuffer');
end
%replace original CData with true-color data
if ~strcmp(g.Type,'patch'),
set(hh,'CData',realcolor);
else
set(hh,'faceVertexCData',permute(realcolor,[1 3 2]))
end
%restore clim (so colorbar will show correct limits)
if ~isempty(parentAx),
set(parentAx,'clim',originalClim)
end
end %loop on indexed-color objects
% ============================================================================ %
% Local functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% getCDataHandles -- get handles of all descendents with indexed CData
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hout = getCDataHandles(h)
% getCDataHandles Find all objects with indexed CData
%recursively descend object tree, finding objects with indexed CData
% An exception: don't include children of objects that themselves have CData:
% for example, scattergroups are non-standard hggroups, with CData. Changing
% such a group's CData automatically changes the CData of its children,
% (as well as the children's handles), so there's no need to act on them.
error(nargchk(1,1,nargin,'struct'))
hout = [];
if isempty(h),return;end
ch = get(h,'children');
for hh = ch'
g = get(hh);
if isfield(g,'CData'), %does object have CData?
%is it indexed/scaled?
if ~isempty(g.CData) && isnumeric(g.CData) && size(g.CData,3)==1,
hout = [hout; hh]; %#ok<AGROW> %yes, add to list
end
else %no CData, see if object has any interesting children
hout = [hout; getCDataHandles(hh)]; %#ok<AGROW>
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% getParentAxes -- return handle of axes object to which a given object belongs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hAx = getParentAxes(h)
% getParentAxes Return enclosing axes of a given object (could be self)
error(nargchk(1,1,nargin,'struct'))
%object itself may be an axis
if strcmp(get(h,'type'),'axes'),
hAx = h;
return
end
parent = get(h,'parent');
if (strcmp(get(parent,'type'), 'axes')),
hAx = parent;
else
hAx = getParentAxes(parent);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% checkArgs -- Validate input arguments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, nancolor] = checkArgs(args)
% checkArgs Validate input arguments to freezeColors
nargs = length(args);
error(nargchk(0,3,nargs,'struct'))
%grab handle from first argument if we have an odd number of arguments
if mod(nargs,2),
h = args{1};
if ~ishandle(h),
error('JRI:freezeColors:checkArgs:invalidHandle',...
'The first argument must be a valid graphics handle (to an axis)')
end
% 4/2010 check if object to be frozen is a colorbar
if strcmp(get(h,'Tag'),'Colorbar'),
if ~exist('cbfreeze.m'),
warning('JRI:freezeColors:checkArgs:cannotFreezeColorbar',...
['You seem to be attempting to freeze a colorbar. This no longer'...
'works. Please read the help for freezeColors for the solution.'])
else
cbfreeze(h);
return
end
end
args{1} = [];
nargs = nargs-1;
else
h = gca;
end
%set nancolor if that option was specified
nancolor = [nan nan nan];
if nargs == 2,
if strcmpi(args{end-1},'nancolor'),
nancolor = args{end};
if ~all(size(nancolor)==[1 3]),
error('JRI:freezeColors:checkArgs:badColorArgument',...
'nancolor must be [r g b] vector');
end
nancolor(nancolor>1) = 1; nancolor(nancolor<0) = 0;
else
error('JRI:freezeColors:checkArgs:unrecognizedOption',...
'Unrecognized option (%s). Only ''nancolor'' is valid.',args{end-1})
end
end
|
github
|
lcnbeapp/beapp-master
|
nmt_update_panel.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/nutmegtrip/private/nmt_update_panel.m
| 7,882 |
utf_8
|
6d1fc15425b5436887f56bbc1fd41370
|
function nmt_update_panel(axsel)
global st
%% update time series, if applicable
if(isfield(st.nmt,'time')) %& ~isfield(st.nmt,'freq'))
set(st.nmt.gui.timeguih,'Visible','On'); % ensure plot is visible
switch(st.nmt.cfg.plottype)
case 'tf'
clim = max(abs(st.nmt.fun{axsel}(:))) * [-1 1];
set(st.nmt.gui.freqguih,'Visible','On'); % ensure plot is visible
if(all(st.nmt.freq(1,:) == [0 0])) % if the first row contains evoked data
st.nmt.gui.h_tf = nmt_tfplot(st.nmt.gui.ax_ts(axsel),st.nmt.time,st.nmt.freq(2:end,:),squeeze(st.nmt.fun{axsel}(st.nmt.cfg.vox_idx,:,2:end)),clim,@nmt_repos_start);
else
st.nmt.gui.h_tf = nmt_tfplot(st.nmt.gui.ax_ts(axsel),st.nmt.time,st.nmt.freq,squeeze(st.nmt.fun{axsel}(st.nmt.cfg.vox_idx,:,:)),clim,@nmt_repos_start);
end
case 'ts'
if(isfinite(st.nmt.cfg.vox_idx))
plot(st.nmt.gui.ax_ts(axsel),st.nmt.time,squeeze(st.nmt.fun{axsel}(st.nmt.cfg.vox_idx,:,:)));
grid(st.nmt.gui.ax_ts(axsel),'on');
else
plot(st.nmt.gui.ax_ts(axsel),st.nmt.time,nan(length(st.nmt.time),1));
end
% set y-axis range based on whole volume range (single time point), or
% selected timeslice range
if(st.nmt.cfg.time_idx(1)==st.nmt.cfg.time_idx(2))
ymin = min(st.nmt.fun{axsel}(:));
ymax = max(st.nmt.fun{axsel}(:));
else
ymin = min(min(st.nmt.fun{axsel}(:,st.nmt.cfg.time_idx(1):st.nmt.cfg.time_idx(2))));
ymax = max(max(st.nmt.fun{axsel}(:,st.nmt.cfg.time_idx(1):st.nmt.cfg.time_idx(2))));
end
set(st.nmt.gui.ax_ts(axsel),'YLim',[ymin ymax]);
end
set(st.nmt.gui.ax_ts(axsel),'XLim',st.nmt.time([1 end]));
xlabel(st.nmt.gui.ax_ts(axsel),['Time (s)']);
%% plot vertical line indicating selected time point
switch(st.nmt.cfg.plottype)
case 'ts'
ylim=get(st.nmt.gui.ax_ts(axsel),'YLim');
case 'tf'
ylim = [st.nmt.freq(st.nmt.cfg.freq_idx(1),1) st.nmt.freq(st.nmt.cfg.freq_idx(2),2)];
end
axes(st.nmt.gui.ax_ts(axsel));
zlim = get(st.nmt.gui.ax_ts(axsel),'ZLim'); % selection patch needs to have a Z higher than the TF range so that it's not hidden by the TF plot
h=patch([st.nmt.time(st.nmt.cfg.time_idx(1)) st.nmt.time(st.nmt.cfg.time_idx(2)) st.nmt.time(st.nmt.cfg.time_idx(2)) st.nmt.time(st.nmt.cfg.time_idx(1))]',[ylim(1) ylim(1) ylim(2) ylim(2)]',[zlim(2) zlim(2) zlim(2) zlim(2)],[1 0.4 0.4],'EdgeColor','red');
set(st.nmt.gui.ax_ts(axsel),'ButtonDownFcn',@nmt_repos_start);
switch('disabled') % TODO: hook for overlaying time series on TF plot;
% perhaps better solution is independent nmt_spm_plot call for each funparameter
case 'tf'
if(st.nmt.cfg.evokedoverlay)
% trick to overlay time series taken from plotyy.m
ylim=get(st.nmt.gui.ax_ts(axsel,2),'YLim');
ts=squeeze(st.nmt.fun{axsel}(st.nmt.cfg.vox_idx,:,1));
axes(st.nmt.gui.ax_ts(axsel,2));
plot(st.nmt.gui.ax_ts(axsel,2),st.nmt.time,ts);
set(st.nmt.gui.ax_ts(axsel,2),'YAxisLocation','right','Color','none', ...
'XGrid','off','YGrid','off','Box','off', ...
'HitTest','off','Visible','on');
end
end
%% update GUI textboxes
set(st.nmt.gui.t1,'String',num2str(st.nmt.time(st.nmt.cfg.time_idx(1))));
set(st.nmt.gui.t2,'String',num2str(st.nmt.time(st.nmt.cfg.time_idx(2))));
if(1)
set(st.nmt.gui.f1,'Value',st.nmt.cfg.freq_idx(1));
set(st.nmt.gui.f2,'Value',st.nmt.cfg.freq_idx(2));
else
set(st.nmt.gui.f1,'String',num2str(st.nmt.freq(st.nmt.cfg.freq_idx(1),1)));
set(st.nmt.gui.f2,'String',num2str(st.nmt.freq(st.nmt.cfg.freq_idx(2),2)));
end
%% optionally add topoplot
switch(st.nmt.cfg.topoplot)
case 'timelock'
cfgplot.xlim = st.nmt.time(st.nmt.cfg.time_idx);
cfgplot.zlim = 'maxabs';
nmt_addtopo(cfgplot,st.nmt.timelock);
case {'spatialfilter','leadfield','leadfieldX','leadfieldY','leadfieldZ','leadfieldori'}
% FIXME: this isn't so elegant :-)
% currently steals some information from timelock structure
topo.label = st.nmt.timelock.label;
topo.grad = st.nmt.timelock.grad;
topo.dimord = 'chan_time';
topo.time = [0 1 2 3]; % not really time, but selection of magnitude or x/y/z components
switch(cfg.topoplot)
case 'spatialfilter'
topo.time = 0; % fake time (take vector norm)
cfgplot.xlim = [topo.time topo.time];
cfgplot.zlim = 'maxabs';
topo.avg = st.nmt.spatialfilter{st.nmt.cfg.vox_idx}';
case {'leadfield','leadfieldX','leadfieldY','leadfieldZ'}
switch(cfg.topoplot)
case 'leadfield'
topo.time = 0; % fake time (take vector norm)
topo.avg = nut_rownorm(st.nmt.grid.leadfield{st.nmt.cfg.vox_idx}); % TODO: remove dependency on nut_rownorm (from NUTMEG)
case 'leadfieldX'
topo.time = 1;
topo.avg = st.nmt.grid.leadfield{st.nmt.cfg.vox_idx};
case 'leadfieldY'
topo.time = 2;
topo.avg = st.nmt.grid.leadfield{st.nmt.cfg.vox_idx};
case 'leadfieldZ'
topo.time = 3;
topo.avg = st.nmt.grid.leadfield{st.nmt.cfg.vox_idx};
end
cfgplot.xlim = [topo.time topo.time];
cfgplot.zlim = 'maxabs';
% case 'leadfieldX'
% topo.time = 1; % fake time (corresponds to x-orientation)
% cfgplot.xlim = [topo.time topo.time];
% cfgplot.zlim = 'maxabs';
% topo.avg = st.nmt.grid.leadfield{st.nmt.cfg.vox_idx};
% case 'leadfieldY'
% topo.time = 2; % fake time (corresponds to y-orientation)
% cfgplot.xlim = [topo.time topo.time];
% cfgplot.zlim = 'maxabs';
% topo.avg = st.nmt.grid.leadfield{st.nmt.cfg.vox_idx};
% case 'leadfieldZ'
% topo.time = 3; % fake time (corresponds to z-orientation)
% cfgplot.xlim = [topo.time topo.time];
% cfgplot.zlim = 'maxabs';
% topo.avg = nut_rownorm(st.nmt.grid.leadfield{st.nmt.cfg.vox_idx});
% case 'leadfieldori'
% error('TODO: not yet implemented');
end
nmt_addtopo(cfgplot,topo);
case {'no',''}
% do nothing
otherwise
error('requested cfg.topoplot parameter is not supported.');
end
end
function nmt_repos_start(varargin)
global st
set(gcbf,'windowbuttonmotionfcn',@nmt_repos_move, 'windowbuttonupfcn',@nmt_repos_end);
nmt_timeselect('ts');
%_______________________________________________________________________
%_______________________________________________________________________
function nmt_repos_move(varargin)
nmt_timeselect('ts');
%_______________________________________________________________________
%_______________________________________________________________________
function nmt_repos_end(varargin)
set(gcbf,'windowbuttonmotionfcn','', 'windowbuttonupfcn','');
|
github
|
lcnbeapp/beapp-master
|
getdimsiz.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/contrib/nutmegtrip/private/getdimsiz.m
| 2,235 |
utf_8
|
340d495a654f2f6752aa1af7ac915390
|
function dimsiz = getdimsiz(data, field)
% GETDIMSIZ
%
% Use as
% dimsiz = getdimsiz(data, field)
%
% If the length of the vector that is returned is smaller than the
% number of dimensions that you would expect from GETDIMORD, you
% should assume that it has trailing singleton dimensions.
%
% Example use
% dimord = getdimord(datastructure, fieldname);
% dimtok = tokenize(dimord, '_');
% dimsiz = getdimsiz(datastructure, fieldname);
% dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
%
% See also GETDIMORD, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = [];
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % move the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = numel(data.trial);
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % move the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = [];
end
dimsiz = cellmatsize(data.(field));
% add nrpt in case of source.trial
dimsiz = [prefix dimsiz];
end % main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the size of data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = cellmatsize(x)
if iscell(x)
if isempty(x)
siz = 0;
return % nothing else to do
elseif isvector(x)
cellsize = numel(x); % the number of elements in the cell-array
else
cellsize = size(x);
x = x(:); % convert to vector for further size detection
end
[dum, indx] = max(cellfun(@numel, x));
matsize = size(x{indx}); % the size of the content of the cell-array
siz = [cellsize matsize]; % concatenate the two
else
siz = size(x);
end
end % function cellmatsize
|
github
|
lcnbeapp/beapp-master
|
getdimord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/getdimord.m
| 20,107 |
utf_8
|
706f4f45a5d4ae7535c204b8c010f76b
|
function dimord = getdimord(data, field, varargin)
% GETDIMORD
%
% Use as
% dimord = getdimord(data, field)
%
% See also GETDIMSIZ, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = '';
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % copy the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = '(rpt)_';
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % copy the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = '';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 1: the specific dimord is simply present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, [field 'dimord'])
dimord = data.([field 'dimord']);
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if not present, we need some additional information about the data strucure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nan means that the value is not known and might remain unknown
% inf means that the value is not known but should be known
ntime = inf;
nfreq = inf;
nchan = inf;
nchancmb = inf;
nsubj = nan;
nrpt = nan;
nrpttap = nan;
npos = inf;
nori = nan; % this will be 3 in many cases
ntopochan = inf;
nspike = inf; % this is only for the first spike channel
nlag = nan;
ndim1 = nan;
ndim2 = nan;
ndim3 = nan;
% use an anonymous function
assign = @(var, val) assignin('caller', var, val);
% it is possible to pass additional ATTEMPTs such as nrpt, nrpttap, etc
for i=1:2:length(varargin)
assign(varargin{i}, varargin{i+1});
end
% try to determine the size of each possible dimension in the data
if isfield(data, 'label')
nchan = length(data.label);
end
if isfield(data, 'labelcmb')
nchancmb = size(data.labelcmb, 1);
end
if isfield(data, 'time')
if iscell(data.time) && ~isempty(data.time)
tmp = getdimsiz(data, 'time');
ntime = tmp(3); % raw data may contain variable length trials
else
ntime = length(data.time);
end
end
if isfield(data, 'freq')
nfreq = length(data.freq);
end
if isfield(data, 'trial') && ft_datatype(data, 'raw')
nrpt = length(data.trial);
end
if isfield(data, 'trialtime') && ft_datatype(data, 'spike')
nrpt = size(data.trialtime,1);
end
if isfield(data, 'cumtapcnt')
nrpt = size(data.cumtapcnt,1);
if numel(data.cumtapcnt)==length(data.cumtapcnt)
% it is a vector, hence it only represents repetitions
nrpttap = sum(data.cumtapcnt);
else
% it is a matrix, hence it is repetitions by frequencies
% this happens after mtmconvol with keeptrials
nrpttap = sum(data.cumtapcnt,2);
if any(nrpttap~=nrpttap(1))
warning('unexpected variation of the number of tapers over trials')
nrpttap = nan;
else
nrpttap = nrpttap(1);
end
end
end
if isfield(data, 'pos')
npos = size(data.pos,1);
elseif isfield(data, 'dim')
npos = prod(data.dim);
end
if isfield(data, 'dim')
ndim1 = data.dim(1);
ndim2 = data.dim(2);
ndim3 = data.dim(3);
end
if isfield(data, 'csdlabel')
% this is used in PCC beamformers
if length(data.csdlabel)==npos
% each position has its own labels
len = cellfun(@numel, data.csdlabel);
len = len(len~=0);
if all(len==len(1))
% they all have the same length
nori = len(1);
end
else
% one list of labels for all positions
nori = length(data.csdlabel);
end
elseif isfinite(npos)
% assume that there are three dipole orientations per source
nori = 3;
end
if isfield(data, 'topolabel')
% this is used in ICA and PCA decompositions
ntopochan = length(data.topolabel);
end
if isfield(data, 'timestamp') && iscell(data.timestamp)
nspike = length(data.timestamp{1}); % spike data: only for the first channel
end
if ft_datatype(data, 'mvar') && isfield(data, 'coeffs')
nlag = size(data.coeffs,3);
end
% determine the size of the actual data
datsiz = getdimsiz(data, field);
tok = {'subj' 'rpt' 'rpttap' 'chan' 'chancmb' 'freq' 'time' 'pos' 'ori' 'topochan' 'lag' 'dim1' 'dim2' 'dim3'};
siz = [nsubj nrpt nrpttap nchan nchancmb nfreq ntime npos nori ntopochan nlag ndim1 ndim2 ndim3];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 2: a general dimord is present and might apply
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, 'dimord')
dimtok = tokenize(data.dimord, '_');
if length(dimtok)>length(datsiz) && check_trailingdimsunitlength(data, dimtok((length(datsiz)+1):end))
% add the trailing singleton dimensions to datsiz, if needed
datsiz = [datsiz ones(1,max(0,length(dimtok)-length(datsiz)))];
end
if length(dimtok)==length(datsiz) || (length(dimtok)==(length(datsiz)-1) && datsiz(end)==1)
success = false(size(dimtok));
for i=1:length(dimtok)
sel = strcmp(tok, dimtok{i});
if any(sel) && datsiz(i)==siz(sel)
success(i) = true;
elseif strcmp(dimtok{i}, 'subj')
% the number of subjects cannot be determined, and will be indicated as nan
success(i) = true;
elseif strcmp(dimtok{i}, 'rpt')
% the number of trials is hard to determine, and might be indicated as nan
success(i) = true;
end
end % for
if all(success)
dimord = data.dimord;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 3: look at the size of some common fields that are known
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch field
% the logic for this code is to first check whether the size of a field
% has an exact match to a potential dimensionality, if not, check for a
% partial match (ignoring nans)
% note that the case for a cell dimension (typically pos) is handled at
% the end of this section
case {'pos'}
if isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_unknown';
end
case {'individual'}
if isequalwithoutnans(datsiz, [nsubj nchan ntime])
dimord = 'subj_chan_time';
end
case {'avg' 'var' 'dof'}
if isequal(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequal(datsiz, [nchan ntime])
dimord = 'chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nchan ntime])
dimord = 'chan_time';
end
case {'powspctrm' 'fourierspctrm'}
if isequal(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequal(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequal(datsiz, [nchan nfreq])
dimord = 'chan_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nfreq])
dimord = 'chan_freq';
end
case {'crsspctrm' 'cohspctrm'}
if isequal(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequal(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequal(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequal(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequal(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequal(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequal(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequal(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequalwithoutnans(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
end
case {'cov' 'coh' 'csd' 'noisecov' 'noisecsd'}
% these occur in timelock and in source structures
if isequal(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequal(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequal(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequal(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequalwithoutnans(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequalwithoutnans(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequalwithoutnans(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
end
case {'tf'}
if isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'pow'}
if isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequal(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequal(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
elseif isequal(datsiz, [npos 1]) % in case there are no repetitions
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequalwithoutnans(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
end
case {'mom','itc','aa','stat','pval','statitc','pitc'}
if isequal(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequal(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequal(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequalwithoutnans(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequalwithoutnans(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nrpt nori ntime])
dimord = 'pos_rpt_ori_time';
elseif isequalwithoutnans(datsiz, [npos nrpt 1 ntime])
dimord = 'pos_rpt_ori_time';
elseif isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'filter'}
if isequalwithoutnans(datsiz, [npos nori nchan]) || (isequal(datsiz([1 2]), [npos nori]) && isinf(nchan))
dimord = 'pos_ori_chan';
end
case {'leadfield'}
if isequalwithoutnans(datsiz, [npos nchan nori]) || (isequal(datsiz([1 3]), [npos nori]) && isinf(nchan))
dimord = 'pos_chan_ori';
end
case {'ori' 'eta'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'csdlabel'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'trial'}
if ~iscell(data.(field)) && isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = '{rpt}_chan_time';
elseif isequalwithoutnans(datsiz, [nchan nspike]) || isequalwithoutnans(datsiz, [nchan 1 nspike])
dimord = '{chan}_spike';
end
case {'sampleinfo' 'trialinfo' 'trialtime'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'cumtapcnt' 'cumsumcnt'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'topo'}
if isequalwithoutnans(datsiz, [ntopochan nchan])
dimord = 'topochan_chan';
end
case {'unmixing'}
if isequalwithoutnans(datsiz, [nchan ntopochan])
dimord = 'chan_topochan';
end
case {'inside'}
if isequalwithoutnans(datsiz, [npos])
dimord = 'pos';
end
case {'timestamp' 'time'}
if ft_datatype(data, 'spike') && iscell(data.(field)) && datsiz(1)==nchan
dimord = '{chan}_spike';
elseif ft_datatype(data, 'raw') && iscell(data.(field)) && datsiz(1)==nrpt
dimord = '{rpt}_time';
elseif isvector(data.(field)) && isequal(datsiz, [1 ntime ones(1,numel(datsiz)-2)])
dimord = 'time';
end
case {'freq'}
if isvector(data.(field)) && isequal(datsiz, [1 nfreq])
dimord = 'freq';
end
otherwise
if isfield(data, 'dim') && isequal(datsiz, data.dim)
dimord = 'dim1_dim2_dim3';
end
end % switch field
% deal with possible first pos which is a cell
if exist('dimord', 'var') && strcmp(dimord(1:3), 'pos') && iscell(data.(field))
dimord = ['{pos}' dimord(4:end)];
end
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 4: there is only one way that the dimensions can be interpreted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dimtok = cell(size(datsiz));
for i=1:length(datsiz)
sel = find(siz==datsiz(i));
if length(sel)==1
% there is exactly one corresponding dimension
dimtok{i} = tok{sel};
else
% there are zero or multiple corresponding dimensions
dimtok{i} = [];
end
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 5: compare the size with the known size of each dimension
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sel = ~isnan(siz) & ~isinf(siz);
% nan means that the value is not known and might remain unknown
% inf means that the value is not known and but should be known
if length(unique(siz(sel)))==length(siz(sel))
% this should only be done if there is no chance of confusing dimensions
dimtok = cell(size(datsiz));
dimtok(datsiz==npos) = {'pos'};
dimtok(datsiz==nori) = {'ori'};
dimtok(datsiz==nrpttap) = {'rpttap'};
dimtok(datsiz==nrpt) = {'rpt'};
dimtok(datsiz==nsubj) = {'subj'};
dimtok(datsiz==nchancmb) = {'chancmb'};
dimtok(datsiz==nchan) = {'chan'};
dimtok(datsiz==nfreq) = {'freq'};
dimtok(datsiz==ntime) = {'time'};
dimtok(datsiz==ndim1) = {'dim1'};
dimtok(datsiz==ndim2) = {'dim2'};
dimtok(datsiz==ndim3) = {'dim3'};
if isempty(dimtok{end}) && datsiz(end)==1
% remove the unknown trailing singleton dimension
dimtok = dimtok(1:end-1);
elseif isequal(dimtok{1}, 'pos') && isempty(dimtok{2}) && datsiz(2)==1
% remove the unknown leading singleton dimension
dimtok(2) = [];
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 6: check whether it is a 3-D volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isequal(datsiz, [ndim1 ndim2 ndim3])
dimord = 'dim1_dim2_dim3';
end
end % if dimord does not exist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FINAL RESORT: return "unknown" for all unknown dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('dimord', 'var')
% this should not happen
% if it does, it might help in diagnosis to have a very informative warning message
% since there have been problems with trials not being selected correctly due to the warning going unnoticed
% it is better to throw an error than a warning
warning('could not determine dimord of "%s" in the following data', field)
disp(data);
dimtok(cellfun(@isempty, dimtok)) = {'unknown'};
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
end
end
% add '(rpt)' in case of source.trial
dimord = [prefix dimord];
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = isequalwithoutnans(a, b)
% this is *only* used to compare matrix sizes, so we can ignore any singleton last dimension
numdiff = numel(b)-numel(a);
if numdiff > 0
% assume singleton dimensions missing in a
a = [a(:); ones(numdiff, 1)];
b = b(:);
elseif numdiff < 0
% assume singleton dimensions missing in b
b = [b(:); ones(abs(numdiff), 1)];
a = a(:);
end
c = ~isnan(a(:)) & ~isnan(b(:));
ok = isequal(a(c), b(c));
end % function isequalwithoutnans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = check_trailingdimsunitlength(data, dimtok)
ok = false;
for k = 1:numel(dimtok)
switch dimtok{k}
case 'chan'
ok = numel(data.label)==1;
otherwise
if isfield(data, dimtok{k}); % check whether field exists
ok = numel(data.(dimtok{k}))==1;
end;
end
if ok,
break;
end
end
end % function check_trailingdimsunitlength
|
github
|
lcnbeapp/beapp-master
|
pinvNx2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/pinvNx2.m
| 1,116 |
utf_8
|
a10c4b3cf66f4a8756fdb95d62b5e04a
|
function y = pinvNx2(x)
% PINVNX2 computes a pseudo-inverse of the slices of an Nx2xM real-valued matrix.
% Output has dimensionality 2xNxM. This implementation is generally faster
% than calling pinv in a for-loop, once M > 2
siz = [size(x) 1];
xtx = zeros([2,2,siz(3:end)]);
xtx(1,1,:,:) = sum(x(:,1,:,:).^2,1);
xtx(2,2,:,:) = sum(x(:,2,:,:).^2,1);
tmp = sum(x(:,1,:,:).*x(:,2,:,:),1);
xtx(1,2,:,:) = tmp;
xtx(2,1,:,:) = tmp;
ixtx = inv2x2(xtx);
y = mtimes2xN(ixtx, permute(x, [2 1 3:ndims(x)]));
function [d] = inv2x2(x)
% INV2X2 computes inverse of matrix x, where x = 2x2xN, using explicit analytic definition
adjx = [x(2,2,:,:) -x(1,2,:,:); -x(2,1,:,:) x(1,1,:,:)];
denom = x(1,1,:,:).*x(2,2,:,:) - x(1,2,:,:).*x(2,1,:,:);
d = adjx./denom([1 1],[1 1],:,:);
function [z] = mtimes2xN(x, y)
% MTIMES2XN computes x*y where x = 2x2xM and y = 2xNxM
% and output dimensionatity is 2xNxM
siz = size(y);
z = zeros(siz);
for k = 1:siz(2)
z(1,k,:,:) = x(1,1,:,:).*y(1,k,:,:) + x(1,2,:,:).*y(2,k,:,:);
z(2,k,:,:) = x(2,1,:,:).*y(1,k,:,:) + x(2,2,:,:).*y(2,k,:,:);
end
|
github
|
lcnbeapp/beapp-master
|
avw_hdr_make.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/avw_hdr_make.m
| 4,168 |
utf_8
|
c530411ae12b3b3ce7cc6adfa1512f8c
|
function [ avw ] = avw_hdr_make
% AVW_HDR_MAKE - Create Analyze format data header (avw.hdr)
%
% [ avw ] = avw_hdr_make
%
% avw.hdr - a struct, all fields returned from the header.
% For details, find a good description on the web
% or see the Analyze File Format pdf in the
% mri_toolbox doc folder or see avw_hdr_read.m
%
% See also, AVW_HDR_READ AVW_HDR_WRITE
% AVW_IMG_READ AVW_IMG_WRITE
%
% $Revision$ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 06/2002, [email protected]
% 02/2003, [email protected]
% date/time bug at lines 97-98
% identified by [email protected]
%
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
version = '[$Revision$]';
fprintf('\nAVW_HDR_MAKE [v%s]\n',version(12:16)); tic;
% Comments
% The header format is flexible and can be extended for new
% user-defined data types. The essential structures of the header
% are the header_key and the image_dimension. See avw_hdr_read
% for more detail of the header structure
avw.hdr = make_header;
t=toc; fprintf('...done (%5.2f sec).\n',t);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ hdr ] = make_header
hdr.hk = header_key;
hdr.dime = image_dimension;
hdr.hist = data_history;
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hk] = header_key
hk.sizeof_hdr = int32(348); % must be 348!
hk.data_type(1:10) = sprintf('%10s','');
hk.db_name(1:18) = sprintf('%18s','');
hk.extents = int32(16384);
hk.session_error = int16(0);
hk.regular = sprintf('%1s','r'); % might be uint8
hk.hkey_un0 = uint8(0);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dime ] = image_dimension
dime.dim(1:8) = int16([4 256 256 256 1 0 0 0]);
dime.vox_units(1:4) = sprintf('%4s','mm');
dime.cal_units(1:8) = sprintf('%8s','');
dime.unused1 = int16(0);
dime.datatype = int16(2);
dime.bitpix = int16(8);
dime.dim_un0 = int16(0);
dime.pixdim(1:8) = single([0 1 1 1 1000 0 0 0]);
dime.vox_offset = single(0);
dime.funused1 = single(0);
dime.funused2 = single(0);
% Set default 8bit intensity scale (from MRIcro), otherwise funused3
dime.roi_scale = single(1);
dime.cal_max = single(0);
dime.cal_min = single(0);
dime.compressed = int32(0);
dime.verified = int32(0);
dime.glmax = int32(255);
dime.glmin = int32(0);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ hist ] = data_history
datime = clock;
hist.descrip(1:80) = sprintf('%-80s','mri_toolbox @ http://eeg.sf.net/');
hist.aux_file(1:24) = sprintf('%-24s','');
hist.orient = uint8(0); % sprintf( '%1s',''); % see notes in avw_hdr_read
hist.originator(1:10) = sprintf('%-10s','');
hist.generated(1:10) = sprintf('%-10s','mri_toolbx');
hist.scannum(1:10) = sprintf('%-10s','');
hist.patient_id(1:10) = sprintf('%-10s','');
hist.exp_date(1:10) = sprintf('%02d-%02d-%04d',datime(3),datime(2),datime(1));
hist.exp_time(1:10) = sprintf('%02d-%02d-%04.1f',datime(4),datime(5),datime(6));
hist.hist_un0(1:3) = sprintf( '%-3s','');
hist.views = int32(0);
hist.vols_added = int32(0);
hist.start_field = int32(0);
hist.field_skip = int32(0);
hist.omax = int32(0);
hist.omin = int32(0);
hist.smax = int32(0);
hist.smin = int32(0);
return
|
github
|
lcnbeapp/beapp-master
|
prepare_mesh_headshape.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/prepare_mesh_headshape.m
| 8,455 |
utf_8
|
26d86124f7d9a9099dfc853ed4f9d203
|
function mesh = prepare_mesh_headshape(cfg)
% PREPARE_MESH_HEADSHAPE
%
% See also PREPARE_MESH_MANUAL, PREPARE_MESH_SEGMENTATION
% Copyrights (C) 2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% get the specific options
cfg.headshape = ft_getopt(cfg, 'headshape');
if isa(cfg, 'config')
% convert the config-object back into a normal structure
cfg = struct(cfg);
end
if isa(cfg.headshape, 'config')
% convert the nested config-object back into a normal structure
cfg.headshape = struct(cfg.headshape);
end
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pos')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = fixpos(cfg.headshape);
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
% usually a headshape only describes a single surface boundaries, but there are cases
% that multiple surfaces are included, e.g. skin_surface, outer_skull_surface, inner_skull_surface
nmesh = numel(headshape);
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
for i=1:nmesh
headshape(i).pos = unique(headshape(i).pos, 'rows');
headshape(i).tri = projecttri(headshape(i).pos);
end
end
if ~isempty(cfg.numvertices) && ~strcmp(cfg.numvertices, 'same')
for i=1:nmesh
tri1 = headshape(i).tri;
pos1 = headshape(i).pos;
% The number of vertices is multiplied by 3 in order to have more
% points on the original mesh than on the sphere mesh (see below).
% The rationale for this is that every projection point on the sphere
% has three corresponding points on the mesh
if (cfg.numvertices>size(pos1,1))
[tri1, pos1] = refinepatch(headshape(i).tri, headshape(i).pos, 3*cfg.numvertices);
else
[tri1, pos1] = reducepatch(headshape(i).tri, headshape(i).pos, 3*cfg.numvertices);
end
% remove double vertices
[pos1, tri1] = remove_double_vertices(pos1, tri1);
% replace the probably unevenly distributed triangulation with a regular one
% and retriangulate it to the desired accuracy
[pos2, tri2] = mysphere(cfg.numvertices); % this is a regular triangulation
[pos1, tri1] = retriangulate(pos1, tri1, pos2, tri2, 2);
[pos1, tri1] = fairsurface(pos1, tri1, 1);% this helps redistribute the superimposed points
% remove double vertices
[headshape(i).pos,headshape(i).tri] = remove_double_vertices(pos1, tri1);
fprintf('returning %d vertices, %d triangles\n', size(headshape(i).pos,1), size(headshape(i).tri,1));
end
end
% the output should only describe one or multiple boundaries and should not
% include any other fields
mesh = rmfield(headshape, setdiff(fieldnames(headshape), {'pos', 'tri'}));
function [tri1, pos1] = refinepatch(tri, pos, numvertices)
fprintf('the original mesh has %d vertices against the %d requested\n',size(pos,1),numvertices/3);
fprintf('trying to refine the compartment...\n');
[pos1, tri1] = refine(pos, tri, 'updown', numvertices);
function [pos, tri] = mysphere(N)
% This is a copy of MSPHERE without the confusing output message
% Returns a triangulated sphere with approximately M vertices
% that are nicely distributed over the sphere. The vertices are aligned
% along equally spaced horizontal contours according to an algorithm of
% Dave Russel.
%
% Use as
% [pos, tri] = msphere(M)
%
% See also SPHERE, NSPHERE, ICOSAHEDRON, REFINE
% Copyright (C) 1994, Dave Rusin
storeM = [];
storelen = [];
increaseM = 0;
while (1)
% put a single vertex at the top
phi = [0];
th = [0];
M = round((pi/4)*sqrt(N)) + increaseM;
for k=1:M
newphi = (k/M)*pi;
Q = round(2*M*sin(newphi));
for j=1:Q
phi(end+1) = newphi;
th(end+1) = (j/Q)*2*pi;
% in case of even number of contours
if mod(M,2) & k>(M/2)
th(end) = th(end) + pi/Q;
end
end
end
% put a single vertex at the bottom
phi(end+1) = [pi];
th(end+1) = [0];
% store this vertex packing
storeM(end+1).th = th;
storeM(end ).phi = phi;
storelen(end+1) = length(phi);
if storelen(end)>N
break;
else
increaseM = increaseM+1;
% fprintf('increasing M by %d\n', increaseM);
end
end
% take the vertex packing that most closely matches the requirement
[m, i] = min(abs(storelen-N));
th = storeM(i).th;
phi = storeM(i).phi;
% convert from spherical to cartehsian coordinates
[x, y, z] = sph2cart(th, pi/2-phi, 1);
pos = [x' y' z'];
tri = convhulln(pos);
function [pos1, tri1] = fairsurface(pos, tri, N)
% FAIRSURFACE modify the mesh in order to reduce overlong edges, and
% smooth out "rough" areas. This is a non-shrinking smoothing algorithm.
% The procedure uses an elastic model : At each vertex, the neighbouring
% triangles and vertices connected directly are used. Each edge is
% considered elastic and can be lengthened or shortened, depending
% on their length. Displacement are done in 3D, so that holes and
% bumps are attenuated.
%
% Use as
% [pos, tri] = fairsurface(pos, tri, N);
% where N is the number of smoothing iterations.
%
% This implements:
% G.Taubin, A signal processing approach to fair surface design, 1995
% This function corresponds to spm_eeg_inv_ElastM
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Christophe Phillips & Jeremie Mattout
% spm_eeg_inv_ElastM.m 1437 2008-04-17 10:34:39Z christophe
%
% $Id$
ts = [];
ts.XYZmm = pos';
ts.tri = tri';
ts.nr(1) = size(pos,1);
ts.nr(2) = size(tri,1);
% Connection vertex-to-vertex
%--------------------------------------------------------------------------
M_con = sparse([ts.tri(1,:)';ts.tri(1,:)';ts.tri(2,:)';ts.tri(3,:)';ts.tri(2,:)';ts.tri(3,:)'], ...
[ts.tri(2,:)';ts.tri(3,:)';ts.tri(1,:)';ts.tri(1,:)';ts.tri(3,:)';ts.tri(2,:)'], ...
ones(ts.nr(2)*6,1),ts.nr(1),ts.nr(1));
kpb = .1; % Cutt-off frequency
lam = .5; mu = lam/(lam*kpb-1); % Parameters for elasticity.
XYZmm = ts.XYZmm;
% smoothing iterations
%--------------------------------------------------------------------------
for j=1:N
XYZmm_o = zeros(3,ts.nr(1)) ;
XYZmm_o2 = zeros(3,ts.nr(1)) ;
for i=1:ts.nr(1)
ln = find(M_con(:,i));
d_i = sqrt(sum((XYZmm(:,ln)-XYZmm(:,i)*ones(1,length(ln))).^2));
if sum(d_i)==0
w_i = zeros(size(d_i));
else
w_i = d_i/sum(d_i);
end
XYZmm_o(:,i) = XYZmm(:,i) + ...
lam * sum((XYZmm(:,ln)-XYZmm(:,i)*ones(1,length(ln))).*(ones(3,1)*w_i),2);
end
for i=1:ts.nr(1)
ln = find(M_con(:,i));
d_i = sqrt(sum((XYZmm(:,ln)-XYZmm(:,i)*ones(1,length(ln))).^2));
if sum(d_i)==0
w_i = zeros(size(d_i));
else
w_i = d_i/sum(d_i);
end
XYZmm_o2(:,i) = XYZmm_o(:,i) + ...
mu * sum((XYZmm_o(:,ln)-XYZmm_o(:,i)*ones(1,length(ln))).*(ones(3,1)*w_i),2);
end
XYZmm = XYZmm_o2;
end
% collect output results
%--------------------------------------------------------------------------
pos1 = XYZmm';
tri1 = tri;
if 0
% this is some test/demo code
mesh = [];
[mesh.pos, mesh.tri] = icosahedron162;
scale = 1+0.3*randn(size(pos,1),1);
mesh.pos = mesh.pos .* [scale scale scale];
figure
ft_plot_mesh(mesh)
[mesh.pos, mesh.tri] = fairsurface(mesh.pos, mesh.tri, 10);
figure
ft_plot_mesh(mesh)
end
|
github
|
lcnbeapp/beapp-master
|
normals.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/normals.m
| 2,528 |
utf_8
|
96701c7ebda7e6efca8095b3adb6081c
|
function [nrm] = normals(pnt, tri, opt)
% NORMALS compute the surface normals of a triangular mesh
% for each triangle or for each vertex
%
% [nrm] = normals(pnt, tri, opt)
% where opt is either 'vertex' or 'triangle'
% Copyright (C) 2002-2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<3
opt='vertex';
elseif (opt(1)=='v' | opt(1)=='V')
opt='vertex';
elseif (opt(1)=='t' | opt(1)=='T')
opt='triangle';
else
error('invalid optional argument');
end
npnt = size(pnt,1);
ntri = size(tri,1);
% shift to center
pnt(:,1) = pnt(:,1)-mean(pnt(:,1),1);
pnt(:,2) = pnt(:,2)-mean(pnt(:,2),1);
pnt(:,3) = pnt(:,3)-mean(pnt(:,3),1);
% compute triangle normals
% nrm_tri = zeros(ntri, 3);
% for i=1:ntri
% v2 = pnt(tri(i,2),:) - pnt(tri(i,1),:);
% v3 = pnt(tri(i,3),:) - pnt(tri(i,1),:);
% nrm_tri(i,:) = cross(v2, v3);
% end
% vectorized version of the previous part
v2 = pnt(tri(:,2),:) - pnt(tri(:,1),:);
v3 = pnt(tri(:,3),:) - pnt(tri(:,1),:);
nrm_tri = cross(v2, v3);
if strcmp(opt, 'vertex')
% compute vertex normals
nrm_pnt = zeros(npnt, 3);
for i=1:ntri
nrm_pnt(tri(i,1),:) = nrm_pnt(tri(i,1),:) + nrm_tri(i,:);
nrm_pnt(tri(i,2),:) = nrm_pnt(tri(i,2),:) + nrm_tri(i,:);
nrm_pnt(tri(i,3),:) = nrm_pnt(tri(i,3),:) + nrm_tri(i,:);
end
% normalise the direction vectors to have length one
nrm = nrm_pnt ./ (sqrt(sum(nrm_pnt.^2, 2)) * ones(1,3));
else
% normalise the direction vectors to have length one
nrm = nrm_tri ./ (sqrt(sum(nrm_tri.^2, 2)) * ones(1,3));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fast cross product to replace the MATLAB standard version
function [c] = cross(a,b)
c = [a(:,2).*b(:,3)-a(:,3).*b(:,2) a(:,3).*b(:,1)-a(:,1).*b(:,3) a(:,1).*b(:,2)-a(:,2).*b(:,1)];
|
github
|
lcnbeapp/beapp-master
|
rejectvisual_trial.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/rejectvisual_trial.m
| 9,360 |
utf_8
|
70c608ed1010a7f2dde378e7ceb36ea1
|
function [chansel, trlsel, cfg] = rejectvisual_trial(cfg, data)
% SUBFUNCTION for ft_rejectvisual
% determine the initial selection of trials
ntrl = length(data.trial);
if isequal(cfg.trials, 'all') % support specification like 'all'
cfg.trials = 1:ntrl;
end
trlsel = false(1,ntrl);
trlsel(cfg.trials) = true;
% determine the initial selection of channels
nchan = length(data.label);
cfg.channel = ft_channelselection(cfg.channel, data.label); % support specification like 'all'
chansel = false(1,nchan);
chansel(match_str(data.label, cfg.channel)) = true;
% compute the sampling frequency from the first two timepoints
fsample = 1/mean(diff(data.time{1}));
% compute the offset from the time axes
offset = zeros(ntrl,1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
if (isfield(cfg, 'preproc') && ~isempty(cfg.preproc))
ft_progress('init', cfg.feedback, 'filtering data');
for i=1:ntrl
ft_progress(i/ntrl, 'filtering data in trial %d of %d\n', i, ntrl);
[data.trial{i}, label, time, cfg.preproc] = preproc(data.trial{i}, data.label, data.time{i}, cfg.preproc);
end
ft_progress('close');
end
% select the specified latency window from the data
% this is done AFTER the filtering to prevent edge artifacts
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:,begsample:endsample);
end
h = figure;
axis([0 1 0 1]);
axis off
% the info structure will be attached to the figure
% and passed around between the callback functions
if strcmp(cfg.plotlayout,'1col') % hidden config option for plotting trials differently
info = [];
info.ncols = 1;
info.nrows = nchan;
info.chanlop = 1;
info.trlop = 1;
info.ltrlop = 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.nchan
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
end
end
info.label = info.data.label;
elseif strcmp(cfg.plotlayout,'square')
info = [];
info.ncols = ceil(sqrt(nchan));
info.nrows = ceil(sqrt(nchan));
info.chanlop = 1;
info.trlop = 1;
info.ltrlop = 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.nchan
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
end
end
info.label = info.data.label;
end
info.ui.quit = uicontrol(h,'units','pixels','position',[ 5 5 40 18],'String','quit','Callback',@stop);
info.ui.prev = uicontrol(h,'units','pixels','position',[ 50 5 25 18],'String','<','Callback',@prev);
info.ui.next = uicontrol(h,'units','pixels','position',[ 75 5 25 18],'String','>','Callback',@next);
info.ui.prev10 = uicontrol(h,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10);
info.ui.next10 = uicontrol(h,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10);
info.ui.bad = uicontrol(h,'units','pixels','position',[160 5 50 18],'String','bad','Callback',@markbad);
info.ui.good = uicontrol(h,'units','pixels','position',[210 5 50 18],'String','good','Callback',@markgood);
info.ui.badnext = uicontrol(h,'units','pixels','position',[270 5 50 18],'String','bad>','Callback',@markbad_next);
info.ui.goodnext = uicontrol(h,'units','pixels','position',[320 5 50 18],'String','good>','Callback',@markgood_next);
set(gcf, 'WindowButtonUpFcn', @button);
set(gcf, 'KeyPressFcn', @key);
guidata(h,info);
interactive = 1;
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0,
uiwait;
else
chansel = info.chansel;
trlsel = info.trlsel;
delete(h);
break
end
end % while interactive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = markbad_next(varargin)
markbad(varargin{:});
next(varargin{:});
function varargout = markgood_next(varargin)
markgood(varargin{:});
next(varargin{:});
function varargout = next(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop < info.ntrl,
info.trlop = info.trlop + 1;
end;
guidata(h,info);
uiresume;
function varargout = prev(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop > 1,
info.trlop = info.trlop - 1;
end;
guidata(h,info);
uiresume;
function varargout = next10(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop < info.ntrl - 10,
info.trlop = info.trlop + 10;
else
info.trlop = info.ntrl;
end;
guidata(h,info);
uiresume;
function varargout = prev10(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop > 10,
info.trlop = info.trlop - 10;
else
info.trlop = 1;
end;
guidata(h,info);
uiresume;
function varargout = markgood(h, eventdata, handles, varargin)
info = guidata(h);
info.trlsel(info.trlop) = 1;
fprintf(description_trial(info));
title(description_trial(info));
guidata(h,info);
% uiresume;
function varargout = markbad(h, eventdata, handles, varargin)
info = guidata(h);
info.trlsel(info.trlop) = 0;
fprintf(description_trial(info));
title(description_trial(info));
guidata(h,info);
% uiresume;
function varargout = key(h, eventdata, handles, varargin)
info = guidata(h);
switch lower(eventdata.Key)
case 'rightarrow'
if info.trlop ~= info.ntrl
next(h);
else
fprintf('at last trial\n');
end
case 'leftarrow'
if info.trlop ~= 1
prev(h);
else
fprintf('at first trial\n');
end
case 'g'
markgood(h);
case 'b'
markbad(h);
case 'q'
stop(h);
otherwise
fprintf('unknown key pressed\n');
end
function varargout = button(h, eventdata, handles, varargin)
pos = get(gca, 'CurrentPoint');
x = pos(1,1);
y = pos(1,2);
info = guidata(h);
dx = info.x - x;
dy = info.y - y;
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<0.5/max(info.nrows, info.ncols) && i<=info.nchan
info.chansel(i) = ~info.chansel(i); % toggle
info.chanlop = i;
fprintf(description_channel(info));
guidata(h,info);
uiresume;
else
fprintf('button clicked\n');
return
end
function varargout = stop(h, eventdata, handles, varargin)
info = guidata(h);
info.quit = 1;
guidata(h,info);
uiresume;
function str = description_channel(info)
if info.chansel(info.chanlop)
str = sprintf('channel %s marked as GOOD\n', info.data.label{info.chanlop});
else
str = sprintf('channel %s marked as BAD\n', info.data.label{info.chanlop});
end
function str = description_trial(info)
if info.trlsel(info.trlop)
str = sprintf('trial %d marked as GOOD\n', info.trlop);
else
str = sprintf('trial %d marked as BAD\n', info.trlop);
end
function redraw(h)
if ~ishandle(h)
return
end
info = guidata(h);
fprintf(description_trial(info));
cla;
title('');
drawnow
hold on
dat = info.data.trial{info.trlop};
time = info.data.time{info.trlop};
if ~isempty(info.cfg.alim)
% use fixed amplitude limits for amplitude scaling
amax = info.cfg.alim;
else
% use automatic amplitude limits for scaling, these are different for each trial
amax = max(max(abs(dat(info.chansel,:))));
end
tmin = time(1);
tmax = time(end);
% scale the time values between 0.1 and 0.9
time = 0.1 + 0.8*(time-tmin)/(tmax-tmin);
% scale the amplitude values between -0.5 and 0.5, offset should not be removed
dat = dat ./ (2*amax);
for row=1:info.nrows
for col=1:info.ncols
chanindx = (row-1)*info.ncols + col;
if chanindx>info.nchan || ~info.chansel(chanindx)
continue
end
% scale the time values for this subplot
tim = (col-1)/info.ncols + time/info.ncols;
% scale the amplitude values for this subplot
amp = dat(chanindx,:)./info.nrows + 1 - row/(info.nrows+1);
plot(tim, amp, 'k')
end
end
% enable or disable buttons as appropriate
if info.trlop == 1
set(info.ui.prev, 'Enable', 'off');
set(info.ui.prev10, 'Enable', 'off');
else
set(info.ui.prev, 'Enable', 'on');
set(info.ui.prev10, 'Enable', 'on');
end
if info.trlop == info.ntrl
set(info.ui.next, 'Enable', 'off');
set(info.ui.next10, 'Enable', 'off');
else
set(info.ui.next, 'Enable', 'on');
set(info.ui.next10, 'Enable', 'on');
end
if info.ltrlop == info.trlop && info.trlop == info.ntrl
set(info.ui.badnext,'Enable', 'off');
set(info.ui.goodnext,'Enable', 'off');
else
set(info.ui.badnext,'Enable', 'on');
set(info.ui.goodnext,'Enable', 'on');
end
text(info.x, info.y, info.label);
title(description_trial(info));
hold off
|
github
|
lcnbeapp/beapp-master
|
wizard_base.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/wizard_base.m
| 11,622 |
utf_8
|
cd0fcbdbd539128983f819e31e3d920b
|
function h = wizard_gui(filename)
% This is the low level wizard function. It evaluates the MATLAB content
% in the workspace of the calling function. To prevent overwriting
% variables in the BASE workspace, this function should be called from a
% wrapper function. The wrapper function whoudl pause execution untill the
% wizard figure is deleted.
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% create a new figure
h = figure('Name','Wizard',...
'NumberTitle','off',...
'MenuBar','none',...
'KeyPressFcn', @cb_keyboard,...
'resizeFcn', @cb_resize,...
'closeRequestFcn', @cb_cancel);
% movegui(h,'center');
% set(h, 'ToolBar', 'figure');
if nargin>0
filename = which(filename);
[p, f, x] = fileparts(filename);
data = [];
data.path = p;
data.file = f;
data.ext = x;
data.current = 0;
data.script = script_parse(filename);
guidata(h, data); % attach the data to the GUI figure
else
data = [];
data.path = [];
data.file = [];
data.ext = [];
data.current = 0;
data.script = script_parse([]);
guidata(h, data); % attach the data to the GUI figure
cb_load(h);
end
cb_show(h); % show the GUI figure
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
h = parentfig(h);
dbstack
if isequal(eventdata.Key, 'o') && isequal(eventdata.Modifier, {'control'})
cb_load(h);
elseif isequal(eventdata.Key, 's') && isequal(eventdata.Modifier, {'control'})
cb_save(h);
elseif isequal(eventdata.Key, 'e') && isequal(eventdata.Modifier, {'control'})
cb_edit(h);
elseif isequal(eventdata.Key, 'p') && isequal(eventdata.Modifier, {'control'})
cb_prev(h);
elseif isequal(eventdata.Key, 'n') && isequal(eventdata.Modifier, {'control'})
cb_next(h);
elseif isequal(eventdata.Key, 'q') && isequal(eventdata.Modifier, {'control'})
cb_cancel(h);
elseif isequal(eventdata.Key, 'x') && isequal(eventdata.Modifier, {'control'})
% FIXME this does not work
cb_done(h);
elseif isequal(eventdata.Key, 'n') && any(strcmp(eventdata.Modifier, 'shift')) && any(strcmp(eventdata.Modifier, 'control'))
% FIXME this does not always work correctly
cb_skip(h);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_show(h, eventdata)
h = parentfig(h);
data = guidata(h);
clf(h);
if data.current<1
% introduction, construct the GUI elements
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'next >', 'callback', @cb_next);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
% display the introduction text
title = cat(2, data.file, ' - introduction');
tmp = {data.script.title};
help = sprintf('%s\n', tmp{:});
help = sprintf('This wizard will help you through the following steps:\n\n%s', help);
set(ui_help, 'string', help);
set(h, 'Name', title);
elseif data.current>length(data.script)
% finalization, construct the GUI elements
ui_prev = uicontrol(h, 'tag', 'ui_prev', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', '< prev', 'callback', @cb_prev);
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'finish', 'callback', @cb_done);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
% display the finalization text
title = cat(2, data.file, ' - finish');
help = sprintf('If you click finish, the variables created by the script will be exported to the MATLAB workspace\n');
set(ui_help, 'string', help);
set(h, 'Name', title);
else
% normal wizard step, construct the GUI elements
ui_prev = uicontrol(h, 'tag', 'ui_prev', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', '< prev', 'callback', @cb_prev);
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'next >', 'callback', @cb_next);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
ui_code = uicontrol(h, 'tag', 'ui_code', 'KeyPressFcn', @cb_keyboard, 'style', 'edit', 'max', 10, 'horizontalAlignment', 'left', 'FontName', 'Courier', 'backgroundColor', 'white');
% display the current wizard content
help = data.script(data.current).help;
code = data.script(data.current).code;
title = cat(2, data.file, ' - ', data.script(data.current).title);
set(ui_help, 'string', help);
set(ui_code, 'string', code);
set(h, 'Name', title);
end
cb_resize(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_resize(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
siz = get(h, 'position');
x = siz(3);
y = siz(4);
w = (y-40-20)/2;
if ~isempty(ui_prev)
set(ui_prev, 'position', [x-150 10 60 20]);
end
if ~isempty(ui_next)
set(ui_next, 'position', [x-080 10 60 20]);
end
if ~isempty(ui_code) && ~isempty(ui_help)
set(ui_code, 'position', [10 40 x-20 w]);
set(ui_help, 'position', [10 50+w x-20 w]);
else
set(ui_help, 'position', [10 40 x-20 y-50]);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_prev(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
if data.current>0
data.current = data.current - 1;
end
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_next(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
if data.current>0
title = cat(2, data.file, ' - busy');
set(h, 'Name', title);
ui_code = findobj(h, 'tag', 'ui_code');
code = get(ui_code, 'string');
try
for i=1:size(code,1)
evalin('caller', code(i,:));
end
catch
lasterr;
end
data.script(data.current).code = code;
end
data.current = data.current+1;
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_skip(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
data.current = data.current+1;
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_disable(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
set(ui_prev, 'Enable', 'off');
set(ui_next, 'Enable', 'off');
set(ui_help, 'Enable', 'off');
set(ui_code, 'Enable', 'off');
drawnow
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_enable(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
set(ui_prev, 'Enable', 'on');
set(ui_next, 'Enable', 'on');
set(ui_help, 'Enable', 'on');
set(ui_code, 'Enable', 'on');
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_edit(h, eventdata)
h = parentfig(h);
data = guidata(h);
filename = fullfile(data.path, [data.file data.ext]);
edit(filename);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_load(h, eventdata)
h = parentfig(h);
cb_disable(h);
[f, p] = uigetfile('*.m', 'Load script from an M-file');
if ~isequal(f,0)
data = guidata(h);
filename = fullfile(p, f);
[p, f, x] = fileparts(filename);
str = script_parse(filename);
data.script = str;
data.current = 0;
data.path = p;
data.file = f;
data.ext = x;
guidata(h, data);
cb_show(h);
end
cb_enable(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_save(h, eventdata)
cb_disable(h);
data = guidata(h);
filename = fullfile(data.path, [data.file data.ext]);
[f, p] = uiputfile('*.m', 'Save script to an M-file', filename);
if ~isequal(f,0)
filename = fullfile(p, f);
[p, f, x] = fileparts(filename);
fid = fopen(filename, 'wt');
script = data.script;
for k=1:length(script)
fprintf(fid, '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n');
for i=1:size(script(k).help, 1)
fprintf(fid, '%% %s\n', deblank(script(k).help(i,:)));
end
for i=1:size(script(k).code, 1)
fprintf(fid, '%s\n', deblank(script(k).code(i,:)));
end
end
fclose(fid);
data.path = p;
data.file = f;
data.ext = x;
guidata(h, data);
cb_show(h);
end
cb_enable(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_done(h, eventdata)
h = parentfig(h);
cb_disable(h);
assignin('caller', 'wizard_ok', 1);
delete(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cancel(h, eventdata)
h = parentfig(h);
cb_disable(h);
assignin('caller', 'wizard_ok', 0);
delete(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function script = script_parse(filename)
if isempty(filename)
script.title = '';
script.help = '';
script.code = '';
return
end
fid = fopen(filename);
str = {};
while ~feof(fid)
str{end+1} = fgetl(fid);
end
str = str(:);
fclose(fid);
i = 1; % line number
k = 1; % block number
script = [];
while i<=length(str)
script(k).title = {};
script(k).help = {};
script(k).code = {};
while i<=length(str) && ~isempty(regexp(str{i}, '^%%%%', 'once'))
% skip the seperator lines
i = i+1;
end
while i<=length(str) && ~isempty(regexp(str{i}, '^%', 'once'))
script(k).help{end+1} = str{i}(2:end);
i = i+1;
end
while i<=length(str) && isempty(regexp(str{i}, '^%%%%', 'once'))
script(k).code{end+1} = str{i};
i = i+1;
end
k = k+1;
end
sel = false(size(script));
for k=1:length(script)
sel(k) = isempty(script(k).help) && isempty(script(k).code);
if length(script(k).help)>0
script(k).title = char(script(k).help{1});
else
script(k).title = '<unknown>';
end
script(k).help = char(script(k).help(:));
script(k).code = char(script(k).code(:));
end
script(sel) = [];
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = parentfig(h)
while get(h, 'parent')
h = get(h, 'parent');
end
return
|
github
|
lcnbeapp/beapp-master
|
mesh_spectrum.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/mesh_spectrum.m
| 1,373 |
utf_8
|
e29d504eadc1676f855eb0c8ba8b3267
|
% Mesh spectrum
function [L,H,d] = ct_mesh_spectrum(S,n,varargin)
%[L,H,d] = ct_mesh_spectrum(S,n,mode)
% Compute the mesh laplace matrix and its spectrum
% input,
% S: mesh file, it has to have a pnt and a tri field
% n: number of mesh harmonic functions
% mode: 'full' for the full graph, 'half' if you want to do the first and
% the second half independently (this is useful if your graph is composed
% by two connected components)
% output,
% L: mesh laplacian matrix
% H: matrix containing a mesh harmonic functions per column
% d: spectrum of the negative Laplacian matrix, its units are 1/space^2
% (spatial frequencies are obtained as sqrt(d))
if nargin==2||varargin{1}==1
pnt{1} = S.pos;
tri{1} = S.tri;
elseif varargin{1}==2
pnt{1} = S.pos(1:end/2,:);
tri{1} = S.tri(1:end/2,:);
pnt{2} = S.pos(end/2+1:end,:);
tri{2} = S.tri(end/2+1:end,:) - size(pnt{1},1);
end
for j = 1:length(pnt)
if length(pnt)==2&&j == 1
disp('Computing the spectrum of the the first hemisphere')
elseif length(pnt)==2&&j == 2
disp('Computing the spectrum of the the second hemisphere')
end
[L{j},~] = mesh_laplacian(pnt{j},tri{j});
L{j} = (L{j} + L{j}')/2;
disp('Computing the spectrum of the negative Laplacian matrix')
[H{j},D] = eigs(L{j},n,'sm');
d{j} = diag(D);
disp('Diagonalization completed')
end
|
github
|
lcnbeapp/beapp-master
|
spikesort.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/spikesort.m
| 5,832 |
utf_8
|
fed348ceea614e5eeddbd547090e7922
|
function [numA, numB, indA, indB] = spikesort(numA, numB, varargin)
% SPIKESORT uses a variation on the cocktail sort algorithm in combination
% with a city block distance to achieve N-D trial pairing between spike
% counts. The sorting is not guaranteed to result in the optimal pairing. A
% linear pre-sorting algorithm is used to create good initial starting
% positions.
%
% The goal of this function is to achieve optimal trial-pairing prior to
% stratifying the spike numbers in two datasets by random removal of some
% spikes in the trial and channel with the largest numnber of spikes.
% Pre-sorting based on the city-block distance between the spike count
% ensures that as few spikes as possible are lost.
%
% Use as
% [srtA, srtB, indA, indB] = spikesort(numA, numB, ...)
%
% Optional arguments should be specified as key-value pairs and can include
% 'presort' number representing the column, 'rowwise' or 'global'
%
% Example
% numA = reshape(randperm(100*3), 100, 3);
% numB = reshape(randperm(100*3), 100, 3);
% [srtA, srtB, indA, indB] = spikesort(numA, numB);
% % check that the order is correct, the following should be zero
% numA(indA,:) - srtA
% numB(indB,:) - srtB
%
% See also COCKTAILSORT
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this can be used for printing detailled user feedback
fb = false;
% get the options
presort = ft_getopt(varargin, 'presort');
if any(size(numA)~=size(numB))
error('input dimensions should be the same');
end
bottom = 1;
top = size(numA,1);
swapped = true;
dist = zeros(1,top); % this will hold the distance between the trials in each pair
distswap = zeros(1,2); % this will hold the distance for two trials after swapping
% this is to keep track of the row-ordering during sorting
sel = 1:size(numA,2);
numA(:,end+1) = 1:top;
numB(:,end+1) = 1:top;
% compute the initial distance between the trial pairs using city block distance metric
for i=1:top
dist(i) = sum(abs(numA(i,sel)-numB(i,sel)));
end
if fb
fprintf('initial cost = %d\n', sum(dist));
end
if isnumeric(presort)
% start by pre-sorting on the first column only
[dum, indA] = sort(numA(:,presort));
[dum, indB] = sort(numB(:,presort));
numA = numA(indA,:);
numB = numB(indB,:);
elseif strcmp(presort, 'rowwise')
full = cityblock(numA(:,sel), numB(:,sel));
link = zeros(1,top);
for i=1:top
d = full(i,:);
d(link(1:(i-1))) = inf;
[m, ind] = min(d);
link(i) = ind;
end
indA = 1:top;
indB = link;
numB = numB(link,:);
elseif strcmp(presort, 'global')
full = cityblock(numA(:,sel), numB(:,sel));
link = zeros(1,top);
while ~all(link)
[m, i] = min(full(:));
[j, k] = ind2sub(size(full), i);
full(j,:) = inf;
full(:,k) = inf;
link(j) = k;
end
indA = 1:top;
indB = link;
numB = numB(link,:);
end
% compute the initial distance between the trial pairs
% using city block distance metric
for i=1:top
dist(i) = sum(abs(numA(i,sel)-numB(i,sel)));
end
if fb
fprintf('cost after pre-sort = %d\n', sum(dist));
end
while swapped
swapped = false;
for i=bottom:(top-1)
% compute the distances between the trials after swapping
% using city block distance metric
distswap(1) = sum(abs(numA(i,sel)-numB(i+1,sel)));
distswap(2) = sum(abs(numA(i+1,sel)-numB(i,sel)));
costNow = sum(dist([i i+1]));
costSwp = sum(distswap);
if costNow>costSwp % test whether the two elements are in the correct order
numB([i i+1], :) = numB([i+1 i], :); % let the two elements change places
dist([i i+1]) = distswap; % update the distance vector
swapped = true;
end
end
% decreases `top` because the element with the largest value in the unsorted
% part of the list is now on the position top
top = top - 1;
for i=top:-1:(bottom+1)
% compute the distances between the trials after swapping
% using city block distance metric
distswap(1) = sum(abs(numA(i,sel)-numB(i-1,sel)));
distswap(2) = sum(abs(numA(i-1,sel)-numB(i,sel)));
costNow = sum(dist([i i-1]));
costSwp = sum(distswap);
if costNow>costSwp
numB([i i-1], :) = numB([i-1 i], :); % let the two elements change places
dist([i i-1]) = distswap; % update the distance vector
swapped = true;
end
end
% increases `bottom` because the element with the smallest value in the unsorted
% part of the list is now on the position bottom
bottom = bottom + 1;
end % while swapped
if fb
fprintf('final cost = %d\n', sum(dist));
end
indA = numA(:,end);
numA = numA(:,sel);
indB = numB(:,end);
numB = numB(:,sel);
end % function spikesort
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = cityblock(a, b)
d = zeros(size(a,1), size(b,1));
for i=1:size(a,1)
for j=1:size(b,1)
d(i,j) = sum(abs(a(i,:)-b(j,:)));
end
end
end % function cityblock
|
github
|
lcnbeapp/beapp-master
|
shiftpredict.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/shiftpredict.m
| 8,678 |
utf_8
|
df8a7daa983de83d580b19297e9ab23a
|
function [prb, cohobs, mcohrnd] = shiftpredict(cfg, dat, datindx, refindx, trltapcnt)
% SHIFTPREDICT implements a shift-predictor for testing significance
% of coherence within a single condition. This function is a subfunction
% for SOURCESTATISTICS_SHIFTPREDICT and FREQSTATISTICS_SHIFTPREDICT.
%
% cfg.method
% cfg.numrandomization
% cfg.method
% cfg.method
% cfg.loopdim
% cfg.feedback
% cfg.method
% cfg.loopdim
% cfg.correctm
% cfg.tail
% TODO this function should be reimplemented as statfun_shiftpredict for the general statistics framework
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
nsgn = size(dat,1);
ntap = size(dat,2); % total number of tapers over all trials
nfrq = size(dat,3);
if nargin<4
% assume that each trial consists of a single taper only
ntrl = size(dat,2);
trltapcnt = ones(1,ntrl);
fprintf('assuming one taper per trial\n');
else
% each trial contains multiple tapers
ntrl = length(trltapcnt);
trltapcnt = trltapcnt(:)';
fprintf('number of tapers varies from %d to %d\n', min(trltapcnt), max(trltapcnt));
end
% allocate memory to hold the probabilities
if version('-release')>=14
prb_pos = zeros(length(refindx),length(datindx),nfrq, 'single');
prb_neg = zeros(length(refindx),length(datindx),nfrq, 'single');
else
prb_pos = zeros(length(refindx),length(datindx),nfrq);
prb_neg = zeros(length(refindx),length(datindx),nfrq);
end
% compute the power per taper, per trial, and in total
pow_tap = (abs(dat).^2);
pow_trl = zeros(nsgn,ntrl,nfrq);
for i=1:ntrl
% this is the taper selection if the number of tapers per trial is different
tapbeg = 1 + sum([0 trltapcnt(1:(i-1))]);
tapend = sum([0 trltapcnt(1:(i ))]);
% this would be the taper selection if the number of tapers per trial is identical
% tapbeg = 1 + (i-1)*ntap;
% tapend = (i )*ntap;
% average the power per trial over the tapers in that trial
pow_trl(:,i,:) = mean(pow_tap(:,tapbeg:tapend,:),2);
end
pow_tot = reshape(mean(pow_trl,2), nsgn, nfrq);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% normalise the data, also see the COMPUTECOH subfunction
switch cfg.method
case {'abscoh', 'imagcoh', 'absimagcoh', 'atanh', 'atanh_randphase'}
% normalise, so that the complex conjugate multiplication immediately results in coherence
if ~all(trltapcnt==trltapcnt(1))
error('all trials should have the same number of tapers');
end
for i=1:nsgn
for k=1:nfrq
dat(i,:,k) = dat(i,:,k) ./ sqrt(pow_tot(i,k)*ntrl*trltapcnt(1));
end
end
case {'amplcorr', 'absamplcorr'}
% normalize so that the multiplication immediately results in correlation
% this uses the amplitude, which is the sqrt of the power per trial
dat = sqrt(pow_trl);
% each signal should have zero mean
fa = reshape(mean(dat,2), nsgn, nfrq); % mean over trials
for i=1:ntrl
dat(:,i,:) = (dat(:,i,:) - fa);
end
% each signal should have unit variance
fs = reshape(sqrt(sum(dat.^2,2)/ntrl), nsgn, nfrq); % standard deviation over trials
for i=1:ntrl
dat(:,i,:) = dat(:,i,:)./fs;
end
% also normalize for the number of trials
dat = dat./sqrt(ntrl);
otherwise
error('unknown method for shift-predictor')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the random shuffling index vectors
nrnd = cfg.numrandomization;
randsel = [];
switch cfg.method
case {'abscoh', 'imagcoh', 'absimagcoh', 'atanh'}
for i=1:nrnd
% the number of tapers is identical for each trial
randsel(i,:) = randblockshift(1:sum(trltapcnt), trltapcnt(1));
end
case {'amplcorr', 'absamplcorr'}
for i=1:nrnd
randsel(i,:) = randperm(ntrl);
end
case {'atanh_randphase'},
for i=1:nrnd
rndphs = exp(j.*2.*pi.*rand(length(unique(cfg.origtrl))));
randsel(i,:) = rndphs(cfg.origtrl);
end
end
% select the subset of reference signals
if all(refindx(:)'==1:size(dat,1))
% only make a shallow copy to save memory
datref = dat;
else
% make a deep copy of the selected data
datref = dat(refindx,:,:);
end
% select the subset of target signals
if all(datindx(:)'==1:size(dat,1))
% only make a shallow copy to save memory
dat = dat;
else
% make a deep copy of the selected data
dat = dat(datindx,:,:);
end
% compute the observed coherence
cohobs = computecoh(datref, dat, cfg.method, cfg.loopdim);
mcohrnd = zeros(size(cohobs));
progress('init', cfg.feedback, 'Computing shift-predicted coherence');
for i=1:nrnd
progress(i/nrnd, 'Computing shift-predicted coherence %d/%d\n', i, nrnd);
% randomize the reference signal and re-compute coherence
if all(isreal(randsel(i,:))),
datrnd = datref(:,randsel(i,:),:);
else
datrnd = datref.*conj(repmat(randsel(i,:), [size(datref,1) 1 size(datref,3)]));
end
cohrnd = computecoh(datrnd, dat, cfg.method, cfg.loopdim);
mcohrnd = cohrnd + mcohrnd;
% compare the observed coherence with the randomized one
if strcmp(cfg.correctm, 'yes')
prb_pos = prb_pos + (cohobs<max(cohrnd(:)));
prb_neg = prb_neg + (cohobs>min(cohrnd(:)));
else
prb_pos = prb_pos + (cohobs<cohrnd);
prb_neg = prb_neg + (cohobs>cohrnd);
end
end
progress('close');
mcohrnd = mcohrnd./nrnd;
if cfg.tail==1
clear prb_neg % not needed any more, free some memory
prb = prb_pos./nrnd;
elseif cfg.tail==-1
clear prb_pos % not needed any more, free some memory
prb = prb_neg./nrnd;
else
prb_neg = prb_neg./nrnd;
prb_pos = prb_pos./nrnd;
% for each observation select the tail that corresponds with the lowest probability
prb = min(prb_neg, prb_pos);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% this assumes that the data is properly normalised
% and assumes that all trials have the same number of tapers
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function coh = computecoh(datref, dat, method, loopdim)
nref = size(datref,1);
nsgn = size(dat,1);
nfrq = size(dat,3);
coh = zeros(nref,nsgn,nfrq);
switch loopdim
case 3
% for each frequency, simultaneously compute coherence between all reference and target signals
for i=1:nfrq
switch method
case 'abscoh'
coh(:,:,i) = abs( datref(:,:,i) * dat(:,:,i)');
case 'imagcoh'
coh(:,:,i) = imag(datref(:,:,i) * dat(:,:,i)');
case 'absimagcoh'
coh(:,:,i) = abs(imag(datref(:,:,i) * dat(:,:,i)'));
case {'atanh' 'atanh_randphase'}
coh(:,:,i) = atanh(abs(datref(:,:,i)* dat(:,:,i)'));
case 'amplcorr'
coh(:,:,i) = datref(:,:,i) * dat(:,:,i)';
case 'absamplcorr'
coh(:,:,i) = abs( datref(:,:,i) * dat(:,:,i)');
otherwise
error('unsupported method');
end
end
case 1
% for each reference and target signal, simultaneously compute coherence over all frequencies
for i=1:nref
for k=1:nsgn
switch method
case 'abscoh'
coh(i,k,:) = abs( sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
case 'imagcoh'
coh(i,k,:) = imag(sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
case 'absimagcoh'
coh(i,k,:) = abs(imag(sum(datref(i,:,:) .* conj(dat(k,:,:)), 2)));
case {'atanh' 'atanh_randphase'}
coh(i,k,:) = atanh(abs(sum(datref(i,:,:).* conj(dat(k,:,:)), 2)));
case 'amplcorr'
coh(i,k,:) = sum(datref(i,:,:) .* conj(dat(k,:,:)), 2);
case 'absamplcorr'
coh(i,k,:) = abs( sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
otherwise
error('unsupported method');
end
end
end
otherwise
error('unsupported loopdim');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that shuffles in blocks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [out] = randblockshift(n, k)
n = n(:);
nbin = length(n)/k;
n = reshape(n, [k nbin]);
n = n(:,randperm(nbin));
out = n(:);
|
github
|
lcnbeapp/beapp-master
|
volumeedit.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/volumeedit.m
| 15,832 |
utf_8
|
66df68c10de81ef176ced3ba888a8e9b
|
function [dataout] = volumeedit(data, varargin)
% VOLUMEEDIT allows for editing of a (booleanized) volume, in order to
% remove unwanted voxels. Interaction proceeds with the keyboard and the
% mouse.
% Copyright (C) 2013, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
bckgrnd = ft_getopt(varargin, 'background', []);
datain = data;
data = data~=0;
dim = size(data);
xi = round(dim(1)/2);
yi = round(dim(2)/2);
zi = round(dim(3)/2);
xi = max(xi, 1); xi = min(xi, dim(1));
yi = max(yi, 1); yi = min(yi, dim(2));
zi = max(zi, 1); zi = min(zi, dim(3));
% enforce the size of the subplots to be isotropic
xdim = dim(1) + dim(2);
ydim = dim(2) + dim(3);
xsize(1) = 0.82*dim(1)/xdim;
xsize(2) = 0.82*dim(2)/xdim;
ysize(1) = 0.82*dim(3)/ydim;
ysize(2) = 0.82*dim(2)/ydim;
% create figure
h = figure;
set(h, 'color', [1 1 1]);
% set(h, 'pointer', 'custom');
% set(h, 'pointershapecdata', nan(16));
set(h, 'visible', 'on');
set(h, 'windowbuttondownfcn', @cb_buttonpress);
set(h, 'windowbuttonupfcn', @cb_buttonrelease);
set(h, 'windowkeypressfcn', @cb_keyboard);
% axis handles
h1 = axes('position',[0.07 0.07+ysize(2)+0.05 xsize(1) ysize(1)]); %hold on;
h2 = axes('position',[0.07+xsize(1)+0.05 0.07+ysize(2)+0.05 xsize(2) ysize(1)]); %hold on;
h3 = axes('position',[0.07 0.07 xsize(1) ysize(2)]); %hold on;
% background handles
if ~isempty(bckgrnd)
bckgrnd = double(bckgrnd./max(bckgrnd(:)));
bckgrnd = repmat(bckgrnd, [1 1 1 3]);
hb1 = imagesc(squeeze(bckgrnd(xi,:,:,:)), 'parent',h1);
hb2 = imagesc(permute(bckgrnd(:,:,zi,:),[2 1 4 3]), 'parent',h2);
hb3 = imagesc(squeeze(bckgrnd(:,yi,:,:)), 'parent',h3);
else
hb1 = [];
hb2 = [];
hb3 = [];
end
% slice handles
dat1 = double(squeeze(data(xi,:,:)));
dat2 = double(data(:,:,zi))';
dat3 = double(squeeze(data(:,yi,:)));
if ~isempty(bckgrnd)
set(h1,'nextplot','add');
set(h2,'nextplot','add');
set(h3,'nextplot','add');
hs1 = imagesc(dat1,'parent',h1,'alphadata',0.5*ones(size(dat1))); colormap hot;
hs2 = imagesc(dat2,'parent',h2,'alphadata',0.5*ones(size(dat2))); colormap hot;
hs3 = imagesc(dat3,'parent',h3,'alphadata',0.5*ones(size(dat3))); colormap hot;
set(h1,'nextplot','replace');
set(h2,'nextplot','replace');
set(h3,'nextplot','replace');
else
hs1 = imagesc(dat1,'parent',h1); %colormap gray;
hs2 = imagesc(dat2,'parent',h2); %colormap gray;
hs3 = imagesc(dat3,'parent',h3); %colormap gray;
end
set(h1, 'tag', 'jk', 'clim', [0 1]);
set(h2, 'tag', 'ji', 'clim', [0 1]);
set(h3, 'tag', 'ik', 'clim', [0 1]);
% crosshair handles
hch1 = crosshair([zi yi], 'parent', h1, 'color', 'y');
hch2 = crosshair([xi yi], 'parent', h2, 'color', 'y');
hch3 = crosshair([zi xi], 'parent', h3, 'color', 'y');
% erasercontour
he1(1,:) = line(zi-3.5+[0 0 7 7 0],yi-3.5+[0 7 7 0 0],'color','r','parent',h1);
he2(1,:) = line(xi-3.5+[0 0 7 7 0],yi-3.5+[0 7 7 0 0],'color','r','parent',h2);
he3(1,:) = line(zi-3.5+[0 0 7 7 0],xi-3.5+[0 7 7 0 0],'color','r','parent',h3);
% create structure to be passed to gui
opt.data = data~=0;
if ~isempty(bckgrnd)
opt.bckgrnd = bckgrnd;
end
opt.handlesana = [hb1 hb2 hb3];
opt.handlesaxes = [h1 h2 h3];
opt.handlescross = [hch1(:)';hch2(:)';hch3(:)'];
opt.handlesslice = [hs1 hs2 hs3];
opt.handleseraser = [he1(:)';he2(:)';he3(:)'];
opt.ijk = [xi yi zi];
opt.dim = dim;
opt.quit = 0;
opt.mask = opt.data~=0;
opt.radius = [3 3 3];
setappdata(h, 'opt', opt);
cb_redraw(h);
while opt.quit==0
uiwait(h);
opt = getappdata(h, 'opt'); % needed to update the opt.quit
end
opt = getappdata(h, 'opt');
delete(h);
dataout = datain;
dataout(~opt.mask) = 0;
dataout(opt.mask) = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
if isempty(eventdata)
% determine the key that corresponds to the uicontrol element that was activated
key = get(h, 'userdata');
else
% determine the key that was pressed on the keyboard
key = parseKeyboardEvent(eventdata);
end
% get focus back to figure
if ~strcmp(get(h, 'type'), 'figure')
set(h, 'enable', 'off');
drawnow;
set(h, 'enable', 'on');
end
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
tag = get(curr_ax, 'tag');
switch tag
case 'jk'
xy = [2 3];
case 'ji'
xy = [2 1];
case 'ik'
xy = [1 3];
otherwise
end
switch key
case 'leftarrow'
opt.ijk(xy(2)) = opt.ijk(xy(2)) - 1;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'rightarrow'
opt.ijk(xy(2)) = opt.ijk(xy(2)) + 1;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'uparrow'
opt.ijk(xy(1)) = opt.ijk(xy(1)) - 1;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'downarrow'
opt.ijk(xy(1)) = opt.ijk(xy(1)) + 1;
setappdata(h, 'opt', opt);
cb_redraw(h);
case 'd'
% delete current voxel
cb_eraser(h);
cb_redraw(h);
case 'q'
setappdata(h, 'opt', opt);
cb_cleanup(h);
case 'r'
% select the radius of the eraser box
response = inputdlg(sprintf('radius of eraser box (in voxels)'), 'specify', 1, {num2str(opt.radius)});
if ~isempty(response)
response = str2double(tokenize(response{1},' '));
opt.radius = round(response);
opt.radius = min(opt.radius, 100);
opt.radius = max(opt.radius, 1);
if numel(opt.radius)==1, opt.radius = [1 1 1]*opt.radius; end
setappdata(h, 'opt', opt);
cb_erasercontour(h);
end
case 'control+control'
% do nothing
case 'shift+shift'
% do nothing
case 'alt+alt'
% do nothing
otherwise
setappdata(h, 'opt', opt);
%cb_help(h);
end
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_eraser(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
n = opt.radius;
if numel(n)==1, n = [n n n]; end
xi = opt.ijk(1)+(-n(1):n(1)); xi(xi>opt.dim(1)) = []; xi(xi<1) = [];
yi = opt.ijk(2)+(-n(2):n(2)); yi(yi>opt.dim(2)) = []; yi(yi<1) = [];
zi = opt.ijk(3)+(-n(3):n(3)); zi(zi>opt.dim(3)) = []; zi(zi<1) = [];
if opt.erase
opt.mask(xi,yi,zi) = false;
else
opt.mask(xi,yi,zi) = true;
end
setappdata(h, 'opt', opt);
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_erasercontour(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
ijk = opt.ijk;
n = opt.radius*2+1;
if numel(n)==1, n = [n n n]; end
set(opt.handleseraser(1),'xdata',ijk(3)-n(3)/2+[0 0 n(3) n(3) 0]);
set(opt.handleseraser(1),'ydata',ijk(2)-n(2)/2+[0 n(2) n(2) 0 0]);
set(opt.handleseraser(2),'xdata',ijk(1)-n(1)/2+[0 0 n(1) n(1) 0]);
set(opt.handleseraser(2),'ydata',ijk(2)-n(2)/2+[0 n(2) n(2) 0 0]);
set(opt.handleseraser(3),'xdata',ijk(3)-n(3)/2+[0 0 n(3) n(3) 0]);
set(opt.handleseraser(3),'ydata',ijk(1)-n(1)/2+[0 n(1) n(1) 0 0]);
uiresume(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
xi = opt.ijk(1);
yi = opt.ijk(2);
zi = opt.ijk(3);
if isfield(opt, 'bckgrnd')
dat1b = squeeze(opt.bckgrnd(xi,:,:,:));
dat2b = permute(opt.bckgrnd(:,:,zi,:),[2 1 4 3]);
dat3b = squeeze(opt.bckgrnd(:,yi,:,:));
set(opt.handlesaxes(1),'nextplot','add');
set(opt.handlesaxes(2),'nextplot','add');
set(opt.handlesaxes(3),'nextplot','add');
set(opt.handlesana(1), 'CData', dat1b);
set(opt.handlesana(2), 'CData', dat2b);
set(opt.handlesana(3), 'CData', dat3b);
set(opt.handlesaxes(1),'nextplot','replace');
set(opt.handlesaxes(2),'nextplot','replace');
set(opt.handlesaxes(3),'nextplot','replace');
end
tmpdata = opt.data;
tmpdata(~opt.mask) = 0;
tmpdata(opt.mask) = 1;
xi2 = xi+(-opt.radius(1):opt.radius(1)); xi2(xi2<1) = 1; xi2(xi2>opt.dim(1)) = opt.dim(1);
yi2 = yi+(-opt.radius(2):opt.radius(2)); yi2(yi2<1) = 1; yi2(yi2>opt.dim(2)) = opt.dim(2);
zi2 = zi+(-opt.radius(3):opt.radius(3)); zi2(zi2<1) = 1; zi2(zi2>opt.dim(3)) = opt.dim(3);
dat1 = double(squeeze(sum(tmpdata(xi2,:,:),1))>0)*0.5+double(squeeze(tmpdata(xi,:,:)))*0.5;
dat2 = double(sum(tmpdata(:,:,zi2),3)'>0)*0.5+double(tmpdata(:,:,zi)'>0)*0.5;
dat3 = double(squeeze(sum(tmpdata(:,yi2,:),2))>0)*0.5+double(squeeze(tmpdata(:,yi,:))>0)*0.5;
set(opt.handlesslice(1), 'CData', dat1);
set(opt.handlesslice(2), 'CData', dat2);
set(opt.handlesslice(3), 'CData', dat3);
if isfield(opt, 'bckgrnd')
msk1 = 0.5*double(dat1>0);
msk2 = 0.5*double(dat2>0);
msk3 = 0.5*double(dat3>0);
set(opt.handlesslice(1), 'AlphaData', msk1);
set(opt.handlesslice(2), 'AlphaData', msk2);
set(opt.handlesslice(3), 'AlphaData', msk3);
end
crosshair([zi yi], 'handle', opt.handlescross(1,:));
crosshair([xi yi], 'handle', opt.handlescross(2,:));
crosshair([zi xi], 'handle', opt.handlescross(3,:));
cb_erasercontour(h);
set(h, 'currentaxes', curr_ax);
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonpress(h, eventdata)
h = getparent(h);
cb_getposition(h);
seltype = get(h, 'selectiontype');
switch seltype
case 'normal'
% just update to new position, nothing else to be done here
case 'alt'
opt = getappdata(h, 'opt');
opt.erase = true;
setappdata(h, 'opt', opt);
cb_eraser(h);
set(h, 'windowbuttonmotionfcn', @cb_tracemouse);
case 'extend'
opt = getappdata(h, 'opt');
opt.erase = false;
setappdata(h, 'opt', opt);
cb_eraser(h);
set(h, 'windowbuttonmotionfcn', @cb_tracemouse);
otherwise
end
cb_redraw(h);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_buttonrelease(h, eventdata)
seltype = get(h, 'selectiontype');
switch seltype
case 'normal'
% just update to new position, nothing else to be done here
case 'alt'
set(h, 'windowbuttonmotionfcn', '');
case 'extend'
set(h, 'windowbuttonmotionfcn', '');
otherwise
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_tracemouse(h, eventdata)
h = getparent(h);
cb_getposition(h);
opt = getappdata(h, 'opt');
n = opt.radius;
if numel(n)==1, n = [n n n]; end
xi = opt.ijk(1)+(-n(1):n(1)); xi(xi>opt.dim(1)) = []; xi(xi<1) = [];
yi = opt.ijk(2)+(-n(2):n(2)); yi(yi>opt.dim(2)) = []; yi(yi<1) = [];
zi = opt.ijk(3)+(-n(3):n(3)); zi(zi>opt.dim(3)) = []; zi(zi<1) = [];
if opt.erase
opt.mask(xi,yi,zi) = false;
else
opt.mask(xi,yi,zi) = true;
end
setappdata(h, 'opt', opt);
cb_redraw(h);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = getparent(h);
opt = getappdata(h, 'opt');
curr_ax = get(h, 'currentaxes');
pos = get(curr_ax, 'currentpoint');
tag = get(curr_ax, 'tag');
switch tag
case 'jk'
opt.ijk([3,2]) = round(pos(1,1:2));
case 'ji'
opt.ijk([1,2]) = round(pos(1,1:2));
case 'ik'
opt.ijk([3,1]) = round(pos(1,1:2));
otherwise
end
opt.ijk = min(opt.ijk, opt.dim);
opt.ijk = max(opt.ijk, [1 1 1]);
setappdata(h, 'opt', opt);
uiresume;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cleanup(h, eventdata)
opt = getappdata(h, 'opt');
opt.quit = true;
setappdata(h, 'opt', opt);
uiresume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = getparent(h)
p = h;
while p~=0
h = p;
p = get(h, 'parent');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = parseKeyboardEvent(eventdata)
key = eventdata.Key;
% handle possible numpad events (different for Windows and UNIX systems)
% NOTE: shift+numpad number does not work on UNIX, since the shift
% modifier is always sent for numpad events
if isunix()
shiftInd = match_str(eventdata.Modifier, 'shift');
if ~isnan(str2double(eventdata.Character)) && ~isempty(shiftInd)
% now we now it was a numpad keystroke (numeric character sent AND
% shift modifier present)
key = eventdata.Character;
eventdata.Modifier(shiftInd) = []; % strip the shift modifier
end
elseif ispc()
if strfind(eventdata.Key, 'numpad')
key = eventdata.Character;
end
end
if ~isempty(eventdata.Modifier)
key = [eventdata.Modifier{1} '+' key];
end
|
github
|
lcnbeapp/beapp-master
|
statistics_wrapper.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/statistics_wrapper.m
| 28,152 |
utf_8
|
0434a84d6c5a056986bcd7655d59597f
|
function [stat, cfg] = statistics_wrapper(cfg, varargin)
% STATISTICS_WRAPPER performs the selection of the biological data for
% timelock, frequency or source data and sets up the design vector or
% matrix.
%
% The specific configuration options for selecting timelock, frequency
% of source data are described in FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS and
% FT_SOURCESTATISTICS, respectively.
%
% After selecting the data, control is passed on to a data-independent
% statistical subfunction that computes test statistics plus their associated
% significance probabilities and critical values under some null-hypothesis. The statistical
% subfunction that is called is FT_STATISTICS_xxx, where cfg.method='xxx'. At
% this moment, we have implemented two statistical subfunctions:
% FT_STATISTICS_ANALYTIC, which calculates analytic significance probabilities and critical
% values (exact or asymptotic), and FT_STATISTICS_MONTECARLO, which calculates
% Monte-Carlo approximations of the significance probabilities and critical values.
%
% The specific configuration options for the statistical test are
% described in FT_STATISTICS_xxx.
% This function depends on PREPARE_TIMEFREQ_DATA which has the following options:
% cfg.avgoverchan
% cfg.avgoverfreq
% cfg.avgovertime
% cfg.channel
% cfg.channelcmb
% cfg.datarepresentation (set in STATISTICS_WRAPPER cfg.datarepresentation = 'concatenated')
% cfg.frequency
% cfg.latency
% cfg.precision
% cfg.previous (set in STATISTICS_WRAPPER cfg.previous = [])
% cfg.version (id and name set in STATISTICS_WRAPPER)
% Copyright (C) 2005-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'approach', 'method'});
cfg = ft_checkconfig(cfg, 'required', {'method'});
cfg = ft_checkconfig(cfg, 'forbidden', {'transform'});
% set the defaults
cfg.latency = ft_getopt(cfg, 'latency', 'all');
cfg.frequency = ft_getopt(cfg, 'frequency', 'all');
cfg.roi = ft_getopt(cfg, 'roi', []);
cfg.avgovertime = ft_getopt(cfg, 'avgovertime', 'no');
cfg.avgoverfreq = ft_getopt(cfg, 'avgoverfreq', 'no');
cfg.avgoverroi = ft_getopt(cfg, 'avgoverroi', 'no');
% determine the type of the input and hence the output data
if ~exist('OCTAVE_VERSION', 'builtin')
[s, i] = dbstack;
if length(s)>1
[caller_path, caller_name, caller_ext] = fileparts(s(2).name);
else
caller_path = '';
caller_name = '';
caller_ext = '';
end
% evalin('caller', 'mfilename') does not work for Matlab 6.1 and 6.5
istimelock = strcmp(caller_name,'ft_timelockstatistics');
isfreq = strcmp(caller_name,'ft_freqstatistics');
issource = strcmp(caller_name,'ft_sourcestatistics');
else
% cannot determine the calling function in Octave, try looking at the
% data instead
istimelock = isfield(varargin{1},'time') && ~isfield(varargin{1},'freq') && isfield(varargin{1},'avg');
isfreq = isfield(varargin{1},'time') && isfield(varargin{1},'freq');
issource = isfield(varargin{1},'pos') || isfield(varargin{1},'transform');
end
if (istimelock+isfreq+issource)~=1
error('Could not determine the type of the input data');
end
if istimelock || isfreq,
% these defaults only apply to channel level data
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.avgoverchan = ft_getopt(cfg, 'avgoverchan', 'no');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect the biological data (the dependent parameter)
% and the experimental design (the independent parameter)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if issource
% test that all source inputs have the same dimensions and are spatially aligned
for i=2:length(varargin)
if isfield(varargin{1}, 'dim') && (length(varargin{i}.dim)~=length(varargin{1}.dim) || ~all(varargin{i}.dim==varargin{1}.dim))
error('dimensions of the source reconstructions do not match, use FT_VOLUMENORMALISE first');
end
if isfield(varargin{1}, 'pos') && (length(varargin{i}.pos(:))~=length(varargin{1}.pos(:)) || ~all(varargin{i}.pos(:)==varargin{1}.pos(:)))
error('grid locations of the source reconstructions do not match, use FT_VOLUMENORMALISE first');
end
if isfield(varargin{1}, 'transform') && ~all(varargin{i}.transform(:)==varargin{1}.transform(:))
error('spatial coordinates of the source reconstructions do not match, use FT_VOLUMENORMALISE first');
end
end
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
if ~isempty(cfg.roi)
if ischar(cfg.roi)
cfg.roi = {cfg.roi};
end
% the source representation should specify the position of each voxel in MNI coordinates
x = varargin{1}.pos(:,1); % this is from left (negative) to right (positive)
% determine the mask to restrict the subsequent analysis
% process each of the ROIs, and optionally also left and/or right seperately
roimask = {};
roilabel = {};
for i=1:length(cfg.roi)
if islogical(cfg.roi{i})
tmp = cfg.roi{i};
else
tmpcfg.roi = cfg.roi{i};
tmpcfg.inputcoord = cfg.inputcoord;
tmpcfg.atlas = cfg.atlas;
tmp = ft_volumelookup(tmpcfg, varargin{1});
end
if strcmp(cfg.avgoverroi, 'no') && ~isfield(cfg, 'hemisphere')
% no reason to deal with seperated left/right hemispheres
cfg.hemisphere = 'combined';
end
if strcmp(cfg.hemisphere, 'left')
tmp(x>=0) = 0; % exclude the right hemisphere
roimask{end+1} = tmp;
roilabel{end+1} = ['Left ' cfg.roi{i}];
elseif strcmp(cfg.hemisphere, 'right')
tmp(x<=0) = 0; % exclude the right hemisphere
roimask{end+1} = tmp;
roilabel{end+1} = ['Right ' cfg.roi{i}];
elseif strcmp(cfg.hemisphere, 'both')
% deal seperately with the voxels on the left and right side of the brain
tmpL = tmp; tmpL(x>=0) = 0; % exclude the right hemisphere
tmpR = tmp; tmpR(x<=0) = 0; % exclude the left hemisphere
roimask{end+1} = tmpL;
roimask{end+1} = tmpR;
roilabel{end+1} = ['Left ' cfg.roi{i}];
roilabel{end+1} = ['Right ' cfg.roi{i}];
clear tmpL tmpR
elseif strcmp(cfg.hemisphere, 'combined')
% all voxels of the ROI can be combined
roimask{end+1} = tmp;
if ischar(cfg.roi{i})
roilabel{end+1} = cfg.roi{i};
else
roilabel{end+1} = ['ROI ' num2str(i)];
end
else
error('incorrect specification of cfg.hemisphere');
end
clear tmp
end % for each roi
% note that avgoverroi=yes is implemented differently at a later stage
% avgoverroi=no is implemented using the inside/outside mask
if strcmp(cfg.avgoverroi, 'no')
for i=2:length(roimask)
% combine them all in the first mask
roimask{1} = roimask{1} | roimask{i};
end
roimask = roimask{1}; % only keep the combined mask
% the source representation should have an inside and outside vector containing indices
sel = find(~roimask);
varargin{1}.inside = setdiff(varargin{1}.inside, sel);
varargin{1}.outside = union(varargin{1}.outside, sel);
clear roimask roilabel
end % if avgoverroi=no
end
% get the source parameter on which the statistic should be evaluated
if strcmp(cfg.parameter, 'mom') && isfield(varargin{1}, 'avg') && isfield(varargin{1}.avg, 'csdlabel') && isfield(varargin{1}, 'cumtapcnt')
[dat, cfg] = get_source_pcc_mom(cfg, varargin{:});
elseif strcmp(cfg.parameter, 'mom') && isfield(varargin{1}, 'avg') && ~isfield(varargin{1}.avg, 'csdlabel')
[dat, cfg] = get_source_lcmv_mom(cfg, varargin{:});
elseif isfield(varargin{1}, 'trial')
[dat, cfg] = get_source_trial(cfg, varargin{:});
else
[dat, cfg] = get_source_avg(cfg, varargin{:});
end
cfg.dimord = 'voxel';
% note that avgoverroi=no is implemented differently at an earlier stage
if strcmp(cfg.avgoverroi, 'yes')
tmp = zeros(length(roimask), size(dat,2));
for i=1:length(roimask)
% the data only reflects those points that are inside the brain,
% the atlas-based mask reflects points inside and outside the brain
roi = roimask{i}(varargin{1}.inside);
tmp(i,:) = mean(dat(roi,:), 1);
end
% replace the original data with the average over each ROI
dat = tmp;
clear tmp roi roimask
% remember the ROIs
cfg.dimord = 'roi';
end
% check whether the original input data contains a dim, which would allow
% for 3D reshaping and clustering with bwlabeln
if isfield(varargin{1}, 'transform') || ((isfield(varargin{1}, 'dim') && prod(varargin{1}.dim)==size(varargin{1}.pos,1)))
cfg.connectivity = 'bwlabeln';
end
elseif isfreq || istimelock
% get the ERF/TFR data by means of PREPARE_TIMEFREQ_DATA
cfg.datarepresentation = 'concatenated';
[cfg, data] = prepare_timefreq_data(cfg, varargin{:});
cfg = rmfield(cfg, 'datarepresentation');
dim = size(data.biol);
if length(dim)<3
% seems to be singleton frequency and time dimension
dim(3)=1;
dim(4)=1;
elseif length(dim)<4
% seems to be singleton time dimension
dim(4)=1;
end
cfg.dimord = 'chan_freq_time';
% the dimension of the original data (excluding the replication dimension) has to be known for clustering
cfg.dim = dim(2:end);
% all dimensions have to be concatenated except the replication dimension and the data has to be transposed
dat = transpose(reshape(data.biol, dim(1), prod(dim(2:end))));
% remove to save some memory
data.biol = [];
% verify that neighbours are present in case needed (not needed when
% averaging over channels)
if ~(isfield(cfg, 'avgoverchan') && istrue(cfg.avgoverchan)) &&...
~isfield(cfg,'neighbours') && isfield(cfg, 'correctm') && strcmp(cfg.correctm, 'cluster')
error('You need to specify a neighbourstructure');
%cfg.neighbours = ft_neighbourselection(cfg,varargin{1});
end
end
% get the design from the information in cfg and data.
if ~isfield(cfg,'design')
warning('Please think about how you would create cfg.design. Soon the call to prepare_design will be deprecated')
cfg.design = data.design;
[cfg] = prepare_design(cfg);
end
if size(cfg.design,2)~=size(dat,2)
cfg.design = transpose(cfg.design);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the statistic, using the data-independent statistical subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine the function handle to the intermediate-level statistics function
if exist(['ft_statistics_' cfg.method], 'file')
statmethod = str2func(['ft_statistics_' cfg.method]);
else
error(sprintf('could not find the corresponding function for cfg.method="%s"\n', cfg.method));
end
fprintf('using "%s" for the statistical testing\n', func2str(statmethod));
% check that the design completely describes the data
if size(dat,2) ~= size(cfg.design,2)
error('the size of the design matrix (%d) does not match the number of observations in the data (%d)', size(cfg.design,2), size(dat,2));
end
% determine the number of output arguments
try
% the nargout function in Matlab 6.5 and older does not work on function handles
num = nargout(statmethod);
catch
num = 1;
end
design = cfg.design;
cfg = rmfield(cfg,'design'); % to not confuse lower level functions with both cfg.design and design input
% perform the statistical test
if strcmp(func2str(statmethod),'ft_statistics_montecarlo') % because ft_statistics_montecarlo (or to be precise, clusterstat) requires to know whether it is getting source data,
% the following (ugly) work around is necessary
if num>1
[stat, cfg] = statmethod(cfg, dat, design);
else
[stat] = statmethod(cfg, dat, design);
end
else
if num>1
[stat, cfg] = statmethod(cfg, dat, design);
else
[stat] = statmethod(cfg, dat, design);
end
end
if isstruct(stat)
% the statistical output contains multiple elements, e.g. F-value, beta-weights and probability
statfield = fieldnames(stat);
else
% only the probability was returned as a single matrix, reformat into a structure
dum = stat; stat = []; % this prevents a Matlab warning that appears from release 7.0.4 onwards
stat.prob = dum;
statfield = fieldnames(stat);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% add descriptive information to the output and rehape into the input format
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if issource
if ~isfield(varargin{1},'dim') % FIX ME; this is added temporarily (20110427) to cope with ft_sourceanalysis output not having a dim field since r3273
varargin{1}.dim = [Nvoxel 1];
end
if isempty(cfg.roi) || strcmp(cfg.avgoverroi, 'no')
% remember the definition of the volume, assume that they are identical for all input arguments
try stat.dim = varargin{1}.dim; end
try stat.xgrid = varargin{1}.xgrid; end
try stat.ygrid = varargin{1}.ygrid; end
try stat.zgrid = varargin{1}.zgrid; end
try stat.inside = varargin{1}.inside; end
try stat.outside = varargin{1}.outside; end
try stat.pos = varargin{1}.pos; end
try stat.transform = varargin{1}.transform; end
try stat.freq = varargin{1}.freq; end
try stat.time = varargin{1}.time; end
else
stat.inside = 1:length(roilabel);
stat.outside = [];
stat.label = roilabel(:);
end
for i=1:length(statfield)
tmp = getsubfield(stat, statfield{i});
if isfield(varargin{1}, 'inside') && numel(tmp)==length(varargin{1}.inside)
% the statistic was only computed on voxels that are inside the brain
% sort the inside and outside voxels back into their original place
if islogical(tmp)
tmp(varargin{1}.inside) = tmp;
tmp(varargin{1}.outside) = false;
else
tmp(varargin{1}.inside) = tmp;
tmp(varargin{1}.outside) = nan;
end
extradim = 1;
elseif isfield(varargin{1}, 'inside') && isfield(varargin{1}, 'freq') && isfield(varargin{1}, 'time') && numel(tmp)==length(varargin{1}.inside)*length(varargin{1}.freq)*length(varargin{1}.time)
% the statistic is a higher dimensional matrix (here as a function of freq) computed only on the
% inside voxels
newtmp = zeros(length(varargin{1}.inside)+length(varargin{1}.outside), length(varargin{1}.freq), length(varargin{1}.time));
if islogical(tmp)
newtmp(varargin{1}.inside, :, :) = reshape(tmp, length(varargin{1}.inside), length(varargin{1}.freq), []);
newtmp(varargin{1}.outside, :, :) = false;
else
newtmp(varargin{1}.inside, :, :) = reshape(tmp, length(varargin{1}.inside), length(varargin{1}.freq), []);
newtmp(varargin{1}.outside, :, :) = nan;
end
tmp = newtmp; clear newtmp;
extradim = length(varargin{1}.freq);
elseif isfield(varargin{1}, 'inside') && isfield(varargin{1}, 'freq') && numel(tmp)==length(varargin{1}.inside)*length(varargin{1}.freq)
% the statistic is a higher dimensional matrix (here as a function of freq) computed only on the
% inside voxels
newtmp = zeros(length(varargin{1}.inside)+length(varargin{1}.outside), length(varargin{1}.freq));
if islogical(tmp)
newtmp(varargin{1}.inside, :) = reshape(tmp, length(varargin{1}.inside), []);
newtmp(varargin{1}.outside, :) = false;
else
newtmp(varargin{1}.inside, :) = reshape(tmp, length(varargin{1}.inside), []);
newtmp(varargin{1}.outside, :) = nan;
end
tmp = newtmp; clear newtmp;
extradim = length(varargin{1}.freq);
elseif isfield(varargin{1}, 'inside') && isfield(varargin{1}, 'time') && numel(tmp)==length(varargin{1}.inside)*length(varargin{1}.time)
% the statistic is a higher dimensional matrix (here as a function of time) computed only on the
% inside voxels
newtmp = zeros(length(varargin{1}.inside)+length(varargin{1}.outside), length(varargin{1}.time));
if islogical(tmp)
newtmp(varargin{1}.inside, :) = reshape(tmp, length(varargin{1}.inside), []);
newtmp(varargin{1}.outside, :) = false;
else
newtmp(varargin{1}.inside, :) = reshape(tmp, length(varargin{1}.inside), []);
newtmp(varargin{1}.outside, :) = nan;
end
tmp = newtmp; clear newtmp;
extradim = length(varargin{1}.time);
else
extradim = 1;
end
if numel(tmp)==prod(varargin{1}.dim)
% reshape the statistical volumes into the original format
stat = setsubfield(stat, statfield{i}, reshape(tmp, varargin{1}.dim));
else
stat = setsubfield(stat, statfield{i}, tmp);
end
end
else
haschan = isfield(data, 'label'); % this one remains relevant, even after averaging over channels
haschancmb = isfield(data, 'labelcmb'); % this one remains relevant, even after averaging over channels
hasfreq = strcmp(cfg.avgoverfreq, 'no') && ~any(isnan(data.freq));
hastime = strcmp(cfg.avgovertime, 'no') && ~any(isnan(data.time));
stat.dimord = '';
if haschan
stat.dimord = [stat.dimord 'chan_'];
stat.label = data.label;
chandim = dim(2);
elseif haschancmb
stat.dimord = [stat.dimord 'chancmb_'];
stat.labelcmb = data.labelcmb;
chandim = dim(2);
end
if hasfreq
stat.dimord = [stat.dimord 'freq_'];
stat.freq = data.freq;
freqdim = dim(3);
end
if hastime
stat.dimord = [stat.dimord 'time_'];
stat.time = data.time;
timedim = dim(4);
end
if ~isempty(stat.dimord)
% remove the last '_'
stat.dimord = stat.dimord(1:(end-1));
end
for i=1:length(statfield)
try
% reshape the fields that have the same dimension as the input data
if strcmp(stat.dimord, 'chan')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim 1]));
elseif strcmp(stat.dimord, 'chan_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim timedim]));
elseif strcmp(stat.dimord, 'chan_freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim]));
elseif strcmp(stat.dimord, 'chan_freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim timedim]));
elseif strcmp(stat.dimord, 'chancmb_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim timedim]));
elseif strcmp(stat.dimord, 'chancmb_freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim]));
elseif strcmp(stat.dimord, 'chancmb_freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim timedim]));
elseif strcmp(stat.dimord, 'time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [1 timedim]));
elseif strcmp(stat.dimord, 'freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [1 freqdim]));
elseif strcmp(stat.dimord, 'freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [freqdim timedim]));
end
end
end
end
return % statistics_wrapper main()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data resembles PCC beamed source reconstruction, multiple trials are coded in mom
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_pcc_mom(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
Ninside = length(varargin{1}.inside);
dim = varargin{1}.dim;
for i=1:Nsource
ntrltap = sum(varargin{i}.cumtapcnt);
dat{i} = zeros(Ninside, ntrltap);
for j=1:Ninside
k = varargin{1}.inside(j);
if ischar(varargin{i}.avg.csdlabel{1})
% this represents the 'old-style' csdlabel, one list for all dipoles
dipsel = find(strcmp(varargin{i}.avg.csdlabel, 'scandip'));
else
% this represents the 'new-style' csdlabel, one list for each of the dipoles
dipsel = find(strcmp(varargin{i}.avg.csdlabel{k}, 'scandip'));
end
dat{i}(j,:) = reshape(varargin{i}.avg.mom{k}(dipsel,:), 1, ntrltap);
end
end
% concatenate the data matrices of the individual input arguments
dat = cat(2, dat{:});
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data resemples LCMV beamed source reconstruction, mom contains timecourse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_lcmv_mom(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
Ntime = length(varargin{1}.avg.mom{varargin{1}.inside(1)});
Ninside = length(varargin{1}.inside);
dim = [varargin{1}.dim Ntime];
dat = zeros(Ninside*Ntime, Nsource);
for i=1:Nsource
% collect the 4D data of this input argument
tmp = nan(Ninside, Ntime);
for j=1:Ninside
k = varargin{1}.inside(j);
tmp(j,:) = reshape(varargin{i}.avg.mom{k}, 1, dim(4));
end
dat(:,i) = tmp(:);
end
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data contains single-trial or single-subject source reconstructions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_trial(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
for i=1:Nsource
Ntrial(i) = length(varargin{i}.trial);
end
k = 1;
for i=1:Nsource
for j=1:Ntrial(i)
tmp = getsubfield(varargin{i}.trial(j), cfg.parameter);
if ~iscell(tmp),
%dim = size(tmp);
dim = [Nvoxel 1];
else
dim = [Nvoxel size(tmp{varargin{i}.inside(1)})];
end
if i==1 && j==1 && numel(tmp)~=Nvoxel,
warning('the input-data contains more entries than the number of voxels in the volume, the data will be concatenated');
dat = zeros(prod(dim), sum(Ntrial)); %FIXME this is old code should be removed
elseif i==1 && j==1 && iscell(tmp),
warning('the input-data contains more entries than the number of voxels in the volume, the data will be concatenated');
dat = zeros(Nvoxel*numel(tmp{varargin{i}.inside(1)}), sum(Ntrial));
elseif i==1 && j==1,
dat = zeros(Nvoxel, sum(Ntrial));
end
if ~iscell(tmp),
dat(:,k) = tmp(:);
else
Ninside = length(varargin{i}.inside);
%tmpvec = (varargin{i}.inside-1)*prod(size(tmp{varargin{i}.inside(1)}));
tmpvec = varargin{i}.inside;
insidevec = [];
for m = 1:numel(tmp{varargin{i}.inside(1)})
insidevec = [insidevec; tmpvec(:)+(m-1)*Nvoxel];
end
insidevec = insidevec(:)';
tmpdat = reshape(permute(cat(3,tmp{varargin{1}.inside}), [3 1 2]), [Ninside numel(tmp{varargin{1}.inside(1)})]);
dat(insidevec, k) = tmpdat(:);
end
% add original dimensionality of the data to the configuration, is required for clustering
%FIXME: this was obviously wrong, because often trial-data is one-dimensional, so no dimensional information is present
%cfg.dim = dim(2:end);
k = k+1;
end
end
if isfield(varargin{1}, 'inside')
fprintf('only selecting voxels inside the brain for statistics (%.1f%%)\n', 100*length(varargin{1}.inside)/prod(dim));
for j=prod(dim(2:end)):-1:1
dat((j-1).*dim(1) + varargin{1}.outside, :) = [];
end
end
% remember the dimension of the source data
if isfield(varargin{1}, 'dim')
cfg.dim = varargin{1}.dim;
else
cfg.dim = size(varargin{1}.trial(1).(cfg.parameter));
cfg.dim(1) = numel(varargin{1}.inside);
cfg.insideorig = varargin{1}.inside;
cfg.inside = varargin{1}.inside;
end
%if ~isfield(cfg, 'dim')
%warning('for clustering on trial-based data you explicitly have to specify cfg.dim');
%end
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% get the average source reconstructions, the repetitions are in multiple input arguments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_avg(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
if isfield(varargin{1}, 'dim')
dim = varargin{1}.dim;
inside = false(prod(dim),1);
else
dim = numel(varargin{1}.inside);
inside = false(size(varargin{1}.pos,1),1);
end
inside(varargin{1}.inside) = true;
tmp = getsubfield(varargin{1}, cfg.parameter);
if size(tmp,2)>1
if isfield(varargin{1}, 'freq')
Nvoxel = Nvoxel*numel(varargin{1}.freq);
dim = [dim numel(varargin{1}.freq)];
inside = repmat(inside, [1 numel(varargin{1}.freq)]);
end
if isfield(varargin{1}, 'time')
Nvoxel = Nvoxel*numel(varargin{1}.time);
dim = [dim numel(varargin{1}.time)];
if isfield(varargin{1},'freq')
inside = repmat(inside, [1 1 numel(varargin{1}.time)]);
else
inside = repmat(inside, [1 numel(varargin{1}.time)]);
end
end
end
dat = zeros(Nvoxel, Nsource);
for i=1:Nsource
tmp = getsubfield(varargin{i}, cfg.parameter);
dat(:,i) = tmp(:);
end
insideorig = find(inside(:,1));
inside = find(inside(:));
if isfield(varargin{1}, 'inside')
if isfield(varargin{1}, 'pos')
npos = size(varargin{1}.pos,1);
elseif isfield(varargin{1}, 'dim')
npos = prod(varargin{1}.dim);
else
npos = length(varargin{1}.inside); % uninformative, at least prevents crash
end
fprintf('only selecting voxels inside the brain for statistics (%.1f%%)\n', 100*length(varargin{1}.inside)/npos);
dat = dat(inside,:);
end
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = inside(:);
cfg.insideorig = insideorig;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for creating a design matrix
% should be called in the code above, or in prepare_design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [cfg] = get_source_design_pcc_mom(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_lcmv_mom(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_trial(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_avg(cfg, varargin)
% should be implemented
|
github
|
lcnbeapp/beapp-master
|
csp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/csp.m
| 1,702 |
utf_8
|
3eb6c73192bc8163344c9b5e70a04877
|
function [W] = csp(C1, C2, m)
% CSP calculates the common spatial pattern (CSP) projection.
%
% Use as:
% [W] = csp(C1, C2, m)
%
% This function implements the intents of the CSP algorithm described in [1].
% Specifically, CSP finds m spatial projections that maximize the variance (or
% band power) in one condition (described by the [p x p] channel-covariance
% matrix C1), and simultaneously minimizes the variance in the other (C2):
%
% W C1 W' = D
%
% and
%
% W (C1 + C2) W' = I,
%
% Where D is a diagonal matrix with decreasing values on it's diagonal, and I
% is the identity matrix of matching shape.
% The resulting [m x p] matrix can be used to project a zero-centered [p x n]
% trial matrix X:
%
% S = W X.
%
%
% Although the CSP is the de facto standard method for feature extraction for
% motor imagery induced event-related desynchronization, it is not strictly
% necessary [2].
%
% [1] Zoltan J. Koles. The quantitative extraction and topographic mapping of
% the abnormal components in the clinical EEG. Electroencephalography and
% Clinical Neurophysiology, 79(6):440--447, December 1991.
%
% [2] Jason Farquhar. A linear feature space for simultaneous learning of
% spatio-spectral filters in BCI. Neural Networks, 22:1278--1285, 2009.
% Copyright (c) 2012, Boris Reuderink
P = whiten(C1 + C2, 1e-14); % decorrelate over conditions
[B, Lamb, B2] = svd(P * C1 * P'); % rotation to decorrelate within condition.
W = B' * P;
% keep m projections at ends
keep = circshift(1:size(W, 1) <= m, [0, -m/2]);
W = W(keep,:);
function P = whiten(C, rtol)
[U, l, U2] = svd(C);
l = diag(l);
keep = l > max(l) * rtol;
P = diag(l(keep).^(-.5)) * U(:,keep)';
|
github
|
lcnbeapp/beapp-master
|
read_besa_src.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/read_besa_src.m
| 2,659 |
utf_8
|
43681bd06aada6e69bddc42dbb47c254
|
function [src] = read_besa_src(filename)
% READ_BESA_SRC reads a beamformer source reconstruction from a BESA file
%
% Use as
% [src] = read_besa_src(filename)
%
% The output structure contains a minimal representation of the contents
% of the file.
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
src = [];
fid = fopen(filename, 'rt');
% read the header information
line = fgetl(fid);
while isempty(strmatch('BESA_SA_IMAGE', line)), line = fgetl(fid); check_feof(fid, filename); end
% while isempty(strmatch('sd' , line)), line = fgetl(fid); check_feof(fid, filename); end % this line contains condition information
while isempty(strmatch('Grid dimen' , line)), line = fgetl(fid); check_feof(fid, filename); end
while isempty(strmatch('X:' , line)), line = fgetl(fid); check_feof(fid, filename); end; linex = line;
while isempty(strmatch('Y:' , line)), line = fgetl(fid); check_feof(fid, filename); end; liney = line;
while isempty(strmatch('Z:' , line)), line = fgetl(fid); check_feof(fid, filename); end; linez = line;
tok = tokenize(linex, ' ');
src.X = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
tok = tokenize(liney, ' ');
src.Y = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
tok = tokenize(linez, ' ');
src.Z = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
nx = src.X(3);
ny = src.Y(3);
nz = src.Z(3);
src.vol = zeros(nx, ny, nz);
for i=1:nz
% search up to the next slice
while isempty(strmatch(sprintf('Z: %d', i-1), line)), line = fgetl(fid); check_feof(fid, filename); end;
% read all the values for this slice
buf = fscanf(fid, '%f', [nx ny]);
src.vol(:,:,i) = buf;
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function check_feof(fid, filename)
if feof(fid)
error(sprintf('could not read all information from file ''%s''', filename));
end
|
github
|
lcnbeapp/beapp-master
|
splint.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/splint.m
| 6,340 |
utf_8
|
18b814d3a2a955804ded0f7bd7ea6eec
|
function [V2, L2, L1] = splint(elc1, V1, elc2, order, degree, lambda)
% SPLINT computes the spherical spline interpolation and the surface laplacian
% of an EEG potential distribution
%
% Use as
% [V2, L2, L1] = splint(elc1, V1, elc2)
% where
% elc1 electrode positions where potential is known
% elc2 electrode positions where potential is not known
% V1 known potential
% and
% V2 potential at electrode locations in elc2
% L2 laplacian of potential at electrode locations in elc2
% L1 laplacian of potential at electrode locations in elc1
% order order of splines
% degree degree of Legendre polynomials
% lambda regularization parameter
%
% See also LAPINT, LAPINTMAT, LAPCAL
% This implements
% F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier.
% Spherical splines for scalp potential and curernt density mapping.
% Electroencephalogr Clin Neurophysiol, 72:184-187, 1989.
% including their corrections in
% F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier.
% Corrigenda: EEG 02274, Electroencephalography and Clinical
% Neurophysiology 76:565.
% Copyright (C) 2003, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
N = size(elc1,1); % number of known electrodes
M = size(elc2,1); % number of unknown electrodes
T = size(V1,2); % number of timepoints in the potential
Z = V1; % potential on known electrodes, can be matrix
% remember the actual size of the sphere
sphere1_scale = mean(sqrt(sum(elc1.^2,2)));
sphere2_scale = mean(sqrt(sum(elc2.^2,2)));
% scale all electrodes towards a unit sphere
elc1 = elc1 ./ repmat(sqrt(sum(elc1.^2,2)), 1, 3);
elc2 = elc2 ./ repmat(sqrt(sum(elc2.^2,2)), 1, 3);
% compute cosine of angle between all known electrodes
CosEii = zeros(N, N);
for i=1:N
for j=1:N
CosEii(i,j) = 1 - sum((elc1(i,:) - elc1(j,:)).^2)/2;
end
end
% compute matrix G of Perrin 1989
[gx, hx] = gh(CosEii, order, degree);
G = gx+eye(size(gx))*lambda; % Apply regularization as in comments in Perrin 1989
% Note that the two simultaneous equations (2) of Perrin
% G*C + T*c0 = Z
% T'*C = 0
% with C = [c1 c2 c3 ...] can be rewritten into a single linear system
% H * [c0 c1 c2 ... cN]' = [0 z1 z2 ... zN]'
% with
% H = [ 0 1 1 1 1 1 1 . ]
% [ 1 g11 g12 . . . . . ]
% [ 1 g21 g22 . . . . . ]
% [ 1 g31 g32 . . . . . ]
% [ 1 g41 g42 . . . . . ]
% [ . . . . . . . . ]
% that subsequently can be solved using a singular value decomposition
% or another linear solver
% rewrite the linear system according to the comment above and solve it for C
% different from Perrin, this solution for C includes the c0 term
H = ones(N+1,N+1); H(1,1) = 0; H(2:end,2:end) = G;
% C = pinv(H)*[zeros(1,T); Z]; % solve with SVD
C = H \ [zeros(1,T); Z]; % solve by Gaussian elimination
% compute surface laplacian on all known electrodes by matrix multiplication
L1 = hx * C(2:end, :);
% undo the initial scaling of the sphere to get back to real units for the laplacian
L1 = L1 / (sphere1_scale^2);
if all(size(elc1)==size(elc2)) && all(elc1(:)==elc2(:))
warning('using shortcut for splint');
% do not recompute gx and hx
else
% compute cosine of angle between all known and unknown electrodes
CosEji = zeros(M, N);
for j=1:M
for i=1:N
CosEji(j,i) = 1 - sum((elc2(j,:) - elc1(i,:)).^2)/2;
end
end
[gx, hx] = gh(CosEji, order, degree);
end
% compute interpolated potential on all unknown electrodes by matrix multiplication
V2 = [ones(M,1) gx] * C;
% compute surface laplacian on all unknown electrodes by matrix multiplication
L2 = hx * C(2:end, :);
% undo the initial scaling of the sphere to get back to real units for the laplacian
L2 = L2 / (sphere2_scale^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this subfunction implements equations (3) and (5b) of Perrin 1989
% for simultaneous computation of multiple values
% also implemented as MEX file, but without the adaptive N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [gx, hx] = gh(x, M, N)
% M = 4; % constant in denominator, set in ft_scalpcurrentdensity
% N is the number of terms for series expansion, set in ft_scalpcurrentdensity
% N=9 works fine for 32 electrodes, but for 128 electrodes it should be larger
% if max(size(x))<=32
% N = 9;
% elseif max(size(x))<=64
% N = 14;
% elseif max(size(x))<=128
% N = 20;
% else
% N = 32;
% end
p = zeros(1,N);
gx = zeros(size(x));
hx = zeros(size(x));
x(x>1) = 1; % to avoid rounding off errors
x(x<-1) = -1; % to avoid rounding off errors
% using MATLAB function to compute legendre polynomials
% P = zeros(size(x,1), size(x,2), N);
% for k=1:N
% tmp = legendre(k,x);
% P(:,:,k) = squeeze(tmp(1,:,:));
% end
if (size(x,1)==size(x,2)) && all(all(x==x'))
issymmetric = 1;
else
issymmetric = 0;
end
for i=1:size(x,1)
if issymmetric
jloop = i:size(x,2);
else
jloop = 1:size(x,2);
end
for j=jloop
% using faster "Numerical Recipies in C" plgndr function (mex file)
for k=1:N
p(k) = plgndr(k,0,x(i,j));
end
% p = squeeze(P(i, j ,:))';
gx(i,j) = sum((2*(1:N)+1) ./ ((1:N).*((1:N)+1)).^M .* p) / (4*pi);
hx(i,j) = -sum((2*(1:N)+1) ./ ((1:N).*((1:N)+1)).^(M-1) .* p) / (4*pi);
if issymmetric
gx(j,i) = gx(i,j);
hx(j,i) = hx(i,j);
end
% fprintf('computing laplacian %f%% done\n', 100*(((i-1)*size(x,2)+j) / prod(size(x))));
end
end
|
github
|
lcnbeapp/beapp-master
|
find_nearest.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/find_nearest.m
| 5,997 |
utf_8
|
d222cf9a4bf0492d012b52b1fc171646
|
function [nearest, distance] = find_nearest(pnt1, pnt2, npart, gridflag)
% FIND_NEAREST finds the nearest vertex in a cloud of points and
% does this efficiently for many target vertices at once (by means
% of partitioning).
%
% Use as
% [nearest, distance] = find_nearest(pnt1, pnt2, npart)
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this can be used for printing detailled user feedback
fb = false;
if nargin<4
gridflag = 0;
end
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
if ~gridflag
% check whether pnt2 is gridded
if all(pnt2(1,:)==1)
% it might be gridded, test in more detail
dim = max(pnt2, [], 1);
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
gridflag = all(pnt2(:)==[X(:);Y(:);Z(:)]);
end
end
if gridflag
% it is gridded, that can be treated much faster
if fb, fprintf('pnt2 is gridded\n'); end
sub = round(pnt1);
sub(sub(:)<1) = 1;
sub(sub(:,1)>dim(1),1) = dim(1);
sub(sub(:,2)>dim(2),2) = dim(2);
sub(sub(:,3)>dim(3),3) = dim(3);
ind = sub2ind(dim, sub(:,1), sub(:,2), sub(:,3));
nearest = ind(:);
distance = sqrt(sum((pnt1-pnt2(ind,:)).^2, 2));
return
end
if npart<1
npart = 1;
end
nearest = ones(size(pnt1,1),1) * -1;
distance = ones(size(pnt1,1),1) * inf;
sel = find(nearest<0);
while ~isempty(sel)
if fb, fprintf('nsel = %d, npart = %d\n', length(sel), npart); end
[pnear, pdist] = find_nearest_partition(pnt1(sel,:), pnt2, npart);
better = pdist<=distance(sel);
nearest(sel(better)) = pnear(better);
distance(sel(better)) = distance(better);
sel = find(nearest<0);
npart = floor(npart/2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nearest, distance] = find_nearest_partition(pnt1, pnt2, npart)
% this can be used for printing detailled user feedback
fb = false;
if isempty(fb)
fb = 0;
end
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
% this will contain the output
nearest = zeros(npnt1, 1);
distance = zeros(npnt1, 1);
if npnt1==0
return
end
minpnt1 = min(pnt1,1);
minpnt2 = min(pnt2,1);
maxpnt1 = max(pnt1,1);
maxpnt2 = max(pnt2,1);
pmin = min([minpnt1; minpnt2]) - eps;
pmax = max([maxpnt1; maxpnt2]) + eps;
dx = (pmax(1)-pmin(1))/npart;
dy = (pmax(2)-pmin(2))/npart;
dz = (pmax(3)-pmin(3))/npart;
% determine the lower boundaries of each partition along the x, y, and z-axis
limx = pmin(1) + (0:(npart-1)) * dx;
limy = pmin(2) + (0:(npart-1)) * dy;
limz = pmin(3) + (0:(npart-1)) * dz;
% determine the lower boundaries of each of the N^3 partitions
[X, Y, Z] = ndgrid(limx, limy, limz);
partlim = [X(:) Y(:) Z(:)];
% determine for each vertex to which partition it belongs
binx = ceil((pnt1(:,1)- pmin(1))/dx);
biny = ceil((pnt1(:,2)- pmin(2))/dy);
binz = ceil((pnt1(:,3)- pmin(3))/dz);
ind1 = (binx-1)*npart^0 + (biny-1)*npart^1 +(binz-1)*npart^2 + 1;
binx = ceil((pnt2(:,1)- pmin(1))/dx);
biny = ceil((pnt2(:,2)- pmin(2))/dy);
binz = ceil((pnt2(:,3)- pmin(3))/dz);
ind2 = (binx-1)*npart^0 + (biny-1)*npart^1 +(binz-1)*npart^2 + 1;
% use the brute force approach within each partition
for p=1:(npart^3)
sel1 = (ind1==p);
sel2 = (ind2==p);
nsel1 = sum(sel1);
nsel2 = sum(sel2);
if nsel1==0 || nsel2==0
continue
end
pnt1s = pnt1(sel1, :);
pnt2s = pnt2(sel2, :);
[pnear, pdist] = find_nearest_brute_force(pnt1s, pnt2s);
% determine the points that are sufficiently far from the partition edge
seln = true(nsel1, 1);
if npart>1
if partlim(p,1)>pmin(1), seln = seln & (pdist < (pnt1s(:,1) - partlim(p,1))); end
if partlim(p,1)>pmin(2), seln = seln & (pdist < (pnt1s(:,2) - partlim(p,2))); end
if partlim(p,1)>pmin(3), seln = seln & (pdist < (pnt1s(:,3) - partlim(p,3))); end
if partlim(p,1)<pmin(1), seln = seln & (pdist < (partlim(p,1)) + dx - pnt1s(:,1)); end
if partlim(p,2)<pmin(2), seln = seln & (pdist < (partlim(p,2)) + dx - pnt1s(:,2)); end
if partlim(p,3)<pmin(3), seln = seln & (pdist < (partlim(p,3)) + dx - pnt1s(:,3)); end
end
% the results have to be re-indexed
dum1 = find(sel1);
dum2 = find(sel2);
nearest(dum1( seln)) = dum2(pnear( seln));
nearest(dum1(~seln)) = -dum2(pnear(~seln)); % negative means that it is not certain
distance(dum1) = pdist;
end
% handle the points that ly in empty target partitions
sel = (nearest==0);
if any(sel)
if fb, fprintf('%d points in empty target partition\n', sum(sel)); end
pnt1s = pnt1(sel, :);
[pnear, pdist] = find_nearest_brute_force(pnt1s, pnt2);
nearest(sel) = pnear;
distance(sel) = pdist;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nearest, distance] = find_nearest_brute_force(pnt1, pnt2)
% implementation 1 -- brute force
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
nearest = zeros(npnt1, 1);
distance = zeros(npnt1, 1);
if npnt1==0 || npnt2==0
return
end
for i=1:npnt1
% compute squared distance
tmp = (pnt2(:,1) - pnt1(i,1)).^2 + (pnt2(:,2) - pnt1(i,2)).^2 + (pnt2(:,3) - pnt1(i,3)).^2;
[distance(i), nearest(i)] = min(tmp);
end
distance = sqrt(distance);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotpnt(pnt, varargin)
x = pnt(:,1);
y = pnt(:,2);
z = pnt(:,3);
plot3(x, y, z, varargin{:});
|
github
|
lcnbeapp/beapp-master
|
prepare_mesh_segmentation.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/prepare_mesh_segmentation.m
| 7,346 |
utf_8
|
d189606268a3d46e958dacce53df76ee
|
function bnd = prepare_mesh_segmentation(cfg, mri)
% PREPARE_MESH_SEGMENTATION
%
% See also PREPARE_MESH_MANUAL, PREPARE_MESH_HEADSHAPE, PREPARE_MESH_HEXAHEDRAL
% Copyrights (C) 2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% ensure that the input is consistent with what this function expects
mri = ft_checkdata(mri, 'datatype', {'volume', 'segmentation'}, 'hasunit', 'yes');
% get the default options
cfg.spmversion = ft_getopt(cfg, 'spmversion', 'spm8');
cfg.method = ft_getopt(cfg, 'method', 'projectmesh');
if all(isfield(mri, {'gray', 'white', 'csf'}))
cfg.tissue = ft_getopt(cfg, 'tissue', 'brain'); % set the default
cfg.numvertices = ft_getopt(cfg, 'numvertices', 3000); % set the default
else
% do not set defaults for tissue and numvertices
cfg.tissue = ft_getopt(cfg, 'tissue');
cfg.numvertices = ft_getopt(cfg, 'numvertices');
end
% check that SPM is on the path, try to add the preferred version
if strcmpi(cfg.spmversion, 'spm2'),
ft_hastoolbox('SPM2',1);
elseif strcmpi(cfg.spmversion, 'spm8'),
ft_hastoolbox('SPM8',1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% try to determine the tissue (if not specified)
% special exceptional case first
if isempty(cfg.tissue) && numel(cfg.numvertices)==1 && isfield(mri,'white') && isfield(mri,'gray') && isfield(mri,'csf')
mri=ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic', 'hasbrain', 'yes');
cfg.tissue='brain';
end
if isempty(cfg.tissue)
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'indexed');
fn = fieldnames(mri);
for i=1:numel(fn)
if numel(mri.(fn{i}))==prod(mri.dim) && isfield(mri, [fn{i},'label'])
segfield=fn{i};
end
end
if isfield(mri, [segfield 'label'])
cfg.tissue = mri.([segfield 'label']);
cfg.tissue = cfg.tissue(~cellfun(@isempty, cfg.tissue));
fprintf('making mesh for %s tissue\n', cfg.tissue{:});
else
cfg.tissue=setdiff(unique(mri.(segfield)(:)),0);
fprintf('making mesh for tissue with segmentation value %d\n', cfg.tissue);
end
end
if ischar(cfg.tissue)
% it should either be something like {'brain', 'skull', 'scalp'}, or something like [1 2 3]
cfg.tissue = {cfg.tissue};
end
if numel(cfg.tissue)>1 && numel(cfg.numvertices)==1
% use the same number of vertices for each tissue
cfg.numvertices = repmat(cfg.numvertices, size(cfg.tissue));
elseif numel(cfg.tissue)~=numel(cfg.numvertices)
error('you should specify the number of vertices for each tissue type');
end
if iscell(cfg.tissue)
% the code below assumes that it is a probabilistic representation
if any(strcmp(cfg.tissue, 'brain'))
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic', 'hasbrain', 'yes');
else
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic');
end
else
% the code below assumes that it is an indexed representation
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'indexed');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do the mesh extraction
for i =1:numel(cfg.tissue)
if iscell(cfg.tissue)
% the code below assumes that it is a probabilistic representation
% for example {'brain', 'skull', scalp'}
try
seg = mri.(fixname(cfg.tissue{i}));
catch
error('Please specify cfg.tissue to correspond to tissue types in the segmented MRI')
end
tissue = cfg.tissue{i};
else
% this assumes that it is an indexed representation
% for example [3 2 1]
seg = (mri.seg==cfg.tissue(i));
if isfield(mri, 'seglabel')
try
tissue = mri.seglabel{cfg.tissue(i)};
catch
error('Please specify cfg.tissue to correspond to (the name or number of) tissue types in the segmented MRI')
end
else
tissue = sprintf('tissue %d', i);
end
end
if strcmp(cfg.method, 'isosurface')
fprintf('triangulating the outer boundary of compartment %d (%s) with the isosurface method\n', i, tissue);
else
fprintf('triangulating the outer boundary of compartment %d (%s) with %d vertices\n', i, tissue, cfg.numvertices(i));
end
% in principle it is possible to do volumesmooth and volumethreshold, but
% the user is expected to prepare his segmentation outside this function
% seg = volumesmooth(seg, nan, nan);
% ensure that the segmentation is binary and that there is a single contiguous region
seg = volumethreshold(seg, 0.5, tissue);
% the function that generates the mesh will fail if there is a hole in the middle
seg = volumefillholes(seg);
switch cfg.method
case 'isosurface'
[tri, pos] = isosurface(seg, 0.5);
pos = pos(:,[2 1 3]); % Mathworks isosurface indexes differently
case 'iso2mesh'
ft_hastoolbox('iso2mesh', 1);
opt = [];
opt.radbound = 3; % set the target surface mesh element bounding sphere be <3 pixels in radius
opt.maxnode = cfg.numvertices(i);
opt.maxsurf = 1;
[pos, tri] = v2s(seg, 1, opt, 'cgalsurf');
tri = tri(:,1:3);
case 'projectmesh'
[mrix, mriy, mriz] = ndgrid(1:mri.dim(1), 1:mri.dim(2), 1:mri.dim(3));
ori(1) = mean(mrix(seg(:)));
ori(2) = mean(mriy(seg(:)));
ori(3) = mean(mriz(seg(:)));
[pos, tri] = triangulate_seg(seg, cfg.numvertices(i), ori);
otherwise
error('unsupported method "%s"', cfg.method);
end % case
numvoxels(i) = sum(find(seg(:))); % the number of voxels in this tissue
bnd(i).pos = ft_warp_apply(mri.transform, pos);
bnd(i).tri = tri;
bnd(i).unit = mri.unit;
end % for each tissue
if strcmp(cfg.method, 'iso2surf')
% order outside in (trying to be smart here)
[dum, order] = sort(numvoxels,'descend');
bnd = bnd(order);
% clean up the triangulated meshes
bnd = decouplesurf(bnd);
% put them back in the original order
[dum, order] = sort(order);
bnd = bnd(order);
end
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function bnd = decouplesurf(bnd)
for ii = 1:length(bnd)-1
% Despite what the instructions for surfboolean says, surfaces should
% be ordered from inside-out!!
[newnode, newelem] = surfboolean(bnd(ii+1).pos,bnd(ii+1).tri,'decouple',bnd(ii).pos,bnd(ii).tri);
bnd(ii+1).tri = newelem(newelem(:,4)==2,1:3) - size(bnd(ii+1).pos,1);
bnd(ii+1).pos = newnode(newnode(:,4)==2,1:3);
end % for
end %function
|
github
|
lcnbeapp/beapp-master
|
read_besa_avr.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/read_besa_avr.m
| 3,870 |
utf_8
|
f19ef935bf322fb2ccbcced4717efd61
|
function [avr] = read_besa_avr(filename)
% READ_BESA_AVR reads average EEG data in BESA format
%
% Use as
% [avr] = read_besa_avr(filename)
%
% This will return a structure with the header information in
% avr.npnt
% avr.tsb
% avr.di
% avr.sb
% avr.sc
% avr.Nchan (optional)
% avr.label (optional)
% and the ERP data is contained in the Nchan X Nsamples matrix
% avr.data
% Copyright (C) 2003-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
fid = fopen(filename, 'rt');
% the first line contains header information
headstr = fgetl(fid);
ok = 0;
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f SegmentName= %s\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
avr.SegmentName = buf(7);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = fscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
ok = 1;
catch
ok = 0;
end
end
if ~ok
error('Could not interpret the header information.');
end
% rewind to the beginning of the file, skip the header line
fseek(fid, 0, 'bof');
fgetl(fid);
% the second line may contain channel names
chanstr = fgetl(fid);
chanstr = deblank(fliplr(deblank(fliplr(chanstr))));
if (chanstr(1)>='A' && chanstr(1)<='Z') || (chanstr(1)>='a' && chanstr(1)<='z')
haschan = 1;
avr.label = str2cell(strrep(deblank(chanstr), '''', ''))';
else
[root, name] = fileparts(filename);
haschan = 0;
elpfile = fullfile(root, [name '.elp']);
elafile = fullfile(root, [name '.ela']);
if exist(elpfile, 'file')
% read the channel names from the accompanying ELP file
lbl = importdata(elpfile);
avr.label = strrep(lbl.textdata(:,2) ,'''', '');
elseif exist(elafile, 'file')
% read the channel names from the accompanying ELA file
lbl = importdata(elafile);
lbl = strrep(lbl ,'MEG ', ''); % remove the channel type
lbl = strrep(lbl ,'EEG ', ''); % remove the channel type
avr.label = lbl;
else
warning('Could not create channels labels.');
end
end
% seek to the beginning of the data
fseek(fid, 0, 'bof');
fgetl(fid); % skip the header line
if haschan
fgetl(fid); % skip the channel name line
end
buf = fscanf(fid, '%f');
nchan = length(buf)/avr.npnt;
avr.data = reshape(buf, avr.npnt, nchan)';
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to cut a string into pieces at the spaces
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = str2cell(s)
c = {};
[t, r] = strtok(s, ' ');
while ~isempty(t)
c{end+1} = t;
[t, r] = strtok(r, ' ');
end
|
github
|
lcnbeapp/beapp-master
|
topoplot_common.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/topoplot_common.m
| 39,786 |
utf_8
|
e4132354f59b473a71ba3b564ab807d9
|
function cfg = topoplot_common(cfg, varargin)
% TOPOPLOT_COMMON is shared by FT_TOPOPLOTTFR, FT_TOPOPLOTER and FT_TOPOPLOTIC, which
% serve as placeholder for the documentation and for the pre/postamble.
% Copyright (C) 2005-2011, F.C. Donders Centre
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel' 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam'});
Ndata = numel(varargin);
if ~isempty(varargin) && isnumeric(varargin{end})
Ndata = Ndata - 1;
indx = varargin{end};
else
indx = 1;
end
% the call with multiple inputs is done by ft_topoplotIC and recursively by ft_topoplotTFR itself
if Ndata>1 && ~isnumeric(varargin{end})
for k=1:Ndata
if k>1
% create a new figure for the additional input arguments
% ensure new figures are all in the same size/position
p = get(gcf, 'Position');
f = figure();
set(f, 'Position', p);
end
if isfield(cfg, 'inputfile')
cfg = rmfield(cfg, 'inputfile');
end
% the indexing is necessary if ft_topoplotTFR is called from
% ft_singleplotER when more input data structures exist. somehow we need to
% keep track of which of the data arguments is to be plotted (otherwise the
% first data argument is only plotted). yet, we cannot throw away the
% other data structures, because in the interactive mode
% ft_singleplotER needs all data again and the entry into
% ft_singleplotER will be through one of the figures (which thus needs
% to have all data avalaible. at the moment I couldn't think of
% anything better than using an additional indx variable and letting the
% function recursively call itself.
topoplot_common(cfg, varargin{1:Ndata}, indx);
indx = indx + 1;
end
return
end
data = varargin{indx};
data = ft_checkdata(data, 'datatype', {'comp', 'timelock', 'freq'});
% check for option-values to be renamed
cfg = ft_checkconfig(cfg, 'renamedval', {'electrodes', 'dotnum', 'numbers'});
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
% check for renamed options
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamed', {'electrodes', 'marker'});
cfg = ft_checkconfig(cfg, 'renamed', {'emarker', 'markersymbol'});
cfg = ft_checkconfig(cfg, 'renamed', {'ecolor', 'markercolor'});
cfg = ft_checkconfig(cfg, 'renamed', {'emarkersize', 'markersize'});
cfg = ft_checkconfig(cfg, 'renamed', {'efontsize', 'markerfontsize'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarker', 'highlightsymbol'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlcolor', 'highlightcolor'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkersize', 'highlightsize'});
cfg = ft_checkconfig(cfg, 'renamed', {'maplimits', 'zlim'});
% old ft_checkconfig adapted partially from topoplot.m (backwards backwards compatability)
cfg = ft_checkconfig(cfg, 'renamed', {'grid_scale', 'gridscale'});
cfg = ft_checkconfig(cfg, 'renamed', {'interpolate', 'interpolation'});
cfg = ft_checkconfig(cfg, 'renamed', {'numcontour', 'contournum'});
cfg = ft_checkconfig(cfg, 'renamed', {'electrod', 'marker'});
cfg = ft_checkconfig(cfg, 'renamed', {'electcolor', 'markercolor'});
cfg = ft_checkconfig(cfg, 'renamed', {'emsize', 'markersize'});
cfg = ft_checkconfig(cfg, 'renamed', {'efsize', 'markerfontsize'});
cfg = ft_checkconfig(cfg, 'renamed', {'headlimits', 'interplimits'});
% check for forbidden options
cfg = ft_checkconfig(cfg, 'forbidden', {'hllinewidth', ...
'headcolor', ...
'hcolor', ...
'hlinewidth', ...
'contcolor', ...
'outline', ...
'highlightfacecolor', ...
'showlabels'});
if ft_platform_supports('griddata-v4')
default_interpmethod='v4';
else
% Octave does not support 'v4', and 'cubic' not yet implemented
default_interpmethod='linear';
end
% Set other config defaults
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.style = ft_getopt(cfg, 'style', 'both');
cfg.gridscale = ft_getopt(cfg, 'gridscale', 67);
cfg.interplimits = ft_getopt(cfg, 'interplimits', 'head');
cfg.interpolation = ft_getopt(cfg, 'interpolation', default_interpmethod);
cfg.contournum = ft_getopt(cfg, 'contournum', 6);
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'no');
cfg.shading = ft_getopt(cfg, 'shading', 'flat');
cfg.comment = ft_getopt(cfg, 'comment', 'auto');
cfg.commentpos = ft_getopt(cfg, 'commentpos', 'leftbottom');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); %to avoid warning in timelock/freqbaseline
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no');
cfg.renderer = ft_getopt(cfg, 'renderer', []); % MATLAB sets the default
cfg.marker = ft_getopt(cfg, 'marker', 'on');
cfg.markersymbol = ft_getopt(cfg, 'markersymbol', 'o');
cfg.markercolor = ft_getopt(cfg, 'markercolor', [0 0 0]);
cfg.markersize = ft_getopt(cfg, 'markersize', 2);
cfg.markerfontsize = ft_getopt(cfg, 'markerfontsize', 8);
cfg.highlight = ft_getopt(cfg, 'highlight', 'off');
cfg.highlightchannel = ft_getopt(cfg, 'highlightchannel', 'all', 1); % highlight may be 'on', making highlightchannel {} meaningful
cfg.highlightsymbol = ft_getopt(cfg, 'highlightsymbol', '*');
cfg.highlightcolor = ft_getopt(cfg, 'highlightcolor', [0 0 0]);
cfg.highlightsize = ft_getopt(cfg, 'highlightsize', 6);
cfg.highlightfontsize = ft_getopt(cfg, 'highlightfontsize', 8);
cfg.labeloffset = ft_getopt(cfg, 'labeloffset', 0.005);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []);
cfg.component = ft_getopt(cfg, 'component', []);
cfg.directionality = ft_getopt(cfg, 'directionality', []);
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.figurename = ft_getopt(cfg, 'figurename', []);
cfg.interpolatenan = ft_getopt(cfg, 'interpolatenan', 'yes');
% compatibility for previous highlighting option
if isnumeric(cfg.highlight)
cfg.highlightchannel = cfg.highlight;
cfg.highlight = 'on';
warning('cfg.highlight is now used for specifying highlighting-mode, use cfg.highlightchannel instead of cfg.highlight for specifying channels')
elseif iscell(cfg.highlight)
if ~iscell(cfg.highlightchannel)
cfg.highlightchannel = cell(1,length(cfg.highlight));
end
for icell = 1:length(cfg.highlight)
if isnumeric(cfg.highlight{icell})
cfg.highlightchannel{icell} = cfg.highlight{icell};
cfg.highlight{icell} = 'on';
warning('cfg.highlight is now used for specifying highlighting-mode, use cfg.highlightchannel instead of cfg.highlight for specifying channels')
end
end
end
% Converting all highlight options to cell-arrays if they're not cell-arrays,
% to make defaulting, checking for backwards compatibility and error
% checking easier
if ~iscell(cfg.highlight), cfg.highlight = {cfg.highlight}; end
if isempty(cfg.highlightchannel), cfg.highlightchannel = ''; end
if ~iscell(cfg.highlightchannel), cfg.highlightchannel = {cfg.highlightchannel}; end
if ischar(cfg.highlightchannel{1}), cfg.highlightchannel = {cfg.highlightchannel}; end % {'all'} is valid input to channelselection, {1:5} isn't
if ~iscell(cfg.highlightsymbol), cfg.highlightsymbol = {cfg.highlightsymbol}; end
if ~iscell(cfg.highlightcolor), cfg.highlightcolor = {cfg.highlightcolor}; end
if ~iscell(cfg.highlightsize), cfg.highlightsize = {cfg.highlightsize}; end
if ~iscell(cfg.highlightfontsize), cfg.highlightfontsize = {cfg.highlightfontsize}; end
% then make sure all cell-arrays for options have length ncellhigh and default the last element if not present
ncellhigh = length(cfg.highlight);
if length(cfg.highlightsymbol) < ncellhigh, cfg.highlightsymbol{ncellhigh} = 'o'; end
if length(cfg.highlightcolor) < ncellhigh, cfg.highlightcolor{ncellhigh} = [0 0 0]; end
if length(cfg.highlightsize) < ncellhigh, cfg.highlightsize{ncellhigh} = 6; end
if length(cfg.highlightfontsize) < ncellhigh, cfg.highlightfontsize{ncellhigh} = 8; end
% then default all empty cells
for icell = 1:ncellhigh
if isempty(cfg.highlightsymbol{icell}), cfg.highlightsymbol{icell} = 'o'; end
if isempty(cfg.highlightcolor{icell}), cfg.highlightcolor{icell} = [0 0 0]; end
if isempty(cfg.highlightsize{icell}), cfg.highlightsize{icell} = 6; end
if isempty(cfg.highlightfontsize{icell}), cfg.highlightfontsize{icell} = 8; end
end
% for backwards compatability
if strcmp(cfg.marker,'highlights')
warning('using cfg.marker option -highlights- is no longer used, please use cfg.highlight')
cfg.marker = 'off';
end
% check colormap is proper format and set it
if isfield(cfg,'colormap')
if size(cfg.colormap,2)~=3, error('topoplot(): Colormap must be a n x 3 matrix'); end
colormap(cfg.colormap);
ncolors = size(cfg.colormap,1);
else
ncolors =[]; % let the low-level function deal with this
end
dtype = ft_datatype(data);
% identify the interpretation of the functional data
switch dtype
case 'raw'
data = ft_checkdata(data, 'datatype', 'timelock');
dtype = ft_datatype(data);
dimord = data.dimord;
case {'timelock' 'freq' 'chan' 'unknown'}
dimord = data.dimord;
case 'comp'
dimord = 'chan_comp';
otherwise
end
dimtok = tokenize(dimord, '_');
% Set x/y/parameter defaults according to datatype and dimord
switch dtype
case 'timelock'
xparam = 'time';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'avg');
case 'freq'
if any(ismember(dimtok, 'time'))
xparam = 'time';
yparam = 'freq';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
else
xparam = 'freq';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
end
case 'comp'
% Add a pseudo-axis with the component numbers:
data.comp = 1:size(data.topo,2);
% Specify the components
if ~isempty(cfg.component)
data.comp = cfg.component;
data.topo = data.topo(:,cfg.component);
end
% Rename the field with topographic label information:
data.label = data.topolabel;
xparam = 'comp';
yparam = '';
cfg.parameter = ft_getopt(cfg, 'parameter', 'topo');
otherwise
% if the input data is not one of the standard data types, or if
% the functional data is just one value per channel
% in this case xparam, yparam are not defined
% and the user should define the parameter
if ~isfield(data, 'label'), error('the input data should at least contain a label-field'); end
if ~isfield(cfg, 'parameter'), error('the configuration should at least contain a ''parameter'' field'); end
if ~isfield(cfg, 'xparam'),
cfg.xlim = [1 1];
xparam = '';
end
end
if isfield(cfg, 'parameter') && ~isfield(data, cfg.parameter)
error('cfg.parameter=%s is not present in data structure', cfg.parameter);
end
% user specified own fields, but no yparam (which is not asked in help)
if exist('xparam', 'var') && isfield(cfg, 'parameter') && ~exist('yparam', 'var')
yparam = '';
end
% check whether rpt/subj is present and remove if necessary and whether
hasrpt = any(ismember(dimtok, {'rpt' 'subj'}));
if strcmp(dtype, 'timelock') && hasrpt,
if ~isfield(data, cfg.parameter) || strcmp(cfg.parameter, 'individual')
tmpcfg = [];
tmpcfg.trials = cfg.trials;
data = ft_timelockanalysis(tmpcfg, data);
if ~strcmp(cfg.parameter, 'avg')
% rename avg back into the parameter
data.(cfg.parameter) = data.avg;
data = rmfield(data, 'avg');
end
dimord = data.dimord;
dimtok = tokenize(dimord, '_');
else
fprintf('input data contains repetitions, ignoring these and using ''%s'' field\n', cfg.parameter);
end
elseif strcmp(dtype, 'freq') && hasrpt,
% this also deals with fourier-spectra in the input
% or with multiple subjects in a frequency domain stat-structure
% on the fly computation of coherence spectrum is not supported
if isfield(data, 'crsspctrm'), data = rmfield(data, 'crsspctrm'); end
tmpcfg = [];
tmpcfg.trials = cfg.trials;
tmpcfg.jackknife = 'no';
if isfield(cfg, 'parameter') && ~strcmp(cfg.parameter,'powspctrm')
% freqdesctiptives will only work on the powspctrm field
% hence a temporary copy of the data is needed
tempdata.dimord = data.dimord;
tempdata.freq = data.freq;
tempdata.label = data.label;
tempdata.powspctrm = data.(cfg.parameter);
if isfield(data, 'cfg'), tempdata.cfg = data.cfg; end
tempdata = ft_freqdescriptives(tmpcfg, tempdata);
data.(cfg.parameter) = tempdata.powspctrm;
clear tempdata
else
data = ft_freqdescriptives(tmpcfg, data);
end
dimord = data.dimord;
dimtok = tokenize(dimord, '_');
end
if isfield(data, 'label')
cfg.channel = ft_channelselection(cfg.channel, data.label);
elseif isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
% perform channel selection but only allow this when cfg.interactive = 'no'
if isfield(data, 'label') && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, data.label);
elseif isfield(data, 'labelcmb') && strcmp(cfg.interactive, 'no')
selchannel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
% Create time-series of small topoplots:
if ~ischar(cfg.xlim) && length(cfg.xlim)>2 %&& any(ismember(dimtok, 'time'))
% Switch off interactive mode:
cfg.interactive = 'no';
xlims = cfg.xlim;
% Iteratively call topoplotER with different xlim values:
nplots = numel(xlims)-1;
nyplot = ceil(sqrt(nplots));
nxplot = ceil(nplots./nyplot);
for i=1:length(xlims)-1
subplot(nxplot, nyplot, i);
cfg.xlim = xlims(i:i+1);
ft_topoplotTFR(cfg, data);
end
return
end
% Apply baseline correction:
if ~strcmp(cfg.baseline, 'no')
if strcmp(xparam, 'freq') || strcmp(yparam, 'freq')
data = ft_freqbaseline(cfg, data);
else
data = ft_timelockbaseline(cfg, data);
end
end
% Handle the bivariate case
% Check for bivariate metric with 'chan_chan' in the dimord:
selchan = strmatch('chan', dimtok);
isfull = length(selchan)>1;
% Check for bivariate metric with a labelcmb field:
haslabelcmb = isfield(data, 'labelcmb');
if (isfull || haslabelcmb) && (isfield(data, cfg.parameter) && ~strcmp(cfg.parameter, 'powspctrm'))
% A reference channel is required:
if ~isfield(cfg, 'refchannel')
error('no reference channel is specified');
end
% check for refchannel being part of selection
if ~strcmp(cfg.refchannel,'gui')
if haslabelcmb
cfg.refchannel = ft_channelselection(cfg.refchannel, unique(data.labelcmb(:)));
else
cfg.refchannel = ft_channelselection(cfg.refchannel, data.label);
end
if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ...
(haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel)))
error('cfg.refchannel is a not present in the (selected) channels)')
end
end
% Interactively select the reference channel
if strcmp(cfg.refchannel, 'gui')
% Open a single figure with the channel layout, the user can click on a reference channel
h = clf;
ft_plot_lay(cfg.layout, 'box', false);
title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...');
% add the channel information to the figure
info = guidata(gcf);
info.x = cfg.layout.pos(:,1);
info.y = cfg.layout.pos(:,2);
info.label = cfg.layout.label;
guidata(h, info);
% attach data to the figure with the current axis handle as a name
dataname = fixname(num2str(double(gca)));
setappdata(gcf,dataname,data);
%set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}});
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg}, 'event', 'WindowButtonMotionFcn'});
return
end
if ~isfull,
% Convert 2-dimensional channel matrix to a single dimension:
if isempty(cfg.directionality)
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:,2)));
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'outflow')
sel1 = [];
sel2 = find(strcmp(cfg.refchannel, data.labelcmb(:,1)));
elseif strcmp(cfg.directionality, 'inflow')
sel1 = find(strcmp(cfg.refchannel, data.labelcmb(:,2)));
sel2 = [];
end
fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.parameter);
if length(sel1)+length(sel2)==0
error('there are no channels selected for plotting: you may need to look at the specification of cfg.directionality');
end
data.(cfg.parameter) = data.(cfg.parameter)([sel1;sel2],:,:);
data.label = [data.labelcmb(sel1,1);data.labelcmb(sel2,2)];
data.labelcmb = data.labelcmb([sel1;sel2],:);
data = rmfield(data, 'labelcmb');
else
% General case
sel = match_str(data.label, cfg.refchannel);
siz = [size(data.(cfg.parameter)) 1];
if strcmp(cfg.directionality, 'inflow') || isempty(cfg.directionality)
%the interpretation of 'inflow' and 'outflow' depend on
%the definition in the bivariate representation of the data
%in FieldTrip the row index 'causes' the column index channel
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(:,sel,:),2),[siz(1) 1 siz(3:end)]);
sel1 = 1:siz(1);
sel2 = sel;
meandir = 2;
elseif strcmp(cfg.directionality, 'outflow')
%data.(cfg.parameter) = reshape(mean(data.(cfg.parameter)(sel,:,:),1),[siz(1) 1 siz(3:end)]);
sel1 = sel;
sel2 = 1:siz(1);
meandir = 1;
elseif strcmp(cfg.directionality, 'inflow-outflow')
% do the subtraction and recursively call the function again
tmpcfg = cfg;
tmpcfg.directionality = 'inflow';
tmpdata = data;
tmp = data.(tmpcfg.parameter);
siz = [size(tmp) 1];
for k = 1:siz(3)
for m = 1:siz(4)
tmp(:,:,k,m) = tmp(:,:,k,m)-tmp(:,:,k,m)';
end
end
tmpdata.(tmpcfg.parameter) = tmp;
ft_topoplotTFR(tmpcfg, tmpdata);
return;
elseif strcmp(cfg.directionality, 'outflow-inflow')
% do the subtraction and recursively call the function again
tmpcfg = cfg;
tmpcfg.directionality = 'outflow';
tmpdata = data;
tmp = data.(tmpcfg.parameter);
siz = [size(tmp) 1];
for k = 1:siz(3)
for m = 1:siz(4)
tmp(:,:,k,m) = tmp(:,:,k,m)-tmp(:,:,k,m)';
end
end
tmpdata.(tmpcfg.parameter) = tmp;
ft_topoplotTFR(tmpcfg, tmpdata);
return;
end
end
end
% Get physical min/max range of x:
if strcmp(cfg.xlim,'maxmin')
xmin = min(data.(xparam));
xmax = max(data.(xparam));
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% Replace value with the index of the nearest bin
if ~isempty(xparam)
xmin = nearest(data.(xparam), xmin);
xmax = nearest(data.(xparam), xmax);
end
% Get physical min/max range of y:
if ~isempty(yparam)
if strcmp(cfg.ylim,'maxmin')
ymin = min(data.(yparam));
ymax = max(data.(yparam));
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% Replace value with the index of the nearest bin:
ymin = nearest(data.(yparam), ymin);
ymax = nearest(data.(yparam), ymax);
end
% Take subselection of channels, this only works
% if the interactive mode is switched off
if exist('selchannel', 'var')
sellab = match_str(data.label, selchannel);
label = data.label(sellab);
else
sellab = 1:numel(data.label);
label = data.label;
end
if isfull
sel1 = intersect(sel1, sellab);
sel2 = intersect(sel2, sellab);
end
if ~isempty(cfg.parameter)
% Make data vector with one value for each channel
dat = data.(cfg.parameter);
% get dimord dimensions
ydim = find(strcmp(yparam, dimtok));
xdim = find(strcmp(xparam, dimtok));
zdim = setdiff(1:ndims(dat), [ydim xdim]);
% and permute
dat = permute(dat, [zdim(:)' ydim xdim]);
if ~isempty(yparam)
% time-frequency data
if isfull
dat = dat(sel1, sel2, ymin:ymax, xmin:xmax);
dat = nanmean(nanmean(nanmean(dat, meandir), 4), 3);
elseif haslabelcmb
dat = dat(sellab, ymin:ymax, xmin:xmax);
dat = nanmean(nanmean(dat, 3), 2);
else
dat = dat(sellab, ymin:ymax, xmin:xmax);
dat = nanmean(nanmean(dat, 3), 2);
end
elseif ~isempty(cfg.component)
% component data, nothing to do
else
% time or frequency data
if isfull
dat = dat(sel1, sel2, xmin:xmax);
dat = nanmean(nanmean(dat, meandir), 3);
elseif haslabelcmb
dat = dat(sellab, xmin:xmax);
dat = nanmean(dat, 2);
else
dat = dat(sellab, xmin:xmax);
dat = nanmean(dat, 2);
end
end
dat = dat(:);
else
error('cannot make selection of data');
end
if isfield(data, cfg.maskparameter)
% Make mask vector with one value for each channel
msk = data.(cfg.maskparameter);
% get dimord dimensions
ydim = find(strcmp(yparam, dimtok));
xdim = find(strcmp(xparam, dimtok));
zdim = setdiff(1:ndims(dat), [ydim xdim]);
% and permute
msk = permute(msk, [zdim(:)' ydim xdim]);
if ~isempty(yparam)
% time-frequency data
if isfull
msk = msk(sel1, sel2, ymin:ymax, xmin:xmax);
elseif haslabelcmb
msk = msk(sellab, ymin:ymax, xmin:xmax);
else
msk = msk(sellab, ymin:ymax, xmin:xmax);
end
elseif ~isempty(cfg.component)
% component data, nothing to do
else
% time or frequency data
if isfull
msk = msk(sel1, sel2, xmin:xmax);
elseif haslabelcmb
msk = msk(sellab, xmin:xmax);
else
msk = msk(sellab, xmin:xmax);
end
end
if size(msk,2)>1 || size(msk,3)>1
warning('no masking possible for average over multiple latencies or frequencies -> cfg.maskparameter cleared')
msk = [];
end
else
msk = [];
end
% Select the channels in the data that match with the layout:
[seldat, sellay] = match_str(label, cfg.layout.label);
if isempty(seldat)
error('labels in data and labels in layout do not match');
end
dat = dat(seldat);
if ~isempty(msk)
msk = msk(seldat);
end
% Select x and y coordinates and labels of the channels in the data
chanX = cfg.layout.pos(sellay,1);
chanY = cfg.layout.pos(sellay,2);
chanLabels = cfg.layout.label(sellay);
% Get physical min/max range of z:
if strcmp(cfg.zlim,'maxmin')
zmin = min(dat);
zmax = max(dat);
elseif strcmp(cfg.zlim,'maxabs')
zmin = -max(max(abs(dat)));
zmax = max(max(abs(dat)));
elseif strcmp(cfg.zlim,'zeromax')
zmin = 0;
zmax = max(dat);
elseif strcmp(cfg.zlim,'minzero')
zmin = min(dat);
zmax = 0;
else
zmin = cfg.zlim(1);
zmax = cfg.zlim(2);
end
% make comment
if strcmp(cfg.comment, 'auto')
comment = date;
if ~isempty(xparam)
if strcmp(cfg.xlim,'maxmin')
comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, xparam, data.(xparam)(xmin), data.(xparam)(xmax));
else
comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, xparam, data.(xparam)(xmin), data.(xparam)(xmax));
end
end
if ~isempty(yparam)
if strcmp(cfg.ylim,'maxmin')
comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, yparam, data.(yparam)(ymin), data.(yparam)(ymax));
else
comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, yparam, data.(yparam)(ymin), data.(yparam)(ymax));
end
end
if ~isempty(cfg.parameter)
comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.parameter, zmin, zmax);
end
cfg.comment = comment;
elseif strcmp(cfg.comment, 'xlim')
if strcmp(cfg.xlim,'maxmin')
comment = sprintf('%0s=[%.3g %.3g]', xparam, data.(xparam)(xmin), data.(xparam)(xmax));
else
comment = sprintf('%0s=[%.3g %.3g]', xparam, data.(xparam)(xmin), data.(xparam)(xmax));
end
cfg.comment = comment;
elseif ~ischar(cfg.comment)
error('cfg.comment must be string');
end
if ~strcmp(cfg.comment, 'no') && isfield(cfg,'refchannel')
if iscell(cfg.refchannel)
cfg.comment = sprintf('%s\nreference=%s %s', comment, cfg.refchannel{:});
else
cfg.comment = sprintf('%s\nreference=%s %s', comment, cfg.refchannel);
end
end
% Specify the x and y coordinates of the comment
if strcmp(cfg.commentpos,'layout')
ind_comment = strmatch('COMNT', cfg.layout.label);
x_comment = cfg.layout.pos(ind_comment,1);
y_comment = cfg.layout.pos(ind_comment,2);
elseif strcmp(cfg.commentpos,'lefttop')
x_comment = -0.7;
y_comment = 0.6;
HorAlign = 'left';
VerAlign = 'top';
elseif strcmp(cfg.commentpos,'leftbottom')
x_comment = -0.6;
y_comment = -0.6;
HorAlign = 'left';
VerAlign = 'bottom';
elseif strcmp(cfg.commentpos,'middletop')
x_comment = 0;
y_comment = 0.75;
HorAlign = 'center';
VerAlign = 'top';
elseif strcmp(cfg.commentpos,'middlebottom')
x_comment = 0;
y_comment = -0.7;
HorAlign = 'center';
VerAlign = 'bottom';
elseif strcmp(cfg.commentpos,'righttop')
x_comment = 0.65;
y_comment = 0.6;
HorAlign = 'right';
VerAlign = 'top';
elseif strcmp(cfg.commentpos,'rightbottom')
x_comment = 0.6;
y_comment = -0.6;
HorAlign = 'right';
VerAlign = 'bottom';
elseif isnumeric(cfg.commentpos)
x_comment = cfg.commentpos(1);
y_comment = cfg.commentpos(2);
HorAlign = 'left';
VerAlign = 'middle';
x_comment = 0.9*((x_comment-min(x))/(max(x)-min(x))-0.5);
y_comment = 0.9*((y_comment-min(y))/(max(y)-min(y))-0.5);
end
% Draw topoplot
cla
hold on
% Set ft_plot_topo specific options
if strcmp(cfg.interplimits,'head')
interplimits = 'mask';
else
interplimits = cfg.interplimits;
end
if strcmp(cfg.style,'both'); style = 'surfiso'; end
if strcmp(cfg.style,'straight'); style = 'surf'; end
if strcmp(cfg.style,'contour'); style = 'iso'; end
if strcmp(cfg.style,'fill'); style = 'isofill'; end
if strcmp(cfg.style,'straight_imsat'); style = 'imsat'; end
if strcmp(cfg.style,'both_imsat'); style = 'imsatiso'; end
% check for nans
nanInds = isnan(dat);
if strcmp(cfg.interpolatenan,'yes') && any(nanInds)
warning('removing NaNs from the data');
chanX(nanInds) = [];
chanY(nanInds) = [];
dat(nanInds) = [];
if ~isempty(msk)
msk(nanInds) = [];
end
end
% Draw plot
if ~strcmp(cfg.style,'blank')
opt = {'interpmethod',cfg.interpolation,...
'interplim',interplimits,...
'gridscale',cfg.gridscale,...
'outline',cfg.layout.outline,...
'shading',cfg.shading,...
'isolines',cfg.contournum,...
'mask',cfg.layout.mask,...
'style',style,...
'datmask', msk};
if strcmp(style,'imsat') || strcmp(style,'imsatiso')
% add clim to opt
opt = [opt {'clim',[zmin zmax],'ncolors',ncolors}];
end
ft_plot_topo(chanX,chanY,dat,opt{:});
elseif ~strcmp(cfg.style,'blank')
ft_plot_lay(cfg.layout,'box','no','label','no','point','no')
end
% Plotting markers for channels and/or highlighting a selection of channels
highlightchansel = []; % used for remembering selection of channels
templay.outline = cfg.layout.outline;
templay.mask = cfg.layout.mask;
% For Highlight (channel-selection)
for icell = 1:length(cfg.highlight)
if ~strcmp(cfg.highlight{icell},'off')
[dum labelindex] = match_str(ft_channelselection(cfg.highlightchannel{icell}, data.label), cfg.layout.label);
highlightchansel = [highlightchansel; match_str(data.label,ft_channelselection(cfg.highlightchannel{icell}, data.label))];
templay.pos = cfg.layout.pos(labelindex,:);
templay.width = cfg.layout.width(labelindex);
templay.height = cfg.layout.height(labelindex);
templay.label = cfg.layout.label(labelindex);
if strcmp(cfg.highlight{icell}, 'labels') || strcmp(cfg.highlight{icell}, 'numbers')
labelflg = 1;
else
labelflg = 0;
end
if strcmp(cfg.highlight{icell}, 'numbers')
for ichan = 1:length(labelindex)
templay.label{ichan} = num2str(match_str(data.label,templay.label{ichan}));
end
end
ft_plot_lay(templay,'box','no','label',labelflg,'point','yes',...
'pointsymbol',cfg.highlightsymbol{icell},...
'pointcolor',cfg.highlightcolor{icell},...
'pointsize',cfg.highlightsize{icell},...
'labelsize',cfg.highlightfontsize{icell},...
'labeloffset',cfg.labeloffset)
end
end % for icell
% For Markers (all channels)
if ~strcmp(cfg.marker,'off')
channelsToMark = 1:length(data.label);
if strcmp(cfg.interpolatenan,'no')
channelsNotMark = highlightchansel;
else
channelsNotMark = union(find(isnan(dat)),highlightchansel);
end
channelsToMark(channelsNotMark) = [];
[dum labelindex] = match_str(ft_channelselection(channelsToMark, data.label),cfg.layout.label);
templay.pos = cfg.layout.pos(labelindex,:);
templay.width = cfg.layout.width(labelindex);
templay.height = cfg.layout.height(labelindex);
templay.label = cfg.layout.label(labelindex);
if strcmp(cfg.marker, 'labels') || strcmp(cfg.marker, 'numbers')
labelflg = 1;
else
labelflg = 0;
end
if strcmp(cfg.marker, 'numbers')
for ichan = 1:length(labelindex)
templay.label{ichan} = num2str(match_str(data.label,templay.label{ichan}));
end
end
ft_plot_lay(templay,'box','no','label',labelflg,'point','yes',...
'pointsymbol',cfg.markersymbol,...
'pointcolor',cfg.markercolor,...
'pointsize',cfg.markersize,...
'labelsize',cfg.markerfontsize,...
'labeloffset',cfg.labeloffset)
end
if(isfield(cfg,'vector'))
vecX = mean(real(data.(cfg.vector)(:,xmin:xmax)),2);
vecY = mean(imag(data.(cfg.vector)(:,xmin:xmax)),2);
% scale quiver relative to largest gradiometer sample
k=0.15/max([max(abs(real(data.(cfg.vector)(:)))) max(abs(imag(data.(cfg.vector)(:))))]);
quiver(chanX, chanY, k*vecX, k*vecY,0,'red');
end
% Write comment
if ~strcmp(cfg.comment,'no')
if strcmp(cfg.commentpos, 'title')
title(cfg.comment, 'Fontsize', cfg.fontsize);
else
ft_plot_text(x_comment,y_comment, cfg.comment, 'Fontsize', cfg.fontsize, 'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom');
end
end
% plot colorbar:
if isfield(cfg, 'colorbar')
if strcmp(cfg.colorbar, 'yes')
colorbar;
elseif ~strcmp(cfg.colorbar, 'no')
colorbar('location',cfg.colorbar);
end
end
% Set renderer if specified
if ~isempty(cfg.renderer)
set(gcf, 'renderer', cfg.renderer)
end
% The remainder of the code is meant to make the figure interactive
hold on;
% Set colour axis
if ~strcmp(cfg.style, 'blank')
caxis([zmin zmax]);
end
if strcmp('yes',cfg.hotkeys)
% Attach data and cfg to figure and attach a key listener to the figure
set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax})
end
% Make the figure interactive
if strcmp(cfg.interactive, 'yes')
% add the channel position information to the figure
% this section is required for ft_select_channel to do its work
info = guidata(gcf);
info.x = cfg.layout.pos(:,1);
info.y = cfg.layout.pos(:,2);
info.label = cfg.layout.label;
guidata(gcf, info);
% attach data to the figure with the current axis handle as a name
dataname = fixname(num2str(double(gca)));
setappdata(gcf,dataname,varargin(1:Ndata));
if any(strcmp(data.dimord, {'chan_time', 'chan_freq', 'subj_chan_time', 'rpt_chan_time', 'chan_chan_freq', 'chancmb_freq', 'rpt_chancmb_freq', 'subj_chancmb_freq'}))
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg}, 'event', 'WindowButtonMotionFcn'});
elseif any(strcmp(data.dimord, {'chan_freq_time', 'subj_chan_freq_time', 'rpt_chan_freq_time', 'rpttap_chan_freq_time', 'chan_chan_freq_time', 'chancmb_freq_time', 'rpt_chancmb_freq_time', 'subj_chancmb_freq_time'}))
set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg}, 'event', 'WindowButtonMotionFcn'});
else
warning('unsupported dimord "%s" for interactive plotting', data.dimord);
end
end
% set the figure window title, but only if the user has not changed it
if isempty(get(gcf, 'Name'))
if isfield(cfg,'funcname')
funcname = cfg.funcname;
else
funcname = mfilename;
end
if isfield(cfg,'dataname')
if iscell(cfg.dataname)
dataname = cfg.dataname{indx};
else
dataname = cfg.dataname;
end
elseif nargin > 1
dataname = {inputname(2)};
for k = 2:Ndata
dataname{end+1} = inputname(k+1);
end
else % data provided through cfg.inputfile
dataname = cfg.inputfile;
end
if isempty(cfg.figurename)
dataname_str=join_str(', ', dataname);
set(gcf, 'Name', sprintf('%d: %s: %s', double(gcf), funcname, dataname_str));
set(gcf, 'NumberTitle', 'off');
else
set(gcf, 'name', cfg.figurename);
set(gcf, 'NumberTitle', 'off');
end
end
axis off
hold off
axis equal
% add a menu to the figure, but only if the current figure does not have subplots
% also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
if numel(findobj(gcf, 'type', 'axes')) <= 1
ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
if ft_platform_supports('uimenu')
% not supported by Octave
uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.refchannel='gui'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_topoplotER(label, cfg, varargin)
% get appdata belonging to current axis
dataname = fixname(num2str(double(gca)));
data = getappdata(gcf, dataname);
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
cfg.refchannel = label;
fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel{:});
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
cfg.highlight = 'on';
cfg.highlightsymbol = '.';
cfg.highlightcolor = 'r';
cfg.highlightsize = 20;
cfg.highlightchannel = cfg.refchannel;
ft_topoplotER(cfg, data);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_singleplotER(label, cfg)
if ~isempty(label)
% get appdata belonging to current axis
dataname = fixname(num2str(double(gca)));
data = getappdata(gcf, dataname);
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
cfg.xlim = 'maxmin';
cfg.channel = label;
% if user specified a zlim, copy it over to the ylim of singleplot
if isfield(cfg, 'zlim')
cfg.ylim = cfg.zlim;
cfg = rmfield(cfg, 'zlim');
end
fprintf('selected cfg.channel = {');
for i=1:(length(cfg.channel)-1)
fprintf('''%s'', ', cfg.channel{i});
end
fprintf('''%s''}\n', cfg.channel{end});
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_singleplotER(cfg, data{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_singleplotTFR(label, cfg)
if ~isempty(label)
% get appdata belonging to current axis
dataname = fixname(num2str(double(gca)));
data = getappdata(gcf, dataname);
if isfield(cfg, 'inputfile')
% the reading has already been done and varargin contains the data
cfg = rmfield(cfg, 'inputfile');
end
cfg.xlim = 'maxmin';
cfg.ylim = 'maxmin';
cfg.channel = label;
fprintf('selected cfg.channel = {');
for i=1:(length(cfg.channel)-1)
fprintf('''%s'', ', cfg.channel{i});
end
fprintf('''%s''}\n', cfg.channel{end});
p = get(gcf, 'Position');
f = figure;
set(f, 'Position', p);
ft_singleplotTFR(cfg, data{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION which handles hot keys in the current plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key_sub(handle, eventdata, varargin)
incr = (max(caxis)-min(caxis)) /10;
% symmetrically scale color bar down by 10 percent
if strcmp(eventdata.Key,'uparrow')
caxis([min(caxis)-incr max(caxis)+incr]);
% symmetrically scale color bar up by 10 percent
elseif strcmp(eventdata.Key,'downarrow')
caxis([min(caxis)+incr max(caxis)-incr]);
% resort to minmax of data for colorbar
elseif strcmp(eventdata.Key,'m')
caxis([varargin{1} varargin{2}]);
end
|
github
|
lcnbeapp/beapp-master
|
avw_img_write.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/avw_img_write.m
| 29,911 |
utf_8
|
72118d833f0cc7cdd6ebd57754009a2f
|
function avw_img_write(avw, fileprefix, IMGorient, machine, verbose)
% avw_img_write - write Analyze image files (*.img)
%
% avw_img_write(avw,fileprefix,[IMGorient],[machine],[verbose])
%
% avw.img - a 3D matrix of image data (double precision).
% avw.hdr - a struct with image data parameters. If
% not empty, this function calls avw_hdr_write.
%
% fileprefix - a string, the filename without the .img
% extension. If empty, may use avw.fileprefix
%
% IMGorient - optional int, force writing of specified
% orientation, with values:
%
% [], if empty, will use avw.hdr.hist.orient field
% 0, transverse/axial unflipped (default, radiological)
% 1, coronal unflipped
% 2, sagittal unflipped
% 3, transverse/axial flipped, left to right
% 4, coronal flipped, anterior to posterior
% 5, sagittal flipped, superior to inferior
%
% This function will set avw.hdr.hist.orient and write the
% image data in a corresponding order. This function is
% in alpha development, so it has not been exhaustively
% tested (07/2003). See avw_img_read for more information
% and documentation on the orientation option.
% Orientations 3-5 are NOT recommended! They are part
% of the Analyze format, but only used in Analyze
% for faster raster graphics during movies.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le'.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% Tip: to change the data type, set avw.hdr.dime.datatype to:
%
% 1 Binary ( 1 bit per voxel)
% 2 Unsigned character ( 8 bits per voxel)
% 4 Signed short ( 16 bits per voxel)
% 8 Signed integer ( 32 bits per voxel)
% 16 Floating point ( 32 bits per voxel)
% 32 Complex, 2 floats ( 64 bits per voxel), not supported
% 64 Double precision ( 64 bits per voxel)
% 128 Red-Green-Blue (128 bits per voxel), not supported
%
% See also: avw_write, avw_hdr_write,
% avw_read, avw_hdr_read, avw_img_read, avw_view
%
% $Revision$ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------------
% Check inputs
if ~exist('avw','var'),
doc avw_img_write;
error('...no input avw.');
elseif isempty(avw),
error('...empty input avw.');
elseif ~isfield(avw,'img'),
error('...empty input avw.img');
end
if ~exist('fileprefix','var'),
if isfield(avw,'fileprefix'),
if ~isempty(avw.fileprefix),
fileprefix = avw.fileprefix;
else
fileprefix = [];
end
else
fileprefix = [];
end
end
if isempty(fileprefix),
[fileprefix, pathname, filterindex] = uiputfile('*.hdr','Specify an output Analyze .hdr file');
if pathname, cd(pathname); end
if ~fileprefix,
doc avw_img_write;
error('no output .hdr file specified');
end
end
if findstr('.hdr',fileprefix),
% fprintf('AVW_IMG_WRITE: Removing .hdr extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
% fprintf('AVW_IMG_WRITE: Removing .img extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.img','');
end
if ~exist('IMGorient','var'), IMGorient = ''; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if ~exist('verbose','var'), verbose = 1; end
if isempty(IMGorient), IMGorient = ''; end
if isempty(machine), machine = 'ieee-le'; end
if isempty(verbose), verbose = 1; end
%------------------------------------------------------------------------
% MAIN
if verbose,
version = '[$Revision$]';
fprintf('\nAVW_IMG_WRITE [v%s]\n',version(12:16)); tic;
end
fid = fopen(sprintf('%s.img',fileprefix),'w',machine);
if fid < 0,
msg = sprintf('Cannot open file %s.img\n',fileprefix);
error(msg);
else
avw = write_image(fid,avw,fileprefix,IMGorient,machine,verbose);
end
if verbose,
t=toc; fprintf('...done (%5.2f sec).\n\n',t);
end
% MUST write header after the image, to ensure any
% orientation changes during image write are saved
% in the header
avw_hdr_write(avw,fileprefix,machine,verbose);
return
function avw_hdr_write(avw, fileprefix, machine, verbose)
% AVW_HDR_WRITE - Write Analyze header file (*.hdr)
%
% avw_hdr_write(avw,[fileprefix],[machine],[verbose])
%
% eg, avw_hdr_write(avw,'test');
%
% avw - a struct with .hdr field, which itself is a struct,
% containing all fields of an Analyze header.
% For details, see avw_hdr_read.m
%
% fileprefix - a string, the filename without the .hdr extension.
% If empty, may use avw.fileprefix
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le'.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% See also, AVW_HDR_READ AVW_HDR_MAKE
% AVW_IMG_READ AVW_IMG_WRITE
%
% $Revision$ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% 02/2003, [email protected]
% - more specific data history var sizes
% - 02/2003 confirmed, Darren
%
% The Analyze format and c code below is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('verbose','var'), verbose = 1; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if verbose,
version = '[$Revision$]';
fprintf('AVW_HDR_WRITE [v%s]\n',version(12:16)); tic;
end
%----------------------------------------------------------------------------
% Check inputs
if ~exist('avw','var'),
warning('...no input avw - calling avw_hdr_make\n');
avw = avw_hdr_make;
elseif isempty(avw),
warning('...empty input avw - calling avw_hdr_make\n');
avw = avw_hdr_make;
elseif ~isfield(avw,'hdr'),
warning('...empty input avw.hdr - calling avw_hdr_make\n');
avw = avw_hdr_make;
end
if ~isequal(avw.hdr.hk.sizeof_hdr,348),
msg = sprintf('...avw.hdr.hk.sizeof_hdr must be 348!\n');
error(msg);
end
quit = 0;
if ~exist('fileprefix','var'),
if isfield(avw,'fileprefix'),
if ~isempty(avw.fileprefix),
fileprefix = avw.fileprefix;
else,
quit = 1;
end
else
quit = 1;
end
if quit,
helpwin avw_hdr_write;
error('...no input fileprefix - see help avw_hdr_write\n\n');
return;
end
end
if findstr('.hdr',fileprefix),
% fprintf('AVW_HDR_WRITE: Removing .hdr extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.hdr','');
end
%----------------------------------------------------------------------------
% MAIN
if verbose, tic; end
% % force volume to 4D if necessary; conforms to AVW standard. i lifted this
% % code from mri_toolbox/avw_hdr_read.m and modified it just a little bit
% % (using minDim = 4; etc)
% minDim = 4;
% currDim = double(avw.hdr.dime.dim(1));
% if ( currDim < minDim )
% % fprintf( 'Warning %s: Forcing %d dimensions in avw.hdr.dime.dim\n', ...
% % mfilename, minDim );
% avw.hdr.dime.dim(1) = int16(minDim);
% avw.hdr.dime.dim(currDim+2:minDim+1) = int16(1);
% avw.hdr.dime.pixdim(1) = int16(minDim);
% avw.hdr.dime.pixdim(currDim+2:minDim+1) = int16(1);
% end;
fid = fopen(sprintf('%s.hdr',fileprefix),'w',machine);
if fid < 0,
msg = sprintf('Cannot write to file %s.hdr\n',fileprefix);
error(msg);
else
if verbose, fprintf('...writing %s Analyze header.\n',machine); end
write_header(fid,avw,verbose);
end
if verbose, t=toc; fprintf('...done (%5.2f sec).\n\n',t); end
return
%-----------------------------------------------------------------------------------
function avw = write_image(fid,avw,fileprefix,IMGorient,machine,verbose)
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex,2 floats (64 bits per voxel)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
switch double(avw.hdr.dime.datatype),
case 1,
avw.hdr.dime.bitpix = int16( 1); precision = 'bit1';
case 2,
avw.hdr.dime.bitpix = int16( 8); precision = 'uchar';
case 4,
avw.hdr.dime.bitpix = int16(16); precision = 'int16';
case 8,
avw.hdr.dime.bitpix = int16(32); precision = 'int32';
case 16,
avw.hdr.dime.bitpix = int16(32); precision = 'single';
case 32,
error('...complex datatype not yet supported.\n');
case 64,
avw.hdr.dime.bitpix = int16(64); precision = 'double';
case 128,
error('...RGB datatype not yet supported.\n');
otherwise
warning('...unknown datatype, using type 16 (32 bit floats).\n');
avw.hdr.dime.datatype = int16(16);
avw.hdr.dime.bitpix = int16(32); precision = 'single';
end
% write the .img file, depending on the .img orientation
if verbose,
fprintf('...writing %s precision Analyze image (%s).\n',precision,machine);
end
fseek(fid,0,'bof');
% The standard image orientation is axial unflipped
if isempty(avw.hdr.hist.orient),
msg = [ '...avw.hdr.hist.orient ~= 0.\n',...
' This function assumes the input avw.img is\n',...
' in axial unflipped orientation in memory. This is\n',...
' created by the avw_img_read function, which converts\n',...
' any input file image to axial unflipped in memory.\n'];
warning(msg)
end
if isempty(IMGorient),
if verbose,
fprintf('...no IMGorient specified, using avw.hdr.hist.orient value.\n');
end
IMGorient = double(avw.hdr.hist.orient);
end
if ~isfinite(IMGorient),
if verbose,
fprintf('...IMGorient is not finite!\n');
end
IMGorient = 99;
end
switch IMGorient,
case 0, % transverse/axial unflipped
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose, fprintf('...writing axial unflipped\n'); end
avw.hdr.hist.orient = uint8(0);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 1, % coronal unflipped
% For the 'coronal unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient posterior to anterior
if verbose, fprintf('...writing coronal unflipped\n'); end
avw.hdr.hist.orient = uint8(1);
SliceDim = double(avw.hdr.dime.dim(3)); % y
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(3));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for y = 1:SliceDim,
for z = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 2, % sagittal unflipped
% For the 'sagittal unflipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'x' axis - from patient right to left
if verbose, fprintf('...writing sagittal unflipped\n'); end
avw.hdr.hist.orient = uint8(2);
SliceDim = double(avw.hdr.dime.dim(2)); % x
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(3)); % y
SliceSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(3));
y = 1:PixelDim;
for x = 1:SliceDim,
for z = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 3, % transverse/axial flipped
% For the 'transverse flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient anterior to posterior*
% Slices in 'z' axis - from patient inferior to superior
if verbose,
fprintf('...writing axial flipped (+Y from Anterior to Posterior)\n');
end
avw.hdr.hist.orient = uint8(3);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = RowDim:-1:1, % flipped in Y
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 4, % coronal flipped
% For the 'coronal flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient anterior to posterior
if verbose,
fprintf('...writing coronal flipped (+Z from Superior to Inferior)\n');
end
avw.hdr.hist.orient = uint8(4);
SliceDim = double(avw.hdr.dime.dim(3)); % y
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(3));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for y = 1:SliceDim,
for z = RowDim:-1:1,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 5, % sagittal flipped
% For the 'sagittal flipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient superior to inferior
% Slices in 'x' axis - from patient right to left
if verbose,
fprintf('...writing sagittal flipped (+Z from Superior to Inferior)\n');
end
avw.hdr.hist.orient = uint8(5);
SliceDim = double(avw.hdr.dime.dim(2)); % x
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(3)); % y
SliceSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(3));
y = 1:PixelDim;
for x = 1:SliceDim,
for z = RowDim:-1:1, % superior to inferior
fwrite(fid,avw.img(x,y,z),precision);
end
end
otherwise, % transverse/axial unflipped
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose,
fprintf('...unknown orientation specified, assuming default axial unflipped\n');
end
avw.hdr.hist.orient = uint8(0);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
end
fclose(fid);
% Update the header
avw.hdr.dime.dim(2:4) = int16([PixelDim,RowDim,SliceDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,RowSz,SliceSz]);
return
%----------------------------------------------------------------------------
function write_header(fid,avw,verbose)
header_key(fid,avw.hdr.hk);
image_dimension(fid,avw.hdr.dime);
data_history(fid,avw.hdr.hist);
% check the file size is 348 bytes
fbytes = ftell(fid);
fclose(fid);
if ~isequal(fbytes,348),
msg = sprintf('...file size is not 348 bytes!\n');
warning(msg);
end
return
%----------------------------------------------------------------------------
function header_key(fid,hk)
% Original header structures - ANALYZE 7.5
% struct header_key /* header key */
% { /* off + size */
% int sizeof_hdr /* 0 + 4 */
% char data_type[10]; /* 4 + 10 */
% char db_name[18]; /* 14 + 18 */
% int extents; /* 32 + 4 */
% short int session_error; /* 36 + 2 */
% char regular; /* 38 + 1 */
% char hkey_un0; /* 39 + 1 */
% }; /* total=40 bytes */
fseek(fid,0,'bof');
fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348!
data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars
fwrite(fid, hk.data_type(1:10), 'uchar');
db_name = sprintf('%-18s',hk.db_name); % ensure it is 18 chars
fwrite(fid, db_name(1:18), 'uchar');
fwrite(fid, hk.extents(1), 'int32');
fwrite(fid, hk.session_error(1),'int16');
regular = sprintf('%1s',hk.regular); % ensure it is 1 char
fwrite(fid, regular(1), 'uchar'); % might be uint8
%hkey_un0 = sprintf('%1s',hk.hkey_un0); % ensure it is 1 char
%fwrite(fid, hkey_un0(1), 'uchar');
fwrite(fid, hk.hkey_un0(1), 'uint8');
% >Would you set hkey_un0 as char or uint8?
% Really doesn't make any difference. As far as anyone here can remember,
% this was just to pad to an even byte boundary for that structure. I guess
% I'd suggest setting it to a uint8 value of 0 (i.e, truly zero-valued) so
% that it doesn't look like anything important!
% Denny <[email protected]>
return
%----------------------------------------------------------------------------
function image_dimension(fid,dime)
%struct image_dimension
% { /* off + size */
% short int dim[8]; /* 0 + 16 */
% char vox_units[4]; /* 16 + 4 */
% char cal_units[8]; /* 20 + 8 */
% short int unused1; /* 28 + 2 */
% short int datatype; /* 30 + 2 */
% short int bitpix; /* 32 + 2 */
% short int dim_un0; /* 34 + 2 */
% float pixdim[8]; /* 36 + 32 */
% /*
% pixdim[] specifies the voxel dimensions:
% pixdim[1] - voxel width
% pixdim[2] - voxel height
% pixdim[3] - interslice distance
% ..etc
% */
% float vox_offset; /* 68 + 4 */
% float roi_scale; /* 72 + 4 */
% float funused1; /* 76 + 4 */
% float funused2; /* 80 + 4 */
% float cal_max; /* 84 + 4 */
% float cal_min; /* 88 + 4 */
% int compressed; /* 92 + 4 */
% int verified; /* 96 + 4 */
% int glmax; /* 100 + 4 */
% int glmin; /* 104 + 4 */
% }; /* total=108 bytes */
fwrite(fid, dime.dim(1:8), 'int16');
fwrite(fid, dime.vox_units(1:4),'uchar');
fwrite(fid, dime.cal_units(1:8),'uchar');
fwrite(fid, dime.unused1(1), 'int16');
fwrite(fid, dime.datatype(1), 'int16');
fwrite(fid, dime.bitpix(1), 'int16');
fwrite(fid, dime.dim_un0(1), 'int16');
fwrite(fid, dime.pixdim(1:8), 'float32');
fwrite(fid, dime.vox_offset(1), 'float32');
% Ensure compatibility with SPM (according to MRIcro)
if dime.roi_scale == 0, dime.roi_scale = 0.00392157; end
fwrite(fid, dime.roi_scale(1), 'float32');
fwrite(fid, dime.funused1(1), 'float32');
fwrite(fid, dime.funused2(1), 'float32');
fwrite(fid, dime.cal_max(1), 'float32');
fwrite(fid, dime.cal_min(1), 'float32');
fwrite(fid, dime.compressed(1), 'int32');
fwrite(fid, dime.verified(1), 'int32');
fwrite(fid, dime.glmax(1), 'int32');
fwrite(fid, dime.glmin(1), 'int32');
return
%----------------------------------------------------------------------------
function data_history(fid,hist)
% Original header structures - ANALYZE 7.5
%struct data_history
% { /* off + size */
% char descrip[80]; /* 0 + 80 */
% char aux_file[24]; /* 80 + 24 */
% char orient; /* 104 + 1 */
% char originator[10]; /* 105 + 10 */
% char generated[10]; /* 115 + 10 */
% char scannum[10]; /* 125 + 10 */
% char patient_id[10]; /* 135 + 10 */
% char exp_date[10]; /* 145 + 10 */
% char exp_time[10]; /* 155 + 10 */
% char hist_un0[3]; /* 165 + 3 */
% int views /* 168 + 4 */
% int vols_added; /* 172 + 4 */
% int start_field; /* 176 + 4 */
% int field_skip; /* 180 + 4 */
% int omax; /* 184 + 4 */
% int omin; /* 188 + 4 */
% int smax; /* 192 + 4 */
% int smin; /* 196 + 4 */
% }; /* total=200 bytes */
descrip = sprintf('%-80s', hist.descrip); % 80 chars
aux_file = sprintf('%-24s', hist.aux_file); % 24 chars
originator = sprintf('%-10s', hist.originator); % 10 chars
generated = sprintf('%-10s', hist.generated); % 10 chars
scannum = sprintf('%-10s', hist.scannum); % 10 chars
patient_id = sprintf('%-10s', hist.patient_id); % 10 chars
exp_date = sprintf('%-10s', hist.exp_date); % 10 chars
exp_time = sprintf('%-10s', hist.exp_time); % 10 chars
hist_un0 = sprintf( '%-3s', hist.hist_un0); % 3 chars
% ---
% The following should not be necessary, but I actually
% found one instance where it was, so this totally anal
% retentive approach became necessary, despite the
% apparently elegant solution above to ensuring that variables
% are the right length.
if length(descrip) < 80,
paddingN = 80-length(descrip);
padding = char(repmat(double(' '),1,paddingN));
descrip = [descrip,padding];
end
if length(aux_file) < 24,
paddingN = 24-length(aux_file);
padding = char(repmat(double(' '),1,paddingN));
aux_file = [aux_file,padding];
end
if length(originator) < 10,
paddingN = 10-length(originator);
padding = char(repmat(double(' '),1,paddingN));
originator = [originator, padding];
end
if length(generated) < 10,
paddingN = 10-length(generated);
padding = char(repmat(double(' '),1,paddingN));
generated = [generated, padding];
end
if length(scannum) < 10,
paddingN = 10-length(scannum);
padding = char(repmat(double(' '),1,paddingN));
scannum = [scannum, padding];
end
if length(patient_id) < 10,
paddingN = 10-length(patient_id);
padding = char(repmat(double(' '),1,paddingN));
patient_id = [patient_id, padding];
end
if length(exp_date) < 10,
paddingN = 10-length(exp_date);
padding = char(repmat(double(' '),1,paddingN));
exp_date = [exp_date, padding];
end
if length(exp_time) < 10,
paddingN = 10-length(exp_time);
padding = char(repmat(double(' '),1,paddingN));
exp_time = [exp_time, padding];
end
if length(hist_un0) < 10,
paddingN = 10-length(hist_un0);
padding = char(repmat(double(' '),1,paddingN));
hist_un0 = [hist_un0, padding];
end
% -- if you thought that was anal, try this;
% -- lets check for unusual ASCII char values!
if find(double(descrip)>128),
indexStrangeChar = find(double(descrip)>128);
descrip(indexStrangeChar) = ' ';
end
if find(double(aux_file)>128),
indexStrangeChar = find(double(aux_file)>128);
aux_file(indexStrangeChar) = ' ';
end
if find(double(originator)>128),
indexStrangeChar = find(double(originator)>128);
originator(indexStrangeChar) = ' ';
end
if find(double(generated)>128),
indexStrangeChar = find(double(generated)>128);
generated(indexStrangeChar) = ' ';
end
if find(double(scannum)>128),
indexStrangeChar = find(double(scannum)>128);
scannum(indexStrangeChar) = ' ';
end
if find(double(patient_id)>128),
indexStrangeChar = find(double(patient_id)>128);
patient_id(indexStrangeChar) = ' ';
end
if find(double(exp_date)>128),
indexStrangeChar = find(double(exp_date)>128);
exp_date(indexStrangeChar) = ' ';
end
if find(double(exp_time)>128),
indexStrangeChar = find(double(exp_time)>128);
exp_time(indexStrangeChar) = ' ';
end
if find(double(hist_un0)>128),
indexStrangeChar = find(double(hist_un0)>128);
hist_un0(indexStrangeChar) = ' ';
end
% --- finally, we write the fields
fwrite(fid, descrip(1:80), 'uchar');
fwrite(fid, aux_file(1:24), 'uchar');
%orient = sprintf( '%1s', hist.orient); % 1 char
%fwrite(fid, orient(1), 'uchar');
fwrite(fid, hist.orient(1), 'uint8'); % see note below on char
fwrite(fid, originator(1:10), 'uchar');
fwrite(fid, generated(1:10), 'uchar');
fwrite(fid, scannum(1:10), 'uchar');
fwrite(fid, patient_id(1:10), 'uchar');
fwrite(fid, exp_date(1:10), 'uchar');
fwrite(fid, exp_time(1:10), 'uchar');
fwrite(fid, hist_un0(1:3), 'uchar');
fwrite(fid, hist.views(1), 'int32');
fwrite(fid, hist.vols_added(1), 'int32');
fwrite(fid, hist.start_field(1),'int32');
fwrite(fid, hist.field_skip(1), 'int32');
fwrite(fid, hist.omax(1), 'int32');
fwrite(fid, hist.omin(1), 'int32');
fwrite(fid, hist.smax(1), 'int32');
fwrite(fid, hist.smin(1), 'int32');
return
% Note on using char:
% The 'char orient' field in the header is intended to
% hold simply an 8-bit unsigned integer value, not the ASCII representation
% of the character for that value. A single 'char' byte is often used to
% represent an integer value in Analyze if the known value range doesn't
% go beyond 0-255 - saves a byte over a short int, which may not mean
% much in today's computing environments, but given that this format
% has been around since the early 1980's, saving bytes here and there on
% older systems was important! In this case, 'char' simply provides the
% byte of storage - not an indicator of the format for what is stored in
% this byte. Generally speaking, anytime a single 'char' is used, it is
% probably meant to hold an 8-bit integer value, whereas if this has
% been dimensioned as an array, then it is intended to hold an ASCII
% character string, even if that was only a single character.
% Denny <[email protected]>
% See other notes in avw_hdr_read
|
github
|
lcnbeapp/beapp-master
|
triangle2connectivity.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/triangle2connectivity.m
| 2,477 |
utf_8
|
8a536381c1a41e258adfd603a4ccba83
|
function [connmat] = triangle2connectivity(tri, pos)
% TRIANGLE2CONNECTIVITY computes a connectivity-matrix from a triangulation.
%
% Use as
% [connmat] = triangle2connectivity(tri)
% or
% [connmat] = triangle2connectivity(tri, pos)
%
% The input tri is an Mx3 matrix describing a triangulated surface,
% containing indices to connecting vertices. The output connmat is a sparse
% logical NxN matrix, with ones, where vertices are connected, and zeros
% otherwise.
%
% If you specify the vertex positions in the second input argument as Nx3
% matrix, the output will be a sparse matrix with the lengths of the
% edges between the connected vertices.
% Copyright (C) 2015, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% ensure that the vertices are indexed starting from 1
if min(tri(:))==0,
tri = tri + 1;
end
% ensure that the vertices are indexed according to 1:number of unique vertices
tri = tri_reindex(tri);
% create the unique edges from the triangulation
edges = [tri(:,[1 2]); tri(:,[1 3]); tri(:,[2 3])];
edges = double(unique(sort([edges; edges(:,[2 1])],2), 'rows'));
% fill the connectivity matrix
n = size(edges,1);
if nargin<2
% create sparse binary matrix
connmat = sparse([edges(:,1);edges(:,2)],[edges(:,2);edges(:,1)],true(2*n,1));
else
% create sparse matrix with edge lengths
dpos = sqrt(sum( (pos(edges(:,1),:) - pos(edges(:,2),:)).^2, 2));
connmat = sparse([edges(:,1);edges(:,2)],[edges(:,2);edges(:,1)],[dpos(:);dpos(:)]);
end
function [newtri] = tri_reindex(tri)
% this subfunction reindexes tri such that they run from 1:number of unique vertices
newtri = tri;
[srt, indx] = sort(tri(:));
tmp = cumsum(double(diff([0;srt])>0));
newtri(indx) = tmp;
|
github
|
lcnbeapp/beapp-master
|
ft_platform_supports.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/ft_platform_supports.m
| 9,557 |
utf_8
|
eb0e55d84d57e6873cce8df6cad90d96
|
function tf = ft_platform_supports(what,varargin)
% FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform
% supports a specific capability
%
% Usage:
% tf = ft_platform_supports(what)
% tf = ft_platform_supports('matlabversion', min_version, max_version)
%
% The following values are allowed for the 'what' parameter:
% value means that the following is supported:
%
% 'which-all' which(...,'all')
% 'exists-in-private-directory' exists(...) will look in the /private
% subdirectory to see if a file exists
% 'onCleanup' onCleanup(...)
% 'alim' alim(...)
% 'int32_logical_operations' bitand(a,b) with a, b of type int32
% 'graphics_objects' graphics sysem is object-oriented
% 'libmx_c_interface' libmx is supported through mex in the
% C-language (recent Matlab versions only
% support C++)
% 'stats' all statistical functions in
% FieldTrip's external/stats directory
% 'program_invocation_name' program_invocation_name() (GNU Octave)
% 'singleCompThread' start Matlab with -singleCompThread
% 'nosplash' -nosplash
% 'nodisplay' -nodisplay
% 'nojvm' -nojvm
% 'no-gui' start GNU Octave with --no-gui
% 'RandStream.setGlobalStream' RandStream.setGlobalStream(...)
% 'RandStream.setDefaultStream' RandStream.setDefaultStream(...)
% 'rng' rng(...)
% 'rand-state' rand('state')
% 'urlread-timeout' urlread(..., 'Timeout', t)
% 'griddata-vector-input' griddata(...,...,...,a,b) with a and b
% vectors
% 'griddata-v4' griddata(...,...,...,...,...,'v4'),
% that is v4 interpolation support
% 'uimenu' uimenu(...)
if ~ischar(what)
error('first argument must be a string');
end
switch what
case 'matlabversion'
tf = is_matlab() && matlabversion(varargin{:});
case 'exists-in-private-directory'
tf = is_matlab();
case 'which-all'
tf = is_matlab();
case 'onCleanup'
tf = is_octave() || matlabversion(7.8, Inf);
case 'alim'
tf = is_matlab();
case 'int32_logical_operations'
% earlier version of Matlab don't support bitand (and similar)
% operations on int32
tf = is_octave() || ~matlabversion(-inf, '2012a');
case 'graphics_objects'
% introduced in Matlab 2014b, graphics is handled through objects;
% previous versions use numeric handles
tf = is_matlab() && matlabversion('2014b', Inf);
case 'libmx_c_interface'
% removed after 2013b
tf = matlabversion(-Inf, '2013b');
case 'stats'
root_dir=fileparts(which('ft_defaults'));
external_stats_dir=fullfile(root_dir,'external','stats');
% these files are only used by other functions in the external/stats
% directory
exclude_mfiles={'common_size.m',...
'iscomplex.m',...
'lgamma.m'};
tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles);
case 'program_invocation_name'
% Octave supports program_invocation_name, which returns the path
% of the binary that was run to start Octave
tf = is_octave();
case 'singleCompThread'
tf = is_matlab() && matlabversion(7.8, inf);
case {'nosplash','nodisplay','nojvm'}
% Only on Matlab
tf = is_matlab();
case 'no-gui'
% Only on Octave
tf = is_octave();
case 'RandStream.setDefaultStream'
tf = is_matlab() && matlabversion('2008b', '2011b');
case 'RandStream.setGlobalStream'
tf = is_matlab() && matlabversion('2012a', inf);
case 'randomized_PRNG_on_startup'
tf = is_octave() || ~matlabversion(-Inf,'7.3');
case 'rng'
% recent Matlab versions
tf = is_matlab() && matlabversion('7.12',Inf);
case 'rand-state'
% GNU Octave
tf = is_octave();
case 'urlread-timeout'
tf = is_matlab() && matlabversion('2012b',Inf);
case 'griddata-vector-input'
tf = is_matlab();
case 'griddata-v4'
tf = is_matlab() && matlabversion('2009a',Inf);
case 'uimenu'
tf = is_matlab();
otherwise
error('unsupported value for first argument: %s', what);
end % switch
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_matlab()
tf = ~is_octave();
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = is_octave()
persistent cached_tf;
if isempty(cached_tf)
cached_tf = logical(exist('OCTAVE_VERSION', 'builtin'));
end
tf = cached_tf;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = has_all_functions_in_dir(in_dir, exclude_mfiles)
% returns true if all functions in in_dir are already provided by the
% platform
m_files=dir(fullfile(in_dir,'*.m'));
n=numel(m_files);
for k=1:n
m_filename=m_files(k).name;
if isempty(which(m_filename)) && ...
isempty(strmatch(m_filename,exclude_mfiles))
tf=false;
return;
end
end
tf=true;
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current MATLAB version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion('2009b') % exactly 2009b
% matlabversion('2008b', '2010a') % between two versions
% matlabversion('2008b', Inf) % from a version onwards
% etc.
%
% See also VERSION, VER, VERLESSTHAN
% Copyright (C) 2006, Robert Oostenveld
% Copyright (C) 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% this does not change over subsequent calls, making it persistent speeds it up
persistent curVer
if nargin<2
max = min;
end
if isempty(curVer)
curVer = version();
end
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
end % function
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end % function
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end % function
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end % function
|
github
|
lcnbeapp/beapp-master
|
mesh_spherify.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/mesh_spherify.m
| 4,920 |
utf_8
|
414c768e5ef2fdc3e19da24f00f72626
|
function [pnt, tri] = mesh_spherify(pnt, tri, varargin)
% Takes a cortical mesh and scales it so that it fits into a
% unit sphere.
%
% This function determines the points of the original mesh that support a
% convex hull and determines the radius of those points. Subsequently the
% radius of the support points is interpolated onto all vertices of the
% original mesh, and the vertices of the original mesh are scaled by
% dividing them by this interpolated radius.
%
% Use as
% [pnt, tri] = mesh_spherify(pnt, tri, ...)
%
% Optional arguments should come as key-value pairs and may include
% shift = 'no', mean', 'range'
% smooth = number (default = 20)
% Copyright (C) 2008, Robert Oostenveld
% $Id$
% give some graphical feedback for debugging
fb = false;
shift = ft_getopt(varargin, 'shift');
smooth = ft_getopt(varargin, 'smooth');
% set the concentration factor
if ~isempty(smooth)
k = smooth;
else
k = 100;
end
% the following code is for debugging
if fb
figure
[sphere_pnt, sphere_tri] = icosahedron162;
y = vonmisesfischer(5, [0 0 1], sphere_pnt);
triplot(sphere_pnt, sphere_tri, y);
end
% this is required by the convhulln function
pnt = double(pnt);
npnt = size(pnt, 1);
ntri = size(tri, 1);
switch shift
case 'mean'
pnt(:,1) = pnt(:,1) - mean(pnt(:,1));
pnt(:,2) = pnt(:,2) - mean(pnt(:,2));
pnt(:,3) = pnt(:,3) - mean(pnt(:,3));
case 'range'
minx = min(pnt(:,1));
miny = min(pnt(:,2));
minz = min(pnt(:,3));
maxx = max(pnt(:,1));
maxy = max(pnt(:,2));
maxz = max(pnt(:,3));
pnt(:,1) = pnt(:,1) - mean([minx maxx]);
pnt(:,2) = pnt(:,2) - mean([miny maxy]);
pnt(:,3) = pnt(:,3) - mean([minz maxz]);
otherwise
% do nothing
end
% determine the convex hull, especially to determine the support points
tric = convhulln(pnt);
sel = unique(tric(:));
% create a triangulation for only the support points
support_pnt = pnt(sel,:);
support_tri = convhulln(support_pnt);
if fb
figure
triplot(support_pnt, support_tri, [], 'faces_skin');
triplot(pnt, tri, [], 'faces_skin');
alpha 0.5
end
% determine the radius and thereby scaling factor for the support points
support_scale = zeros(length(sel),1);
for i=1:length(sel)
support_scale(i) = norm(support_pnt(i,:));
end
% interpolate the scaling factor for the support points to all points
scale = zeros(npnt,1);
for i=1:npnt
u = pnt(i,:);
y = vonmisesfischer(k, u, support_pnt);
y = y ./ sum(y);
scale(i) = y' * support_scale;
end
% apply the interpolated scaling to all points
pnt(:,1) = pnt(:,1) ./ scale;
pnt(:,2) = pnt(:,2) ./ scale;
pnt(:,3) = pnt(:,3) ./ scale;
% downscale the points further to make sure that nothing sticks out
n = zeros(npnt,1);
for i = 1:npnt
n(i) = norm(pnt(i, :));
end
mscale = (1-eps) / max(n);
pnt = mscale * pnt;
if fb
figure
[sphere_pnt, sphere_tri] = icosahedron162;
triplot(sphere_pnt, sphere_tri, [], 'faces_skin');
triplot(pnt, tri, [], 'faces_skin');
alpha 0.5
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VONMISESFISCHER probability distribution
%
% Use as
% y = vonmisesfischer(k, u, x)
% where
% k = concentration parameter
% u = mean direction
% x = direction of the points on the sphere
%
% The von Mises?Fisher distribution is a probability distribution on the
% (p?1) dimensional sphere in Rp. If p=2 the distribution reduces to the
% von Mises distribution on the circle. The distribution belongs to the
% field of directional statistics.
%
% This implementation is based on
% http://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = vonmisesfischer(k, u, x)
% the data describes N points in P-dimensional space
[n, p] = size(x);
% ensure that the direction vectors are unit length
u = u ./ norm(u);
for i=1:n
x(i,:) = x(i,:) ./ norm(x(i,:));
end
% FIXME this normalisation is wrong
% but it is not yet needed, so the problem is acceptable for now
% Cpk = (k^((p/2)-1)) ./ ( (2*pi)^(p/2) * besseli(p/2-1, k));
Cpk = 1;
y = exp(k * u * x') ./ Cpk;
y = y(:);
function [val] = keyval(key, varargin)
% KEYVAL returns the value that corresponds to the requested key in a
% key-value pair list of variable input arguments
%
% Use as
% [val] = keyval(key, varargin)
%
% See also VARARGIN
% Copyright (C) 2005-2007, Robert Oostenveld
if length(varargin)==1 && iscell(varargin{1})
varargin = varargin{1};
end
if mod(length(varargin),2)
error('optional input arguments should come in key-value pairs, i.e. there should be an even number');
end
keys = varargin(1:2:end);
vals = varargin(2:2:end);
hit = find(strcmp(key, keys));
if length(hit)==0
% the requested key was not found
val = [];
elseif length(hit)==1
% the requested key was found
val = vals{hit};
else
error('multiple input arguments with the same name');
end
|
github
|
lcnbeapp/beapp-master
|
select_channel_list.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/select_channel_list.m
| 5,924 |
utf_8
|
94982b0a4829981930c1c446e459ca7c
|
function [select] = select_channel_list(label, select, titlestr)
% SELECT_CHANNEL_LIST presents a dialog for selecting multiple elements
% from a cell array with strings, such as the labels of EEG channels.
% The dialog presents two columns with an add and remove mechanism.
%
% select = select_channel_list(label, initial, titlestr)
%
% with
% initial indices of channels that are initially selected
% label cell array with channel labels (strings)
% titlestr title for dialog (optional)
% and
% select indices of selected channels
%
% If the user presses cancel, the initial selection will be returned.
% Copyright (C) 2003, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<3
titlestr = 'Select';
end
pos = get(0,'DefaultFigurePosition');
pos(3:4) = [290 300];
dlg = dialog('Name', titlestr, 'Position', pos);
set(gca, 'Visible', 'off'); % explicitly turn the axis off, as it sometimes appears
select = select(:)'; % ensure that it is a row array
userdata.label = label;
userdata.select = select;
userdata.unselect = setdiff(1:length(label), select);
set(dlg, 'userdata', userdata);
uicontrol(dlg, 'style', 'text', 'position', [ 10 240+20 80 20], 'string', 'unselected');
uicontrol(dlg, 'style', 'text', 'position', [200 240+20 80 20], 'string', 'selected ');
uicontrol(dlg, 'style', 'listbox', 'position', [ 10 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbunsel')
uicontrol(dlg, 'style', 'listbox', 'position', [200 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbsel')
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 175+20 80 20], 'string', 'add all >' , 'callback', @label_addall);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 145+20 80 20], 'string', 'add >' , 'callback', @label_add);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 115+20 80 20], 'string', '< remove' , 'callback', @label_remove);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 85+20 80 20], 'string', '< remove all', 'callback', @label_removeall);
uicontrol(dlg, 'style', 'pushbutton', 'position', [ 55 10 80 20], 'string', 'Cancel', 'callback', 'close');
uicontrol(dlg, 'style', 'pushbutton', 'position', [155 10 80 20], 'string', 'OK', 'callback', 'uiresume');
label_redraw(dlg);
% wait untill the dialog is closed or the user presses OK/Cancel
uiwait(dlg);
if ishandle(dlg)
% the user pressed OK, return the selection from the dialog
userdata = get(dlg, 'userdata');
select = userdata.select;
close(dlg);
return
else
% the user pressed Cancel or closed the dialog, return the initial selection
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_redraw(h)
userdata = get(h, 'userdata');
set(findobj(h, 'tag', 'lbsel' ), 'string', userdata.label(userdata.select));
set(findobj(h, 'tag', 'lbunsel'), 'string', userdata.label(userdata.unselect));
% set the active element in the select listbox, based on the previous active element
tmp = min(get(findobj(h, 'tag', 'lbsel'), 'value'));
tmp = min(tmp, length(get(findobj(h, 'tag', 'lbsel'), 'string')));
if isempty(tmp) | tmp==0
tmp = 1;
end
set(findobj(h, 'tag', 'lbsel' ), 'value', tmp);
% set the active element in the unselect listbox, based on the previous active element
tmp = min(get(findobj(h, 'tag', 'lbunsel'), 'value'));
tmp = min(tmp, length(get(findobj(h, 'tag', 'lbunsel'), 'string')));
if isempty(tmp) | tmp==0
tmp = 1;
end
set(findobj(h, 'tag', 'lbunsel' ), 'value', tmp);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_addall(h, eventdata, handles, varargin)
h = get(h, 'parent');
userdata = get(h, 'userdata');
userdata.select = 1:length(userdata.label);
userdata.unselect = [];
set(findobj(h, 'tag', 'lbunsel' ), 'value', 1);
set(h, 'userdata', userdata);
label_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_removeall(h, eventdata, handles, varargin)
h = get(h, 'parent');
userdata = get(h, 'userdata');
userdata.unselect = 1:length(userdata.label);
userdata.select = [];
set(findobj(h, 'tag', 'lbsel' ), 'value', 1);
set(h, 'userdata', userdata);
label_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_add(h, eventdata, handles, varargin)
h = get(h, 'parent');
userdata = get(h, 'userdata');
if ~isempty(userdata.unselect)
add = userdata.unselect(get(findobj(h, 'tag', 'lbunsel' ), 'value'));
userdata.select = sort([userdata.select add]);
userdata.unselect = sort(setdiff(userdata.unselect, add));
set(h, 'userdata', userdata);
label_redraw(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_remove(h, eventdata, handles, varargin);
h = get(h, 'parent');
userdata = get(h, 'userdata');
if ~isempty(userdata.select)
remove = userdata.select(get(findobj(h, 'tag', 'lbsel' ), 'value'));
userdata.select = sort(setdiff(userdata.select, remove));
userdata.unselect = sort([userdata.unselect remove]);
set(h, 'userdata', userdata);
label_redraw(h);
end
|
github
|
lcnbeapp/beapp-master
|
artifact_viewer.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/artifact_viewer.m
| 7,053 |
utf_8
|
102f40eaa7a02d86d35db0d6412e07ab
|
function artifact_viewer(cfg, artcfg, zval, artval, zindx, inputdata)
% ARTIFACT_VIEWER is a subfunction that reads a segment of data
% (one channel only) and displays it together with the cumulated
% z-value
% Copyright (C) 2004-2006, Jan-Mathijs Schoffelen & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if ishandle(cfg)
% get the input variables from the handle's guidata
hx = cfg; clear cfg;
tmp = guidata(hx);
cfg = tmp.cfg;
cfg.trl = tmp.trl;
artcfg = tmp.artcfg;
zval = tmp.zval;
artval = tmp.artval;
zindx = tmp.zindx;
if ~isempty(tmp.data)
inputdata = tmp.data;
hdr = ft_fetch_header(inputdata);
else
hdr = ft_read_header(cfg.headerfile);
end
% make a new figure
figure;
else
if nargin == 5
hdr = ft_read_header(cfg.headerfile);
elseif nargin == 6
hdr = ft_fetch_header(inputdata); % used name inputdata iso data, because data is already used later in this function
end
end
dat.cfg = cfg;
dat.artcfg = artcfg;
if exist('inputdata', 'var') dat.inputdata = inputdata; end
dat.trlop = 1;
dat.zval = zval;
dat.artval = artval;
dat.zindx = zindx;
dat.stop = 0;
dat.numtrl = size(cfg.trl,1);
dat.trialok = zeros(1,dat.numtrl);
dat.hdr = hdr;
for trlop=1:dat.numtrl
dat.trialok(trlop) = ~any(artval{trlop});
end
h = gcf;
guidata(h,dat);
uicontrol(gcf,'units','pixels','position',[5 5 40 18],'String','stop','Callback',@stop);
uicontrol(gcf,'units','pixels','position',[50 5 25 18],'String','<','Callback',@prevtrial);
uicontrol(gcf,'units','pixels','position',[75 5 25 18],'String','>','Callback',@nexttrial);
uicontrol(gcf,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10trial);
uicontrol(gcf,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10trial);
uicontrol(gcf,'units','pixels','position',[160 5 50 18],'String','<artfct','Callback',@prevartfct);
uicontrol(gcf,'units','pixels','position',[210 5 50 18],'String','artfct>','Callback',@nextartfct);
while ishandle(h),
dat = guidata(h);
if dat.stop == 0,
read_and_plot(h);
uiwait;
else
break
end
end
if ishandle(h)
close(h);
end
%------------
%subfunctions
%------------
function read_and_plot(h)
vlinecolor = [0 0 0];
dat = guidata(h);
% make a local copy of the relevant variables
trlop = dat.trlop;
zval = dat.zval{trlop};
artval = dat.artval{trlop};
zindx = dat.zindx{trlop};
cfg = dat.cfg;
artcfg = dat.artcfg;
hdr = dat.hdr;
trl = dat.artcfg.trl;
trlpadsmp = round(artcfg.trlpadding*hdr.Fs);
% determine the channel with the highest z-value
[dum, indx] = max(zval);
sgnind = zindx(indx);
iscontinuous = 1;
if isfield(dat, 'inputdata')
data = ft_fetch_data(dat.inputdata, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
else
data = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
end
% data = preproc(data, channel, hdr.Fs, artfctdef, [], fltpadding, fltpadding);
str = sprintf('trial %3d, channel %s', dat.trlop, hdr.label{sgnind});
fprintf('showing %s\n', str);
% plot z-values in lower subplot
subplot(2,1,2);
cla
hold on
xval = trl(trlop,1):trl(trlop,2);
if trlpadsmp
sel = 1:trlpadsmp;
h = plot(xval(sel), zval(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
sel = trlpadsmp:(length(data)-trlpadsmp);
plot(xval(sel), zval(sel), 'b');
sel = (length(data)-trlpadsmp):length(data);
h = plot(xval(sel), zval(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
vline(xval( 1)+trlpadsmp, 'color', vlinecolor);
vline(xval(end)-trlpadsmp, 'color', vlinecolor);
else
plot(xval, zval, 'b');
end
% draw a line at the threshold level
hline(artcfg.cutoff, 'color', 'r', 'linestyle', ':');
% make the artefact part red
zval(~artval) = nan;
plot(xval, zval, 'r-');
hold off
xlabel('samples');
ylabel('zscore');
% plot data of most aberrant channel in upper subplot
subplot(2,1,1);
cla
hold on
if trlpadsmp
sel = 1:trlpadsmp;
h = plot(xval(sel), data(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
sel = trlpadsmp:(length(data)-trlpadsmp);
plot(xval(sel), data(sel), 'b');
sel = (length(data)-trlpadsmp):length(data);
h = plot(xval(sel), data(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
vline(xval( 1)+trlpadsmp, 'color', vlinecolor);
vline(xval(end)-trlpadsmp, 'color', vlinecolor);
else
plot(xval, data, 'b');
end
data(~artval) = nan;
plot(xval, data, 'r-');
hold off
xlabel('samples');
ylabel('uV or Tesla');
title(str);
function varargout = nexttrial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop < dat.numtrl,
dat.trlop = dat.trlop + 1;
end;
guidata(h,dat);
uiresume;
function varargout = next10trial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop < dat.numtrl - 10,
dat.trlop = dat.trlop + 10;
else dat.trlop = dat.numtrl;
end;
guidata(h,dat);
uiresume;
function varargout = prevtrial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop > 1,
dat.trlop = dat.trlop - 1;
else dat.trlop = 1;
end;
guidata(h,dat);
uiresume;
function varargout = prev10trial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop > 10,
dat.trlop = dat.trlop - 10;
else dat.trlop = 1;
end;
guidata(h,dat);
uiresume;
function varargout = nextartfct(h, eventdata, handles, varargin)
dat = guidata(h);
artfctindx = find(dat.trialok == 0);
sel = find(artfctindx > dat.trlop);
if ~isempty(sel)
dat.trlop = artfctindx(sel(1));
else
dat.trlop = dat.trlop;
end
guidata(h,dat);
uiresume;
function varargout = prevartfct(h, eventdata, handles, varargin)
dat = guidata(h);
artfctindx = find(dat.trialok == 0);
sel = find(artfctindx < dat.trlop);
if ~isempty(sel)
dat.trlop = artfctindx(sel(end));
else
dat.trlop = dat.trlop;
end
guidata(h,dat);
uiresume;
function varargout = stop(h, eventdata, handles, varargin)
dat = guidata(h);
dat.stop = 1;
guidata(h,dat);
uiresume;
function vsquare(x1, x2, c)
abc = axis;
y1 = abc(3);
y2 = abc(4);
x = [x1 x2 x2 x1 x1];
y = [y1 y1 y2 y2 y1];
z = [-1 -1 -1 -1 -1];
h = patch(x, y, z, c);
set(h, 'edgecolor', c)
|
github
|
lcnbeapp/beapp-master
|
estimate_fwhm2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/estimate_fwhm2.m
| 3,130 |
utf_8
|
195e03d1b210e939380a0b31ddd6efb0
|
function [source] = estimate_fwhm2(source, maxdist)
% ESTIMATE_FWHM2(SOURCE, MAXDIST)
%
% This function computes the Gaussian fwhm of the spatial filters, according to
% least-squares Gaussian fit including data points up until MAXDIST from the
% locations of interest.
%
% This function can only deal with scalar filters.
if nargin<2, maxdist = 2.5; end % maxdist should be in units of the pos in source
if isempty(maxdist), maxdist = inf; end
if islogical(source.inside)
inside = find(source.inside);
else
inside = source.inside;
end
ninside = numel(inside);
if ~isfield(source.avg, 'filter')
error('the input should contain spatial filters in');
end
nchan = size(source.avg.filter{inside(1)},2);
ndir = size(source.avg.filter{inside(1)},1);
if ndir~=1,
error('only scalar filters are allowed as input');
end
%get filters and positions
filter = cat(1,source.avg.filter{inside});
pos = source.pos(inside,:);
%get the filter correlation matrix
Cmat = filter*filter';
Cmat = abs(Cmat)./sqrt(diag(Cmat)*diag(Cmat)');
fwhm = zeros(size(source.pos,1),1);
onesvec = ones(ninside,1);
for k = 1:ninside
d = sqrt(sum( (pos-pos(k*onesvec,:)).^2, 2));
sel = d<=maxdist;
s = gaussfit(Cmat(sel,k)',d(sel)');
fwhm(inside(k)) = s;
end
source.fwhm = fwhm;
% fwhm = zeros(size(source.pos,1),3,3);
% onesvec = ones(ninside,1);
% for k = 1:ninside
% dpos = pos-pos(k*onesvec,:);
% d = sqrt(sum(dpos.^2, 2));
% sel = d<=maxdist;
% [s,~] = gaussfit3D(dpos(sel,:), Cmat(sel,k));
% fwhm(inside(k),:,:) = s;
% end
% source.fwhm = fwhm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fwhm] = gaussfit(dat, design)
%this function performs a least-squares gaussian fit
%create independent variable
ivar = design.^2;
dat = log(dat+eps);
beta = dat*ivar'*pinv(ivar*ivar');
sigma = sqrt(-0.5./beta(:,1));
fwhm = 2.*sqrt(2.*log(2)).*sigma;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [invsigma, R] = gaussfit3D(x, y)
% function for a linear least squares fit of a Gaussian function in 3D
% (with a peak of 1 at (0,0,0)).
%
% use as
% sigma = gaussfit3D(x, y)
%
% x = Nx3 and y = Nx1, sigma is the covariance describing the gaussian
% create design matrix based in the independent variable x
design = [x(:,1).^2 x(:,2).^2 x(:,3).^2 2.*(x(:,1).*x(:,2)) 2.*(x(:,1).*x(:,3)) 2.*(x(:,2).*x(:,3))];
%design = design-repmat(mean(design,1),[size(design,1) 1]);
design = cat(2, design, ones(size(design,1),1));
% log-transform the dependent variable y
dat = -2.*log(y+eps);
% regression
beta = design\dat;
% residuals
res = dat - design*beta;
R = 1-sum(res.^2)./sum(dat.^2);
% create output
invsigma = [beta(1) beta(4) beta(5);beta(4) beta(2) beta(6);beta(5) beta(6) beta(3)];
%sigma = inv(invsigma);
% by construction the exponent to the gaussian looks like this
%
% exp( -0.5.*(-x'*invsigma*x) )
%
% -x'*invsigma*x = [x1 x2 x3]*[a d e [x1
% d b f x2
% e f c] x3] =
%
% a*x1^2+b*x2^2+c*x3^2+2d*(x1x2)+2e*(x1x3)+2f*(x2x3)
%
% the variables a through f correspond with the ordered beta weights
|
github
|
lcnbeapp/beapp-master
|
rejectvisual_summary.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/rejectvisual_summary.m
| 22,693 |
utf_8
|
379ccee2d011c4f5e854a071b19084bb
|
function [chansel, trlsel, cfg] = rejectvisual_summary(cfg, data)
% SUBFUNCTION for ft_rejectvisual
% determine the initial selection of trials
ntrl = length(data.trial);
if isequal(cfg.trials, 'all') % support specification like 'all'
cfg.trials = 1:ntrl;
end
trlsel = false(1, ntrl);
trlsel(cfg.trials) = true;
% determine the initial selection of channels
nchan = length(data.label);
cfg.channel = ft_channelselection(cfg.channel, data.label); % support specification like 'all'
chansel = false(1, nchan);
chansel(match_str(data.label, cfg.channel)) = true;
% compute the sampling frequency from the first two timepoints
fsample = 1/mean(diff(data.time{1}));
% select the specified latency window from the data
% here it is done BEFORE filtering and metric computation
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:, begsample:endsample);
end
% compute the offset from the time axes
offset = zeros(ntrl, 1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
% set up guidata info
info = [];
info.data = data;
info.cfg = cfg;
info.metric = cfg.metric;
info.previousmetric = 'none';
info.level = nan(nchan, ntrl);
info.ntrl = ntrl;
info.nchan = nchan;
info.trlsel = trlsel;
info.chansel = chansel;
info.fsample = fsample;
info.offset = offset;
info.quit = 0;
h = figure();
guidata(h, info);
% set up display
interactive = true;
% make the figure large enough to hold stuff
set(h, 'Position', [50 350 800 500]);
% define three axes
info.axes(1) = axes('position', [0.100 0.650 0.375 0.300]); % summary
info.axes(2) = axes('position', [0.575 0.650 0.375 0.300]); % channels
info.axes(3) = axes('position', [0.100 0.250 0.375 0.300]); % trials
% callback function (for toggling trials/channels) is set later, so that
% the user cannot try to toggle trials while nothing is present on the
% plots
% instructions
instructions = sprintf('Drag the mouse over the channels or trials you wish to reject');
uicontrol(h, 'Units', 'normalized', 'position', [0.520 0.520 0.400 0.050], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', instructions, 'FontWeight', 'bold', 'ForegroundColor', 'r');
% set up radio buttons for choosing metric
bgcolor = get(h, 'color');
g = uibuttongroup('Position', [0.520 0.220 0.375 0.250 ], 'bordertype', 'none', 'backgroundcolor', bgcolor);
r(1) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 8/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'string', 'var', 'HandleVisibility', 'off');
r(2) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 7/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'min', 'HandleVisibility', 'off');
r(3) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 6/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'max', 'HandleVisibility', 'off');
r(4) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 5/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'maxabs', 'HandleVisibility', 'off');
r(5) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 4/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'range', 'HandleVisibility', 'off');
r(6) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 3/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'kurtosis', 'HandleVisibility', 'off');
r(7) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 2/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', '1/var', 'HandleVisibility', 'off');
r(8) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 1/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'zvalue', 'HandleVisibility', 'off');
r(9) = uicontrol('Units', 'normalized', 'parent', g, 'position', [ 0.0 0/9 0.40 0.15 ], 'Style', 'Radio', 'backgroundcolor', bgcolor, 'String', 'maxzvalue', 'HandleVisibility', 'off');
% pre-select appropriate metric, if defined
set(g, 'SelectionChangeFcn', @change_metric);
for i=1:length(r)
if strcmp(get(r(i), 'string'), cfg.metric)
set(g, 'SelectedObject', r(i));
end
end
% editboxes for manually specifying which channels/trials to toggle on or off
uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.470 0.14 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', 'Toggle trial:');
uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.430 0.14 0.05], 'Style', 'edit', 'HorizontalAlignment', 'left', 'backgroundcolor', [1 1 1], 'callback', @toggle_trials);
uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.340 0.14 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', 'Toggle channel:');
uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.300 0.14 0.05], 'Style', 'edit', 'HorizontalAlignment', 'left', 'backgroundcolor', [1 1 1], 'callback', @toggle_channels);
% editbox for trial plotting
uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.210 0.14 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', 'Plot trial:');
info.plottrltxt = uicontrol(h, 'Units', 'normalized', 'position', [0.630 0.170 0.14 0.05], 'Style', 'edit', 'HorizontalAlignment', 'left', 'backgroundcolor', [1 1 1], 'callback', @display_trial);
info.badtrllbl = uicontrol(h, 'Units', 'normalized', 'position', [0.795 0.470 0.230 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', sprintf('Rejected trials: %i/%i', sum(info.trlsel==0), info.ntrl));
info.badtrltxt = uicontrol(h, 'Units', 'normalized', 'position', [0.795 0.430 0.230 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'));
info.badchanlbl = uicontrol(h, 'Units', 'normalized', 'position', [0.795 0.340 0.230 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'), 'string', sprintf('Rejected channels: %i/%i', sum(info.chansel==0), info.nchan));
info.badchantxt = uicontrol(h, 'Units', 'normalized', 'position', [0.795 0.300 0.230 0.05], 'Style', 'text', 'HorizontalAlignment', 'left', 'backgroundcolor', get(h, 'color'));
% "show rejected" button
% ui_tog = uicontrol(h, 'Units', 'normalized', 'position', [0.55 0.200 0.25 0.05], 'Style', 'checkbox', 'backgroundcolor', get(h, 'color'), 'string', 'Show rejected?', 'callback', @toggle_rejected);
% if strcmp(cfg.viewmode, 'toggle')
% set(ui_tog, 'value', 1);
% end
% logbox
info.output_box = uicontrol(h, 'Units', 'normalized', 'position', [0.00 0.00 1.00 0.15], 'Style', 'edit', 'HorizontalAlignment', 'left', 'Max', 3, 'Min', 1, 'Enable', 'inactive', 'FontName', get(0, 'FixedWidthFontName'), 'FontSize', 9, 'ForegroundColor', [0 0 0], 'BackgroundColor', [1 1 1]);
% quit button
uicontrol(h, 'Units', 'normalized', 'position', [0.80 0.175 0.10 0.05], 'string', 'quit', 'callback', @quit);
guidata(h, info);
% disable trial plotting if cfg.layout not present
if ~isfield(info.cfg, 'layout')
set(info.plottrltxt, 'Enable', 'off');
update_log(info.output_box, sprintf('NOTE: "cfg.layout" parameter required for trial plotting!'));
end
% Compute initial metric...
compute_metric(h);
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0
uiwait(h);
else
chansel = info.chansel;
trlsel = info.trlsel;
cfg = info.cfg;
delete(h);
break;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function compute_metric(h)
info = guidata(h);
tmp = info.level(info.chansel, info.trlsel);
if isequal(info.metric, info.previousmetric) && all(~isnan(tmp(:)))
% there is no reason to recompute the metric
return
end
update_log(info.output_box, 'Computing metric...');
ft_progress('init', info.cfg.feedback, 'computing metric');
level = zeros(info.nchan, info.ntrl);
if strcmp(info.metric, 'zvalue') || strcmp(info.metric, 'maxzvalue')
% cellmean and cellstd (see ft_denoise_pca) would work instead of for-loops, but they are too memory-intensive
runsum = zeros(info.nchan, 1);
runss = zeros(info.nchan, 1);
runnum = 0;
for i=1:info.ntrl
dat = preproc(info.data.trial{i}, info.data.label, offset2time(info.offset(i), info.fsample, size(info.data.trial{i}, 2)), info.cfg.preproc); % not entirely sure whether info.data.time{i} is correct, so making it on the fly
runsum = runsum + sum(dat, 2);
runss = runss + sum(dat.^2, 2);
runnum = runnum + size(dat, 2);
end
mval = runsum/runnum;
sd = sqrt(runss/runnum - (runsum./runnum).^2);
end
for i=1:info.ntrl
ft_progress(i/info.ntrl, 'computing metric %d of %d\n', i, info.ntrl);
dat = preproc(info.data.trial{i}, info.data.label, offset2time(info.offset(i), info.fsample, size(info.data.trial{i}, 2)), info.cfg.preproc); % not entirely sure whether info.data.time{i} is correct, so making it on the fly
switch info.metric
case 'var'
level(:, i) = std(dat, [], 2).^2;
case 'min'
level(:, i) = min(dat, [], 2);
case 'max'
level(:, i) = max(dat, [], 2);
case 'maxabs'
level(:, i) = max(abs(dat), [], 2);
case 'range'
level(:, i) = max(dat, [], 2) - min(dat, [], 2);
case 'kurtosis'
level(:, i) = kurtosis(dat, [], 2);
case '1/var'
level(:, i) = 1./(std(dat, [], 2).^2);
case 'zvalue'
level(:, i) = mean( (dat-repmat(mval, 1, size(dat, 2)) )./repmat(sd, 1, size(dat, 2)) , 2);
case 'maxzvalue'
level(:, i) = max( ( dat-repmat(mval, 1, size(dat, 2)) )./repmat(sd, 1, size(dat, 2)) , [], 2);
otherwise
error('unsupported method');
end
end
ft_progress('close');
update_log(info.output_box, 'Done.');
info.level = level;
info.previousmetric = info.metric;
guidata(h, info);
function redraw(h)
info = guidata(h);
% work with a copy of the data
level = info.level;
[maxperchan, maxpertrl, maxperchan_all, maxpertrl_all] = set_maxper(level, info.chansel, info.trlsel, strcmp(info.metric, 'min'));
% make the three figures
if gcf~=h, figure(h); end
% datacursormode on;
set(h, 'CurrentAxes', info.axes(1))
cla(info.axes(1));
switch info.cfg.viewmode
case {'remove', 'toggle'}
tmp = level;
tmp(~info.chansel, :) = nan;
tmp(:, ~info.trlsel) = nan;
imagesc(tmp);
case 'hide'
imagesc(level(info.chansel==1, info.trlsel==1));
if ~all(info.trlsel)
set(info.axes(1), 'Xtick', []);
end
if ~all(info.chansel)
set(info.axes(1), 'Ytick', []);
end
end % switch
axis ij;
% colorbar;
title(info.cfg.method);
ylabel('channel number');
xlabel('trial number');
set(h, 'CurrentAxes', info.axes(2))
cla(info.axes(2));
switch info.cfg.viewmode
case 'remove'
plot(maxperchan(info.chansel==1), find(info.chansel==1), '.');
xmax = max(maxperchan);
xmin = min(maxperchan);
ymax = info.nchan;
case 'toggle'
plot(maxperchan_all(info.chansel==1), find(info.chansel==1), '.');
hold on;
plot(maxperchan_all(info.chansel==0), find(info.chansel==0), 'o');
hold off;
xmax = max(maxperchan_all);
xmin = min(maxperchan_all);
ymax = info.nchan;
case 'hide'
xmax = max(maxperchan);
xmin = min(maxperchan);
ymax = sum(info.chansel==1);
plot(maxperchan(info.chansel==1), 1:ymax, '.');
if ~all(info.chansel)
set(info.axes(2), 'Ytick', []);
end
end % switch
if any(info.chansel) && any(info.trlsel)
% don't try to rescale the axes if they are empty
% have to use 0 as lower limit because in the single channel case ylim([1 1]) will be invalid
axis([0.8*xmin 1.2*xmax 0.5 ymax+0.5]);
end
axis ij;
set(info.axes(2), 'ButtonDownFcn', @toggle_visual); % needs to be here; call to axis resets this property
ylabel('channel number');
set(h, 'CurrentAxes', info.axes(3))
cla(info.axes(3));
switch info.cfg.viewmode
case 'remove'
plot(find(info.trlsel==1), maxpertrl(info.trlsel==1), '.');
xmax = info.ntrl;
ymax = max(maxpertrl);
ymin = min(maxpertrl);
case 'toggle'
plot(find(info.trlsel==1), maxpertrl_all(info.trlsel==1), '.');
hold on;
plot(find(info.trlsel==0), maxpertrl_all(info.trlsel==0), 'o');
hold off;
xmax = info.ntrl;
ymax = max(maxpertrl_all);
ymin = min(maxpertrl_all);
case 'hide'
xmax = sum(info.trlsel==1);
ymax = max(maxpertrl);
ymin = min(maxpertrl);
plot(1:xmax, maxpertrl(info.trlsel==1), '.');
if ~all(info.trlsel)
set(info.axes(3), 'Xtick', []);
end
end % switch
if any(info.chansel) && any(info.trlsel)
% don't try to rescale the axes if they are empty
% the 0.8-1.2 is needed to deal with the single trial case
% note that both ymin and ymax can be negative
axis([0.5 xmax+0.5 (1-sign(ymin)*0.2)*ymin (1+sign(ymax)*0.2)*ymax]);
end
set(info.axes(3), 'ButtonDownFcn', @toggle_visual); % needs to be here; call to axis resets this property
xlabel('trial number');
% put rejected trials/channels in their respective edit boxes
set(info.badchanlbl, 'string', sprintf('Rejected channels: %i/%i', sum(info.chansel==0), info.nchan));
set(info.badtrllbl, 'string', sprintf('Rejected trials: %i/%i', sum(info.trlsel==0), info.ntrl));
if ~isempty(find(info.trlsel==0, 1))
set(info.badtrltxt, 'String', num2str(find(info.trlsel==0)), 'FontAngle', 'normal');
else
set(info.badtrltxt, 'String', 'No trials rejected', 'FontAngle', 'italic');
end
if ~isempty(find(info.chansel==0, 1))
if isfield(info.data, 'label')
chanlabels = info.data.label(info.chansel==0);
badchantxt = '';
for i=find(info.chansel==0)
if ~isempty(badchantxt)
badchantxt = [badchantxt ', ' info.data.label{i} '(' num2str(i) ')'];
else
badchantxt = [info.data.label{i} '(' num2str(i) ')'];
end
end
set(info.badchantxt, 'String', badchantxt, 'FontAngle', 'normal');
else
set(info.badtrltxt, 'String', num2str(find(info.chansel==0)), 'FontAngle', 'normal');
end
else
set(info.badchantxt, 'String', 'No channels rejected', 'FontAngle', 'italic');
end
function toggle_trials(h, eventdata)
info = guidata(h);
% extract trials from string
rawtrls = get(h, 'string');
if ~isempty(rawtrls)
spltrls = regexp(rawtrls, '\s+', 'split');
trls = [];
for n = 1:length(spltrls)
trls(n) = str2num(cell2mat(spltrls(n)));
end
else
update_log(info.output_box, sprintf('Please enter one or more trials'));
uiresume;
return;
end
try
toggle = trls;
info.trlsel(toggle) = ~info.trlsel(toggle);
catch
update_log(info.output_box, sprintf('ERROR: Trial value too large!'));
uiresume;
return;
end
% recalculate the metric
compute_metric(h)
guidata(h, info);
uiresume;
% process input from the "toggle channels" textbox
function toggle_channels(h, eventdata)
info = guidata(h);
rawchans = get(h, 'string');
if ~isempty(rawchans)
splchans = regexp(rawchans, '\s+', 'split');
chans = zeros(1, length(splchans));
% determine whether identifying channels via number or label
[junk, junk, junk, procchans] = regexp(rawchans, '([A-Za-z]+|[0-9]{4, })');
clear junk;
if isempty(procchans)
% if using channel numbers
for n = 1:length(splchans)
chans(n) = str2num(splchans{n});
end
else
% if using channel labels
for n = 1:length(splchans)
try
chans(n) = find(ismember(info.data.label, splchans(n)));
catch
update_log(info.output_box, sprintf('ERROR: Please ensure the channel name is correct (case-sensitive)!'));
uiresume;
return;
end
end
end
else
update_log(info.output_box, sprintf('Please enter one or more channels'));
uiresume;
return;
end
try
toggle = chans;
info.chansel(toggle) = ~info.chansel(toggle);
catch
update_log(info.output_box, sprintf('ERROR: Channel value too large!'));
uiresume;
return
end
% recalculate the metric
compute_metric(h)
guidata(h, info);
uiresume;
function toggle_visual(h, eventdata)
% copied from select2d, without waitforbuttonpress command
point1 = get(gca, 'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca, 'CurrentPoint'); % button up detected
point1 = point1(1, 1:2); % extract x and y
point2 = point2(1, 1:2);
x = sort([point1(1) point2(1)]);
y = sort([point1(2) point2(2)]);
g = get(gca, 'Parent');
info = guidata(g);
[maxperchan, maxpertrl, maxperchan_all, maxpertrl_all] = set_maxper(info.level, info.chansel, info.trlsel, strcmp(info.metric, 'min'));
switch gca
case info.axes(1)
% visual selection in the summary plot is not supported
case info.axes(2)
% the visual selection was made in the channels plot
switch info.cfg.viewmode
case 'toggle'
chanlabels = 1:info.nchan;
toggle = ...
chanlabels >= y(1) & ...
chanlabels <= y(2) & ...
maxperchan_all(chanlabels)' >= x(1) & ...
maxperchan_all(chanlabels)' <= x(2);
info.chansel(toggle) = ~info.chansel(toggle);
case 'remove'
chanlabels = 1:info.nchan;
toggle = ...
chanlabels >= y(1) & ...
chanlabels <= y(2) & ...
maxperchan(chanlabels)' >= x(1) & ...
maxperchan(chanlabels)' <= x(2);
info.chansel(toggle) = false;
case 'hide'
chanlabels = 1:sum(info.chansel==1);
[junk, origchanlabels] = find(info.chansel==1);
toggle = ...
chanlabels >= y(1) & ...
chanlabels <= y(2) & ...
maxperchan(origchanlabels)' >= x(1) & ...
maxperchan(origchanlabels)' <= x(2);
info.chansel(origchanlabels(toggle)) = false;
end
case info.axes(3)
% the visual selection was made in the trials plot
switch info.cfg.viewmode
case 'toggle'
trllabels = 1:info.ntrl;
toggle = ...
trllabels >= x(1) & ...
trllabels <= x(2) & ...
maxpertrl_all(trllabels) >= y(1) & ...
maxpertrl_all(trllabels) <= y(2);
info.trlsel(toggle) = ~info.trlsel(toggle);
case 'remove'
trllabels = 1:info.ntrl;
toggle = ...
trllabels >= x(1) & ...
trllabels <= x(2) & ...
maxpertrl(trllabels) >= y(1) & ...
maxpertrl(trllabels) <= y(2);
info.trlsel(toggle) = false;
case 'hide'
trllabels = 1:sum(info.trlsel==1);
[junk, origtrllabels] = find(info.trlsel==1);
toggle = ...
trllabels >= x(1) & ...
trllabels <= x(2) & ...
maxpertrl(origtrllabels) >= y(1) & ...
maxpertrl(origtrllabels) <= y(2);
info.trlsel(origtrllabels(toggle)) = false;
end
end % switch gca
% recalculate the metric
compute_metric(h);
guidata(h, info);
uiresume;
% function display_trial(h, eventdata)
% info = guidata(h);
% rawtrls = get(h, 'string');
% if ~isempty(rawtrls)
% spltrls = regexp(rawtrls, ' ', 'split');
% trls = [];
% for n = 1:length(spltrls)
% trls(n) = str2num(cell2mat(spltrls(n)));
% end
% else
% update_log(info.output_box, sprintf('Please enter one or more trials'));
% uiresume;
% return;
% end
% if all(trls==0)
% % use visual selection
% update_log(info.output_box, sprintf('make visual selection of trials to be plotted seperately...'));
% [x, y] = select2d;
% maxpertrl = max(info.origlevel, [], 1);
% toggle = find(1:ntrl>=x(1) & ...
% 1:ntrl<=x(2) & ...
% maxpertrl(:)'>=y(1) & ...
% maxpertrl(:)'<=y(2));
% else
% toggle = trls;
% end
% for i=1:length(trls)
% figure
% % the data being displayed here is NOT filtered
% %plot(data.time{toggle(i)}, data.trial{toggle(i)}(chansel, :));
% tmp = info.data.trial{toggle(i)}(info.chansel, :);
% tmp = tmp - repmat(mean(tmp, 2), [1 size(tmp, 2)]);
% plot(info.data.time{toggle(i)}, tmp);
% title(sprintf('trial %d', toggle(i)));
% end
function quit(h, eventdata)
info = guidata(h);
info.quit = 1;
guidata(h, info);
uiresume;
function change_metric(h, eventdata)
info = guidata(h);
info.metric = get(eventdata.NewValue, 'string');
guidata(h, info);
compute_metric(h);
uiresume;
function toggle_rejected(h, eventdata)
info = guidata(h);
toggle = get(h, 'value');
if toggle == 0
info.cfg.viewmode = 'remove';
else
info.cfg.viewmode = 'toggle';
end
guidata(h, info);
uiresume;
function update_log(h, new_text)
new_text = [datestr(now, 13) '# ' new_text];
curr_text = get(h, 'string');
size_curr_text = size(curr_text, 2);
size_new_text = size(new_text, 2);
if size_curr_text > size_new_text
new_text = [new_text blanks(size_curr_text-size_new_text)];
else
curr_text = [curr_text repmat(blanks(size_new_text-size_curr_text), size(curr_text, 1), 1)];
end
set(h, 'String', [new_text; curr_text]);
drawnow;
function [maxperchan, maxpertrl, maxperchan_all, maxpertrl_all] = set_maxper(level, chansel, trlsel, minflag)
if minflag
% take the negative maximum, i.e. the minimum
level = -1 * level;
end
% determine the maximum value
maxperchan_all = max(level, [], 2);
maxpertrl_all = max(level, [], 1);
% determine the maximum value over the remaining selection
level(~chansel, :) = nan;
level(:, ~trlsel) = nan;
maxperchan = max(level, [], 2);
maxpertrl = max(level, [], 1);
if minflag
maxperchan = -1 * maxperchan;
maxpertrl = -1 * maxpertrl;
maxperchan_all = -1 * maxperchan_all;
maxpertrl_all = -1 * maxpertrl_all;
level = -1 * level;
end
function display_trial(h, eventdata)
info = guidata(h);
update_log(info.output_box, 'Making multiplot of individual trials ...');
rawtrls = get(h, 'string');
if isempty(rawtrls)
return;
else
spltrls = regexp(rawtrls, '\s+', 'split');
trls = [];
for n = 1:length(spltrls)
trls(n) = str2num(cell2mat(spltrls(n)));
end
end
cfg_mp = [];
% disable hashing of input data (speeds up things)
cfg_mp.trackcallinfo = 'no';
cfg_mp.layout = info.cfg.layout;
cfg_mp.channel = info.data.label(info.chansel);
currfig = gcf;
for n = 1:length(trls)
figure()
cfg_mp.trials = trls(n);
cfg_mp.interactive = 'yes';
ft_multiplotER(cfg_mp, info.data);
title(sprintf('Trial %i', trls(n)));
end
figure(currfig);
update_log(info.output_box, 'Done.');
return;
|
github
|
lcnbeapp/beapp-master
|
rejectvisual_channel.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/rejectvisual_channel.m
| 9,660 |
utf_8
|
64e84accf24c4c0d5e6d8d5dd55c5d92
|
function [chansel, trlsel, cfg] = rejectvisual_channel(cfg, data)
% SUBFUNCTION for ft_rejectvisual
% determine the initial selection of trials
ntrl = length(data.trial);
if isequal(cfg.trials, 'all') % support specification like 'all'
cfg.trials = 1:ntrl;
end
trlsel = false(1,ntrl);
trlsel(cfg.trials) = true;
% determine the initial selection of channels
nchan = length(data.label);
cfg.channel = ft_channelselection(cfg.channel, data.label); % support specification like 'all'
chansel = false(1,nchan);
chansel(match_str(data.label, cfg.channel)) = true;
% compute the sampling frequency from the first two timepoints
fsample = 1/mean(diff(data.time{1}));
% compute the offset from the time axes
offset = zeros(ntrl,1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
if (isfield(cfg, 'preproc') && ~isempty(cfg.preproc))
ft_progress('init', cfg.feedback, 'filtering data');
for i=1:ntrl
ft_progress(i/ntrl, 'filtering data in trial %d of %d\n', i, ntrl);
[data.trial{i}, label, time, cfg.preproc] = preproc(data.trial{i}, data.label, data.time{i}, cfg.preproc);
end
ft_progress('close');
end
% select the specified latency window from the data
% this is done AFTER the filtering to prevent edge artifacts
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:,begsample:endsample);
end
h = figure;
axis([0 1 0 1]);
axis off
% the info structure will be attached to the figure
% and passed around between the callback functions
if strcmp(cfg.plotlayout,'1col') % hidden config option for plotting trials differently
info = [];
info.ncols = 1;
info.nrows = ntrl;
info.trlop = 1;
info.chanlop = 1;
info.lchanlop= 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.ntrl
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
info.label{indx} = sprintf('trial %03d', indx);
end
end
elseif strcmp(cfg.plotlayout,'square')
info = [];
info.ncols = ceil(sqrt(ntrl));
info.nrows = ceil(sqrt(ntrl));
info.trlop = 1;
info.chanlop = 1;
info.lchanlop= 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.ntrl
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
info.label{indx} = sprintf('trial %03d', indx);
end
end
end
info.ui.quit = uicontrol(h,'units','pixels','position',[ 5 5 40 18],'String','quit','Callback',@stop);
info.ui.prev = uicontrol(h,'units','pixels','position',[ 50 5 25 18],'String','<','Callback',@prev);
info.ui.next = uicontrol(h,'units','pixels','position',[ 75 5 25 18],'String','>','Callback',@next);
info.ui.prev10 = uicontrol(h,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10);
info.ui.next10 = uicontrol(h,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10);
info.ui.bad = uicontrol(h,'units','pixels','position',[160 5 50 18],'String','bad','Callback',@markbad);
info.ui.good = uicontrol(h,'units','pixels','position',[210 5 50 18],'String','good','Callback',@markgood);
info.ui.badnext = uicontrol(h,'units','pixels','position',[270 5 50 18],'String','bad>','Callback',@markbad_next);
info.ui.goodnext = uicontrol(h,'units','pixels','position',[320 5 50 18],'String','good>','Callback',@markgood_next);
set(gcf, 'WindowButtonUpFcn', @button);
set(gcf, 'KeyPressFcn', @key);
guidata(h,info);
interactive = 1;
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0,
uiwait;
else
chansel = info.chansel;
trlsel = info.trlsel;
delete(h);
break
end
end % while interactive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = markbad_next(varargin)
markbad(varargin{:});
next(varargin{:});
function varargout = markgood_next(varargin)
markgood(varargin{:});
next(varargin{:});
function varargout = next(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop < info.nchan,
info.chanlop = info.chanlop + 1;
end;
guidata(h,info);
uiresume;
function varargout = prev(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop > 1,
info.chanlop = info.chanlop - 1;
end;
guidata(h,info);
uiresume;
function varargout = next10(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop < info.nchan - 10,
info.chanlop = info.chanlop + 10;
else
info.chanlop = info.nchan;
end;
guidata(h,info);
uiresume;
function varargout = prev10(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop > 10,
info.chanlop = info.chanlop - 10;
else
info.chanlop = 1;
end;
guidata(h,info);
uiresume;
function varargout = markgood(h, eventdata, handles, varargin)
info = guidata(h);
info.chansel(info.chanlop) = 1;
fprintf(description_channel(info));
title(description_channel(info));
guidata(h,info);
% uiresume;
function varargout = markbad(h, eventdata, handles, varargin)
info = guidata(h);
info.chansel(info.chanlop) = 0;
fprintf(description_channel(info));
title(description_channel(info));
guidata(h,info);
% uiresume;
function varargout = key(h, eventdata, handles, varargin)
info = guidata(h);
switch lower(eventdata.Key)
case 'rightarrow'
if info.chanlop ~= info.nchan
next(h);
else
fprintf('at last channel\n');
end
case 'leftarrow'
if info.chanlop ~= 1
prev(h);
else
fprintf('at last channel\n');
end
case 'g'
markgood(h);
case 'b'
markbad(h);
case 'q'
stop(h);
otherwise
fprintf('unknown key pressed\n');
end
function varargout = button(h, eventdata, handles, varargin)
pos = get(gca, 'CurrentPoint');
x = pos(1,1);
y = pos(1,2);
info = guidata(h);
dx = info.x - x;
dy = info.y - y;
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<0.5/max(info.nrows, info.ncols) && i<=info.ntrl
info.trlsel(i) = ~info.trlsel(i); % toggle
info.trlop = i;
fprintf(description_trial(info));
guidata(h,info);
uiresume;
else
fprintf('button clicked\n');
return
end
function varargout = stop(h, eventdata, handles, varargin)
info = guidata(h);
info.quit = 1;
guidata(h,info);
uiresume;
function str = description_channel(info)
if info.chansel(info.chanlop)
str = sprintf('channel %s marked as GOOD\n', info.data.label{info.chanlop});
else
str = sprintf('channel %s marked as BAD\n', info.data.label{info.chanlop});
end
function str = description_trial(info)
if info.trlsel(info.trlop)
str = sprintf('trial %d marked as GOOD\n', info.trlop);
else
str = sprintf('trial %d marked as BAD\n', info.trlop);
end
function redraw(h)
if ~ishandle(h)
return
end
info = guidata(h);
fprintf(description_channel(info));
cla;
title('');
drawnow
hold on
% determine the maximum value for this channel over all trials
amax = -inf;
tmin = inf;
tmax = -inf;
for trlindx=find(info.trlsel)
tmin = min(info.data.time{trlindx}(1) , tmin);
tmax = max(info.data.time{trlindx}(end), tmax);
amax = max(max(abs(info.data.trial{trlindx}(info.chanlop,:))), amax);
end
if ~isempty(info.cfg.alim)
% use fixed amplitude limits for the amplitude scaling
amax = info.cfg.alim;
end
for row=1:info.nrows
for col=1:info.ncols
trlindx = (row-1)*info.ncols + col;
if trlindx>info.ntrl || ~info.trlsel(trlindx)
continue
end
% scale the time values between 0.1 and 0.9
time = info.data.time{trlindx};
time = 0.1 + 0.8*(time-tmin)/(tmax-tmin);
% scale the amplitude values between -0.5 and 0.5, offset should not be removed
dat = info.data.trial{trlindx}(info.chanlop,:);
dat = dat ./ (2*amax);
% scale the time values for this subplot
tim = (col-1)/info.ncols + time/info.ncols;
% scale the amplitude values for this subplot
amp = dat./info.nrows + 1 - row/(info.nrows+1);
plot(tim, amp, 'k')
end
end
% enable or disable buttons as appropriate
if info.chanlop == 1
set(info.ui.prev, 'Enable', 'off');
set(info.ui.prev10, 'Enable', 'off');
else
set(info.ui.prev, 'Enable', 'on');
set(info.ui.prev10, 'Enable', 'on');
end
if info.chanlop == info.nchan
set(info.ui.next, 'Enable', 'off');
set(info.ui.next10, 'Enable', 'off');
else
set(info.ui.next, 'Enable', 'on');
set(info.ui.next10, 'Enable', 'on');
end
if info.lchanlop == info.chanlop && info.chanlop == info.nchan
set(info.ui.badnext,'Enable', 'off');
set(info.ui.goodnext,'Enable', 'off');
else
set(info.ui.badnext,'Enable', 'on');
set(info.ui.goodnext,'Enable', 'on');
end
text(info.x, info.y, info.label);
title(description_channel(info),'interpreter','none');
hold off
|
github
|
lcnbeapp/beapp-master
|
triangulate_seg.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/triangulate_seg.m
| 4,688 |
utf_8
|
bdeb11f09693c8be1b6139bf1dec878f
|
function [pnt, tri] = triangulate_seg(seg, npnt, origin)
% TRIANGULATE_SEG constructs a triangulation of the outer surface of a
% segmented volume. It starts at the center of the volume and projects the
% vertices of an evenly triangulated sphere onto the outer surface. The
% resulting surface is star-shaped from the origin of the sphere.
%
% Use as
% [pnt, tri] = triangulate_seg(seg, npnt, origin)
%
% Input arguments:
% seg = 3D-matrix (boolean) containing segmented volume. If not boolean
% seg = seg(~=0);
% npnt = requested number of vertices
% origin = 1x3 vector specifying the location of the origin of the sphere
% in voxel indices. This argument is optional. If undefined, the
% origin of the sphere will be in the centre of the volume.
%
% Output arguments:
% pnt = Nx3 matrix of vertex locations
% tri = Mx3 matrix of triangles
%
% Seg will be checked for holes, and filled if necessary. Also, seg will be
% checked to consist of a single boolean blob. If not, only the outer surface
% of the largest will be triangulated. SPM is used for both the filling and
% checking for multiple blobs.
%
% See also KSPHERE
% Copyright (C) 2005-2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% impose it to be boolean
seg = (seg~=0);
dim = size(seg);
len = ceil(sqrt(sum(dim.^2))/2);
if ~any(seg(:))
error('the segmentation is empty')
end
% define the origin if it is not provided in the input arguments
if nargin<3
origin(1) = dim(1)/2;
origin(2) = dim(2)/2;
origin(3) = dim(3)/2;
end
% ensure that the seg consists of only one filled blob.
% if not filled: throw a warning and fill
% if more than one blob: throw a warning and use the biggest
ft_hastoolbox('SPM8', 1);
% look for holes
seg = volumefillholes(seg);
% look for >1 blob
[lab, num] = spm_bwlabel(double(seg), 26);
if num>1,
warning('the segmented volume consists of more than one compartment, using only the biggest one for the segmentation');
for k = 1:num
n(k) = sum(lab(:)==k);
end
[m,ix] = max(n);
seg(lab~=ix) = false;
end
% start with a unit sphere with evenly distributed vertices
[pnt, tri] = ksphere(npnt);
ishollow = false;
for i=1:npnt
% construct a sampled line from the center of the volume outward into the direction of the vertex
lin = (0:0.5:len)' * pnt(i,:);
lin(:,1) = lin(:,1) + origin(1);
lin(:,2) = lin(:,2) + origin(2);
lin(:,3) = lin(:,3) + origin(3);
% round the sampled line towards the nearest voxel indices, which allows
% a quick nearest-neighbour interpolation/lookup
lin = round(lin);
% exclude indices that do not lie within the volume
sel = lin(:,1)<1 | lin(:,1)>dim(1) | ...
lin(:,2)<1 | lin(:,2)>dim(2) | ...
lin(:,3)<1 | lin(:,3)>dim(3);
lin = lin(~sel,:);
sel = sub2ind(dim, lin(:,1), lin(:,2), lin(:,3));
% interpolate the segmented volume along the sampled line
int = seg(sel);
% the value along the line is expected to be 1 at first and then drop to 0
% anything else suggests that the segmentation is hollow
ishollow = any(diff(int)==1);
% find the last sample along the line that is inside the segmentation
sel = find(int, 1, 'last');
% this is a problem if sel is empty. If so, use the edge of the volume
if ~isempty(sel)
% take the last point inside and average with the first point outside
pnt(i,:) = lin(sel,:);
else
% take the edge
pnt(i,:) = lin(end,:);
end
end
if ishollow
% this should not have hapened, especially not after filling the holes
warning('the segmentation is not star-shaped, please check the surface mesh');
end
% undo the shift of the origin from where the projection is done
% pnt(:,1) = pnt(:,1) - origin(1);
% pnt(:,2) = pnt(:,2) - origin(2);
% pnt(:,3) = pnt(:,3) - origin(3);
% fast unconditional re-implementation of the standard MATLAB function
function [s] = sub2ind(dim, i, j, k)
s = i + (j-1)*dim(1) + (k-1)*dim(1)*dim(2);
|
github
|
lcnbeapp/beapp-master
|
smooth_source.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/smooth_source.m
| 4,790 |
utf_8
|
311f6c3b9247cab7f1c9a0dc3b5ac994
|
function source = smooth_source(source, varargin)
%[SOURCE] = SMOOTH(SOURCE, VARARGIN)
%
% computes location specific 3D gaussian kernels based on a FWHM estimate
% source should contain the fields
% fwhm, specifying for each voxel the FWHM of the smoothing kernel in the xyz-direction
% pos, allowing for the units to be correct
%
% key-value pairs should contain
% parameter = string, field to be used for the smoothing
% maxdist = scalar, maximum distance for filter kernel
source = ft_datatype_source(source);
parameter = ft_getopt(varargin, 'parameter', 'all');
maxdist = ft_getopt(varargin, 'maxdist', []);
if ischar(parameter) && strcmp(parameter, 'all')
error('not yet implemented');
elseif ischar(parameter)
parameter = {parameter};
end
if isempty(maxdist)
maxdist = inf;
end
if islogical(source.inside)
inside = find(source.inside);
else
inside = source.inside;
end
ninside = numel(inside);
if isfield(source, 'fwhm')
fwhm = source.fwhm(inside,:,:);
else
error('the input data should contain an ''fwhm'' field');
end
dat = cell(1,numel(parameter));
for k = 1:numel(parameter)
dat{k} = getsubfield(source, parameter);
dat{k} = dat{k}(inside,:);
end
pos = source.pos(inside,:);
sigma = zeros(ninside, 3, 3);
if numel(fwhm)==ninside
sigma(:,1,1) = (fwhm./(2.*sqrt(2.*log(2)))).^2;
sigma(:,2,2) = (fwhm./(2.*sqrt(2.*log(2)))).^2;
sigma(:,3,3) = (fwhm./(2.*sqrt(2.*log(2)))).^2;
else
% this should account for more fancy kernels
error('not yet implemented');
end
tmp = cell(1,numel(parameter));
for m = 1:numel(tmp)
tmp{m} = zeros(size(dat{k}));
end
for k = 1:ninside
thispos = pos(k,:);
dpos = pos - thispos(ones(ninside,1),:);
sel = sqrt(sum(dpos.^2,2))<=maxdist;
krn = gaussian3d(squeeze(sigma(k,:,:)), dpos(sel,:));
krn = krn./sum(krn);
for m = 1:numel(dat)
tmp{m}(k,:) = krn'*dat{m}(sel,:);
end
end
smoothdat = zeros(size(source.pos,1),size(tmp{1},2));
for m = 1:numel(tmp)
smoothdat(inside,:) = tmp{m};
source = setsubfield(source, [parameter{m},'smooth'], smoothdat);
end
%---------------------------------------
function [output] = gaussian3d(C, x, y, z)
% [OUTPUT] = GAUSSIAN3D(C, x, y, z) computes a 3D gaussian volume, as
% specified by the covariance matrix C. x,y,z specify the x, y, and z
% distance to the center of the gaussian
if nargin==2 && size(x,2)==3,
do3Dvol = false;
elseif nargin==2
y = x;
z = x;
do3Dvol = true;
else
do3Dvol = true;
end
if do3Dvol
lx = numel(x);
ly = numel(y);
lz = numel(z);
x = reshape(x, [lx 1 1]);
y = reshape(y, [1 ly 1]);
z = reshape(z, [1 1 lz]);
rx = ones(1,lx);
ry = ones(1,ly);
rz = ones(1,lz);
xy = x(:,ry,:).*y(rx,:,:);
xz = x(:,:,rz).*z(rx,:,:);
yz = y(:,:,rz).*z(:,ry,:);
xsq = x.^2;
ysq = y.^2;
zsq = z.^2;
%regularize a bit if necessary
ev = eig(C);
if ev(3)/ev(1)>1e12,
s = svd(C);
C = C+eye(size(C)).*0.001.*s(1);
else
end
detC = det(C);
invC = inv(C);
A = 1/((2*pi)^1.5*sqrt(detC));
c11 = -0.5.*invC(1,1).*xsq;
c12 = -invC(1,2).*xy;
c13 = -invC(1,3).*xz;
c22 = -0.5.*invC(2,2).*ysq;
c23 = -invC(2,3).*yz;
c33 = -0.5.*invC(3,3).*zsq;
%output = A*exp(-0.5*(repmat(c11.*x.^2, [1 ly lz]) + ...
% repmat(c22.*y.^2, [lx 1 ly]) + ...
% repmat(c33.*z.^2, [lx ly 1]) + ...
% repmat(2.*c12.*xy, [1 1 lz]) + ...
% repmat(2.*c13.*xz, [1 ly 1]) + ...
% repmat(2.*c23.*yz, [lx 1 1])));
%output = A*exp(-0.5*(c11.*xsq(:,ones(1,ly),ones(1,lz)) + ...
% c22.*ysq(ones(1,lx),:,ones(1,lz)) + ...
% c33.*zsq(ones(1,lx),ones(1,ly),:) + ...
% 2.*c12.*xy(:,:,ones(1,lz)) + ...
% 2.*c13.*xz(:,ones(1,ly),:) + ...
% 2.*c23.*yz(ones(1,lx),:,:)));
%output = A*exp((c11(:,ry,rz) + ...
% c22(rx,:,rz) + ...
% c33(rx,ry,:) + ...
% c12(:,:,rz) + ...
% c13(:,ry,:) + ...
% c23(rx,:,:)));
%c12 = c12+c11(:,ry);
%c23 = c23+c22(:,:,rz);
%c13 = c13+c33(rx,:,:);
%
%output = A*exp( c12(:,:,rz) + ...
% c13(:,ry,:) + ...
% c23(rx,:,:));
c12 = exp(c12+c11(:,ry));
c23 = exp(c23+c22(:,:,rz));
c13 = exp(c13+c33(rx,:,:));
output = A*c12(:,:,rz).*c13(:,ry,:).*c23(rx,:,:);
else
% treat as a Nx3 list of x,y,z distances, and output Nx1 kernel
%regularize a bit if necessary
ev = eig(C);
if ev(3)/ev(1)>1e12,
s = svd(C);
C = C+eye(size(C)).*0.001.*s(1);
else
end
detC = det(C);
invC = inv(C);
A = 1/((2*pi)^1.5*sqrt(detC));
% efficiently compute x*invC*x'
sandwich = x(:,1).^2.*invC(1,1)+x(:,2).^2.*invC(2,2)+x(:,3).^2.*invC(3,3)+...
x(:,1).*x(:,2).*invC(1,2).*2 + ...
x(:,1).*x(:,3).*invC(1,3).*2 + ...
x(:,2).*x(:,3).*invC(2,3).*2;
output = A.*exp(-0.5.*sandwich);
end
|
github
|
lcnbeapp/beapp-master
|
mesh2edge.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/mesh2edge.m
| 3,713 |
utf_8
|
410baaa2ca114acab82443de9a844a68
|
function [newbnd] = mesh2edge(bnd)
% MESH2EDGE finds the edge lines from a triangulated mesh or the edge
% surfaces from a tetrahedral or hexahedral mesh. An edge is defined as an
% element that does not border any other element. This also implies that a
% closed triangulated surface has no edges.
%
% Use as
% [edge] = mesh2edge(mesh)
%
% See also POLY2TRI
% Copyright (C) 2013-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if isfield(bnd, 'tri')
% make a list of all edges
edge1 = bnd.tri(:, [1 2]);
edge2 = bnd.tri(:, [2 3]);
edge3 = bnd.tri(:, [3 1]);
edge = cat(1, edge1, edge2, edge3);
elseif isfield(bnd, 'tet')
% make a list of all triangles that form the tetraheder
tri1 = bnd.tet(:, [1 2 3]);
tri2 = bnd.tet(:, [2 3 4]);
tri3 = bnd.tet(:, [3 4 1]);
tri4 = bnd.tet(:, [4 1 2]);
edge = cat(1, tri1, tri2, tri3, tri4);
elseif isfield(bnd, 'hex')
% make a list of all "squares" that form the cube/hexaheder
% FIXME should be checked, this is impossible without a drawing
square1 = bnd.hex(:, [1 2 3 4]);
square2 = bnd.hex(:, [5 6 7 8]);
square3 = bnd.hex(:, [1 2 6 5]);
square4 = bnd.hex(:, [2 3 7 6]);
square5 = bnd.hex(:, [3 4 8 7]);
square6 = bnd.hex(:, [4 1 5 8]);
edge = cat(1, square1, square2, square3, square4, square5, square6);
end % isfield(bnd)
% soort all polygons in the same direction
% keep the original as "edge" and the sorted one as "sedge"
sedge = sort(edge, 2);
% % find the edges that are not shared -> count the number of occurences
% n = size(sedge,1);
% occurences = ones(n,1);
% for i=1:n
% for j=(i+1):n
% if all(sedge(i,:)==sedge(j,:))
% occurences(i) = occurences(i)+1;
% occurences(j) = occurences(j)+1;
% end
% end
% end
%
% % make the selection in the original, not the sorted version of the edges
% % otherwise the orientation of the edges might get flipped
% edge = edge(occurences==1,:);
% find the edges that are not shared
indx = findsingleoccurringrows(sedge);
edge = edge(indx, :);
% replace pnt by pos
bnd = fixpos(bnd);
% the naming of the output edges depends on what they represent
newbnd.pos = bnd.pos;
if isfield(bnd, 'tri')
% these have two vertices in each edge element
newbnd.line = edge;
elseif isfield(bnd, 'tet')
% these have three vertices in each edge element
newbnd.tri = edge;
elseif isfield(bnd, 'hex')
% these have four vertices in each edge element
newbnd.poly = edge;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1833#c12
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function indx = findsingleoccurringrows(X)
[X, indx] = sortrows(X);
sel = any(diff([X(1,:)-1; X],1),2) & any(diff([X; X(end,:)+1],1),2);
indx = indx(sel);
function indx = finduniquerows(X)
[X, indx] = sortrows(X);
sel = any(diff([X(1,:)-1; X],1),2);
indx = indx(sel);
|
github
|
lcnbeapp/beapp-master
|
browse_simpleFFT.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/browse_simpleFFT.m
| 4,727 |
utf_8
|
2800cf4a6b4a130e6fd058b508f2b513
|
function browse_simpleFFT(cfg, data)
% BROWSE_SIMPLEFFT is a helper function for FT_DATABROWSER that shows a
% simple FFT of the data.
%
% Included are a button to switch between log and non-log space, and a
% selection button to deselect channels, for the purpose of zooming in on
% bad channels.
%
% See also BROWSE_MOVIEPLOTER, BROWSE_TOPOPLOTER, BROWSE_MULTIPLOTER, BROWSE_TOPOPLOTVAR, BROWSE_SIMPLEFFT
% Copyright (C) 2011-2014, Roemer van der Meij
% call ft_freqanalysis on data
cfgfreq = [];
cfgfreq.method = 'mtmfft';
cfgfreq.taper = 'boxcar';
freqdata = ft_freqanalysis(cfgfreq, data);
% remove zero-bin for plotting
if freqdata.freq(1) == 0
freqdata.freq = freqdata.freq(2:end);
freqdata.powspctrm = freqdata.powspctrm(:, 2:end);
end
%%% FIXME: it would be nice to use ft_singleplotER for everything below,
%%% this would mean that ft_singleplotER needs to get lin/log buttons
% make figure window for fft
ffth = figure('name', cfg.figurename, 'numbertitle', 'off', 'units', 'normalized', 'toolbar', 'figure');
% set button
button_x = uicontrol('tag', 'semilogx', 'parent', ffth, 'units', 'normalized', 'style', 'checkbox', 'string', 'log10(frequency)', 'position', [0.87, 0.75 , 0.12, 0.05], 'value', true, 'callback', {@togglex}, 'backgroundcolor', [.8 .8 .8]);
button_y = uicontrol('tag', 'semilogy', 'parent', ffth, 'units', 'normalized', 'style', 'checkbox', 'string', 'log10(power)', 'position', [0.87, 0.60 , 0.12, 0.05], 'value', true, 'callback', {@toggley}, 'backgroundcolor', [.8 .8 .8]);
button_chansel = uicontrol('tag', 'chansel', 'parent', ffth, 'units', 'normalized', 'style', 'pushbutton', 'string', 'select channels', 'position', [0.87, 0.45 , 0.12, 0.10], 'callback', {@selectchan_fft_cb});
% put dat in fig (sparse)
fftopt = [];
fftopt.freqdata = freqdata;
fftopt.chancolors = cfg.chancolors;
fftopt.chansel = 1:numel(data.label);
fftopt.semilogx = true;
fftopt.semilogy = true;
setappdata(ffth, 'fftopt', fftopt);
% draw fig
draw_simple_fft_cb(button_chansel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function togglex(h, eventdata)
ffth = get(h, 'parent');
fftopt = getappdata(ffth, 'fftopt');
fftopt.semilogx = ~fftopt.semilogx;
setappdata(ffth, 'fftopt', fftopt);
draw_simple_fft_cb(h)
function toggley(h, eventdata)
ffth = get(h, 'parent');
fftopt = getappdata(ffth, 'fftopt');
fftopt.semilogy = ~fftopt.semilogy;
setappdata(ffth, 'fftopt', fftopt);
draw_simple_fft_cb(h)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function selectchan_fft_cb(h, eventdata)
ffth = get(h, 'parent');
fftopt = getappdata(ffth, 'fftopt');
% open chansel dialog
chansel = select_channel_list(fftopt.freqdata.label, fftopt.chansel, 'select channels for viewing power');
% output data
fftopt.chansel = chansel;
setappdata(ffth, 'fftopt', fftopt);
draw_simple_fft_cb(h)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function draw_simple_fft_cb(h, eventdata)
ffth = get(h, 'parent');
fftopt = getappdata(ffth, 'fftopt');
% clear axis (for switching)
cla
% toggle log10 or not
if fftopt.semilogx
freq = log10(fftopt.freqdata.freq);
else
freq = fftopt.freqdata.freq;
end
if fftopt.semilogy
dat = log10(fftopt.freqdata.powspctrm);
else
dat = fftopt.freqdata.powspctrm;
end
% select data and chanel colors
chancolors = fftopt.chancolors(fftopt.chansel, :);
dat = dat(fftopt.chansel, :);
% plot using specified colors
set(0, 'currentFigure', ffth)
for ichan = 1:size(dat, 1)
color = chancolors(ichan, :);
ft_plot_vector(freq, dat(ichan, :), 'box', false, 'color', color)
end
minx = min(freq);
maxx = max(freq);
miny = min(dat(:));
maxy = max(dat(:));
yrange = maxy-miny;
axis([minx maxx miny-yrange*0.1 maxy+yrange*.01])
if fftopt.semilogx
xlabel('log10(frequency)')
else
xlabel('frequency')
end
if fftopt.semilogy
ylabel('log10(power)')
else
ylabel('power')
end
set(gca, 'Position', [0.13 0.11 0.725 0.815])
|
github
|
lcnbeapp/beapp-master
|
prepare_mesh_manual.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/prepare_mesh_manual.m
| 32,788 |
utf_8
|
7e4f36eceea55290e67695f34f02b83c
|
function bnd = prepare_mesh_manual(cfg, mri)
% PREPARE_MESH_MANUAL is called by PREPARE_MESH and opens a GUI to manually
% select points/polygons in an mri dataset.
%
% It allows:
% Visualization of 3d data in 3 different projections
% Adjustment of brightness for every slice
% Storage of the data points in an external .mat file
% Retrieval of previously saved data points
% Slice fast scrolling with keyboard arrows
% Polygons or points selection/deselection
%
% See also PREPARE_MESH_SEGMENTATION, PREPARE_MESH_HEADSHAPE
% Copyrights (C) 2009, Cristiano Micheli & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% FIXME: control slice's cmap referred to abs values
% FIXME: clean structure slicedata
% FIXME: check function assign3dpoints
global obj
mri = ft_checkdata(mri, 'datatype', {'volume', 'segmentation'}, 'hasunit', 'yes');
bnd.pnt = [];
bnd.tri = [];
hasheadshape = isfield(cfg, 'headshape');
hasbnd = isfield(cfg, 'bnd'); % FIXME why is this in cfg?
hasmri = nargin>1;
% check the consistency of the input arguments
if hasheadshape && hasbnd
error('you should not specify cfg.headshape and cfg.bnd simultaneously');
end
% check the consistency of the input arguments
if ~hasmri
% FIXME give a warning or so?
mri.anatomy = [];
mri.transform = eye(4);
else
% ensure that it is double precision
mri.anatomy = double(mri.anatomy);
end
if hasheadshape
if ~isempty(cfg.headshape)
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pnt = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = read_headshape(cfg.headshape);
else
headshape = [];
end
if ~isfield(headshape, 'tri')
for i=1:length(headshape)
% generate a closed triangulation from the surface points
headshape(i).pnt = unique(headshape(i).pnt, 'rows');
headshape(i).tri = projecttri(headshape(i).pnt);
end
end
% start with the headshape
bnd = headshape;
end
elseif hasbnd
if ~isempty(cfg.bnd)
% start with the prespecified boundaries
bnd = cfg.bnd;
end
else
% start with an empty boundary if not specified
bnd.pnt = [];
bnd.tri = [];
end
% creating the GUI
fig = figure;
% initialize some values
slicedata = []; points = bnd.pnt;
axs = floor(size(mri.anatomy,1)/2);
% initialize properties
set(fig, 'KeyPressFcn',@keypress);
set(fig, 'CloseRequestFcn', @cb_close);
setappdata(fig,'data',mri.anatomy);
setappdata(fig,'prop',{1,axs,0,[]});
setappdata(fig,'slicedata',slicedata);
setappdata(fig,'points',points);
setappdata(fig,'box',[]);
% add GUI elements
cb_creategui(gca);
cb_redraw(gca);
waitfor(fig);
% close sequence
global pnt
try
tmp = pnt;
clear global pnt
pnt = tmp;
clear tmp
[tri] = projecttri(pnt);
bnd.pnt = pnt;
bnd.tri = tri;
catch
bnd.pnt = [];
bnd.tri = [];
end
function cb_redraw(hObject, eventdata, handles)
fig = get(hObject, 'parent');
prop = getappdata(fig,'prop');
data = getappdata(fig,'data');
slicedata = getappdata(fig,'slicedata');
points = getappdata(fig,'points');
% draw image
try
cla
% i,j,k axes
if (prop{1}==1) %jk
imh=imagesc(squeeze(data(prop{2},:,:)));
xlabel('k');
ylabel('j');
colormap bone
elseif (prop{1}==2) %ik
imh=imagesc(squeeze(data(:,prop{2},:)));
xlabel('k');
ylabel('i');
colormap bone
elseif (prop{1}==3) %ij
imh=imagesc(squeeze(data(:,:,prop{2})));
xlabel('j');
ylabel('i');
colormap bone
end
axis equal; axis tight
brighten(prop{3});
title([ 'slice ' num2str(prop{2}) ])
catch
end
if ~ishold,hold on,end
% draw points and lines
for zz = 1:length(slicedata)
if(slicedata(zz).proj==prop{1})
if(slicedata(zz).slice==prop{2})
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys]=deal(polygon{kk}(:,1),polygon{kk}(:,2));
plot(xs, ys, 'g.-');
end
end
end
end
end % end for
% draw other slices points
points = getappdata(fig,'points');
pnts = round(points);
if ~isempty(pnts)
% exclude polygons inside the same slice
indx = find(points(:,prop{1})==prop{2});
tmp = ones(1,size(points,1));
tmp(indx) = 0;
pnts = points(find(tmp),:);
% calculate indexes of other proj falling in current slice
indx2 = find(round(pnts(:,prop{1}))==prop{2});
rest = setdiff([1 2 3],prop{1});
% plot the points
for jj=1:length(indx2)
[x,y] = deal(pnts(indx2(jj),rest(1)),pnts(indx2(jj),rest(2)));
plot(y,x,'g*')
end
end
% add blue cross markers in case of box selection
box = getappdata(fig,'box');
point2mark = getappdata(fig,'point2mark');
if ~isempty(point2mark)
plot(point2mark.x,point2mark.y,'marker','+')
end
if ~isempty(box)
for kk=1:size(box,1)
proj = box(kk,1);
slice = box(kk,2);
rowmin = box(kk,3);
rowmax = box(kk,4);
colmin = box(kk,5);
colmax = box(kk,6);
aaa = get(findobj(fig, 'color', 'g'));
for ii=1:length(aaa)
if ispolygon(aaa(ii))
L = length(aaa(ii).YData);
for jj=1:L
cond = lt(aaa(ii).YData(jj),rowmax).*gt(aaa(ii).YData(jj),rowmin).* ...
lt(aaa(ii).XData(jj),colmax).*gt(aaa(ii).XData(jj),colmin);
if cond
plot(aaa(ii).XData(jj),aaa(ii).YData(jj),'marker','+')
end
end
elseif ispoint(aaa(ii))
cond = lt(aaa(ii).YData,rowmax).*gt(aaa(ii).YData,rowmin).* ...
lt(aaa(ii).XData,colmax).*gt(aaa(ii).XData,colmin);
% the test after cond takes care the box doesnt propagate in 3D
if (cond && (proj == prop{1}) && (slice == prop{2}))
plot(aaa(ii).XData,aaa(ii).YData,'marker','+')
end
end
end
end
end
if get(findobj(fig, 'tag', 'toggle axes'), 'value')
axis on
else
axis off
end
function cb_creategui(hObject, eventdata, handles)
fig = get(hObject, 'parent');
% define the position of each GUI element
% constants
CONTROL_WIDTH = 0.10;
CONTROL_HEIGHT = 0.075;
CONTROL_HOFFSET = 0.8;
CONTROL_VOFFSET = 0.6;
% control buttons
uicontrol('tag', 'view', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'View', 'value', 1, 'callback', @which_task1);
ft_uilayout(fig, 'tag', 'view', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET+4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'ins', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'Ins', 'value', 0, 'callback', @which_task2);
ft_uilayout(fig, 'tag', 'ins', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET+2.75*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'del', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'Del', 'value', 0, 'callback', @which_task3);
ft_uilayout(fig, 'tag', 'del', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET+2.75*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'slice', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'slice', 'value', [], 'callback', []);
ft_uilayout(fig, 'tag', 'slice', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET+1.25*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'min', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'value', [], 'callback', @cb_btn);
ft_uilayout(fig, 'tag', 'min', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET+1*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'max', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'value', [], 'callback', @cb_btn);
ft_uilayout(fig, 'tag', 'max', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET+1*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'brightness', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'brightness', 'value', [], 'callback', []);
ft_uilayout(fig, 'tag', 'brightness', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-0.75*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'plus', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'value', [], 'callback', @cb_btn);
ft_uilayout(fig, 'tag', 'plus', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'minus', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'value', [], 'callback', @cb_btn);
ft_uilayout(fig, 'tag', 'minus', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-1*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'toggle axes', 'parent', fig, 'units', 'normalized', 'style', 'checkbox', 'string', 'axes', 'value', 0, 'callback', @cb_redraw);
ft_uilayout(fig, 'tag', 'toggle axes', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-2.5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'plane', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'plane', 'value', [], 'callback', []);
ft_uilayout(fig, 'tag', 'plane', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-3.5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'one', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'jk', 'value', 0, 'callback', @cb_btnp1);
ft_uilayout(fig, 'tag', 'one', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-3.5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'two', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'ik', 'value', 0, 'callback', @cb_btnp2);
ft_uilayout(fig, 'tag', 'two', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'three', 'parent', fig, 'units', 'normalized', 'style', 'radiobutton', 'string', 'ij', 'value', 0, 'callback', @cb_btnp3);
ft_uilayout(fig, 'tag', 'three', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-4*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'mesh', 'parent', fig, 'units', 'normalized', 'style', 'text', 'string', 'mesh', 'value', [], 'callback', []);
ft_uilayout(fig, 'tag', 'mesh', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT, 'vpos', CONTROL_VOFFSET-5.75*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'smoothm', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'smooth', 'value', [], 'callback', @smooth_mesh);
ft_uilayout(fig, 'tag', 'smoothm', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'viewm', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'view', 'value', [], 'callback', @view_mesh);
ft_uilayout(fig, 'tag', 'viewm', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
uicontrol('tag', 'cancel', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'cancel', 'value', [], 'callback', @cancel_mesh);
ft_uilayout(fig, 'tag', 'cancel', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6.5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET);
uicontrol('tag', 'ok', 'parent', fig, 'units', 'normalized', 'style', 'pushbutton', 'string', 'ok', 'value', [], 'callback', @cb_btn);
ft_uilayout(fig, 'tag', 'ok', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'vpos', CONTROL_VOFFSET-6.5*CONTROL_HEIGHT, 'hpos', CONTROL_HOFFSET+CONTROL_WIDTH);
function cb_btn(hObject, eventdata, handles)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slice = prop{2};
br = prop{3};
datdim = size(getappdata(fig,'data'));
% p1 = [];p2 = [];p3 = [];
p1 = get(findobj('string','jk'),'value');
p2 = get(findobj('string','ik'),'value');
p3 = get(findobj('string','ij'),'value');
set(findobj('string','-'),'Value',prop{3});
set(findobj('string','+'),'Value',prop{3});
beta = get(findobj('string','-'),'Value');
if (p1) %jk
setappdata(fig,'prop',{1,round(datdim(1)/2),br,prop{4}});
cb_redraw(gca);
elseif (p2) %ik
setappdata(fig,'prop',{2,round(datdim(2)/2),br,prop{4}});
cb_redraw(gca);
elseif (p3) %ij
setappdata(fig,'prop',{3,round(datdim(3)/2),br,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'-')
beta=beta-0.05;
set(findobj('string','-'),'Value',beta);
set(findobj('string','+'),'Value',beta);
setappdata(fig,'prop',{prop{1},prop{2},beta,prop{4}});
cb_redraw(gca);
elseif strcmp(get(hObject,'string'),'+')
beta=beta+0.05;
set(findobj('string','+'),'Value',beta);
setappdata(fig,'prop',{prop{1},prop{2},beta,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'<')
setappdata(fig,'prop',{prop{1},slice-1,0,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'>')
setappdata(fig,'prop',{prop{1},slice+1,0,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'OK')
close(fig)
end
function keypress(h, eventdata, handles, varargin)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
dat = guidata(gcbf);
key = get(gcbf, 'CurrentCharacter');
slice = prop{2};
if key
switch key
case 28
setappdata(fig,'prop',{prop{1},slice-1,0,prop{4}});
cb_redraw(gca);
case 29
setappdata(fig,'prop',{prop{1},slice+1,0,prop{4}});
cb_redraw(gca);
otherwise
end
end
uiresume(h)
function build_polygon
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
data = getappdata(fig,'data');
ss = size(data);
proj = prop{1};
slice = prop{2};
thispolygon =1;
polygon{thispolygon} = zeros(0,2);
maskhelp = [ ...
'------------------------------------------------------------------------\n' ...
'specify polygons for masking the topographic interpolation\n' ...
'press the right mouse button to add another point to the current polygon\n' ...
'press backspace on the keyboard to remove the last point\n' ...
'press "c" on the keyboard to close this polygon and start with another\n' ...
'press "q" or ESC on the keyboard to continue\n' ...
];
again = 1;
if ~ishold,hold,end
fprintf(maskhelp);
fprintf('\n');
while again
for i=1:length(polygon)
fprintf('polygon %d has %d points\n', i, size(polygon{i},1));
end
[x, y, k] = ginput(1);
okflag = 0;
% check points do not fall out of image boundaries
if get(findobj('string','Ins'),'value')
if (proj == 1 && y<ss(2) && x<ss(3) && x>1 && y>1)
okflag = 1;
elseif (proj == 2 && y<ss(1) && x<ss(3) && x>1 && y>1)
okflag = 1;
elseif (proj == 3 && y<ss(1) && x<ss(2) && x>1 && y>1)
okflag = 1;
else
okflag = 0;
end
end
if okflag
switch lower(k)
case 1
polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]);
% add the last line segment to the figure
if size(polygon{thispolygon},1)>1
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
end
plot(x, y, 'g.-');
case 8 % backspace
if size(polygon{thispolygon},1)>0
% redraw existing polygons
cb_redraw(gca);
% remove the last point of current polygon
polygon{thispolygon} = polygon{thispolygon}(1:end-1,:);
for i=1:length(polygon)
x = polygon{i}(:,1);
y = polygon{i}(:,2);
if i~=thispolygon
% close the polygon in the figure
x(end) = x(1);
y(end) = y(1);
end
set(gca,'nextplot','new')
plot(x, y, 'g.-');
end
end
case 'c'
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
% switch to the next polygon
thispolygon = thispolygon + 1;
polygon{thispolygon} = zeros(0,2);
slicedata = getappdata(fig,'slicedata');
m = length(slicedata);
slicedata(m+1).proj = prop{1};
slicedata(m+1).slice = prop{2};
slicedata(m+1).polygon = polygon;
setappdata(fig,'slicedata',slicedata);
end
case {'q', 27}
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
end
again = 0;
%set(gcf,'WindowButtonDownFcn','');
slicedata = getappdata(fig,'slicedata');
m = length(slicedata);
if ~isempty(polygon{thispolygon})
slicedata(m+1).proj = prop{1};
slicedata(m+1).slice = prop{2};
slicedata(m+1).polygon = polygon;
setappdata(fig,'slicedata',slicedata);
end
otherwise
warning('invalid button (%d)', k);
end
end
assign_points3d
end
function cb_btn_dwn(hObject, eventdata, handles)
build_polygon
uiresume
function cb_btn_dwn2(hObject, eventdata, handles)
global obj
erase_points2d(obj)
uiresume
function erase_points2d (obj)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slicedata = getappdata(fig,'slicedata');
pntsslice = [];
% 2d slice selected box boundaries
if strcmp(get(obj,'string'),'box')
[x, y] = ft_select_box;
rowmin = min(y); rowmax = max(y);
colmin = min(x); colmax = max(x);
box = getappdata(fig,'box');
box = [box; prop{1} prop{2} rowmin rowmax colmin colmax];
setappdata(fig,'box',box);
else
% converts lines to points
pos = slicedata2pnts(prop{1},prop{2});
tmp = ft_select_point(pos);
point2mark.x = tmp(1); point2mark.y = tmp(2);
setappdata(fig,'point2mark',point2mark);
end
maskhelp = [ ...
'------------------------------------------------------------------------\n' ...
'Delete points:\n' ...
'press "c" on the keyboard to undo all selections\n' ...
'press "d" or DEL on the keyboard to delete all selections\n' ...
];
fprintf(maskhelp);
fprintf('\n');
again = 1;
if ~ishold,hold,end
cb_redraw(gca);
% waits for a key press
while again
[junk1, junk2, k] = ginput(1);
switch lower(k)
case 'c'
if strcmp(get(obj,'string'),'box')
% undoes all the selections, but only in the current slice
ind = [];
for ii=1:size(box,1)
if box(ii,1)==prop{1} && box(ii,2)==prop{2}
ind = [ind,ii];
end
end
box(ind,:) = [];
setappdata(fig,'box',box);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
else
setappdata(fig,'point2mark',[]);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
end
case {'d', 127}
if strcmp(get(obj,'string'),'box')
update_slicedata
% deletes only the points selected in the current slice
ind = [];
for ii=1:size(box,1)
if box(ii,1)==prop{1} && box(ii,2)==prop{2}
ind = [ind,ii];
end
end
box(ind,:) = [];
setappdata(fig,'box',box);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
else
update_slicedata
setappdata(fig,'point2mark',[]);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
end
otherwise
end
end
assign_points3d
function assign_points3d
fig = get(gca, 'parent');
slicedata = getappdata(fig,'slicedata');
points = [];
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys]=deal(polygon{kk}(:,1),polygon{kk}(:,2));
if (proj==1) %jk
tmp = [ slice*ones(length(xs),1),ys(:),xs(:) ];
points = [points; unique(tmp,'rows')];
elseif (proj==2) %ik
tmp = [ ys(:),slice*ones(length(xs),1),xs(:) ];
points = [points; unique(tmp,'rows')];
elseif (proj==3) %ij
tmp = [ ys(:),xs(:),slice*ones(length(xs),1) ];
points = [points; unique(tmp,'rows')];
end
end
end
end
setappdata(fig,'points',points);
function update_slicedata
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slicedata = getappdata(fig,'slicedata');
box = getappdata(fig,'box');
point2mark = getappdata(fig,'point2mark');
% case of box selection
if ~isempty(box) && ~isempty(slicedata)
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for uu=1:size(box,1)
if (box(uu,1)==proj) && (box(uu,2)==slice)
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys] = deal(polygon{kk}(:,1),polygon{kk}(:,2));
tmpind = lt(ys,ones(length(xs),1)*box(uu,4)).*gt(ys,ones(length(xs),1)*box(uu,3)).* ...
lt(xs,ones(length(xs),1)*box(uu,6)).*gt(xs,ones(length(xs),1)*box(uu,5));
slicedata(zz).polygon{kk} = [ xs(find(~tmpind)),ys(find(~tmpind)) ];
end
end
end
end
end
% case of point selection
else
if ~isempty(slicedata)
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys] = deal(polygon{kk}(:,1),polygon{kk}(:,2));
tmpind = eq(xs,point2mark.x).*eq(ys,point2mark.y);
slicedata(zz).polygon{kk} = [ xs(find(~tmpind)),ys(find(~tmpind)) ];
end
end
end
end
end
setappdata(fig,'slicedata',slicedata)
% FIXME: obsolete: replaced by headshape at the beginning
function smooth_mesh(hObject, eventdata, handles)
fig = get(gca,'parent');
disp('not yet implemented')
% FIXME: make it work for pre-loaded meshes
function view_mesh(hObject, eventdata, handles)
fig = get(gca, 'parent');
assign_points3d
pnt = getappdata(fig,'points');
pnt_ = pnt;
if ~isempty(pnt)
tri = projecttri(pnt);
bnd.pnt = pnt_;
bnd.tri = tri;
slicedata = getappdata(fig,'slicedata');
figure
ft_plot_mesh(bnd,'vertexcolor','k');
end
function cancel_mesh(hObject, eventdata, handles)
fig = get(gca, 'parent');
close(fig)
function cb_close(hObject, eventdata, handles)
% get the points from the figure
fig = hObject;
global pnt
pnt = getappdata(fig, 'points');
set(fig, 'CloseRequestFcn', @delete);
delete(fig);
function cb_btnp1(hObject, eventdata, handles)
set(findobj('string','jk'),'value',1);
set(findobj('string','ik'),'value',0);
set(findobj('string','ij'),'value',0);
cb_btn(hObject);
function cb_btnp2(hObject, eventdata, handles)
set(findobj('string','jk'),'value',0);
set(findobj('string','ik'),'value',1);
set(findobj('string','ij'),'value',0);
cb_btn(hObject);
function cb_btnp3(hObject, eventdata, handles)
set(findobj('string','jk'),'value',0);
set(findobj('string','ik'),'value',0);
set(findobj('string','ij'),'value',1);
cb_btn(hObject);
function which_task1(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
set(findobj('string','View'),'value',1);
set(findobj('string','Ins'), 'value',0);
set(findobj('string','Del'), 'value',0);
set(gcf,'WindowButtonDownFcn','');
change_panel
function which_task2(hObject, eventdata, handles)
set(findobj('string','View'),'value',0);
set(findobj('string','Ins'), 'value',1);
set(findobj('string','Del'), 'value',0);
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn);
change_panel
function which_task3(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
set(findobj('string','View'),'value',0);
set(findobj('string','Ins'), 'value',0);
set(findobj('string','Del'), 'value',1);
change_panel
function change_panel
% affect panel visualization
w1 = get(findobj('string','View'),'value');
w2 = get(findobj('string','Ins'), 'value');
w3 = get(findobj('string','Del'), 'value');
if w1
set(findobj('tag','slice'),'string','slice');
set(findobj('tag','min'),'string','<');
set(findobj('tag','max'),'string','>');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@cb_btn);
set(findobj('tag','max'),'callback',@cb_btn);
set(findobj('tag','mesh'),'visible','on');
set(findobj('tag','openm'),'visible','on');
set(findobj('tag','viewm'),'visible','on');
set(findobj('tag','brightness'),'visible','on');
set(findobj('tag','plus'),'visible','on');
set(findobj('tag','minus'),'visible','on');
set(findobj('tag','toggle axes'),'visible','on');
set(findobj('tag','plane'),'visible','on');
set(findobj('tag','one'),'visible','on');
set(findobj('tag','two'),'visible','on');
set(findobj('tag','three'),'visible','on');
elseif w2
set(findobj('tag','slice'),'string','select points');
set(findobj('tag','min'),'string','close');
set(findobj('tag','max'),'string','next');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@tins_close);
set(findobj('tag','max'),'callback',@tins_next);
set(findobj('tag','mesh'),'visible','off');
set(findobj('tag','openm'),'visible','off');
set(findobj('tag','viewm'),'visible','off');
set(findobj('tag','brightness'),'visible','off');
set(findobj('tag','plus'),'visible','off');
set(findobj('tag','minus'),'visible','off');
set(findobj('tag','toggle axes'),'visible','off');
set(findobj('tag','plane'),'visible','off');
set(findobj('tag','one'),'visible','off');
set(findobj('tag','two'),'visible','off');
set(findobj('tag','three'),'visible','off');
elseif w3
set(findobj('tag','slice'),'string','select points');
set(findobj('tag','min'),'string','box');
set(findobj('tag','max'),'string','point');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@tdel_box);
set(findobj('tag','max'),'callback',@tdel_single);
set(findobj('tag','mesh'),'visible','off');
set(findobj('tag','openm'),'visible','off');
set(findobj('tag','viewm'),'visible','off');
set(findobj('tag','brightness'),'visible','off');
set(findobj('tag','plus'),'visible','off');
set(findobj('tag','minus'),'visible','off');
set(findobj('tag','toggle axes'),'visible','off');
set(findobj('tag','plane'),'visible','off');
set(findobj('tag','one'),'visible','off');
set(findobj('tag','two'),'visible','off');
set(findobj('tag','three'),'visible','off');
end
function tins_close(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
function tins_next(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
function tdel_box(hObject, eventdata, handles)
global obj
obj = gco;
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn2);
function tdel_single(hObject, eventdata, handles)
global obj
obj = gco;
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn2);
% accessory functions:
function [pnts] = slicedata2pnts(proj,slice)
fig = get(gca, 'parent');
slicedata = getappdata(fig,'slicedata');
pnts = [];
for i=1:length(slicedata)
if slicedata(i).slice==slice && slicedata(i).proj == proj
for j=1:length(slicedata(i).polygon)
if ~isempty(slicedata(i).polygon{j})
tmp = slicedata(i).polygon{j};
xs = tmp(:,1); ys = tmp(:,2);
pnts = [pnts;[unique([xs,ys],'rows')]];
end
end
end
end
function h = ispolygon(x)
h = length(x.XData)>1;
function h = ispoint(x)
h = length(x.XData)==1;
function [T,P] = points2param(pnt)
x = pnt(:,1); y = pnt(:,2); z = pnt(:,3);
[phi,theta,R] = cart2sph(x,y,z);
theta = theta + pi/2;
phi = phi + pi;
T = theta(:);
P = phi(:);
function [bnd2,a,Or] = spherical_harmonic_mesh(bnd, nl)
% SPHERICAL_HARMONIC_MESH realizes the smoothed version of a mesh contained in the first
% argument bnd. The boundary argument (bnd) contains typically 2 fields
% called .pnt and .tri referring to vertices and triangulation of a mesh.
% The degree of smoothing is given by the order in the second input: nl
%
% Use as
% bnd2 = spherical_harmonic_mesh(bnd, nl);
% nl = 12; % from van 't Ent paper
bnd2 = [];
% calculate midpoint
Or = mean(bnd.pnt);
% rescale all points
x = bnd.pnt(:,1) - Or(1);
y = bnd.pnt(:,2) - Or(2);
z = bnd.pnt(:,3) - Or(3);
X = [x(:), y(:), z(:)];
% convert points to parameters
[T,P] = points2param(X);
% basis function
B = shlib_B(nl, T, P);
Y = B'*X;
% solve the linear system
a = pinv(B'*B)*Y;
% build the surface
Xs = zeros(size(X));
for l = 0:nl-1
for m = -l:l
if m<0
Yml = shlib_Yml(l, abs(m), T, P);
Yml = (-1)^m*conj(Yml);
else
Yml = shlib_Yml(l, m, T, P);
end
indx = l^2 + l + m+1;
Xs = Xs + Yml*a(indx,:);
end
fprintf('%d of %d\n', l, nl);
end
% Just take the real part
Xs = real(Xs);
% reconstruct the matrices for plotting.
xs = reshape(Xs(:,1), size(x,1), size(x,2));
ys = reshape(Xs(:,2), size(x,1), size(x,2));
zs = reshape(Xs(:,3), size(x,1), size(x,2));
bnd2.pnt = [xs(:)+Or(1) ys(:)+Or(2) zs(:)+Or(3)];
[bnd2.tri] = projecttri(bnd.pnt);
function B = shlib_B(nl, theta, phi)
% function B = shlib_B(nl, theta, phi)
%
% Constructs the matrix of basis functions
% where b(i,l^2 + l + m) = Yml(theta, phi)
%
% See also: shlib_Yml.m, shlib_decomp.m, shlib_gen_shfnc.m
%
% Dr. A. I. Hanna (2006).
B = zeros(length(theta), nl^2+2*nl+1);
for l = 0:nl-1
for m = -l:l
if m<0
Yml = shlib_Yml(l, abs(m), theta, phi);
Yml = (-1)^m*conj(Yml);
else
Yml = shlib_Yml(l, m, theta, phi);
end
indx = l^2 + l + m+1;
B(:, indx) = Yml;
end
end
return;
function Yml = shlib_Yml(l, m, theta, phi)
% function Yml = shlib_Yml(l, m, theta, phi)
%
% MATLAB function that takes a given order and degree, and the matrix of
% theta and phi and constructs a spherical harmonic from these. The
% analogue in the 1D case would be to give a particular frequency.
%
% Inputs:
% m - order of the spherical harmonic
% l - degree of the spherical harmonic
% theta - matrix of polar coordinates \theta \in [0, \pi]
% phi - matrix of azimuthal cooridinates \phi \in [0, 2\pi)
%
% Example:
%
% [x, y] = meshgrid(-1:.1:1);
% z = x.^2 + y.^2;
% [phi,theta,R] = cart2sph(x,y,z);
% Yml = spharm_aih(2,2, theta(:), phi(:));
%
% See also: shlib_B.m, shlib_decomp.m, shlib_gen_shfnc.m
%
% Dr. A. I. Hanna (2006)
Pml=legendre(l,cos(theta));
if l~=0
Pml=squeeze(Pml(m+1,:,:));
end
Pml = Pml(:);
% Yml = sqrt(((2*l+1)/4).*(factorial(l-m)/factorial(l+m))).*Pml.*exp(sqrt(-1).*m.*phi);
% new:
Yml = sqrt(((2*l+1)/(4*pi)).*(factorial(l-m)/factorial(l+m))).*Pml.*exp(sqrt(-1).*m.*phi);
return;
|
github
|
lcnbeapp/beapp-master
|
moviefunction.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/moviefunction.m
| 45,773 |
utf_8
|
556b05a7a84b6579fadc1c643c5f24f9
|
function moviefunction(cfg, varargin)
% we need cfg.plotfun to plot the data
% data needs to be 3D, N x time x freq (last can be singleton)
% N needs to correspond to number of vertices (channels, gridpoints, etc)
% new UI artwork
%
% [main window] -------------------------------------\
% | [uipanel: plot] | [uipanel: colormap] |
% | <80%> ^70%v | <20%> |
% | [axes: mainaxes] | [axes: coloraxes] |
% | [axes: subaxes] | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | |[Checkbox: automatic]|
% | |[Checkbox: symmetric]|
% |--[uipanel: control] <100%>-----------------------|
% | [Button:Go] [Checkbox:Rec] |
% | [Slider: frequency] |
% | [Slider: time] |
% | [TextField: speed] |
% \--------------------------------------------------/
%
% Right click on mainaxes:
% rotation options (+automatic), zooming options, open subplot (new subaxes added)
% start, stop, record, time, freq, colorbar
% Left click on subaxes: dragging it around
% Right click on subaxes: close
%
% Consider following neat extras
% new figure for zooming and and rotation timing options during playback
% add an intro a la Jan-Mathijs for source, similar for normal topos
% make panels foldable (like on mobile devices)
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'funparameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'parameter', 'funparameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'mask', 'maskparameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'framespersec', 'framerate'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam'});
cfg = ft_checkconfig(cfg, 'forbidden', {'yparam'});
% set default cfg settings
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.xparam = ft_getopt(cfg, 'xparam', 'time');
cfg.yparam = ft_getopt(cfg, 'yparam', []);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter');
cfg.inputfile = ft_getopt(cfg, 'inputfile', []);
cfg.moviefreq = ft_getopt(cfg, 'moviefreq', []);
cfg.movietime = ft_getopt(cfg, 'movietime', []);
cfg.movierpt = ft_getopt(cfg, 'movierpt', 1);
for i=1:numel(varargin)
if ~isempty(cfg.yparam) && ~isfield(varargin{i}, 'freq')
error('data argument %i does not have a .freq field, while all former had', i);
elseif isempty(cfg.yparam) && isfield(varargin{i}, 'freq')
cfg.yparam = 'freq';
else
cfg.yparam = [];
end
end
% set guidata flags
opt = [];
opt.valx = 1;
opt.valy = 1;
opt.valz = 1;
opt.record = ~istrue(ft_getopt(cfg, 'interactive', 'yes'));
opt.framesfile = ft_getopt(cfg, 'framesfile', []);
opt.samperframe = ft_getopt(cfg, 'samperframe', 1);
opt.framerate = ft_getopt(cfg, 'framerate', 5);
opt.fixedframesfile = ~isempty(opt.framesfile);
opt.xvalues = varargin{1}.(cfg.xparam); % below consistency is checked
if ~isempty(cfg.yparam)
opt.yvalues = varargin{i}.(cfg.yparam); % below consistency is checked
else
opt.yvalues = [];
end
% check data options and consistency
Ndata = numel(varargin);
for i = 1:Ndata
opt.issource(i) = ft_datatype(varargin{i}, 'source');
opt.isfreq(i) = ft_datatype(varargin{i}, 'freq');
opt.istimelock(i) = ft_datatype(varargin{i}, 'timelock');
if opt.issource(i)+opt.isfreq(i)+opt.istimelock(i) ~= 1
error('data argument %i cannot be definitely identified as frequency, timelock or source data', i);
end
end
if Ndata>1,
if all(opt.issource==1),
% this is allowed maybe in the future: multiple source input arguments
error('currently, not more than 1 data argument is allowed, unless one of them is a parcellation, and the other a channel level structure');
elseif all(opt.isfreq==1),
% this is allowed maybe in the future: multiple freq input arguments
error('currently, not more than 1 data argument is allowed, unless one of them is a parcellation, and the other a channel level structure');
elseif all(opt.istimelock==1),
% this is allowed maybe in the future: multiple timelock input arguments
error('currently, not more than 1 data argument is allowed, unless one of them is a parcellation, and the other a channel level structure');
elseif Ndata==2 && sum(opt.issource==1)
% this may be allowed, provided the source data is a parcellation and
% the other argument a parcellated data structure
if ~ft_datatype(varargin{opt.issource}, 'parcellation')
error('the source data structure should be a parcellation');
end
end
end
% set the funparameter
if any(opt.isfreq)
opt.funparameter = ft_getopt(cfg, 'funparameter', 'powspctrm'); % use power as default
elseif any(opt.istimelock)
opt.funparameter = ft_getopt(cfg, 'funparameter', 'avg'); % use power as default
elseif any(opt.issource)
% FIXME a call to ft_checkdata wouldn't hurt here :-)
opt.funparameter = ft_getopt(cfg, 'funparameter', 'avg.pow'); % use power as default
end
if any(opt.issource) && (any(opt.isfreq) || any(opt.istimelock))
opt.anatomy = varargin{opt.issource};
opt.ismesh = isfield(opt.anatomy, 'tri');
opt.isvolume = isfield(opt.anatomy, 'dim');
varargin = varargin(~opt.issource);
opt.dat{1} = getsubfield(varargin{1}, opt.funparameter);
funtok = tokenize(opt.funparameter, '.');
opt.dimord = getdimord(varargin{1}, funtok{end});
elseif any(opt.issource)
opt.anatomy = varargin{opt.issource};
opt.ismesh = isfield(opt.anatomy, 'tri');
opt.isvolume = isfield(opt.anatomy, 'dim');
opt.dat{1} = getsubfield(varargin{opt.issource}, opt.funparameter);
funtok = tokenize(opt.funparameter, '.');
opt.dimord = getdimord(varargin{1}, funtok{end});
else
opt.layout = ft_prepare_layout(cfg); % let ft_prepare_layout do the error handling for now
% ensure that the data in all inputs has the same channels, time-axis, etc.
tmpcfg = keepfields(cfg, {'frequency', 'latency', 'channel'});
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
[opt.seldat, opt.sellay] = match_str(varargin{1}.label, opt.layout.label);
opt.chanx = opt.layout.pos(opt.sellay,1);
opt.chany = opt.layout.pos(opt.sellay,2);
for i = 1:numel(varargin)
opt.dat{i} = getsubfield(varargin{i}, opt.funparameter);
end
opt.dimord = getdimord(varargin{1}, opt.funparameter);
end
dimtok = tokenize(opt.dimord, '_');
if any(strcmp(dimtok, 'rpt') | strcmp(dimtok, 'subj'))
error('the input data cannot contain trials or subjects, please average first using ft_selectdata');
end
opt.ydim = find(strcmp(cfg.yparam, dimtok));
opt.xdim = find(strcmp(cfg.xparam, dimtok));
opt.zdim = setdiff(1:ndims(opt.dat{1}), [opt.ydim opt.xdim]);
if opt.zdim ~=1
error('input %i data does not have the correct format of N x time (x freq)', i);
end
% permute the data matrix
for i = 1:numel(opt.dat)
opt.dat{i} = permute(opt.dat{i}, [opt.zdim(:)' opt.xdim opt.ydim]);
end
opt.xdim = 2;
if ~isempty(cfg.yparam)
opt.ydim = 3;
else
opt.ydim = [];
end
% get the mask
for i = 1:numel(varargin)
if ~isempty(cfg.maskparameter) && ischar(cfg.maskparameter)
opt.mask{i} = double(getsubfield(varargin{i}, cfg.maskparameter)~=0);
else
opt.mask{i} = ones(size(opt.dat{i}));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% draw the figure with the GUI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opt = createGUI(opt);
if isempty(cfg.yparam)
% set(opt.handles.label.yparam, 'Visible', 'off');
% set(opt.handles.slider.yparam, 'Visible', 'off');
% opt.yparam = '';
else
opt.yparam = [upper(cfg.yparam(1)) lower(cfg.yparam(2:end))];
set(opt.handles.label.yparam, 'String', opt.yparam);
end
opt.xparam = [upper(cfg.xparam(1)) lower(cfg.xparam(2:end))];
set(opt.handles.label.xparam, 'String', opt.xparam);
% set timer
opt.timer = timer;
set(opt.timer, 'timerfcn', {@cb_timer, opt.handles.figure}, 'period', 0.1, 'executionmode', 'fixedSpacing');
opt = plot_geometry(opt);
opt = plot_other(opt);
opt.speed = 1;
guidata(opt.handles.figure, opt);
% init first screen
cb_slider(opt.handles.figure);
%uicontrol(opt.handles.colorbar);
if strcmp(cfg.zlim, 'maxmin')
set(opt.handles.checkbox.automatic, 'Value', 1)
set(opt.handles.checkbox.symmetric, 'Value', 0)
cb_colorbar(opt.handles.figure);
elseif strcmp(cfg.zlim, 'maxabs')
set(opt.handles.checkbox.automatic, 'Value', 1)
set(opt.handles.checkbox.symmetric, 'Value', 1)
cb_colorbar(opt.handles.figure);
else
set(opt.handles.checkbox.automatic, 'Value', 0)
set(opt.handles.checkbox.symmetric, 'Value', 0)
cb_colorbar(opt.handles.figure, cfg.zlim);
end
if opt.record
opt.record = false;
opt.quit = true;
guidata(opt.handles.figure, opt);
cb_recordbutton(opt.handles.button.record);
else
opt.quit = false;
guidata(opt.handles.figure, opt);
end
end
%%
% **************************************************************
% ********************* CREATE GUI *****************************
% **************************************************************
function opt = createGUI(opt)
%% main figure
opt.handles.figure = figure( ...
'Units', 'normalized', ...
'Name', 'ft_movieplot',...
'Menu', 'none', ...
'Toolbar', 'figure', ...
'NumberTitle', 'off', ...
'UserData', [], ...
'Tag', 'mainFigure', ...
'Visible', 'on', ...
'windowbuttondownfcn', @cb_getposition);
%'WindowButtonUpFcn', @cb_stopDrag, ...
%% panels
clf
% visualization panel for the geometrical information
opt.handles.panel.visualization_geometry = uipanel(...
'tag', 'mainPanels1', ... % tag according to position
'parent', opt.handles.figure, ...
'units', 'normalized', ...
'title', 'Visualization_geometry', ...
'clipping', 'on', ...
'visible', 'on');
% rearrange
ft_uilayout(opt.handles.figure, ...
'tag', 'mainPanels1', ...
'backgroundcolor', [.8 .8 .8], ...
'hpos', 'auto', ...
'vpos', .15, ...
'halign', 'left', ...
'width', 1, ...
'height', 0.1);
% visualization panel for the non-geometrical information
opt.handles.panel.visualization = uipanel(...
'tag', 'mainPanels2', ... % tag according to position
'parent', opt.handles.figure, ...
'units', 'normalized', ...
'title', 'Visualization', ...
'clipping', 'on', ...
'visible', 'on');
% rearrange
ft_uilayout(opt.handles.figure, ...
'tag', 'mainPanels2', ...
'backgroundcolor', [.8 .8 .8], ...
'hpos', 'auto', ...
'vpos', .55, ...
'halign', 'left', ...
'width', 0.5, ...
'height', 0.1);
% settings panel (between different views can be switched)
% opt.handles.panel.view = uipanel(...
% 'tag', 'sidePanels', ... % tag according to position
% 'parent', opt.handles.figure,...
% 'units', 'normalized', ...
% 'title', 'View',...
% 'clipping','on',...
% 'visible', 'on');
% settings panel ()
opt.handles.panel.settings = uipanel(...
'tag', 'sidePanels', ... % tag according to position
'parent', opt.handles.figure, ...
'units', 'normalized', ...
'title', 'Settings', ...
'clipping', 'on', ...
'visible', 'on');
% rearrange panel
ft_uilayout(opt.handles.figure, ...
'tag', 'sidePanels', ...
'backgroundcolor', [.8 .8 .8], ...
'hpos', 'auto', ...
'vpos', 0.15, ...
'halign', 'right', ...
'width', 0.15, ...
'height', 0.55);
% control panel
opt.handles.panel.controls = uipanel(...
'tag', 'lowerPanels', ... % tag according to position
'parent', opt.handles.figure,...
'units', 'normalized', ...
'title', 'Controls',...
'clipping','on',...
'visible', 'on');
% rearrange
ft_uilayout(opt.handles.figure, ...
'tag', 'lowerPanels', ...
'backgroundcolor', [0.8 0.8 0.8], ...
'hpos', 'auto', ...
'vpos', 0, ...
'halign', 'right', ...
'width', 1, ...
'height', 0.15);
ft_uilayout(opt.handles.figure, ...
'tag', 'mainPanels1', ...
'retag', 'sidePanels');
ft_uilayout(opt.handles.figure, ...
'tag', 'mainPanels2', ...
'retag', 'sidePanels');
ft_uilayout(opt.handles.figure, ...
'tag', 'sidePanels', ...
'backgroundcolor', [.8 .8 .8], ...
'hpos', 'auto', ...
'vpos', 'align', ...
'halign', 'left', ...
'valign', 'top', ...
'height', .85);
% add axes
% 3 axes for switching to topo viewmode
% opt.handles.axes.A = axes(...
% 'Parent',opt.handles.panel.view,...
% 'Position',[0 0 1 .33], ...
% 'Tag','topoAxes',...
% 'HandleVisibility', 'on', ...
% 'UserData',[]);
%
% opt.handles.axes.B = axes(...
% 'Parent',opt.handles.panel.view,...
% 'Position',[0 0.33 1 .33], ...
% 'Tag','topoAxes',...
% 'HandleVisibility', 'on', ...
% 'UserData',[]);
%
% opt.handles.axes.C = axes(...
% 'Parent',opt.handles.panel.view,...
% 'Position',[0 0.66 1 .33], ...
% 'Tag','topoAxes',...
% 'HandleVisibility', 'on', ...
% 'UserData',[]);
% control panel uicontrols
opt.handles.button.play = uicontrol(...
'parent',opt.handles.panel.controls,...
'tag', 'controlInput', ...
'string','Play',...
'units', 'normalized', ...
'style', 'pushbutton', ...
'callback',@cb_playbutton,...
'userdata', 'space');
opt.handles.button.record = uicontrol(...
'parent',opt.handles.panel.controls,...
'tag', 'controlInput', ...
'string','Record?',...
'units', 'normalized', ...
'style', 'checkbox', ...
'Callback',@cb_recordbutton,...
'userdata', 'enter');
ft_uilayout(opt.handles.panel.controls, ...
'tag', 'controlInput', ...
'width', 0.15, ...
'height', 0.25, ...
'hpos', 'auto', ...
'vpos', .75, ...
'halign', 'right', ...
'valign', 'top');
opt.handles.text.speed = uicontrol(...
'parent',opt.handles.panel.controls,...
'tag', 'speedInput', ...
'string','Speed',...
'units', 'normalized', ...
'style', 'text');
opt.handles.edit.speed = uicontrol(...
'parent',opt.handles.panel.controls,...
'tag', 'speedInput', ...
'string','1.0',...
'units', 'normalized', ...
'Callback',@cb_speed, ...
'style', 'edit');
ft_uilayout(opt.handles.panel.controls, ...
'tag', 'speedInput', ...
'width', 0.15, ...
'height', 0.25, ...
'hpos', 'auto', ...
'vpos', .25, ...
'halign', 'right', ...
'valign', 'top');
% opt.handles.button.faster = uicontrol(...
% 'parent',opt.handles.panel.controls,...
% 'tag', 'controlInput', ...
% 'string','+',...
% 'units', 'normalized', ...
% 'style', 'pushbutton', ...
% 'userdata', '+', ...
% 'Callback',@cb_slider);
%
%
% opt.handles.button.slower = uicontrol(...
% 'parent',opt.handles.panel.controls,...
% 'tag', 'controlInput', ...
% 'string','-',...
% 'units', 'normalized', ...
% 'style', 'pushbutton', ...
% 'userdata', '-', ...
% 'Callback',@cb_slider);
% ft_uilayout(opt.handles.panel.controls, ...
% 'tag', 'controlInput', ...
% 'width', 0.15, ...
% 'height', 0.25, ...
% 'hpos', 'auto', ...
% 'vpos', .75, ...
% 'valign', 'top');
%
% set(opt.handles.button.slower, 'tag', 'speedButtons');
% set(opt.handles.button.faster, 'tag', 'speedButtons');
%
%
% ft_uilayout(opt.handles.panel.controls, ...
% 'tag', 'speedButtons', ...
% 'width', 0.05, ...
% 'height', 0.125, ...
% 'vpos', 'auto');
%
% ft_uilayout(opt.handles.panel.controls, ...
% 'tag', 'speedButtons', ...
% 'hpos', 'align');
%
%
% ft_uilayout(opt.handles.panel.controls, ...
% 'tag', 'speedButtons', ...
% 'retag', 'controlInput');
% speed control
opt.handles.slider.xparam = uicontrol(...
'Parent',opt.handles.panel.controls,...
'Units','normalized',...
'BackgroundColor',[0.9 0.9 0.9],...
'Callback',@cb_slider,...
'Position',[0.0 0.75 0.625 0.25],...
'SliderStep', [1/numel(opt.xvalues) 1/numel(opt.xvalues)],...
'String',{ 'Slider' },...
'Style','slider',...
'Tag','xparamslider');
opt.handles.label.xparam = uicontrol(...
'Parent',opt.handles.panel.controls,...
'Units','normalized',...
'Position',[0.0 0.5 0.625 0.25],...
'String','xparamLabel',...
'Style','text',...
'Tag','xparamLabel');
if ~isempty(opt.ydim)
opt.handles.slider.yparam = uicontrol(...
'Parent',opt.handles.panel.controls,...
'Units','normalized',...
'BackgroundColor',[0.9 0.9 0.9],...
'Callback',@cb_slider,...
'Position',[0.0 0.25 0.625 0.25],...
'SliderStep', [1/numel(opt.yvalues) 1/numel(opt.yvalues)],...
'String',{ 'Slider' },...
'Style','slider',...
'Tag','yparamSlider');
opt.handles.label.yparam = uicontrol(...
'Parent',opt.handles.panel.controls,...
'Units','normalized',...
'Position',[0.0 0.0 0.625 0.25],...
'String','yparamLabel',...
'Style','text',...
'Tag','text3');
end
opt.handles.axes.colorbar = axes(...
'Parent',opt.handles.panel.settings,...
'Units','normalized',...
'Position',[0 0 1.0 1],...
'ButtonDownFcn',@cb_color,...
'HandleVisibility', 'on', ...
'Tag','colorbarAxes', ...
'YLim', [0 1], ...
'YLimMode', 'manual', ...
'XLim', [0 1], ...
'XLimMode', 'manual');
opt.handles.colorbar = colorbar('ButtonDownFcn', []);
set(opt.handles.colorbar, 'Parent', opt.handles.panel.settings);
set(opt.handles.colorbar, 'Position', [0.4 0.2 0.2 0.65]);
nColors = size(colormap, 1);
set(opt.handles.colorbar, 'YTick', [1 nColors/4 nColors/2 3*nColors/4 nColors]);
if (gcf~=opt.handles.figure)
close gcf; % sometimes there is a new window that opens up
end
%
% set lines
%YLim = get(opt.handles.colorbar, 'YLim');
opt.handles.lines.upperColor = line([-1 0], [32 32], ...
'Color', 'black', ...
'LineWidth', 4, ...
'ButtonDownFcn', @cb_startDrag, ...
'Parent', opt.handles.colorbar, ...
'Visible', 'off', ...
'Tag', 'upperColor');
opt.handles.lines.lowerColor = line([1 2], [32 32], ...
'Color', 'black', ...
'LineWidth', 4, ...
'ButtonDownFcn', @cb_startDrag, ...
'Parent', opt.handles.colorbar, ...
'Visible', 'off', ...
'Tag', 'lowerColor');
opt.handles.menu.colormap = uicontrol(...
'Parent',opt.handles.panel.settings,...
'Units','normalized',...
'BackgroundColor',[1 1 1],...
'Callback',@cb_colormap,...
'Position',[0.25 0.95 0.5 0.05],...
'String',{ 'jet'; 'hot'; 'cool'; 'ikelvin'; 'ikelvinr' },...
'Style','popupmenu',...
'Value',1, ...
'Tag','colormapMenu');
opt.handles.checkbox.automatic = uicontrol(...
'Parent',opt.handles.panel.settings,...
'Units','normalized',...
'Callback',@cb_colorbar,...
'Position',[0.10 0.05 0.75 0.05],...
'String','automatic',...
'Style','checkbox',...
'Value', 1, ... % TODO make this dependet on cfg.zlim
'Tag','autoCheck');
opt.handles.checkbox.symmetric = uicontrol(...
'Parent',opt.handles.panel.settings,...
'Units','normalized',...
'Callback',@cb_colorbar,...
'Position',[0.10 0.0 0.75 0.05],...
'String','symmetric',...
'Style','checkbox',...
'Value', 0, ... % TODO make this dependet on cfg.zlim
'Tag','symCheck');
% buttons
opt.handles.button.decrLowerColor = uicontrol(...
'Parent', opt.handles.panel.settings,...
'Units','normalized',...
'Enable', 'off', ...
'Callback',@cb_colorbar,...
'Position',[0.35 0.125 0.15 0.05],...
'String','-',...
'Tag','decrLowerColor');
opt.handles.button.incrLowerColor = uicontrol(...
'Parent', opt.handles.panel.settings,...
'Units','normalized',...
'Enable', 'off', ...
'Callback',@cb_colorbar,...
'Position',[0.5 0.125 0.15 0.05],...
'String','+',...
'Tag','incrLowerColor');
opt.handles.button.decrUpperColor = uicontrol(...
'Parent', opt.handles.panel.settings,...
'Units','normalized',...
'Enable', 'off', ...
'Callback',@cb_colorbar,...
'Position',[0.35 0.875 0.15 0.05],...
'String','-',...
'Tag','decrUpperColor');
opt.handles.button.incrUpperColor = uicontrol(...
'Parent', opt.handles.panel.settings,...
'Units','normalized',...
'Enable', 'off', ...
'Callback',@cb_colorbar,...
'Position',[0.5 0.875 0.15 0.05],...
'String','+',...
'Tag','incrUpperColor');
% Handle to the axes that will contain the geometry
opt.handles.axes.movie = axes(...
'Parent', opt.handles.panel.visualization_geometry,...
'Position', [0 0 1 1], ...
'CameraPosition', [0.5 0.5 9.16025403784439], ...
'CameraPositionMode', get(0,'defaultaxesCameraPositionMode'),...
'CLim', get(0,'defaultaxesCLim'), ...
'CLimMode', 'manual', ...
'Color', [0.9 0.9 0.94], ...
'ColorOrder', get(0,'defaultaxesColorOrder'),...
'XColor', get(0,'defaultaxesXColor'), ...
'YColor', get(0,'defaultaxesYColor'), ...
'ZColor', get(0,'defaultaxesZColor'), ...
'HandleVisibility', 'on', ...
'ButtonDownFcn', @cb_view, ...
'Tag', 'geometry');
% Handle to the axes that will contain the non-geometry
opt.handles.axes.other = axes(...
'Parent', opt.handles.panel.visualization,...
'Position', [0 0 1 1], ...
'CameraPosition', [0.5 0.5 9.16025403784439], ...
'CameraPositionMode', get(0,'defaultaxesCameraPositionMode'),...
'CLim', get(0,'defaultaxesCLim'), ...
'CLimMode', 'manual', ...
'Color', [0.9 0.9 0.94], ...
'ColorOrder', get(0,'defaultaxesColorOrder'),...
'XColor', get(0,'defaultaxesXColor'), ...
'YColor', get(0,'defaultaxesYColor'), ...
'ZColor', get(0,'defaultaxesZColor'), ...
'HandleVisibility', 'on', ...
'ButtonDownFcn', @cb_view, ...
'Tag', 'other');
% Disable axis labels
axis(opt.handles.axes.movie, 'equal');
axis(opt.handles.axes.colorbar, 'equal');
% axis(opt.handles.axes.A, 'equal');
% axis(opt.handles.axes.B, 'equal');
% axis(opt.handles.axes.C, 'equal');
%
axis(opt.handles.axes.movie, 'off');
axis(opt.handles.axes.colorbar, 'off');
% axis(opt.handles.axes.A, 'off');
% axis(opt.handles.axes.B, 'off');
% axis(opt.handles.axes.C, 'off');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function update_panels(opt)
for i=1:numel(opt.dat)
if ~any(opt.issource)
set(opt.handles.grid{i}, 'cdata', griddata(opt.chanx{i}, opt.chany{i}, opt.mask{i}(:,opt.valx,opt.valy).*opt.dat{i}(:,opt.valx,opt.valy), opt.xdata{i}, opt.nanmask{i}.*opt.ydata{i}, 'v4'));
else
set(opt.handles.mesh{i}, 'FaceVertexCData', squeeze(opt.dat{i}(:,opt.valx,opt.valy)));
set(opt.handles.mesh{i}, 'FaceVertexAlphaData', squeeze(opt.mask{i}(:,opt.valx,opt.valy)));
end
end
if opt.doplot
opt.valz
set(get(opt.handles.axes.other,'children'), 'ydata', opt.dat{1}(opt.valz,:));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_speed(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
val = get(h, 'String');
% val = get(opt.handles.slider.speed, 'value');
% val = exp(log(opt.MAX_SPEED) * (val-.5)./0.5);
%
% % make sure we can easily get back to normal speed
% if abs(val-opt.AVG_SPEED) < 0.08
% val = opt.AVG_SPEED;
% set(opt.handles.slider.speed, 'value', 0.5);
% end
speed = str2num(val);
if isempty(speed)
speed = opt.speed;
end
opt.speed = speed;
set(h, 'String', opt.speed)
% if val >=100
% set(opt.handles.label.speed, 'String', ['Speed ' num2str(opt.speed, '%.1f'), 'x'])
% elseif val >= 10
% set(opt.handles.label.speed, 'String', ['Speed ' num2str(opt.speed, '%.2f'), 'x'])
% else
% set(opt.handles.label.speed, 'String', ['Speed ' num2str(opt.speed, '%.3f'), 'x'])
% end
guidata(h, opt);
uiresume;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_timer(obj, info, h)
if ~ishandle(h)
return
end
opt = guidata(h);
delta = opt.speed/numel(opt.xvalues);
val = get(opt.handles.slider.xparam, 'value');
val = val + delta;
if opt.record
if val>1
% stop recording
stop(opt.timer);
% reset again
val = 0;
set(opt.handles.slider.xparam, 'value', val);
cb_slider(h);
cb_recordbutton(opt.handles.button.record);
% TODO FIXME add some message here
guidata(h, opt);
return;
end
end
while val>1
val = val-1;
end
set(opt.handles.slider.xparam, 'value', val);
cb_slider(h);
if opt.record
pause(.1);
drawnow;
vs = version('-release');
vs = vs(1:4);
% get starting position via parameter panel
currFrame = getframe(opt.handles.figure);
for i=1:opt.samperframe
if vs<2010
opt.vidObj = addframe(opt.vidObj, currFrame);
else
writeVideo(opt.vidObj, currFrame);
end
end
guidata(h, opt);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_slider(h, eventdata)
opt = guidata(h);
valx = get(opt.handles.slider.xparam, 'value');
valx = round(valx*(numel(opt.xvalues)-1))+1;
valx = min(valx, numel(opt.xvalues));
valx = max(valx, 1);
set(opt.handles.label.xparam, 'String', [opt.xparam ' ' num2str(opt.xvalues(valx), '%.2f') 's']);
if ~isempty(opt.yvalues)
valy = get(opt.handles.slider.yparam, 'value');
valy = round(valy*(numel(opt.yvalues)-1))+1;
valy = min(valy, numel(opt.yvalues));
valy = max(valy, 1);
if valy ~= opt.valy
cb_colorbar(h);
end
set(opt.handles.label.yparam, 'String', [opt.yparam ' ' num2str(opt.yvalues(valy), '%.2f') 'Hz']);
else
valy = 1;
end
opt.valx = valx;
opt.valy = valy;
guidata(h, opt);
update_panels(opt);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_playbutton(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
switch get(h, 'string')
case 'Play'
set(h, 'string', 'Stop');
start(opt.timer);
case 'Stop'
set(h, 'string', 'Play');
stop(opt.timer);
end
uiresume;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_recordbutton(h, eventdata)
if ~ishandle(h)
return
end
opt = guidata(h);
opt.record = ~opt.record; % switch state
guidata(h, opt);
if opt.record
if ~opt.fixedframesfile
% open a save-file dialog
[FileName,PathName,FilterIndex] = uiputfile('*.avi', 'Save AVI-file' , 'ft_movie');
if (FileName == 0 & PathName == 0) % aborted
cb_recordbutton(h);
return;
end
opt.framesfile = fullfile(PathName, FileName);
if (FilterIndex==1) % remove .avi again (4 chars)
opt.framesfile = opt.framesfile(1:end-4);
end
end
% FIXME open new window to play in there, so that frame getting works
vs = version('-release');
vs = vs(1:4);
if vs<2010
opt.vidObj = avifile(opt.framesfile, 'FPS', opt.framerate);
else
opt.vidObj = VideoWriter(opt.framesfile, 'Uncompressed AVI');
opt.vidObj.FrameRate = opt.framerate;
open(opt.vidObj);
end
%set(opt.handles.figure,'renderer','opengl')
%opengl software;
set(opt.handles.figure,'renderer','zbuffer');
%opt.vidObj = avifile(opt.framesfile, 'fps', opt.framerate, 'quality', 75);
set(h, 'string', 'Stop');
guidata(h, opt);
start(opt.timer);
else
% FIXME set handle back to old window
stop(opt.timer);
if ~isempty(opt.framesfile)
vs = version('-release');
vs = vs(1:4);
if vs<2010
opt.vidObj = close(opt.vidObj);
else
close(opt.vidObj);
end
end
set(h, 'string', 'Record');
guidata(h, opt);
if (opt.quit)
close(opt.handles.figure);
end
end
%
% % This function should open a new window, plot in there, extract every
% % frame, store the movie in opt and return again
%
% % this is not needed, no new window is needed
% %scrsz = get(0, 'ScreenSize');
% %f = figure('Position',[1 1 scrsz(3) scrsz(4)]);
%
% % FIXME disable buttons (apart from RECORD) when recording
% % if record is pressed, stop recording and immediately return
%
% % adapted from ft_movieplotTFR
%
% % frequency/time selection
% if ~isempty(opt.yvalues) && any(~isnan(yvalues))
% if ~isempty(cfg.movietime)
% indx = cfg.movietime;
% for iFrame = 1:floor(size(opt.dat, opt.xdim)/cfg.samperframe)
% indy = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
% updateMovie(opt, indx, indy);
% F(iFrame) = getframe;
% end
% elseif ~isempty(cfg.moviefreq)
% indy = cfg.moviefreq;
% for iFrame = 1:floor(size(opt.dat, opt.ydim)/cfg.samperframe)
% indx = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
% updateMovie(opt, indx, indy);
% F(iFrame) = getframe;
% end
% else
% error('Either moviefreq or movietime should contain a bin number')
% end
% else
% for iFrame = 1:floor(size(opt.dat, opt.xdim)/cfg.samperframe)
% indx = ((iFrame-1)*cfg.samperframe+1):iFrame*cfg.samperframe;
% updateMovie(opt, indx, 1);
% F(iFrame) = getframe;
% end
% end
%
% % save movie
% if ~isempty(cfg.framesfile)
% save(cfg.framesfile, 'F');
% end
% % play movie
% movie(F, cfg.movierpt, cfg.framespersec);
% uiresume;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_colormap(h, eventdata)
maps = get(h, 'String');
val = get(h, 'Value');
while ~strcmp(get(h, 'Tag'), 'mainFigure')
h = get(h, 'Parent');
end
opt = guidata(h);
cmap = feval(maps{val}, size(colormap, 1));
% if strcmp(maps{val}, 'ikelvin')
% cmap = ikelvin(size(colormap, 1));
% elseif strcmp(maps{val}, 'kelvin')
% cmap = kelvin(size(colormap, 1));
% else
% cmap = colormap(opt.handles.axes.movie, maps{val});
% end
if get(opt.handles.checkbox.automatic, 'Value')
colormap(opt.handles.axes.movie_subplot{1}, cmap);
end
adjust_colorbar(opt);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_colorbar(h, eventdata)
if strcmp(get(h, 'Tag'), 'mainFigure') % this is the init call
incr = false;
decr = false;
else
incr = strcmp(get(h, 'String'), '+');
decr = strcmp(get(h, 'String'), '-');
lower = strfind(get(h, 'Tag'), 'Lower')>0;
while ~strcmp(get(h, 'Tag'), 'mainFigure')
h = get(h, 'Parent');
end
end
opt = guidata(h);
if (~incr&&~decr&&exist('eventdata', 'var')&&~isempty(eventdata)) % init call
caxis(opt.handles.axes.movie, eventdata);
end
zmin = inf;
zmax = -inf;
for i=1:numel(opt.dat)
[tmpmin tmpmax] = caxis(opt.handles.axes.movie_subplot{i});
zmin = min(tmpmin, zmin);
zmax = max(tmpmax, zmax);
end
yLim = get(opt.handles.colorbar, 'YLim');
if incr
yTick = linspace(zmin, zmax, yLim(end));
if get(opt.handles.checkbox.symmetric, 'Value')
zmin = zmin - mean(diff(yTick));
zmax = zmax + mean(diff(yTick));
elseif (lower)
zmin = zmin + mean(diff(yTick));
else
zmax = zmax + mean(diff(yTick));
end
elseif decr
yTick = linspace(zmin, zmax, yLim(end));
if get(opt.handles.checkbox.symmetric, 'Value')
zmin = zmin + mean(diff(yTick));
zmax = zmax - mean(diff(yTick));
elseif (lower)
zmin = zmin - mean(diff(yTick));
else
zmax = zmax - mean(diff(yTick));
end
elseif get(opt.handles.checkbox.automatic, 'Value') % if automatic
set(opt.handles.lines.upperColor, 'Visible', 'off');
set(opt.handles.lines.lowerColor, 'Visible', 'off');
set(opt.handles.lines.upperColor, 'YData', [yLim(end)/2 yLim(end)/2]);
set(opt.handles.lines.lowerColor, 'YData', [yLim(end)/2 yLim(end)/2]);
set(opt.handles.button.incrLowerColor, 'Enable', 'off');
set(opt.handles.button.decrUpperColor, 'Enable', 'off');
set(opt.handles.button.incrUpperColor, 'Enable', 'off');
set(opt.handles.button.decrLowerColor, 'Enable', 'off');
if get(opt.handles.checkbox.symmetric, 'Value') % maxabs
zmax = -inf;
for i=1:numel(opt.dat)
tmpmax = max(max(abs(opt.dat{i}(:,:,opt.valy))));
zmax = max(tmpmax, zmax);
end
zmin = -zmax;
else % maxmin
zmax = -inf;
zmin = inf;
for i=1:numel(opt.dat)
tmpmin = min(min(opt.dat{i}(:,:,opt.valy)));
tmpmax = max(max(opt.dat{i}(:,:,opt.valy)));
zmax = max(tmpmax, zmax);
zmin = min(tmpmin, zmin);
end
end
else
set(opt.handles.lines.upperColor, 'Visible', 'on');
set(opt.handles.lines.lowerColor, 'Visible', 'on')
if get(opt.handles.checkbox.symmetric, 'Value') % maxabs
set(opt.handles.button.incrLowerColor, 'Enable', 'off');
set(opt.handles.button.decrUpperColor, 'Enable', 'off');
set(opt.handles.button.incrUpperColor, 'Enable', 'on');
set(opt.handles.button.decrLowerColor, 'Enable', 'on');
for i=1:numel(opt.dat)
[tmpmin tmpmax] = caxis(opt.handles.axes.movie_subplot{i});
zmax = max(tmpmax, zmax);
end
zmin = -zmax;
else
set(opt.handles.button.incrLowerColor, 'Enable', 'on');
set(opt.handles.button.decrUpperColor, 'Enable', 'on');
set(opt.handles.button.incrUpperColor, 'Enable', 'on');
set(opt.handles.button.decrLowerColor, 'Enable', 'on');
for i=1:numel(opt.dat)
[tmpmin tmpmax] = caxis(opt.handles.axes.movie_subplot{i});
zmin = min(tmpmin, zmin);
zmax = max(tmpmax, zmax);
end
end
end % incr, decr, automatic, else
maps = get(opt.handles.menu.colormap, 'String');
cmap = feval(maps{get(opt.handles.menu.colormap, 'Value')}, size(colormap, 1));
for i=1:numel(opt.dat)
colormap(opt.handles.axes.movie_subplot{i}, cmap);
end
adjust_colorbar(opt);
if (gcf~=opt.handles.figure)
close gcf; % sometimes there is a new window that opens up
end
for i=1:numel(opt.dat)
caxis(opt.handles.axes.movie_subplot{i}, [zmin zmax]);
end
nColors = size(colormap, 1);
%yTick = (zmax-zmin)*(get(opt.handles.colorbar, 'YTick')/nColors)+zmin
yTick = (zmax-zmin)*[0 .25 .5 .75 1]+zmin;
%yTick = linspace(zmin, zmax, yLim(end));
% truncate intelligently/-ish
%yTick = get(opt.handles.colorbar, 'YTick')/nColors;
yTick = num2str(yTick', 5);
set(opt.handles.colorbar, 'YTickLabel', yTick, 'FontSize', 8);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALLBACK FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_startDrag(h, eventdata)
f = get(h, 'Parent');
while ~strcmp(get(f, 'Tag'), 'mainFigure')
f = get(f, 'Parent');
end
opt = guidata(f);
opt.handles.current.line = h;
if strfind(get(h, 'Tag'), 'Color')>0
opt.handles.current.axes = opt.handles.colorbar;
opt.handles.current.color = true;
else
disp('Figure out if it works for xparam and yparam');
keyboard
end
set(f, 'WindowButtonMotionFcn', @cb_dragLine);
guidata(h, opt);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_getposition(h, eventdata)
h = findobj(h, 'tag', 'mainFigure');
opt = guidata(h);
pos = get(get(h, 'currentaxes'), 'currentpoint');
switch get(get(h, 'currentaxes'), 'tag'),
case 'geometry'
if opt.ismesh
% get the intersection with the mesh
[ipos, d] = intersect_line(opt.anatomy.pos, opt.anatomy.tri, pos(1,:), pos(2,:));
[md, ix] = min(abs(d));
dpos = opt.anatomy.pos - ipos(ix*ones(size(opt.anatomy.pos,1),1),:);
opt.valz = nearest(sum(dpos.^2,2),0);
elseif opt.isvolume
else
end
case 'other'
otherwise
end
% if strcmp(get(get(h, 'currentaxes'), 'tag'), 'timecourse')
% % get the current point
% pos = get(opt.hy, 'currentpoint');
% set(opt.sliderx, 'value', nearest(opt.xparam, pos(1,1))./numel(opt.xparam));
% if isfield(opt, 'hline')
% set(opt.slidery, 'value', nearest(opt.yparam, pos(1,2))./numel(opt.yparam));
% end
% elseif strcmp(get(get(h, 'currentaxes'), 'tag'), 'mesh')
% % get the current point, which is defined as the intersection through the
% % axis-box (in 3D)
% pos = get(opt.hx, 'currentpoint');
%
% % get the intersection with the mesh
% [ipos, d] = intersect_line(opt.pos, opt.tri, pos(1,:), pos(2,:));
% [md, ix] = min(abs(d));
%
% dpos = opt.pos - ipos(ix*ones(size(opt.pos,1),1),:);
% opt.vindx = nearest(sum(dpos.^2,2),0);
%
% if isfield(opt, 'parcellation')
% opt.pindx = find(opt.parcellation(opt.vindx,:));
% disp(opt.pindx);
% end
% elseif strcmp(get(get(h, 'currentaxes'), 'tag'), 'mesh2')
% % get the current point, which is defined as the intersection through the
% % axis-box (in 3D)
% pos = get(opt.hz, 'currentpoint');
%
% % get the intersection with the mesh
% [ipos, d] = intersect_line(opt.pos, opt.tri, pos(1,:), pos(2,:));
% [md, ix] = min(abs(d));
%
% dpos = opt.pos - ipos(ix*ones(size(opt.pos,1),1),:);
% opt.vindx = nearest(sum(dpos.^2,2),0);
%
% if isfield(opt, 'parcellation')
% opt.pindx2 = find(opt.parcellation(opt.vindx,:));
% disp(opt.pindx2);
% end
%
% end
guidata(h, opt);
cb_slider(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_dragLine(h, eventdata)
opt = guidata(h);
pt = get(opt.handles.current.axes, 'CurrentPoint');
yLim = get(opt.handles.colorbar, 'YLim');
% upper (lower) bar must not below (above) lower (upper) bar
if ~(opt.handles.current.line == opt.handles.lines.upperColor && ...
(any(pt(3)*[1 1]<get(opt.handles.lines.lowerColor, 'YData')) || ...
yLim(end) <= pt(3))) ...
&& ~(opt.handles.current.line == opt.handles.lines.lowerColor && ...
(any(pt(3)*[1 1]>get(opt.handles.lines.upperColor, 'YData')) || ...
yLim(1) >= pt(3)))
set(opt.handles.current.line, 'YData', pt(3)*[1 1]);
end
adjust_colorbar(opt);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_stopDrag(h, eventdata)
while ~strcmp(get(h, 'Tag'), 'mainFigure')
h = get(h, 'Parent');
end
set(h, 'WindowButtonMotionFcn', '');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function adjust_colorbar(opt)
% adjust colorbar
upper = get(opt.handles.lines.upperColor, 'YData');
lower = get(opt.handles.lines.lowerColor, 'YData');
if any(round(upper)==0) || any(round(lower)==0)
return;
end
maps = get(opt.handles.menu.colormap, 'String');
cmap = feval(maps{get(opt.handles.menu.colormap, 'Value')}, size(colormap, 1));
cmap(round(lower(1)):round(upper(1)), :) = repmat(cmap(round(lower(1)), :), 1+round(upper(1))-round(lower(1)), 1);
for i=1:numel(opt.dat)
colormap(opt.handles.axes.movie_subplot{i}, cmap);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function opt = plot_geometry(opt)
numArgs = numel(opt.dat);
numRows = floor(sqrt(numArgs));
numCols = ceil(sqrt(numArgs));
for i=1:numArgs
axes(opt.handles.axes.movie);
opt.handles.axes.movie_subplot{i} = gca;
if isfield(opt, 'anatomy') && opt.ismesh
if isfield(opt.anatomy, 'sulc') && ~isempty(opt.anatomy.sulc)
vdat = opt.anatomy.sulc;
vdat(vdat>0.5) = 0.5;
vdat(vdat<-0.5)= -0.5;
vdat = vdat-min(vdat);
vdat = 0.35.*(vdat./max(vdat))+0.3;
vdat = repmat(vdat,[1 3]);
mesh = ft_plot_mesh(opt.anatomy, 'edgecolor', 'none', 'vertexcolor', vdat);
else
mesh = ft_plot_mesh(opt.anatomy, 'edgecolor', 'none', 'facecolor', [0.5 0.5 0.5]);
end
lighting gouraud
% set(mesh, 'Parent', opt.handles.axes.movie);
% mesh = ft_plot_mesh(source, 'edgecolor', 'none', 'vertexcolor', 0*opt.dat(:,1,1), 'facealpha', 0*opt.mask(:,1,1));
opt.handles.mesh{i} = ft_plot_mesh(opt.anatomy, 'edgecolor', 'none', 'vertexcolor', opt.dat{i}(:,1,1));
set(opt.handles.mesh{i}, 'AlphaDataMapping', 'scaled');
set(opt.handles.mesh{i}, 'FaceVertexAlphaData', opt.mask{i}(:,opt.valx,opt.valy));
% TODO FIXME below does not work
%set(opt.handles.mesh, 'FaceAlpha', 'flat');
%set(opt.handles.mesh, 'EdgeAlpha', 'flat');
lighting gouraud
cam1 = camlight('left');
% set(cam1, 'Parent', opt.handles.axes.movie);
cam2 = camlight('right');
% set(cam2, 'Parent', opt.handles.axes.movie);
% set(opt.handles.mesh, 'Parent', opt.handles.axes.movie);
% cameratoolbar(opt.handles.figure, 'Show');
else
axes(opt.handles.axes.movie)
[dum, opt.handles.grid{i}] = ft_plot_topo(opt.layout{i}.pos(opt.sellay,1), opt.layout{i}.pos(opt.sellay,2), zeros(numel(opt.sellay{i}),1), 'mask', opt.layout{i}.mask, 'outline', opt.layout{i}.outline, 'interpmethod', 'v4', 'interplim', 'mask', 'parent', opt.handles.axes.movie);
%[dum, opt.handles.grid] = ft_plot_topo(layout.pos(sellay,1), layout.pos(sellay,2), zeros(numel(sellay),1), 'mask',layout.mask, 'outline', layout.outline, 'interpmethod', 'v4', 'interplim', 'mask', 'parent', opt.handles.axes.movie);
% set(opt.handles.grid, 'Parent', opt.handles.axes.movie);
opt.xdata{i} = get(opt.handles.grid{i}, 'xdata');
opt.ydata{i} = get(opt.handles.grid{i}, 'ydata');
opt.nanmask{i} = 1-get(opt.handles.grid{i}, 'cdata');
if (gcf~=opt.handles.figure)
close gcf; % sometimes there is a new window that opens up
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function opt = plot_other(opt)
dimord = opt.dimord;
switch dimord
case {'pos_time' 'pos_freq' 'chan_time' 'chan_freq'}
opt.doplot = true;
opt.doimagesc = false;
case {'pos_freq_time' 'chan_freq_time' 'chan_chan_freq' 'chan_chan_time' 'pos_pos_freq' 'pos_pos_time'}
opt.doplot = false;
opt.doimagesc = false;
otherwise
end
if opt.doplot
plot(opt.handles.axes.other, opt.xvalues, nanmean(opt.dat{1}(opt.valz,:),1));
elseif opt.doimagesc
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = ikelvin(m)
% pos hue sat value
cu = [
0.0 1/2 0 1.0
0.125 1/2 0.6 0.95
0.375 2/3 1.0 0.8
0.5 2/3 1.0 0.3
];
cl = cu;
cl(:, 3:4) = cl(end:-1:1, 3:4);
cl(:, 2) = cl(:, 2) - 0.5;
cu(:,1) = cu(:,1)+.5;
x = linspace(0, 1, m)';
l = (x < 0.5); u = ~l;
for i = 1:3
h(l, i) = interp1(cl(:, 1), cl(:, i+1), x(l));
h(u, i) = interp1(cu(:, 1), cu(:, i+1), x(u));
end
c = hsv2rgb(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = ikelvinr(m)
% pos hue sat value
cu = [
0.0 1/2 0 1.0
0.125 1/2 0.6 0.95
0.375 2/3 1.0 0.8
0.5 2/3 1.0 0.3
];
cl = cu;
cl(:, 3:4) = cl(end:-1:1, 3:4);
cl(:, 2) = cl(:, 2) - 0.5;
cu(:,1) = cu(:,1)+.5;
x = linspace(0, 1, m)';
l = (x < 0.5); u = ~l;
for i = 1:3
h(l, i) = interp1(cl(:, 1), cl(:, i+1), x(l));
h(u, i) = interp1(cu(:, 1), cu(:, i+1), x(u));
end
c = hsv2rgb(h);
c = flipud(c);
end
|
github
|
lcnbeapp/beapp-master
|
bsscca.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/bsscca.m
| 7,428 |
utf_8
|
d64d6dd63efc92dff2aabe9e03c7dbb1
|
function [w,rho] = bsscca(X, delay)
% BSSCCA computes the unmixing matrix based on the canonical correlation between a signal and its lagged-one copy. It implements the algorithm described in [1]
%
% DeClercq et al 2006, IEEE Biomed Eng 2583.
if nargin<2,
delay = 1;
end
% hmmmm we need to observe the epochs' boundaries to not create rubbish
% support cell array input
if isa(X, 'cell')
delay = setdiff(delay(:)', 0);
n = size(X{1},1);
mX = cellmean(X,2);
X = cellvecadd(X, -mX);
C = cellcovshift(X,[0 delay],2,0);
m = size(C,1)-n;
XY = C(1:n, (n+1):end); % cross terms XY
XX = C(1:n, 1:n); % auto terms X;
YY = C((n+1):end, (n+1):end); % auto terms Y
YX = C((n+1):end, 1:n);
%A(1:n,1:n) = 0;
%A((n+1):end,(n+1):end) = 0;
%B(1:n,(n+1):end) = 0;
%B((n+1):end,1:n) = 0;
else
% input is a single data matrix assumed to be a continuous stretch
[n,m] = size(X);
% get the means
%m = ones(1,m-1);
%mX = mean(X(:,2:end),2); % lag zero
%mX2 = mean(X(:,1:end-1),2); % lag one
% use Borga's (2001) formulation from 'a unified approach to PCA, PLS, MLR
% and CCA'
A = zeros(2*n);
B = zeros(2*n);
if numel(delay)==1
Xlag = X(:,1:(m-delay));
else
end
XY = X(:,delay+(1:(m-delay)))*Xlag';
XX = X(:,delay+(1:(m-delay)))*X(:,delay+(1:(m-delay)))';
YY = Xlag*Xlag';
%XY = (X(:,2:end)-mX*m)*(X(:,1:end-1)-mX2*m)';
A(1:n,(n+1):end) = XY;
A((n+1):end,1:n) = XY';
B(1:n,1:n) = XX;
B((n+1):end,(n+1):end) = YY;
%B(1:n,1:n) = (X(:,2:end)-mX*m)*(X(:,2:end)-mX*m)';
%B((n+1):end,(n+1):end) = (X(:,1:end-1)-mX2*m)*(X(:,1:end-1)-mX2*m)';
end
%if cond(B)>1e8
% s = svd(B);
% [w,rho] = eig((B+eye(size(B,1))*s(1)*0.00000001)\A);
%else
% [w,rho] = eig(B\A);
%end
if cond(XX)>1e8
s = svd(XX);
XX = XX+eye(size(XX,1))*s(1)*0.00000001;
end
if cond(YY)>1e8
s = svd(YY);
YY = YY+eye(size(YY,1))*s(1)*0.00000001;
end
[wx,rho] = eig((XX\XY)*(YY\YX));
rho = sqrt(real(diag(rho)));
[dummy,ix] = sort(rho, 'descend');
rho = rho(ix);
wx = wx(:,ix);
w = wx';
%[dummy,ix] = sort(diag(abs(rho).^2),'descend');
%w = w(1:n,ix(2:2:end))';
%w = w(1:n,1:n);
%rho = abs(rho(ix(2:2:2*n),ix(2:2:2*n))).^2;
% normalise to unit norm
%for k= 1:size(w,1)
% w(k,:) = w(k,:)./norm(w(k,:));
%end
function [m] = cellmean(x, dim)
% [M] = CELLMEAN(X, DIM) computes the mean, across all cells in x along
% the dimension dim.
%
% X should be an linear cell-array of matrices for which the size in at
% least one of the dimensions should be the same for all cells
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if nargin==1,
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute mean for');
end
end
nx = max(nx);
nsmp = cellfun('size', x, dim);
ssmp = cellfun(@sum, x, repmat({dim},1,nx), 'UniformOutput', 0);
m = sum(cell2mat(ssmp), dim)./sum(nsmp);
function [y] = cellvecadd(x, v)
% [Y]= CELLVECADD(X, V) - add vector to all rows or columns of each matrix
% in cell-array X
% check once and for all to save time
persistent bsxfun_exists;
if isempty(bsxfun_exists);
bsxfun_exists=(exist('bsxfun')==5);
if ~bsxfun_exists;
error('bsxfun not found.');
end
end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if ~iscell(v),
v = repmat({v}, nx);
end
sx1 = cellfun('size', x, 1);
sx2 = cellfun('size', x, 2);
sv1 = cellfun('size', v, 1);
sv2 = cellfun('size', v, 2);
if all(sx1==sv1) && all(sv2==1),
dim = mat2cell([ones(length(sx2),1) sx2(:)]', repmat(2,nx(1),1), repmat(1,nx(2),1));
elseif all(sx2==sv2) && all(sv1==1),
dim = mat2cell([sx1(:) ones(length(sx1),1)]', repmat(2,nx(1),1), repmat(1,nx(2),1));
elseif all(sv1==1) && all(sv2==1),
dim = mat2cell([sx1(:) sx2(:)]'', nx(1), nx(2));
else error('inconsistent input');
end
y = cellfun(@bsxfun, repmat({@plus}, nx), x, v, 'UniformOutput', 0);
%y = cellfun(@vplus, x, v, dim, 'UniformOutput', 0);
function [c] = cellcov(x, y, dim, flag)
% [C] = CELLCOV(X, DIM) computes the covariance, across all cells in x along
% the dimension dim. When there are three inputs, covariance is computed between
% all cells in x and y
%
% X (and Y) should be linear cell-array(s) of matrices for which the size in at
% least one of the dimensions should be the same for all cells
if nargin<4 && iscell(y)
flag = 1;
elseif nargin<4 && isnumeric(y)
flag = dim;
end
if nargin<3 && iscell(y)
scx1 = cellfun('size', x, 1);
scx2 = cellfun('size', x, 2);
if all(scx2==scx2(1)), dim = 2; %let second dimension prevail
elseif all(scx1==scx1(1)), dim = 1;
else error('no dimension to compute covariance for');
end
elseif nargin<=3 && isnumeric(y)
dim = y;
end
if isnumeric(y), y = []; end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellmean');
end
if flag,
mx = cellmean(x, 2);
x = cellvecadd(x, -mx);
if ~isempty(y),
my = cellmean(y, 2);
y = cellvecadd(y, -my);
end
end
nx = max(nx);
nsmp = cellfun('size', x, dim);
if isempty(y),
csmp = cellfun(@covc, x, repmat({dim},1,nx), 'UniformOutput', 0);
else
csmp = cellfun(@covc, x, y, repmat({dim},1,nx), 'UniformOutput', 0);
end
nc = size(csmp{1});
c = sum(reshape(cell2mat(csmp), [nc(1) nc(2) nx]), 3)./sum(nsmp);
function [c] = covc(x, y, dim)
if nargin==2,
dim = y;
y = x;
end
if dim==1,
c = x'*y;
elseif dim==2,
c = x*y';
end
function [c] = cellcovshift(x, shift, dim, flag)
% [C] = CELLCOVSHIFT(X, SHIFT, DIM) computes the covariance, across all cells
% in x along the dimension dim.
%
% X should be linear cell-array(s) of matrices for which the size in at
% least one of the dimensions is be the same for all cells
if nargin<4,
flag = 1;
end
if nargin<3,
dim = find(size(x{1})>1, 1, 'first');
end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1) || ndims(x{1})>2,
error('incorrect input for cellcovshift');
end
% shift the time axis
y = cellshift(x, shift, dim);
% compute covariance
c = cellcov(y, dim, flag);
function [x] = cellshift(x, shift, dim, maxshift)
% CELLSHIFT(X, SHIFT, DIM)
if numel(shift)>1
x = x(:)';
y = cell(numel(shift),numel(x));
for k = 1:numel(shift)
y(k,:) = cellshift(x, shift(k), dim, max(abs(shift)));
end
for k = 1:size(y,2)
y{1,k} = cell2mat(y(:,k));
for m = 2:size(y,1)
y{m,k} = nan;
end
end
x = y(1,:);
return;
end
if nargin<4
maxshift = max(abs(shift));
end
if any(abs(shift))>abs(maxshift)
error('the value for maxshift should be >= shift');
end
if nargin<3
dim = find(size(x{1})>1, 1, 'first');
end
maxshift = abs(maxshift);
if numel(maxshift)==1, maxshift = maxshift([1 1]); end
nx = size(x);
if ~iscell(x) || length(nx)>2 || all(nx>1),
error('incorrect input for cellshift');
end
n = numel(x);
nsmp = cellfun('size', x, dim);
beg1 = ones(1,n) + shift + maxshift(1);
end1 = nsmp + shift - maxshift(2);
switch dim
case 1
for k = 1:n
x{k} = x{k}(beg1(k):end1(k),:);
end
case 2
for k = 1:n
x{k} = x{k}(:,beg1(k):end1(k));
end
otherwise
error('dimensionality of >2 is not supported');
end
|
github
|
lcnbeapp/beapp-master
|
inside_contour.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/inside_contour.m
| 1,105 |
utf_8
|
6554af9f8bc2dc7512e8ca962a63688b
|
function bool = inside_contour(pos, contour)
npos = size(pos,1);
ncnt = size(contour,1);
x = pos(:,1);
y = pos(:,2);
minx = min(x);
miny = min(y);
maxx = max(x);
maxy = max(y);
bool = true(npos,1);
bool(x<minx) = false;
bool(y<miny) = false;
bool(x>maxx) = false;
bool(y>maxy) = false;
% the summed angle over the contour is zero if the point is outside, and 2*pi if the point is inside the contour
% leave some room for inaccurate f
critval = 0.1;
% the remaining points have to be investigated with more attention
sel = find(bool);
for i=1:length(sel)
contourx = contour(:,1) - pos(sel(i),1);
contoury = contour(:,2) - pos(sel(i),2);
angle = atan2(contoury, contourx);
% angle = unwrap(angle);
angle = my_unwrap(angle);
total = sum(diff(angle));
bool(sel(i)) = (abs(total)>critval);
end
function x = my_unwrap(x)
% this is a faster implementation of the MATLAB unwrap function
% with hopefully the same functionality
d = diff(x);
indx = find(abs(d)>pi);
for i=indx(:)'
if d(i)>0
x((i+1):end) = x((i+1):end) - 2*pi;
else
x((i+1):end) = x((i+1):end) + 2*pi;
end
end
|
github
|
lcnbeapp/beapp-master
|
smudge.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/smudge.m
| 1,949 |
utf_8
|
a793adc32ad1bfa0f193bd20c3ca7764
|
function [datout, S] = smudge(datin, tri, niter, threshold)
% SMUDGE(DATIN, TRI) computes a smudged version of the input data datain,
% given a triangulation tri. The algorithm is according to what is in
% MNE-Suite, documented in chapter 8.3
if nargin<3 || isempty(niter),
niter = 1;
end
if nargin<4
threshold = 0;
end
for k = 1:niter
[tmp, Stmp] = do_smudge(datin, tri, threshold);
if k==1,
S = Stmp;
else
S = Stmp*S;
end
datout = tmp;
datin = tmp;
end
function [datout, S] = do_smudge(datin, tri, threshold)
% number of points
npnt = numel(datin);
% non-zero points
nz = find(datin>threshold);
% triangles containing 1 or 2 non-zero points
nzt = ismember(tri, nz);
tnz = sum(nzt, 2)>0 & sum(nzt,2)<3;
% points with non-zero neighbours
nzn = tri(tnz, :);
nzt = nzt(tnz, :);
vec1 = zeros(size(nzn,1)*2,1);
vec2 = zeros(size(nzn,1)*2,1);
for k = 1:size(nzn,1)
indx0 = (k-1)*2+(1:2);
indx1 = nzn(k, nzt(k,:));
indx2 = nzn(k,~nzt(k,:));
vec1(indx0) = indx1;
vec2(indx0) = indx2;
end
% matrices that define edges which has one of the members 0
% sorted according to the left or the right column respectively
vecx = sortrows([vec1 vec2]); % having the non-zero vertex upfront, sorted accordingly
vecy = sortrows([vec2 vec1]); % having the zero vertex upfront, sorted accordingly
clear vec1 vec2;
% in a closed surface the edges occur in doubles
vecx = vecx(1:2:end,:);
vecy = vecy(1:2:end,:);
% vecx now has in the first column the column indices for matrix S
% vecx now has in the second column the row indices for matrix S
% reconstruct the value that has to be put into the matrix
[uval,i1,i2] = unique(vecy(:,1));
tmp = diff([0;vecy(:,1)])>0;
nix = diff(find([tmp;1]==1));
nix(end+1:numel(uval)) = 1;
[dummy,i1,i2] = unique(vecx(:,2));
val = 1./nix(i2);
S = sparse(vecx(:,2),vecx(:,1),val,npnt,npnt);
S = S + spdiags(datin(:)>threshold, 0, npnt, npnt);
datout = S*datin(:);
|
github
|
lcnbeapp/beapp-master
|
getdimsiz.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/getdimsiz.m
| 2,235 |
utf_8
|
340d495a654f2f6752aa1af7ac915390
|
function dimsiz = getdimsiz(data, field)
% GETDIMSIZ
%
% Use as
% dimsiz = getdimsiz(data, field)
%
% If the length of the vector that is returned is smaller than the
% number of dimensions that you would expect from GETDIMORD, you
% should assume that it has trailing singleton dimensions.
%
% Example use
% dimord = getdimord(datastructure, fieldname);
% dimtok = tokenize(dimord, '_');
% dimsiz = getdimsiz(datastructure, fieldname);
% dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
%
% See also GETDIMORD, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = [];
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % move the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = numel(data.trial);
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % move the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = [];
end
dimsiz = cellmatsize(data.(field));
% add nrpt in case of source.trial
dimsiz = [prefix dimsiz];
end % main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the size of data representations like {pos}_ori_time
% FIXME this will fail for {xxx_yyy}_zzz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = cellmatsize(x)
if iscell(x)
if isempty(x)
siz = 0;
return % nothing else to do
elseif isvector(x)
cellsize = numel(x); % the number of elements in the cell-array
else
cellsize = size(x);
x = x(:); % convert to vector for further size detection
end
[dum, indx] = max(cellfun(@numel, x));
matsize = size(x{indx}); % the size of the content of the cell-array
siz = [cellsize matsize]; % concatenate the two
else
siz = size(x);
end
end % function cellmatsize
|
github
|
lcnbeapp/beapp-master
|
convert_event.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/convert_event.m
| 7,782 |
utf_8
|
f31a7a3358af889e95dc1c8178c68bbf
|
function [obj] = convert_event(obj, target, varargin)
% CONVERT_EVENT converts between the different representations of events,
% which can be
% 1) event structure, see FT_READ_EVENT
% 2) matrix representation as in trl (Nx3), see FT_DEFINETRIAL
% 3) matrix representation as in artifact (Nx2), see FT_ARTIFACT_xxx
% 4) boolean vector representation with 1 for samples containing trial/artifact
%
% Use as
% [object] = convert_event(object, target, ....)
%
% Possible input objects types are
% event structure
% Nx3 trl matrix, or cell array of multiple trl definitions
% Nx2 artifact matrix, or cell array of multiple artifact definitions
% boolean vector, or matrix with multiple vectors as rows
%
% Possible targets are 'event', 'trl', 'artifact', 'boolvec'
%
% Additional options should be specified in key-value pairs and can be
% 'endsample' =
% 'typenames' =
%
% See READ_EVENT, DEFINETRIAL, REJECTARTIFACT, ARTIFACT_xxx
% Copyright (C) 2009, Ingrid Nieuwenhuis
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% Check if target is specified correctly
if sum(strcmp(target, {'event', 'trl', 'artifact', 'boolvec'})) < 1
error('target has to be ''event'', ''trl'', ''artifact'', or ''boolvec''.')
end
% Get the options
endsample = ft_getopt(varargin, 'endsample');
typenames = ft_getopt(varargin, 'typenames');
% Determine what the input object is
if isempty(obj)
input_obj = 'empty';
elseif isstruct(obj)
input_obj = 'event';
elseif iscell(obj)
if isempty(obj{1})
input_obj = 'empty';
elseif size(obj{1},2) == 3
input_obj = 'trl';
elseif size(obj{1},2) == 2
input_obj = 'artifact';
elseif size(obj{1},2) > 3
% could be a strange trl-matrix with multiple columns
input_obj = 'trl';
for i = 1:length(obj)
if ~isempty(obj{i})
obj{i} = obj{i}(:,1:3);
end
end
else
error('incorrect input object, see help for what is allowed.')
end
elseif islogical(obj)
input_obj = 'boolvec';
elseif size(obj,2) == 3
input_obj = 'trl';
elseif size(obj,2) == 2
input_obj = 'artifact';
elseif size(obj,2) > 3
tmp = unique(obj);
if isempty(find(tmp>2, 1))
input_obj = 'boolvec';
obj = logical(obj);
else
%it is at least not boolean but could be a strange
%trl-matrix with multiple columns
input_obj = 'trl';
obj = obj(:,1:3);
end
else
error('incorrect input object, see help for what is allowed.')
end
% do conversion
if (strcmp(input_obj, 'trl') || strcmp(input_obj, 'artifact') || strcmp(input_obj, 'empty')) && strcmp(target, 'boolvec')
if ~isempty(endsample)
obj = artifact2artvec(obj,endsample);
else
obj = artifact2artvec(obj);
end
elseif strcmp(input_obj, 'boolvec') && strcmp(target,'artifact' )
obj = artvec2artifact(obj);
elseif strcmp(input_obj, 'boolvec') && strcmp(target,'trl' )
obj = artvec2artifact(obj);
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3) = 0;
end
else
obj(:,3) = 0;
end
elseif (strcmp(input_obj, 'trl') || strcmp(input_obj, 'artifact')) && strcmp(target, 'event')
obj = artifact2event(obj, typenames);
elseif strcmp(input_obj, 'artifact') && strcmp(target,'trl')
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3) = 0;
end
else
obj(:,3) = 0;
end
elseif strcmp(input_obj, 'trl') && strcmp(target,'artifact')
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3:end) = [];
end
else
obj(:,3:end) = [];
end
elseif strcmp(input_obj, 'empty')
obj = [];
else
warning('conversion not supported yet') %FIXME
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function artvec = artifact2artvec(varargin)
% ARTIFACT2ARTVEC makes boolian vector (or matrix when artifact is
% cell array of multiple artifact definitions) with 0 for artifact free
% sample and 1 for sample containing an artifact according to artifact
% specification. Length of vector is (from sample 1) last sample as
% defined in the artifact definition, or when datendsample is speciefied
% vector is length datendsample.
artifact = varargin{1};
if length(varargin) == 1
if ~iscell(artifact) % assume only one artifact is given
if isempty(artifact)
error('When input object is empty ''endsample'' must be specified to convert into boolvec')
else
endsample = max(artifact(:,2));
end
elseif length(artifact) == 1
if isempty(artifact{1})
error('When input object is empty ''endsample'' must be specified to convert into boolvec')
else
endsample = max(artifact{1}(:,2));
end
else
error('when giving multiple artifact definitions, endsample should be specified to assure all output vectors are of the same length')
end
elseif length(varargin) == 2
endsample = varargin{2};
elseif length(varargin) > 2
error('too many input arguments')
end
if ~iscell(artifact)
artifact = {artifact};
end
% make artvec
artvec = zeros(length(artifact), endsample);
breakflag = 0;
for i=1:length(artifact)
for j=1:size(artifact{i},1)
artbegsample = artifact{i}(j,1);
artendsample = artifact{i}(j,2);
if artbegsample > endsample
warning('artifact definition contains later samples than endsample, these samples are ignored')
break
elseif artendsample > endsample
warning('artifact definition contains later samples than endsample, these samples are ignored')
artendsample = endsample;
breakflag = 1;
end
artvec(i, artbegsample:artendsample) = 1;
if breakflag
break
end
end
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function artifact = artvec2artifact(artvec)
% ARTVEC2ARTIFACT makes artifact definition (or cell array of artifact
% definitions) from boolian vector (or matrix) with [artbegsample
% artendsample]. Assumed is that the artvec starts with sample 1.
for i=1:size(artvec,1)
tmp = diff([0 artvec(i,:) 0]);
artbeg = find(tmp==+1);
artend = find(tmp==-1) - 1;
artifact{i} = [artbeg' artend'];
end
if length(artifact) == 1
artifact = artifact{1};
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function event = artifact2event(artifact, typenames)
% ARTIFACT2EVENT makes event structure from artifact definition (or cell
% array of artifact definitions). event.type is always 'artifact', but
% incase of cellarays of artifacts is is also possible to hand 'typenames'
% with length(artifact)
if ~iscell(artifact)
artifact = {artifact};
end
if ~isempty(typenames)
if length(artifact) ~= length(typenames)
error('length typenames should be the same as length artifact')
end
end
event = [];
for i=1:length(artifact)
for j=1:size(artifact{i},1)
event(end+1).sample = artifact{i}(j,1);
event(end ).duration = artifact{i}(j,2)-artifact{i}(j,1)+1;
if ~isempty(typenames)
event(end).type = typenames{i};
elseif size(artifact{i},2) == 2
event(end).type = 'artifact';
elseif size(artifact{i},2) == 3
event(end).type = 'trial';
end
event(end ).value = [];
event(end ).offset = [];
end
end
|
github
|
lcnbeapp/beapp-master
|
project_elec.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/project_elec.m
| 3,791 |
utf_8
|
61bc3f095e4ced1311048c06823bb037
|
function [el, prj] = project_elec(elc, pnt, tri)
% PROJECT_ELEC projects electrodes on a triangulated surface
% and returns triangle index, la/mu parameters and distance
%
% Use as
% [el, prj] = project_elec(elc, pnt, tri)
% which returns
% el = Nx4 matrix with [tri, la, mu, dist] for each electrode
% prj = Nx3 matrix with the projected electrode position
%
% See also TRANSFER_ELEC
% Copyright (C) 1999-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
Nelc = size(elc,1);
el = zeros(Nelc, 4);
% this is a work-around for http://bugzilla.fcdonders.nl/show_bug.cgi?id=2369
elc = double(elc);
pnt = double(pnt);
tri = double(tri);
for i=1:Nelc
[proj,dist] = ptriprojn(pnt(tri(:,1),:), pnt(tri(:,2),:), pnt(tri(:,3),:), elc(i,:), 1);
[mindist, minindx] = min(abs(dist));
[la, mu] = lmoutr(pnt(tri(minindx,1),:), pnt(tri(minindx,2),:), pnt(tri(minindx,3),:), proj(minindx,:));
smallest_dist = dist(minindx);
smallest_tri = minindx;
smallest_la = la;
smallest_mu = mu;
% the following can be done faster, because the smallest_dist can be
% directly selected
% Ntri = size(tri,1);
% for j=1:Ntri
% %[proj, dist] = ptriproj(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), elc(i,:), 1);
% if dist(j)<smallest_dist
% % remember the triangle index, distance and la/mu
% [la, mu] = lmoutr(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), proj(j,:));
% smallest_dist = dist(j);
% smallest_tri = j;
% smallest_la = la;
% smallest_mu = mu;
% end
% end
% store the projection for this electrode
el(i,:) = [smallest_tri smallest_la smallest_mu smallest_dist];
end
if nargout>1
prj = zeros(size(elc));
for i=1:Nelc
v1 = pnt(tri(el(i,1),1),:);
v2 = pnt(tri(el(i,1),2),:);
v3 = pnt(tri(el(i,1),3),:);
la = el(i,2);
mu = el(i,3);
prj(i,:) = routlm(v1, v2, v3, la, mu);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION this is an alternative implementation that will also work for
% polygons
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function prj = polyproj(elc,pnt)
% projects a point on a plane, e.g. an electrode on a polygon
% pnt is a Nx3 matrix with multiple vertices that span the plane
% these vertices can be slightly off the plane
center = mean(pnt,1);
% shift the vertices to have zero mean
pnt(:,1) = pnt(:,1) - center(1);
pnt(:,2) = pnt(:,2) - center(2);
pnt(:,3) = pnt(:,3) - center(3);
elc(:,1) = elc(:,1) - center(1);
elc(:,2) = elc(:,2) - center(2);
elc(:,3) = elc(:,3) - center(3);
pnt = pnt';
elc = elc';
[u, s, v] = svd(pnt);
% The vertices are assumed to ly in plane, at least reasonably. That means
% that from the three eigenvectors there is one which is very small, i.e.
% the one orthogonal to the plane. Project the electrodes along that
% direction.
u(:,3) = 0;
prj = u * u' * elc;
prj = prj';
prj(:,1) = prj(:,1) + center(1);
prj(:,2) = prj(:,2) + center(2);
prj(:,3) = prj(:,3) + center(3);
|
github
|
lcnbeapp/beapp-master
|
fdr.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/fdr.m
| 2,138 |
utf_8
|
fd32f61564bb6c0088f02c6a3fcec3a2
|
function [h] = fdr(p, q)
% FDR false discovery rate
%
% Use as
% h = fdr(p, q)
%
% This implements
% Genovese CR, Lazar NA, Nichols T.
% Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
% Neuroimage. 2002 Apr;15(4):870-8.
%
% There are two types of FDR correction (Benjamini-Hochberg & Benjamini-Yekutieli), of
% which the second is currently implemented.
% Copyright (C) 2005-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% convert the input into a row vector
dim = size(p);
p = reshape(p, 1, numel(p));
% sort the observed uncorrected probabilities
[ps, indx] = sort(p);
% count the number of voxels
V = length(p);
% compute the threshold probability for each voxel
pi = ((1:V)/V) * q / c(V);
if any(ps<=pi)
h = ps<=(max(ps(ps<=pi)));
else
h = false(size(ps));
end
% undo the sorting
[dum, unsort] = sort(indx);
h = h(unsort);
% convert the output back into the original format
h = reshape(h, dim);
function s = c(V)
% See Genovese, Lazar and Holmes (2002) page 872, second column, first paragraph
if V<1000
% compute it exactly
s = sum(1./(1:V));
else
% approximate it
s = log(V) + 0.57721566490153286060651209008240243104215933593992359880576723488486772677766467093694706329174674951463144724980708248096050401448654283622417399764492353625350033374293733773767394279259525824709491600873520394816567;
end
|
github
|
lcnbeapp/beapp-master
|
prepare_mesh_hexahedral.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/prepare_mesh_hexahedral.m
| 17,670 |
utf_8
|
6191dbd9342d65e59d705e95b3e70aeb
|
function mesh = prepare_mesh_hexahedral(cfg, mri)
% PREPARE_MESH_HEXAHEDRAL
%
% Configuration options for generating a regular 3-D grid
% cfg.tissue = cell with the names of the compartments that should be meshed
% cfg.resolution = desired resolution of the mesh (default = 1)
% cfg.shift
% cfg.background
%
% See also PREPARE_MESH_SEGMENTATION, PREPARE_MESH_MANUAL, PREPARE_MESH_HEADSHAPE
% Copyrights (C) 2012-2013, Johannes Vorwerk
%
% $Id$
% ensure that the input is consistent with what this function expects
mri = ft_checkdata(mri, 'datatype', {'volume', 'segmentation'}, 'hasunit', 'yes');
% get the default options
cfg.tissue = ft_getopt(cfg, 'tissue');
cfg.resolution = ft_getopt(cfg, 'resolution', 1); % this is in mm
cfg.shift = ft_getopt(cfg, 'shift');
cfg.background = ft_getopt(cfg, 'background', 0);
if isempty(cfg.tissue)
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'indexed');
fn = fieldnames(mri);
for i = 1:numel(fn),
if (numel(mri.(fn{i})) == prod(mri.dim)) && (~strcmp(fn{i}, 'inside'))
segfield = fn{i};
end
end
cfg.tissue = setdiff(unique(mri.(segfield)(:)), 0);
end
if ischar(cfg.tissue)
% it should either be something like {'brain', 'skull', 'scalp'}, or something like [1 2 3]
cfg.tissue = {cfg.tissue};
end
if iscell(cfg.tissue)
% the code below assumes that it is a probabilistic representation
if any(strcmp(cfg.tissue, 'brain'))
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic', 'hasbrain', 'yes');
else
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'probabilistic');
end
else
% the code below assumes that it is an indexed representation
mri = ft_datatype_segmentation(mri, 'segmentationstyle', 'indexed');
end
if isempty(cfg.shift)
warning('No node-shift selected')
cfg.shift = 0;
elseif cfg.shift > 0.3
warning('Node-shift should not be larger than 0.3')
cfg.shift = 0.3;
end
% do the mesh extraction
% this has to be adjusted for FEM!!!
if iscell(cfg.tissue)
% this assumes that it is a probabilistic representation
% for example {'brain', 'skull', scalp'}
try
temp = zeros(size(mri.(cfg.tissue{1})(:)));
for i = 1:numel(cfg.tissue)
temp = [temp, mri.(cfg.tissue{i})(:)];
end
[val, seg] = max(temp, [], 2);
seg = seg - 1;
seg = reshape(seg, mri.dim);
catch
error('Please specify cfg.tissue to correspond to tissue types in the segmented MRI')
end
tissue = cfg.tissue;
else
% this assumes that it is an indexed representation
% for example [3 2 1]
seg = zeros(mri.dim);
tissue = {};
for i = 1:numel(cfg.tissue)
seg = seg + i*(mri.seg == cfg.tissue(i));
if isfield(mri, 'seglabel')
try
tissue{i} = mri.seglabel{cfg.tissue(i)};
catch
error('Please specify cfg.tissue to correspond to (the name or number of) tissue types in the segmented MRI')
end
else
tissue{i} = sprintf('tissue %d', i);
end
end
end
% reslice to desired resolution
if (cfg.resolution ~= 1)
% this should be done like this: split seg into probabilistic, reslice single compartments, take maximum values
seg_array = [];
seg_indices = unique(seg);
for i = 1:(length(unique(seg)))
seg_reslice.anatomy = double(seg == (i-1));
seg_reslice.dim = mri.dim;
seg_reslice.transform = eye(4);
seg_reslice.transform(1:3, 4) = -ceil(mri.dim/2);
cfg_reslice = [];
cfg_reslice.resolution = cfg.resolution;
cfg_reslice.dim = ceil(mri.dim/cfg.resolution);
seg_build = ft_volumereslice(cfg_reslice, seg_reslice);
seg_array = [seg_array, seg_build.anatomy(:)];
clear seg_reslice;
end
[max_seg seg_build.seg] = max(seg_array, [], 2);
clear max_seg seg_array;
seg_build.seg = reshape(seg_build.seg, seg_build.dim);
seg_build.seg = seg_indices(seg_build.seg);
seg_build.transform = mri.transform;
clear seg_build.anatomy;
else
seg_build.seg = seg;
seg_build.dim = mri.dim;
clear seg;
end
% ensure that the segmentation is binary and that there is a single contiguous region
% FIXME is this still needed when it is already binary?
%seg = volumethreshold(seg, 0.5, tissue);
ft_hastoolbox('simbio', 1);
% build the mesh
mesh = build_mesh_hexahedral(cfg, seg_build);
% converting position of meshpoints to the head coordinate system
if (cfg.resolution ~= 1)
mesh.pnt = cfg.resolution * mesh.pnt;
end
mesh.pnt = ft_warp_apply(mri.transform, mesh.pnt, 'homogeneous');
labels = mesh.labels;
clear mesh.labels;
mesh.tissue = zeros(size(labels));
numlabels = size(unique(labels), 1);
mesh.tissuelabel = {};
ulabel = sort(unique(labels));
for i = 1:numlabels
mesh.tissue(labels == ulabel(i)) = i;
mesh.tissuelabel{i} = tissue{i};
end
end % function
%% subfunctions %%
function mesh = build_mesh_hexahedral(cfg, mri)
background = cfg.background;
shift = cfg.shift;
% extract number of voxels in each direction
% x_dim = mri.dim(1);
% y_dim = mri.dim(2);
% z_dim = mri.dim(3);
%labels = mri.seg;
fprintf('Dimensions of the segmentation before restriction to bounding-box: %i %i %i\n', mri.dim(1), mri.dim(2), mri.dim(3));
[bb_x, bb_y, bb_z] = ind2sub(size(mri.seg), find(mri.seg));
shift_coord = [min(bb_x) - 2, min(bb_y) - 2, min(bb_z) - 2];
bb_x = [min(bb_x), max(bb_x)];
bb_y = [min(bb_y), max(bb_y)];
bb_z = [min(bb_z), max(bb_z)];
x_dim = size(bb_x(1)-1:bb_x(2)+1, 2);
y_dim = size(bb_y(1)-1:bb_y(2)+1, 2);
z_dim = size(bb_z(1)-1:bb_z(2)+1, 2);
labels = zeros(x_dim, y_dim, z_dim);
labels(2:(x_dim-1), 2:(y_dim-1), 2:(z_dim-1)) = mri.seg(bb_x(1):bb_x(2), bb_y(1):bb_y(2), bb_z(1):bb_z(2));
fprintf('Dimensions of the segmentation after restriction to bounding-box: %i %i %i\n', x_dim, y_dim, z_dim);
% create elements
mesh.hex = create_elements(x_dim, y_dim, z_dim);
fprintf('Created elements...\n' )
% create nodes
mesh.pnt = create_nodes(x_dim, y_dim, z_dim);
fprintf('Created nodes...\n' )
if(shift < 0 | shift > 0.3)
error('Please choose a shift parameter between 0 and 0.3!');
elseif(shift > 0)
mesh.pnt = shift_nodes(mesh.pnt, mesh.hex, labels, shift, x_dim, y_dim, z_dim);
end
%background = 1;
% delete background voxels(if desired)
if(background == 0)
mesh.hex = mesh.hex(labels ~= 0, :);
mesh.labels = labels(labels ~= 0);
else
mesh.labels = labels(:);
end
% delete unused nodes
[C, ia, ic] = unique(mesh.hex(:));
mesh.pnt = mesh.pnt(C, :, :, :);
mesh.pnt = mesh.pnt + repmat(shift_coord, size(mesh.pnt, 1), 1);
mesh.hex(:) = ic;
end % subfunction
% function creating elements from a MRI-Image with the dimensions x_dim,
% y_dim, z_dim. Each voxel of the MRI-Image corresponds to one element in
% the hexahedral mesh. The numbering of the elements is as follows:
% the first x-y-plane(z == 1) is numbered by incrementing in x-direction
% first until x_dim is reached. This is done for each row in y-direction
% until y_dim is reached. Using the resulting x_dim-by-y_dim numbering as
% an overlay and adding (i-1)*(x_dim*y_dim) to the overlay while i is
% iterating through the z-dimension(until i == z_dim) we obtain a numbering
% for all the elements.
% The node-numbering is done accordingly: the bottom left node in element i
% has number i in the node-numbering. All the remaining nodes are numbered
% in the same manner as described above for the element numbering(note the
% different dimensionalities: x_dim+1 instead of x_dim etc.).
function elements = create_elements(x_dim, y_dim, z_dim)
elements = zeros(x_dim*y_dim*z_dim, 8);
% create an offset vector for the bottom-left nodes in each element
b = 1:((x_dim+1)*(y_dim));
% delete the entries where the node does not correspond to an element's
% bottom-left node(i.e. where the x-component of the node is equal to
% x_dim+1)
b = b(mod(b, (x_dim+1)) ~= 0);
% repeat offset to make it fit the number of elements
b = repmat(b, 1, (z_dim));
% create vector accounting for the offset of the nodes in z-direction
c = fix([0:((x_dim)*(y_dim)*(z_dim)-1)]/((x_dim)*(y_dim))) * (x_dim+1)*(y_dim+1);
% create the elements by assigning the nodes to them. entries 1 through 4
% describe the bottom square of the hexahedron, entries 5 through 8 the top
% square.
elements(:, 1) = b + c;
elements(:, 2) = b + c + 1;
elements(:, 3) = b + c + (x_dim+1) + 1;
elements(:, 4) = b + c + (x_dim+1);
elements(:, 5) = b + c + (x_dim + 1)*(y_dim+1);
elements(:, 6) = b + c + (x_dim + 1)*(y_dim+1) + 1;
elements(:, 7) = b + c + (x_dim + 1)*(y_dim+1) + (x_dim+1) + 1;
elements(:, 8) = b + c + (x_dim + 1)*(y_dim+1) + (x_dim+1);
clear b;
clear c;
end %subfunction
% function creating the nodes and assigning coordinates in the
% [0, x_dim]x[0, y_dim]x[0, z_dim] box. for details on the node-numbering see
% comments for create_elements.
function nodes = create_nodes(x_dim, y_dim, z_dim)
nodes = zeros(((x_dim+1)*(y_dim+1)*(z_dim + 1)), 3);
% offset vector for node coordinates
b = [0:((x_dim+1)*(y_dim+1)*(z_dim+1)-1)];
% assign coordinates within the box
nodes(:, 1) = mod(b, (x_dim+1));
nodes(:, 2) = mod(fix(b/(x_dim+1)), (y_dim+1));
nodes(:, 3) = fix(b/((x_dim + 1)*(y_dim+1)));
clear b;
end
% function shifting the nodes
function nodes = shift_nodes(points, hex, labels, sh, x_dim, y_dim, z_dim)
cfg = [];
fprintf('Applying shift %f\n', sh);
nodes = points;
% helper vector for indexing the nodes
b = 1:(x_dim+1)*(y_dim+1)*(z_dim+1);
% vector which gives the corresponding element to a node(in the sense
% of how the node-numbering was done, see comment for create_elements).
% note that this vector still contains values for nodes which do not have a
% corresponding element. this will be manually omitted in the finding
% of the surrounding elements(see below).
offset = (b - nodes(b, 2)' - (nodes(b, 3))'*(y_dim+1+x_dim))';
offset(offset <= 0) = size(labels, 1)+1;
offset(offset > size(hex, 1)) = size(labels, 1)+1;
% create array containing the surrounding elements for each node
%surrounding = zeros((x_dim+1)*(y_dim+1)*(z_dim+1), 8);
% find out the surrounding of each node(if there is any)
% find element to which the node is bottom left front
%surrounding((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim), 1) = offset((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim));
% bottom right front
%surrounding(nodes(b, 1) > 0, 2) = offset(nodes(b, 1) > 0, 1) -1;
% bottom left back
%surrounding(nodes(b, 2) > 0, 3) = offset(nodes(b, 2) > 0, 1) - x_dim;
% bottom right back
%surrounding((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 4) = offset((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 1) - (x_dim) - 1;
% top left front
%surrounding(nodes(b, 3) > 0, 5) = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim);
% top right front
%surrounding(nodes(b, 3) > 0, 6) = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - 1;
% top left back
%surrounding(nodes(b, 3) > 0, 7) = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - x_dim;
% top right back
%surrounding((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 8) = offset((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 1) - (x_dim)*(y_dim) - (x_dim) -1;
%clear offset;
%clear b;
% those entries in the surrounding matrix which point to non-existing
% elements(> size(hex, 1) or <= 0) we overwrite with a
% dummy element
%surrounding(surrounding <= 0) = size(labels, 1) + 1;
%surrounding(surrounding > size(hex, 1)) = size(labels, 1)+1;
% set the label of the dummy element to be zero(background)
labels(size(labels, 1)+1) = 0;
% matrixs holding the label of each surrounding element
%surroundinglabels = labels(surrounding);
surroundinglabels = zeros((x_dim+1)*(y_dim+1)*(z_dim+1), 8);
surroundinglabels((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim), 1) = labels(offset((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim)));
surroundinglabels(nodes(b, 1) > 0, 2) = labels(offset(nodes(b, 1) > 0, 1) -1);
surroundinglabels(nodes(b, 2) > 0, 3) = labels(offset(nodes(b, 2) > 0, 1) - x_dim);
offsetnow = offset((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 1) - (x_dim) - 1;
offsetnow(offsetnow <= 0) = size(labels, 1)+1;
surroundinglabels((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 4) = labels(offsetnow);
offsetnow = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim);
offsetnow(offsetnow <= 0) = size(labels, 1)+1;
surroundinglabels(nodes(b, 3) > 0, 5) = labels(offsetnow);
offsetnow = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - 1;
offsetnow(offsetnow <= 0) = size(labels, 1)+1;
surroundinglabels(nodes(b, 3) > 0, 6) = labels(offsetnow);
offsetnow = offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - x_dim;
offsetnow(offsetnow <= 0) = size(labels, 1)+1;
surroundinglabels(nodes(b, 3) > 0, 7) = labels(offsetnow);
offsetnow = offset((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 1) - (x_dim)*(y_dim) - (x_dim) -1;
offsetnow(offsetnow <= 0) = size(labels, 1)+1;
surroundinglabels((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 8) = labels(offsetnow);
% matrix showing how many types of each label are around a given node
distribution = zeros(size(nodes, 1), size(unique(labels), 1));
% the following assumes that the labels are 1, 2, ...
for l = 1:size(unique(labels), 1)
for k = 1:8
distribution(:, l) = distribution(:, l) + (surroundinglabels(:, k) == l);
end
end
% fill up the last column with the amount of background labels
distribution(:, (size(unique(labels), 1))) = 8 - sum(distribution(:, 1:size(unique(labels), 1))');
% how many different labels are there around each node
distsum = sum(distribution>0, 2);
% set zeros to Inf in order to make the finding of a minimum
% meaningful
distribution(distribution == 0) = Inf;
% find out which is the minority label
[mins, minpos] = min(distribution, [], 2);
clear distribution;
% calculate the centroid for each element
centroids = zeros(size(hex, 1), 3);
for l = 1:3
centroids(:, l) = sum(reshape(nodes(hex(:, :), l), size(hex, 1), 8)')'/8;
end
% set a dummy centroid
centroids(size(centroids, 1) +1, :) = 0;
tbc = zeros(size(surroundinglabels));
% helper matrix, c(i, j, k) is one when surroundinglabels(i, j) == k
for i = 1:size(unique(labels), 1)+1
c = zeros(size(surroundinglabels, 2), size(unique(labels), 1)+1);
if (i == size(unique(labels), 1)+1)
c = surroundinglabels == 0;
else
c = surroundinglabels == i;
end
tbc(ismember(minpos, i) == 1, :) = c(ismember(minpos, i) == 1, :);
end
% % matrix that shows which elements are to be considered as minority
% % around a given node
% clear surroundinglabels;
% % helper matrix, c(i, j, k) is one when surroundinglabels(i, j) == k
% c = zeros(size(surroundinglabels, 1), size(surroundinglabels, 2), size(unique(labels), 1)+1);
% for i = 1:size(unique(labels), 1)
% c(:, :, i) = surroundinglabels == i;
% end
% c(:, :, size(unique(labels), 1)+1) = surroundinglabels == 0;
%
%
% % matrix that shows which elements are to be considered as minority
% % around a given node
% tbc = zeros(size(surroundinglabels));
% clear surroundinglabels;
% for i = 1:size(unique(labels), 1)+1
% tbc(ismember(minpos, i) == 1, :) = c(ismember(minpos, i) == 1, :, i);
% end
clear c;
% delete cases in which we don't have a real minimum
tbcsum = sum(tbc, 2);
tbc(tbcsum == 8, :) = 0;
tbc(tbcsum == 4, :) = 0;
tbcsum((distsum>2) & (mins > 1), :) = 0;
tbcsum(tbcsum == 8) = 0;
tbcsum(tbcsum == 4) = 0;
tbcsum((distsum>2) & (mins > 1)) = 0;
%surroundingconsidered = surrounding.*tbc;
surroundingconsidered = zeros(size(tbc));
surroundingconsidered((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim), 1) = offset((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim)).*tbc((nodes(b, 1) < x_dim) & (nodes(b, 3) < z_dim), 1);
surroundingconsidered(nodes(b, 1) > 0, 2) = (offset(nodes(b, 1) > 0, 1) -1).*(tbc(nodes(b, 1) > 0, 2));
surroundingconsidered(nodes(b, 2) > 0, 3) = (offset(nodes(b, 2) > 0, 1) - x_dim).*tbc(nodes(b, 2) > 0, 3);
surroundingconsidered((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 4) = (offset((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 1) - (x_dim) - 1).*tbc((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 4).*tbc((nodes(b, 2) > 0) & (nodes(b, 1) > 0), 4);
surroundingconsidered(nodes(b, 3) > 0, 5) = (offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim)).*tbc(nodes(b, 3) > 0, 5);
surroundingconsidered(nodes(b, 3) > 0, 6) = (offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - 1).*tbc(nodes(b, 3) > 0, 6);
surroundingconsidered(nodes(b, 3) > 0, 7) = (offset(nodes(b, 3) > 0, 1) - (x_dim)*(y_dim) - x_dim).*tbc(nodes(b, 3) > 0, 7);
surroundingconsidered((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 8) = (offset((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 1) - (x_dim)*(y_dim) - (x_dim) -1).*tbc((nodes(b, 3) > 0) & (nodes(b, 2) > 0), 8);
%clear surrounding;
clear tbc;
tbcsum(tbcsum == 8) = 0;
tbcsum(tbcsum == 4) = 0;
tbcsum((distsum>2) & (mins > 1)) = 0;
clear distsum;
% get the surrounding elements which are to be considered for the shift
% use the dummy centroid to make computations easier
surroundingconsidered(surroundingconsidered == 0) = size(centroids, 1);
% calculate the combination of the centroids which are to be considered
% for the shift
centroidcomb = zeros(size(nodes));
centroidcomb(:, 1) = sum(reshape(centroids(surroundingconsidered, 1), [], 8), 2);
centroidcomb(:, 2) = sum(reshape(centroids(surroundingconsidered, 2), [], 8), 2);
centroidcomb(:, 3) = sum(reshape(centroids(surroundingconsidered, 3), [], 8), 2);
clear surroundingconsidered;
centroidcomb(tbcsum ~= 0, 1) = centroidcomb(tbcsum ~= 0, 1)./tbcsum(tbcsum ~= 0);
centroidcomb(tbcsum ~= 0, 2) = centroidcomb(tbcsum ~= 0, 2)./tbcsum(tbcsum ~= 0);
centroidcomb(tbcsum ~= 0, 3) = centroidcomb(tbcsum ~= 0, 3)./tbcsum(tbcsum ~= 0);
% finally apply the shift
nodes(tbcsum == 0, :) = points(tbcsum == 0, :);
nodes(tbcsum ~= 0, :) = (1-sh)*nodes(tbcsum ~= 0, :) + sh*centroidcomb(tbcsum ~= 0, :);
end %subfunction
|
github
|
lcnbeapp/beapp-master
|
read_labview_dtlg.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/read_labview_dtlg.m
| 5,089 |
utf_8
|
dc63845970397d9529684d354d5ce39b
|
function [dat] = read_labview_dtlg(filename, datatype)
% READ_LABVIEW_DTLG
%
% Use as
% dat = read_labview_dtlg(filename, datatype)
% where datatype can be 'int32' or 'int16'
%
% The output of this function is a structure.
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
fid = fopen(filename, 'r', 'ieee-be');
header = fread(fid, 4, 'uint8=>char')';
if ~strcmp(header, 'DTLG')
error('unsupported file, header should start with DTLG');
end
version = fread(fid, 4, 'char')'; % clear version
nd = fread(fid, 1, 'int32');
p = fread(fid, 1, 'int32');
% the following seems to work for files with version [7 0 128 0]
% but in files files with version [8 0 128 0] the length of the descriptor is not correct
ld = fread(fid, 1, 'int16');
descriptor = fread(fid, ld, 'uint8=>char')';
% ROBOOS: the descriptor should ideally be decoded, since it contains the variable
% name, type and size
% The first offset block always starts immediately after the data descriptor (at offset p, which should ideally be equal to 16+ld)
if nd<=128
% The first offset block contains the offsets for all data sets.
% In this case P points to the start of the offset block.
fseek(fid, p, 'bof');
offset = fread(fid, 128, 'uint32')';
else
% The first offset block contains the offsets for the first 128 data sets.
% The entries for the remaining data sets are stored in additional offset blocks.
% The locations of those blocks are contained in a block table starting at P.
offset = [];
fseek(fid, p, 'bof');
additional = fread(fid, 128, 'uint32');
for i=1:sum(additional>0)
fseek(fid, additional(i), 'bof');
tmp = fread(fid, 128, 'uint32')';
offset = cat(2, offset, tmp);
end
clear additional i tmp
end
% ROBOOS: remove the zeros in the offset array for non-existing datasets
offset = offset(1:nd);
% ROBOOS: how to determine the data datatype?
switch datatype
case 'uint32'
datasize = 4;
case 'int32'
datasize = 4;
case 'uint16'
datasize = 2;
case 'int16'
datasize = 2;
otherwise
error('unsupported datatype');
end
% If the data sets are n-dimensional arrays, the first n u32 longwords in each data
% set contain the array dimensions, imediately followed by the data values.
% ROBOOS: how to determine whether they are n-dimensional arrays?
% determine the number of dimensions by looking at the first array
% assume that all subsequent arrays have the same number of dimensions
if nd>1
estimate = (offset(2)-offset(1)); % initial estimate for the number of datasize in the array
fseek(fid, offset(1), 'bof');
n = fread(fid, 1, 'int32');
while mod(estimate-4*length(n), (datasize*prod(n)))~=0
% determine the number and size of additional array dimensions
n = cat(1, n, fread(fid, 1, 'int32'));
if datasize*prod(n)>estimate
error('could not determine array size');
end
end
ndim = length(n);
clear estimate n
else
estimate = filesize(fid)-offset;
fseek(fid, offset(1), 'bof');
n = fread(fid, 1, 'int32');
while mod(estimate-4*length(n), (datasize*prod(n)))~=0
% determine the number and size of additional array dimensions
n = cat(1, n, fread(fid, 1, 'int32'));
if datasize*prod(n)>estimate
error('could not determine array size');
end
end
ndim = length(n);
clear estimate n
end
% read the dimensions and the data from each array
for i=1:nd
fseek(fid, offset(i), 'bof');
n = fread(fid, ndim, 'int32')';
% Labview uses the C-convention for storing data, and MATLAB uses the Fortran convention
n = fliplr(n);
data{i} = fread(fid, n, datatype);
end
clear i n ndim
fclose(fid);
% put all local variables into a structure, this is a bit unusual programming style
% the output structure is messy, but contains all relevant information
tmp = whos;
dat = [];
for i=1:length(tmp)
if isempty(strmatch(tmp(i).name, {'tmp', 'fid', 'ans', 'handles'}))
dat = setfield(dat, tmp(i).name, eval(tmp(i).name));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% local helper function to determine the size of the file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = filesize(fid)
fp = ftell(fid);
fseek(fid, 0, 'eof');
siz = ftell(fid);
fseek(fid, fp, 'bof');
|
github
|
lcnbeapp/beapp-master
|
sphericalSplineInterpolate.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/private/sphericalSplineInterpolate.m
| 5,226 |
utf_8
|
27ce6fd83adee8c3957c477f73dad771
|
function [W,Gss,Gds,Hds]=sphericalSplineInterpolate(src,dest,lambda,order,type,tol)
%interpolate matrix for spherical interpolation
%
% W = sphericalSplineInterpolate(src,dest,lambda,order,type,tol)
%
% Inputs:
% src - [3 x N] old electrode positions
% dest - [3 x M] new electrode positions
% lambda - [float] regularisation parameter for smoothing the estimates (1e-5)
% order - [float] order of the polynomial interplotation to use (4)
% type - [str] one of; ('spline')
% 'spline' - spherical Spline
% 'slap' - surface Laplician (aka. CSD)
% tol - [float] tolerance for the legendre poly approx (1e-7)
% Outputs:
% W - [M x N] linear mapping matrix between old and new co-ords
%
% Based upon the paper: Perrin89
% Copyright 2009- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents, provided this copyright
% notice is retained, and note is made of any changes that have been
% made. This software and documents are distributed without any
% warranty, express or implied.
if ( nargin < 3 || isempty(lambda) ) lambda=1e-5; end;
if ( nargin < 4 || isempty(order) ) order=4; end;
if ( nargin < 5 || isempty(type)) type='spline'; end;
if ( nargin < 6 || isempty(tol) ) tol=eps; end;
% map the positions onto the sphere (not using repop, by JMH)
src = src ./repmat(sqrt(sum(src.^2)), size(src, 1), 1); % src = repop(src,'./',sqrt(sum(src.^2)));
dest = dest./repmat(sqrt(sum(dest.^2)), size(dest, 1), 1); % dest = repop(dest,'./',sqrt(sum(dest.^2)));
%calculate the cosine of the angle between the new and old electrodes. If
%the vectors are on top of each other, the result is 1, if they are
%pointing the other way, the result is -1
cosSS = src'*src; % angles between source positions
cosDS = dest'*src; % angles between destination positions
% Compute the interpolation matrix to tolerance tol
[Gss] = interpMx(cosSS,order,tol); % [nSrc x nSrc]
[Gds Hds] = interpMx(cosDS,order,tol); % [nDest x nSrc]
% Include the regularisation
if ( lambda>0 ) Gss = Gss+lambda*eye(size(Gss)); end;
% Compute the mapping to the polynomial coefficients space % [nSrc+1 x nSrc+1]
% N.B. this can be numerically unstable so use the PINV to solve..
muGss=1;%median(diag(Gss)); % used to improve condition number when inverting. Probably uncessary
%C = [ Gss muGss*ones(size(Gss,1),1)];
C = [ Gss muGss*ones(size(Gss,1),1);...
muGss*ones(1,size(Gss,2)) 0];
iC = pinv(C);
% Compute the mapping from source measurements and positions to destination positions
if ( strcmp(lower(type),'spline') )
W = [Gds ones(size(Gds,1),1).*muGss]*iC(:,1:end-1); % [nDest x nSrc]
elseif (strcmp(lower(type),'slap'))
W = Hds*iC(1:end-1,1:end-1);%(:,1:end-1); % [nDest x nSrc]
end
return;
%--------------------------------------------------------------------------
function [G,H]=interpMx(cosEE,order,tol)
% compute the interpolation matrix for this set of point pairs
if ( nargin < 3 || isempty(tol) ) tol=1e-10; end;
G=zeros(size(cosEE)); H=zeros(size(cosEE));
for i=1:numel(cosEE);
x = cosEE(i);
n=1; Pns1=1; Pn=x; % seeds for the legendre ploy recurence
tmp = ( (2*n+1) * Pn ) / ((n*n+n).^order);
G(i) = tmp ; % 1st element in the sum
H(i) = (n*n+n)*tmp; % 1st element in the sum
oGi=inf; dG=abs(G(i)); oHi=inf; dH=abs(H(i));
for n=2:500; % do the sum
Pns2=Pns1; Pns1=Pn; Pn=((2*n-1)*x*Pns1 - (n-1)*Pns2)./n; % legendre poly recurance
oGi=G(i); oHi=H(i);
tmp = ((2*n+1) * Pn) / ((n*n+n).^order) ;
G(i) = G(i) + tmp; % update function estimate, spline interp
H(i) = H(i) + (n*n+n)*tmp; % update function estimate, SLAP
dG = (abs(oGi-G(i))+dG)/2; dH=(abs(oHi-H(i))+dH)/2; % moving ave gradient est for convergence
%fprintf('%d) dG =%g \t dH = %g\n',n,dG,dH);%abs(oGi-G(i)),abs(oHi-H(i)));
if ( dG<tol && dH<tol ) break; end; % stop when tol reached
end
end
G= G./(4*pi);
H= H./(4*pi);
return;
%--------------------------------------------------------------------------
function testCase()
src=randn(3,100); src(3,:)=abs(src(3,:)); src=repop(src,'./',sqrt(sum(src.^2))); % source points on sphere
dest=rand(3,30); dest(3,:)=abs(dest(3,:)); dest=repop(dest,'./',sqrt(sum(dest.^2))); % dest points on sphere
clf;scatPlot(src,'b.');
W=sphericalSplineInterpolate(src,dest);
W=sphericalSplineInterpolate(src(:,1:70),src);
clf;imagesc(W);
clf;jplot(src(1:2,1:70),W(70:75,:)');
z=jf_load('eeg/vgrid/nips2007/1-rect230ms','jh','flip_rc_sep');
z=jf_retain(z,'dim','ch','idx',[z.di(1).extra.iseeg]);
lambda=0; order=4;
chPos=[z.di(1).extra.pos3d];
incIdx=1:size(dest,2)-3; exIdx=setdiff(1:size(dest,2),incIdx); % included + excluded channels
W=sphericalSplineInterpolate(chPos(:,incIdx),chPos,lambda,order); % estimate the removed channels
clf;imagesc(W);
clf;jplot(chPos(:,incIdx),W(exIdx,:)');
% compare estimated with true
X=z.X(:,:,2);
Xest=W*z.X(incIdx,:,2);
clf;mcplot([X(exIdx(1),:);Xest(exIdx(1),:)]')
clf;subplot(211);mcplot(X');subplot(212);mcplot(Xest');
|
github
|
lcnbeapp/beapp-master
|
ft_write_cifti.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/ft_write_cifti.m
| 31,321 |
utf_8
|
b43578a0120b4ea370bcde78c9bb3034
|
function ft_write_cifti(filename, source, varargin)
% FT_WRITE_CIFTI writes functional data or functional connectivity to a cifti-2
% file. The geometrical description of the brainordinates can consist of
% triangulated surfaces or voxels in a regular 3-D volumetric grid. The functional
% data can consist of a dense or a parcellated representation. Furthermore, it
% writes the geometrical description of the surfaces to one or multiple gifti
% files.
%
% Use as
% ft_write_cifti(filename, data, ...)
% where the filename is a string and the data according to the description below.
%
% If the input data describes a dense representation of functional data, the data
% structure should conform to the FT_DATATYPE_SOURCE or FT_DATATYPE_VOLUME
% definition.
%
% If the input data describes a parcellated representation of functional data, the
% data structure should conform to the FT_DATATYPE_TIMELOCK or FT_DATATYPE_FREQ
% definition. In addition, the description of the geometry should be specified in
% the data.brainordinate field, which should conform to the FT_DATATYPE_SOURCE or
% FT_DATATYPE_VOLUME definition.
%
% Any optional input arguments should come in key-value pairs and may include
% 'parameter' = string, fieldname that contains the functional data
% 'brainstructure' = string, fieldname that describes the brain structures (default = 'brainstructure')
% 'parcellation' = string, fieldname that describes the parcellation (default = 'parcellation')
% 'precision' = string, can be 'single', 'double', 'int32', etc. (default ='single')
% 'writesurface' = boolean, can be false or true (default = true)
% 'debug' = boolean, write a debug.xml file (default = false)
%
% The brainstructure refers to the global anatomical structure, such as CortexLeft, Thalamus, etc.
% The parcellation refers to the the detailled parcellation, such as BA1, BA2, BA3, etc.
%
% See also FT_READ_CIFTI, FT_READ_MRI, FT_WRITE_MRI
% Copyright (C) 2013-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
parameter = ft_getopt(varargin, 'parameter');
brainstructure = ft_getopt(varargin, 'brainstructure'); % the default is determined further down
parcellation = ft_getopt(varargin, 'parcellation'); % the default is determined further down
precision = ft_getopt(varargin, 'precision', 'single');
writesurface = ft_getopt(varargin, 'writesurface', true);
debug = ft_getopt(varargin, 'debug', false);
if isfield(source, 'brainordinate')
% this applies to a parcellated data representation
% copy the geometrical description over in to the main structure
source = copyfields(source.brainordinate, source, fieldnames(source.brainordinate));
source = rmfield(source, 'brainordinate');
end
if isempty(brainstructure) && isfield(source, 'brainstructure') && isfield(source, 'brainstructurelabel')
% these fields are asumed to be present from ft_read_cifti
brainstructure = 'brainstructure';
end
if isempty(parcellation) && isfield(source, 'parcellation') && isfield(source, 'parcellationlabel')
% these fields are asumed to be present from ft_read_cifti
parcellation = 'parcellation';
end
if isfield(source, 'inside') && islogical(source.inside)
% convert into an indexed representation
source.inside = find(source.inside(:));
end
if isfield(source, 'dim') && ~isfield(source, 'transform')
% ensure that the volumetric description contains both dim and transform
source.transform = pos2transform(source.pos);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dat = source.(parameter);
dimord = getdimord(source, parameter);
switch dimord
case {'pos' 'pos_scalar'}
% NIFTI_INTENT_CONNECTIVITY_DENSE_SCALARS
extension = '.dscalar.nii';
intent_code = 3006;
intent_name = 'ConnDenseScalar';
dat = transpose(dat);
dimord = 'scalar_pos';
case 'pos_pos'
% NIFTI_INTENT_CONNECTIVITY_DENSE
extension = '.dconn.nii';
intent_code = 3001;
intent_name = 'ConnDense';
case 'pos_time'
% NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES
extension = '.dtseries.nii';
intent_code = 3002;
intent_name = 'ConnDenseSeries';
dat = transpose(dat);
dimord = 'time_pos';
case 'pos_freq'
% NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES
extension = '.dtseries.nii';
intent_code = 3002;
intent_name = 'ConnDenseSeries';
dat = transpose(dat);
dimord = 'freq_pos';
case {'chan' 'chan_scalar'}
% NIFTI_INTENT_CONNECTIVITY_PARCELLATED_SCALARS
extension = '.pscalar.nii';
intent_code = 3006;
intent_name = 'ConnParcelScalr'; % due to length constraints of the NIfTI header field, the last "a" is removed
dat = transpose(dat);
dimord = 'scalar_chan';
case 'chan_chan'
% NIFTI_INTENT_CONNECTIVITY_PARCELLATED
extension = '.pconn.nii';
intent_code = 3003;
intent_name = 'ConnParcels';
case 'chan_time'
% NIFTI_INTENT_CONNECTIVITY_PARCELLATED_SERIES
extension = '.ptseries.nii';
intent_code = 3004;
intent_name = 'ConnParcelSries'; % due to length constraints of the NIfTI header field, the first "e" is removed
dat = transpose(dat);
dimord = 'time_chan';
case 'chan_freq'
% NIFTI_INTENT_CONNECTIVITY_PARCELLATED_SERIES
extension = '.ptseries.nii';
intent_code = 3004;
intent_name = 'ConnParcelSries'; % due to length constraints of the NIfTI header field, the first "e" is removed
dat = transpose(dat);
dimord = 'freq_chan';
case {'chan_chan_time' 'chan_chan_freq'}
% NIFTI_INTENT_CONNECTIVITY_PARCELLATED_PARCELLATED_SERIES
extension = '.pconnseries.nii';
intent_code = 3011;
intent_name = 'ConnPPSr';
case {'pos_pos_time' 'pos_pos_freq'}
% this is not part of the Cifti v2 specification, but would have been NIFTI_INTENT_CONNECTIVITY_DENSE_DENSE_SERIES
extension = '.dconnseries.nii'; % user's choise
intent_code = 3000;
intent_name = 'ConnUnknown';
otherwise
error('unsupported dimord "%s"', dimord);
end % switch
% determine each of the dimensions
dimtok = tokenize(dimord, '_');
[p, f, x] = fileparts(filename);
if isequal(x, '.nii')
filename = fullfile(p, f); % strip the extension
end
[p, f, x] = fileparts(filename);
if any(isequal(x, {'.dtseries', '.ptseries', '.dconn', '.pconn', '.dscalar', '.pscalar'}))
filename = fullfile(p, f); % strip the extension
end
% add the full cifti extension to the filename
[p, f, x] = fileparts(filename);
filename = fullfile(p, [f x extension]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get the description of the geometry
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ModelType = zeros(size(source.pos,1), 1);
ModelTypelabel = {'SURFACE', 'VOXEL'};
if isfield(source, 'transform')
tolerance = 0.01; % in milimeter
ijk = ft_warp_apply(inv(source.transform), source.pos); % convert from xyz to ijk
sel = sqrt(sum((ijk - round(ijk)).^2,2))<tolerance;
% note that some surface points might be marked as voxel if they happen to fall on a grid point
ModelType(~sel) = 1; % surface
ModelType( sel) = 2; % voxel
else
ModelType(:) = 1; % surface
end
if isfield(source, brainstructure)
BrainStructure = source.( brainstructure );
BrainStructurelabel = source.([brainstructure 'label']);
elseif isfield(source, 'pos')
BrainStructure = ones(size(source.pos,1),1);
BrainStructurelabel = {'INVALID'};
end
if isfield(source, parcellation)
Parcellation = source.( parcellation );
Parcellationlabel = source.([parcellation 'label']);
elseif isfield(source, 'pos')
Parcellation = ones(size(source.pos,1),1);
Parcellationlabel = {'INVALID'};
end
% ensure that these are column vectors
try, BrainStructure = BrainStructure(:); end
try, Parcellation = Parcellation(:); end
list1 = {
'CIFTI_STRUCTURE_CORTEX_LEFT'
'CIFTI_STRUCTURE_CORTEX_RIGHT'
'CIFTI_STRUCTURE_CEREBELLUM'
'CIFTI_STRUCTURE_ACCUMBENS_LEFT'
'CIFTI_STRUCTURE_ACCUMBENS_RIGHT'
'CIFTI_STRUCTURE_ALL_GREY_MATTER'
'CIFTI_STRUCTURE_ALL_WHITE_MATTER'
'CIFTI_STRUCTURE_AMYGDALA_LEFT'
'CIFTI_STRUCTURE_AMYGDALA_RIGHT'
'CIFTI_STRUCTURE_BRAIN_STEM'
'CIFTI_STRUCTURE_CAUDATE_LEFT'
'CIFTI_STRUCTURE_CAUDATE_RIGHT'
'CIFTI_STRUCTURE_CEREBELLAR_WHITE_MATTER_LEFT'
'CIFTI_STRUCTURE_CEREBELLAR_WHITE_MATTER_RIGHT'
'CIFTI_STRUCTURE_CEREBELLUM_LEFT'
'CIFTI_STRUCTURE_CEREBELLUM_RIGHT'
'CIFTI_STRUCTURE_CEREBRAL_WHITE_MATTER_LEFT'
'CIFTI_STRUCTURE_CEREBRAL_WHITE_MATTER_RIGHT'
'CIFTI_STRUCTURE_CORTEX'
'CIFTI_STRUCTURE_DIENCEPHALON_VENTRAL_LEFT'
'CIFTI_STRUCTURE_DIENCEPHALON_VENTRAL_RIGHT'
'CIFTI_STRUCTURE_HIPPOCAMPUS_LEFT'
'CIFTI_STRUCTURE_HIPPOCAMPUS_RIGHT'
'CIFTI_STRUCTURE_INVALID'
'CIFTI_STRUCTURE_OTHER'
'CIFTI_STRUCTURE_OTHER_GREY_MATTER'
'CIFTI_STRUCTURE_OTHER_WHITE_MATTER'
'CIFTI_STRUCTURE_PALLIDUM_LEFT'
'CIFTI_STRUCTURE_PALLIDUM_RIGHT'
'CIFTI_STRUCTURE_PUTAMEN_LEFT'
'CIFTI_STRUCTURE_PUTAMEN_RIGHT'
'CIFTI_STRUCTURE_THALAMUS_LEFT'
'CIFTI_STRUCTURE_THALAMUS_RIGHT'
};
list2 = {
'CORTEX_LEFT'
'CORTEX_RIGHT'
'CEREBELLUM'
'ACCUMBENS_LEFT'
'ACCUMBENS_RIGHT'
'ALL_GREY_MATTER'
'ALL_WHITE_MATTER'
'AMYGDALA_LEFT'
'AMYGDALA_RIGHT'
'BRAIN_STEM'
'CAUDATE_LEFT'
'CAUDATE_RIGHT'
'CEREBELLAR_WHITE_MATTER_LEFT'
'CEREBELLAR_WHITE_MATTER_RIGHT'
'CEREBELLUM_LEFT'
'CEREBELLUM_RIGHT'
'CEREBRAL_WHITE_MATTER_LEFT'
'CEREBRAL_WHITE_MATTER_RIGHT'
'CORTEX'
'DIENCEPHALON_VENTRAL_LEFT'
'DIENCEPHALON_VENTRAL_RIGHT'
'HIPPOCAMPUS_LEFT'
'HIPPOCAMPUS_RIGHT'
'INVALID'
'OTHER'
'OTHER_GREY_MATTER'
'OTHER_WHITE_MATTER'
'PALLIDUM_LEFT'
'PALLIDUM_RIGHT'
'PUTAMEN_LEFT'
'PUTAMEN_RIGHT'
'THALAMUS_LEFT'
'THALAMUS_RIGHT'
};
% replace the short name with the long name, i.e add 'CIFTI_STRUCTURE_' where applicable
[dum, indx1, indx2] = intersect(BrainStructurelabel, list2);
BrainStructurelabel(indx1) = list1(indx2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct the XML object describing the geometry
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ensure that the external toolbox is present, this adds gifti/@xmltree
ft_hastoolbox('gifti', 1);
tree = xmltree;
tree = set(tree, 1, 'name', 'CIFTI');
tree = attributes(tree, 'add', find(tree, 'CIFTI'), 'Version', '2');
tree = add(tree, find(tree, 'CIFTI'), 'element', 'Matrix');
% The cifti file contains one Matrix, which contains one or multiple MatrixIndicesMap, each containing
% CIFTI_INDEX_TYPE_BRAIN_MODELS The dimension represents one or more brain models.
% CIFTI_INDEX_TYPE_PARCELS The dimension represents a parcellation scheme.
% CIFTI_INDEX_TYPE_SERIES The dimension represents a series of regular samples.
% CIFTI_INDEX_TYPE_SCALARS The dimension represents named scalar maps.
% CIFTI_INDEX_TYPE_LABELS The dimension represents named label maps.
if any(strcmp(dimtok, 'time'))
% construct the MatrixIndicesMap for the time axis in the data
% NumberOfSeriesPoints="2" SeriesExponent="0" SeriesStart="0.0000000000" SeriesStep="1.0000000000" SeriesUnit="SECOND"
tree = add(tree, find(tree, 'CIFTI/Matrix'), 'element', 'MatrixIndicesMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
if length(source.time)>1
SeriesStep = median(diff(source.time)); % this assumes evenly spaced samples
else
SeriesStep = 0;
end
tree = attributes(tree, 'add', branch, 'AppliesToMatrixDimension', printwithcomma(find(strcmp(dimtok, 'time'))-1));
tree = attributes(tree, 'add', branch, 'IndicesMapToDataType', 'CIFTI_INDEX_TYPE_SERIES');
tree = attributes(tree, 'add', branch, 'NumberOfSeriesPoints', num2str(length(source.time)));
tree = attributes(tree, 'add', branch, 'SeriesExponent', num2str(0));
tree = attributes(tree, 'add', branch, 'SeriesStart', num2str(source.time(1)));
tree = attributes(tree, 'add', branch, 'SeriesStep', num2str(SeriesStep));
tree = attributes(tree, 'add', branch, 'SeriesUnit', 'SECOND');
end % if time
if any(strcmp(dimtok, 'freq'))
% construct the MatrixIndicesMap for the frequency axis in the data
% NumberOfSeriesPoints="2" SeriesExponent="0" SeriesStart="0.0000000000" SeriesStep="1.0000000000" SeriesUnit="HZ"
tree = add(tree, find(tree, 'CIFTI/Matrix'), 'element', 'MatrixIndicesMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
if length(source.freq)>1
SeriesStep = median(diff(source.freq)); % this assumes evenly spaced samples
else
SeriesStep = 0;
end
tree = attributes(tree, 'add', branch, 'AppliesToMatrixDimension', printwithcomma(find(strcmp(dimtok, 'freq'))-1));
tree = attributes(tree, 'add', branch, 'IndicesMapToDataType', 'CIFTI_INDEX_TYPE_SCALARS');
tree = attributes(tree, 'add', branch, 'NumberOfSeriesPoints', num2str(length(source.freq)));
tree = attributes(tree, 'add', branch, 'SeriesExponent', num2str(0));
tree = attributes(tree, 'add', branch, 'SeriesStart', num2str(source.freq(1)));
tree = attributes(tree, 'add', branch, 'SeriesStep', num2str(SeriesStep));
tree = attributes(tree, 'add', branch, 'SeriesUnit', 'HZ');
end % if freq
if any(strcmp(dimtok, 'scalar'))
tree = add(tree, find(tree, 'CIFTI/Matrix'), 'element', 'MatrixIndicesMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
tree = attributes(tree, 'add', branch, 'AppliesToMatrixDimension', printwithcomma(find(strcmp(dimtok, 'scalar'))-1));
tree = attributes(tree, 'add', branch, 'IndicesMapToDataType', 'CIFTI_INDEX_TYPE_SCALARS');
tree = add(tree, branch, 'element', 'NamedMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/NamedMap');
branch = branch(end);
[tree, uid] = add(tree, branch, 'element', 'MapName');
tree = add(tree, uid, 'chardata', parameter);
end % if not freq and time
if any(strcmp(dimtok, 'pos'))
% construct the MatrixIndicesMap for the geometry
tree = add(tree, find(tree, 'CIFTI/Matrix'), 'element', 'MatrixIndicesMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
tree = attributes(tree, 'add', branch, 'AppliesToMatrixDimension', printwithcomma(find(strcmp(dimtok, 'pos'))-1));
tree = attributes(tree, 'add', branch, 'IndicesMapToDataType', 'CIFTI_INDEX_TYPE_BRAIN_MODELS');
if isfield(source, 'dim')
switch source.unit
case 'mm'
MeterExponent = -3;
case 'cm'
MeterExponent = -2;
case 'dm'
MeterExponent = -1;
case 'm'
MeterExponent = 0;
otherwise
error('unsupported source.unit')
end % case
[tree, uid] = add(tree, branch, 'element', 'Volume');
tree = attributes(tree, 'add', uid, 'VolumeDimensions', printwithcomma(source.dim));
[tree, uid] = add(tree, uid, 'element', 'TransformationMatrixVoxelIndicesIJKtoXYZ');
tree = attributes(tree, 'add', uid, 'MeterExponent', num2str(MeterExponent));
tree = add(tree, uid, 'chardata', printwithspace(source.transform')); % it needs to be transposed
end
for i=1:length(BrainStructurelabel)
% write one brainstructure for each group of vertices
if isempty(regexp(BrainStructurelabel{i}, '^CIFTI_STRUCTURE_', 'once'))
BrainStructurelabel{i} = ['CIFTI_STRUCTURE_' BrainStructurelabel{i}];
end
sel = (BrainStructure==i);
IndexCount = sum(sel);
IndexOffset = find(sel, 1, 'first') - 1; % zero offset
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
tree = add(tree, branch, 'element', 'BrainModel');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/BrainModel');
branch = branch(end);
if all(ModelType(sel)==find(strcmp(ModelTypelabel, 'VOXEL')))
tree = attributes(tree, 'add', branch, 'IndexOffset', printwithspace(IndexOffset));
tree = attributes(tree, 'add', branch, 'IndexCount', printwithspace(IndexCount));
tree = attributes(tree, 'add', branch, 'ModelType', 'CIFTI_MODEL_TYPE_VOXELS');
tree = attributes(tree, 'add', branch, 'BrainStructure', BrainStructurelabel{i});
tree = add(tree, branch, 'element', 'VoxelIndicesIJK');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/BrainModel/VoxelIndicesIJK');
branch = branch(end);
tmp = source.pos(sel,:);
tmp = ft_warp_apply(inv(source.transform), tmp);
tmp = round(tmp)' - 1; % transpose, zero offset
tree = add(tree, branch, 'chardata', printwithspace(tmp));
else
tmp = find(sel)-IndexOffset-1; % zero offset
tree = attributes(tree, 'add', branch, 'IndexOffset', printwithspace(IndexOffset));
tree = attributes(tree, 'add', branch, 'IndexCount', printwithspace(IndexCount));
tree = attributes(tree, 'add', branch, 'ModelType', 'CIFTI_MODEL_TYPE_SURFACE');
tree = attributes(tree, 'add', branch, 'BrainStructure', BrainStructurelabel{i});
tree = attributes(tree, 'add', branch, 'SurfaceNumberOfVertices', printwithspace(IndexCount));
tree = add(tree, branch, 'element', 'VertexIndices');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/BrainModel/VertexIndices');
branch = branch(end);
tree = add(tree, branch, 'chardata', printwithspace(tmp));
end
end % for each BrainStructurelabel
end % if pos
if any(strcmp(dimtok, 'chan'))
tree = add(tree, find(tree, 'CIFTI/Matrix'), 'element', 'MatrixIndicesMap');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
tree = attributes(tree, 'add', branch, 'AppliesToMatrixDimension', printwithcomma(find(strcmp(dimtok, 'chan'))-1));
tree = attributes(tree, 'add', branch, 'IndicesMapToDataType', 'CIFTI_INDEX_TYPE_PARCELS');
if isfield(source, 'dim')
switch source.unit
case 'mm'
MeterExponent = -3;
case 'cm'
MeterExponent = -2;
case 'dm'
MeterExponent = -1;
case 'm'
MeterExponent = 0;
otherwise
error('unsupported source.unit')
end % case
[tree, uid] = add(tree, branch, 'element', 'Volume');
tree = attributes(tree, 'add', uid, 'VolumeDimensions', printwithcomma(source.dim));
[tree, uid] = add(tree, uid, 'element', 'TransformationMatrixVoxelIndicesIJKtoXYZ');
tree = attributes(tree, 'add', uid, 'MeterExponent', num2str(MeterExponent));
tree = add(tree, uid, 'chardata', printwithspace(source.transform')); % it needs to be transposed
end
% surfaces are described with vertex positions (pos/pnt) and triangles (tri)
if isfield(source, 'pos') && isfield(source, 'tri')
% there is a surface description
for i=1:length(BrainStructurelabel)
sel = find(BrainStructure~=i);
[mesh.pnt, mesh.tri] = remove_vertices(source.pos, source.tri, sel);
mesh.unit = source.unit;
if isempty(mesh.pnt) || isempty(mesh.tri)
% the brainordinate positions in this brain structure are not connected with triangles, i.e. in the case of voxels
continue;
end
[tree, uid] = add(tree, branch, 'element', 'Surface');
tree = attributes(tree, 'add', uid, 'BrainStructure', BrainStructurelabel{i});
tree = attributes(tree, 'add', uid, 'SurfaceNumberOfVertices', printwithspace(size(mesh.pnt,1)));
end
end % if tri
parcel = source.label; % channels are used to represent parcels
for i=1:numel(parcel)
indx = find(strcmp(Parcellationlabel, parcel{i}));
if isempty(indx)
continue
end
selParcel = (Parcellation==indx);
structure = BrainStructurelabel(unique(BrainStructure(selParcel)));
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap');
branch = branch(end);
tree = add(tree, branch, 'element', 'Parcel');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/Parcel');
branch = branch(end);
tree = attributes(tree, 'add', branch, 'Name', parcel{i});
% this is for pretty printing
maxparcellen = max(cellfun(@length, parcel));
for j=1:length(structure)
selStructure = (BrainStructure==find(strcmp(BrainStructurelabel, structure{j})));
indx = find(selParcel & selStructure);
offset = find(selStructure, 1, 'first') - 1;
fprintf('parcel %s contains %5d vertices in %s\n', stringpad(parcel{i}, maxparcellen), length(indx), structure{j});
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/Parcel');
branch = branch(end);
if all(ModelType(selStructure)==find(strcmp(ModelTypelabel, 'VOXEL')))
tree = add(tree, branch, 'element', 'VoxelIndicesIJK');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/Parcel/VoxelIndicesIJK');
branch = branch(end);
tmp = ft_warp_apply(inv(source.transform), source.pos(indx,:));
tmp = round(tmp)' - 1; % transpose, zero offset
tree = add(tree, branch, 'chardata', printwithspace(tmp));
else
tree = add(tree, branch, 'element', 'Vertices');
branch = find(tree, 'CIFTI/Matrix/MatrixIndicesMap/Parcel/Vertices');
branch = branch(end);
tree = attributes(tree, 'add', branch, 'BrainStructure', structure{j});
tmp = indx - offset - 1;
tree = add(tree, branch, 'chardata', printwithspace(tmp));
end
end % for each structure contained in this parcel
end % for each parcel
end % if chan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% write everything to file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 4 bytes with the size of the header, 384 for nifti-1 or 540 for nifti-2
% 540 bytes with the nifti-2 header
% 4 bytes that indicate the presence of a header extension [1 0 0 0]
% 4 bytes with the size of the header extension in big endian?
% 4 bytes with the header extension code NIFTI_ECODE_CIFTI [0 0 0 32]
% variable number of bytes with the xml section, at the end there might be some empty "junk"
% 8 bytes, presumaby with the size and type?
% variable number of bytes with the voxel data
xmlfile = [tempname '.xml']; % this will contain the cifti XML structure
save(tree, xmlfile); % write the XMLTREE object to disk
xmlfid = fopen(xmlfile, 'rb');
xmldat = fread(xmlfid, [1, inf], 'char');
fclose(xmlfid);
% we do not want the content of the XML elements to be nicely formatted, as it might create confusion when reading
% therefore detect and remove whitespace immediately following a ">" and preceding a "<"
whitespace = false(size(xmldat));
gt = int8('>');
lt = int8('<');
ws = int8(sprintf(' \t\r\n'));
b = find(xmldat==gt);
e = find(xmldat==lt);
b = b(1:end-1); % the XML section ends with ">", this is not of relevance
e = e(2:end); % the XML section starts with "<", this is not of relevance
b = b+1;
e = e-1;
for i=1:length(b)
for j=b(i):1:e(i)
if any(ws==xmldat(j))
whitespace(j) = true;
else
break
end
end
end
for i=1:length(b)
for j=e(i):-1:b(i)
if any(ws==xmldat(j))
whitespace(j) = true;
else
break
end
end
end
% keep it if there is _only_ whitespace between the ">" and "<"
for i=1:length(b)
if all(whitespace(b(i):e(i)))
whitespace(b(i):e(i)) = false;
end
end
% remove the padding whitespace
xmldat = xmldat(~whitespace);
% the header extension needs to be aligned
xmlsize = length(xmldat);
xmlpad = ceil((xmlsize+8)/16)*16 - (xmlsize+8);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct the NIFTI-2 header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hdr.magic = [110 43 50 0 13 10 26 10];
% see http://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/datatype.html
switch precision
case 'uint8'
hdr.datatype = 2;
case 'int16'
hdr.datatype = 4;
case 'int32'
hdr.datatype = 8;
case 'single'
hdr.datatype = 16;
case 'double'
hdr.datatype = 64;
case 'int8'
hdr.datatype = 256;
case 'uint16'
hdr.datatype = 512;
case 'uint32'
hdr.datatype = 768;
case 'uint64'
hdr.datatype = 1280;
case 'int64'
hdr.datatype = 1024;
otherwise
error('unsupported precision "%s"', precision);
end
switch precision
case {'uint8' 'int8'}
hdr.bitpix = 1*8;
case {'uint16' 'int16'}
hdr.bitpix = 2*8;
case {'uint32' 'int32'}
hdr.bitpix = 4*8;
case {'uint64' 'int64'}
hdr.bitpix = 8*8;
case 'single'
hdr.bitpix = 4*8;
case 'double'
hdr.bitpix = 8*8;
otherwise
error('unsupported precision "%s"', precision);
end
% dim(1) represents the number of dimensions
% for a normal nifti file, dim(2:4) are x, y, z, dim(5) is time
% cifti makes use of dim(6:8), which are free to choose
hdr.dim = [4+length(dimtok) 1 1 1 1 1 1 1];
% the nifti specification does not allow for more than 7 dimensions to be specified
assert(hdr.dim(1)<8);
for i=1:length(dimtok)
switch dimtok{i}
case 'pos'
hdr.dim(5+i) = size(source.pos,1);
case 'chan'
hdr.dim(5+i) = numel(source.label);
case 'time'
hdr.dim(5+i) = numel(source.time);
case 'freq'
hdr.dim(5+i) = numel(source.freq);
case 'scalar'
hdr.dim(5+i) = 1;
otherwise
error('unsupported dimord "%s"', dimord)
end
end
hdr.intent_p1 = 0;
hdr.intent_p2 = 0;
hdr.intent_p3 = 0;
hdr.pixdim = [0 1 1 1 1 1 1 1];
hdr.vox_offset = 4+540+8+xmlsize+xmlpad;
hdr.scl_slope = 1; % WorkBench sets scl_slope/scl_inter to 1 and 0, although 0 and 0 would also be fine - both mean the same thing according to the nifti spec
hdr.scl_inter = 0;
hdr.cal_max = 0;
hdr.cal_min = 0;
hdr.slice_duration = 0;
hdr.toffset = 0;
hdr.slice_start = 0;
hdr.slice_end = 0;
hdr.descrip = char(zeros(1,80));
hdr.aux_file = char(zeros(1,24));
hdr.qform_code = 0;
hdr.sform_code = 0;
hdr.quatern_b = 0;
hdr.quatern_c = 0;
hdr.quatern_d = 0;
hdr.qoffset_x = 0;
hdr.qoffset_y = 0;
hdr.qOffset_z = 0;
hdr.srow_x = [0 0 0 0];
hdr.srow_y = [0 0 0 0];
hdr.srow_z = [0 0 0 0];
hdr.slice_code = 0;
hdr.xyzt_units = 0;
hdr.intent_code = intent_code;
hdr.intent_name = cat(2, intent_name, zeros(1, 16-length(intent_name))); % zero-pad up to 16 characters
hdr.dim_info = 0;
hdr.unused_str = char(zeros(1,15));
% open the file
fid = fopen(filename, 'wb');
% write the header, this is 4+540 bytes
write_nifti2_hdr(fid, hdr);
if debug
try
% write the xml section to a temporary file for debugging
xmlfile = 'debug.xml';
tmp = fopen(xmlfile, 'w');
fwrite(tmp, xmldat, 'char');
fclose(tmp);
end
end
% write the cifti header extension
fwrite(fid, [1 0 0 0], 'uint8');
fwrite(fid, 8+xmlsize+xmlpad, 'int32'); % esize
fwrite(fid, 32, 'int32'); % etype
fwrite(fid, xmldat, 'char'); % write the ascii XML section
fwrite(fid, zeros(1,xmlpad), 'uint8'); % zero-pad to the next 16 byte boundary
% write the actual data
fwrite(fid, dat, precision);
fclose(fid);
% write the surfaces as gifti files
if writesurface && isfield(source, 'pos') && isfield(source, 'tri')
if isfield(source, brainstructure)
% it contains information about anatomical structures, including cortical surfaces
for i=1:length(BrainStructurelabel)
sel = find(BrainStructure~=i);
[mesh.pnt, mesh.tri] = remove_vertices(source.pos, source.tri, sel);
mesh.unit = source.unit;
if isempty(mesh.pnt) || isempty(mesh.tri)
% the brainordinate positions in this brain structure are not connected with triangles, i.e. in the case of voxels
continue;
end
if ~isempty(regexp(BrainStructurelabel{i}, '^CIFTI_STRUCTURE_', 'once'))
BrainStructurelabel{i} = BrainStructurelabel{i}(17:end);
end
[p, f, x] = fileparts(filename);
filetok = tokenize(f, '.');
surffile = fullfile(p, [filetok{1} '.' BrainStructurelabel{i} '.surf.gii']);
fprintf('writing %s surface to %s\n', BrainStructurelabel{i}, surffile);
ft_write_headshape(surffile, mesh, 'format', 'gifti');
end
else
mesh.pnt = source.pos;
mesh.tri = source.tri;
mesh.unit = source.unit;
[p, f, x] = fileparts(filename);
filetok = tokenize(f, '.');
surffile = fullfile(p, [filetok{1} '.surf.gii']);
ft_write_headshape(surffile, mesh, 'format', 'gifti');
end
end % if writesurface and isfield tri
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to print lists of numbers with appropriate whitespace
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = printwithspace(x)
x = x(:)'; % convert to vector
if all(round(x)==x)
% print as integer value
s = sprintf('%d ', x);
else
% print as floating point value
s = sprintf('%f ', x);
end
s = s(1:end-1);
function s = printwithcomma(x)
x = x(:)'; % convert to vector
if all(round(x)==x)
% print as integer value
s = sprintf('%d,', x);
else
% print as floating point value
s = sprintf('%f,', x);
end
s = s(1:end-1);
function s = stringpad(s, n)
while length(s)<n
s = [' ' s];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION from roboos/matlab/triangle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pntR, triR] = remove_vertices(pnt, tri, removepnt)
npnt = size(pnt,1);
ntri = size(tri,1);
if all(removepnt==0 | removepnt==1)
removepnt = find(removepnt);
end
% remove the vertices and determine the new numbering (indices) in numb
keeppnt = setdiff(1:npnt, removepnt);
numb = zeros(1,npnt);
numb(keeppnt) = 1:length(keeppnt);
% look for triangles referring to removed vertices
removetri = false(ntri,1);
removetri(ismember(tri(:,1), removepnt)) = true;
removetri(ismember(tri(:,2), removepnt)) = true;
removetri(ismember(tri(:,3), removepnt)) = true;
% remove the vertices and triangles
pntR = pnt(keeppnt, :);
triR = tri(~removetri,:);
% renumber the vertex indices for the triangles
triR = numb(triR);
|
github
|
lcnbeapp/beapp-master
|
ft_chantype.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/ft_chantype.m
| 28,384 |
utf_8
|
522cd6f4bd6d33431a8b221f56de3b4c
|
function chantype = ft_chantype(input, desired)
% FT_CHANTYPE determines for each individual channel what chantype of data it
% represents, e.g. a planar gradiometer, axial gradiometer, magnetometer,
% trigger channel, etc. If you want to know what the acquisition system is
% (e.g. ctf151 or neuromag306), you should not use this function but
% FT_SENSTYPE instead.
%
% Use as
% type = ft_chantype(hdr)
% type = ft_chantype(sens)
% type = ft_chantype(label)
% or as
% type = ft_chantype(hdr, desired)
% type = ft_chantype(sens, desired)
% type = ft_chantype(label, desired)
%
% If the desired unit is not specified as second input argument, this
% function returns a Nchan*1 cell-array with a string describing the type
% of each channel.
%
% If the desired unit is specified as second input argument, this function
% returns a Nchan*1 boolean vector with "true" for the channels of the
% desired type and "false" for the ones that do not match.
%
% The specification of the channel types depends on the acquisition system,
% for example the ctf275 system includes the following tyoe of channels:
% meggrad, refmag, refgrad, adc, trigger, eeg, headloc, headloc_gof.
%
% See also FT_READ_HEADER, FT_SENSTYPE, FT_CHANUNIT
% Copyright (C) 2008-2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout
% this is to avoid a recursion loop
persistent recursion
if isempty(recursion)
recursion = false;
end
if nargin<2
desired = [];
end
% determine the type of input, this is handled similarly as in FT_CHANUNIT
isheader = isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'Fs');
isdata = isa(input, 'struct') && ~isheader && (isfield(input, 'hdr') || isfield(input, 'grad') || isfield(input, 'elec') || isfield(input, 'opto'));
isgrad = isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'pnt') && isfield(input, 'ori'); % old style
iselec = isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'pnt') && ~isfield(input, 'ori'); % old style
isgrad = (isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'coilpos')) || isgrad; % new style
iselec = (isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'elecpos')) || iselec; % new style
isopto = isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'transceiver');
islabel = isa(input, 'cell') && ~isempty(input) && isa(input{1}, 'char');
if isheader
% this speeds up the caching in real-time applications
input.nSamples = 0;
end
current_argin = {input, desired};
if isequal(current_argin, previous_argin)
% don't do the chantype detection again, but return the previous output from cache
chantype = previous_argout{1};
return
end
if isdata
% the hdr, grad, elec or opto structure might have a different set of channels
origlabel = input.label;
if isfield(input, 'hdr')
input = input.hdr;
isheader = true;
elseif isfield(input, 'grad')
input = input.grad;
isgrad = true;
elseif isfield(input, 'elec')
input = input.elec;
iselec = true;
elseif isfield(input, 'opto')
input = input.opto;
isopto = true;
else
% at least it contains channel labels
islabel = true;
end
end
if isheader
label = input.label;
numchan = length(label);
elseif isgrad
label = input.label;
numchan = length(label);
elseif iselec
label = input.label;
numchan = length(label);
elseif islabel
label = input;
numchan = length(label);
elseif isfield(input, 'label')
% this is a last resort: I don't know what it is, but perhaps the labels are informative
label = input.label;
numchan = length(label);
else
error('the input that was provided to this function cannot be deciphered');
end
if isfield(input, 'chantype')
% start with the provided channel types
chantype = input.chantype(:);
else
% start with unknown chantype for all channels
chantype = repmat({'unknown'}, numchan, 1);
end
if ft_senstype(input, 'unknown')
% don't bother doing all subsequent checks to determine the chantype of sensor array
elseif isheader && (ft_senstype(input, 'neuromag') || ft_senstype(input, 'babysquid74'))
% channames-KI is the channel kind, 1=meg, 202=eog, 2=eeg, 3=trigger (I am not sure, but have inferred this from a single test file)
% chaninfo-TY is the Coil chantype (0=magnetometer, 1=planar gradiometer)
if isfield(input, 'orig') && isfield(input.orig, 'channames')
for sel=find(input.orig.channames.KI(:)==202)'
chantype{sel} = 'eog';
end
for sel=find(input.orig.channames.KI(:)==2)'
chantype{sel} = 'eeg';
end
for sel=find(input.orig.channames.KI(:)==3)'
chantype{sel} = 'digital trigger';
end
% determine the MEG channel subtype
selmeg=find(input.orig.channames.KI(:)==1)';
for i=1:length(selmeg)
if input.orig.chaninfo.TY(i)==0
chantype{selmeg(i)} = 'megmag';
elseif input.orig.chaninfo.TY(i)==1
% FIXME this might also be a axial gradiometer in case the BabySQUID data is read with the old reading routines
chantype{selmeg(i)} = 'megplanar';
end
end
elseif isfield(input, 'orig') && isfield(input.orig, 'chs') && isfield(input.orig.chs, 'coil_type')
% all the chs.kinds and chs.coil_types are obtained from the MNE manual, p.210-211
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==2)' % planar gradiometers
chantype(sel) = {'megplanar'}; %Neuromag-122 planar gradiometer
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3012)' %planar gradiometers
chantype(sel) = {'megplanar'}; %Type T1 planar grad
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3013)' %planar gradiometers
chantype(sel) = {'megplanar'}; %Type T2 planar grad
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3014)' %planar gradiometers
chantype(sel) = {'megplanar'}; %Type T3 planar grad
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3022)' %magnetometers
chantype(sel) = {'megmag'}; %Type T1 magenetometer
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3023)' %magnetometers
chantype(sel) = {'megmag'}; %Type T2 magenetometer
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==3024)' %magnetometers
chantype(sel) = {'megmag'}; %Type T3 magenetometer
end
for sel=find([input.orig.chs.kind]==1 & [input.orig.chs.coil_type]==7001)' %axial gradiometer
chantype(sel) = {'megaxial'};
end
for sel=find([input.orig.chs.kind]==301)' %MEG reference channel, located far from head
chantype(sel) = {'ref'};
end
for sel=find([input.orig.chs.kind]==2)' %EEG channels
chantype(sel) = {'eeg'};
end
for sel=find([input.orig.chs.kind]==201)' %MCG channels
chantype(sel) = {'mcg'};
end
for sel=find([input.orig.chs.kind]==3)' %Stim channels
if any([input.orig.chs(sel).logno] == 101) %new systems: 101 (and 102, if enabled) are digital; low numbers are 'pseudo-analog' (if enabled)
chantype(sel([input.orig.chs(sel).logno] == 101)) = {'digital trigger'};
chantype(sel([input.orig.chs(sel).logno] == 102)) = {'digital trigger'};
chantype(sel([input.orig.chs(sel).logno] <= 32)) = {'analog trigger'};
others = [input.orig.chs(sel).logno] > 32 & [input.orig.chs(sel).logno] ~= 101 & ...
[input.orig.chs(sel).logno] ~= 102;
chantype(sel(others)) = {'other trigger'};
elseif any([input.orig.chs(sel).logno] == 14) %older systems: STI 014/015/016 are digital; lower numbers 'pseudo-analog'(if enabled)
chantype(sel([input.orig.chs(sel).logno] == 14)) = {'digital trigger'};
chantype(sel([input.orig.chs(sel).logno] == 15)) = {'digital trigger'};
chantype(sel([input.orig.chs(sel).logno] == 16)) = {'digital trigger'};
chantype(sel([input.orig.chs(sel).logno] <= 13)) = {'analog trigger'};
others = [input.orig.chs(sel).logno] > 16;
chantype(sel(others)) = {'other trigger'};
else
warning('There does not seem to be a suitable trigger channel.');
chantype(sel) = {'other trigger'};
end
end
for sel=find([input.orig.chs.kind]==202)' %EOG
chantype(sel) = {'eog'};
end
for sel=find([input.orig.chs.kind]==302)' %EMG
chantype(sel) = {'emg'};
end
for sel=find([input.orig.chs.kind]==402)' %ECG
chantype(sel) = {'ecg'};
end
for sel=find([input.orig.chs.kind]==502)' %MISC
chantype(sel) = {'misc'};
end
for sel=find([input.orig.chs.kind]==602)' %Resp
chantype(sel) = {'respiration'};
end
end
elseif ft_senstype(input, 'babysquid74')
% the name can be something like "MEG 001" or "MEG001" or "MEG 0113" or "MEG0113"
% i.e. with two or three digits and with or without a space
sel = myregexp('^MEG', label);
chantype(sel) = {'megaxial'};
elseif ft_senstype(input, 'neuromag122')
% the name can be something like "MEG 001" or "MEG001" or "MEG 0113" or "MEG0113"
% i.e. with two or three digits and with or without a space
sel = myregexp('^MEG', label);
chantype(sel) = {'megplanar'};
elseif ft_senstype(input, 'neuromag306') && isgrad
% there should be 204 planar gradiometers and 102 axial magnetometers
if isfield(input, 'tra')
tmp = sum(abs(input.tra),2);
sel = (tmp==median(tmp));
chantype(sel) = {'megplanar'};
sel = (tmp~=median(tmp));
chantype(sel) = {'megmag'};
end
elseif ft_senstype(input, 'neuromag306') && islabel
sel = myregexp('^MEG.*1$', label);
chantype(sel) = {'megmag'};
sel = myregexp('^MEG.*2$', label);
chantype(sel) = {'megplanar'};
sel = myregexp('^MEG.*3$', label);
chantype(sel) = {'megplanar'};
elseif ft_senstype(input, 'neuromag306_combined') && islabel
% the magnetometers are detected, the combined channels remain unknown
sel = myregexp('^MEG.*1$', label);
chantype(sel) = {'megmag'};
elseif ft_senstype(input, 'ctf') && isheader
% According to one source of information meg channels are 5, refmag 0,
% refgrad 1, adcs 18, trigger 11, eeg 9.
%
% According to another source of information it is as follows
% refMagnetometers: 0
% refGradiometers: 1
% meg_sens: 5
% eeg_sens: 9
% adc: 10
% stim_ref: 11
% video_time: 12
% sam: 15
% virtual_channels: 16
% sclk_ref: 17
% start with an empty one
origSensType = [];
if isfield(input, 'orig')
if isfield(input.orig, 'sensType') && isfield(input.orig, 'Chan')
% the header was read using the open-source MATLAB code that originates from CTF and that was modified by the FCDC
origSensType = input.orig.sensType;
elseif isfield(input.orig, 'res4') && isfield(input.orig.res4, 'senres')
% the header was read using the CTF p-files, i.e. readCTFds
origSensType = [input.orig.res4.senres.sensorTypeIndex];
elseif isfield(input.orig, 'sensor') && isfield(input.orig.sensor, 'info')
% the header was read using the CTF importer from the NIH and Daren Weber
origSensType = [input.orig.sensor.info.index];
end
end
if isempty(origSensType)
warning('could not determine channel chantype from the CTF header');
end
for sel=find(origSensType(:)==5)'
chantype{sel} = 'meggrad';
end
for sel=find(origSensType(:)==0)'
chantype{sel} = 'refmag';
end
for sel=find(origSensType(:)==1)'
chantype{sel} = 'refgrad';
end
for sel=find(origSensType(:)==18)'
chantype{sel} = 'adc';
end
for sel=find(origSensType(:)==11)'
chantype{sel} = 'trigger';
end
for sel=find(origSensType(:)==17)'
chantype{sel} = 'clock';
end
for sel=find(origSensType(:)==9)'
chantype{sel} = 'eeg';
end
for sel=find(origSensType(:)==29)'
chantype{sel} = 'reserved'; % these are "reserved for future use", but relate to head localization
end
for sel=find(origSensType(:)==13)'
chantype{sel} = 'headloc'; % these represent the x, y, z position of the head coils
end
for sel=find(origSensType(:)==28)'
chantype{sel} = 'headloc_gof'; % these represent the goodness of fit for the head coils
end
% for sel=find(origSensType(:)==23)'
% chantype{sel} = 'SPLxxxx'; % I have no idea what these are
% end
elseif ft_senstype(input, 'ctf') && isgrad
% in principle it is possible to look at the number of coils, but here the channels are identified based on their name
sel = myregexp('^M[ZLR][A-Z][0-9][0-9]$', input.label);
chantype(sel) = {'meggrad'}; % normal gradiometer channels
sel = myregexp('^S[LR][0-9][0-9]$', input.label);
chantype(sel) = {'meggrad'}; % normal gradiometer channels in the 64 channel CTF system
sel = myregexp('^B[GPQR][0-9]$', input.label);
chantype(sel) = {'refmag'}; % reference magnetometers
sel = myregexp('^[GPQR][0-9][0-9]$', input.label);
chantype(sel) = {'refgrad'}; % reference gradiometers
elseif ft_senstype(input, 'ctf') && islabel
% the channels have to be identified based on their name alone
sel = myregexp('^M[ZLR][A-Z][0-9][0-9]$', label);
chantype(sel) = {'meggrad'}; % normal gradiometer channels
sel = myregexp('^S[LR][0-9][0-9]$', label);
chantype(sel) = {'meggrad'}; % normal gradiometer channels in the 64 channel CTF system
sel = myregexp('^B[GPR][0-9]$', label);
chantype(sel) = {'refmag'}; % reference magnetometers
sel = myregexp('^[GPQR][0-9][0-9]$', label);
chantype(sel) = {'refgrad'}; % reference gradiometers
elseif ft_senstype(input, 'bti')
if isfield(input, 'orig') && isfield(input.orig, 'config')
configname = {input.orig.config.channel_data.name};
configtype = [input.orig.config.channel_data.type];
if ~isequal(configname(:), input.label(:))
% reorder the channels according to the order in input.label
[sel1, sel2] = match_str(input.label, configname);
configname = configname(sel2);
configtype = configtype(sel2);
configdata = input.orig.config.channel_data(sel2);
end
numloops = zeros(size(configdata));
for i=1:length(configdata)
if isfield(configdata(i).device_data, 'total_loops')
numloops(i) = configdata(i).device_data.total_loops;
end
end
% these are taken from bti2grad
chantype(configtype==1 & numloops==1) = {'megmag'};
chantype(configtype==1 & numloops==2) = {'meggrad'};
chantype(configtype==2) = {'eeg'};
chantype(configtype==3) = {'ref'}; % not known if mag or grad
chantype(configtype==4) = {'aux'};
chantype(configtype==5) = {'trigger'};
% refine the distinction between refmag and refgrad to make the types
% in grad and header consistent
sel = myregexp('^M[CLR][xyz][aA]*$', label);
chantype(sel) = {'refmag'};
sel = myregexp('^G[xyz][xyz]A$', label);
chantype(sel) = {'refgrad'};
else
% determine the chantype on the basis of the channel labels
% all 4D-BTi MEG channels start with "A" followed by a number
% all 4D-BTi reference channels start with M or G
% all 4D-BTi EEG channels start with E, except for the 248-MEG/32-EEG system in Warsaw where they end with -1
sel = myregexp('^A[0-9]+$', label);
chantype(sel) = {'meg'};
sel = myregexp('^M[CLR][xyz][aA]*$', label);
chantype(sel) = {'refmag'};
sel = myregexp('^G[xyz][xyz]A$', label);
chantype(sel) = {'refgrad'};
if isgrad && isfield(input, 'tra')
gradtype = repmat({'unknown'}, size(input.label));
gradtype(strncmp('A', input.label, 1)) = {'meg'};
gradtype(strncmp('M', input.label, 1)) = {'refmag'};
gradtype(strncmp('G', input.label, 1)) = {'refgrad'};
% look at the number of coils of the meg channels
selchan = find(strcmp('meg', gradtype));
for k = 1:length(selchan)
ncoils = length(find(input.tra(selchan(k),:)==1));
if ncoils==1,
gradtype{selchan(k)} = 'megmag';
elseif ncoils==2,
gradtype{selchan(k)} = 'meggrad';
end
end
[selchan, selgrad] = match_str(label, input.label);
chantype(selchan) = gradtype(selgrad);
end
% deal with additional channel types based on the names
if isheader && issubfield(input, 'orig.channel_data.chan_label')
tmplabel = {input.orig.channel_data.chan_label};
tmplabel = tmplabel(:);
else
tmplabel = label; % might work
end
sel = find(strcmp('unknown', chantype));
if ~isempty(sel)
chantype(sel) = ft_chantype(tmplabel(sel));
sel = find(strcmp('unknown', chantype));
if ~isempty(sel)
% channels that start with E are assumed to be EEG
% channels that end with -1 are also assumed to be EEG, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=2389
chantype(sel(cellfun(@(x) strcmp(x(end-1:end),'-1') || strcmp(x(1),'E'), label(sel)))) = {'eeg'};
end
end
end
elseif ft_senstype(input, 'itab') && isheader
origtype = [input.orig.ch.type];
chantype(origtype==0) = {'unknown'};
chantype(origtype==1) = {'ele'};
chantype(origtype==2) = {'mag'}; % might be magnetometer or gradiometer, look at the number of coils
chantype(origtype==4) = {'ele ref'};
chantype(origtype==8) = {'mag ref'};
chantype(origtype==16) = {'aux'};
chantype(origtype==32) = {'param'};
chantype(origtype==64) = {'digit'};
chantype(origtype==128) = {'flag'};
% these are the channels that are visible to fieldtrip
chansel = 1:input.orig.nchan;
chantype = chantype(chansel);
elseif ft_senstype(input, 'yokogawa') && isheader
% This is to recognize Yokogawa channel types from the original header
% This is from the original documentation
NullChannel = 0;
MagnetoMeter = 1;
AxialGradioMeter = 2;
PlannerGradioMeter = 3;
RefferenceChannelMark = hex2dec('0100');
RefferenceMagnetoMeter = bitor( RefferenceChannelMark, MagnetoMeter );
RefferenceAxialGradioMeter = bitor( RefferenceChannelMark, AxialGradioMeter );
RefferencePlannerGradioMeter = bitor( RefferenceChannelMark, PlannerGradioMeter);
TriggerChannel = -1;
EegChannel = -2;
EcgChannel = -3;
EtcChannel = -4;
if ft_hastoolbox('yokogawa_meg_reader')
% shorten names
ch_info = input.orig.channel_info.channel;
type_orig = [ch_info.type];
sel = (type_orig == NullChannel);
chantype(sel) = {'null'};
sel = (type_orig == MagnetoMeter);
chantype(sel) = {'megmag'};
sel = (type_orig == AxialGradioMeter);
chantype(sel) = {'meggrad'};
sel = (type_orig == PlannerGradioMeter);
chantype(sel) = {'megplanar'};
sel = (type_orig == RefferenceMagnetoMeter);
chantype(sel) = {'refmag'};
sel = (type_orig == RefferenceAxialGradioMeter);
chantype(sel) = {'refgrad'};
sel = (type_orig == RefferencePlannerGradioMeter);
chantype(sel) = {'refplanar'};
sel = (type_orig == TriggerChannel);
chantype(sel) = {'trigger'};
sel = (type_orig == EegChannel);
chantype(sel) = {'eeg'};
sel = (type_orig == EcgChannel);
chantype(sel) = {'ecg'};
sel = (type_orig == EtcChannel);
chantype(sel) = {'etc'};
elseif ft_hastoolbox('yokogawa')
sel = (input.orig.channel_info(:, 2) == NullChannel);
chantype(sel) = {'null'};
sel = (input.orig.channel_info(:, 2) == MagnetoMeter);
chantype(sel) = {'megmag'};
sel = (input.orig.channel_info(:, 2) == AxialGradioMeter);
chantype(sel) = {'meggrad'};
sel = (input.orig.channel_info(:, 2) == PlannerGradioMeter);
chantype(sel) = {'megplanar'};
sel = (input.orig.channel_info(:, 2) == RefferenceMagnetoMeter);
chantype(sel) = {'refmag'};
sel = (input.orig.channel_info(:, 2) == RefferenceAxialGradioMeter);
chantype(sel) = {'refgrad'};
sel = (input.orig.channel_info(:, 2) == RefferencePlannerGradioMeter);
chantype(sel) = {'refplanar'};
sel = (input.orig.channel_info(:, 2) == TriggerChannel);
chantype(sel) = {'trigger'};
sel = (input.orig.channel_info(:, 2) == EegChannel);
chantype(sel) = {'eeg'};
sel = (input.orig.channel_info(:, 2) == EcgChannel);
chantype(sel) = {'ecg'};
sel = (input.orig.channel_info(:, 2) == EtcChannel);
chantype(sel) = {'etc'};
end
elseif ft_senstype(input, 'yokogawa') && isgrad
% all channels in the gradiometer definition are meg
% chantype(1:end) = {'meg'};
% channels are identified based on their name: only magnetic as isgrad==1
sel = myregexp('^M[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'megmag'};
sel = myregexp('^AG[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'meggrad'};
sel = myregexp('^PG[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'megplanar'};
sel = myregexp('^RM[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'refmag'};
sel = myregexp('^RAG[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'refgrad'};
sel = myregexp('^RPG[0-9][0-9][0-9]$', input.label);
chantype(sel) = {'refplanar'};
elseif ft_senstype(input, 'yokogawa') && islabel
% the yokogawa channel labels are a mess, so autodetection is not possible
% chantype(1:end) = {'meg'};
sel = myregexp('[0-9][0-9][0-9]$', label);
chantype(sel) = {'null'};
sel = myregexp('^M[0-9][0-9][0-9]$', label);
chantype(sel) = {'megmag'};
sel = myregexp('^AG[0-9][0-9][0-9]$', label);
chantype(sel) = {'meggrad'};
sel = myregexp('^PG[0-9][0-9][0-9]$', label);
chantype(sel) = {'megplanar'};
sel = myregexp('^RM[0-9][0-9][0-9]$', label);
chantype(sel) = {'refmag'};
sel = myregexp('^RAG[0-9][0-9][0-9]$', label);
chantype(sel) = {'refgrad'};
sel = myregexp('^RPG[0-9][0-9][0-9]$', label);
chantype(sel) = {'refplanar'};
sel = myregexp('^TRIG[0-9][0-9][0-9]$', label);
chantype(sel) = {'trigger'};
sel = myregexp('^EEG[0-9][0-9][0-9]$', label);
chantype(sel) = {'eeg'};
sel = myregexp('^ECG[0-9][0-9][0-9]$', label);
chantype(sel) = {'ecg'};
sel = myregexp('^ETC[0-9][0-9][0-9]$', label);
chantype(sel) = {'etc'};
elseif ft_senstype(input, 'itab') && isheader
sel = ([input.orig.ch.type]==0);
chantype(sel) = {'unknown'};
sel = ([input.orig.ch.type]==1);
chantype(sel) = {'unknown'};
sel = ([input.orig.ch.type]==2);
chantype(sel) = {'megmag'};
sel = ([input.orig.ch.type]==8);
chantype(sel) = {'megref'};
sel = ([input.orig.ch.type]==16);
chantype(sel) = {'aux'};
sel = ([input.orig.ch.type]==64);
chantype(sel) = {'digital'};
% not all channels are actually processed by fieldtrip, so only return
% the types fopr the ones that read_header and read_data return
chantype = chantype(input.orig.chansel);
elseif ft_senstype(input, 'itab') && isgrad
% the channels have to be identified based on their name alone
sel = myregexp('^MAG_[0-9][0-9][0-9]$', label);
chantype(sel) = {'megmag'};
sel = myregexp('^MAG_[0-9][0-9]$', label); % for the itab28 system
chantype(sel) = {'megmag'};
sel = myregexp('^MAG_[0-9]$', label); % for the itab28 system
chantype(sel) = {'megmag'};
sel = myregexp('^REF_[0-9][0-9][0-9]$', label);
chantype(sel) = {'megref'};
sel = myregexp('^AUX.*$', label);
chantype(sel) = {'aux'};
elseif ft_senstype(input, 'itab') && islabel
% the channels have to be identified based on their name alone
sel = myregexp('^MAG_[0-9][0-9][0-9]$', label);
chantype(sel) = {'megmag'};
sel = myregexp('^REF_[0-9][0-9][0-9]$', label);
chantype(sel) = {'megref'};
sel = myregexp('^AUX.*$', label);
chantype(sel) = {'aux'};
elseif ft_senstype(input, 'eeg') && islabel
% use an external helper function to define the list with EEG channel names
chantype(match_str(label, ft_senslabel('eeg1005'))) = {'eeg'}; % this includes all channels from the 1010 and 1020 arrangement
chantype(match_str(label, ft_senslabel(ft_senstype(input)))) = {'eeg'}; % this will work for biosemi, egi and other detected channel arrangements
elseif ft_senstype(input, 'eeg') && iselec
% all channels in an electrode definition must be eeg channels
chantype(:) = {'eeg'};
elseif ft_senstype(input, 'eeg') && isheader
% use an external helper function to define the list with EEG channel names
chantype(match_str(input.label, ft_senslabel(ft_senstype(input)))) = {'eeg'};
elseif ft_senstype(input, 'plexon') && isheader
% this is a complete header that was read from a Plexon *.nex file using read_plexon_nex
for i=1:numchan
switch input.orig.VarHeader(i).Type
case 0
chantype{i} = 'spike';
case 1
chantype{i} = 'event';
case 2
chantype{i} = 'interval'; % Interval variables?
case 3
chantype{i} = 'waveform';
case 4
chantype{i} = 'population'; % Population variables ?
case 5
chantype{i} = 'analog';
otherwise
% keep the default 'unknown' chantype
end
end
end % ft_senstype
% if possible, set additional types based on channel labels
label2type = {
{'ecg', 'ekg'};
{'emg'};
{'eog', 'heog', 'veog'};
{'lfp'};
{'eeg'};
{'trigger', 'trig', 'dtrig'};
};
for i = 1:numel(label2type)
for j = 1:numel(label2type{i})
chantype(intersect(strmatch(label2type{i}{j}, lower(label)), find(strcmp(chantype, 'unknown')))) = label2type{i}(1);
end
end
if isdata
% the input was replaced by one of hdr, grad, elec, opto
[sel1, sel2] = match_str(origlabel, input.label);
origtype = repmat({'unknown'}, size(sel1));
origtype(sel1) = chantype(sel2);
% the hdr, grad, elec or opto structure might have a different set of channels
chantype = origtype;
end
if all(strcmp(chantype, 'unknown')) && ~recursion
% try whether only lowercase channel labels makes a difference
if islabel
recursion = true;
chantype = ft_chantype(lower(input));
recursion = false;
elseif isfield(input, 'label')
input.label = lower(input.label);
recursion = true;
chantype = ft_chantype(input);
recursion = false;
end
end
if all(strcmp(chantype, 'unknown')) && ~recursion
% try whether only uppercase channel labels makes a difference
if islabel
recursion = true;
chantype = ft_chantype(upper(input));
recursion = false;
elseif isfield(input, 'label')
input.label = upper(input.label);
recursion = true;
chantype = ft_chantype(input);
recursion = false;
end
end
if nargin>1
% return a boolean vector
if isequal(desired, 'meg') || isequal(desired, 'ref')
% only compare the first three characters, i.e. meggrad or megmag should match
chantype = strncmp(desired, chantype, 3);
else
chantype = strcmp(desired, chantype);
end
end
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {chantype};
previous_argin = current_argin;
previous_argout = current_argout;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function match = myregexp(pat, list)
match = false(size(list));
for i=1:numel(list)
match(i) = ~isempty(regexp(list{i}, pat, 'once'));
end
|
github
|
lcnbeapp/beapp-master
|
ft_read_header.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/ft_read_header.m
| 94,063 |
utf_8
|
b72ee43e5846a045b221a03afde784b7
|
function [hdr] = ft_read_header(filename, varargin)
% FT_READ_HEADER reads header information from a variety of EEG, MEG and LFP
% files and represents the header information in a common data-independent
% format. The supported formats are listed below.
%
% Use as
% hdr = ft_read_header(filename, ...)
%
% Additional options should be specified in key-value pairs and can be
% 'headerformat' = string
% 'fallback' = can be empty or 'biosig' (default = [])
% 'checkmaxfilter' = boolean, whether to check that maxfilter has been correctly applied (default = true)
% 'chanindx' = list with channel indices in case of different sampling frequencies (only for EDF)
% 'coordsys' = string, 'head' or 'dewar' (default = 'head')
% 'coilaccuracy' = can be empty or a number (0, 1 or 2) to specify the accuracy (default = [])
%
% This returns a header structure with the following elements
% hdr.Fs sampling frequency
% hdr.nChans number of channels
% hdr.nSamples number of samples per trial
% hdr.nSamplesPre number of pre-trigger samples in each trial
% hdr.nTrials number of trials
% hdr.label Nx1 cell-array with the label of each channel
% hdr.chantype Nx1 cell-array with the channel type, see FT_CHANTYPE
% hdr.chanunit Nx1 cell-array with the physical units, see FT_CHANUNIT
%
% For some data formats that are recorded on animal electrophysiology
% systems (e.g. Neuralynx, Plexon), the following optional fields are
% returned, which allows for relating the timing of spike and LFP data
% hdr.FirstTimeStamp number, represented as 32 bit or 64 bit unsigned integer
% hdr.TimeStampPerSample number, represented in double precision
%
% For continuously recorded data, nSamplesPre=0 and nTrials=1.
%
% Depending on the file format, additional header information can be
% returned in the hdr.orig subfield.
%
% The following MEG dataformats are supported
% CTF - VSM MedTech (*.ds, *.res4, *.meg4)
% Neuromag - Elekta (*.fif)
% BTi - 4D Neuroimaging (*.m4d, *.pdf, *.xyz)
% Yokogawa (*.ave, *.con, *.raw)
% NetMEG (*.nc)
% ITAB - Chieti (*.mhd)
% Tristan Babysquid (*.fif)
%
% The following EEG dataformats are supported
% ANT - Advanced Neuro Technology, EEProbe (*.avr, *.eeg, *.cnt)
% BCI2000 (*.dat)
% Biosemi (*.bdf)
% BrainVision (*.eeg, *.seg, *.dat, *.vhdr, *.vmrk)
% CED - Cambridge Electronic Design (*.smr)
% EGI - Electrical Geodesics, Inc. (*.egis, *.ave, *.gave, *.ses, *.raw, *.sbin, *.mff)
% GTec (*.mat)
% Generic data formats (*.edf, *.gdf)
% Megis/BESA (*.avr, *.swf, *.besa)
% NeuroScan (*.eeg, *.cnt, *.avg)
% Nexstim (*.nxe)
% TMSi (*.Poly5)
% Mega Neurone (directory)
% Natus/Nicolet/Nervus (.e files)
% Nihon Kohden (*.m00)
%
% The following spike and LFP dataformats are supported
% Neuralynx (*.ncs, *.nse, *.nts, *.nev, *.nrd, *.dma, *.log)
% Plextor (*.nex, *.plx, *.ddt)
% CED - Cambridge Electronic Design (*.smr)
% MPI - Max Planck Institute (*.dap)
% Neurosim (neurosim_spikes, neurosim_signals, neurosim_ds)
% Windaq (*.wdq)
%
% The following NIRS dataformats are supported
% BUCN - Birkbeck college, London (*.txt)
%
% The following Eyetracker dataformats are supported
% EyeLink - SR Research (*.asc)
% Tobii - (*.tsv)
% SensoMotoric Instruments - (*.txt)
%
% See also FT_READ_DATA, FT_READ_EVENT, FT_WRITE_DATA, FT_WRITE_EVENT,
% FT_CHANTYPE, FT_CHANUNIT
% Copyright (C) 2003-2016 Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% TODO channel renaming should be made a general option (see bham_bdf)
persistent cacheheader % for caching the full header
persistent cachechunk % for caching the res4 chunk when doing realtime analysis on the CTF scanner
persistent db_blob % for fcdc_mysql
if isempty(db_blob)
db_blob = false;
end
if iscell(filename)
% use recursion to read events from multiple files
ft_warning(sprintf('concatenating header from %d files', numel(filename)));
hdr = cell(size(filename));
for i=1:numel(filename)
hdr{i} = ft_read_header(filename{i}, varargin{:});
end
ntrl = nan(size(filename));
nsmp = nan(size(filename));
for i=1:numel(filename)
assert(isequal(hdr{i}.label, hdr{1}.label));
assert(isequal(hdr{i}.Fs, hdr{1}.Fs));
ntrl(i) = hdr{i}.nTrials;
nsmp(i) = hdr{i}.nSamples;
end
combined = hdr{1};
combined.orig = hdr; % store the original header details of each file
if all(ntrl==1)
% each file is a continuous recording
combined.nTrials = ntrl(1);
combined.nSamples = sum(nsmp);
elseif all(nsmp==nsmp(1))
% each file holds segments of the same length
combined.nTrials = sum(ntrl);
combined.nSamples = nsmp(1);
else
error('cannot concatenate files');
end
% return the header of the concatenated datafiles
hdr = combined;
return
end
% get the options
headerformat = ft_getopt(varargin, 'headerformat');
retry = ft_getopt(varargin, 'retry', false); % the default is not to retry reading the header
chanindx = ft_getopt(varargin, 'chanindx'); % this is used for EDF with different sampling rates
coordsys = ft_getopt(varargin, 'coordsys', 'head'); % this is used for ctf and neuromag_mne, it can be head or dewar
coilaccuracy = ft_getopt(varargin, 'coilaccuracy'); % empty, or a number between 0-2
% optionally get the data from the URL and make a temporary local copy
filename = fetch_url(filename);
if isempty(headerformat)
% only do the autodetection if the format was not specified
headerformat = ft_filetype(filename);
end
if iscell(headerformat)
% this happens for datasets specified as cell-array for concatenation
headerformat = headerformat{1};
end
if strcmp(headerformat, 'compressed')
% the file is compressed, unzip on the fly
inflated = true;
filename = inflate_file(filename);
headerformat = ft_filetype(filename);
else
inflated = false;
end
realtime = any(strcmp(headerformat, {'fcdc_buffer', 'ctf_shm', 'fcdc_mysql'}));
% The checkUniqueLabels flag is used for the realtime buffer in case
% it contains fMRI data. It prevents 1000000 voxel names to be checked
% for uniqueness. fMRI users will probably never use channel names
% for anything.
if realtime
% skip the rest of the initial checks to increase the speed for realtime operation
checkUniqueLabels = false;
% the cache and fallback option should always be false for realtime processing
cache = false;
fallback = false;
else
% check whether the file or directory exists
if ~exist(filename, 'file')
error('FILEIO:InvalidFileName', 'file or directory ''%s'' does not exist', filename);
end
checkUniqueLabels = true;
% get the rest of the options, this is skipped for realtime operation
cache = ft_getopt(varargin, 'cache');
fallback = ft_getopt(varargin, 'fallback');
checkmaxfilter = ft_getopt(varargin, 'checkmaxfilter', true);
if isempty(cache)
if any(strcmp(headerformat, {'bci2000_dat', 'eyelink_asc', 'gtec_mat', 'mega_neurone', 'smi_txt', 'biosig'}))
cache = true;
else
cache = false;
end
end
% ensure that the headerfile and datafile are defined, which are sometimes different than the name of the dataset
[filename, headerfile, datafile] = dataset2files(filename, headerformat);
if ~strcmp(filename, headerfile) && ~ft_filetype(filename, 'ctf_ds') && ~ft_filetype(filename, 'fcdc_buffer_offline') && ~ft_filetype(filename, 'fcdc_matbin')
filename = headerfile; % this function should read the headerfile, not the dataset
headerformat = ft_filetype(filename); % update the filetype
end
end % if skip initial check
% implement the caching in a data-format independent way
if cache && exist(headerfile, 'file') && ~isempty(cacheheader)
% try to get the header from cache
details = dir(headerfile);
if isequal(details, cacheheader.details)
% the header file has not been updated, fetch it from the cache
% fprintf('got header from cache\n');
hdr = rmfield(cacheheader, 'details');
switch ft_filetype(datafile)
case {'ctf_ds' 'ctf_meg4' 'ctf_old' 'read_ctf_res4'}
% for realtime analysis end-of-file-chasing the res4 does not correctly
% estimate the number of samples, so we compute it on the fly
sz = 0;
files = dir([filename '/*.*meg4']);
for j=1:numel(files)
sz = sz + files(j).bytes;
end
hdr.nTrials = floor((sz - 8) / (hdr.nChans*4) / hdr.nSamples);
end
return
end % if the details correspond
end % if cache
% the support for head/dewar coordinates is still limited
if strcmp(coordsys, 'dewar') && ~any(strcmp(headerformat, {'fcdc_buffer', 'ctf_ds', 'ctf_meg4', 'ctf_res4', 'neuromag_fif', 'neuromag_mne'}))
error('dewar coordinates are not supported for %s', headerformat);
end
% start with an empty header
hdr = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the data with the low-level reading function
% please maintain this list in alphabetical order
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch headerformat
case '4d'
orig = read_4d_hdr(datafile);
hdr.Fs = orig.header_data.SampleFrequency;
hdr.nChans = orig.header_data.TotalChannels;
hdr.nSamples = orig.header_data.SlicesPerEpoch;
hdr.nSamplesPre = round(orig.header_data.FirstLatency*orig.header_data.SampleFrequency);
hdr.nTrials = orig.header_data.TotalEpochs;
%hdr.label = {orig.channel_data(:).chan_label}';
hdr.label = orig.Channel;
[hdr.grad, elec] = bti2grad(orig);
if ~isempty(elec),
hdr.elec = elec;
end
% remember original header details
hdr.orig = orig;
case {'4d_pdf', '4d_m4d', '4d_xyz'}
orig = read_bti_m4d(filename);
hdr.Fs = orig.SampleFrequency;
hdr.nChans = orig.TotalChannels;
hdr.nSamples = orig.SlicesPerEpoch;
hdr.nSamplesPre = round(orig.FirstLatency*orig.SampleFrequency);
hdr.nTrials = orig.TotalEpochs;
hdr.label = orig.ChannelOrder(:);
[hdr.grad, elec] = bti2grad(orig);
if ~isempty(elec),
hdr.elec = elec;
end
% remember original header details
hdr.orig = orig;
case 'AnyWave'
orig = read_ahdf5_hdr(datafile);
hdr.orig = orig;
hdr.Fs = orig.channels(1).samplingRate;
hdr.nChans = numel(orig.channels);
hdr.nSamples = orig.numberOfSamples;
hdr.nTrials = orig.numberOfBlocks;
hdr.nSamplesPre = 0;
hdr.label = orig.label;
hdr.reference = orig.reference(:);
hdr.chanunit = orig.unit(:);
hdr.chantype = orig.type(:);
case 'bci2000_dat'
% this requires the load_bcidat mex file to be present on the path
ft_hastoolbox('BCI2000', 1);
% this is inefficient, since it reads the complete data
[signal, states, parameters, total_samples] = load_bcidat(filename);
% convert into a FieldTrip-like header
hdr = [];
hdr.nChans = size(signal,2);
hdr.nSamples = total_samples;
hdr.nSamplesPre = 0; % it is continuous
hdr.nTrials = 1; % it is continuous
hdr.Fs = parameters.SamplingRate.NumericValue;
% there are some differences in the fields that are present in the
% *.dat files, probably due to different BCI2000 versions
if isfield(parameters, 'ChannelNames') && isfield(parameters.ChannelNames, 'Value') && ~isempty(parameters.ChannelNames.Value)
hdr.label = parameters.ChannelNames.Value;
elseif isfield(parameters, 'ChannelNames') && isfield(parameters.ChannelNames, 'Values') && ~isempty(parameters.ChannelNames.Values)
hdr.label = parameters.ChannelNames.Values;
else
% give this warning only once
ft_warning('creating fake channel names');
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
end
% remember the original header details
hdr.orig.parameters = parameters;
% also remember the complete data upon request
if cache
hdr.orig.signal = signal;
hdr.orig.states = states;
hdr.orig.total_samples = total_samples;
end
case 'besa_besa'
if isempty(chanindx)
hdr = read_besa_besa(filename);
else
hdr = read_besa_besa(filename,[],1);
if chanindx > hdr.orig.channel_info.orig_n_channels
error('FILEIO:InvalidChanIndx', 'selected channels are not present in the data');
else
hdr = read_besa_besa(filename,[],chanindx);
end;
end;
case 'besa_avr'
orig = read_besa_avr(filename);
hdr.Fs = 1000/orig.di;
hdr.nChans = size(orig.data,1);
hdr.nSamples = size(orig.data,2);
hdr.nSamplesPre = -(hdr.Fs * orig.tsb/1000); % convert from ms to samples
hdr.nTrials = 1;
if isfield(orig, 'label') && iscell(orig.label)
hdr.label = orig.label;
elseif isfield(orig, 'label') && ischar(orig.label)
hdr.label = tokenize(orig.label, ' ');
else
% give this warning only once
ft_warning('creating fake channel names');
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
end
case 'besa_swf'
orig = read_besa_swf(filename);
hdr.Fs = 1000/orig.di;
hdr.nChans = size(orig.data,1);
hdr.nSamples = size(orig.data,2);
hdr.nSamplesPre = -(hdr.Fs * orig.tsb/1000); % convert from ms to samples
hdr.nTrials = 1;
hdr.label = orig.label;
case 'biosig'
% this requires the biosig toolbox
ft_hastoolbox('BIOSIG', 1);
hdr = read_biosig_header(filename);
case {'biosemi_bdf', 'bham_bdf'}
hdr = read_biosemi_bdf(filename);
if any(diff(hdr.orig.SampleRate))
error('channels with different sampling rate not supported');
end
if ~ft_senstype(hdr, 'ext1020')
% assign the channel type and units for the known channels
hdr.chantype = repmat({'unknown'}, size(hdr.label));
hdr.chanunit = repmat({'unknown'}, size(hdr.label));
chan = ~cellfun(@isempty, regexp(hdr.label, '^[A-D]\d*$'));
hdr.chantype(chan) = {'eeg'};
hdr.chanunit(chan) = {'uV'};
end
if ft_filetype(filename, 'bham_bdf')
% TODO channel renaming should be made a general option
% this is for the Biosemi system used at the University of Birmingham
labelold = { 'A1' 'A2' 'A3' 'A4' 'A5' 'A6' 'A7' 'A8' 'A9' 'A10' 'A11' 'A12' 'A13' 'A14' 'A15' 'A16' 'A17' 'A18' 'A19' 'A20' 'A21' 'A22' 'A23' 'A24' 'A25' 'A26' 'A27' 'A28' 'A29' 'A30' 'A31' 'A32' 'B1' 'B2' 'B3' 'B4' 'B5' 'B6' 'B7' 'B8' 'B9' 'B10' 'B11' 'B12' 'B13' 'B14' 'B15' 'B16' 'B17' 'B18' 'B19' 'B20' 'B21' 'B22' 'B23' 'B24' 'B25' 'B26' 'B27' 'B28' 'B29' 'B30' 'B31' 'B32' 'C1' 'C2' 'C3' 'C4' 'C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'C11' 'C12' 'C13' 'C14' 'C15' 'C16' 'C17' 'C18' 'C19' 'C20' 'C21' 'C22' 'C23' 'C24' 'C25' 'C26' 'C27' 'C28' 'C29' 'C30' 'C31' 'C32' 'D1' 'D2' 'D3' 'D4' 'D5' 'D6' 'D7' 'D8' 'D9' 'D10' 'D11' 'D12' 'D13' 'D14' 'D15' 'D16' 'D17' 'D18' 'D19' 'D20' 'D21' 'D22' 'D23' 'D24' 'D25' 'D26' 'D27' 'D28' 'D29' 'D30' 'D31' 'D32' 'EXG1' 'EXG2' 'EXG3' 'EXG4' 'EXG5' 'EXG6' 'EXG7' 'EXG8' 'Status'};
labelnew = { 'P9' 'PPO9h' 'PO7' 'PPO5h' 'PPO3h' 'PO5h' 'POO9h' 'PO9' 'I1' 'OI1h' 'O1' 'POO1' 'PO3h' 'PPO1h' 'PPO2h' 'POz' 'Oz' 'Iz' 'I2' 'OI2h' 'O2' 'POO2' 'PO4h' 'PPO4h' 'PO6h' 'POO10h' 'PO10' 'PO8' 'PPO6h' 'PPO10h' 'P10' 'P8' 'TPP9h' 'TP7' 'TTP7h' 'CP5' 'TPP7h' 'P7' 'P5' 'CPP5h' 'CCP5h' 'CP3' 'P3' 'CPP3h' 'CCP3h' 'CP1' 'P1' 'Pz' 'CPP1h' 'CPz' 'CPP2h' 'P2' 'CPP4h' 'CP2' 'CCP4h' 'CP4' 'P4' 'P6' 'CPP6h' 'CCP6h' 'CP6' 'TPP8h' 'TP8' 'TPP10h' 'T7' 'FTT7h' 'FT7' 'FC5' 'FCC5h' 'C5' 'C3' 'FCC3h' 'FC3' 'FC1' 'C1' 'CCP1h' 'Cz' 'FCC1h' 'FCz' 'FFC1h' 'Fz' 'FFC2h' 'FC2' 'FCC2h' 'CCP2h' 'C2' 'C4' 'FCC4h' 'FC4' 'FC6' 'FCC6h' 'C6' 'TTP8h' 'T8' 'FTT8h' 'FT8' 'FT9' 'FFT9h' 'F7' 'FFT7h' 'FFC5h' 'F5' 'AFF7h' 'AF7' 'AF5h' 'AFF5h' 'F3' 'FFC3h' 'F1' 'AF3h' 'Fp1' 'Fpz' 'Fp2' 'AFz' 'AF4h' 'F2' 'FFC4h' 'F4' 'AFF6h' 'AF6h' 'AF8' 'AFF8h' 'F6' 'FFC6h' 'FFT8h' 'F8' 'FFT10h' 'FT10'};
% rename the channel labels
for i=1:length(labelnew)
chan = strcmp(labelold(i), hdr.label);
hdr.label(chan) = labelnew(chan);
end
end
case {'biosemi_old'}
% this uses the openbdf and readbdf functions that were copied from EEGLAB
orig = openbdf(filename);
if any(orig.Head.SampleRate~=orig.Head.SampleRate(1))
error('channels with different sampling rate not supported');
end
hdr.Fs = orig.Head.SampleRate(1);
hdr.nChans = orig.Head.NS;
hdr.label = cellstr(orig.Head.Label);
% it is continuous data, therefore append all records in one trial
hdr.nSamples = orig.Head.NRec * orig.Head.Dur * orig.Head.SampleRate(1);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.orig = orig;
% close the file between separate read operations
fclose(orig.Head.FILE.FID);
case 'blackrock_nev'
error('this still needs some work');
case 'blackrock_nsx'
ft_hastoolbox('NPMK', 1);
% ensure that the filename contains a full path specification,
% otherwise the low-level function fails
[p, f, x] = fileparts(filename);
if ~isempty(p)
% this is OK
elseif isempty(p)
filename = which(filename);
end
orig = openNSx(filename, 'noread');
hdr = [];
hdr.Fs = orig.MetaTags.SamplingFreq;
hdr.nChans = orig.MetaTags.ChannelCount;
hdr.nSamples = orig.MetaTags.DataPoints;
hdr.nSamplesPre = 0;
hdr.nTrials = 1; %?
hdr.label = deblank({orig.ElectrodesInfo.Label})';
hdr.chanunit = deblank({hdr.orig.ElectrodesInfo.AnalogUnits})';
hdr.orig = orig;
case {'brainvision_vhdr', 'brainvision_seg', 'brainvision_eeg', 'brainvision_dat'}
orig = read_brainvision_vhdr(filename);
hdr.Fs = orig.Fs;
hdr.nChans = orig.NumberOfChannels;
hdr.label = orig.label;
hdr.nSamples = orig.nSamples;
hdr.nSamplesPre = orig.nSamplesPre;
hdr.nTrials = orig.nTrials;
hdr.orig = orig;
% assign the channel type and units for the known channels
hdr.chantype = repmat({'eeg'}, size(hdr.label));
hdr.chanunit = repmat({'uV'}, size(hdr.label));
case 'bucn_nirs'
orig = read_bucn_nirshdr(filename);
hdr = rmfield(orig, 'time');
hdr.orig = orig;
case 'ced_son'
% check that the required low-level toolbox is available
ft_hastoolbox('neuroshare', 1);
% use the reading function supplied by Gijs van Elswijk
orig = read_ced_son(filename,'readevents','no','readdata','no');
orig = orig.header;
% In Spike2, channels can have different sampling rates, units, length
% etc. etc. Here, channels need to have to same properties.
if length(unique([orig.samplerate]))>1,
error('channels with different sampling rates are not supported');
else
hdr.Fs = orig(1).samplerate;
end;
hdr.nChans = length(orig);
% nsamples of the channel with least samples
hdr.nSamples = min([orig.nsamples]);
hdr.nSamplesPre = 0;
% only continuous data supported
if sum(strcmpi({orig.mode},'continuous')) < hdr.nChans,
error('not all channels contain continuous data');
else
hdr.nTrials = 1;
end;
hdr.label = {orig.label};
case 'combined_ds'
hdr = read_combined_ds(filename);
case {'ctf_ds', 'ctf_meg4', 'ctf_res4'}
% check the presence of the required low-level toolbox
ft_hastoolbox('ctf', 1);
orig = readCTFds(filename);
if isempty(orig)
% this is to deal with data from the 64 channel system and the error
% readCTFds: .meg4 file header=MEG4CPT Valid header options: MEG41CP MEG42CP
error('could not read CTF with this implementation, please try again with the ''ctf_old'' file format');
end
hdr.Fs = orig.res4.sample_rate;
hdr.nChans = orig.res4.no_channels;
hdr.nSamples = orig.res4.no_samples;
hdr.nSamplesPre = orig.res4.preTrigPts;
hdr.nTrials = orig.res4.no_trials;
hdr.label = cellstr(orig.res4.chanNames);
for i=1:numel(hdr.label)
% remove the site-specific numbers from each channel name, e.g. 'MZC01-1706' becomes 'MZC01'
hdr.label{i} = strtok(hdr.label{i}, '-');
end
% read the balance coefficients, these are used to compute the synthetic gradients
coeftype = cellstr(char(orig.res4.scrr(:).coefType));
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'NONE', 'T');
orig.BalanceCoefs.none.alphaMEG = alphaMEG;
orig.BalanceCoefs.none.MEGlist = MEGlist;
orig.BalanceCoefs.none.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for NONE');
end
if any(~cellfun(@isempty,strfind(coeftype, 'G1BR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'G1BR', 'T');
orig.BalanceCoefs.G1BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G1BR.MEGlist = MEGlist;
orig.BalanceCoefs.G1BR.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for G1BR');
end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G2BR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig, 'G2BR', 'T');
orig.BalanceCoefs.G2BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G2BR.MEGlist = MEGlist;
orig.BalanceCoefs.G2BR.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for G2BR');
end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G3BR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig, 'G3BR', 'T');
orig.BalanceCoefs.G3BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G3BR.MEGlist = MEGlist;
orig.BalanceCoefs.G3BR.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for G3BR');
end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G3AR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig, 'G3AR', 'T');
orig.BalanceCoefs.G3AR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G3AR.MEGlist = MEGlist;
orig.BalanceCoefs.G3AR.Refindex = Refindex;
catch
% May not want a warning here if these are not commonly used.
% Already get a (fprintf) warning from getCTFBalanceCoefs.m
% warning('cannot read balancing coefficients for G3AR');
end
end
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig, strcmp(coordsys, 'dewar'), coilaccuracy);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% for realtime analysis EOF chasing the res4 does not correctly
% estimate the number of samples, so we compute it on the fly from the
% meg4 file sizes.
sz = 0;
files = dir([filename '/*.*meg4']);
for j=1:numel(files)
sz = sz + files(j).bytes;
end
hdr.nTrials = floor((sz - 8) / (hdr.nChans*4) / hdr.nSamples);
% add the original header details
hdr.orig = orig;
case {'ctf_old', 'read_ctf_res4'}
% read it using the open-source MATLAB code that originates from CTF and that was modified by the FCDC
orig = read_ctf_res4(headerfile);
hdr.Fs = orig.Fs;
hdr.nChans = orig.nChans;
hdr.nSamples = orig.nSamples;
hdr.nSamplesPre = orig.nSamplesPre;
hdr.nTrials = orig.nTrials;
hdr.label = orig.label;
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% add the original header details
hdr.orig = orig;
case 'ctf_read_res4'
% check that the required low-level toolbos ix available
ft_hastoolbox('eegsf', 1);
% read it using the CTF importer from the NIH and Daren Weber
orig = ctf_read_res4(fileparts(headerfile), 0);
% convert the header into a structure that FieldTrip understands
hdr = [];
hdr.Fs = orig.setup.sample_rate;
hdr.nChans = length(orig.sensor.info);
hdr.nSamples = orig.setup.number_samples;
hdr.nSamplesPre = orig.setup.pretrigger_samples;
hdr.nTrials = orig.setup.number_trials;
for i=1:length(orig.sensor.info)
hdr.label{i} = orig.sensor.info(i).label;
end
hdr.label = hdr.label(:);
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% add the original header details
hdr.orig = orig;
case 'ctf_shm'
% read the header information from shared memory
hdr = read_shm_header(filename);
case 'dataq_wdq'
orig = read_wdq_header(filename);
hdr = [];
hdr.Fs = orig.fsample;
hdr.nChans = orig.nchan;
hdr.nSamples = orig.nbytesdat/(2*hdr.nChans);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
for k = 1:hdr.nChans
if isfield(orig.chanhdr(k), 'annot') && ~isempty(orig.chanhdr(k).annot)
hdr.label{k,1} = orig.chanhdr(k).annot;
else
hdr.label{k,1} = orig.chanhdr(k).label;
end
end
% add the original header details
hdr.orig = orig;
case {'deymed_ini' 'deymed_dat'}
% the header is stored in a *.ini file
orig = read_deymed_ini(headerfile);
hdr = [];
hdr.Fs = orig.Fs;
hdr.nChans = orig.nChans;
hdr.nSamples = orig.nSamples;
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.label = orig.label(:);
hdr.orig = orig; % remember the original details
case 'edf'
% this reader is largely similar to the bdf reader
if isempty(chanindx)
hdr = read_edf(filename);
else
hdr = read_edf(filename,[],1);
if chanindx > hdr.orig.NS
error('FILEIO:InvalidChanIndx', 'selected channels are not present in the data');
else
hdr = read_edf(filename,[],chanindx);
end
end
case 'eep_avr'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% read the whole average and keep only header info (it is a bit silly, but the easiest to do here)
hdr = read_eep_avr(filename);
hdr.Fs = hdr.rate;
hdr.nChans = size(hdr.data,1);
hdr.nSamples = size(hdr.data,2);
hdr.nSamplesPre = hdr.xmin*hdr.rate/1000;
hdr.nTrials = 1; % it can always be interpreted as continuous data
% remove the data and variance if present
hdr = removefields(hdr, {'data', 'variance'});
case 'eep_cnt'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% read the first sample from the continous data, this will also return the header
orig = read_eep_cnt(filename, 1, 1);
hdr.Fs = orig.rate;
hdr.nSamples = orig.nsample;
hdr.nSamplesPre = 0;
hdr.label = orig.label;
hdr.nChans = orig.nchan;
hdr.nTrials = 1; % it can always be interpreted as continuous data
hdr.orig = orig; % remember the original details
case 'eeglab_set'
hdr = read_eeglabheader(filename);
case 'eeglab_erp'
hdr = read_erplabheader(filename);
case 'emotiv_mat'
% This is a MATLAB *.mat file that is created using the Emotiv MATLAB
% example code. It contains a 25xNsamples matrix and some other stuff.
orig = load(filename);
hdr.Fs = 128;
hdr.nChans = 25;
hdr.nSamples = size(orig.data_eeg,1);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.label = {'ED_COUNTER','ED_INTERPOLATED','ED_RAW_CQ','ED_AF3','ED_F7','ED_F3','ED_FC5','ED_T7','ED_P7','ED_O1','ED_O2','ED_P8','ED_T8','ED_FC6','ED_F4','ED_F8','ED_AF4','ED_GYROX','ED_GYROY','ED_TIMESTAMP','ED_ES_TIMESTAMP','ED_FUNC_ID','ED_FUNC_VALUE','ED_MARKER','ED_SYNC_SIGNAL'};
% store the complete information in hdr.orig
% ft_read_data and ft_read_event will get it from there
hdr.orig = orig;
case 'eyelink_asc'
asc = read_eyelink_asc(filename);
hdr.nChans = size(asc.dat,1);
hdr.nSamples = size(asc.dat,2);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.FirstTimeStamp = asc.dat(1,1);
hdr.TimeStampPerSample = mean(diff(asc.dat(1,:)));
hdr.Fs = 1000/hdr.TimeStampPerSample; % these timestamps are in miliseconds
% give this warning only once
ft_warning('creating fake channel names');
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
% remember the original header details
hdr.orig.header = asc.header;
% remember all header and data details upon request
if cache
hdr.orig = asc;
end
case 'spmeeg_mat'
hdr = read_spmeeg_header(filename);
case 'ced_spike6mat'
hdr = read_spike6mat_header(filename);
case 'egi_egia'
[fhdr,chdr,ename,cnames,fcom,ftext] = read_egis_header(filename);
[p, f, x] = fileparts(filename);
if any(chdr(:,4)-chdr(1,4))
error('Sample rate not the same for all cells.');
end;
hdr.Fs = chdr(1,4); %making assumption that sample rate is same for all cells
hdr.nChans = fhdr(19);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
%since NetStation does not properly set the fhdr(11) field, use the number of subjects from the chdr instead
hdr.nTrials = chdr(1,2)*fhdr(18); %number of trials is numSubjects * numCells
hdr.nSamplesPre = ceil(fhdr(14)/(1000/hdr.Fs));
if any(chdr(:,3)-chdr(1,3))
error('Number of samples not the same for all cells.');
end;
hdr.nSamples = chdr(1,3); %making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.fhdr = fhdr;
hdr.orig.chdr = chdr;
hdr.orig.ename = ename;
hdr.orig.cnames = cnames;
hdr.orig.fcom = fcom;
hdr.orig.ftext = ftext;
case 'egi_egis'
[fhdr,chdr,ename,cnames,fcom,ftext] = read_egis_header(filename);
[p, f, x] = fileparts(filename);
if any(chdr(:,4)-chdr(1,4))
error('Sample rate not the same for all cells.');
end;
hdr.Fs = chdr(1,4); %making assumption that sample rate is same for all cells
hdr.nChans = fhdr(19);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
hdr.nTrials = sum(chdr(:,2));
hdr.nSamplesPre = ceil(fhdr(14)/(1000/hdr.Fs));
% assuming that a utility was used to insert the correct baseline
% duration into the header since it is normally absent. This slot is
% actually allocated to the age of the subject, although NetStation
% does not use it when generating an EGIS session file.
if any(chdr(:,3)-chdr(1,3))
error('Number of samples not the same for all cells.');
end;
hdr.nSamples = chdr(1,3); %making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.fhdr = fhdr;
hdr.orig.chdr = chdr;
hdr.orig.ename = ename;
hdr.orig.cnames = cnames;
hdr.orig.fcom = fcom;
hdr.orig.ftext = ftext;
case 'egi_sbin'
[header_array, CateNames, CatLengths, preBaseline] = read_sbin_header(filename);
[p, f, x] = fileparts(filename);
hdr.Fs = header_array(9);
hdr.nChans = header_array(10);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
hdr.nTrials = header_array(15);
hdr.nSamplesPre = preBaseline;
hdr.nSamples = header_array(16); % making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.header_array = header_array;
hdr.orig.CateNames = CateNames;
hdr.orig.CatLengths = CatLengths;
case {'egi_mff_v1' 'egi_mff'} % this is currently the default
% The following represents the code that was written by Ingrid, Robert
% and Giovanni to get started with the EGI mff dataset format. It might
% not support all details of the file formats.
%
% An alternative implementation has been provided by EGI, this is
% released as fieldtrip/external/egi_mff and referred further down in
% this function as 'egi_mff_v2'.
if ~usejava('jvm')
error('the xml2struct requires MATLAB to be running with the Java virtual machine (JVM)');
% an alternative implementation which does not require the JVM but runs much slower is
% available from http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0
end
% get header info from .bin files
binfiles = dir(fullfile(filename, 'signal*.bin'));
if isempty(binfiles)
error('could not find any signal.bin in mff directory')
end
orig = [];
for iSig = 1:length(binfiles)
signalname = binfiles(iSig).name;
fullsignalname = fullfile(filename, signalname);
orig.signal(iSig).blockhdr = read_mff_bin(fullsignalname);
end
% get hdr info from xml files
warning('off', 'MATLAB:REGEXP:deprecated') % due to some small code xml2struct
xmlfiles = dir( fullfile(filename, '*.xml'));
disp('reading xml files to obtain header info...')
for i = 1:numel(xmlfiles)
if strcmpi(xmlfiles(i).name(1:2), '._') % Mac sometimes creates this useless files, don't use them
elseif strcmpi(xmlfiles(i).name(1:6), 'Events') % don't read in events here, can take a lot of time, and we can do that in ft_read_event
else
fieldname = xmlfiles(i).name(1:end-4);
filename_xml = fullfile(filename, xmlfiles(i).name);
orig.xml.(fieldname) = xml2struct(filename_xml);
end
end
warning('on', 'MATLAB:REGEXP:deprecated')
% epochs.xml seems the most common version, but epoch.xml might also
% occur, so use only one name
if isfield(orig.xml, 'epoch')
orig.xml.epochs = orig.xml.epoch;
orig.xml = rmfield(orig.xml, 'epoch');
end
% make hdr according to FieldTrip rules
hdr = [];
Fs = zeros(length(orig.signal),1);
nChans = zeros(length(orig.signal),1);
nSamples = zeros(length(orig.signal),1);
for iSig = 1:length(orig.signal)
Fs(iSig) = orig.signal(iSig).blockhdr(1).fsample(1);
nChans(iSig) = orig.signal(iSig).blockhdr(1).nsignals;
% the number of samples per block can be different
nSamples_Block = zeros(length(orig.signal(iSig).blockhdr),1);
for iBlock = 1:length(orig.signal(iSig).blockhdr)
nSamples_Block(iBlock) = orig.signal(iSig).blockhdr(iBlock).nsamples(1);
end
nSamples(iSig) = sum(nSamples_Block);
end
if length(unique(Fs)) > 1 || length(unique(nSamples)) > 1
error('Fs and nSamples should be the same in all signals')
end
hdr.Fs = Fs(1);
hdr.nChans = sum(nChans);
hdr.nSamplesPre = 0;
hdr.nSamples = nSamples(1);
hdr.nTrials = 1;
% get channel labels for signal 1 (main net), otherwise create them
if isfield(orig.xml, 'sensorLayout') % asuming that signal1 is hdEEG sensornet, and channels are in xml file sensorLayout
for iSens = 1:numel(orig.xml.sensorLayout.sensors)
if ~isempty(orig.xml.sensorLayout.sensors(iSens).sensor.name) && ~(isstruct(orig.xml.sensorLayout.sensors(iSens).sensor.name) && numel(fieldnames(orig.xml.sensorLayout.sensors(iSens).sensor.name))==0)
%only get name when channel is EEG (type 0), or REF (type 1),
%rest are non interesting channels like place holders and COM and should not be added.
if strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '0') || strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '1')
% get the sensor name from the datafile
hdr.label{iSens} = orig.xml.sensorLayout.sensors(iSens).sensor.name;
end
elseif strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '0') % EEG chan
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(orig.xml.sensorLayout.sensors(iSens).sensor.number)];
elseif strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '1') % REF chan
% ingnie: I now choose REF as name for REF channel since our discussion see bug 1407. Arbitrary choice...
hdr.label{iSens} = ['REF' num2str(iSens)];
else
% non interesting channels like place holders and COM
end
end
% check if the amount of lables corresponds with nChannels in signal 1
if length(hdr.label) == nChans(1)
% good
elseif length(hdr.label) > orig.signal(1).blockhdr(1).nsignals
warning('found more lables in xml.sensorLayout than channels in signal 1, thus can not use info in sensorLayout, creating labels on the fly')
for iSens = 1:orig.signal(1).blockhdr(1).nsignals
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(iSens)];
end
else warning('found less lables in xml.sensorLayout than channels in signal 1, thus can not use info in sensorLayout, creating labels on the fly')
for iSens = 1:orig.signal(1).blockhdr(1).nsignals
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(iSens)];
end
end
% get lables for other signals
if length(orig.signal) == 2
if isfield(orig.xml, 'pnsSet') % signal2 is PIB box, and lables are in xml file pnsSet
nbEEGchan = length(hdr.label);
for iSens = 1:numel(orig.xml.pnsSet.sensors)
hdr.label{nbEEGchan+iSens} = num2str(orig.xml.pnsSet.sensors(iSens).sensor.name);
end
if length(hdr.label) == orig.signal(2).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
% good
elseif length(hdr.label) < orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
warning('found less lables in xml.pnsSet than channels in signal 2, labeling with s2_unknownN instead')
for iSens = length(hdr.label)+1 : orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
hdr.label{iSens} = ['s2_unknown', num2str(iSens)];
end
else warning('found more lables in xml.pnsSet than channels in signal 2, thus can not use info in pnsSet, and labeling with s2_eN instead')
for iSens = orig.signal(1).blockhdr(1).nsignals+1 : orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
hdr.label{iSens} = ['s2_E', num2str(iSens)];
end
end
else % signal2 is not PIBbox
warning('creating channel labels for signal 2 on the fly')
for iSens = 1:orig.signal(2).blockhdr(1).nsignals
hdr.label{end+1} = ['s2_E', num2str(iSens)];
end
end
elseif length(orig.signal) > 2
% loop over signals and label channels accordingly
warning('creating channel labels for signal 2 to signal N on the fly')
for iSig = 2:length(orig.signal)
for iSens = 1:orig.signal(iSig).blockhdr(1).nsignals
if iSig == 1 && iSens == 1
hdr.label{1} = ['s',num2str(iSig),'_E', num2str(iSens)];
else
hdr.label{end+1} = ['s',num2str(iSig),'_E', num2str(iSens)];
end
end
end
end
else % no xml.sensorLayout present
warning('no sensorLayout found in xml files, creating channel labels on the fly')
for iSig = 1:length(orig.signal)
for iSens = 1:orig.signal(iSig).blockhdr(1).nsignals
if iSig == 1 && iSens == 1
hdr.label{1} = ['s',num2str(iSig),'_E', num2str(iSens)];
else
hdr.label{end+1} = ['s',num2str(iSig),'_E', num2str(iSens)];
end
end
end
end
% check if multiple epochs are present
if isfield(orig.xml,'epochs')
% add info to header about which sample correspond to which epochs, becasue this is quite hard for user to get...
epochdef = zeros(length(orig.xml.epochs),3);
for iEpoch = 1:length(orig.xml.epochs)
if iEpoch == 1
epochdef(iEpoch,1) = round(str2double(orig.xml.epochs(iEpoch).epoch.beginTime)./(1000000./hdr.Fs))+1;
epochdef(iEpoch,2) = round(str2double(orig.xml.epochs(iEpoch).epoch.endTime )./(1000000./hdr.Fs));
epochdef(iEpoch,3) = round(str2double(orig.xml.epochs(iEpoch).epoch.beginTime)./(1000000./hdr.Fs)); % offset corresponds to timing
else
NbSampEpoch = round(str2double(orig.xml.epochs(iEpoch).epoch.endTime)./(1000000./hdr.Fs) - str2double(orig.xml.epochs(iEpoch).epoch.beginTime)./(1000000./hdr.Fs));
epochdef(iEpoch,1) = epochdef(iEpoch-1,2) + 1;
epochdef(iEpoch,2) = epochdef(iEpoch-1,2) + NbSampEpoch;
epochdef(iEpoch,3) = round(str2double(orig.xml.epochs(iEpoch).epoch.beginTime)./(1000000./hdr.Fs)); % offset corresponds to timing
end
end
if epochdef(end,2) ~= hdr.nSamples
% check for NS 4.5.4 picosecond timing
if (epochdef(end,2)/1000) == hdr.nSamples
for iEpoch=1:size(epochdef,1)
epochdef(iEpoch,1) = ((epochdef(iEpoch,1)-1)/1000)+1;
epochdef(iEpoch,2) = epochdef(iEpoch,2)/1000;
epochdef(iEpoch,3) = epochdef(iEpoch,3)/1000;
end;
warning('mff apparently generated by NetStation 4.5.4. Adjusting time scale to microseconds from nanoseconds.');
else
error('number of samples in all epochs do not add up to total number of samples')
end
end
epochLengths = epochdef(:,2)-epochdef(:,1)+1;
if ~any(diff(epochLengths))
hdr.nSamples = epochLengths(1);
hdr.nTrials = length(epochLengths);
else
warning('the data contains multiple epochs with variable length, possibly causing discontinuities in the data')
% sanity check
if epochdef(end,2) ~= hdr.nSamples
% check for NS 4.5.4 picosecond timing
if (epochdef(end,2)/1000) == hdr.nSamples
for iEpoch=1:size(epochdef,1)
epochdef(iEpoch,1)=((epochdef(iEpoch,1)-1)/1000)+1;
epochdef(iEpoch,2)=epochdef(iEpoch,2)/1000;
epochdef(iEpoch,3)=epochdef(iEpoch,3)/1000;
end;
disp('mff apparently generated by NetStation 4.5.4. Adjusting time scale to microseconds from nanoseconds.');
else
error('number of samples in all epochs do not add up to total number of samples')
end;
end
end
orig.epochdef = epochdef;
end;
hdr.orig = orig;
case 'egi_mff_v2'
% ensure that the EGI_MFF toolbox is on the path
ft_hastoolbox('egi_mff', 1);
% ensure that the JVM is running and the jar file is on the path
%%%%%%%%%%%%%%%%%%%%%%
%workaround for MATLAB bug resulting in global variables being cleared
globalTemp=cell(0);
globalList=whos('global');
varList=whos;
for i=1:length(globalList)
eval(['global ' globalList(i).name ';']);
eval(['globalTemp{end+1}=' globalList(i).name ';']);
end;
%%%%%%%%%%%%%%%%%%%%%%
mff_setup;
%%%%%%%%%%%%%%%%%%%%%%
%workaround for MATLAB bug resulting in global variables being cleared
varNames={varList.name};
for i=1:length(globalList)
eval(['global ' globalList(i).name ';']);
eval([globalList(i).name '=globalTemp{i};']);
if ~any(strcmp(globalList(i).name,varNames)) %was global variable originally out of scope?
eval(['clear ' globalList(i).name ';']); %clears link to global variable without affecting it
end;
end;
clear globalTemp globalList varNames varList;
%%%%%%%%%%%%%%%%%%%%%%
if isunix && filename(1)~=filesep
% add the full path to the dataset directory
filename = fullfile(pwd, filename);
elseif ispc && ~any(strcmp(filename(2),{':','\'}))
% add the full path, including drive letter or slashes as needed.
filename = fullfile(pwd, filename);
end
hdr = read_mff_header(filename);
case 'fcdc_buffer'
% read from a networked buffer for realtime analysis
[host, port] = filetype_check_uri(filename);
if retry
orig = [];
while isempty(orig)
try
% try reading the header, catch the error and retry
orig = buffer('get_hdr', [], host, port);
catch
warning('could not read header from %s, retrying in 1 second', filename);
pause(1);
end
end % while
else
% try reading the header only once, give error if it fails
orig = buffer('get_hdr', [], host, port);
end % if retry
% construct the standard header elements
hdr.Fs = orig.fsample;
hdr.nChans = orig.nchans;
hdr.nSamples = orig.nsamples;
hdr.nSamplesPre = 0; % since continuous
hdr.nTrials = 1; % since continuous
hdr.orig = []; % this will contain the chunks (if present)
% add the contents of attached FIF_header chunk after decoding to MATLAB structure
if isfield(orig, 'neuromag_header')
if isempty(cachechunk)
% this only needs to be decoded once
cachechunk = decode_fif(orig);
end
% convert to FieldTrip format header
hdr.label = cachechunk.ch_names(:);
hdr.nChans = cachechunk.nchan;
hdr.Fs = cachechunk.sfreq;
% add a gradiometer structure for forward and inverse modelling
try
[grad, elec] = mne2grad(cachechunk, true, coilaccuracy); % the coordsys is 'dewar'
if ~isempty(grad)
hdr.grad = grad;
end
if ~isempty(elec)
hdr.elec = elec;
end
catch
disp(lasterr);
end
% store the original details
hdr.orig = cachechunk;
end
% add the contents of attached RES4 chunk after decoding to MATLAB structure
if isfield(orig, 'ctf_res4')
if isempty(cachechunk)
% this only needs to be decoded once
cachechunk = decode_res4(orig.ctf_res4);
end
% copy the gradiometer details
hdr.grad = cachechunk.grad;
hdr.orig = cachechunk.orig;
if isfield(orig, 'channel_names')
% get the same selection of channels from the two chunks
[selbuf, selres4] = match_str(orig.channel_names, cachechunk.label);
if length(selres4)<length(orig.channel_names)
error('the res4 chunk did not contain all channels')
end
% copy some of the channel details
hdr.label = cachechunk.label(selres4);
hdr.chantype = cachechunk.chantype(selres4);
hdr.chanunit = cachechunk.chanunit(selres4);
% add the channel names chunk as well
hdr.orig.channel_names = orig.channel_names;
end
% add the raw chunk as well
hdr.orig.ctf_res4 = orig.ctf_res4;
end
% add the contents of attached NIFTI-1 chunk after decoding to MATLAB structure
if isfield(orig, 'nifti_1')
hdr.nifti_1 = decode_nifti1(orig.nifti_1);
% add the raw chunk as well
hdr.orig.nifti_1 = orig.nifti_1;
end
% add the contents of attached SiemensAP chunk after decoding to MATLAB structure
if isfield(orig, 'siemensap') && exist('sap2matlab')==3 % only run this if MEX file is present
hdr.siemensap = sap2matlab(orig.siemensap);
% add the raw chunk as well
hdr.orig.siemensap = orig.siemensap;
end
if ~isfield(hdr, 'label')
% prevent overwriting the labels that we might have gotten from a RES4 chunk
if isfield(orig, 'channel_names')
hdr.label = orig.channel_names;
else
hdr.label = cell(hdr.nChans,1);
if hdr.nChans < 2000 % don't do this for fMRI etc.
ft_warning('creating fake channel names'); % give this warning only once
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
else
ft_warning('skipping fake channel names'); % give this warning only once
checkUniqueLabels = false;
end
end
end
if ~isfield(hdr, 'chantype')
% prevent overwriting the chantypes that we might have gotten from a RES4 chunk
hdr.chantype = cell(hdr.nChans,1);
if hdr.nChans < 2000 % don't do this for fMRI etc.
hdr.chantype = repmat({'unknown'}, 1, hdr.nChans);
end
end
if ~isfield(hdr, 'chanunit')
% prevent overwriting the chanunits that we might have gotten from a RES4 chunk
hdr.chanunit = cell(hdr.nChans,1);
if hdr.nChans < 2000 % don't do this for fMRI etc.
hdr.chanunit = repmat({'unknown'}, 1, hdr.nChans);
end
end
hdr.orig.bufsize = orig.bufsize;
case 'fcdc_buffer_offline'
[hdr, nameFlag] = read_buffer_offline_header(headerfile);
switch nameFlag
case 0
% no labels generated (fMRI etc)
checkUniqueLabels = false; % no need to check these
case 1
% has generated fake channels
% give this warning only once
ft_warning('creating fake channel names');
checkUniqueLabels = false; % no need to check these
case 2
% got labels from chunk, check those
checkUniqueLabels = true;
end
case 'fcdc_matbin'
% this is multiplexed data in a *.bin file, accompanied by a MATLAB file containing the header
load(headerfile, 'hdr');
case 'fcdc_mysql'
% check that the required low-level toolbox is available
ft_hastoolbox('mysql', 1);
% read from a MySQL server listening somewhere else on the network
db_open(filename);
if db_blob
hdr = db_select_blob('fieldtrip.header', 'msg', 1);
else
hdr = db_select('fieldtrip.header', {'nChans', 'nSamples', 'nSamplesPre', 'Fs', 'label'}, 1);
hdr.label = mxDeserialize(hdr.label);
end
case 'gtec_mat'
% this is a simple MATLAB format, it contains a log and a names variable
tmp = load(headerfile);
log = tmp.log;
names = tmp.names;
hdr.label = cellstr(names);
hdr.nChans = size(log,1);
hdr.nSamples = size(log,2);
hdr.nSamplesPre = 0;
hdr.nTrials = 1; % assume continuous data, not epoched
% compute the sampling frequency from the time channel
sel = strcmp(hdr.label, 'Time');
time = log(sel,:);
hdr.Fs = 1./(time(2)-time(1));
% also remember the complete data upon request
if cache
hdr.orig.log = log;
hdr.orig.names = names;
end
case 'gdf'
% this requires the biosig toolbox
ft_hastoolbox('BIOSIG', 1);
% In the case that the gdf files are written by one of the FieldTrip
% realtime applications, such as biosig2ft, the gdf recording can be
% split over multiple 1GB files. The sequence of files is then
% filename.gdf <- this is the one that should be specified as the filename/dataset
% filename_1.gdf
% filename_2.gdf
% ...
[p, f, x] = fileparts(filename);
if exist(sprintf('%s_%d%s', fullfile(p, f), 1, x), 'file')
% there are multiple files, count the number of additional files (excluding the first one)
count = 0;
while exist(sprintf('%s_%d%s', fullfile(p, f), count+1, x), 'file')
count = count+1;
end
hdr = read_biosig_header(filename);
for i=1:count
hdr(i+1) = read_biosig_header(sprintf('%s_%d%s', fullfile(p, f), i, x));
% do some sanity checks
if hdr(i+1).nChans~=hdr(1).nChans
error('multiple GDF files detected that should be appended, but the channel count is inconsistent');
elseif hdr(i+1).Fs~=hdr(1).Fs
error('multiple GDF files detected that should be appended, but the sampling frequency is inconsistent');
elseif ~isequal(hdr(i+1).label, hdr(1).label)
error('multiple GDF files detected that should be appended, but the channel names are inconsistent');
end
end % for count
% combine all headers into one
combinedhdr = [];
combinedhdr.Fs = hdr(1).Fs;
combinedhdr.nChans = hdr(1).nChans;
combinedhdr.nSamples = sum([hdr.nSamples].*[hdr.nTrials]);
combinedhdr.nSamplesPre = 0;
combinedhdr.nTrials = 1;
combinedhdr.label = hdr(1).label;
combinedhdr.orig = hdr; % include all individual file details
hdr = combinedhdr;
else
% there is only a single file
hdr = read_biosig_header(filename);
% the GDF format is always continuous
hdr.nSamples = hdr.nSamples * hdr.nTrials;
hdr.nTrials = 1;
hdr.nSamplesPre = 0;
end % if single or multiple gdf files
case {'itab_raw' 'itab_mhd'}
% read the full header information frtom the binary header structure
header_info = read_itab_mhd(headerfile);
% these are the channels that are visible to fieldtrip
chansel = 1:header_info.nchan;
% convert the header information into a FieldTrip compatible format
hdr.nChans = length(chansel);
hdr.label = {header_info.ch(chansel).label};
hdr.label = hdr.label(:); % should be column vector
hdr.Fs = header_info.smpfq;
% it will always be continuous data
hdr.nSamples = header_info.ntpdata;
hdr.nSamplesPre = 0; % it is a single continuous trial
hdr.nTrials = 1; % it is a single continuous trial
% keep the original details AND the list of channels as used by fieldtrip
hdr.orig = header_info;
hdr.orig.chansel = chansel;
% add the gradiometer definition
hdr.grad = itab2grad(header_info);
case 'jaga16'
% this is hard-coded for the Jinga-Hi JAGA16 system with 16 channels
packetsize = (4*2 + 6*2 + 16*43*2); % in bytes
% read the first packet
fid = fopen(filename, 'r');
buf = fread(fid, packetsize/2, 'uint16');
fclose(fid);
if buf(1)==0
% it does not have timestamps, i.e. it is the raw UDP stream
packetsize = packetsize - 8; % in bytes
packet = jaga16_packet(buf(1:(packetsize/2)), false);
else
% each packet starts with a timestamp
packet = jaga16_packet(buf, true);
end
% determine the number of packets from the file size
info = dir(filename);
npackets = floor((info.bytes)/packetsize/2);
hdr = [];
hdr.Fs = packet.fsample;
hdr.nChans = packet.nchan;
hdr.nSamples = 43;
hdr.nSamplesPre = 0;
hdr.nTrials = npackets;
hdr.label = cell(hdr.nChans,1);
hdr.chantype = cell(hdr.nChans,1);
hdr.chanunit = cell(hdr.nChans,1);
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
hdr.chantype{i} = 'eeg';
hdr.chanunit{i} = 'uV';
end
% store some low-level details
hdr.orig.offset = 0;
hdr.orig.packetsize = packetsize;
hdr.orig.packet = packet;
hdr.orig.info = info;
case {'manscan_mbi', 'manscan_mb2'}
orig = in_fopen_manscan(filename);
hdr.Fs = orig.prop.sfreq;
hdr.nChans = numel(orig.channelmat.Channel);
hdr.nTrials = 1;
if isfield(orig, 'epochs') && ~isempty(orig.epochs)
hdr.nSamples = 0;
for i = 1:numel(orig.epochs)
hdr.nSamples = hdr.nSamples + diff(orig.epochs(i).samples) + 1;
end
else
hdr.nSamples = diff(orig.prop.samples) + 1;
end
if orig.prop.times(1) < 0
hdr.nSamplesPre = round(orig.prop.times(1)/hdr.Fs);
else
hdr.nSamplesPre = 0;
end
for i=1:hdr.nChans
hdr.label{i,1} = orig.channelmat.Channel(i).Name;
hdr.chantype{i,1} = lower(orig.channelmat.Channel(i).Type);
if isequal(hdr.chantype{i,1}, 'eeg')
hdr.chanunit{i, 1} = 'uV';
else
hdr.chanunit{i, 1} = 'unknown';
end
end
hdr.orig = orig;
case 'mega_neurone'
% ensure that this external toolbox is on the path
ft_hastoolbox('neurone', 1);
if filename(end)~=filesep
% it should end with a slash
filename = [filename filesep];
end
% this is like the EEGLAB data structure
EEG = readneurone(filename);
hdr.Fs = EEG.srate;
hdr.nChans = EEG.nbchan;
hdr.nSamples = EEG.pnts;
hdr.nSamplesPre = -EEG.xmin*EEG.srate;
hdr.nTrials = EEG.trials;
try
hdr.label = { EEG.chanlocs.labels }';
catch
warning('creating default channel names');
for i=1:hdr.nChans
hdr.label{i} = sprintf('chan%03d', i);
end
end
ind = 1;
for i = 1:length( EEG.chanlocs )
if isfield(EEG.chanlocs(i), 'X') && ~isempty(EEG.chanlocs(i).X)
hdr.elec.label{ind, 1} = EEG.chanlocs(i).labels;
% this channel has a position
hdr.elec.elecpos(ind,1) = EEG.chanlocs(i).X;
hdr.elec.elecpos(ind,2) = EEG.chanlocs(i).Y;
hdr.elec.elecpos(ind,3) = EEG.chanlocs(i).Z;
ind = ind+1;
end
end
if cache
% also remember the data and events
hdr.orig = EEG;
else
% remember only the header details
hdr.orig = removefields(EEG, {'data', 'event'});
end
case 'micromed_trc'
orig = read_micromed_trc(filename);
hdr = [];
hdr.Fs = orig.Rate_Min; % FIXME is this correct?
hdr.nChans = orig.Num_Chan;
hdr.nSamples = orig.Num_Samples;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = cell(1,hdr.nChans);
% give this warning only once
hdr.label = {orig.elec.Name};
hdr.chanunit = {orig.elec.Unit};
hdr.subjectname = orig.name;
%warning('using a modified read_micromed_trc() function');
% this should be a column vector
hdr.label = hdr.label(:);
% remember the original header details
hdr.orig = orig;
case {'mpi_ds', 'mpi_dap'}
hdr = read_mpi_ds(filename);
case 'netmeg'
ft_hastoolbox('netcdf', 1);
% this will read all NetCDF data from the file and subsequently convert
% each of the three elements into a more easy to parse MATLAB structure
s = netcdf(filename);
for i=1:numel(s.AttArray)
fname = fixname(s.AttArray(i).Str);
fval = s.AttArray(i).Val;
if ischar(fval)
fval = fval(fval~=0); % remove the \0 characters
fval = strtrim(fval); % remove insignificant whitespace
end
Att.(fname) = fval;
end
for i=1:numel(s.VarArray)
fname = fixname(s.VarArray(i).Str);
fval = s.VarArray(i).Data;
if ischar(fval)
fval = fval(fval~=0); % remove the \0 characters
fval = strtrim(fval); % remove insignificant whitespace
end
Var.(fname) = fval;
end
for i=1:numel(s.DimArray)
fname = fixname(s.DimArray(i).Str);
fval = s.DimArray(i).Dim;
if ischar(fval)
fval = fval(fval~=0); % remove the \0 characters
fval = strtrim(fval); % remove insignificant whitespace
end
Dim.(fname) = fval;
end
% convert the relevant fields into the default header structure
hdr.Fs = 1000/Var.samplinginterval;
hdr.nChans = length(Var.channelstatus);
hdr.nSamples = Var.numsamples;
hdr.nSamplesPre = 0;
hdr.nTrials = size(Var.waveforms, 1);
hdr.chanunit = cellstr(reshape(Var.channelunits, hdr.nChans, 2));
hdr.chantype = cellstr(reshape(lower(Var.channeltypes), hdr.nChans, 3));
ft_warning('creating fake channel names');
hdr.label = cell(hdr.nChans, 1);
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
% remember the original details of the file
% note that this also includes the data
% this is large, but can be reused elsewhere
hdr.orig.Att = Att;
hdr.orig.Var = Var;
hdr.orig.Dim = Dim;
% construct the gradiometer structure from the complete header information
hdr.grad = netmeg2grad(hdr);
case 'nervus_eeg'
hdr = read_nervus_header(filename);
checkUniqueLabels = false;
case 'neuralynx_dma'
hdr = read_neuralynx_dma(filename);
case 'neuralynx_sdma'
hdr = read_neuralynx_sdma(filename);
case 'neuralynx_ncs'
ncs = read_neuralynx_ncs(filename, 1, 0);
[p, f, x] = fileparts(filename);
hdr.Fs = ncs.hdr.SamplingFrequency;
hdr.label = {f};
hdr.nChans = 1;
hdr.nTrials = 1;
hdr.nSamplesPre = 0;
hdr.nSamples = ncs.NRecords * 512;
hdr.orig = ncs.hdr;
FirstTimeStamp = ncs.hdr.FirstTimeStamp; % this is the first timestamp of the first block
LastTimeStamp = ncs.hdr.LastTimeStamp; % this is the first timestamp of the last block, i.e. not the timestamp of the last sample
hdr.TimeStampPerSample = double(LastTimeStamp - FirstTimeStamp) ./ ((ncs.NRecords-1)*512);
hdr.FirstTimeStamp = FirstTimeStamp;
case 'neuralynx_nse'
nse = read_neuralynx_nse(filename, 1, 0);
[p, f, x] = fileparts(filename);
hdr.Fs = nse.hdr.SamplingFrequency;
hdr.label = {f};
hdr.nChans = 1;
hdr.nTrials = nse.NRecords; % each record contains one waveform
hdr.nSamples = 32; % there are 32 samples in each waveform
hdr.nSamplesPre = 0;
hdr.orig = nse.hdr;
% FIXME add hdr.FirstTimeStamp and hdr.TimeStampPerSample
case {'neuralynx_ttl', 'neuralynx_tsl', 'neuralynx_tsh'}
% these are hardcoded, they contain an 8-byte header and int32 values for a single channel
% FIXME this should be done similar as neuralynx_bin, i.e. move the hdr into the function
hdr = [];
hdr.Fs = 32556;
hdr.nChans = 1;
hdr.nSamples = (filesize(filename)-8)/4;
hdr.nSamplesPre = 1;
hdr.nTrials = 1;
hdr.label = {headerformat((end-3):end)};
case 'neuralynx_bin'
hdr = read_neuralynx_bin(filename);
case 'neuralynx_ds'
hdr = read_neuralynx_ds(filename);
case 'neuralynx_cds'
hdr = read_neuralynx_cds(filename);
case 'nexstim_nxe'
hdr = read_nexstim_nxe(filename);
case {'neuromag_fif' 'neuromag_mne'}
% check that the required low-level toolbox is available
ft_hastoolbox('mne', 1);
info = fiff_read_meas_info(filename);
% convert to FieldTrip format header
hdr.label = info.ch_names(:);
hdr.nChans = info.nchan;
hdr.Fs = info.sfreq;
% add a gradiometer structure for forward and inverse modelling
try
[grad, elec] = mne2grad(info, strcmp(coordsys, 'dewar'), coilaccuracy);
if ~isempty(grad)
hdr.grad = grad;
end
if ~isempty(elec)
hdr.elec = elec;
end
catch
disp(lasterr);
end
iscontinuous = 0;
isepoched = 0;
isaverage = 0;
if isempty(fiff_find_evoked(filename)) % true if file contains no evoked responses
try
epochs = fiff_read_epochs(filename);
isepoched = 1;
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
if strcmp(me.identifier, 'MNE:fiff_read_events')
iscontinuous = 1;
else
rethrow(me)
end
end
else
isaverage = 1;
end
if iscontinuous
try
% we only use 1 input argument here to allow backward
% compatibility up to MNE 2.6.x:
raw = fiff_setup_read_raw(filename);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
% there is an error - we try to use MNE 2.7.x (if present) to
% determine if the cause is maxshielding:
try
allow_maxshield = true;
raw = fiff_setup_read_raw(filename,allow_maxshield);
catch
% unknown problem, or MNE version 2.6.x or less:
rethrow(me);
end
% no error message from fiff_setup_read_raw? Then maxshield
% was applied, but maxfilter wasn't, so return this error:
if istrue(checkmaxfilter)
error('Maxshield data should be corrected using Maxfilter prior to importing in FieldTrip.');
else
ft_warning('Maxshield data should be corrected using Maxfilter prior to importing in FieldTrip.');
end
end
hdr.nSamples = raw.last_samp - raw.first_samp + 1; % number of samples per trial
hdr.nSamplesPre = 0;
% otherwise conflicts will occur in read_data
hdr.nTrials = 1;
info.raw = raw; % keep all the details
elseif isepoched
hdr.nSamples = length(epochs.times);
hdr.nSamplesPre = sum(epochs.times < 0);
hdr.nTrials = size(epochs.data, 1);
info.epochs = epochs; % this is used by read_data to get the actual data, i.e. to prevent re-reading
elseif isaverage
try,
evoked_data = fiff_read_evoked_all(filename);
vartriallength = any(diff([evoked_data.evoked.first])) || any(diff([evoked_data.evoked.last]));
if vartriallength
% there are trials averages with variable durations in the file
warning('EVOKED FILE with VARIABLE TRIAL LENGTH! - check data have been processed accurately');
hdr.nSamples = 0;
for i=1:length(evoked_data.evoked)
hdr.nSamples = hdr.nSamples + size(evoked_data.evoked(i).epochs, 2);
end
% represent it as a continuous file with a single trial
% all trial average details will be available through read_event
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
info.evoked = evoked_data.evoked; % this is used by read_data to get the actual data, i.e. to prevent re-reading
info.info = evoked_data.info; % keep all the details
info.vartriallength = 1;
else
% represent it as a file with multiple trials, each trial has the same length
% all trial average details will be available through read_event
hdr.nSamples = evoked_data.evoked(1).last - evoked_data.evoked(1).first + 1;
hdr.nSamplesPre = -evoked_data.evoked(1).first; % represented as negative number in fif file
hdr.nTrials = length(evoked_data.evoked);
info.evoked = evoked_data.evoked; % this is used by read_data to get the actual data, i.e. to prevent re-reading
info.info = evoked_data.info; % keep all the details
info.vartriallength = 0;
end
catch
% this happens if fiff_read_evoked_all cannot find evoked
% responses, in which case it errors due to not assigning the
% output variable "data"
warning('%s does not contain data', filename);
hdr.nSamples = 0;
hdr.nSamplesPre = 0;
hdr.nTrials = 0;
end
end
% remember the original header details
hdr.orig = info;
% these are useful to know in ft_read_event and ft_read_data
hdr.orig.isaverage = isaverage;
hdr.orig.iscontinuous = iscontinuous;
hdr.orig.isepoched = isepoched;
case 'neuromag_mex'
% check that the required low-level toolbox is available
ft_hastoolbox('meg-pd', 1);
rawdata('any',filename);
rawdata('goto', 0);
megmodel('head',[0 0 0],filename);
% get the available information from the fif file
[orig.rawdata.range,orig.rawdata.calib] = rawdata('range');
[orig.rawdata.sf] = rawdata('sf');
[orig.rawdata.samples] = rawdata('samples');
[orig.chaninfo.N,orig.chaninfo.S,orig.chaninfo.T] = chaninfo; % Numbers, names & places
[orig.chaninfo.TY,orig.chaninfo.NA] = chaninfo('type'); % Coil type
[orig.chaninfo.NO] = chaninfo('noise'); % Default noise level
[orig.channames.NA,orig.channames.KI,orig.channames.NU] = channames(filename); % names, kind, logical numbers
% read a single trial to determine the data size
[buf, status] = rawdata('next');
rawdata('close');
% This is to solve a problem reported by Doug Davidson: The problem
% is that rawdata('samples') is not returning the number of samples
% correctly. It appears that the example script rawchannels in meg-pd
% might work, however, so I want to use rawchannels to read in one
% channel of data in order to get the number of samples in the file:
if orig.rawdata.samples<0
tmpchannel = 1;
tmpvar = rawchannels(filename,tmpchannel);
[orig.rawdata.samples] = size(tmpvar,2);
clear tmpvar tmpchannel;
end
% convert to FieldTrip format header
hdr.label = orig.channames.NA;
hdr.Fs = orig.rawdata.sf;
hdr.nSamplesPre = 0; % I don't know how to get this out of the file
hdr.nChans = size(buf,1);
hdr.nSamples = size(buf,2); % number of samples per trial
hdr.nTrials = orig.rawdata.samples ./ hdr.nSamples;
% add a gradiometer structure for forward and inverse modelling
hdr.grad = fif2grad(filename);
% remember the original header details
hdr.orig = orig;
case 'neuroprax_eeg'
orig = np_readfileinfo(filename);
hdr.Fs = orig.fa;
hdr.nChans = orig.K;
hdr.nSamples = orig.N;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = orig.channels(:);
hdr.unit = orig.units(:);
% remember the original header details
hdr.orig = orig;
case 'neuroscope_bin'
[p,f,e] = fileparts(filename);
headerfile = fullfile(p,[f,'.xml']);
hdr = ft_read_header(headerfile, 'headerformat', 'neuroscope_xml');
case 'neuroscope_ds'
listing = dir(filename);
filenames = {listing.name}';
headerfile = filenames{~cellfun('isempty',strfind(filenames,'.xml'))};
hdr = ft_read_header(headerfile, 'headerformat', 'neuroscope_xml');
case 'neuroscope_xml'
ft_hastoolbox('neuroscope', 1);
ft_hastoolbox('gifti', 1);
% this pertains to generic header file, and the other neuroscope
% formats will recurse into this one
[p,f,e] = fileparts(filename);
if isempty(p), p = pwd; end
listing = dir(p);
filenames = {listing.name}';
lfpfile_idx = find(~cellfun('isempty',strfind(filenames,'.eeg')));
rawfile_idx = find(~cellfun('isempty',strfind(filenames,'.dat')));
if ~isempty(lfpfile_idx)
% FIXME this assumes only 1 such file, or at least it only takes the
% first one.
lfpfile = filenames{lfpfile_idx(1)};
end
if ~isempty(rawfile_idx)
rawfile = filenames{rawfile_idx(1)};
end
params = LoadParameters(filename);
hdr = [];
hdr.nChans = params.nChannels;
hdr.nTrials = 1; % is it always continuous? FIXME
hdr.nSamplesPre = 0;
if ~isempty(lfpfile)
% use the sampling of the lfp-file to be leading
hdr.Fs = params.rates.lfp;
hdr.nSamples = listing(strcmp(filenames,lfpfile)).bytes./(hdr.nChans*params.nBits/8);
hdr.TimeStampPerSample = params.rates.wideband./params.rates.lfp;
else
% use the sampling of the raw-file to be leading
hdr.Fs = params.rates.wideband;
hdr.nSamples = listing(strcmp(filenames,rawfile)).bytes./(hdr.nChans*params.nBits/8);
hdr.TimeStampPerSample = 1;
end
hdr.orig = params;
hdr.label = cell(hdr.nChans,1);
for k = 1:hdr.nChans
hdr.label{k} = ['chan',num2str(k,'%0.3d')];
end
case 'neurosim_evolution'
hdr = read_neurosim_evolution(filename);
case {'neurosim_ds' 'neurosim_signals'}
hdr = read_neurosim_signals(filename);
case 'neurosim_spikes'
headerOnly = true;
hdr = read_neurosim_spikes(filename, headerOnly);
case 'nihonkohden_m00'
hdr = read_nihonkohden_hdr(filename);
case 'nimh_cortex'
cortex = read_nimh_cortex(filename, 'epp', 'no', 'eog', 'no');
% look at the first trial to determine whether it contains data in the EPP and EOG channels
trial1 = read_nimh_cortex(filename, 'epp', 'yes', 'eog', 'yes', 'begtrial', 1, 'endtrial', 1);
hasepp = ~isempty(trial1.epp);
haseog = ~isempty(trial1.eog);
if hasepp
warning('EPP channels are not yet supported');
end
% at the moment only the EOG channels are supported here
if haseog
hdr.label = {'EOGx' 'EOGy'};
hdr.nChans = 2;
else
hdr.label = {};
hdr.nChans = 0;
end
hdr.nTrials = length(cortex);
hdr.nSamples = inf;
hdr.nSamplesPre = 0;
hdr.orig.trial = cortex;
hdr.orig.hasepp = hasepp;
hdr.orig.haseog = haseog;
case 'ns_avg'
orig = read_ns_hdr(filename);
% do some reformatting/renaming of the header items
hdr.Fs = orig.rate;
hdr.nSamples = orig.npnt;
hdr.nSamplesPre = round(-orig.rate*orig.xmin/1000);
hdr.nChans = orig.nchan;
hdr.label = orig.label(:);
hdr.nTrials = 1; % the number of trials in this datafile is only one, i.e. the average
% remember the original header details
hdr.orig = orig;
case {'ns_cnt' 'ns_cnt16', 'ns_cnt32'}
ft_hastoolbox('eeglab', 1);
if strcmp(headerformat, 'ns_cnt')
orig = loadcnt(filename); % let loadcnt figure it out
elseif strcmp(headerformat, 'ns_cnt16')
orig = loadcnt(filename, 'dataformat', 'int16');
elseif strcmp(headerformat, 'ns_cnt32')
orig = loadcnt(filename, 'dataformat', 'int32');
end
% do some reformatting/renaming of the header items
hdr.Fs = orig.header.rate;
hdr.nChans = orig.header.nchannels;
hdr.nSamples = orig.ldnsamples;
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
for i=1:hdr.nChans
hdr.label{i} = deblank(orig.electloc(i).lab);
end
% remember the original header details
hdr.orig = orig;
case 'ns_eeg'
orig = read_ns_hdr(filename);
% do some reformatting/renaming of the header items
hdr.label = orig.label;
hdr.Fs = orig.rate;
hdr.nSamples = orig.npnt;
hdr.nSamplesPre = round(-orig.rate*orig.xmin/1000);
hdr.nChans = orig.nchan;
hdr.nTrials = orig.nsweeps;
% remember the original header details
hdr.orig = orig;
case 'nmc_archive_k'
hdr = read_nmc_archive_k_hdr(filename);
case 'neuroshare' % NOTE: still under development
% check that the required neuroshare toolbox is available
ft_hastoolbox('neuroshare', 1);
tmp = read_neuroshare(filename);
hdr.Fs = tmp.hdr.analoginfo(end).SampleRate; % take the sampling freq from the last analog channel (assuming this is the same for all chans)
hdr.nChans = length(tmp.list.analog(tmp.analog.contcount~=0)); % get the analog channels, only the ones that are not empty
hdr.nSamples = max([tmp.hdr.entityinfo(tmp.list.analog).ItemCount]); % take the number of samples from the longest channel
hdr.nSamplesPre = 0; % continuous data
hdr.nTrials = 1; % continuous data
hdr.label = {tmp.hdr.entityinfo(tmp.list.analog(tmp.analog.contcount~=0)).EntityLabel}; %%% contains non-unique chans?
hdr.orig = tmp; % remember the original header
case 'oxy3'
ft_hastoolbox('artinis', 1);
hdr = read_artinis_oxy3(filename);
case 'plexon_ds'
hdr = read_plexon_ds(filename);
case 'plexon_ddt'
orig = read_plexon_ddt(filename);
hdr.nChans = orig.NChannels;
hdr.Fs = orig.Freq;
hdr.nSamples = orig.NSamples;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = cell(1,hdr.nChans);
% give this warning only once
warning('creating fake channel names');
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
% also remember the original header
hdr.orig = orig;
case {'read_nex_data'} % this is an alternative reader for nex files
orig = read_nex_header(filename);
% assign the obligatory items to the output FCDC header
numsmp = cell2mat({orig.varheader.numsmp});
adindx = find(cell2mat({orig.varheader.typ})==5);
if isempty(adindx)
error('file does not contain continuous channels');
end
hdr.nChans = length(orig.varheader);
hdr.Fs = orig.varheader(adindx(1)).wfrequency; % take the sampling frequency from the first A/D channel
hdr.nSamples = max(numsmp(adindx)); % take the number of samples from the longest A/D channel
hdr.nTrials = 1; % it can always be interpreted as continuous data
hdr.nSamplesPre = 0; % and therefore it is not trial based
for i=1:hdr.nChans
hdr.label{i} = deblank(char(orig.varheader(i).nam));
end
hdr.label = hdr.label(:);
% also remember the original header details
hdr.orig = orig;
case {'plexon_nex' 'read_plexon_nex'} % this is the default reader for nex files
orig = read_plexon_nex(filename);
numsmp = cell2mat({orig.VarHeader.NPointsWave});
adindx = find(cell2mat({orig.VarHeader.Type})==5);
if isempty(adindx)
error('file does not contain continuous channels');
end
hdr.nChans = length(orig.VarHeader);
hdr.Fs = orig.VarHeader(adindx(1)).WFrequency; % take the sampling frequency from the first A/D channel
hdr.nSamples = max(numsmp(adindx)); % take the number of samples from the longest A/D channel
hdr.nTrials = 1; % it can always be interpreted as continuous data
hdr.nSamplesPre = 0; % and therefore it is not trial based
for i=1:hdr.nChans
hdr.label{i} = deblank(char(orig.VarHeader(i).Name));
end
hdr.label = hdr.label(:);
hdr.FirstTimeStamp = orig.FileHeader.Beg;
hdr.TimeStampPerSample = orig.FileHeader.Frequency ./ hdr.Fs;
% also remember the original header details
hdr.orig = orig;
case 'plexon_plx'
orig = read_plexon_plx(filename);
if orig.NumSlowChannels==0
error('file does not contain continuous channels');
end
fsample = [orig.SlowChannelHeader.ADFreq];
if any(fsample~=fsample(1))
error('different sampling rates in continuous data not supported');
end
for i=1:length(orig.SlowChannelHeader)
label{i} = deblank(orig.SlowChannelHeader(i).Name);
end
% continuous channels don't always contain data, remove the empty ones
sel = [orig.DataBlockHeader.Type]==5; % continuous
chan = [orig.DataBlockHeader.Channel];
for i=1:length(label)
chansel(i) = any(chan(sel)==orig.SlowChannelHeader(i).Channel);
end
chansel = find(chansel); % this is required for timestamp selection
label = label(chansel);
% only the continuous channels are returned as visible
hdr.nChans = length(label);
hdr.Fs = fsample(1);
hdr.label = label;
% also remember the original header
hdr.orig = orig;
% select the first continuous channel that has data
sel = ([orig.DataBlockHeader.Type]==5 & [orig.DataBlockHeader.Channel]==orig.SlowChannelHeader(chansel(1)).Channel);
% get the timestamps that correspond with the continuous data
tsl = [orig.DataBlockHeader(sel).TimeStamp]';
tsh = [orig.DataBlockHeader(sel).UpperByteOf5ByteTimestamp]';
ts = timestamp_plexon(tsl, tsh); % use helper function, this returns an uint64 array
% determine the number of samples in the continuous channels
num = [orig.DataBlockHeader(sel).NumberOfWordsInWaveform];
hdr.nSamples = sum(num);
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
% the timestamps indicate the beginning of each block, hence the timestamp of the last block corresponds with the end of the previous block
hdr.TimeStampPerSample = double(ts(end)-ts(1))/sum(num(1:(end-1)));
hdr.FirstTimeStamp = ts(1); % the timestamp of the first continuous sample
% also make the spike channels visible
for i=1:length(orig.ChannelHeader)
hdr.label{end+1} = deblank(orig.ChannelHeader(i).Name);
end
hdr.label = hdr.label(:);
hdr.nChans = length(hdr.label);
case 'smi_txt'
smi = read_smi_txt(filename);
hdr.nChans = size(smi.dat,1);
hdr.nSamples = size(smi.dat,2);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.FirstTimeStamp = smi.trigger(1,1).timestamp;
% if the header contains the sampling rate use it and if not, compute
% it from scratch. If computed, sampling rate might have numerical
% issues due to tolerance (the reason that I write the two options)
if isfield(smi,'Fs') && ~isempty(smi.Fs);
hdr.Fs = smi.Fs;
hdr.TimeStampPerSample = 1000./hdr.Fs;
else
hdr.TimeStampPerSample = mean(diff(smi.dat(1,:)));
hdr.Fs = 1000/hdr.TimeStampPerSample; % these timestamps are in miliseconds
end
if hdr.nChans ~= size(smi.label,1);
error('data and header have different number of channels');
else
hdr.label = smi.label;
end
% remember the original header details
hdr.orig.header = smi.header;
% remember all header and data details upon request
if cache
hdr.orig = smi;
end
% add channel units when possible.
for i=1:hdr.nChans;
chanunit = regexp(hdr.label{i,1},'(?<=\[).+?(?=\])','match');
if ~isempty(chanunit)
hdr.chanunit{i,1} = chanunit{1};
hdr.chantype{i,1} = 'eyetracker';
else
hdr.chanunit{i,1} = 'unknown';
hdr.chantype{i,1} = 'unknown';
end
end
case 'tmsi_poly5'
orig = read_tmsi_poly5(filename);
% the header contains all channels twice (for the low and high data word)
% it seems that the file format was designed for 16 bit, and only later extended to 32 bit
hdr = [];
hdr.nChans = orig.header.NumberOfSignals/2;
hdr.Fs = orig.header.FS;
hdr.nSamples = orig.header.NumberSampleBlocks * orig.header.SamplePeriodsPerBlock;
hdr.nSamplesPre = 0;
hdr.nTrials = 1; % continuous
for i=2:2:orig.header.NumberOfSignals
% remove the '(Lo) ' and the '(Hi) ' section
hdr.label{i/2} = strtrim(orig.description(i).SignalName(6:end)');
end
% determine the EEG channels
iseeg = true(size(hdr.label));
iseeg = iseeg & cellfun(@isempty, regexp(hdr.label, 'BIP.*'));
iseeg = iseeg & cellfun(@isempty, regexp(hdr.label, 'AUX.*'));
iseeg = iseeg & cellfun(@isempty, regexp(hdr.label, 'Digi.*'));
iseeg = iseeg & cellfun(@isempty, regexp(hdr.label, 'Saw.*'));
iseeg = iseeg & cellfun(@isempty, regexp(hdr.label, 'Bit.*'));
istrg = ~cellfun(@isempty, regexp(hdr.label, 'Digi.*'));
hdr.chanunit = cell(size(hdr.label));
hdr.chantype = cell(size(hdr.label));
hdr.chanunit(:) = {'unknown'};
hdr.chantype(:) = {'unknown'};
hdr.chanunit(iseeg) = {'uV'};
hdr.chantype(iseeg) = {'eeg'};
hdr.chantype(istrg) = {'trigger'};
% remember the original header details
hdr.orig = orig;
case 'tobii_tsv'
tsv = read_tobii_tsv(filename);
% keyboard
% remember the original header details
hdr.orig = tsv;
case {'tdt_tsq', 'tdt_tev'}
% FIXME the code below is not yet functional, it requires more input from the ESI in Frankfurt
% tsq = read_tdt_tsq(headerfile);
% k = 0;
% chan = unique([tsq.channel]);
% % loop over the physical channels
% for i=1:length(chan)
% chansel = [tsq.channel]==chan(i);
% code = unique({tsq(chansel).code});
% % loop over the logical channels
% for j=1:length(code)
% codesel = false(size(tsq));
% for k=1:numel(codesel)
% codesel(k) = identical(tsq(k).code, code{j});
% end
% % find the first instance of this logical channel
% this = find(chansel(:) & codesel(:), 1);
% % add it to the list of channels
% k = k + 1;
% frequency(k) = tsq(this).frequency;
% label{k} = [char(typecast(tsq(this).code, 'uint8')) num2str(tsq(this).channel)];
% tsqorig(k) = tsq(this);
% end
% end
error('not yet implemented');
case {'yokogawa_ave', 'yokogawa_con', 'yokogawa_raw', 'yokogawa_mrk'}
% header can be read with two toolboxes: Yokogawa MEG Reader and Yokogawa MEG160 (old inofficial toolbox)
% newest toolbox takes precedence.
if ft_hastoolbox('yokogawa_meg_reader', 3); % stay silent if it cannot be added
hdr = read_yokogawa_header_new(filename);
% add a gradiometer structure for forward and inverse modelling
hdr.grad = yokogawa2grad_new(hdr);
else
ft_hastoolbox('yokogawa', 1); % try it with the old version of the toolbox
hdr = read_yokogawa_header(filename);
% add a gradiometer structure for forward and inverse modelling
hdr.grad = yokogawa2grad(hdr);
end
case 'riff_wave'
[y, fs, nbits, opts] = wavread(filename, 1); % read one sample
siz = wavread(filename,'size');
hdr.Fs = fs;
hdr.nChans = siz(2);
hdr.nSamples = siz(1);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
[p, f, x] = fileparts(filename);
if hdr.nChans>1
for i=1:hdr.nChans
% use the file name and channel number
hdr.label{i,1} = sprintf('%s channel %d', f, i);
hdr.chantype{i,1} = 'audio';
end
else
hdr.label{1,1} = f;
hdr.chantype{1,1} = 'audio';
end
% remember the details
hdr.orig = opts;
case 'videomeg_aud'
hdr = read_videomeg_aud(filename);
case 'videomeg_vid'
hdr = read_videomeg_vid(filename);
checkUniqueLabels = false;
otherwise
if strcmp(fallback, 'biosig') && ft_hastoolbox('BIOSIG', 1)
hdr = read_biosig_header(filename);
else
error('unsupported header format "%s"', headerformat);
end
end % switch headerformat
% Sometimes, the not all labels are correctly filled in by low-level reading
% functions. See for example bug #1572.
% First, make sure that there are enough (potentially empty) labels:
if numel(hdr.label) < hdr.nChans
warning('low-level reading function did not supply enough channel labels');
hdr.label{hdr.nChans} = [];
end
% Now, replace all empty labels with new name:
if any(cellfun(@isempty, hdr.label))
warning('channel labels should not be empty, creating unique labels');
hdr.label = fix_empty(hdr.label);
end
if checkUniqueLabels
if length(hdr.label)~=length(unique(hdr.label))
% all channels must have unique names
warning('all channels must have unique labels, creating unique labels');
megflag = ft_chantype(hdr, 'meg');
eegflag = ft_chantype(hdr, 'eeg');
for i=1:hdr.nChans
sel = find(strcmp(hdr.label{i}, hdr.label));
if length(sel)>1
% there is no need to rename the first instance
% can be particularly disruptive when part of standard MEG
% or EEG channel set, so should be avoided
if any(megflag(sel))
sel = setdiff(sel, sel(find(megflag(sel), 1)));
elseif any(eegflag(sel))
sel = setdiff(sel, sel(find(eegflag(sel), 1)));
else
sel = sel(2:end);
end
for j=1:length(sel)
hdr.label{sel(j)} = sprintf('%s-%d', hdr.label{sel(j)}, j);
end
end
end
end
end
% as of November 2011, the header is supposed to include the channel type (see FT_CHANTYPE,
% e.g. meggrad, megref, eeg) and the units of each channel (see FT_CHANUNIT, e.g. uV, fT)
if ~isfield(hdr, 'chantype') && checkUniqueLabels
% use a helper function which has some built in intelligence
hdr.chantype = ft_chantype(hdr);
end % for
if ~isfield(hdr, 'chanunit') && checkUniqueLabels
% use a helper function which has some built in intelligence
hdr.chanunit = ft_chanunit(hdr);
end % for
% ensure that the output grad is according to the latest definition
if isfield(hdr, 'grad')
hdr.grad = ft_datatype_sens(hdr.grad);
end
% ensure that the output elec is according to the latest definition
if isfield(hdr, 'elec')
hdr.elec = ft_datatype_sens(hdr.elec);
end
% ensure that these are column arrays
hdr.label = hdr.label(:);
if isfield(hdr, 'chantype'), hdr.chantype = hdr.chantype(:); end
if isfield(hdr, 'chanunit'), hdr.chanunit = hdr.chanunit(:); end
% ensure that these are double precision and not integers, otherwise
% subsequent computations that depend on these might be messed up
hdr.Fs = double(hdr.Fs);
hdr.nSamples = double(hdr.nSamples);
hdr.nSamplesPre = double(hdr.nSamplesPre);
hdr.nTrials = double(hdr.nTrials);
hdr.nChans = double(hdr.nChans);
if inflated
% compressed file has been unzipped on the fly, clean up
if strcmp(headerformat, 'brainvision_vhdr')
% don't delete the header file yet, ft_read_data might still need it
% the files will be cleaned up by ft_read_data
else
delete(filename);
end
end
if cache && exist(headerfile, 'file')
% put the header in the cache
cacheheader = hdr;
% update the header details (including time stampp, size and name)
cacheheader.details = dir(headerfile);
% fprintf('added header to cache\n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the file size in bytes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [siz] = filesize(filename)
l = dir(filename);
if l.isdir
error('"%s" is not a file', filename);
end
siz = l.bytes;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the file size in bytes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hdr] = recursive_read_header(filename)
[p, f, x] = fileparts(filename);
ls = dir(filename);
ls = ls(~strcmp({ls.name}, '.')); % exclude this directory
ls = ls(~strcmp({ls.name}, '..')); % exclude parent directory
for i=1:length(ls)
% make sure that the directory listing includes the complete path
ls(i).name = fullfile(filename, ls(i).name);
end
lst = {ls.name};
hdr = cell(size(lst));
sel = zeros(size(lst));
for i=1:length(lst)
% read the header of each individual file
try
thishdr = ft_read_header(lst{i});
if isstruct(thishdr)
thishdr.filename = lst{i};
end
catch
thishdr = [];
warning(lasterr);
fprintf('while reading %s\n\n', lst{i});
end
if ~isempty(thishdr)
hdr{i} = thishdr;
sel(i) = true;
else
sel(i) = false;
end
end
sel = logical(sel(:));
hdr = hdr(sel);
tmp = {};
for i=1:length(hdr)
if isstruct(hdr{i})
tmp = cat(1, tmp, hdr(i));
elseif iscell(hdr{i})
tmp = cat(1, tmp, hdr{i}{:});
end
end
hdr = tmp;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to fill in empty labels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function labels = fix_empty(labels)
for i = find(cellfun(@isempty, {labels{:}}));
labels{i} = sprintf('%d', i);
end
|
github
|
lcnbeapp/beapp-master
|
ft_read_mri.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/ft_read_mri.m
| 16,412 |
utf_8
|
5f31e0b2de7b0f1c54df82c39a9d8b73
|
function [mri] = ft_read_mri(filename, varargin)
% FT_READ_MRI reads anatomical and functional MRI data from different
% file formats. The output data is structured in such a way that it is
% comparable to a FieldTrip source reconstruction.
%
% Use as
% [mri] = ft_read_mri(filename)
%
% Additional options should be specified in key-value pairs and can be
% 'dataformat' = string specifying the file format, determining the low-
% level reading routine to be used. If no format is given,
% it is determined automatically from the file.
% The following formats can be specified:
% 'afni_head'/'afni_brik' uses afni
% 'analyze_img'/'analyze_hdr' uses spm
% 'analyze_old' uses Darren Webber's code
% 'asa_mri'
% 'ctf_mri'
% 'ctf_mri4'
% 'ctf_svl'
% 'dicom' uses freesurfer
% 'dicom_old' uses own code
% 'freesurfer_mgh' uses freesurfer
% 'freesurfer_mgz' uses freesurfer
% 'minc' uses spm (<= version spm5)
% 'nifti' uses freesurfer
% 'nifti_fsl' uses freesurfer
% 'nifti_spm' uses spm
% 'neuromag_fif' uses mne toolbox
% 'neuromag_fif_old' uses meg-pd toolbox
% 'yokogawa_mri'
% 'matlab' assumes a MATLAB *.mat file containing a mri structure
% according FieldTrip standards
%
% The following MRI file formats are supported
% CTF - VSM MedTech (*.svl, *.mri version 4 and 5)
% NIFTi (*.nii) and zipped NIFTi (*.nii.gz)
% Analyze (*.img, *.hdr)
% DICOM (*.dcm, *.ima)
% AFNI (*.head, *.brik)
% FreeSurfer (*.mgz, *.mgh)
% MINC (*.mnc)
% Neuromag - Elekta (*.fif)
% ANT - Advanced Neuro Technology (*.mri)
% Yokogawa (*.mrk, incomplete)
%
% If you have a series of DICOM files, please provide the name of any of the files
% in the series (e.g. the first one). The other files will be found automatically.
%
% The output MRI may have a homogenous transformation matrix that converts
% the coordinates of each voxel (in xgrid/ygrid/zgrid) into head
% coordinates.
%
% See also FT_WRITE_MRI, FT_READ_DATA, FT_READ_HEADER, FT_READ_EVENT
% Copyright (C) 2008-2013, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% optionally get the data from the URL and make a temporary local copy
filename = fetch_url(filename);
% get the options
dataformat = ft_getopt(varargin, 'dataformat');
% the following is added for backward compatibility of using 'format' rather than 'dataformat'
format = ft_getopt(varargin, 'format');
if ~isempty(format)
warning('the option ''format'' will be deprecated soon, please use ''dataformat'' instead');
if isempty(dataformat)
dataformat = format;
end
end
if isempty(dataformat)
% only do the autodetection if the format was not specified
dataformat = ft_filetype(filename);
end
if strcmp(dataformat, 'compressed')
% the file is compressed, unzip on the fly
inflated = true;
filename = inflate_file(filename);
dataformat = ft_filetype(filename);
else
inflated = false;
end
% test whether the file exists
if ~exist(filename, 'file')
error('file ''%s'' does not exist', filename);
end
% test for the presence of some external functions from other toolboxes
hasspm2 = ft_hastoolbox('spm2'); % see http://www.fil.ion.ucl.ac.uk/spm/
hasspm5 = ft_hastoolbox('spm5'); % see http://www.fil.ion.ucl.ac.uk/spm/
hasspm8 = ft_hastoolbox('spm8'); % see http://www.fil.ion.ucl.ac.uk/spm/
hasspm12 = ft_hastoolbox('spm12'); % see http://www.fil.ion.ucl.ac.uk/spm/
switch dataformat
case 'ctf_mri'
[img, hdr] = read_ctf_mri(filename);
transform = hdr.transformMRI2Head;
coordsys = 'ctf';
case 'ctf_mri4'
[img, hdr] = read_ctf_mri4(filename);
transform = hdr.transformMRI2Head;
coordsys = 'ctf';
case 'ctf_svl'
[img, hdr] = read_ctf_svl(filename);
transform = hdr.transform;
case 'asa_mri'
[img, seg, hdr] = read_asa_mri(filename);
transform = hdr.transformMRI2Head;
if isempty(seg)
% in case seg exists it will be added to the output
clear seg
end
case 'minc'
if ~(hasspm2 || hasspm5)
fprintf('the SPM2 or SPM5 toolbox is required to read *.mnc files\n');
ft_hastoolbox('spm2',1);
end
% use the functions from SPM
hdr = spm_vol_minc(filename);
img = spm_read_vols(hdr);
transform = hdr.mat;
case 'nifti_spm'
if ~(hasspm5 || hasspm8 || hasspm12)
fprintf('the SPM5 or newer toolbox is required to read *.nii files\n');
ft_hastoolbox('spm8', 1);
end
% use the functions from SPM
hdr = spm_vol_nifti(filename);
img = spm_read_vols(hdr);
transform = hdr.mat;
case {'analyze_img' 'analyze_hdr'}
if ~(hasspm8)
fprintf('the SPM8 toolbox is required to read analyze files\n');
ft_hastoolbox('spm8', 1);
end
% use the image file instead of the header
filename((end-2):end) = 'img';
% use the functions from SPM to read the Analyze MRI
hdr = spm_vol(filename);
img = spm_read_vols(hdr);
transform = hdr.mat;
case 'analyze_old'
% use the functions from Darren Weber's mri_toolbox to read the Analyze MRI
ft_hastoolbox('mri', 1); % from Darren Weber, see http://eeg.sourceforge.net/
avw = avw_img_read(filename, 0); % returned volume is LAS*
img = avw.img;
hdr = avw.hdr;
% The default Analyze orientation is axial unflipped (LAS*), which means
% that the resulting volume is according to the radiological convention.
% Most other fMRI and EEG/MEG software (except Mayo/Analyze) uses
% neurological conventions and a right-handed coordinate system, hence
% the first axis of the 3D volume (right-left) should be flipped to make
% the coordinate system comparable to SPM
warning('flipping 1st dimension (L-R) to obtain volume in neurological convention');
img = flipdim(img, 1);
transform = diag(hdr.dime.pixdim(2:4));
transform(4,4) = 1;
case {'afni_brik' 'afni_head'}
% needs afni
ft_hastoolbox('afni', 1); % see http://afni.nimh.nih.gov/
[err, img, hdr, ErrMessage] = BrikLoad(filename);
if err
error('could not read AFNI file');
end
% FIXME: this should be checked, but I only have a single BRIK file
% construct the homogenous transformation matrix that defines the axes
warning('homogenous transformation might be incorrect for AFNI file');
transform = eye(4);
transform(1:3,4) = hdr.ORIGIN(:);
transform(1,1) = hdr.DELTA(1);
transform(2,2) = hdr.DELTA(2);
transform(3,3) = hdr.DELTA(3);
% FIXME: I am not sure about the "RAI" image orientation
img = flipdim(img,1);
img = flipdim(img,2);
dim = size(img);
transform(1,4) = -dim(1) - transform(1,4);
transform(2,4) = -dim(2) - transform(2,4);
case 'neuromag_fif'
% needs mne toolbox
ft_hastoolbox('mne', 1);
% use the mne functions to read the Neuromag MRI
hdr = fiff_read_mri(filename);
img_t = cat(3, hdr.slices.data);
img = permute(img_t,[2 1 3]);
hdr.slices = rmfield(hdr.slices, 'data'); % remove the image data to save memory
% information below is from MNE - fiff_define_constants.m
% coordinate system 4 - is the MEG head coordinate system (fiducials)
% coordinate system 5 - is the MRI coordinate system
% coordinate system 2001 - MRI voxel coordinates
% coordinate system 2002 - Surface RAS coordinates (is mainly vertical
% shift, no rotation to 2001)
% MEG sensor positions come in system 4
% MRI comes in system 2001
transform = eye(4);
if isfield(hdr, 'trans') && issubfield(hdr.trans, 'trans')
if (hdr.trans.from == 4) && (hdr.trans.to == 5)
transform = hdr.trans.trans;
else
warning('W: trans does not transform from 4 to 5.');
warning('W: Please check the MRI fif-file');
end
else
warning('W: trans structure is not defined.');
warning('W: Maybe coregistration is missing?');
end
if isfield(hdr, 'voxel_trans') && issubfield(hdr.voxel_trans, 'trans')
% centers the coordinate system
% and switches from mm to m
if (hdr.voxel_trans.from == 2001) && (hdr.voxel_trans.to == 5)
% matlab_shift compensates for the different index conventions
% between C and matlab
% the lines below is old code (prior to Jan 3, 2013) and only works with
% 1 mm resolution MRIs
%matlab_shift = [ 0 0 0 0.001; 0 0 0 -0.001; 0 0 0 0.001; 0 0 0 0];
% transform transforms from 2001 to 5 and further to 4
%transform = transform\(hdr.voxel_trans.trans+matlab_shift);
% the lines below should work with arbitrary resolution
matlab_shift = eye(4);
matlab_shift(1:3,4) = [-1,-1,-1];
transform = transform\(hdr.voxel_trans.trans * matlab_shift);
coordsys = 'neuromag';
mri.unit = 'm';
else
warning('W: voxel_trans does not transform from 2001 to 5.');
warning('W: Please check the MRI fif-file');
end
else
warning('W: voxel_trans structure is not defined.');
warning('W: Please check the MRI fif-file');
end
case 'neuromag_fif_old'
% needs meg_pd toolbox
ft_hastoolbox('meg-pd', 1);
% use the meg_pd functions to read the Neuromag MRI
[img,coords] = loadmri(filename);
dev = loadtrans(filename,'MRI','HEAD');
transform = dev*coords;
hdr.coords = coords;
hdr.dev = dev;
case 'dicom'
% this seems to return a right-handed volume with the transformation
% matrix stored in the file headers.
% needs the freesurfer toolbox
ft_hastoolbox('freesurfer', 1);
[dcmdir,junk1,junk2] = fileparts(filename);
if isempty(dcmdir),
dcmdir = '.';
end
[img,transform,hdr,mr_params] = load_dicom_series(dcmdir,dcmdir,filename);
transform = vox2ras_0to1(transform);
case 'dicom_old'
% this does not necessarily return a right-handed volume and only a
% transformation-matrix with the voxel size
% this uses the Image processing toolbox
% the DICOM file probably represents a stack of slices, possibly even multiple volumes
orig = dicominfo(filename);
dim(1) = orig.Rows;
dim(2) = orig.Columns;
[p, f] = fileparts(filename);
% this works for the Siemens scanners at the FCDC
tok = tokenize(f, '.');
for i=5:length(tok)
tok{i} = '*';
end
filename = sprintf('%s.', tok{:}); % reconstruct the filename with wildcards and '.' between the segments
filename = filename(1:end-1); % remove the last '.'
dirlist = dir(fullfile(p, filename));
dirlist = {dirlist.name};
if isempty(dirlist)
% this is for the Philips data acquired at KI
warning('could not determine list of dicom files, trying with *.dcm');
dirlist = dir(fullfile(p, '*.dcm'));
dirlist = {dirlist.name};
end
if isempty(dirlist)
warning('could not determine list of dicom files, trying with *.ima');
dirlist = dir(fullfile(p, '*.ima'));
dirlist = {dirlist.name};
end
if length(dirlist)==1
% try something else to get a list of all the slices
dirlist = dir(fullfile(p, '*'));
dirlist = {dirlist(~[dirlist.isdir]).name};
end
keep = false(1, length(dirlist));
for i=1:length(dirlist)
filename = char(fullfile(p, dirlist{i}));
if ~strcmp(dataformat, 'dicom_old')
keep(i) = false;
fprintf('skipping ''%s'' because of incorrect filetype\n', filename);
end
% read the header information
info = dicominfo(filename);
if info.SeriesNumber~=orig.SeriesNumber
keep(i) = false;
fprintf('skipping ''%s'' because of different SeriesNumber\n', filename);
else
keep(i) = true;
hdr(i) = info;
end
end
% remove the files that were skipped
hdr = hdr(keep);
dirlist = dirlist(keep);
% pre-allocate enough space for the subsequent slices
dim(3) = length(dirlist);
img = zeros(dim(1), dim(2), dim(3));
for i=1:length(dirlist)
filename = char(fullfile(p, dirlist{i}));
fprintf('reading image data from ''%s''\n', filename);
img(:,:,i) = dicomread(hdr(i));
end
% reorder the slices
[z, indx] = sort(cell2mat({hdr.SliceLocation}));
hdr = hdr(indx);
img = img(:,:,indx);
try
% construct a homgeneous transformation matrix that performs the scaling from voxels to mm
dx = hdr(1).PixelSpacing(1);
dy = hdr(1).PixelSpacing(2);
dz = hdr(2).SliceLocation - hdr(1).SliceLocation;
transform = eye(4);
transform(1,1) = dx;
transform(2,2) = dy;
transform(3,3) = dz;
end
case {'nifti', 'freesurfer_mgz', 'freesurfer_mgh', 'nifti_fsl'}
if strcmp(dataformat, 'freesurfer_mgz') && ispc
error('Compressed .mgz files cannot be read on a PC');
end
ft_hastoolbox('freesurfer', 1);
tmp = MRIread(filename);
ndims = numel(size(tmp.vol));
if ndims==3
img = permute(tmp.vol, [2 1 3]); %FIXME although this is probably correct
%see the help of MRIread, anecdotally columns and rows seem to need a swap
%in order to match the transform matrix (alternatively a row switch of the
%latter can be done)
elseif ndims==4
img = permute(tmp.vol, [2 1 3 4]);
end
hdr = rmfield(tmp, 'vol');
transform = tmp.vox2ras1;
case 'yokogawa_mri'
ft_hastoolbox('yokogawa', 1);
fid = fopen(filename, 'rb');
mri_info = GetMeg160MriInfoM(fid);
patient_info = GetMeg160PatientInfoFromMriFileM(fid);
[data_style, model, marker, image_parameter, normalize, besa_fiducial_point] = GetMeg160MriFileHeaderInfoM(fid);
fclose(fid);
% gather all meta-information
hdr.mri_info = mri_info;
hdr.patient_info = patient_info;
hdr.data_style = data_style;
hdr.model = model;
hdr.marker = marker;
hdr.image_parameter = image_parameter;
hdr.normalize = normalize;
hdr.besa_fiducial_point = besa_fiducial_point;
error('FIXME yokogawa_mri implementation is incomplete');
case 'matlab'
mri = loadvar(filename, 'mri');
otherwise
error(sprintf('unrecognized filetype ''%s'' for ''%s''', dataformat, filename));
end
if exist('img', 'var')
% set up the axes of the volume in voxel coordinates
nx = size(img,1);
ny = size(img,2);
nz = size(img,3);
mri.dim = [nx ny nz];
% store the anatomical data
mri.anatomy = img;
end
if exist('seg', 'var')
% store the segmented data
mri.seg = seg;
end
if exist('hdr', 'var')
% store the header with all file format specific details
mri.hdr = hdr;
end
try
% store the homogenous transformation matrix if present
mri.transform = transform;
end
try
% try to determine the units of the coordinate system
mri = ft_convert_units(mri);
end
try
% try to add a descriptive label for the coordinate system
mri.coordsys = coordsys;
end
if inflated
% compressed file has been unzipped on the fly, clean up
delete(filename);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function value = loadvar(filename, varname)
var = whos('-file', filename);
if length(var)==1
filecontent = load(filename); % read the one variable in the file, regardless of how it is called
value = filecontent.(var.name);
clear filecontent
else
filecontent = load(filename, varname);
value = filecontent.(varname); % read the variable named according to the input specification
clear filecontent
end
|
github
|
lcnbeapp/beapp-master
|
ft_filetype.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/ft_filetype.m
| 66,474 |
utf_8
|
5b944ec5e2bf4cdb91d29ed2c5644618
|
function [type] = ft_filetype(filename, desired, varargin)
% FT_FILETYPE determines the filetype of many EEG/MEG/MRI data files by
% looking at the name, extension and optionally (part of) its contents.
% It tries to determine the global type of file (which usually
% corresponds to the manufacturer, the recording system or to the
% software used to create the file) and the particular subtype (e.g.
% continuous, average).
%
% Use as
% type = ft_filetype(filename)
% type = ft_filetype(dirname)
%
% This gives you a descriptive string with the data type, and can be
% used in a switch-statement. The descriptive string that is returned
% usually is something like 'XXX_YYY'/ where XXX refers to the
% manufacturer and YYY to the type of the data.
%
% Alternatively, use as
% flag = ft_filetype(filename, type)
% flag = ft_filetype(dirname, type)
% This gives you a boolean flag (0 or 1) indicating whether the file
% is of the desired type, and can be used to check whether the
% user-supplied file is what your subsequent code expects.
%
% Alternatively, use as
% flag = ft_filetype(dirlist, type)
% where the dirlist contains a list of files contained within one
% directory. This gives you a boolean vector indicating for each file
% whether it is of the desired type.
%
% Most filetypes of the following manufacturers and/or software programs are recognized
% - 4D/BTi
% - AFNI
% - ASA
% - Analyse
% - Analyze/SPM
% - BESA
% - BrainSuite
% - BrainVisa
% - BrainVision
% - Curry
% - Dataq
% - EDF
% - EEProbe
% - Elektra/Neuromag
% - FreeSurfer
% - LORETA
% - Localite
% - MINC
% - Neuralynx
% - Neuroscan
% - Nihon Koden (*.m00)
% - Plexon
% - SR Research Eyelink
% - SensoMotoric Instruments (SMI) *.txt
% - Tobii *.tsv
% - Stanford *.ply
% - Tucker Davis Technology
% - VSM-Medtech/CTF
% - Yokogawa
% - nifti, gifti
% - Nicolet *.e (currently from Natus, formerly Carefusion, Viasys and
% Taugagreining. Also known as Oxford/Teca/Medelec Valor
% - Nervus)
% Copyright (C) 2003-2013 Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout previous_pwd
if nargin<2
% ensure that all input arguments are defined
desired = [];
end
current_argin = {filename, desired, varargin{:}};
current_pwd = pwd;
if isequal(current_argin, previous_argin) && isequal(current_pwd, previous_pwd)
% don't do the detection again, but return the previous value from cache
type = previous_argout{1};
return
end
if isa(filename, 'memmapfile')
filename = filename.Filename;
end
% % get the optional arguments
% checkheader = ft_getopt(varargin, 'checkheader', true);
%
% if ~checkheader
% % assume that the header is always ok, e.g when the file does not yet exist
% % this replaces the normal function with a function that always returns true
% filetype_check_header = @filetype_true;
% end
if iscell(filename)
if ~isempty(desired)
% perform the test for each filename, return a boolean vector
type = false(size(filename));
else
% return a string with the type for each filename
type = cell(size(filename));
end
for i=1:length(filename)
if strcmp(filename{i}(end), '.')
% do not recurse into this directory or the parent directory
continue
else
if iscell(type)
type{i} = ft_filetype(filename{i}, desired);
else
type(i) = ft_filetype(filename{i}, desired);
end
end
end
return
end
% start with unknown values
type = 'unknown';
manufacturer = 'unknown';
content = 'unknown';
if isempty(filename)
if isempty(desired)
% return the "unknown" outputs
return
else
% return that it is a non-match
type = false;
return
end
end
% the parts of the filename are used further down
if isdir(filename)
[p, f, x] = fileparts(filename);
p = filename; % the full path to the directory name
d = f; % the last part of the directory name
f = '';
x = '';
else
[p, f, x] = fileparts(filename);
end
% prevent this test if the filename resembles an URI, i.e. like "scheme://"
if isempty(strfind(filename , '://')) && isdir(filename)
% the directory listing is needed below
ls = dir(filename);
% remove the parent directory and the directory itself from the list
ls = ls(~strcmp({ls.name}, '.'));
ls = ls(~strcmp({ls.name}, '..'));
for i=1:length(ls)
% make sure that the directory listing includes the complete path
ls(i).name = fullfile(filename, ls(i).name);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start determining the filetype
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this checks for a compressed file (of arbitrary type)
if filetype_check_extension(filename, 'zip')...
|| (filetype_check_extension(filename, '.gz') && ~filetype_check_extension(filename, '.nii.gz'))...
|| filetype_check_extension(filename, 'tgz')...
|| filetype_check_extension(filename, 'tar')
type = 'compressed';
manufacturer = 'undefined';
content = 'unknown, extract first';
% these are some streams for asynchronous BCI
elseif filetype_check_uri(filename, 'fifo')
type = 'fcdc_fifo';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'buffer')
type = 'fcdc_buffer';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'mysql')
type = 'fcdc_mysql';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'tcp')
type = 'fcdc_tcp';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'udp')
type = 'fcdc_udp';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'rfb')
type = 'fcdc_rfb';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'serial')
type = 'fcdc_serial';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'global')
type = 'fcdc_global';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'global variable';
elseif filetype_check_uri(filename, 'shm')
type = 'ctf_shm';
manufacturer = 'CTF';
content = 'real-time shared memory buffer';
elseif filetype_check_uri(filename, 'empty')
type = 'empty';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = '/dev/null';
% known CTF file types
elseif isdir(filename) && filetype_check_extension(filename, '.ds') && exist(fullfile(filename, [f '.res4']), 'file')
type = 'ctf_ds';
manufacturer = 'CTF';
content = 'MEG dataset';
elseif isdir(filename) && ~isempty(dir(fullfile(filename, '*.res4'))) && ~isempty(dir(fullfile(filename, '*.meg4')))
type = 'ctf_ds';
manufacturer = 'CTF';
content = 'MEG dataset';
elseif filetype_check_extension(filename, '.res4') && (filetype_check_header(filename, 'MEG41RS') || filetype_check_header(filename, 'MEG42RS') || filetype_check_header(filename, 'MEG4RES') || filetype_check_header(filename, 'MEG3RES')) %'MEG3RES' pertains to ctf64.ds
type = 'ctf_res4';
manufacturer = 'CTF';
content = 'MEG/EEG header information';
elseif filetype_check_extension(filename, '.meg4') && (filetype_check_header(filename, 'MEG41CP') || filetype_check_header(filename, 'MEG4CPT')) %'MEG4CPT' pertains to ctf64.ds
type = 'ctf_meg4';
manufacturer = 'CTF';
content = 'MEG/EEG';
elseif strcmp(f, 'MarkerFile') && filetype_check_extension(filename, '.mrk') && filetype_check_header(filename, 'PATH OF DATASET:')
type = 'ctf_mrk';
manufacturer = 'CTF';
content = 'marker file';
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, 'CTF_MRI_FORMAT VER 2.2')
type = 'ctf_mri';
manufacturer = 'CTF';
content = 'MRI';
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, 'CTF_MRI_FORMAT VER 4', 31)
type = 'ctf_mri4';
manufacturer = 'CTF';
content = 'MRI';
elseif filetype_check_extension(filename, '.hdm')
type = 'ctf_hdm';
manufacturer = 'CTF';
content = 'volume conduction model';
elseif filetype_check_extension(filename, '.hc')
type = 'ctf_hc';
manufacturer = 'CTF';
content = 'headcoil locations';
elseif filetype_check_extension(filename, '.shape')
type = 'ctf_shape';
manufacturer = 'CTF';
content = 'headshape points';
elseif filetype_check_extension(filename, '.shape_info')
type = 'ctf_shapeinfo';
manufacturer = 'CTF';
content = 'headshape information';
elseif filetype_check_extension(filename, '.wts')
type = 'ctf_wts';
manufacturer = 'CTF';
content = 'SAM coefficients, i.e. spatial filter weights';
elseif filetype_check_extension(filename, '.svl')
type = 'ctf_svl';
manufacturer = 'CTF';
content = 'SAM (pseudo-)statistic volumes';
% known Micromed file types
elseif filetype_check_extension(filename, '.trc') && filetype_check_header(filename, '* MICROMED')
type = 'micromed_trc';
manufacturer = 'Micromed';
content = 'Electrophysiological data';
% known Neuromag file types
elseif filetype_check_extension(filename, '.fif')
type = 'neuromag_fif';
manufacturer = 'Neuromag';
content = 'MEG header and data';
elseif filetype_check_extension(filename, '.bdip')
type = 'neuromag_bdip';
manufacturer = 'Neuromag';
content = 'dipole model';
elseif filetype_check_extension(filename, '.eve') && exist(fullfile(p, [f '.fif']), 'file')
type = 'neuromag_eve'; % these are being used by Tristan Technologies for the BabySQUID system
manufacturer = 'Neuromag';
content = 'events';
% known Yokogawa file types
elseif filetype_check_extension(filename, '.ave') || filetype_check_extension(filename, '.sqd')
type = 'yokogawa_ave';
manufacturer = 'Yokogawa';
content = 'averaged MEG data';
elseif filetype_check_extension(filename, '.con')
type = 'yokogawa_con';
manufacturer = 'Yokogawa';
content = 'continuous MEG data';
elseif filetype_check_extension(filename, '.raw') && filetype_check_header(filename, char([0 0 0 0])) % FIXME, this detection should possibly be improved
type = 'yokogawa_raw';
manufacturer = 'Yokogawa';
content = 'evoked/trialbased MEG data';
elseif filetype_check_extension(filename, '.mrk') && filetype_check_header(filename, char([0 0 0 0])) % FIXME, this detection should possibly be improved
type = 'yokogawa_mrk';
manufacturer = 'Yokogawa';
content = 'headcoil locations';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-coregis')) == 1
type = 'yokogawa_coregis';
manufacturer = 'Yokogawa';
content = 'exported fiducials';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-calib')) == 1
type = 'yokogawa_calib';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-channel')) == 1
type = 'yokogawa_channel';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-property')) == 1
type = 'yokogawa_property';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-TextData')) == 1
type = 'yokogawa_textdata';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-FLL')) == 1
type = 'yokogawa_fll';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.hsp')
type = 'yokogawa_hsp';
manufacturer = 'Yokogawa';
% Neurosim files; this has to go before the 4D detection
elseif ~isdir(filename) && (strcmp(f,'spikes') || filetype_check_header(filename,'# Spike information'))
type = 'neurosim_spikes';
manufacturer = 'Jan van der Eerden (DCCN)';
content = 'simulated spikes';
elseif ~isdir(filename) && (strcmp(f,'evolution') || filetype_check_header(filename,'# Voltages'))
type = 'neurosim_evolution';
manufacturer = 'Jan van der Eerden (DCCN)';
content = 'simulated membrane voltages and currents';
elseif ~isdir(filename) && (strcmp(f,'signals') || filetype_check_header(filename,'# Internal',2))
type = 'neurosim_signals';
manufacturer = 'Jan van der Eerden (DCCN)';
content = 'simulated network signals';
elseif isdir(filename) && exist(fullfile(filename, 'signals'), 'file') && exist(fullfile(filename, 'spikes'), 'file')
type = 'neurosim_ds';
manufacturer = 'Jan van der Eerden (DCCN)';
content = 'simulated spikes and continuous signals';
% known 4D/BTI file types
elseif filetype_check_extension(filename, '.pdf') && filetype_check_header(filename, 'E|lk') % I am not sure whether this header always applies
type = '4d_pdf';
manufacturer = '4D/BTI';
content = 'raw MEG data (processed data file)';
elseif exist([filename '.m4d'], 'file') && exist([filename '.xyz'], 'file') % these two ascii header files accompany the raw data
type = '4d_pdf';
manufacturer = '4D/BTI';
content = 'raw MEG data (processed data file)';
elseif filetype_check_extension(filename, '.m4d') && exist([filename(1:(end-3)) 'xyz'], 'file') % these come in pairs
type = '4d_m4d';
manufacturer = '4D/BTI';
content = 'MEG header information';
elseif filetype_check_extension(filename, '.xyz') && exist([filename(1:(end-3)) 'm4d'], 'file') % these come in pairs
type = '4d_xyz';
manufacturer = '4D/BTI';
content = 'MEG sensor positions';
elseif isequal(f, 'hs_file') % the filename is "hs_file"
type = '4d_hs';
manufacturer = '4D/BTI';
content = 'head shape';
elseif length(filename)>=4 && ~isempty(strfind(filename,',rf'))
type = '4d';
manufacturer = '4D/BTi';
content = '';
elseif filetype_check_extension(filename, '.el.ascii') && filetype_check_ascii(filename, 20) % assume that there are at least 20 bytes in the file, the example one has 4277 bytes
type = '4d_el_ascii';
manufacturer = '4D/BTi';
content = 'electrode positions';
elseif length(f)<=4 && filetype_check_dir(p, 'config')%&& ~isempty(p) && exist(fullfile(p,'config'), 'file') %&& exist(fullfile(p,'hs_file'), 'file')
% this could be a 4D file with non-standard/processed name
% it will be detected as a 4D file when there is a config file in the
% same directory as the specified file
type = '4d';
manufacturer = '4D/BTi';
content = '';
% known EEProbe file types
elseif filetype_check_extension(filename, '.cnt') && (filetype_check_header(filename, 'RIFF') || filetype_check_header(filename, 'RF64'))
type = 'eep_cnt';
manufacturer = 'EEProbe';
content = 'EEG';
elseif filetype_check_extension(filename, '.avr') && filetype_check_header(filename, char([38 0 16 0]))
type = 'eep_avr';
manufacturer = 'EEProbe';
content = 'ERP';
elseif filetype_check_extension(filename, '.trg')
type = 'eep_trg';
manufacturer = 'EEProbe';
content = 'trigger information';
elseif filetype_check_extension(filename, '.rej')
type = 'eep_rej';
manufacturer = 'EEProbe';
content = 'rejection marks';
% the yokogawa_mri has to be checked prior to asa_mri, because this one is more strict
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, char(0)) % FIXME, this detection should possibly be improved
type = 'yokogawa_mri';
manufacturer = 'Yokogawa';
content = 'anatomical MRI';
% known ASA file types
elseif filetype_check_extension(filename, '.elc')
type = 'asa_elc';
manufacturer = 'ASA';
content = 'electrode positions';
elseif filetype_check_extension(filename, '.vol')
type = 'asa_vol';
manufacturer = 'ASA';
content = 'volume conduction model';
elseif filetype_check_extension(filename, '.bnd')
type = 'asa_bnd';
manufacturer = 'ASA';
content = 'boundary element model details';
elseif filetype_check_extension(filename, '.msm')
type = 'asa_msm';
manufacturer = 'ASA';
content = 'ERP';
elseif filetype_check_extension(filename, '.msr')
type = 'asa_msr';
manufacturer = 'ASA';
content = 'ERP';
elseif filetype_check_extension(filename, '.dip')
% FIXME, can also be CTF dipole file
type = 'asa_dip';
manufacturer = 'ASA';
elseif filetype_check_extension(filename, '.mri')
% FIXME, can also be CTF mri file
type = 'asa_mri';
manufacturer = 'ASA';
content = 'MRI image header';
elseif filetype_check_extension(filename, '.iso')
type = 'asa_iso';
manufacturer = 'ASA';
content = 'MRI image data';
% known BCI2000 file types
elseif filetype_check_extension(filename, '.dat') && (filetype_check_header(filename, 'BCI2000') || filetype_check_header(filename, 'HeaderLen='))
type = 'bci2000_dat';
manufacturer = 'BCI2000';
content = 'continuous EEG';
% known Neuroscan file types
elseif filetype_check_extension(filename, '.avg') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_avg';
manufacturer = 'Neuroscan';
content = 'averaged EEG';
elseif filetype_check_extension(filename, '.cnt') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_cnt';
manufacturer = 'Neuroscan';
content = 'continuous EEG';
elseif filetype_check_extension(filename, '.eeg') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_eeg';
manufacturer = 'Neuroscan';
content = 'epoched EEG';
elseif filetype_check_extension(filename, '.eeg') && filetype_check_header(filename, 'V3.0')
type = 'neuroprax_eeg';
manufacturer = 'eldith GmbH';
content = 'continuous EEG';
elseif filetype_check_extension(filename, '.ee_')
type = 'neuroprax_mrk';
manufacturer = 'eldith GmbH';
content = 'EEG markers';
% known Analyze & SPM file types
elseif filetype_check_extension(filename, '.hdr')
type = 'analyze_hdr';
manufacturer = 'Mayo Analyze';
content = 'PET/MRI image header';
elseif filetype_check_extension(filename, '.img')
type = 'analyze_img';
manufacturer = 'Mayo Analyze';
content = 'PET/MRI image data';
elseif filetype_check_extension(filename, '.mnc')
type = 'minc';
content = 'MRI image data';
elseif filetype_check_extension(filename, '.nii') && filetype_check_header(filename, {[92 1 0 0], [0 0 1 92]}) % header starts with the number 348
type = 'nifti';
content = 'MRI image data';
elseif filetype_check_extension(filename, '.nii') && filetype_check_header(filename, {[28 2 0 0], [0 0 2 28]}) % header starts with the number 540
type = 'nifti2';
content = 'MRI image data';
% known FSL file types
elseif filetype_check_extension(filename, '.nii.gz')
type = 'nifti_fsl';
content = 'MRI image data';
% known LORETA file types
elseif filetype_check_extension(filename, '.lorb')
type = 'loreta_lorb';
manufacturer = 'old LORETA';
content = 'source reconstruction';
elseif filetype_check_extension(filename, '.slor')
type = 'loreta_slor';
manufacturer = 'sLORETA';
content = 'source reconstruction';
% known AFNI file types
elseif filetype_check_extension(filename, '.brik') || filetype_check_extension(filename, '.BRIK')
type = 'afni_brik';
content = 'MRI image data';
elseif filetype_check_extension(filename, '.head') || filetype_check_extension(filename, '.HEAD')
type = 'afni_head';
content = 'MRI header data';
% known BrainVison file types
elseif filetype_check_extension(filename, '.vhdr')
type = 'brainvision_vhdr';
manufacturer = 'BrainProducts';
content = 'EEG header';
elseif filetype_check_extension(filename, '.vmrk')
type = 'brainvision_vmrk';
manufacturer = 'BrainProducts';
content = 'EEG markers';
elseif filetype_check_extension(filename, '.vabs')
type = 'brainvision_vabs';
manufacturer = 'BrainProducts';
content = 'Brain Vison Analyzer macro';
elseif filetype_check_extension(filename, '.eeg') && exist(fullfile(p, [f '.vhdr']), 'file')
type = 'brainvision_eeg';
manufacturer = 'BrainProducts';
content = 'continuous EEG data';
elseif filetype_check_extension(filename, '.seg')
type = 'brainvision_seg';
manufacturer = 'BrainProducts';
content = 'segmented EEG data';
elseif filetype_check_extension(filename, '.dat') && exist(fullfile(p, [f '.vhdr']), 'file') &&...
~filetype_check_header(filename, 'HeaderLen=') && ~filetype_check_header(filename, 'BESA_SA_IMAGE') &&...
~(exist(fullfile(p, [f '.gen']), 'file') || exist(fullfile(p, [f '.generic']), 'file'))
% WARNING this is a very general name, it could be exported BrainVision
% data but also a BESA beamformer source reconstruction or BCI2000
type = 'brainvision_dat';
manufacturer = 'BrainProducts';
content = 'exported EEG data';
elseif filetype_check_extension(filename, '.marker')
type = 'brainvision_marker';
manufacturer = 'BrainProducts';
content = 'rejection markers';
% known Polhemus file types
elseif filetype_check_extension(filename, '.pos')
type = 'polhemus_pos';
manufacturer = 'BrainProducts/CTF/Polhemus?'; % actually I don't know whose software it is
content = 'electrode positions';
% known Blackrock Microsystems file types
elseif strncmp(x,'.ns',3) && (filetype_check_header(filename, 'NEURALCD') || filetype_check_header(filename, 'NEURALSG'))
type = 'blackrock_nsx';
manufacturer = 'Blackrock Microsystems';
content = 'conintuously sampled data';
elseif filetype_check_extension(filename, '.nev') && filetype_check_header(filename, 'NEURALEV')
type = 'blackrock_nev';
manufacturer = 'Blackrock Microsystems';
contenct = 'extracellular electrode spike information';
% known Neuralynx file types
elseif filetype_check_extension(filename, '.nev') || filetype_check_extension(filename, '.Nev')
type = 'neuralynx_nev';
manufacturer = 'Neuralynx';
content = 'event information';
elseif filetype_check_extension(filename, '.ncs') && filetype_check_header(filename, '####')
type = 'neuralynx_ncs';
manufacturer = 'Neuralynx';
content = 'continuous single channel recordings';
elseif filetype_check_extension(filename, '.nse') && filetype_check_header(filename, '####')
type = 'neuralynx_nse';
manufacturer = 'Neuralynx';
content = 'spike waveforms';
elseif filetype_check_extension(filename, '.nts') && filetype_check_header(filename, '####')
type = 'neuralynx_nts';
manufacturer = 'Neuralynx';
content = 'timestamps only';
elseif filetype_check_extension(filename, '.nvt')
type = 'neuralynx_nvt';
manufacturer = 'Neuralynx';
content = 'video tracker';
elseif filetype_check_extension(filename, '.nst')
type = 'neuralynx_nst';
manufacturer = 'Neuralynx';
content = 'continuous stereotrode recordings';
elseif filetype_check_extension(filename, '.ntt')
type = 'neuralynx_ntt';
manufacturer = 'Neuralynx';
content = 'continuous tetrode recordings';
elseif strcmpi(f, 'logfile') && strcmpi(x, '.txt') % case insensitive
type = 'neuralynx_log';
manufacturer = 'Neuralynx';
content = 'log information in ASCII format';
elseif ~isempty(strfind(lower(f), 'dma')) && strcmpi(x, '.log') % this is not a very strong detection
type = 'neuralynx_dma';
manufacturer = 'Neuralynx';
content = 'raw aplifier data directly from DMA';
elseif filetype_check_extension(filename, '.nrd') % see also above, since Cheetah 5.x the file extension has changed
type = 'neuralynx_dma';
manufacturer = 'Neuralynx';
content = 'raw aplifier data directly from DMA';
elseif isdir(filename) && (any(filetype_check_extension({ls.name}, '.nev')) || any(filetype_check_extension({ls.name}, '.Nev')))
% a regular Neuralynx dataset directory that contains an event file
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'dataset';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.ncs'))
% a directory containing continuously sampled channels in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'continuously sampled channels';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nse'))
% a directory containing spike waveforms in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'spike waveforms';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nte'))
% a directory containing spike timestamps in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'spike timestamps';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.ntt'))
% a directory containing tetrode recordings in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'tetrode recordings ';
elseif isdir(p) && exist(fullfile(p, 'header'), 'file') && exist(fullfile(p, 'samples'), 'file') && exist(fullfile(p, 'events'), 'file')
type = 'fcdc_buffer_offline';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'FieldTrip buffer offline dataset';
elseif isdir(filename) && exist(fullfile(filename, 'info.xml'), 'file') && exist(fullfile(filename, 'signal1.bin'), 'file')
% this is an OS X package directory representing a complete EEG dataset
% it contains a Content file, multiple xml files and one or more signalN.bin files
type = 'egi_mff';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'raw EEG data';
elseif ~isdir(filename) && isdir(p) && exist(fullfile(p, 'info.xml'), 'file') && exist(fullfile(p, 'signal1.bin'), 'file')
% the file that the user specified is one of the files in an mff package directory
type = 'egi_mff';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'raw EEG data';
% these are formally not Neuralynx file formats, but at the FCDC we use them together with Neuralynx
elseif isdir(filename) && filetype_check_neuralynx_cds(filename)
% a downsampled Neuralynx DMA file can be split into three separate lfp/mua/spike directories
% treat them as one combined dataset
type = 'neuralynx_cds';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'dataset containing separate lfp/mua/spike directories';
elseif filetype_check_extension(filename, '.tsl') && filetype_check_header(filename, 'tsl')
type = 'neuralynx_tsl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'timestamps from DMA log file';
elseif filetype_check_extension(filename, '.tsh') && filetype_check_header(filename, 'tsh')
type = 'neuralynx_tsh';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'timestamps from DMA log file';
elseif filetype_check_extension(filename, '.ttl') && filetype_check_header(filename, 'ttl')
type = 'neuralynx_ttl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'Parallel_in from DMA log file';
elseif filetype_check_extension(filename, '.bin') && filetype_check_header(filename, {'uint8', 'uint16', 'uint32', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'})
type = 'neuralynx_bin';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'single channel continuous data';
elseif isdir(filename) && any(filetype_check_extension({ls.name}, '.ttl')) && any(filetype_check_extension({ls.name}, '.tsl')) && any(filetype_check_extension({ls.name}, '.tsh'))
% a directory containing the split channels from a DMA logfile
type = 'neuralynx_sdma';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'split DMA log file';
elseif isdir(filename) && filetype_check_extension(filename, '.sdma')
% a directory containing the split channels from a DMA logfile
type = 'neuralynx_sdma';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'split DMA log file';
% known Plexon file types
elseif filetype_check_extension(filename, '.nex') && filetype_check_header(filename, 'NEX1')
type = 'plexon_nex';
manufacturer = 'Plexon';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.plx') && filetype_check_header(filename, 'PLEX')
type = 'plexon_plx';
manufacturer = 'Plexon';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.ddt')
type = 'plexon_ddt';
manufacturer = 'Plexon';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nex')) && most(filetype_check_header({ls.name}, 'NEX1'))
% a directory containing multiple plexon NEX files
type = 'plexon_ds';
manufacturer = 'Plexon';
content = 'electrophysiological data';
% known Cambridge Electronic Design file types
elseif filetype_check_extension(filename, '.smr')
type = 'ced_son';
manufacturer = 'Cambridge Electronic Design';
content = 'Spike2 SON filing system';
% known BESA file types
elseif filetype_check_extension(filename, '.avr') && strcmp(type, 'unknown')
type = 'besa_avr'; % FIXME, can also be EEProbe average EEG
manufacturer = 'BESA';
content = 'average EEG';
elseif filetype_check_extension(filename, '.elp')
type = 'besa_elp';
manufacturer = 'BESA';
content = 'electrode positions';
elseif filetype_check_extension(filename, '.eps')
type = 'besa_eps';
manufacturer = 'BESA';
content = 'digitizer information';
elseif filetype_check_extension(filename, '.sfp')
type = 'besa_sfp';
manufacturer = 'BESA';
content = 'sensor positions';
elseif filetype_check_extension(filename, '.ela')
type = 'besa_ela';
manufacturer = 'BESA';
content = 'sensor information';
elseif filetype_check_extension(filename, '.pdg')
type = 'besa_pdg';
manufacturer = 'BESA';
content = 'paradigm file';
elseif filetype_check_extension(filename, '.tfc')
type = 'besa_tfc';
manufacturer = 'BESA';
content = 'time frequency coherence';
elseif filetype_check_extension(filename, '.mul')
type = 'besa_mul';
manufacturer = 'BESA';
content = 'multiplexed ascii format';
elseif filetype_check_extension(filename, '.dat') && filetype_check_header(filename, 'BESA_SA') % header can start with BESA_SA_IMAGE or BESA_SA_MN_IMAGE
type = 'besa_src';
manufacturer = 'BESA';
content = 'beamformer source reconstruction';
elseif filetype_check_extension(filename, '.swf') && filetype_check_header(filename, 'Npts=')
type = 'besa_swf';
manufacturer = 'BESA';
content = 'beamformer source waveform';
elseif filetype_check_extension(filename, '.bsa')
type = 'besa_bsa';
manufacturer = 'BESA';
content = 'beamformer source locations and orientations';
elseif exist(fullfile(p, [f '.dat']), 'file') && (exist(fullfile(p, [f '.gen']), 'file') || exist(fullfile(p, [f '.generic']), 'file'))
type = 'besa_sb';
manufacturer = 'BESA';
content = 'simple binary channel data with a separate generic ascii header';
elseif filetype_check_extension(filename, '.sfh') && filetype_check_header(filename, 'NrOfPoints')
type = 'besa_sfh';
manufacturer = 'BESA';
content = 'electrode and fiducial information';
elseif filetype_check_extension(filename, '.besa')
type = 'besa_besa';
manufacturer = 'BESA';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.srf') && filetype_check_header(filename, [0 0 0 0], 4)
type = 'brainvoyager_srf';
manufacturer = 'BrainVoyager'; % see http://support.brainvoyager.com/installation-introduction/23-file-formats/375-users-guide-23-the-format-of-srf-files.html
content = 'surface';
% known Dataq file formats
elseif filetype_check_extension(upper(filename), '.WDQ')
type = 'dataq_wdq';
manufacturer = 'dataq instruments';
content = 'electrophysiological data';
% old files from Pascal Fries' PhD research at the MPI
elseif filetype_check_extension(filename, '.dap') && filetype_check_header(filename, char(1))
type = 'mpi_dap';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif isdir(filename) && ~isempty(cell2mat(regexp({ls.name}, '.dap$')))
type = 'mpi_ds';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
% Frankfurt SPASS format, which uses the Labview Datalog (DTLG) format
elseif filetype_check_extension(filename, '.ana') && filetype_check_header(filename, 'DTLG')
type = 'spass_ana';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.swa') && filetype_check_header(filename, 'DTLG')
type = 'spass_swa';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.spi') && filetype_check_header(filename, 'DTLG')
type = 'spass_spi';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.stm') && filetype_check_header(filename, 'DTLG')
type = 'spass_stm';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.bhv') && filetype_check_header(filename, 'DTLG')
type = 'spass_bhv';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
% known Chieti ITAB file types
elseif filetype_check_extension(filename, '.raw') && (filetype_check_header(filename, 'FORMAT: ATB-BIOMAGDATA') || filetype_check_header(filename, '[HeaderType]'))
type = 'itab_raw';
manufacturer = 'Chieti ITAB';
content = 'MEG data, including sensor positions';
elseif filetype_check_extension(filename, '.raw.mhd')
type = 'itab_mhd';
manufacturer = 'Chieti ITAB';
content = 'MEG header data, including sensor positions';
elseif filetype_check_extension(filename, '.asc') && ~filetype_check_header(filename, '**')
type = 'itab_asc';
manufacturer = 'Chieti ITAB';
content = 'headshape digitization file';
% known Nexstim file types
elseif filetype_check_extension(filename, '.nxe')
type = 'nexstim_nxe';
manufacturer = 'Nexstim';
content = 'electrophysiological data';
% known Tucker-Davis-Technology file types
elseif filetype_check_extension(filename, '.tbk')
type = 'tdt_tbk';
manufacturer = 'Tucker-Davis-Technology';
content = 'database/tank meta-information';
elseif filetype_check_extension(filename, '.tdx')
type = 'tdt_tdx';
manufacturer = 'Tucker-Davis-Technology';
content = 'database/tank meta-information';
elseif filetype_check_extension(filename, '.tsq')
type = 'tdt_tsq';
manufacturer = 'Tucker-Davis-Technology';
content = 'block header information';
elseif filetype_check_extension(filename, '.tev')
type = 'tdt_tev';
manufacturer = 'Tucker-Davis-Technology';
content = 'electrophysiological data';
% raw audio and video data from https://github.com/andreyzhd/VideoMEG
% the extension *.aud/*.vid is used at NatMEG and *.audio.dat/*.video.dat seems to be used in Helsinki
elseif (filetype_check_extension(filename, '.aud') || filetype_check_extension(filename, '.audio.dat')) && filetype_check_header(filename, 'ELEKTA_AUDIO_FILE')
% this should go before curry_dat
type = 'videomeg_aud';
manufacturer = 'VideoMEG';
content = 'audio';
elseif (filetype_check_extension(filename, '.vid') || filetype_check_extension(filename, '.video.dat')) && filetype_check_header(filename, 'ELEKTA_VIDEO_FILE')
% this should go before curry_dat
type = 'videomeg_vid';
manufacturer = 'VideoMEG';
content = 'video';
elseif (filetype_check_extension(filename, '.dat') || filetype_check_extension(filename, '.Dat')) && (exist(fullfile(p, [f '.ini']), 'file') || exist(fullfile(p, [f '.Ini']), 'file'))
% this should go before curry_dat
type = 'deymed_dat';
manufacturer = 'Deymed';
content = 'raw eeg data';
elseif (filetype_check_extension(filename, '.ini') || filetype_check_extension(filename, '.Ini')) && (exist(fullfile(p, [f '.dat']), 'file') || exist(fullfile(p, [f '.Dat']), 'file'))
type = 'deymed_ini';
manufacturer = 'Deymed';
content = 'eeg header information';
elseif filetype_check_extension(filename, '.dat') && (filetype_check_header(filename, [0 0 16 0 16 0], 8) || filetype_check_header(filename, [0 0 16 0 16 0], 0))
% this should go before curry_dat
type = 'jaga16';
manufacturer = 'Jinga-Hi';
content = 'electrophysiological data';
% known Curry V4 file types
elseif filetype_check_extension(filename, '.dap')
type = 'curry_dap'; % FIXME, can also be MPI Frankfurt electrophysiological data
manufacturer = 'Curry';
content = 'data parameter file';
elseif filetype_check_extension(filename, '.dat')
type = 'curry_dat';
manufacturer = 'Curry';
content = 'raw data file';
elseif filetype_check_extension(filename, '.rs4')
type = 'curry_rs4';
manufacturer = 'Curry';
content = 'sensor geometry file';
elseif filetype_check_extension(filename, '.par')
type = 'curry_par';
manufacturer = 'Curry';
content = 'data or image parameter file';
elseif filetype_check_extension(filename, '.bd0') || filetype_check_extension(filename, '.bd1') || filetype_check_extension(filename, '.bd2') || filetype_check_extension(filename, '.bd3') || filetype_check_extension(filename, '.bd4') || filetype_check_extension(filename, '.bd5') || filetype_check_extension(filename, '.bd6') || filetype_check_extension(filename, '.bd7') || filetype_check_extension(filename, '.bd8') || filetype_check_extension(filename, '.bd9')
type = 'curry_bd';
manufacturer = 'Curry';
content = 'BEM description file';
elseif filetype_check_extension(filename, '.bt0') || filetype_check_extension(filename, '.bt1') || filetype_check_extension(filename, '.bt2') || filetype_check_extension(filename, '.bt3') || filetype_check_extension(filename, '.bt4') || filetype_check_extension(filename, '.bt5') || filetype_check_extension(filename, '.bt6') || filetype_check_extension(filename, '.bt7') || filetype_check_extension(filename, '.bt8') || filetype_check_extension(filename, '.bt9')
type = 'curry_bt';
manufacturer = 'Curry';
content = 'BEM transfer matrix file';
elseif filetype_check_extension(filename, '.bm0') || filetype_check_extension(filename, '.bm1') || filetype_check_extension(filename, '.bm2') || filetype_check_extension(filename, '.bm3') || filetype_check_extension(filename, '.bm4') || filetype_check_extension(filename, '.bm5') || filetype_check_extension(filename, '.bm6') || filetype_check_extension(filename, '.bm7') || filetype_check_extension(filename, '.bm8') || filetype_check_extension(filename, '.bm9')
type = 'curry_bm';
manufacturer = 'Curry';
content = 'BEM full matrix file';
elseif filetype_check_extension(filename, '.dig')
type = 'curry_dig';
manufacturer = 'Curry';
content = 'digitizer file';
elseif filetype_check_extension(filename, '.txt') && filetype_check_header(filename, '##')
type = 'smi_txt';
manufacturer = 'SensoMotoric Instruments (SMI)';
content = 'eyetracker data';
% known SR Research eyelink file formats
elseif filetype_check_extension(filename, '.asc') && filetype_check_header(filename, '**')
type = 'eyelink_asc';
manufacturer = 'SR Research (ascii)';
content = 'eyetracker data';
elseif filetype_check_extension(filename, '.edf') && filetype_check_header(filename, 'SR_RESEARCH')
type = 'eyelink_edf';
manufacturer = 'SR Research';
content = 'eyetracker data (binary)';
elseif filetype_check_extension(filename, '.tsv') && (filetype_check_header(filename, 'Data Properties:') || filetype_check_header(filename, 'System Properties:'))
type = 'tobii_tsv';
manufacturer = 'Tobii';
content = 'eyetracker data (ascii)';
% known Curry V2 file types
elseif filetype_check_extension(filename, '.sp0') || filetype_check_extension(filename, '.sp1') || filetype_check_extension(filename, '.sp2') || filetype_check_extension(filename, '.sp3') || filetype_check_extension(filename, '.sp4') || filetype_check_extension(filename, '.sp5') || filetype_check_extension(filename, '.sp6') || filetype_check_extension(filename, '.sp7') || filetype_check_extension(filename, '.sp8') || filetype_check_extension(filename, '.sp9')
type = 'curry_sp';
manufacturer = 'Curry';
content = 'point list';
elseif filetype_check_extension(filename, '.s10') || filetype_check_extension(filename, '.s11') || filetype_check_extension(filename, '.s12') || filetype_check_extension(filename, '.s13') || filetype_check_extension(filename, '.s14') || filetype_check_extension(filename, '.s15') || filetype_check_extension(filename, '.s16') || filetype_check_extension(filename, '.s17') || filetype_check_extension(filename, '.s18') || filetype_check_extension(filename, '.s19') || filetype_check_extension(filename, '.s20') || filetype_check_extension(filename, '.s21') || filetype_check_extension(filename, '.s22') || filetype_check_extension(filename, '.s23') || filetype_check_extension(filename, '.s24') || filetype_check_extension(filename, '.s25') || filetype_check_extension(filename, '.s26') || filetype_check_extension(filename, '.s27') || filetype_check_extension(filename, '.s28') || filetype_check_extension(filename, '.s29') || filetype_check_extension(filename, '.s30') || filetype_check_extension(filename, '.s31') || filetype_check_extension(filename, '.s32') || filetype_check_extension(filename, '.s33') || filetype_check_extension(filename, '.s34') || filetype_check_extension(filename, '.s35') || filetype_check_extension(filename, '.s36') || filetype_check_extension(filename, '.s37') || filetype_check_extension(filename, '.s38') || filetype_check_extension(filename, '.s39')
type = 'curry_s';
manufacturer = 'Curry';
content = 'triangle or tetraedra list';
elseif filetype_check_extension(filename, '.pom')
type = 'curry_pom';
manufacturer = 'Curry';
content = 'anatomical localization file';
elseif filetype_check_extension(filename, '.res')
type = 'curry_res';
manufacturer = 'Curry';
content = 'functional localization file';
% known MBFYS file types
elseif filetype_check_extension(filename, '.tri')
type = 'mbfys_tri';
manufacturer = 'MBFYS';
content = 'triangulated surface';
elseif filetype_check_extension(filename, '.ama') && filetype_check_header(filename, [10 0 0 0])
type = 'mbfys_ama';
manufacturer = 'MBFYS';
content = 'BEM volume conduction model';
% Electrical Geodesics Incorporated formats
% the egi_mff format is checked earlier
elseif (filetype_check_extension(filename, '.egis') || filetype_check_extension(filename, '.ave') || filetype_check_extension(filename, '.gave') || filetype_check_extension(filename, '.raw')) && (filetype_check_header(filename, [char(1) char(2) char(3) char(4) char(255) char(255)]) || filetype_check_header(filename, [char(3) char(4) char(1) char(2) char(255) char(255)]))
type = 'egi_egia';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'averaged EEG data';
elseif (filetype_check_extension(filename, '.egis') || filetype_check_extension(filename, '.ses') || filetype_check_extension(filename, '.raw')) && (filetype_check_header(filename, [char(1) char(2) char(3) char(4) char(0) char(3)]) || filetype_check_header(filename, [char(3) char(4) char(1) char(2) char(0) char(3)]))
type = 'egi_egis';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'raw EEG data';
elseif (filetype_check_extension(filename, '.sbin') || filetype_check_extension(filename, '.raw'))
% note that the Chieti MEG data format also has the extension *.raw
% but that can be detected by looking at the file header
type = 'egi_sbin';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'averaged EEG data';
% FreeSurfer file formats, see also http://www.grahamwideman.com/gw/brain/fs/surfacefileformats.htm
elseif filetype_check_extension(filename, '.mgz')
type = 'freesurfer_mgz';
manufacturer = 'FreeSurfer';
content = 'anatomical MRI';
elseif filetype_check_extension(filename, '.mgh')
type = 'freesurfer_mgh';
manufacturer = 'FreeSurfer';
content = 'anatomical MRI';
elseif filetype_check_header(filename, [255 255 254])
% FreeSurfer Triangle Surface Binary Format
type = 'freesurfer_triangle_binary'; % there is also an ascii triangle format
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_header(filename, [255 255 255])
% Quadrangle File
type = 'freesurfer_quadrangle'; % there is no ascii quadrangle format
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_header(filename, [255 255 253]) && ~exist([filename(1:(end-4)) '.mat'], 'file')
% "New" Quadrangle File
type = 'freesurfer_quadrangle_new';
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_extension(filename, '.curv') && filetype_check_header(filename, [255 255 255])
% "New" Curv File
type = 'freesurfer_curv_new';
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_extension(filename, '.annot')
% Freesurfer annotation file
type = 'freesurfer_annot';
manufacturer = 'FreeSurfer';
content = 'parcellation annotation';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'_nrs_')) == 1
% This may be improved by looking into the file, rather than assuming the
% filename has "_nrs_" somewhere. Also, distinction by the different file
% types could be made
type = 'bucn_nirs';
manufacturer = 'BUCN';
content = 'ascii formatted nirs data';
% Homer is MATLAB software for NIRS processing, see http://www.nmr.mgh.harvard.edu/DOT/resources/homer2/home.htm
elseif filetype_check_extension(filename, '.nirs') && filetype_check_header(filename, 'MATLAB')
type = 'homer_nirs';
manufacturer = 'Homer';
content = '(f)NIRS data';
% known Artinis file format
elseif filetype_check_extension(filename, '.oxy3')
type = 'oxy3';
manufacturer = 'Artinis Medical Systems';
content = '(f)NIRS data';
% known TETGEN file types, see http://tetgen.berlios.de/fformats.html
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.poly']), 'file')
type = 'tetgen_poly';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with piecewise linear complex';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.smesh']), 'file')
type = 'tetgensmesh';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with simple piecewise linear complex';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.ele']), 'file')
type = 'tetgen_ele';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with tetrahedra';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.face']), 'file')
type = 'tetgen_face';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with triangular faces';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.edge']), 'file')
type = 'tetgen_edge';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with boundary edges';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.vol']), 'file')
type = 'tetgen_vol';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with maximum volumes';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.var']), 'file')
type = 'tetgen_var';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with variant constraints for facets/segments';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100) && exist(fullfile(p, [f '.neigh']), 'file')
type = 'tetgen_neigh';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with neighbors';
elseif any(filetype_check_extension(filename, {'.node' '.poly' '.smesh' '.ele' '.face' '.edge' '.vol' '.var' '.neigh'})) && exist(fullfile(p, [f '.node']), 'file') && filetype_check_ascii(fullfile(p, [f '.node']), 100)
type = 'tetgen_node';
manufacturer = 'TetGen, see http://tetgen.berlios.de';
content = 'geometrical data desribed with only nodes';
% some BrainSuite file formats, see http://brainsuite.bmap.ucla.edu/
elseif filetype_check_extension(filename, '.dfs') && filetype_check_header(filename, 'DFS_LE v2.0')
type = 'brainsuite_dfs';
manufacturer = 'BrainSuite, see http://brainsuite.bmap.ucla.edu';
content = 'list of triangles and vertices';
elseif filetype_check_extension(filename, '.bst') && filetype_check_ascii(filename)
type = 'brainsuite_dst';
manufacturer = 'BrainSuite, see http://brainsuite.bmap.ucla.edu';
content = 'a collection of files with geometrical data'; % it seems to be similar to a Caret *.spec file
elseif filetype_check_extension(filename, '.dfc') && filetype_check_header(filename, 'LONIDFC')
type = 'loni_dfc';
manufacturer = 'LONI'; % it is used in BrainSuite
content = 'curvature information';
% some BrainVISA file formats, see http://brainvisa.info
elseif filetype_check_extension(filename, '.mesh') && (filetype_check_header(filename, 'ascii') || filetype_check_header(filename, 'binarABCD') || filetype_check_header(filename, 'binarDCBA')) % http://brainvisa.info/doc/documents-4.4/formats/mesh.pdf
type = 'brainvisa_mesh';
manufacturer = 'BrainVISA';
content = 'vertices and triangles';
elseif filetype_check_extension(filename, '.minf') && filetype_check_ascii(filename)
type = 'brainvisa_minf';
manufacturer = 'BrainVISA';
content = 'annotation/metadata';
% some other known file types
elseif length(filename)>4 && exist([filename(1:(end-4)) '.mat'], 'file') && exist([filename(1:(end-4)) '.bin'], 'file')
% this is a self-defined FCDC data format, consisting of two files
% there is a MATLAB V6 file with the header and a binary file with the data (multiplexed, ieee-le, double)
type = 'fcdc_matbin';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'multiplexed electrophysiology data';
elseif filetype_check_extension(filename, '.lay')
type = 'layout';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'layout of channels for plotting';
elseif filetype_check_extension(filename, '.stl')
type = 'stl';
manufacturer = 'various';
content = 'stereo litography file';
elseif filetype_check_extension(filename, '.obj')
type = 'obj';
manufacturer = 'Wavefront Technologies';
content = 'Wavefront OBJ';
elseif filetype_check_extension(filename, '.dcm') || filetype_check_extension(filename, '.ima') || filetype_check_header(filename, 'DICM', 128)
type = 'dicom';
manufacturer = 'Dicom';
content = 'image data';
elseif filetype_check_extension(filename, '.trl')
type = 'fcdc_trl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'trial definitions';
elseif filetype_check_extension(filename, '.bdf') && filetype_check_header(filename, [255 'BIOSEMI'])
type = 'biosemi_bdf';
manufacturer = 'Biosemi Data Format';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.edf')
type = 'edf';
manufacturer = 'European Data Format';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.gdf') && filetype_check_header(filename, 'GDF')
type = 'gdf';
manufacturer = 'BIOSIG - Alois Schloegl';
content = 'biosignals';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_spmeeg_mat(filename)
type = 'spmeeg_mat';
manufacturer = 'Wellcome Trust Centre for Neuroimaging, UCL, UK';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_gtec_mat(filename)
type = 'gtec_mat';
manufacturer = 'Guger Technologies, http://www.gtec.at';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_ced_spike6mat(filename)
type = 'ced_spike6mat';
manufacturer = 'Cambridge Electronic Design Limited';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB')
type = 'matlab';
manufacturer = 'MATLAB';
content = 'MATLAB binary data';
elseif filetype_check_header(filename, 'RIFF', 0) && filetype_check_header(filename, 'WAVE', 8)
type = 'riff_wave';
manufacturer = 'Microsoft';
content = 'audio';
elseif filetype_check_extension(filename, '.txt') && filetype_check_header(filename, 'Site')
type = 'easycap_txt';
manufacturer = 'Easycap';
content = 'electrode positions';
elseif filetype_check_extension(filename, '.txt')
type = 'ascii_txt';
manufacturer = '';
content = '';
elseif filetype_check_extension(filename, '.pol')
type = 'polhemus_fil';
manufacturer = 'Functional Imaging Lab, London, UK';
content = 'headshape points';
elseif filetype_check_extension(filename, '.set')
type = 'eeglab_set';
manufacturer = 'Swartz Center for Computational Neuroscience, San Diego, USA';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.erp')
type = 'eeglab_erp';
manufacturer = 'Swartz Center for Computational Neuroscience, San Diego, USA';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.t') && filetype_check_header(filename, '%%BEGINHEADER')
type = 'mclust_t';
manufacturer = 'MClust';
content = 'sorted spikes';
elseif filetype_check_header(filename, 26)
type = 'nimh_cortex';
manufacturer = 'NIMH Laboratory of Neuropsychology, http://www.cortex.salk.edu';
content = 'events and eye channels';
elseif filetype_check_extension(filename, '.foci') && filetype_check_header(filename, '<?xml')
type = 'caret_foci';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.border') && filetype_check_header(filename, '<?xml')
type = 'caret_border';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.spec') && (filetype_check_header(filename, '<?xml') || filetype_check_header(filename, 'BeginHeader'))
type = 'caret_spec';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.coord.')) && filetype_check_header(filename, '<?xml')
type = 'caret_coord';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.topo.')) && filetype_check_header(filename, '<?xml')
type = 'caret_topo';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.surf.')) && filetype_check_header(filename, '<?xml')
type = 'caret_surf';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.label.')) && filetype_check_header(filename, '<?xml')
type = 'caret_label';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.func.')) && filetype_check_header(filename, '<?xml')
type = 'caret_func';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && ~isempty(strfind(filename, '.shape.')) && filetype_check_header(filename, '<?xml')
type = 'caret_shape';
manufacturer = 'Caret and ConnectomeWB';
elseif filetype_check_extension(filename, '.gii') && filetype_check_header(filename, '<?xml')
type = 'gifti';
manufacturer = 'Neuroimaging Informatics Technology Initiative';
content = 'tesselated surface description';
elseif filetype_check_extension(filename, '.v')
type = 'vista';
manufacturer = 'University of British Columbia, Canada, http://www.cs.ubc.ca/nest/lci/vista/vista.html';
content = 'A format for computer vision research, contains meshes or volumes';
elseif filetype_check_extension(filename, '.tet')
type = 'tet';
manufacturer = 'a.o. INRIA, see http://shapes.aimatshape.net/';
content = 'tetraedral mesh';
elseif filetype_check_extension(filename, '.nc')
type = 'netmeg';
manufacturer = 'Center for Biomedical Research Excellence (COBRE), see http://cobre.mrn.org/megsim/tools/netMEG/netMEG.html';
content = 'MEG data';
elseif filetype_check_extension(filename, 'trk')
type = 'trackvis_trk';
manufacturer = 'Martinos Center for Biomedical Imaging, see http://www.trackvis.org';
content = 'fiber tracking data from diffusion MR imaging';
elseif filetype_check_extension(filename, '.xml') && filetype_check_header(filename, '<EEGMarkerList', 39)
type = 'localite_pos';
manufacturer = 'Localite';
content = 'EEG electrode positions';
elseif filetype_check_extension(filename, '.mbi')
type = 'manscan_mbi';
manufacturer = 'MANSCAN';
content = 'EEG header';
elseif filetype_check_extension(filename, '.mb2')
type = 'manscan_mb2';
manufacturer = 'MANSCAN';
content = 'EEG data';
elseif filetype_check_header(filename, 'ply')
type = 'ply';
manufacturer = 'Stanford Triangle Format';
content = 'three dimensional data from 3D scanners, see http://en.wikipedia.org/wiki/PLY_(file_format)';
elseif filetype_check_extension(filename, '.csv')
type = 'csv';
manufacturer = 'Generic';
content = 'Comma-separated values, see http://en.wikipedia.org/wiki/Comma-separated_values';
elseif filetype_check_extension(filename, '.ah5')
type = 'AnyWave';
manufacturer = 'AnyWave, http://meg.univ-amu.fr/wiki/AnyWave';
content = 'MEG/SEEG/EEG data';
elseif (isdir(filename) && exist(fullfile(p, [d '.EEG.Poly5']), 'file')) || filetype_check_extension(filename, '.Poly5')
type = 'tmsi_poly5';
manufacturer = 'TMSi PolyBench';
content = 'EEG';
elseif (isdir(filename) && exist(fullfile(filename, 'DataSetSession.xml'), 'file') && exist(fullfile(filename, 'DataSetProtocol.xml'), 'file'))
type = 'mega_neurone';
manufacturer = 'Mega - http://www.megaemg.com';
content = 'EEG';
elseif filetype_check_extension(filename, '.e')
type = 'nervus_eeg'; % Nervus/Nicolet EEG files
manufacturer = 'Natus';
content = 'EEG';
elseif filetype_check_extension(filename, '.m00')
type = 'nihonkohden_m00';
manufacturer = 'Nihon Kohden';
content = 'continuous EEG';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% finished determining the filetype
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(type, 'unknown')
if ~exist(filename, 'file') && ~exist(filename, 'dir')
warning('file or directory "%s" does not exist, could not determine fileformat', filename);
else
warning('could not determine filetype of %s', filename);
end
end
if ~isempty(desired)
% return a boolean value instead of a descriptive string
type = strcmp(type, desired);
end
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {type};
if isempty(previous_argin) && ~strcmp(type, 'unknown')
previous_argin = current_argin;
previous_argout = current_argout;
previous_pwd = current_pwd;
elseif isempty(previous_argin) && (exist(filename,'file') || exist(filename,'dir')) && strcmp(type, 'unknown') % if the type is unknown, but the file or dir exists, save the current output
previous_argin = current_argin;
previous_argout = current_argout;
previous_pwd = current_pwd;
else
% don't remember in case unknown
previous_argin = [];
previous_argout = [];
previous_pwd = [];
end
return % filetype main()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that helps in deciding whether a directory with files should
% be treated as a "dataset". This function returns a logical 1 (TRUE) if more
% than half of the element of a vector are nonzero number or are 1 or TRUE.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = most(x)
x = x(~isnan(x(:)));
y = sum(x==0)<ceil(length(x)/2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that always returns a true value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = filetype_true(varargin)
y = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for CED spike6 mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_ced_spike6mat(filename)
res = 1;
var = whos('-file', filename);
% Check whether all the variables in the file are structs (representing channels)
if ~all(strcmp('struct', unique({var(:).class})) == 1)
res = 0;
return;
end
var = load(filename, var(1).name);
var = struct2cell(var);
% Check whether the fields of the first struct have some particular names
fnames = {
'title'
'comment'
'interval'
'scale'
'offset'
'units'
'start'
'length'
'values'
'times'
};
res = (numel(intersect(fieldnames(var{1}), fnames)) >= 5);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for a SPM eeg/meg mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_spmeeg_mat(filename)
% check for the accompanying *.dat file
res = exist([filename(1:(end-4)) '.dat'], 'file');
if ~res, return; end
% check the content of the *.mat file
var = whos('-file', filename);
res = res && numel(var)==1;
res = res && strcmp('D', getfield(var, {1}, 'name'));
res = res && strcmp('struct', getfield(var, {1}, 'class'));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for a GTEC mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_gtec_mat(filename)
% check the content of the *.mat file
var = whos('-file', filename);
res = length(intersect({'log', 'names'}, {var.name}))==2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks the presence of a specified file in a directory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_dir(p, filename)
if ~isempty(p)
d = dir(p);
else
d = dir;
end
res = any(strcmp(filename,{d.name}));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks whether the directory is neuralynx_cds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_neuralynx_cds(filename)
res=false;
files=dir(filename);
dirlist=files([files.isdir]);
% 1) check for a subdirectory with extension .lfp, .mua or .spike
haslfp = any(filetype_check_extension({dirlist.name}, 'lfp'));
hasmua = any(filetype_check_extension({dirlist.name}, 'mua'));
hasspike = any(filetype_check_extension({dirlist.name}, 'spike'));
% 2) check for each of the subdirs being a neuralynx_ds
if haslfp || hasmua || hasspike
sel=find(filetype_check_extension({dirlist.name}, 'lfp')+...
filetype_check_extension({dirlist.name}, 'mua')+...
filetype_check_extension({dirlist.name}, 'spike'));
neuralynxdirs=cell(1,length(sel));
for n=1:length(sel)
neuralynxdirs{n}=fullfile(filename, dirlist(sel(n)).name);
end
res=any(ft_filetype(neuralynxdirs, 'neuralynx_ds'));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks whether the file contains only ascii characters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_ascii(filename, len)
% See http://en.wikipedia.org/wiki/ASCII
if exist(filename, 'file')
fid = fopen(filename, 'rt');
bin = fread(fid, len, 'uint8=>uint8');
fclose(fid);
printable = bin>31 & bin<127; % the printable characters, represent letters, digits, punctuation marks, and a few miscellaneous symbols
special = bin==10 | bin==13 | bin==11; % line feed, form feed, tab
res = all(printable | special);
else
% always return true if the file does not (yet) exist, this is important
% for determining the format to which data should be written
res = 1;
end
|
github
|
lcnbeapp/beapp-master
|
getdimord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/private/getdimord.m
| 20,107 |
utf_8
|
706f4f45a5d4ae7535c204b8c010f76b
|
function dimord = getdimord(data, field, varargin)
% GETDIMORD
%
% Use as
% dimord = getdimord(data, field)
%
% See also GETDIMSIZ, GETDATFIELD
if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field)
field = ['avg.' field];
elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field)
field = ['trial.' field];
elseif ~isfield(data, field)
error('field "%s" not present in data', field);
end
if strncmp(field, 'avg.', 4)
prefix = '';
field = field(5:end); % strip the avg
data.(field) = data.avg.(field); % copy the avg into the main structure
data = rmfield(data, 'avg');
elseif strncmp(field, 'trial.', 6)
prefix = '(rpt)_';
field = field(7:end); % strip the trial
data.(field) = data.trial(1).(field); % copy the first trial into the main structure
data = rmfield(data, 'trial');
else
prefix = '';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 1: the specific dimord is simply present
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, [field 'dimord'])
dimord = data.([field 'dimord']);
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if not present, we need some additional information about the data strucure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nan means that the value is not known and might remain unknown
% inf means that the value is not known but should be known
ntime = inf;
nfreq = inf;
nchan = inf;
nchancmb = inf;
nsubj = nan;
nrpt = nan;
nrpttap = nan;
npos = inf;
nori = nan; % this will be 3 in many cases
ntopochan = inf;
nspike = inf; % this is only for the first spike channel
nlag = nan;
ndim1 = nan;
ndim2 = nan;
ndim3 = nan;
% use an anonymous function
assign = @(var, val) assignin('caller', var, val);
% it is possible to pass additional ATTEMPTs such as nrpt, nrpttap, etc
for i=1:2:length(varargin)
assign(varargin{i}, varargin{i+1});
end
% try to determine the size of each possible dimension in the data
if isfield(data, 'label')
nchan = length(data.label);
end
if isfield(data, 'labelcmb')
nchancmb = size(data.labelcmb, 1);
end
if isfield(data, 'time')
if iscell(data.time) && ~isempty(data.time)
tmp = getdimsiz(data, 'time');
ntime = tmp(3); % raw data may contain variable length trials
else
ntime = length(data.time);
end
end
if isfield(data, 'freq')
nfreq = length(data.freq);
end
if isfield(data, 'trial') && ft_datatype(data, 'raw')
nrpt = length(data.trial);
end
if isfield(data, 'trialtime') && ft_datatype(data, 'spike')
nrpt = size(data.trialtime,1);
end
if isfield(data, 'cumtapcnt')
nrpt = size(data.cumtapcnt,1);
if numel(data.cumtapcnt)==length(data.cumtapcnt)
% it is a vector, hence it only represents repetitions
nrpttap = sum(data.cumtapcnt);
else
% it is a matrix, hence it is repetitions by frequencies
% this happens after mtmconvol with keeptrials
nrpttap = sum(data.cumtapcnt,2);
if any(nrpttap~=nrpttap(1))
warning('unexpected variation of the number of tapers over trials')
nrpttap = nan;
else
nrpttap = nrpttap(1);
end
end
end
if isfield(data, 'pos')
npos = size(data.pos,1);
elseif isfield(data, 'dim')
npos = prod(data.dim);
end
if isfield(data, 'dim')
ndim1 = data.dim(1);
ndim2 = data.dim(2);
ndim3 = data.dim(3);
end
if isfield(data, 'csdlabel')
% this is used in PCC beamformers
if length(data.csdlabel)==npos
% each position has its own labels
len = cellfun(@numel, data.csdlabel);
len = len(len~=0);
if all(len==len(1))
% they all have the same length
nori = len(1);
end
else
% one list of labels for all positions
nori = length(data.csdlabel);
end
elseif isfinite(npos)
% assume that there are three dipole orientations per source
nori = 3;
end
if isfield(data, 'topolabel')
% this is used in ICA and PCA decompositions
ntopochan = length(data.topolabel);
end
if isfield(data, 'timestamp') && iscell(data.timestamp)
nspike = length(data.timestamp{1}); % spike data: only for the first channel
end
if ft_datatype(data, 'mvar') && isfield(data, 'coeffs')
nlag = size(data.coeffs,3);
end
% determine the size of the actual data
datsiz = getdimsiz(data, field);
tok = {'subj' 'rpt' 'rpttap' 'chan' 'chancmb' 'freq' 'time' 'pos' 'ori' 'topochan' 'lag' 'dim1' 'dim2' 'dim3'};
siz = [nsubj nrpt nrpttap nchan nchancmb nfreq ntime npos nori ntopochan nlag ndim1 ndim2 ndim3];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 2: a general dimord is present and might apply
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isfield(data, 'dimord')
dimtok = tokenize(data.dimord, '_');
if length(dimtok)>length(datsiz) && check_trailingdimsunitlength(data, dimtok((length(datsiz)+1):end))
% add the trailing singleton dimensions to datsiz, if needed
datsiz = [datsiz ones(1,max(0,length(dimtok)-length(datsiz)))];
end
if length(dimtok)==length(datsiz) || (length(dimtok)==(length(datsiz)-1) && datsiz(end)==1)
success = false(size(dimtok));
for i=1:length(dimtok)
sel = strcmp(tok, dimtok{i});
if any(sel) && datsiz(i)==siz(sel)
success(i) = true;
elseif strcmp(dimtok{i}, 'subj')
% the number of subjects cannot be determined, and will be indicated as nan
success(i) = true;
elseif strcmp(dimtok{i}, 'rpt')
% the number of trials is hard to determine, and might be indicated as nan
success(i) = true;
end
end % for
if all(success)
dimord = data.dimord;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 3: look at the size of some common fields that are known
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch field
% the logic for this code is to first check whether the size of a field
% has an exact match to a potential dimensionality, if not, check for a
% partial match (ignoring nans)
% note that the case for a cell dimension (typically pos) is handled at
% the end of this section
case {'pos'}
if isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_unknown';
end
case {'individual'}
if isequalwithoutnans(datsiz, [nsubj nchan ntime])
dimord = 'subj_chan_time';
end
case {'avg' 'var' 'dof'}
if isequal(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequal(datsiz, [nchan ntime])
dimord = 'chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nchan ntime])
dimord = 'chan_time';
end
case {'powspctrm' 'fourierspctrm'}
if isequal(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequal(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequal(datsiz, [nchan nfreq])
dimord = 'chan_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq ntime])
dimord = 'rpt_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq])
dimord = 'rpt_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nfreq ntime])
dimord = 'chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nfreq])
dimord = 'chan_freq';
end
case {'crsspctrm' 'cohspctrm'}
if isequal(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequal(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequal(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequal(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequal(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequal(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequal(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequal(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequal(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq ntime])
dimord = 'rpt_chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq])
dimord = 'rpt_chancmb_freq';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq ntime])
dimord = 'chancmb_freq_time';
elseif isequalwithoutnans(datsiz, [nchancmb nfreq])
dimord = 'chancmb_freq';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq ntime])
dimord = 'rpt_chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq])
dimord = 'rpt_chan_chan_freq';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq ntime])
dimord = 'chan_chan_freq_time';
elseif isequalwithoutnans(datsiz, [nchan nchan nfreq])
dimord = 'chan_chan_freq';
elseif isequalwithoutnans(datsiz, [npos nori])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
end
case {'cov' 'coh' 'csd' 'noisecov' 'noisecsd'}
% these occur in timelock and in source structures
if isequal(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequal(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequal(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequal(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
elseif isequalwithoutnans(datsiz, [nrpt nchan nchan])
dimord = 'rpt_chan_chan';
elseif isequalwithoutnans(datsiz, [nchan nchan])
dimord = 'chan_chan';
elseif isequalwithoutnans(datsiz, [npos nori nori])
dimord = 'pos_ori_ori';
elseif isequalwithoutnans(datsiz, [npos nrpt nori nori])
dimord = 'pos_rpt_ori_ori';
end
case {'tf'}
if isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'pow'}
if isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequal(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequal(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
elseif isequal(datsiz, [npos 1]) % in case there are no repetitions
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [nrpt npos ntime])
dimord = 'rpt_pos_time';
elseif isequalwithoutnans(datsiz, [nrpt npos nfreq])
dimord = 'rpt_pos_freq';
end
case {'mom','itc','aa','stat','pval','statitc','pitc'}
if isequal(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequal(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequal(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequal(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequal(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequal(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequal(datsiz, [npos 1])
dimord = 'pos';
elseif isequal(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nori nrpt])
dimord = 'pos_ori_rpt';
elseif isequalwithoutnans(datsiz, [npos nori ntime])
dimord = 'pos_ori_time';
elseif isequalwithoutnans(datsiz, [npos nori nfreq])
dimord = 'pos_ori_nfreq';
elseif isequalwithoutnans(datsiz, [npos ntime])
dimord = 'pos_time';
elseif isequalwithoutnans(datsiz, [npos nfreq])
dimord = 'pos_freq';
elseif isequalwithoutnans(datsiz, [npos 3])
dimord = 'pos_ori';
elseif isequalwithoutnans(datsiz, [npos 1])
dimord = 'pos';
elseif isequalwithoutnans(datsiz, [npos nrpt])
dimord = 'pos_rpt';
elseif isequalwithoutnans(datsiz, [npos nrpt nori ntime])
dimord = 'pos_rpt_ori_time';
elseif isequalwithoutnans(datsiz, [npos nrpt 1 ntime])
dimord = 'pos_rpt_ori_time';
elseif isequal(datsiz, [npos nfreq ntime])
dimord = 'pos_freq_time';
end
case {'filter'}
if isequalwithoutnans(datsiz, [npos nori nchan]) || (isequal(datsiz([1 2]), [npos nori]) && isinf(nchan))
dimord = 'pos_ori_chan';
end
case {'leadfield'}
if isequalwithoutnans(datsiz, [npos nchan nori]) || (isequal(datsiz([1 3]), [npos nori]) && isinf(nchan))
dimord = 'pos_chan_ori';
end
case {'ori' 'eta'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'csdlabel'}
if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3])
dimord = 'pos_ori';
end
case {'trial'}
if ~iscell(data.(field)) && isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = 'rpt_chan_time';
elseif isequalwithoutnans(datsiz, [nrpt nchan ntime])
dimord = '{rpt}_chan_time';
elseif isequalwithoutnans(datsiz, [nchan nspike]) || isequalwithoutnans(datsiz, [nchan 1 nspike])
dimord = '{chan}_spike';
end
case {'sampleinfo' 'trialinfo' 'trialtime'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'cumtapcnt' 'cumsumcnt'}
if isequalwithoutnans(datsiz, [nrpt nan])
dimord = 'rpt_other';
end
case {'topo'}
if isequalwithoutnans(datsiz, [ntopochan nchan])
dimord = 'topochan_chan';
end
case {'unmixing'}
if isequalwithoutnans(datsiz, [nchan ntopochan])
dimord = 'chan_topochan';
end
case {'inside'}
if isequalwithoutnans(datsiz, [npos])
dimord = 'pos';
end
case {'timestamp' 'time'}
if ft_datatype(data, 'spike') && iscell(data.(field)) && datsiz(1)==nchan
dimord = '{chan}_spike';
elseif ft_datatype(data, 'raw') && iscell(data.(field)) && datsiz(1)==nrpt
dimord = '{rpt}_time';
elseif isvector(data.(field)) && isequal(datsiz, [1 ntime ones(1,numel(datsiz)-2)])
dimord = 'time';
end
case {'freq'}
if isvector(data.(field)) && isequal(datsiz, [1 nfreq])
dimord = 'freq';
end
otherwise
if isfield(data, 'dim') && isequal(datsiz, data.dim)
dimord = 'dim1_dim2_dim3';
end
end % switch field
% deal with possible first pos which is a cell
if exist('dimord', 'var') && strcmp(dimord(1:3), 'pos') && iscell(data.(field))
dimord = ['{pos}' dimord(4:end)];
end
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 4: there is only one way that the dimensions can be interpreted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dimtok = cell(size(datsiz));
for i=1:length(datsiz)
sel = find(siz==datsiz(i));
if length(sel)==1
% there is exactly one corresponding dimension
dimtok{i} = tok{sel};
else
% there are zero or multiple corresponding dimensions
dimtok{i} = [];
end
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 5: compare the size with the known size of each dimension
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sel = ~isnan(siz) & ~isinf(siz);
% nan means that the value is not known and might remain unknown
% inf means that the value is not known and but should be known
if length(unique(siz(sel)))==length(siz(sel))
% this should only be done if there is no chance of confusing dimensions
dimtok = cell(size(datsiz));
dimtok(datsiz==npos) = {'pos'};
dimtok(datsiz==nori) = {'ori'};
dimtok(datsiz==nrpttap) = {'rpttap'};
dimtok(datsiz==nrpt) = {'rpt'};
dimtok(datsiz==nsubj) = {'subj'};
dimtok(datsiz==nchancmb) = {'chancmb'};
dimtok(datsiz==nchan) = {'chan'};
dimtok(datsiz==nfreq) = {'freq'};
dimtok(datsiz==ntime) = {'time'};
dimtok(datsiz==ndim1) = {'dim1'};
dimtok(datsiz==ndim2) = {'dim2'};
dimtok(datsiz==ndim3) = {'dim3'};
if isempty(dimtok{end}) && datsiz(end)==1
% remove the unknown trailing singleton dimension
dimtok = dimtok(1:end-1);
elseif isequal(dimtok{1}, 'pos') && isempty(dimtok{2}) && datsiz(2)==1
% remove the unknown leading singleton dimension
dimtok(2) = [];
end
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
return
end
end
end % if dimord does not exist
if ~exist('dimord', 'var')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ATTEMPT 6: check whether it is a 3-D volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isequal(datsiz, [ndim1 ndim2 ndim3])
dimord = 'dim1_dim2_dim3';
end
end % if dimord does not exist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FINAL RESORT: return "unknown" for all unknown dimensions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('dimord', 'var')
% this should not happen
% if it does, it might help in diagnosis to have a very informative warning message
% since there have been problems with trials not being selected correctly due to the warning going unnoticed
% it is better to throw an error than a warning
warning('could not determine dimord of "%s" in the following data', field)
disp(data);
dimtok(cellfun(@isempty, dimtok)) = {'unknown'};
if all(~cellfun(@isempty, dimtok))
if iscell(data.(field))
dimtok{1} = ['{' dimtok{1} '}'];
end
dimord = sprintf('%s_', dimtok{:});
dimord = dimord(1:end-1);
end
end
% add '(rpt)' in case of source.trial
dimord = [prefix dimord];
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = isequalwithoutnans(a, b)
% this is *only* used to compare matrix sizes, so we can ignore any singleton last dimension
numdiff = numel(b)-numel(a);
if numdiff > 0
% assume singleton dimensions missing in a
a = [a(:); ones(numdiff, 1)];
b = b(:);
elseif numdiff < 0
% assume singleton dimensions missing in b
b = [b(:); ones(abs(numdiff), 1)];
a = a(:);
end
c = ~isnan(a(:)) & ~isnan(b(:));
ok = isequal(a(c), b(c));
end % function isequalwithoutnans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ok = check_trailingdimsunitlength(data, dimtok)
ok = false;
for k = 1:numel(dimtok)
switch dimtok{k}
case 'chan'
ok = numel(data.label)==1;
otherwise
if isfield(data, dimtok{k}); % check whether field exists
ok = numel(data.(dimtok{k}))==1;
end;
end
if ok,
break;
end
end
end % function check_trailingdimsunitlength
|
github
|
lcnbeapp/beapp-master
|
read_mff_bin.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/private/read_mff_bin.m
| 4,095 |
utf_8
|
14e1df31f92faf2b6f02cfe4a32060c9
|
function [output] = read_mff_bin(filename, begblock, endblock, chanindx)
% READ_MFF_BIN
%
% Use as
% [hdr] = read_mff_bin(filename)
% or
% [dat] = read_mff_bin(filename, begblock, endblock);
fid = fopen(filename,'r');
if fid == -1
error('wrong filename') % could not find signal(n)
end
needhdr = (nargin==1);
needdat = (nargin==4);
if needhdr
hdr = read_mff_block(fid, [], [], 'skip');
prevhdr = hdr(end);
for i=2:hdr.opthdr.nblocks
hdr(i) = read_mff_block(fid, prevhdr, [], 'skip');
prevhdr = hdr(end);
end
% assign the output variable
output = hdr;
elseif needdat
prevhdr = [];
dat = {};
block = 0;
while true
block = block+1;
if block<begblock
[hdr] = read_mff_block(fid, prevhdr, chanindx, 'skip');
prevhdr = hdr;
continue % with the next block
end
if block==begblock
[hdr, dat] = read_mff_block(fid, prevhdr, chanindx, 'read');
prevhdr = hdr;
continue % with the next block
end
if block<=endblock
[hdr, dat(:,end+1)] = read_mff_block(fid, prevhdr, chanindx, 'read');
prevhdr = hdr;
continue % with the next block
end
break % out of the while loop
end % while
% assign the output variable
output = dat;
end % need header or data
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hdr, dat] = read_mff_block(fid, prevhdr, chanindx, action)
if nargin<3
prevhdr = [];
end
if nargin<4
action = 'none';
end
%-Endianness
endian = 'ieee-le';
% General information
hdr.version = fread(fid, 1, 'int32', endian);
if hdr.version==0
% the header did not change compared to the previous one
% no additional information is present in the file
% the file continues with the actual data
hdr = prevhdr;
hdr.version = 0;
else
hdr.headersize = fread(fid, 1, 'int32', endian);
hdr.datasize = fread(fid, 1, 'int32', endian); % the documentation specified that this includes the data, but that seems not to be the case
hdr.nsignals = fread(fid, 1, 'int32', endian);
% channel-specific information
hdr.offset = fread(fid, hdr.nsignals, 'int32', endian);
% signal depth and frequency for each channel
for i = 1:hdr.nsignals
hdr.depth(i) = fread(fid, 1, 'int8', endian);
hdr.fsample(i) = fread(fid, 1, 'bit24', endian); %ingnie: is bit24 the same as int24?
end
%-Optional header length
hdr.optlength = fread(fid, 1, 'int32', endian);
if hdr.optlength
hdr.opthdr.EGItype = fread(fid, 1, 'int32', endian);
hdr.opthdr.nblocks = fread(fid, 1, 'int64', endian);
hdr.opthdr.nsamples = fread(fid, 1, 'int64', endian);
hdr.opthdr.nsignals = fread(fid, 1, 'int32', endian);
else
hdr.opthdr = [];
end
% determine the number of samples for each channel
hdr.nsamples = diff(hdr.offset);
% the last one has to be determined by looking at the total data block length
hdr.nsamples(end+1) = hdr.datasize - hdr.offset(end);
% divide by the number of bytes in each channel
hdr.nsamples = hdr.nsamples(:) ./ (hdr.depth(:)./8);
end % reading the rest of the header
switch action
case 'read'
dat = cell(length(chanindx), 1);
currchan = 1;
for i = 1:hdr.nsignals
switch hdr.depth(i) % length in bit
case 16
slen = 2; % sample length, for fseek
datatype = 'int16';
case 32
slen = 4; % sample length, for fseek
datatype = 'single';
case 64
slen = 8; % sample length, for fseek
datatype = 'double';
end % case
tmp = fread(fid, [1 hdr.nsamples(i)], datatype);
if ~isempty(intersect(chanindx,i)) %only keep channels that are requested
dat{currchan} = tmp;
currchan = currchan + 1;
end
end % for
case 'skip'
dat = {};
fseek(fid, hdr.datasize, 'cof');
case 'none'
dat = {};
return;
end % switch action
|
github
|
lcnbeapp/beapp-master
|
ft_datatype_sens.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/private/ft_datatype_sens.m
| 22,743 |
utf_8
|
fab01996ef9a98c643827fb2767fbaf3
|
function [sens] = ft_datatype_sens(sens, varargin)
% FT_DATATYPE_SENS describes the FieldTrip structure that represents an EEG, ECoG, or
% MEG sensor array. This structure is commonly called "elec" for EEG, "grad" for MEG,
% "opto" for NIRS, or general "sens" for either one.
%
% For all sensor types a distinction should be made between the channel (i.e. the
% output of the transducer that is A/D converted) and the sensor, which may have some
% spatial extent. E.g. with EEG you can have a bipolar channel, where the position of
% the channel can be represented as in between the position of the two electrodes.
%
% The structure for MEG gradiometers and/or magnetometers contains
% sens.label = Mx1 cell-array with channel labels
% sens.chanpos = Mx3 matrix with channel positions
% sens.chanori = Mx3 matrix with channel orientations, used for synthetic planar gradient computation
% sens.tra = MxN matrix to combine coils into channels
% sens.coilpos = Nx3 matrix with coil positions
% sens.coilori = Nx3 matrix with coil orientations
% sens.balance = structure containing info about the balancing, See FT_APPLY_MONTAGE
% and optionally
% sens.chanposold = Mx3 matrix with original channel positions (in case
% sens.chanpos has been updated to contain NaNs, e.g.
% after ft_componentanalysis)
% sens.chanoriold = Mx3 matrix with original channel orientations
% sens.labelold = Mx1 cell-array with original channel labels
%
% The structure for EEG or ECoG channels contains
% sens.label = Mx1 cell-array with channel labels
% sens.elecpos = Nx3 matrix with electrode positions
% sens.chanpos = Mx3 matrix with channel positions (often the same as electrode positions)
% sens.tra = MxN matrix to combine electrodes into channels
% In case sens.tra is not present in the EEG sensor array, the channels
% are assumed to be average referenced.
%
% The structure for NIRS channels contains
% sens.optopos = contains information about the position of the optodes
% sens.optotype = contains information about the type of optode (receiver or transmitter)
% sens.chanpos = contains information about the position of the channels (i.e. average of optopos)
% sens.tra = NxC matrix, boolean, contains information about how receiver and transmitter form channels
% sens.wavelength = 1xM vector of all wavelengths that were used
% sens.transmits = NxM matrix, boolean, where N is the number of optodes and M the number of wavelengths per transmitter. Specifies what optode is transmitting at what wavelength (or nothing at all, which indicates that it is a receiver)
% sens.laserstrength = 1xM vector of the strength of the emitted light of the lasers
%
% The following fields apply to MEG and EEG
% sens.chantype = Mx1 cell-array with the type of the channel, see FT_CHANTYPE
% sens.chanunit = Mx1 cell-array with the units of the channel signal, e.g. 'V', 'fT' or 'T/cm', see FT_CHANUNIT
%
% The following fields are optional
% sens.type = string with the type of acquisition system, see FT_SENSTYPE
% sens.fid = structure with fiducial information
%
% Historical fields:
% pnt, pos, ori, pnt1, pnt2
%
% Revision history:
% (2016/latest) The chantype and chanunit have become required fields.
% Original channel details are specified with the suffix "old" rather than "org".
% All numeric values are represented in double precision.
% It is possible to convert the amplitude and distance units (e.g. from T to fT and
% from m to mm) and it is possible to express planar and axial gradiometer channels
% either in units of amplitude or in units of amplitude/distance (i.e. proper
% gradient).
%
% (2011v2) The chantype and chanunit have been added for MEG.
%
% (2011v1) To facilitate determining the position of channels (e.g. for plotting)
% in case of balanced MEG or bipolar EEG, an explicit distinction has been made
% between chanpos+chanori and coilpos+coilori (for MEG) and chanpos and elecpos
% (for EEG). The pnt and ori fields are removed
%
% (2010) Added support for bipolar or otherwise more complex linear combinations
% of EEG electrodes using sens.tra, similar to MEG.
%
% (2009) Noice reduction has been added for MEG systems in the balance field.
%
% (2006) The optional fields sens.type and sens.unit were added.
%
% (2003) The initial version was defined, which looked like this for EEG
% sens.pnt = Mx3 matrix with electrode positions
% sens.label = Mx1 cell-array with channel labels
% and like this for MEG
% sens.pnt = Nx3 matrix with coil positions
% sens.ori = Nx3 matrix with coil orientations
% sens.tra = MxN matrix to combine coils into channels
% sens.label = Mx1 cell-array with channel labels
%
% See also FT_READ_SENS, FT_SENSTYPE, FT_CHANTYPE, FT_APPLY_MONTAGE, CTF2GRAD, FIF2GRAD,
% BTI2GRAD, YOKOGAWA2GRAD, ITAB2GRAD
% Copyright (C) 2011-2016, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% undocumented options for the 2016 format
% amplitude = string, can be 'T' or 'fT'
% distance = string, can be 'm', 'cm' or 'mm'
% scaling = string, can be 'amplitude' or 'amplitude/distance'
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout
current_argin = [{sens} varargin];
if isequal(current_argin, previous_argin)
% don't do the whole cheking again, but return the previous output from cache
sens = previous_argout{1};
return
end
% get the optional input arguments, which should be specified as key-value pairs
version = ft_getopt(varargin, 'version', 'latest');
amplitude = ft_getopt(varargin, 'amplitude'); % should be 'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'
distance = ft_getopt(varargin, 'distance'); % should be 'm' 'dm' 'cm' 'mm'
scaling = ft_getopt(varargin, 'scaling'); % should be 'amplitude' or 'amplitude/distance', the default depends on the senstype
if ~isempty(amplitude) && ~any(strcmp(amplitude, {'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'}))
error('unsupported unit of amplitude "%s"', amplitude);
end
if ~isempty(distance) && ~any(strcmp(distance, {'m' 'dm' 'cm' 'mm'}))
error('unsupported unit of distance "%s"', distance);
end
if strcmp(version, 'latest')
version = '2016';
end
if isempty(sens)
return;
end
% this is needed further down
nchan = length(sens.label);
% there are many cases which deal with either eeg or meg
ismeg = ft_senstype(sens, 'meg');
switch version
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2016'
% update it to the previous standard version
sens = ft_datatype_sens(sens, 'version', '2011v2');
% ensure that all numbers are represented in double precision
sens = ft_struct2double(sens);
% use "old/new" rather than "org/new"
if isfield(sens, 'labelorg')
sens.labelold = sens.labelorg;
sens = rmfield(sens, 'labelorg');
end
if isfield(sens, 'chantypeorg')
sens.chantypeold = sens.chantypeorg;
sens = rmfield(sens, 'chantypeorg');
end
if isfield(sens, 'chanuniteorg')
sens.chanunitold = sens.chanunitorg;
sens = rmfield(sens, 'chanunitorg');
end
if isfield(sens, 'chanposorg')
sens.chanposold = sens.chanposorg;
sens = rmfield(sens, 'chanposorg');
end
if isfield(sens, 'chanoriorg')
sens.chanoriold = sens.chanoriorg;
sens = rmfield(sens, 'chanoriorg');
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
sens.chantype = ft_chantype(sens);
end
% in version 2011v2 this was optional, now it is required
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
sens.chanunit = ft_chanunit(sens);
end
if ~isempty(distance)
% update the units of distance, this also updates the tra matrix
sens = ft_convert_units(sens, distance);
else
% determine the default, this may be needed to set the scaling
distance = sens.unit;
end
if ~isempty(amplitude) && isfield(sens, 'tra')
% update the tra matrix for the units of amplitude, this ensures that
% the leadfield values remain consistent with the units
for i=1:nchan
if ~isempty(regexp(sens.chanunit{i}, 'm$', 'once'))
% this channel is expressed as amplitude per distance
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, [amplitude '/' distance]);
sens.chanunit{i} = [amplitude '/' distance];
elseif ~isempty(regexp(sens.chanunit{i}, '[T|V]$', 'once'))
% this channel is expressed as amplitude
sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, amplitude);
sens.chanunit{i} = amplitude;
else
error('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i);
end
end
else
% determine the default amplityde, this may be needed to set the scaling
if any(~cellfun(@isempty, regexp(sens.chanunit, '^T')))
% one of the channel units starts with T
amplitude = 'T';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^fT')))
% one of the channel units starts with fT
amplitude = 'fT';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^V')))
% one of the channel units starts with V
amplitude = 'V';
elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^uV')))
% one of the channel units starts with uV
amplitude = 'uV';
else
% this unknown amplitude will cause a problem if the scaling needs to be changed between amplitude and amplitude/distance
amplitude = 'unknown';
end
end
% perform some sanity checks
if ismeg
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if strcmp(sens.unit, 'm') && (any(sel_dm) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'dm') && (any(sel_m) || any(sel_cm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'cm') && (any(sel_m) || any(sel_dm) || any(sel_mm))
error('inconsistent units in input gradiometer');
elseif strcmp(sens.unit, 'mm') && (any(sel_m) || any(sel_dm) || any(sel_cm))
error('inconsistent units in input gradiometer');
end
% the default should be amplitude/distance for neuromag and amplitude for all others
if isempty(scaling)
if ft_senstype(sens, 'neuromag')
scaling = 'amplitude/distance';
elseif ft_senstype(sens, 'yokogawa440')
warning('asuming that the default scaling should be amplitude rather than amplitude/distance');
scaling = 'amplitude';
else
scaling = 'amplitude';
end
end
% update the gradiometer scaling
if strcmp(scaling, 'amplitude') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, [amplitude '/' distance])
% this channel is expressed as amplitude per distance
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)~=2
error('unexpected number of coils contributing to channel %d', i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)*baseline; % scale with the baseline distance
sens.chanunit{i} = amplitude;
elseif strcmp(sens.chanunit{i}, amplitude)
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
elseif strcmp(scaling, 'amplitude/distance') && isfield(sens, 'tra')
for i=1:nchan
if strcmp(sens.chanunit{i}, amplitude)
% this channel is expressed as amplitude
coil = find(abs(sens.tra(i,:))~=0);
if length(coil)==1 || strcmp(sens.chantype{i}, 'megmag')
% this is a magnetometer channel, no conversion needed
continue
elseif length(coil)~=2
error('unexpected number of coils (%d) contributing to channel %s (%d)', length(coil), sens.label{i}, i);
end
baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:));
sens.tra(i,:) = sens.tra(i,:)/baseline; % scale with the baseline distance
sens.chanunit{i} = [amplitude '/' distance];
elseif strcmp(sens.chanunit{i}, [amplitude '/' distance])
% no conversion needed
else
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144
ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i));
end % if
end % for
end % if strcmp scaling
else
sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$'));
sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$'));
sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$'));
sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$'));
if any(sel_m | sel_dm | sel_cm | sel_mm)
error('scaling of amplitude/distance has not been considered yet for EEG');
end
end % if iseeg or ismeg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case '2011v2'
if ~isempty(amplitude) || ~isempty(distance) || ~isempty(scaling)
warning('amplitude, distance and scaling are not supported for version "%s"', version);
end
% This speeds up subsequent calls to ft_senstype and channelposition.
% However, if it is not more precise than MEG or EEG, don't keep it in
% the output (see further down).
if ~isfield(sens, 'type')
sens.type = ft_senstype(sens);
end
if isfield(sens, 'pnt')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
sens.coilpos = sens.pnt; sens = rmfield(sens, 'pnt');
sens.coilori = sens.ori; sens = rmfield(sens, 'ori');
else
% sensor description is something else, EEG/ECoG etc
sens.elecpos = sens.pnt; sens = rmfield(sens, 'pnt');
end
end
if ~isfield(sens, 'chanpos')
if ismeg
% sensor description is a MEG sensor-array, containing oriented coils
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
sens.chanori = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
sens.chanori(selsens,:) = chanori(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
else
% sensor description is something else, EEG/ECoG etc
% note that chanori will be all NaNs
[chanpos, chanori, lab] = channelposition(sens);
% the channel order can be different in the two representations
[selsens, selpos] = match_str(sens.label, lab);
sens.chanpos = nan(length(sens.label), 3);
% insert the determined position/orientation on the appropriate rows
sens.chanpos(selsens,:) = chanpos(selpos,:);
if length(selsens)~=length(sens.label)
warning('cannot determine the position and orientation for all channels');
end
end
end
if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown'))
if ismeg
sens.chantype = ft_chantype(sens);
else
% for EEG it is not required
end
end
if ~isfield(sens, 'unit')
% this should be done prior to calling ft_chanunit, since ft_chanunit uses this for planar neuromag channels
sens = ft_convert_units(sens);
end
if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown'))
if ismeg
sens.chanunit = ft_chanunit(sens);
else
% for EEG it is not required
end
end
if any(strcmp(sens.type, {'meg', 'eeg', 'magnetometer', 'electrode', 'unknown'}))
% this is not sufficiently informative, so better remove it
% see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1806
sens = rmfield(sens, 'type');
end
if size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'tra') && size(sens.tra,1)~=length(sens.label) || ...
isfield(sens, 'tra') && isfield(sens, 'elecpos') && size(sens.tra,2)~=size(sens.elecpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilpos') && size(sens.tra,2)~=size(sens.coilpos,1) || ...
isfield(sens, 'tra') && isfield(sens, 'coilori') && size(sens.tra,2)~=size(sens.coilori,1) || ...
isfield(sens, 'chanpos') && size(sens.chanpos,1)~=length(sens.label) || ...
isfield(sens, 'chanori') && size(sens.chanori,1)~=length(sens.label)
error('inconsistent number of channels in sensor description');
end
if ismeg
% ensure that the magnetometer/gradiometer balancing is specified
if ~isfield(sens, 'balance') || ~isfield(sens.balance, 'current')
sens.balance.current = 'none';
end
% try to add the chantype and chanunit to the CTF G1BR montage
if isfield(sens, 'balance') && isfield(sens.balance, 'G1BR') && ~isfield(sens.balance.G1BR, 'chantype')
sens.balance.G1BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg));
sens.balance.G1BR.chantypenew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
sens.balance.G1BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G1BR.labelorg, sens.label);
sens.balance.G1BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G1BR.labelnew, sens.label);
sens.balance.G1BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G1BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G2BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G2BR') && ~isfield(sens.balance.G2BR, 'chantype')
sens.balance.G2BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg));
sens.balance.G2BR.chantypenew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
sens.balance.G2BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G2BR.labelorg, sens.label);
sens.balance.G2BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G2BR.labelnew, sens.label);
sens.balance.G2BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G2BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
% idem for G3BR
if isfield(sens, 'balance') && isfield(sens.balance, 'G3BR') && ~isfield(sens.balance.G3BR, 'chantype')
sens.balance.G3BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg));
sens.balance.G3BR.chantypenew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
sens.balance.G3BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew));
% the synthetic gradient montage does not fundamentally change the chantype or chanunit
[sel1, sel2] = match_str(sens.balance.G3BR.labelorg, sens.label);
sens.balance.G3BR.chantypeorg(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitorg(sel1) = sens.chanunit(sel2);
[sel1, sel2] = match_str(sens.balance.G3BR.labelnew, sens.label);
sens.balance.G3BR.chantypenew(sel1) = sens.chantype(sel2);
sens.balance.G3BR.chanunitnew(sel1) = sens.chanunit(sel2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
otherwise
error('converting to version %s is not supported', version);
end % switch
% this makes the display with the "disp" command look better
sens = sortfieldnames(sens);
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {sens};
previous_argin = current_argin;
previous_argout = current_argout;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function b = sortfieldnames(a)
fn = sort(fieldnames(a));
for i=1:numel(fn)
b.(fn{i}) = a.(fn{i});
end
|
github
|
lcnbeapp/beapp-master
|
avw_img_read.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/private/avw_img_read.m
| 29,185 |
utf_8
|
0292be5a490e4b339a1682248d56c5ee
|
function [ avw, machine ] = avw_img_read(fileprefix,IMGorient,machine,verbose)
% avw_img_read - read Analyze format data image (*.img)
%
% [ avw, machine ] = avw_img_read(fileprefix,[orient],[machine],[verbose])
%
% fileprefix - a string, the filename without the .img extension
%
% orient - read a specified orientation, integer values:
%
% '', use header history orient field
% 0, transverse unflipped (LAS*)
% 1, coronal unflipped (LA*S)
% 2, sagittal unflipped (L*AS)
% 3, transverse flipped (LPS*)
% 4, coronal flipped (LA*I)
% 5, sagittal flipped (L*AI)
%
% where * follows the slice dimension and letters indicate +XYZ
% orientations (L left, R right, A anterior, P posterior,
% I inferior, & S superior).
%
% Some files may contain data in the 3-5 orientations, but this
% is unlikely. For more information about orientation, see the
% documentation at the end of this .m file. See also the
% AVW_FLIP function for orthogonal reorientation.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le' but the routine
% will automatically switch between little and big
% endian to read any such Analyze header. It
% reports the appropriate machine format and can
% return the machine value.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% Returned values:
%
% avw.hdr - a struct with image data parameters.
% avw.img - a 3D matrix of image data (double precision).
%
% A returned 3D matrix will correspond with the
% default ANALYZE coordinate system, which
% is Left-handed:
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient Left (high X)
% Y axis runs from posterior (low Y) to Anterior (high Y)
% Z axis runs from inferior (low Z) to Superior (high Z)
%
% The function can read a 4D Analyze volume, but only if it is in the
% axial unflipped orientation.
%
% See also: avw_hdr_read (called by this function),
% avw_view, avw_write, avw_img_write, avw_flip
%
% $Revision$ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
% 01/2003, [email protected]
% - adapted for matlab v5
% - revised all orientation information and handling
% after seeking further advice from AnalyzeDirect.com
% 03/2003, [email protected]
% - adapted for -ve pixdim values (non standard Analyze)
% 07/2004, [email protected], added ability to
% read volumes with dimensionality greather than 3.
% a >3D volume cannot be flipped. and error is thrown if a volume of
% greater than 3D (ie, avw.hdr.dime.dim(1) > 3) requests a data flip
% (ie, avw.hdr.hist.orient ~= 0 ). i pulled the transfer of read-in
% data (tmp) to avw.img out of any looping mechanism. looping is not
% necessary as the data is already in its correct orientation. using
% 'reshape' rather than looping should be faster but, more importantly,
% it allows the reading in of N-D volumes. See lines 270-280.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('IMGorient','var'), IMGorient = ''; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if ~exist('verbose','var'), verbose = 1; end
if isempty(IMGorient), IMGorient = ''; end
if isempty(machine), machine = 'ieee-le'; end
if isempty(verbose), verbose = 1; end
if ~exist('fileprefix','var'),
msg = sprintf('...no input fileprefix - see help avw_img_read\n\n');
error(msg);
end
if findstr('.hdr',fileprefix),
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
fileprefix = strrep(fileprefix,'.img','');
end
% MAIN
% Read the file header
[ avw, machine ] = avw_hdr_read(fileprefix,machine,verbose);
avw = read_image(avw,IMGorient,machine,verbose);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ avw ] = read_image(avw,IMGorient,machine,verbose)
fid = fopen(sprintf('%s.img',avw.fileprefix),'r',machine);
if fid < 0,
msg = sprintf('...cannot open file %s.img\n\n',avw.fileprefix);
error(msg);
end
if verbose,
ver = '[$Revision$]';
fprintf('\nAVW_IMG_READ [v%s]\n',ver(12:16)); tic;
end
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
switch double(avw.hdr.dime.bitpix),
case 1, precision = 'bit1';
case 8, precision = 'uchar';
case 16, precision = 'int16';
case 32,
if isequal(avw.hdr.dime.datatype, 8), precision = 'int32';
else precision = 'single';
end
case 64, precision = 'double';
otherwise,
precision = 'uchar';
if verbose, fprintf('...precision undefined in header, using ''uchar''\n'); end
end
% read the whole .img file into matlab (faster)
if verbose,
fprintf('...reading %s Analyze %s image format.\n',machine,precision);
end
fseek(fid,0,'bof');
% adjust for matlab version
ver = version;
ver = str2num(ver(1));
if ver < 6,
tmp = fread(fid,inf,sprintf('%s',precision));
else,
tmp = fread(fid,inf,sprintf('%s=>double',precision));
end
fclose(fid);
% Update the global min and max values
avw.hdr.dime.glmax = max(double(tmp));
avw.hdr.dime.glmin = min(double(tmp));
%---------------------------------------------------------------
% Now partition the img data into xyz
% --- first figure out the size of the image
% short int dim[ ]; /* Array of the image dimensions */
%
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of pixels in an image row.
% dim[2] Image Y dimension; number of pixel rows in slice.
% dim[3] Volume Z dimension; number of slices in a volume.
% dim[4] Time points; number of volumes in database.
PixelDim = double(avw.hdr.dime.dim(2));
RowDim = double(avw.hdr.dime.dim(3));
SliceDim = double(avw.hdr.dime.dim(4));
TimeDim = double(avw.hdr.dime.dim(5));
PixelSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(3));
SliceSz = double(avw.hdr.dime.pixdim(4));
TimeSz = double(avw.hdr.dime.pixdim(5));
% ---- NON STANDARD ANALYZE...
% Some Analyze files have been found to set -ve pixdim values, eg
% the MNI template avg152T1_brain in the FSL etc/standard folder,
% perhaps to indicate flipped orientation? If so, this code below
% will NOT handle the flip correctly!
if PixelSz < 0,
warning('X pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(2))');
PixelSz = abs(PixelSz);
avw.hdr.dime.pixdim(2) = single(PixelSz);
end
if RowSz < 0,
warning('Y pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(3))');
RowSz = abs(RowSz);
avw.hdr.dime.pixdim(3) = single(RowSz);
end
if SliceSz < 0,
warning('Z pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(4))');
SliceSz = abs(SliceSz);
avw.hdr.dime.pixdim(4) = single(SliceSz);
end
% ---- END OF NON STANDARD ANALYZE
% --- check the orientation specification and arrange img accordingly
if ~isempty(IMGorient),
if ischar(IMGorient),
avw.hdr.hist.orient = uint8(str2num(IMGorient));
else
avw.hdr.hist.orient = uint8(IMGorient);
end
end,
if isempty(avw.hdr.hist.orient),
msg = [ '...unspecified avw.hdr.hist.orient, using default 0\n',...
' (check image and try explicit IMGorient option).\n'];
fprintf(msg);
avw.hdr.hist.orient = uint8(0);
end
% --- check if the orientation is to be flipped for a volume with more
% --- than 3 dimensions. this logic is currently unsupported so throw
% --- an error. volumes of any dimensionality may be read in *only* as
% --- unflipped, ie, avw.hdr.hist.orient == 0
if ( TimeDim > 1 ) && (avw.hdr.hist.orient ~= 0 ),
msg = [ 'ERROR: This volume has more than 3 dimensions *and* ', ...
'requires flipping the data. Flipping is not supported ', ...
'for volumes with dimensionality greater than 3. Set ', ...
'avw.hdr.hist.orient = 0 and flip your volume after ', ...
'calling this function' ];
msg = sprintf( '%s (%s).', msg, mfilename );
error( msg );
end
switch double(avw.hdr.hist.orient),
case 0, % transverse unflipped
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the posterior-anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose, fprintf('...reading axial unflipped orientation\n'); end
% -- This code will handle nD files
dims = double( avw.hdr.dime.dim(2:end) );
% replace dimensions of 0 with 1 to be used in reshape
idx = find( dims == 0 );
dims( idx ) = 1;
avw.img = reshape( tmp, dims );
% -- The code above replaces this
% avw.img = zeros(PixelDim,RowDim,SliceDim);
%
% n = 1;
% x = 1:PixelDim;
% for z = 1:SliceDim,
% for y = 1:RowDim,
% % load Y row of X values into Z slice avw.img
% avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
% n = n + PixelDim;
% end
% end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 1, % coronal unflipped
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the inferior-superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient posterior to anterior
if verbose, fprintf('...reading coronal unflipped orientation\n'); end
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = 1:RowDim,
% load Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 2, % sagittal unflipped
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior-superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal unflipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'x' axis - from patient right to left
if verbose, fprintf('...reading sagittal unflipped orientation\n'); end
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim; % posterior to anterior (fastest)
for x = 1:SliceDim, % right to left (slowest)
for z = 1:RowDim, % inferior to superior
% load Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
%--------------------------------------------------------------------------------
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%--------------------------------------------------------------------------------
case 3, % transverse/axial flipped
% orient = 3: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the *anterior-posterior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'y' axis - from patient anterior to Posterior *
% Slices in 'z' axis - from patient inferior to Superior
if verbose, fprintf('...reading axial flipped (+Y from Anterior to Posterior)\n'); end
avw.img = zeros(PixelDim,RowDim,SliceDim);
n = 1;
x = 1:PixelDim;
for z = 1:SliceDim,
for y = RowDim:-1:1, % flip in Y, read A2P file into P2A 3D matrix
% load a flipped Y row of X values into Z slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 4, % coronal flipped
% orient = 4: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the *superior-inferior* extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'y' axis - from patient posterior to Anterior
if verbose, fprintf('...reading coronal flipped (+Z from Superior to Inferior)\n'); end
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 5, % sagittal flipped
% orient = 5: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the *superior-inferior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal flipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to Anterior
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'x' axis - from patient right to Left
if verbose, fprintf('...reading sagittal flipped (+Z from Superior to Inferior)\n'); end
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim;
for x = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
otherwise
error('unknown value in avw.hdr.hist.orient, try explicit IMGorient option.');
end
if verbose, t=toc; fprintf('...done (%5.2f sec).\n\n',t); end
return
% This function attempts to read the orientation of the
% Analyze file according to the hdr.hist.orient field of the
% header. Unfortunately, this field is optional and not
% all programs will set it correctly, so there is no guarantee,
% that the data loaded will be correctly oriented. If necessary,
% experiment with the 'orient' option to read the .img
% data into the 3D matrix of avw.img as preferred.
%
% (Conventions gathered from e-mail with [email protected])
%
% 0 transverse unflipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient posterior to anterior,
% Z direction third, progressing from patient inferior to superior.
% 1 coronal unflipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient inferior to superior,
% Y direction third, progressing from patient posterior to anterior.
% 2 sagittal unflipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient inferior to superior,
% X direction third, progressing from patient right to left.
% 3 transverse flipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient anterior to posterior,
% Z direction third, progressing from patient inferior to superior.
% 4 coronal flipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient superior to inferior,
% Y direction third, progressing from patient posterior to anterior.
% 5 sagittal flipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient superior to inferior,
% X direction third, progressing from patient right to left.
%----------------------------------------------------------------------------
% From ANALYZE documentation...
%
% The ANALYZE coordinate system has an origin in the lower left
% corner. That is, with the subject lying supine, the coordinate
% origin is on the right side of the body (x), at the back (y),
% and at the feet (z). This means that:
%
% +X increases from right (R) to left (L)
% +Y increases from the back (posterior,P) to the front (anterior, A)
% +Z increases from the feet (inferior,I) to the head (superior, S)
%
% The LAS orientation is the radiological convention, where patient
% left is on the image right. The alternative neurological
% convention is RAS (also Talairach convention).
%
% A major advantage of the Analzye origin convention is that the
% coordinate origin of each orthogonal orientation (transverse,
% coronal, and sagittal) lies in the lower left corner of the
% slice as it is displayed.
%
% Orthogonal slices are numbered from one to the number of slices
% in that orientation. For example, a volume (x, y, z) dimensioned
% 128, 256, 48 has:
%
% 128 sagittal slices numbered 1 through 128 (X)
% 256 coronal slices numbered 1 through 256 (Y)
% 48 transverse slices numbered 1 through 48 (Z)
%
% Pixel coordinates are made with reference to the slice numbers from
% which the pixels come. Thus, the first pixel in the volume is
% referenced p(1,1,1) and not at p(0,0,0).
%
% Transverse slices are in the XY plane (also known as axial slices).
% Sagittal slices are in the ZY plane.
% Coronal slices are in the ZX plane.
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% E-mail from [email protected]
%
% The 'orient' field in the data_history structure specifies the primary
% orientation of the data as it is stored in the file on disk. This usually
% corresponds to the orientation in the plane of acquisition, given that this
% would correspond to the order in which the data is written to disk by the
% scanner or other software application. As you know, this field will contain
% the values:
%
% orient = 0 transverse unflipped
% 1 coronal unflipped
% 2 sagittal unflipped
% 3 transverse flipped
% 4 coronal flipped
% 5 sagittal flipped
%
% It would be vary rare that you would ever encounter any old Analyze 7.5
% files that contain values of 'orient' which indicate that the data has been
% 'flipped'. The 'flipped flag' values were really only used internal to
% Analyze to precondition data for fast display in the Movie module, where the
% images were actually flipped vertically in order to accommodate the raster
% paint order on older graphics devices. The only cases you will encounter
% will have values of 0, 1, or 2.
%
% As mentioned, the 'orient' flag only specifies the primary orientation of
% data as stored in the disk file itself. It has nothing to do with the
% representation of the data in the 3D Analyze coordinate system, which always
% has a fixed representation to the data. The meaning of the 'orient' values
% should be interpreted as follows:
%
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the posterior-anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
%
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the inferior-superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
%
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior-superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
%
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%
% Hopefully you understand the difference between the indication this 'orient'
% flag has relative to data stored on disk and the full 3D Analyze Coordinate
% System for data that is managed as a volume image. As mentioned previously,
% the orientation of patient anatomy in the 3D Analyze Coordinate System has a
% fixed orientation relative to each of the orthogonal axes. This orientation
% is completely described in the information that is attached, but the basics
% are:
%
% Left-handed coordinate system
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient left (high X)
% Y axis runs from posterior (low Y) to anterior (high Y)
% Z axis runs from inferior (low Z) to superior (high Z)
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% SPM2 NOTES from spm2 webpage: One thing to watch out for is the image
% orientation. The proper Analyze format uses a left-handed co-ordinate
% system, whereas Talairach uses a right-handed one. In SPM99, images were
% flipped at the spatial normalisation stage (from one co-ordinate system
% to the other). In SPM2b, a different approach is used, so that either a
% left- or right-handed co-ordinate system is used throughout. The SPM2b
% program is told about the handedness that the images are stored with by
% the spm_flip_analyze_images.m function and the defaults.analyze.flip
% parameter that is specified in the spm_defaults.m file. These files are
% intended to be customised for each site. If you previously used SPM99
% and your images were flipped during spatial normalisation, then set
% defaults.analyze.flip=1. If no flipping took place, then set
% defaults.analyze.flip=0. Check that when using the Display facility
% (possibly after specifying some rigid-body rotations) that:
%
% The top-left image is coronal with the top (superior) of the head displayed
% at the top and the left shown on the left. This is as if the subject is viewed
% from behind.
%
% The bottom-left image is axial with the front (anterior) of the head at the
% top and the left shown on the left. This is as if the subject is viewed from above.
%
% The top-right image is sagittal with the front (anterior) of the head at the
% left and the top of the head shown at the top. This is as if the subject is
% viewed from the left.
%----------------------------------------------------------------------------
|
github
|
lcnbeapp/beapp-master
|
read_yokogawa_event.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/fileio/private/read_yokogawa_event.m
| 7,046 |
utf_8
|
df3f4e01815283a7efc0b36ed8e51c29
|
function [event] = read_yokogawa_event(filename, varargin)
% READ_YOKOGAWA_EVENT reads event information from continuous,
% epoched or averaged MEG data that has been generated by the Yokogawa
% MEG system and software and allows those events to be used in
% combination with FieldTrip.
%
% Use as
% [event] = read_yokogawa_event(filename)
%
% See also READ_YOKOGAWA_HEADER, READ_YOKOGAWA_DATA
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
event = [];
handles = definehandles;
% get the options, the default is set below
trigindx = ft_getopt(varargin, 'trigindx');
threshold = ft_getopt(varargin, 'threshold');
detectflank = ft_getopt(varargin, 'detectflank');
% ensure that the required toolbox is on the path
if ft_hastoolbox('yokogawa_meg_reader');
% read the dataset header
hdr = read_yokogawa_header_new(filename);
ch_info = hdr.orig.channel_info.channel;
type = [ch_info.type];
% determine the trigger channels (if not specified by the user)
if isempty(trigindx)
trigindx = find(type==handles.TriggerChannel);
end
% Use the MEG Reader documentation if more detailed support is
% required.
if hdr.orig.acq_type==handles.AcqTypeEvokedRaw
% read the trigger id from all trials
event = getYkgwHdrEvent(filename);
% use the standard FieldTrip header for trial events
% make an event for each trial as defined in the header
for i=1:hdr.nTrials
event(end+1).type = 'trial';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
if ~isempty(value)
event(end ).value = event(i).code;
end
end
% Use the MEG Reader documentation if more detailed support is required.
elseif hdr.orig.acq_type==handles.AcqTypeEvokedAve
% make an event for the average
event(1).type = 'average';
event(1).sample = 1;
event(1).offset = -hdr.nSamplesPre;
event(1).duration = hdr.nSamples;
elseif hdr.orig.acq_type==handles.AcqTypeContinuousRaw
% the data structure does not contain events, but flank detection on the trigger channel might reveal them
% this is done below for all formats
end
elseif ft_hastoolbox('yokogawa');
% read the dataset header
hdr = read_yokogawa_header(filename);
% determine the trigger channels (if not specified by the user)
if isempty(trigindx)
trigindx = find(hdr.orig.channel_info(:,2)==handles.TriggerChannel);
end
if hdr.orig.acq_type==handles.AcqTypeEvokedRaw
% read the trigger id from all trials
fid = fopen(filename, 'r');
value = GetMeg160TriggerEventM(fid);
fclose(fid);
% use the standard FieldTrip header for trial events
% make an event for each trial as defined in the header
for i=1:hdr.nTrials
event(end+1).type = 'trial';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
if ~isempty(value)
event(end ).value = value(i);
end
end
elseif hdr.orig.acq_type==handles.AcqTypeEvokedAve
% make an event for the average
event(1).type = 'average';
event(1).sample = 1;
event(1).offset = -hdr.nSamplesPre;
event(1).duration = hdr.nSamples;
elseif hdr.orig.acq_type==handles.AcqTypeContinuousRaw
% the data structure does not contain events, but flank detection on the trigger channel might reveal them
% this is done below for all formats
end
else
error('cannot determine, whether Yokogawa toolbox is present');
end
% read the trigger channels and detect the flanks
if ~isempty(trigindx)
trigger = read_trigger(filename, 'header', hdr, 'denoise', false, 'chanindx', trigindx, 'detectflank', detectflank, 'threshold', threshold);
% combine the triggers and the other events
event = appendevent(event, trigger);
end
if isempty(event)
warning('no triggers were detected, please specify the "trigindx" option');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this defines some usefull constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function handles = definehandles
handles.output = [];
handles.sqd_load_flag = false;
handles.mri_load_flag = false;
handles.NullChannel = 0;
handles.MagnetoMeter = 1;
handles.AxialGradioMeter = 2;
handles.PlannerGradioMeter = 3;
handles.RefferenceChannelMark = hex2dec('0100');
handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter );
handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter );
handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter );
handles.TriggerChannel = -1;
handles.EegChannel = -2;
handles.EcgChannel = -3;
handles.EtcChannel = -4;
handles.NonMegChannelNameLength = 32;
handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length
handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter
handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length
handles.AcqTypeContinuousRaw = 1;
handles.AcqTypeEvokedAve = 2;
handles.AcqTypeEvokedRaw = 3;
handles.sqd = [];
handles.sqd.selected_start = [];
handles.sqd.selected_end = [];
handles.sqd.axialgradiometer_ch_no = [];
handles.sqd.axialgradiometer_ch_info = [];
handles.sqd.axialgradiometer_data = [];
handles.sqd.plannergradiometer_ch_no = [];
handles.sqd.plannergradiometer_ch_info = [];
handles.sqd.plannergradiometer_data = [];
handles.sqd.eegchannel_ch_no = [];
handles.sqd.eegchannel_data = [];
handles.sqd.nullchannel_ch_no = [];
handles.sqd.nullchannel_data = [];
handles.sqd.selected_time = [];
handles.sqd.sample_rate = [];
handles.sqd.sample_count = [];
handles.sqd.pretrigger_length = [];
handles.sqd.matching_info = [];
handles.sqd.source_info = [];
handles.sqd.mri_info = [];
handles.mri = [];
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.